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Preface

There is an experimental-economics paradox. Inside the community of researchers car-

rying out laboratory experiments, these latter are seen as no more and no less than a

tool for empirical research. From the outside, however, the method is often perceived

as part of a particular sub-field, behavioural economics, which applies insights from

both economics and psychology for the better understanding of economic behaviour.

Experimental economics is also usually taught this way in most programmes, as part of

behavioural-economics classes.

It has, however, long been recognised that experimental and behavioural economics

are not the same. Behavioural economics is a research programme with a clear ambition

and a well-defined objective: improving economic analysis using realistic psychological

assumptions about human behaviour. Experimental economics, on the contrary, is not,

per se, a research programme. Rather, it is a research method based on experimental

control, applied to the typical topics in economic analysis.

The aim of this textbook is to help close the gap between the perception and reality

of experimental methods in economics. We cover experimental economics, i.e. con-

trolled experiments used as a tool to provide empirical evidence that is relevant for

economic research. The structure of the textbook thus mimics the way many economet-

rics textbooks have been written for decades: the coverage focuses on applied statistical

methods, the use of which is illustrated with economic results.

There are, however, a number of (good) reasons for this confusion between

behavioural and experimental economics, which is at the heart of the experimental–

economics paradox. First, behavioural economics emerged partly from the use of

experiments – although the contribution of early experiments (such as the Allais para-

dox and the Chamberlin and Smith market experiments, described in Chapter 1) was

to both behavioural economics and mainstream economics (for instance, neoclassical

market analysis). Second, the experimental economics method is particularly suited for

the study of the phenomena of interest to behavioural economics. In a nutshell, con-

trol offers researchers a way of identifying departures from the neoclassical explanation

of behaviour. Third, not only behavioural economics but also experimental economics

owe a great deal to the accumulated knowledge in experimental psychology: controlled

experiments have been used for a long time in this field, and most methodologi-

cal discussions took place before they even appeared in economics. In addition, the
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experimental method is taken as part of the psychology research toolkit across the whole

community of researchers.

The scope of this book has been greatly influenced by the place that experimental eco-

nomics occupies between neoclassical economics, behavioural economics, psychology

and statistics. First, our methodological discussion mainly focuses on the use of exper-

iments to understand economic behaviour. We complement this fairly standard view in

applied economics by regularly devoting space to insights from, and some discrepan-

cies with, psychology. We also cover a number of standard experimental results that are

generally seen as part of behavioural economics.

Second, we mainly focus on laboratory experiments rather than field experiments or

randomised controlled trials (see Chapter 3, Section 3.5 for the definition of these). This

restriction reflects at least three factors. First, one textbook cannot suffice to embrace

the large literature on methods for both laboratory experiments and randomised con-

trolled trials. Second, this restriction also comes from our own limitations in expertise.

Last, but not least, laboratory experiments are a convenient step in the study of con-

trolled experiments in economics. Laboratory experiments can be seen as an extreme

case of controlled experiments; they allow the accurate identification of behavioural

phenomena, but at the cost of a highly artificial environment. Due to this artificiality,

laboratory experiments provide answers that are sometimes hard to interpret – and are

often challenged by non-experimentalists. Other kinds of experiment offer a way of

loosening these limitations by implementing the same empirical method in less artifi-

cial contexts. We thus believe that laboratory experiments are a good starting point for

anyone who wants to learn about controlled experiments in economics. Many of the

discussions in this textbook aim to clarify the most appropriate cases for each type of

empirical method; for example, whether observational or experimental data are required

and, if it is experimental data, how close to the field the experiment should be.

Structure of the book

This textbook is not the first experimental-economics book by a long way, with respect

to both methods and applications. Our predecessors can be split into two groups. First,

textbooks/handbooks written for students and academics provide extensive surveys of

experimental results. This applies to the textbook of Friedman and Sunder (1994) and

the two seminal handbooks edited by Plott and Smith (2008) and Kagel and Roth (1995).

In the same spirit, a number of books propose reviews of existing results from laboratory

experiments with more specialised perspectives: Camerer (2003) contrasts behaviour in

the lab with predictions from game theory, Cartwright (2011) and Chaudhuri (2009)

mainly focus on social preferences and behavioural economics, and Angner (2012) pro-

vides a detailed overview of laboratory experiments regarding decision problems. These

are all required reading for anyone wanting to learn more about experimental results.

On the other hand, a few advanced books on the methodology of experiments have

recently appeared. These are state-of-the-art collections of papers, written mainly for
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academics working in the field. This is the case for Guala (2005), Bardsley et al. (2009)

and Fréchette and Schotter (2015).

This textbook is an attempt to build a bridge between these two kinds of reference:

it provides a detailed presentation of the methodological aspects of economic experi-

ments for readers (students, academics and professionals) who want to enter the field.

To this end the book inverses the usual way of presenting the material, as the experi-

mental results are used to illustrate methodological issues – rather than spreading out

the methodological discussions over the presentation of various experimental designs.

The content of the book is set out at the end of Chapter 1. We are aware that ‘Method-

ology, like sex, is better demonstrated than discussed, though often better anticipated

than experienced’ (Leamer, 1983, p. 40). Mimicking the approach in applied economics

and econometrics textbooks, the concrete applications of the method that constitute the

core material in existing textbooks are here introduced as illustrations of the main mate-

rial. To this end, the book contains three types of side material describing particular

experiments, results or designs: case studies, illustrations and focuses.

• Case studies are sections devoted to the detailed presentation of a particular strand of

experiments. They seek to illustrate the methodological discussions provided in the

corresponding chapter – identified as such in the table of contents.

• Illustrations are boxes providing a presentation of one particular experiment or

result, to illustrate the point discussed in the text. Illustrations are often provided

in sequences, showing how the literature has evolved according to the different

dimensions discussed in the text.

• Focuses are boxes providing a more detailed and/or formal presentation of a point

discussed in the text.

These together provide examples of most of the applications or results that are gen-

erally seen as essential in the field – as described in Section 1.4. To help readers bring

together all of the information on one particular topic, they appear as specific index

headers (see p. 431).

Audience

There are three natural audiences for this book. Its first purpose is as part of a graduate

course, describing methods in experimental economics. The organisation of the book

closely follows the typical outline of an 8 × 3-hour course. Chapters 1–4 cover the

material that would serve as an introductory lecture to laboratory experiments. These

chapters describe the main objectives of laboratory experiments and provide exam-

ples. Chapters 5 and 8 provide core methodological insights that would best be split

in two lectures each. Longer classes could include a discussion of the statistical analysis

of experimental data based on Chapter 7 and a discussion of the insights drawn from

behavioural economics in Chapter 9, and/or use case studies to devote some lectures to

applications that illustrate the main material. In particular, a thorough methodological
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course would probably feature some lectures devoted to risk preferences (Section 7.4),

time preferences (Section 6.6) and belief-elicitation methods (Section 5.6).

Second, the book more generally seeks to provide future experimental practitioners

with a broad picture of the toolkit that they will need. By providing the rationale for the

general method and setting out in detail each particular choice of design feature, we hope

that readers will be able to construct experiments that fit their research question well. A

good understanding of the methodological challenges is also an important requirement

for becoming an informed reader: this book may help to interpret the results from lab-

oratory experiments or the writing of referee reports on papers using the experimental

method. Third, we hope the community of academics who are new to this literature will

find it a useful summary of the current state of the art about what experimental eco-

nomics can tell us, and under which conditions it provides valuable answers to research

questions in economics.
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Part I

What Is It? An Introduction to
Experimental Economics





1 The Emergence of Experiments in
Economics

There is a property common to almost all the moral sciences, and by which they are

distinguished from many of the physical; that is, that it is seldom in our power to make

experiments in them.

Mill (1836), cited in Guala (2005, p. 2).

This statement by John Stuart Mill, or similar remarks, introduces virtually all texts on

the methodology of experiments in economics. At the time, and for a long time after

that, controlled experiments in the social sciences, and especially in economics, were

considered impossible to conduct; it appeared that experiments were reserved to the

natural sciences, and that the testing of social and human behaviour in the framework

of a controlled experiment would prove completely unworkable. Nowadays, experi-

ments are a widely accepted means of generating knowledge in economics. Among

many examples, it is shown by the fact that experimental or behavioural economics

is part of the graduate programme of most universities, there are many books, hand-

books and textbooks focusing on the field, and even a well-recognised academic journal

(‘Experimental Economics’) is specialised on research using this method.

Before moving on to a detailed discussion of why and how laboratory experiments are

performed in economics, we will explore this intriguing trend. What happened between

the time experimental economics first came into existence and when it finally became

an established member of the community? We will start by highlighting the progress of

experimental methods in economics, from an area that was thought impracticable, mean-

ingless or uninteresting, to an accepted and widely used process in economic research.

In describing the reasons why there was such a sudden change of interest in and attitude

towards experiments, we will examine some of the very first examples of experiments

in economics. These examples are interesting not only from a historical point of view,

but also because they underscore the main reasons for the change and how experimental

economics has grown since – both in terms of the research questions that are addressed

and in the type of answers it provides. These will be followed by three more recent

examples which illustrate what the research programme has become today – a unified

and also very diverse area of study.

The most obvious and powerful unifying factor of all works using laboratory experi-

ments is, in fact, the methodology applied: a controlled environment allowing use of the

observed behaviour of human beings to produce knowledge about economics. As the

last section will show, a thorough study and presentation of this methodology requires
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a wide-ranging knowledge of economic theory as a whole, and its relation to different

application fields, analytical tools and approaches. It will soon become clear that no sin-

gle textbook can possibly cover all these aspects: this chapter will offer a road map of

everything this book is unable to cover, or can only cover in part. Perhaps more impor-

tantly, this chapter will try to convince you that in order to fully understand the rationale,

contribution and practical lessons of the results generated by experiments in economics,

the first step is to be aware of the choices of methodology and the reasoning behind

them: this is what this book is all about.

1.1 The End of a Long-Standing Regretful Impossibility

Even if experiments in economics were considered impossible for a long time, they

were nonetheless the object of considerable wishful thinking. If experiments could be

implemented, they could be designed and put in place in order to provide empirical

evidence and serve as a basis to enhance theory. This is implicitly acknowledged in a

celebrated remark made by Friedman, ‘We can seldom test particular predictions in the

social sciences by experiments explicitly designed to eliminate what are judged to be

the most important disturbing influences’ (Friedman, 1953, p. 10). Experiments in the

social science are seen as a very attractive, though impossible, way of testing theories. If

feasible, experiments would allow researchers to neutralise all forces driving behaviour

that are outside the scope of the theory. In that case, experiments would help elicit the

empirical content of theory, and therefore identify the main driving forces of behaviour.

This opinion was shared by many eminent economists long after 1953. In their ground-

breaking principles textbook, Samuelson and Nordhaus noted that ‘economists cannot

perform the controlled experiments of chemists or biologists because they cannot eas-

ily control other important factors’ (Samuelson and Nordhaus, 1985, p. 8). All of the

remarks cited above show quite clearly how recent the appearance of experimental eco-

nomics as a bona fide field of study is and also underline how desirable experiments are

for research. Fortunately, the long-standing and powerful belief in the impossibility of

experiments in the social sciences, however regretful, is now a thing of the past.

As a matter of fact, in a later edition of their textbook (which appeared less than ten

years later) Samuelson and Nordhaus had already adopted a new and different mindset:

‘Experimental economics is an exciting new development’ (Samuelson and Nordhaus,

1992, p. 5). Between these two editions, economists had managed to set up experiments

similar to the ones conducted in the natural sciences. But, even more importantly, the

results generated by these experiments began to be considered by an increasing number

of specialists to be sound empirical evidence.

From then on, the pace and scope of the changes taking place increased so rapidly

that today the situation stands in sharp contrast with the earlier views expressed above.

This phenomenon is illustrated, for instance, by the rise in the rate of academic publi-

cations related to experimental economics over the years. Figure 1.1 shows the results

of a survey carried out by Noussair (2011) concerning the percentage of articles includ-

ing experiments that have appeared in major academic economic journals. The survey
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Figure 1.1 Trends in academic publishing in experimental economics

Note. Percentages of experimental articles from those appearing in the journals: American Eco-

nomic Review (AER), Journal of Political Economy (JPE), Quarterly Journal of Economics (QJE),

Econometrica (Ecta), Review of Economic Studies (RES), Economic Journal (EJ), Games and

Economic Behaviour (GEB), Journal of Economics, Behavior and Organization (JEBO).

Source: Noussair (2011, p. 8).

covers the top five journals (AER, JPE, QJE, ECTA, RES) which experts acknowledge as

the leading supports in the field; three other journals were added to the list: EJ, GEB and

JEBO. These are more specialised and/or lower-ranked journals, but which are, nonethe-

less, highly influential and open to experimental works. The chart shows the change in

the rates from 2001–2005 to 2006–2010. The first ten years of the new millennium saw

a slight increase in the percentage of articles in the sample. More importantly, the share

of experimental papers is very significant in most of these leading journals: from 2% to

7% in the top five journals, and from 5% to 20% in the more specialised ones. This a

clear indication of the growing acceptance and recognition of this type of work by the

academic community.

The four experimental economists who have been awarded the Nobel Prize in Eco-

nomics in the first decades of the new millennium, who we will come across a number

of times in this book, are another example of this recognition. In 2002, Vernon L. Smith

and Daniel F. Kahneman were the joint recipients of the Nobel Prize in Economics.

Smith was thus acknowledged as one of the founders of experimental economics and

as someone who contributed to establishing it as a conclusive method. The main jus-

tification for the award was the introduction of the methodology per se (they received

the prize ‘for having established laboratory experiments as a tool in empirical economic

analysis, especially in the study of alternative market mechanisms’). In terms of con-

tributions, the field is seen as interdisciplinary in nature, with Kahneman receiving the

prize ‘for having integrated insights from psychological research into economic sci-

ence, especially concerning human judgement and decision-making under uncertainty’.

Ten years later, another renowned experimentalist, Alvin Roth, was also granted the
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Nobel Prize. But this time, the co-winner was Lloyd Shapley, a pure theorist. Together

they were recognised ‘for the theory of stable allocations and the practice of market

design’. It goes without saying that the Smith and Kahneman contributions are of major

importance to the discipline, and that these three Nobel Prizes in themselves are con-

vincing proof that experiments have been widely accepted as part of the field. But there

is an interesting change in nature between the two prizes: while the first Nobel Prize

was awarded for the methodological advance itself, the acknowledgement of Roth’s

contribution was based on actual laboratory results using the toolbox of experimental

economics and applied to research issues that are at the core of economic theory. This

is further evidence of the wide acceptance of experimental economics by the academic

community. Last, Richard Thaler was awarded in 2017 for having incorporated ‘psy-

chologically realistic assumptions into analyses of economic decision-making’. Richard

Thaler showed how experimental methods are particularly meaningful for uncovering

deep psychological phenomena such as mental processes, self-control behaviour and

social preferences. The award also underlines his contribution to public policies based

on nudges (see Chapter 9). This is further evidence of the wide acceptance of exper-

imental economics by the academic community, with results from the laboratory now

being seen as useful in order to better design choice architectures.

In contrast with the quotes that opened this section, in which experiments were

regarded with substantial scepticism, there is now substantial evidence that experimental

economics has become a well-established and widely accepted empirical method. One

may wonder how an entire new field has managed to surface in such a short period of

time. As a first step towards a better understanding of how this change came about, we

will show in the next section that this, in fact, was not the case at all: experiments in

economics have existed for a long time, producing results that are much in line with the

works that appear nowadays in leading publications. It appears that the reason for the

lack of experiments in economics comes not so much from their practical impossibility,

but rather from the main focus of academic research at the time. Since then, a change

in focus occurred towards questions that are closer and closer to the kind of issue that

experiments are well suited to investigate.

1.2 Why Such a Change: Two Early Examples

The two examples below are among the best known of the early experiments. They

illustrate the state of infancy of experimental economics at the time, although they are

now regarded as important and insightful contributions to economic knowledge.

1.2.1 How Do Competitive Markets Work?

In 1948, Harvard Professor Edward Chamberlin organised a game with his students.

The aim was to replicate the functioning of a market in perfect competition with rational

agents as closely as possible. Students were randomly assigned a card, which made each

student either a seller or a buyer. In addition, the card displayed a price for a hypothetical



The Emergence of Experiments in Economics 7

good to be sold or bought. For students playing as sellers, this price referred to the

minimum price at which they were ready to sell. For the buyers, this price indicated the

maximum price they were willing to pay to obtain the (hypothetical) good. Afterwards,

the students walked freely in the classroom and bargained with their colleagues to either

buy or sell the good. Once a deal had been made, the students came to Chamberlin’s

desk to report the price at which the good had been sold.

In this framework, economic theory predicts outcomes according to the two curves

depicted in Figure 1.2, where the supply and demand curves were drawn based on the

prices distributed to students – i.e. how many students were willing to buy or sell at

each possible price that appears on their card: a ‘induced values’ design. The game

is a textbook example of a market: the demand curve is decreasing in price, whereas

the supply curve is increasing. The market equilibrium determines the actual price that

should arise from strategic interactions, as well as the resulting quantities exchanged

on the market; the unique stable price is the one that clears the market, in such a way

that demand meets supply. This point is an equilibrium not only because the two sides

happen to be equal, but more importantly because it is the only state of the market in

which everyone agrees to stay – there is no possibility of doing better at the individual

level by moving out of this situation. For any other price, there is either excess supply or

excess demand, in which case either suppliers (sellers) or consumers (buyers) can be in a

better situation by moving to another price level. There are thus strong reasons to believe

that the equilibrium should result from real interactions in this particular environment.

Surprisingly enough, Chamberlin obtained the results reported in Figure 1.3 based on

the actual behaviour of his students. The dashed line depicts the average price at which

students traded their goods during the experiment: it is far below the straight line, or

the competitive equilibrium price. There was also a huge variation in the actual prices,
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Figure 1.2 Market equilibrium in the Chamberlin (1948) experiment

Note. The figure shows the theoretical equilibrium of the market implemented in the laboratory –

at the intersection of the (increasing) supply function and the (decreasing) demand function.

Source: Chamberlin (1948, p. 97, Figure 1).
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Figure 1.3 Observed behaviour in the Chamberlin (1948) experiment

Note. For each transaction in abscissa, the figure shows the actual price observed in the experiment

as well as a recall of the theoretical equilibrium described in Figure 1.2.

Source: Chamberlin (1948, p. 101, Figure 3).

which are represented by the curving line. In addition, the equilibrium volume of trade is

higher than what the theory would have predicted. Actual behaviour in this environment

thus strongly departs from what economic theory expects, leading Chamberlin to con-

clude, ‘Perhaps it is the assumption of a perfect market which is “strange” in the first

place’ (and interpret this as a support for his monopolistic competition model). This

result is not, however, the end of the experimental story of markets.

Vernon Smith (who, as mentioned above, was subsequently awarded a Nobel Prize)

was one of Chamberlin’s students and participated in his classroom experiment. Around

fifteen years later, in 1962, he decided to replicate Chamberlin’s experiment, but with

various changes in the environment – aimed at replicating what Smith thought were

important actual driving forces of a competitive market. As in Chamberlin’s experi-

ment, each student received a card, making him either a buyer or a seller. This card also

gave the student a reservation price: the price above which a buyer would not buy, and

below which a seller would not sell. The changes implemented as compared to the sem-

inal experiment are as follows. First of all, instead of having bilateral bargaining (or, at

most, discussions in small groups) between students, the announcements of offers and

demands become public, meaning that buyers and sellers could call out their offers in

the room so that everybody could hear. This is aimed to make the information on prices

public, so as to mimic what is achieved by an auctioneer receiving and distributing all
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Figure 1.4 Predicted and observed behaviour in the Smith (1962) replication

Note. The left-hand side shows the theoretical market equilibrium – at the intersection of the

(increasing) supply function and the (decreasing) demand function. The right-hand side shows

the price and number of transactions in each market period.

Source: Smith (1962, p. 113, Figure 1).

offers. Second, the market experiment was repeated over several periods, and allowed

the students to better understand the functioning of the market, hence getting closer to

market behaviour of professional market traders.

Figure 1.4 reports the observed behaviour and theoretical predictions of the Smith

experiment. The theoretical market plotted on the left-hand side shares the same features

as the one implemented by Chamberlin. The curve on the right-hand side shows the

prices at which market clears for five market periods. The contrast with the previous

results is drastic: the observed prices smoothly converge towards the equilibrium price,

and the number of transactions (reported on the bottom part of the graph) converges to

the equilibrium quantity equal to 6.

Beyond the seminal insights about how the market works, these series of experi-

ments help to describe the methodological issues behind experimental results. Both

experiments aim to replicate competitive markets, but with different implementation

choices. The best environment to describe markets is a matter of judgement, and the

theoretical conclusion drawn will be entirely different whether one or the other exper-

iment is believed to best capture the important features of the economic phenomenon.

At the same time, the implementation differences between the two experiments also

inform about the key features that explain behaviour in a market situation: the extent

of information buyers and sellers receive, for instance, seems to be a critical driving

force. Beyond rejection/support of the prediction, the experiment thus informs theory

by highlighting the salient dimension to be taken into account. Lastly, as the Smith

experiment clearly shows, it is not always the case that the theory is necessarily wrong

or that experiments are designed expressly to reject the behavioural assumptions behind

the theoretical results (as is sometimes taught, mainly by some academics who view

experiment results with scepticism): in this case, experiments serve more to identify the

circumstances under which these assumptions are actually accurate.
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Table 1.1 The choice sequence of the Allais paradox

Option A Option B

10% chance of winning 5 million

A or B? 100% chance of winning 1 million 89% chance of winning 1 million

1% chance of winning nothing

Option C Option D

C or D? 11% chance of winning 1 million 10% chance of winning 5 million

89% chance of winning nothing 90% chance of winning nothing

Note. Each respondent was asked to make both choices in turn.

Source: Allais (1953, implemented in 1952).

1.2.2 Choice Consistency in Risky Decisions

The second example focuses on individual decision-making, rather than on strategic

situations. During the annual conference of the American Economic Society held in

New York City in 1953, Maurice Allais presented the economics professors attending

the conference – especially those specialised in game theory and decision theory – with

two binary choices. Respondents were shown Table 1.1 and asked to choose either A or

B, and then either C or D.

Based on the axiomatic framework of decision theory, the first choice and the second

choices are strongly related – although the choice between the two options per se is a

matter of preferences that nobody can predict. To understand the link between the two

decisions, let us first put aside the 89% probability of winning one million – in situa-

tions A and B – or nothing – in situations C and D. Apart from this 89% probability, both

situations A and C have the same probability (11%) of winning one million. Similarly,

situations B and D offer the same expected outcome: nothing with a probability equal to

1%, and five million with a probability of 10%. As a result, still disregarding this 89%

probability, an individual who prefers A over B (B over A) should also prefer C over

D (D over C). You can note that the outcome that results from the 89% probability is

exactly the same for A and B on the one hand, and C and D on the other. Consequently,

it only comes down to the addition of an identical outcome for each pair of situations:

one million for A and B, nothing for C and D. It sounds reasonable to assume that this

should not affect the preference ordering of consistent decision-makers.1 Because of

this very clever feature in the way situations are built, elicited choices provide a test

of consistency: depending on individuals’ unknown preferences, either A and C, or B

and D, should be picked together; no other combination can be rationalised with classi-

cal decision theory. Using these choice situations, Allais was successful at tricking the

economists at the conference. As he expected, 45% of the leading theorists (including

Savage, one of the leading researchers in the field) to whom Allais submitted the choice

1 This property of preferences is named the “independence axiom” in decision theory, which implies that if

there are two different gambles and one is preferred to the other, then mixing them with another identical

gamble should not alter the order of the preferences. This axiom is the one violated by the results of this

experiment, which is now known as the common consequence or Allais paradox.
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opted for A against B, but D against C. Almost half of the respondents, who were all well

versed in economic and decision theory, and some specialised in decision theory, failed

to pass the consistency test associated with the two successive choices. A key feature

of this experiment is that it is designed in such a way that there is a unique relationship

between one, clearly identified, theoretical assumption driving the predictions and the

choices available. Therefore, observed behaviour challenges not only theory, but, more

importantly, the specific feature of theory that fails to describe behaviour. Beyond sim-

ple rejection (which is unambiguous given the magnitude of the result and the sample

pool from which it was obtained) it provides a guide to the particular assumptions that

have to be reworked so that they correspond to the real driving forces behind behaviour.

In the Allais paradox, two features of the available options are of particular interest. On

the one hand, certainty generates a strong attractiveness for option A. On the other, the

change in probabilities appears to be quite small between options C and D. These two

features of behaviour under uncertainty are central in theories that rationalise behaviour

in the Allais paradox (Quiggin, 1982; Kahneman and Tversky, 1979).

1.2.3 Why Was There Such a Fast and Sudden Change?

These early experiments marked the beginning of a new field, which has made rapid

gains in terms of both acceptance and popularity over the last decade. But many years

went by between the time of those first experiments and the time when the economic

community truly started paying attention to them. Until recently, experimental eco-

nomics was thought of as unworkable or of no meaningful importance. What was it,

then, that suddenly made the experimental method so widely accepted?

As shown by the two previous examples, this was not a matter of feasibility. Both

experiments were published in very good journals and existed when some of the quotes

opening this chapter were written. Experimentation was thus already a possibility. In

fact, it has always been quite straightforward to test results from decision theory or game

theory in an experimental setting. It simply amounts to having people make choices

within a simple set of rules describing the decision-making environment. The most dras-

tic change was in fact the change in the kind of questions, which in the 1970s and 1980s

economics began to focus on, with a growing importance put on these two theoretical

tools.2 In the middle of the twentieth century, economics was set in the context of a

beautiful model of how the entire economy worked and how all the agents in the econ-

omy, as a group, made decisions in the present and for the future. This environment was

so complex and all-encompassing that the empirical relevance of behavioural assump-

tions was obviously not a primary concern. But as economics moved away from this

representation, more and more attention began to be given to the forces behind individ-

ual and strategic decision-making. Microeconomics became one core focus of economic

analysis, making an intensive use of game and decision theory. What were considered

revolutionary issues at the time have now become orthodox, and the rise of experimental

economics was concurrent with the fall of general equilibrium theory. The reinforcing of

2 See Fontaine and Leonard (2005), in particular Chapter 3, for an insightful review of these trends.
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the economic representation of human behaviour, along with clear-cut definitions of the

environment, has now madethe long-held dream oftesting economicsin the laboratory

an achievable goal.

The role of experiments in the history of economics helps better understand what

experimental economics isall about. First, experiments and economic theory go hand in

hand: experiments are about assessing the empirical relevance of the behavioural con-

tent of economic models. Theyare notin contradiction with economictheory, but rather

serve as a complementto it. Economic theory provides a deep and subtle understand-

ing of how the economy works when decisions are taken by the homo e@conomicus.

Experiments rather involve a Homer e@conomicus: the ordinary Joe, endowed with an

average level of cognitive and social skills — rather than unlimited computational abili-

ties — undertheinfluence of psychological and environmental factors — rather than driven

by a well-defined preference functional.> They thus allow us to measure whether homo

economicus and Homer economicuslead to similar or substantially different outcomes

in a given economicsituation. Second,as the two examplescited above show,these two

kinds of people, the homo aconomicus and ‘real’ human beings,are not strangers to one

another: they sometimes behave differently, calling for a different theory (rather than

different people), but there are also many importantsituations in which the two behave

as if they were one and the same. Why and when theydois oneof the key questions that

remainsto be answered.

The Research Programme:Three Examples

Weconclude this quick overview of the recent history of experiments in economics with

three examples drawn from a morerecentliterature. Although chosen at random (with

bias) among many other similar studies, these examples clearly illustrate the current

state of the art in the experimentalfield, and the way it helps elucidate what human

beings and economic theory — Homer economicus and Homo economicus— have in

common,and how they differ. To a large extent, the current answeris similar to the

main lesson welearned from the early examplesdescribed above.

Wefirst present the prisoners’ dilemma (PD), a well-known example of the dis-

crepancy between game-theoretic results in a simple environment, and the behavioural

patterns actually observed. This example also shows that, while game theory alone

hastrouble explaining behaviour — typically, without reference to more generalfactors

related to economic agents’ social environment - itis in fact quite effective in predicting

changes in behaviour. The second example showsthat experimental economics can help

significantly in this aspect as it can easily addressdifficult questions about the basics of

economicrationality. The centipede gameis a typical example of a simple experiment

that calls into question some commonprinciplesof rationality. Lastly, we proceed to a

more complicated game, a zero-sum game with incomplete information, in which one

would expect the gap between economic theory and observed behaviourto be larger

3 Theterminology is dueto Hall (2005); see e.g. Beggs (2013); Hall (2014) for a full statementofthe parallel
between economics and the Simpsons.
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than in any other context. The example showsthat this foregone conclusionis defini-

tively not applicable in this case. These three examples serve as a tour of the type of

research question addressed thanks to experiments in economicsandof the variety of

answersit offers.

Nash Equilibrium and Pareto Efficiency

Thefirst example is that of a non-cooperative game: a game in which outcomes are

determined by the decentralised and independentactions of players. Figure 1.5 presents

the payoffs each of the two players gets according to the actions they choose.It is a

simultaneous-move game,as each player decides without knowing whattheotheroneis

doing. This type of representation of a gamewill be used often in this book. For readers

who mightnot befully familiar with it, we will take the opportunity here to describe it

step by step.

According to the normal form representation in Figure 1.5, each player can choose

between two actions. Player 1 is the row decision-maker, and Player 2 is the column

decision-maker. Player 1 chooses either Top or Bottom, Player 2 either Left or Right.

Together, both players’ actions determine the outcomeof the game:the state of the world

resulting from all the players’ actions. The numbers in the matrix show the payoffs

linked to each of the four possible outcomesfor each player. In each cell, the number

onthe left is the payoff Player 1 gets in this particular outcome,andthe one onthe right

the payoff Player 2 gets. For example, if Player | plays Top and Player 2 chooses Right,

then Player 1 loses 10 andPlayer 2 earns 10.

A quick inspection of Figure 1.5 shows that one outcome seemsintuitively prefer-

able: if the players choose Top of Left, they reach an outcome that maximises what

they collectively get. It is a Pareto-dominant outcome:that particular outcome makesit

impossible for one agent to improvehis lot by unilaterally modifying his action with-

out making the other player worse off. However, this outcomeis not sustainable when

the actions are decentralised and non-coordinated. This is so because, given the Pareto-

dominantsituation, both agents have an incentive to deviate: given the action of Player 2,

Player 1 can earn more by playing Bottom than Top against Left, and similarly Player 2

can earn moreby playing Rightagainst Top rather than Left. Becauseof these individual

incentives to move away from the Pareto-dominant outcome, the equilibrium coincides

with the worst outcomeof the game: that which occurs when Player 1 chooses Bottom

and Player 2 chooses Right. This is a Nash equilibrium because there is no longer any

Left Right
 

Top 5;5 |-10; 10
 

Bottom |10;—10) —5; -5    
Figure 1.5 Table of payoffs in a non-cooperative game
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individual incentive to deviate – none of the players can be better off by moving away

from the equilibrium strategy when the others are playing it.

The Nash equilibrium of the game, Bottom–Right, is the outcome that is predicted to

occur from uncoordinated simultaneous decisions. Because it does not coincide with the

Pareto-dominant situation, this game is a textbook example of the failure to reach an effi-

cient outcome via non-cooperative decisions. It is often called the prisoners’ dilemma

game, in which case the moves are ‘to denounce’ or ‘not to denounce’ for two prisoners

who are separately offered leniency if they provide information about the crime they

committed together. This strategic framework can be applied to a great many economic

situations. Collusion between firms on markets is a typical example of the dilemma of

cooperation and defection (which will be studied in length in Chapter 4, Section 4.4.2).

Collusion occurs when firms agree to set the market price to a level higher than its com-

petitive value. All firms prefer the collusive outcome, as profits are higher. But each firm

has a strong temptation to slightly decrease its price so as to make even higher profits, at

the expense of others. This incentive to deviate from the collusion agreement is a natural

force against the ability to sustain a non-competitive equilibrium. Another example of

non-cooperation when cooperation would be optimal is the Kyoto Protocol, an interna-

tional agreement which aims to commit countries to reducing their greenhouse gases.

A Pareto-optimal outcome would be that all countries sign the agreement. Nonetheless,

countries have an incentive to let the other countries sign and to free-ride, thus benefiting

from the reduction in greenhouse gases without having to pay the price of the treaty.

Hundreds, if not thousands, of experiments have been run to assess the empirical rel-

evance of this analysis. As an example, Figure 1.6 presents the results of one of the

earliest experiments of this type, conducted by Cooper et al. (1996). The x-axis repre-

sents each of the ten different periods of the game, while the y-axis depicts the frequency

of the cooperative play (i.e. when the collectively optimal, but not individually rational,

actions are chosen) when the action leading to the efficient outcome is chosen. The upper

curve represents the frequency of cooperative play in the case of a prisoners’ dilemma

game with repeated interactions, where the same two players play together ten times.

The lower curve represents the outcome with different partners for ten periods, each

game being a one-shot game. Both curves show a departure from theoretical predic-

tions. Theory predicts a 0% rate of cooperation in the game. It is far from the observed

patterns not only in the repeated games – which do not, in the strict sense, implement the

model – but also in the one-shot games. For example, in the first period, about 60% of

the subjects decided to cooperate in the case of finitely repeated games, but around 35%

of the people did so in one-shot games. At the same time, it is not true that these results

fit with a view of human behaviour only driven by the well-being of everybody and dis-

regarding self-interest. Free-riding behaviour, based on the temptation to increase one’s

payoffs at the expense of the other players, accurately describes the results in 70–50% of

observed outcomes. Because these two kinds of behaviour (cooperation and deviation)

are widespread, both should be accounted for by any accurate theoretical representation.

As a result, neither the Nash equilibrium, nor alternative motives leading to full cooper-

ation, are enough to account alone for the observed behaviour in the prisoners’ dilemma

game.
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Figure 1.6 Empirical behaviour in prisoners’ dilemma games

Note. The figure reports the share of participants who decide to cooperate in each of the ten periods

of the game.

Source: Cooper et al. (1996, p. 199, Figure 1).

1.3.2 A Simple Two-Player Sequential Game

The previous example focused on a simultaneous-move game, in which the players

decide without knowing what the others will be doing. Another branch of game theory

studies behaviour in sequential-move games, in which the players decide one after the

other. The big change in terms of strategic interaction is that each player now observes

what the other did before choosing an action. Figure 1.7 provides a well-known example

of such a game, introduced by Rosenthal (1981) as the centipede game. The structure

of the game is quite simple. Two players alternately get a chance to take the larger por-

tion of a continually increasing pile of money – the number on each node indicates

which of the two players has to decide, with the two payoffs being those experienced by

each of the two players respectively if the game ends at this point. For Player 1 payoffs

are given in the first row, for Player 2 payoffs are given on the second row. The amount

keeps increasing as long as the players continue to play (denoted P in Figure 1.7 and Fig-

ure 1.8). But as soon as one of the two players decides to take (denoted T in Figure 1.7

and Figure 1.8), they get a larger portion of the pile while the other gets the smaller part.

The trade-off is not easy to resolve from an intuitive point of view: conditional on the

game continuing, it is always better to go as far as possible along the tree (the original

form had 100 nodes, hence the name centipede), but at the same time each player wants

to be the one who stops the game. The question that remains open, then, is when the

players will stop and at which stage.

The way game theory resolves this trade-off is, in a sense, even less intuitive than this

simple explanation suggests. The key point to note is that the number of steps in the
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Figure 1.7 A simple four-moves sequential game

Note. Each of the two players (1 or 2) decides in turn at each node to either Pass or Take. For each

state, the payoffs of Player 1 appear on the first row, the payoffs of Player 2 on the second row.

Source: McKelvey and Palfrey (1992, p. 806, Figure 1).
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Figure 1.8 A six-moves centipede game

Note. Each of the two players (1 or 2) decides in turn at each node to either Pass or Take. For each

state, the payoffs of Player 1 appear on the first row, the payoffs of Player 2 on the second row.

Source: McKelvey and Palfrey (1992, p. 806, Figure 2).

game (four in the example) is known for sure from the beginning. The usual approach

to this type of situation is to predict that the players will play in such a way that actions

in each sub-game (i.e. the sub-tree that extends from any node to the end) is a Nash

equilibrium. Because of this property, the equilibrium can be elicited through backward

induction. Starting from the terminal node of the game, the equilibrium behaviour is

relatively straightforward: the last player will decide to take, because it earns more than

to pass and there is no point in waiting. For Player 1, in the node just before, it means

that the decision actually faced is between taking now or having Player 2 take at the

last stage. But then the best thing to do is to take at this node so as to avoid letting the

other player take at the following one. And this reasoning applies to all the steps leading

backward taken one after the other. The result of this reasoning would be the sub-game

perfect equilibrium, where the first mover takes at the very first node and the game stops.

What is startling in this result is that the outcome is not predicted to depend on either

the rate at which the pie grows from one step to the other, or on the number of steps –

as long as the number is known right from the beginning.4

This striking prediction was first tested against actual behaviour by McKelvey and

Palfrey (1992). When the participants in their experiment were asked to play the four-

move game described in Figure 1.7, only 7% of them actually played according to the

sub-game perfect equilibrium, stopping at the very first node. The top part of Table 1.2

4 See Reny (1993); Aumann (1995); Ben-Porath (1997); Aumann (1998) for theoretical attempts to weaken

this paradoxical result, and Chapter 4, Section 4.4.2, for a more detailed discussion of finite- and infinite-

horizon games.
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Table 1.2 Observed continuation decisions in centipede games

Session N f1 f2 f3 f4 f5 f6 f7

1 (PCC) 100 .06 .26 .44 .20 .04

Four 2 (PCC) 81 .10 .38 .40 .11 .01

Move 3 (CIT) 100 .06 .43 .28 .14 .09

Total 1-3 281 .07 .36 .37 .15 .05

High Payoff 4 (High-CIT) 100 .15 .37 .32 .11 .05

5 (CIT) 100 .02 .09 .39 .28 .20 .01 .01

Six 6 (PCC) 81 .00 .02 .04 .46 .35 .11 .02

Move 7 (PCC) 100 .00 .07 .14 .43 .23 .12 .01

Total 5-7 281 .01 .06 .20 .38 .25 .08 .01

Note. Actual behaviour in the four-move (upper part) and six-move (bottom part) centipede

game. N denotes the number of subjects, each column ft provides the share of subjects who decide

to take at the tth node.

Source: McKelvey and Palfrey (1992, p. 808, Table IIA).

shows the full distribution of the share of subjects who stopped at each node of the game

(denoted ft for the tth decision stage). While it is true that the subjects were not anyway

near to playing the sub-game perfect equilibrium, at the same time few of them reached

the last stage of the game – less than 5% did. From this evidence, the question remains

open: what is it that makes subjects decide to stop or go on?

To help answer this question, McKelvey and Palfrey (1992) consider a second experi-

ment that implements the six-move centipede game displayed in Figure 1.8. The results

are displayed in the bottom part of Table 1.7. From 7% in the four-moves game, the

share of subjects who play the sub-game perfect equilibrium is now almost 0 – only two

subjects out of 281 do so. But again, the distribution of subjects according to the node at

which they decide to stop is not concentrated at the end. Half the subjects rather decide

instead to stop at node 5 or 6, two steps before the last stage.

From these two examples, it appears that sub-game perfectness clearly fails to predict

behaviour in the extremes. But at the same time, this theory accurately mirrors the trade-

off people face in this type of situation: as subjects reach a node closer and closer to the

end, it becomes more and more difficult for them to maintain a decision to pass, and

more and more likely that the decision they will take as the game proceeds is to stop a

few rounds (two to four) before the end.

1.3.3 The Use of Private Information

The first two examples were simple games whose results challenge theory in one way or

another. As a third example, we will move on to another quite different environment in

which both the rules and the strategies are far more complicated. Its full name is a zero-

sum repeated game with incomplete information – each part is explained in turn below.

Figure 1.9 shows the stage games of two different versions of the game. We first focus

on the non-revealing (NR) version of the game – the difference with the fully revealing

(FR) version will be described later.



18 What Is It? An Introduction to Experimental Economics

Player 1

Player 2

Left Right

Top 10, 0 0, 10

Bottom 0, 10 0, 10

A1

Player 2

Left Right

0, 10 0, 10

0, 10 10, 0

A2

Player 2

Left Right

6, 4 4, 6

0, 10 0, 10

A1

Player 2

Left Right

0, 10 0, 10

4, 6 6, 4

A2

(a) Non-revealing (NR) game (b) Fully-revealing (FR) game

Figure 1.9 Payoff matrices of two zero-sum games

It is a zero-sum game because the payoffs are such that everything that is won by

one player is lost by the other – as opposed, e.g., to the prisoners’ dilemma game – so

that concerns about the situation of other players have no influence over the results. All

stage games shown in Figure 1.9 involve two players and two actions. Player 1 chooses

either Top or Bottom, and Player 2 chooses either Left or Right – both players decide

simultaneously. The numbers in the matrix represent the payoffs of both players after

they have chosen their move. In matrix A1 of Figure 1.9.a, for instance, ‘10, 0’ indicates

that Player 1 gets 10 and Player 2 receives 0 if Top/Bottom is played.5 Inspecting the

payoff tables, the game is straightforward to play for both players, because they both

have a dominant strategy, i.e. an action which is preferable whatever the action chosen

by the other player. For instance, in this matrix A1, Player 1 does better by playing

Top rather than Bottom, and Player 2 by playing Right rather than Left – whatever the

decision of the other player. Similarly, in matrix A2, choosing Bottom is a dominant

action for Player 1 and Left is a dominant action for Player 2.

The information structure of the game makes it more interesting than a complete-

information zero-sum game. In fact, a random draw (with equal probability) decides on

the ‘state of the world’ before any decision is made. This state of the world is the payoff

matrix, either A1 or A2, that players are facing. There is incomplete information (on one

side) because players are asymmetrically informed about the result of this draw: only

Player 1 is given this information. First consider the situation in which the stage game

is played only once. Player 1 is privately informed of the consequence of each action

and can thus pick up the dominant action of the matrix that has been drawn. Player

2, by contrast, needs to decide without being aware of the state of the world, and will

thus randomise between Left and Right. But this information structure in fact becomes

interesting when the game is repeated – players face the stage game together several

times, and the state of the world is drawn once for all at the beginning. In this context,

Player 2 can infer some information about the state of the world from the observed

decisions of Player 1.

To see it more clearly, suppose you are Player 1 facing the stage games of Figure 1.9.a

and knowing which state of the world you, and the other player, are in. You have to

5 The sum of players’ payoff is positive rather than equal to 0, but since the sum is constant across decisions,

it is conceptually equivalent to a zero-sum game.
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Table 1.3 Theoretical predictions in the non-revealing and fully revealing games

Value of the game, vt if t is Optimal use of information

1 2 3 4 5 ∞

FR 5.00 4.50 4.33 4.25 4.20 4 Fully revealing

NR 5.00 3.75 3.33 3.21 3.07 2.50 Non-revealing

Note. Theoretical predictions on behaviour in the NR and FR games.

Source: Jacquemet and Koessler (2013, p. 110, Table 1).

choose between Top and Bottom and you know the game will be repeated. You also

know that Player 2 would like to play Right in A1 and Left in A2. First imagine that you

decide to use your dominant action: you play Top if A1 is drawn and Bottom if it is A2.

If this is an equilibrium strategy, then Player 2 knows this is how you react to the draw:

observing Top delivers perfect information to Player 2 that A1 has been drawn. At the

next stage, Player 2 will thus play Right. But the combination Top, Right is clearly not in

your interest, since you get 0: by revealing your information you no longer benefit from

it. The other options for you are either not to use your information at all (deciding with

equal probability between the two decisions as if you did not receive the information

about the draw) or to use it only slightly, by playing the dominant action a bit more

often than the other. The game thus features a trade-off in the way private information

is used by Player 1, and how beneficial it is to hold such private information (the only

exception is the last stage of the game, when the dominant action will always be chosen,

because there is no longer any possibility to exploit the signal contained in your choices).

This kind of game thus allows one to study the extent of the use of information, and the

value of private information, i.e. how much more the informed player is able to earn.

The equilibrium strategies depend on two crucial features of the game: the length,

denoted T , which is the number of stages during which both players play in the same

matrix, and the structure of payoffs. The payoff structure we just described (the one

shown in Figure 1.9.a) is called a non-revealing game, because the optimal strategy

for Player 1 is to not reveal their private information in all stages but the last one: at

equilibrium, it is best for Player 1 to behave as if the information were not available and

the randomly drawn matrix were unknown. In the payoff structure shown in Figure 1.9.b,

the prediction is exactly the opposite: the optimal strategy is for Player 1 to actually

reveal private information about the true state of the world, by going straight for the

stage game dominant action despite the loss incurred through sharing this information

with Player 2. These theoretical predictions are summarised for different lengths of the

game in Table 1.3. Is is worth noting that this change in the predictions is entirely due

to the change in the payoffs. Before turning to empirical evidence on this game, you

should try to think of each of the two matrix pairs, and ask yourself whether the way

you will play the game will change so dramatically with the payoff structure.

A last theoretical prediction about this kind of game is that the expected payoff of

Player 1 (known as the ‘value of the game’) is bounded above by the value of the

infinitely repeated game (shown in the last column of the left-hand side of Table 1.3),

and bounded below by the value of the average game. These theoretical predictions have



20 What Is It? An Introduction to Experimental Economics
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Figure 1.10 Empirical value functions

Note. Observed average payoff in the NR and FR games, along with the theoretical upper (v1) and

lower (∞) bounds.

Source: Jacquemet and Koessler (2013, p. 112, Figure 8).

been tested by Jacquemet and Koessler (2013) in an experiment in which participants

play either the NR game or the FR game.

Figure 1.10 provides an overview of a comparison between the average observed

values of the games in the experiment (measured as the average payoff earned by Player

1), and the predicted values as presented in Table 1.3. The empirical value functions

confirm the theoretical bounds discussed above: the empirical value in both games lies

between the value of the infinitely repeated game and the value of the average game.

The empirical value is decreasing and smoothly converges towards its lower bound.

This provides support for the theoretical analysis of the game. But the most challenging

prediction is about the individual strategies, and their change according to the payoff

structure.

Figure 1.11 provides information in that regard, through a summary of how informa-

tion is used in each treatment. Remember that all the treatments have one prediction in

common: Player 1, who knows which matrix has been drawn, has nothing to lose by

using their private information (i.e. playing the stage-dominant action) at the last stage

of the game. The figures are thus separated according to the stage within each game: the

last stage of all games is reported on the left-hand side and the intermediate stages of all

repeated games (in stages t = 1 to t = T − 1 for all T > 1) are reported on the right-

hand side. From both the left-hand figure and the frequency of the stage-dominant action

observed in the FR and NR games, experimental subjects unambiguously use informa-

tion whenever it is worthwhile to do so. The relative frequency of the dominant action in

the FR games is always higher than 90% and is much the same as in the last stage of the

NR games. This frequency is much lower during intermediate stages of NR games, and

is lower and lower as the overall duration of the game increases – when the revelation

of information becomes more and more costly. Thus experimental subjects adjust their

use of information not only as a reaction to experimental treatments, but also according

to the decisions taken during the different stages of a given game.
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Figure 1.11 The actual use of information: informed players’ behaviour

Note. For each treatment and each length, the figures display the mean share of the informed

player’s decisions that are the current stage-dominant action, in the final stage (left-hand side) and

in intermediate stages (right-hand side).

Source: Jacquemet and Koessler (2013, p. 116, Figure 10).

Overall, empirical behaviour is relatively consistent with theoretical predictions in

this environment, in sharp contrast with the two previous examples. This shows that

complexity – in the game structure, but also in the theoretical predictions it induces –

does not necessarily induce a larger gap between theory and empirical behaviour. The

reasons for this consistency, in sharp contrast with the previous examples, is still a

largely open question.

1.3.4 Beyond the Examples: Experimental Economics and Behaviour

These examples are not meant to provide a complete picture of the state of the art.

But they do offer several important insights as to how experiments can help us better

understand decision-makers. First, they show that experiments and economic theory are

closely related. Empirical questions and the way data can be most usefully analysed

are all based on a theoretical understanding of the situation. Second, and perhaps more

importantly, the results described above shows a wide range of conclusions regarding

the empirical relevance of theoretical results. Theory seems to accurately predict the

outcomes in some games, and fails to do so in others based on similar behavioural

assumptions. But the empirical relevance of theory goes beyond predicting outcomes.

In particular, it accurately identifies the trade-offs and incentives people face, and how

they are likely to resolve these issues. The above examples show that theory is often

empirically influential in achieving this goal.

At the same time, it is also true that many behaviours and observed outcomes differ

radically from theoretical expectations. Over the years, observations of this type have

led specialists to enlarge the scope of the driving forces behind behaviour, to include

psychological and sociological motives (this is the aim of behavioural economics). As

the examples illustrate, the behaviour observed in economic experiments is related to

theory in a complicated way: at times the homo œconomicus and human beings act as if



22 What Is It? An Introduction to Experimental Economics

they were perfect strangers, and at other times they are surprisingly close to one another.

How, why and under what circumstances do behavioural economics and economic the-

ory converge or diverge? These are the core matters now being taken into consideration

in the field (see, e.g. McFadden, 1999, for a survey).

1.4 Experimental Economics Today: What Every Newcomer Must Know

Since its tentative first steps, described at the beginning of the chapter, the use of exper-

iments in economics has grown rapidly and dramatically. A very large number of con-

tributions in economics nowadays rely on assumptions on individual decision-making,

about which experiments definitely have something to say. What every newcomer must

know in order to become familiar with experimental economics is so vast that no single

work could possibly cover the whole field. This book is no exception. Instead, the fol-

lowing section offers an overview of the must-knows of experimental economics. Each

of the items listed below corresponds to an index entry (see p. 441) that will refer the

reader to sections of the book that discuss or illustrate this particular aspect. The section

concludes the outline of the book, describing the must-knows this book will focus on.

1.4.1 Must-know 1: Microeconomic Theory and Decision Sciences

As explained above, experimental economics has grown together with game theory and

decision theory. As a consequence, an important part of experimental economics focuses

on assessing the empirical content of theories of behaviour. This requires familiarity

with a vast number of topics from microeconomic theory. The most important of them

are as follows.

• Decision theory. This strand of literature tries to better understand how individ-

uals make decisions under risk and uncertainty, what role time-preferences and

discounting of the future play and what leads to choice inconsistencies.

• Game theory. Agents in an economy interact with one another; their behaviour is

directly influenced by the decisions of other agents and, in particular, by the beliefs

they may hold about future behaviour of these other agents. Such considerations lead

to strategic decision-making, which is a major topic in experimental economics.

• Non-standard preferences. The focus on the driving forces of individual behaviour

led to challenging the standard way of looking at preferences. Alternative views of

behaviour have been developed and are now part of the economists’ toolbox. This

includes non-standard decision models, such as prospect theory, where contingent

states of the world influence decisions; and social and other-regarding preferences,

according to which people’s preferences not only are defined by consequences for

themselves, but also account for the situations of others.

• Aggregation. Society has to make decisions, and thus needs to aggregate in one way

or another individual tastes. This is the focus of auction theory, the analysis of markets

and studies of collective decision-making, such as voting.
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• Psychology of behaviour. The focus on individual decision-making makes it nat-

ural to borrow much from psychology. A large part of this literature is devoted to

exploring the systematic deviations from rational decision-making, associated with

several well-documented biases such as anchoring and status quo bias, endowment

effect, confirmation bias, conjunction fallacy, framing effect, illusion of control, loss

aversion.

• Neuroeconomics. The analysis of individual behaviour also borrowed in recent years

from decision theory in medical sciences, leading to the field of neuroeconomics,

which uses physiological measures to relate behaviour to its physiological driving

forces.

1.4.2 Must-Know 2: Games and Decision-Making Frameworks

The implementation in a laboratory of the theoretical frameworks described above

often makes use of environments, procedures and rules of particular types. They are

tools designed to study different aspects of individual behaviour. They are nowadays

considered part of the standard toolbox of anyone working in the field.

• Elicitation procedures are mechanisms that force agents to reveal something about

themselves, such as risk or intertemporal preferences, or beliefs about what others

will do.

• Experimental games are games structured with specific theoretical properties that

are widely used and studied in experimental economics. These key games include the

prisoners’ dilemma, the trust game, the stag hunt game, the dictator game, the guess-

ing game, the ultimatum bargaining game, the voluntary-contribution mechanism, the

minimum effort game and many others.

• Psychological questionnaires can be used to gather data on how people think

through their decisions and how they consider different situations. Psychometric

questionnaires include, for instance, measures of cognitive and non-cognitive skills,

personality traits or emotions.

1.4.3 Must-Know 3: Fields and Applications

The insights from (micro)economics that are implemented in the laboratory can be

applied to a wide range of field applications. As a result, there is a growing literature of

experiments contributing to a better understanding of issues related to the various fields

of interest to economics. Among them, the most important are:

• Labour economics, which focuses on the effects of labour market policies, the trade-

off between consumption and leisure, the education production function, etc.

• Personel economics focuses on how people behave in firms, dealing with questions

such as how people choose jobs and the reasons why they choose these jobs, how

much people work and how they respond to monetary and non-monetary incentives.

• Industrial organisation focuses on how firms interact with one another under deci-

sion variables of different kinds, such as volumes, prices or levels of advertisement,
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and different market structures, such as auctions, oligopoly or perfectly competitive

markets.

• Environmental economics studies the policies designed to discipline behaviours that

are detrimental to the environment, dealing with problems such as greenhouse gas

emissions, air pollution, water quality, toxic waste or global warming. The issue of

collective decision-making and the problem of free-riding are of critical importance

in this domain.

• Health economics is a field concerned with the health of individuals, the health care

market, the supply of health services or the public health system in general. Preventive

health care is an important behavioural issue, for example, and the supply of health

care services by physicians raises intriguing questions about incentive design and

payment schemes.

• Law and economics tries to understand how individuals react to different sets of legal

rules. The focus is on circumstances that make people comply with the law, and how

the law changes social norms and equilibria.

1.4.4 Must Know 4: Methodological Issues: Outline of the Book

Lastly, laboratory experiments are a very precise way of gathering data and providing

an empirical counterfactual to microeconomic theory. This comes with drawbacks and

advantages, with several constraints on how experiments are run, and with questions

regarding what they tell us about relevant economic issues. The aim of this book is to

provide a review of the current answers to this strand of questions.

Chapter 2 is an introduction to the field, by describing step by step what an experiment

looks like from the point of view of a participant, before turning to the analysis of

the same experiment. This is a critical starting phase in becoming an experimenter, as

running experiments is all about understanding how people behave, and avoiding any

misunderstanding they may have about the environment. The best way to deal with this

issue is to imagine how you would act if you were a participant in an experiment. The

second important lesson from this introductory chapter is that experiments involve many

unusual procedures and implementation rules, which may not appear quite appealing at

first glance. The last part of the chapter describes the reasons why each of these features

is required to make an experiment convincing – and will discuss what convincing means

for an experiment.

This book is divided into four parts. As is explained above, Part I provides an overview

of what experiments are. Part II explains why experiments in economics are needed and

to what extent they are useful for empirical research in economic science. Each chapter

provides a specific answer to this question. In Chapter 3, we describe how experimental

economics is related to other empirical methods in economics. Basically, experiments

provide a way to choose the data-generating process, enhancing the ability to measure

unknown quantities relevant to economic analysis. Chapter 4 turns to the relationships

between experiments and economic theory. We will see that experiments serve three

different purposes: testing theory in a controlled environment, searching for facts and
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whispering in the ears of princes. Theory and experiments share a dynamic of mutually

informing each other in this process.

Part III describes how laboratory experiments can achieve these goals. Each chap-

ter explains how to produce experimental results, one step after the other. Chapter 5

focuses on how to design an experiment such that observed behaviour can be related to

the institutions under study – i.e. which is internally valid. Chapter 6 covers all the prac-

tical aspects required for running an experiment. These practical aspects include all the

phases, from building a laboratory well upstream to the final laboratory session. Last,

in Chapter 7, we review the main statistical methods that are commonly used to analyse

experimental data.

The focus of Part IV is to assess the relevance of what laboratory experiments tell us.

Each of the chapters presents an overview of areas in which experimental results are able

to shed additional light on existing knowledge. Chapter 8 begins with a question called

the ‘external validity’ of experiments: what do decisions taken in the artificial framework

of a laboratory tell us about real life? When an experiment satisfies the conditions so as

to be both internally and externally valid, then the experimental results can be used by

economic theory and public policy. This opens the way to a more general discussion

on the possibility of inductive reasoning in economics, an issue covered in the first

section of Chapter 9. This discussion will also show that observed behaviour in the lab

has drastically changed the way economists think of institutions and how to organise

collective decisions. This point will be the focus of the last sections of this chapter, on

the design of public policies thanks to the lessons drawn from the laboratory.

Summary

This introductory chapter presented the field of experimental economics from a general

perspective. Originally, experiments in the social sciences and in economics, in par-

ticular, were thought to be impossible. The first experiments beginning in the second

half of the twentieth century showed otherwise. However, experimental economics did

not truly break through until the focus of economics changed with the fall of general

equilibrium as the central theory and the questions started to turn more towards issues

related to human behaviour. To illustrate the current state of the art, we reviewed three

examples from the experimental literature testing behavioural insights from game the-

ory: the prisoners’ dilemma, the centipede game and a repeated zero-sum game with

incomplete information. Observed behaviour and theoretical predictions may not match

up perfectly but they are not perfect strangers to each other either. This summarises

the current state of the art in the field: the core issue at stake in ongoing experimental

research is identifying situations where theory goes wrong and where it performs well.

Since experimental economics has developed together with the use of decision and game

theory in economics, the range of topics to which experiments are applied is now far too

wide to be reviewed in a single book. This book focuses on experiments as an empirical

methodology to inform economic science.



A Laboratory Experiment: Overview

Thegoal of this chapter is to introduce the methodsused in experimental economics to

study people’s behaviour. This book will subsequently focus on how to design labora-

tory experiments, how they allow measurementofinteresting and relevant parameters

and howto interpret the empirical conclusions drawn from the experiments. Chapter 6,

in particular, will describe the practicalities related to the implementation of laboratory

experiments. Before getting to this material, we would like you, the reader, to learn what

a laboratory experimentlookslike from the inside. To that end, youwill see things from

the point of view of what we will call a subject or participant: you will be a person

whocomesto the laboratory to be involved in an ‘experiment in economics, hence con-

tributing to scientific researches’ (this is more orless the kind of general statement one

finds in the advertisements used by experimentallaboratories across the worldto recruit

subjects). !

To be sure anyonereadingthis bookwill actually go through this preliminary step, let

us add a few wordsabout whywebelieve thatto truly learn about laboratory experiments

it is essential to do so from theinsideat least once in yourlife (it goes without saying

that such an experience will be best achieved by being involved in an actual experiment

in a departmentclose to yourlocation,if such an optionis available). The first reason is

that, as an economist, you will certainly have your doubts aboutthe valueof the results

generated by laboratory experiments. A great many experimental results seem either

wonderful, trivial or silly at first glance. Once you have made the effort to mentally

represent how you would have behavedin givensituation, we think you will be well

preparedto better understand and use experimental economics’ method andresults.

A second, even more important, reason is that a good part of this book will be

devoted to explaining how to carefully design laboratory experiments. The term care-

fullywill meanin such a waythat observed behaviourdelivers generallessons aboutthe

properties of the decision-making environment. Thefirst thing you should learn about

laboratory experiments is that observed behaviour comes from real human beings to

whom youare describing the environment. Consequently, you, as an experimenter, are

the one responsible for everything participants get, everything they miss and everything

they misunderstand or get confused about. An important skill in order to achieve this

goalis yourability to put yourself in a participant’s shoes.

! The remaining describes the proceedingsofa typical experiment based onthe ones we knowbest, whichis

howthey are run in our own departments. There are, of course, many location-specific variations:

is not to describe best practices, but to provide one detailed example of how experiments are run.
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Lastly, as you will see in the paragraphs ahead, the methodology of laboratory

experiments means that subjects will be involved in what they may find to be some

very surprising procedures. The reasoning behind these procedures is not always obvi-

ous to the participants. Again, you may understand the issue more clearly if you are

able to remember how you yourself felt as a participant. In this chapter you will be

exposed for the first time, without any prior knowledge about the method, to this strange

sequence of events called an experiment (the rationale of which will be described in

Chapter 5).

Now try to imagine that you have signed up on a website to participate in an exper-

iment. Soon after you register, you will receive an e-mail asking you if you would

like to come on HOUR, DAY-MONTH-YEAR for an experimental session to take place

at ADDRESS. You agree to participate and confirm your participation in the given

experimental session.

2.1 The Experiment

When you arrive at the building, you will be welcomed by someone with the full list of

people who have confirmed. You will then be asked to show an ID and once your identity

is confirmed you will be given a form similar to the one shown in Figure 2.1. You will

have to sign the form in order to participate in the experiment. Once the appointed time

is reached, all the people waiting in the hall will be asked to go through the university

building to the door of a lab room.

In front of that door, the same person who has welcomed you will explain the

following:

You will enter one by one into the room behind me, which is the laboratory where I will explain

everything you need to know to participate in this experiment. Before going in, I will ask for the

consent form you signed, and have you take a sheet of paper. The name written on this sheet is

the name or number of your computer, where you will sit once you are in the room. Once

everybody has entered, we will all start the experiment together as a group. Meanwhile, please

wait quietly; thank you for your patience.

Before you begin the experiment, you will be informed about the way it will proceed.

To that end, you are given a sheet of paper with the following text, the instructions for

the experiment. The experimenter reads it aloud and encourages you to carefully follow

on your own paper – that is yours for the entire duration of the experiment. Let’s read it

together.

Instructions for the experiment

You are participating in an experiment in which you can earn money. The amount you earn will

depend on your own decisions as well as the decisions of the other participants. Before starting

the experiment, we will ask you to answer a few questions in order to get to know you better (your

age, gender, occupation, etc.). All this information will remain anonymous and confidential.
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Figure 2.1 Consent form

Procedures for the experiment

At the beginning of the experiment, two groups, each involving 9 participants, will be formed.

Each participant belongs to the same group during the whole experiment.

Overview. You will be participating in an auction in which you are the buyer. The currency unit

used in the auction is the ECU (Experimental Currency Unit). Its value in euros is described at the

end of the instructions. You will submit a bid in ECU to acquire one unit of the good which the

experiment monitor then will reacquire from you. There will be several rounds of bidding. The

outcome of the auction in each round directly influences how much you will be paid at the end of

the experiment.

Procedures for each round

Each round has 8 steps.

Step 1. Each bidder looks at his or her resale value on their screen. We label resale value the

price in ECU that the monitor will pay to buy back a unit of the good that is purchased

in the auction. The resale values of different participants in a group can be different.

Once you have looked at your resale value, press the OK button.

Step 2. Each bidder then submits a bid in ECU to buy one unit of the good. To do this, move

the scroll bar up or down until you see the price you want to submit. Then press the OK

button below the scroll bar to confirm your choice.
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Step 3. The monitor will rank the bids from highest to lowest. For instance:

no 1 fs.l ECU Highest bid

no 2 df.g ECU

no 3 za.f ECU

no 4 sc.d ECU

no 5 qs.a ECU

no 6 nj.h ECU

no 7 hh.m ECU

no 8 ht.t ECU

no 9 ky.l ECU Lowest bid

Step 4. The second-highest bid (bid no2) determines the market price. In the above example, if

the second-highest bid is df.g ECU then the market price would be df.g ECU:

no 1 fs.l ECU

no 2 df.g ECU Second-highest bid: market price

no 3 za.f ECU

no 4 sc.d ECU

no 5 qs.a ECU

no 6 nj.h ECU

no 7 hh.m ECU

no 8 ht.t ECU

no 9 ky.l ECU

Step 5. The buyer who bids the highest price (the buyer ranked no1) purchases one unit of the

good at the market price. In the above example the buyer who bid fs.l ECU purchases one

unit of the good that costs df.g ECU.

Step 6. Buyer no1 then sells the unit back to the monitor. The price of this transaction is the resale

value listed on the screen for that round. The profit in ECU that bidder no1 earns for that

round is the difference between the resale value and the market price:

profit = resale value – market price

Important remark. Your profits can also be negative: if you buy a unit of the good and

the resale value is less than the market price, your profits will be negative.

Step 7. All bidders at or below the market price (buyers no2 to no9) do not buy anything, so they

make zero profit for that round.

Step 8. End of the round. Your profit in ECU in that round appears on your screen. Press the OK

button once you have noted it. Your screen will then indicate whether a new round is

about to begin or the experiment is over.

How will you take your decisions?

Your screen is divided into three areas:

All the information you need to take your decisions will be displayed in the upper part of the

screen.

You then take your decisions by pressing on the buttons displayed in the middle part of the

screen.

The bottom part will show you your past decisions and profits.
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Payment of your earnings

At the end of the experiment, we will compute the sum of your profits in ECU across rounds.

If your profit in a given round is negative, the total decreases; if your profit in a given round is

positive, the total increases. This total is converted into euros according to the rate 3 ECU = 1e .

A fixed fee equal to 10 e is added to this payoff. You will be paid the corresponding monetary

payoff in cash privately at the end of the experiment.

Please do not talk and try not to communicate with any other subject during the experiment.

If you communicate, you will be asked to leave and forfeit any money earned. It is essential that

you understand the instructions correctly. If you have any questions, please raise your hand and

someone will come and answer them. Please be sure to follow these instructions.

Thank you for participating.

If you have any questions about the instructions, you will be able to quietly raise your

hand. The experimenter will then come over to you to answer your question(s) in private.

Obviously, in this textbook experiment you cannot raise your hand to ask questions. So

please take the time you need to read and reread the above text, until it is perfectly clear

in your mind how the experiment will be conducted and what happens depending on

what you and the others do . . .

Good. Now let’s go through the last stage: a short questionnaire to check that

everything in the instructions is crystal clear for you. The answers provided on the

questionnaire will not influence your earnings or participation in the experiment in any

way: its only aim is to help you be sure everything is clear to you. Please fill in the

questionnaire.

Pre-experiment questionnaire

1. New groups are formed after each round.

�YES �NO

2. Each group includes participants.

3. At the beginning of each round, all the participants in my group are attributed the same resale

value.

�YES �NO

4. When I make a bid, I can bid any amount I want.

�YES �NO

5. The market price is set by the bid of the second-highest bidder in my group.

�YES �NO

6. If my bid is the highest bid and is equal to rr.u ECU and the second-highest bid in my group is

gg.k ECU, then I buy the unit of the good.

�YES �NO

If YES, I pay: for the good.
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7. If I purchase a unit of the good and my resale value is greater than the market price, I will

make positive profits.

�YES �NO

8. The monetary payoff I will be paid at the end of the experiment depends on the amount of ECU

I earned during the auction.

�YES �NO

Now that you are done, let’s go through the questionnaire together, and stress the

answers that accurately describe how the experiment will proceed.

Q1 ‘New groups are formed after each round’. The answer is No. The groups remain

the same during the entire experiment.

Q2 ‘Each group includes 9 bidders’.

Q3 ‘At the beginning of each round all the participants in my group are attributed the

same resale value’. The answer is No. The resale value of the various participants

in your group can be different.

Q4 ‘When I make a bid, I can bid any amount I want’. The answer is Yes. There is no

constraint imposed on the price you choose.

Q5 ‘The market price is set by the bid of the second-highest bidder in my group’. The

answer is Yes, the market price is the second-highest one among all bids chosen in

your group.

Q6 ‘If my bid is the highest bid and is equal to rr.u ECU and the second-highest bid in

my group is gg.k ECU, then, I buy the unit of the good and I pay gg.k, i.e. the market

price.’ The answer is Yes.

Q7 ‘If I purchase a unit of the good and my resale value is greater than the market price,

I will make positive profits’. The answer is Yes, since your profit will be computed

as your resale value minus the market price.

Q8 ‘The monetary payoff I will be paid at the end of the experiment depends on the

amount of ECU I earned during the auction.’ The answer is Yes.

If you are surprised by any of these answers, please read again the instructions sheet

carefully before returning to the question you had doubts about.

Now that all the written material has been read, the experiment can start. The first

step is illustrated in the screen capture in Figure 2.2. The display has three frames. The

top frame gives you information about the current round. The middle frame is devoted

to your own decisions. The bottom frame provides a reminder about previous rounds.

The information provided here includes the round number and three key elements: your

resale price, the price you have chosen and your profit in each round. The first display,

on the top of the screen, gives you a resale value for the good (24 ECU). All you have to

do is to click on the OK button to proceed.

Once you have clicked on the OK button, a second screen appears as shown in Fig-

ure 2.3. This second display asks you to choose a price for the good. To choose the price
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Figure 2.2 First screen:resale valuein the first round

 

 
 

Figure 2.3 Secondscreen:bidin the first roundofplay
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Figure 2.4 Third screen: results of the first round

you are willing to bid you have access to a scrollbar in the middle frame. Once you have

chosen the price you want to bid, click on OK to proceed. Let us say, for the sake of the

example, that you chose a price of 37 ECU for that round. The third display in Figure 2.4

shows you the result of the auction. The information about whether or not you won the

auction appears on your screen, saying you didn’t win the auction. Your resale value

for the good and the profit you gain from that round (0 here) is also reported in the top

frame. Click on OK to proceed and a second round will start.

Let us skip the subsequent rounds, and jump to round 6. The display you get at this

stage is shown in Figure 2.5. The bottom frame shows the past experiences you have had

with the auction. In round 1, your resale price was 24 ECU, your chosen price was 37

ECU and your profit was 0 ECU. In round 2, your resale value was 84 ECU, your chosen

price was 86 and your profit was equal to 8 ECU. From this you can infer that the second

price was equal to 76 ECU. In rounds 3 to 5, you gain nothing from the auctions. Now,

in round 6, the top frame assigns you a resale value for the good equal to 65 ECU. As

before, you have access to a scrollbar in the middle frame to choose the price you want

to bid. Once you have chosen the price you are willing to bid, click on OK to proceed.

Let us state that you are willing to bid 88 ECU for the good. As shown in Figure 2.5, your

bid was high enough to win the auction and the profit you made is equal to –19 ECU.

On the screen, you can also see the second price you paid for the purchased good. This

price is equal to 65 + 19 = 84 ECU. Click on OK to proceed and a new round will start.

Once you have finished with all the scheduled rounds, the screen shows a summary of

all rounds and the resulting monetary gain you earn from the experiment. All participants
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Figure 2.5 The sixth round of the experiment: screen captures

come one by one to a separate room inside the lab, and get paid in cash according to this

amount. You are then thanked for your participation, and you can leave the room where

the experiment was run.

2.2 The Experimenter’s Role: The Game under Study

If you belong to the same population as the students that usually come to experimental

economics laboratories, then you probably did not recognise the rules of the mechanism

described above. Otherwise, you probably have already guessed that these instructions

are meant to put subjects into a second-price auction.

Before getting to a description of the experiment from the experimenter’s point of

view – what is called the design of the experiment or experimental design – you need

to become familiar with the questions answered thanks to experiments of this type in

empirical research in economics. These answers come from the extremely powerful

properties of such mechanisms according to economic theory, as shown in detail in the

next section.

2.2.1 Theoretical Properties of Second-Price Auctions with Private Values

The above experiment considered a market with one single seller and n buyers. Only one

unit of the good was to be sold on that market. Here, we are not concerned by the seller’s
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behaviour, so we can assume the good is worth 0. In that case, the seller agrees to sell

the good at any positive price.2 The main aim of economic theory in such a context is to

find the equilibrium. The equilibrium here signifies who buys the good and what price

is paid for it, given economic agents’ preferences.

Let us start by formalising the buyer’s preferences. We denote vi the monetary equiv-

alent of the buyer’s i utility of obtaining the good, aka the private value of the good. The

value is private because different people, i, are allowed to have different values. More-

over, an individual i does not know the others’ value (i.e. values vj for j �= i). This utility

of owning the good is a measure of the buyer’s willingness to pay because if the buyer

trades a monetary loss equal to vi against the consumption good, their situation remains

exactly the same. If q is the price to be paid for consuming the good, the buyer’s benefit

is thus exactly equal to vi − q. The seller’s profit is equal to π = q − 0 = q. Thus, in

moving from the seller’s hand to the buyer’s hand, the good generates a value equal to

vi. The higher the buyer’s private value, the higher the amount of wealth created in the

way the available scarce resource (one unit of the good) is allocated. This observation

highlights the first important property of an allocation mechanism: its efficiency. Effi-

ciency is measured here as the ability of the allocation mechanism to allocate the good

to the agent who attributes the highest value to it, to achieve the highest possible level

of wealth.3

An examination of the payoff functions of the two agents clearly shows that the price

is not relevant to efficiency. A change in price is a zero-sum transfer between the buyer

and the seller, leaving unchanged the total amount of wealth. The price only decides

on how the surplus is shared between the two economic agents. However, buyers will

not agree to pay just any price, because they would incur a loss were they to pay a

higher price than their private value vi to acquire the good. This means that the price the

buyer announces in the auction (what we called a bid) is correlated with their privately

known valuation vi. As a result, the bid becomes an observable signal of the buyer’s own

preferences. This points to the second important property of an allocation mechanism: its

revelation property, measured as the informativeness of the bid regarding the underlying

true preference.

How a given allocation mechanism performs on both these levels depends on the bid-

ding behaviour it induces. The second-price auction implements the following allocation

rule: the buyer with the highest bid wins the auction, but the price paid for acquiring the

good is the second-highest bid. In order to elicit what a given buyer i can best do in such

a context, let us denote their bid bi and Bi the highest bid chosen from among the other

n − 1 bidders.4 Since values are private, buyer i knows nothing about Bi. What they

know for sure, though, is that they will win the auction by choosing a bid bi higher than

2 One possible rationale for this assumption is that the good is already produced and has no consumption

value for the seller.
3 An alternative view is that efficiency also exhausts all possibilities of trade: if the mechanism allocates the

good to an agent whose value is lower than that of another, then the two could find a mutually beneficial

agreement to trade the good – since another agent in the economy is willing to pay more for the good than

what it is worth for its current owner. This applies for as long as the final allocation remains sub-efficient.
4 Formally, Bi = maxj�=ibj, which can also be denoted Bi = maxb−i, with −i denoting all the bidders

except i.
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Bi, whatever Bi. And that, in this case, Bi will be the price they will pay for the good.

Thus, buyer i (weakly) prefers to win the auction if vi ≥ Bi (so that vi − Bi ≥ 0) and

prefers to lose it otherwise (if vi − Bi < 0). Consider each possible state of the world in

turn.

If, on the one hand, Bi is strictly higher than vi, then buyer i prefers to lose the auction

– because winning it would mean a decrease in wealth. There is one choice which guar-

antees that the buyer is sure to lose the auction in all instances such that vi − Bi < 0:

the bid bi simply should never be higher than the private value vi. If, on the other hand,

Bi is lower than vi, buyer i will want to win the auction. You might have already noted

that the outcome of the auction stays the same whatever the bid bi is, as long as it is

higher than Bi. In a second-price auction, the price q to be paid will always equal Bi and

buyer i will remain the winner. For any bid bi chosen in such circumstances, moving to

a higher bid increases the probability of winning the auction without changing the price

to be paid, provided that such a bid remains compatible with this particular state of the

world. The threshold separating the two states of the world is reached when the bid bi

reaches the private value vi. At that point, the chances of winning the auction against a

Bi higher than vi become positive.

As a result, the optimal bidding strategy for buyer i in this environment is to choose

a bid bi exactly equal to their private valuation b∗
i = vi as it provides the highest pos-

sible likelihood of winning the auction when and only if it is desirable. This strategy

is followed by all bidders on the market, leading to the two main theoretical properties

of the second-price auction. First, the ranking of equilibrium bids is exactly the same

as the ranking of valuations: the winner of the auction will thus be the one with the

highest private value, so that the mechanism achieves an optimal allocation. Second, the

equilibrium bidding behaviour induced by the auction is perfectly revealing: each bid

is a perfect signal of the buyer’s underlying true preference. For daily-life goods, either

market ones like a pen or a coffee or non-market ones like those described in Focus 2.1,

these preferences are privately known by their holder, and unobservable. In such con-

texts, the auction can be used as a revelation mechanism – a way to better know what

the distribution of individual preferences is.5

2.2.2 Why Experimental Auctions Are Important

The above-mentioned properties of second-price auctions are all the more impressive

given the observational context of the model’s assumption. While each buyer is the only

5 This last property is the main difference from the behaviour induced by the first-price auction mechanism.

In first-price auctions the winner’s bid is also the market price. There, the bid determines both who wins

and the price the winner will pay. A unique instrument is used to select the winner and to offer the winner’s

prize. The second-price auction, by contrast, relies on two instruments each serving only one objective:

the winner’s bid determines the winner while the second-highest bid determines the profits. The optimal

strategy in first-price auctions thus resolves the trade-off between winning the auction on the one hand,

and maximising profit in the event of winning on the other hand. This results in an equilibrium bid slightly

lower than the private value, so that the mechanism is not perfectly revealing. But the allocation achieved is

still efficient, as all bidders will adjust their strategy in this way and the ranking of bids will perfectly match

the ranking of private values.
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Focus 2.1

Preference elicitation and policy-making: the hypothetical bias

Most non-market goods – such as environmental protection, new medicines or amenities like

a park in a city – are publicly funded. When it comes to deciding on how much to invest in

one particular good of this type, it is necessary to run a cost–benefit analysis. In particular,

decision-makers have to assess the benefits of the investment. One key aspect of these benefits

is how desirable the good is for the target population. The desirability of the good is central not

only because it is a measure of how much welfare the investment generates but also because

it measures the willingness to pay for the good of the people who will consume it. Obtaining

such a measure amounts to eliciting people’s true – unobservable – preferences for the good.

To that end, the most commonly used method is to conduct surveys requesting respondents

to state how much they would like to pay to have the good produced. But a widely recog-

nised challenge of such an elicitation method is that people may declare a higher amount than

they are actually willing to pay for the good, because the question is asked in a hypothetical

context without real economic commitments or consequences (Arrow et al., 1993). Of course,

relying on such stated preferences if hypothetical bias does exist leads to many inefficient

investment decisions. Revelation mechanisms, such as the second-price auction, are thus stud-

ied experimentally in order both to study the phenomenon, and to find settings that overcome

the bias.

one to know their own individual preferences, and knows only that, one merely has

to ask each buyer for a simple bid. Beforehand, though, each buyer has to be warned

that the allocation of the good will follow the rules of a second-price auction. Based

on these very simple market rules, the outcome of the mechanism is to allocate the

good to the buyer everyone would have chosen based on a perfect knowledge of the

full demand function (in the aim of achieving the highest possible level of wealth from

the available resources). Moreover, an inspection of the individual bids even provides

perfect knowledge of the underlying individual preferences. Focus 2.1 describes the

consequences of this property for policy design. The remarkable properties of second-

price auctions remain theoretical, however. In other words, all of this is conditional on

the empirical relevance of the bidding behaviour predicted by the model.

These are the kinds of question that laboratory experiments are particularly good

at answering. This is so for two reasons. First, the experimental context provides more

control over the setting in which behaviour is analysed. Second, an experimental context

provides more measures of what happens in different circumstances. We will detail these

two reasons in turn.

First, note that the experiment we described in Section 2.1 is the exact empirical

counterpart of the model. The allocation rule is the same, but even the payoff func-

tions driving individual preferences parallel those embedded in the model. The resale

values vi, in particular, play the same role in the empirical world provided by the exper-

iment as the private values do in the world described by the model. This means that

the experimenter ‘chooses’ or induces the participants’ preferences; for that reason, this

kind of setting is called an induced value experiment – as the experimenter chooses,
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induces, the individual preferences according to which people in the experiment are

making decisions (see Section 5.3.1).

At the same time as they are induced – hence controlled – individual preferences are

also perfectly observed by the experimenter. This represents a huge added value com-

pared to what is generally available when one is working on data from the real world.

Such an observation is crucial as theoretical predictions are all about the relationships

between the outcome of the auction (the list of bids, the identity of the winner, the mar-

ket price, the winner’s profit) and the underlying factors driving such outcomes, namely

preferences. As a matter of fact, the experimental context allows one to observe not only

the market price but also the complete list of all the prices proposed for each bidder

and each auction. Again, this is not the case in most observational data available from

real-world auctions (where one typically observes only the winning bid). These features

make the empirical outcomes from experiments highly reliable, as will be explained in

Chapter 3.

As a result of this combination of strong control capabilities and wide observation

opportunities, the experiment in which you have just participated provides much infor-

mation on the theory of second-price auctions. First, one can test the efficiency of the

allocation rule by comparing the private value of the winner to the highest private value

present in the market. If the winner is the participant with the highest value in the mar-

ket, then the allocation rule was empirically efficient. Second, the revelation properties

of the mechanism can be empirically assessed. This assessment is based on the com-

parison between individuals’ bids bi and their private values vi. If the bids correspond

to the private values then the second-price auction is an accurate preference revelation

mechanism. It is worth noting, on a final note, that theory serves as a benchmark for

the empirical observations delivered by the experiment – the way data are analysed is

framed and driven by the theoretical understanding of the environment. Chapter 4 will

feature a more detailed discussion of this important aspect.

2.3 Experimental Second-Price Auction with Private Values

It is now time to move from the front stage to the backstage of the experiment

and look at it from the point of view of the researchers rather than the partic-

ipants. There are always some features of an experiment that are not visible to

participants (hence not described in the instructions presented in Section 2.1) but

are very important to know in order to fully understand the results. In the case of

a second-price Vickrey auction, a significant part of the design lies in the way the

resale values (the experimental equivalent of the private values vi) are chosen. In

the example opening the chapter, the second-price auction experiment involves nine

bidders and nine bidding rounds. For the nine bidders, the list of induced values is

{84; 76; 71; 68; 65; 63; 53; 38; 24} and is kept constant during the experiment. From

the point of view of the experimenter, {84; 76; 71; 68; 65; 63; 53; 38; 24} is the induced

demand curve. Each value in the list is allocated to exactly one bidder in each round.

From one round to the next, each bidder’s value changes as they pick up another
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Table 2.1 Empirical revelation properties of a second-price auction

Induced value 24 38 53 63 65 68 71 76 84 All

Aggregate demand (AD)

(vi × 18) 432 684 954 1134 1170 1224 1278 1368 1512 9756

Revealed AD 492 678 816 1145 1121 1229 1260 1406 1490 9637

in % of AD 114 99 85 101 96 100 99 103 98 99

Round 1 2 3 4 5 6 7 8 9

Aggregate demand (AD)

(2
∑

i vi) 1084 1084 1084 1084 1084 1084 1084 1084 1084 9756

Revealed AD 895 1045 1141 1065 1174 1143 1116 1045 1013 9637

in% of AD 83 96 105 98 108 105 103 96 93 99

Note. The table reports the revealed demand in the experiment, i.e. the sum of bids posted by all

bidders defined in columns. The upper part groups bidders according to their induced value; the

lower part provides round-by-round data.

Source: Jacquemet et al. (2009, p. 38, Table 1).

one in the list which they have not yet tested. Since there are exactly nine bidding

rounds (note that the instructions only say that there will be several rounds; the reason

for this choice is to avoid end-game effects), such a rotating bidders-value match-

ing puts into practice all possible permutations of the constant aggregate demand

curve.

Table 2.1 shows the baseline results obtained by Jacquemet et al. (2009).6 The

behaviour displayed in the table stems from 18 subjects, resulting in two markets of nine

subjects each in the experiment. Each subject participated in one of the two nine-person

markets, with nine repetitions, each with different induced values. The experiment

provides 2 (markets) × 9 (subjects) × 9 (repetitions) = 162 observations of bidding

behaviour (which are not independent, however, as is often the case with experimen-

tal data: Chapter 7 describes the statistical tools used to address such specificities).

Table 2.1 is made up of two main parts. The upper part classifies the answers to each

of the induced values proposed to the participants (remember that each induced value is

proposed to each subject once, and only once, at some point of the nine repetitions of the

second-price auction). The lower part classifies the answers with respect to the rounds in

which the bids were revealed. Before we turn to commenting on observed behaviour of

the participants in the experiment, try to recall how you decided to behave in the exper-

iment and, in particular, whether any of the theoretical insights of Section 2.2 came to

mind when you decided on a bidding strategy . . .

In the upper part of Table 2.1, the second row reports the corresponding induced

aggregate demand (AD) for each induced value in column (24, 38 . . . ). For each induced

6 This design was first implemented by Cherry et al. (2004). The primary focus of Jacquemet et al. (2009)

is to assess the influence of the origin of the experimental endowment on bidding behaviour. To that end,

a preliminary step is added to the design presented in Section 2.1. Before participating in the auction,

subjects answer a 20-item quiz in which the right answers are remunerated. These subjects thus enter

the auction with an amount of money they consider as their own (because it was ‘earned’) rather than

‘windfall’.
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value, the aggregate demand is equal to 18 times the induced value. For example, when

the induced value is equal to 24, the aggregate demand for the 18 subjects is equal to

24×18 = 432. As each induced value is allocated to exactly one subject in each auction

round, the aggregate demand for a given induced value pools together participants irre-

spective of the order in which they obtained that value. For example, when the induced

value was equal to 24, the aggregate demand pools subjects who acquired this value in

first, second, . . . , nth position. A consequence of this is that aggregate demand smooths

out the effect of learning or experience (see Section 5.5 for a detailed discussion).

What subjects actually did is displayed in the third row of the upper part. The empiri-

cal counterpart of the aggregate demand, called revealed aggregate demand (revealed

AD), is shown here. The revealed aggregate demand is the sum of the bids chosen

by all the subjects who have experienced the induced values provided in a given col-

umn. For example, the sum of the bids of subjects with an induced value of 24 is equal

to 2 ×
∑

i|vi = 24 bi = 492. An empirically perfectly revealing auction should equalise

aggregate demand and revealed aggregate demand. To make the comparison easier, the

fourth row presents the ratio between the revealed aggregate demand and the aggregate

demand. This ratio is called the revelation ratio, i.e. the share of the induced demand

which is stated through the bids. For (almost) all induced values the average revelation

rate is remarkably close to 100%; and it is true all along the demand curve, i.e. along the

whole distribution of induced values. These results suggest that the second-price auction

performs remarkably well in terms of demand revelation.

The picture is quite different in terms of the second theoretical property of the mecha-

nism, namely its ability to implement an efficient allocation. Strictly speaking, efficiency

can be fully assessed from the induced value of the winner in each round. In this experi-

ment, the winner should always be the bidder with the maximum induced value, which is

equal to 84. This actually happened in 61.1% of all cases, which is far from what theory

predicts. The experiment also allows measurement of the extent of the loss associated

with such sub-efficient outcomes: this can be measured by the share of the potential

wealth that is actually realised in the experiment. The data reveal that the average

induced value of the winner over the 18 auctions is 77.5 in the experiment, so that

92% of the potential efficiency is actually achieved at the aggregate level – the cost of

the loss in efficiency is thus rather small in this context.

Lastly, in order to assess whether these results are related in any way to repetition-

based learning, the bottom part of the table presents the data in terms of round-by-

round behaviour. In each column, the second row aggregates all the bids posted by all

the subjects in the round, the third row shows the revealed aggregate demand and the

fourth row displays the revelation ratio. Each of these subjects has different induced

values because the full demand curve is induced in each round, making the induced

aggregate demand the same in each column (AD = 1084). The table reveals a small

effect of learning on bidding behaviour, which occurs only at the very beginning of the

experiment. The revelation ratio rises from 83% to 96% between the first two rounds

and remains stable after that. This result illustrates the importance of practice questions

in the beginning of the experiment. The result also shows that learning is not a major

issue in this setting.
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To sum up, the induced-value context allows us to test both theoretical properties of

second-price auctions: efficiency and preference revelation. The mechanism performs

worse on the first dimension than on the second, although the cost of the loss remains

small. The revelation property, by contrast, is very accurately replicated by empiri-

cal behaviour. For this reason, second-price auctions have been extensively used as a

mechanism to study preference revelation in the laboratory. It is worth noting that this

property occurs even though most subjects were very likely to behave in the same way

as those of you who had never heard about auction theory before. All these subjects

might have been using rules of thumb to make up their mind, and they might also have

misinterpreted the instructions. None of these behavioural elements are related to the

behaviour described by theory. The main lesson is thus that the rationality assumptions

that lie behind the equilibrium predictions accurately describe the outcome resulting

from the environment, even though actual rationality might well not be what is behind

such an observation. This (likely) discrepancy between the theoretical representation of

behaviour and its actual driving forces is irrelevant in the context of this particular insti-

tution, because the institutions drive people’s choices in such a way that they behave as

if theory were descriptively right.

2.4 Case Study : Experimentally Designed Devices to Reduce Hypothetical
Bias

Hypothetical bias in stated-preference work challenges the credibility of stated-

preference methods as a tool for measuring economic values in a credible way. As

Illustration 2.1 shows, hypothetical bias is best studied in the context of the elicitation

of real-world goods rather than the artificial setting of induced preferences – otherwise,

there is little to no difference in elicited preferences according to the monetary con-

sequences of respondents’ answers. It thus seems important to consider an elicitation

context that is closer to the real-world situation of a cost–benefit analysis. This enhances

what one is able to learn about the real-world behaviour thanks to the experiment – a

question that will be discussed in length in Chapter 8.

One of the most common stated-preference methods used in economics is contingent

valuation. This methodology uses surveys that request respondents to make decisions

regarding a non-market good. Experimental researchers have tried to adapt the survey

design to undermine the risk of hypothetical bias. A first possibility is to adjust, or cali-

brate, the answers to the valuation tasks ex post. An alternative is to frame the context of

the individual choice to correct the hypothetical bias ex ante. This section will describe

each of these two methods in turn. Among the ex ante methods, cheap talk scripts have

garnered substantial attention. As such, they will be the object of a special subsection.

The aim of all this research is to improve the design of preference elicitation surveys,

in such a way that responses deliver a more reliable measure of true preferences in the

population. They thus exemplify how experiments help public policy decision-making,

which will be more systematically discussed in Chapter 9.
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Illustration 2.1

Second-price auctions as a preference revelation mechanism: home-grown and

induced values

An important question about the hypothetical bias phenomenon, described in Focus 2.1, is

whether it actually arises as a consequence either of the mechanism itself, or of the prefer-

ence revelation exercise. To study this question, Jacquemet et al. (2011) implement two sets

of second-price auctions. The first one is the induced-values design described in Section 2.1.

The second set of second-price auctions uses a real good: a donation to the WWF, by adopting

a dolphin. In this kind of context, subjects enter the laboratory with their unknown private

preferences for the good, which remains unobserved to the experimenter – hence called a

home-grown value good. It also means that, in contrast with an induced-value design, subjects

need to elicit their own preferences before answering the question. For both kinds of good, the

rules of the auction remain as similar as possible – to ease comparison – but the auction is per-

formed under two different sets of rules. In the first, subjects’ earnings from the experiment are

directly affected by the outcome of the auction. This condition is called the REAL treatment. In

the second condition subjects are asked to behave as if they were directly affected by the out-

come of the auction, but without any monetary consequence – hence labelled HYPOTHETICAL.

The difference in revealed preferences in REAL as compared to HYPOTHETICAL measures the

hypothetical bias. The results are twofold. First, there is no evidence of hypothetical bias in

the induced-value context: the bids in HYPOTHETICAL are very similar to those displayed in

Table 2.1. Second, the difference in revealed demand between the HYPOTHETICAL and REAL

in the home-grown auction is huge. These results are in line with existing evidence reported

by, e.g., Taylor et al. (2001); Vossler and McKee (2006); Murphy et al. (2010) in various

experimental designs. Such results suggest that hypothetical bias is more a matter of prefer-

ence formation (how subjects elicit their own preferences) rather than of preference revelation

(whether self-reported preferences match the true ones). The challenge is thus to find survey

designs that lead subjects to think about their true underlying preferences in the hypothetical

context as seriously and deeply as they would if there were actual monetary consequences.

2.4.1 Ex post Methods

A famous ex post technique consists in calibrating down hypothetical responses – in

such a way that the post-calibration values of hypothetical answers match the answers

one would elicit with actual monetary incentives. Of course, the main question here is

the amount of the scaling of the hypothetical responses. Many surveys in the stated-

preferences literature have attempted to calculate the size of the hypothetical bias for

calibration purposes. The general conclusion is that there is no golden rule for calibra-

tion. Diamond and Hausman (1994) predicted that proper calibration stipulates dividing

hypothetical estimates by anywhere from 1.5 to 10. List and Gallet (2001) ran a meta-

analysis on 29 studies from the literature. They found that on average subjects overstate

their preferences by a factor of about three in hypothetical settings. Moreover, the

amount of over-revelation appears to be good-specific and context-specific (also see Fox

et al., 1998). List and Gallet (2001) found that the hypothetical bias is less important for

private goods (as compared to public goods) and for willingnesses to pay (as compared
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to willingnesses to accept). A possible lower bound for calibration is about 1.3, which

is very close to the Diamond and Hausman (1994) lower bound.

A similar attempt at ex post adjustment is the use of follow-up certainty questions

(Champ et al., 1997). This procedure adds a question to the survey, where respondents

are asked their level of confidence in the truthfulness or accuracy of their answer to the

preference elicitation survey. A threshold is then chosen, and only preferences revealed

with a high enough degree of certainty, or confidence, are actually accounted for in the

analysis.

2.4.2 Ex ante Methods

The ex ante methods try to build on the reasons why hypothetical bias appears to change

revelation before it occurs.

A first possible reason for the poor revelation performance of hypothetical ques-

tions is that, because they are based on a hypothetical scenario, subjects do not take

the valuation exercise seriously enough. Consequential procedures aim to address this

issue. The procedure consists of improving the realism of the scenario (Carson et al.,

2000; Cummings and Taylor, 1998). The improvement in the elicitation procedure is

usually made by giving subjects the probability that their own choice in the experi-

ment will become real. The frame underlines the fact that the participant’s choice might

actually impact the policy. Earlier experiments provide contrasting results on conse-

quential procedures. Cummings and Taylor (1998) show that probabilities have to be

high (greater than 0.75) to produce an effect, while Carson et al. (2002) find a coinci-

dence with preferences elicited in the real context starting at a probability level of 0.2,

which is still substantially higher than the probability level any reasonable person would

assume.

In any case, even if subjects take the exercise seriously, they can still lack experience

with the elicitation mechanism, or with the good to be valued. This lack of experience

might lead to misconceptions, even in the case of a truthful answer to the hypothetical

question. It has led some researchers to teach the valuation exercise to subjects ex ante,

either by training them in the use of the mechanism or by increasing their knowledge

of the good. In an attempt to address this last issue, Carlsson and Martinsson (2006)

elicit the willingness to pay (WTP) to avoid power outages in Sweden. The WTP was

expressed in an open-ended survey before and after the subjects experienced the neg-

ative consequences of the power outages. In this particular case, the WTP referred to

a protection good, i.e. the right to access power without outages in the event of a hur-

ricane. Carlsson and Martinsson (2006) obtained a somewhat paradoxical result. First,

informed subjects tend to propose a 0 WTP more often than non-informed subjects.

On the other hand, the answers in the subset of positive offers remain unaffected by

the experience of a power outage. This paradoxical result could be explained by the

fact that subjects who experienced a power outage became aware of their right to get

power for free when such an event occurs. As a consequence, having faced the event

of a power outage might have provided information that changes respondents’ private

valuation.
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Focus 2.2

Preference elicitation: auctions, referenda and BDM mechanisms

While the revelation properties of the second-price auction are very attractive both empiri-

cally and theoretically, a recurrent critic against its actual use in contingent valuation surveys

is its complexity. In the seminal report commissioned by the NOAA (National Oceanic and

Atmospheric Administration), the panel suggests using a binary voting referendum which

respondents might find more familiar and realistic. In a referendum, subjects are asked to

vote for or against the funding of a public good. If a majority votes in favour, then everybody

will contribute, and the public good will be provided. On the contrary, if only a minority votes

in favour of the public good, then nobody will pay for the good and it will not be provided.

A second attractive feature of the referendum voting procedure is that it is strategy-proof

(there is no way to manipulate the outcome by distorting one’s own preferences). Another

popular preference elicitation tool is the Becker–DeGroot–Marschak (Becker and Brownson,

1964, BDM) mechanism. In its more standard version, a subject is asked to post a bid to

buy the good. The bid is then compared to a price determined by a random-number gen-

erator. If the bid is lower than the price, the subject pays nothing and receives nothing. If

the bid is greater than the price, the subject pays the randomly drawn price and receives the

good. Because of this property, the equilibrium bidding strategy in the BDM mechanism is

similar to what happens in a Vickrey auction: the bid affects the likelihood to buy the good

but leaves unchanged the price actually paid in that case. The mechanism is thus incentive-

compatible, and perfectly revealing. Noussair et al. (2004) compare the BDM mechanism

and the Vickrey auction to reveal willingness-to-pay information for individual customers.

For standard private goods, their results show the Vickrey auction outperforms the BDM

mechanism, with fewer biases, lower dispersion of bids and faster convergence to truthful

revelation.

Regarding subjects’ attitudes towards the mechanism, Bjornstad et al. (1997) show

that experience with contingent valuation procedure eliminates the bias. Here, experi-

ence was gained through a sequence of referenda in which participants had to vote on

a proposal stating a WTP for a non-market good (see Focus 2.2 for a description of

the most often used elicitation mechanisms, referenda in particular). If more than 50%

of the participants voted for a given proposition, then the proposal was accepted. The

good was provided and all the participants were supposed to pay the WTP. Bjornstad et

al. (1997) show that a learning phase on the mechanism using real incentives strongly

reduces the hypothetical bias. List (2001) studies the impact of experience by comparing

experienced and non-experienced subjects. His study compared the preference elicited

in a second-price auction depending on whether the card dealers were professional or

not. The subjects familiar with both the good and the mechanism revealed preferences

that were significantly different from those of the other subjects. The demand for pro-

fessional dealers was higher than that for non-professionals: when positive, their bids

were higher and their number of zero bids lower. However, experience did not succeed

in overcoming the discrepancy induced by the change in the incentives context, and the

hypothetical bias remained present.
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Another possible problem with the hypothetical context is that subjects may face a

dissonance between two competing wills. On the one hand, participants want to provide

their true preferences. On the other, they want to show their support for the provision of

the good to be valued. In a hypothetical context, the sending of such a message is a cost-

free procedure. The dissonance minimisation (DM) procedure, introduced by Blamey

et al. (1999), consists in separating the revelation of preference from the provision

of support messages. The DM procedure is based on an additional response category

in the survey in which subjects are explicitly asked to express their attitude towards

the good. More specifically, these additional response categories clearly dissociate the

respondents’ support for the programme and their willingness to pay for it. For example,

Blamey et al. (1999) provided respondents with the following extra response categories:

‘I support the [programme] . . . but it’s not worth $50 to me’, ‘I support the [programme]

. . . but I cannot afford $50’, and ‘I support the [programme] but not if it requires a [fee] of

any amount’. The initial study by Blamey et al. (1999) showed that DM questions elicit

steeper demand functions, but they do not contrast their result obtained in a real setting.

2.4.3 Cheap-Talk Scripts

A last strand of ex ante methods tries to warn subjects about the hypothetical issue. In

one of the first manifestations of this procedure, Bohm (1972) warns subjects involved in

a public good game to avoid strategic behaviour. In a seminal contribution to the more

specific field of preference valuation, the National Oceanic and Atmospheric Admin-

istration (NOAA) recommended reminding subjects of their actual budget constraint

(Arrow et al., 1993). Loomis et al. (1994) tested the effectiveness of reminding sub-

jects of their budget constraints and substitute goods, prior to elicitation. In a mail

survey asking people to value old-growth forests in Oregon, they found that the effect

of a reminder of this type was insignificant. Neill et al. (1994) found a similar result:

the fact of reminding subjects of the value of alternative environmental goods did not

change the response rates; and a similar result was found by Loomis et al. (1994).

However, replications of this experiment by Kotchen and Reiling (1999) and White-

head and Blomquist (1995, 1999) showed that this led to narrower intervals of estimated

preferences when it was applied to goods with which subjects were less familiar. This

approach has been systematised through the use of ‘cheap-talk scripts’. A cheap-talk

script provides ‘persuasive’ information within a social context to realign a person’s

behavioural expectations through communication. These scripts set the social context

by explicitly revealing that people tend to overbid in hypothetical surveys (Cummings

et al., 1995).

Ajzen et al. (2004) showed that the introduction of cheap-talk scripts before the

decision modified the disposition of the subjects by realigning beliefs, attitudes and

intentions with those in the real context. Moreover, the answers collected after a cheap-

talk script are good predictors of real behaviour. However, while cheap-talk design is

effective under some conditions, it is not a panacea for hypothetical bias. Evidence

from the literature suggests that the length of the script is of considerable importance.

For example, Aadland and Caplan (2006) found that if the cheap-talk script is short,
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Illustration 2.2

An experimental comparison of correction methods

Morrison and Brown (2009) provide an experimental test of the effectiveness of the three

known methods to reduce hypothetical bias: certainty scales, cheap talk and dissonance min-

imisation. In this experiment, students participate in a referendum where they have to decide

whether the group should give a certain amount of money to the Red Cross Breakfast Club,

described as an initiative to provide meals to children. Each student is given 20 Australian

dollars (A$) for participation, and the amount of money to be sent to the Red Cross varies

across sessions. Participants are told that if a majority votes yes, all of them will have to give

the proposed amount to the Red Cross (including those having voted no). Four treatments are

implemented. The first treatment is the only one with ACTUAL PAYMENTS. The three oth-

ers are hypothetical so that in those treatments, students know they would keep their A$20.

These three conditions are the main treatments of interest, in which preference elicitation is

coupled, respectively, with CERTAINTY SCALES, CHEAP TALK and DISSONANCE MINIMISA-

TION methods. Answers given in CERTAINTY-SCALE before the certainty question are used as

the results for hypothetical estimate without correction. Certainty questions are implemented

as a ten-point scale from ‘very uncertain’ to ‘very certain’. The CHEAP-TALK treatment uses

a modified version of Cummings and Taylor (1999). Finally, DISSONANCE MINIMISATION

introduces four more answers, allowing students to express their support for the goal of the

Red Cross Breakfast Club even if they vote against the contribution. The main results are

displayed in the table below (from Table 3 in Morrison and Brown, 2009, p. 315).

Bid level (A$) Treatment

ACTUAL

PAYMENT

HYPOTHETICAL CERTAINTY

SCALES (limit

= 7)

CHEAP

TALK

DISSONANCE

MINIMISATION

10 49 74 49 39 45

15 46 57 43 36 41

20 44 53 40 27 43

All 46 61 44 35 43

The experiment provides evidence of hypothetical bias: as expected, the percentage of students

voting yes is greater in the HYPOTHETICAL (61%) as compared to the referendum with actual

payments (46%). Dissonance minimisation appears rather efficient at correcting hypothetical

bias. If calibrated at 7, the certainty scale also gives results close to ACTUAL PAYMENT. Those

two methods give results which are on average 3 and 2 points away from the actual payment

situation. On the other hand, the cheap-talk method produces an underestimate of the actual

willingness to give. All results are more than 10 points below the actual payment. Interestingly,

when asked for feedback, students report that the cheap-talk script reads as an inappropriate

persuasion to vote no: ‘If you’re not saying no you’re not being honest’.

it can actually make the hypothetical bias worse. Here, accumulated evidence favours

the conclusion that a short cheap-talk script does not help to eliminate the hypothetical

bias (Cummings et al., 1995; Poe et al., 2002). On the contrary, long and informative

cheap-talk scripts have proven to be more valuable (Cummings and Taylor, 1999).
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This success does not come without its limitations, however. In the above-mentioned

experiment in which people were asked to state their willingness to pay for sports cards,

List (2001) found that cheap talk did not effectively decrease the hypothetical bias for

professional dealers (i.e. for agents who were well informed about the good being val-

ued). Similarly, Lusk (2003) found that a cheap-talk script is effective in attenuating

hypothetical bias only for certain classes of subject – those with less market experience

or less knowledge of the good being valued. This suggests cheap talk can work as a

learning booster, if the researcher provides subjects with information that under normal

circumstances could only be acquired through a costly trial-and-error process. In addi-

tion, Brown et al. (2003) and Murphy et al. (2005) found that cheap-talk scripts that are

long and directional work only for higher levels of provision. Carlsson and Martinsson

(2006), by contrast, observe that the only effect of cheap talk is to decrease the number

of zero offers, while leaving the mean value among positive offers unchanged.7 Aadland

et al. (2007) suggest that cheap talk is nothing more than an informative signal, which

interacts with the anchoring effect produced by the threshold provided in dichotomous

choice formats. Interestingly, this interaction results in making cheap talk drive down

preferences in favour of low values but drive up preferences against high values. Based

on accumulated evidence, cheap-talk scripts have to be long and detailed enough to

shave the preferences towards truth revelation elicited in a hypothetical context.

Summary

The main lessons from this chapter are twofold. On the one hand, it aims to make

it easier to think about the design of the experiment from the point of view of a

participant – how the rules and procedures will be understood by the subjects. To

that end, the chapter has shown, step by step, how an experiment proceeds from the

point of view of people coming to a laboratory. This particular experiment described a

second-price auction, a preference revelation mechanism with very attractive theoreti-

cal properties. First, it is perfectly revealing in theory, because the optimal strategy is

to bid one’s own private value for the good. Second, it succeeds in achieving the effi-

cient allocation. On the other hand, the chapter also addresses the issue of the empirical

relevance of these properties, tested through the behaviour observed in an experimental

setting. The results show that the revelation properties of the mechanism are of gener-

ally good quality, while the quality of the efficiency property is more mixed. Lastly, the

chapter concludes with an important policy application of the results drawn from the lit-

erature: the elicitation of preferences for non-market goods, and the design of preference

elicitation mechanisms that can eliminate hypothetical bias, the main problem that arises

in this context.

In reviewing this material, the chapter has also illustrated the main strengths of con-

trolled experiments: they provide observations and control over dimensions that are

otherwise (in particular, based on observational data) either or both hard to observe

7 Ami et al. (2011) show that a neutral and short cheap-talk script can even increase the number of protest

responses.
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and impossible to control. The next part turns to the question of why such distin-

guishing features make experiments a relevant empirical method in economics. First,

the point of view of the added value of experiments as compared to other empirical

methods is discussed in Chapter 3. Second, Chapter 4 takes a broader perspective and

relates experiments to economic theory, naturally occurring economic phenomena and

the relationships between the two.



Part II

Why? The Need for Experiments
in Economics





The Need for Controlled Experiments
in Empirical Economics

As shownin Part I, experiments both widen the scope of what can be observed in an

empirical situation, and are ‘controlled’ because the decision-making environmentis

built on purpose according to the objectives of the research question. In designing an

experiment, and having people make decisions according to rules and with pieces of

information that have all been decided on purpose, experimenters decide on what econo-

metricians call the data-generating process (DGP). Theaim of this chapteris to describe

the consequenceof this very special feature of experiments.

In a nutshell, this makes experiments well suited to help address the main chal-

lenges facing empirical economics. Empirical works in economics aim to draw general

lessons from the casual evidence available in the data; e.g. what does price-sensitivity

of consumerstell us about the shape of their utility function? What do differences

in wages across gendertell us about discrimination? And so on. Econometrics have

been developed to address questions of this kind, called inference issues. The gen-

eral answer, described in Section 3.1, relies on the consistency between two sets of

assumptions about the data-generating process: one about the mechanisms producing

whatis observed, the other about the informativeness ofthe statistics computed from

the data. This principle is operationalised through identifying assumptions, i.e. hypothe-

ses about how data are generated that makeparticularstatistical treatments informative

about the underlying mechanisms. The usual challenge faced in empirical economicsis

thus to find out the set of assumptionsthat best fits the unknown data-generating pro-

cess inherited from the real world. Experiments reverse this challenge: they allow the

data-generating process to be chosen in accordance with the empirical question to be

answered.

Thanksto this property, what stand as identifying assumptions in econometrics pro-

vide a guide about how best to design experiments depending on what is to be learned

from the data. An insightful source for such guidelines comes from a well-known

ancestor to experimental methods in economics. Although the relevance of experiments

was acknowledged only in recent decades in economic thinking, as empirical research

shifted increasingly towards microeconomic-oriented works(see Section 1.2.3), a num-

ber of works have studied data very similar to experimental data for some time now.

This literature focused on so-called ‘quasi-experiments’ (Campbell, 1969), now most

often referred to as ‘natural experiments’. The distinguishing feature of the economet-

rics of natural experiments, described in Section 3.2, is to use spontaneous changesin

the institutional rules as a (quasi-)experiment. Such changesare, for instance, induced
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Illustration 3.1

Labour market effects of the minimum wage: a natural experiment

Whether the minimum wage is detrimental to employment (and if so, to what extent) is a

long-standing question in labour economics. The theoretical context is such that, in a world

of perfect competition in the labour market, workers are paid their marginal marginal produc-

tivity at work. A higher minimum wage thus crowds out from employment workers whose

marginal marginal productivity is below the minimum wage. This is only one side of the story,

though. The reason why most developed countries implement minimum wages is because

many labour markets are far from perfect competition. If firms would rather have market

power in the labour market, then the equilibrium outcome is sub-optimal: wages are lower

than under perfect competition, as is employment. Whether the minimum wage efficiently

restores a balance in bargaining power between workers and firms, or crowds out productive

occupations from the labour market, is thus an empirical question.

The answer to this depends entirely on the particular labour market and economy under

study. In one of the most influential empirical studies on that topic, Card and Krueger (1994)

exploit New Jersey’s 1992 decision to amplify the federal increase in minimum wage that

was adopted in the US in 1990. This decision is used as a natural experiment: it induces an

idiosyncratic shock in the level of the minimum wage relative to other states, the causal effect

of which can be inferred from labour market outcomes in this state compared to other states.

by modifications or new implementations of public policies (see Illustration 3.1 for an

example). This literature has developed by defining identifying assumptions that are

appropriate to analyse the effect of changes in the decision environment. Reviewing

these identification strategies in Section 3.4 will help us think about how experimental

variations must be implemented depending on the research question.

Lastly, this ability to choose the data-generating process is common to all kinds of

(actual) experiments. Section 3.5 reviews the many kinds of experimental methods avail-

able in economics, often compared based on how close they are to the social situation

the experiment aims to replicate. This criterion is also associated with varying abilities

to actually control the data-generating process, hence giving rise to different empirical

properties.

3.1 The Econometric Approach to Data Analysis

A major aim of econometrics is to inform about causal relationships between variables.

To make things more concrete, our running example in this chapter will be the effect

of compensation schemes on performance at work. Empirical analysis focusing on this

question seeks to know what is the change in performance of workers resulting from

a switch in their compensation – typically, from a fixed wage to a piece rate. To that

end, econometrics makes use of statistics, but it does not reduce to it. The difference

between the two is not obvious to understand. Why is it that empirical analysis in eco-

nomics needs a specific set of tools, called econometrics? The answer is that structural
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relationships generally are not directly observable in the data. Examples abound,1 but to

quote some of the most popular ones: the likelihood of death and the time spent at hos-

pital are strongly positively related in any population; do such data inform us about how

dangerous hospitals are for health? The number of policemen in a geographic area is

often positively correlated to crime rates; does it mean one should reduce police forces

to contain crime? Unemployed people who receive more help from public placement

agencies generally experience lower likelihood of finding a job; do placement agencies

hurt the labour market potential of job-seekers?

What these examples show is that observed relationships between variables cannot

generally be trusted as a measure of their structural counterpart – correlation is not cau-

sation. Empirical correlations lie about the mechanisms generating them. In each of the

above examples, there do exist forces behind the observed co-variations but these forces

are not quite what simple inspection of the data suggests. Similarly, it will often be the

case that higher performance is observed in firms paying a piece rate rather than a fixed

wage. But without any further tool, it is impossible to know if it is so because piece rates

induce higher performance, or just the reverse: that firms with a piece rate compensation

scheme attract higher-performance workers (a phenomenon that could well be in oper-

ation, as explained in Focus 3.3). This discussion does not mean that data are useless,

but rather that one needs to apply particular methods and reasoning to them, so as to be

able to understand what is behind the observed patterns. This section summarises the

framework used in econometrics to answer such questions, and highlights how it differs

from statistics.

3.1.1 The Two Inferential Problems of Data Analysis

Data analysis relies on observations on a subset of the population of interest, called a

sample. In our example, the population would include all workers of a particular kind

(defined by characteristics of the workplace, specifics of the task, etc.), of which the

employees of particular firms observed during a given time span are a sample. To for-

malise, we denote (y, X) the information available in the sample, where y will stand for

a column vector of n individual observations on the outcome variable (e.g. the perfor-

mance at work of sample employees), and X a matrix of n individual observations (in

a row) about m input variables (in a column, such as the compensation scheme or indi-

vidual observable characteristics like age or gender). A formal representation of (y, X)

is the following:

y =

⎡
⎢⎢⎢⎣

y1

y2

...

yn

⎤
⎥⎥⎥⎦ , and X =

⎡
⎢⎢⎢⎣

x11 ; x12 ; · · · ; x1m

x21 ; x22 ; · · · ; x2m

... ;
... ;

. . . ;
...

xn1 ; xn2 ; · · · ; xnm

⎤
⎥⎥⎥⎦

Descriptive statistics are tools used to summarise the information available in the

sample. The sample mean, for instance, summarises the central tendency of each vari-

able, while covariance allows measurement of the empirical joint variations between

1 Many additional examples of such spurious correlations can be found at www.tylervigen.com/

spurious-correlations.
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^

Figure 3.1 The challenge of data analysis

two variables. These are all sample quantities, which inform about the content of the

variables for those individuals actually observed.

But the aim of statistics goes well beyond this objective. The main purpose is to use

the information available in the sample to draw conclusions about the population char-

acteristics. It is not the performance of those workers that actually appears in the sample

that we want to understand and quantitatively characterise; but rather the behaviour

of any worker belonging to the same population (provided the population is properly

defined, something we did not do above!). This exercise is called inference, as the casual

information available in the sample is used to infer knowledge about the population as

a whole.

As an example, denote μ the mean performance at work in the target population of

workers. This is something we do not observe, but we want to use sample information so

as to quantify it. To that end, statistics defines estimators, which are procedures defined

on the information available in the sample, and related to the true population parameter.

For instance, the sample average of y defined as the procedure associated with y =∑n
i=1 yi

n
in a sample of i = 1, . . . , n observations is the estimator frequently used to

inform about the mean μ. Figure 3.1 illustrates such an approach to data analysis. Data

are part of the real world. Estimators, denoted θ̂ , are defined by researchers in an effort

to understand it as a whole – in such a way that the estimate can be considered as a

representation of the real world as seen through the prism of the researcher’s world.

An important thing to note is that such an estimator is defined for any possible sam-

ple of size n, randomly drawn from the population. From one sample to another, the

particular observed values contained in (y, X) will change, because the observation units

will be different as a result of the sampling mechanism. This means one can see the

sample observations as n draws in the population variables. As a result, the observations

contained in (y, X) are random variables, of which each particular sample giving rise to
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a data set is a realisation – a particular draw in the variables’ distributions. The crucial

point here is that estimators are defined over sample values: as functions of random vari-

ables, they are thus random variables themselves. The application of the estimator to the

actual numbers available in a given sample is called an ‘estimate’ or an ‘estimation’,

and should be seen as realisations, draws, from the estimators’ distribution.

These definitions allow us to state more precisely the two inference problems faced

when relying on sample quantities to acquire knowledge about population quantities.

The first inference problem is how the sample quantity itself is related to the population

parameter of interest, i.e. what is the relationship between what we observe or compute

on the data, and what we seek to measure. Imagine, for instance, that you are interested

in knowing the level of income of people living in a given city. To gather this infor-

mation, you stand at the entrance of a golf course nearby. You will obviously gather

information that is not a relevant measure of what you are interested in. And this empir-

ical mistake has nothing to do with the size of your sample (the number of people you

will be able to meet): even if you stay long enough, your measure will never approach

what you expect – because the level of income among members of a golf club is biased

upwards as compared to the average income in a typical city. This first issue is a matter

of identification: what are the relationships between the sample quantity and the true

underlying parameter one seeks to measure?

But because of sample variations, what we observe will always differ from what

we want to measure, notwithstanding the identification properties. It is so because,

as explained above, when we compute estimations, the value of the estimator in the

observed data, we work with realisations of a random variable. This question is a mat-

ter of statistical inference. For instance, the sample average is known to converge to

the population mean if sample observations are drawn independently (in application

of the law of large numbers, the probability that the sample average differs from the

population mean is closer and closer to 0 as the sample size increases). The sample

average will never (or barely) coincide with the population mean in any sample, what-

ever its (finite) size, but the higher the sample size, the closer the two will be. Using

properties like this one, sample realisations can be used to characterise their population

equivalent.

This two-sided inference problem is at the core of econometrics. Each side raises

specific challenges. In the words of Manski (1999, p. 4), ‘studies of identification seek to

characterise the conclusions that could be drawn if one could use the sampling process

to obtain an unlimited number of observations’, while ‘studies of statistical inference

seek to characterise the generally weaker conclusions that can be drawn from a finite

number of observations’.

3.1.2 How Econometrics Faces the Challenges: The Idea of Data-Generating Processes

To address these two challenges, econometrics goes even further in the distinction

made in Figure 3.1 between the real world and the researcher world, as illustrated in

Figure 3.2. The main novelty introduced in this figure is the inclusion of the data-

generating process. There are two such data-generating processes in the figure. First,
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Figure 3.2 The econometric approach to data analysis

the ‘true’ data-generating process is the one actually producing the data observed in the

real world. This includes everything that is behind the actual content of the sample: the

sampling mechanism (how the decision to include a given observation from the popu-

lation is made), the availability of the information (whether, for instance, variables are

observed as classes, or as discrete variables, etc.), and last, all the causal mechanisms

relating the variables together. By its very definition, this true data-generating process is

unknown to the researcher – and impossible to observe; this is precisely the reason why

empirical evidence is needed.

It is approached through the supposed (sometimes also labelled assumed) data-

generating process, which gathers all assumptions made about the observed data: the

functional form of the model, the assumed sampling rule, etc. It is from this sup-

posed data-generating process that identification and statistical-inference properties of

the estimator are deduced: in our running example of the estimation of the mean from

a sample average, the estimator converges towards the population mean if observations

are randomly drawn (i.e. the likelihood that an individual observation is included in

the sample does not depend on any of his relevant characteristics). This way, the sup-

posed data-generating process can be seen as a device to make explicit those features

of the data-generating process that guarantee some particular inference properties of the

estimation techniques – e.g. that observations are sampled at random, for the consistency

of the sample mean.

This leads us to the main take-home lesson of this broad overview: estimators’ prop-

erties are deduced from the consistency between the true data-generating process and

the supposed data-generating process. Applied econometrics, from that point of view, is

the art of selecting the assumed data-generating process that best fits the true one, based
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on one’s own understanding of what it actually is. By definition, this is not an empir-

ical question (as any empirical analysis relies on estimators, the properties of which

depend again on the consistency between their own assumed data-generating process

and the true data-generating process), but rather a theoretical one: the answers will not

come from the data, but from one’s own understanding of the actual mechanisms at

stake.

When using observational data, the true data-generating process is given, and econo-

metric analysis of the data aims to fit for the best its main properties in order to

accurately use the information available in the sample. Here lies the key difference

between observational data and experiments. When designing an experiment, one actu-

ally decides on the true data-generating process: how observations are selected, how

some variables are related together, what information is available and when, etc. Econo-

metric theory thus provides the main guidelines on how to build experiments giving rise

to conclusive measures. Before moving to this discussion, we illustrate the point made

in this section through an application to the OLS estimator.

3.1.3 Illustration: Inference Properties of the OLS Estimator

The classical linear model linearly relates an outcome variable y to m covariates X

according to:

yi =
∑

i

θkxik + εi, ∀i ↔ y = Xθ + εεε

This equation is a data-generating model. From the point of view of econometrics, it

literally means that y, the outcome, is generated by a set of explanatory variables X

combined according to the unknown parameters θ . This first component is named the

measurable – or deterministic – part of the model, as it is made of observable variables.

The way they are combined to produce outcome depends on θ , a column vector of m

unknown parameters:

θ =

⎡
⎢⎢⎢⎣

θ1

θ2

...

θm

⎤
⎥⎥⎥⎦

The term εεε is an error, in the sense that it recovers all the variations in the actual level

of y that are induced by mechanisms beyond the effect of X. As a matter of fact, the

equation implies that εεε = y − Xθ : the error term regroups everything that makes y vary

and does not go through the effect of the Xs. By construction, this part of the model is

unobserved. The error term εεε is a column vector of individual error terms:

εεε =

⎡
⎢⎢⎢⎣

ε1

ε2

...

εn

⎤
⎥⎥⎥⎦

where each εi is defined as:
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εi = yi −
[
xi1 ; xi2 ; · · · ; xim

]
×

⎡
⎢⎢⎢⎣

θ1

θ2

...

θm

⎤
⎥⎥⎥⎦ = yi −

m∑

k=1

θk xik

In a sample, one can observe the value taken by y and X for a given set of n indi-

viduals. These covariations can be used to characterise the unknown parameters θ . The

most famous and widely used way of doing it is to use the ordinary least squares (OLS)

estimator, θ̂OLS. It is derived from minimising the error of the model εεε = y − Xθ (we

denote z′ the transpose matrix of z):

εεε′εεε = (y − Xθ )′(y − Xθ ) = y′y − 2y′Xθ − θ ′X′Xθ

From the first-order condition of minimising the sum of squared errors,

∂εεε′εεε

∂θ
= 2X′y − 2X′Xθ = 0

the functional form of the estimator results as:

θ̂OLS = (X′X)−1X′y

As such, the estimator is nothing more than an algebraic manipulation that maximises

the fit of the model, as measured, for instance, by the R2 – i.e. the coincidence between

the observed value of y and the predicted value Xθ̂OLS.2

The properties of this estimator, in terms of identification and statistical inference,

result from additional assumptions on the data-generating process. To highlight them,

we use the assumed relationships between the variables, y = Xθ + εεε, to write the

estimator as:

θ̂OLS = (X′X)−1X′(Xθ + εεε) = θ + (X′X)−1X′εεε

According to this expression, the estimator fluctuates around the true value, θ , according

to (X′X)−1X′εεε. If E(εi|X) = 0, ∀i, these fluctuations induce no systematic difference

between the estimation and the true underlying parameter in such a way that E(θ̂OLS) =

θ . This defines an important identification property, called unbiasedness. Otherwise, if

any correlation exists between the error term, ε, and the explanatory variables, X, i.e.

E(εi|X) �= 0, then E(θ̂OLS|X) − θ = (X′X)−1X′
E(εεε|X) �= 0. This distance between the

expected value of the estimator and the true parameter is called a ‘bias’, a systematic

difference between the target and the empirical measure. Under such circumstances,

the application of the OLS algebra to observed data will not deliver an evaluation of

the true parameters θ combining the Xs to generate y. The intuitive reason for the bias

is that there are some variations in X that are simultaneous with those in y (through

εεε), not because of the causal effect of X on y, however, but rather because something

unobserved, hence in εεε, makes X and y vary at the same time. Such a phenomenon is

said to be confounding: an unobserved mechanism that makes X and y vary at the same

2 The coefficient of determination R2 is the percentage of the response variable variation that is explained by

the linear model. Formally, it is defined as R2 = 1 −
sum of squares of residuals

total sum of squares
= 1 − εεε′εεε∑

i (yi−y)2
.
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time is spuriously attributed to a causal effect of X on y, leading to wrong conclusions

and inferences.

Statistical inference, on the other hand, is deduced from the distribution properties

of the n random variables εi in εεε. If these variables are identically – E(ε2
i |X) = σ 2 ∀i

– and independently – E(εiεj|X) = 0 ∀i �= j – distributed, then it can be shown that:

V(θ̂OLS|X) = σ 2(X′X)−1.3 This quantity is the true variance of the estimator: it thus

gives information on the magnitude of the variations of the realised value as compared

to the expectation of the estimator, which happens to be the true value of interest if the

above identification assumption is fulfilled. From one sample to another, the value taken

by the estimator will vary and none of these values will coincide with the true value θ ,

but the range of such variations around θ is given by σ 2(X′X)−1. Under the same set of

assumptions, this level of precision is even the highest achievable precision among all

unbiased estimators of θ (by the efficiency of the OLS): based on the available data, the

OLS delivers the most informative measure of the parameter.

As this example illustrates, both identification and statistical-inference properties

depend on the nature of the true data-generating process: these properties of the estima-

tor are met only if the unobserved components gathered in εεε that produce y actually fulfil

the three conditions above. Applied to experiments, these conditions become guidelines

into best practices so as to provide conclusive measures. The independence condition

E(εiεj|X) = 0, ∀i �= j, for instance, means that the unobserved components apply-

ing to any two observations should not be related together in any systematic manner.

This condition is met in experiments if people make only one decision; but will fail (by

design) if participants are asked to make several decisions one after the other. In this

case, there exist several observations for which decisions are made by the same individ-

ual. All characteristics that are unobserved and specific to this person, and that belong to

the decision-making process (being hungry or angry the day of the experiment, having

experienced trouble getting to the laboratory, etc.), will apply to all decisions made by

this person during the experiment: the unobserved components producing the outcome

of several such decisions will be systematically correlated – challenging the statistical-

inference properties of the statistical tools applied to these data.4 The same reasoning

applies to the identification condition, E(εi|X) = 0, which is the main focus of this

chapter.

3.2 Estimating Causal Effects of Treatments

Among the two issues that have to be solved in order to draw solid conclusions from

observed behaviour, identification is the first-order question one must address in design-

ing any empirical research. Statistical inference is just meaningless if identification

has not been worked out, as it amounts to characterising the sample properties of the

estimator as regards some unspecified parameter.

3 For formal proofs and further discussions of the material reviewed in this section, we refer the reader to

standard econometrics textbooks, such as Wooldridge (2002); Dougherty (2006).
4 The statistical analysis of experimental data will be covered in Chapter 7.
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To ease the discussion of identification issues in the context of experiments, we will

rely on the so-called causal evaluation framework. This will help, in particular, to for-

malise the properties of the data-generating process (hence the features of experimental

designs) that are crucial for achieving identification. The evaluation framework aims to

measure the causal effect of a change in the decision environment on relevant outcomes.

To formalise it, we frame such an empirical problem by considering two possible states

of the world: T = 0 will be the benchmark situation, while T = 1 refers to exactly the

same world except for one of its dimensions. We can think of these two states of the

world as a world without a ‘treatment’ (T = 0) and a world with a treatment (T = 1),

where the ‘treatment’ stands for any change in the environment of which we want to

measure the effect.5 Illustration 3.2 provides an example of the kind of empirical prob-

lem this approach aims to solve. The outcome is denoted μi0 in the world without a

treatment and μi1 in the world with the treatment. Both correspond to the true parame-

ters of the underlying data-generating process. If the empirical question is to know the

performance at work induced by different compensation schemes, μi0 would be the per-

formance under, say, a fixed wage, and μi1 the performance under a piece rate. These

quantities are outcomes in the sense that they are endogenous to the situation: they

result from a decision or an aggregation of behaviours that is induced by an individual’s

reactions to the environment.

3.2.1 The Causal Effect of the Change

In this framework, the main challenge is to measure the causal effect of the treatment: the

change in outcome induced by switching from world T = 0 to T = 1 – as discussed in

Focus 3.1, this is the empirical equivalent of comparative statics in theoretical analysis.

This exercise would be very easy if one could observe both μi0 and μi1 at the same

time. It should, however, be clear from our definitions that it can hardly be the case in

empirical work, as this amounts to observing the same sample unit (individual, firm,

country) in both states, at the same time period, in the same sequence of events – put

otherwise: both in world T = 0 and T = 1. As a result, if yi(1) = yi(T = 1) denotes the

potential outcome individual i obtains when receiving the treatment and yi(0) = yi(T =

0) denotes the potential outcome individual i obtains when receiving the control; it is

impossible to observe both yi(1) and yi(0) at the same time. A consequence is that it is

impossible to measure yi(1) − yi(0), the causal effect of the treatment, on individual i.

This defines the so-called evaluation problem.

A prototypical example of this problem is the effect of education on labour market

outcomes. One can observe the outcomes of different people with differing levels of

education, but it is impossible to observe the outcome for one and the same individual

with two different levels of education concurrently. Another example is the impact of an

individual’s gender on labour market outcomes, where the problem is straightforward:

5 This formalisation is known as the Rubin (1974) causal model, from whom we borrow the title of this

section. The terminology is inherited from the metaphor of experiments used in medical field: T = 1 is

a treatment tested as a cure to some illness. In that case, T = 0 is a control, i.e. a world with no medical

treatment, which refers to how patients would feel without the help of the medication in question.
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Illustration 3.2

Incentives and performance: a ‘natural’ experiment

The aim of piece-rate schemes is to reconcile the diverging interests of the agent (or the

employee) and the principal (the employer): effort at work is a cost for the agent (who cares

about consumption) but benefits the principal. Piece-rate schemes achieve their goal by con-

necting employees’ consumption to their performance at work, hence the amount of effort.

This is the main reason why economic theory predicts an increased performance by switching

from a fixed wage to a piece rate. Lazear (2000) relies on a natural experiment to investi-

gate the causal impact of such a change in payment schemes on performance within a firm.

The natural experiment occurred at the Safelite Glass Corporation, specialsing in automobile

glass installation. Following the introduction of a new management team, the firm changed its

payment scheme from hourly wages (T = 0) to a piece rate (T = 1). The outcome of inter-

est is performance at work, measured by the number of glass installations carried out by an

employee in a given period of time. The causal effect of interest is the change in performance

induced for any given employee when work is compensated using a piece rate rather than a

fixed wage.

The figure (from Figure 3, p. 1357) shows the density of performance in the firm both

before and after the change in the compensation scheme. The average change in performance

amounts to a rise in output of about 44% following the change. The crucial question is: does

this change in performance measure the variation in output one can expect from switching

an employee from one compensation scheme to the other, i.e. is this outcome a measure of a

causal effect?
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Focus 3.1

Causal effects in theoretical analysis and empirical works

The aim of measuring the effect of treatment variables in empirical economics is strongly

grounded in economic theory. Theoretical analysis in economics consists of two complemen-

tary approaches. First, equilibrium analysis is intended to predict the state of the world that

should result from a given set of circumstances, and should hence be observed in real-life

situations happening under the same circumstances. Equilibrium analysis is based on three

pillars: the existence of an equilibrium, its uniqueness and its stability. In case of multiplicity,

the relevant equilibrium is the stable point around which the outcomes would converge, if all

conditions remained the same. The empirical counterpart of such an approach only requires

observation of the behaviour induced by a given environment replicating in the best possi-

ble way the circumstances of the model. This allows comparison of observed behaviour with

the equilibrium prediction from theory – for instance: are returns to scale in the production

process actually not increasing, as expected in a competitive market? The second kind of

approach explicitly involves changes in the decision environment. Comparative statics char-

acterise changes in the equilibrium induced by changes in the relevant circumstances. This

corresponds to a systematic operationalisation of the classical ceteris paribus clause intro-

duced by Marshall (1890). Comparative statics identify the relationships between variables,

and the impact a change in one variable has on the outcome variable, in terms of both sign

and amplitude. The econometrics of causal effects mimics the comparative-statics approach:

a causal effect is nothing but a variation in behaviour induced by a change in another variable,

called a treatment, in which other factors are held constant (Heckman, 2010). In measuring the

change in the outcome variable before and after a change in one of the exogenous variables,

the aim is to compare two different equilibrium states. This replicates the ceteris paribus

reasoning only if the observed change is induced by the change in the exogenous variable.

Anything that makes the exogenous variable change at the same time as the outcome is thus

confounding, leading to biased estimation.

it is obviously impossible to observe a labour market income for one person according

to whether this person is either a man or a woman – but the causal effect of gender,

i.e. what are the differences in market outcomes between males and females, is a highly

relevant policy question.6

As a result of this lack of observation opportunities, the evaluation problem consists

in finding counterfactuals, i.e. empirical observations which convincingly measure what

the researcher does not observe. In most instances, this is what would have happened to

the observation units yi, which we observe in the new world T = 1, were units instead

still in the benchmark world T = 0. The accuracy of the counterfactual depends on

two critical dimensions. The first is the ways in which the counterfactual observations

6 Similarly, in the context of experiments in medical science, once the medication has been administrated to

the patient (T = 1), the researcher cannot observe what would have happened to the same patient with

T = 0. Therefore the researcher can never be sure if any change in the patient’s condition stems from the

medication, or from another circumstance that may have changed at the same time as the prescription. This

applies to the labour market in just the same way as it does to medical research.
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Table 3.1 Individuals,

treatments and observations

i Ti yi(0) yi(1)

1 1 – 10

2 0 2 –

3 1 – 3

. . . . . . . . . . . .

n 0 5 –

resemble the observations of interest. The second dimension is, of course, the kind of

causal effect the researcher is seeking to identify. Before discussing each dimension in

turn, we more formally specify the identification issue raised by observational data.

3.2.2 The Content of Observational Data

Observational data from natural experiments typically deliver cross-sectional informa-

tion on two kinds of individuals: people who behaved in an environment where the

treatment was absent (state T = 0), and people who behaved in an environment where

the treatment has been implemented (state T = 1). In both cases, it is possible to iden-

tify those individuals who ‘received the treatment’ (individuals i for whom Ti = 1)

and those who didn’t (individuals i for whom Ti = 0). The observed outcome y in the

whole sample results from the combination of the implementation of the treatment (state

T = 0 or T = 1) and the status of the individual (treated or not). Table 3.1 shows an

example of observational data for one outcome, n individuals and one treatment. Due to

the outcomes delivered by the sample, the vectors of potential outcomes y(0) and y(1)

are incomplete. Individuals with Ti = 1 are missing in the former case; individuals with

Ti = 0 are missing in the latter case.

If one could observe all individuals i in a world without treatment, the model would

be:

y(0) = μμμ0 + εεε(0)

where the first element, μμμ0, is the vector of true parameters – or outputs – specific

to this state of the world, and the second element, εεε(0), is, as usual, the unobserved

heterogeneity of the observational units. Similarly, if one could observe all individuals

in the state of the world with T = 1, the outcome would result from the model:

y(1) = μμμ1 + εεε(1)

Again μμμ1 is the actual true parameter, while εεε(1) is the measurement error due to hetero-

geneity. These two equations stand for the data-generating process of the outcomes in

each state of the world. As mentioned above, the disturbances εεε(0) or εεε(1) stand by def-

inition for any unmeasured aspect of each outcome (the whole model could be rewritten

by adding explanatory variables X, without changing the main point of the discussion:

εεε(0),εεε(1) will stand for any component that is influential on the outcomes, but is not

explicitly measured through the Xs).
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The important lesson from the discussion in Section 3.1 is that it’s not the mere

existence of εεε(0) and εεε(1) that challenges identification: there is always noise in the

observed relationships between the outcome and the parameter of interest. Noise is not

an issue per se, it is a necessary feature of empirical economics. What might lead to

identification issues is some specific configurations of the noise, namely if the errors

εεε(0) and εεε(1) are correlated with the treatment T . Which kind of correlation is actually

confounding entirely depends on what one seeks to measure: identification requires one

not only to characterise the properties of an estimator, but first of all to define what this

estimator aims to measure, i.e. the causal parameter of interest.

3.2.3 Treatment Effects Parameters

The most natural way of defining a causal effect in the above setting is as the average

change in the outcome induced by the treatment for any individual from the population.

This is called the average treatment effect in the policy evaluation literature. The most

widely used alternative is the average treatment on the treated.7

The Average Treatment Effect (ATE)

This parameter measures the impact of the treatment on any individual from the

population endowed with individual characteristics X:

�ATE = E (yi(1) − yi(0)|X)

Intuitively, it provides a measure of the effect of moving a randomly drawn individual

from no treatment to treatment, regardless of whether the individual was treated (Ti = 1)

or not (Ti = 0). In the example of the employment effect of the minimum wage (Illus-

tration 3.1), the ATE would be defined as the variation in the probability of employment

for any individual in the population that results from a change in the minimum wage.

Similarly, the ATE of a change in compensation on performance would be defined for

any worker on the market.

The Average Treatment on the Treated (ATT)

The target parameter is restricted to the sub-population who receive the treatment:

�ATT = E
[
yi(1) − yi(0)|X, Ti = 1

]

The only difference from the previous parameter is its conditioning on the group of

treated individuals.8 The ATT measures the change in outcome for those individuals

who are involved in the change. In the minimum-wage example, the ATT would now

focus on the employment effects of minimum wage not for all workers, but rather for

those workers who actually face a change in wage when the minimum wage changes –

7 Heckman (2010) describes other parameters of interest like the voting criterion or more general welfare

criteria. The presentation in this section closely follows the seminal survey of Heckman et al. (1999).
8 For the sake of notational simplicity y(1|X,T = 1) and y(0|X,T = 1) will be often denoted y(1)|X,T = 1

and y(0)|X,T = 1. The same applies with T = 0.
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i.e. workers whose wage is just between the level of the minimum wage before and after

the rise. In the compensation example, the ATT measures the change in performance

induced by using a piece-rate rather than a fixed wage for those individuals who are

paid a piece rate.

These two definitions make clear that these two parameters might be the same or not

depending on the precise mechanism behind the change in outcome. If the individual

response to the treatment is homogeneous in the population – any individual can expect

the same change in outcome on average from benefiting from the treatment – then the

two parameters will be the same. They are different, however, if the population is het-

erogeneous in terms of the response to the treatment, and assignation to the treatment is

related to such heterogeneity – inducing a systematic difference in the expected effect

of the treatment between individuals from the two groups.

Such a difference is driven by the existence of a relationship between the benefit from

the treatment (its expected effect on the outcome) and participation in the treatment.

Two kinds of implementation typically give rise to this kind of mechanism. It will be

the case, for instance, if participation in the treatment is free, and those individuals who

expect to benefit the most from it actually decide to get it. In the example of a change

in compensation, more productive workers are likely to experience a higher raise in

wage from a piece rate – in such a way that their response to higher power incentives

is likely to be different from what would be the response of less productive workers.

Similarly, the ATE and ATT are different quantities if the treatment targets a particular

sub-population (low-wage workers, for instance) and is purposefully designed to change

their outcome, rather than to improve the situation of any individual in the population.

In the minimum-wage example, for instance, the ATT is likely to differ from the ATE

because the labour market is strongly segmented in terms of skills, hence of wages.

Individuals who earn more than the minimum wage are likely to face very little change

in their employment opportunities, because the minimum wage is non-binding for the

kind of job they occupy.

The ATE and the ATT both are true parameters of the distribution of the causal change

induced by the treatment under study – see Focus 3.2 for a discussion of the generalis-

ability of these two parameters, and Illustration 3.3 for an application. When they differ,

the obvious question is which one we want to know and/or which will best inform on

the consequences of the treatment. Unsurprisingly, the answer depends on the research

question.

The ATE measures a population parameter. It thus answers questions about the likely

change in the economic outcomes if the treatment is to be generalised to the whole

population, or parts of the population that do not belong to the treatment group. But if

the treatment is specific to those individuals who are treated, then the ATE is not very

informative. For instance, a child care programme mainly targets parents with young

children, and in no way aims to change the outcomes of people whose children are

adults; similarly, training programmes are often designed to improve the labour market

position of the long-term unemployed. In both cases, it might well be that the effect

of the treatment would differ were it applied to the general population or to the target
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Focus 3.2

The programme evaluation approach and the structural approach

The policy evaluation literature focuses on identification – how to best use available data

to measure causal effects – from policy changes. A growing debate in this literature chal-

lenges the nature of the causal effects identified through such a ‘experimentalist view of

econometrics’ (Keane, 2010, p. 3). The main criticism about such an approach (advocated by,

e.g., Angrist and Krueger, 1999) is that the parameters identified are specific to the observed

change, population, time-period, etc., i.e. they lack generality because they identify a reduced

form effect. A different approach is to try to identify the mechanisms behind the causal effect

– so as to achieve greater generalisability. Such a structural approach to evaluation explic-

itly specifies the mechanisms underlying individual behaviour based on the preferences, the

constraints, the interactions and the sources of heterogeneity leading to a particular individ-

ual outcome. As such, the model provides a description of ‘hypothetical worlds obtained

by varying hypothetically the factors determining outcomes’ (Heckman, 2010, p. 360). The

first attractive property of this approach is to make explicit the assumptions made about the

behaviour of an individual which remain implicit in the reduced-form approach (Rosenzweig

and Wolpin, 2000; Keane, 2010). Second, inferences from data are based on the causal model:

structural parameters leading to the reduced-form effect are estimated based on the observed

variation. Such an approach thus allows one to generalise the policy effect in alternative con-

texts, in which determinants of behaviour are expected to be the same. The price for this

increased generalisability is that the empirical analysis makes more statistical and theoreti-

cal assumptions about foundations of behaviour. Each approach thus has its own strengths and

weaknesses. It is worth noting that each amounts to different specification choices, through the

definition and nature of the parameters to be estimated. In both approaches to the data, though,

the identification properties of the estimation depend on the structure of the data-generating

process (Blundell, 2010).

individuals. But the average treatment effect is just irrelevant; what matters for both

policy decision-making and academic research on the topic is the ATT. The estimation

strategy must thus be adapted to the true parameter of interest – measuring the ATE

without bias is of little help when the two are different and the ATT is what one actually

seeks to measure.

The observational requirements of the two parameters are actually quite differ-

ent. The ATT relies only on the outcomes of the sub-sample of treated individuals:

�ATT = E
[
yi(1)|X, Ti = 1

]
− E

[
yi(0)|X, Ti = 1

]
. Beyond the output under treatment

for treated individuals, which is generally easy to observe, the ATT thus requires data on

the outcomes of treated individuals had the treatment not been implemented – the coun-

terfactual world for treated individuals. In the context of the example given in Table 3.1,

measuring the ATT amounts to restricting the analysis to individuals who are treated –

those lines in black, for which Ti = 1. For those individuals, y(1)|X, T = 1 is available.

The counterfactual problem is to find a way to measure the missing values in these lines,

i.e. y(0)|X, T = 1.
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Illustration 3.3

The need for assumptions on the data-generating process to achieve inference

(even) from experimental evidence

To illustrate the lack of generalisability of experimental evidence without assumptions about

the data-generating process, Manski (1999) insightfully revisits the results from the famous

Perry preschool project. This natural experiment was implemented in Michigan starting

in 1962. A random sample of disadvantaged black students is provided intensive educa-

tional services, while students from another random sample are used to build a control

group, with no particular service. A key outcome from this experiment is that 67% of

students in the treatment group were high-school graduates at age 19, while the propor-

tion was 49% in the control group. Denote X the covariates of children who participated

in the experiment (disadvantaged black children), μ1(= 1 if high-school graduate by age

19, 0 otherwise) the true outcome of a child when assigned to the treatment and μ0 the

similarly defined outcome when a child does not receives the treatment. What this exper-

iment identifies is that: Pr[μ1 = 1|X] = 0.67 and Pr[μ0 = 1|X] = 0.49. Two kinds

of questions can be asked based on these results: (i) what do we learn about the effect of

the programme? (ii) What would be the effect of the same programme implemented using

an alternative treatment policy? The main issue in addressing the first question is that the

answer not only involves the marginal distributions delivered by the experiment, but also

depends on the joint distribution of the outcomes. For the sake of the illustration, consider

the following joint distribution (according to which the outcomes are strongly negatively

correlated):

Pr[μ1 = 0, μ0 = 0|X] = .00; Pr[μ1 = 0, μ0 = 1|X] = .33

Pr[μ1 = 1, μ0 = 0|X] = .51; Pr[μ1 = 1, μ0 = 1|X] = .16

This is consistent with the experimental evidence, as Pr[μ1 = 1|X] = Pr[μ1 = 1, μ0 =

1|X] + Pr[μ1 = 1, μ0 = 0|X] = 0.67 and Pr[μ0 = 1|X] = Pr[μ1 = 0, μ0 =

1|X] + Pr[μ1 = 1, μ0 = 1|X] = 0.49, and leads to graduation rates ranging between

0.16 and 1 depending on who receives the treatment. As a result, very little can be said

about this question if nothing is known or assumed on the joint distribution of outcomes.

This is also needed to answer the second question, i.e. to characterise the distribution of

the outcome that results from policies j providing educational services to some children

and not to others: Pr[μj|X]. In this case, the answer also depends on prior information on

the treatment policy that would be implemented. Manski (1999) shows that depending on

the prior information used, the range of possible values compatible with the observed out-

comes from the experiment is as large as [0.16; 1]. The table below (from Table 3.1 in

Manski, 1999, p. 59, the computations are nothing but straightforward and we refer the inter-

ested reader to Manski (1999, pp. 60–72) for more details) shows how prior information

can be used to narrow the range, and infer more informative values about the outcome of

interest.
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Prior information Pr[μj|x]

No prior information [0.16; 1]

Ordered outcomes (μ1 ≥ μ0) [0.49; 0.67]

Independent outcomes [0.33; 0.83]

9/10 of the population receives the treatment [0.57; 0.77]

In particular, the target probability lies between the two observed outcomes only if the joint

distribution of the outcomes is such that the outcomes are perfectly ordered, or if the treatment

is independent of the outcomes.

The counterfactual requirement for measuring the ATE is even stronger. Denoting

p = Pr[T = 1] the probability of being treated,9 the ATE is defined as:

�ATE = pE
[
yi(1) − yi(0) |X, Ti = 1

]
+ (1 − p)E

[
yi(1) − yi(0) |X, Ti = 0

]

The requirement for the empirical evaluation of this parameter is more demanding than

for the ATT, as non-treated individuals are now included as well. In the example given in

Table 3.1, this amounts to having access not only to the missing numbers for black lines

where Ti = 1, but also to the missing numbers in grey lines with Ti = 0. On top of the

observed behaviour of non-treated individuals, one also needs to find a counterfactual

for the outcome of non-treated individuals had they been treated.

3.3 Identification Based on Observational Data

The formal definition of the treatment effects of interest now allows us to state more

precisely the identification assumption that observational data must fulfil depending on

the target parameter.

3.3.1 The Cross-section Estimator

The cross-section estimator compares the mean outcomes of treated and untreated indi-

viduals within a single period of time. The outcomes in each group are y(1) |X, T = 1

for those who received the treatment (corresponding to the available observations in

column yi(1) in Table 3.1) and y(0) |X, T = 0 for those who did not (corresponding to

available observations in column yi(0) in Table 3.1).The cross-section estimator seeks

to measure the effect of the treatment based on:

�̂Cross =
1

n

n∑

i=1

yi(1) −
1

n

n∑

i=1

yi(0)

This expression makes clear that the estimator uses the outcome in the control group as a

counterfactual to the outcome of the treated group, i.e. the estimator measures a relevant

parameter only if y(0) |X, T = 0 is an accurate measure of what the treated individual’s

9 We omit in this presentation the possible dependency of this probability on the covariates Pr[T = 1|X]

as it is irrelevant for our discussion. This probability is also sometimes called the propensity score – the

likelihood of being treated.
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outcome would have been without the treatment. Formally, what the estimator delivers

depends on the data-generating process according to:

E(�̂Cross|X) = E[yi(1)| X, Ti = 1] − E[yi(0)| X, Ti = 0]

= E[yi(1)| X, Ti = 1] + E
[

yi(0)| X, Ti = 1] − E[yi(0)| X, Ti = 1
]

− E[yi(0)| X, Ti = 0]

= E[yi(0)| X, Ti = 1] − E[yi(0)| X, Ti = 0]

+ E[yi(1)| X, Ti = 1] − E[yi(0)| X, Ti = 1]︸ ︷︷ ︸
�ATT

The cross-section estimator thus contains the ATT – the average treatment effect on

those individuals actually treated. But it contains more, as

BS = E[yi(0)| X, Ti =1]−E[yi(0)| X, Ti = 0] = E[εi(0)| X, Ti = 1]−E[εi(0)| X, Ti = 0]

also contributes to the value taken by the comparison. This quantity measures the dif-

ference in outcome that would occur without the treatment between the two groups

of individuals. If this term is non-zero, it implies that people belonging to the control

group (∀i s.t. Ti = 0) and those in the treatment group (∀i s.t. Ti = 1) are characterised

by different mechanisms producing the outcome – the data-generating process is not

the same in both sub-samples. For this reason, the control group does not provide an

accurate counterfactual to the treatment group outcome. As compared to the ATT, the

cross-section estimator is biased with a magnitude measured by BBBS. Since this is a mea-

sure of the difference in outcome between the two groups of individuals depending on

whether they will benefit from the treatment or not, this is a called a selection effect. Any

such selection induces a bias in the estimation of the ATT based on the cross-section

estimator.

It is worth noting that this selection effect amounts to a violation of the identification

assumption because BS = E[εi(0)| X, Ti = 1] − E[εi(0)| X, Ti = 0] �= 0 implies that

unobserved heterogeneity is correlated with the treatment: its distribution is different

in the sub-population of individuals who will subsequently receive the treatment, and

those who do not. This is typically induced by endogenous selection in the treatment,

due, for instance, to the fact that programmes are targeted on people whose need for a

‘treatment’ is higher – resulting in lower unobserved heterogeneity as compared to those

who will not receive the treatment. Focus 3.3 shows how the very same issue can arise

from spontaneous choices to be treated on the part of economic agents – because people

who expect the most from being treated will opt in if offered the choice.

3.3.2 Identifying Assumptions of the Cross-section Estimator

A joint product of the above result is that identification of the ATT based on cross-

section comparisons will be unbiased if the data-generating process is built in such a

way that there is no selection:

E[yi(0)| X, Ti = 1] = E[yi(0)| X, Ti = 0] ⇒ E[�̂Cross|X] = �ATT
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Focus 3.3
Incentives and performance: the confounding effect of self-selection

The fi gure below illustrates the choice of a worker (individual A), whose preferences are

defi ned over eff ort (the inverse of leisure, on the x-axis) and income (y-axis). There is a trade-

off  between the two, as income can only be raised by increased eff ort, reducing the amount of

leisure. Utility thus increases towards the north-west.

The graph illustrates the eff ect of switching to higher power incentives. The two straight

lines are two diff erent budget constraints induced by diff erent compensation schemes. The

fi rst one, CB, only weakly correlates income to eff ort (reduced leisure), while the second one,

CB′ , is a pure piece-rate scheme off ering higher power incentives. Switching between the two

moves individual A’s optimal choice (the tangency between A’s indiff erence curves and each

budget constraint) towards higher levels of eff ort – what empirical analysis of the performance

eff ect of payment schemes seeks to quantify.

But more insights can be drawn from the fi gure. When moving from CB to CB′ , individual A

falls to a lower level of utility, as A0 is dominated by A1. This means A will not work under

a piece-rate compensation scheme if he can choose the budget constraint – if, for instance,

several fi rms off er the same kind of occupation but opt for diff erent managerial policies, in

such a way that the two budget constraints are available on the labour market. The picture

is diff erent for individual B, whose preferences are such that moving from CB ′ to CB would

lead to a lower level of utility. Individual B would thus prefer to stay on B 0, hence working

in a fi rm off ering a piece-rate scheme. The main diff erence between A and B is the shape of

their preferences: in the trade-off  between income and leisure, B puts more weight on income

relative to eff ort than A does. This may be because B experiences a lower cost of eff ort, or

is more effi cient such that a given sacrifi ce of leisure leads to higher performance. The main

consequence of this heterogeneity in preferences is that it is very unlikely to observe A, and

very likely to observe B, in piece-rate fi rms. This has two consequences for empirical analysis.

First, simple comparison in performance between piece-rate fi rms and others does not identify
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any treatment effect: it mixes treatment effects and selection – the difference in performance

between individuals due to their heterogeneous preferences. Second, the individual responses

of A and B to higher power incentives will systematically differ, and this is related to whether

or not they are actually observed in a piece-rate situation. The ATE is thus different from the

ATT.

In other words, identification of the ATT by the cross-section estimator requires the

affectation to the treatment to be independent of the baseline, without treatment, out-

come y(0). As such, this condition is the identifying assumption of the ATT based on

the cross-section estimator. The ATT is the parameter of interest if one seeks to measure

the change in outcome experienced by people targeted by the treatment. As discussed

above, this might be different from the effect obtained by giving the treatment to an

individual randomly drawn from the population – or by generalising the treatment to

everyone – an effect that is measured by the ATE.

The above expression is enough to show that the cross-section estimator, even under

the identifying assumption of no selection on y(0), is a biased estimator of the ATE – just

because it measures the ATT and will thus miss the ATE as soon as the two differ. The

bias can be written more explicitly using the expression for the unconditional outcomes:

E[yi(1)| X] = pE[yi(1)| X, Ti = 1] + (1 − p)E[yi(1)| X, Ti = 0]

so that:

E[yi(1)| X, Ti = 1] = E[yi(1)| X] + (1 − p) [E[yi(1)| X, Ti = 1] − E[yi(1)| X, Ti = 0]

The same manipulations applied to

E[yi(0)| X] = pE[yi(0)| X, Ti = 1] + (1 − p)E[yi(0)| X, Ti = 0]

lead to a similar expression for E[yi(0)| X, Ti = 0]. The cross-section estimator is then

related to the ATE according to:

E(�̂Cross|X) = E[yi(1)| X, Ti = 1] − E[yi(0)| X, Ti = 0]

= E[yi(1)| X] + (1 − p)
[
E[yi(1)| X, Ti = 1] − E[yi(1)| X, Ti = 0]

]

− E[yi(0)| X] + p[E[yi(0)| X, Ti = 1] − E[yi(0)| X, Ti = 0]]

E(�̂Cross|X) = E[yi(1)| X] − E[yi(0)| X]︸ ︷︷ ︸
�ATE

+BH

where

BH = (1 − p)
[
E

[
yi(1)| X, Ti = 1

]
− E[yi(1)| X, Ti = 0]

]

+ p [E[yi(0)| X, Ti = 1] − E[yi(0)| X, Ti = 0]]

Last, simple rearrangement of the expression leads to:
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BH =E[yi(0)| X, Ti = 1] − E[yi(0)| X, Ti = 0]︸ ︷︷ ︸
BS

− (1 − p)[E[yi(1) − yi(0)| X, Ti = 1] − E[yi(1) − yi(0)| X, Ti = 0]]

Even if selection on the baseline outcome is not endogenous, in such a way that BS = 0,

the cross-section estimator will deliver a biased measure of the average treatment effect

if the second term is different from 0. The magnitude of the bias depends on the rel-

ative size of the potential treatment effects in the two groups, i.e. on the extent of the

heterogeneity in the treatment effect: the higher the difference in outcomes for treated

individuals as compared to the difference for those in the control group, the higher the

bias (and the higher the difference between the ATT and the ATE). The only context

in which the estimator identifies the ATE is when not only the baseline outcome y(0),

but also the outcome resulting from the treatment y(1), are distributed independently of

the affectation to the treatment – but in this case, the ATE and the ATT do not differ,

because the treatment effect is homogeneous.

To illustrate selection bias and heterogeneity in the treatment effect, consider a CV-

writing and job interview workshop offered at a university to foster students’ success

in finding a job. Students are free to choose whether or not to participate. All partic-

ipants belong to the treatment group and consider that observations are also available

for a random sample of non-participants from the university. A measurement strategy

could be to follow both groups for a year following the programme in order to record

their success in finding employment. However, the problem is that the individuals who

choose to participate in the workshop in the first place may be more motivated about

getting a job than those who do not. They are more likely to be hard-working students

who obtain better results than the non-participants. Therefore using the treatment effect

of participating in the workshop to measure how quickly students find a job may be

spurious, because those students who participated would have, in any event, found a job

faster than those who chose not to participate, even in absence of the workshop. The

choice of participating or not is the selection effect based on individual student charac-

teristics, making the two sub-samples difficult to compare (also see Illustration 3.4). In

addition to the selection bias there is also the fact that once they have participated, the

participants may benefit more from the workshop than the non-participants would have

had they participated, because the more motivated participants are more knowledgeable

and involved and thus draw a greater benefit from it. This represents the heterogeneity

of the treatment effect.

3.4 Inference Based on Controlled Experiments

The main difference between experimental and naturally occurring data is that experi-

ments allow us to decide on the data-generating process. First, the variation of interest is

implemented on purpose in line with the research question. This is an important differ-

ence from natural experiments, for which any estimation of the treatment effect requires

observations i, such that Ti = 1, to be available. Controlled experiments, by contrast,

allow us to generate any variation T of interest. Second, the participation decision is

part of the experimental design. Identifying assumptions that have been developed in
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Illustration 3.4

Incentives and performance: selection and incentive effects

The 44% increase in performance observed in the Safelite experiment (Illustration 3.2) mixes

incentive effects, and selection effects associated with self-selection of workers in the firm

based on their preferences after the switch to a piece-rate scheme. The table below (from

Table 4 in Lazear, 2000, p. 1355) displays the differences in turnover between the hourly

wage regime and the piece-rate regime (performance pay plan, PPP), organised according to

the relative performance (decile) of workers.

Hourly regime PPP regime

Difference

between PPP and

hourly separation

rates

Decile Separation

rate

No. of

obs.

St. error Separation

rate

No. of

obs.

St. error Difference St. error

Lowest

0 0.041 1,641 0.005 0.039 1,285 0.005 −0.002 0.007

1 0.043 1,465 0.005 0.038 1,491 0.005 −0.006 0.007

2 0.042 1,358 0.005 0.037 1,625 0.005 −0.005 0.007

3 0.039 1,245 0.005 0.037 1,691 0.005 −0.002 0.007

4 0.037 1,282 0.005 0.034 1,693 0.004 −0.003 0.007

5 0.038 1,279 0.005 0.04 1,792 0.005 0.002 0.007

6 0.025 1,223 0.004 0.03 1,777 0.004 0.005 0.006

7 0.029 1,135 0.005 0.03 1,879 0.004 0.001 0.006

8 0.03 880 0.006 0.022 2,169 0.003 −0.008 0.007

9 0.033 2,437 0.004 0.027 339 0.009 −0.007 0.009

Highest

Overall 0.033 13,945 0.002 0.036 15,741 0.002 0.003 0.002

The simple overall effect of the change in payment regime goes from 0.033 to 0.036, but the

difference is not statistically significant. The magnitude of the turnover thus remains the same.

Selection, however, refers to a differential productivity of workers who leave and enter the firm

due to this process. It is possible to look at this concern by focusing on those workers who

work in the firm both after and before the change. On this specific sub-sample, the estimated

effect is a 22% change in productivity: selection and incentive effects thus account for half the

observed aggregate change in performance.

econometrics to better analyse naturally occurring phenomena thus serve as a guide

for experimental practices that help identify the treatment effect of interest from the

observed behaviour generated by the experiment. From the above discussion, two main

devices appear to facilitate identification: one is to break correlations between unob-

served components of the outcome and the change in the explanatory variable of interest;

the other is to measure and thus eliminate the effect of confounding factors. Both are

central to understanding how experimental methods improve the accuracy of empirical

identification.
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Focus 3.4

Two additional difference estimators and their identifying assumptions

The cross-section estimator uses the current behaviour of untreated individuals as a counter-

factual for the treated individuals without the treatment. There exist two other very popular

difference estimators, relying on alternative counterfactual assumptions.

The before–after estimator is based on longitudinal data – i.e. it applies when repeated

observations from the same individuals are available before (at time t = t) and after (at time

t = t) the treatment occurs. Basically, such an estimator compares the difference in the average

outcome for a group of individuals before the treatment and after the treatment:

�̂BA =
1

n

n∑

i=1

yi,t(1) −
1

n

n∑

i=1

yi,t(1)

This estimator thus uses the past outcome of the treated group as a counterfactual to the

outcome of the group being treated at the time. Based on the data-generating process, the

identification achieved by the estimator is

E(�̂BA|X) = E[ yi(1)| X,Ti = 1, t = t] − E[ yi(0)| X,Ti = 1, t = t]

= �ATT + E[εi(1)| X,Ti = 1, t = t] − E[εi(1)| X,Ti = 1, t = t]

The second term is the variation in unobserved heterogeneity in the group of treated individ-

uals, from before (εεε(1)t=t) to after (εεε(1)t=t) the treatment. By construction, any permanent

(typically, individual-specific) heterogeneity is eliminated. But any difference occurring over

time will not be eliminated, and biases the estimation of the treatment effect – because the

treatment variable is then correlated with time-varying unobserved heterogeneity. The iden-

tifying assumption of the BA estimator is thus that there is no unobserved change over time

inducing a variation in the outcome beyond the treatment itself. Otherwise, the bias comes

from the fact that the estimator attributes any change over time in the outcome to the causal

effect of the treatment.

The difference-in-difference estimator relies on both cross-sectional and longitudinal

data, and estimates the treatment effect for a given group of individuals as:

�̂DD =

⎛
⎝1

n

n∑

i=1

yi,t(1) −
1

n

n∑

i=1

yi,t(0)

⎞
⎠ −

⎛
⎝1

n

n∑

i=1

yi,t(1) −
1

n

n∑

i=1

yi,t(0)

⎞
⎠

It amounts to using the past difference between treated and untreated individuals as a coun-

terfactual of their current difference. The aim of this double difference is to eliminate

confounding issues related to problems of both timing (as in the BA estimator) and selection

(as in the cross-section estimator):

E(�̂DD|X) = �ATT + Bs
t
− Bs

t

As a result, the identifying assumption of the difference-in-difference estimator is also known

as a ‘parallel trend assumption’: the unobserved difference between individuals from the con-

trol and treatment groups should remain unchanged or, put otherwise, the change in outcome

in the control group must replicate the change that would have occurred for treated individuals,

without the treatment.
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3.4.1 Identification through Randomisation

The above discussion of both the OLS estimator and the econometrics of treat-

ment effects points to one crucial condition for identification: the exogeneity of the

explanatory variables, i.e. that there is no correlation between the unobserved com-

ponent of the outcome and the variables of interest. The most natural way to avoid

correlation is randomisation. It is quite straightforward to see in the identification

condition of the OLS estimator, derived in Section 3.1.3:

E(εi|X) = 0, ∀i ⇒ E(θ̂OLS|X) = θ

Identification is achieved if the distribution of the error is not correlated with the values

taken by the X. In the extreme case, this would obviously be obtained if one can decide

on a purely random basis the value of the explanatory variable for each and every indi-

vidual. If, for any i, the value taken by xi1, xi2, . . . , xim results from a random draw then

it is mechanically the case that this value is independent of the unobserved component

of any outcome variable. Think, for instance, of the measurement of gender-specific

behaviour in groups (of which Illustration 3.5 provides an example). The aim of such a

study is to measure the causal effect of the gender composition of a group on male and

female members. The challenge faced when trying to measure such an effect on obser-

vational data is the endogeneity of the composition variable: people may decide whether

or not to belong to different groups according to their gender composition based on their

specific ability to accommodate such circumstances. This induces a correlation between

the composition variable and some unobserved component of the outcome of interest.

While gender obviously cannot be randomly chosen (even in an experiment!), the group

composition faced by male and female subjects can easily be randomised. This achieves

identification of the causal effect of interest.

This same principle applies as well to the estimation of treatment effects in the policy

evaluation framework. As shown above, selection bias and heterogeneity of the treat-

ment effect arise when individuals can freely choose their treatment groups, i.e. if people

sort themselves into treatment groups according to their characteristics and preferences.

The way to counteract this phenomenon is again randomisation, applied to the treatment

participation groups. This amounts to choosing randomly whether individuals belong to

the control or to the treatment group. Under this rule (often called random assignment to

the treatment), the value of the treatment variable is decided by a coin toss. By construc-

tion, this implements the identifying assumption of the cross-section estimator, i.e. the

average non-participant in the programme – E[yi(0)|X, Ti = 0] – obtains the same non-

treatment outcome as the average participant in the programme – E[yi(0)| X, Ti = 1]).

Put otherwise:

E[εi(0)| X, Ti = 1] = E[εi(0)| X, Ti = 0]

A simple comparison in outcomes between treated and untreated individuals (based on

the cross-section estimator) is thus enough to measure the ATT (see Illustration 3.6

for a simple application in the field). But randomisation in fact does more: because

participation in the treatment is not at all based on unobserved heterogeneity, it is also

the case that
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Illustration 3.5

Gender differences in competitiveness: experimental evidence from exogenously

chosen composition of groups

Gender differences in labour market outcomes are well documented facts in most countries.

In order to better understand the behavioural reasons behind such differences, Gneezy et

al. (2003) experimentally investigate whether competition induces gender-specific behaviour.

More specifically, the experiment considers tournaments in which the gender composition of

the team is either all females or males, or mixed with exactly half males and half females. The

task in the experiment is to solve mazes. The baseline provides a control on possible perfor-

mance differences between gender, by having the task paid according to a piece rate. A fourth

treatment aims to provide a control on the sole effect of the uncertainty about compensation

faced in tournaments due to the need to anticipate other members’ performance. In this treat-

ment, compensation is individual but uncertain – one individual is randomly chosen to be paid

according to the piece rate. The figure below (from Figure 3, p. 1062) displays the main results

obtained in the experimental treatments.

For each treatment in abscissa, the figure displays the performance of males and females as

well as the gender gap. The gender differences are insignificant in both the piece-rate and the

random pay scheme. Both males and females positively react to competition, since both kinds

of tournament elicit higher performance. But group composition has a strong effect on the

gender gap: females do much worse when competing with males rather than females, while

males do slightly better.
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E[εi(1)| X, Ti = 1] = E[εi(1)| X, Ti = 0]

Randomisation also eliminates any heterogeneity in the treatment effect, in such a way

that there is no difference between the ATT and the ATE. Random assignment allows us

to measure the expected effect of the treatment on any individual randomly drawn from

the population.
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Illustration 3.6

Piece rate: a field experiment

Shearer (2004) reports on a field experiment aimed to measure the impact on productivity of

piece-rate payment mechanisms. The experiment is implemented in the tree-planting industry

in British Columbia (Canada). The industry has a number of characteristics that facilitate the

study of interest: daily compensation in the tree-planting industry varies regularly according

to the properties of the land area where the work occurs. This makes the sudden change in

compensation (from the usual hourly wage to a piece rate) more natural for workers. Produc-

tivity is also easy to measure and can be simply computed as the number of trees planted

during a given period of time. In order to run the experiment, three areas of varying levels of

difficulty were selected, and each is randomly subdivided into two parts. The two parts define

compensation regions: one has a fixed wage (FW) announced and paid, while the other part

has a piece-rate payment (PR). Nine workers were randomly selected for 120 workings days:

each of them is reallocated each day to a land area and a compensation region, in such a way

that 60 daily observations are available in each compensation region. The table below (from

Table 3, p. 518) provides the descriptive statistics from the experiment for each planter.

Planter Observations Total PR FW Difference

1 16 1127.50 1275.00 980.00 295.00

2 12 1098.33 1220.00 976.67 243.33

3 12 1226.67 1430.00 1023.33 406.67

4 16 992.50 1000.00 985.00 15.00

5 12 1163.33 1266.67 1060.00 206.67

6 4 1330.00 1470.00 1190.00 280.00

7 16 1121.25 1165.00 1077.50 87.50

8 16 1157.50 1255.00 1060.00 195.00

9 16 1252.50 1420.00 1085.00 335.00

Thanks to the random allocation to groups, simple comparisons provide an estimate of the

average treatment effect. It amounts to a 20% increase in productivity induced by the change

in incentive.

It is important to be precise on the definition of the population – and generalise our

understanding of the ATT/ATE. The above relations make it clear that identification is

specific to the experimental population (from which individuals from both groups are

drawn). The estimation is an ATE in the sense that the experiment measures the aver-

age expected change for any individual randomly drawn from this population. But it

does not mean it is the effect of the treatment on any human being among those who

do not participate in the experiment: if such people are likely to react differently to

the treatment, then the experiment obviously fails to identify what the treatment effect

would be in this specific population. Whether or not such a difference challenges the

lessons drawn from experiments depends on the definition of the population on which

inference is made. This is a matter of intensive debate in the literature, further dis-

cussed in Chapter 8. But in terms of the definitions above, this has nothing to do

with a biased estimation of the effect of interest; it is rather a matter of a heteroge-

neous treatment effect – the experimental ATE is in fact specific to the experimental
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subject pool. The effect is accurately measured in the experiment, but it might not gen-

eralise to other populations because the treatment effect is specific to the experimental

population.

3.4.2 Identification through Control Variables

One distinguishing feature of experiments discussed in the previous chapter is their abil-

ity to widen the set of available measures – improving the set of research questions that

can be addressed based on experimental data. This also plays an important role in the

identification properties of experiments, as it widens the set of control variables that

can be used to enhance identification. In econometrics, control variables are individ-

ual specific information that are accounted for to improve identification, rather than

because their effect actually belongs to the research question. Despite this strong differ-

ence in nature, concretely speaking they are nothing but additional explanatory variables

– typically, age, income, occupation, etc. A typical example of control variables is their

use in discontinuity designs. Consider a policy that applies according to a threshold –

e.g. additional benefits offered to people whose income is below a target – in a such

a way that people who benefit from the policy are selected as regards to the outcome

variable. The distance to the threshold is a control variable achieving identification:

conditional on being in a close neighbourhood around the threshold, the treatment sta-

tus can be assumed to be exogenous, i.e. people around the threshold can be assumed

to fall below or above for purely random reasons (see Black, 1999, for an application

to the measurement of parents’ willingness to pay for the quality of schools, based on

discontinuities at district borders).

Note that in all previous discussions, the explanatory variables X enter the identifying

assumptions in two different ways. They enter directly in the conditioning, reflecting

the fact that their effect cannot be identified unless they are exogenous – uncorre-

lated with the unobserved components of the outcome. The consequences in terms

of identification are the ones discussed above: randomising participation in treatments

based on individual specific characteristics is enough to achieve identification.

But individual specific variables also enter indirectly the identifying assumption,

through the unobserved component itself. Remember that the noise component of the

model, εεε, is residual in nature: it stands for the part of the outcome data-generating

process that is not accounted for by the measurable part involving X. In the OLS spec-

ification, this has been noticed in Section 3.1.3 from a simple rearrangement of the

linear equation leading to εεε = y − Xθ . By construction, any component leading to

y for which an empirical measure is available is thus eliminated from εεε as soon as it

is included in X. This opens an additional strategy to improve identification. Adding

measures to the model will reduce the noise, hence undermining the scope of possible

confounding factors in the error term. It is worth insisting again on the fact that such

control variables and additional measures do not improve identification just because

they reduce the noise. Noise itself is a matter of statistical inference, not of identifi-

cation. The circumstances in which they improve identification are when unmeasured

dimensions that are correlated with the observables of interest become measured. For

instance, the case study below (Section 3.4.4) discusses the potentially confounding
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effect of risk attitudes in the evaluation of alternative compensation schemes. In a study

on observational data, such an individual specific characteristic is likely to be unmeasur-

able and belong to the error εεε of a model estimating the determinants of performance at

work. The experimental context, by contrast, allows us to collect data on this dimension

(using specific elicitation methods which are the topic of the case study presented in

Section 7.4). Once a measure of individual risk attitudes is available, its effect on the

outcome no longer belongs to the unobserved component of performance. The model

involves an error ε̃ identical to ε̃ but excluding risk attitude. If risk attitudes are actu-

ally confounding in the study, identification is thus recovered thanks to their explicit

measure.

3.4.3 Enhanced Inference Thanks to Control

A last possibility to achieve identification is to rule out confounding variations in the

noise, by blocking their value to a specified level. The idea is fairly simple: consider

a situation with an unobserved component, z, generating endogeneity – hence belong-

ing to the noise εεε. In the policy evaluation framework, this means that variations in

the value of z induce variations in the value of both y and T in such a way that

E[ z ∈ εi(0)| X, Ti = 1] �= E[ z ∈ εi(0)| X, Ti = 0], because εεε(0) contains different val-

ues of z when looking at different values of T . Randomisation solves this issue by letting

z vary from one individual to another, zi �= zj, i �= j; but by breaking the correlation

between unknown causes of the outcome and the target variation T , in such a way

that E[εi(0)| X, Ti = 1] = E[εi(0)| X, Ti = 0]. Identification is thus achieved thanks to

statistical balance in unobserved components between groups: the values of z are dif-

ferent between different individuals, but randomisation makes it more and more likely

as the sample size becomes bigger that the distribution of these values in subgroups

defined by T is the same. Consider instead a design holding z constant at a given value:

zi = z, ∀i = 1, . . . , N. Because the value of z now is the same for all individuals,

there is no longer any difference in the unobserved component of y it induces between

the two sub-samples; since there is no variation in z, there is no confounding varia-

tion in the data. The big difference is that the sample now is exactly balanced, i.e.

{ z| X, T = 1} = { z| X, T = 0} = z.

This property implies that using control as an identification strategy comes with

an improvement in statistical inference as compared to randomisation. Remember that

statistical inference refers to the uncertainty about the value of the target parameter mea-

sured thanks to an estimate, due to variations in the sample. This is again summarised

in the noise component of the econometric model: the target parameter is imperfectly

measured based on the observed relationship between the outcome variable and the

exogenous regressors because this observed relationship is only an imperfect signal of

the true relationship going through the unknown parameters. In the context of the linear

model of Section 3.1.3, y = Xθ + εεε implies that θ̂OLS = (X′X)−1X′(Xθ + εεε) = θ +

(X′X)−1X′εεε: the more noisy the data, the larger the estimator variations around the true

parameter. In this example, this results in a precision equal to V(θ̂OLS|X) = σ 2(X′X)−1,

which is increasing in the variance of the noise. The more unobserved dimensions are

set to a unique, constant, value, the lower this quantity will be.
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For the sake of the illustration, consider again two different components embedded

in the noise of this linear model: an unobserved factor z, and everything that remains

beyond its effect on y, denoted ε̃̃ε̃ε. Writing this noise as εεε = θzz + ε̃̃ε̃ε – i.e. θz measures

the extent of the variations in y that come from variations in z. Now consider two data-

generating processes. In the first, z freely varies from one observation to another. The

noise of this empirical model is such that σ 2
ε = θ2

z V(z) + σ 2
ε̃

. Now consider the other

extreme, in which z is still unobserved (typically because it is impossible to build a

measure of it) but is held constant to a given value, zi = z, ∀i. In this sample, V(z) = 0

so that σ 2
ε0

= σ 2
ε̃

< σ 2
ε : the estimates drawn from such a sample will be closer to

the target parameter, hence more informative, because data are less noisy. As a result,

the sample quantities delivered by experimental data are more informative the more

unobservable dimensions are held constant between observations – which also improves

identification as soon as they are possibly confounding.

3.4.4 Case Study: The Incentive Effects of Tournaments: Evidence from the Laboratory

The main limitation of the use of piece-rate incentive schemes is that they are not

renegotiation-proof when effort is non-verifiable – i.e. when the level of performance

cannot be proven based on evidence (Malcomson, 1984). In this kind of situation,

the employer always has an incentive to renegotiate the work contract ex post, once

the performance of the employee becomes known, so as to avoid paying high wages.

Tournaments are an alternative compensation scheme that are robust to this issue.

The principle of a tournament (introduced by Lazear and Rosen, 1981) is to rely

on relative, rather than absolute, performance. To formalise the comparison between

tournaments and piece rate, assume all workers i in a firm have a production function

yi = g(ℓi) + εi, where effort ℓi is exerted at cost ce(ℓi).
10 If employees work under a

piece-rate payment mechanism, denoted w, then the level of incentives is w.yi so that

performance is chosen according to c′
e(ℓ∗

i ) = w.g′(ℓ∗
i ). Since the wage is an increas-

ing function of effort at work, the optimal level of effort increases in the piece rate. A

tournament relies on different ‘prizes’, for instance A and a such that A > a, that are dis-

tributed according to the rank of the employee in the distribution of efforts. For instance,

worker i gets A if yi > yj, j �= i but will get a otherwise. In the context of the simple pro-

duction function above, the tournament provides incentives according to the probability

of winning the biggest prize π (ℓi, ℓj) = Pr[εi − εj > g(ℓj) − g(ℓi)]. Based on this prob-

ability, it is possible to replicate the optimal effort induced by any piece rate through an

appropriate choice of the prizes offered in the tournament. The main difference between

the two is that the total amount of the wage bill is determined ex ante: there must be a

winner who gets the highest prize. The tournament is thus renegotiation-proof.

Whether or not tournaments empirically achieve the same level of incentive as piece

rate, however, remains an open question. Bull et al. (1987) provide evidence aimed at

comparing the incentive effects of these two incentive schemes. In the tournament treat-

ment, subjects are told that they have been assigned a partner in the room, whose identity

10 g(ℓi) is assumed to be increasing, continuous and concave in ℓi, and ce(ℓi) is assumed to be increasing,

continuous and convex in ℓi.
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remains hidden. Subjects are then asked to pick a number between 0 and 100, called the

‘decision number’, standing for the effort variable. The cost function is set equal to ℓ2
i /b,

where ℓi is the subject’s chosen number and b a parameter. Rather than asking subjects

to do their own computations, subjects are provided with a ‘cost list’ with the individual

cost of each number between 0 and 100. Last, subjects are asked to draw a random inte-

ger between −h and +h (0 included) from a box of bingo balls, standing for the noise

between performance and effort. The amount of production is set equal to the sum of

the two numbers. The experimenter computes each subject’s production, and announces

and rewards the subject pair with the highest number. The parameter values are chosen

in such a way that the equilibrium effort (ℓ∗) in this baseline tournament is equal to 37

for each individual. In a benchmark experiment, the compensation scheme is set to a

piece rate tuned in such a way that it replicates the same equilibrium level of effort.

The upper part of Figure 3.3 compares the level of effort observed in the experiment

depending on the compensation scheme. On each graph, the straight line represents the

(b) Tournament, ℓ∗=37(a) Piece rate
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Figure 3.3 Incentive effects of tournaments

Note. Observed effort over time in the piece-rate treatment (a), the tournament treatment with

equilibrium effort equal to 37 (b) and the tournament treatment with equilibrium effort equal to

74 (c). d shows the variance in effort observed over time in all treatments.

Source: Bull et al. (1987, p. 17–20, Figures 1–3, 11).
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equilibrium effort and the joint dots are the mean decision numbers chosen in each

round. First, the results clearly show that tournament and piece rate achieve the same

convergence rate towards the equilibrium effort. In order to double check this coinci-

dence between the theoretical prediction and empirical behaviour, a third experiment

is implemented in which the tournament is designed to induce an equilibrium effort

equal to 74. Observed behaviour further confirms the incentive effect of the tournament

scheme: as shown in Figure 3.3.c, the level of effort chosen by the subjects matches the

new equilibrium value. In both instances, the rate of convergence, however, seems lower

in the tournament treatments as compared to the piece rate. Figure 3.3.d aims to investi-

gate the reasons why it happens: rank-order tournaments exhibit a very high variance in

effort between subjects, while piece-rate schemes have a rather small variance.

Such a variance in effort may reflect the need to account for other workers’ behaviour:

the decision in a tournament is a function both of a worker’s preferences and skills

and of their co-workers’ behaviour – heterogenity in skills and preferences is likely to

make coordination at work harder, as shown by Meidinger et al. (2003). This might

affect not only the incentive properties of tournaments, as shown above, but also their

selection effects. Eriksson et al. (2009) aim to study the determinants of self-selection

into tournament schemes. The experiment involves two treatments, a benchmark and a

choice design. The benchmark experiment allocates subjects randomly to either piece-

rate payment or a tournament, while the second treatment allows subjects to choose ex

ante how they want to be paid in each period.

Figure 3.4 focuses on the dispersion in effort observed under a tournament compensa-

tion scheme: the larger the grey areas, the further are quartiles of the effort distribution

from its median. Self-selection is the only difference between the left-hand-side figure

and the right-hand-side one: subjects are randomly assigned to the tournament in the

benchmark, while they freely opt for it in the choice treatment. Self-selection drastically

decreases the variance of effort: half the variance disappears when people self-select
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Figure 3.4 Dispersion of efforts in tournaments

Note. Observed effort in the tournament in each treatment, according to the time period in the

experiment (in abscissa). The straight line shows the median effort, the box provides the quartiles

and the horizontal lines show the adjacent values.

Source: Eriksson et al. (2009, p. 538, Figure 2).
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themselves according to their preferences and abilities. Based on additional control

variables, the authors also observe that those who select the tournament have particular

preferences: it is chosen half the time, by the least risk-averse subjects. Illustration 3.5

shows that the same kind of phenomenon applies according to gender.

3.5 From the Laboratory to the Field: An Overview of Controlled Experiments
in Economics

The ability to better achieve identification through control over the data-generating pro-

cess is common to all (actual) experimental methods. This feature is shared, in particular,

by the two types of controlled experiment that are often referred to in the literature:

laboratory and field experiments.

3.5.1 The Many Forms of Field Experiment

A field experiment is commonly defined as an experiment that produces observations

from (i) a random allocation of individuals to the treatment, but (ii) in a ‘natural’ or

‘real’ environment (field experiments are also sometimes called ‘random controlled tri-

als’ in the literature). The latter underscores the main difference between a laboratory

experiment, in which social phenomena are observed in highly artificial circumstances –

implementing ‘the sterility of the laboratory experimental environment’ according

to Harrison and List (2004, p. 1009) – and a field experiment, in which individual

behaviour is observed in its naturally occurring environment. The field is thus charac-

terised by the fact that subjects take decisions in the same social context as they would

under normal circumstances; the information they receive makes use of this social con-

text which the experiment reproduces; they are familiar with the rules they are dealing

with, etc.; in a nutshell: all features ensure that the environment remains as ‘realistic’ as

possible (see Illustration 3.6).

While the difference in nature between the two kinds of environment is easy to

understand, there are many dimensions that make observed decisions close or far from

their naturally occurring circumstances. In an attempt to summarise the relevant dimen-

sions, Harrison and List (2004) characterise experiments according to the following six

items:

1. the nature of the subject pool,

2. the nature of the information that the subjects bring to the task,

3. the nature of the commodity,

4. the nature of the task or trading rules applied,

5. the nature of the stakes,

6. the nature of the environment that the subject operates in.

Even if one considers that there is a choice between only two options for each of these

dimensions, one closer to the naturally occurring environment and the other closer to the
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sterility of the laboratory, this classification defines 6 ∗ 6 = 36 different kinds of exper-

iment. Except for the two extreme cases, where all six dimensions are set to either their

naturally occurring or their artificial value, none of the remaining 34 ‘types’ of exper-

iment are clearly a field or a laboratory experiment. More recently, Gerber and Green

(2012, p. 11) define the ‘fieldness’ of an experiment based on the following criteria:

1. authenticity of treatments,

2. identity of participants,

3. the nature of the context,

4. the outcome measures.

This narrower classification still leads to at least 16 different kinds of experiment, with

varying relationships between the phenomenon of interest and the naturally occurring

environment. This points to the fact that ‘field’ or ‘laboratory’ is hardly a label one

puts on experimental evidence to indicate the main focus of the research. In terms of the

content of the experimental design, whether an experiment should be classified as a field

or laboratory experiment rather defines a continuum with an increasingly close match

between the social situation of interest and the experimental task.

3.5.2 A Guide to Choosing between Lab and Field Experiments

Experiments along the continuum nonetheless feature varying properties in terms of

identification and the overall quality of the measures they generate. According to a

well-known econ joke, if you ask three economists what they think about an eco-

nomic issue, you’ll get five different opinions. Having a look at experimental papers

published in the academic literature, the same reaction seems to apply to the ques-

tion whether laboratory experiments are superior to field experiments or vice versa.

Having recognised that neither laboratory experiments nor field experiments are self-

contained methodological categories, it is easier to understand what the answer is: it

depends entirely on the research question, hence the social situation and the treatment

effect one wants to identify. Along the continuum between field and laboratory exper-

iments, each choice amounts to a trade-off, whose main dimensions are described

below.

The first set of trade-offs involves practical aspects and the ease of implementation.

Its cost is the most obvious issue. The closer an experiment is to a pure field experiment,

the more expensive it is likely to get. Experiments occurring in the field are extremely

costly in terms of the resources they consume. They take a lot of planning, time and

money before they can be implemented. The first step is to get the agreement of the

real-world institution where the experiment will take place, and interact on-site about

the details of the experiment. It is also necessary to recruit local research assistants in

order to find participants and conduct the experiment. The experiment may run over a

very long period of time before the researcher is able to observe and gather data on

its outcomes. In addition, the researcher has to ensure that the research design respects

local customs and habits. All this can make the implementation of a field experiment a

very lengthy and costly process.
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Second, the choice between the field and the laboratory implies a number of trade-

offs in terms of inference. The closer an experiment is to the field, the closer it is to

the actual social-life phenomenon one seeks to study. This amounts to better external

validity, a methodological challenge to be discussed in Chapter 8. At the same time,

the aim to be closer to the field also implies a larger set of ‘dimensions’ at stake in

the experiment, many of which cannot be controlled or randomised. This reduces the

ability to provide ‘pure’ causal evidence, the laboratory becoming a natural place to

test-bed causal measures before moving to situations closer to their naturally occurring

environment.11

A third concern is related to the ability to actually randomise the treatment variable in

order to produce the observations needed to estimate the causal effects. The discussion

in Section 3.4.1 clearly shows that what one needs to achieve identification are two

random samples of individuals: one in which all individuals receive the treatment, one

in which nobody does. Two phenomena may typically challenge this requirement in

field experiments. The first is attrition, i.e. when, for any reason, some subjects drop out

of the experiment. If such drop out is purely random, then the consequences are only

a matter of sample size as some observations will no longer be available. But a more

serious concern arises if dropouts are specific to individuals who carry some specific

heterogeneity related to the outcome variable. The dropout is then endogenous, and

identification is challenged despite the random assignment. It will typically be the case

if people who give up do so because they realise they cannot expect much improvement

in their situation thanks to the programme. The second kind of phenomenon restricting

the scope of random assignment in the field is non-compliance. This refers to the fact

that subjects do not behave according to the rules or framework set out in the experiment.

This may very well happen, as a field experiment takes place in reality, and the ability

to ‘constrain’ people to follow rules is naturally limited. In terms of identification, it

means that some people in the treatment group actually did not receive the treatment, or

received a treatment that is different from the one studied. In both cases, the experiment

does not deliver the observations on outcomes required to identify the effect of interest

(see Deaton, 2010; Greenberg and Barnow, 2014, for more detailed discussions of such

limitations to the identification achieved by field experiments).

A last concern is that treatments in the field may have spillover effects: because the

change occurs in real life, changes in the situation of treated individuals may have an

impact on untreated ones. Crépon et al. (2013), for instance, show that the enhanced

probability to be employed of job seekers who benefit from a job placement programme

actually comes at the expense of a lower probability of employment among similar job

seekers who did not benefit from the programme. A simple comparison in outcomes

between the two groups provides a highly biased measure of the treatment, as this effect

magnifies the difference in outcomes between individuals from the two groups.

All the limitations listed above, and the many others discussed in the literature, can be

addressed by either carefully designed experiments or additional experimental evidence

11 Al-Ubaydli and List (2015) advocate an opposite perspective on this point, based on the ability of field

experiments to bypass participant self-selection.
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from the field. The main lesson from this comparison is actually not to name the one

experimental environment that is best suited to serve research questions. The com-

parison rather shows the strengths and weaknesses of the two methods. To sum up:

laboratory experiments provide strong control over the data-generating process, hence

making the measure of causal effects easier and more convincing – how it is achieved is

the purpose of Chapter 5. This generally comes at the price of a highly artificial decision

environment, leading to strong doubts on their ability to describe what happens in real

life. Field experiments, by contrast, provide evidence in their naturally occurring con-

text by running experiments inside ‘real life’ itself. In this much more realistic context,

however, many aspects of the environment are beyond the control of the experimenter,

resulting in weaker inference properties.

Summary

Inference based on empirical observations involves two different issues: statistical infer-

ence, the relationships between sample observations and their population equivalent, and

identification, the ability to measure a well-defined parameter based on available obser-

vations. Econometrics adjusts data analysis methods to the specific data and inference

issues under study thanks to the elicitation of the data-generating process. Whether the

assumed data-generating process in the econometric model matches the properties of the

true data-generating process of the data is the key driving force to the ability to achieve

proper inference. As regards identification issues, this consistency leads to identifying

assumptions – properties of the data-generating process that condition the identifica-

tion properties of different kinds of estimator. When the econometric model is linear,

for instance, the identifying assumption is that the noise in the outcome variable is not

correlated with the covariates.

The policy evaluation literature applies these ideas to the identification of a causal

effect induced by a spontaneous change in the economy, called natural experiments.

This literature provides a discussion of the true parameters of interest in such situations,

and identifying assumptions that can be used to estimate them. The average treatment

effect (ATE) is the expected causal effect of the change on a randomly drawn individual

from the population. The average treatment on the treated (ATT) is the expected causal

effect of the change on those individuals who actually face it. In estimating any of these

parameters, the challenge is to find counterfactual observations – i.e. observations of

what would have happened in situations that are not observed in the data.

Actual experiments differ from other empirical approaches in that they provide con-

trol over the data-generating process itself, by means of the design of the experiment

and the choice of experimental treatments. Identifying assumptions in econometrics, and

more precisely in the policy evaluation literature, thus provide a framework on how to

design experiments to achieve proper identification and statistical inference. This leads

to several strategies: randomisation, which allows us to break any possible correlation

between what is unobserved (the noise) and the covariates of interest; measurement,

which develops tools to include in the list of unobservable covariates that could be
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confounding; and control, which holds constant any source of variation that is possibly

confounding. This ability to choose the data-generating process is shared by all kinds

of actual experiments along the continuum defined by the many dimensions in which

experiments can be close or far from the field situation under study. The choice over

the intensity of the ‘fieldness’ of an experiment implies a trade-off that balances (i) the

improved identification offered by the strength of control over the environment in labo-

ratory experiments and (ii) the generalisability of the results when they are observed in

their naturally occurring environment.
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The Need for Experimental Methods
in Economic Science

Asdiscussed in Chapter 3, experiments answera specific need in empirical economics

thanksto their ability to provide proper identification of the true parameters embed-

ded in the data-generating process. The nature of such parameters,i.e. the reason why

researchersareinterestedin their empirical identification, still remains an open question.

This question is important for a critical assessment of the quality of identification: as

shown in Chapter 3, empirical identification always hinges on (untestable) assumptions

about the true data-generating process. The set of assumptions achieving identifica-

tion, on whichthe interpretation of the results relies, heavily depends on the aim of

the empirical study.

In order to answersuch questions, this chapterfirst reviews the commonly recognised

objectives of laboratory experiments — testing theory, searching for facts, or inform-

ing public policies. Each of the three involves a particular kind of dialogue between

economic experiments on the one hand and economic theory and/orreality, on the other

hand. To understand how laboratory experiments can serve these goals, it is necessary to

clarify the relationships between experiments, theory and reality. These definitions will

makeclear that each aim comes with specific identification assumptions conditioning

the usefulness of the estimated parameters. When testing theory, the first-order ques-

tion is whetheror not the observed behaviouris induced by the decision environment

replicating the theoretical model — an issue defined as internal validity in Chapter 3.

Whensearching for facts, by contrast, the main question is whether or not the same

behaviouris to be observed outside the laboratory environment — a matter of external

validity; while, finally, informing public policies requires both theoretical insights and

well-documented facts, so that both internal and external validity are required. This

discussion will thus provide the main backgroundof the topic of the remaining parts:

how the design of an experimentis adjusted to achieve its goal, and what experiments

accordingly tell us aboutthe specific research question stimulating their implementation.

WhatLaboratory Experiments Aim For

Asall social sciences, economics aims to provide an understanding of social reality —

how people behave and why? Can wecollectively do better than what we currently do?

Andif yes, how? Unlike most social sciences, though, the main tool used in economic

scienceto that endis to build formal theoretical models. Because it is both empirical and
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highly controlled, laboratory experiments stand in the middle of this continuum between

theory and reality. According to the seminal classification of Roth (1988), the three

purposes that laboratory experiments are able to serve actually puts a bridge between

theory and reality in both possible directions. First, experiments can be used for testing

theory, i.e. assessing the empirical relevance of theoretical models. Second, they can be

used to search for facts, in which case they use reality to inform theory – experiments

then being used as ‘exhibits’ rather than ‘tests’ (Sugden, 2005). Last, building on both

kinds of contribution, experiments can be used for whispering in the ears of princes, i.e.

informing the decisions of policy-makers.

Testing theory

Theoretical models rely on behavioural assumptions to provide an understanding of

the decisions of agents, and the resulting outcomes, induced by a given environment.

They do so by restricting the economically relevant situation to a few key features.

The Vickrey auction experiment reviewed in Chapter 2 is an example of such an exer-

cise. Vickrey auction models reduce the auction environment to marginal values for the

good, prices and monetary benefits. Based on the assumptions of utility maximisation

and the axiomatic underlying the game-theoretic analysis of strategic interactions, it

yields clear-cut predictions of both bidding behaviour and the properties of the resulting

allocation.

As illustrated in Chapter 2, experiments exhibit two major advantages in that regard:

the ability to both build an empirical situation that mimics the theoretical model, and

measure or observe usually non-observable, or hardly measurable, dimensions (such as

individual preferences towards the good, or individual prices posted). Experiments also

get theory closer to reality by providing measures of individual preferences. As will

be illustrated in later applications (see e.g. Sections 5.6, 6.6 and 7.4), such procedures

rely on decision environments in which observed behaviour provides a direct measure

of individual intrinsic attitudes. It not only allows us to assess whether the theoretical

account of preferences actually makes empirical sense (e.g. to what extent is behaviour

in risky environments actually described by the assumptions of expected utility), but

also to assess whether predicted behaviour based on such preferences coincides with

what theory predicts. In all these instances, experiments help in assessing the empirical

relevance of theoretical results in terms of accuracy, precision and extent.

Searching for facts

On the other side of the continuum, there are many economic situations that are worth

understanding, but which are too complicated and/or too specific to be covered by the-

ory. Auctions again provide a useful illustration of such experiments: as the allocation

mechanism, or the amount of information available to bidders, becomes more specific,

auction models quickly become intractable. This does not mean, of course, that such

specific auction markets are of no economic interest (even when there is no obvious

reason why a market works as it does, the mere fact that it is used in practice is some-

times enough to make it worth investigating). In such cases, experiments can be used

as a substitute for theoretical analysis. They are used to ‘search for facts’ in the sense
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that they allow us to mimic well-defined situations and measure behaviour as well as

the outcomes they generate. In the absence of prior expectations based on theory, such

observations provide empirical knowledge about how the environment works, and what

are its most sensitive features. To serve this purpose, such evidence must be robust and

conclusive enough to actually serve as a stylised fact. In that regard, the replicability

of experimental data, and the possibility to assess the robustness of the results through

variations of the environment, are important advantages of experiments.

Whispering in the ears of princes

This third purpose of experiments amounts to improving the decision-making process

by informing regulators or decision-makers (Roth’s ‘princes’) of the likely outcomes

of new or existing public policies (see, e.g. Holt et al., 2006; Normann and Ricciuti,

2009, for surveys). The general principle is to use experiments to test-bed decision

environments such as market mechanisms, policy changes or new organisational struc-

tures. Observed outcomes in the experiment provide insights into the likely changes

in behaviour and economic outcomes raised by innovative decision environments. As

such, this aim builds on the ability of experiments to both test theory and search for

facts – depending on whether theoretical insights are available on the policy-relevant

question under investigation. The specific contribution of experiments to policy design

comes from the ability to answer the specific needs of decision-makers. Because all the

parameters of the decision environment can be freely set in the laboratory, an experiment

makes it possible to fully replicate the specific features of a given policy. Illustration 4.1

describes an early example of such a contribution. This ability to fine-tune the experi-

mental environment according to the requirement of the policy-relevant questions stands

in sharp contrast with observational data. As compared to field experiments, laboratory

experiments are cheap and easily implementable. An additional contribution of the use

of experiments to policy design is their use in an instructive function. Laboratory exper-

iments make economic reasoning more intuitive and appealing for non-academics. Even

without producing any new knowledge, they can be used to make a convincing case of

what the consequences will be of an intended change in the environment.

4.2 Experiments, Theory and Reality: How Experiments Achieve Their Goals

The above-mentioned aims of laboratory experiments (testing theory, searching for facts

and whispering in the ears of princes) all refer to some form of interaction between

experiments on the one hand, and on the other hand either theory (first aim) or reality

(second aim) or both (third aim). As a result, assessing the ability of experiments to

achieve either of these goals requires an in-depth understanding of how ‘reality’ and

‘theory’ are defined from the point of view of economics.1 We will discuss each of

these separate elements in turn, before moving to a definition of laboratory experiments.

This will allow us to clarify the interactions of experiments with theory and reality and

characterise the main challenges they raise.

1 This section relies on the framework and discussion presented in Samuelson (2005).
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Illustration 4.1

Whispering in the ears of antitrust authorities

The 1979 Ethyl Corporation v. Federal Trade Commission case is one of the earliest exam-

ples of the use of experiments for policy design purpose (both the case and the experimental

evidence are reported in Grether and Plott, 1984). This case opposed the FTC to producers of

gasoline complements that were in widespread use at the time. The main concern of the FTC

was about the possible anti-competitive effect of the contract practices used on this market.

Three kinds of provision attracted attention:

• advanced notice and price announcement – any increase in price was announced at least 30

days in advance by producers;

• most-favoured-nation – producers commit to offer all buyers any discount subsequently

offered to another;

• delivered pricing – producers post a list of price for a given compound, regardless of the

location of the producer.

The FTC feared that such practices on a market with only a few producers might be used by

firms as a means to maintain prices above their competitive level. But such an opinion was not

grounded on either a rigorous theoretical analysis or any empirical knowledge. The FTC thus

asked Grether and Plott to experimentally investigate this question. Based on experimental

treatments replicating each of the above practices as well as various combinations of them, the

authors show that they actually push prices upwards – as compared to the same competitive

market without such provisions. This evidence subsequently stimulated a more formal analysis

of the anti-competitive effects of such practices, showing that the theoretical evidence matches

with the empirical strategies observed in the experiment (Holt and Scheffman, 1987). For the

sake of completeness, it is worth noting that this experimental evidence was eventually not

used as a piece of evidence during the judicial proceedings. However, it played a crucial role

to reinforce the FTC in its will to open a case.

These definitions merit a few notations. We will denote X the inputs and Y the out-

comes or consequences of a given situation (or environment). Both are defined as sets

according to their K-dimensional combination:

XK
=

K∏

k=1

Xi and YK
=

K∏

k=1

Yi

The set XK thus denotes the combination of all the K inputs considered, and similarly

YK is the set of all the K dimensions that are consequences of the situation.

4.2.1 What Is Reality?

Let’s start with the most controversial definition: what is the real world? From the

point of view of a scientist, who tries to understand why what happens happens,

the answer is simpler than one would expect. In short, reality is no more than a

set of causal relationships. This means that reality can be reduced to three ele-

ments: the causes X , the consequences Y and a ‘function’, that transforms causes into
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consequences. What makes reality a complex object, even in this overly simplified rep-

resentation, is that inputs and outputs are infinity-dimensional. Therefore, reality is the

function:2

F : X∞
→ Y∞

In words, the function F transforms inputs into outputs. Each particular combination of

the content of X∞, that defines a situation of interest, causes a particular output from

the set of Y∞. Social science can to a large extent be reduced to an attempt to under-

stand this function F: how causes and consequences are related together in real life.

As straightforward as it may seem, this definition makes an important methodological

point: it is impossible to understand reality as it is. The input and output dimensions

are infinite, because reality features an endless set of potentially relevant properties and

characteristics. As an example, the relationship between employers and their employees

involves paying a wage and exerting an effort, but also a relationship between two per-

sons, the consequences for their family life, relations with co-workers, etc. As a result,

neither theoretical nor experimental research could ever describe all aspects of reality.

In a sense, the complexity of the real world is the very reason why science is needed: if

the world were easy to understand as it is, no one would need the help of a science to

elicit what happens and why it happened.

4.2.2 What Is a Model?

Because reality is such a complex object, science in general and economics in partic-

ular proceed by breaking down the real world into only a handful of its components.

Therefore a model is, and must be, a simplified account of a real situation. As such,

a built-in property of a model is to be false, i.e. to be unable to fully account for all

subtle drivers and consequences of a situation. This determines the main ingredient of a

model.

Like the function F that maps causes to consequences in the real world, a model

seeks to capture a particular causal relationship between a number of inputs X (causes)

and outputs Y (consequences). Reducing the real-world situation of interest, so as to

make it intelligible, also amounts to restricting the dimensions of the sets. Rather than

all causes and all possible consequences pertaining to the situation, a model will only

focus on a few causes and a few of their consequences. This choice is part of the model:

focusing, for instance, on performance and compensation schemes, as economics does,

is obviously a restrictive view of work situations. But as stressed above, the challenge

is not to understand reality as it is, but rather to enlighten some aspects of it and reduce

the main mechanisms to a few channels – so that it becomes possible to think about the

situation from inside the model. Illustration 4.2, for instance, shows how the behaviour

of complex human organisation like firms, acting in many different ways on markets, are

2 The aim of this discussion is definitely not to provide a full account of the epistemology of (social) sciences.

We ignore, in particular, the important and interesting question whether one can actually separate reality

and the tools and prism used to analyse it.
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Illustration 4.2

Models as a reduction of reality: firms’ behaviour in collusion theory

Collusion theory in industrial organisation differs from standard competition in that firms’

decisions are assumed to be strategic – typically because only a few of them compete on

the same market. We denote N the number of firms. The market is reduced to only a few

dimensions, essentially prices and quantities, and the firms’ behaviour is described by a profit

function. The main focus here is to understand the difference in behaviour induced by the

horizon of the decision-making. When competing in a one-shot set-up, each firm has an incen-

tive to beat its competitor’s decisions – resulting in the competitive, zero-profit, equilibrium if

firms compete in price and the Cournot–Nash equilibrium if they compete on quantities. Let

y be the quantities produced (and sold) and q the market price, π (q, y) denotes the profit firms

receive at the one-shot equilibrium, and πM(q, y) the one-shot monopoly profit. The impor-

tant distinguishing feature of collusion is that firms are playing an indefinitely repeated game.

Denoting δ the firms’ exponential discount factor, collusion yields the following profit for each

firm:
∞∑

t=0

πM(q, y)

N
δt

=
1

1 − δ

πM(q, y)

N

Firms make this share of the monopoly profits as long as all firms collude and cooperate. As

soon as one firm deviates from collusion, and cheats, all the other firms can use a (so-called)

trigger punishment strategy, i.e. revert to the Cournot–Nash equilibrium from then on. The

profit of a deviating firm is the sum of the one-shot monopoly profit πM(q, y) the firm gets

when it deviates, and of the discounted sum of the future Nash–Cournot profit π (q, y):

πM(q, y) +
δ

1 − δ

π (q, y)

N

Therefore, collusion is individually rational and can be sustained at equilibrium if no firm has

an incentive to deviate:

1

1 − δ

πM(q, y)

N
≥ πM(q, y) +

δ

1 − δ

π (q, y)

N

In the case of a Bertrand game in which firms compete in prices, the individual one-shot profit

π (q, y) is equal to 0. Therefore the collusion is sustainable if:

δ ≥ 1 −
1

N

In the context of this model, collusion is a stable equilibrium (hence arising on actual markets)

when the threat of punishment (through trigger strategies in this case) is large and credible

enough. This is more likely to happen when the number of firms N is low and when δ is high,

i.e. when firms only slightly discount the future. For future reference, it is worth noting that

the model would write exactly the same if δ stood for the probability that the market survives

for one more period at the end of each market period.

reduced to a few of its components in the analysis of collusive behaviour in industrial

organisation.

This first step in theoretical analysis leads us to identify a few influential and/or inter-

esting dimensions of the situation. On top of this finite number of inputs, denoted nX ,
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and a finite number nY of outputs, a model is again a causal relationship between the

two:3

f : X nX → YnY

The function f maps the set of inputs to the respective outcomes. Its aim is to be a ‘sub-

function’ of F, hence to reflect part of the causal mechanisms at stake. The challenge in

developing a model and assessing its quality is to solve the trade-off raised by the need

to simplify reality. In the choice of nX and nY , the model must get rid of all unnecessary

details, which would otherwise cloud the focus on the relationship between the causes

and consequences of interest. But the theory cannot be too simplistic either, as it would

then lose its explicative power, and its ability to be generalised. To sum up, without

giving any definitive answer, a model must be as abstract as possible, and as detailed as

necessary, in order to provide an accurate and closely focused account of reality.

4.2.3 What Is an Experiment?

An experiment is a controlled situation in which many features of the environment are

implemented by design, so as to observe the resulting individual decisions and inter-

actions. The aim of such observation is to infer the causal relationships between the

environment and individual(s) behaviour. This can be easily embodied in the current

notations: an experiment is nothing but a choice of a set of n inputs, defining the envi-

ronment, associated with m measures of their consequences with the goal of inferring

their causal relationship, F.

But, at the same time, an experiment deals with the decisions of human beings in a

particular real-world environment – the laboratory. Thus, the measured outcomes in the

laboratory are not only the results of the chosen controls, but also the consequence of

an endless range of influences: from personal characteristics to anything the person may

have experienced prior to coming to the laboratory, or any specificities of what hap-

pens inside and outside the laboratory during the experiment. An experiment is thus an

almost-real situation, with many dimensions beyond the n inputs that are controlled and

chosen actually influencing what happens. The situation built in the laboratory is thus

defined by x∞ ∈ X∞, such that x∞ = xn ∪ x∞−n, i.e. an element X∞ that matches

xn (only) on the first n dimensions but leaves the others uncontrolled. Typical examples

of such uncontrolled inputs are the level of noise inside and outside the laboratory, the

mood of participants when arriving at the experiment, etc. These are all factors that pos-

sibly influence the behavioural response to the experimental situation, without belonging

to the components that were chosen when designing it. In this setting, the outcome from

an experiment is a set of measures m such that:

Fm(x∞)

This outcome must be thought of as a subset of the infinite-dimensional function F

describing all the consequences of an experiment. Again, while individual decisions

and payoffs will typically belong to the set of m measures that will be observed, there

3 In order to better fit models that allow for heterogeneity, the definition can be easily generalised, as in

Samuelson (2005), to a distribution over consequences rather than a deterministic relationship.
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will always remain many consequences of the inputs of the situation that will not be

observed: how the mood of participants changed during the experiment, what is the

induced change in the room temperature, etc.

Two important lessons can be drawn from this definition. First, a critical aspect of

the design of an experiment lies in the choice of the finite number of inputs, n, and

the finite number of measures, m, on which the design is based – above and beyond the

actual implementation of the input controls and the accurate observation of the outcomes

of interest. The choice depends entirely on the relationship and phenomenon that the

experiment seeks to measure – i.e. the research question. The case study presented in

Section 4.3 illustrates this idea.

Second, this definition makes it clear that experiments share common features with

both theoretical models and real economic life, as defined above. Like a model, an exper-

iment focuses on a subset of relevant dimensions in order to study the phenomenon of

interest. The aim is not to provide observations on all consequences induced by all rele-

vant factors at stake in the empirical situation of reference, but rather to pin down a few

driving forces and a few consequences, on which empirical evidence is needed. But at

the same time, like in reality, what happens in the laboratory is made of an infinity of

causes and consequences which no one is able to control or observe. Even with clev-

erly designed experiments, there will always be an infinity of inputs that will remain

uncontrolled.

Because experiments have many of the same features as both theoretical models and

reality, they can be seen as a way to establish a bilateral link between theory and the

social reality this theory aims to understand (Croson and Gächter, 2010). This is the

main reason why experiments are a particularly effective way of enriching and deepen-

ing, but also complementing or challenging, our understanding of the real world through

economic theory and economic analysis. This is, in particular, the reason why they are

well suited to achieve either of the goals described earlier. How they achieve it is derived

from their attractive empirical properties in terms of identification, as described in length

in Chapter 3. On this basis, experiments allow us to observe the consequences of the

inputs involved – i.e. Fm(x∞) – or the variation induced by different sets of inputs –

through the comparison of Fm(x∞) and Fm(x′∞), i.e. the differences in outcomes under

two sets of inputs x and x′, which define treatment effects. Depending on the aim of

the experiment, the inputs and measures will be defined according to either an underly-

ing theory to be tested or a real-world phenomenon one seeks to understand better. The

condition under which the outcome will be informative, however, strongly depends on

the specific goal of the experiment. The remainder of the chapter considers each of them

in turn.

4.3 Case Study : Deepening Understanding through Additional Controls and
Measures: The Dictator Game

This section aims to illustrate how the choice of inputs and measures is part of the design

of an experiment, and how it allows us to incrementally enrich the conclusions drawn



96 Why? The Need for Experiments in Economics

from experimental observations. To that end, we focus on one of the most replicated

game in the experimental economics literature: the dictator game (DG).

In this simple game, first introduced by Forsythe et al. (1994),4 two players interact

in a strictly anonymous setting. Both players do not know who their partner is, nor do

they find out at any point. Within a pair of two subjects, one person is assigned to be

the ‘dictator’, and the other one the ‘receiver’. The dictator receives an endowment, ei,

and makes an offer ei ≥ ℓi ≥ 0 to the receiver. As a result, the dictator gets ei − ℓi

and the receiver gets the offer ℓi. There is no constraint on the split decided by the

dictator. The open question in this environment is: how much money is the dictator

willing to give to the receiver? Economic theory is of little help to answer the question

– a point the experiment has been designed to make, as a matter of fact. Since there is

neither any monetary benefit, nor any constraint on the amount given to the receiver, the

dictator should ‘theoretically’ keep as much money as possible for him-/herself. This

is obviously not what happens when people are asked to make such decisions in an

experiment implementing the game.

Figure 4.1 provides an overview of the patterns of behaviour generally observed in

this kind of experiment, based on a meta-analysis including more than 300 published

studies all replicating the dictator game (Engel, 2011). While it comes as no surprise

that some people do donate something to their receiver, the extent to which they do so

is puzzling. On average, the dictators give 28.35% to a complete stranger whom they

will never meet. It is not only the magnitude of the donation that sparked a great deal of

interest in the literature, but also the strong heterogeneity in donation behaviour. One-

third of people behave in accordance with a purely self-interested model of decision-

making, one-sixth offer an equal split and one out of 20 even offers everything. These

patterns are generally seen as robust stylised facts, thanks to the many replications of

the same game with slight variations in the design (in different countries, with varying

amounts of money to be split, etc.). In order to better understand the reason why such

behaviour occurs, what are the motivations behind it and what fosters or undermines it,

additional inputs and outputs have been considered in the literature.

4.3.1 Additional Inputs 1 – Social Distance

A first hypothesis is that donation behaviour is related to social relationships. In order

to investigate this point, Hoffman et al. (1996) conducted six different versions of the

dictator game, varying the dictator’s degree of distance, isolation and anonymity – while

maintaining the same decision-making structure.

The first treatment (denoted FHSS-R) is an exact replication of the Forsythe et al.

(1994) experiment, the amount of the dictator’s initial endowment being ei = $10.

FHSS-V is a replication of the same game but uses neutral wording for what the

game is about. The researchers did not use the ‘sharing’ language of the first ver-

sion and instead asked the subject to ‘divide’ the preliminary allocation. Two further

treatments strengthen the social distance involved in the dictator’s decision-making by

4 The Forsythe et al. (1994) game is itself a simplified version of a binary decision game introduced by

Kahneman et al. (1986).
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Figure 4.1 Meta-analysis results: the dictator game

Note. Empirical distribution of the population of dictators observed in more than 300 published

studies, according to the share of the initial endowment given by the dictator to the receiver.

Source: Engel (2011, p. 589, Figure 2).

implementing a double-blind donation. The procedures are drastically altered to achieve

such isolation. First, the experiment is run by a subject, randomly selected to act as a

monitor and paid to do so. But the most important changes are related to the elicitation

of the donation decision. In an experiment involving 14 subjects playing as dictators,

each subject draws an envelope from an urn. It is common knowledge that 12 of the

envelopes in this urn contain 10 one dollar bills and 10 blank slips of paper, while the

remaining two are filled with 20 blank slips of paper. Dictators then go to a separate

room, keep as many bills as they wish and replace the bills with blank slips of paper.

They seal the envelope, bring it back in a box, and leave the room. Once all dictators

have made their decisions, the 14 subjects playing as receivers come one by one to

draw an envelope from the box, show the content to the monitor and leave the room

with it.

Thanks to the two blank envelopes, the procedures in this DB1 treatment imply that

neither the experimenter nor the receiver is able to identify the individual decision of the

dictators. Since it is common knowledge, it is expected to increase the social isolation

of the dictators’ donation decision. A second variation, DB2, weakens the anonymity

achieved in this treatment by removing the paid monitor and the two blank envelopes

– it is still the case that individual decisions are unobserved by both the receiver and

the experimenter, but the distribution of decisions is now perfectly observed. Two addi-

tional treatments are meant to disentangle the components of social isolation induced

by these treatments, by implementing a single-blind donation decision. In SB1, the

experimenter opens up the envelope when the dictator brings it back, hence breaking
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Figure 4.2 The effect of social distance on dictators’ decisions

Note. Cumulative distribution of the amount donated by dictators in each treatment.

Source: Hoffman et al. (1996, p. 654, Figure 1).

the anonymity with the experimenter. Last, in SB2, the envelope into which the dic-

tator puts the amount is replaced by a transaction form, which the dictator has to fill

out and bring to the experimenter in an envelope so as to be paid the corresponding

amount of money. The experimenter opens the envelope and notes the subject’s name

and decision and gives the dictator the sum ei − ℓi they decided to keep. This procedure

decreases the relative social distance, as the subject enters into a real transaction with the

experimenter.

Figure 4.2 shows the cumulative distribution of donated amounts observed in the

experiment (in this experiment, donations are never higher than five dollars, the equal

split): the steeper the line, the less dictators keep for themselves. As compared to the

baseline, the change in wording implemented in FHSS-V slightly decreases donations.

But the most impressive change in behaviour comes with increased social isolation:

there is a perfect first-order stochastic dominance relation in the distributions of dicta-

tors’ behaviour according to the blindness of the donation decisions. In DB1, where the

level of anonymity is the highest by design, only 40% of the dictators leave positive

amounts to the receivers.

This experiment thus provides strong evidence that donation behaviour in dictator

games is sensitive to social image. This is done by adding to the list an input, social

distance, that wasn’t part of the design of the baseline game. It is worth noting that such

contrasting evidence between the two series of experiments does not dismiss any of the

two results: surprisingly high donations in the baseline are an empirical fact, just as is

the reduced donation when social distance is high. The actual, and more interesting,
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question is rather which one of the two kinds of behaviour is more relevant, and what

each one of them tells us about the underlying reason behind the other.5

4.3.2 Additional Inputs 2: Earned money

Cherry et al. (2002) focus on another dimension of the original game: the property rights

over the amount of money to be split by the dictator. In the baseline experiment, the

endowment is ‘windfall’ as it comes to the participants from out of nowhere. Cherry et

al. (2002) analyse the effect of changing windfall money into earned money.

This is achieved through a preliminary task, in which subjects earn their endowment

according to a performance-based payoff. The issue with such an experimental treat-

ment is that the size of the amount of money to be split can change donation behaviour

by itself, beyond any effect of the property rights over this amount. To address this issue,

the earned-money treatment relies on a tournament based on the performance at the pre-

liminary task: those subjects whose performance is above the median are given $40,

while other subjects are given $10. This treatment thus elicits observation on donation

behaviour with earned money over two possible values of the endowment: high (EH

treatment), or low (EL treatment). In order to measure the effect of windfall money on

donation behaviour, two versions of the baseline treatment with windfall money are

considered: BH (the windfall endowment is set equal to $40) and BL (the windfall

endowment is set equal to $10). A third treatment couples the earned-money prelimi-

nary task and the double-blind treatment introduced by Hoffman et al. (1996), generating

again observations of donations under two possible values of the endowment: DBH and

DBL.

Observed donation behaviours in each treatment are organised in Figure 4.3 accord-

ing to the amount of the endowment. In the baseline, cumulative distributions of

donation behaviours again display strong heterogeneity, with 20% of the sample giv-

ing nothing to the receiver and the remaining offering up to half the endowment.

Earned money drastically affects donation behaviour in both dimensions. The number

of subjects who decide to give nothing in this case is three times higher, and positive

amounts not only appear more often but also are of lower magnitude. When coupled

with double blind procedures, earned money almost perfectly ‘hardnoses’ the dicta-

tor – only a few subjects still send small, but positive, amounts to receivers. These

results unambiguously confirm that the legitimacy of the endowment plays a crucial

role in shaping other-regarding behaviour. Again, the aim here is not to disqualify

any of the two kinds of observation, but rather to characterise the dimensions of the

environment that most crucially determine behaviour. Thanks to additional inputs in

the experimental design, this experiment underlines the influence of the nature of the

endowment.

5 In the words of Hoffman et al. (1996, p. 654), ‘this experimental exercise is fundamental to understanding

the received evidence for other-regarding behaviour that is frequently manifest in bargaining game exper-

iments, but in which strategic reciprocity and utilitarian elements are confounded in interpreting observed

outcomes’.
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Figure 4.3 Offers in the dictator game with earned money

Note. Cumulative distributions of donation behaviours out of $10 in (a) or $40 in (b), endowment

in the baseline (BH, BL), earned-money (EH, EL) and double-blind (DBH, DBL) treatments.

Source: Cherry et al. (2002, p. 1220, Figures 1 and 2).

4.3.3 Additional Inputs 3: Property rights on Player Positions

Beyond the nature of the endowment, another source of concern in the game is the strong

asymmetry of positions between the dictator and the receiver: one subject is given full

power over the outcome, while another is given no choice but to passively experience

the decisions made by another person. Hoffman et al. (1994) study this dimension of

the decision-making problem by introducing an additional treatment with earned enti-

tlement to behave as a dictator. In a preliminary stage, all subjects are asked to answer a

quiz on current events. After the quiz, subjects are ranked and then split into two groups:

the top half of the subjects become dictators and the bottom half become receivers.

Lastly, a matching procedure pairs the top-ranked dictator with the best receiver, the

second-best dictator with the second-best receiver, and so forth.

Figure 4.4. shows the results of the experiment, along with those from the base-

line treatment corresponding to the double-blind dictator game with windfall money as

described in Hoffman et al. (1996; see Section 4.3.1 above). It clearly appears that the

amounts shared are considerably lower when there is an earning stage which precedes

this decision – one out of 10 subjects offers an equal split in the baseline treatment, while

only 5% of subjects offer $4 out of $10 in the earned entitlement treatment. Property

rights over the position in the game, which are ruled out in standard implementations of

the dictator games by randomly allocating subjects to roles, thus foster selfishness.

4.3.4 Additional Measures: Response Times

Incrementally widening the set of inputs that are actually controlled in the experiment

allows us to build more and more precise answers to research questions, by testing

alternative hypotheses about the driving forces of behaviour. It is somehow too often

neglected, but the exact same logic also applies to experimental outcomes. Among the

many things that arise in the laboratory, and might be affected by the inputs involved,

only a small subset is actually recorded so as to be part of the measures available. The
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Figure 4.4 Donations from dictators who earned their position

Note. Empirical distribution of the amount donated by the dictator (in abscissa, out of an initial

endowment of $10) in the control and earned-entitlement conditions.

Source: Hoffman et al. (1994, p. 365, Figure 4).

empirical answers generated by experiments can be very different depending on the

pre-defined choice of measures. A typical example is the use of physiological mea-

surement devices, such as skin conductance or eye tracking (see e.g. Sanfey, 2007,

for a survey of applications to the dictator game), or the use of neurological mea-

sures (such as an fMRI), to investigate the brain activity while decisions occur. They

all provide additional measures of the outcome from the experiment, that would always

exist, but would have remained ignored, absent their implementation. Another example

is response times.

The decision-making literature tends to relate different motives behind behaviour to

the time spent on decision-making – as discussed in Focus 4.1. This can be easily inves-

tigated in the laboratory context, by keeping track of time elapsed from the beginning

to the end of the decision task. Because it is simple and non-strategic, the dictator game

is one of the first to which such measures have been applied. The results remain rather

mixed. For example, the preliminary results obtained by Rubinstein (2006b, not reported

in the 2007 published version of the paper) suggest that egotistic decisions are taken

more slowly. On the other hand, the results obtained by Piovesan and Wengstrom (2009),

and shown in Figure 4.5
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Focus 4.1

On the use of response times to interpret observed behaviour in experiments

There is a growing interest in the correlation between economic behaviour and response times

in both economics (e.g. Rand et al., 2012; Schotter and Trevino, 2012) and experimental

psychology (Shalvi et al., 2012; Gino and Mogilner, 2014, among others). One of the psy-

chological foundations of this focus on response times is based on the System 1/System 2

hypothesis raised by Kahneman (2003) – also known as the ‘thinking-fast-and-slow’ hypoth-

esis (Kahneman, 2011). The model highlights a dichotomy between two modes of thought,

System 1 being instinctive and emotional and System 2 more deliberative and logical. The

main behavioural insight is that ‘choices made instinctively, that is, on the basis of an emo-

tional response, require less response time than choices that require the use of cognitive

reasoning’ (cited in Rubinstein, 2007, p. 1243). This pattern produces a strong correlation

between mistakes and short decision times in decision problems where the solution is unam-

biguous. This leads Rubinstein (2007) to classify behaviour based on response times according

to three types of action:

1. cognitive, for actions which involve a reasoning process;

2. instinctive, for actions which involves instinct;

3. reasonless, for actions which are likely to be the outcome of a random process with little

or no reasoning about the decision problem.

Rubinstein (2013) collected the data on response times in a large-scale set of didactic online

experiments. The evidence shows that the relationship between response time and error rates

varies across tasks. For tasks where subjects can use a simple heuristic to avoid errors, response

times are negatively correlated with error. This happens, for example, when participants have

to choose repeatedly among alternatives. On the other hand, for tasks where the answers

require a cognitive effort (coding letters, avoiding first-order stochastic dominance, assessing

likelihood), response times are positive when correlated with errors. In the former case, simple

heuristics benefit consistency. In the latter case, simple heuristics lead to mistakes. Lastly, and

perhaps more importantly, the usual deviations from the expected utility observed in decision

experiments (the Allais paradox, the three-colour Ellsberg paradox, Kahneman and Tversky’s

Asian disease problem) are not correlated with a given pattern of response times. The certainty

effect, ambiguity aversion or framing effects are all compatible with fast and slow observed

response times. For instance, Evans et al. (2015) suggest that response times might be related

to decision conflicts rather than to dual thinking. Using a meta-analysis of existing experimen-

tal evidence, Rand (2016) confirms that favouring deliberation over intuition tends to push

behaviour towards less pure cooperation, but leaves strategic cooperation unchanged.

when they enter the donation part of a binary dictator game – dictators are restricted to

choosing between two possible allocations. During this task, subjects hear the sound

of letters in headphones, and must press the corresponding letter on their keyboard but

only for some of these letters – so that they need to stay focused and cannot just rou-

tinely press the key for all letters they hear. This treatment causes ego-depletion and

lowers the ability to use deliberative decision as compared to the baseline, with no pre-

liminary task. This cognitive load is applied to several conditions, in which the level
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Source: (Piovesan and Wengstrom, 2009, p. 195, Figure 2)

of inequality implemented by the two donation choices available to dictators is varied.

The results show that lower deliberation leads to higher amounts of donations, and that

deliberation leads to much more adjustment in the level of donation to the inequality of

the allocation.

4.4 How Experiments Interact with Theory: Testing Models

Experiments share common features with both theory and reality, making it natural

to use them to test-bed the empirical performance of theoretical models. The first

challenge is to define an empirical environment that replicates the model assumptions.

The interpretation of the results is heavily conditioned by the quality of the inference

performed based on experimental data, i.e. the internal validity of the experiment.

4.4.1 Testing Theory

Theoretical models are most often way too general to be directly implemented: the actual

decision-making environment must be simple enough to be described to people with no

background in economics. The fair-wage-effort model described in Illustration 4.3 pro-

vides an example: the aim of the model is to underline the driving forces of a causal

mechanism. For this purpose, the more general assumptions are, the more convinc-

ing and relevant is the model. But at the same time, such generality makes a theory

compatible with many different specifications and concrete situations. The reason why
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Illustration 4.3

Reciprocity at work: the fair-wage-effort hypothesis

The incentive effect of compensation schemes, illustrated all through Chapter 3, only goes

through the change in consumption it offers to employees. Akerlof (1982) offers a ‘gift

exchange’ model, the aim of which is to highlight the effect of norms and social relation-

ships at work. The assumptions of the model are fairly simple. The worker’s utility depends,

as usual, negatively on the effort exerted on the job, ℓi, and positively on the wage w. But

it also depends on a norm, ℓnorm, which stands for the level of effort the worker sees as

‘normal’ given the work condition, and in particular the wage offered. The workers’ utility

function thus writes u(ℓnorm, ℓi, w). As is standard, a worker chooses the level of effort that

maximises utility. The worker’s choice of the utility-maximising level of effort is constrained

by the minimum level of effort ℓmin the firm requires – and implements through e.g. a con-

trol policy. The output of the firm depends on the work effort of all of its workers. The firm

chooses the work rule ℓmin, the wage function w(ℓ) and the number of workers it wishes to

hire in order to maximise profit. The firm’s behaviour is constrained by the worker participa-

tion constraint and takes the norm ℓnorm as given. Akerlof (1982) considers several possible

versions of labour market models based on this set of assumptions. They all illustrate the same

main result: gift exchange at work as an incentive mechanism arising in equilibrium. One

can assume, for instance, that all workers are homogeneous and exert an effort equal to the

norm; and that this effort norm is a function of the firm wage relative to a reference wage w0:

ℓnorm = −a + b(w/w0)γ , with γ < 1, a > 0, b > 0. Akerlof (1982) defines the reference

wage, w0, as the geometric mean of the outside wage and the unemployment benefits. A direct

consequence of this set of assumptions is that firms that pay a wage above the reference wage

move the effort norm up and obtain extra effort. Firms thus optimally offer wages that are

higher than w0 – and fixed wages become incentive-compatible by inducing higher effort even

if they do not directly link consumption and effort at work. This fair-wage mechanism is based

on a ‘gift-exchange’ principle – a higher wage is considered a ‘gift’ by the employee, which

reciprocates with higher levels of effort, to the benefit of the employer. Contrary to alternative

models of efficiency wages (e.g. Shapiro and Stiglitz, 1984 in particular), the level of wage

itself induces higher effort: not only will any wage cut reduce the effort of all the workers, but

any positive wage shift will increase the effort of all the workers.

experiments nonetheless are an appropriate tool for testing theories is because general

theories must also apply to simple cases they embed. In the words of Plott (1991, p. 902):

‘General theories must apply to simple special cases. The laboratory technology can be

used to create simple (but real) economies. These economies can then be used to test and

evaluate the predictive capability of the general theories when they are applied to special

cases’.6 Experiments offer a simple way to create such simple situations. By doing so,

they provide an empirical counterpart to theoretical models: they allow us to compare

the empirical distribution of the behaviour obtained with the distribution predicted by

theory; or to contrast the variation in empirical outcomes induced by an experimental

treatment to the comparative statics generated by the model.

The gift exchange game described in Illustration 4.4 offers an example of such a

process. It aims to provide an experimental implementation of the Akerlof fair-wage

6 Also see Plott (1982; 1989) for earlier insightful discussions of the use of experiments to test theories.
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Illustration 4.4

Experimental evidence on the fair-wage-effort hypothesis

Fehr et al. (1993) consider a very simple case of the Akerlof (1982) model in order to test

its main lesson: that gift-exchange motives induce positive wage–performance relationships,

so that high wages arise in equilibrium. Subjects are split into two groups: employees and

employers, who play together a two-stage game. The first stage is a contracting game played

in real time. Employers make increasing wage offers and employees either accept or reject

the offers. Once an offer has been accepted, the employee is matched to the employer so

that only unmatched subjects remain on the market. In the second stage, workers privately

choose an effort level and receive the wage agreed upon in the first stage, whatever their effort

decision. This wage is a cost for the employer, and a benefit for the employee. The payoffs are

moreover designed in such a way that higher effort reduces the workers’ payoffs and increases

the employer’s earnings. More precisely, the effort cost function c(ℓi) is a convex function

defined from ℓi ∈ [0.1; 1] to c(ℓi) ∈ [0, 18]. The payoff of worker i choosing effort ℓi and

receiving wage wj from employer j is ui = wj − c(ℓi) − a, where a (set to 26) is a fixed cost of

accepting a wage contract. On the firm side, the payoff of employer j is set to πj = (q − wj)ℓi,

where q is the unitary return to work (set to 126), and the wage cost is made proportional

to effort of worker i so as to avoid losses (which reinforces the conflict of interest between

employers and employees). If all subjects are pure payoff maximisers, the incentive structure

of the experiment gives rise to clear-cut predictions: there is no incentive for workers to choose

any level of effort higher than the minimum level, set equal to 0.1. This is further reinforced

by the structure of the markets. In all experimental sessions, there is by design an excess

supply of labour: the market always gathers more workers than employers. The ratio of excess

labour supply is 9 workers for 6 employers in 3 out of the 4 sessions, and set to 8/5 in the

fourth session. This, by itself, should push wages down by giving the whole bargaining power

to employers. The first stage formally mimics a one-sided oral auction, which is known to

converge theoretically and empirically to the competitive market price. Since the opportunity

cost of accepting an offer is equal to 26, the competitive wage in the experiment is equal to

30 (since wages are chosen by step of five by design). Anticipating that no payoff-maximising

worker would choose a level of effort higher than the minimum, this is the maximum level of

wage employers should offer. The main results observed in the experiment are presented in

the table below (from Fehr et al., 1993, p. 446, Table 2).

Wage Average observed effort level Median observed effort level

30–44 0.17 0.10

45–59 0.18 0.20

60–74 0.34 0.40

75–89 0.45 0.40

90–110 0.52 0.50

The results confirm the two main insights from the Akerlof (1982) model. First, the

behavioural assumption that workers positively react to high wages through increased effort

is confirmed – by looking at both the average and the median effort. Second, firms actually

expect such an effect: despite the strong market forces pushing wages downwards, high levels

of wages (up to almost four times the competitive level) are actually observed.
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model. The experiment is designed in a such a way that the environment complies

with the model’s main assumptions – a work relationship with conflicting interests

of the employer and the employee, competitive pressure on the choice of wage,

non-contractible effort level, non-credible promises to exert high effort in exchange for

a high level of wage due to the sequentiality of decisions. This environment is built in a

way that is intuitive and simple enough to be easy to understand, and credible for sub-

jects participating in the experiment. Observed behaviour can then be used to assess the

validity of the model’s main mechanisms and its predictions.

A testing process of this type is often seen as a simple accept-or-reject decision rule:

theory is either confirmed, or challenged, depending on whether observed behaviour

complies with the model predictions. As will be described in detail in Chapter 9, this

question in itself is far from trivial. In a nutshell, this comes from three main rea-

sons. First, no theory aims to perfectly predict behaviour, even in the simple world

that directly stems from its assumptions. Deciding what is acceptable noise, and what

observation definitely contradicts theoretical expectations, is often a difficult task. Sec-

ond, the same kinds of theory often receive very different empirical assessments. As

a simple example, double-auction theory (as studied by Smith, 1962, and described

in Section 1.2.1) is generally seen as ‘working’: the induced behaviour of subjects in

a double-auction, experiment in which both the buyers and sellers submit their bids,

yields the same results as expected by economic theory. In contrast, the Nash equilib-

rium prediction in the prisoners’ dilemma only holds to some extent in experiments (see

Section 1.3.1). In both cases, the Nash equilibrium combining rationality assumptions

and pure self-regarding preferences is the theoretical tool used to generate models’ pre-

dictions. Testing models in such contexts often helps better characterise the situations

to which theory applies and those in which it fails, rather than simply confirming or

disparaging it.

But, perhaps more importantly, testing theory also means more than just seeking to

accept or reject decisions. First, experiments can be used to disentangle competing

models. Such an exercise is often hard to implement based on observational data, as

competing models might rely on subtle assumption differences about the environment

or economic agent’s preferences. Experiments, by contrast, can be designed as simple

cases in which observed outcomes can be contrasted with testable restrictions from each

of the competing models. Second, an important role of testing theory is also to assess

the empirical content and extent of theoretical assumptions (what Schram, 2005, labels

‘stress tests of the theory’). Unrealistic assumptions abound in theoretical approaches.

They are part of the process of simplifying and reducing real-world situations to get

rid (deliberately) of part of this reality. To give just one example, atomicity on markets

(leading to the important consequence that economic agents behave as price takers) is

made of meaningless assumptions from an empirical point of view. The important and

interesting question, however, is not that much whether each and every one of these

assumptions has an actual empirical counterpart, but rather to document the kind of sit-

uations in which the actual behaviour is close enough to the behavioural insights from
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theory (price-taking behaviour in our example) for the model to actually make sense.

Section 4.4.2 below provides an example of how experiments can be used to pin down

the behavioural content of theoretical assumptions. Last, related to this point, experi-

ments can also be used to assess the robustness of theoretical models in environment

variations that are possibly not covered by the model – e.g., socio-personal characteris-

tics of agents, norms or moral values associated with the situation, etc. This serves not

only to document the scope of a model, i.e. the extent to which it accurately describes

real-world situations, but also to identify parameters or dimensions that are influential

on outcomes. When such unexpected influences have been identified in the laboratory,

it can stimulate extensions of the theory.

4.4.2 Case Study : The Empirical Content of Collusion Theory

Among the most unrealistic, yet often made, assumptions in economics is the idea of

infinitely lived agents and the resulting infinitely repeated games. This assumption may

change dramatically the predictions of a repeated game. For instance, Illustration 4.2

shows in a simple collusion model that collusion may become a stable equilibrium

outcome under this assumption. The stability of such a collusive outcome depends on

whether firms are patient enough to refrain from deviating and whether market size is

small enough to preserve high enough profits from collusion.

The result is both important and interesting, but relies on assumptions that make no

empirical sense, because no economic agent can be reasonably thought of as infinitely

lived. Still, the assumption is very useful, because it makes the model of repeated inter-

actions easy to write down and solve. From an empirical point of view, what actually

matters is not that much whether or not the assumption is ‘realistic’ but rather if it

helps to describe empirically relevant situations. To that end, the behavioural mecha-

nisms embedded in the assumptions matter more than their real-world counterpart. This

question has sparked some debate in the example of infinitely repeated games. Accord-

ing to Martin J. Osborne, for instance, infinitely repeated games ‘capture a very realistic

feature of life, namely the fact that the existence of a pre-specified finite period may cru-

cially affect people’s behaviour (consider the last few months of a presidency or the fact

that religions attempt to persuade their believers that there is life after death)’ (Osborne

and Rubinstein, 1994, p. 136; this is interestingly one of the issues on which the two

authors of the book disagree). In terms of behaviour, the main difference between

infinitely repeated games and finite horizon ones is thus whether or not current deci-

sions account for what will happen at the last stage of the game. Translated into an

empirical question, ‘infinitely repeated’ means that people do not take the last stage

into account, or at least do not take it entirely into account when they decide what their

current behaviour should be.

Unlike the formal assumption used in the theoretical model, this behavioural

consequence makes a lot of empirical sense. Based on theoretical analysis, it will lead to

drastically different outcomes – in a repeated prisoners’ dilemma like the one presented

in Section 1.3.1, Figure 1.6, for instance, it leads to non-cooperative decisions if people
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take the last stage into account in their current decision-making, to cooperative decisions

otherwise. The open question thus is, what kind of environment fosters, or undermines,

such a driving force of decision-making?

Normann and Wallace (2012) use this idea to provide an empirical test of the range

of experimental situations that replicate the assumption of infinitely repeated games.

The experiment looks at subjects’ cooperative behaviour in a repeated 2*2 prisoners’

dilemma game – the same players play together during all repetitions. Four treatments

are defined according to different termination rules. In the first treatment (the KNOWN

treatment) the fact that the game will last for 22 periods is common knowledge from

the very start. In the second treatment (UNKNOWN), there are 28 periods and this is

unknown to subjects. In the third treatment (RANDOM-LOW) there is a 1/6 probability

that the game will end after 22 periods. In the fourth treatment (RANDOM-HIGH) there

is a 5/6 probability that the game will end after 22 periods.7

Figure 4.6 shows the number of players who decide to cooperate over the first 22 peri-

ods of each treatment. For all termination rules, the initial responses as well as the time

trend during the first 12 rounds are very similar. In the KNOWN treatment, cooperation

subsequently decreases as a result of an end-game effect – current individual behaviour

becomes more and more strongly influenced by the expected outcome at the last stage

of the experiment. At the last period of the game, when it is common knowledge that

there will be no further repetition of the game, the rate of cooperation is 50% lower than

in other treatments.

Beyond this difference at the last stage of the KNOWN treatment, all four treatments

generate the same pattern of cooperative behaviour. This has two important implications.
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Figure 4.6 Cooperation in repeated games with different termination rules

Note. For each treatment, with varying termination rules, the figure reports the number of subjects

who decide to cooperate at each round of a repeated prisoners’ dilemma game.

Source: Normann and Wallace (2012, p. 713, Figure 1).

7 As explained in Illustration 4.2, the random-termination rule used in these last two treatments replicates as

closely as possible the model with infinitely lived agents.
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First, the choice of a termination rule in experiments on repeated games does not signifi-

cantly affect individual behaviour. A deterministic, but unknown, number of repetitions,

or a random termination rule – or even the first periods of play with a long enough deter-

ministic and common-knowledge termination – all induce subjects to disregard the last

stage of the game to the same extent. Second, as shown by the end-game effect observed

in the KNOWN treatment, these termination rules all induce the pattern of behaviour

expected by infinitely repeated games: higher cooperation supported by the expected

rents of cooperating in the future.

4.4.3 The Key Challenge: Internal Validity

Laboratory experiments are well suited to empirically test theoretical predictions

because they allow us to build an empirical situation that reduces the environment to

only those dimensions that are actually embedded in the model. Experiments thus pro-

vide an empirical counterfactual to theoretical models. Testing theory in this context

amounts to either comparing behavioural outcomes to theoretical predictions, or per-

forming such a comparison to assess the empirical content of simplifying theoretical

assumptions.

In both cases, the process strongly relies on the ability to relate observed behaviour to

those features of the environment that aim to replicate the model. If decision-making is

rather induced by other dimensions, then observed behaviour has nothing to say about

the model itself. In terms of the definitions stated above, this amounts to checking

whether or not the experimental outcome Fm(x∞) results from the n inputs chosen to

replicate the theoretical causal mechanism f : X nX → YnY , rather than the x∞−n inputs

at stake in the experiment despite the control. This question is known as the experiment’s

internal validity.

Think, for instance, of an experiment with two treatments, with each session of the

first treatment being scheduled early in the morning and all sessions of the other being

scheduled in the afternoon. The slots may have an effect on both the kind of subject who

shows up to the experiment and the degree of attention and focus during the session. Dif-

ferences in behaviour between treatments will in this case not only reflect the treatment

effects, but also this unwarranted variation between the two environments. In this exam-

ple, the experiment has serious flaws in terms of internal validity. The main consequence

is that the causal inference between the environment and the observed behaviour is chal-

lenged. Internal validity refers to how appropriately the causal relationship from inputs

to outputs is measured, thanks to the design of the experiment. Since experiments testing

theory aim to identify the theoretical causal mechanism, internal validity is the primary

challenge.

This definition makes clear that the internal validity is a matter of identification in

exactly the same sense as it has been defined and discussed in Chapter 3. When design-

ing an experiment, the aim is to have the subjects’ choices induced by the environment

chosen, rather than by any other uncontrolled dimensions (such as the subjects’ own

understanding or interpretation of the game). Internal validity is challenged if the exper-

imenter measures the consequences of a confounding factor rather than a proper causal
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effect, rendering the inference based on observed behaviour either invalid or meaning-

less. The reference to identification helps us understand why the issue of internal validity

is hard to tackle. Recall that the quality of identification relies on the exogeneity of the

identifying variations, and such exogeneity can never be either proven or empirically

tested. In just the same way, it is easy to define what a perfectly internally valid experi-

ment would look like: in such an experiment, all inputs beyond the ones of interest would

not interact with subject’s responses to the controlled inputs – hence being exogenous.

But it is far less easy, and in fact impossible, to definitely prove that an experiment is

internally valid. We will devote a dedicated chapter to this issue (Chapter 5), and discuss

how experiments can be designed and implemented in a way that enhances their internal

validity.

4.5 How Experiments Interact with Reality: Searching for Facts

Experiments searching for facts seek to produce empirical knowledge on situations for

which theory has little or nothing to say: either because no theory exists or because

the existing theory makes predictions that are obviously inconsistent with behaviour. In

these cases, experiments can be used to ‘establish and document stylised facts, in the

form of either observed phenomena or observed causal effects’ (Schram, 2005, p. 232).

The ability of experiments to test-bed such facts stands on the other side of the contin-

uum between theory and reality. Experiments allow us to build pseudo-real situations, of

which the set of inputs can be chosen in accordance with the main features of the situa-

tion under study. The experiment then provides an empirical understanding of the kind of

behaviour, decision and outcome induced by a given environment. Auction mechanisms,

and the kind of bidding behaviour they induce, can, for instance, quickly become highly

technical from a theoretical point of view. Once the boundaries have been reached of

the ability of theory to actually predict how bidders will behave when faced, e.g., with a

given set of rules, and under a specific information set, experiments searching for facts

can produce useful knowledge. To that end, it is enough to experimentally build the

auction situation and observe both the bidding behaviour and the market conditions it

gives rise to. Illustration 4.5 describes a typical example of a well-known experiment

searching for facts.

An important feature of experiments serving this purpose is the ability to replicate

the results. The more often a given behaviour arises in subsequent implementations of a

given experiment (possibly with slight variations), the more these observations become

actual regularities, giving rise to stylised fact. This is one reason for using meta-analysis

(see e.g. the results of the dictator game presented in Section 4.3 for an example, and

Chapter 8, Section 8.4, for a detailed discussion).

4.5.1 The Key Challenge: External Validity

Accumulated evidence from such experiments aims to produce empirically based

knowledge about the behaviour and outcomes generated by a given environment.

Internal validity is obviously a necessary condition for this empirical knowledge to be
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Illustration 4.5

Trust: evidence from the lab

The trust game has been purposefully introduced by Berg et al. (1995) to provide empirical

facts on the existence and extent of trust and trustworthiness in economic relationships. In

this experiment, each subject first receives a $10 windfall endowment. Subjects are then ran-

domly split into two groups, defining their role as either senders or receivers. Senders have to

decide to give any share (including 0) of their $10 endowment to an anonymous, and randomly

matched, receiver. The experimenter then triples any amount sent by the sender to the receiver

– i.e. the actual amount a receiver receives is three times the amount sent by the sender. Last,

receivers are asked which part of the tripled amount they want to send back to the sender.

Standard economic theory, based on self-regarding preferences, allows for neither trustwor-

thiness nor trustfulness. Applied to this situation, it thus predicts that no cooperation should

occur: the sender should keep everything, because the receiver is expected to return nothing.

But this game is built in such a way that the rent from trust is huge: the question is thus how

much of this economic value, created by trust, can be achieved by human beings despite the

incentives to behave selfishly. The answer from simple economic theory is way too extreme to

be informative. The results from the experiment, presented in the figure below (from Berg et

al., 1995, p. 130, Figure 2), confirm that a large share of this benefit is actually realised.
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The figure shows the decisions made in each of the 32 pairs of subjects, in decreasing order

of the amount sent (white circles) and the resulting amount received (height of the bars). The

amounts sent back are shown with black circles. On average, senders ‘invest’ about 50% of

their endowment in a transfer to the receiver. There is a large heterogeneity in terms of what

receivers sent back. About 20% of receivers send back no money at all, while a large majority

send back something. Trustworthiness thus seems less widespread than trustfulness. The main

outcome from these two behaviours is that the return to trust is on average 0: around 95%

of what is invested (from senders to receivers) is repaid. At the same time, the average total

return is $15 – from an endowment equal to 10. Trust is thus beneficial for the economy as a

whole, leading to a 50% increase in the monetary value to be split between players.
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sound – as the experiment would otherwise document the effect of inputs different from

the ones under study. But, in the case of experiments searching for facts, it is far from

being the end of the story. If the experimental outcome is actually conclusive, then it

provides observations on the behaviour of those individuals who participated in the

experiment, facing the artificial institutions built in the laboratory. Each element of the

sentence can be a matter of concern. Do the experimental subjects behave in the same

way as the actual economic agents would? Isn’t the game too abstract to induce the same

kind of behaviour that would occur in the real world?

Answering this kind of question is of utmost importance in the case of experiments

searching for facts – just because these facts are meaningless if they have nothing to

do with real-world situations. This issue is known as external validity, in reference to

what happens outside the experimental environment. The two kinds of validity refer to

what can be made of the laboratory observations, but while internal validity refers to the

quality of the empirical measure generated by the experiment, external validity is rather

related to its relevance. The strength and range of external validity of the results of an

experiment thus mainly condition its interpretation. The question is no easier to deal

with than that of internal validity. But the reason why it is the case is quite different. The

answer to the external-validity question is in a sense as simple as whether or not it is the

case that the causal relationship measured in the experiment is specific to the laboratory

context or would occur as well in the real world. What makes the question hard is the

many ways in which the words ‘specific’, ‘as well’ and ‘real world’ can be understood

when assessing external validity. This discussion, and what is currently known about the

external validity of laboratory experiments, will be the topic of Chapter 8, of which the

case study below provides an example.

4.5.2 Case Study : Testing the Reciprocity Model in the Field

The empirical evidence from the trust game (presented in Illustration 4.5) echoes the

Fehr et al. (1993) experiment in support of the fair-wage-effort hypothesis. Both poten-

tially have huge consequences for the understanding of labour contracts. From these

results, it is no longer true that flat wages are unable to foster performance at work. It

strongly widens the set of incentive-compatible compensation devices. This is indeed

one of the reasons why this behaviour has been so widely studied in the economics liter-

ature. But this all is true only if it is actually the case that this kind of behaviour occurs

in actual work relationships – if these results have external validity.

Gneezy and List (2006) offer an empirical investigation of this question – ‘is the

behaviour of laboratory subjects, who are asked to choose an effort or wage level (by

circling or jotting down a number) in response to pecuniary incentive structures, a good

indicator of actual behaviour in labour markets?’ (p. 1366). To that end, one needs to

define what a labour market is in the real world, i.e. what makes it specific as regards the

behaviour studied in the laboratory. Gneezy and List focus on the duration of the work

relationships.
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The empirical investigation relies on an experiment implemented in the field. Students

are recruited through advertisements to computerise the holdings of the university’s

library. The advert announcing the experiment offers a $12 wage per hour of work,

so that this wage rate is known by all the students who come to participate. In the con-

trol group (NO GIFT treatment), students who come on the morning of the experiment

are invited to sit in front of a computer and are paid $12 per hour. They work for a

total of six hours, and the number of books correctly entered into the system is recorded

by the computer. This number is an observable measure of work performance and is

used as the main outcome variable of the experiment. In the treatment group (GIFT), the

experiment works exactly the same except for one feature. Upon arrival, students are

told that the wage rate has been revised upward to $20 per hour. In terms of Akerlof’s

gift-exchange model, the initially announced wage sets the reference wage of subjects

coming to participate. The good surprise implemented in the treatment thus replicates

the fair-wage condition of the model.

The main results observed in the experiment are shown in Figure 4.7. The lines are

drawn separately for each group according to the duration of the experiment and show

the evolution of the performance measured every 90 minutes. In the first 90 minutes,

the treated subjects in the treatment group produce around 25% more output per hour

than those in the control group, which is consistent with the standard results on the

fair-wage-effort hypothesis. In the next portion of 90 minutes, the difference falls to

10%, and becomes (almost exactly) 0 afterwards, in such a way that the performance

of ‘workers’ is now the same whatever the level of the fixed wage they are offered.

The experiment thus shows that the effect of a higher fixed wage eventually fades away

as the duration of the contract increases. This is obviously a strong limitation to the

ability of the fair-wage-effort hypothesis to describe work relationships, and is actually

taken by Gneezy and List as strong evidence against the external validity of experiments

supporting the existence of such behaviour.

In response to Gneezy and List, Falk (2007) notes that, strictly speaking, the external

validity of experimental results is satisfied if the consequences are the same when the

inputs controlled for in the experiment are also at stake in the field. To make the point,

Falk offers an alternative test of the external validity of these results, based on a one-shot

interaction. The experiment is designed jointly with a charitable organisation, whose aim

is to help children in need. The experiment consists of sending solicitation letters to a

random sample of households in Zurich (Switzerland). The letters ask for donations for

funding schools for street children in Dhaka, Bangladesh. The households are randomly

assigned to three treatment groups. The first group receives only the solicitation letters

asking for donations. The second group receives the letter and a ‘small gift’ – a nice

postcard. The third group gets the letter and a pen, which represents a ‘large gift’. The

letter makes it clear that the presents are free and for the recipients to keep, regardless

of whether they decide to donate or not. The experiment thus replicates a one-shot real-

world fair-wage-effort relationship: the solicitation letter stands for a work contract; the

amount of the donation is a non-contractable effort; and the gift, when there is one, is

an unexpected compensation for this effort.
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Table 4.1 Gift exchange in the field: donation patterns

No gift Small gift Large gift

Number of solicitation letters 3.262 3.237 3.347

Number of donations 397 465 691

Relative frequency of donations 0.12 0.14 0.21

Note. For each treatment group in a column, the table reports the sample

size and the the number of households who donate in return to the letter.

Source: Falk (2007, p. 1505, Table 1).
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Figure 4.7 Reciprocity in the field

Note. The figure shows the average performance (number of books entered in the system) mea-

sured every 90 minutes, respectively in the control (NO GIFT) and in the treatment group (GIFT)

according to the duration of the experiment.

Source: Gneezy and List (2006, p. 1371, Figure 1).

Table 4.1 reports the donation patterns observed in each of the three treatment groups.

Clearly, donation frequencies increase with the inclusion of a gift as well as with the

value of the gift. While the donation frequency only slightly increases when a postcard

is associated with the letter, it almost doubles when the letter includes a bigger gift. This

increase in the extensive margin of the donation does not crowd out the amount of the

donations: no treatment effect shows up when comparing the distribution of the amount

donated in each treatment (see Falk, 2007, Figure 2, p. 1506).

Because they happen in the field, and involve real-word decisions in a real context,

these results substantiate that laboratory behaviour has some external validity. The same

kind of behaviour observed in the laboratory is generated by the same set of outputs.
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This is actually consistent with the Gneezy and List (2006) results, if one focuses on

the first 90 minutes of the experiment – the maximum duration of the target task of the

vast majority of laboratory experiments. Both these results thus confirm that the gift-

exchange mechanism is one driving force of real-word economic behaviour, although it

is not the case that the mechanism works under all possible circumstances – it is strongly

sensitive, in particular, to the duration of the relationship.

Beyond the case of the gift-exchange mechanism itself, these results illustrate how

controversial the question of external validity can be. The good news, however, is that

in the end it always boils down to an empirical question. It thus stimulates an informed

debate involving laboratory studies to assess the robustness of observed behaviour to

alternative inputs in a highly controlled environment as well as field experiments to con-

front such effects in real-world behaviour. The gift-exchange model is a typical example

of how the experimental literature evolves over the years according to this process. The

experimental research on reciprocity has originated from theoretical models (Akerlof,

1982; Akerlof and Yellen, 1990; Shapiro and Stiglitz, 1984), which were then put to

the test in laboratory experiments. These results were then challenged and tested for

robustness through field experiments. This process is still ongoing.

Summary

The core of economic science is to understand social reality based on theoretical models.

Experiments are central to this process, contributing to each of its directions. Following

Roth’s (1988) seminal classification, experiments can serve three different purposes:

testing theory, i.e. assessing the empirical relevance of theoretical models; searching

for facts, by documenting situations that are ill-covered by economic theory; or sup-

porting the design of public policies, which is a combination of the first two. The

ability of experiments to achieve these goals raises the question of the interaction

between theory, experiments and reality and how they inform one another. This chap-

ter introduced an integrated framework on what an experiment, a theoretical model

and reality are, showing that both theory and experiments are restricted environments

designed to simplify reality – a must-have to be able to understand it despite its

complexity.

This is the building block of a discussion of how theory and experiments, together

or separately, inform our understanding of the real world. First, testing theory in the

laboratory amounts to building an empirical counterfactual to the theoretical causal

mechanism. This is achieved based on causal inference between observed behaviour

and the institutions purposefully implemented in the laboratory in order to replicate the

model’s assumptions. As a result, the big challenge faced by these kinds of experiment

is their internal validity, i.e. whether or not observed behaviour is induced by the cho-

sen institutions rather than by uncontrolled dimensions. This issue is at the heart of

how experiments are designed and put in practice. This is the topic of Part III. Chap-

ter 5, in particular, describes both the main impediments to internal validity and how to

solve them. The practicalities of experiments, described in Chapters 6 and 7, put these

principles in practice.
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Internal validity is obviously important as well for experiments searching for facts.

They aim to provide stylised facts about situations that are poorly covered by economic

theory. This amounts to creating a pseudo-real situation, focusing on a few dimensions

of interest of the environment, in order to document the outcomes and behaviour they

generate. They can be seen as an empirical model, with observed behaviour standing

for the predictions. But such experiments are informative about real-world mechanisms

only if what happens in the laboratory also happens outside – i.e. if the experiment is

externally valid. This raises the question of what experiments tell us, the focus of Part IV.

It opens with a focus on the real world in Chapter 8, addressing the question of the

external validity of the results raised by laboratory experiments. The will to challenge

and refine external validity stimulates an empirical process going back and forth from

the laboratory to the field in order to stabilise and refine empirical knowledge. The final

stage of this process is eventually to close the loop and get back to theory, to adjust

for the empirical phenomenon it pinpointed. How such induction can and may occur

is discussed in the first part of Chapter 9. Then, ultimately, the experimental empirical

phenomenon becomes part of the toolbox of the economic analysis of the outcomes

generated by different kinds of institution. This serves as a basis for policy design. The

second part of Chapter 9 focuses on this third aim of laboratory experiments, discussing

how well-designed and externally valid experiments, either testing theory or searching

for facts, improve our understanding of public policies.



Part III

How? Laboratory Experiments in
Practice





5 Designing an Experiment:
Internal-Validity Issues

Discussing the need for experiments in the previous part delivered two take-home mes-

sages. First, from an empirical point of view, an experiment allows us to choose the

data-generating process – the properties of which are the core of the inference properties

of any empirical strategy. Second, at the same time, an experiment is also a pseudo-real

situation which shares features with both theoretical models – some of the driving forces

of behaviour are chosen – and the real world – there will always be some feature that

remains beyond control but nowadays influences behaviour. The aim of this chapter is to

operationalise these two observations by describing how the DGP can be chosen in such

a way that identification is achieved despite the inevitable uncontrolled driving forces of

behaviour.

This concern is often referred to as the internal validity of the experiment: does

the experimental environment produce convincing outcome measures? Answering this

question comes down to asking how experimenters can create a world in the labora-

tory that best fits their observational needs. As a result, this chapter will also be about

how to make the laboratory best suited to its measurement objectives: how do we con-

cretely design an experiment? What are the main concerns and pitfalls? What are the

choices and trade-offs to be made? To facilitate the discussion, it will be helpful to

more precisely describe the components of the experimental DGP, which is the aim of

Section 5.1. This will help understand more precisely how the internal-validity issue

arises, and how it can be dealt with. This will lead to two complementary answers:

internal validity requires controlled dimensions to drive outcome behaviour, and uncon-

trolled ones not to be confounding. The main feature of experimental designs used to

fulfil the first dimension is the use of monetary incentives, which we describe in Sec-

tion 5.2, and the implementation of exogenous changes through experimental treatments

(Section 5.3). We then move to the features that are likely to induce uncontrolled and

confounding variations: the perceived experiment induced by how the experiment is

described to human beings asked to behave in the experiment, and beliefs about oth-

ers’ behaviour. Through this review, this chapter will thus describe the most crucial best

practices in the implementation of experiments, and discuss their rationale.

5.1 What Is an Experiment? How Is It Linked to Internal Validity?

In one of the classics of the methodological literature in experimental economics,

Smith (1982) defines an experiment as a ‘microeconomic system’ made up of three
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components (the environment, the institutions and the resulting behaviour). While the

terminology is different, this definition is very close to the one we introduced in Chap-

ter 4 (Section 4.2.3). The first two components – the environment and the institutions –

are nothing but a partition of what we introduced as inputs, deciding on the pseudo-real

situation that subjects are faced with. The dividing line between these two compo-

nents is the following: the environment encompasses all the initial circumstances of

the experimental system, while the institutions frame its dynamic evolution.

The last component is the same as the transformation function, through which these

inputs result in specific occurrences of the experimental measures. Each definition serves

its own purpose. In Chapter 4, the definition helped contrast experiments with the two

main objects of economic science – real economic life and theoretical models. The main

contribution of Smith’s definition, in terms of components, is to describe more precisely

the ingredients involved in the choice of inputs, and how influential they are on labo-

ratory outcomes. It emphasises that an experiment is a closed system. This will prove

very helpful to discussing internal validity – the accuracy of the link between the chosen

structure of an experiment and the decisions it elicits from subjects, and how to best

choose this structure in that regard.

5.1.1 Experiments as ‘Microeconomic Systems’: The Components of an Experiment

The environment is the collection of all characteristics describing what the system is

made of. Important pieces in this collection are: the number of agents (players in a

game, buyers and sellers on a market, etc.), the specification of the commodities (tokens

and their face value in a trust game, abstract good in an induced-value auction, etc.),

and agent-specific endowments in terms of resources, preferences (over allocations, i.e.

utility functions) and technology (e.g. skills and knowledge). This defines the givens

of the system, some of which are individual-specific. As such, they might be private

information.

The second constituent of a microeconomic system is made of the institutions, which

define the functioning of the system. This first amounts to specifying the ways agents

act together: how they communicate and decide (what is the set of available messages,

what is the order in which they are decided) and how they interact (who knows what,

and when) within the environment. The consequences of these actions for the state of

the system are driven by the allocation rules set by the institution. This determines

how the initial endowments are affected by agents, messages and decisions, and how

property rights over this allocation are distributed among agents. This is coupled with

cost-imputation rules, specifying how agent resources are impacted by the change in the

allocation. Last, the dynamic of the system is decided by the set of adjustment-process

rules, including the initial rules (how the system is initiated), the transition rule (how

messages drive the system from one state to another) and the stopping rule (deciding

when the exchange of messages is terminated).

These elements are general and precise enough to characterise any microeco-

nomic system. Applied to a laboratory experiment, they highlight the complete set of

characteristics that are to be decided on when ‘designing’ or ‘building’ an experiment.
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Focus 5.1

Cold versus hot: available measures of outcome behaviour

One important dimension on which controlled experiments enhance the observation possibili-

ties is the set of decisions elicited from subjects. In sequential games, the most natural way of

eliciting decisions in a game is to ask subjects to make a choice when they have to. In a seminal

paper, Selten (1967) introduced an alternative elicitation scheme called the strategy method.

It amounts to asking subjects to post the full set of contingent actions they would make at

any possible node in the game. The outcomes are then determined by having each subject’s

full set of actions play against one another. Consider, for instance, the four-moves centipede

game presented in Chapter 1, Section 1.3.2. Applying the strategy method would amount to

asking Player 1 whether Take or Pass would be chosen at nodes 1 and 3, were it reached in

the course of the game; and similarly Player 2 about nodes 2 and 4 – both without knowing

anything about the choice of the other. The actual outcome for these players then results from

the intersection of their contingent plan of actions. The strategy method thus widens the scope

of observed outcomes to choices that never have to be actually made. The two methods do not

exactly coincide in terms of the driving forces of behaviour they elicit: direct answers are ‘hot’

– decided spontaneously as the decision problem arises – while decisions elicited through the

strategy method can be seen as ‘cold’ – they force subjects to consider all possibilities at once

(Brandts and Charness, 2000). The two methods can easily be compared within an experiment:

it amounts to having different subjects play the exact same game, but under each of the two

elicitation methods. Brandts and Charness (2011) provide a literature review of existing com-

parisons and show that little quantitative difference, and no qualitative variation, are generally

observed. When a difference is to be expected, a choice needs to be made about the accuracy

of either of the two methods to best answer the empirical research question.

The ability to choose the specification of each and every of these components is what

makes experiments a highly controlled empirical setting: deciding on the environment

and the institutions amounts to deciding on the specification of the microeconomic sys-

tem. But this same control over the system is also what makes the empirical evidence

highly sensitive to the accuracy of this choice. As in any microeconomic system, an

experiment is closed by agents’ behaviour. Under the rules set by the institutions, and

the endowments set by the environment, the state of the system evolves according to

agents’ individual decisions. This includes two different kinds of outcome: the final

state of the system, reached thanks to all previous decisions and interactions; and agents’

response behaviour, governing individual reactions in the course of the experiment. Both

are the behaviours elicited by the system, which can thus be seen as the empirical reac-

tion functions of the experiment’s subjects to the environment and the institutions they

faced in the laboratory. As explained in Focus 5.1, several methods are available to

design the measures of outcome behaviour.

This view of an experiment as a microeconomic system helps characterise the empir-

ical approach. The experimenter has control over the environment and the institutions,

which together result in agents’ behaviour. The aim is to infer the empirical properties

of the chosen environment and the institutions from observed behaviour. Such inference
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is accurate only if behaviour is actually induced by the chosen microeconomic system.

Here stands the core of the internal validity of an experiment. There are two necessary

conditions for the experiment to achieve this goal. First, internal validity requires that

decisions from subjects occur within the system, i.e. that behaviour responds to the cho-

sen microeconomic system. The remainder of this chapter describes the building blocks

of how experiments are designed to that purpose. Second, this is not enough to achieve

proper inference if uncontrolled dimensions occur in a way that is confounding. The

design choices of experiments aim to fulfil both conditions.

5.1.2 Internal Validity and the Design of Experiments

Because it is a matter of inference, internal validity shares a lot with the idea of endo-

geneity in econometrics, as introduced in Chapter 3. Identification is challenged as soon

as unobserved variations contributing to the outcome occur at the same time as exper-

imental controls. In the framework of the estimation of causal treatment effects, for

instance, the data do not deliver identification of the causal parameter if unobservables

systematically change in line with the implementation of the treatment. One take-home

lesson from this discussion is that identification is achieved if the true data-generating

process – what makes outcomes what they are – complies with some assumptions on

the determinants of the outcome variable – what we called the assumed DGP. In an

experiment, the true DGP is chosen on purpose, by choosing the microeconomic system

described above. In the experimental economics literature, such a choice of the specifi-

cations of the system (how decisions are elicited and taken in the laboratory) is referred

to as the design of the experiment. Proper identification in this context implies choos-

ing the specification of the microeconomic system, the experimental design, in order to

comply with identifying assumptions. This is the crucial criterion governing the exper-

imental design: choosing the experimental data-generating process in order to achieve,

for the best, proper identification of the relevant parameter(s).

Although it may be disturbing at first glance, ‘for the best’ in the previous sentence

will come as no surprise to the reader aware of the discussion in Chapter 3. Identi-

fying assumptions hold on the mechanisms that actually generate outcome behaviour.

There would be no need for empirical research if such mechanisms were either perfectly

known or observable. Any effort to achieve identification thus relies on a pre-existing

knowledge or understanding of what these actual mechanisms are. In the same way

as identification properties of estimators are conditional on non-testable identifying

assumptions, internal validity relies on assumed properties of agents’ responses to the

microeconomic system they face. This remark has two important consequences. First,

internal validity always reduces to a matter of faith. One will never be able to prove that

the unobservable true DGP actually matches the assumed one (again, in the same way as

exogeneity cannot be tested or proven). The reverse is not true, however, as it is enough

to show that a confounding effect does have an influence on behaviour to establish that

internal validity is challenged. Illustration 5.2 provides an example of such empirical test

of internal validity, applied to the WTA/WTP discrepancy discussed in Illustration 5.1

and Focus 5.2. But there is an endless list of such unobservables, so that testing them
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Illustration 5.1

Endowment effects in market behaviour

The Coase ‘theorem’ (Coase, 1960) states that in the absence of any transaction cost, the

allocation of property rights does not matter to the efficiency of the final allocation. This is

one of the building blocks of public economics. The seminal experiment by Kahneman et al.

(1990) provides strong evidence against this principle. In this market experiment, the subject

pool is divided at random into two sub-populations: subjects are sellers in the first one, buyers

in the second. We herein focus on the last four periods of the experiment, in which sellers

receive a coffee mug. The market value of this object is $6 in the university book store at the

time of the experiment. Sellers are asked to state the minimum price they need to receive to

agree to sell the good – their willingness to accept (WTA) – while buyers are asked to state the

maximum price they would like to pay to acquire the good – their willingness to pay (WTP).

Based on elicited answers, the market is cleared and transactions are accordingly implemented.

The main results from this experiment are summarised in the table below (Kahneman et al.

1990, p. 1332, Table 2) displaying the average price chosen by buyers and sellers.

Trial Trades Price Median buyer reservation price Median seller reservation price

Mugs (expected trades = 9.5)

4 3 3.75 1.75 4.75

5 3 3.25 2.25 4.75

6 2 3.25 2.25 4.75

7 2 3.25 2.25 4.25

Since the good is the same and subjects are allocated randomly to groups, prices should – by

design – be the same in both groups in a Coasian world. This is by far not the case: the WTA

is more than twice the WTP. The behavioural interpretation of this discrepancy is known as

the endowment effect: the property of the object generates value on its own. This contradicts

the Coase theorem, as the initial allocation of property rights matters for the final allocation

through market transactions.

all one after the other is a hopeless avenue. Second, for this same reason, an experiment

will never be ‘perfectly internally valid’. The best one can do is to choose the design as

carefully as possible so as to (i) make it likely that the chosen environment does matter

for behaviour and (ii) discard influences that are likely to be confounding.

5.1.3 Indirect Controls: Block Everything You Can, Randomise Otherwise

Despite the wide scope of controls offered by the experimental environment, there

always remain many features of the context of the decisions that are uncontrollable.

This is highlighted in Chapter 4’s definition of what an experiment is: no matter how

large the set of the controlled inputs, the actual input of an experimental situation is
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Focus 5.2

Loss aversion: a behavioural foundation for the endowment effect

The endowment effect giving rise to the WTP/WTA discrepancy shown in Illustration 5.1

can be rationalised by a model of loss aversion (Kahneman and Tversky, 1979; Tversky and

Kahneman, 1992), according to which subjects dislike losing what they already have even if

traded against something else of the exact same value. For example, Knetsch (1989) elicits

the willingness to exchange goods (the experiment is based on exchanges between candy and

a mug) and shows it strongly depends on initial endowments. Indeed, 89% of those initially

given a mug opted to keep it while only 10% of those initially given candy opted to exchange

it. As a consequence, exchange appears as a loss of the endowment and is rejected by most

of the subjects, whatever their initial endowment. For example, in Kahneman et al. (1990) the

value of a good is much higher for sellers than for buyers, because the former ask to be largely

compensated for their loss. When an individual is loss-averse, ‘losses loom larger than gains’:

losses are weighted much more heavily than objectively identical gains in the evaluation of

prospects. This occurs whether such prospects are risky or not. Loss aversion results in a utility

function that is steeper for losses than for gains. A common graphical representation of loss

aversion is shown in the figure below. When facing a loss xL, a much larger gain xG >> xL is

needed to compensate the individual from the negative value associated with the loss.

GainsLosses

Value

G*L*

This utility function is reference-dependent in the sense that gains and losses are defined rel-

ative to a reference point. In the figure, the reference point is set to 0 and the utility function

(which is sometimes called the ‘value function’ in reference-dependence models) is assumed

to be concave for gains and convex for losses. This shape corresponds to a diminishing sen-

sitivity towards gains and losses. The kink at the reference point represents loss aversion: as

the individual valuations depend on a reference situation, the asymmetric shape induces loss

aversion and therefore an endowment effect. Subjects prefer to keep what they have than to

lose it in favour of something of the same value.
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Illustration 5.2

Identified failures of internal validity: misconceptions about the endowment effect

In a series of articles, Plott and Zeiler (2005, 2007) question the internal validity of the

endowment effect observed in market experiments. Based on a literature review of existing

experiments, four main dimensions of the experimental design are found to influence the

WTA–WTP gap:

• the elicitation device (in particular, whether or not it is incentive-compatible),

• the extent of subject’s training with the mechanism,

• whether practice rounds are paid, and

• whether anonymity is ensured.

These features are hypothesised to affect subjects’ understanding about the environment. To

investigate whether misconceptions might occur when some of these features are missing, the

experimental design consider them all at the same time in a replication of the Kahneman et al.

(1990) mug experiment described in Illustration 5.1. The table below displays the main result

from the study (from Plott and Zeiler, 2005, p. 539, Experiment 1, Table 4).

N Individual decisions (in USD) Mean Median Std. dev.

WTP 15 0, 1, 1.62, 3.5, 4, 4, 4.17, 5.20 5.00 3.04

5, 6, 6, 6.5, 8, 8.75, 9.5, 10

WTA 16 0, 0.01, 3, 3.75, 3.75, 3.75, 5, 5, 5.69 5.00 3.83

5, 6, 6, 6, 7, 11, 12, 13.75

This implementation of the experiment gets rid of any evidence of a WTA–WTP gap: in terms

of mean price, median price and dispersion, all outcomes are very similar when elicited from

either buyers or sellers – all comparisons are non-significantly different. This result is highly

controversial given the influence of the endowment effect on both the theoretical and empirical

literature. The nature of the good, in particular, has been shown to be crucial as the gap seems

more robust to the procedures when lotteries, rather than consumption goods, are exchanged

on the market (e.g. Isoni et al., 2011; Plott and Zeiler, 2011).

x∞ = xn ∪ x∞−n, because it belongs to the real world (see Section 4.2.3). Leading

examples of such inputs are subject-specific heterogeneity, like their beliefs (about the

behaviour of others but also, for instance, about how trustable is the information coming

from the experimenter), or their mood or emotions when arriving; but this also includes

experimenter-specific heterogeneity (e.g. how clear is the reading of the instructions,

how ‘serious’ or trustable the experimenter seems to be), lab-specific characteristics

(location, comfort, etc.). All these examples are sources of noise in the experimental

observations: decisions will likely not be the same, within the same experimental design,

when either of these features changes. They are also both unobservable and generally

impossible to control – one cannot choose to implement a given level of trust towards

the experimenter: subjects are endowed with their own, which can hardly be measured.

But such noise is not confounding per se. As such, it only affects statistical inference



126 How? Laboratory Experiments in Practice

(the precision of the estimated effects). Reducing the intensity of the noise improves the

quality of experimental outcomes, by delivering more precise estimates.

But what matters for identification is whether such noise is correlated with the vari-

ables of interest. To make things concrete, take an experiment that aims to measure

gender effects by comparing behaviour between only-males and only-females versions

of the experiment. If the male version always take place before lunch, and the female

version just after, this very fact might induce noise in observed behaviour. But the cho-

sen implementation moreover generates a correlation between noise and gender. The

observed differences in outcomes between the two versions will not be an accurate mea-

sure of gender effects. It is so because changes in the outcome (through the noise) occur

at the same time as variations of the target variables, hence misleadingly suggesting a

relationship between the two while both variations are in fact caused by the noise. Such a

correlation between the noise and the outcome is said to be confounding and challenges

identification. The concern for internal validity leads to preventing correlations between

the noise arising in the experiment and the variables of interest. While there are as many

internal-validity issues as the number of known or expected confounding mechanisms,

two kinds of strategy introduced in Section 3.4 circumvent them. The best practices in

the design of experiments operationalise these strategies.

‘Blocking’ strategies aim to hold constant nuisance dimensions of the experiment:

nuisance is still there, and is not observed in any way, but since it no longer varies, it

is no longer confounding – hence implementing the identification strategy described

in Section 3.4.3. Blocking amounts, for instance, to avoiding using several differ-

ent physical laboratories to run several sessions of the same experiment, or changing

the identity of the experimenter. The more such features remain the same, the more

likely it is that changes in outcome behaviour are immune to their effect, because they

hold constant across all instances in which the outcome variable is observed. For this

same reason, this also achieves better precision in the measure of the relationship of

interest.

The alternative design strategy, ‘randomisation’, is used when variation in nuisances

cannot be avoided. As shown in Section 3.4.1, if such variations happen but are uncor-

related with the target determinants of behaviour, they induce noise in the data and

less precision in the econometric analysis, but they are no longer confounding. This

concretely implies choosing the value taken by these nuisance variables according to a

random draw. Many dimensions of an experiment can be chosen in this way (and the

general principle is to follow a random-allocation rule in all instances in which block-

ing is not available). This is the reason why, in particular, computers in the laboratory

are allocated to subjects by asking them to draw an assignment card before entering the

lab – in such a way that they do not choose where they sit, and who the neighbours are.

Similarly, in those experiments featuring different kinds of position in the game (like

sender/receiver, for instance) these roles are not attributed based e.g. on the location of

the computer in the room, or to subjects based on their arrival order, but rather by ran-

dom assignment across all subjects to the session – in such a way that any systematic

relationships between location-specific or subject-specific heterogeneity and role in the

game are broken.
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On a final note, it is worth stressing that any choice of an experimental design can only

be assessed as regards the specific research question the experiment aims to address. The

research question is what defines the outcome, the noise, and relevant variables of the

experiment – hence what might, or might not, be confounding. As an example, when

experiments seek to measure the causal effect of changes in the environment or insti-

tution, the outcome variable is the difference in behaviour between two settings. The

relevant noise is those unobservables that make the difference in outcome change at the

same time as the relevant change in the context. Basically, any noise influencing the out-

come levels in the same way in the two settings cannot be confounding. In contrast, the

case study below provides an example of a measurement experiment, in which observed

behaviour per se is the outcome of interest. In a measurement experiment the identify-

ing assumptions are more demanding, because any unobservable influencing behaviour

belongs to the relevant noise term, and might thus be confounding. As suggested by

these examples, a sensible choice of design for one experimental investigation can thus

be just obviously wrong for another one. Consequently, the insights developed in this

chapter should be seen as neither absolute principles any experiment must comply with –

as a matter of fact, the chapter will describe plenty of counterexamples to the general dis-

cussion – or an exhaustive review of confounding effects found in experiments – as each

new design is likely to raise its own. They describe the set of tools available to under-

mine the effect of usual suspects challenging internal validity, and illustrate the practical

consequences of the principles discussed here on how experiments are designed.

5.1.4 Case Study : A Measurement Experiment: The Voluntary-Contribution Mechanism

Public goods in microeconomic theory share two specific features: they are non-rival and

non-excludable. Non-rivalry means that any unit of the good that is consumed by an eco-

nomic agent still remains available for consumption for another one; non-excludability

happens when there is no way to prevent an agent consuming available units of the good.

National security is a prototypical example of a public good. First, it is non-rival because

one person enjoying domestic safety does not hinder another person from ‘consuming’

this same safety. The important consequence in terms of microeconomic analysis is that

the cost of providing national security to an additional inhabitant is 0. This stands in

sharp contrast with private goods, for which serving more consumers requires produc-

ing more of the good. Second, national security is also non-excludable, as anyone living

in the area will benefit from it. Again, this is a huge departure from standard analysis

of private goods, for which consumption can be made conditional on paying a price for

each unit of the good that is consumed.

The main consequence of these two features (together, as none of them alone is

enough to define a public good) is that the allocation of public goods is a typical exam-

ple of a market failure: the number of units produced and consumed in the economy if

economic agents behave in an unconstrained and decentralised way is not the best they

can achieve together with the available resources. The intuitive reason for that is easy to

understand: because of non-rivalry, the number of units that should be produced is deter-

mined by the sum of all consumers’ willingness to pay for each of these units – because
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all consumers will then be able to consume each and every unit of the good. To achieve

such a level of production, each consumer should thus be asked to pay an individualised

price exactly equal to one’s own preferences towards the good. But because of non-

excludability, consumers can enjoy any unit of the good once available in the economy

at no cost – just because there is no way to constrain people to pay for a non-excludable

good. On a free market, everybody will thus hope to rely on others to pay for the pro-

duction cost of the good, while enjoying those units that eventually become available.

This obviously results in no production at all. In behavioural terms, the key mechanism

in this reasoning is free-riding behaviour: if asked to freely choose whether or not they

want to contribute to funding the production of a public good, rational consumers will

give the least possible. The empirical content of the microeconomics of public goods,

and the design of institutions aimed to enhance the allocation, crucially depend on the

relevance and extent of such behaviour.

The Voluntary-Contribution Mechanism (VCM) is an experimental game purpose-

fully designed to provide an empirical measure of free-riding behaviour (Isaac et al.,

1984). This game gathers N players who each receive an endowment denoted ei. Each

player is asked to decide on the allocation of this endowment between two possible

investments: a private or a public one. The per-unit individual return of the private good

is q (> 1): each dollar put by individual i in the private investment increases i’s earning

by $q. The public good, by contrast, benefits anyone: the return on each dollar invested

in the public good is Q but this amount is equally split between all members of the

group, increasing the individual earnings of each one of them by $Q/n. We denote ℓi,

with 0 ≤ ℓi ≤ ei, the level of ‘contribution’ to the public good (the amount allocated to

the public investment). Once all allocation decisions have been made in the group, the

individual payoff resulting from them is thus:

q(ei − ℓi)︸ ︷︷ ︸
Return from private good

+
Q

(
ℓi +

∑
j �=i ℓj

)

N︸ ︷︷ ︸
Return from public good

As simple as it is, this game replicates the main features of the social dilemma

raised by public-good provision in an economy. It is usual to refer to Q/(qN) as the

MPCR, marginal per capita return. As soon as the returns and group size are such that

1/N < MPCR < 1 (see Focus 5.3 for details), it is individually rational to put the whole

endowment in the private investment, although everyone in the group would be better

off by favouring the public investment. The driving force of this result is free-riding:

rational individuals only take into account the private return of their investment when

considering the public investment. No matter what others do, it is payoff-improving to

benefit from others’ investment (if any) and invest everything in the private good and

enjoy the private return from the private investment.

Isaac et al. (1984) is among the earliest attempts to experimentally investigate the

empirical relevance of such behaviour (see, e.g. Ledyard, 1995, for a review of the liter-

ature). They consider repeated VCM games in which the same four players interact 10

times together. Two versions of the game are considered: one with low MPCR (equal to

0.3), another with a higher one, equal to 0.75. According to theory, the closer the MPCR
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Figure 5.1 Empirical free riding in VCM games

Note. For each period in abscissa, the figure shows the average group contributions as a percentage

of the optimal one (investing the whole endowment). Each line refers to a different treatment, with

varying levels of the MPCR.

Source: Isaac et al. (1984, p. 135, Figure 4).

is to 0.25 (= 1/N in the experiment), the stronger are the incentives to free-ride – con-

versely, cooperation becomes more and more likely as the MPCR becomes closer to 1,

where individually rational behaviour spontaneously switches to the public investment.

Several interesting lessons arise from the results, presented in Figure 5.1.

First focusing on the low-MPCR treatment, empirical behaviour clearly contrasts with

the theoretical prediction: the contribution rates are strictly positive and amount to 40%

to 20% of the initial endowment. It is worth noting that, although far from the Nash

equilibrium, this behaviour is just as far from the fully cooperative outcome one would

obtain if people cared about others just as much as they care about themselves. The pat-

tern over time is also worth noting: the cooperation rate is decreasing over time, reaching

its lowest level at the final stage of the experiment. This is a typical outcome in this kind

of experiment, called an end-game effect. Overall, these results show that the free-riding

issue in public-good-provision problems might well be weaker than expected. It does

not rule out any explanatory power of theory, though. Turning to a comparison between

the two treatments, it clearly appears also that insights about how behaviour changes

according to the value of the MPCR are accurate. Contributions are much higher when

the MPCR in higher (equivalently, contributions are much lower when incentives to

free-ride are higher), and the decrease over time is also more attenuated. The general

lesson from this seminal work is twofold: theory accurately describes how behaviour is

adjusted to the monetary incentives at stake, but definitely misses something in driving

forces of behaviour itself.
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Focus 5.3

Equilibrium analysis of the VCM game

The theoretical analysis of the VCM aims to answer two different questions: what can small

economy of N people best achieve given the available endowment? And what they will actu-

ally do if choices are not constrained – i.e. what allocation will result on a competitive market?

Answering the first question amounts to comparing what can be collectively achieved accord-

ing to the whole set of possible investments. Since the return rates all are linear, the answer

is quite simple. One dollar from the endowment results in a wealth equal to q if invested in

the private good, and equal to Q if invested in the public good. These are the public returns of

the investment possibility, as they measure the overall change in wealth in the whole commu-

nity associated with each possibility. The resources are thus best used by investing anything

in the public good when Q > q ⇔ Q/(qN) > 1/N, and by opting for the private invest-

ment otherwise. This is the efficient-allocation rule (which corresponds to what is known as

the Bowen–Lindahl–Samuelson condition in public economics). Let’s now investigate how

people will be individually willing to behave in this environment. Again, the linearity of the

returns makes the problem straightforward. While deciding on the investment of each dollar

from one’s own endowment, each member of the group compares the private returns from the

investment – by how much one’s own wealth increases. As stated in the text, this return is still

q for the private good, but is equal to Q/N for the public investment. The individually ratio-

nal strategy is thus driven by the rate of substitution between the public good and the private

good, usually called the marginal per capita return in the literature: MPCR = Q/(qN). The

private investment dominates the public one at the individual level if the MPCR is lower than

1 (Q/N < q). Each individual will then decide to opt for the private investment, resulting in

equilibrium contributions ℓ∗
i = 0, ∀i (and ℓ∗

i = ei, ∀i as soon as MPCR > 1). The discussion

is summarised in the figure below.

Not all ranges of the parameters give rise to a market failure. If MPCR < 1/N or MPCR > 1,

individually rational decisions coincide with the efficient allocation and there is nothing to

worry about. But if 1/N < MPCR < 1, a social dilemma arises: individual decisions no longer

match the efficient allocation, because individuals fail to take into account the consequences

of their investment for the rest of the community. Each individual is better off opting out of

the provision of the public good.
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In terms of internal validity, the two kinds of result make use of different identifying

assumptions. Comparisons between treatments only require that no confounding effect

is correlated with the treatment – if the room temperature influences behaviour in a

particular way, and both treatments have been implemented in the same experimental

lab, then it is neutral on inferences based on behavioural variations. Inference about free-

riding behaviour per se, by contrast, is a measurement problem. It requires that observed

choices are induced by the chosen environment. If people rather react to features beyond

the experimenter’s control, then observed choices do not inform about target behaviour.

Andreoni (1995) designed an experiment aimed at addressing this second issue. The

main research question is whether observed contributions from participants to VCM

experiments are actually motivated by non-purely selfish preferences, like kindness or

altruism. If not, in Andreoni’s (1995 p. 893) own words, ‘a second hypothesis is that

experimenters have somehow failed to convey the incentives adequately to the sub-

jects . . . subjects have somehow not grasped the true monetary incentives’. Andreoni

labels this failure of internal validity ‘confusion’. To that end, the experiment consid-

ers three treatments. The standard public-good game (treatment REGULAR) is similar to

the ones considered above – groups are made of five subjects playing 10 VCM games

with an MPCR of 0.5. The main difference is that subjects play with different others

in each game. The main treatment of interest, labelled RANK, aims to eliminate any

other-regarding motive while maintaining the same incentive structure of the game. In

this treatment, subject’s final earnings do not depend on their absolute earnings from the

game, but rather on how their earnings compare to other subjects in their group. A list of

fixed prizes is announced before the game takes place. In each period of play, the subject

ranked first gets the highest pay-off, the subject ranked second gets the second-highest

payoff and so forth. The incentive structure of the game remains the same: the domi-

nant strategy, just like in the REGULAR treatment, is to contribute nothing to the public

good. But the incentive to contribute due to other-regarding motives is now arguably

eliminated from the game: since the public investment earns just as much for anybody

in the group, contributing does not benefit others and just harms the investor’s ranking.

Positive contributions in this treatment thus cannot be interpreted as a departure from

free riding due to kindness towards others.

Thanks to this feature of the RANK treatment, the comparison between these two

treatments aims to identify the extent of contribution that is actually due to kindness –

and what share of the usually observed level of cooperation can actually be attributed to

confusion or error. There is, however, a potential confounder in this comparison. There

are two actual changes in the decision environment between the two treatments. One

is the change in the compensation scheme, which is implemented on purpose. But this

requires a second change: the ranking information becomes available to subjects. If such

information has an influence on behaviour (e.g. by fostering relative comparisons), there

is no way to disentangle the two effects based on a simple comparison between RANK

and REGULAR. A third treatment is designed to address this issue: the REGRANK treat-

ment implements the same compensation rule as the REGULAR treatment, but provides

subjects with the ranking information at the end of each round of play.
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Table 5.1 Voluntary contributions without altruism

Percentage of endowment contributed to the public good, by round

Condition 1 2 3 4 5 6 7 8 9 10 All

REGULAR 56.0 59.8 55.2 49.6 48.1 41.0 36.0 35.1 33.4 26.5 44.07

REGRANK 45.8 45.4 32.6 25.0 23.1 17.8 11.3 9.5 8.3 9.0 22.79

RANK 32.7 20.3 17.7 9.9 9.2 6.9 8.1 8.3 7.1 5.4 12.55

�= 13.2 25.1 15.0 15.1 13.9 11.0 3.2 1.3 1.2 3.6 10.24

% Regular 23.5 42.0 27.1 30.4 28.9 26.7 8.9 3.6 3.6 13.5 20.82

Percentage of subjects contributing zero to the public good

Condition 1 2 3 4 5 6 7 8 9 10 All

REGULAR 20 12.5 17.5 25 25 30 30 37.5 35 45 27.75

REGRANK 10 22.5 27.5 40 35 45 50 67.5 70 65 43.25

RANK 35 52.5 65 72.5 80 85 85 85 92.5 92.5 74.50

Note. For each round of play (in column) and in each treatment (in row) the upper part provides

the average observed contribution as a percentage of total endowment. The lower part displays the

share of subjects who behave as perfect free-riders – i.e. contribute exactly 0.

Source: Andreoni (1995, p. 896, Tables 1 and 2).

The results are shown in Table 5.1, providing both the average level of contribution

in each round, and the share of subjects who behave as perfect free-riders. According

to both outcomes, the three treatments are perfectly ordered: contributions are always

higher in REGULAR as compared to REGRANK, and higher in REGRANK than in RANK.

The change in behaviour from REGULAR to REGRANK confirms that informing sub-

jects about their relative performance changes contributions – but it cannot be attributed

with certainty to either kindness or confusion. By contrast, only confusion can explain

positive contributions in the RANK condition. The average behaviour in this treatment,

in terms of both contribution level and perfect free-rider distribution, amounts to half

the one observed in REGRANK. This implies that half the contributions observed in this

treatment (and almost one-third of those observed in REGULAR) have nothing to do with

subjects’ willingness to improve the group’s outcome. This is only the empty part of the

glass, of course; the full part is that half of observed contributions can be taken as accu-

rate measures of people’s tendency to spontaneously overcome the free-rider problem.

This is large enough to deserve attention – and did elicit a large body of literature in the

last three decades.

5.2 The Incentive Structure of Experiments

Smith’s view of an experiment as a microeconomic system identifies the main building

blocks of empirical identification based on experiments. Inference is based on outcome

behaviour, supposedly generated by the environment and institutions implemented in

the laboratory. The link between the two, which makes the whole work as a system, is

individual behaviour: outcome behaviour results from decisions by people, in response
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Table 5.2 Smith (1982) precepts: three incentive-compatibility criteria

Criterion Description

Non-satiation More is always better than less

Saliency Payoff differences are such that choices are worth it

Dominance
The whole experiment is attractive enough to

compensate for the opportunity cost of participation

to the experiment rules. There is one driving force in this system that remains beyond

control: individual preferences over outcomes. Such a system is closed only if prefer-

ences driving decisions are well defined over outcomes. This is the main rationale for

the use of monetary incentives in experimental economics – how much people lose or

win according to what happens in the course of an experiment. These principles are

described in the next subsection. As all methodological rules described in this chapter,

this one has pros and cons and experiences famous exceptions. The most noticeable is

even the field as a whole, as the use of incentives is to a large extent specific to economics

among all experimental social sciences. Beyond this variety across fields, the choice of

incentive structure raises practical issues within economics, which we describe in the

last two sections.

5.2.1 The Logic of Incentives

The choice of the incentive structure of an experiment has been introduced as the core

internal-validity issue in Smith’s (1982) seminal article.1 This choice is very much like

a mechanism design problem: the incentive structure is what makes individual decisions

driven by the environment and the institutions. Smith characterises the properties of the

incentive structure according to three precepts – i.e. criteria, rather than rules – to assess

the accuracy of the incentive structure. They are summarised in Table 5.2.

The first criterion is ‘non-satiation’, which prescribes that more must always be better

for everyone, and at any point, in the experiment. In case of a costless choice between

two possible options, where the second is offering a higher reward, non-satiation thus

requires this second alternative to be strictly preferred to the first one. The risk other-

wise is to see people in the experiment not caring about the consequences of their own

choices – possibly without any possibility to identify them. The application of this pre-

cept might seem very intuitive and almost overly obvious. One common limitation to

non-satiation comes from threshold effects. For example, when exam grades are used as

a rewarding currency, the reward increases to the extent the grade does. However, above

a certain threshold, students might no longer care about additional gains. Giving a bonus

1 In the words of Smith (1982, p. 935), non-satiation and saliency precepts are ‘sufficient conditions for

the existence of an experimental micro-economy, that is, motivated individuals acting within the frame-

work of an institution’. With the addition of dominance (and privacy, to be discussed in Section 5.2.4), the

experiment is a ‘controlled microeconomic experiment [overcoming the possibility that] individuals may

experience important subjective costs or values in transacting, and may bring invidious . . . taste to the labo-

ratory from everyday social life’. In Smith’s paper, a fifth precept is introduced, ‘parallelism’, which refers

to external validity and will hence be discussed in Chapter 8 – Section 8.1 in particular.
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of 20 points to all subjects gives rise to satiation for a student who already got 90/100,

resulting in a flat compensation system once 10 additional units have been accumulated

in the course of the experiment.

A second criterion is ‘saliency’, meaning that the decisions in the experiment must

be unambiguously linked with rewards. This implies that the differences in payoffs,

or the marginal utility of the compensation scheme, must noticeably vary according to

choices. For example, if one decision implies earning $2, and the next-best decision

implies earning $2.25, it is not clear that for all agents this will be a sensible increase,

as not even a cup of coffee can be bought with a quarter. Although the principle is that

difference in level should be convincing, and make a difference for the decision-maker,

there is no clearly and universally defined criterion to assess saliency. Illustration 5.3

provides an example of how sensitive outcome behaviour can be to the saliency of the

experimental stakes.

A last criterion in the design of incentives is ‘dominance’, which implies that the

reward structure dominates any cost associated with participation in the experiment,

both inside and outside the experiment. This criterion is akin to a participation constraint

in microeconomic theory. Dominance implies a set of conditions on the compensation

scheme used in the experiment. First, the compensation scheme must compensate the

agent for the cognitive effort underlying decision-making in the experiment. Second,

the compensation scheme must compensate the opportunity cost of participating in the

experiment. The risk incurred in case of failure of the dominance principle is essentially

a matter of selection bias and heterogeneity, as only those people for whom it is worth

it will actually care about their decisions, or even come to the laboratory. As for all the

precepts described here, there is no clear-cut reference that can be used to establish how

much people should be compensated. It depends in particular on the market wage, the

value of time and individual characteristics (such as human capital) of the subject pool,

as they might all potentially affect the opportunity cost of individuals.

The three precepts together provide guidelines over the choice of the incentive

structure of the experiment: how to design, in level and variation, the relation-

ships between the states of the system and individual payoffs. In the terminology

of the mechanism-design literature, compliance with the precepts makes the experi-

ment incentive-compatible. Thanks to this property, the experiment offers control of

preferences through the control of incentives.

5.2.2 Why Incentives after All?

Based on the above logic, the use of monetary incentives is almost systematic in exper-

imental economics (at least to the extent that not using incentives must be strongly

justified). Ortmann (2010), for instance, reports that all experimental studies published

in the American Economic Review between 1970 and 2008 paid subjects according to

their performance. It is, however, a matter of intense debate, both within economics and

between economics and other experimental social sciences – psychology in particular.

Within economics, one of the most convincing advocates against the use of monetary

incentives is Ariel Rubinstein (2013, p. 541), who for instance notes,
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Illustration 5.3

Saliency and coordination: experimental evidence based on the stag hunt game

The stag hunt game is a famous coordination game drawing back to the French philosopher

Jean-Jacques Rousseau, who introduced it as a metaphor of collective action and social coop-

eration. Two players have the choice between hunting a stag or a hare. Hunting a stag (action

A) is hard and requires the joint effort of both players, but then the reward is relatively high

– large meal. Hunting a hare (action B) is easy and each player can succeed on their own,

but then the reward is relatively low – small meal. The actions in this game strongly depend

on beliefs about what the other player will do. The game has two symmetric equilibria: the

outcome maximises payoff if both players hunt a stag (the outcome is said payoff-dominant),

but if there is any doubt about what others will do, then hunting a hare is a riskless action

(this outcome is hence the risk-dominant equilibrium of the game). Which of the two will be

selected is an empirical question. Battalio et al. (2001) consider three variations of this game,

presented below.

Game 2R

A B

A 45, 45 0, 35

B 35, 0 40, 40

Game R

A B

A 45, 45 0, 40

B 40, 0 20, 20

Game 0.6R

A B

A 45, 45 0, 42

B 42, 0 12, 12

While the strategic structures of all three instances are the same, the size of the incentives

strongly differs. The optimisation premium – i.e. the difference between the payoff of the

best response to an opponent’s strategy and the inferior response – is twice as large in game

2R as it is in game R, and six-tenths as large in game 0.6R as it is in game R. The experi-

mental implementation of these games aims to assess to what extent a change in incentives

induces a change in coordination, based on three main theoretical hypotheses: (i) the larger

the optimisation premium, the more responsive the subjects’ behaviour will be to beliefs; (ii)

the larger the optimisation premium (i.e. higher sensitivity to the history of one’s opponent’s

play), the faster behaviour converges on an equilibrium; (iii) the smaller the optimisation pre-

mium, the more likely the behaviour converges on the payoff-dominant equilibrium (A, A).

Eight cohorts of eight subjects are randomly paired and play one of the three games seventy-

five times. Observed behaviour is summarised in the table below (from Battalio et al. 2001, p.

754, Tables 1 and 2).

Period 1 Period 75

A B A B

0.6R 41 (0.64) 23 (0.36) 28 (0.44) 36 (0.56)

R 45 (0.70) 19 (0.30) 16 (0.25) 48 (0.75)

2R 34 (0.53) 30 (0.47) 3 (0.05) 61 (0.95)

Total 120 (0.63) 72 (0.73) 47 (0.24) 145 (0.76)

Two important results emerge: while initial behaviour is the same across treatments, it con-

verges on very different outcomes after some repetitions. After a while, participants play the
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payoff-dominant action more often the larger the optimisation premium is. The study of the

dynamics of behaviour between these two time periods provides support to the three above

hypotheses. The general lesson from this experimental evidence is that the size of the stakes

strongly influences strategic behaviour in the laboratory. The open question is then which of

the observed behaviours is more informative about game-theoretical predictions.

I have never understood how the myth arose that paying a few dollars (with some probability)

will more successfully induce real life behavior in a subject. I would say that the opposite is the

case. Human beings generally have an excellent imagination and starting a question with

‘Imagine that . . . ’ achieves a degree of focus at least equal to that created by a small monetary

incentive.

As a matter of fact, there are noticeable exceptions to this rule, which even elicited

a large literature in behavioural economics. Illustration 5.4 provides an example of

such a very influential laboratory experiment which does not make use of economic

incentives – and only relies on fictitious scenarios.

This kind of counterargument echoes the view of incentives that dominate the experi-

mental literature in psychology. This has been popularised, for instance, by Tversky and

Kahneman (1986, p. 274), who conclude a survey on the topic by noting, ‘Experimen-

tal findings provide little support to [the] view . . . that the observed failures of rational

models are attributable to the cost of thinking and will thus be eliminated by proper

incentives’. This methodological debate is still ongoing, and is likely to remain open for

a long time. It amounts to an empirical question: is behaviour less or more conclusive

as an empirical outcome of the experiment system when performance is incentivised?

Several attempts to answer the question have been made in recent years, of which Illus-

tration 5.5 provides an example. Two different cases have to be distinguished in order

to make a choice in this regard. The first question is whether or not the use of incen-

tives harms inference based on experimental behaviour. Although a few examples go

in this direction, there is very little evidence supporting this (other) view (as well). On

the other extreme, it is rather clear that not incentivising performance leads to more

noise in the data (Smith and Walker, 1993). Since decisions of the agents no longer have

monetary consequences for them, the motivations behind individual behaviour are more

likely to be idiosyncratic and diverse. In the extreme case of surveys based on purely

declarative answers, the resulting measures will likely not be very informative about the

underlying true attitude. If one asks subjects whether they feel happy in the experiment,

the observed level of happiness will be regarded as a poor measure of the true mental

state of the subjects by most empirical economists. Any systematic change in behaviour,

however, like the difference in self-reported happiness between two treatments, is hardly

induced by such noise and provides convincing cues about the actual happiness effect of

the treatments. This again illustrates that the choice of incentivising behaviour has to be

mainly driven by the research question. More generally, it also points to the answer, giv-

ing rise to the current consensus in the experimental economics community. If (when)

incentives do not harm, they at worst are innocuous on behaviour and at best enhance
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Illustration 5.4

Evidence from non-incentivised behaviour: the status quo effect

The status quo bias is another striking behavioural consequence of prospect theory presented

in Focus 5.2. One of the earliest empirical studies documenting this phenomenon is due to

Samuelson and Zeckhauser (1988), based on two simple surveys. The first survey tells the

respondent: You are a serious reader of the financial pages but until recently have had few

funds to invest. That is when you inherited a large sum of money from your great-uncle. You

are considering different portfolios. Your choices are:

___ a Invest in moderate-risk Co. A over a

year’s time; the stock has 0.5 chance of

increasing 30% in value, a 0.5 chance

of being unchanged, and a 0.3 chance

of declining 20% in value.

___ b Invest in high-risk Co. B over a year’s

time; the stock has a 0.4 chance of

doubling in value, a 0.3 chance of

being unchanged, and a 0.3 chance of

declining 40% in value.

___ c Invest in treasury bills. Over a year’s

time, these will yield a nearly certain

return of 9%.

___ d Invest in municipal bonds. Over a

year’s time, they will yield a tax-free

return of 6%.

In the second questionnaire, the text includes a slight modification with respect to the initial

conditions: ‘You are a serious reader of the financial pages but until recently have had few

funds to invest. That is when you inherited a portfolio of cash and securities from your great-

uncle. A significant portion of this portfolio is invested in a moderate-risk Company A (option

(a)). You are deliberating whether to leave the portfolio intact or to change it by investing in

other securities (the tax and broker commission consequences of any change are insignificant).

The proposed choices are identical to the one shown along with the first questionnaire. In

one case (the second survey) the money has already been invested, whereas in the other case

(the first survey), the money has not been invested yet. Obviously, this leaves unchanged the

comparison between all options and the instructions aim to make clear that changes to the

portfolio induce no monetary cost. While economic theory imposes no condition about the

choice between the four options (this entirely depends on the shape of individual preferences),

it should, however, be the case that the arbitrage decisions of the subjects in the two situations

are the same. Observed behaviour strongly contradicts this prediction, with an average 20%

more choices of the default option in the second survey. This is consistent with loss aversion

deduced from prospect theory – the default investment working as a reference point from

which departures are evaluated in the loss domain. Alternative explanations have been raised in

the literature, such as costs of thinking, small transaction costs or psychological commitments

to prior choices.

the quality of inferences based on behaviour. So just use it, for the same outcome if not

for a better one.

5.2.3 Implementation Issues: Multiple Play Incentives

In many experiments, the decision task is repeated in an effort to allow for some learning

and to avoid focusing only on initial responses (see Section 5.5 for a discussion about
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Illustration 5.5

The effect of incentives on experimental outcomes

Camerer and Hogarth (1999) review 74 studies published in the American Economic Review,

Econometrica, the Journal of Political Economy and the Quarterly Journal of Economics

between 1990 and 1998. Studies were included if they compared behaviour of subjects accord-

ing to their performance with different levels of incentives ranging from no incentives to high

monetary incentives. Camerer and Hogarth (1999) classify the studies in three broad classes

depending on the effect of incentives. In the first class of studies, incentives help improve

performance in experimental tasks. This appears to be the case for judgement and decision

tasks: incentives promote effort in memory and recall tasks of past events, as well as increas-

ing attention. Incentives are important to increase effort in mundane clerical tasks (coding

words or numbers, building things). In this class, the main effect on effort is obtained by

raising incentives from hypothetical choice to incentivised choice. Increasing the level of

incentives appears to have limited effect. In the second class of studies, incentives do not

appear to matter much because the marginal return on effort is low. According to Camerer and

Hogarth (1999), this is the most common result. This class regroups studies in experimental

games, auctions and preference elicitation. The marginal return on effort is low when it is

hard to improve performance (computing all the equilibrium strategies of a game) or when

performance is easy to attain (when the strategy is obvious to most participants). If incentive

does not improve or hurt average performance they decrease the variation in performance,

a point raised early by Fiorina and Plott (1978). In the third class, incentives do hurt per-

formance. This class is the smallest one and regroups mostly judgement and decision tasks.

Incentives hurt here because of a number of reasons: they push subjects to stick to a given

heuristic, they make subjects overreact to feedback, and they make participants self-conscious

about tasks which should be automatic. The general lesson thus is that incentives generally

seem a good idea to get data of better quality, but different research questions and researcher

belief about the true (behavioural) data-generating process might well lead to different

choices.

the implementation of repetition itself). The same players are then involved in the same

task (either decisional or strategic) several times. The general principles behind the use

of incentives applies to each one of these multiple decisions. In this case, subjects would

earn some money based on their performance at each stage of the repetition, and their

overall compensation for participating in the experiment would be computed as the sum

of their earnings over all instances of the decision task. Such a compensation scheme,

however, raises important internal-validity issues.

When subjects face real play in several successive tasks, the outcome obtained in

the earlier tasks can contaminate behaviour in the subsequent tasks and lead to biased

measurement. Several well-documented phenomena can give rise to such carry-over or

contamination effects: wealth effects, house-money effects and portfolio effects. Wealth

effects are the most obvious consequence of paying subjects for the sum of their earnings

in all decision tasks. As the experiment evolves towards subsequent decision stages, the
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level of wealth of the subjects increases thanks to accumulated earnings (either known

or expected) at each stage. If wealth has an effect on decision-making (income effects in

the utility function are an obvious reason for this to occur), then decisions at later stages

are not similar to decisions made earlier in the experiment: there is serial correlation

in decisions due to the design of performance-based incentives. Such a wealth effect is

also likely to occur in decision experiments involving uncertainty as soon as risk aver-

sion changes with wealth. When subjects have decreasing risk aversion, experiencing

prior gains increases wealth and potentially leads to higher risk taking in subsequent

tasks. On the other hand, it could also be the case that subjects show a propensity to

break even after a prior loss and take more risks as the experiment progresses. Thaler

and Johnson (1990) show evidence of such an effect of prior gains on risk behaviour,

and label house-money effects biases arising from the fact that subjects consider prior

outcomes as windfall money and take more risk with it.2 Portfolio effects come from the

fact that changing behaviour provides a natural hedge in experiments where uncertainty

plays a role. For example, in an experiment involving an unknown urn filled with two

balls of different colours, taking two complementary positions on and against a colour

in two choices provides a hedge against uncertainty.

Because of these likely failures of the internal validity of multiple decisions, the

implementation of incentives is often adapted accordingly. One of the most widely used

compensation schemes to circumvent these caveats is the so-called random incentive

system (RIS), which amounts to paying for real only one of these tasks, chosen at ran-

dom, at the end of the experiment. The main advantage of such a system is to isolate,

through randomisation, one choice from another. The intuition is rather straightforward:

if the experiment involves two decision tasks, each one compensated with a one-half

probability, then an expected utility maximiser will put exactly the same weight on

the two outcomes. Focus 5.4 summarises the main methodological drawbacks of this

procedure.

Another drawback of random incentives lies in their saliency. Randomisation

decreases the expected value of the incentives, as each task is paid with a probability

lower than 1. The size of the stakes thus has to be adjusted accordingly. Conversely, for

this same reason, RIS also allows us to study decision tasks with big monetary conse-

quences at a reasonable cost. This need to adjust compensation for decreased saliency

is shared by all random incentive compensation schemes. It is even more stringent for

between-subjects RIS, in which one decision for only one player out of all participants is

compensated. In an experiment involving J decisions and N participants, pure between-

subject randomisation induces a 1/(NJ) probability that each decision actually counts in

terms of payoff. On top of this saliency issue, a violation of dominance can also poten-

tially arise when using this mechanism if subjects who happen not to be paid ex post

2 A possibility to mitigate this income effect is to postpone the disclosure of the draws in the chosen lotteries

to the end of the experiment. Another possibility, introduced by Holt and Laury (2002), is to require the sub-

jects to give up previous gains in order to answer to subsequent tasks. However, in practice, any perceived

change in the expected value of the experiment can influence risk attitudes, as stressed by e.g. Grether and

Plott (1979).
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Focus 5.4

Incentive-compatible compensation of repeated choices: the random incentive

system

Baltussen et al. (2012) list at least five different names for the random incentive system

described in the text, among them ‘random lottery incentive system’, ‘random lottery selection

method’, ‘random problem selection procedure’ and ‘random round payoff mechanism’. This

incentive scheme blocks the changes in wealth over the course of the experiment. According

to Holt (1986), however, subjects might consider the experiment a meta-lottery where each

task can be selected with equal probability. More generally, subjects can consider the exper-

iment a meta-lottery with any probability distribution over the different tasks depending, for

example on the precise form of the random incentive system or on their beliefs. As a conse-

quence, subjects might no longer perceive each task in isolation and integrate all the choices

in the meta-lottery, leading to carry-over effects similar to the ones identified when all tasks

are paid. Because each task corresponds to a given outcome in a (meta-)lottery, these com-

plementarities exist when the independence axiom for choice under risk is violated. Several

studies have investigated the internal validity of the random incentive system. Bardsley et al.

(2010, p. 269), show that the preceding speculations are incorrect. In their words, ‘It is easy

to see, however, that the RLI [RIS] could be unbiased in the presence of any form of non-EU

preferences given different assumptions about how agents mentally process tasks.’ Starmer

and Sugden (1991) show that these potential problems are of little concern and that isolation

can be assumed. A large body of literature has confirmed this finding (Cubitt et al., 1998; Hey

and Lee, 2005; Lee, 2008; Baltussen et al., 2012). The overall picture is that for simple binary

choices under risk with a high number of repeated measurements, the random incentive sys-

tem is compatible with the isolation hypothesis. In more complex tasks or dynamic tasks, or

in case of between-subject randomisation, however, the existing evidence shows that isolation

might not be as strong and carry-over effects can appear (see Beattie and Loomes, 1997; Bal-

tussen et al., 2012, for further details). Cox et al. (2015) provide an empirical investigation of

the incentive properties of a wide variety of compensation mechanisms.

see their participation as a pure waste of time. The anticipation of such a feeling in the

course of the experiment might undermine the ability of incentives to compensate the

opportunity cost of taking part in the experiment.

5.2.4 Other-Regarding Preferences and the Incentive Compatibility of Experiments

The logic behind the use of monetary incentives is to provide control of subjects’ pref-

erences over outcomes in such a way that the experimental situation implements an

actual microeconomic system. The experiment then provides evidence on the outcomes

raised by a given combination of the environment and the institutions. This aims to

mimic the way theory works, in which preferences are given. Accumulated evidence

over the last decades, however, tends to challenge the idea that individual monetary

payoffs are enough to describe preferences (see e.g., the discussion associated with the

prisoners’ dilemma game in Section 1.3.1 or the VCM game in Section 5.1.4). Rather, in

many circumstances, people seem to behave differently according to the consequences
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of their decisions for others. Such motives are often labelled other-regarding prefer-

ences to point out the departure from the standard self-interested representation of

individual preferences. Illustration 5.6 describes the ultimatum-bargaining game, which

contributed to stimulating interest in this topic.

As an illustrative example, consider an outcome-based model of social preferences

(Focus 5.5 describes an example from the alternative class of intention-based models).

Individual utility, Ui, is defined over two attributes: one’s own payoff, xi, and other

players’ payoff, x−i. Various representations of the dependency of agent i utility on x−i

exists in the literature. If the utility is independent of x−i, the model coincides with

the standard self-interest assumption. Alternatively, the utility can be defined over the

total surplus (
∑

j xj), so that social preferences mimic a utilitarian social planner. In

Bolton and Ockenfels (2000), utility is a function of the share of agent i in the allocation

(xi/
∑

j xj). In Charness and Rabin (2002) utility is a function of a disinterested social-

welfare criterion, i.e. a weighted sum of the total surplus and of the payoff of the least

well-off agent (min{xi, x−i}).

One of the most widely used outcome-based models is the aversion-to-inequality

model introduced by Fehr and Schmidt (1999), in which utility is a function of pay-

off differences between the agents. In this model, the utility function is defined over the

vector of individual monetary payoffs according to:

Ui(xi, x−i) = xi − θ−
i

1

N − 1

∑

j �=i

max{xj − xi, 0}

︸ ︷︷ ︸
loss from disadvantageous inequality

− θ+
i

1

N − 1

∑

j �=i

max{xi − xj, 0}

︸ ︷︷ ︸
loss from advantageous inequality

Each agent thus has three sources of utility: one’s own individual payoff and two func-

tions of payoff differences leading to utility losses in case of both disadvantageous

inequality (xj > xi) and advantageous inequality (xj < xi). The original model adds

three assumptions to the parameters value: (i) agents suffer more from disadvantageous

inequality than from advantageous inequality: θ+
i ≤ θ−

i , (ii) agents do not like advanta-

geous inequality: θ+
i ≥ 0, and (iii) no agent is willing to burn money in order to reduce

inequality: θ+
i < 1.3 Under this set of assumptions, agents endowed with such prefer-

ences exhibit aversion to inequality: there is a trade-off between one’s own payoff and

the fairness of the resulting allocation.

The main point as regards performance-based incentives in experiments is that if

subjects exhibit this kind of preference, then part of the control implemented through

the use of monetary incentives is lost. As an example, consider a prisoners’ dilemma

game. Table 5.3.a shows the typical payoff matrix of the game, in which each player

can choose between two actions: cooperate (Coop) or defect (Def). As discussed in

Section 1.3.1, empirical behaviour often does not coincide with the Nash equilibrium

of this game: while defecting is the individually rational action, many people decide

to cooperate. This is a departure from the Nash equilibrium when payoff accurately

describes individual preferences. But for inequity-averse subjects, the game played is

actually the one described in Table 5.3.b. For such a payoff structure, cooperating is a

3 The model embeds other kinds of psychological motive with alternative parameterisation: individual

preferences exhibit guilt if θ+
i < 0 and is envious if θ−

i < 0 .
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Illustration 5.6

Social preferences and strategic uncertainty: the ultimatum-bargaining game

The ultimatum-bargaining game (UBG) introduced by Guth et al. (1982) is an early experi-

ment that stimulated research into social preferences. It focuses on a simple two-player game.

One player is the sender, the other is the receiver. The sender receives an initial endowment

and is asked how much is sent to the receiver. The receiver then decides whether to accept

or reject the offer of the sender. The offer is implemented if the receiver accepts it, and each

player gets the corresponding payoff. But if the receiver rejects the offer, both players get 0.

The sub-game perfect equilibrium is rather simple: the receiver should accept any positive

offer, leading the sender to offer the smallest possible share of the endowment. The game thus

replicates a situation in which the sender has full bargaining power. The figure below (from

Guth et al., 1982, p. 375, Table 5) shows the number of experimental subjects who decide to

offer or reject the share of the endowment shown in the x-axis.
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First, it is common for receivers to reject offers below 20% of the endowment. Moreover,

most offers from senders lie in the [40%, 50%] interval, with no offers above 50% and very

few below 20%. There are thus two deviations from the behaviour predicted by sub-game

perfectness. While pure selfishness can hardly explain receivers’ behaviour, one can wonder

whether senders’ behaviour is induced by other-regarding concerns or a best reply to rejec-

tion behaviour. This early evidence has been replicated many times since the appearance of

the paper, with always the same patterns. In particular, this result appears robust to the level

of incentives: in an experiment that raises the stakes to three times the monthly expenditure

of the average participant, Camerer and Hogarth (1999) replicate the evidence on proposal

rates.
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Focus 5.5

Intention-based social-preference models

The altruism-based model has been later generalised to highlight intention-based social pref-

erences. In such a model, what matters to an agent is not only the payoffs but also the intention

behind others’ actions. In Rabin’s (1993) model of intention-based reciprocity, it is for instance

assumed that people want to be nice to those who are nice to them, and punish those who are

mean to them. In order to account for such behavioural motives, the standard game-theoretic

approach must be generalised. To that end, Geanakoplos et al. (1989) introduce psychological

games, in which payoffs depend not only on actions, as in traditional game theory, but also on

beliefs about actions. Rabin (1993) applies these ideas in the simple context of a two-player

game (later on generalised as a sequential game by Dufwenberg and Kirchsteiger, 2004). Let

ai denote the strategy chosen by Player i in their action set, bij denote Player i’s belief about

the strategy Player j is choosing and cij denote Player i’s belief about what Player j believes

Player i’s strategy is; i.e. ai are standard strategies, bij are first-order beliefs and cij are second-

order beliefs. The kindness of Player i towards Player j is the difference between the material

payoff to Player j, xj, minus the equitable, or fair, payoff to Player j. The fair payoff to j is

the average payoff of the lowest and the highest payoff Player i could have secured to Player

j. The fair payoff corresponds to an average point on the Pareto frontier for Player j’s payoffs

and serves as a reference point to measure how generous Player i is to Player j. Formally, the

kindness of Player i towards Player j is a function of both Player i’s strategy, ai, and the belief

bij about Player j’s strategy:

kij(ai, bij) = xj(ai, bij)︸ ︷︷ ︸
payoff to Player j

−
1

2
[ max
ai∈Ai

xj(ai, bij) + min
ai∈Ai

xj(ai, bij)]

︸ ︷︷ ︸
fair payoff

This function is equal to 0 if Player i’s strategy gives Player j their fair payoff, negative if

Player i’s strategy gives Player j less than their fair payoff, and positive if Player i’s strategy

gives Player j more than their fair payoff (if possible). Player i also has beliefs about how kind

Player j is to him. This belief function depends on first-order beliefs bij and on second-order

beliefs cij. Formally, Player i’s belief about Player j’s kindness towards him is

hji(bij, cij) = xi(bij, cij)︸ ︷︷ ︸
payoff to Player i

−
1

2
[ max
bj∈Aj

xi(bj, cij) + min
bj∈Aj

xi(bj, cij)]

︸ ︷︷ ︸
fair payoff

The sign of the belief function reflects Player i’s opinion about Player j’s behaviour. For exam-

ple, it is negative if Player i believes Player j is treating him badly. Utility functions driving

behaviour in this context are augmented with kindness functions:

Ui(ai, bij, cij) = xi(ai, bij)︸ ︷︷ ︸
material well-being

+ θikij(ai, bij)hij(ai, bij)︸ ︷︷ ︸
fairness
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where θ measures how sensitive agent i is to reciprocity towards agent j. For each player,

the strategies depend not only on material payoffs but also on beliefs about the other sub-

ject’s intentions. For instance, if Player i believes that Player j is treating him kindly, then

hij(ai, bij) > 0 so that Player i will choose a strategy ai such that kij(ai, bij) > 0. Conversely,

if Player i believes that Player j is treating him badly, then hij(ai, bij) < 0 and Player i will

choose a strategy ai such that kij(ai, bij) < 0. Rabin (1993) shows that there exists a ‘fair-

ness equilibrium’ such that each player maximises utility and intentions are self-fulfilling and

compatible (ai = bij = cij). It can also be shown that fairness equilibria in games include

Nash equilibria as specific cases where players mutually maximise or minimise each other’s

material payoffs.

Table 5.3 Outcome-based social preferences in the prisoners’ dilemma game

(a) Standard game (b) Game played by inequity-averse subjects

Coop Def Coop Def

Coop 5,5 –10, 10 5, 5 −10 − 20θ−
1 , 10 − 20θ+

2
Def 10, –10 –5, –5 10 − 20θ+

1 , −10 − 20θ−
2 –5, –5

Nash equilibrium if θ+
i > 1/4.4 As a result, there is a discrepancy between the game

subjects are actually playing and the one analysed by the theoretical model – as illus-

trated by Illustration 5.7, the same kind of issue arises if one assumes alternative sources

of other-regarding concern, like altruism. This has important consequences for the con-

clusions that can be drawn from such data: one cannot test at the same time theoretical

assumptions about preferences and theoretical predictions about strategic interaction. If

preferences are the main focus of the experiment, their occurrence does not challenge

internal validity, provided their source is accurately controlled. Illustration 5.8 provides

an example of such an experiment, which tries to disentangle intention- and outcome-

based social preferences. But non-monetary motives will be confounding if behaviour

is to be interpreted as conditional on the control over preferences offered by monetary

incentives.

Beyond the case of social preferences in games, this feature has many consequences

in the way experiments are designed and implemented. The general aim is to design and

implement the incentive scheme of the experiment in order to minimise the confound-

ing effects of any uncontrolled non-monetary motive of behaviour. First, this is the main

reason why compensation rules and payoffs are described aloud publicly in experiments.

This makes the incentive scheme common knowledge among participants in the exper-

iment and prevents subjects forming beliefs about how well or badly they are treated

as compared to others. Second, it is also sometimes useful to rescale the payoffs asso-

ciated with decisions in the experiment using an abstract currency. Subjects then play

with tokens rather than actual money, with possibly absolute values that are much higher

4 Similarly, in the ultimatum-bargaining game presented in Illustration 5.6, observed behaviour is compatible

with preferences such that θ+ < 0.5 for the sender and θ− > 1/3 for the receiver. If θ+ > 0.5, the sender

always offers 50%, which is always accepted.
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Illustration 5.7

Altruism in the prisoners’ dilemma game

Altruism-based approaches have been developed as an alternative to outcome-based models.

They assume that people care about the well-being of others. In its simplest, two-agent, ver-

sion, utility has the following additive representation: Ui = u(xi)+θv(xj). Here the total utility

of the agent involves two components: the selfish part of utility, u(xi), is derived from one’s

own payoff, but, due to altruism, agent i also cares about the payoff of agent j. This is reflected

by the second term, θv(xj). For the sake of simplicity, assume that utility is linear for both the

selfish term and the altruistic term. In the prisoners’ dilemma game described in Table 5.3.a,

the actual game played by altruistic agents when faced with the monetary rewards of their

actions is therefore:

Left Right

Top 5 + 5θ1, 5 + 5θ2 −10 + 10θ1, 10 − 10θ2

Bottom 10 − 10θ1, −10 + 10θ2 −5 − 5θ1, −5 − 5θ2

As for the inequity-averse example in Table 5.3.b, the incentive structure no longer provides

perfect control of individual preferences – social preferences induce a discrepancy between the

game actually played and the one described by monetary incentives. In this example, cooper-

ation is an equilibrium if both players have a high enough level of altruism and discount the

other rewards as at least one-third of their own rewards (i.e, if θ > 1/3).

than their monetary equivalent. The monetary value of such ‘experimental currency unit’

used to measure the payoffs in the experiment is generally announced before the start of

the experiment, and gains are converted when subjects are informed about their overall

performance. This is sometimes used to inflate the payoff, in order to improve saliency

thanks to an illusion that amounts at stake are big even if they are associated with

rather small monetary amounts. This is also useful if one needs to vary the monetary

incentives across subjects or across implementations of the experiment (in the course of

cross-cultural comparison, for instance; see Chapter 8, Section 8.3.3) while maintaining

the currency used to label earnings in the experiment constant. Third, individual earnings

from the experiment are confidential and private information of the owner. This avoids

interpersonal comparisons, the anticipation of which might induce unwarranted com-

petition between subjects during the experiment. Fourth, payment generally occurs in

a separate room, where subjects enter individually to receive their payment. Fifth, this

is also the reason why roles assigned to subjects are generally held constant when the

experiment features roles that are not symmetric – i.e. a receiver and a sender. The main

rationale is to avoid empathy, i.e. that a subject better cares about the partner’s situation

if playing in this position occurred earlier, or will occur later, in the course of the experi-

ment. In a UBG game, for instance, it is likely people will behave differently depending

whether they always decide as a sender, or are forced to put themselves in the shoes

of the receiver by knowing they will be one at some point, or have been one before.
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Illustration 5.8

Outcome versus intention: an experiment on the nature of social preferences

In order to disentangle outcome-and intention-based social preferences, Falk et al. (2003)

design an experiment in which a given choice–outcome combination is associated with vary-

ing intentions. Subjects play a UBG with 10 tokens to split. Instead of implementing the

usual choice of offers inside the range of all possible values, the experiment elicits a series

of four binary choices. In all choices, one option is to divide the 10 tokens by keeping eight

and leaving two to the receiver – allocation (8, 2). Four possible alternatives are considered

in turn: (5, 5), (2, 8), (8, 2) or (10, 0). Clearly, different behavioural models lead to different

predictions of receivers’ behaviour: a standard model involving self-interested agents pre-

dicts that the allocation (8, 2) is never rejected by receivers; an outcome-based model (e.g.

Fehr–Schmidt or Bolton–Ockenfels) predicts rejection of the unequal allocation (8, 2) due to

aversion to inequity whatever the alternative choice among the four is considered; last, an

intention-based model predicts different rejection rates of the (8, 2) allocation, depending on

the alternative against which it has been chosen. The figure below (from Falk et al., 2003, p.

24, Figure 2) shows the observed rejection rates of the (8, 2) offered in the four different choice

configurations.
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Overall, 55% of receivers reject the (8, 2) allocation if the alternative share is (5, 5), but

only 10% do the same against a (10, 0) alternative. Such a shift unambiguously supports

the position that intentions matter in rejection behaviour. There is also evidence of pure

aversion to inequitable shares, since 18% of the receivers reject the (8, 2) allocation when

(8, 2) is the alternative – in this configuration the sender has no choice and cannot signal any

intention.

These results provide evidence of outcome-based reasoning which contradicts a pure

intention-based model. The general conclusion drawn by Falk et al. (2003) is that social

preferences in this game are mainly driven by intentions, but influenced by outcomes. The
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experiment also provides evidence that senders rationally respond to empirical rejection

behaviour. As shown in the table below (from Falk et al., 2003, p. 24, Figure 1), the like-

lihood of the (8, 2) offer strictly increases in its expected return according to the empirical

probability of acceptance.

Game

Expected

payoff of the

(8, 2) offer

Expected

payoff of the

alternative offer

Percentage of

(8, 2) proposals

(5, 5) game 4.44 5.00 31

(2, 8) game 5.87 1.96 73

(10, 0) game 7.29 1.11 100

It is a well-document fact that roles interact with decision-making (see Illustration 5.9

for one of the most famous examples in social psychology). Finally, the nature of deci-

sion outcomes can be modified to control for unobserved preferences. For instance, Roth

and Malouf (1979) use binary lotteries in bargaining games to control for risk aver-

sion. With binary lotteries, the outcomes associated with decisions are lottery tickets,

and payoffs are chances to obtain a fixed prize. If subjects are expected-utility max-

imisers and therefore reduce compound lotteries, the utility associated with the fixed

prize is equal to the probability of winning that prize. For example, in an experimen-

tal bargaining game, the utility associated with an agreement would be equal to the

percentage of lottery tickets received from this agreement (Murnighan et al., 1988).

Because elicited probabilities capture von Neuman and Morgenstern utilities, binary lot-

teries are often used as devices to induce risk neutrality. Krawczyk and Le Lec (2015)

show this design can also be used to induce more selfish behaviour in experimental

games.

5.3 Parameters and Experimental Treatments

The use of performance-based compensation is a way to ensure the incentive com-

patibility of the experiment, i.e. that the chosen combination of the environment and

institutions does induce individual behaviour. We now turn to the specification of these

environment and institutions, and how it relates to internal validity. An important dis-

tinction needs to be made among the features of the system that are directly controlled by

the experimenter. Some of them, called ‘(control) parameters’, are set at the same value

in all instances of the experiment. Others, called ‘treatment variables’, are purposefully

varied across several instances of the experiment. The aim of this variation is to mea-

sure its effect on outcome behaviour. In order to provide proper identification of this

effect, implementation of the treatment relies on the identification strategies described

in Section 5.1.3.
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Illustration 5.9

The effect of roles on behaviour: the Stanford prison (aborted) experiment

In a famous experiment, Stanford University psychologist Philip Zimbardo showed how far

the disconnection of social and moral values can go when people are involved in alienating

contexts – social positions driving decisions more strongly than individual preferences. The

experiment took place in 1971 in the basement of Stanford University, which was equipped as

a prison facility (the full story of the experiment is reported in Zimbardo, 2007). The partic-

ipants were 24 students who responded to advertisements in local newspapers. The selected

candidates were all male, mostly-middle class white, and were chosen conditional on a strong

mental and emotional stability. The volunteers, who were all paid $15 per day for the exper-

iment (which was supposed to last two weeks), were split into two groups: 12 were asked to

play the role of ‘guards’, the other half were ‘prisoners’. The guards were dressed in military

uniforms, wore mirrored sunglasses to hide their eyes and carried wooden bats to intimidate

the prisoners. No physical punishment was allowed but this was basically the only rule: for the

rest, the guards were free to rule the ‘prison’ according to their own judgement. Conversely,

the prisoners lived in tough conditions. Only cheap coveralls, very basic facilities and plain

food were provided. A chain around their ankle was there to underline their status. Only iden-

tity numbers were used, instead of names. Upon students’ agreement and thanks to the support

of the local police, prisoners started the experiment without any warning, with a simulated raid

of the policemen in their homes and a routine for real suspects, including fingerprinting. Zim-

bardo himself acted as a prison warden, so that he was able to directly observe the course of

the study. The experiment degenerated very quickly and was suspended by Zimbardo after

only six days. On one hand, guards quickly got carried away with a cruel authority, using

punishments (mattresses were confiscated, access to the toilet was arbitrarily denied, etc.) and

different kinds of humiliation. Overall, one-third of the guards began to show clear signs of

sadism. On the other hand, many of the prisoners started to show symptoms of emotional and

mental distress. Two of them were removed before the end of the experiment. Although a riot

arose on the second day, none of the prisoners decided to leave the experiment before its end.

Guards developed antisocial attitudes and showed no sympathy for individual protests. The

main conclusion drawn from Zimbardo is that people who are drawn into some particular sit-

uations tend to adapt their behaviour to a role, instead of using their own judgement and moral

values. Social and ideological factors shape this role, and consequently submerge individual

personalities.

5.3.1 Direct Controls

All dimensions of the experiment that can be chosen by design are parameters of the

experiment (those are the ‘controlled inputs’ of the framework developed in Chapter 4).

Examples include, among many (many) others, the nature of the subject pool who will

be invited to come to the laboratory, the number of periods of play, the exchange rate

of the experimental currency, the number of subjects sitting in each section. Choosing

the value taken by each such parameter in the experiment amounts to choosing the

experimental DGP, hence providing direct control over the environment. Any different
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choice in the value of one parameter is likely to change the outcome behaviour. For

instance, designing an experiment implies making a choice as regards the size of incen-

tives. Too low incentives may fail to implement salient enough decisions, while too high

ones may mistakenly stimulate pay-off maximising behaviour (see Illustration 5.2 for

an example). Whether the appropriate choice is closer to one extreme or the other has

to be decided by sound judgement – according to a trade-off as regards internal validity

which, in this case, also has to be weighted with the consequences in terms of the cost

of the experiment.

The experimental setting widens the set of dimensions that can actually be chosen.

Induced-value designs (Smith, 1976), in particular, allow preference parameters to be

chosen thanks to the incentive scheme. As shown in the auction example of Chapter 2,

for instance, the marginal utility of subjects for the experimental good can be ‘induced’

by setting the price at which a unit of the good can be sold to the experimenter. Similarly,

experiments focusing on effort at work often induce the marginal cost of effort (see

Illustration 4.4 for an example): in this context, the effort at work is implemented as

a simple number with positive monetary consequences for the employer and negative

ones for the employee. In a non-laboratory context, these preference parameters are not

only private and unobservable information, but also heterogeneous between subjects.

Laboratory experiments, by contrast, allow one to include these dimensions in the set of

chosen parameters.

Beyond the direct choice of the components of the decision-making environment, the

design of the experiment also involves the set of measurement tools used to measure the

existing heterogeneity leading to the outcome variable. This includes simple question-

naires collecting data on subject’s socio-demographic characteristics like age, gender,

field of study, etc. To this basic information, more specialised questionnaires can be

added to measure specific dimensions of subjects’ personality traits, morality or val-

ues (typically, based on questionnaires developed in psychology, see e.g. Borghans et

al., 2008) or their cognitive skills – using, e.g., the cognitive reflection test (Frederick,

2005) or Raven’s progressive matrices test (Raven, 2008). Illustration 5.10 provides

an example of a measure of intensity of social relationships taken from social psy-

chology. A recent trend in experimental economics also includes measurements of

the physiological process and consequences of decision-making. For example, skin-

conductance responses allow us to keep track of subjects’ emotions (see Bach, 2016, for

a discussion of how it helps interpret data from economic experiments), and eye-tracking

techniques for instance allow us to record how information is collected by participants in

the course of the experiment (see Lahey and Oxley, 2016, for a review). Such measure-

ment tools deliver ‘control variables’: empirical measures of the components of decision

heterogeneity. In line with the identification strategy described in Section 3.4.2, these

control variables narrow the scope of the unobserved variations leading to the outcome,

thus enhancing the quality of inference. They can also be used to better interpret the

results, by assessing the role played by such heterogeneity in the variations of interest

in the outcome variable.
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Illustration 5.10

Controlling for closeness: the inclusion-of-the-other-in-the-self scale

An important question in behavioural economics is the effect of pre-existing relationships

between people – to what extent and why do members of the same family, friends, employees

of the same organisation, people from the same country, etc., interact differently together. The

usual way of studying this dimension is to ask people to report the nature of their relationship

with others (or, similarly, to organise the experiment in such a way that people with a given

pre-existing relationship come to participate). Such information provides a proxy variable of

how people are linked together, but does not measures the actual strength of this link. To

overcome this issue, Gächter et al. (2015b) develop a measure of intensity borrowed from

social psychology, the ‘inclusion-of-the-other-in-the-self’ (IOS) task (Aron et al., 1992), based

on the figure below.

You You YouX X X

1

You YouX X You X You X

4 5 6 7

2 3

For each possible choice, one circle refers to the respondent and one circle refers to another

person, X. For a clearly designated participant, respondents are asked to ‘consider which of

these pairs of circles best describes your relationship with [this individual] in all questions

that follow. In the figure “X” serves as a placeholder for [this individual], that is, you should

think of “X” being [this individual]. By selecting the appropriate number please indicate to

what extent you and [this individual] are connected’. Gächter et al. (2015b) confirm empiri-

cally the psychometric properties of the original scale, and show it describes not only ‘close

relationships’ (typically, romantic ones) but also non-close relationships, in particular friends

and acquaintances.

5.3.2 Treatment Parameters and Experimental Treatments

Examples abound in the experiments described in previous parts of the book of parame-

ters that are purposefully set at different values. To name a few: the marginal per capita

return in Isaac et al.’s (1984) experiment described in Section 5.1.4 is a treatment vari-

able set equal to either 0.3 or 0.75; the alternative split against which subjects must

choose in the discrete version of the UBG of Falk et al.’s (2003) experiment described in

Illustration 5.8 is another example of one treatment variable, which takes four possible

values: (5, 5), (2, 8), (8, 2) or (10, 0). Due to the frequent use of experiments in medi-

cal sciences, these kinds of parameter, which take more than one value according to

the design of the experiment, are called treatment parameters (sometimes also called
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treatment variables) – while parameters that remain constant in all instances of the

experiment will be called control parameters (or control variables).

Treatment parameters need to be distinguished from experimental treatments: an

experimental treatment usually refers to a unique combination of all the parameters’ val-

ues. In the last example, one treatment variable defines four experimental treatments –

the sender chooses between (8, 2) and (5, 5) in the first treatment, between (8, 2) and

(2, 8) in the second, etc. In the first example, the two values for the MPCR define two

experimental treatments.5

The main difference between control and treatment parameters is that treatment

parameters aim to generate variations in the outcome, in order to provide identification

of their causal effect. The causal effect of control parameters cannot be measured, pre-

cisely because they remain constant at a given value in all instances in which outcome

behaviour is observed. But their effect can always be measured by implementing them

as treatments rather than controls. As a matter of fact, the classification between controls

and treatments belongs to the experimental design in just the same way as the value at

which they are set: all examples of control parameters given above can be implemented

as treatments, if measuring their effect on outcome behaviour is relevant or interesting.

For this reason it is often very tempting to widen the set of treatment variables, and the

number of values considered for each them. This temptation has to be resisted, due to

the data requirements implied by such an inflation in treatment dimensions. The reason

lies in the resulting rise in the number of experimental treatments necessary to provide

identification – a question to which we now turn.

5.3.3 Between-Subject Designs: Identification of Treatment Effects through

Randomisation

Consider an experiment with one treatment variable fixed at two possible values (as

the MPCR example discussed above, for instance). This defines two versions of the

experiment called experimental treatments (or sometimes experimental conditions):6

one condition for each possible value of the treatment, with all other parameters fixed

at a constant value. The open question we want to discuss in the reminder is: how

should the two conditions be implemented to achieve identification of the effect of this

treatment on outcome behaviour?

The discussions in Chapter 3, Section 3.4.1 in particular, provide a natural answer

to this question. Identification is achieved if subjects are allocated to one condition

or another according to a random rule. This produces two kinds of individual: those

involved in the ‘baseline’, or ‘control’, condition and those involved in the ‘treatment’

condition. Denoting Ti = 0, 1 the group variable indicating the condition individual i is

involved in, the effect of the treatment on the outcome variable yi can be estimated by

simple mean comparisons:

5 Treatment parameters and experimental treatments trivially coincide in experiments that consider two

possible values for a unique treatment variable; the two wordings are often used as synonyms in such

circumstances.
6 In general, economists say ‘treatment’ where psychologists say ‘condition’.
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�̂ =
1

NTi=1

∑

i∈Ti=1

yi −
1

NTi=0

∑

i∈Ti=0

yi

Since the allocation to one group or another is random, the individual heterogeneity

that makes y vary for unobserved reasons is not correlated to the experimental condi-

tion. This simple comparison thus provides an unbiased estimate of the mean causal

effect of the treatment on behaviour. This identification strategy is identical to the cross-

section estimator �̂Cross introduced in Chapter 3. Randomisation of treatment groups

achieves the identifying assumption of this estimator, i.e. that there is no selection into

the treatment groups.

In the experimental literature, this implementation is often referred to as a ‘between-

subjects’ design, since individuals involved in each condition are different people.

People generally refrain from having different treatments implemented in the same ses-

sion, in order to preserve common knowledge of equal treatment between subjects. As

a result, between-subject experiments generally implement one condition per session.

Identification requires the experimental treatment implemented in a given session to be

chosen at ‘random’, i.e. in a way that is uncorrelated with any unobserved factor that

might have an effect on behaviour. To get back to a previous example, if some sessions

are scheduled early in the morning and others just after lunch, the mapping of these slots

with the treatments should be chosen in such a way that there is no systematic relation-

ship between the two. If it is the case, then people in the two groups are statistically

the same: the distribution of noise in the treatment sub-samples is identical. Because the

counterfactual is statistical in nature, between-subject designs are demanding in terms

of sample size.

5.3.4 Within-Subject Designs: Identification of Treatment Effects through Blocking

Strategies

The alternative to a statistical counterfactual based on randomisation is to get rid of

the confounding effect of individual unobserved heterogeneity by just having the very

same people behaving in all decision environments. In this way, unobservable individual

heterogeneity would no longer interact with the treatment by remaining constant in all

decision environments. This can be achieved by implementing experimental treatments

one after the other in the same experimental session, with the same subjects. In the exam-

ple of two experimental treatments, decision periods denoted t are associated with the

first of them (Ti,t = 0, ∀i), and decision periods denoted t are associated with the second

(Ti,t = 1, ∀i). The effect of the treatment can be measured by a simple comparison of

outcomes between the two situations:

�̂ =
1

N

∑

i

yi,t −
1

N

∑

i

yi,t

Since the same individuals are observed in two different periods of time, this formally

amounts to relying on the before–after estimator introduced in Chapter 3, Focus 3.4.

It uses the past behaviour of treated subjects as a counterfactual for their behaviour
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after the treatment. This discussion underlined that this estimator thus identifies a mix

between the treatment effect of interest and the variation in unobserved heterogeneity

in the group of treated individuals, from before (εεε(1)t=t) to after (εεε(1)t=t) the treatment.

Since the same individuals are making decisions in the two situations, the difference

εεε(1)t=t − εεε(1)t=t eliminates any permanent heterogeneity. Individual-specific determi-

nants of behaviour, in particular, disappear thanks to this comparison. Because the

comparison occurs for the same individuals observed in different conditions, this design

is often labelled a within-subject implementation of the treatment.

One advantage of this design is to achieve a higher statistical power than the

between-subject design, thanks to both lower noise in the data and more individual

observations delivered by a given sample of participants. First, within-subject designs

generate observations associated with several different treatments based on the same

individuals – i.e. it increases the number of subjects who participate in each treatment

for a given size of the subject pool. Second, since individual-specific heterogeneity

remains constant across decision stages, variations in the outcome variable are con-

ditional on these unobservables, resulting in lower variance of the noise as compared

to between-subject designs. Illustration 5.11 provides an example of how this condi-

tioning on individual heterogeneity widens the sets of research questions that can be

addressed.

The price for this increased power is that identification is weaker, as the identify-

ing assumption is more likely to be violated. The identification assumption amounts

to requiring that the treatment is the only influential change over time in the experi-

ment. Any change in unobserved heterogeneity that happens at the same time as a new

experimental treatment is introduced will thus be confounding. Typically, if repetition

itself induces a change in decision-making, because subjects learn how to best decide,

or get tired or bored with the experimental exercise, the estimator will confound this

effect and the causal effect of behaving in environment t rather than t. A major source

of such a change over time is the sequence of the treatments themselves. If there is

any permanent effect of being exposed to a treatment on subsequent behaviour, then the

comparison no longer elicits the pure effect of behaving in one environment as com-

pared to behaving in another, but rather a combination of the treatment effect of interest

and this change in unobserved heterogeneity over the course of the experiment. Because

such a confounding effect arises due to the order in which the treatments are imple-

mented, it is known as order effects in the experimental literature (see Illustration 5.12

for an empirical example, in which order effects are induced on purpose).

As for any confounding mechanism, order effect can be indirectly controlled through

either blocking or randomisation. Randomisation in this context implies choosing ran-

domly the order in which treatments are implemented. There will be change over time in

unobserved heterogeneity, but randomisation will ensure that this change is not system-

atically correlated with the occurrence of the treatments, hence achieving identification.

As before, this identifying assumption is statistical in nature, hence requiring gathering

enough data for the assumption to be empirically meaningful. Alternatively, a block-

ing design will systematically balance the order in which treatments are implemented.
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Illustration 5.11

Individual consistency of social preferences: a within-subject design

The inequality-aversion model of Fehr and Schmidt, presented in Section 5.2.4, rationalises

behaviour in social-preference games by extending the specification of individual prefer-

ences to additional parameters, θ−, θ+, that relate individual well-being to the distribution

of outcomes. The model has been shown to perform well in describing the observed distri-

bution of decisions in social-preference games. Blanco et al. (2011) aim to assess whether

such predictive power holds at the individual level. To that end, they design an experiment

eliciting behaviour in social-preference games for the same individuals. This within-subject

design allows us to measure the consistency of individual preferences across games. In this

experiment, the same subjects plays the following games one after the other:

Game Label Description

Ultimatum-bargaining

game

UBG £20 pie, proposer gets £(20 – s) and responder s if the

respondent accepts, both get 0 otherwise

Modified dictator game MDG dictator chooses between £20 and £0 and equitable

outcomes ranging from £0–£0 to £20–£20

Sequential-move

prisoners’ dilemma

SPD both defect: £10–£10; both cooperate: £14–£14; one

defects, one cooperates: £17–£17

Public-good game PG two players, £10 endowment per player, marginal per

capita return on contributions is 0.7

From these data, individual preferences (i.e. estimates of θ−
i , θ+

i for each subject i) are esti-

mated based on behaviour as receiver in the UBG and as proposer in the DG. This provides

a distribution of preferences in the sample of subjects. The analysis then proceeds in two

steps. First, the distribution of preferences is used to assess its ability to predict aggregate

behaviour: this amounts to comparing the actual distribution of preferences to the distribution

required in order to generate the observed distribution of behaviour in each game. The model

performs well in that regard in the ultimatum-bargaining game, the public-good game and the

first-mover strategy of the sequential prisoners’ dilemma, confirming previous analysis. The

second step makes use of the within-subject dimension of the data. Individual decisions in

each game are compared to the prediction from the individual-specific estimated preferences.

Based on this within-subject consistency criterion, the model performance is very low. As an

illustration, we focus on the results from the public-good game. People who exhibit a high

level of guilt about advantageous inequalities (θ+
i > 0.3) should make a positive contribution

to the public good. On the other hand, people with a low guilt parameter are expected to free-

ride on the public good. In the sample, 20 subjects are characterised by preferences such that

θ+
i < 0.3, and 17 subjects contributed zero, confirming the good performance of the model

in aggregate. However, only 13 of the 20 subjects with low θ+ belong to the group of zero

contributors. The hypothesis that a low θ+ implies free riding at the individual level thus is

rejected by the data.
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Illustration 5.12

Evidence of order effects: rationality spillovers

Cherry et al. (2003) rely on a within-subject design to test a ‘rationality spillover hypothesis’,

i.e. that non-market behaviour changes when rationality is fostered through a market setting.

The hypothesis is tested in the context of a preference-reversal game. The baseline, T1, features

no arbitrage and real choices – i.e. choices affect take-home pay. Subjects play 15 rounds. In

each of them, subjects choose between two lotteries (A and B) with the same expected value,

first in a market setting and secondly in a non-market setting. At the beginning of each round,

they are endowed with an initial balance of $10. In both settings, subjects are asked to order

their preferences between the first lottery (A) – which is a low-risk lottery – and the second

lottery (B) – which is a high-risk lottery. Then, they are asked to report their fair value for

both lotteries in both settings. Finally, an offer price is randomly drawn for each lottery in the

market setting and the subject is sold the lottery if the stated value was higher or equal to the

price – the price is subtracted from the round balance – and the buyer becomes the owner of

the lottery: the lottery is played, and earnings are determined according to a draw in the lottery.

Arbitrage is introduced in T2, in order to test the rationality spillover hypothesis. Starting at

round 6 in the market setting, preference reversals are automatically arbitraged: the lottery with

the lowest price is sold to the subject, and traded against the preferred lottery. This realises the

monetary cost of preference reversals. Two further treatments provide robustness checks. In

T3, everything is similar to T2 except that in the non-market setting subjects make hypothetical

choices instead of real choices. In T4, everything is similar to T3 except that subjects make a

choice over environmental lotteries instead of monetary lotteries as in all other treatments. For

example, a subject is asked to choose between seeing a grizzly bear with a 30% chance and

catching a cut-throat trout with a 70% chance.
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The main results from the experiment are provided in the figure above (from Cherry et al.,

2003, p. 71, Figure 2). Thanks to the within-subject design, subjects serve as their own control

in the non-market setting. Comparing the trends between T1 and T2, shows a strong discrep-

ancy after 6 rounds (when arbitrage is introduced), in the number of observed preference

reversals: the double difference confirms the rationality-spillovers hypothesis. This decrease

in reversal rates is observed even when the choice is hypothetical (T3) and when the lotteries

are environmental instead of monetary (T4).

In the example of two experimental conditions, this amounts to balancing the number

of sessions between the two orders {Ti,t = 1; Ti,t = 0} and {Ti,t = 0; Ti,t = 1}. The

identifying assumption is more restrictive than the one associated with randomisation: it

achieves identification only if the time-varying confounding mechanisms are the same

in the two sequences – for instance: if it is not the case that one of the two conditions

fosters quicker learning than the other. The design, however, extends the scope of the

robustness check that can be performed in that regard. One can use only the data from the

first half of each sequence to perform a between-subject analysis of the treatment effects.

Cross-sequence comparisons can also be used to assess whether behaviour is different

over time by comparing Ti,t = 1 to Ti,t = 1 and Ti,t = 0 to Ti,t = 0 (to distinguish order

effects from pure learning effects, it might be necessary to consider another sequence,

{Ti,t = 0; Ti,t = 0} in order to produce the counterfactual behaviour in treatments Ti,t =

0 without order effects). Either of the two choices implies complementing the within-

subject design by additional treatments with different orders. In the end, the number of

experimental treatments, and thus participants, required for a within-subject design is

thus the same as for a between-subject design.

5.3.5 Multiple Treatments

The distinction between treatment variables and experimental treatments is mainly rel-

evant when there are more than two values of the treatment parameters. This happens

when one treatment variable is set to more than two possible values, but more often

so when several variables are used as treatments. Illustration 5.13 provides an example

that combines the two cases – with two treatment variables in a VCM game, the MPCR

and the group size, one of them associated with two possible values while the other

can take either of four levels. To make things concrete, consider two treatment variables

denoted Ta and Tb, each associated with two values of the corresponding treatment vari-

able, which we denote as usual as Ta = {0, 1} and Tb = {0, 1}. The challenge is to define

experimental treatments in such a way that the causal effect of each one can be identified

from observed behaviour. Strict randomisation of the treatment variables would imply

independently randomly choosing the parameter value of each treatment variable. The

main drawback of this procedure is that it allows several treatment variables to change

simultaneously.

The implementation rule circumventing this issue amounts to defining experimen-

tal treatments according to a factorial design: an experimental treatment is defined for
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Illustration 5.13

VCM: a 4 × 2 factorial design

As shown in Focus 5.3, the intensity of the social dilemma raised by a VCM game crucially

depends on how the MPCR compares to the individual shares in the group, 1/N. Isaac et al.

(1994) further investigate the empirical content of this prediction by considering variations in

both dimensions. The core game is the one described in Section 5.1.4. Two dimensions are

used as treatment variables: the MPCR is set at either 0.3 or 0.75, and the group size takes

four possible values: 4, 10, 40 and 100. Together these two treatment variables define a 4 × 2

factorial design, resulting in eight experimental treatments. The figure below (from Isaac et

al., 1994, p. 14, Figure 6) shows the share of contribution elicited over time in each treatment.

0

10

20

30

40

50

60

70

80

T
o
k
e
n
s
 t
o
 g

ro
u
p
 a

c
c
o
u
n
t 
(%

)

1 2 3 4 5 6 7 8 9 10

Round

Low MPCR = 0.3

N = 4
N = 10
N = 40
N = 100

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Round

High MPCR = 0.75

N = 4
N = 10
N = 40
N = 100

For a given private return to the public good, group size does not decrease subjects’ contribu-

tion per se. In particular, for large groups, an increase in the group size has a positive influence

on the contribution to the public good. Therefore, large groups can be more efficient at pro-

viding public goods than small groups. Two additional features appear from the figure. First,

with a low marginal per capita return, large groups are more cooperative than small groups,

but this effect disappears when the marginal per capita return increases to 0.75. Second, the

positive link between the marginal per capita return and the contribution to the public good

that existed in small groups vanishes in large groups.

each and every combination of all treatment variables. Table 5.4 illustrates the factorial

design associated with the above example, with two treatment parameters each set to

two possible values. This 2×2 factorial design results in four experimental treatments.

The advantage of a factorial design is to build a control situation for each treatment

condition: comparisons across cells in the table identify the marginal effect of switch-

ing the value of one treatment variable, conditional on some value for the other. It also

delivers more: as shown by the comparisons in the outer row and column of Table 5.4,

as many estimates of the treatment effects as the number of parameter values (two in

our example) are observed thanks to this design. For instance, �Ta|Tb=0 and �Ta|Tb=1
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Table 5.4 Multiple treatment variables: a 2 × 2 factorial design

Treatment variable 2

Tb = 0 Tb = 1 �=

Treatment Ta = 0 Experimental

treatment 1

Experimental

treatment 2

�Tb|Ta=0

variable 1 Ta = 1 Experimental

treatment 3

Experimental

treatment 4

�Tb|Ta=1

�= �Ta|Tb=0 �Ta|Tb=1 �DD

both are measures of the effect of the treatment variable Ta, but each is generated by a

different decision environment in terms of the value of Tb. The difference between the

two provides a measure of the interaction between the treatments. It amounts to relying

on the difference-in-difference estimator (DD), i.e.:

�̂DD =
(
YTa=1,Tb=1 − YTa=1,Tb=0

)
−

(
YTa=0,Tb=1 − YTa=0,Tb=0

)

=
(
YTa=1,Tb=1 − YTa=0,Tb=1

)
−

(
YTa=1,Tb=0 − YTa=0,Tb=0

)

When applied to a design in which the treatments all are target variables, this esti-

mator measures the joint contribution of the two treatments, i.e. how the outcome

varies when the two treatments are simultaneously influential, as compared to their

own marginal effect. This same strategy is sometimes applied to designs in which

one of the two treatment variables is used to generate the baseline: the target out-

come, on which the treatment effect is to be identified, is the change in behaviour

between two baseline conditions. It is the case, for instance, in experiments described

in Section 2.4, trying to measure the hypothetical bias in preference elicitation. In

this case, the variation in behaviour depending on whether incentives are real or

hypothetical (say, treatment variable Ta) serves as a benchmark for the investiga-

tion. The main treatment variable of interest is another dimension of the environment

(Tb, such as a priming task, or a certainty question) of which the design aims to

measure the effect on hypothetical bias in elicited preferences. In circumstances like

this, the difference-in-difference estimation strategy is applied in order to measure

the effect of the treatment variable of interest (Tb) on the variation of behaviour.

As shown in Chapter 3, Focus 3.4, the identifying assumption is then the so-called

parallel-trend assumption: that the change in unobserved heterogeneity that occurs in

line with the ‘nuisance’ treatment variable is not affected by the change in the target

one.

The factorial design implementation of multiple-treatments experiments is the main

reason why the choice of treatment variables, and their individual values, must be

made with parsimony. In the general case, with K treatment variables with nk (k =

1, . . . K) individual values each, a factorial implementation requires as much as
∏K

k=1 nk

experimental treatments, defining the set of all feasible combinations of the treatment

variables. For a given number of observations, this implies an important loss of statistical

power as additional treatment dimensions are added; conversely, for a given statistical
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power, the required sample size explodes as the number of dimensions increases. As

an example, adding one value to one of the two treatment variables in a 2 × 2 design

increases the number of treatments from 4 to 6 (2×3), and adding a third binary variable

increases the number of conditions from 4 to 8 (2 × 2 × 2).

5.4 The Perceived Experiment

The quality of identification in an experiment is based on two building blocks. The

first is a well-designed decision environment, as discussed up to now. But the actual

decision environment is not quite the experiment that has been designed and imple-

mented. What actually generates outcome behaviour is rather the experiment in which

participants think they are involved. This perceived experiment is the second building

block of internal validity. For instance, if subjects believe they will not get paid at the end

of the experiment, then the performance-based reward will not incentivise behaviour; if

they think the worst outcome is always to be drawn to manipulate their payoffs, then

the experiment will not deliver their actual decisions under risk, etc. No matter how

clever the actual design is, outcome behaviour will only result from what people have

in mind – see Illustration 5.14 for an application to the incentive-compatibility of the

compensation scheme. As a result, control over subjects’ perceived experiment is a very

important part of experimental designs, and their internal validity.

5.4.1 The Perceived Situation: Experimental Instructions

Within the set of controls over the perceived experiment, the leading one is the way the

experiment is explained to the subjects. This is usually referred to as the ‘experimental

instructions’, and generally takes the form of a printed sheet of paper that is distributed

to subjects before the experiment starts. Section 2.1 provided a concrete example applied

to a second-price Vickrey auction; Section 6.2.1 provides practical advice about its struc-

ture and content. What matters in terms of internal validity is that this document is the

main source of information for subjects about how the experiment proceeds. As such,

it has to be written in such a way as to fulfil two basic aims: (i) that the experiment is

well understood by each and every subject, and (ii) that all subjects are given the same

information about the experiment. Each of the two conditions has its own consequences

on the internal validity of the outcome behaviour. Condition (i) guarantees that the deci-

sion environment that subjects have in mind is the one that ought to be implemented.

Otherwise, observed behaviour will either be generated by another experiment (the one

subjects think they behave in) or, even worse, by random behaviour in an environment

subjects simply did not get. Condition (ii) applies a blocking strategy. The aim is to

avoid idiosyncratic noise in the perceived experiment that would be induced by a het-

erogeneous understanding of the rules – hence preventing correlation with any change

in target outcomes. Each condition also has its own implications on how experimental

instructions are written and communicated to subjects.
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Illustration 5.14

Identified failures of internal validity: confusion in VCM games

Ferraro and Vossler (2010) further explore Andreoni’s (1995) hypothesis presented in Sec-

tion 5.1.4 by considering whether players’ inability to distinguish the relationship between

their choice and the game’s incentives plays a role in cooperation behaviour in VCM games

– a feature they label ‘confusion’. They design a series of experiments which compare VCM

outcomes when the game is played with other humans or with virtual players. Virtual players

are designed to perform predetermined contribution sequences. Subjects are informed whether

they are matched with real people or with robots. In a virtual-player treatment, other-regarding

preferences should play no role.

To test this hypothesis, participants are involved in 15 VCM games, with varying MPCR and

group sizes – in order to check the robustness of the difference in changes in the incentives.

The nature of other players (whether they are automatons or real human beings), by contrast,

remains the same in all decision rounds. The main results are shown on the figure (from Ferraro

and Vossler, 2010, p. 9, Figure 1).

Based on the comparison between the two treatments, confusion accounts for half the

average contribution – equal to 25% in the human treatments, 12.5% in the virtual-player

treatments. What is more, confusion does not seem to disappear with repetition.
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The second condition, requiring that the same information is given to all subjects, is

the main reason why experimental instructions are actually written and distributed to

subjects. Thanks to this document, explaining the experimental procedures to subjects

amounts to reading the same text to all subjects: the same wording, the same order,

the same sentences, the same examples will thus be used to communicate the decision
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environment to subjects, avoiding variations between subjects across experimental ses-

sions. For this reason, it is also very important to refrain from giving information on an

idiosyncratic basis. In particular, it is always very tempting to use the written text as a

simple memo and explain the experimental set-up using one’s own words as they come:

but doing so incurs the risk of forgetting the exact wording, or even pieces of informa-

tion, used in past sessions and subsequently inducing variations in perceptions across

subjects. Similarly, it is good practice to always try to refer to written instructions when

answering questions. If the instructions are well written, all information subjects need to

know should be described; if they are not, the right answer to a question about it should

simply be: ‘you don’t have this information; it’s not specified’.

The first condition requires the decision environment to be well understood by each

and every participant. The obvious consequence is that the instruction must be simple,

intelligible and clear. This has to be true for every subject possibly drawn from the pool.

Smart people easily understand simple things, but the reverse is not true. The instructions

thus have to be as accessible as possible, even if some subjects are very likely to find

the text overly simple, and the explanations very boring – no doubt, this is what you

felt while reading the sample instructions in Chapter 2, Section 2.1. Our advice when

writing the experimental instructions is to try to figure out what the least talented reader

you are able to imagine would think based on the text. This is not only a matter of IQ, but

also very often a matter of jargon and intuitions that are obvious to people well versed

in economics, but not quite so to others. Here are a few principles that are generally

applied to the writing of the instructions:

• Only focus on the information subjects need to know – many features of the design

are not necessary to understand decisions to be made.

• Describe, do not explain – the reasons why things work the way they work is a

matter of inference, explaining them will warn subjects against particular kinds of

behaviour.

• Never repeat the same information – otherwise, subjects will wonder why you are

giving the same information several times, and will conclude that they misunderstood

the first time they heard the information.

• Smooth out any possible ambiguity – each time subjects wonder about some feature

of the design, they will make out their own answer if it is not immediately provided.

• Parsimoniously choose the place to provide each piece of information – answers to

questions one does not have in mind are generally skipped.

• Always use the same words to refer to the same things – people generally expect

different meanings for different words.

Beyond writing, two devices are useful and very often included in order to enhance the

level of understanding of the experiment. First, it is advised to include many examples

illustrating the relationships between the information received, the decision taken by

one subject and the others, and the resulting outcomes. General ideas always are more

easy to get once their concrete applications have been presented. There is a risk of

anchoring subsequent behaviour through the examples, though: typically, the likelihood

of observing high contributions in VCM game will be higher if the examples show high
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levels of contributions (because the examples are interpreted as social norms, or advice

from the experimenter, see e.g. Roux and Thöni, 2015, for empirical evidence). Several

strategies can be used to circumvent this issue: provide several examples, in random

order, that are balanced as regards the kind of behaviour they are likely to induce (high,

medium and low contributions, for instance), or use letters instead of numbers (as was

the case in the instructions provided in Chapter 2). One can even ask subjects to make

up their own examples, which implies the ability to check subjects’ answers one by one.

In any case, the choice of the examples must be consistent with the level of cognition

expected from the subjects. If the relationships between decisions and outcomes require

some computation, several possibilities exist. One can offer only a few examples along

with a computation formula, or provide a table summarising all possible configurations,

or a calculator/simulator which subjects are allowed to use freely during the experiment.

Each choice, as always, has its own advantages and drawbacks. The less easy it is for

subjects to compute the consequences of their choice, the more likely are computational

mistakes; conversely, the more sophisticated are computational tools, the more likely it

is that the design artificially forces payoff maximisation. Requate and Waichman (2011)

provide empirical evidence for the case of a duopoly game, proving that this choice is

not innocuous on elicited behaviour.

A second device is the use of pre-experiment understanding questionnaires, which

subjects are typically asked to answer on their own after the reading of the instructions

and are then publicly commented on before the experiment starts (an example of both

the questionnaire and how the debriefing takes place has been provided in Section 2.1).

The same rule applies to the debriefing as the ones stated about the written instructions:

to avoid variations in the perceived environment across experimental sessions, it is wise

to debrief the questionnaire using a standardised wording as close as possible to the

written instructions. This questionnaire allows us to double check what subjects got

from the instructions, and provides an opportunity to fix possible misunderstandings.

This is also a good place to summarise the main important information subjects should

keep in mind from the instructions. In that regard, even again if the questions might

seem overly simple to most participants, it is always a good idea to include questions

about the occurrence of the main treatment variables and the most sensitive features of

the design.

The above guidelines are all meant to achieve the highest possible level of under-

standing about what the actual experiment is. A related but different concern is to try

to undermine the heterogeneity of perceptions induced by the psychological load each

participant associates with the decision environment. This has two main consequences

for the way instructions are devised in typical economic experiments. First, instruc-

tions are generally written in ‘neutral’ words, i.e. do not make reference to either the

actual economic context of the situation, or to the actual name or role of the economic

agents involved. This is meant to focus on economic incentives and avoid eliciting the

mechanical effect of norms or value judgements that subjects project onto the underly-

ing real-world situation. For instance, a game on lying behaviour will not make use of

words like ‘telling the truth’ or ‘lying’, but rather describe several ‘options’ and their

consequences. Similarly, an experiment focusing on corruption behaviour will not talk
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about bribes between a briber and a bribee, but rather describe it as monetary transfers

between player A and player B. The usual disclaimer applies to this discussion: it applies

to experiments in which moral judgements induced by the situation are confounding, but

in other instances they might well be a matter of interest on its own, leading to purpose-

fully contextualised instructions. Empirical evidence in that regard is inconclusive and

game-dependent: for instance, Abbink and Hennig-Schmidt (2006) find no effect of the

wording on corruption behaviour, while Jacquemet et al. (2017) find a strong effect on

lying behaviour. A strong limitation of these principles is that contextualised wording

often eases understanding (see Illustration 5.15 for an example). For instance, explaining

a market experiment without words like price, supply, demand, good, seller and buyer

sounds like an impossible challenge, resulting in a uselessly complicated text. Exper-

imental evidence tends to confirm this point, as a meaningful context has been shown

to work as a substitute to learning (Cooper and Kagel, 2003, 2009; see Alekseev et al.,

2017, for a literature review).

5.4.2 Never Use Deception

An implicit but crucial assumption in the implementation of the experiment is that sub-

jects trust what they are told. All the above rules are nothing but useless if subjects

doubt the information they receive. If that is the case, then what they actually under-

stand about the experiment proceedings will be a mix of this information and what they

think is the truth behind the fake details they are provided with. Such a risk of facing

scepticism about the information provided in the instructions is greatly fostered by the

use of deception, i.e. if false information is deliberately given to subjects. There are

many channels through which subjects might realise that deception has been used in the

experiment in which they have been involved. If deception applies to draws being ran-

dom, they can talk together after the experiment and then observe that highly unlikely

outcomes occurred (for instance, that the low-stake outcome has always been drawn

although a payoff-improving one was announced to be very likely); they can read the

research papers derived from the experiment, and observe that the actual design is dif-

ferent from the one they were described at the time the experiment was run, etc. The

most important and devastating consequence of deception is that it is associated with

the possibility of contamination effects: if deception is used for one experiment in one

laboratory, this might induce mistrust not only from subjects from the same pool who

participated in the experiment, but even from any subject from the same pool or even in

any other laboratory. The consequence is that control over the perceived environment is

then lost, as there is no way to know for sure whether subjects actually take the instruc-

tions at face value or think they were deceived at some point (see Ortmann and Hertwig,

2002, for a review of empirical evidence).

This feature is obviously shared by all experimental social sciences. In economics (in

contrast, in particular, with psychology: see Focus 5.6 for a discussion) such a practice is

generally not necessary to produce interesting data: the focus is on behaviour generated

by an environment that is most often easy to actually implement and describe. There is

thus no need to manipulate the environment through false information. Given the small
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Illustration 5.15

Identified failures of internal validity: game form recognition in beauty contest

games

In a guessing game, each player in a group of N is asked to choose a number between 0 and

100. The winner is the player choosing the number closest to a given percentage p of the

average of all numbers chosen in the group, y. If N ≥ 2 and 0 ≤ p < 1, the only Nash equi-

librium is to choose 0. Accumulated evidence (which we review in more detail in Chapter 9,

Section 9.2), however, shows that people very often choose numbers that are higher than 0

– a weakly dominated strategy. Chou et al. (2009) design an experiment aimed at assessing

whether such behaviour should be seen as an actual failure of the game-theoretic prediction,

or may be due to an internal-validity issue, noting that ‘if subjects do not understand the game

form, the experimental control needed for testing game theory is lost’ (Chou et al., 2009, p.

159). The experiment includes three treatment variables that are expected to improve subjects’

understanding of the game. First, three different types of instruction are used to explain the

game: the standard instructions are used in the baseline, while the HINT condition includes the

following addition:

Notice how simple this is: the lower number will

always win (see Figure)

number

lower number

average of two numbers

2/3 average of two numbers

The figure offers an explicit illustration of how one’s own choice interacts with the choice of

others. This aims to help subject figure out how the strategic interaction works. The second

treatment variable is the scenario used in the instructions. In the BATTLE condition, the game

is framed using a battle situation: subjects are told that they have to decide where to place their

troops on a hill. Within each pair of players, the one with troops at the highest height will win

the battle, and the hill is 100 feet high. Last, the experiment uses two kinds of sample, with

varying levels of training in maths: Caltech and community college students. The main results

are described in the table below (from Chou et al., 2009, p. 170, Table 4).

Measure Caltech Caltech

HINT

College College

HINT

College

BATTLE

Share with number = 0 0.46 0.87 0 0.07 0.46

Average number 23 3 35 31 15

Sample size 26 23 20 15 105

For all groups, the hint greatly helps elicit the equilibrium action. The change is stronger for

Caltech than for community college students, who strongly benefit from the BATTLE fram-

ing. To the extent the treatment variables actually improve the clarity of the instructions, an

enhanced understanding of the game seems to foster equilibrium play, hence challenging the

accuracy of previously observed evidence.
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Focus 5.6

Economics and psychology: an overview of the main methodological

disagreements

Economics and psychology have a lot in common: they both aim to better understand indi-

vidual and social behaviour, and both use controlled experiments to do so. Despite this strong

proximity, their methodological standards evolved in different directions. This might explain

why the two disciplines have long experienced difficulties talking to each other (Ariely and

Norton, 2007), and also recovers some differences in the general approach and focus like,

typically, the use of formal theoretical models in economics that are absent from psychology

(Camerer, 1996). We provide below a list of the most consequential differences in the way

experiments are run in both disciplines (those that will most likely elicit scepticism from a

reader versed on the other side). Most of them have been raised in the seminal discussion pro-

vided by Loewenstein (1999), and are part of the critical reviews that can be found in, e.g.,

Hertwig and Ortmann (2001); Croson (2006); Ortmann (2010); Madsen and Stenheim (2015)

along with empirical evidence from the two disciplines. Since this chapter has extensively dis-

cussed the usual practice and rationale for each dimension from the point of view of economic

analysis, we focus below on the current practice in psychology.

• Financial incentives. Experiments in psychology generally do not involve performance-

based incentives – while a fixed fee is sometimes offered to incentivise participation and

compensate the opportunity cost of time. This difference lies in the driving forces of

behaviour each discipline aims to study: in psychology, intrinsic motivation and psycholog-

ical factors are the main focus, to which external incentives only add noise and unwarranted

variations.

• Context. In psychology, the context in which decisions are made are often part of the dimen-

sions of interest, while economics relies on theories that aim to be context-free. Experiments

in psychology thus generally explicitly refer to this context.

• Subject pool representativeness. The above difference in approaches also has consequences

on the subject pool. The characteristics of the subject pool are just as important as the

decision-making environment in psychology, in such a way that the pool must be chosen

in accordance with the scope to which the theory applies. It does not mean that representa-

tiveness is of no importance in economics. But this question is generally seen as a matter

of external validity rather than internal validity (see Section 8.3.3, Chapter 8).

• Repetition. The usual practice of repeating several times the same decision task is highly

specific to economics, and seems unacceptably artificial to most psychologists. Again, the

scope of theories seems to be the main reason for this discrepancy: initial responses in a

highly abstract environment from fresh decision-makers is of little interest in the aim of

testing rational-choice theory; while spontaneous behaviour in a well-described real-world

situation is the obvious outcome of interest in psychology.

• Deception. This is both the most controversial and the most systematic difference between

the two experimental approaches, as discussed in the text.

returns to be expected from deception, and the high risk of failure in the internal validity

it incurs, the use of deception is usually banished from experiments in economics. This

principle stands as one exception to the usual disclaimer repeated many times in this

chapter: there is unanimous consensus among scholars to never, in any case and for any
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reason, lie in the instructions on the actual rules of the game (see Bonetti, 1998, for a

review and a discussion of the cost–benefit analysis of this practice).

While the general principle, and its rationale, are both simple, its application is some-

times complicated. First of all, avoiding deception does not mean giving complete

information. In many instances, there is no risk of fostering future mistrust by hiding

some information from subjects. Typically, there is no need to know what exact match-

ing mechanism is implemented in order to group people in the laboratory – remaining

silent on this feature is not deceiving subjects, just efficiently selecting the information.

More subtle and debated is the question of when deception starts if there is a discrep-

ancy between the information given to subjects and what is actually implemented. As a

typical example, consider an experiment in which a series of parameter values is chosen

randomly and the distribution is announced to subjects (e.g., 10 values are indepen-

dently drawn from a Bernoulli distribution with probability p). If the actual distribution

is different from this one (the probability is p′ or draws are serially correlated) then it is

clearly deception. But what if the sequence is drawn from this distribution, but then the

same sequence of draws is used in all instances of the experiment? There is quite strong

disagreement among academics on the question. Whether or not this kind of practice is

indeed deception is a matter of judgement, on which we thus refrain from giving any

opinion. But in the end the criterion is whether or not subjects who would face the true

information would feel cheated as compared to the actual proceedings they have been

described.

5.5 Perceived Opponents and Learning

The previous discussion about deception shows the importance of beliefs about the

design as a driving force of individual behaviour – and hence as a matter of concern in

terms of internal validity. Another aspect on which participants will have to form beliefs

is the other people involved in the experiment. This mainly concerns two dimensions:

out-of-the-lab reputation refers to perceptions about the opponent that are inherited from

outside the laboratory, while in-the-lab reputation will refer to changes in perception that

occur in the course of the experiment. We will consider each in turn. In both cases, it is

worth noting that such changes in beliefs will not be confounding if they are observed

and can thus be used as conditioning variables. Belief-elicitation methods will be the

topic of this chapter’s case study, in Section 5.6. These methods are now well-established

and useful in many circumstances. Whether they are enough to solve the internal-validity

issue raised by changes in individual beliefs still is an open question, though, as it is not

clear how belief elicitation and behaviour elicitation interact – see Illustration 5.16 for

an example.

5.5.1 Out-of-the-Lab Reputation

In virtually all interaction contexts, people are likely to behave differently depending on

what they know about others. Better knowing others helps anticipate what they will do in
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Illustration 5.16

Belief elicitation and outcome behaviour in a VCM game

Croson (2000) investigates whether belief elicitation affects behaviour in a VCM experiment.

Twenty-four subjects are arranged in six groups of four and kept in the same group across

the games. Subjects are asked to play two games of ten periods each, and are informed after

each period of the total contribution and of their own earnings. Each subject is endowed with

25 tokens, which could be allocated either to the private good, with a return of two cents per

token, or to the public good, with a return of one cent per token to each member of the group. In

the treatment group, subjects are involved in an additional step during which they are asked to

estimate the contribution to the public good of the other three members of the group. Subjects

are rewarded according to the precision of their predictions, up to 50 cents for an exact guess.

The table below (from Table 1 in Croson, 2000, p. 305) shows the average contributions by

group (control versus guess treatment). The top part of the table displays behaviour in the first

set of 10 periods, the bottom part refers to the second set. Differences that are significant at

the 5% level appear in bold.

Round

1 2 3 4 5 6 7 8 9 10

Control 1 13.96 12.83 11.42 12.33 12.33 11.88 9.92 7.79 9.04 4.54

Guess 1 8.92 7.25 7.71 7.25 6.00 6.79 4.08 3.58 1.96 0.54

�= 5.04 5.58 3.71 5.08 6.33 5.08 5.83 4.21 7.08 4.00

Control 2 11.54 11.33 10.29 7.88 7.33 6.88 4.21 6.50 4.25 2.67

Guess 2 3.79 2.29 1.58 1.21 1.71 2.63 2.54 2.67 2.50 1.96

�= 7.75 9.04 8.71 6.67 5.63 4.25 1.67 3.83 1.75 0.71

As compared to behaviour elicited in the baseline, contributions in the treatment group are

significantly lower. Full free riding is also observed to be more frequent, even if it is not

enough to explain the lower average contribution. The evolution between games also seems

to be affected: the restart value in the treatment group is about half the initial response in the

first game, while the decrease amounts to less than 20% in the control group. Overall, having

subjects think deeply about the behaviour of others seems to foster equilibrium play.

a given context, what kind of outcome they will favour, what behaviour they expect from

others and maybe how kind one wants to be with them – the evidence provided in Illus-

tration 5.17 confirms this case within the context of an experiment in which out-of-the

lab relationships are a target treatment variable, rather than part of the noise. For all these

reasons, unwarranted relationships between subjects can challenge internal validity. The

general principle derived from this concern is to try to minimise uncontrolled variations

through the design of the experiment.

This first implies choosing the subject pool in such a way that people are unlikely

to know each other outside the laboratory. This is achieved by having participants

come from various occupations, with different grade studies, universities or firms. Once
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Illustration 5.17

The effect of closeness and the ability to coordinate

A coordination game captures the idea that value can be created when people coordinate their

non-cooperative actions in a strategic environment (see e.g. Schelling, 1960; Cooper et al.,

1990). ‘Coordination failure’ arises when people fail to attain the best outcome. This is typ-

ically due to strategic uncertainty – the uncertainty associated with not knowing how your

opponent will play the game (see e.g. the survey by Devetag and Ortmann, 2007). Gächter et

al. (2015a) aim to assess whether the pre-existing relationships between players of a coordina-

tion game helps overcome coordination failures. To that end, participants are invited to come

to the experiment with three close acquaintances. When they arrive at the laboratory, they

are part of either an F-MATCHING treatment – all four players are matched together – or an

N-MATCHING treatment – participants are split into different groups. This generates exoge-

nous variations in the pre-existing relationships in different groups. This is captured by the

main treatment variable of interest, measuring the intensity of the relationships based on the

inclusion-of-the-other-in-the-self scale presented in Illustration 5.10. The coordination game

is a ‘minimum-effort game’ (aka, weak-link game, first introduced by Van Huyck et al., 1990)

in which all four players need to decide simultaneously on a costly level of effort. The pay-

off everyone in the group earns is solely determined by the minimum of all group members’

effort.

The figure (from Figure 5 in Gächter et al., 2015a, p. 18) shows the distributions of min-

imum efforts (on the y-axis, chosen by design between 0 and 5) across all periods of play

(using a partner-matching design) split according to three categories of closeness. The ability

to coordinate increases thanks to the strength of pre-existing relationships, with a higher initial

level of cooperation as well as a steeper decrease over time.
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arrived, people will have to wait until everybody is arrived. The waiting room/space

must be designed in such a way that as little communication as possible occurs between

participants. In particular, it requires the physical presence of the experimenter, or an

assistant, in order to answer questions and provide information. These safety procedures

will not prevent people from having heterogeneous beliefs induced by others’ appear-

ance, age, skin colour, etc. On top of that, anonymity is further maintained inside the

laboratory so as to minimise the influence of any pre-existing partner-specific belief.

This is achieved by having individual computers settled in cubicles equipped with sepa-

ration walls between computers. This is complemented by trying to avoid by all means

the identification of other participants in the course of the experiment. Computers will be

matched randomly in the room, rather than using a physical criterion based on comput-

ers’ positions in the room. Information transmission will be synchronised at the session

level, rather than on the go, to avoid identification based on decision-making. Similarly,

if roles are asymmetric and the number of decisions to be made is not the same, then the

number of times a participant is using the mouse might be a cue about what role these

subjects hold in the group. The interface should thus be designed in such a way that the

number of clicks is the same in all roles – by adding requests to confirm one’s choice,

for instance.

5.5.2 Repeated Interactions: Partner-versus-Stranger Design

Out-of-the-lab reputation is the only concern about a player’s belief regarding

their partner if decisions in the experiment are one-shot – if only one decision is

elicited. Repeated interactions are, however, often required, for two broad kinds of

reasons – each associated with a different matching scheme between players, inducing

varying statistical properties of the data.

The first obvious reason is to replicate a repeated game. In this case, the same players

will interact together several times knowing that the composition of the group remains

the same. Because this implementation purposefully allows players to build in-the-lab

reputation (decisions at one stage depend not only on its current consequences, but also

on its effect on future outcomes), it is known as a partner design. From a statistical point

of view, the data produced by such a design are by construction serially correlated at the

group level – outcomes at a given stage in the repeated game are influenced by decisions

previously taken by both players. In terms of behaviour, variations over time result from

both learning at the individual level and reputation building at the group level.

In some instances, the two need to be disentangled. It is the case when the purpose

of the experiment is to replicate a one-shot game, while at the same time allowing for

individual learning to enhance understanding of the game, and avoid eliciting initial

responses to the environment. In this case, several repetitions of the same game are used

as a means to allow subjects to become ‘familiar’ with the game and its rules. Such

repeated versions of one-shot games are seen as a way to address the critique of Wallis

and Friedman (1942, pp. 179–180, cited in Roth, 1993):

It is questionable whether a subject in so artificial an experimental situation could know what he

would make in an economic situation; not knowing, it is almost inevitable that he would, in
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entire good faith, systematise his answers in such a way as to produce plausible but spurious

results. For a satisfactory experiment it is essential that the subject give actual reactions to actual

stimuli . . . Questionnaire or other devices based on conjectural responses to hypothetical stimuli

do not satisfy this requirement. The responses are valueless because the subject cannot know

how he would react. It allows for enough trials and errors for the data to be a convincing test of

theoretical predictions (Binmore 1999).

A (perfect-)stranger design can be used to achieve both goals at the same time: it

amounts to having subjects play the same game several times, but each time with a differ-

ent partner. In practice, members of the group are randomly rematched at the beginning

of each round. This is common knowledge among subjects, in such a way that there

is no incentive to invest in reputation, despite the repetition of the game. This scheme

strongly constrains the number of repetitions that can be implemented – with two sub-

jects in a pair, the number of repetitions cannot exceed half the size of the session. To

weaken the constraint, it is possible to implement a pseudo-stranger design in which

participants are randomly rematched at the beginning of each round, but the probability

of meeting the same others in the future is higher than 0. Because of this feature, there is

an incentive to invest in reputation, albeit it is as small as the probability of meeting the

same person again in subsequent occurrences of the game. The pseudo-stranger design

is less robust to reputation building, but relaxes the constraint on the number of periods

that can be played. From a statistical point of view, both kinds of stranger design are

quite demanding in terms of data: because all players from a given session happen to

play together at some stage in the experiment, the data are correlated at the session level.

In contrast with the partner design, such correlation occurs not only within groups, but

also across groups due to rematching over the course of the experiment. This drastically

reduces the number of independent observations.

No matter what the matching design is, the number of repetitions itself should be cho-

sen with parsimony. If enough learning is necessary to avoid measuring responses from

confused subjects, too much repetition might induce subjects to seek what they think is

the expected behaviour. As stressed by Camerer (1996), subjects might at some point

be projected in the same position as Bill Murray in the famous 1990s movie Groundhog

Day, in which the character adapts behaviour while living the same day again and again

in order to eventually have Andie MacDowell fall in love with him. This is an example

of an experimenter-demand effect, a challenge to external validity that will be discussed

in Chapter 8.

5.6 Case Study : Eliciting Beliefs

Participants’ beliefs in an experiment can change their behaviour, and prevent the exper-

imenter from drawing firm conclusions about participants’ motivations. For example,

an even division of the endowment by the proposer in an ultimatum-bargaining game

is compatible with fairness but also with the strict maximisation of private utility with

well-specified beliefs (Manski, 2002). In addition, we saw that the perception of partici-

pants regarding the experiment itself, such as its aim, can also change behaviour. In this
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case study, we consider whether beliefs can be measured in the lab. For the interested

reader, more detailed surveys on methods for eliciting beliefs appear in Schlag et al.

(2013) and Schotter and Trevino (2014).

The objective of belief elicitation is to uncover the likely value of some unknown

event. An attractive representation of these beliefs is the probability distribution for the

unknown event, taken to be a random variable. This is compelling as it allows the use

of probability theory for the measurement of beliefs, offering a well-defined numerical

scale for experimental answers. The validity of this representation of beliefs is usu-

ally assessed using two distinct criteria. First, the algebra of probability can be used

to examine the internal consistency of beliefs. For example, many experiments evalu-

ate the additivity of elicited probabilities. Second, beliefs can be directly matched with

real frequencies to check whether beliefs are well or badly calibrated. The experimental-

economics methods used to measure beliefs are usually imported from decision analysis,

where they were originally designed to elicit expert opinions. As the focus was on

experts, calibration was much more a concern than was the internal consistency of

answers. We begin this case study with an overview of the current methods used to

elicit beliefs in experiments. We then turn to the interaction between belief elicitation

and behaviour in experiments.

In what follows, uncertainty is modelled via a state space S . Only one of the states

will come about, but the decision-maker does not know which one. Events E are subsets

of S . The complementary event of E is denoted Ec. The belief that event E will occur is

denoted B(E).

5.6.1 Elicitation Methods

A number of methods have been proposed in the literature to elicit beliefs. One of the

simplest is to ask participants directly about their beliefs. This method has the advantage

of simplicity but is not based on individual choices. Regarding the analysis of eco-

nomic behaviour, economists prefer to base their evaluation on revealed preference, i.e.

the choices made by individuals. Choice-based elicitation procedures, such as scoring

rules or matching probabilities, are then often preferred in experiments to introspective

judgements. Focus 5.2 shows how prices can be used to predict unknown events with

prediction markets.

Introspective Judgements

Asking about introspective judgements is the easiest and fastest way to elicit beliefs.

The method is easily explained to subjects and corresponds to the common practice of

eliciting expectations for binary events in surveys – see Illustration 5.18 for a discussion

of their informativeness. A simple question to elicit beliefs about an unknown event via

introspective judgement is the following:

What do you think is the percent chance that event E will occur?

Typical examples of event E in experiments are the strategy of another player in an

experimental game, a price increase (or decrease) in a market, the identity of opponents,
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Illustration 5.18

The accuracy of self-reported expectation measures

In a comprehensive survey recommending the increased use of expectation measures to under-

stand choice behaviour, Manski (2004, Section 6) reviews the methods used to assess the

accuracy of self-reported expectations about future events elicited from survey respondents.

The aim of these assessments is to measure the validity of the rational-expectations frame-

work: Are objective events accurately anticipated in subjective probabilities? It also provides

evidence on how informative self-reported expectations are about the perceived likelihood of

real-life events.

• When time-series data are available, the most obvious check is to compare the distribution

of expectations to the distribution of outcomes in the same sub-sample.

• Using repeated cross-sections, if the cross-sections are randomly drawn from the same pop-

ulation (and there is no serial correlation in the outcomes across respondents), one can

compare the distribution of outcomes in t + 1 for current respondents to the expectations in

t from a different sample.

• Last, this same assumption applies not only to forward-looking distributions of events, but

also to past values: statistical independence between samples implies that past distributions

of events can be used to assess the reliability of current expectations.

To illustrate the typical types of results from these methods, the table below (from Table 5

in Dominitz and Manski, 1997, p. 1362) compares the expectation over the next 12 months

of 1994 respondents regarding (i) their chance of being covered by health insurance, (ii) the

likelihood of experiencing a burglary, and (iii) the risk of losing their job; to the outcome

distribution for these events among the 1995 respondents in the same survey.

No health insurance Victim of burglary Job loss

Exp Real Exp Real Exp Real

Male 0.15 0.15 0.16 0.05 0.15 0.18

(0.01) (0.02) (0.01) (0.01) (0.01) (0.02)

Female 0.16 0.13 0.17 0.03 0.21 0.18

(0.01) (0.02) (0.01) (0.01) (0.01) (0.02)

The table reveals a close match between mean expectations and outcomes for both health insur-

ance and job loss, for both men and women. On the contrary, respondents tend to overestimate

the likelihood of being a victim of burglary.

etc. Experiments typically ask subjects to evaluate their beliefs in percentage terms by

selecting a number on a scale between 0 and 100. Rather than asking subjects to directly

report percentages, verbal expressions of likelihood can be used, along with numeri-

cal probability categories that the event will occur. Manski (2004) recommends using

a range of probabilities to reflect that subjects might have limited confidence in their

beliefs. Illustration 5.18 describes methods that can be used to assess the accuracy of

self-reported expectations about future events. In this case, subjects can express not only

various degrees of belief (such as 100% for certainty, 0% for impossibility and 70% for
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uncertainty) but also their confidence in their beliefs through the size of the probability

interval. Elicitation here is based on questions such as:

What do you think is the percent chance that event E will occur? Please reply with

a specific value or a range of values, as you see fit.

For instance, rather than reporting a simple value of 50%, eliciting a range of probabili-

ties allows the researcher to observe how confident the subject is in this belief. Complete

ignorance is here expressed by a range as large as 0 to 100%, a relative lack of confi-

dence by intervals such as 40 to 60%, and perfect confidence by the single figure of 50%.

Given its central place in ambiguity models, the lack of confidence in beliefs should not

be treated as a simple refinement of belief elicitation, but rather as a topic of interest in

its own right (see Focus 5.13 for a survey of experimental designs for ambiguity).

Introspective judgements are often criticised due to the lack of incentives to reply

truthfully. The beliefs can therefore be subject to a hypothetical bias and increased noise.

An associated drawback is that other motives can emerge and generate a demand effect

in the experiment (Trautmann and Van de Kuilen, 2014).

Proper Scoring Rules

The most popular method to measure beliefs is proper scoring rules (Brier, 1950; Good,

1952). This method, initially designed for weather forecasts, elicits subjective proba-

bilities for uncertain events. An attractive feature of scoring rules is that the subject

involved need not discuss probability. The individual rather selects a contingent payoff

from a list of options, and all of the probabilistic inferences are then made by the exper-

imenter. Under subjective expected value, a scoring rule that reveals the true subjective

probability is said to be proper.

The quadratic scoring rule

The quadratic scoring rule is the most common procedure in incentivised belief elici-

tation. It was first used to infer truthful weather forecasts from experts. The quadratic

scoring rule presents an event-contingent prospect to the subject. The event-contingent

prospect pays 1 − (1 − y)2 if event E occurs and 1 − y2 otherwise. The subject then

chooses their preferred value of y. Table 5.5 presents one quadratic scoring rule; in

Table 5.5, subjects choose their preferred line.

The principle of the quadratic scoring rule in Table 5.5 is that individuals are penalised

for their lack of faith in the event in a quadratic manner. If event E occurs and the

respondent assigns a probability 1 to event E (selecting the last line of Table 5.5) then

one unit of payment is earned. If, however, the respondent is unsure this is penalised

by the probability of the complementary event Ec: 1 − y. The penalty is (1 − y)2: for

a 10% lack of faith in event E, the decision-maker loses (0.1)2 = 0.01 in case event E

occurs. The same logic applies to event Ec: subjects are penalised for their lack of faith

in a quadratic manner (y2). Under the assumption that subjects choose y to maximise

their expected value and have risk-neutral preferences, y is the subjective probability

and the scoring rule is proper. The chosen y value maximises the subjective expected

score.
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Focus 5.7

Prediction markets

Prediction markets are a way of aggregating different opinions and heterogeneous beliefs:

prices are used to predict (future) unknown events. Arrow et al. (2008, p. 877) define them as

‘forums for trading contracts that yield payments based on the outcome of uncertain events’.

These markets became very popular at the beginning of the 20th century, before the develop-

ment of scientific polling, and served to forecast election results in the US, providing most of

the time fairly accurate results (Rhode and Strumpf, 2004). Prediction markets are still popular

nowadays to predict electoral or sporting outcomes. Internal corporate markets are also used

by large companies to aggregate information on various internal economic indicators. The

basic contract offered in a prediction market is a binary option – an all-or-nothing contract –

on the occurrence of an event E. The contract costs q and pays a dollar if event E happens

and 0 otherwise. Let each participant’s belief Bi(E) be drawn from a non-degenerate continu-

ous distribution G, and suppose that wealth w is independent of beliefs. Following Wolfers and

Zitzewitz (2006), further assume that each participant chooses the optimal number of contracts

yi by maximising their subjective expected utility with a logarithmic utility function:

maxyi EU = Bi(E) log[w + yi(1 − q)] + [1 − Bi(E)] log(w − yiq)

The first-order condition yields the demand for the binary option:

yi = w
Bi(E) − q

q(1 − q)

Participants choose to invest in the binary option if Bi(E) > q and sell it if Bi(E) < q. The mar-

ket clears when supply,
∫ ∞

q w
q−Bi(E)
q(1−q

dG[Bi(E)], equals demand,
∫ q
−∞ w

Bi(E)−q
q(1−q

dG[Bi(E)],

and the equilibrium price is

q =

∫ ∞

−∞
Bi(E)dG(Bi(E)) = E[Bi(E)]

At the equilibrium, the market price reveals the average belief among participants (if beliefs

and wealth are correlated, the price is no longer the average belief but rather a weighted

average, based on relative wealth). Wolfers and Zitzewitz (2006) show how different utility

functions lead to different predictions for the market price q. Manski (2006) shows that when

participants are risk-neutral, the market price does not necessarily reveal the average belief,

but rather the 1−qth quantile of the distribution of beliefs. In this case, prices that are close to

0 or 1 are very informative about mean beliefs. On the contrary, prices close to 1/2 are the least

informative. Manski (2006) also points out that introducing risk aversion requires knowledge

of participants’ preferences to be able to interpret the prediction-market price. One of the

great advantages of prediction markets is that they provide not only incentives for the truthful

revelation of predictions but also incentives to seek out useful information to form these

predictions. As uncalibrated predictions produce losses, prediction markets help participants

to adjust their predictions. Prediction markets have been compared to various forms of

judgement-aggregation methods, such as the Delphi method. Prediction markets were found

to be a satisfactory aggregator of opinions, but are found to be difficult by participants. Also,

individuals’ predispositions, as, e.g., risk aversion (documented in Boulu-Reshef et al., 2016),

may impede their ability to participate in prediction markets. Healy et al. (2010) show that a
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double-auction prediction market performs relatively well in an environment with a simple

information structure involving a binary event, even with only three players on each side of the

market . For more complex environments with correlated events, prediction markets perform

much less well. A common criticism of prediction markets is that they can be manipulated

by placing particular orders to convince the market of the impossibility/certainty of an event.

However, existing evidence finds that prediction markets are actually difficult to manipulate.

Camerer (1998) attempted to manipulate betting on horse races by cancelling $500 and $1,000

bets at the last moment, but found barely any effect. Hanson et al. (2006) also show that

manipulators do not distort price accuracy in the run in a controlled experiment.

Table 5.5 A quadratic scoring rule

Preferred value of y Your payment if E is true Your payment if E is not true

0 0.00 1.00

0.1 0.19 0.99

0.2 0.36 0.96

0.3 0.51 0.91

0.4 0.64 0.84

0.5 0.75 0.75

0.6 0.84 0.64

0.7 0.91 0.51

0.8 0.96 0.36

0.9 0.99 0.19

1 1.00 0.00

The quadratic scoring rule can be designed to elicit y to any degree of precision and

to any rescaling of the payment, as shown in Figure 5.2 – adapted from the design of

Offerman et al. (2009). It shows the elicitation of y to within 1% with large payments in

experimental currency units. The event for which the probability is evaluated is shown

on the top right of the figure: that the price of a stock at the end of the calendar year be

in the area shaded purple.

The quadratic scoring rule can be extended to n events. With K possible events

(E1, E2, . . . , EK), a quadratic scoring rule defines a collection of scoring functions si( y),

with:

si(y) = a − b(1 − yi)
2 − b

∑

j �=i

y2
j

with y = ( y1, ...., yK) and y1 + . . .+ yK = 1. Focus 5.8 shows how the quadratic scoring

rule can be adapted to measure beliefs over continuous random variables.

A more general definition of scoring rules

The quadratic scoring rule is a special case of a more general class of binary scoring

rules. A binary scoring rule presents an event-contingent prospect S(E, y) = s1( y)Es2( y)

that pays s1( y) if the event E occurs and s2( y) otherwise. The individual chooses y such

that y maximises the expected value of the prospect:

y = Argmax{B(E).s1( y) + [1 − B(E)].s2( y)}
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Figure 5.2 A typical display for an experimental quadratic scoring rule

Table 5.6 Examples of binary scoring rules

s1( y) s2( y)

Quadratic 1 − (1 − y)2 1 − y2

Generalised binary a − b(1 − y)2 c − by2

Logarithmic (Toda, 1963) − log( y) − log(1 − y)

Spherical (Roby, 1964)
y

( y2 + (1 − y)2)0.5

1 − y

( y2 + (1 − y)2)0.5

Power quadratic (Selten, 1998) aya−1 a(1 − y)a−1

−(a − 1)( ya + (1 − y)a) −(a − 1)( ya + (1 − y)a)

The first-order condition is

B(E) =
1

1 − A

where A is the ratio of the derivatives of the event-contingent payoffs:

A =
ds1( y)

dy

/ds2( y)

dy

Table 5.6 shows some of the classic binary scoring rules proposed in the literature.

With this notation, the scoring rule is proper if the subjective probability maximises the

payment implemented by the scoring rule (i.e. the score is maximised at y = B(E)).

If the scoring has a unique maximum it is called a strictly proper scoring rule. Savage

(1971) proposes a general characterisation of strictly proper scoring rules.
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Focus 5.8

Measuring beliefs over a continuous random variable

All scoring rules presented in the text are designed to measure beliefs over discrete random

variables. The scoring rules can be adapted to measure beliefs over a continuous random

variable with a cumulative distribution function G. The procedure starts by selecting a ran-

dom divider ε that splits the continuous random variable into two groups. The probability

of the left interval is G(ε) and that of the right interval is 1 − G(ε). It is therefore possi-

ble to apply a binary scoring rule that pays s1( y) if the underlying random variable is below

ε (i.e. if G(ε) occurs) and s2( y) otherwise. If the subject chooses y to maximise subjective

expected utility and is risk-neutral, then y is equal to G(ε). Applying the procedure repeat-

edly for different values of ε allows the experimenter to elicit the cumulative distribution of

beliefs G.

In the same vein, Schlag and van der Weele (2015) propose the following method to elicit

the most likely interval for subjects’ beliefs over continuous random variable with single

peaked distribution: for a random variable with support [bl, bh] and a reported interval [bi
l
, bi

h
],

the subject gets (1−
bi

h−bi
l

bh−bl
)a if the realization of the random variable lies in the interval [bi

l
, bi

h
]

and nothing otherwise. This payment scheme is based on a trade-off between precision (i.e the

length of the interval bi
l
, bi

h
) and the likelihood of the payoff.

Elicitation biases

A number of elicitation biases have been identified in the literature. Most of these are

preference-based, referring to risk aversion, probability weighting and ambiguity atti-

tudes. Some elicitation biases can also occur when the experimental payment and the

subject’s wealth are correlated.

Winkler and Murphy (1970) show that risk aversion might bias the measurement of

beliefs. In addition, it might also trigger hedging in experimental games (see Focus 5.10

for details). For example, if risk-averse subjects make decisions in Table 5.5, then choos-

ing a value y between 0.5 and the true belief B(E) yields higher utility. This measure is

biased downward if the belief is higher than 50% and upward if the belief is lower than

50%.7 Assume that the subject maximises the expected utility of the prospect:

EU = B(E).u[s1( y)] + [1 − B(E)].u[s2( y)]

The first-order condition is still B(E) = 1
1−Au

, but Au now also includes the marginal

rate of substitution between s1( y) and s2( y):

Au =
ds1( y)

dy

/ds2( y)

dy
×

u′(s1( y))

u′(s2( y))
(5.1)

Beliefs can be corrected for risk aversion in a number of ways (see, for example, the

method presented in Focus 5.9). One is to measure risk aversion independently and then

correct beliefs for the marginal rate of substitution between s1( y) and s2( y). Another is

to use very small stakes, so that utility is approximatively linear. If, however, subjects

7 Offerman and Palley (2016) show that loss aversion, an alternative and well-documented source of risk

aversion over and above the standard curvature of the utility function, also generates a bias towards 50%.
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Focus 5.9

The binarised scoring rule

Hossain and Okui (2013) propose a scoring rule that is incentive-compatible irrespective of the

subject’s risk preference. In a standard scoring rule, the outcome of the event E determines the

size of the reward. In the binarised scoring rule, the event outcome E determines the probability

of the reward. More precisely, the individual receives a fixed reward x if the payoff resulting

from the draw, calculated using a loss function L( y, E), is lower than a number drawn from a

uniform distribution. The elicitation procedure for beliefs over an event E works as follows:

1. A loss function is defined. To binarise the quadratic scoring rule, the loss function L(r, E)

is (1 − y)2 if E occurs, and y2 otherwise.

2. The incentive scheme is a BDM-type mechanism. An i.i.d. draw ε is taken from a uniform

distribution over [0, 1]. If ε is larger than the loss function L( y, E), the participant receives

the reward x. If not, the participant receives nothing.

3. The participant chooses y = argmax{(1 − Pr[ε ≤ L(r, E)]).u(x)}.

Hossain and Okui (2013) provide experimental evidence showing that the binarised version

of the quadratic scoring rule leads to better prediction than the standard rule, especially for

risk-averse subjects. Selten et al. (1999) compare payment in lottery tickets to payments in

money and find opposite results. Due to compound risk aversion, the use of lottery tickets

brings about greater departures from risk neutrality.

continue to exhibit risk aversion for small stakes (Holt and Laury, 2002), small stakes

will not eliminate this measurement bias. A third possibility is to pay the prize in lottery

tickets (Smith, 1961, 1966; McKelvey and Page, 1990). As participants always prefer to

receive a reward than no reward at all, they will maximise the probability of receiving

the reward, independently of their degree of risk aversion. In other words, as expected

utility implies linearity in probability, this procedure filters out risk aversion. Focus 5.9

shows how a binarised scoring rule controls for risk aversion. Contrary to Selten et al.

(1999), Harrison et al. (2014) find that paying the prize in lottery tickets produces a

shift towards risk neutrality. Paying lottery tickets has, however, been almost abandoned

because empirically it is very nonlinear.

Another preference-based dimension biasing elicitation is probability weighting

(Offerman et al., 2009). We illustrate this point by following Tversky and Wakker

(1995) and Wakker (2004) in assuming that beliefs are transformed through a weight-

ing function ω(B(E)), where ω is a strictly increasing probability-weighting function

that maps probabilities onto [0, 1]. Under these assumptions, the subject maximises the

value function:

V = ω[B(E)].u[s1( y)] + [1 − ω(B(E)].u[s2( y)]

Probability weighting modifies the first-order condition, which now becomes:

B(E) = ω−1

(
1

1 − Au

)
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Focus 5.10

Risk aversion and hedging in experimental games

In experiments that include belief elicitation about the action choice of an opponent, risk

aversion can lead to hedging. Here, a participant can choose an action that best responds to the

action choice of their opponent, and predict the opposite action choice in the belief-elicitation

task. This combination of belief elicitation and action offers insurance against low payoffs

for risk-averse subjects. Hedging can then badly distort beliefs. One way of avoiding hedging

is to clearly distinguish the belief and the game parts of the experiment (Costa-Gomes and

Weizsäcker, 2008). Another possibility is to randomly pay either the accuracy of subjects’

elicited beliefs or the payoff associated with the game’s outcome (Blanco et al., 2010). Blanco

et al. (2010) test for hedging in a sequential prisoners’ dilemma and a coordination game.

Two treatments were compared in both cases: one in which both the belief-elicitation task

(a quadratic scoring rule) and the outcome from the game are paid (the HEDGING-PRONE

treatment) and another in which only one task was randomly selected for real pay (HEDGING-

PROOF). The following table displays the payoffs in the coordination game.

Player 2

A B

Player A (0, 0) (16, 14)

1 B (14, 16) (0, 0)

The payoffs are symmetric in the case of coordination on (A, A) or (B, B). Asymmetric pay-

ments move subjects away from both 50–50 beliefs and any obvious focal point. In this game

the best response is to play A if the subjective probability about the action of the other player

is over 0.533 and B otherwise. The mixed-strategy equilibrium is to play A with probability

0.533. The incentives for stating beliefs come from a linear payoff function with 10 possible

degrees of belief (from ‘strongly B rather than A’, denoted b5, to ‘strongly A rather than B’,

denoted a5). The table below reproduces the payoffs for each possible degree of belief when

either A or B is the actual choice of the other player.

Belief a5 a4 a3 a2 a1 b1 b2 b3 b4 b5

A 15 13 11 9 7 4 3 2 1 0

B 0 1 2 3 4 7 9 11 13 15

In HEDGING-PRONE, risk-averse subjects (with standard CRRA coefficients and reasonable

‘true’ beliefs close to one-half) should state beliefs with maximum certainty (a5 or b5) to

insure themselves against risk. Moreover, choosing action A and belief a5 offers a higher

payoff in all cases. The combinations (a5, A) and (b5, B) are found to be significantly more

frequent in HEDGING-PRONE than in HEDGING-PROOF (although this difference disappears

when beliefs can only be expressed with certainty). Some players do not hedge, either due

to risk neutrality or because this strategy is a best response to others’ hedging. In the latter

case, behaviour is consistent with higher-order hedging. A significant minority of subjects

were found to hedge in HEDGING-PROOF. As such, while paying one task at random reduces

hedging, it does not eliminate it entirely.
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with Au defined by (5.1). Both the marginal rate of substitution and probability

weighting now play a role in the elicitation of subjective probability.

A third preference-based feature affecting elicitation is the attitude towards ambigu-

ity. We have up to now implicitly assumed probabilistic sophistication (Machina and

Schmeidler, 1992), so that probabilistic beliefs can be represented by a probabilistic

measure. For a given probabilistic measure, this implies the same behaviour whether

uncertainty is objective or subjective. One way to account for departures from expected

utility without assuming probabilistic sophistication is to assume a biseparable utility

model (Miyamoto, 1988; Luce, 1991; Ghirardato and Marinacci, 2001), which includes

many ambiguity models as special cases.8 Under binary RDU, the subject maximises

the following value function:

V = W(E).u[s1( y)] + [1 − W(E)].u[s2( y)]

where W is a unique weighing function, which shares with probability measures the

properties that W(∅) = 0, W(S) = 1 and W(E) ≤ W(E′) if E ⊆ E′ but which may be

non-additive. The first-order condition is

W(E) =

(
1

1 − Au

)

with Au defined by Eq. (5.1). Together with the marginal rate of substitution, ambi-

guity attitudes now play a role through the weighting function W(.). The correction of

elicitation biases thus requires the measure of both risk and ambiguity attitudes.

In addition to preference-based phenomena, a possible correlation between experi-

mental payments and the subject’s wealth can distort elicitation. Take the example of an

experimental game in which both beliefs and strategies are played for real. Belief elici-

tation and actions here are two potentially correlated sources of experimental income. A

number of factors can explain this correlation. First, if the subject is risk-averse, there is

a possible correlation between experimental payments and wealth. Armantier and Tre-

ich (2013) show that under expected utility, increasing the stakes in a quadratic scoring

rule modifies the bias towards one-half in a way that depends on the shape of relative

risk aversion. Second, both the score function and the subject’s wealth may depend on

the same event (a movement in a financial market, for example, or the actions of other

players in a game). This correlation lowers the reported probabilities due to diminishing

marginal utility. By reducing the reported probabilities, the scoring rule allows the sub-

ject to increase their final wealth in case the complementary event occurs. In this case,

the scoring rule serves as a transfer scheme between the positive stake, on the one hand,

and the no-stake condition on the other: an underlying condition for belief elicitation

is violated (Kadane and Winkler, 1988). Last, if the decision-maker can choose some

action that depends on the underlying event (e.g. an investment for which the return

depends on the event outcome), there are hedging opportunities between the return

from the actions and the payment from the scoring rule. In this case, hedging creates

an incentive to report constant probabilities.

8 Some examples are maxmin expected utility (Gilboa and Schmeidler, 1989), alpha-maxmin expected util-

ity (Ghirardato et al., 2004), contraction expected utility (Gajdos et al., 2008), Choquet expected utility

(Schmeidler, 1989) and prospect theory (Tversky and Kahneman, 1992).
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Matching Probabilities

Decision analysis has a long tradition of using matching probabilities to elicit beliefs

(Raiffa, 1968; Spetzler and Stael von Holstein, 1975). The probability p is a matching

probability of an event E if the subject is indifferent between receiving an amount of

money if event E occurs and receiving the same amount of money with probability p.

The matching probability is defined by indifference between two prospects: an uncer-

tain prospect paying x if E occurs and a risky prospect paying the same amount x with

probability p:

xE0 ∼ xp0 (5.2)

When the subject is indifferent between both prospects, and under the assumption of

probabilistic sophistication,9 p is the subjective probability of the event, B(E). Two main

procedures are used in the literature to elicit these matching probabilities. Direct proce-

dures ask subjects to state this indifference value, while indirect procedures are based

on comparative judgements or choices. As direct procedures suffer from a number of

biases, we will present only the indirect procedures. Measuring matching probabilities

is fairly simple with choice lists. Focus 5.11 shows how matching probabilities can be

used to test complex ambiguity models.

An example is the three-step procedure introduced in Baillon and Bleichrodt (2015)

(see also Binmore et al., 2012). The first step uses a table similar to that in Figure 5.3.

When the subject switches from the uncertain to the risky prospect between two prob-

abilities p% and p + 10%, a second table appears with probabilities p%, p + 1%, . . . ,

p+10% for the risky prospect. When the subject switches between probabilities p% and

p + 1%, then the midpoint of the switching interval p + 0.5% is taken as the matching

probability of the event. A third confirmatory and pre-filled table asks the subject to con-

firm the choice for [against] the uncertain prospect for all probabilities below [above]

their measured matching probability. Real incentives are applied in the last choice list

with 101 choices. A number between 0 and 100 is selected, corresponding to a choice

number. If the subject had chosen the risky prospect for that choice number, the corre-

sponding lottery is played for real. If the subject had chosen the uncertain prospect, the

observation of the event determines the payment.

Karni (2009) presents a similar procedure with real incentives. Instead of a matching

probability p, the procedure elicits a number y between 0 and 1 that is compared to a

uniform random draw ε over [0, 1]. If the elicited number y is greater than ε, the subject

plays the lottery xε0; if it is less than ε the subject plays the lottery xE0. Karni (2009)

shows that this is equivalent to an English clock mechanism, where there is a continuous

increasing bid auction between the subject and a dummy bidder. The dummy bidder

stays in the auction as long as the bid is smaller than the selected number and drops out

when the bid equals that number. Starting at 0, the bid increases continuously as long as

the subject and the dummy bidder are both ‘in the auction’ and stops when one of them

drops out or the bid reaches 1. Hao and Houser (2012) compare the direct declaration of

9 Probabilistic sophistication (Machina and Schmeidler, 1995) applies if the individual uses a probability

measure to determine the probability distribution over the outcomes implied by any uncertain prospect and

compares prospects only by their induced probability distributions over the outcomes. This assumption goes

well beyond expected-value maximisation and even expected-utility maximisation, and allows for a large

class of preferences. It is not, however, compatible with the Ellsberg (1961) paradox.
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Focus 5.11

Using matching probabilities to test complex ambiguity models

Baillon and Bleichrodt (2015) use matching probabilities to test the descriptive validity of

ambiguity models. These models have been proposed to explain the aversion to uncertainty

over probabilities (or ambiguity aversion) revealed by the Ellsberg (1961) paradox. Ambigu-

ity aversion challenges the existence of subjective probabilities and therefore also challenges

the validity of probabilistic sophistication. As matching probabilities elicit subjective proba-

bilities only under probabilistic sophistication, it is possible to infer the descriptive validity of

ambiguity models through violations of probabilistic sophistication. Different indices of the

violation of probabilistic sophistication can be calculated from a threefold partition of the state

space (the set of all possible states of nature). The figure below provides examples of such a

partition and how the various indices are calculated. The first two indices refer to the usual

additivity property: the sum of the matching probabilities for an event and its complement

must be one (binary additivity), and so must the sum of the matching probabilities for the

three disjoint events partitioning the state space (ternary additivity – that can be defined over

single events, as shown in the figure below, but also over their complements; in the latter case,

the sum of the matching probabilities over these two-event unions must sum to two). The next

two indices are based on Tversky and Wakker (1995). Lower additivity implies that an event

E2 has the same impact when it is added to the null event as when it is added to a non-null

event E1. If this is the case, then the matching probability of the union E1 ∪ E2 should be

equal to the sum of the matching probabilities for events E1 and E2. Upper additivity is a little

more complicated, and implies that an event E3 has the same impact when it is subtracted from

certainty (the universal event) and when it is subtracted from an event E2 ∪ E3. If this is the

case, then one minus the matching probability of the event E3 subtracted from certainty (i.e.

the event E1 ∪ E2 in the figure below) should be equal to the difference between the matching

probabilities of events E2 ∪ E3 and the event E2.

E1 E1E2 E2E3 E3

Ternary additivity: sum to one

Binary additivity: sum to one

Lower additivity: equality

Upper additivity: equality of removed (dashed) parts

A large array of decision models under ambiguity can be tested using matching probabilities:

maxmin expected utility (Gilboa and Schmeidler, 1989) and its generalisations – α-maxmin

expected utility (Ghirardato et al., 2004) and the variational model (Maccheroni et al., 2006) –

Choquet expected utility (Schmeidler, 1989) and its generalisation to prospect theory (Tversky

and Kahneman, 1992; Wakker, 2010), and more recent models – for example the smooth

ambiguity model of Klibanoff et al. (2005) and vector expected utility (Siniscalchi, 2009).

Baillon and Bleichrodt (2015) find robust violations of probabilistic sophistication for both
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gains and losses. Subjects overweigh unlikely events, and underweigh likely events. The latter

effect is larger for losses than for gains. The violations of probabilistic sophistication form

four groups of ambiguity attitudes: ambiguity seeking for unlikely gains and likely losses

and ambiguity aversion for likely gains and unlikely losses. These are not compatible with

ambiguity models that assume uniform ambiguity attitudes and no difference between gains

and losses. Three models are compatible with the observed data: α-maxmin, Choquet expected

utility and prospect theory

Choice
number

1

2

3

4

5

6

7

8

9

10

11

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

Stock index

$0 $10

+0.5%

I choose
A

I choose
B

Which option do you prefer?

Option A

You win $10 if the stock index
increases by more than 0.5%

(and nothing otherwise)

Option B

You win $10 with the
following probability

(and nothing otherwise)

Figure 5.3 A typical display for eliciting matching probabilities

the number r and the bidding mechanism. The results show the continuous increasing

bid auction censors naive responses and yields more accurate belief responses. One

possible explanation of the difference is that the bidding procedure helped subjects think

more about their answers. Another explanation is that the two-stage representation of the

incentive scheme in the declarative procedure is cognitively too demanding for subjects.

Several methods for the elicitation of matching probabilities with continuous vari-

ables appear in Raiffa (1968) and Abdellaoui et al. (2016a). Consider a continuous

random variable X with values over the interval [a, b]. The subject faces a series of

binary choices between an option A that pays 1 if the underlying continuous variable

is in [a, m], and nothing otherwise (a prospect 1[a, m]0) and an option B that pays 1

if the underlying continuous variable is in [m, b], and nothing otherwise (a prospect

1[m, b]0). A series of choices shift the value of m until the subject is indifferent between

the two options. The indifference value m creates a partition of the interval [a, b] into

two equally likely exchangeable sub-intervals:

Pr[a < X < m] = Pr[m < X < b]

the indifference value m is the median of the distribution of beliefs. Raiffa (1968) shows

how the quantiles of the distribution can be measured in the same way. Eliciting quan-

tiles does, however, require chained answers (the previous answers are used as inputs to

subsequent choices), which may lead to strategic misrepresentation and the propagation
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of error. Using exchangeability, Abdellaoui et al. (2016a) show how to elicit any beta

distribution of beliefs without using chained answers.10

Certainty Equivalents

Kadane and Winkler (1988) and Heinemann et al. (2009) use certainty equivalents to

elicit beliefs.11 Certainty equivalents are based on indifference between an uncertain

prospect that pays x if E occurs and a sure prospect paying the certain amount xc with

probability 1.

xE0 ∼ xc (5.3)

If utility is linear, then the elicited belief for event E is taken to be B(E) = xc

x
. If the

individual is risk-averse, then xc

x
understates the individual’s odds in favor of E. With a

non-linear utility function u, the elicited belief B(E) is

B(E) =
u(xc)

u(x)

Trautmann and Van de Kuilen (2014) elicit beliefs via certainty equivalents with x =

15. The design is based on a multiple-choice list in which the amount varies between 0

and 15 in 21 equally sized steps. Trautmann and Van de Kuilen (2014) also include an

additional decision task under risk to correct the reported beliefs for utility curvature.

Heinemann et al. (2009) use a similar procedure to measure strategic uncertainty in one-

shot coordination games. In their design, and for each coordination game, participants

were asked to choose between the safe amount xc and an option in which the participants

earn x if at least a certain percentage of the other players make the same choice, but 0

otherwise. Here xc can be interpreted as the certainty equivalent for strategic uncertainty

in the coordination game, and is used to infer beliefs over the fraction of cooperating

players. Focus 5.12 compares the certainty equivalent method with others elicitation

methods.

Bayesian Truth Serum

We have up to now supposed that both the experimenter and the subject can observe

whether the event E occurs at some point to determine payments. This is, of course,

not always the case, typically when the event refers to the subject’s private information.

Prelec (2004) proposes a scoring method, the ‘Bayesian truth serum’, for questions deal-

ing with private information. This complements the above-mentioned methods when

the truth of certain propositions cannot be checked. It is based on a scoring system

that induces truthful answers from a sample of Bayesian expected value-maximising

participants.

There are two questions. First, a personal question is asked:

What do you think is the percent chance that event E will occur?

10 Neri (2015) also fits beta distributions with beliefs elicited interval by interval, which is incentivised using

a scoring rule.
11 This has also been called the promissory-notes method in the literature (De Finetti, 1974).
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Focus 5.12

Comparing elicitation methods

Trautmann and Van de Kuilen (2014) compare measures of beliefs in a two-player ultimatum

game using different elicitation methods in a between-subject experiment. The ultimatum-

bargaining game is based on six possible proposals. For each proposal, the belief that the

allocation will be rejected is elicited for the proposers and the belief that the proposal will be

chosen by the proposer is elicited for the responder. The elicitation methods are the following:

• introspective judgement,

• quadratic scoring rule,

• matching probabilities,

• outcome matching.

Corrections for risk attitudes for the quadratic scoring rule and the outcome-matching pro-

cedure are also included: that in Offerman et al. (2009) for the quadratic scoring rule and

that in Heinemann et al. (2009) for the outcome-matching procedure. The relative perfor-

mance of the different elicitation procedures is assessed through the internal validity of the

elicitation method (i.e. do reported beliefs satisfy the additivity of elicited probabilities for

complementary events? Are individual choices in the game consistent with subjective beliefs?)

but also with the calibration of elicited probabilities. Trautmann and Van de Kuilen (2014)

find neither large nor significant differences between elicitation methods in terms of additiv-

ity of beliefs. For all methods, even after correction for risk aversion, elicited probabilities

are not additive: the sum of the subjective probabilities is greater than one. Hence, there is

no method, incentivised or not, that is superior to others in reducing additivity bias. More-

over, a robustness experiment shows that framing with an explicit mention of probabilities

and the optimality of truthful reporting does not improve additivity for the quadratic scoring

rule (see also Offerman et al., 2009). Incentivised and non-incentivised methods are different,

though. Incentivised methods yield beliefs that are more consistent with proposers’ choices

in the ultimatum-bargaining game. While introspective judgements are associated with cor-

rect prediction in less than 20% of cases, incentivised methods predict around 30 to 40% of

choices. The superiority of the quadratic scoring rule and matching probability procedure over

introspective judgement is also found by Massoni et al. (2014). Last, the calibration of elicited

beliefs is similar for all elicitation methods. These results are consistent with the absence of

consensus in the existing literature. Sonnemans and Offerman (2001), for instance, find no

difference between subjects who are paid a flat fee and those with a quadratic scoring rule –

hence replicating some classical results from psychology that no difference in performance is

found between subjects with a proper scoring rule incentive and subjects with no monetary

incentives (Jensen and Peterson, 1973). Friedman and Massaro (1998) also find no difference

between hypothetical and incentivised choices in matching probabilities, even though unpaid

subjects make less effort. On the contrary, in Gächter and Renner (2010) belief accuracy in a

repeated linear public game is significantly higher when beliefs are incentivised via a linear

scoring rule. In addition, Rutström and Wilcox (2009) find that introspective judgements can

be worse predictors of actions than beliefs elicited with proper scoring rules in asymmetric

matching-pennies games. Last, in Huck and Weizsäcker (2002) a quadratic scoring rule and

an outcome-matching procedure yield the same aggregate results, but the quadratic scoring

rule produces more accurate predictions.
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Focus 5.13

Experimental designs for ambiguity

Trautmann and Van de Kuilen (2016) review the large experimental literature on ambiguity

attitudes and identify three main experimental designs that are used to study ambiguity atti-

tudes: urns, second-order probabilities and natural sources of uncertainty. The first consists

of variations on the classic Ellsberg urn experiment. In the classic two-urn Ellsberg paradox

(Becker and Brownson, 1964; Fox and Tversky, 1995), subjects face two urns. A risky, or

clear, urn that contains red and black balls in equal proportion and an ambiguous, or opaque,

urn that also contains red and black balls, but in unknown proportion. Subjects are first asked to

guess a colour on which they want to bet. This first stage is required to avoid suspicion about

the composition of the unknown urn. Subjects then choose between the two urns on which

they want to bet (Becker and Brownson, 1964) or provide certainty equivalents for the urns

(Fox and Tversky, 1995). Trautmann et al. (2011) find more ambiguity aversion in valuation

tasks, such as willingness-to-pay tasks, than in choice tasks. Choosing the risky urn (or pric-

ing it more highly) reveals ambiguity aversion. Indifference or equal pricing reveals ambiguity

neutrality. Choosing the ambiguous urn (or pricing it more highly) reveals ambiguity seeking.

Using several colours or numbered balls allows the analysis of ambiguity attitudes away from

the 50–50 case. For example, Becker and Brownson (1964) use urns in which the number of

red and black balls is constrained by the upper and lower bounds on the number of balls of

each colour (e.g. between 15 and 85 black balls in the ambiguous urn). Abdellaoui et al. (2011)

use eight different colours to analyse ambiguity attitudes over different levels of likelihood:

low-likelihood events correspond to bets on one (or few) colours; high-likelihood events cor-

respond to bets on seven (or many) colours over eight. The literature usually finds ambiguity

seeking for low-likelihood events and ambiguity aversion for high-likelihood events (see, e.g.

Curley and Yates, 1989; Trautmann and Van de Kuilen, 2016, for references). Some exper-

iments use numbered balls instead of colours. A second-order probability design explicitly

constructs an ambiguous act. For example, Chow and Sarin (2002) use the following design

to make probability unknowable: the experimenter fills a box with 11 bags, each bag con-

taining 10 balls that are red and black. The first bag has no red balls and 10 black balls,

the second has one red ball and nine black balls, and so on. Next a bag is randomly drawn

and serves as the opaque urn. This compound-lottery design has also been used by Yates and

Zukowski (1976) and Halevy (2007). The last design uses natural sources of uncertainty to

consider ambiguity, such as temperature or weather conditions, prices in asset markets, sport

and outcomes from medical scenarios. Ambiguity attitudes are revealed through choices over

complementary events or source preference. Natural uncertainty is different from urns in that it

does not rely on the assumption of subjects’ probabilistic sophistication. Whereas probabilistic

sophistication is satisfied (within the urn) for any opaque urn, this is less obvious for natural

sources of uncertainty. Abdellaoui et al. (2011) present an experimental method to overcome

this difficulty for natural uncertainty using a series of partitions of events into two equally

likely sub-events (Baillon, 2008), allowing ambiguity attitudes for natural uncertainties to be

evaluated in the same way as for ‘classic’ urns.
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This question is similar to that used in introspective judgements. Subjects are then asked

to predict the empirical distribution of answers to the first question:

What is the fraction of people giving each answer in the first question?

For each question, the probability levels are treated as different response categories.

For example, to elicit beliefs to 1% precision, each question corresponds to a choice list

with 101 items. Based on the answers to these two questions, a score is constructed for

each respondent. Denoting xi
k the answer to item k by individual i in question 1, and yi

k

the answer to question 2, the score for individual i is the sum of an information score

and a prediction score:

∑

k

xi
k log

x̄k

ȳk

︸ ︷︷ ︸
information score

+
∑

k

x̄k log
yr

k

x̄k

︸ ︷︷ ︸
prediction score

where x̄k is the frequency of answers for item k and ȳk is the geometric average of the

predicted frequencies for item k. The information score is the log-ratio of the aver-

age of subjects’ own answers to the geometric mean of the predicted frequencies.

The prediction score is a penalty proportional to the difference between the empirical

distribution and the prediction.12 Prelec (2004) gives a slightly more general formula

with an extra degree of freedom to weight the prediction-error penalty. Prelec (2004)

shows that truthful answers to the questions maximise the expected score for any partic-

ipant who believes that others are also giving truthful answers. In other words, the score

transforms survey questions into a zero-sum game in which truth-telling is a Bayesian

Nash equilibrium.13 The mechanism is based on participants using their own opin-

ions as evidence about the distribution of opinions in the population. The ‘Bayesian

truth serum’ rewards answers that are surprisingly common and penalises those that are

surprisingly uncommon (Weaver and Prelec, 2013). One difficulty with this serum is

the necessity to subsidise the zero-sum game to enforce participation. As the scoring

scheme depends on all answers, and appears complex, the method can be difficult to

explain in an experiment. In particular, it is not possible to explain to participants why

answering truthfully is the best option. Weaver and Prelec (2013, p. 301) summarise the

assumptions underlying the game as follows:

You are most likely to maximise your earnings if you answer every item ‘truthfully’. By

truthfully, we mean: consider each item carefully, answer honestly, and take care to avoid

mistakes . . . Remember that your Truth Score will be lower if you don’t respond truthfully, so the

best way to earn more money overall is to answer every item honestly.

12 More precisely: proportional to the relative entropy.
13 This equilibrium result relies on two critical assumptions. First, the sample of participants is sufficiently

large so that one single answer does not have an influential effect on the empirical frequencies. Second,

inference is impersonal: participants treat their own opinions as an impersonally informative signal about

the population distribution. See Prelec (2004) for more details regarding these assumptions.
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Table 5.7 The constant-sum game in

Nyarko and Schotter (2002)

Player 2

Green Red

Player Green (6,2) (3,5)

1 Red (3,5) (5,3)

5.6.2 Belief Elicitation and Behaviour in Experiments

The Predictive Power of Elicited Beliefs

An important question in experimental games is whether elicited beliefs are related to

the strategies participants play. Nyarko and Schotter (2002) answer this question in the

affirmative. They construct a series of two-person constant-sum games in which beliefs

are elicited (in the relevant treatments) period by period using a quadratic scoring rule.

The constant-sum game is depicted in Table 5.7.

The game has a mixed-strategy equilibrium. The results of the baseline experiment,

including belief elicitation and with subjects being paired with the same partner for 60

rounds, show that subjects’ strategic choices in the game in Table 5.7 correspond to the

best responses to their elicited beliefs 75% of the time. This result still holds if subjects

are randomly matched to a new opponent each period. In addition, the results suggest

that elicited beliefs are not perfectly calibrated: beliefs using the past history of play by

an opponent provide greater accuracy in predicting the opponent’s strategy.

A number of other studies have shown the consistency of best responses and elicited

beliefs (sometimes referred to as ‘stated beliefs’). Bellemare et al. (2008) find in a large

representative sample of the Dutch population that proposers’ belief distributions over

the possible actions of responders in an ultimatum-bargaining game fit the observed

choice data better than a model which assumes that proposers have rational expecta-

tions. In various finitely repeated games, Danz et al. (2012) show that actions in an

asymmetric 3 × 3 game and beliefs are consistent. In their experiment, except for sub-

jects with low levels of reasoning, participants with level-k beliefs consistently choose

level-k actions.14 Hyndman et al. (2013) find a similar consistency rate (63%) in a set

of 12 two-person 3 × 3 normal-form games.15 On the contrary, Rutström and Wilcox

(2009) find that elicited beliefs are sometimes worse predictors of actions than are the

beliefs estimated from an assumed belief-updating process and the observed actions of

participants and their partners. Their findings suggest, however, that elicited beliefs still

exhibit a predictive advantage in games with a high frequency of changes in play.16

Costa-Gomes and Weizsäcker (2008) provide evidence from a set of 14 two-person 3 ×

3 normal-form games, in which subjects failed to best respond to their own elicited

14 For subjects with level-0 reasoning, Burchardi and Penczynski (2014) find that the most common elicited

belief is 50%.
15 Hyndman et al. (2013) also investigate the stability of beliefs elicited with quadratic scoring rules. They

find that that elicited beliefs are fairly stable across time and for strategically equivalent games. For

strategically different games, the elicited beliefs are clearly different.
16 In one-shot games, the results are mixed.
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beliefs 50.5% of the time. Moreover, the estimated underlying beliefs based on the

subjects’ strategies are significantly different from their elicited beliefs.

Rey-Biel (2009) finds the opposite results in a very similar experiment based on

a series of ten one-shot two-person 3 × 3 normal-form games with a unique equi-

librium in pure strategies. First, a large majority of actions are consistent with the

equilibrium predictions (70.2%), whereas the figure in Costa-Gomes and Weizsäcker

(2008) is only 35%. This consistency is particularly high in constant-sum games.

Second, almost two-thirds of the actions (67.2%) are responses to elicited beliefs. Traut-

mann and Van de Kuilen (2014) find that actions in an ultimatum-bargaining game

do not best respond to the elicited beliefs, whatever the procedure used to measure

the latter. Higher scores are obtained with the incentivised methods (quadratic scor-

ing rule, matching probabilities and outcome matching), but are at best equal to 35%.

For introspective judgements, actions best respond to elicited beliefs in under 20% of

choices. Neri (2015) considers a game with a continuous choice set – a uniform-price

double-auction experiment. In this experiment, subjects’ beliefs about other partici-

pants’ bidding choices are elicited for different intervals of the variable of interest and

incentivised with a (non-proper) quadratic scoring rule.17 Neri (2015) finds that even

though these measured beliefs explain observed bidding choices better than alternative

measures of beliefs (Bayesian Nash equilibrium beliefs or empirical beliefs), only 36%

of the bids are consistent with them. On the other hand, Armantier and Treich (2009)

find that elicited beliefs in a first-price auction are better predictors of bids than objective

probabilities.

The Effect of Belief Elicitation on Behaviour

A number of studies have investigated whether belief elicitation can alter the strategic

actions of participants in experimental games. Beliefs are found to be fairly accurate

in the experiment in Croson (2000), presented in Illustration 5.16. Gächter and Renner

(2010) find opposite results in a repeated linear public-good game with three treatments

(incentivised beliefs, non-incentivised beliefs and no belief elicitation): when beliefs are

not incentivised, eliciting them does not significantly change contribution levels relative

to the no-beliefs treatment. Incentivised beliefs about the average contribution level of

the other group members led to higher contribution rates. Gächter and Renner (2010)

explain this by incentives that may have induced subjects to coordinate to improve their

gains.18

The effect of incentivised belief elicitation procedures in repeated linear public-good

games does not generalise to other experimental environments. Croson (2000) also pro-

vides evidence on behaviour in the game in Table 5.7 both with belief elicitation using

a quadratic scoring rule and with no belief elicitation. The likelihood of choosing red or

green is not significantly different between treatments in the partner-matching sessions.

17 Armantier and Treich (2009) use a similar device to elicit beliefs in a prediction contest.
18 Rutström and Wilcox (2009) use three similar treatments – one with incentivised beliefs through a

quadratic scoring rule, one with non-incentivised beliefs through introspective judgements, and one with

no belief elicitation – in an asymmetric matching-pennies game and find similar treatment effects for the

‘row’ player, who benefits more from the asymmetry, but not for the ‘column’ player.
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The effect of belief elicitation is to help subjects think more about the consequences

of their strategy, what Croson (2000) calls ‘thinking more like a game theorist’. In their

experiment on first-price auctions, Armantier and Treich (2009) find that eliciting beliefs

with a prediction contest rather than a quadratic scoring rule or introspective judgements

did not lead to any significant treatment effect on bidding behaviour. Costa-Gomes and

Weizsäcker (2008) mix the order in which subjects choose actions in various games and

carry out the belief-elicitation task. Subjects’ choices did not change significantly with

the order of the action and the elicitation task. Similarly, there is also no order effect in

Rey-Biel (2009).

Summary

Internal validity refers to the capacity of an experiment to deliver an accurate mea-

sure of a target parameter. To that end, the experiment data-generating process must

be chosen in accordance with inference requirements. The data-generating process is

chosen by means of the ‘experimental design’: the choice of all components of the

microeconomic system. Proper inference requires that (i) outcome behaviour is gen-

erated by these components, and that (ii) unobserved factors are not confounding. To

address the second condition, the design of experiments operationalises the identifica-

tion strategies described in Chapter 3: blocking strategies amount to holding constant

unobserved heterogeneity, in order to get rid of possibly confounding variations; while

randomisation breaks any correlation between unobserved components of the outcome

variable and the variations of interest. Several components of the experimental design

aim to strengthen the link between outcome behaviour and the chosen dimensions of the

experiment. First, monetary incentives provide control over preferences, hence align-

ing individual motives with the chosen incentives. Second, the choice of parameters

decide on the setting of the environment: control parameters remain constant in all

instances of the experiment, while treatment parameters aim to deliver identifying vari-

ations in outcome behaviour. Third, the actual data-generating process is mediated by

how subjects perceive the experiment, described thanks to experimental instructions,

and their opponents when interactions are repeated. Subjects’ beliefs are key to the

internal validity of experiments, and their measurement is the matter of this chapter’s

case study. The next chapter turns to the actual implementation of the experiment, and

describes all the practical steps from building a laboratory to the time of the experimental

sessions.
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6.1.1

Conducting an Experiment

This chapter describes step by step how to conduct an experiment. Most of the chap-

ter will focus on the standard practice of computerised experiments. An alternative

implementation — which is also easier to implement and does not require as much

explanations — is to use pen and paper: subjects make decisions on sheets of paperthat

are distributed to them.In this case, the experimenteressentially does manually all the

operations that are otherwise performed by the computer.

To implement a computerised experiment, the first requirement is an experimental

laboratory. Setting up a lab is an important decision, and a costly investment for a

research group orinstitution. Section 6.1 describes the main components to be taken

into account whencreating a lab. Oncethe labis setup,it is time to considerthe struc-

ture of the experiment you would like to run. The main issuesrelating to this structure

are described in Section 6.2. Ideally these issues shouldbesettled at least two months

before the beginning of the experiment. Based onthis structure, Sections 6.3 and 6.4

presentthe final settings and fine tuning required in the month preceding your exper-

iment. Section 6.5 provides reminders for D-Day. Last, Section 6.6 reviews the tools

used to measuretime preferences — a topic regarding which implementation is generally

quite challenging.

A Long, Long Time Beforehand: Setting Up an Experimental Laboratory

Setting up an experimental lab is an important investment, and involves a number of

prerequisites. First, you will need to find a suitable place for the lab. Ideally, the lab

will comprise a number of rooms: a waiting room, the experimental room, a room for

the experimenters, a room for the hardware, and a storage room. Figure 6.1 depicts a

typical set-up. In each room,youwill have to payattention to a series of characteristics.

First of all, space is key, and is often a considerable constraint on experimental labs.

Othercharacteristics such as lighting, temperature, ventilation and equipmentare also

of great importance and should not be neglected. Last, setting up an experimental lab

also requires planningthe financial proceduresto pay subjects well in advance.

The Waiting Room

Whensubjects cometo the lab to participate in an experiment, they often have to wait

a little while until the experimentstarts. A well-identified waiting area or, even better, a

waiting room,can be of great help. For the experimenter, a well-identified waiting area
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Figure 6.1 Typical implementation of an experimental lab

avoidslosing time by keeping the participants together before they enter the experimen-

tal room. It is also useful for the formalities of checking in and oral announcements.

A well-identified waiting area also prevents participants from getting lost and spend-

ing time looking for the lab: the waiting area is a physical focal point for the lab. Last,

when deciding on the lab settings, it should be ensured that the waiting area should

notgenerate, or suffer from, externalities. Negative externalities can arise if the waiting

area is situated somewhere wheresilence is important: near classrooms,offices, quiet

study areas, the library, etc. twenty people who are waiting for an experiment, even if

only for three minutes, can generate a lot of noise and disturb the environment. Neg-

ative externalities can also pass from the environmentto the subjects. This will be the

case if the waiting place is near food and drink areas, cafeterias, group study places or

other busy and noisysettings. If you have sufficient space and decideto set up a small-

scale lab with a limited numberof seats, a dedicated waiting room can be a very good

option to avoid these negative externalities. For large groups, a well-identified open

space is best. Whatever the option, do not forget to indicate clearly in the invitations

the location of the waiting area and put up signs so that subjects can easily find the

laboratory.

The Experimental Lab

The most important room is, of course, the experimentallab itself. Ideally the laboratory

will be dedicated to research, so that the experimenter can run an experiment as soon as

the recruitment process is complete. If the lab is also used for teaching, it might only

be available at times that are less convenient for subjects, giving rise to recruitment
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difficulties. In addition, a dedicated research lab gives the experimenter the freedom to
design the space, and will save time by not having to reconfigure the lab every time it is
needed.

When setting up the experimental room, the objective is to build and design an envi-
ronment that is useful, safe, comfortable and efficient. The first concern will be space:
this should be adapted to the maximum number of participants you expect in experi-
ments. A spacious room is always best: a crowded lab might influence the quality of
the experiments through congestion externalities. As a rule of thumb, you can consider
that 25 square feet (2.5 square meters) per seat is a good compromise between space
and efficiency. Using this rule of thumb, a 20-seat lab will require a 500-square-foot
(50-square-meter) room. Once the necessary space is determined, it is time to con-
sider the room’s other architectural characteristics. Air conditioning and heating may
be required to regulate the temperature during the experiment. Ventilation may also be
needed to ensure a good atmosphere in the lab when all participants are present and are
working on the computers. A good uniform light source is also important for partici-
pants to perform the experimental tasks in good conditions. Many experiments are run
on computers, tablets or other electronic devices: the lighting, electricity and ventilation
should be adapted to this kind of equipment. Last but not least, ensure that the room
satisfies all safety requirements.

Once the experimental room has been set up, you will have to install work surfaces
(tables, desks and chairs) for the participants and the experimenter. The desks should
be spacious enough that the subjects are comfortable during the experiment. Comfort
comes at a price: the larger the desks the fewer of them will fit into the room. Here
also, you will have to think like an architect in order to pick out the optimal solution.
Having desks on wheels helps if they need to be moved. Partitions or cubicles are used
in most labs to separate work surfaces. The types of partition vary according to the
objective, and there are a number of options. A first possibility is to install partitions
to avoid visual contact between subjects during the experiment. Another possibility is
to have partitions that only block the screens where the entries are made. Being able to
move the partitions is important as well. Moving or adapting partitions provides greater
flexibility in experiments. In this case, the partitions should ideally be light and easy to
store. The number of computers in the room depends on the experiments to be run. Some
experiments require only few computers while others need many. Of course, the greater
the number of computers or displays, the more flexibility you have. In general, there will
be one computer per seat. Computers can be standard desktop PCs, portable computers
or tablets. The great advantage of desktop computers is that no specific handling or
connections are necessary once they are installed. Mobile computers or tablets offer
more flexibility, and the ability to have a mobile lab, but the cost of handling them can
be much higher.

For flexibility, you might consider installing a number of whiteboards and at least one
projector in the lab. If you wish subjects to be able to look at a whiteboard or at the
experimenter during the experiment, the partitions might require you to use a different
desk layout (e.g. semi-circular) than if you do not. You might also wish to place desks



194 How? Laboratory Experiments in Practice

in such a way that you can walk behind the subjects in a casual manner. This should be
taken into account when estimating the necessary space.

6.1.3 The Experimenter’s Room

It is useful to have a place where the experimenter can monitor the experiment without
influencing or disturbing the subjects. If space is an issue, the experimenter’s room can
be replaced by a separate area in the experimental lab. The experimenter’s room should
be large enough to fit in a desk with a computer, a printer and/or a photocopier for the
last-minute printing of instructions, receipts and cheques. If there is enough space, it can
also be the place where the servers are stored. Some recommend the use of up to three
servers – one to run experiments, a Web server for recruiting and the webpage, and one
as a backup. However, the number of servers is often restricted to one or two for cost
reasons in experimental labs.

The experimenter’s room can also serve as a separate cashier’s office. The ideal con-
figuration is for the experimenter’s room to communicate with both the experimental
lab and the exit. As such, subjects can either exit the experimental lab directly or via the
experimenter’s room. A window between the experimenter’s room and the lab may be a
plus in order to monitor the experiment without interfering with the subjects.

Figure 6.2 An experimental lab: what it looks like
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Last, it is useful to provide storage space in the experimenter’s room. Many different
kinds of things need to be stored in the course of running experiments: computer pieces,
papers, pencils, payment materials, etc.

6.1.4 Financial Procedures

The financial procedures for subject payment in general follow two different sets of
rules. First, both payment and recruitment procedures have to comply with general
ethical guidelines and principles and the approval from an institutional ethics committee
(IEC) and institutional review board (IRB).1 For example, boards may require a mini-
mum level of compensation for experiments on an hourly basis. Second, your payment
procedures will depend on your institution’s financial rules. Financial procedures can be
very strict in terms of the maximum amount to be paid to an individual, the maximum
amount per session or per period (week, month), the form of and delays in payment,
etc. Payment can be made in many different ways: cash, cheques, and bank transfers
or online payments, to name a few. All institutions are different and you should expect
some bargaining with your own institution’s finance or accounting department when set-
ting up the lab. It is often hard to find a way for teaching and research institutions to pay
students (without the cumbersome paperwork associated with formal work contracts).
Cheques and cash remain the most widely used forms of payment. Some universities
only allow payment by cheque, while others allow cash or electronic payment. Some
universities allow the researcher to request a cash advance to pay subjects directly, pro-
vided that there is a sufficient delay between the demand and delivery, while others only
allow the reimbursement of cash payments after the experiment. Payment procedures
can be hard to fix or change if you have particular needs, such as delayed payments
resulting from choice over time, payments to people outside the university, or payments
above the maximum allowable amount.

6.2 Two Months Before: The Basics

Two months before the experiment, you can set out its basic structure. Four elements
are crucial here: the instructions, the script, the subject pool and money.

6.2.1 The Instructions

As explained in Chapter 5, Section 5.4.1, the written instructions are essential to the
experiment’s success. To be convinced of this, just think about the many times you have
tried to assemble a new piece of furniture and failed to do so properly as the instruc-
tions were not good enough. The same can happen in economic experiments. The main
difficulty in writing instructions is the natural tendency to assume that the subject is an

1 The set-up of such boards varies a great deal across locations – it can typically be part of the university
as a whole, or be created by academic staff within a department. In all cases, a common practice for lab-
oratory experiments in economics (which are typically innocuous in terms of ethics) is to define a set of
requests associated with standard experiments, and grant approval automatically to all proposals matching
this standardised list.
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expert in economics and knows all about the experiment you are running. While most
instructions have the same structure, they are fundamentally experiment-specific. As
a reference, the list below summarises the main steps of a typical sequence, which is
applied to the dictator game in Illustration 6.1. In Section 6.6, Illustration 6.4 shows a
set of written instructions used in an individual decision-making experimental task for
choice over time.

• First, welcome the participants.
• Second, set out the general rules for the experiment. These include the logic of the

incentives (i.e. explaining the link between individual payment and performance) and
the general principles of the experiment: no deception, no judgement of answers,
anonymity and so on.

• Third, present the general structure of the experiment. This part describes the general
environment (the general conditions, the number of subjects and the duration of the
experiment), the nature of the interactions subjects will have with others (if any), the
timing of the experiment, the general conditions linked to participation, etc.

• Fourth, describe the tasks that the subjects will have to perform during the experiment.
• Fifth, give further experimental details: the number of rounds, the roles individuals

play in the experiment, etc.
• Sixth, ask subjects to fill in the pre-experiment questionnaire to check that they have

correctly understood the task.
• Last, describe the way in which subjects can leave the experimental room.

6.2.2 The Scripts

Once the experimental design corresponding to your research project has been set out in
the instructions, it is time to implement it via a computerised script. One simple way to
start writing down a script is to write a first draft of the future instructions. By doing so,
you will force yourself to have a formalised view of the experimental design and set out
the logic of interaction and tasks in your experiment. This phase actually corresponds to
the construction of an algorithm. Having an algorithm representing the experiment as a
whole is extremely useful in order to understand the sequence of tasks that subjects will
face during the experiment. Writing a script is the same as setting out the set of rules to
be followed during the experiment.

The general principles of elementary computing can be used to give some minimal
structure to your experimental algorithm. There are typically four basic requirements.
First, the set of rules must be finite: subjects must face a sequence of tasks that can be
completed in a finite time. This sounds obvious, but for instance the infinite-horizon
environments that are assumed in many economic models contradict this rule. In search
experiments, individuals who do not find an exchange opportunity are supposed to carry
on searching forever. Game theory suggests using random termination of the task to
mimic the infinite-time horizon. Alternatively, fixed but unknown (to the subjects) hori-
zons can also be used (see Section 4.4.2 for a detailed discussion). Second, the rules
must be followed in a particular order. Here the experimenter must have a clear idea of
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Illustration 6.1

Experimental instructions for a simple dictator game

This illustration provides sample instructions for a simple dictator game, inspired by Hoffman

et al. (1994).

1. Welcome the participants: Thank you for participating in our experiment on decision-

making.

2. General description of the experiment: During this experiment, you will have to make

decisions involving various amounts of money. The amount you will earn will depend

on your own decisions as well as the decisions of other participants. All your responses

will be converted into anonymous data after the experiment. During the experiment

you must answer a series of questions. There are no right or wrong answers to these

questions.

3. General structure of the experiment: N people will participate in this experimental session.

For reasons of anonymity, you will not know the other participants’ identities.

4. Description of the tasks subjects will have to perform during the experiment: In this exper-

iment you will be paired with another person in the room. One of you will be the seller and

the other the buyer. The seller chooses the selling price between 0 and $10 and the buyer

has to buy at that price.

5. Further details about the experiment: The following table shows the possible values of

profits for the buyer and seller:

Chosen price $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10

Seller’s profit $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10
Buyer’s profit $10 $9 $8 $7 $6 $5 $4 $3 $2 $1 $0

6. Pre-experiment questionnaire to check that the subjects have correctly understood the

tasks: If the seller chooses $8, the seller will be paid $8 and the buyer will be paid $2.

Do you agree (Y/N)? If the seller chooses $2, the seller will be paid $2 and the buyer will

be paid $8. Do you agree (Y/N)?

7. Description of the way subjects can leave the experimental room: Once the sellers have

made their choices, the profits will be paid to participants and the experimental session

will end.

not only the sequence of the tasks but also the hierarchy to be specified between them.
Third, one, and only one, rule may be obeyed at a time. This requires decomposing the
experiment into a series of simple basic tasks and elements. Last, the rules must cover
any awkward situation that can arise during the experiment. This is crucial for the inter-
nal validity of the experiment. Figure 6.3 shows an example of a simple experimental
algorithm based on the dictator game.

Most experiments are computerised, and scripts have to be written. If the experiment
is not computerised, a framework for the paper-and-pencil or oral questionnaire has to
be designed. Computerised experiments have a number of attractive features compared
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Assign roles to subjects

Defines Receiver

Display: you are player R

Display: You are endowed with 0 ECU,

The other player is endowed with X
ECU

Defines Sender

Display: you are player S

Display: You are endowed with X ECU,

The other player is endowed with 0
ECU

Ask: how many ECU do you want to

send to player R?

Enter a number (Y) between 0 and X

Display: your profit is X Ð Y ECU

Record: value Y

Display: End of sequence

Display: your profit is Y ECU

Send: value Y to receiver

repeated treatment

Figure 6.3 A basic experimental algorithm based on the dictator game

to paper-and-pencil experiments. First, they simplify the data collection. Second, they
are fast: once the experimental set-up exists, they are quick to run and reduce the sub-
jects’ manipulation of experimental material. Third, they reduce the cost of replication.
Last, they permit simple variations on a theme for experimental designs. On the other
hand, running computerised experiments often requires experimental labs, with all the
equipment described in the previous section. However, broad access to the Internet on
different types of hardware reduces the burden of a fully equipped experimental lab. A
variety of languages exists to write scripts for computerised experiments. The most com-
mon are Python (for standard apps) and PHP/MySQL combinations for Web interfaces.
Both require some programming skills in order to construct a computerised experiment
from scratch.

Choosing software to run the experiment is a long-term investment. As an economist
you know that you should follow the rules of optimum investment choice here. To make
the right choice you have to answer a series of questions. The first concerns your time
horizon. If you have a short-term objective, or plan only a few experiments, you can-
not afford to invest time in high-level programming, unless this can be obtained at low
cost. Using a pre-programmed experiment is clearly a good option here. If you have
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long-term objectives and a number of experiments planned, you might want to move to
more sophisticated experimental-economics or general-purpose software. The second
question concerns the type of experiment to be run. If you want to run experiments
based on existing well-known designs (bargaining and sharing, auctions and simple
games) almost all the software we mention below has pre-existing routines for basic
experiments. Here, the simpler the better. However, if you need to run sophisticated
or specialised experiments, you will need to invest in the programming of scripts. One
important aspect of the choice of software is its ability to fit in with your ecosystem.
The more users of a given software you have around you, the greater the incentive for
you to use it as well. Your ecosystem depends on your research interests, your research
community, your institution, and even your friends. The more topics you can share, the
higher your productivity will be. Typically, it is inefficient to choose software requiring
knowledge of Java if you do not have these skills yourself or around you.

Writing a script can take from three days to two weeks of programming. Here, two
weeks of programming does not necessarily mean two weeks in calendar time, as the
programming may well be spread out over a longer time period. It is not uncommon to
encounter difficulties when programming: bugs, incompatibilities and logic problems.
Any of these can take a significant amount of time to solve, either because it is difficult
to figure out what has gone wrong or because you need help to solve the problem. This
has to be taken into account when scheduling the experiment.

If you have no or few programming skills, the VeconLab pre-programmed experi-
ments proposed by Charles Holt at the University of Virginia can be of great help. The
website offers over 60 on-line programmes that can be used for teaching experimen-
tal economics and research. These include a variety of options and cover most fields
in experimental economics: auctions, bargaining, decisions, finance, games, markets,
public good games and various surveys. The programs are based on a PHP/MySQL
combination and can be run in any Web browser. Other alternatives are Econport, pro-
posed by the University of Arizona and Georgia State University, and Comlab. Econport
is mainly teaching-oriented. It allows different types of pre-existing experiments to
be combined through a Web-based interface. The main elements include basic games,
consumer-utility maximisation, markets and auctions, and supply and demand graphing.
Comlab is an entirely game-oriented stand-alone application with three modules: one for
game design, one to run the experiment (executing the game) and a third for analysing
results. If you are instead ready to invest in programming, there are a large variety of
options. The leading software in experimental economics is Z-tree (Fischbacher, 2007).
Z-tree offers an integrated framework, including post-experimental questionnaires and
payment. One advantage of Z-tree is that it requires no prior knowledge or experience
in programming. This does not mean that you will not have to do any programming, but
rather that you do not have to be trained as a programmer to write a script. The logic
of Z-tree makes the programming natural, as it follows what we called the experimental
algorithm in Figure 6.3 rather than standard programming logic. Z-tree is a client–server
application. This means that you, the experimenter, will interact with the server applica-
tion (Z-tree) while the participants interact with the client applications (called Z-leaf).
Note that Z-tree is only available on PC.
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For more specialised topics, Caltech has developed a number of specific open-source
Java-based software packages for experimental markets and auctions. Among these,
the jMarkets software offers high-level options for a large variety of market configu-
rations and jAuctions various ways of programming experimental auctions. Caltech and
UCLA have also developed a more general open-source Java-based framework called
Multistage, which requires Java programming experience.

Alternatives based on Python frameworks also exist. These alternatives require an
understanding of Python and HTML programming, which is much less complicated
than Java programming. We present two examples of these alternatives. The first exam-
ple is oTree (Chen et al., 2016). In oTree the experiment code runs on a server computer
(a local laptop, or a cloud server, for example) and displays the experimental scenario
on the subject’s devices with a Web browser. The subject’s device can be a standard
computer, a laptop, a tablet or a mobile phone. No specific installation is needed on the
subject’s device. This feature makes Python-based frameworks very flexible for use in
the lab or the field, in classrooms or online, on platforms such as Amazon’s Mechanical
Turk or Qualtrics. The second example is Willow, developed at the Center for the Study
of Neuroeconomics at George Mason University. The Willow user interface for subjects
is also displayed inside a browser connected to a Web server that runs on the exper-
imenter’s computer. Both oTree and Willow offer a compromise between all-in-one
integrated software and purpose-written software with standard languages.

Last but not least, software and hardware compatibility needs to be checked. A first
check is that the script is internally consistent. Errors or mistakes in the design or the
source code may produce unexpected behaviour or results, crashes, or the freezing of
the software. The detection of such bugs and inconsistencies in the script can take a
long time, which should not be underestimated when planning the experiment. Sec-
ond, you need to check that your program and system are safe. Your script should not
introduce vulnerabilities into your system and open gates to malicious software such as
spyware, trojans or viruses. Once your script is consistent and safe, check that it runs
satisfactorily on a different computer. Three kinds of incompatibility can occur here.
First, you might find missing links. This happens if your script calls external files (data
files, images, videos or text documents) that are not present on the computer. Second,
you may experience interface incompatibility. This happens if the computer has a new
version of the software that you are using to run the scripts, or if the version of the
operating system is different. Last, you might experience incompatibility issues. This
can happen if computers have different hardware, but also if the presence of some pro-
gram on the new computer inhibits the performance of your script. While the former
is entirely predictable, the latter is not. This calls for a careful check of all the envi-
ronments in which you plan to deploy your script a long time before the experiment.
Compatibility problems extend to computer networks. In this case, the environment to
be checked is not a single computer but rather the network. Incompatibilities turn up
here for the same reasons: missing links, and interface or performance compatibility.
Communication protocols and data exchanges between the server and the terminal thus
also need to be checked for software compatibility.
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6.2.3 The Subject Pool

Two months before the experiments is not only the time to write the script(s) but also
when you should ensure that you will have access to a subject pool, i.e. a population of
individuals from which the participants in the experiments can be recruited. Recruiting,
organising and maintaining a subject pool is a difficult task. There are a number of
constraints and potential difficulties, and you will have to pay attention to a lot of small
and medium-sized details to create and maintain a satisfactory subject pool.

First, before creating a subject pool, you will have to ensure that your research and
experiment are not restricted by the ethical or legal procedures at your university or
institution and in your country. Experiments in economics involve human subjects, i.e.
individuals about whom the researcher wishes to obtain data and private information.
The experimental protocol is therefore a data and information technology that may
be subject to private or public regulations. In economics, the use of human subjects
is simple because it is mainly based on information: most of the time, the data you
require are private information obtained by communication between the subject and the
researcher. For a flavour of the kind of regulation or guidance that exists for the use
of human subjects, the US Department of Health and Human Services provides gen-
eral and very informative guidance on the engagement of institutions in human-subject
research. When recruiting the subject pool, you will have to provide the prospective
participants in your experiment with some information on the general framework of
economic experiments and the use of the information you will obtain from them – as
detailed in Illustrations 6.2 and 6.3. This includes the general purpose of the research,
the possibility of contacting researchers for information about enrolment, the institution
organising the research, and the general rules of the experimental lab. Prospective sub-
jects must also be aware that if they accept being part of the subject pool, they allow
researchers to contact them for forthcoming experiments.

For example, if your subject pool is entirely based on university students, you
will have to check their timetable to avoid university holidays, the exam period and
any other period when students are unavailable. This results in a large number of
small constraints to combine and monitor at the same time. Fortunately, some soft-
ware has been developed in recent years to assist the organisation of the experimental
agenda.

One of the most widely used pieces of software in experimental economics is
ORSEE, a Web-based Online Recruitment System developed by Greiner (2015).
Other participant-management software such as SONA can also be used to manage
subject recruitment. All are either designed for the easy organisation of economic
experiments or can be adapted for that purpose. Participant-management software sim-
plifies the organisation of experiments by taking care of a number of time-consuming
tasks: information and statistics about the subject pool, the standardisation of the
procedures related to organisation, and the reduction of experimenter/subject inter-
actions. Participant-management software has three main components: a public area
accessible to any visitor, a private area for registered participants, and the admin-
istrator area. In ORSEE the public area allows the display of general rules (legal
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Illustration 6.2

Information provided to prospective participants in economic experiments

General rules:

• Participation in experiments requires no prior knowledge in economics.

• Registration is open to everyone (students, employees, people looking for a job, the retired,

etc.) without restrictions.

• Individuals can only register once.

• You can unsubscribe from the mailing list by sending an e-mail to xxx@y.zz

Invitation to participate in an experiment:

• When an experiment is scheduled, invitations are sent by e-mail.

• Only registered individuals will receive invitations.

• All registered individuals are not invited to each experiment.

• Receiving an invitation by e-mail does not guarantee participation in the experiment. The

invitation e-mail contains a link to a page for enrolment. Individuals need to be enrolled to

participate in the experiment.

• In general, enrolment exceeds the number of participants required for the experiment. Those

who arrive on time and can participate will be compensated.

• After enrolment, a confirmation e-mail will be sent. This e-mail notes the name, date and

time of the experiment.

• A reminder e-mail will be sent a few days before the experiment.

• You can cancel your enrolment by sending an e-mail to xxx@y.zz. Please specify the name,

date and time of the experiment.

• If you do not show up to an experiment, you will receive an e-mail. If you do not show up

three times, you will be excluded from any future invitations.

requirements, privacy policy, specific rules of the institution and payment conditions).
It also includes an FAQ page and a calendar containing an overview of the experimen-
tal sessions. The calendar allows potential subjects to see the name of the experiment
and some basic details: date, time, duration, location and number of free places
available.

To construct a subject pool, invitations are sent to potential subjects with a link to the
server, which will create and organise the subject pool. Importantly, using participant-
management software confronts subjects with a standardised environment (which is
important for internal validity) and a convenient way of registering for the mailing list
(which is important to simplify registration). ORSEE also allows subjects to manage
their registrations in experimental sessions. To complete registration, subjects only have
to enter their first and last names and an e-mail address. Additional, optional, personal
data can be entered in the registration form (such as gender and field of study). Once
subjects have completed the registration process, ORSEE updates the participant table.
Subjects have access to a similar environment in case they want to change their data
or unsubscribe from the participant list. Once a subscriber is registered, ORSEE sends
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Illustration 6.3

Information provided to prospective participants in economic experiments

(continued)

Participation in an experiment:

• Rules to follow before the start of the experiment

– Participants in the experiment are asked to show up in front of Room xxx a few minutes

before the experiment starts.

– An experimenter will take a roll call.

– The experiment begins at the time specified in the invitation e-mail.

• Rules to follow when entering the experimental room

– Switch off your mobile phone, so as not to interfere with the experiment.

– Sit in front of one of the computers.

• Rules to follow during the experiment

– No communication (unless otherwise instructed) with other participants in the experi-

ment.

• Rules to follow at the end of the experiment

– Payment of earnings in the experiment will be made individually.

– Payment will be made by cheque, according to the rules set out in the experimental

instructions.

– Every experiment has its own compensation scheme. No information on the remunera-

tion of the experiment is provided before the start of the experiment.

– Most experiments include the payment from the experiment plus a participation fee of 3

euros.

Data privacy: The private information in participants’ registration is only used to organise

the experiments. In accordance with French Law on the protection of individuals, you may

choose to modify and/or delete your personal data.

Consent: I have read the registration conditions and the privacy and data reporting and agree

with the content. Yes/No

them an invitation to participate in an experiment by e-mail. This e-mail contains a link
to the individual’s experiment registration page. Each potential subject’s page shows the
experiments to which the subject has been invited. For each of these, the subject can
choose to register by a simple click on a button. The page also shows the forthcoming
experiments for which the subject has already registered, and those in which they have
already participated.

From the experimenter’s side, the software offers a number of administrative tools
to manage the subject pool and lab organisation. An important function is the mainte-
nance of the subject’s pool. Different tasks are performed here: adding a new participant
to the database; searching for duplicates in the database; deleting, unsubscribing and
excluding participants; and modifying or deleting subjects’ personal data. A second
main function is the experimental calendar, which is an essential time-saving device
in lab management. An experimental calendar contains all the information on lab or



204 How? Laboratory Experiments in Practice

subject-pool availability, bookings (date, time and location), the details of each exper-
iment, the number of subjects who have already registered and so on. In practice, an
experimental calendar can serve as the main interface for managing the lab. This is, for
example, the case with ORSEE. With the experimental calendar, you can easily check
subject availability and book the lab for forthcoming experiments. Moreover, the statis-
tics, for example on the number of individual no-shows, provide information on the
reliability of the subject population.

6.2.4 Money

Two months before the experiment is also the time to establish a provisional budget for
your experiment, by listing the different expenses you will face and the funds available
(research funds, grants, etc.). The expenses include experimental payments (show-up
fees and experimental winnings), staff costs (wages and salaries to be paid to research
assistants, taxes and insurance), operational costs (printing, specific material). Preparing
the budget includes listing the institutional procedures and bureaucratic requirements
you will face to cover the experiment’s costs and pay subjects. All this needs to be
established long before the experiment. In particular, this will allow you to ensure that
your experiment complies with all institutional financial rules.

The budget will require you to predict total payments to subjects. Predicting exper-
imental gains is not easy. You first need to choose an exchange rate between the
experimental currency units and money. Dominance (see Chapter 5, Section 5.2.1)
requires the average gain to exceed the subjects’ opportunity cost of time – which
varies according to the composition of the subject pool. A rule of thumb is to double
the hourly wage rate (for students e10–12 per hour) or to refer to an hourly cost of
time (e.g. the value of volunteer time is between $20 and $30 per hour in most of the
US). Second, you have to be sure that all possible experimental gains are covered. For
example, if you use a random-task incentive procedure, the sample distribution of real
payments can be very skewed to the right (or to the left) as compared to the expected
distribution.

6.3 One Month Before: The Final Settings

Now that you have established the basic structure of your experiment (scripts, subject
pool and money), it is time to determine the final settings. Three elements are crucial
here: planning, the pilot and the feedback from the pilot.

6.3.1 Planning

Here are the main steps to follow in order to plan and organise experimental sessions.

1. Choose the number of subjects needed for the experiment. The number of subjects
depends on several factors: the number of between-subject conditions and treat-
ments you wish to run, the statistical power of the difference between conditions, the



Conducting an Experiment 205

availability of the underlying population you are sampling from, the overall monetary
and time costs of the experiment, etc. Your final choice will be a compromise between
these factors.

2. Determine the number of sessions you need to run to obtain the number of partici-
pants you require. The number of sessions mainly depends on the number of subjects
and the constraints of the experimental lab (e.g. the number of seats).

3. Determine the maximum duration of the experiment. Most software for the manage-
ment of subject-participant pools allows the easy scheduling of the time and date of
the experimental sessions. The pilot will be of great help in evaluating the minimum,
mean and maximum duration of each experimental session.

4. Plan the pilot sessions, with and/or without monetary payoffs. Pilot sessions without
monetary payoffs are easy to carry out, and can be used to fine-tune the design at
earlier stages of the project. Pilot sessions with monetary payoffs, however, deliver a
more robust test, and allow you in particular to check whether payment procedures
work well and comply with all financial requirements.

6.3.2 Running the Pilot

On the practical side the pilot is your trial session. The pilot has to be as similar as
possible to the real session (see Section 6.5 and Figure 6.4 for details).

The pilot will answer a number of questions. First, the pilot reveals whether the
instructions are understandable and have indeed been understood by the participants.
If something is badly wrong in the instructions, for instance if subjects fail to under-
stand the task or if the tasks are too complex for the average subject, this will become
apparent in the pilot session. This will prevent you from spoiling your experiment via
bad phrasing, for example. Second, pilots of computerised experiments uncover unex-
pected bugs or errors in the software. This may concern everything from the displays
provided to subjects to data encoding. Third, a pilot provides useful information on
experiment duration, the timeline for sending out invitations and reminders to partic-
ipants, the sample variation in subjects’ hourly payments, and so on. Last, the pilot
session will produce preliminary, although unreliable, results regarding behaviour. If
the pilot includes payments, it will also allow you to test your payment procedures.

6.3.3 Feedback from the Pilot

The main purpose of the feedback from the pilot experiments is to improve the experi-
mental design and to fix any remaining flaws in the implementation. Since the pilot is a
small-scale version of the experiment, which may well be changed following the pilot,
no inference on behaviour can be drawn from the observations here. Rather, the feed-
back from the pilot provides useful information on how to fix problems and prevent any
unwelcome consequences from previously unforeseen events. The first piece of feed-
back is your ability to run the experiment. The pilot will confirm if you are ready in
terms of script and software compatibility, planning and logistics. The second relates to
the subjects. The subjects’ reaction to the instructions will confirm if they fit well with
the design of the experiment and whether any changes are necessary. The pilot will also
confirm whether your recruitment procedure fits the experiment or needs to be changed
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SubjectsÕ arrival

¥     Check participant list and participantsÕ ID

¥     Pay or give new appointment to over-recruited subjects

¥     Subjects sign consent form

¥     Read aloud instructions or tell subjects to read the instructions privately

¥     Pre-experiment questionnaire

¥     Answer questions (if any)

¥     Assign seats randomly

¥     Distribute instruction sheets

¥     Treatment 1: period 1, period 2, ....

¥     Treatment 2: period 1, period 2, ....

¥     Individual private payment

¥     Subjects sign payment receipt

SubjectsÕ installation

Instructions

Main experiment

Practice questions and trial periods

Payment

Questionnaire

End of the session

Figure 6.4 A typical experimental session

(over-recruitment, composition of the pool of subjects, or participant diary constraints).
The pilot also provides feedback on timing to see if you need to spend more (or less)
time on instructions and practice or on the main tasks. Last, you may learn that changes
to payment procedures are required.

6.4 One Week Before: Almost There

One week before the experiment you should deal with the final preparations. At this
point the devil lies in the detail. The most important check is of the practical and mate-
rial details (instructions, lists, administrative papers) and managing subject subscription.
The list of tasks is as follows:

1. Print the experimental instructions.
2. Print the consent and participation forms.
3. Prepare the experimental material if any (urns, calculators, pens, sheets, tables, etc.)

and check the standard office supplies (printer cartridge, toner and paper).
4. Prepare the payment material. If you use cheques, be sure to have the right number

of them. If you use cash, be sure to have enough change, with a sufficient number of
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notes or coins. If you use electronic payments, be sure to have enough credit and fast
verification procedures.

5. Send out the invitations to participants. The recruiting software allows you to
avoid clashes with other lab bookings and experiments. Due to attrition, the over-
recruitment of participants is recommended. It is common practice to recruit 10–25%
more subjects than required. This precaution avoids no-show participants affecting
the experiment. Ask subjects to arrive five to ten minutes before the scheduled start
of the experiment.

6. Schedule the reminder. The reminder should usually be sent to registered participants
24–48 hours before the experiment.

7. Once the experimental sessions are complete, you can print the list of subjects for
each session.

8. Prepare a script to test the program the day of the experiment. Make sure that you
will be able to pay the subjects in case of a computer crash during the experiment.

6.5 D-Day: Step-by-Step Proceedings

6.5.1 Before the Participants Arrive

Before the first experimental session starts there are a number of checks to be made.
To avoid rush and stress, you should take one hour to check that everything is in order
for your first session. If the experiment is computerised, the computer (server/terminals)
will take much of your time before the subjects arrive. Below you can find a tentative
list of items that you should check before the participants arrive.

1. Start the computers/terminals and log on.
2. Check the language of the keyboards.
3. Clean the old data on the terminals.
4. Run the test script.
5. Check the exchange rate to be used during the experiment.
6. Launch the clients on the terminals.
7. Prepare the administrative tasks you will have to carry out after the experiment: list

of payment receipts, list of consent forms, etc.
8. Put your mobile devices on vibrate mode.
9. Prepare the material needed for when the participants arrive: consent forms, list of

registered participants and instructions.

6.5.2 Participants’ Arrival

When participants arrive, you first have to check that their name appears on the convo-
cation list, check their ID and have the participants sign the consent form (see Chapter
2, Figure 2.1, for an example). If the lab has a waiting room, you can invite the subjects
to go there until the experiment starts. If over-recruitment produces more subjects than
required for the experiment, you can propose that these subjects show up for another
experimental session instead, or leave with the show-up fee.
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When all subjects are ready, they enter the experimental lab. It is important for each
participant to be randomly assigned a seat. One simple random-assignment method
is to write the seat number on top of the instructions and distribute them randomly.
Alternatively subjects can draw their seat number from an urn placed next to the entry
door.

Now the experiment can start. You can read the instructions aloud or ask subjects
to read the instructions on their own. Don’t forget to ask subjects to switch off their
own mobile devices. Figure 6.4 shows the main elements of a typical experimental
session.

6.5.3 The End of the Experimental Session

At the end of the session, it is best to ask subjects to remain seated until they get paid.
Print or fill out the payment receipts before proceeding to payment. Once subjects have
been paid they can leave.

Once all subjects have left, you can prepare the room for the next session. Sessions
do not follow each other immediately, to allow time to clean up the room, and to make
sure that those leaving one session do not talk to those who are waiting outside for the
next one to begin. This is also the time to deal with administrative tasks. First, you have
to maintain the subject database, with the following steps:

• Check the number of subjects in the session. If the number of subjects is different
from that scheduled, update the database with the right number of subjects. Update
the show-up data for no-shows.

• Add new and unscheduled participants, if any. Check if they are correctly entered in
the database. Update the registration details of the over-recruited subjects who chose
to register in another session.

• For the subjects who showed up, update the show-up and participation data.
• Edit and close the session.

Second, you have to fill in the financial documents to track the money spent during the
experiment and the receivers (amount, name, address, etc.). Third, save the experimental
data to a safe device. Once this is done, the experimental session is over and you can
prepare for the next session.

6.6 Case Study : Measuring Preferences in Choice over Time

Choice over time, which can be defined as any decision that requires trade-offs among
outcomes that occur at different points in time, is of great importance in economics.
The measurement of time preferences has received considerable attention in experimen-
tal economics and experimental psychology (Frederick et al., 2002) and a variety of
methods and experimental procedures have emerged. In this case study, we review these
methods and procedures in three steps. We first present simple methods to measure pref-
erences in choice over time, as well as the main experimental challenges in this area, and
then more sophisticated methods.
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Table 6.1 Example of binary choices used by Tanaka et al. (2010)

Sooner–smaller Larger–later

60 today 120 in 1 week
20 today 120 in 1 month
100 today 120 in 3 months
50 today 300 in 1 week
200 today 300 in 1 month
150 today 300 in 3 months
50 today 60 in 3 days
30 today 60 in 2 weeks
10 today 60 in 2 months

6.6.1 Simple Methods to Measure Preferences in Choice over Time

The experimental elicitation of time preferences is usually based on trade-offs between
an earlier outcome (usually a smaller outcome, denoted SS, for ‘smaller–sooner’) and a
later outcome (usually a larger outcome, denoted LL, for ‘larger–later’). More complex
choices involving temporal sequences of outcomes can also be used to elicit attitudes,
but are less common (Rubinstein, 2003). Most elicitation methods used in decision
over time are based on binary choices, indifferences or price lists. This subsection fol-
lows this simple classification and reviews the main elicitation methods available in the
literature.

Binary Choices
A simple procedure that can be used to elicit time preferences is a series of binary
choices. This procedure varies both the amount and delays in order to estimate a para-
metric discount function with one (exponential), two (quasi-hyperbolic, generalised
hyperbolic) or even three or more parameters (fixed-cost discount function à la Ben-
habib et al. 2010). The number of binary choices used to elicit time preferences also
varies from one study to another: for example Chabris et al. (2008) use 27 choices while
Eckel et al. (2005) use 38 of them. The framing of the available options may also differ.
A simple example of binary choices is provided by Tanaka et al. (2010). Table 6.1 shows
nine choices out of the list of 75 they propose, each between a smaller–sooner outcome
and a larger–later one.

Based on the answers to the binary choices, the researcher can appeal to discrete-
choice models to estimate preferences. A basic estimation strategy works as follows.
The researcher first specifies a decision model. Focus 6.1 describes the basic representa-
tion of the standard decision model in choice over time, the discounted utility model, and
Focus 6.2 presents its behavioural foundations. In most of the experimental literature,
the objects of choice are simple temporal prospects (x, t) denoting the receipt of out-
come x at time t.2 In the standard exponential discounting model of Samuelson (1937),
the utility U of a temporal prospect (x, t) equals the present discounted value of the

2 In most experiments no explicit distinction is made between payoffs and consumption; see Cubitt and Read
(2007) for a discussion.
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Focus 6.1

The discounted-utility model

Following Samuelson (1937) and Fishburn and Rubinstein (1982), a large part of the theo-

retical literature on choice over time appeals to discounted utility and additively separable

functional forms. This discounted-utility model assumes a separation between value and delay

in the evaluation of temporal sequences of outcomes. The discounted-utility model is the

general behavioural theory for choice over time on which experiments are constructed. This

model can account for most representations of choice over time, as well as the most common

observed patterns of time preference. As such, the model is a very useful basis for experi-

mental investigation. In the standard exponential discounting model of Samuelson (1937), the

utility derived from a temporal prospect equals the sum of the present discounted values asso-

ciated with each timed outcome. For example, for a temporal prospect yielding x at time t and

y at time t + τ , overall utility U is given by the sum of the present discounted values of x

and y:

U(x, t; y, t + τ ) = δtu(x) + δt+τ u(y) (6.1)

where δ is the discount factor and u is a real-valued instantaneous utility function.

temporal prospect: U(x, t) = δtu(x), with δ the exponential discount factor. Most empir-
ical work on time preferences assumes linear intertemporal utility. In this case, a unique
preference parameter (δ) is estimated. In a series of choices j = 1, . . . , J between an
immediate reward (xj, 0) and a delayed reward (yj, tj), the exponential discounting model
predicts that the delayed reward is chosen if U(yj, tj) = δtj yj exceeds U(xj, 0) = xj. If we
assume that the decision-maker makes this choice with some error, the decision becomes
stochastic. A simple way of introducing error is to assume that it is identically and inde-
pendently distributed over the J choices and follows an extreme-value distribution. In
this case, the probability that the decision-maker chooses the delayed reward for choice
j is

Pr[(yj, tj)|δ] =
exp(δtj yj)

exp(xj) + exp(δtj yj)
(6.2)

This provides the likelihood contribution for a single subject’s decision in choice j for
parameter δ. For a given set of decisions j = 1, . . . , J, the likelihood associated with a
given subject’s choices is

L(δ) =

J
∏

j=1

Pr[(yj, tj)|δ]Zj × [1 − Pr[(yj, tj)|δ]]1−Zj (6.3)

where Zj = 1 if the subject chooses the delayed reward and 0 otherwise. Maximising
this likelihood yields the estimated value of the preference parameter δ. In Chapter 7,
Section 7.4, this basic econometric structure is extended to account for heterogeneity
and a richer specification of the decision error.
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Focus 6.2

Behavioural foundations of the discounted-utility model

Using simple temporal prospects, Fishburn and Rubinstein (1982) provide a behavioural foun-

dation for canonical models of choice over time. They focus on a single outcome at a particular

time (x, t), and assume that a preference relation is defined over the temporal prospects. They

show that four axioms (order, monotonicity, continuity and impatience) are sufficient for the

existence of a continuous utility function U representing the preference relation. When prefer-

ences satisfy these four axioms, the utility function is increasing in the outcome x, decreasing

in the delay t for gains, and increasing in the delay for losses. Order is a rationality axiom

defined in the usual fashion (the preference relation is reflexive, complete and transitive), while

continuity is a mainly technical axiom. Under monotonicity, if an outcome x is preferred to an

outcome x′ in the present, it should also be preferred to x′ when both outcomes are delayed to

the same extent – if x ≻ x′ then (x, t) ≻ (x′, t). The last axiom, impatience, is based on two

components. First, the decision maker is indifferent between receiving a zero outcome sooner

or later. Second, desirable outcomes are preferred sooner rather than later. The axiom also

states that the decision-maker procrastinates regarding losses: undesirable outcomes are pre-

ferred later rather than sooner. To obtain the standard exponential discounting model in (6.1),

a fifth axiom is required. The stationarity axiom states that indifference (denoted ∼) between

two temporal prospects depends only on the difference in delay between the two outcomes.

If the decision-maker is indifferent between two temporal prospects, (x, t) ∼ (y, t + τ ), then

the decision-maker will also be indifferent between these two temporal prospects when they

are similarly delayed (x, t′) ∼ (y, t′ + τ ), whatever the values of t and t′. Under stationarity, a

decision made at a given date does not change when the receipt periods are similarly delayed.

The choice between two delayed outcomes then depends only on the time distance, τ , elapsed

between them. Stationarity thus corresponds to constant impatience and underlies the evalua-

tion of temporal prospects based on constant discount rates, as in the exponential-discounting

model.

Indifference
Rather than using binary choices, it is also possible to elicit time preferences via
indifference. Illustration 6.4 shows a set of written instructions used in such an elic-
itation experiment. This method offers a fairly simple and direct way of eliciting
discount factors and discounting functions. For example, assuming a discounted util-
ity model and a linear utility function, a single answer can be used to estimate a
constant discount rate. Consider the following indifference between a smaller–sooner
reward x at date t (denoted (x, t)) and a larger–later reward y at date t + τ , (denoted
(y, t + τ )):

(x, t) ∼ (y, t + τ ) (6.4)

In the well-know contribution of Thaler (1981), y is elicited by asking subjects how
much they would require to make waiting τ just as attractive as receiving x right now.
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Illustration 6.4
Instructions for a time-preference-elicitation experiment

The following set of instructions is taken from Denant-Boèmont et al. (2017) (italicised text

refers to the outline described in Section 6.2.1).

1. Welcome the participants: Thank you for participating in our experiment.

2. General description of the experiment: During this experiment, you will have to make deci-

sions involving various amounts of money. If you follow the instructions, you could win a

quite a large amount of money [logic of incentives]. All your responses will be converted into

anonymous data after the experiment [anonymity]. During the experiment, you must answer

a series of choice questions. There are no right or wrong answers to these questions. We are

interested in your preferences: the only right answer to a choice task is the choice that you

prefer [absence of judgement].

3. General structure of the experiment: Twenty people will participate in this experimental ses-

sion. During the session, you will have to make decisions individually and collectively [nature

of interactions]. Therefore, you will decide alone for some decisions and will interact with

other participants for other decisions. For reasons of anonymity, you will not have access to

the other participants’ identities. The experiment consists of two parts [timing of the experi-

ment]: in the fi rst part, you will decide as an individual; in the second part, you will make a

decision in common as a member of a group of fi ve people (i.e. you and four other people).

[This part of the instructions will not be presented here]

4. Description of the tasks: During the experiment, you will be asked to answer a series of

choice questions regarding diff erent amounts of money available on diff erent dates. The fi gure

below gives an example of one such series.

Option A off ers a fi xed amount of e 100 to be obtained in four weeks’ time. Option B off ers

a series of six amounts, equally spaced between e 50 and e 100, to be obtained tomorrow.

For each of the six amounts, you will be asked to indicate whether you prefer option A or

option B. Once you have switched between option A and option B, a scrollbar will appear on

the screen. The scrollbar allows you to state the exact amount of money at which you switch

your choice from A to B. For instance, imagine you decided to switch at e 72. If you switch

at e 72, do you agree that you prefer to choose option B at a higher amount thane 72? (Y/N).

Do you agree that you prefer to wait four weeks and choose option A at prices lower than

e 72? (Y/N) [pre-experiment questionnaire]. If you have any questions, please feel free to ask

the experimenter.
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5. Description of the payment: Payments will be made as follows. At the end of each experi-

mental session, four participants will be selected at random among the 20 participants in the

session. For each of these participants, the computer will select one decision at random. For

that decision, the computer will select one possible choice at random. Take the decision rep-

resented in the figure above as an example. For that decision, an integer between 50 and 100

will be selected at random. If the computer draws 63, then the selected choice is between

e 63 tomorrow and e 100 in four weeks’ time. Do you agree? (Y/N). If you chose e 72 as the

switching point, then your preference is for e 100 in four weeks’ time, and you will receive

your payment directly by bank transfer from the National Treasury in four weeks’ time. Do

you agree? (Y/N). Suppose that instead the computer draws 83: your choice is then between

e 83 tomorrow and e 100 in four weeks’ time. Do you agree? (Y/N). If you chose e 72 as the

switching point, then your preference is e 83 tomorrow and you will receive your payment

directly by bank transfer from the National Treasury tomorrow. Do you agree? (Y/N). If you

have any questions, please feel free to ask the experimenter.

6. End of the experiment: At the end of the experimental session, you will receive a receipt

from the university as a proof of your payment.

Benhabib et al. (2010) uses the same design to elicit time preferences. Two treatments
are implemented. In the first, subjects answer the following question:3

What amount of money, $_ _, if paid to you today, would make you indifferent to

$y in τ days.

The amount of the larger–later outcome y varies between $10, $20, $30, $50 and
$100, and the delays τ between three days, one week, two weeks, one month, three
months and six months. The incentive scheme is a random-task Becker–DeGroot–
Marschak procedure. First, one question (task) is picked at random. Second, a number
is chosen at random in the interval [0, y]. If the number is less than x, then the
subject receives y with delay τ ; if it was greater than x, then the subject receives
the payment corresponding to that number. Rather than directly asking subjects their
indifference values, it is also possible to infer indifference values from a series of
binary choices. Illustration 6.5 gives an example of such a ping-pong or bisection
procedure.

Takeuchi (2011) also uses indifference to elicit time preferences. Instead of stating a
smaller–sooner value that generates indifference to a larger–later reward, subjects have
to state the longest acceptable delay τ after which receiving an amount of money y is as
good as receiving x now:

To me, receiving $x today is as good as receiving $y in _ _ days.

3 In the second treatment, subjects are asked to state the amount of money y that would make them indifferent
between x today and y in τ days, with x being based on the answers in the first treatment.
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Illustration 6.5

Eliciting indifferences via bisection

The bisection consists of a series of binary choices, which are part of an iterative process

focusing on subjects’ indifference values. The table below illustrates the bisection method.

At each iteration, subjects are faced with two temporal prospects, labelled A and B, where

temporal prospect A always refers to an amount of money, x, now, and B refers to $100 in

three months’ time. The chosen prospect is printed in bold. The starting value of the iteration

for A here is the nominal value of B, although other values can be used. Depending on the

choice made, the amount of outcome A rises or falls at the next iteration. In the table below,

the size of this change is half the change in the previous iteration.

Iteration Temporal prospect A Temporal prospect B

1 $100 now $100 in 3 months

2 $50 now $100 in 3 months

3 $75 now $100 in 3 months

4 $87.5 now $100 in 3 months

5 $93.75 now $100 in 3 months

Other step sizes are, of course, possible. After a given number of iterations (five here), the

method produces an interval in which the indifference value should lie (here between $87.5

and $93.75 for a value of B of y = $100 in three months’ time). The indifference value is

generally approximated by the mid-point of this interval. A more precise value can be obtained

by additional iterations or the use of a scrollbar if the experiment is computerised.

where x and y are either $5, $10, $15, $20 or $25, and x < y. Takeuchi (2011)
also uses a Becker–DeGroot–Marschak incentive scheme: a number is picked from a
uniform distribution between 0 and 120 days. If the number is less than the elicited
delay τ , then the subject receives y with a delay corresponding to the number drawn;
if it is greater than τ , then the subject receives the payment x at the end of the
experiment.

We turn next to the elicitation of discount factors. Under the discounted utility model,
the indifference in (6.4) can be represented as:

δ(t) · u(x) = δ(t + τ ) · u(y) (6.5)

where u(.) denotes the utility function and δ(.) the discounting function. Assuming a
linear utility function, the indifference (6.5) yields:

δ(t) · x = δ(t + τ ) · y (6.6)

Assuming constant discounting, the discount factor δ can be calculated directly and is

δ =

(

x
y

)1/τ

. In discrete time, the constant discount rate corresponding to this discount

factor is δ−1−1. It is worth noting that the elicited value of δ does not depend on the date
at which the indifference is stated. This independence illustrates the implications of one
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Focus 6.3

Accounting for non-linear utility

A great deal of work on choice over time assumes that utility is linear. For simple tempo-

ral prospects, this assumption is required for the identification of the discounting parameters

(Fishburn and Rubinstein, 1982; Bleichrodt et al., 2009). If utility is non-linear, the imposition

of linear utility will bias the measured discount factors δ(t) and discount rates. For example,

if utility is concave, and assuming constant discounting, the discount factor δ calculated from

indifference (6.4) is

δ =

[

u(x)

u(y)

]1/τ

This is higher than
(

x
y

)1/τ
, the discount factor from the assumption of linear utility. A num-

ber of methods avoiding the assumption of linear utility have been used in the literature.

Abdellaoui et al. (2010) and Attema et al. (2010, 2016) measure discounting using meth-

ods that require no assumptions about utility. Andersen et al. (2008) and Takeuchi (2011) do

not measure utility directly, but instead assume that utility in choice over time is equal to util-

ity under risk, which is measured separately. This procedure was suggested by Frederick et

al. (2002). One possible concern here is that measurements of utility under risk often assume

expected utility theory to hold, which can distort measurement if it does not hold. Epper et

al. (2011) elicit discount factors via indifferences similar to (6.4), together with a series of

certainty equivalents under risk. The elicitation of certainty equivalents allows the estimation

of the component of a non-expected utility model: utility and probability weighting. Epper

et al. (2011) show that both probability weighting and the curvature of utility affect discount

factors and discount rates. Moreover, departures from linear probability weighting are signif-

icantly correlated with departures from exponential discounting. This result shows that while

utility curvature is important to avoid bias in the measurement of discount factor under hyper-

bolic discounting, probability weighting is the main channel by which uncertainty in future

payments is linked to alternative models of discounting.

of the main axioms underlying the exponential discounting model, stationarity, whereby
the choice between x and y depends only on the time distance τ between them. Here t

might be the present or any delay, and this would not change elicited time preferences
under stationarity. In equation (6.6), the discount factor is calculated under the assump-
tion that utility is linear. Focus 6.3 discusses this assumption; in particular it shows how
restrictive this assumption can be for elicited discount factors and discount rates, and
how it can bias the elicited or estimated parameters.

Thaler (1981) considers a series of indifferences and shows that the elicited discount
factor δ is not constant but increases with delay τ ; discount factors also rise (so that
the corresponding discount rates fall) as the size of the outcome x increases. Moreover,
behaviour appears to be different in the loss domain.4

4 Discount rates in the loss domain are found to be much lower than those in the gain domain, and changing
τ has almost no effect on the elicited discount factors.
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Table 6.2 The price list in Coller and Williams (1999)

Payoff
alternative

Option A (in 1
month)

Option B (in 3
months)

Annual interest
rate

Annual effective
interest rate

1 $500 $501.67 2.00% 2.02%
2 $500 $502.51 3.00% 3.05%
3 $500 $503.34 4.00% 4.08%
4 $500 $504.18 5.00% 5.13%
5 $500 $506.29 7.50% 7.79%
6 $500 $508.40 10.00% 10.52%
7 $500 $510.52 12.50% 13.31%
8 $500 $512.65 15.00% 16.18%
9 $500 $514.79 17.50% 19.12%
10 $500 $516.94 20.00% 22.13%
11 $500 $521.27 25.00% 28.39%
12 $500 $530.02 35.00% 41.88%
13 $500 $543.42 50.00% 64.81%
14 $500 $566.50 75.00% 111.53%
15 $500 $590.54 100.00% 171.45%

Price Lists
A popular way of using binary choices in experimental economics is (multiple) price
lists. A price list consists of a series of ordered binary choices. The Coller and Williams
(1999) method is based on a bracketing of the indifference between two simple tem-
poral prospects: a fixed smaller–sooner outcome and a varying larger–later one. The
choices proposed by Coller and Williams (1999) are shown in Table 6.2. The prospect
x is worth $500 in t = 1 month,5 and y varies between $501.67 and $590.54 in ascend-
ing order. The larger–later reward y is available in t + τ = 3 months. The numbers
from $1.67 to $90.54 are chosen to reflect discount rates from 2–100%. In each row,
subjects pick their preferred option from A and B. Together with the description of the
two options, Table 6.2 provides information on the annual interest rate and the annual
effective interest rate.6

Coller and Williams (1999) use five treatments to address a number of possible
experimental-design issues in choice over time – summarised in Table 6.3. Their base-
line treatment does not provide any information on either market or experimental interest
rates. The first four treatments consist of a 2 × 2 design, in which the first treatment
variable is the information on market interest rates and the second treatment variable is
information on experimental interest rates. Two additional experimental treatments test

5 Coller and Williams (1999) choose the sooner delay t to be one month to minimise the perceived difference
between option A and option B in terms of transaction costs and any uncertainty associated with future
payments.

6 Annual effective rates are calculated using daily compounding. Annual interest rates correspond to simple
compounding. Coller and Williams (1999) also provide subjects with information on the market interest
rate. They argue that the discount rates revealed in the lab are influenced by subjects’ market opportunities.
As these latter are mostly unobservable, the experimenter provides the subjects with some information
about market opportunities.
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Table 6.3 The treatments in Coller and Williams

Treatment Front-end
delay rates

Information on
experimental
discount rates

Information
on market
interest rates

Real
payments

Results

1 X X 0.221–0.284
2 X X X 0.162–0.191
3 X X X 0.191–0.221
4 X X X X 0.162–0.191
5 X 0.284–0.419
6 X X X 0.105–0.133

Note. The results column shows the median interval of the annual discount rate.

the impact of the one-month front-end delay on outcome x = $500 and the hypothetical
bias in choice over time. The last column of Table 6.3 shows the interval of discount
rates consistent with the median choices in Table 6.2.7

Coller and Williams (1999) show that provision of interest-rate information reduces
the elicited discount rates and their variance. The use of a one-month front-end delay
for the smaller–sooner outcome also reduces the elicited discount rates. The results in
Table 6.3 are consistent with those in Kirby and Maraković (1995) that real incentives
increase discount rates, but Coller and Williams (1999) mention this could be due to
the fact that subjects were not perfectly randomised into treatments, with a possible
correlation between demographics and the treatments. When the effect is controlled
for, Coller and Williams (1999) obtain a marginally significant negative effect of real
payment on discount rates.

The experimental design in Coller and Williams (1999) has been widely applied in
the literature. For example, Andersen et al. (2008) reduce the list to 10 choices that are
presented to field subjects in an artefactual field experiment. Option A offers 3,000 Dan-
ish krone in one month and option B 3,000 + x Danish krone in seven months, where x

reflects annual rates of return of 5–50% on the principal of 3,000 Danish krone, com-
pounded quarterly. The authors use six discount-rate tasks corresponding to six different
time horizons: 1 month plus 1 month, 4 months, 6 months, 12 months, 18 months and
24 months. They also include four Holt and Laury (2002) multiple-price lists to elicit
utility.

Manzini and Mariotti (2014) compare the price-list elicitation of time preferences
with a Becker–DeGroot–Marshak mechanism based on matching. They find that the
price-list method produces discount rates that are higher than those delivered by a BDM.
The experiment also involves a payment mechanism via a Vickrey auction. In the latter,
subjects are asked to state the minimum amount x they would accept at an earlier date
rather than receiving a given amount later (y = 20 Euros or 50 Euros at τ = 1, 2 or 4

7 This corresponds to the interval consistent with the median switching point, assuming linear utility and
exponential discounting in continuous time. For example, in session 1 the median choice was to postpone
payment for the first 11 choices, corresponding to a discount rate in the 22.1–28.4% interval. The median
indifference value produces a discount rate of around 22.5%.



218 How? Laboratory Experiments in Practice

Table 6.4 Four procedures to elicit indifference in choice over time

Value equivalence Delay equivalence

Sooner–smaller x t

Larger–later y τ

months). The subject with the minimum amount wins, and receives the second-lowest
amount immediately; subjects who lose instead receive y with delay τ . Manzini and
Mariotti (2014) find no difference in the elicited discount rates in the matching pro-
cedure and the Vickrey auction. However, the price-list method yields higher discount
rates than does the Vickrey auction.

6.6.2 Experimental Challenges in Measuring Time Preferences

Choosing an Experimental Design
Several experimental issues occur when it comes to the choice of an elicitation proce-
dure. First, the experimental design can influence the elicited preferences. Manipulating
the outcomes (x or y) or manipulating the delays – or dates – at which the outcomes
are available (t or τ ) has been found to change the elicited discount rates. Second, the
response mode can also have an impact on elicited preferences. For example, the two
well-known procedures to elicit indifferences, choice tasks and matching tasks, do not
necessarily generate the same elicited discount rates.

The choice of variables to be varied in the experimental design can have a consid-
erable impact on the elicited values and estimated preference parameters in two main
dimensions. The first is the scale on which the indifference is elicited. As shown in
(6.4), four quantities can be manipulated to determine indifferences. Two of these, x

and y, are on the outcome scale. The other two, t and τ , are located on the time scale.
Table 6.4 shows the researcher’s four ways of eliciting indifferences in choice over
time. In experimental economics, the elicitation of indifferences is mainly based on
value-equivalence tasks rather than on delay-equivalence tasks. Among these, a large
majority use smaller–sooner value equivalence methods, i.e. changes in x, to elicit
indifference.

To look for framing effects in time-elicitation questions, Benhabib et al. (2010)
applied two experimental treatments based on value-equivalence tasks. In the first, a
smaller–soonner amount is elicited; in the second, implemented one day after the first,
a larger–later amount is elicited. While violations of exponential discounting occur in
both treatments, Benhabib et al. (2010) find that larger–later value-equivalence tasks
are less prone to present bias than smaller–sooner value-equivalence tasks. Freder-
ick et al. (2002) find that larger–later value-equivalence tasks generate discount rates
that are dramatically higher than those in smaller–sooner value-equivalence questions.
Delay-equivalence tasks are also subject to framing effects, such as temporal referenc-
ing (Frederick and Loewenstein, 2008). Last, it has been found that discount rates are
higher when delays rather than dates are used to describe future payments (Read et al.,
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2005; LeBoeuf, 2006). The second dimension is the date at which the options are avail-
able. In experiments on choice over time the earlier date does not need to be fixed at
the present, and the smaller–sooner payment can be made, if possible, at any given date
in the future. Some experiments exploit this possibility to introduce a ‘front-end’ delay
to reduce overreactions to current outcomes. A front-end delay is a minimum amount
of time between the present and the date at which the smaller–sooner option becomes
available. As such, the experiment only involves future outcomes, which reduces any
influence of the availability of current outcomes on decisions. Experimental evidence
on the effectiveness of front-end delays is mixed (Cohen et al., 2016). For example,
Coller and Williams (1999) find that a one-month front-end delay reduces discounting,
while there is no effect in Holcomb and Nelson (1992). Augenblick et al. (2015) find
small effects of front-end delays on monetary outcomes, but larger effects in a real-effort
task.

The choice of the response mode is also of great importance for elicited preferences.
A simple way of eliciting indifferences would be to directly ask subjects their indif-
ference value – a procedure known as matching tasks. However, choices are generally
considered more informative as they lead to fewer inconsistencies (Bostic et al., 1990).
This is why procedures are mainly choice-based, in the form of choice lists, for example.
In choice tasks, subjects indicate their preference over two (or more) options. In some
experiments, subjects can also express indifference between the two options. Ahlbrecht
and Weber (1997) compare choice and matching tasks in a treatment involving uncer-
tainty over future outcomes in a within-subject experiment. In both tasks, the certain
present value corresponding to a binary lottery is elicited. They find that while matching
tasks produce decreasing impatience (a higher discount rate for short rather than long
delays), choice tasks lead to fewer violations of the core axiom underlying the stan-
dard discounting model, stationarity. Overall, observed behaviour in the choice tasks
appears to be much more in line with the standard exponential discounting model. In
addition, Tversky et al. (1990) note that choice over time might be subject to prefer-
ence reversals between choice and pricing (Lichtenstein and Slovic, 1971). Study 2 in
Tversky et al. (1990) indeed shows that subjects tend to choose short-term over long-
term prospects, even though they value the long-term prospect more highly. Read and
Roelofsma (2003) specifically examine whether matching reveals more or less impa-
tience than choice in a within-subject experiment, and find more impatience for choice
than for matching. They also find supporting evidence for the result in Ahlbrecht and
Weber (1997) that decreasing impatience is more likely to be observed in matching tasks
than in choice tasks. To circumvent these difficulties, it is possible to elicit indifferences
using a series of choices. A first way of doing so is via bisections – see Illustration 6.5
– which can be easier to answer for subjects than direct matching, as it only involves
choices and does not require subjects to state a value for a temporal prospect. A second
possibility is to use a series of ordered binary choices. This corresponds to the price-list
method.
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Choosing a Decision Model
Cohen et al. (2016) describe the main empirical regularities that have emerged in
experiments with choices between smaller–sooner and larger–later outcomes. The
review of the literature suggests six main regularities regarding the elicited discount
rates:

1. Decreasing impatience: discount rates decrease over time.
2. Small effects of front-end delays: adding a fixed delay to both the smaller–sooner

and larger–later outcomes barely changes the discount rates.
3. Sub-additivity: the elicited discount rates over longer time intervals are lower than

would be expected from the elicited discount rates in a sequence of shorter sub-
intervals.

4. Magnitude effect: discount rates fall with the size of the rewards.
5. Delay/speed-up asymmetry: discount rates are higher when the later outcome is

described as delayed relative to the sooner outcome; discount rates are lower when
the sooner outcome is described as advanced relative to the later outcome.

6. Gain/loss asymmetry: discount rates over gains are higher than those over losses.

Each of these regularities challenges the constant discounting-model that is usually
assumed in the economics of choice over time. The shape of the discounting function
continues to be debated, but a constant discount rate, which is stable across delays, is
typically not supported by the data (Benzion et al., 1989; Thaler, 1981; Loewenstein and
Prelec, 1992; Frederick et al., 2002). One major finding is that people are much more
impatient when one choice option involves an immediate reward than when choices
only involve future outcomes – a ‘present bias’. For instance, discount rates in Thaler
(1981) fall as the length of time to the larger–later payment rises. On the other hand,
some recent work has shown that experimental controls for transaction costs and pay-
ment risk reduce present bias and produce results that are more consistent with constant
discounting (Andreoni and Sprenger, 2012; Augenblick et al., 2015).8

Accounting for violations of constant impatience requires alternative decision models.
These alternative models are particularly important to allow the researcher to measure
the distance to the exponential discounting model. Fishburn and Rubinstein (1982)
show how the discounted utility model can account for the observed violations of
stationarity. Using a weaker condition than stationarity, known as the Thomsen con-
dition, they show that an additive representation of preferences in choice over time
exists in which the discount factor is not constant. In this case, the utility U derived
from a temporal prospect (x, t) equals the present discounted value of the temporal
prospect:

U(x, t) = ζ (t)u(x) (6.7)

where ζ (t) is the discount factor at date t. The flexibility of the discounted-utility
model produces a variety of representations of preferences for choices over simple

8 Attema et al. (2016) also find behaviour compatible with constant discounting.
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prospects.9 For tractability reasons, elicitation of time preferences often specifies a para-
metric function for ζ (t). We now present the main parametric forms for ζ (t) that have
been considered in the literature.

Among the alternatives to the exponential discount-function (defined as ζ (t) = δt),
one of the simplest is Herrnstein’s (1981) proportional-discount function:

ζ (t) =
1

1 + θ t

with θ > 0. Under proportional discounting, the shape of impatience decreases and
impatience depends on both the evaluation date and the delay. Another alternative-
discount function is the power discount function proposed by Harvey (1986):

ζ (t) =
1

(1 + t)θ

with θ > 0. A hyperbolic function can be approximated, in discrete time, by the popular
quasi-hyperbolic discounting function of, e.g., Phelps and Pollak (1968) and Laibson
(1997):

ζ (t) = βδt and ζ (0) = 1

where 0 < β ≤ 1 is the present-bias parameter and δ > 0 is the discount factor. Assum-
ing linear utility, the quasi-hyperbolic discount function is a genuine interpretation. It
imposes a minimum penalty on all future rewards: the penalty is controlled by β, as
any dollar available in the future is at most valued at $(1 − β). This model has been
quite popular in the literature because it is a convenient way of dealing with present bias
(DellaVigna and Malmendier, 2006; DellaVigna, 2009; Laibson, 1997). First, the dis-
count factor between two consecutive future outcomes is δ. The model therefore mimics
the exponential discounting model as regards future consequences. Second, the discount
factor between an outcome now and another at time 1 is different and is given by βδ.
The parameter β reflects the extra discounting associated with choices involving imme-
diate outcomes. Instead of assuming that the present bias is a variable cost, Benhabib et
al. (2010) introduce a fixed cost θ :

ζ (t) = δt −
θ

y
and ζ (0) = 1

Loewenstein and Prelec (1992) assume that the discount function ζ () takes a generalised
hyperbolic form:

ζ (t) =
1

(1 + θat)
θb
θa

(6.8)

with θa, θb > 0. The parameter θa shows the difference from constant discounting
(Rohde, 2010). The limiting case in which θa = 0 corresponds to constant exponen-
tial discounting: ζ (t) = e−θbt. The parameter θb can be interpreted as a discount factor.

9 However, the model does have drawbacks. By summing the discounted values, the discounted-utility model
assumes inter-temporal separability, which remains a questionable assumption despite its importance for
the tractability of the model.
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If θa > 0, then discounting falls over time, and θa represents the distance from the
exponential-discounting model.

Violations of stationarity can also be accommodated by more flexible non-hyperbolic
discount functions. One limitation of hyperbolic discounting is that it cannot account for
rising discount rates over time. By contrast, this is allowed by the constant absolute dis-
count function of Bleichrodt et al. (2009), which is more flexible. The constant absolute
decreasing impatience (CADI) discounting function is such that:

ζ (t) =

⎧

⎪

⎨

⎪

⎩

ee−θ t−1 if θ > 0
e−t if θ = 0

e1−e−θ t
if θ < 0

(6.9)

Last, Ebert and Prelec (2007) and Bleichrodt et al. (2009) introduce the constant relative
decreasing impatience discounting function (CRDI), as follows:

ζ (t) = e−θatθb (6.10)

with θa, θb > 0. In contrast with typical discount functions, both the CADI and the CRDI
can handle any degree of rising or falling impatience. These non-hyperbolic discount
functions allow for increasing impatience, which has been found in some contributions
(Onay and Öncüler, 2007; Attema et al., 2010; Takeuchi, 2011)

Choosing a Payment Procedure
In choice over time, the choice of payment conditions is a key element of the experiment.
This points out the importance of the financial structure of a lab. Different procedures
have been used to implement real incentives for temporal prospects. Andersen et al.
(2008), Kuhn et al. (2014) and Denant-Boèmont et al. (2017) use treasury-based trans-
actions to transfer the delayed payment into the subject’s bank account. Anderhub et
al. (2001b) and Coller and Williams (1999) provide a post-dated cheque to subjects.
Chabris et al. (2008), Benhabib et al. (2010), Coble and Lusk (2010) and Abdellaoui et
al. (2013) send a cheque to the subject’s mailing address. Tanaka et al. (2010) appoint a
village leader to deliver future rewards to subjects in the village. Takeuchi (2011) gives
a US Postal money order. Andreoni and Sprenger (2012) use cheques sent to subjects’
campus mailboxes, with a 100% on-time delivery promise from campus mail services.
It is common practice to give subjects a show-up fee in addition to the experimental
payment resulting from their choices. In choice over time, this show-up fee can be prob-
lematic as it concentrates the show-up fee in one period while decision-based incentives
are spread over the possible delays offered in the experiment. To reduce the asymmetry
between the show-up fee and the real incentives, Andreoni and Sprenger (2012) divide
the former in two equally split payments: the first half to be paid at the time of the
experiment, and the second half to be paid at a later date.

Another source of asymmetry between payments arises when payment on different
dates generates different transaction costs (Holcomb and Nelson, 1992). In particular, if
the present outcomes are paid in the lab at the end of a session, they might be dispro-
portionately preferred by the subject when compared to future payments. The payment
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procedure for delayed payment can increase transaction costs due to the time, effort
and money subjects will have to spend to obtain their future rewards (coming back to
the university to receive the reward, scheduling and meeting with the experimenter, or
checking their mailbox). In practice, any transaction cost subtracts a premium from the
reward. As present payments are free of transaction costs, they might be artificially over-
priced by the subjects when delayed payments are subject to transactions costs (Kirby
and Santiesteban, 2003). The easiest way to control for transaction costs is to equalise
them between the available alternatives.

The use of a front-end delay (typically one day, one week or one month) allows the
perfect replication of the payment procedure, and avoids any asymmetric treatment of
the rewards due to transactions costs. Trust in the payment can be an issue since mistrust
increases the risk associated with future payment. Experimental evidence shows that the
presence of risk increases discount rates (Öncüler, 2000; Anderson and Mellor, 2009).
Ahlbrecht and Weber (1997) find counterevidence to this conventional wisdom: in their
matching tasks, subjects discounted certain outcomes more heavily than risky outcomes.
This asymmetry disappears in choice tasks, where certain outcomes were not discounted
more heavily. In economics, the use of a real incentive scheme acts as a strong constraint
on the domain over which preferences in choice over time can be elicited. The use of
a real incentive payment scheme places bounds on the possible delays. For example,
Chabris et al. (2008) and Eckel et al. (2005) use delays between two and 186 days.
Tanaka et al. (2010) vary delays from three days to three months. Andersen et al. (2008)
vary delays between two months and 25 months. Andreoni and Sprenger (2012) vary
delays between the present and 19 weeks. Most of the time, the real incentive scheme
is carried out via a random-task incentive system, in which one choice made by the
subjects is selected at random to be played out for real.

6.6.3 Sophisticated Methods to Measure Preferences in Choice over Time

Convex Time-Budget Sets
Andreoni and Sprenger (2012) propose the convex time-budget set method to measure
preferences in choice over time via a series of variations in linear-budget constraints
over earlier and later consumption. The use of simple temporal prospects raises an iden-
tification problem for the utility function, unless it is assumed to be linear. Andreoni and
Sprenger (2012) underline that choices between simple temporal prospects abusively
restrict the decision to corner solutions in the outcome space: choice is either a smaller–
sooner or a larger–later prospect, without any possibility of mixing the two. The convex
time budget allows just this kind of mixing to produce preferred interior solutions, if
these exist. Decision-makers choose between two base prospects: one (xb, t) offering xb

at date t and another (yb, t + τ ) with yb at a later date t + τ , or any compound prospect
along the inter-temporal budget line combining these two prospects. In the (x, y) plane
the intertemporal budget line is as follows:

y = yb −
yb

xb
x (6.11)
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Table 6.5 The convex time-budget method

Alternative

Decision Payment 1 2 3 4 5 6

1
Today $19.00 $15.20 $11.40 $7.60 $3.80 $0
and in 5 weeks $0 $4.00 $8.00 $12.00 $16.00 $20.00

2
Today $18.00 $14.40 $10.80 $7.20 $3.60 $0
and in 5 weeks $0 $4.00 $8.00 $12.00 $16.00 $20.00

3
Today $17.00 $13.60 $10.20 $6.80 $3.40 0
and in 5 weeks $0 $4.00 $8.00 $12.00 $16.00 $20.00

4
Today $16.00 $12.80 $9.60 $6.40 $3.20 $ 0
and in 5 weeks $0 $4.00 $8.00 $12.00 $16.00 $20.00

5
Today $14.00 $11.20 $8.40 $5.60 $2.80 $ 0
and in 5 weeks $0 $4.00 $8.00 $12.00 $16.00 $20.00

6
Today $11.00 $8.80 $6.60 $4.40 $2.20 $0
and in 5 weeks $0 $4.00 $8.00 $12.00 $16.00 $20.00

Note. For each decision, subjects indicate their preferences over the amounts to be received at date
t: today and t + τ : in five weeks’ time by choosing one alternative in each decision. In Andreoni
and Sprenger (2012), the delays were replaced by their calendar names and subjects had access to
a diary. Instead of using monetary amounts, they offer individuals 100 experimental tokens to be
allocated to the sooner or later payoffs in any integer proportion.

where yb
xb

is the gross interest rate between periods t and t + τ . The elicitation procedure
is based on variations in both the gross interest rate yb

xb
and the timing of payments t

and t + τ . Changes in the outcome scale, which correspond to changes in interest rates,
identify the utility function’s parameters; changes in the time scale, via both t and t + τ ,
identify the discounting parameters. Andreoni and Sprenger (2012) explicitly assume a
power utility function and a quasi-hyperbolic discount function.

A simple variant of the convex time-budget method, proposed by Andreoni et al.
(2013), is shown in Table 6.5. In this example, subjects make six decisions. In each deci-
sion, subjects select a single alternative offering x now and y in five weeks. In Table 6.5,
the six decisions are based on six different gross interest rates: yb is kept fixed at $20
while xb varies to yield interest rates between 5.26% and 81.82%. The outcomes in
alternatives 2 to 5 are linearly spaced values between 0 and either xb or yb.

Andreoni and Sprenger (2012) use the convex time-budget method with five alter-
natives and a 3 × 3 design with three sooner delays t (now, seven days and 35 days),
and three later delays via τ (35, 70 and 98). Both t and τ were chosen to be multiples
of seven to ensure that payments arrive on the same day of the week. Andreoni et al.
(2013) choose a 2 × 2 design with two sooner delays t (now and 35 days) and two later
delays via τ (35 and 63).

Andreoni et al. (2013) measure time preference via both the convex time-budget
method and a so-called double multiple price-list method. In the latter, following Ander-
sen et al. (2008), they estimate the curvature of the utility function using Holt and
Laury’s price list for choice under risk (also known as the ‘double price-list method’).
The results at the individual level reveal no significant correlation between the measures
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of the curvature, the present bias and the discount rate across the two methods. This
may be thought to be problematic for the internal validity of the use of experiments to
measure preferences in choices over time. Andreoni et al. (2013) investigate the internal
validity by performing both in-sample and out-of-sample prediction exercises. While
both methods perform well in-sample, they yield strikingly different out-of-sample suc-
cess rates. The out-of-sample performance of the convex time-budget method is similar
to the in-sample performance of the price-list method, with an out-of-sample prediction
rate of 86%.10 The authors also use three indifferences to carry out strict out-of-sample
comparisons between the two methods. For the first indifference, subjects expressed
their willingness to accept a sooner payment in exchange for $25 as a later payment.
The other two indifferences are hypothetical and ask about (i) the willingness to accept
a sooner payment in exchange for $20 in a month, and (ii) the willingness to accept a
later payment in exchange for $20 today. The convex time-budget set method correlates
with the indifference values, with correlations ranging from 0.23 for the incentivised
indifference value to 0.54 for the hypothetical indifferences. As a comparison, the price-
list method is imperfectly correlated with the indifference measures, with correlation
figures ranging from 0.08 for the incentivised indifference to 0.60 for the first hypotheti-
cal indifference. Last, both methods have limited predictive validity at the distributional
level: neither method is able to replicate the distribution of the indifference values.

Direct Method
Both the convex time-budget and double price-list methods jointly estimate the utility
and discount functions. Both methods avoid the potential problems associated with the
assumption of linear utility. They also differ from each other in their identification strate-
gies and noise specification (Andreoni et al., 2013). Attema et al. (2016) introduce an
elicitation method based on choices over monetary flows that avoids the need to esti-
mate a utility function. One advantage of this approach is that it allows the researcher
to directly infer discount rates from choices over outcome flows without any additional
costs in terms of econometric analysis or parametric fitting.

Attema et al. (2016) present subjects with profiles of payments over a time horizon of
52 weeks. A profile is a sequence of payments paying xt at the end of week t. The experi-
mental design is based on comparisons between two profiles. For example, subjects face
a choice between a profile that offers an extra weekly payment of $20 in the next four
weeks (from 1 to 4) or a profile with the same extra weekly payment in the nine weeks
from 5 to 13. The discounted-utility model assumes that the value of a sequence is given
by

∑T
t=1 δ(t)u(xt). In our example, assuming that u(0) = 0, the choice is therefore:

4
∑

t=1

δ(t)u(20) versus
13
∑

t=5

δ(t)u(20)

As utility on both sides cancels out, the choice corresponds to a comparison of cumu-
lative discount weights:

∑4
t=1 δ(t) versus

∑13
t=5 δ(t). Attema et al. (2016) use a series

10 The in-sample performance of the price list is 89%. When applied to the data obtained with the convex
time-budget method, the price-list individual estimates predict only 16% of the choices.
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Table 6.6 The choice list in the direct-method elicitation

Which option do you prefer?
Gain $20 per week

Profile A Profile B

in week 1 Starting week 1 and ending (after) week 13
in week 1 Starting week 2 and ending (after) week 13

Starting week 1 and ending (after) week 2 Starting week 3 and ending (after) week 13
Starting week 1 and ending (after) week 3 Starting week 4 and ending (after) week 13
Starting week 1 and ending (after) week 4 Starting week 5 and ending (after) week 13
Starting week 1 and ending (after) week 5 Starting week 6 and ending (after) week 13
Starting week 1 and ending (after) week 6 Starting week 7 and ending (after) week 13
Starting week 1 and ending (after) week 7 Starting week 8 and ending (after) week 13
Starting week 1 and ending (after) week 8 Starting week 9 and ending (after) week 13
Starting week 1 and ending (after) week 9 Starting week 10 and ending (after) week 13
Starting week 1 and ending (after) week 10 Starting week 11 and ending (after) week 13
Starting week 1 and ending (after) week 11 Starting week 12 and ending (after) week 13
Starting week 1 and ending (after) week 12 in week 13
Starting week 1 and ending (after) week 13 in week 13

of such choices to elicit the week j at which the subject is indifferent between the two
profiles. Table 6.6 shows a price list used in this experiment to elicit indifference.

If the subject switches from profile B to profile A between rows 6 and 7 (i.e. between
five and six weeks), then the indifference value is 5.5. This means that the subject is
indifferent between receiving $20 per week during weeks 1 to 5.5 and the same pay-
ment during weeks 5.5 to 13. Thus 5.5 weeks is the subjective midpoint of the time
interval between the present and week 13. This subjective midpoint ‘cuts’ in two parts
the cumulative discount weight between now and week 13. A patient enough subject
will switch from profile B to profile A between six and seven weeks; an impatient sub-
ject will switch earlier. Lower values of the elicited subjective mid-point (in terms of
weeks) thus correspond to greater impatience.

The general principle of the direct method is to elicit subjective mid-points of time
intervals from indifferences, and to use these to measure a cumulative weighting func-
tion. Attema et al. (2016) show how the cumulative weighting function can be measured
with precision by a series of indifferences. The first step is to elicit the time point t.5 such
that the subject is indifferent between receiving $20 per week during weeks 1 to t.5 and
the same payment during weeks t.5 − T , with end period T . Again, t.5 ‘cuts’ the cumu-
lative discount weight between the present and end week T in two. Two additional time
points t.25 and t.75 are then established. The former splits in two parts the cumulative
discount weight between the present and week t.5, and the latter does the same for week
t.5 and T weeks. These subjective mid-points can thus be translated into discount factors
δ(t) and used to estimate parametric discount functions.11 The experimental design also
elicits discount factors in a standard way, using indifferences between smaller–sooner
and larger–later payments. The results in Attema et al. (2016) reveal less discounting

11 For example, the discount factor δ(t) is the average of the derivative of the cumulative discount weight
over the interval (t − 1, t).
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under the direct method than with the standard method, even after correction for the
curvature of the utility. In addition, the discount factors in the direct method were more
in line with exponential discounting than were those from the standard method.

The Time Trade-Off Method
For discrete outcomes, Attema et al. (2010) introduce the time trade-off method as a way
of sidestepping utility in the measurement of discounting. As with the direct method, this
allows the direct measurement of impatience without any additional parametric assump-
tions regarding the discounting function. The time trade-off method elicits a sequence of
n points in time based on a series of indifferences. The outcomes are kept fixed during
this elicitation process. Indifferences are elicited by matching. For the first indifference
value, subjects are asked to determine τ1 such that receiving $700 today (τ0) is as good as
receiving $900 in τ1 months. For the second, subjects are asked to determine τ2 such that
receiving $700 in τ1 months is as good as receiving $900 in τ2 months. The subsequent
elements of the sequence τ3, . . . , τn are elicited in the same fashion. In the sequence, the
delay between the two consecutive dates exactly offsets the gain in the outcome. The
delay between now and τ1 months offsets the $200 greater income (for example from
$700 to $900), as does the delay between τ1 and τ2 months. The sequence measures
the subject’s willingness to wait to receive $200 more at different points in time. The
willingness to wait is the difference between two successive elements τj − τj−1 in the
time trade-off sequence.

The time trade-off sequence also yields information on impatience. If the time trade-
off sequence (τ0, τ1, . . . , τn) reveals a constant willingness to wait, then subjects have
constant impatience. In axiomatic terms, this means the stationarity axiom holds. If the
sequence of elicited values (τ0, τ1, . . . , τn) reveals an increasing willingness to wait, then
the subjects have decreasing impatience. Moreover, subjects with a higher willingness
to wait at the beginning of the sequence, when τ0 is the present, have present-biased
preferences. If the sequence has decreasing willingness to wait, then the subjects exhibit
increasing impatience as time progresses. The major advantage of the time trade-off
method is to characterise the discounting pattern without any assumption regarding the
discount function or the need to elicit the utility function. The experimental results in
Attema et al. (2010) show that subjects are increasingly impatient in the beginning and
near future, and constantly impatient for points later in time. A graphical representa-
tion of the time trade-off sequence (τ0, τ1, . . . , τn) with a time trade-off curve appears
in Figure 6.5. The time trade-off curve plots the logarithm of the discount rate as a
function of the point in time at which trade-offs are made.12 A constant slope reflects
constant impatience, and a convex (concave) time trade-off curve indicates decreasing
(increasing) impatience. Figure 6.5 depicts the typical pattern found in the literature:
decreasing impatience for the near future and then constant impatience. Bleichrodt et
al. (2016) use this method to compare discounting for health and money, and find

12 The logarithm of the discount rate, when normalised at τ0 and τn, is 1 −
j
n with j = 1, .., n. In other words,

for each element τj on the x-axis, the time trade-off curve maps to the value 1 −
j
n on the y-axis.
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Figure 6.5 An example of a time trade-off curve

that departures from constant discounting are more pronounced for health than for
money.

Summary

Conducting an experiment involves a series of challenges. The biggest is certainly build-
ing a laboratory, which requires important investment in money, time and organisational
effort. Indeed, a lab is not only one or two rooms filled with computers and dedicated to
running lab experiments. A series of computer infrastructure management, recruitment
and financial procedures also has to be set in order to have an efficient operating struc-
ture. In this chapter, the building blocks of an experiment are (somewhat arbitrarily)
organised along a timeline of the issues to be solved before the experiment starts. Aside
from the existence of a lab, two elements are crucial for an experiment. The first one is
the protocol. The second is the instructions. For both newbies and experienced experi-
menters, running several pilots is a perfect way to test an experimental design. Pilots are
central to check that both the protocol and the instructions are consistent and that they
fit the research objectives. Piloting is also a way to improve the experimental design,
based on the feedback it generates. Last, in experimental economics, designing incen-
tives is key and is an important element in the practice of experiments. The design of
incentives can be easy for simple experiments. It can also become quite complex when
experimental outcomes become more subtle, as in the case of choice over time.



7 The Econometrics of Experimental
Data

Experiments allow us to create simple, controlled and incentivised environments in

which economic agents make decisions. The first two parts of this book have under-

lined the need for experiments in economics. We saw that experiments have two main

features that make them attractive. First, experiments allow the researcher to observe

and measure parameters that would otherwise be unobservable. A typical example is the

reservation price in an auction. Second, experiments provide control over the environ-

ment in which people behave – in such a way that the researcher is the one who decides

on the data-generating process.

In most experiments, the parameters of interest belong to one of three categories.

The first are behavioural parameters, which describe behaviour in a controlled envi-

ronment, and their determinants. Such observed values can be compared to theoretical

predictions (e.g. the observed level of contribution in a public-good game and the asso-

ciated predicted Nash equilibrium) and potential explanations for any differences (e.g.

can reciprocity and/or altruism explain the observed deviations from the Nash equilib-

rium?). The second category consists of the comparison of parameters between different

experimental conditions, in line with exercises in comparative statics. In experiments,

comparative statics are measured by treatment effects. In a public-good game, for exam-

ple, the question whether additional information about the behaviour, or the rank, of

others changes contributions would fall in this category. The last category is related to

heterogeneity in observed behaviour. Typical examples are observable heterogeneity via

gender effects, or the role of unobservable factors.

This chapter provides an overview of the econometric techniques that allow the

researcher to tackle these three kinds of empirical question. It first sets out what exper-

imental data are, and then discusses a set of methods for exploratory analysis. It then

turns to empirical analysis, including both estimation and testing procedures, both para-

metric and non-parametric. Last, several specific parametric econometric models are

presented, together with some applications to experimental data. The chapter ends with

a brief description of more advanced econometric models. The extensive review of the

econometrics of experimental data provided by Moffatt (2015) is recommended for use

as a companion to this chapter.
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Table 7.1 An example of experimental data based on second-price auctions

Participant Round Group Resale

value

Individual

bid

Highest

bid

Second-highest

bid

ro
u

n
d

1

g
ro

u
p

1 1 1 1 38 36 42 36

2 1 1 43 42 42 36
...

...
...

...
...

...
...

9 1 1 32 31 42 36

g
ro

u
p

2 1 1 2 18 16 22 16
...

...
...

...
...

...
...

9 1 2 2 22 22 16

ro
u

n
d

2

g
ro

u
p

1 1 2 1 14 13 13 12

2 2 1 12 12 13 12
...

...
...

...
...

...
...

g
ro

u
p

2 1 2 2 41 41 80 56
...

...
...

...
...

...
...

7.1 Experimental Data

Our working example is the experimental data delivered by second-price auctions, as

presented in Chapter 2. Consider an experiment consisting of a market with one single

seller and n = 9 buyers. The experiment has 18 participants, who are randomly matched

at the beginning of the experiment into one of two groups of nine participants. Only one

unit of the good is to be sold on that market. Each buyer is first shown a resale value

on the screen and then submits a bid to buy the unit of the good. When all buyers have

submitted their bid, the computer determines the ranks of all bids. The winner of the

auction is the buyer whose bid is ranked first. The second-highest bid determines the

market price – what the buyer needs to pay. The profit for the winner of the auction

equals the difference between the resale value and the market price. All other buyers

make zero profit. Once the subjects have performed the task, they move on to a new

choice round.

7.1.1 A Working Example

Table 7.1 shows the data obtained from the experiment. For each participant and each

round, the data include the group to which a participant belongs (third column), the

resale value (fourth column), the bid (fifth column) and the results of the auction: the

highest bid (which determines the winner) and the second-highest bid (which deter-

mines the market price). There are in addition a number of other variables in the data

set (not shown in the table): the session date, the location of the experiment, the num-

ber of subjects in a given session, the starting time of the experiment, the duration of

the experiment and/or the task, the name of the person(s) who ran the experiment, the

payment made to subjects, the form of payment (cash, bank transfer, cheque) and so on.

The data as whole are of the panel type: the same participants are observed at different

times (rounds) in the experiment. At a given round (e.g. round 1), the data in Table 7.1
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is a cross-section: different subjects are observed at the same time in the experiment.

Within a given round, the comparison across subjects documents individual heterogene-

ity. On the contrary, focusing on one participant (or a group average) over different

rounds in Table 7.1 produces time-series data that allow us to measure changes over

time in economic decisions. For example, if the list of induced resale values is kept

constant during the experiment and simply rematched over buyers, the time series of

the group average reveals the effect of learning and experience over the course of the

experiment.

Experimental data are expected to be of higher quality than typical economic survey

data. Missing answers or incomplete responses are relatively rare in experimental data

sets. In the example in Table 7.1 there are no missing answers or incomplete responses.

Every participant undertook the task in each round. The control that the researcher has

over the experimental design also reduces measurement error and noise.

7.1.2 Types of Data and Measurement Scales

Before carrying out statistical analysis, the variables of interest have to be measured.

Measurement depends on the type of variable in the experiment. We usually distinguish

four measurement scales (also called types of data) in order to assign a real number to

each element in the set of observations: the nominal, ordinal, interval and ratio scales.

These different measurement scales require different statistical and econometric tech-

niques. For example, the central tendency can be represented by the median or the mode

with an ordinal scale, but not by the mean. On the contrary, the median, the mode and

the mean can all be used for interval or ratio scales.

• A nominal scale is used for unordered categorical variables (like colours). A nominal

scale with only two categories is called dichotomous, and corresponds to a binary

variable. Typical examples of nominal scales are yes/no answers, gender, hair colour

and location. Nominal scales are mutually exclusive, are not rankable, and basically

represent different kind of things or people. In Table 7.1 the participant and group

numbers are nominal scales.

• An ordinal scale is used for ordered categorical variables. This scale is used to order

the variables by rank, although the size of the differences between the variables is

unknown. Ordinal scales allow monotone increasing transformations of the variables.

Typical examples of ordinal scales are rankings and non-numerical judgements or

concepts such as the degree of agreement or disagreement, satisfaction or discomfort.

From Table 7.1, the rank of the bid in the list of all bids in a group (first, second, . . . ,

last) is measured on an ordinal scale.

• An interval scale is a numeric scale in which differences between the numbers

reflect known differences in the attribute. Any affine transformation can be applied

to interval scales: the origin (the intercept) and the unit of measurement (the slope)

are arbitrary. The typical example of an interval scale is temperature in Celsius or

Fahrenheit. Interval scales are practical as the increments between values are known

and measurable.
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Focus 7.1

Censored and truncated data

Experimental data are sometimes censored or truncated. Censoring occurs when the observed

value of some variable is only partially known. For example, in an experiment we might only

measure buying prices in an auction up to a certain maximum price. Participants who report

this maximum thus have a buying price that is at least the maximum price, and may well be

higher. Truncation is different, as the elicited values can never be outside a given range or

interval. For example, in experiments, prices are truncated at 0. In that sense, truncation is a

characteristic of the distribution from which the data are drawn, while censoring is a (default)

characteristic of the sampling procedure itself.

Mass point

Unkown part 
of the variable

Known part
 of the variable

Untrucated 
distribution

Truncated
distribution

(a) Censored data (b) Truncated data

The figure above shows the difference between censored and truncated data. In panel (a),

censoring generates a mass point at the threshold where it occurs. Without censoring, the dis-

tribution would be the same, and the observed values above the threshold would be identical.

For all values below the threshold, the variable takes the threshold value. Panel (b) shows that

truncating, by contrast, modifies the density and does not generate a mass point at the thresh-

old value. Were the truncation to be removed, the density, and therefore the observed values,

would be different.

• A ratio scale is a numeric scale for which the differences and ratios between the

numbers reflect differences and ratios in the attribute. Only affine transformations

with a zero intercept can be applied to ratio scales: only the unit of measurement (the

slope) is arbitrary and zero has a meaning. Typical examples of variables measured

on a ratio scale are duration, length and prices.

7.1.3 Sampling

Most statistical methods assume that the samples are randomly selected from the popu-

lation. If the samples are, however, not random, the typical statistical properties of the

estimators are not satisfied and inference will be challenged – see Focus 7.1 for an exam-

ple based on truncation and censoring. In practice, most samples are not entirely random

and analysis is carried out as if the sample was selected at random. A random sample
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is such that each possible sample of the same size has the same probability of being

selected. Here, all individuals are equally likely to be sampled: if we number all individ-

uals in a population from 1 to N, we then select n values randomly without replacement.

If the sample size n is small relative to the population size N, then sampling without

replacement will not much affect the assumption of independence between observations

(see Chapter 3, Section 3.1.2, for a discussion). However, with a sample size n that

is large compared to N, sampling without replacement will produce dependent observa-

tions. One limitation of random samples is that they may not allow the statistical analysis

of small subgroups in the population.

In experimental economics, those samples that are easily available to the researcher

are unlikely to be random. The very reason why samples are easily available (e.g. vol-

unteers to participate in an experiment at a given site) might give rise to selection

and affect the quality of the statistical analysis (see Chapter 8, Section 8.3.3, for a

detailed discussion). Some alternatives to random samples are stratified random sam-

ples and clustered samples. In a stratified random sample, the population is divided

into a number of homogeneous, non-overlapping groups (strata) with respect to some

characteristics. Random samples are then taken within each stratum. The number of

subjects per stratum is proportional to the stratum size in the population. A variance

correction within each stratum can be applied. In this case, the sample is based on

Neyman’s optimal allocation, a method to maximise survey precision for a given sam-

ple size.1 Cluster sampling is two-tier in nature. The population is first divided into a

number of similar-looking heterogeneous groups. One group is then sampled at ran-

dom and, within this selected group, individuals are again sampled at random. As the

groups are similar to each other, the data from one cluster is representative of the whole

population.

7.1.4 Exploratory Analysis

Exploratory analysis is the first step of the empirical analysis and aims to summarise

the data before performing the statistical analysis. The summary produced will depend

on the measurement scale of the variable. For categorical variables, this is limited to the

range and mode of the variable, and the frequency of each value. For other quantitative

data, the summary is broader and includes the centre of the distribution (the median

and mean, if any), the spread (percentile, interquartile range, range, variance, if any),

modality (i.e. the number of peaks in the density), the shape (i.e. the heaviness of the

tails) and the number of outliers. Together with the descriptive statistics, the data can be

efficiently summarised by a number of simple graphs.

Graphical Tools

Figure 7.1 shows four simple plots describing the same data: a histogram, a box plot,

the cumulative distribution function (CDF) and the Q-Q plot.

1 For a given stratum h, the sample size for this stratum is equal to the fraction Nhsh/
∑

k(Nksk) of the total

sample size, where Nk is the population size for stratum k, and sk is the standard deviation of stratum k.
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Figure 7.1 Visual representations of data

Histogram

This bar chart shows the distribution of the variable, with each bar representing the

proportion of the observations that lie within a given range of values. A histogram is

a simple way of seeing if the data are symmetric or skewed, unimodal or multimodal,

hump-shaped or U-shaped, etc.

Box plot

This is a visual presentation of information about the central tendency, symmetry, skew-

ness and outliers. The central mark is the median, the edges of the box are the first and

third quartiles, and the whiskers extend to the most extreme data points that are not con-

sidered to be outliers. The actual outliers, if any, are plotted individually. Outliers are

usually defined as data points that are more than 1.5 interquartile ranges distant from

the closest interquartile range boundary. When the data are symmetric, the median is
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Figure 7.2 Box plots for different distributions

in the middle of the box and the whiskers are of the same length. A skewed distribu-

tion will have the median closer to the shorter whisker. If the top whisker is longer,

then the distribution is positively (i.e. right-) skewed. If the lower whisker is longer,

then the distribution is negatively (i.e. left-) skewed. As opposed to the histogram or

the normal probability plot, the box plot does not reveal the presence of any multi-

modality. Figure 7.2 shows the box plots for normal and positively and negatively

skewed distributions. The points outside the whiskers are the outliers.

The empirical cumulative distribution function

This is an ordered statistic of the sample, in which the observations are ranked from

the lowest to the highest. The empirical cumulative distribution function shows the pro-

portion of the sample for which the value of a particular variable is below any given

number. It thus delivers the probability of drawing a value lower than that given number

in the sample. The slope of the cumulative distribution function (CDF) is the density.

In Figure 7.1, the comparison of panels (a) and (c) reveals that higher-density areas in

the histogram (on the left) have steeper slopes in the CDF (and lower-density areas have

flatter slopes). We can compare the empirical CDF to a reference distribution. For exam-

ple, the CDF of a uniform distribution is a straight diagonal line. The empirical CDF is

an effective way of detecting outliers, which are located at the tails of the distribution.

Normal probability plot

This plots the normal sample statistics against the quantiles of a standard normal

distribution. The further the points are from the diagonal, the greater the departure from
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Figure 7.3 Normal probability plots

normality. The shape of the plot indicates the type of departure from normality. Fig-

ure 7.3 shows four different cases. In panel (a) the U-shape indicates a positively skewed

distribution, and in panel (b) the hump-shape reflects a negatively skewed distribution.

The normal probability plot has an S-shape in both panels (c) and (d). In panel (c), the

points to the left are below the line and those to the right are above the line: this indi-

cates long tails. In panel (d), the points to the left are above the line and those to the

right are below the line: this indicates short tails. Other features of the normal probabil-

ity plots are also of interest. Points located far from the main scatter plot correspond to

outliers. If two separate scatter plots show up, the distribution is bimodal. The normal

probability plot is a sub-case of the more general Q-Q plots that plot the quantiles of two

distributions against each other. If the two distributions are identical, the Q-Q plot is the

diagonal straight line. If the Q-Q plot is any other straight line, then one distribution

is a linear transformation of the other and they differ in their location parameter (e.g.

their mean, their median or their mode). If the Q-Q plot is steeper than the diagonal,

the distribution plotted on the y-axis has greater dispersion than that on the x-axis. The
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intercept and the slope of the line in a Q-Q plot reveal the different location and scale

parameters of the two distributions.

Scatter plot

This is the most useful graph when there are only two variables. The data are dis-

played as a collection of points, with one variable on the horizontal axis and the other

on the vertical axis. Figure 7.4 provides an example. This plot is well suited to the

exploratory analysis of the degree of association between two variables. In experiments

with repeated measures, a scatter plot displaying one variable plotted against time is

called a run chart.

Descriptive Statistics

The mean and the median are two measures of central tendency with different properties.

The mean is sensitive to all data points, while the median is less influenced by outliers

and skewed distributions. The mean cannot be used for ordinal variables. There are a

number of other measures of central tendency. For example, the trimmed mean is the

mean after discarding a given (generally equal) part of the distribution at the top and

bottom. Dropping the lowest and highest 25% produces the 25% trimmed mean, also

known as the interquartile mean. Another alternative is the Hodges–Lehmann estimator
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Table 7.2 Descriptive statistics

Measure Name Value with outliers Value with outliers

Central tendency

Mean 7.62 7.82

Median 8.00 8.00

Interquartile mean 7.73 7.91

Hodges–Lehmann 7.55 7.75

Dispersion

IQR 7.00 6.60

Standard deviation 4.35 4.41

Coefficient of variation 0.57 0.56

IQR/median 0.87 0.82

Median absolute deviation 4.67 4.82

Mean absolute deviation 3.58 3.61

Note. Descriptive statistics computed without (first column) and with (last column) the top and

bottom 1% of the data displayed in Figure 7.1.

of central tendency, corresponding to the median of all pairwise means. Table 7.2 reports

a variety of central-tendency measures for the data depicted in Figure 7.1, both with and

without the top and bottom 1%.

Two common measures of dispersion, with different properties, are the standard devi-

ation and the interquartile range (IQR). The IQR is not affected by extreme values and is

less affected by skewed data than is the standard deviation. One difficulty with the IQR is

that it cannot be easily mathematically manipulated (derived, for example). The standard

deviation is a useful indicator of dispersion for distributions that are roughly normal.

For a normally distributed variable, around 68% of observations lie between the mean

and ± 1 standard deviation, 95% of observations between the mean and ± 2 standard

deviations, and 99.7% of observations between the mean and ± 3 standard deviations.

For ratio scales, the coefficient of variation (the ratio of the standard deviation to the

mean) is a standardised dimensionless measure of dispersion. A robust counterpart is the

ratio of the IQR to the median. Another alternative measure of dispersion is the median

absolute deviation, defined as the median of the absolute deviations from the median.

The median absolute deviation is less affected by outliers than the standard deviation as

points far from the centre are given less weight (in the calculation of the standard devi-

ation, by contrast, they are squared). The mean absolute deviation (defined as the mean

of the absolute deviations from the mean) is another measure of dispersion that shares

the same property. Alternatively, the mean absolute difference is computed as the arith-

metic mean of the absolute value of all possible differences between the observations of

the variables in the data set. When this is divided by the arithmetic mean it defines the

relative mean absolute difference, which is twice the Gini coefficient.

The assessment of the degree of association between two variables is typically a

measure of correlation. The basic measure here is the Pearson correlation, which mea-

sures the degree of linearity of the bivariate relationship between the two variables.

The Pearson correlation is a standardised covariance (i.e. the ratio of the covariance

between the two variables to the product of their variances). The Pearson correlation

is bounded below by –1 (a perfect negative linear relation) and above by 1 (a perfect
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positive linear relation). The Pearson correlation is not affected by changes in either

the scale (e.g. multiply variables by 2) or the location (e.g. add a constant) of the vari-

ables. Two independent variables have a correlation coefficient of 0. However, a finding

of zero correlation between two variables can only be interpreted as indicating inde-

pendence in special cases, such as the bivariate normal distribution. The measure of

association for ordinal data is the polychoric correlation (Drasgow, 1988). Using the

Pearson correlation would be misleading here, due to its underlying assumption of lin-

earity. Figure 7.5 presents Anscombe’s quartet, a series of four data sets constructed by

Anscombe (1973) to underline the importance of visualising the data before carrying

out statistical analysis. Each data set consists of 11 pairs of points with a Pearson corre-

lation of 0.816. The mean of the first variable (on the x-axis) is always 9, with a sample

variance of 11. The mean of the second variable is approximatively 7.50, with a sample

variance of between 4.122 and 4.127. Pearson correlation makes sense only in panel (a),

for normally distributed data with a linear relationship. In panel (b) the relationship is

clearly non-linear. Panels (c) and (d) show how the Pearson correlation is sensitive to

outliers. In panel (c), without the outlier, the correlation is 1. One single outlier suffices

to reduce this to 0.816. In panel (d), the correlation without the outlier is 0 but one single

outlier suffices to increase this to 0.816.
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Figure 7.5 Anscombe’s quartet
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Table 7.3 Correlation measures and the Anscombe quartet

Measure Panel (a) Panel (b) Panel (c) Panel (d)

Pearson 0.816 0.816 0.816 0.816

Spearman 0.818 0.691 0.991 0.500

Kendall 0.636 0.564 0.964 0.426

Hoeffding’s D 0.220 0.390 1 −0.150

Distance correlation 0.824 0.869 0.906 0.807

Note. Correlation measures computed on the Anscombe quartet data, displayed in

Figure 7.5. Each column refers to the corresponding panel in the figure.

An alternative to the Pearson correlation coefficient is Spearman’s ρ, which is the

Pearson correlation of the ranks in the data. As it is based on ranks, Spearman’s rho mea-

sures the tendency for two variables to rise together, without assuming that the increase

is represented by a linear relationship. Spearman’s rho is particularly useful when the

variables are non-normally distributed. In the same vein, Kendall’s τ coefficient is a

non-parametric measure of rank correlation. Some alternatives to these traditional mea-

sures of association include Hoeffding’s D and distance correlation. Focus 7.2 describes

distance correlation as a measure of the degree of association. Hoeffding’s D is robust

to non-monotonic relationships. Unlike traditional measures of association, the distance

correlation is 0 if and only if the random variables are statistically independent. Table 7.3

shows the values taken by these correlation measures for each data set in Anscombe’s

quartet.2 All measures appear to perform better in this example than the Pearson cor-

relation coefficient. Kendall’s τ coefficient also appears to be a satisfactory alternative

measure.

Experimental designs often consist in comparing individual behaviour under different

treatments. When one of two possible outcomes is measured, and there is a supposed

causal factor, odds ratios can be used as a simple measure of the strength of the relation-

ship between the cause and its consequence. Focus 7.3 describes the use of odds ratio in

exploratory analysis of treatment effects.

7.1.5 Methods for the Analysis of Experimental Data

There are two broad types of analytical method for experimental data. Parametric

methods are based on parametrised families of probability distributions (e.g. normal,

lognormal and Poisson); they apply to situations in which the assumed distribution

matches the one that generated the data. Non-parametric methods, by contrast, do not

assume any specific underlying distribution. The choice between the two is not always

easy. Parametric methods are more powerful, in a statistical sense, thanks to the assumed

knowledge about the data-generating process; while non parametric methods are more

robust thanks to the lack of such assumption.

Non-parametric analysis is useful when it is known that the variable of interest is not

normally distributed (or more generally does not have a known distribution). This is

2 The Hoeffding’s D value in the table is calculated with the hoeffd function in R. It is 30 times Hoeffding’s

original D, and ranges from –0.5 to 1.0 if there are no ties in the data.
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Focus 7.2

Distance correlation as a measure of the degree of association

The distance correlation, denoted dCor, is the ratio of the distance covariance to the product

of the distance standard deviations of the variables.

dCor(X, Y) = dCov(X, Y)√
dVar(X) dVar(Y)

The calculation of the distance covariance dCov(X, Y) and distance variances dVar(X) and

dVar(Y) use the matrices of doubly centred distances (i.e. the matrices of Euclidean distances

with row/column means subtracted and the grand mean added). These matrices are constructed

by calculating all pairwise distances (with the Euclidean norm) in each distribution ai,j =
||Xi − Xk|| for variable X and bi,j = ||Yi − Yk|| for variable Y , ∀i, j = 1, . . . , n. Doubly centred

distances are obtained by subtracting the column mean (over j, denoted āi.) and the row mean

(over i, denoted ā.j) from each pairwise distance and adding the grand mean of the pairwise

distances. The elements of the doubly centred distance matrices are denoted Ai,j for X and Bi,j

for Y . For instance, the doubly centred distances for variable X are defined as:

Ai, j = ai, j − āi. − ā.j + ā..

The squared sample distance covariance is defined as the arithmetic average of the products

Ai,j and Bi,j: dCov2(X, Y) = 1
n2

∑n
i,j=1 Ai,jBi,j and the distance variances are the square roots

of dCov2(X, X) and dCov2(Y , Y ). The distance correlation ranges from 0 to 1. It is 0 if and

only if X and Y are independent. With bivariate normal distributions, it is always less than

or equal to the absolute value of the Pearson correlation, and is equal to 1 when the absolute

value of the Pearson correlation is one.

typically the case with ordinal variables. Parametric assumptions are also hard to justify

when there are obvious outliers in the data. The assumption of normality is also harder

to defend in small samples. The sample size over which violations of normality should

not cause major problems is traditionally considered to be 30–40.3

Non-parametric methods are useful for the univariate analysis of aggregate data. They

can also be used to identify differences between treatments or sessions, with fewer

assumptions than under parametric methods. This does not, however, mean that non-

parametric methods make no assumptions about the structure of the data. For example,

non-parametric tests of the difference between two treatments are distribution-free, but

still assume that the distribution is the same for the two treatments. Another assumption

is that the relevant parameters, apart from the treatment, are randomly allocated between

subjects. Some specific methods, like the Wilcoxon test, impose particular assumptions,

such as the symmetry of the population distribution. Non-parametric methods are often

simpler and are generally more robust than parametric methods, but these advantages

come at a cost. Typically, multivariate or conditional analysis rapidly becomes com-

plex with non-parametric methods. Moreover, the estimation of marginal effects is, by

the nature of the approach, not possible. With respect to these arguments, parametric

3 The central-limit theorem states that the sampling distribution for large samples tends to be normal,

regardless of the shape of the data.
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Focus 7.3

The exploratory analysis of treatment effects with odds ratios

Odds are defined as the ratio of the probability that a particular event occurs to the probability

that it does not occur. It can be any number between 0 and infinity. Intuitively, the odds provide

a normalised measure of the size of the effect of an event: they compute the number of subjects

who experience the event for every subject who does not:

odds ratio = odds of event in the treated group

odds of event in the control group

An alternative measure is the risk ratio, which compares the frequency of the event in the

treatment group to the frequency of the event in the control group.

risk ratio = frequency of event in the treated group

frequency of event in the control group

As an example, Cooper and Fang (2008) compare overbidding in second-price auctions when

players receive no signal about their opponents to the situation in which they receive a high-

quality signal about their opponent’s values. The first treatment is the control and the second

the signal. The following table shows the number of subjects by treatment group and bidding

behaviour.

Control Signal

Overbidding 19 17

No overbidding 17 33

Total 36 50

The odds ratio here is the ratio of the odds of overbidding in the treatment group (17/33 =
0.51) to those in the control group (19/17 = 1.12) : 0.51/1.12 = 0.56. Overbidding is thus

more likely in the control group than in the signal group: the odds of overbidding are roughly

cut by a half when players receive an informative signal about their opponents. The risk ratio

is the ratio of the frequency of overbidding in the experimental group (17/50 = 0.34) to that in

the control group (19/36 = 0.53) : 0.34/0.53 = 0.64. The risk ratio is the factor by which the

frequency of the event (i.e. the risk) is multiplied in the signal group. Receiving an informative

signal about opponents reduces the risk of overbidding by around one-third.

methods are better able to deal with complexity, as they have fewer parameters, and are

more accurate.

Departures from normality do not necessarily prevent the use of parametric meth-

ods. A transformation of the data can sometimes produce normality. First, sub-parts of

skewed distributions can be compressed more than other parts. A typical example is

the logarithmic transformation for distributions that are bounded at 0 and right-skewed.

Figure 7.6.a shows an example of a logarithmic transformation.4 For distributions

that are left-skewed the same transformation can be applied to reflected distributions.

Figure 7.6.b shows an example of such a transformation with a logarithm. The square

4 A more extreme alternative is the reciprocal transformation (1/y), and a less extreme alternative is the

square root (
√

y). The square root is also often used to transform count (i.e. integer) data. In this case,
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(c) logit transformation (on proportions)

(b) logarithmic transformation (on reflected distribution)

(a) logarithmic transformation

Figure 7.6 Transformation functions and normality

transformation can also be used. The logit (log[y/(1 − y)]) or angular (arcsin
√

y) trans-

formations can be used for proportions outside the range [0.3–0.7].5 The logit function

treats very small and very large values symmetrically. It pushes out the tails and pulls in

the middle of the distribution. Figure 7.6.c shows an example of a logit transformation

of a distribution of proportions.

7.2 Estimation and Inference

We now turn to to the relation between the content of the data and the populations from

which the sample has been drawn. To that end, denote y = (y1, . . . , yn) the sample

of observations, in which each yi is supposed to be a draw of a random variable Yi.

In the next two sections, we assume that the elements in the samples are independent

draws from the same population distribution. The cumulative distribution function of all

variables Yi is denoted G and g is the associated density. In statistical terms, the Yis are

a common transformation is
√

y + 0.4. A more general form of power transformation is the Box–Cox

transformation:
{

(y+a)λ−1
λ

if λ �= 0

log(y + a) if λ = 0

5 The square root and log transformations are also used to reduce the variance.
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assumed to be independently and identically distributed. The collection of draws in the

sample informs about G because all draws arise from the same underlying distribution.

The vector of random variables (Y1, . . . , Yn) is denoted Y. When there are K samples,

or K observations for each experimental unit i, the population distributions (if any) are

denoted Fk, the samples are denoted yk = (yk
1, . . . , yk

nk
) for k = 1, . . . , K and the random

variables Yk = (Yk
1 , . . . , Yk

nk
), k = 1, . . . , K.

7.2.1 Estimators and Sampling Distributions

First focus on parametric analysis. We suppose that the data are generated by a parent

distribution G depending on a fixed set of unknown parameters θ . Inference aims to

uncover θ in the parent distribution G(Y|θ ) given the observed sample y. The central

element of inference is the estimator.

Estimators

An estimator can be defined as a procedure θ̂ , applied to the sample data, which returns a

numerical value for the parameter of the parent distribution θ . The objective is to obtain

values of the unknown parameters from the observations of the random variables Y. To

that end, the estimator transforms observations into parameter values; it is defined as a

function θ̂ (Y) of the n random variables Yi, i = 1, . . . n.

As θ̂ is a function of random variables, it is itself random, with a distribution called

the sampling distribution. The sampling distribution is a key element of inference, as it

allows inference to be based not only on the observations y but also on all possible values

of Y. In frequentist estimation, applied to a given sample y, the estimator produces

a point estimate of the parameter of interest and the sampling distribution produces a

confidence interval around this point estimate. The sampling distribution also allows

significance tests to be carried out on the value of the underlying parameter θ .

The sampling distribution can be derived in four different ways. It can first be derived

analytically and explicitly. This is the case, for example, for the sampling distribution

of the sample mean estimator Ȳ =
∑

i Yi/n of a normal population distribution. A

second possibility is to derive the large sample limit of the estimator, which is used

as an approximation. This is the case for the sampling distribution of the relative fre-

quency estimator when the product of the sample size n and the population proportion

Ȳ =
∑

i Yi/n is greater than 10. A third possibility is the use of permutation tests.

Permutation tests calculate the test statistic for all permutations (i.e. relabellings) of

the original observations.6 A last possibility is bootstrapping. While permutation tests

rearrange the data according to all possible combinations, bootstrapping is based on

resampling with replacement from the whole sample. If only a subset of the sample

is used to perform the resampling, this technique is called the jacknife. In a nutshell,

the bootstrap resamples from the initial sample to produce more data. Bootstrapping

is usually carried out to obtain the whole sampling distribution. Jackknife, by contrast,

is mainly used to calculate the variance of an estimator based on the following steps:

6 For the permutation to be valid, exchangeability is required: the joint distribution of the permutations, under

the null hypothesis of the test, remains unchanged. A typical case of exchangeability is i.i.d. data.
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resample subsets of the sample of size n − 1 without observation i, calculate the estima-

tor θ̂−i for each of these, and then calculate the variance of these estimators over the n

resamplings. The mean of the θ̂−is can also be used to estimate the bias of an estimator

θ̂ . As the removal of one observation should change the data set only a little, the jack-

knife is also often used to check the data set. The data set passes the test if a number of

resamplings yield similar summaries of the data.

An estimator results from an objective function, defined over the true parameter, θ ,

and some prior information about the data-generating process. Several methods can

be used to define the objective function, resulting in different estimation methods.

The method of moments matches the sample moments to the corresponding distribu-

tion moments. The maximum-likelihood estimator (MLE) selects the value of θ that

maximises the joint probability of a set of observations: Pr[Y = y|θ ]. If the Yis are

i.i.d., this amounts to maximising the joint product
∏

i Pr[Yi = yi|θ ]. Estimators can

also be obtained by Bayesian methods, by considering the expectation of the posterior

distribution.

The Quality of the Estimator

Performing satisfactory inference requires a good estimator. The quality of the estimator

is closely linked to the properties of the sampling distribution. The aim is to select an

estimator whose sampling distribution is as informative as possible about the true value

of the parameter of interest θ . This results in three main properties defining the quality

of an estimator θ̂ :

• Consistency. It is closer and closer to the true value θ as the sample size increases.

• Unbiasedness. Its expectation equals the true value, for any sample size: E(θ̂) = θ .

This property implies that the sampling distribution of the estimator is located, on

average, at the true parameter value θ .

• Efficiency. It has minimal variance. An unbiased estimator is better if it has greater

precision, i.e. a sampling distribution with the smallest variance. The estimator with

the lowest variance is called the most efficient estimator. Efficiency can be measured,

for instance, as the ratio of the variance of two estimators.

The quality of an estimator can be summarised by the mean squared error (MSE),

which can be decomposed in two parts: the sum of the square of the bias and the variance

of the estimator:

MSE(θ̂ ) = E

[

(θ̂ − θ )2
]

=
[

E(θ̂) − θ

]2

︸ ︷︷ ︸

square of the bias

+ V(θ̂ )
︸ ︷︷ ︸

variance of θ̂

As the expression shows, the choice of an estimator solves a trade-off between unbi-

asedness (the first term of the RHS) and precision (the second). In some cases, a biased

estimator may be preferred if it has low variance, for example. In this case, efficiency

comes at the price of bias, but the biased estimator has the lowest MSE as the gain in

precision outweighs the lower unbiasedness.

Example: A natural estimator for the parameter of the binomial distribution B(n, θ ) is

the relative frequency estimator θ̂ = 1
n

∑n
i=1 Yi, with Yi ∈ {0, 1}, ∀i. This estimator:
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Figure 7.7 An illustration of the central limit theorem

• is both consistent and unbiased, E(θ̂ ) = 1
n × n × E(Yi) = θ ;

• has variance equal to V(θ̂) = θ(1−θ)
n . The variance falls with the sample size, n: the

estimates of θ̂ are more precise in larger samples. This is illustrated in Figure 7.7,

which displays three samples of different sizes drawn from a binomial distribution

with parameter θ = 0.2. The variance clearly falls with the sample size. It is also

worth noting that for n = 30, the distribution is approximatively normal, as suggested

by the central limit theorem.

An alternative to the relative frequency estimator is the last observation, θ̂ = Yn. This is

also an unbiased estimator of θ , but it is not consistent and has a larger variance than

the relative frequency estimator.

Last, the estimator θ̂ = 1+
∑n

i=1 Yi

n+2 is consistent and has lower variance, equal to

θ̂(1−θ̂ )

n(n+2)2 , than the relative frequency estimator. The efficiency gain comes at the price of

a bias equal to nθ̂+1
n+2 .

Maximum-likelihood estimators are often preferred as they are intuitive and consis-

tent. Moreover, under regularity conditions they are consistent,7 asymptotically efficient

and asymptotically normal with mean θ and a covariance matrix equal to the inverse of

the Fisher information matrix. MLEs have therefore the required properties to be a good

estimator, but only asymptotically. MLEs are often inefficient and biased in finite sam-

ples. Generalisations of MLEs, such as M-estimators, have been proposed to deal with

this problem.8 Another possibility is to use Bayesian parameter estimation. Focus 7.4

shows how parameter estimation is carried out in this framework.

Examples of MLEs:

• For multinomial probabilities, the relative frequency θ̂k
mle = 1

n

∑n
i=1 Yk

i is the

maximum-likelihood estimator. It is consistent and unbiased, but has a ‘large’

variance. If efficiency is a concern, then the MLE would not be the best estimator.

7 The regularity conditions impose that, for different true parameter values, the population distributions are

different, that these distributions have common support for all θ , and that the true parameter is an interior

point.
8 M-estimation involves minimising a sum of functions of the data. M-estimators are based on loss functions

that attach less weight to outliers.
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Focus 7.4

Bayesian parameter estimation

According to the frequentist approach, the observed data are used to construct a point esti-

mate of the parameter of interest. Bayesian statistics proceed differently: all the uncertainties

(randomness, lack of knowledge) are embedded in the econometric model as probability

distributions, which are combined thanks to probability calculus (typically using the Bayes

theorem). The lack of knowledge about the parameters is formalised by beliefs I that describe

the uncertainty about θ , before anything is observed. They capture the subjective information

available with a prior distribution, f (θ |I), expressing what the researcher knows about the

parameter before observing any data. The prior distribution is usually based on judgement

from experts or on technical convenience for the calculation. Randomness is represented by

the likelihood Pr[y|θ ,I]. In the Bayesian framework, parameter estimation corresponds to the

calculation of the probability distribution over θ , given the observed data y and beliefs I. The

posterior distribution Pr[θ |y,I] combines the prior with the information obtained from the

data according to Bayes’s rule:

Pr[θ |y,I] = Pr[y|θ ,I] × f (θ |I)

Pr[y|I]
= likelihood for θ × prior over θ

likelihood marginalised over θ

The numerator is the product of the standard likelihood of the parameter for the data Pr[y|θ ,I]

and the prior distribution over θ , given the beliefs. The denominator is the marginal likelihood,
∫

θ Pr[y|θ ,I] × f (θ |I)dθ , which can usually be ignored in calculations with normalisation.

The posterior distribution allows us to make inferences about the model parameters:

• Location measures – the mode, the median and the mean of the posterior distribution given

the point estimates.

• Credible intervals – the range of values that has the posterior probability (1 − α) of

containing the parameter.

• The posterior probability for some hypothesis to be true, allowing hypothesis testing (e.g.

for H0 : θ ≤ θ0, we have Pr[θ ≤ θ0|y] =
∫ θ0
−∞ Pr[θ |y,I]dθ ).

The table below provides a comparison between the frequentist and Bayesian methods.

Frequentist Bayesian

Parameter Unknown constant Random variable

Point estimation Value of an estimator Posterior summary

Interval estimation Confidence interval Credible interval

Hypothesis testing Check if estimate is probable given

the sampling distribution under H0

Posterior probability of H0

A simple example is the estimation of a binomial proportion. With a uniform prior, the

posterior distribution is a Beta(a′, b′) distribution with a′ =
∑

yi + 1 and b′ = n −
∑

yi + 1.

With a prior Beta(a, b), the posterior is a Beta distribution with parameters a′ = a +
∑

i yi

and b′ = b + n −
∑

i yi. Bayesian updating implies updating parameter a with the number

of successes, and parameter b with the number of failures. For the estimation of a normal
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posterior distribution of mean Ȳ and variance σ 2/n. With a normal prior N (m, s2), the

posterior is normally distributed

N

⎛

⎝

σ 2

n m + s2Ȳ

σ 2

n + s2
,

σ 2s2

ns2 + σ 2

⎞

⎠

The mean is a weighted average of the prior mean m and the sample mean ȳ. Gelman et al.

(2014) provide an extensive overview of Bayesian parameter estimation.

• For the mean of a normal distribution, the sample mean Ȳ = θ̂mle = 1
n

∑n
i=1 Yi is the

maximum-likelihood estimator. It is consistent, unbiased and efficient.

• For the variance of a normal distribution, the sample variance divided by n is the

maximum-likelihood estimator θ̂mle = 1
n

∑n
i=1(Yi−Ȳ)2. It is consistent but biased (the

MLE is said to ‘over-fit’ the data). To eliminate this bias, the likelihood is adjusted by

a factor of n/(n − 1). This adjustment leads to the sample variance:

S2 = 1

n − 1

n
∑

i=1

(Yi − Ȳ)2

which is different from the maximum-likelihood estimator of the variance.

7.2.2 Confidence Intervals

Point estimates do not inform about the confidence the researcher can have in the sam-

ple value of the estimator (the point estimate). The confidence in a point estimate is

by nature limited, as the sample contains less information than the population. In fre-

quentist estimation, the population parameter is deterministic, fixed, but unfortunately

unknown. The only resource available to the researcher is the estimator, which is a

random variable, and the point estimate is nothing more than a draw of this random

variable. As such, point estimates taken from samples always involve some uncertainty,

arising from the sampling distribution. A confidence interval quantifies the uncertainty

surrounding an estimate. The logic is to make confidence statements by calculating the

interval that would contain the true value were the sampling to be repeated 100 × α

times. Formally, a confidence interval is a random interval [bL; bU] such that:

Pr[bL ≤ θ ≤ bU] = 1 − α

Note that the confidence interval tells us nothing about the location of the true parameter

within the interval. Figure 7.8 illustrates the logic of confidence intervals with sym-

metric intervals.9 Multiple 100 × (1 − α)% confidence intervals are represented from

different samples, each from the same population with an unknown true parameter θ . In

Figure 7.8, about 19 of the 20 confidence intervals contain the true parameter value θ .

Confidence Intervals for the Mean

Suppose that the population distribution is (approximatively) normally distributed with

mean θ , the unknown parameter to be estimated, and a known standard deviation of σ .

9 The confidence intervals [bL; bU] are not necessarily symmetric.
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Figure 7.8 Confidence intervals on samples from a population with parameter θ

As each Yi is supposed to be i.i.d. drawn from N (θ , σ 2), the sample mean Ȳ is distributed

N (θ , σ 2/n) and:

Pr

[

−z α
2

≤ θ̂ − θ
σ√

n

≤ z α
2

]

= 1 − α

where z α
2

denotes the critical value of the normal distribution such that �

(

z α
2

)

= 1− α
2 .

Figure 7.9 shows where the critical values −z α
2

and z α
2

are located for a standard normal.

z α
2

is also called the z-score. The confidence interval [bL; bU] for the unknown parameter

θ is therefore:
[

ȳ − z α
2

σ√
n

; ȳ + z α
2

σ√
n

]

The z-score measures to what extent, in terms of standard deviations, the bounds

of the confidence interval are above and below the mean. The z-score depends on the

desired level of confidence: for 1−α = 95%, z α
2

= 1.96, for 1−α = 90%, z α
2

= 1.645,

for 1 − α = 99%, z α
2

= 2.58. As the z-score rises with confidence, higher levels of

confidence result in larger confidence intervals. On the contrary, larger sample sizes

yield narrower confidence intervals. Very large samples greatly reduce the uncertainty

surrounding the point estimate.

So far, we have described the bounds of the confidence intervals as random variables.

For a given sample y, the point estimate is ȳ and the confidence interval is ȳ ± z α
2

σ√
n
.

If sampling is carried out without replacement from a population of size N, with N less
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Figure 7.9 Critical values for common distributions: normal, t and χ2

than 10 to 20 times n, a finite population correction needs to be applied to the standard

error of the mean σ√
n
, and the confidence interval becomes:

⎡

⎢
⎢
⎣

ȳ − z α
2

√

N − n

N − 1
︸ ︷︷ ︸

correction

σ√
n

; ȳ + z α
2

√

N − n

N − 1
︸ ︷︷ ︸

correction

σ√
n

⎤

⎥
⎥
⎦

When the population standard deviation σ is unknown, the standard deviation of the

sampling distribution cannot be calculated, and the sample standard deviation has to be

used. The standard deviation of the sample is the square root of the sample variance s2,

defined as:

s2 = 1

n − 1

n
∑

i=1

(yi − ȳ)2
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In this case, for a large sample size n, the sample mean Ȳ is approximatively dis-

tributed N (θ , s2/n) and the confidence interval [bL; bU] for the unknown parameter θ

is therefore:
[

ȳ − z α
2

s√
n

; ȳ + z α
2

s√
n

]

If the sample size is small, a normal approximation can no longer be used for the sam-

pling distribution. A t-distribution with n − 1 degrees of freedom is instead used to

approximate the sampling distribution of θ̂−θ
s√
n

, and the confidence interval [bL; bU] for

the unknown parameter θ is therefore:

[

ȳ − t α
2

s√
n

; ȳ + t α
2

s√
n

]

where t α
2

is the t-score with n − 1 degrees of freedom and a decumulative probability

of α
2 . The t-score is the critical value such that a t-distribution with n − 1 degrees of

freedom has a cumulative probability of 1 − α
2 . Figure 7.9 shows the critical values −t α

2

and t α
2

for a t-distribution with n − 1 degrees of freedom. Figure 7.9 also shows that the

t-distribution has heavier tails than the standard normal, and that the t α
2

are higher than

the corresponding z-scores.10 If sampling is carried out without replacement the finite

population correction needs to be applied to the sample standard error s√
n

.

Rather than calculating the confidence interval for an unknown parameter for a given

sample and a given level of confidence, an alternative is to determine the sample size

that is necessary to obtain a given width for the confidence interval. Focus 7.5 shows

how sample size and width at a given level of confidence relate. The method used to

construct confidence intervals can also be used to predict values. Focus 7.6 shows how

it is possible to predict a single value of a variable given a sample.

Confidence Intervals for the Median

When the population distribution is not normal, calculating a confidence interval for

the median is a good alternative to calculating a confidence interval for the mean. Here

the n observations are ordered by size, with the ordered sample values being written as

y(1) ≤ y(2) ≤ .... ≤ y(n). An equal-tailed confidence interval for the median is [Y(h); Y(h′)],

where h is the largest integer, and h′ the smallest, such that:

h−1
∑

i=0

(
n

i

)(
1

2

)n

≤ α

2
and

n
∑

i=h′

(
n

i

)(
1

2

)n

≤ α

2

For n > 50, a normal approximation of the binomial distribution can be used,

and the confidence interval for the median is [Y(h); Y(h′)], where h and h′ are

approximated by:

h ≈
n + 1 − z α

2

√
n

2
and h′ ≈

n + 1 + z α
2

√
n

2

10 As n tends to infinity, the t-score converges on the z-score.
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Focus 7.5

Sample size and confidence intervals

Using confidence intervals, it is possible to compute the sample size necessary to obtain a

given width at a given level of confidence. Suppose that we want to estimate the mean θ of

a normal population with known variance σ . In this case, the confidence interval for a given

sample y is
[

ȳ − z α
2

σ√
n

; ȳ + z α
2

σ√
n

]

Its width, defined as the range between the lower and the upper bound, is width = 2z α
2

σ√
n

.

The width can be interpreted as the error margin for the unknown parameter. The sample size

n necessary to obtain a given value of width around the sample mean ȳ at a confidence level of

100(1 − α)% is therefore:

n =
(

2z α
2

σ

width

)2

Analogous reasoning produces the sample size n necessary to obtain a given value of width

around a sample frequency ȳ at a confidence level of 100(1 − α)%:

n =
(

2z α
2

ȳ(1 − ȳ)

width

)2

The number of independent observations required to assess a difference � between the means

of two normally distributed populations with identical variance σ is

n = 2(z α
2

+ zbeta)2
( σ

�

)2

with β being the Type-II error.

Note that the confidence interval for the median can be generalised to any quantile.

An equal-tailed confidence interval for the pth quantile is [Y(h); Y(h′)], where h is the

largest integer and h′ is the smallest integer, such that:

h−1
∑

i=0

(
n

i

)

(p)i (1 − p)n−i ≤ α

2
and

h′−1
∑

i=0

(
n

i

)

(p)i (1 − p)n−i ≥ 1 − α

2

Confidence Intervals for a Proportion

Suppose that the population is distributed according to a Bernoulli distribution with

parameter θ , the unknown proportion to be estimated. The estimator θ̂ of θ is the rela-

tive frequency Ȳ =
∑

i Yi/n. As each Yi is supposed to be i.i.d. drawn from the Bernoulli

distribution, the sum of the Yi over i = 1, . . . , n is binomially distributed B(n, θ ). If the

sample size is not too small and the number of successes and failures in the sample are

both large,
∑

i yi > 5 and
∑

i(1 − yi) > 5, a normal approximation can be used to rep-

resent the sampling distribution. In this case, the relative frequency is approximatively

distributed N [θ , θ (1 − θ )/n]. The confidence interval is
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Focus 7.6

Prediction intervals for a single observation

The method used to construct confidence intervals can be used to predict a single value of

a variable Yn+1 given a sample (Y1, . . . , Yn). For example, if the population is normally dis-

tributed with unknown mean θ and known variance σ , the sampling distribution of Yn+1 given

Y is normally distributed N (Ȳ , σ

√

1 + 1
n ). A prediction interval with level 100(1−α)% is such

that

Pr

⎡

⎣−z α
2

≤ Yn+1 − Ȳ

σ

√

1 + 1
n

≤ z α
2

⎤

⎦ = 1 − α

And the prediction interval is
[

ȳ − z α
2
σ

√

1 + 1

n
; ȳ + z α

2
σ

√

1 + 1

n

]

[

ȳ − 1

2n
− z α

2

ȳ(1 − ȳ)√
n

; ȳ + 1

2n
+ z α

2

ȳ(1 − ȳ√
n

]

As the estimator is based on discrete values and the approximation is based on a contin-

uous distribution, a continuity correction 1
2n is needed. In the case of sampling without

replacement, the finite population correction
√

N−n
N−1 needs to be applied to the standard

error
ȳ(1−ȳ)√

n
.

The normal approximation used to calculate the confidence interval can be problem-

atic if the sample size is too small. The conditions imposed on the number of successes

and failures are not problematic when the population proportion is close to one-half. In

that case, the sample size required to produce at least five successes and at least five fail-

ures is close to 10. But if the population proportion is more extreme (close to 0 or 1), the

sample size required to meet the condition of at least five successes and five failures is

much larger. For example, if the population proportion is 0.01, a minimum sample size

of 500 is needed. Moreover, the normal approximation assumes a symmetric margin of

error that may be problematic when the estimator takes a value of 0 or 1. Instead of

using a normal approximation to the sampling distribution, the correspondence between

the binomial distribution and the Fisher distribution can be used. Here the confidence

interval for the parameter θ is
[

nȳ

nȳ + (n − nȳ + 1) Fl
;

(nȳ + 1) Fu

n(1 − ȳ) + (nȳ + 1) Fu

]

With Fl = F2(n−nȳ+1),2nȳ, α
2

and Fu = F2(nȳ+1),2n(1−ȳ), α
2

being the critical values of the

Fisher distribution. This alternative confidence interval is very useful for extreme values.

For example, the one-tailed confidence interval for complete failure is
[

0;
F2,2n, α

2

n + F2,2n, α
2

]
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and the one-sided confidence interval for complete success is
[

n

n + F2,2n, α
2

; 1

]

Confidence Intervals for Variance and Standard Deviation

Suppose the population is (approximatively) normally distributed with mean μ and an

unknown standard deviation θ . The estimator of the variance θ2 is the sample variance

S2. As each Yi is supposed to be i.i.d. drawn from N (μ, θ2), the random variable (n−1)S2

θ2

is distributed chi-squared with n − 1 degrees of freedom. The resulting interval with

confidence level 100(1 − α)% is

Pr

[

χ2
n−1,1− α

2
<

(n − 1)S2

θ2
< χ2

n−1, α
2

]

= 1 − α

where χ2
n−1,1− α

2
and χ2

n−1, α
2

are the critical values of the chi-squared distribution with

n − 1 degrees of freedom. Figure 7.9 depicts these critical values for a chi-squared

distribution with n − 1 degrees of freedom. The confidence interval [bL; bU] for the

unknown parameter θ is therefore:
⎡

⎣

√
√
√
√

(n − 1)s2

χ2
α
2 ,n−1

;

√
√
√
√

(n − 1)s2

χ2
1− α

2 ,n−1

⎤

⎦

For small sample sizes and distributions with extreme values or missing data, the mean

absolute deviation (MD) is a better estimate of dispersion than the standard deviation

(Tukey, 1960). The mean absolute deviation is

MD =
∑

i |Yi − Ȳ|
n

and can be used to construct confidence intervals for the mean (Sachs, 2012). The

median deviation, defined as the median of the absolute deviation from the empirical

mean, is another robust estimate of dispersion.

Confidence Intervals for a Difference Between Two Populations

Now suppose that two samples of observations are available: y1 = (y1
1, . . . , y1

n1
) and

y2 = (y2
1, . . . , y2

n2
), which are drawn independently. Further assume that the elements of

each sample are independent draws from the same population distributions: G1 for the

Y1
i and G2 for the Y2

i . The confidence intervals for the difference between two indepen-

dent samples is a first way of evaluating treatment effects, when treatments are applied

to different experimental units.11

The estimator for the difference between the means of two independent normally

distributed populations is θ̂ = Ȳ1 − Ȳ2. If the variances of the two populations are

assumed to be equal, the confidence interval for the difference between the means is

(ȳ1 − ȳ2) ± t α
2

s
√

1/n1 + 1/n2

11 If the draws are not entirely random, the sample standard deviation will be spuriously lower, so the

significance of the difference between the means will be larger.
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where the estimator of the common variance is s2 = s2
1(n1−1)+s2

2(n2−1)

n1+n2−2 and t is the t-score

with n1 + n2 − 2 degrees of freedom. If the variances of the two populations are not

assumed to be equal, the confidence interval for the difference between the means is

(ȳ1 − ȳ2) ± t α
2

√

s2
1/n1 + s2

2/n2

where t is the t-score with df degrees of freedom and:

df =
(

s2
1

n1
+

s2
2

n2

)2

/

⎡

⎢
⎢
⎢
⎣

(

s2
1

n1

)2

n1 − 1
+

(

s2
2

n2

)2

n2 − 1

⎤

⎥
⎥
⎥
⎦

The estimator of the difference between the proportions of two independently dis-

tributed populations is the difference between the two sample frequencies ȳ1 and ȳ2. If

n1 ≥ 50, n2 ≥ 50 and the expected number of successes and failures in both samples

is greater than five, the sampling distribution of the estimator can be approximated by a

normal distribution. In this case, the confidence interval for the difference between the

proportions is

(ȳ1 − ȳ2) ± z α
2

√

ȳ1(1 − ȳ1)

n1
+ ȳ2(1 − ȳ2)

n2

The estimator for the ratios between the variances of two independently distributed

populations is
S2

1

S2
2

, where S2
1 corresponds to the larger sampling variance. The sam-

pling distribution of the estimator has a Fisher distribution with n1 − 1 and n2 − 1

degrees of freedom. The confidence interval [bL; bU] for the ratio between the variances

is therefore:
[

s2
1

s2
2

1

F(n1−1,n2−1), α
2

;
s2

1

s2
2

F(n2−1,n1−1); α
2

]

Confidence Intervals for Paired Data

Paired data offer a simple way of identifying treatment effects. Paired data allow a more

accurate comparison between treatments as the dispersion between different experimen-

tal units is reduced, by removing the inter-individual heterogeneity. The only dispersion

that remains is within-subject. On the other hand, compared to independent samples,

paired data reduce the number of degrees of freedom by a factor of two. The reduc-

tion in the degrees of freedom increases the confidence intervals. As such, we are faced

with a trade-off between precision and accuracy when comparing paired and indepen-

dent samples. Note that pairing is a design strategy, which must be chosen before the

experiment, and not an analytical strategy.

Let y1 = (y1
1, . . . , y1

n) and y2 = (y2
1, . . . , y2

n) be two samples of paired data. Each

pair y1
i , y2

i is generated by the same observation unit i. We assume that the differences

�i = Y1
i − Y2

i are drawn at random from a normally distributed population.12 To

12 When comparing paired samples, it is therefore not necessary to assume that both distributions are

approximatively normal, but only that their difference is approximatively normal.
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obtain a confidence interval for the mean differences of the treatment effect, consider

the estimator defined by the mean difference between treatments �̄ = 1
n

∑

i �i. Here

the confidence interval for the mean difference in paired observations is
[

�̄ − t α
2

s�; �̄ + t α
2

s�

]

where s2
� =

∑

i(�i−�̄)2

(n−1) is the sample standard deviation and t is the t-score with n − 1

degrees of freedom.

7.3 Testing Procedures

This section will review non-parametric and parametric testing procedures. We start

by setting out the general principles of hypothesis testing, and then turn to the main

hypothesis tests for each type of measurement. We present a number of examples of

hypothesis testing in experimental economics.

7.3.1 Hypothesis Testing: General Principles

The general purpose of hypothesis testing is to make decisions based on inferences about

populations from given samples. To ease exposition, we focus on parametric analysis.

The particularity of hypothesis testing, as compared to measurement via point estimates

and confidence intervals, is to make a judgement about some population characteristic.

To make a judgement about a parameter value, hypothesis testing sets this judgement

up as a testing problem between two competing, mutually exclusive, hypotheses regard-

ing the true parameter value. A test is a rule enabling a decision to be made about

whether the hypothesis under test should be rejected, based on the observed value of

some function of the sample variables. Focus 7.7 summarises the approach to hypothe-

sis testing in a five-step procedure. It should be emphasised that hypothesis testing is not

a substitute for confidence intervals. Hypothesis testing makes sense if a well-defined

research hypothesis exists and needs to be tested. Otherwise, it is better to use confidence

intervals to summarise the information about the population that the sample contains.

The decision rule is to reject the hypothesis under investigation when the result from

the analysis of the sample is sufficiently unlikely under this hypothesis. Carrying out

hypothesis tests is a two-stage procedure. It is first assumed that chance alone determines

the outcome under each competing hypothesis. Second, the test produces the chances of

observing the various outcomes, given these assumptions. A significance level is used to

determine what is probable and what is unlikely, and at which level the hypothesis may

be rejected.

Carrying out a test implies making a decision regarding the value of θ based on

the sample data (y1, . . . , yn) between two competing hypotheses. The first hypothesis,

H0, is called the null hypothesis. This hypothesis often corresponds to the default or

‘no-effect’ situation. The second hypothesis, which is usually the research hypothesis

under investigation, is denoted H1 (or Ha) and called the alternative hypothesis. There

are three types of alternative hypothesis H1, as follows:
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Focus 7.7

A five-step approach to hypothesis testing

Hypothesis testing is usually carried out using the following five-step approach:

1. Set up the hypothesis and select the level of significance α.

2. Select the appropriate test statistic (and underlying estimator) T(Y), according to:

• the level of measurement of the data (interval, ratio, ordinal or nominal);

• the characteristics of the distributions (sample sizes, normal approximations, equal

variances, etc.);

• the design of the experiment (repeated measures, matched participants, independent

populations, etc.).

3. Set up a decision rule, i.e. a statement about circumstances under which the null hypothesis

is rejected. There are different types of decision rule. For some tests, the decision rule will

be to reject the null hypothesis if the value of the test statistic is large; for other tests, the

decision rule will be to reject the null hypothesis if the value of the test statistic is low, or

outside some given bounds. If p-values are used, the null hypothesis will be rejected if the

p-value is too low.

4. Calculate the sample value of the test statistic using the sample values y.

5. Make a decision using the decision rule: to reject (decision d1) or not to reject (decision

d0) the null hypothesis.

• The true parameter θ is lower than a certain value denoted θ0: θ < θ0. When tested

against the null hypothesis H0 : θ = θ0, this test is called a left-tailed test.

• The true parameter θ is greater than a certain value denoted θ0: θ > θ0. When tested

against the null hypothesis H0 : θ = θ0, this test is called a right-tailed test.

• The true parameter θ is different from a certain value denoted θ0: θ �= θ0. When tested

against the null hypothesis H0 : θ = θ0, this test is called a two-tailed test.

The first two alternatives are single-sided tests, and the third a two-sided test. In all

three alternatives, the hypothesis corresponds to partitions of the parameter space – i.e.

the space of possible parameter values. If the parameter space for the parameter θ is �,

the null hypothesis and the alternative hypothesis form a partition of � between �0 and

its complement �1:

H0 : θ ∈ �0 ⊂ � vs. H1 : θ ∈ �1 ⊂ �

If the null hypothesis H0 implies complete knowledge of the population distribution, the

hypothesis is said to be simple. Otherwise, the hypothesis is said to be composite.

Examples:

• With Yi ∼ N (θ0, 1), the null hypothesis H0 : θ = θ0 is a simple hypothesis, whereas

H0 : θ ≤ θ0 is a composite hypothesis.

• With Yi ∼ N (θ , σ ) and σ unknown, the null hypothesis H0 : θ = θ0 is a com-

posite hypothesis because the hypothesis does not imply complete knowledge of the

population distribution.
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Table 7.4 True data-generating process and decisions

DGP d0 d1

H0 No error False positive. Type-I error

H1 False negative. Type-II error No error

The logic of hypothesis testing is to decide whether to reject the null hypothe-

sis (formulated in terms of the population parameter θ ) based on the sample data

y = (y1, . . . , yn). If the sample data are consistent with the probability model speci-

fied by the null hypothesis H0, then the decision is to not reject that hypothesis. This

decision is denoted d0. If the sample data are inconsistent with the null hypothesis H0,

then the decision is to reject that hypothesis. This decision is denoted d1. In the latter

case, the alternative hypothesis H1 regarding the data-generating process is most likely

to be true. The decision d0 or d1 is taken on the basis of a test statistic T(Y) and a sig-

nificance level. Table 7.4 shows in which cases (d0 − H0 and d1 − H1) the decisions are

made without error.

In practice, the test statistic T(Y) is a function of the estimator of the parameter of

interest. For example, to test the value of the mean θ of a normally distributed population

with variance σ 2, the estimator is Ȳ and the test statistic is the normalised value of the

estimator Ȳ−θ

σ/
√

n
. A test statistic T(Y) is said to be feasible when its sampling distribution

under the null hypothesis L0 is known and when its value can be calculated from a

given set of sample data y. L0 is sometimes referred to as the null distribution of T(Y).

Under the alternative hypothesis, H1 describes the true DGP and the distribution of

T(Y) is denoted L1. The significance level is defined in terms of a probability threshold

(denoted α), such that a particular estimate is significant if the probability of obtaining

that estimate under the null distribution is less than α.

Example: Consider a sample Y such that Yi ∼ N (θ , σ 2), and let T(Y) = Ȳ be an

estimator of θ . We know that:

T(Y) − θ

σ/
√

n
∼ N (0, 1)

We want to test H0 : θ = 2 against some alternative (one-sided or two-sided) hypothesis.

The distribution of T(Y) is L0 ∼ N (2, σ/
√

n) if and only if H0 is the true DGP behind

observed data.

The decision rule for the test can be seen as a partition of the set of all values of the

test statistic T(Y). The subset of all values of the test statistic that led to the rejection

of the null hypothesis is called the ‘critical’ or ‘rejection’ region R. The critical values

of a test statistic T(Y) are the bounds of R. The bounds are set in such a way that the

difference between T(Y) and H0 is large enough for the probability that it occurred by

chance to be lower than a given significance level α. The critical region is thus made

of all values of T(Y) that are unlikely to be drawn from the population distribution set

by H0.

Figure 7.10 shows the three types of rejection region used in one-dimensional hypoth-

esis testing. A bilateral rejection region prescribes rejection if the sample value of the
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A bilateral rejection region

An upper rejection region

A lower rejection region

α

α

2
α

2

Rejection region

Rejection region

cu

Rejection region
(upper part)

Rejection region
(lower part)

cl

c

c

α

L0

L0

L0

Figure 7.10 Critical values and rejection regions

Note. L0 denotes the sampling distribution of the test statistic T under the null hypothesis H0.

test statistic is less than a lower threshold cl or greater than an upper threshold cu. An

upper (lower) rejection region prescribes rejection if the sample value of the test statistic

is less (greater) than a lower (upper) threshold c. Figure 7.10 shows that the rejection

region R depends on three key elements:

• the alternative hypothesis H1, one-sided or two-sided;

• the sampling distribution under the null hypothesis L0;

• the significance level, α.

Figure 7.11 shows graphically how hypothesis testing works. In the upper part of the

figure, deductive reasoning is used by the researcher to determine the rejection region

R based on the significance level α and the sampling distribution L0. In Figure 7.11,

the hypothesis test prescribes rejection of H0 for T(Y|H0) > c and the critical value c

is such that Pr[T(Y) > c|L0] ≤ α. The decision rule states that if the sample value of
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Figure 7.11 Hypothesistesting

the test statistic T(Y) = 6 is larger than c, then decision d; should be taken. Once the

rejection region is determined, the researcher uses inductive reasoning on the basis of

the computed sample valueoftheteststatistic. If this value falls into the rejection region,

decision dis taken;if the value falls outside the rejection region, decision do is taken.

Astheestimatoris itself a random variable,it is impossible to know for sure whether

the decision (d, or do) is correct regarding the true DGP. Thedecisionis risky to the

extent that one can always draw extreme values from a distribution. In other words,

the test can lead to the wrong decision. An extreme draw in the Ho distribution leads

to decide d,. This is called a type I error, and corresponds to a false positive. False

negatives arise if, by contrast, a draw in a distribution different from Hp lies outside

the critical region and leads to decide dg. This is a type II error. Table 7.4 shows the

accuracy of decisions based on the nature of the true DGP. When the decisionis in line

with the true DGP, the statistical decision based on the test is accurate.

Formally, the probability of a type I erroris

a(6) = Pr{d|Ho] = Pr{T(Y) € R\6 € Go]

For a given choice of the level @(@), it is possible to determine the critical region R,

and therefore the critical values of the test statistics, that lead to the rejection of the

null hypothesis. For a simple test, w is the ‘size’ of the test — the largest probability of

rejecting Ho when Hpistrue. In most applications, one sampleis used to carry out one

test. With experimental data, however, it is commonpractice to use the same sample

to carry out several tests. In this case, the size of the test should be modified to take
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Focus 7.8

Multiple test procedures

Consider a second-price auction experiment eliciting 10 bids per subject, on which a series

of 10 different tests for overbidding behaviour are performed. A level of significance α =
0.05 implies that, just by chance, the probability that one out of the 10 tests will lead to the

rejection of the null hypothesis is 1 − (1 − 0.05)10 = 40%, even if H0 is always true. This

measures the overall probability of a false positive among all overbidding tests. A standard,

but rather conservative, procedure to address this issue is the Bonferroni correction. If h tests

are performed with the same sample, the significance value α must be reduced to m = α/h.

For a series of 10 tests, the significance value after the Bonferroni correction falls to 0.005,

and the probability of obtaining at least one significant result is therefore 4.89%. A slightly

different procedure, the Sidak correction, sets m such that the probability of obtaining at least

one significant result remains equal to 5%. The Bonferroni procedure is conservative as it

assumes independence between each pair in the series of tests, which is not always the case.

The series of 10 bids elicited from the same subjects are likely correlated, so that independence

does not hold. In this case, the significance level set by the Bonferroni correction leads to an

increase in type II errors. In other words, the Bonferroni correction reduces the risk of false

positives at the cost of a greater risk of false negatives. When the correlation structure between

the tests is taken into account, the significance level lies between α and α/h. However, if the

experiment was not intended ex ante to elicit 10 bids but only to test the value of the last one,

to pick up overbidding once learning has occurred, for example, there is no reason to apply

the Bonferroni correction for this one test. Step-up procedures are more powerful than the

Bonferroni correction for multiple comparisons. These should be preferred if false negatives

are an issue. A step-up procedure ranks each hypothesis according to its p-value, and then

assigns different significance levels according to this rank. One popular step-up alternative to

the Bonferroni correction is the Holm–Bonferroni procedure. The decision rule in the Holm–

Bonferroni procedure is to not reject those hypotheses for which the rank-ordered p-value

p(k) is larger than α
h+1−k . The Westfall–Young permutation procedure combines the Holm–

Bonferroni procedure with bootstrapping to calculate the sampling distribution of the p-values.

Shaffer (1995) provides an accessible review of multiple-testing procedures. The Benjamini–

Hochberg procedure requires the expected rate of false positives to be under α. When the h

tests are independent, all hypotheses with a rank-ordered p-value p(k) under kα
h are rejected.

into account the multiplicity of hypothesis testing – Focus 7.8 describes several such

procedures.

The probability of a type II error is

β(θ ) = Pr[d0|H1] = Pr[T(Y) �∈ R|θ ∈ �1]

The statistical power of a test is the probability of making a correct decision, i.e.

of rejecting the null hypothesis when the true parameter corresponds to the alternative

hypothesis. This is defined as:

Pr[T(Y) ∈ R|θ ∈ �1] = 1 − β(θ )
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Figure 7.12 Power under different alternative hypotheses

The power is not constant and depends on which alternative hypothesis represents the

true DGP. In other words, power is not a number but a function of the real value of θ

under the alternative hypothesis. Figure 7.12 shows how the power 1 − β changes as

the value of θ under the alternative hypothesis moves. In the top panel, θ1 is close to θ0

and the probability of a false negative is high: the test has low power. In the left panel,

the value of θ1 increases and the probability of a false negative falls. The latter test has

higher power than the former.

Example: Consider a sample Y such that Yi ∼ N (θ , σ 2), and let θ̂ = Ȳ be an estimator

of θ . We want to test H0 : θ = 2 against H1 : θ > 2. The rejection region R is such

that Ȳ must be large enough to lead to decision d1. With a significance level α, the

probability of observing Ȳ in the rejection region R when H0 corresponds to the true

DGP is Pr[ Ȳ−2
σ/

√
n

> c] = α.

• The rejection region R is such that the sample value of the test statistic T(Y) = Ȳ−2
σ/

√
n

is larger than the critical value c = zα . Decision d0 is taken if the sample value of

T(Y) is lower than this critical value.

• If α = 0.05, n = 64, σ = 4 and ȳ = 3, the test statistic is T(y) = (3−2)/(4/
√

64) = 2

and the critical value is z0.05 = 1.645. The decision rule is to take decision d1 and

reject hypothesis H0. The probability of observing the sample mean under hypothesis

H0 is 0.023.

• When the alternative hypothesis is H1 : θ > 4, the power of the test is 1−Pr[ Ȳ−4
σ/

√
n

<

zα]. When the alternative hypothesis is H1 : θ > 10, the power of the test is

much larger and equals 1 − Pr[ Ȳ−10
σ/

√
n

< zα]. This illustrates that the power of the

test increases with the size of the gap between the null and alternative hypotheses.

Figure 7.12 also illustrates this point.

• Suppose that n = 6, 400 instead of n = 64 and ȳ = 2.01. In this case, the test

statistic is T(y) = (2.1 − 2)/(4/
√

6, 400) = 2 > z0.05. With very large samples, any
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Focus 7.9

Sample-size determination

In hypothesis testing, the size of the sample n is taken as given. Sample-size determination

allows the sample size to be chosen in order to achieve a size α and a power 1 − β, given the

null and alternative hypotheses. The sample size is determined by solving the following two

equations:

Size = Pr[T(Y) ∈ R|θ ∈ �0] ≤ α

Power = Pr[T(Y) ∈ R|θ ∈ �1] ≥ 1 − β

Suppose that we would like to test H0 : θ = 2 against H1 : θ = 3 with a sample from

a normally distributed population with mean θ and a sample standard deviation of 3. How

many subjects would we need to carry out a test with significance level α = 0.05 and power

1 − β = 0.90? Solving the equations yields a minimum sample size of 79 subjects required

for this test.

small difference produces statistical significance. This often leads to distinguishing

statistical significance, which is a formal result, and practical significance, in which

significance is put into perspective with the size of the sample used to obtain the

significant difference.

The probability of making a correct decision depends on four variables: the sample

size used to make the decision, the level of significance (the type I error), the rejection

region R, and the size of the gap between the null and alternative hypotheses. The ideal

test would combine a low type I error (a low rate of false positives) and a high power

(a low rate of false negatives). There is, however, a trade-off between type-I and type

II errors. As illustrated in Figure 7.12, any increase in type I error α comes at the price

of a decrease in type II error β; and any decrease in type I error results in an increase

in type II error. As a consequence, both risks cannot be minimised at the same time.

The Neyman principle solves the trade-off by arbitrarily choosing the size α. The test is

then selected based on the highest power under H1. If such a test exists, it is the most

powerful test; if the power, moreover, approaches 1 as the sample size goes to infinity,

the test is said to be consistent.

An alternative to full hypothesis testing is to calculate a p-value or significance prob-

ability. A p-value is defined as the probability of observing a test statistic that is as

extreme as the observed test statistic T(y) (e.g. T(Y) > T(y) or T(Y) < T(y), or

both), when the DGP is that in the null hypothesis. A p-value is the lowest signifi-

cance level for which the null hypothesis should be rejected. A small p-value is taken

as evidence against the null hypothesis. Focus 7.9 shows how sample size and p-values

can be related.

Significance tests should, however, be used with caution as they do not allow

researchers to state evidence in favour of the null hypothesis, and they tend to overstate

the evidence against the null hypothesis. First, a p-value does not answer the question

‘How probable is the validity of the null hypothesis, given the sample data?’ but rather
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‘How probable are the sampled data, given that the null hypothesis is true?’ The point

is illustrated by Rouder et al. (2009) using the following example. Consider a simple

one-sample t-test of whether a population mean is different from 0. If the null hypothe-

sis is false (the population mean actually is different from 0), the values of the t-statistic

increase without bound and the p-values for the t-test converge on 0 as the sample size

rises. In other words, the significance test has the desirable property of rejecting the

null hypothesis as more and more data are collected. If, however, the null hypothesis

is true (the population mean is actually 0) and the sample size is over 30, the sampling

distribution of the t-statistic can be approximated by a standard normal distribution and

all p-values are equally likely. In this case, increasing the sample size does not increase

the evidence in favour of the null hypothesis. In significance tests, a null hypothesis can

thus only be rejected or not rejected, and can never be ‘accepted’ or confirmed by the

empirical evidence. Second, the p-value is itself a random variable. For example, the

p-value is generally uniformly distributed between 0 and 1 under the null hypothesis.13

As a result, the p-value can be seen as a random draw from the unit interval if H0 is true,

while it is concentrated closer to 0 if, rather, H1 is true. A small p-value can thus result by

chance, even if computed on data produced by H1. Third, a large p-value can reflect an

insufficiently large sample or the use of an inappropriate test statistic. An alternative

way of evaluating evidence in hypothesis testing is the Bayes factor, described in

Focus 7.10.

7.3.2 Non-parametric versus Parametric Tests

Parametric tests are appropriate when the population distribution can be assumed to be

approximatively normal. This especially applies to large samples, thanks to the central

limit theorem. Parametric tests are preferred in two kinds of application. First, non-

parametric tests are well suited to nominal and ordinal scales as there are no parametric

methods for this kind of estimator. Second, they are also well suited to interval and

ratio scales when the population distribution is unspecified or cannot be approximated

by a normal distribution. Siegel (1957) suggests that the choice between parametric and

non-parametric tests should be based on three criteria:

C1: The applicability of the statistical models on which the tests are based to the

observed data. For example, most parametric tests assume that the variables are

measured on interval or ratio scales, that the observations are independent, are

drawn from a normally distributed population, and have the same variance. The

statistical models underlying non-parametric tests are, in general, less restrictive.14

With small samples, non-parametric tests are the only possible alternative, unless

some prior knowledge about the population distribution is available.

13 This applies when the alternative hypothesis is simple, the distribution is continuous and the test is of the

Neyman–Pearson type.
14 Parametric tests are not always more demanding in terms of assumptions than non-parametric tests. For

example, comparing the variances of two populations requires fewer assumptions via a Fisher test than via

its non-parametric counterpart.
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Focus 7.10

Bayes factors

Bayes factors avoid the two key criticisms against significance tests. In particular, Bayes fac-

tors produce statements about the likelihood of the null hypothesis. The principle is based

on Bayesian statistics: any prior opinion is transformed into a posterior opinion through con-

sideration of the data. In this setting, the data Y are assumed to have arisen from either one

hypothesis (H0) or the other (H1). The researcher has priors for each hypothesis Pr[H0] and

Pr[H1]. Under hypothesis H0, the probability density for observing data Y is Pr[Y|H0]. Under

hypothesis H1, it is Pr[Y|H1]. By Bayes’s theorem, the posterior probability that hypothesis

Hk, k = 1, 2 is true given data Y is

Pr[Hk|Y] = Pr[Y|Hk] × Pr[Hk]

Pr[Y]

and the ratio of the two probabilities is:

Pr[H0|Y]

Pr[H1|Y]
︸ ︷︷ ︸

posterior odds

= Pr[Y|H0]

Pr[Y|H1]
︸ ︷︷ ︸

Bayes factor

× Pr[H0]

Pr[H1]
︸ ︷︷ ︸

prior odds

In other words, the Bayes factor is the ratio of the posterior and prior odds of H0. Bayes factors

are usually interpreted using the following nomenclature:

B10 Evidence against H0

1–3 not worth more than a bare mention

3–20 substantial

20–150 strong

>150 decisive

The computation of the factor is application-specific. A number of techniques are summarised

in e.g. the review by Kass and Raftery (1995).

C2: The level of measurement, i.e. the measurement scale. Parametric tests can only be

used for interval and ratio scales. For nominal or ordinal scales, like ranks, scores

or classifications, only non-parametric tests can be used.

C3: The power efficiency of the alternative tests. Due to the strength of their assump-

tions, parametric tests are more powerful than non-parametric tests.

Table 7.5 shows how to choose among the most frequently used statistical tests,

according to the level of measurement, the assumptions about the population distribution

(if any) and the characteristics of the sample(s). Focus 7.11 shows a very general

approach to hypothesis testing with likelihood-ratio tests.

7.3.3 One-Sample Tests

This section focuses on one-sample tests that can be used to decide on the sample from

a specific population. This principle can be used to improve the informational content of
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Table 7.5 Frequently used statistical tests

Level of measurement and parametric assumptions

Interval/ratio

and normal

Ordinal or

interval/ratio

and not normal

Categorical

One sample

t-test Wilcoxon test Binomial test

z-test Sign test

Chi-square test

for the variance

Kolmogorov–

Smirnov

test

Chi-squared test

Independent samples

2-sample t-test Mann–Whitney test Fisher exact test

z-test Kolmogorov–

Smirnov test

Chi-squared test

Welch’s test

F-test Siegel–Tukey test

K-sample One-way ANOVA Kruskal-Wallis

test

Chi-squared test

Barlett’s test Levene’s test

Dependent samples

2-sample Paired t-test Matched-pairs

Wilcoxon test

McNemar test

K-sample Repeated-measure Friedman test Cochran’s Q test

ANOVA

data, by assessing whether observations are drawn in a common distribution – a typical

example is statistical tests used to detect outliers, presented in Focus 7.12. We present

three main types of one-sample test, depending on the level of measurement. If the

data are interval (or ratio) and normal, the one-sample tests are parametric.15 If the

data are ordinal or interval but not normally distributed, the one-sample tests are non-

parametric. Last, we present one-sample tests when the data are categorical. In what

follows, the sample variables Yi are supposed to have been independently and identically

drawn from the same population distribution. Unless specified otherwise, the hypothesis

has the form: H0 : θ = θ0 vs. H1 : θ �= θ0.

Interval and Normal Variables

The value of the mean: t-test and z-test

One of the simplest hypothesis tests is the one-sample t-test. This can be used to test if

a particular sample of participants in an experiment is similar or differs from a bench-

mark. In economics, benchmarks are either set to predetermined theoretical values or

based on stylised facts. The estimator of the mean is θ̂ = Ȳ and the test statistic is

15 For the sake of simplicity, we refer to the ratio and interval levels of measurement as ‘interval’ in

the following. The data are supposed to be drawn from continuous and strictly increasing population

distributions.
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Focus 7.11

The likelihood-ratio test

Likelihood-ratio tests provide a very general approach to hypothesis testing. The logic of the

test is the following. Suppose that the data (y1, . . . , yn) are generated by a probability-density

function g(yi|θ ) with parameter θ . The likelihood of the random sample Y for a given param-

eter value θ is L(θ ) =
∏n

i=1 g(yi|θ ). Suppose the hypothesis test has the form H0 : θ = θ0

vs. H1 : θ �= θ0. Under the null hypothesis H0, the value of the likelihood at θ = θ0 is

expected to be relatively large. To judge whether this likelihood value is large, we need a ref-

erence point. This reference point is the maximum value of the likelihood, attained at value

θ̂mle: L(θ̂mle) = maxθ L(θ ). As the latter is the maximum likelihood, it is always greater than

or equal to the likelihood L(θ0) evaluated at the base hypothesis. The likelihood-ratio test

compares these two likelihood values using their ratio: Lr = L(θ0)

L(θ̂mle)
. The likelihood ratio

is between 0 and 1. If the likelihood ratio is small, there is a large discrepancy between the

parameter that actually maximises the likelihood and θ0 – which leads to doubting the validity

of the base hypothesis. Under regularity conditions and under H0, the large sample distribution

of −2 log Lr is chi-squared. The degrees of freedom are the number of restrictions imposed in

the base hypothesis (in our example, the degree of freedom is one). The likelihood-ratio test

cannot be used to compare two simple hypotheses (e.g. H0 : θ = θ0 vs. H1 : θ = θ1) as

in this case the degree of freedom of the chi-squared distribution is 0 and the test statistic is

undefined. Note that using the chi-squared distribution as the limiting distribution of −2 log Lr

hinges critically on the regularity conditions for the density function g(yi|θ ). These regularity

conditions are set out in, e.g., Wooldridge (2002) and Davidson and MacKinnon (2004). The

figure below illustrates the logic of the likelihood-ratio test.

LL(θ)

θ

LL(θ0)

θ0 θ̂

(−) log
likelihood ratio

θL θU

χ2
1−α

(ν)

2

Confidence interval

LL(θmle)ˆ
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The curve depicts the logarithm of L(θ ) for different values of θ . The maximum value of the log

likelihood LL(θ ) is attained at θ = θ̂mle. The logarithm of the likelihood ratio corresponds to

the distance between the maximum value of the log likelihood, LL(θ̂mle), and the log likelihood

evaluated at θ0, LL(θ0). The figure also shows how to construct a confidence interval for a

(log) likelihood ratio. For a given value of the chi-squared statistic χ2
1−α

(ν) with ν degrees

of freedom, corresponding to the number of restrictions under H0, the log likelihood curve

defines two bounds θL and θU such that the distance between the maximum log likelihood and

the log-likelihood evaluated at H0 is no greater than one-half of this chi-squared value (noting

that the large-sample distribution of −2 log Lr is chi-squared).

T(Y) = Ȳ−θ

S/
√

n
. For a sample of variables Yi, normally distributed with unknown vari-

ance σ 2, the sampling distribution of the test statistic under the null hypothesis is a

t-distribution with n − 1 degrees of freedom: Ȳ−θ0

S/
√

n
∼ St(n − 1), and the rejection region

is such that:

cl = −t α
2

and cu = t α
2

:

with the t-score having n − 1 degrees of freedom. In the one-sided test, the rejection

region is such that c = tα (for H1 : θ > θ0) or c = −tα (for H1 : θ < θ0). If the variance

σ 2 is known, the critical value T(Y) is replaced by the corresponding z-score, and the

sample variance S2 is replaced by σ 2. In this case, the test is called a z-test. When the

sample size is very large, the z-test and the t-test are asymptotically equivalent.

Example: Consider an experiment in which 54 participants bid in second-price auctions.

The expected payoff in the auction is $10 for rational bidders. The data can be used to

answer the question ‘Due to overbidding, is the observed average payoff significantly

lower than expected?’, by testing the following hypotheses:
{

H0 : The average payoff corresponds to rational behaviour, θ = 10;

H1 : The average payoff is lower than under rational behaviour, θ < 10.

Under the assumption that the sample distribution is approximatively normal, the t-test

provides a statistical answer to this question. Suppose the sample mean is ȳ = 8.89

and the sample standard deviation is s = 2.76. The test statistic is T(Y) = ȳ−θ0

s/
√

n
=

8.89−10

2.76/
√

54
= −2.96 and the sampling distribution is Ȳ−θ0

S/
√

n
∼ St(53). The critical value at

α = 0.05 is c = t0.025 = −2.006 for a t-score with 53 degrees of freedom. According to

the decision rule, the hypothesis H0 is rejected and the mean observed payoffs are not

consistent with rational behaviour.

The value of the variance: Chi-squared test for the variance

This test can be used to assess if the dispersion in a particular sample of partici-

pants differs from some given level. The estimator of the unknown variance θ2 is the

sample variance S2 =
∑

i(Yi−Ȳ)2

n−1 and the test statistic is T(Y) = (n−1)S2

θ2 . The sampling

distribution under the null hypothesis is (n−1)S2

θ2
0

∼ χ2(n − 1). The rejection region is

cl = χ2
n−1,1− α

2
and cu = χ2

n−1, α
2
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Focus 7.12

Testing for outliers

A number of parametric tests can be used to detect outliers. They all assume that the underlying

sample (minus any outlier) is normally distributed. The Dixon test is used to detect a single

outlier in a set of observations drawn from a normal distribution when the sample size is over

three and under 25. The null hypothesis is that there is no outlier. The test statistic is based

on a rank-ordering of observations Y(1) ≤ . . . ≤ Y(n). The test statistic T(Y) is equal to the

difference between the suspect value and its nearest neighbour (for n ≤ 10) or its second-

nearest neighbour (for 11 ≤ n ≤ 25), divided by the range of the observations. The following

table shows the value of the test statistic depending on the number of observations and the

position of the possible outlier:

Sample size High outlier Y(n) Low outlier Y(1)

3 ≤ n ≤ 7
Y(n)−Y(n−1)

Y(n)−Y(1)

Y(2)−Y(1)
Y(n)−Y(1)

8 ≤ n ≤ 10
Y(n)−Y(n−1)

Y(n)−Y(2)

Y(2)−Y(1)
Y(n−1)−Y(1)

11 ≤ n ≤ 13
Y(n)−Y(n−2)

Y(n)−Y(2)

Y(3)−Y(1)
Y(n−1)−Y(1)

14 ≤ n ≤ 25
Y(n)−Y(n−2)

Y(n)−Y(3)

Y(3)−Y(1)
Y(n−2)−Y(1)

The sample value of the test statistic is compared to a critical value. The requirements of the

two underlying assumptions (a normal distribution and small sample size) show that the Dixon

test should be used with caution. Moreover, masking can occur if there is more than one outlier

in the data. In this case, one outlier masks another as the distance between the two outliers (e.g.

the distance between Y(n) and Y(n−1)) is not sufficient to indicate a significant difference. The

Grubb test is an alternative for the detection of a single outlier in a set of observations. The

test statistic is the largest standardised absolute deviation from the sample mean. The test

statistic is T(Y) = max|Yi−Ȳ|
S and the rejection region is such that T(Y|H0) > c, with:

c = n − 1

n

√
√
√
√

(tα/(2n))
2

n − 2 + (tα/(2n))
2

where t is the t-score with n − 2 degrees of freedom. Both the Dixon and Grubb tests detect

single outliers. If more than one outlier is suspected, multiple-testing issues and ‘masking’

can arise. For large sample sizes (n > 20) and a normal population distribution, the Ros-

ner test allows the detection of up to 10 outliers in a sample. The test assumes that the

outliers come from a different distribution from the normal population distribution. For h

outliers to be detected, the test uses an iterative series of r sub-tests. First, the observation

Y(0) that is furthest from the sample mean is identified and used to calculate the test statistic

T(Y(0)) = |Y(0)−Ȳ|
S . Then observation Y(0) is deleted from the sample, and the new values of

the sample mean Ȳ(1) and standard deviation S(1) are calculated. Again, the observation Y(1)

furthest from the sample mean Ȳ(1) is identified, and the test statistic T[Y(1)] = |Y(1)−Ȳ(1)|
S(1)

is calculated. Observation Y(1) is then removed and a new test statistic T[Y(2)] is calculated.
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The process continues until h outliers have been removed from the data. If the test statistic

T[Y(h−1)] is over the critical value, then h outliers are detected; if it is under the critical

value, then the next test statistic T[Y(h−2)] is used to test for h − 1 outliers. The procedure

continues until a certain number of outliers have been detected. If none of the test statistics are

significant, the null hypothesis of the absence of outliers in the data cannot be rejected. While

the Rosner test is immune to ‘masking’, it is not immune to ‘swamping’, where the test detects

a block of outliers of which only a certain number are actual outliers.

With a one-sided test, the lower rejection region is c = χ2
n−1,1−α and the upper rejection

region is c = χ2
n−1,α . If the mean of the population distribution μ is known, the critical

values are taken from a chi-squared distribution with n degrees of freedom.

Example: Consider again the above-mentioned experiment on second-price auctions.

Based on the available evidence the payoff distribution is expected to have a standard

deviation of 1$. The hypotheses associated with the question ‘Is the observed payoff

dispersion greater than this?’ are:
{

H0 : The standard deviation is θ = 1;

H1 : The standard deviation is larger, θ > 1.

The chi-squared test allows us to answer this question. The sample standard deviation

is s = 2.7. The test statistic is T(Y) = (n−1)s2

θ2
0

= (54−1)∗(2.7)2

12 ≃ 402.8. The sampling

distribution is (n−1)S2

θ2
0

∼ χ2(53). The critical value at α = 0.05 is c = χ2
53,0.95 ≃ 71.

According to the decision rule, hypothesis H0 is rejected and the dispersion inferred

from the observed payoffs is greater than the benchmark value of 1.

Interval and Ordinal Variables

Non-parametric tests can be used when the data are measured on an ordinal scale, or

are interval variables for which normality cannot be assumed. The main one-sample

non-parametric test applies to the median. One advantage of the median as the cen-

tral tendency parameter of a distribution is that it always exists, which is not the

case for the mean. As discussed in Section 7.1.4, the median is also a more robust

estimate of the central tendency. The median is not, however, the only quantile for

which non-parametric tests can be carried out. Gibbons (2011) sets out the procedures

for hypothesis tests regarding any specified quantile. When the data are measured on

the interval scale, the observed sample y = (y1, . . . , yn) is supposed to be drawn,

independently and identically, from a continuous and strictly increasing population

distribution.

Sign test

The sign test refers to the value of an unknown median θ of the population. The logic

behind the sign test is to dichotomise the sample observations: one part below the

median and the other above. The test statistic is based on counts, i.e. on the number of

plus/minus signs among the n differences Yi−θ , i = 1, . . . , n. The test statistic is defined
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as the max between T+ and T−, where T+ is the number of observations above θ and

T− the number below θ . The sampling distribution of T(Y) under the null hypothesis is

a binomial distribution B(n, 0.5). The rejection region is such that:

cl is the largest integer such that
∑cl

k=0

(n
k

)

0.5n ≤ α
2

cu is the smallest integer such that
∑n

k=cu

(n
k

)

0.5n ≤ α
2

Example: In the above-mentioned experiment on second-price auctions, imagine you no

longer want to assume that the population distribution is approximatively normal. You

expect the median payoff to be $10, the figure expected for a rational individual, and

test the hypotheses:
{

H0 : The average payoff corresponds to rational behaviour, θ = 10;

H1 : The average payoff is lower than under rational behaviour, θ < 10.

The sign test can be applied to answer the question. Say the statistic is 31. The critical

values at α = 0.05 are cl = 20 and cu = 32. According to the decision rule, the

hypothesis H0 is not rejected and the median observed payoff is consistent with rational

behaviour.

Zero differences between Yi and θ0 are usually ignored and the sample size is reduced

accordingly.16 For a one-sided test, the test statistic is either T+, the number of observa-

tions greater than θ (if H1 = θ > θ0), or T−, the number of observations less than θ (if

H1 = θ < θ0). The sign test is a special case of the binomial test where the probability

of success under the null hypothesis is p = 1/2. For n > 25 a normal approximation can

be used. As the normal approximation works very well for binomial distributions with

parameter one-half, this approximation is fairly robust to small samples. In this case, the

test statistic is T(Y)−0.5×n
0.5

√
n

and the critical values are the usual z-scores.

Wilcoxon test

The Wilcoxon test is the main non-parametric test regarding the value of an unknown

median θ in the population. The test is more powerful than the sign test. As is usual in

hypothesis testing, increased power comes at the price of additional assumptions. The

Wilcoxon test assumes that the population distribution is symmetric around θ . As such,

the median equals the mean and inference about one of the two also holds for the other.

The Wilcoxon test is often called the Wilcoxon signed-rank test, as the test statistic com-

bines the ranks of differences and their signs. The test statistic is based on the ranking

of absolute differences |�i| = |Yi − θ |, ranked from the smallest to the largest. The rank

assigned to a given difference �i is denoted r(�i). The test statistic is the expected value

of the sum of the ranks for positive (T+) and negative (T−) differences �i = Yi − θ , as

follows:

T+ =
∑

i

Zir(|�i|) and T− =
∑

i

(1 − Zi)r(|�i|)

with Zi = 1 if �i > 0 and zero otherwise, and where r(�i) is the rank of absolute

differences |�i| ranked from the smallest to the largest. Under H0, symmetry implies

16 There are alternative approaches, e.g. to treat half the zeros as pluses and the other half as minuses, to

assign a sign at random to zeros, and to assign to all of the zeros the sign which is most in favour of H0.
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that T+ = T− and the sampling distribution of T+ is Pr[T+ = h] = u(h)/2n, where

u(h) is the number of possible ways of assigning plus and minus signs to the first n

integers such that the sum of the positive integers equals h. The rejection region is

R > c or R < c, with c such that Pr[T+ > c|H0] = α

For a sample size n > 20 a normal approximation can be used. In this case, the test

statistic is 4T+−n(n+1)√
2n(n+1)(2n+1)/3

and the critical values are the corresponding z-scores.

Example: In the above-mentioned experiment on second-price auctions, the Wilcoxon

test allows us to test the hypotheses that payoffs match those of rational players if

the population distribution is no longer assumed to be normally distributed, but is

nevertheless assumed to be symmetric.
{

H0 : The average payoff corresponds to rational behaviour, θ = 10;

H1 : The average payoff is lower than under rational behaviour, θ < 10.

The test statistic is 341.5, with a p-value equal to 0.007. According to the decision rule,

the hypothesis H0 is rejected and the median observed payoff is not consistent with

rational behaviour.

The Wilcoxon test is a special case of the more general class of rank-order statis-

tics. For a sample of observations y = (y1, . . . , yn), a rank-order statistic r(y) =
[r(y1), . . . , r(yn)] is any function such that r(yi) ≤ r(yj) when yi ≤ yj. The continuity

assumption made for the population distribution is important as it implies (theoretically)

that the probability of two observations with identical values is 0, as such a sample with

n observations generates n ranks. This raises a practical difficulty when there is a dif-

ference of 0 (when observations Yi are equal to θ0), which contradicts continuity. One

solution is to ignore the 0 difference and reduce the sample size accordingly. With more

than one 0 difference, another possibility is to correct for these ties by assigning each

0 the average of the ranks they would have if they were ranked as plus or minus dif-

ferences. Gibbons (2011) discusses a number of alternative methods to correct for ties.

Even so, data with numerous ties remain problematic with the Wilcoxon test.

One criticism of the Wilcoxon test is that the null hypothesis is in fact composite, as

it assumes that the distribution is symmetric and has median θ0. If the null hypothesis

is rejected, then either the distribution is not symmetric, or it is symmetric but has a

median different from θ0.

Kolmogorov–Smirnov test

The Kolmogorov–Smirnov test is a test of the goodness of fit. Compared to the Wilcoxon

test, the Kolmogorov–Smirnov test focuses on the shape of the distribution and not

only on its location. The Kolmogorov–Smirnov test compares the counts of a uni-

variate variable with the expected counts from the assumed continuous distribution.

The test statistic is based on the differences between the empirical distribution func-

tion of the sample Go (i.e. the proportion of sample observations that are less than or

equal to a value a, for all a) and an assumed cumulative distribution function Ge. The

Kolmogorov–Smirnov test is formalised by setting up the hypothesis in terms of the

equality of distributions:
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H0 : Go(Yi) = Ge(Yi), ∀i vs. H1 : Go(Yi) �= Ge(Yi) for some i

The test statistic compares the two cumulative distribution functions (the empirical and

the assumed) and focuses on the point of maximum difference between the two dis-

tributions. This is defined as T(Y) = supy|Go(y) − Ge(y)|. If the sample comes from

the theoretical distribution, the test statistic tends to a maximum difference of 0 as the

sample size rises. If, on the contrary, the two distributions do not overlap, the maximum

difference is 1. Under H0, the sampling distribution of T(Y) is independent of Ge. As

the description of the sampling distribution is tedious, we do not present it here. The

rejection region is R > c such that Pr[T(Y) > c|H0] = α.

The theoretical properties of the Kolmogorov–Smirnov test are only valid when Ge

is assumed to be continuous. In practice, the test can be extended to discrete distribu-

tions. The Kolmogorov–Smirnov test requires a relatively large sample size in order

to mimic a continuous distribution and reject the null hypothesis.17 When Ge is a

normal distribution with unspecified parameters, the test becomes the Lilliefors test.

Focus 7.13 contains more specialised tests for normality and Focus 7.14 presents a test

for randomness.

Example: Consider the test of the normality of the population distribution of payoffs, L,

in the above-mentioned experiment on second-price auctions,
{

H0 : The payoffs are normally distributed, L ≡ N (10, 2);

H1 : The payoffs are not normally distributed, L �= N (10, 2).

Such hypotheses can be tested using a Kolmogorov–Smirnov test. The sample value

of the test statistic is 0.2647, with a p-value of 0.001. According to the decision rule,

hypothesis H0 is rejected and the payoffs are not normally distributed N (10, 2).

Categorical Variables

Binomial test

When there are only two categories, the binomial test is the first way of comparing

the observed distribution Go to an expected distribution Ge. The sample consists of

categorical variables Yi = {0, 1} in unknown proportions 1 − θ and θ . The estimator

is the sample frequency θ̂ = ȳ and the test statistic is the number of successes in the

Bernoulli trials T(Y) =
∑

i Yi. Under the null hypothesis, the test statistic follows a

binomial distribution B(n, θ0) and the rejection region is such that:

cl is the largest integer such that
∑cl

i=0

(n
i

)

θ i
0(1 − θ0)n−i ≤ α

2

cu is the smallest integer such that
∑n

i=cu

(n
i

)

θ i
0(1 − θ0)n−i ≤ α

2

Example: Consider an experiment in which 19 participants over 54 are female. You want

to answer the question, ‘Is the observed proportion of 19/54 significantly lower than the

figure that would be expected?’, i.e. is the subject pool random as regards gender:
{

H0 : The proportion of female participants is θ = 0.5;

H1 : The proportion of female participants is θ < 0.5.

17 If the sample size is too small, not enough points are used to construct a satisfactory empirical distribution

function.



274 How? Laboratory Experimentsin Practice

 

Focus 7.13

Goodness-of-fit tests and the normality hypothesis

Goodness-of-fit tests provide inference about the form ofthe population from which the sam-

ple was drawn, for instance whether or not the population distribution is normal. As most of

the parametric tests assume normality, suchtests are particularly useful in deciding whether to

use parametric or non-parametric tests. A goodness-of-fit test of normality is defined as:

Ho: The data come from drawsin a normally distributed population;

H,: The data donot come from drawsin a normally distributed population

Tf the null hypothesis refers to a discrete distribution, the goodness-of-fit test is chi-squared,

as described in the main text. The test statistic is the sum of squares of the gaps between

the observed and expected frequencies in each of the K classes of the discrete distribution,

normalised by the expected frequency. Thestatistic is distributed approximately chi-squared

with K — | degreesof freedom.If the null hypothesis rather refers to a continuous hypothesis,

oneofthe followingtests can be applied.

e The Kolmogoroy-Smirnoytest is described for ordinal data in the main text, and can be

usedto test for goodnessoffit with a given cumulative distribution function. Thetest statis-

tic is based on the differences between the empirical distribution function of the sample Go

(i.e. the proportion of sample observationsthat are less than or equalto a value a,for all a)

and the assumed cumulative distribution function Ge.It is supg|Go(a) — Ge(a)|.

e The Lilliefors test is for the assumption of normality with unspecified parameters, which

makes it suitable to test general assumptions about normality. The test is based on the

Kolmogorov—Smirnovstatistic. The assumed cumulative distribution function is the normal

distribution of the mean equal to the sample mean Y andvariance equal to the sample

variance(i.e. the unbiased estimatorof the variance). The Lilliefors test is less conservative

than the Kolmogorov—Smirnovtest (Gibbons, 2011).

e The Anderson—-Darling test is another modification of the Kolmogorov—Smirnovtestthat

assigns more weightto the tails of the distribution. The test is more sensitive than the

Kolmogorov—Smirnovtest.
+ . . an " aly, 2

e The Shapiro—Wilktest statistic is T(Y) = Sister. where the Ye are the ordered
iim Pe

sample values from k = 1...,n and the a, are constants generated from the expected

values and covariance matrix of the orderstatistics of a sample of size n from a normal

distribution.

Razali and Wah (2011) compare the power ofthese four tests of normality via Monte Carlo

simulation of sample data generated from alternative distributions that follow symmetric

and asymmetric distributions. Results show that the Shapiro—Wilktest is the most powerful

normality test, followed by the Anderson—Darlingtest, the Lilliefors test and the Kolmogorov—

Smirnovtest. Normality tests remain difficult to use for a couple ofreasons. First, for small

samples, normality tests usually have small power (Razali and Wah, 2011). Second,for large

sample sizes, i.e. when the tests are supposed to have enough power, basic parametric tests

(t-test or ANOVA)are quite robust to non-normality.   
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Focus 7.14

Testing for randomness:the run test

Theruntest offers a simple procedure to decide if the observeddata are in random order. The

observed sample y = (yj,...,)n) correspondsto the order in which the data were obtained.

The two hypothesesare simply:

Ho: The data comein random order;

Hy: The data do not comein randomorder.

Thetest is based on the comparison between the numberofrunsof consecutive values and the

median (or, more generally, a given threshold) of the observed data. This comparison yields

a binary variable depending on whethera given valueis over (n,) or below (n;) the median.

A ‘run’is defined as a groupofsuccessive identical values in a list, which will be evaluated

using this binary variable. The alternative hypothesis is two-tailed as there is no particular

reason to think that any departure from randomness will produce too many or two few runs.

In other words, a two-tailed alternative hypothesis tests for both trend and cyclical effects.

In a runtest, the test statistic is the numberof observed runsusing this binary variable. The

distribution of the run statistic has the probability distribution:

 

1

 

Wait r \
(nai2ag ) if T(y) is even

Pr[T(¥) = T(y)] = mut n=
(arg) (arg)a+rarg) bp)

aRT

 

if T(y) is odd

The exactrun test can be tediousto calculate. If n, and n; are both over 10, then the sample is

consideredto be large andthe distribution ofthe test statistic T(Y) is approximately normal,

T(Y) ~ N(u,07) where:

2nyry 41 sando? = 2nyny(2nyn] — Ny — nN)

ty +H © (ny + mpP?(ry + 4 = VY)
Example: Consider the sample:

y=(15, 16, 23, 12,7, 14, 13, 13, 12,9, 18,5, 7,9, 10, 12, 12, 11, 14, 15, 16, 13, 12,9, 17)

andlet h denote values above the median (which is 12.5) and | values belowthe median; we

obtain a series with T(y) = 9 runs:

(hyhyAyh, 11, hyhyh, 11, hALLLAhhh, Ll, hh)
BAS ee eS

Tn run orun- run run run run run run

 

The exactt-test p-value is 0.045 and the null hypothesis of randomness is rejected. Assuming

thatthe test statistic is normally distributed, with 4 = 14 and o? = 6.24, produces the same

p-value.

The runtest is the classic test of randomness. A one-tailed run test can be used to test for

the presence ofa trendin the data. A simple alternative to the runtest is the sign test, which

is based on the sign ofthe differences between two consecutive values in the sample. Other

alternatives have been developed to deal with trends. These include the Mann—Kendalltest,

which is based on a Kendall’s t correlation test between time and the observed data, and

Bartel’s rank test that is based on the sum ofsquaresof the differences in ranks of successive

elements. Gibbons (2011) describes these alternatives at length.   
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The binomial test provides a statistical answer to this question. The exact binomial p-

value for the test is Pr[T(Y) ≥ 19|n = 54, θ = 0.5] =
∑54

i=19

(54
i

)

0.5i0.554−i = 0.02.

The decision rule leads to the rejection of the null hypothesis and the conclusion that

the distribution is biased towards males.

For large enough n, a normal approximation can be used. If the sample variance is

measured by the hypothesised proportion under the null hypothesis, θ0, the test statistic

T(Y) =
θ̂ − θ0 − 1

2n√
θ0(1 − θ0)/n

is called the ‘score-test statistic’. The quantity − 1
2n is used as a continuity correction. If

the sample variance is, rather, measured by the estimator of the proportion, θ̂ , the test

statistic

T(Y) =
θ̂ − θ0 − 1

2n
√

θ̂ (1 − θ̂)/n

is called the ‘Wald test statistic’. Both statistics are distributed normally. The score test

performs better than the Wald test and is usually the preferred approximation to the

binomial test.

Multinomial test

When there are more than two categories, the binomial test can be extended to a multi-

nomial test. The null hypothesis is that all categories are equal to the specified values.

The sample variables Yi correspond to the categories. The test statistic is the number of

times each category occurs in the sample and its sampling distribution is a multinomial

distribution. As the calculation of multinomial probabilities can be tedious, this test is

often approximated by a chi-squared test.

Example: Consider an experiment in which 200 participants choose between three alter-

natives: A, B and C. A total of 53 participants choose A, 112 choose B and the remaining

35 choose C. According to a theory, let’s say the proportion of choices of alterna-

tive A should be 1/4, those of B 1/2 and those of C 1/4. Answering the question ‘Are

the observed proportions (53/200, 112/200, 35/200) significantly different from what

would be expected?’ amounts to the test:
{

H0 : The proportions are θA = 1
4 , θB = 1

2 , θC = 1
4 ;

H1 : The proportions are different from θA = 1
4 , θB = 1

2 , θC = 1
4 .

The multinomial test allows us to decide between these hypotheses. The exact binomial

p-value for the test is 0.04. For comparison purposes, a likelihood-ratio test produces a

p-value of 0.037 and the standard chi-squared test a p-value of 0.047.

Chi-squared goodness-of-fit test

For large enough samples, a popular alternative to the binomial and multinomial tests is

the chi-squared test. This test owes its popularity to the fact that it quickly approaches

its asymptotic distribution. The chi-squared test is a goodness-of-fit test between the
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observed distribution Go and a theoretical (or expected) distribution Ge. The variables

are categorical, and grouped into K mutually exclusive numerical classes k = 1, . . . , K.

The test hypothesis is

H0 : Go(Yi) = Ge(Yi), ∀i vs. H1 : Go(Yi) �= Ge(Yi) for some i

The test statistic is

T(Y) =
K
∑

k

(ȳo
k − ȳe

k)2

ȳe
k

where ȳo
k and ȳe

k are the observed and expected frequencies for the kth class. Under the

null hypothesis and for large samples, the test statistic T(Y) is distributed chi-squared

with K − 1 degrees of freedom. The rejection region is such that T(Y|H0) > c, with:

c = χ2
α .

With only two categories, the theoretical number of observations is simply n × θ0,

where θ0 is the assumed proportion of the relevant event under the null hypothesis. As

the chi-squared test is a goodness-of-fit test, it can be used to test more general distri-

butions than the binomial and multinomial distributions. If the theoretical distribution

contains m parameters to be estimated, the number of degrees of freedom has to be

reduced accordingly to K − 1 − m. The large-sample approximation of the test statistic

can be used as long as every expected frequency ȳe
k is larger than 5.18

Example: Based on the example described above for the binomial test, the sample chi-

squared statistic is T(y) = (19−54×0.5)2

54×0.5 + (19−54×0.5)2

54×0.5 = 4.74. Based on a 5% type I

error, the rejection threshold is c = 3.84. As the sample statistic is inside the rejection

region, we can reject the null hypothesis. The p-value is Pr[T(Y) > T(y)] = 0.029.

7.3.4 Independent Sample Tests

In this subsection, we focus on hypothesis tests based on mutually independent ran-

dom samples. These tests are useful for the comparison of treatments based on different

samples. The samples are supposed to be randomly drawn independently of each other.

Independence is assumed here not only within-sample but also between-sample. More

formally, denote y1 = (y1
1, . . . , y1

n1
) and y2 = (y2

1, . . . , y2
n2

), the two samples of obser-

vations, drawn independently. Each yk
i (k = 1, 2) is assumed to result from a draw of

a random variable Yk
i . Elements of each sample are independent draws from the same

population distribution: F1 for Y1
i and F2 for Y2

i .

Interval and Normal Variables

Difference between two means

There are different ways to test the difference between the means θ1 and θ2 for approx-

imatively normally distributed variables, depending on the assumptions made about the

18 If the expected frequencies are less than 5, the usual procedure is to regroup adjacent groups until the

expected frequency is greater than 5. Lower, less conservative thresholds for the minimum expected

frequency, e.g. 2 to 5, can also be used.
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variances in the populations. If the two population variances are unknown, but assumed

to be the same, the test is a t-test (with pooled variance). If the population variances

are unknown, but assumed to be different, the test is a Welch test, with each variance

estimated separately. If the variances are rather assumed to be known, the appropriate

test is a z-test. In all three cases, the hypotheses are:

H0 : θ1 = θ2 versus H1 : θ1 �= θ2

For the t-test, the estimator of the difference between the means is Ȳ1 − Ȳ2 and the test

statistic writes:

T(Y1, Y2) = (Ȳ1 − Ȳ2) − (θ1 − θ2)

Sp

√
(1/n1) + (1/n2)

, with S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

The sampling distribution under the null hypothesis,

T(Y1, Y2|H0) = Ȳ1 − Ȳ2

Sp

√
(1/n1) + (1/n2)

has a t-distribution with (n1 + n1 − 2) degrees of freedom. The rejection region is such

that cl = −t α
2

and cu = t α
2

, where t is the t-score with n1 +n2 −2 degrees of freedom. If

the variance σ 2 is known, the test is a z-test with common variance. The critical values

of the test statistic are replaced by the corresponding z-scores, and the estimator of the

pooled variance S2
p is replaced by σ 2.

In these tests, the alternative hypothesis H1 can be interpreted in terms of location

and stochastic dominance. The alternative hypothesis assumes that the populations are

of the same shape, but with a different measure of central tendency. This corresponds to

a test of location and allows stochastic dominance to be tested. For example, a one-sided

test H1 = θ1 > θ2 tests if the Y1
i s are stochastically larger than the Y2

i s.

If the variances of the two population distributions are not supposed to be equal, the

difference between two means is tested via a Welch’s two-sample t-test. In this case, the

test statistic is

T(Y1, Y2) = (Ȳ1 − Ȳ2) − (θ1 − θ2)
√

S2
1

n1
+ S2

2
n2

Under the null hypothesis, this test statistic has a t-distribution with degrees of freedom

equal to

(

s2
1

n1
+

s2
2

n2

)2

/

⎛

⎜
⎜
⎜
⎝

(

s2
1

n1

)2

n1 − 1
+

(

s2
2

n2

)2

n2 − 1

⎞

⎟
⎟
⎟
⎠

If the variances σ 2
X and σ 2

Y are known, the test of the difference between two means is a

z-test. The critical values of the test statistic are calculated accordingly and the estimated

variances S1 and S2 are replaced by the known variances σ 2
1 and σ 2

2 . The Welch test has

less power than the t-test as fewer data are used to estimate the variances.
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Example: Consider that two experimental sessions from second-price auction experi-

ment have been run in two different universities, and that 54 people participated in the

first session while there were 65 participants in the second session. You suppose that

both population distributions are approximatively normal. A two-sample test allows us

to test whether the payoffs were drawn from populations with the same mean. Suppose

the sample means are ȳ1 = 8.89 and ȳ2 = 8.24, and the sample standard deviations

are s1 = 2.76 and s2 = 3.38. The test statistic is 1.135 for the two-sample t-test and

1.156 for the two-sample Welch test. In both cases, the critical value at α = 0.05 is

t0.025 = 1.98 for a t-score with 117 degrees of freedom. According to the decision rule,

hypothesis H0 is not rejected and the mean observed payoffs are the same between

sessions.

The ratio between two variances: the F-test

The F-test is the dispersion version of the two-sample comparison of means. The F-test

assesses whether one population varies more than another. The statistic is the ratio of

the sample variances,
S2

1

S2
2

. The sampling distribution under the null hypothesis is a Fisher

distribution Fn1−1,n2−1. The rejection region is such that:

cl < Fn1−1,n2−1,1− α
2

or cu = Fn1−1,n2−1, α
2

The F-test is not robust to departures from normality. If non-normality is suspected, non-

parametric tests are preferred as rejection of the null hypothesis may well correspond

to a rejection of normality. One advantage of the F-test is that it does not require any

assumption about the mean of the normal populations, which is not the case for the other

parametric tests, such as the t-test. If the population means are assumed to be equal, the

alternative hypothesis in the F-test can be interpreted in terms of scale and second-

order stochastic dominance. Under this assumption, the hypothesis H1 assumes that the

populations are of the same shape, but with a different measure of dispersion. This tests

for second-order stochastic dominance, and in particular for mean-preserving spreads.

For example, a one-sided test H1 = θ2
1 > θ2

2 tests whether the population distribution

of the Y1
i s is a mean-preserving spread of that of the Y2

i s.

The F-test is based on an estimator of the ratio of the sample variances. A Wald test

can be constructed to test the differences between the variances instead of testing their

ratio. In this case, the Wald test statistic is

T(Y1, Y2) =
(S2

1 − S2
2)2

2S4
1

n1+1 + 2S4
2

n2+1

and is (asymptotically) chi-squared distributed with one degree of freedom. The F-test

and the Wald test for the difference between variances are equivalent.

Difference between K means: one-way ANOVA

The comparison of the means of two normally distributed populations performed by

the t-test can be extended to the comparison of the means of K normally distributed

populations with the same variances. Pairwise comparisons cannot be used with K >
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Table 7.6 The ANOVA decomposition

Source of variation d.f. Sum of squares Mean squares F

Group K − 1 SSbetween S2
between

S2
between

S2
within

Error n − K SSwithin S2
within

Total n − 1 SStotal

2 treatments as the comparisons are not independent of each other. The logic of the

analysis of variance (ANOVA) is to test a single hypothesis of equality between the

K means, for independent draws from a normal distribution with common unknown

variance σ 2. The hypothesis under investigation is

H0 : θ1 = θ2 = . . . = θK vs. H1 : the means are different for some i, j, i �= j.

If H0 is rejected, then additional inference is required to identify the source of the rejec-

tion. The ANOVA is based on a comparison of the means and variances in the different

samples. If the variation in the sample means is large relative to the variance within

samples, then the observations suggest the rejection of the null hypothesis. Formally,

the total dispersion (the sum of the squares of the gaps between the observed values and

overall mean) SStotal is decomposed into two components:

SStotal = SSwithin + SSbetween

The first, SSwithin, is the sum of squares of the gaps between the observed values Yk
i

and their sample group means (Ȳk =
∑

i Yi

nk
). The second, SSbetween, is the weighted sum

of squares of the gaps between the sample group means and the overall mean, with the

weights being the number of observations in each sample nk. The ratio of SSbetween to the

total sum of squares SStotal is the coefficient of determination (the ‘R-squared’ value).

The estimate of the sample variance within each group is SSwithin divided by n−K, with

n =
∑

k nk. The estimate of the sample variance within each group is SSbetween divided

by K − 1. In the analysis of variance, these estimates of the sample variance are also

called the mean sum of squares, defined as:

S2
within =

∑

k

∑

i(Y
k
i − Ȳk)2

n − K
, S2

between =
∑

k nk(Ȳk − ¯̄Y)2

K − 1

The test statistic is the ratio S2
between/S2

within, and its sampling distribution under the null

hypothesis is a Fisher distribution FK−1,n−K . The rejection region is S2
between/S2

within > c,

with c such that c = FK−1,n−K,α . If the null hypothesis is not rejected, then ¯̄Y is

an estimate of the mean and s2
within is a sample estimate of the (hypothesised) com-

mon variance. The sample variance S2
between is sometimes referred to as the sampling

error, whereas the sample variance S2
within is sometimes called the mean squared error,

the experimental error or the pooled estimate of the variance. Table 7.6 shows the

decomposition of the components of the ANOVA test.
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If the null hypothesis is rejected, the question arises as to which group of means

is behind the rejection of the null hypothesis. Multiple-comparison, or post hoc, pro-

cedures systematically compare pairs of means to establish the cause of the rejection

of the null hypothesis. One intuitive procedure is the least-significant difference. This

procedure is based on the calculation of the smallest significant difference between the

means of two groups k and k′ with a t-test. Any difference between two means Ȳk − Ȳk′

that is greater than the smallest significant difference is taken to be significant. The

least-significant difference is

LSDk,k′ = tα/2

√

S2
within

(
1

nk
+ 1

nk′

)

where t is the t-score with n − K degrees of freedom. One difficulty with this method

is that it does not correct for multiple comparisons and inflates the type I error. Two

popular ways of addressing this issue are the Tukey and Scheffé methods. The Tukey

method tests all possible pairs of differences to find significant differences, correcting

for multiple comparisons. This amounts to replacing the t statistic in the LSD formula

by the (standardised) difference between the largest and smallest of the K means, Ȳmax

and Ȳmin under H0. This is equal to:

Q = Ȳmax − Ȳmin
√

S2
p

(
1

nkmax
+ 1

nkmin

)

where Sp is the estimate of the pooled variance of the means Ȳmax, and Ȳmin and nkmax ,

nkmin are the corresponding number of observation in each group. The distribution of the

variable Q is called the studentised range distribution with K groups, n − K degrees of

freedom and significance of α. The corresponding tabulated value QK,n−K,α/
√

2 serves

as a corrected tα/2 value to test for significant differences between pairs of means. This

method is also called Tukey’s honestly significant difference (HSD).

The Scheffé method tests all possible comparisons of groups of means. With K > 2

treatments, the rejection of the null hypothesis often does not suffice to draw a firm con-

clusion regarding the difference between treatments. Consider an experiment with one

control group (θ1) and two treatment groups (θ2 and θ3). The rejection of the equality

of means between treatments leaves some questions unanswered, for instance whether

H0 was rejected because the control group is different from the average of the treatment

groups (θ1 �= (θ2 + θ3)/2), or because the two treatment groups are different (θ2 �= θ3).

These comparisons between groups of parameters are called contrasts in ANOVA. When

the comparison is between two means (e.g. H0 : θ2 �= θ3), H0 is called a simple contrast

hypothesis; when it involves more than two means (e.g. H0 : θ1 = (θ2 + θ3)/2), it is

called a complex contrast hypothesis. The test statistics here are called contrast statis-

tics. As the contrast hypothesis is based on a linear combination of population means,

the sampling distributions of the contrast statistics are a linear combination of normal

distributions.

The ANOVA can be represented as a special case of a linear model Yk
i = θk + ǫik

in which the dependent variables are the Yk
i and the independent variable(s) is (are) the



282 How? Laboratory Experiments in Practice

Focus 7.15

Two-way and multi-way ANOVA

ANOVA can be generalised to experiments where two (or more) categorical variables are

used to define between-subject treatments. For example, suppose the second-price auction

experiment has been run in three different universities, where in each session subjects are

assigned at random to incentivised or hypothetical treatments. In this case, each subject faces

a particular combination of localisation and incentives, which are the explanatory variables. In

ANOVA, the explanatory variables are often called ‘factors’ and their values are called ‘levels’.

In this example, there are two factors (factor A: universities, factor B: incentives), with three

levels for the first and two for the second. If there are the same number of subjects for each

possible combination of the explanatory variables, the design is ‘balanced’. In our example,

the design is a between-subject 3 × 2 design. With more than two explanatory variables, the

ANOVA is ‘multi-way’. Two-way ANOVA tests the effect of each factor with or without

interactions. Without interactions, the model is called ‘additive’: in the example, this results,

for instance, from the assumption that the bid in the incentivised treatment does not depend

on the university in which the session is run. The assumptions for the multi-way analysis of

variance are very close to those for standard one-way ANOVA. Each observation is assumed

to be independently drawn from a normal distribution with common unknown variance σ 2 and

the explanatory variables (factors) are categorical. The test statistic is

S2
between

S2
within

for each explanatory variable and each interaction between the explanatory variables (if any).

In a two-way ANOVA with interaction effects, there are three hypothesis tests: the main effect

of factor A (equality of means); the main effect of factor B (equality of means); and the inter-

action between factors A and B. Multi-way ANOVA is often run with all interactions included:

if the interactions are insignificant, then an additive model is rerun. A two-way ANOVA can

be represented as a linear model:

Y
k,j
i = θ

︸︷︷︸

overall mean

+ ak
︸︷︷︸

effect of factor A

+ bj
︸︷︷︸

effect of factor B

+ (ab)kj
︸ ︷︷ ︸

interaction effect

+ ǫikj

where ǫikj is a N (0, σ 2) normally distributed error.

treatment, or grouping, variable. For example, an ANOVA is equivalent to the linear

regression

Yk
i = a1 + a2Z2 + . . . + anZn + ǫik

where Yk
i are the observations, ǫik is a N (0, σ 2) normally distributed error and Zk, k =

2, . . . , K are dummies for the subject being in treatment k. Here, a1 is an estimate of

the mean of the reference treatment k = 1 and ak, k = 2, . . . , K are the estimates of

the differences in means between treatment k and the reference treatment. Focus 7.15

generalises the ANOVA to situations where categorical variables define between-subject

treatments.
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Difference between K variances: Bartlett test

The Bartlett test is a modification of the likelihood-ratio test. It is used to test for the

homogeneity of variance (homoskedasticity) between K populations. Denoting θk the

variance for population k, the hypothesis under investigation is

H0 : θ1 = θ2 = . . . = θK vs. H1 : θi = θj are different for some i, j, i �= j

The test statistic T(Y1, . . . , YK) is:

(
∑

k nk − K) log(S2
within) −

∑

k(nk − 1) log(S2
k )

1 + 1

3(k−1)
(
∑

k
1

nk−1 − 1∑

k nk−K

)

The sampling distribution under the null hypothesis is chi-squared with K − 1 degrees

of freedom. The rejection region is an upper rejection region with c = χ2
K−1,α .

The Bartlett test is not robust to departures from normality. Under non-normality,

alternative tests (the parametric Levene test or the Brown–Forsythe test) are preferred,

as rejection of the null hypothesis may result from the departure from normality.

Interval or Ordinal Variables

Difference between distributions: the Mann–Whitney and

Kolmogorov–Smirnov tests

The Mann–Whitney test, or U-test, is particularly useful for testing for the difference

between two distributions. When two populations are assumed to be identical except for

their location, the Mann–Whitney test can be used to compare their means or medians.

The small number of assumptions required for this test explains its popularity. One

important characteristic of the test is that small sample sizes produce an accurate normal

approximation. The test statistic (generally denoted U) is based on two samples Y1
i , Y2

i

and counts the number of times a Y2
i precedes a Y1

i in the ordered combination of the two

samples. The test assumes that the random variables Y1
i , Y2

i are independent i.i.d. draws

from populations with location parameters θ1 and θ2. The hypothesis under investigation

is

H0 : G1(a) = G2(a), ∀a vs. H1 : G1(a) �= G2(a) for some a

The test statistic is T(Y1, Y2) =
∑

i

∑

j Zij, where Zij is a binary variable taking a

value of 1 whenever Y2
j < Y1

i and 0 otherwise. Under the null hypothesis the sampling

distribution is based on that of the Bernoulli variables Zij. The rejection region is

T(Y1, Y2|H0) < c or T′(Y1, Y2|H0) < c

with T′ defined over the binary variable taking a value of 1 whenever (Y2
j > Y1

i ) and 0

otherwise.

In practice, in the case of ties, Zij is assigned a value of 0.5. For large samples, the

test statistic can be calculated by creating a pooled sample with observations Y1 and

Y2 and assigning ranks to the observations in this grand sample. The test statistic for

each sample is equal to the sum of the ranks for one sample, minus the sum of all

possible ranks in that sample. For example, T1(Y1, Y2) =
∑n1

i ri(Y
1
i ) − n1(n1+1)

2 or
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T2(Y1, Y2) =
∑n2

i ri(Y
2
i )− n2(n2+1)

2 . The test statistic under H0 is the minimum between

T1(Y1, Y2) and T2(Y1, Y2). This representation of the test statistic shows that the Mann–

Whitney test is equivalent to a Wilcoxon signed-rank test. If the two groups are very

different, then T1 (for example), will be equal to n1(n1+1)
2 , T2 will be 0 and the test

statistic will be 0. If the two groups are not very different, T1 + T2 will be close to n1n2

and the test statistic will be close to n1n2/2. For sample sizes n1 > 8 and n2 > 8, a

normal approximation for the test statistic under H0 is

N

(

n1n2

2
,

√

(n1n2)(n1 + n2 + 1)

12

)

and the critical values are the usual z-scores. The one-sample Kolmogorov–Smirnov

test can be adapted to test for identical distributions in a two-sample problem. The

two samples are reordered to form an increasing sequence of values Y1
(1), . . . , Y1

(n1) and

Y2
(1), . . . , Y2

(n2), and the empirical cumulative distributions G1
o and G2

o are constructed

using these sequences. The test is based on the maximum absolute difference between

these two empirical distributions. The hypotheses are identical to those for the Mann–

Whitney test. The test statistic is T(Y1, Y2) = maxa|G1
o(a)−G2

o(a)| (see Gibbons, 2011,

for details about the sampling distribution and the rejection region).

Difference in the scale parameter: the Siegel–Tukey and Ansari–Bradley tests

The Siegel–Tukey rank-dispersion test is an important alternative to the F-test. The null

hypothesis assumes that both samples come from identical populations, while the alter-

native hypothesis assumes that the two samples come from different populations where

only variability (i.e. scale) differs. The Siegel–Tukey test is based on the Wilcoxon test.

Two samples are merged in a grand sample, and ordered from the lowest to the largest.

Ranks are then assigned to this ordered grand sample. Rank 1 is assigned to the small-

est observation, rank 2 to the largest, rank 3 to the next-largest observation, rank 4 to

the next-smallest observation, and so on. A rank-sum test is applied to the difference

between the two populations, based on their ranks. If one group is more dispersed than

the other, it will have more of the lower ranks that are assigned to the more extreme

values. The test statistics are the Mann–Whitney test statistics for each group, minus

n(n + 1)/2, where n is the size of the grand sample. The Ansari–Bradley test is based on

a slightly different test statistic, where the rank of 1 is assigned to both the smallest and

the largest observations, 2 to the second-smallest and second-largest observations, and

so on.

Difference between K samples: the Kruskal–Wallis test

The Kruskal–Wallis test is a generalisation of the Mann–Whitney test for the comparison

of K independent samples. The test statistic is based on the ranks of each observation

Yk
i in the rank-ordered sequence of all observations, and is the weighted sum of squares

of the gap between the observed and expected rank sums. The null hypothesis assumes

that the K samples are drawn from the same common population. The test statistic is

T(Y1, . . . , YK) = 12
∑

k nk(
∑

k nk + 1)

K
∑

k=1

∑

i r(Yk
i )2

nk
− 3(

∑

k

nk + 1)
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Table 7.7 A 2 × 2 table for independent samples

Successes Failures Total

Population 1 a1 b1 a1 + b1

Population 2 a2 b2 a2 + b2

Total a1 + a2 b1 + b2 n

The sampling distribution under the null hypothesis for large samples (nk ≥ 5, ∀k and

K ≥ 4) is chi-squared with K − 1 degrees freedom. The rejection region is an upper

rejection region with c = χ2
K−1,α .

If the null hypothesis is rejected, pairwise comparisons between samples can be

carried out based on the average ranks in each sample. The treatments k and k′ are

significantly different if:

∣
∣
∣
∣
∣

∑

i r(Yk
i )

nk
−

∑

i r(Yk′
i )

nk′

∣
∣
∣
∣
∣
≥ z1−α

√

n(n + 1)

12

(
1

nk
+ 1

nk′

)

with n =
∑

k nk. If the alternative hypothesis can be specified as an increasing order of

location parameters (means or medians), H1 : θ1 ≤ θ2 ≤ . . . ≤ θK , the Jonckheere–

Terpstra test for pairwise comparisons is used. Gibbons (2011) presents a number of

procedures to test the partial ordering of the K − 1 distributions.

Another way of carrying out multiple comparisons is the Dunn test. This compares

two groups k and k′ based on the absolute value of the difference between their mean,

divided by the quantity
√

[n(n + 1)/12][(1/nk) + (1/nk′ )]. The test statistic is normally

distributed under the null hypothesis, and the standard z-scores apply for the critical

values of the rejection regions.

Difference between K variances: the non-parametric Levene test

The Levene test can be used to test the equality of K variances when the sample is not

assumed to be normally distributed. In this case, the test statistic is based on the rank

of each observation Yk
i in the rank-ordered sequence of all observations. The general

idea of the test is to carry out an ANOVA on the absolute difference between the rank of

each observation and the mean of these ranks. If the median (or a trimmed mean) is used

instead of the mean, the test statistic is a non-parametric Brown–Forsythe test, which is

more accurate when the underlying distributions are not symmetric.

Categorical Variables

Fisher exact test

When two samples are independent draws from Bernoulli distributions with probabil-

ities of success θ1 and θ2, the data can be represented in a 2 × 2 table. An example

is shown in Table 7.7, which lists the success and failure counts for each sample. The

quantities a1 =
∑n1

i Y1
i and a2 =

∑n2
i Y2

i denote the number of successes in each pop-

ulation and the quantities b1 and b2 the corresponding number of failures. The marginal

probability of success is (a1 + a2)/n and the marginal probability of failure (b1 + b2)/n.



286 How? Laboratory Experiments in Practice

The logic of the Fisher exact test is to evaluate the probability of observing the 2 × 2

table from the sample among all possible 2 × 2 tables that could have resulted with the

same marginals (i.e. with the row and column totals fixed at their observed levels). Under

the null hypothesis, the conditional distribution of a given the marginal totals is hyper-

geometric. The exact hypergeometric probability of observing the data in Table 7.7 is

(a1+b1
a1

)(a2+b2
a2

)

( n
a1+a2

)

The Fisher exact test is particularly useful for small frequencies, where the chi-squared

approximation might not hold. Moreover, and contrary to the Fisher exact test, the

chi-squared test can only be used for a two-sided alternative hypothesis.

A z-test can be used to test the null hypothesis of identical proportions θ1 and θ2 if

the sample sizes are large enough to justify a normal approximation. The test statistic

under H0 is normally distributed. It is defined as the ratio of the difference in sample

proportions ȳ1 − ȳ2 to the estimator of the common proportion θ̂0 =
∑n1

i Y1
i +

∑n2
i Y2

i
n1+n2

.

Chi-squared test

When K samples are independently drawn from Bernoulli distributions with parameters

θk, a chi-squared test can be used to test the null hypothesis of identical proportions. The

alternative hypothesis is that at least two proportions differ θk �= θk′ for some (k, k′). The

test statistic is

T(Y1, . . . , YK) =
K
∑

k

(ȳk − nkθk)2

nkθk(1 − θk)

where ȳk =
∑

i yk
i is the number of successes in sample k. Under the null hypothesis

the estimator of the common proportion is θ̂0 =
∑

k Ȳk/n. Under H0, the test statistic

is distributed chi-squared with K − 1 degrees of freedom, and the rejection region is

an upper rejection region with c > χ2
K−1,α . When applied to Table 7.7, the test statistic

from the chi-squared test is

T(Y1, Y2|H0) = (n − 1)(a1b2 − b1a2)2

(a1 + b1)(a1 + a2)(b1 + b2)(a2 + b2)

and is distributed chi-squared with one degree of freedom.

7.3.5 Paired Samples and Repeated Measure Tests

When the data are repeated measures over the same observation unit, or when obser-

vation units are matched together, the observations are no longer independent – an

important validity assumption for the tests presented in the previous subsection. This

is the case when the same subjects face different treatments or when they face repeti-

tions of the same treatment a number of times during the experiment. With paired data,

inferences are drawn from the gaps between pairs of observations, and the two-sample

tests are more similar to one-sample tests on the (matched) population differences.
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With repeated measures, statistical tests have to take into account the within-subject

correlation in the measures.

Interval and Normal Variables

Difference between two means: the paired t-test

The paired t-test evaluates the difference between treatment effects in matched pairs.

Under the null hypothesis the mean of the paired differences θ is 0. The assumption

of normality does not refer to the population distribution of the variables, but rather to

their differences. The sample is assumed to consist of draws of paired random variables

Y1
i and Y2

i , with differences �i = Y1
i − Y2

i that are i.i.d. normally distributed, with

unknown variance σ 2. The null hypothesis is H0 : θ = 0. The estimator of the mean of

the difference is �̄ = Ȳ1 − Ȳ2, and the test statistic

T(Y1, Y2) = (�̄) − θ

S�

with S2
� =

∑

i(�i − �̄)2

n − 1

is t-distributed with n − 1 degrees of freedom under the null hypothesis. The rejection

region is such that cl < −t α
2

or cu > t α
2

, where t is the t-score with n − 1 degrees of

freedom.

Difference between K means: the repeated-measure ANOVA

The repeated-measure ANOVA is a generalisation of the paired t-test when the same

individual has K different treatments. The repeated-measure ANOVA takes into account

that the errors in the multiple measurements of each participant are correlated. The

paired t-test estimator is based on the difference between the sample means. As a

result, no hypothesis is made about the correlation between two treatments. However,

with K > 2 correlation does become important. Here, the repeated Yk
i are assumed

to be normally distributed for each k = 1, . . . , K and i.i.d. between subjects. Due to

the repeated treatments, the normal distribution is multivariate, so that the vector of

responses
(

Y1
i , . . . , YK

i

)

is drawn independently from the same population distribution:

(

Y1
i , . . . , YK

i

)

∼ N
[(

θ1, . . . , θK
)

, 

]

where 
 is the within-subject variance–covariance matrix. If we suppose that the

variances are equal across the K treatments and that there is no interaction between

treatments (0 covariance), then the measurements are assumed to be independent. If all

variances are equal and all covariances are equal then compound symmetry is assumed.

In this case, the interactions are the same throughout the experiment and the variance of

the difference between treatments is constant. A less-restrictive form of compound sym-

metry is sphericity. This holds when variances of the differences between treatments are

equal. If sphericity does not hold, then the variance–covariance figures interact with the

difference between means, and have to be estimated. This additional estimation reduces

the power of the test. The interaction is taken into account through the ‘correction’ of

the repeated-measure ANOVA. The Huynh–Feldt correction is standard and is provided

by most statistical packages.
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Difference between two variances

The equality of two variances in paired samples can be evaluated with a test statistic

based on the Pearson correlation between the variables Y1
i − Y2

i and Y1
i + Y2

i . The test

statistic is

T(Y1, Y2) = ρ

√

n − 2

1 − ρ2

where ρ is the sample estimate of the Pearson correlation between Y1
i −Y2

i and Y1
i +Y2

i .

The sampling distribution under the null hypothesis is t-distributed with n − 2 degrees

of freedom. The rejection region is such that cl < −t α
2

or cu > t α
2

, where t is the t-score

with n − 2 degrees of freedom.

Interval or Ordinal Variables

Difference between two medians: the Wilcoxon matched-pairs test and sign test

The Wilcoxon matched-pairs signed-rank test establishes whether the difference

between pairs of observations are symmetrically distributed about a median of 0. The

test assumes that the differences Y1
i − Y2

i are symmetric around the median θ . The null

hypothesis is H0 : θ = 0 and the alternative hypothesis is H1 : θ �= 0. The test statistic

is the expected value of the sum of the ranks for positive (T+) and negative (T−) differ-

ences �i = Y1
i − Y2

i and the logic of the one-sample Wilcoxon test is applied to these

differences.

Both the paired t-test and the Wilcoxon test assume that the pairs of observations are

drawn from the same common population. The sign test does not require this hypothesis.

In the sign test for matched pairs, the null hypothesis assumes that the average differ-

ences of paired observations is 0. The test statistic is based on the counts of positive and

negative differences between Y1
i and Y2

i . With the sign test, H0 is rejected if the number

of differences is too large or too small.

Difference between k medians: the Friedman test

The Friedman test supplies a non-parametric analysis of the variance in repeated-

measure designs. The null hypothesis is that the treatment effects are equal, H0 : θ1 =
. . . = θK , and the alternative hypothesis is that at least two medians are different.

The test assigns, for each subject (each block), a rank in the 1, . . . , K sequence for

each observation and calculates the sums Rk of the ranks for each treatment. Under

the null hypothesis, each rank within each block is equally likely. It is assumed that

the blocks are mutually independent and that there are no ties within each block. The

test statistic is the sum of squares of the gaps between these sums of ranks and their

mean:

T(Y1, . . . , YK) = 12

nK(K + 1)

K
∑

k=1

R2
k − 3n(K + 1)

and is distributed chi-squared with K − 1 degrees of freedom. The test statistic needs to

be corrected when there are ties. The rejection region is an upper rejection region with

c = χ2
K−1,α . If H0 is rejected, a Dunn test can be used to carry out multiple comparisons.
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Table 7.8 A 2 × 2 table for paired samples

Treatment 2

Treatment 1 Success Failure Total

Success ass asf ass + asf

Failure afs aff afs + aff

Total ass + afs asf + aff n

Categorical Variables

Difference between two proportions: the McNemar test

The McNemar test is used to test the impact of a treatment when the variables are cate-

gorical, with matched pairs of subjects. A typical example is observations on successes

and failures before and after some treatment. Table 7.8 shows the counts of successes

and failures for two repeated treatments over the same sample.

Under the null hypothesis the two treatments are similarly effective: then the two

marginal probabilities of success are identical, as are the marginal probabilities of

failure. The test then amounts to testing the similarity of the failure proportions between

treatments 1 and 2. The test statistic is

T(Y1, Y2) = (asf − afs)
2

asf + afs

Under the null hypothesis, with asf +afs > 25, the sample distribution is distributed chi-

squared with one degree of freedom. If the cell sizes are too small for the chi-squared

approximation, a binomial test can be used instead. One possible issue is that both the

McNemar and binomial tests can be conservative for small samples. The remedy is

to apply a downward correction to the p-value based on the binomial probability of

observing asf . The test after correction is called a McNemar mid-P test.

Difference between K populations: the Cochran Q test

The Cochran Q test is a conservative test used to evaluate the difference between K treat-

ments. Under the null hypothesis the K treatments are similarly effective; the alternative

hypothesis is that at least two treatments differ. The test statistic is

T(Y1, . . . , YK) = K(K − 1)

∑

k

(∑

i Yk
i − n

K

)2

∑

i

[∑

k Yk
i (K −

∑

k Yk
i )
]

Under the null hypothesis, and with a sufficiently large sample size, the test statistic is

distributed chi-squared with K − 1 degrees of freedom. The rejection region is an upper

rejection region with c = χ2
K−1,α .

7.4 Case Study : Eliciting Preferences under Risk

The measurement of risk preferences has received a great deal of attention in both the

experimental-economics and decision-analysis literatures. Both have proposed methods
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and experimental designs to assess individual risk preferences. In experimental eco-

nomics, the measurement of risk preferences is traditionally based on a series of discrete

choices between uncertain risky prospects. Other approaches are based on allocation or

investment decisions. In this case study we provide an overview of the measurement of

risk preferences together with their estimation.

7.4.1 Expected-Utility Theory

The standard normative theory of decision under risk and uncertainty, expected-

utility theory (von Neumann and Morgenstern, 1944; Savage, 1954), provides a set

of consistent tools for the measurement of risk attitudes. The simplicity of the the-

ory (expected utility corresponds to a weighted average) has made it by far the most

prominent model of decision under risk and uncertainty in economics. Under expected

utility, a decision-maker’s attitude towards risk can be evaluated via a small number of

equivalences between lotteries.

In what follows we consider a decision-maker who chooses between two lotteries. As

most techniques only use lotteries with at most two distinct outcomes, this is what we

present. Formally, let x1px2 denote a lottery producing outcome x1 with probability p and

x2 with probability 1 − p. The individual has preferences over lotteries, and we use the

conventional notation ≻, �, and ∼ to represent the relations of strict preference, weak

preference and indifference. The outcomes are real numbers, and typically represent

money: larger outcome values are always preferred. If x1 = x2 the lottery is said to be

riskless or certain, otherwise it is said to be risky. For the sake of clarity, we denote the

riskless lottery xc (hence x1 = x2 = xc).

Expected utility under risk holds if the decision-maker’s choices conform to three

main behavioural axioms (Jensen, 1967; Fishburn, 1989). The first is a standard weak-

order axiom, with � being complete and transitive. The second axiom is technical:

continuity (see Gilboa, 2009, for a discussion of the behavioural content). Last, the main

and by far the most important axiom is independence. The von Neumann and Morgen-

stern (1944) theorem shows that the preference relation satisfies these three axioms if

and only if it can be represented by an expected-utility function.

Under expected utility, the decision-maker evaluates each lottery separately and

chooses the lottery with the highest value. The valuation of a lottery is given by

U(x1px2) = pu(x1) + (1 − p)u(x2) (7.1)

where u is the utility function and U is the decision criterion, also called the von Neu-

mann and Morgenstern (vNM) functional. The utility function u is a function from R

to R and is unique up to an increasing affine transformation, i.e. up to intercept and

slope. In (7.1), p and 1 − p are the decision weights attached to the subjective values of

outcomes x1 and x2. The decision criterion U has two main properties. The first is addi-

tivity: under expected utility, the utilities of the consequences u are combined additively.

The second is linearity: the probabilities associated with the different outcomes enter

the function linearly. These two properties together have important implications: empir-

ically, they allow for the simple elicitation of preferences under risk. Under expected
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Table 7.9 Elicitation methods

Standard-gamble methods

1. Preference comparison x1px2 versus xc

2. Probability equivalence x1px2 ∼ xc

3. Value equivalence x1p
x2 ∼ xc

4. Certainty equivalence x1px2 ∼ xc

Paired-gamble methods

5. Preference comparison x1px2 versus x′
1p

x′
2

6. Probability equivalence x1px2 ∼ x′
1p

x′
2

7. Value equivalence x1p
x2 ∼ x′

1p
x′

2

Note. Classification introduced in Farquhar (1984,

p. 1285). The underlined attribute is the one that

changes during the elicitation process.

utility, the whole risk attitude is captured by the shape of the utility function u. If the

utility function is concave, the individual is risk-averse; if it is convex, the individual is

risk-seeking; and if it is linear, the individual is risk neutral. To measure risk attitudes,

it is thus sufficient to know the shape of the utility function. In economics, this is often

summarised by the Arrow–Pratt index A(x) = −u′′(x)/u′(x), which accounts for curva-

ture independently of the scale of the utility function. The standard hypothesis is that

the Arrow–Pratt index (i.e. risk aversion) falls with wealth (see Eeckhoudt et al., 2005,

for a detailed presentation of expected utility theory).

7.4.2 Elicitation Methods for Risk Attitudes

Farquhar (1984) distinguishes two broad categories of preference-elicitation methods.

The first consists of comparisons between a sure amount and a lottery; this is the

standard gamble. In the second, called paired gamble, elicitation is based on compar-

isons between two non-degenerate lotteries. The classification is further described in

Table 7.9, where the underlined attribute is the elicitation variable, i.e. the variable that

changes during the elicitation process. For both the standard gamble and paired gamble,

elicitation is based on either a single comparison between lotteries or an equivalence

between lotteries. In the former (comparison) the choice is binary, while in the latter

(equivalence) the choice corresponds to the specification of an indifference value.

Starting with Binswanger (1980), one tradition in experimental economics is to elicit

risk preferences using a series of choices between abstract lotteries. This corresponds

to preference comparison in Table 7.9. A typical example is Hey and Orme (1994),

who mix standard-gamble and paired-gamble preference-comparison methods to esti-

mate various decision models. Another tradition follows the usual theoretical approach

in decision under risk and measures certainty equivalents through indifference. Good

examples of this measurement of risk preferences using certainty equivalence can be

found in Becker and Brownson (1964) and Tversky and Kahneman (1992). Alterna-

tive methods have been proposed in the literature, based in particular on balloon tasks

(Lejuez et al., 2002) (see Focus 7.16) or investment choices (see Focus 7.17).
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Focus 7.16

The balloon analogue risk task (BART)

The balloon analogue risk task (Lejuez et al., 2002) is an intuitive task designed to measure

risk attitudes without the usual numerical representation of lotteries. The task is simple: the

participant is presented with a balloon into which the subject can choose to pump air. Sub-

jects earn money each time they pump air into the balloon. At the same time, as long as the

balloon does not explode, each pump causes the balloon to inflate. At any moment, a subject

can choose to cash out prior earnings. If the balloon explodes, the earnings from pumping

are lost. Participants are not informed about the balloon’s breaking point. In BART, pumping

corresponds to sampling without replacement from an unknown urn in which one ball out

of n causes an explosion. Assuming that subjects know the number of balls n, it is possible

to represent each pumping choice j = 1, . . . n as a binary lottery paying 0 with probabil-

ity 1
n−j−1 and paying cumulated earnings ( j times the money increment) with probability

n−2−j
n−j−1 .

Crosetto and Filippin (2016a) compare the BART with a paired-gamble method (the Holt and

Laury (2002), method) and a survey question on risk attitudes in general (Dohmen et al., 2011).

The results show that while risk aversion shows up when preferences are elicited based on the

Holt and Laury (2002) method (as well as in alternative elicitation methods), BART reveals

considerable risk loving. The BART is, however, positively and moderately correlated with

the answer to the survey question on risk attitudes. Crosetto and Filippin (2006) also point

out that the measure of preference parameters with BART is difficult. First, a risk-aversion

parameter can be calculated only under the assumption that the subjects know the details

of the underlying urn, or are able to form precise beliefs about its composition. Second, as

the explosion of the balloon is random, the stopping point is not observed when the balloon

explodes.
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Focus 7.17

Portfolio choice and the elicitation of risk attitudes

The investment decision in Gneezy and Potters (1997) and Charness and Kuhn (2010) is

an alternative to the usual preference-elicitation methods. Instead of using abstract choices

between lotteries, the method replicates standard portfolio-selection choice. The subject is

endowed with a given amount of money that they can allocate between a risky asset and a

risk-free asset. The risky asset pays 1 + rr times the amount invested with probability p and

nothing otherwise. The money invested in the risk-free asset is kept by the subject. The rate

of return r is such that the expected rate of return on the risky asset is strictly higher than

the rate of return on the safe asset: p(1 + rr) > 1. The equity premium for the risky asset is

strictly positive and any risk-neutral or risk-loving subject should invest all the endowment

in the risky asset. In addition, the greater the subject’s risk aversion, the less should be the

investment in the risky asset. Charness and Kuhn (2010) use rr = 1.5 and p = 0.5. Charness

and Viceisza (2012) find the method to have more predictive power than the Holt and Laury

(2002) method, using rural subjects in Senegal. Choi et al. (2007) also use portfolio choices

to elicit risk attitudes in the lab. Each subject is endowed with a given amount of money that

they can allocate between two stage-contingent securities, to be bought at given prices. Each

security offers a payoff of one unit in one state and nothing in the other. The price of asset 1 is

q1 and that of asset 2 is q2. Subjects see the budget constraint associated with their portfolio

allocation choice and select their preferred point on the budget constraint. As shown in the

figure below, certainty corresponds to the intersection between the budget constraint and the

45o line: half of the endowment is invested in asset 1 and half in asset 2 (point Ac).

Asset 2

45º line

Asset 1

slope = –q1/q2

A1

A2

Ac

The polar cases are when subjects allocate all their endowment to either asset 1 (point A1)

or asset 2 (point A2). Choi et al. (2007) use 50 different budget lines in their experiment.

The experimental design allows them to test the general axiom of revealed preferences and to

estimate risk-aversion and preference parameters by either maximum likelihood or non-linear

least squares. In Choi et al. (2007) a large majority of choices satisfy the general axiom of

revealed preference and a majority of subjects have kinked non-expected utility indifference

curves that are consistent with loss or disappointment aversion.
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Probability-Equivalence Versus Certainty-Equivalence Methods

A large literature in decision analysis compares the probability-equivalence (PE) and

certainty-equivalence (CE) methods, and concludes that certainty equivalence should

usually be preferred to probability equivalence. The typical finding is that PE produces

higher utilities, i.e. more risk aversion, than CE (Hershey et al., 1982; Hershey and

Schoemaker, 1985; Slovic et al., 1990; Delquié, 1993). Johnson (1984) suggests that

the difference between the two methods is not entirely due to framing, but could also

be related to the response mechanism. Hershey and Schoemaker (1985) conjecture that

subjects use the certain outcome as a reference point when answering in the PE method.

However, Bleichrodt (2001) shows that a quantitative assessment of this conjecture is

fairly complex as the subject’s reference point varies between the PE questions. In this

case, subjects behave as if they were facing lotteries with gains and losses, and loss

aversion can explain the increase in risk aversion. Bleichrodt (2001) proposes a solution

to this difficulty.

On the other hand, CE yields responses that are biased towards the expected value, and

sometimes towards risk seeking (Morrison, 2000). The difference in utilities in the PE

and CE methods poses a serious descriptive challenge to expected-utility theory. Under

expected utility, both methods should produce the same utility, i.e. the same measure

of individual risk aversion. Elicitation procedures that are equivalent in theory should

yield identical results. In addition, Karmarkar (1978) and McCord and Neufville (1985)

showed that the utility function elicited via CE depends on the probabilities used: a

more concave utility function is produced with higher probabilities. Machina (1987)

called this the utility-evaluation effect, which can be explained by rank-dependent util-

ity theory (Quiggin, 1982) or prospect theory (Kahneman and Tversky, 1979). These

latter are based on the non-linear transformation of probabilities, and risk aversion that

varies with the probability level (in addition to loss aversion, the PE method is also

distorted by probability transformation (Bleichrodt et al., 2001)). The utility-evaluation

effect is also compatible with hypothesis II in Machina (1982). The differences observed

between PE and CE disqualify expected utility as a descriptive theory of choice under

risk. Standard PE or CE leads to systematic bias in utility measurement, and therefore in

the assessment of risk attitudes. In light of this result, we may ask whether the use of PE

or CE makes sense. Bleichrodt et al. (2001) show that CE and PE can still be used if they

are appropriately corrected for the main sources of bias, probability transformation and

loss aversion. Bleichrodt et al. (2001) propose various methods for this correction. In

particular, the use of a probability level close to 1/3 in the CE method helps considerably

in reducing the gap between the different elicitation methods.

Eliciting Indifference in Choice Under Risk

There are three main elicitation procedures to elicit indifferences. The first, match-

ing, asks subjects to directly assess their indifference point. The second, bisection,

determines the indifference point through a convergent series of choices. The third,

bracketing, infers indifference through a series of choices.

An example of a matching task, based on a standard gamble method for certainty

equivalence, is the following:
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Table 7.10 An example of the bisection procedure

Iteration Choices offered in the

elicitation procedure

1 10 vs. 200.50

2 5 vs. 200.50

3 7.50 vs. 200.50

4 6.25 vs. 200.50

5 6.87 vs. 200.50

Indifference value 6.56

Table 7.11 The bracketing procedure in Tversky and Kahneman (1992)

Choice Alternative A Alternative B

1 1500.2550 150

2 1500.2550 125

3 1500.2550 104

4 1500.2550 87

5 1500.2550 72

6 1500.2550 60

7 1500.2550 50

Indifference value 66

What amount of money, $ __ , if paid to you with certainty, would make you indifferent to the

lottery paying $x1 with probability p and x2 with probability 1 − p.

In the matching task, participants are asked to state their certainty-equivalent value for

the lottery x1px2. In the literature, the matching procedure is considered to be dominated

by choice-based approaches, such as bisection or bracketing, as inferring indifference

from a series of choices leads to fewer inconsistencies and less noise than asking subjects

directly for their indifference values (Bostic et al., 1990; Hey et al., 2009).

Abdellaoui et al. (2008) elicit certainty equivalents using a second elicitation pro-

cedure: bisection. In each choice a subject is faced with two lotteries: one fixed risky

lottery and another that is always riskless. Table 7.10 shows an example of the bisection

procedure, with a risky lottery offering 20.50. For each iteration, the lottery that is cho-

sen is printed in bold. In the example, the starting values in the iterations are chosen so

that the two lotteries are of equal expected value. Different starting values can be cho-

sen. Depending on the choice made, the certain outcome is increased or decreased. In

the example, the size of the change is always half the size of the change in the previous

question. In Abdellaoui et al. (2008), the numbers are always integers. In Table 7.10,

the numbers have two digits after the decimal point. The bisection procedure yields an

interval in which the indifference value should lie, the midpoint of which is taken as the

indifference value.

Tversky and Kahneman (1992) use the third procedure of bracketing to determine

certainty equivalents. Subjects make a series of seven choices between a fixed risky

lottery and riskless lotteries. Table 7.11 shows a series of bracketing choices, with the

lottery as alternative A and the certain amount as alternative B. Subjects choose between
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Figure 7.13 The bracketing procedure used in L’Haridon and Vieider (2015)

A and B.The certain amounts are linearly spaced on the log scale, as in Tversky and

Kahneman(1992). In Table 7.11 the lottery that is chosenis printed in bold. Bracketing

yields an interval within which the indifference value should lie. The mid-pointof this

interval is taken as the indifference value.!? In Table 7.11 this lies between 72 and 60,

andis taken to be 66. Different scales can be usedto build the choices. As an example,

Figure 7.13 shows an example of bracketing with linearly spacedriskless alternatives,

similar to that in Cohenetal. (1987).

There are two differences between bracketing andbisection.First, the bracketing pro-

cedure is not chained:each choicein Table 7.11 is independent of the subject’s previous

answers. Second, for a given numberof choices, bracketing is less precise than bisec-

tion. Asa result, the choice between the methodstrades off precision and chaining:if

the propagation oferrors is an issue in the experiment, bracketing should be preferred;

if precision is a concern, bisection should be chosen.

A Simple Visual Method: Binswanger (1980)

Oneofthe first methodsfor eliciting choice under risk was proposed by Binswanger

(1980). Subjects have only one choice to make. The methodis quick, easy to implement

19 Th thecase of multiple switching,this is, of course, no longer the case. Multiple switching issues will be

addressedin our presentation of the Holt and Laury (2002) method.
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Table 7.12 The payoffs and risk classification in Binswanger (1980)

Choice Low payoff (heads) High payoff (tails) Risk-aversion class CRRA index interval

O 50 50 Extreme ]7.51; ∞[

A 45 95 Severe ]1.74; 7.51[

B 40 120 Intermediate ]0.812; 1.74[

D∗ 35 125 Inefficient

C 30 150 Moderate ]0.316; 0.812[

D 20 160 Inefficient

E 10 190 Slight to neutral ]0; 0.316[

F 0 200 Neutral to negative ]−∞; 0[

Table 7.13 The payoffs and risk classification in Eckel and Grossman (2008)

Choice Low payoff (Heads) High payoff (Tails) Risk aversion class

1 16 16 Extreme

2 12 24 Intermediate

3 8 32 Moderate

4 4 40 Slight-to-neutral

5 0 48 Risk neutral

and easily understood. The original method appeared as part of an experiment in Indian

villages. Subjects select a lottery from a set of possible lotteries. In the original work

of Binswanger (1980), all possible binary 50–50 lotteries were included. Subjects are

given a form describing eight lotteries, denoted O to F, and asked to choose one.

Table 7.12 shows the payoff characteristics of the eight lotteries and the correspond-

ing risk-aversion class and CRRA index interval. The variance and expected payoff rise

from lottery O to lottery F – lotteries B and D∗, C and D, E and F have the same

expected payoffs.

Subjects face a sequence of lotteries with different payoffs (multiples of the pay-

offs in Table 7.12 by factors of 1/100, 1/10, 1 and 10). When the payoffs are small,

about half the respondents correspond to intermediate and moderate risk-aversion pref-

erences. Nearly a third are close to risk-neutral or risk-loving, and under 10% were

highly risk-averse. However, as payoffs rise, nearly 80% of subjects display moderate

risk aversion, with risk-neutral and risk-loving behaviour almost disappearing. The stan-

dard prediction on the link between risk aversion and wealth is thus supported: subjects’

willingness to accept small bets of a fixed size increases with wealth. This corresponds

to decreasing absolute risk aversion (DARA).20

Eckel and Grossman (2008) offer a popular implementation of the Binswanger (1980)

method based on a linearly increasing expected value and greater standard deviation in

the sequence of lotteries. Table 7.13 shows the payoff characteristics of the five lotteries

used in this implementation.

Cardenas and Carpenter (2013) use a variant of the lotteries O, A, B, C, E and F in

Binswanger (1980) to measure risk attitudes in a representative sample of 3,000 subjects

20 Subjects also display increasing, and then decreasing, relative risk aversion: after an initial increase,

aversion to multiplicative risks (i.e. risks expressed as a percentage of wealth) fall with wealth.
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Figure 7.14 The Binswanger (1980) method in Carpenter and Cadernas (2013)

in six Latin American cities. They also adapt the method to include risk pooling, atti-

tudes towards gains and losses, and ambiguity, as well as a measure of well-being. The

elicitation task is displayed in graphical form, as shown Figure 7.14. In the ambiguity

treatment, the odds of a high or low payment were bounded between 3/10 and 7/10,

but are unknown. This uncertainty about probability is represented by the black areas in

Figure 7.14.

7.4.4 A Well-Known Paired-Gamble Method: Holt and Laury (2002)

The Holt and Laury (2002) method is based on an intuitive, simple design, which is

widely used to elicit risk aversion (see Cohen et al., 1987, for an earlier example based

on certainty equivalence). Each subject is presented with a menu of ten ordered choices

between paired lotteries. Each pair of lotteries consists of a single choice between a safe

option (option A) and a risky option (option B) of the following form:

xA1pxA2 vs. xB1pxB2

with xA1 greater than xA2 and xB1 greater than xB2. Option A is safe in the sense that it

offers less variable payoffs than option B: xA1 < xB1 and xA2 > xB2.

Description of the Method

More precisely, subjects make ten different choices ordered by increasing probability p

from 0.1 to 1. The expected payoff difference between options A and B,

p[(xA1 − xA2) − (xB1 − xB2)] + (xA2 − xB2)

falls with p and is negative for

p > (xA2 − xB2)/[(xB1 − xB2) − (xA1 − xA2)]

Regarding risk attitudes, only extreme risk seekers would choose option B at any

probability level p, even when this is close to 0. Symmetrically, only an extreme risk-

averse decision-maker would keep on choosing option A for any probability p less

than 1. Note that no one should choose the dominated option A when the probabil-

ity p is 1. A risk-neutral individual would switch from option A to option B when

p > (xA2 − xB2)/[(xB1 − xB2) − (xA1 − xA2)]. Here the point at which the decision-maker
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Table 7.14 The ten paired lottery-choice decisions in Holt and Laury (2002)

Choice number Option A Option B Expected payoff �=
1 1/10 of 2, 9/10 of 1.6 1/10 of 3.85, 9/10 of 0.1 +1.17

2 2/10 of 2, 8/10 of 1.6 2/10 of 3.85, 8/10 of 0.1 +0.83

3 3/10 of 2, 7/10 of 1.6 3/10 of 3.85, 7/10 of 0.1 +0.50

4 4/10 of 2, 6/10 of 1.6 4/10 of 3.85, 6/10 of 0.1 +0.16

5 5/10 of 2, 5/10 of 1.6 5/10 of 3.85, 5/10 of 0.1 −0.18

6 6/10 of 2, 4/10 of 1.6 6/10 of 3.85, 4/10 of 0.1 −0.51

7 7/10 of 2, 3/10 of 1.6 7/10 of 3.85, 3/10 of 0.1 −0.85

8 8/10 of 2, 2/10 of 1.6 8/10 of 3.85, 2/10 of 0.1 −1.18

9 9/10 of 2, 1/10 of 1.6 9/10 of 3.85, 1/10 of 0.1 −1.52

10 10/10 of 2, 0/10 of 1.6 10/10 of 3.85, 0/10 of 0.1 −1.85

Table 7.15 Lottery-choice decisions and the CRRA index

Switching choice CRRA index interval

1 ]−∞; −0.95[

2 ]−0.95; −0.49[

3 ]−0.49; −0.15[

4 ]−0.15; 0.15[

5 ]0.15; 0.41[

6 ]0.41; 0.68[

7 ]0.68; 0.97[

8 ]0.97; 1.37[

9 ]1.37; ∞[

shifts from option A to option B reveals their risk attitude. Table 7.14 shows the choices

that the subjects face when xA1 = 2, xA2 = 1.6, xB1 = 3.85 and xB2 = 5.

Subjects who switch from A to B between choices 4 and 5 are risk-neutral, while those

who switch between choices 2 and 3 are significantly risk-seeking and those switching

between choices 7 and 10 are significantly risk-averse.

A major strength of eliciting indifferences is that it allows the direct estimation of

individual relative risk aversion based on a particular utility function. Consider, for

instance, a particular specification of a constant relative risk-aversion (CRRA) utility

function,

u(x) =
{

x1−θ/(1 − θ ) if θ �= 1

log(x) if θ = 1
(7.2)

The shape of the individual utility can be inferred from subject’s choices between

options A and B.

An expected-utility maximiser with risk-aversion parameter θ is indifferent between

the two options if p × 21−θ + (1 − p) × 1.61−θ = p × 3.851−θ + (1 − p) × 51−θ . Solving

this equation for θ yields the degree of risk aversion as a function of the probability p

at which a subject switches between options A and B. This switching point produces

a direct measure of the CRRA index interval, as in Table 7.15. A subject switching

between choices 4 and 5 is close to risk-neutral. It is not clear, however, where the

subject’s preference lies in this interval: the subject may be slightly risk-averse, slightly

risk-seeking or risk neutral.
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Focus 7.18

Incentives and repeated choice

The Holt and Laury (2002) experiment contains an original feature in designing incentives for

repeated choice. Subjects face three repeated treatments: one hypothetical treatment and two

treatments with incentives. Among the treatments involving real incentives, subjects first face

a low-payoff treatment, as in Table 7.14, and then a high-payoff treatment with the payoffs

multiplied by 20. Subjects are paid for real for both tasks, with the outcome of the low-payoff

task determined before the high-payoff task begins. This procedure is usually problematic as

it creates wealth effects between the repeated treatments. The common way of controlling

for wealth effects in repeated choice is to pay only one task, selected at random at the end

of the experiment. This procedure is often criticised as incentives are diluted by randomisa-

tion (see Chapter 5, Section 5.2.3, for a discussion). The question of what is the real choice

under randomisation is also unclear. Holt and Laury (2002) take an alternative approach and

introduce a procedure for controlling for wealth effects while paying for real for both tasks.

To control for wealth effects, subjects are asked to give up their earnings in the low-payoff

task before carrying out the high-payoff task. If subjects wish to participate in the high-payoff

treatment they have to pay back their experimental earnings from the low-payoff task. In the

experiment, no subject declined to participate and the design succeeded in paying each sub-

ject for both choices. An open question remains regarding the behavioural consequences of

paying back previously earned outcomes. While controlling for wealth effects, the procedure

does not control for the behavioural consequences of paying something to the experimenter

in the middle of the experiment. Framing and status quo effects may be at play and influence

behaviour in the high-payoff treatment.

Experimental Evidence

The Holt and Laury (2002) method is widely cited in the literature and commonly

used in experimental economics (see Holt and Sherman, 2014, for a survey of appli-

cations). Its popularity can first be attributed to its capacity to deal in a simple way with

incentive compatibility in experiments, including choice under risk, and to its findings

corresponding to the standard presumptions on the effect of incentives.21 Second, the

method is highly tractable: only one table is used to obtain an indicator of risk aversion

based on the number of A choices. It can also be used either with a computer or a paper-

and-pencil questionnaire. It is similar in this respect to that in Tanaka et al. (2010), and

provides a simple assessment of risk attitudes at low cost. Many lab experiments indeed

use the method to control for risk attitudes by adding a table like Table 7.15 to the end

of experiments on public-good games, auctions, experimental markets, etc.

The method has been implemented in a number of ways (Harrison and Rutström,

2008), including different price lists with or without iteration (Andersen et al., 2009)

and binary choices à la Hey and Orme (1994). In the former, subjects are presented

with the entire list of prices and choose sequentially between them, while in the latter

subjects are faced with ten independent lotteries. Aside from order effects (Harrison

21 The original paper also contains an original design for incentives under repeated choice, described in Focus

7.18.



The Econometrics of Experimental Data 301

et al., 2005), a number of papers have focused on the effect that the particular frame

in Holt and Laury’s price list might have on risk preferences. For example, Andersen

et al. (2009) modify the linear nature of the Holt and Laury list and introduce skewed

lists. The first treatment, called the SKEWHI treatment, offers a list of probabilities,

p = (0.3, 0.5, 0.7, 0.8, 0.9, 1). The second treatment, called SKEWLO, offers probabil-

ities p = (0.1, 0.2, 0.3, 0.5, 0.7, 1). While SKEWHI leads to the same power parameter

(under expected utility), SKEWLO increases it. Bosch-Domènech and Silvestre (2013)

change the frame by removing some pairs of gambles. The removal of the pairs with the

highest expected value (at the end of the list) reduces risk aversion. If the list contains a

certain amount (and then elicits a certainty equivalent), no effect of removal was found.

The authors also find no role for the way the list is ordered. Lévy-Garboua et al. (2012)

found opposite results, with a large impact of the order of appearance of the ten lottery

pairs.

All previous discussions are conditional on the implicit assumption that decision-

makers are expected-utility maximisers. If the decision-maker has non-expected-utility

preferences, the transformation of probabilities can bias the assessment of utilities. In

non-expected-utility decision models, risk aversion depends on the probability, which

increases from the top to the bottom of the decision table. In other words, the utility

function, which is measured over the outcome scale, will be dependent on the (prob-

ability) scale used to measure it. A subject who overweights low probabilities and

underweights high probabilities may choose option B at low probability and option A at

high probability. Drichoutis and Lusk (2016) show that probability weighting is a source

of bias in the Holt and Laury method. They propose a new method in which the proba-

bility remains constant across the ten decision tasks in the Holt and Laury table, while

keeping the CRRA utility parameter implied by a switch at a given row (see Table 7.15).

As a control, Drichoutis and Lusk (2016) also consider a table where the matched

utility parameter interval given by Table 7.15 is compatible with a one-parameter

probability weighting function with a parameter value equal to 0.6.22 To be consistent

with the original Holt and Laury experiment, in which risk aversion is measured for dif-

ferent stakes, they also propose a treatment where all amounts are scaled up by a factor

of five. In the design of Drichoutis and Lusk (2016), all rows are presented to subjects

separately as binary choices. Different treatments (especially treatments with different

scales of payoff) are presented in random order. The authors find that the HL method

with constant probability described in Table 7.16 increases the elicited power coefficient

for low payoffs (power = 1.11) but not for high payoffs (power = 0.2). Their estimate

of the probability-weighting parameter (based on probability 0.5 and a one-parameter

probability weighting function) is 3.1, which is clearly out of the common range of esti-

mated values found in the literature (see Booij et al., 2010, Table 1, for a survey). Focus

7.19 reviews the literature on the comparison between the Holt and Laury method and

certainty-equivalence method. Focus 7.20 shows how incentivised elicitation compares

to self-reported risk preferences.

22 Probability weighting is defined in Section 7.4.5, Focus 7.25.
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Table 7.16 The ten paired lottery-choice decisions in Drichoutis and Lusk (2016)

Choice number Option A Option B Expected payoff �=
1 5/10 of 1.68, 5/10 of 1.6 5/10 of 2.01, 5/10 of 1.00 +0.13

2 5/10 of 1.76, 5/10 of 1.6 5/10 of 2.17, 5/10 of 1.00 +0.10

3 5/10 of 1.84, 5/10 of 1.6 5/10 of 2.32, 5/10 of 1.00 +0.06

4 5/10 of 1.92, 5/10 of 1.6 5/10 of 2.48, 5/10 of 1.00 +0.02

5 5/10 of 2.00, 5/10 of 1.6 5/10 of 2.65, 5/10 of 1.00 −0.03

6 5/10 of 2.08, 5/10 of 1.6 5/10 of 2.86, 5/10 of 1.00 −0.09

7 5/10 of 2.16, 5/10 of 1.6 5/10 of 3.14, 5/10 of 1.00 −0.19

8 5/10 of 2.24, 5/10 of 1.6 5/10 of 3.54, 5/10 of 1.00 −0.35

9 5/10 of 2.32, 5/10 of 1.6 5/10 of 4.50, 5/10 of 1.00 −0.79

10 5/10 of 2.40, 5/10 of 1.6 5/10 of 4.70, 5/10 of 1.00 −0.85

Estimating Risk Preferences

The 10 paired-lottery choices in Holt and Laury (2002) not only allow for the classi-

fication of individuals based on their switching point between the two options and/or

the calculation of the bounds implied by this switching point. As shown by Holt and

Laury (2002) and popularised by Harrison and Rutström (2008), the method also allows

the estimation of the structural decision model of choice by maximum likelihood, in the

spirit of Sopher and Gigliotti (1993) and Hey and Orme (1994).

Assume that the choice data between options A and B for a given choice j are deter-

mined by a given data-generating process. Denote Zj the dummy variable for option

A being selected in choice number j in Table 7.14. U(Aj) and U(Bj) denote the value

associated with the prospect offered by option A and B in task j. We focus on expected

utility and assume that U(.) is defined by (7.1).23 The deterministic decision rule for an

expected-utility maximiser is therefore

DRj = U(Aj) − U(Bj) (7.3)

Under this rule, the decision-maker chooses A over B in choice j if DRj > 0, chooses

B over A if DRj < 0, and is indifferent between them if DRj = 0. If the utility function

underlying choices is further assumed to match the specification in (7.2), the decision

rule is parametrised by the preference parameter θ , which is the CRRA index reflecting

(relative) risk aversion:

DRj(θ ) = U(Aj|θ ) − U(Bj|θ ) (7.4)

This decision rule predicts all the decision-maker’s choices between options A and B

when the preference parameter is θ . The model can be extended to the assumption that

23 The analysis can be generalised to non-expected-utility theory; see Moffatt (2015) for a complete overview

of preference function estimation under risk.
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Focus 7.19

Comparing standard-gamble methods

Anderson and Mellor (2009) compare the measures obtained from two standard-gamble

elicitation methods: the Holt and Laury and certainty-equivalence methods. The certainty-

equivalence method is based on two series of hypothetical tasks between risky and safe options

– one between a job with either a certain or a risky level of income, and the other between

inheriting either a certain or a risky level of wealth. In the Holt and Laury task, the safe

options involve payoffs of $6.00 and $4.80, and the risky options payoffs of $11.55 and $0.30.

The survey measure is based on the following question, taken from a well-known survey (the

Health and Retirement Study – Barsky et al., 1997):

Suppose that you are the only income earner in the family. Your doctor recommends that you

move because of allergies, and you have to choose between two possible jobs. The first would

guarantee you an annual income for life that is equal to your parents’ current total family

income. The second is possibly better-paying, but the income is also less certain. There is a

50–50 chance the second job would double your total lifetime income and a 50–50 chance

that it would cut it by a third. Which job would you take: the first job or the second job?

There are three possible answers: First job/Second job/Do not know. The survey also includes

four additional questions where the downside risk associated with the second job is equal to a

50%, a 75%, a 20% and a 10% cut in outcome. The second choice has the same characteristics

in terms of probability and downside risk. The measure is based on the following question:

Suppose that a distant relative left you a share in a private business worth one million

dollars. You are immediately faced with a choice whether to cash out now and take the one

million dollars, or to wait until the company goes public in one month, which would give you

a 50–50 chance of doubling your money to two million dollars and a 50–50 chance of losing

one-third of it, leaving you 667 thousand dollars. Would you cash out immediately or wait

until after the company goes public?

There are three possible answers: Cash out/Wait/Do not know. Based on the answers to the

five questions, subjects are classified into one of six categories ranging from least risk-tolerant

(rejecting the new risky option when the downside risk is a loss of 33%, 20% and 10%) to most

risk-tolerant (accepting the risky option when the downside risk is a loss of 33%, 50% and

75%). Some 239 subjects carried out both the Holt and Laury probability-equivalence task and

the certainty-equivalence tasks. Anderson and Mellor (2009) find no systematic correlation

between the risk aversion from the certainty-equivalence task based on job gambles and that

in the probability-equivalence task. For example, restricting the analysis to the 97 subjects

who answered the survey in a consistent manner, the correlation between the experimental

measure and the survey-based classification is only 0.16; the correlation association between

the experimental measure and the classification from the hypothetical inheritance questions

was only slightly higher at 0.22.

individuals implement their intentions with some error (Sopher and Gigliotti, 1993; Hey,

2005). This error, denoted ǫ, reflects anything that prevents the decision-maker from

behaving according to the deterministic-choice rule and its underlying decision model:

misperceptions, miscalculations or inattention. In this case, the decision-maker chooses

option Aj over option Bj if DRj(θ )+ǫj > 0. Or, alternatively, the decision-maker chooses
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Focus 7.20

Survey questions and the measurement of risk attitudes

Dohmen et al. (2011) compare self-reported risk attitudes to incentivised experimental mea-

sures. The first source of data is a large representative survey of the adult German population,

in which respondents are asked:

How willing are you to take risks, in general? Rate your willingness on a scale between 0

and 10

The question is also asked in less general contexts, referring to risk attitudes in car driv-

ing, financial matters, sport, work, health and trust in others. The second source of data is an

experiment run on a pool of 450 subjects that is representative of the adult German population.

The experiment includes two parts: subjects are first asked to answer a questionnaire, which

includes the simple question quoted above. Subjects then play a real-stakes lottery experiment,

framed in the same way as in the experiment shown in Figure 7.13: subjects have to make a

series of 20 choices presented in ascending order between a sure option and a lottery 3000.50.

The sure options range from 0 to 190 euros. The switching point between the lottery and the

sure option defines the certainty equivalent for the lottery 3000.50. The distance between the

certainty equivalent and the expected value of the lottery (150 euros) measures the intensity of

(weak) risk aversion for each individual by their risk premium. The incentive compatibility of

the experiment was ensured by a between-subject random-task incentive system: each subject

had a 1/7 choice to have one of their choices played for real. The median (mean) response to the

general risk question in the large panel is 5 (4.42), with a standard deviation of 2.38, reflecting

considerable heterogeneity in risk attitudes. The answers to the general question in the sep-

arate experimental pool were similar. Moreover, 78% of these subjects provided a certainty

equivalent indicating risk aversion. To check whether survey data can predict risk attitudes in

the real-stakes experiment, Dohmen et al. (2011) first regressed the value of the safe option at

the switching point on the answers given to the general risk question, producing a significant

estimated coefficient of 0.61. Once biological, socio-economic and survey-condition controls

were included, this coefficient remained significant but fell to 0.40. In a similar experiment,

using the Holt and Laury (2002) method instead of the certainty-equivalence method, Attanasi

et al. (2017) find a similar correlation of 0.47 between the self-reported risk attitude and the

risk ordering in the decision task. Eliciting risk attitudes with four incentivised risk elicita-

tion tasks (the Holt and Laury (2002) method, the Eckel and Grossman (2008), the investment

game in Gneezy and Potters (1997) and their own elicitation task) and two survey measures,

Crosetto and Filippin (2016b) found correlations ranging from 0.03 to 0.30 between incen-

tivized tasks and the survey measures. Dohmen et al. (2011) also observe consistency in the

answers to the general and domain-specific risk questions. A principal-components analysis

reveals that 60% of the variation in individual risk attitudes can be explained by one prin-

cipal component, with factor loadings for the different risk question ranging from 0.74 to

0.81. These findings are consistent with the existence of a single underlying behavioural trait

determining risk attitudes. In a large sample experiment with nearly 3,000 subjects over 30

countries, Vieider et al. (2015) show this finding holds in most countries, with incentivised

measures for gains and losses and for risk and uncertainty. In addition, Vieider et al. (2015)

find incentivised and survey measures to correlate between countries.



The Econometrics of Experimental Data 305

B over A in choice j, and contradicts their deterministic decision rule, if the error is

large enough: ǫj > −DRj(θ ). Holt and Laury (2002) make use of the stochastic process

in Luce (1959), so that the probability that the decision-maker selects A for choice j is

Pr
[

Aj|θ , η
]

= U(Aj|θ )1/η

U(Aj|θ )1/η + U(Bj|θ )1/η
(7.5)

where η denotes the noise, or error, parameter. As the noise parameter η tends to 0,

the choice becomes deterministic and Pr
[

Aj|θ , η
]

tends to 1. On the contrary, as the

noise parameter becomes large, subjects make their choice at random between the two

options and Pr
[

Aj|θ , η
]

tends to one-half. Equation (7.5) is the likelihood contribution

for a single subject’s decision in choice j for parameters θ and η.24 For a full set of

decisions j = 1, . . . , J, the likelihood associated with a given subject’s choices is

L(θ , η) =
J
∏

j=1

Pr
[

Aj|θ , η
]Zj ×

(

1 − Pr
[

Aj|θ , η
])1−Zj (7.6)

where Zj = 1 if the subject chooses option A in choice j (and 0 otherwise).

Holt and Laury (2002) estimate an aggregate risk-preference parameter and an aggre-

gate noise parameter. To obtain these aggregate estimates, the likelihood needs to be

calculated over the N subjects in the experiment. The log likelihood to be maximised

with respect to parameters θ and η is then

LL(θ , η) =
N
∑

i=1

J
∑

j=1

Zij log
(

Pr
[

Aj|θ , η
])

+ (1 − Zij) log
(

1 − Pr
[

Aj|θ , η
])

where Zij = 1 if individual i chooses A in choice j (and 0 otherwise).

7.4.5 A Value-Equivalence Method: The Trade-Off Method

Wakker and Deneffe (1996) introduce a value-equivalence method – the ‘trade-off

method’ – for eliciting utilities in decision under risk and uncertainty. This method

is very general and is not restricted to the assumptions usually made in eliciting util-

ity. Compared to most existing methods, this method is ‘parameter-free’ as it does not

impose any parametric assumptions on the utility function. Moreover, it is not restricted

to choice under risk and is easily applied to choice under uncertainty, in which the prob-

abilities are unknown. Last, the trade-off method is not restricted to expected utility and

can be used with a variety of preferences from expected utility to rank-dependent utility

and prospect theory.

Description of the Method

In practice, the method elicits the utility function based on a ‘standard sequence of

outcomes’ – a sequence of outcomes such that the utility difference between succes-

sive elements of the sequence is constant. It is based on inferences from indifferences

24 If subjects are indifferent between the two options, the likelihood can be defined as the average of the

likelihood of choosing either option; see Harrison and Rutström (2008).
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between two two-outcome prospects. Consider, for example, x0 = $10 as the starting

point of the standard sequence. First, an amount x1 is elicited such that25

x10.51 ∼ 100.58 (7.7)

The outcome x1 can be elicited by a matching task or by a choice-based procedure. Most

experiments use a choice-based procedure (Wakker and Deneffe, 1996; Abdellaoui,

2000). In the second experimental task, the amount x1 is substituted for the outcome

$10 and an amount x2 is elicited such that26

x20.51 ∼ x10.58 (7.8)

Together, (7.7) and (7.8) define the elements of a standard sequence. Under expected

utility, the first indifference, in (7.7), leads to the following equality:

1

2
u(10) + 1

2
u(8) = 1

2
u(x1) + 1

2
u(1) (7.9)

and the second, in (7.8), leads to

1

2
u(x1) + 1

2
u(8) = 1

2
u(x2) + 1

2
u(1) (7.10)

Subtracting one equation from the other and factoring out 1
2 , we find

u(x2) − u(x1) = u(x1) − u(10) (7.11)

which shows that the indifferences reveal an equality of utility differences between u(x2)

and u(x1) and between u(x1) and u(x0) (with x0 = 10). The amount x1 is a mid-point

(in utility terms) between x0 and x2. Figure 7.15.a shows how this utility mid-point

is related to the curvature of the utility function. With a concave utility function, the

utility mid-point x1 is lower than the monetary mid-point (x0 + x2)/2. Moreover, the

greater the difference, the more curved is the utility function, as shown by the grey

area in Figure 7.15. On the contrary, with a convex utility function the utility mid-point

is greater than the monetary mid-point. If the utility mid-point equals the monetary

mid-point, then utility is linear – which corresponds to risk neutrality under expected

utility.

A similar series of indifferences xj+10.51 ∼ xj0.58 can be elicited to obtain a longer

sequence x0, x1, x2, . . . , xk, where all outcomes are equally spaced in terms of utility

25 In practice, the first step of the trade-off method is to select a starting outcome x0 ($10 in the example

above) and to select outcomes A and a such that A > a (8 and 1 in the example respectively).
26 The answers are thus chained in the sense that the previous responses are used in the elicitation of subse-

quent choices. One issue with chaining is that it can lead to error propagation, where errors made in one

particular choice affect later choices. Bleichrodt and Pinto (2000), Abdellaoui et al. (2005) and Bleichrodt

et al. (2010) simulate error propagation and suggest that it is not a major concern in trade-off elicitations.

Chaining can also lead to strategic answers. Bleichrodt et al. (2010) include a test of chaining by repeating

the same two questions at the beginning of the experiment (when subjects did not yet know about the

chaining of the answers) and towards the end (when they did). Were chaining to affect the results, the

second set of questions should produce higher figures. Bleichrodt et al. (2010) find no evidence for this,

and conclude that the chained nature of the measurements has no discernible impact on their results.
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Figure 7.15 Trade-off sequences and elicited utility under risk and uncertainty

units. In this case, each utility value can be normalised to u(xj) = j/k by setting u(x0)

equal to 0 and u(xk) equal to 1. Each element of the standard sequence corresponds to

a direct observation of the inverse utility function, without any parametric assumption

about the form of the utility function. This is illustrated via the six-element standard

sequence in Figure 7.15.b. Focus 7.21 compares the trade-off methods with elicitations

based on alternative methods.

Measuring Utility Curvature

As shown in Figure 7.15, the area below the utility function provides a measure of

the degree of concavity of the utility function. Most contributions apply the following

method to calculate this area. Assume that the experiment has elicited a standard

sequence x0, x1, . . . , x5. First, utility is normalised in order to take values between 0

and 1 by setting u(x0) equal to 0 and u(x5) to 1. Each element of the standard sequence

defines a utility from 0 to 1 with increments of 1/5. Second, the domain of utility is nor-

malised to [0, 1], by transforming every outcome xj to the value (xj−x0)/(x5−x0). Third,

the normalised area under the utility function is calculated for each segment. Each sub-

area of a segment xj+1 − xj is the sum of a rectangle of area (xj+1 − xj) × j
5 , j = 1, . . . , 4

and a triangle of area
xj+1−xj

2 × 1
5 , j = 0, . . . , 4. If utility is linear, this area equals 1/2.

Utility is convex (concave) if the area under the curve is smaller (larger) than 1/2. This

calculation yields a characterisation of the individual utility function. For example, Qiu

and Steiger (2011) classify subjects as having linear utility if the area is between 0.47

and 0.53, as having concave utility if the area is above 0.53, and as having convex utility

if the area is below 0.47.

From Figure 7.15 it is also apparent that the slope of the segment lines between

two successive elements of the standard sequence provides an approximation of the

derivative of the utility function (i.e. marginal utility). As such, the ‘rate of growth’
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Focus 7.21

Comparing standard-gamble and value-equivalence methods

Wakker and Deneffe (1996), Bleichrodt et al. (2001) and Abdellaoui et al. (2007b) compare

the utility elicited via the trade-off method to that from certainty equivalence. Wakker and

Deneffe (1996) also measure utility via probability equivalence. Under expected utility, the

results from the certainty-equivalence and trade-off methods should be consistent. Abdellaoui

et al. (2007b) find no difference between the two methods when the probability associated with

the best outcome is set to 1/3. This suggests that eliciting utility with a one-third probability

helps to remove some of the usual departures from expected utility found in decision under

risk (Bleichrodt et al., 2001). However, Abdellaoui et al. (2007b) also show that the results

change dramatically under the certainty-equivalence method when the probability associated

with the best outcome is 2/3. In this case, utility from the certainty-equivalence method differs

from that in either the trade-off method or the certainty equivalence method with probability
1/3. As shown in the figure below (from Figure 3 in Abdellaoui et al., 2007b, p. 366), the

average utility function from the certainty-equivalence method with probability 2/3, denoted

CE2/3(EU, is much more curved than that from the trade-off method (TO) or the certainty

equivalent method with probability 1/3 (CE1/3).
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This finding is not in line with expected utility, and suggests that probability levels

can have a considerable impact on elicitation. Abdellaoui et al. (2007b) reanalyse the

results using prospect theory to take probability weighting in utility measurements into

account. Under prospect theory, the resulting corrected utility, denoted CE2/3(PT), con-

forms with the other measurements (the figure also shows the results from eliciting utility

from riskless strength-of-preference judgement, which is not discussed here). To conclude,

standard-gamble methods, which involve a riskless prospect, are more prone to violations of
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expected utility due to the well-documented certainty effect (Kahneman and Tversky, 1979;

Fehr-Duda and Epper, 2012). This suggests that the utility elicited by these methods may be

too risk-averse. In contrast, value-equivalence methods that are based on the comparison of

risky prospects are less prone to certainty effects, and so might exhibit fewer violations of

expected utility.

of the elements of the standard sequence directly characterises the shape of the utility

function. Abdellaoui (2000) takes the first-order difference �
′
j = |xj − xj−1|, j = 1, . . . 5

and the second-order difference �
′′
j = �

′
j+1 − �

′
j, j = 1, . . . 4 to classify subjects by

the shape of their utility function. The utility function is concave (convex) if and only

if �
′′
j is positive (negative). To account for response error, subjects with two out of four

positive (negative) �
′′
j are classified as having a concave (convex) utility function.

Last, the trade-off method yields parametric estimates of the utility function at low

econometric cost. If we assume, for example, the power family, defined by (7.2), and

a domain of utility normalised to [0, 1], estimation can be carried out using non-linear

least squares in the following regression:27

j

5
=

x1−θ
j

1 − θ
+ ǫj, j = 1 . . . 5 (7.12)

where, for example, ǫj ∼ N (0, σ 2).

Most of the approaches presented in this section are based on the hypothesis that

subjects behave according to expected utility. Under this assumption, utility measure-

ment proceeds by eliciting a small number of equivalences between prospects. There

is, however, a great deal of evidence that individuals systematically violate expected

utility (Starmer, 2000) and that utility measurements based on expected utility produce

inconsistent results. Two important sources of expected-utility violations are probability

weighting – the non-linear evaluation of probabilities (Diecidue and Wakker, 2001) –

and loss aversion, the assumption that people are more sensitive to losses than to com-

mensurate gains. Loss aversion is key for the explanation of departures from expected

utility (Rabin, 2000; Starmer, 2000) and has received abundant empirical evidence both

from the lab and from the field (Wakker, 2010; Barberis, 2013; Fox and Poldrack, 2014).

Both probability weighting and loss aversion are accounted for in prospect theory –

developed in Focus 7.22. Focus 7.23 further details how loss aversion can be measured

with the trade-off method.

Experimental Evidence

Wakker and Deneffe (1996) test the trade-off method for monetary and duration-of-life

outcomes in two separate experiments. In the monetary experiment, participants are told

that they could choose between two types of investment in a foreign country with an

uncertain return, and a five-element standard sequence is elicited. The results are con-

sistent with risk aversion and utility that is concave in money. Qiu and Steiger (2011)

27 With
(xj)

(1−θ)

1−θ
to be replaced by a logarithm if θ = 1.
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Focus 7.22

The basic prospect-theory model

For simplicity, we restrict the presentation to a two-outcome prospects model. Preferences

are defined relative to a reference point (denoted x0). Gains are outcomes that are strictly

preferred to the reference point, while losses are outcomes that are strictly less preferred to the

reference point. A prospect is mixed if it involves both a gain and a loss. For mixed prospects,

the notation x1px2 stands for a situation in which x1 is a gain and x2 is a loss. A gain prospect

involves no losses (i.e. both x1 and x2 are weakly preferred to x0) and a loss prospect involves

no gains. For gain and loss prospects the notation x1px2 applies to a situation in which the

absolute value of x1 exceeds the absolute value of x2 (i.e. for gains x1 ≥ x2 and for losses

x1 ≤ x2). Under prospect theory, the decision-maker’s preferences over mixed prospects x1px2

are

U(x1px2) = ω+(p)v(x1) + ω−(1 − p))v(x2) (7.13)

and preferences over gain or loss prospects are

U(x1px2) = ωs(p)v(x) + [1 − ωs(p)]v(y) (7.14)

where s = + for gains and s = − for losses, and v is a strictly increasing, real-valued

utility function with v(x0) = 0. In empirical applications, v is often decomposed into a

basic utility function u, capturing the decision-maker’s attitudes towards final outcomes,

and a loss-aversion coefficient capturing attitudes towards gains and losses. The probability-

weighting functions ω+ and ω− are strictly increasing and satisfy ω+(0) = ω−(0) = 0

and ω+(1) = ω−(1) = 1. Under prospect theory, risk attitudes are captured through the

shape of the utility function for gains and losses, as in expected utility, but also through loss

aversion (for mixed prospects) and probability weighting. As a consequence, the one-to-one

relationship between risk aversion and utility curvature that exists under expected utility no

longer holds under prospect theory. Tversky and Kahneman (1992) assume that the utility

function and the probability-weighting functions ω+ and ω− show diminishing sensitivity.

This produces an S-shaped utility function that is concave in gains and convex in losses, and

an inverse S-shaped probability-weighting function that overweights small probabilities and

underweights moderate and high probabilities (see Focus 5.2 and Focus 7.25). Taken together,

the S-shaped utility and inverse S-shaped probability weighting imply a fourfold pattern of

risk attitudes: risk aversion for small probability losses and larger probability gains, and risk

seeking for larger probability losses and small probability gains.

replicate these findings in a larger experiment. For losses, Fennema and Van Assen

(1998) and Etchart-Vincent (2004) find convex utility. Abdellaoui (2000) applies this

method to gains and losses, and Bleichrodt and Pinto (2000) to the health domain. The

results show concave utility for gains and convex utility for losses. These findings are

consistent with a utility function exhibiting the psychological principle of diminishing

sensitivity (Kahneman and Tversky, 1979). Booij and Van de Kuilen (2009) confirm

these findings when measuring utility over gains and losses in a large representative

sample of N = 1,935 Dutch respondents. Abdellaoui et al. (2016b) extend this method

to capture sign-dependence in the utility function and elicit the utility function for gains
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Focus 7.23

Measuring loss aversion

Measuring loss aversion is difficult for a number of reasons. First, there are a number of

definitions in the theoretical literature – see Zank (2010) for a review and Abdellaoui et al.

(2007a) for an empirical assessment of the various definitions. Second, measuring loss aver-

sion requires the simultaneous measurement of utility for gains and utility for losses, which

is complicated by the assumption of prospect theory that the probability weighting for gains

and losses may differ. As a result, most measurements of loss aversion impose simplifying

assumptions: these are typically linear utility for gains and losses and no probability weight-

ing (Booij and Van de Kuilen, 2009; Baltussen et al., 2016), or equal probability weighting for

gains and losses (Gächter et al., 2007). The typical coefficient of loss aversion found in the lit-

erature is around 2, meaning that losses weigh approximately twice as much as commensurate

gains (see Fox and Poldrack, 2014, for a review of the available evidence). Abdellaoui et al.

(2016b) introduce a method to measure loss aversion that can be applied under both risk and

uncertainty, and requires no simplifying assumptions about the prospect-theory parameters.

Moreover, the method allows for different definitions of loss aversion. In particular, under the

definition of loss aversion proposed by Köbberling and Wakker (2005), the elicitation method

can quantify loss aversion via three indifferences and does not require the complete measure-

ment of utility. The method consists of three stages. In the first stage, a gain and a loss are

elicited that connect utility for gains (measured in the second stage) with utility for losses

(measured in the third stage). This first stage alone is enough if the aim is to measure loss

aversion according to the definition in Köbberling and Wakker (2005), and works as follows.

• First, a reference point x0 (e.g. 0) and a gain outcome xG are set. The experiment then elicits

the loss xL for which the subject is indifferent between the reference point x0 and a mixed

prospect xGpxL, with a gain xG with probability p and a loss xL with probability 1 − p.

• Second, the experiment elicits two certainty equivalents: one in the gain domain x+
1 and

one in the loss domain x−
1 . The certainty equivalent in the gain domain is such that the

subject is indifferent between receiving x+
1 for sure and playing a lottery paying xG with

probability p and the reference point x0 with probability 1 − p. The certainty equivalent for

the loss domain is such that the subject is indifferent between losing x−
1 for sure and playing

a lottery losing xL with probability 1 − p and paying the reference point with probability p.

• Abdellaoui et al. (2016b) show that under a fairly general specification of preferences, loss

aversion as defined as the kink in utility at the reference point (Köbberling and Wakker,

2005) can be estimated directly by the ratio of the certainty equivalents x+
1 /x−

1 . If this

ratio is greater than 1, the subject is loss-averse; if the ratio is below one, the subject is

loss-seeking; and if the ratio is one, the subject is loss-neutral. Abdellaoui et al. (2016b)

also show that replacing the probabilities p and 1 − p by the (complementary) events with

unknown probabilities allows loss aversion to be measured under uncertainty.

The second and third stages are necessary if the focus is rather on measuring loss aver-

sion according to the definition by Kahneman and Tversky (1979). The measurements in

these additional stages rely on Wakker and Deneffe’s (1996) trade-off method explained in

Section 7.4.5.
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Focus 7.24

Prospect theory with uncertainty and ambiguity

Prospect theory, presented in Focus 7.22, can easily be extended to uncertainty and ambigu-

ity (Tversky and Kahneman, 1992; Wakker, 2010). Uncertainty is modelled through a state

space S. Exactly one of the states will occur, but the decision-maker does not know which

one. The subsets E of the state space are called events and Ec denotes the complement of

E. Under uncertainty, prospects map states to outcomes: a two-outcome prospect is denoted

x1Ex2, i.e. the decision-maker obtains x1 if event E occurs and x2 otherwise. Under binary

prospect theory, the decision-maker’s preferences over mixed prospects x1Ex2 are

U(x1Ex2) = W+(E)v(x1) + W−(Ec)v(x2) (7.15)

and preferences over gain or loss prospects are

U(x1Ex2) = Ws(E)v(x1) + [1 − Ws(E)]v(x2) (7.16)

The event-weighting functions Ws assign a number Ws(E) to each event E such that Ws(∅) =
0, Ws(S) = 1 and Ws is monotonic – i.e. E ⊇ E′ implies Ws(E) ≥ Ws(E′). The event-

weighting functions Ws depend on the sign of the outcomes and may be different for gains and

losses. Moreover, they need not be additive. For gains, binary prospect theory contains most

transitive ambiguity models as special cases, as pointed out by Luce (2014). These ambiguity

models only differ when the number of outcomes is at least three; (7.15) and (7.16) provide

the extension of these models to include sign dependence. For binary prospects, Baillon et al.

(2017) show how to describe a decision-maker’s ambiguity attitude by two indices to measure

and decompose ambiguity attitudes in experiments.

and losses in a within-subject experiment under risk and uncertainty. Van Assen and

Snijders (2010) elicit subjects’ utilities by the trade-off method and use these utilities to

make predictions in an experiment in which participants played a number of different

repeated prisoners’ dilemma games. They find no evidence that concave utility produces

cooperation in the prisoners’ dilemma.

The trade-off method is not restricted to choice under risk, and can be easily extended

to choice under uncertainty. For decision under uncertainty, the trade-off method is

similar to that above with the probability p being replaced by an event with unknown

probability E. For example, the indifference in (7.7) becomes x1E1 ∼ 10E8, meaning

that the subject is indifferent between receiving x1 if event E occurs and 1 otherwise; and

receiving 10 if event E occurs and 8 otherwise. In this case, under (subjective) expected

utility, the objective probabilities have to be replaced by subjective probabilities Pr[E]

and 1 − Pr[E]. As the probabilities disappear when (7.9) and (7.10) are combined, the

trade-off sequence defined by (7.11) remains the same. Wakker and Deneffe (1996) use

electoral outcomes to describe the event E and its complement, and Abdellaoui et al.

(2005) use movements in the German stock market. Abdellaoui et al. (2005) obtain con-

cave utility for gains and close to linear utility for losses. Abdellaoui et al. (2016b) elicit

the utility function for the same individuals under both risk and uncertainty on a within-

subject basis. In both contexts, utility is mostly concave for gains and convex for losses.
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Focus 7.25

Probability weighting in choice under risk

Most empirical work on probability weighting has found an inverse S-shaped probability

weighting for both gains and losses (Tversky and Kahneman, 1992; Wu and Gonzalez, 1996;

Abdellaoui, 2000; Bleichrodt and Pinto, 2000; Booij et al., 2010; Tanaka et al., 2010; Bruhin

et al., 2010; Abdellaoui et al., 2011). The following figure (from data on US students in

L’Haridon and Vieider, 2015) is a typical example of probability-weighting functions for

gains and losses, obtained by fitting the two-parameter weighting function proposed by Prelec

(1998), ωs(p) = e−bs(−ln(p))as
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The parameter a mainly determines the slope of the probability-weighting function: a = 1 if

the weighting function is linear (the EU case) and a < 1 in the case of probabilistic insen-

sitivity. Any value of a that differs from 1 indicates a departure from linear utility weighting

and hence from EU. The parameter b is an anti-index of the elevation of the weighting func-

tion, i.e. the extent to which people are optimistic (or pessimistic) and find the chance domain

attractive. The point where the probability-weighting function changes from overweighting

probabilities to underweighting them is typically around 1/3.

For losses, the equal curvature of utility for risk and uncertainty cannot be rejected; for

gains, utility is significantly more concave under risk.

7.4.6 The Econometrics of Individual Preferences under Uncertainty

The econometric procedures discussed above have been widely used in experimental

economics to estimate risk-preference parameters (Holt and Sherman, 2014; Hey, 2014;

Moffatt, 2015). Several extensions have been proposed to infer preference parameters
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from binary choices or indifferences between lotteries. In this section, we review some

of these extensions, and focus on two specific dimensions: error specification and

heterogeneity in risky choice.

Error Specification and Randomness

In Loomes et al. (2002) the choice between two prospects is analysed in three stages:

preference selection, calculation and action. Randomness can enter the choice between

prospects at any of these three stages. At the first stage, there is randomness if the sub-

ject is uncertain about their preferences. In the random-preference model of Loomes

and Sugden (1995), preferences are defined according to a core theory (expected util-

ity or prospect theory, for example) but the parameters applied to a given choice vary

randomly. There is randomness at the second stage if the decision-maker makes calcu-

lation errors when comparing prospects: this corresponds to the standard representation

of stochastic choice. Last, at the third stage, the decision-maker can fail to choose the

prospect that they thought had the highest value – because, for instance, of a lack of

focus when making decisions, or choices that are made at random, or because decision-

makers did not understand the decision problem. In this case, the decision-maker’s hand

trembles and the choice becomes less strongly connected with preferences. We start

by extending the representation proposed in Section 7.4.4 to trembling hands (the third

stage in Loomes et al., 2002) and then suggest different specifications for the stochastic

term (the second stage in Loomes et al., 2002). Focus 7.26 contains more details on

stochastic choice.

Introducing trembles allows mistakes to be taken into account once the calcula-

tion stage has been performed (inattention, true random choice, violation of first-order

stochastic dominance, etc.) when choosing between prospects. In Moffatt and Peters

(2001), for example, there is a probability pτ that subjects choose at random between lot-

teries (with probability 1/2 in the case of a binary choice) while subjects choose according

to the standard choice probability Pr[Aj] with probability 1−pτ . The choice probability

then becomes

Pr[Aj|pτ ] = (1 − pτ )Pr[Aj] + pτ

2
(7.19)

If the choice probability Pr[Aj] depends on some preference parameter θ and a stochas-

tic term σ , then the base choice probabilities is Pr[Aj|θ , σ ] and the choice probability

becomes

Pr[Aj|θ , σ , pτ )] = (1 − pτ )Pr[Aj|θ , σ ] + pτ

2
(7.20)

Using data from the experiment in Hey and Orme (1994), Moffatt and Peters (2001)

evaluate the tremble probability pτ to be around 3%, a value halfway between 1% in

Conte et al. (2011) and 8% in Von Gaudecker et al. (2011). Loomes et al. (2002) find that

trembling falls with experience: the tremble is 11% at the beginning of the experiment

but under 2% at the end.

Different specifications of calculation errors have been used in the literature. The

basic specification (Fechner, 1869) assumes it to be independently and identically dis-

tributed, and normally distributed with constant variance. Denoting this calculation error
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Focus 7.26

Stochastic choice

As shown in Section 7.4.4 it is necessary to add a stochastic component ǫ to the analysis if

some randomness is embedded in choices. In this framework, the decision-maker chooses Aj

over Bj if and only if U(Aj) − U(Bj) + ǫj > 0. The standard interpretation is that ǫ captures

random unobservable characteristics (Train, 2009). The model can be further specified by

denoting g(.) the density function, and G(.) the cumulative distribution function, of the random

variable ǫj. Let Zj = 1 when the value of ǫj together with the value of observables lead the

decision-maker to choose Aj, and 0 otherwise. Making use of the assumed decision process,

the probability of choosing Aj is the expected value of the indicator over the set of possible

values of ǫj:

Pr[Aj] =
∫

Zj[U(Aj) − U(Bj) + ǫj > 0]g(ǫj)dǫj

=
∫

Zj[ǫj > −[U(Aj) − U(Bj)]]g(ǫj)dǫj

As Zj = 0 when ǫj < −[U(Aj) − U(Bj)], the integral only takes into account observations

such that Zj = 1 (i.e. when ǫ > −[U(Aj) − U(Bj)], and the probability is

Pr[Aj] =
∫ ∞

−[U(Aj)−U(Bj)]
g(ǫj)dǫj (7.17)

Then

Pr[Aj] = 1 − G[−[U(Aj) − U(Bj)]] (7.18)

If a normal distribution is assumed for the error, symmetry implies Pr[Aj] = G[U(Aj)−U(Bj)].

With μj and σj as the parameters of the normal distribution (ǫj ∼ N(0, σj)), then Pr[Aj] =
�

(
U(Aj)−U(Bj)

σj

)

.

ǫj, this corresponds to assuming ǫj ∼ N (0, σ 2), ∀j. As such, the probability of selecting

Aj over Bj is

Pr[Aj|θ , σ ] = �

[
U(Aj|θ ) − U(Bj|θ )

σ

]

(7.21)

where � denotes the unit normal cumulative distribution function and θ preference

parameter(s). In Section 7.4.4, the preference parameter was the CRRA coefficient θ .

As the variance of the error parameter σ 2 tends to 0 (no error), choice becomes deter-

ministic and Pr[Aj|θ , σ ] tends to 1 or 0 depending on the sign of U(Aj|θ ) − U(Bj|θ ).

With high variance, on the contrary, subjects make their choices essentially at random

and Pr[Aj|θ , σ ] tends to one-half.

Von Gaudecker et al. (2011) define the choice probabilities (7.21) based on certainty

equivalence between lotteries. For a utility function u(.) and utility parameter θ , the

certainty equivalent of option Aj is CE(Aj|θ ) = u−1
[

U
(

Aj|θ
)

|θ
]

and that of option Bj

is CE(Bj|θ ) = u−1[U(Bj|θ )|θ ]. In this case, the variance σ has a monetary interpretation

and the choice probabilities are
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Pr[Aj|θ , σ ] = �

[
CE(Aj|θ ) − CE(Bj|θ )

σ

]

(7.22)

When choices have been observed between a fixed risky prospect Aj and a sequence

of certain alternatives Bj, the switching point between the two options defines the cer-

tainty equivalent of the lottery. The choice probabilities can be defined in two ways.

Bruhin et al. (2010) take the middle of the switching interval as the (observed) certainty

equivalent CEj. The probability that the predicted certainty equivalent CE(Aj|θ ) matches

the elicited certainty equivalent is

Pr[CE(Aj) = CEj|θ , σ ] = 1

σ
φ

(
CEj − CE(Aj|θ )

σ

)

where φ denotes the standard normal density. Beauchamp et al. (2012) use the two

certain options Binf and Bsup that bracket the certainty equivalent to define the choice

probability. The probability that the participant switches between Bj,inf and Bj,sup is

Pr[Bj,inf , Bj,sup|θ , σ ] = �

(
U(Bj,sup|θ)−U(Aj|θ)

σ

)

−�

(
U(Bj,inf −U(Aj|θ)|θ)

σ

)

An extreme-value distribution, such that ǫj ∼ EV(0, σ 2), can be assumed instead of

i.i.d. normally distributed errors. This error specification leads to a mixed-logit model

and proves to be very useful in computationally intensive estimations (Train, 2009). The

probability of selecting Aj for choice j in this case is

Pr[Aj|θ , σ ] = 1

1 + e− U(Aj|θ)−U(Bj|θ)

σ

(7.23)

There is a link between the extreme-value distribution of error and the Luce error model

(Wilcox, 2008). Applying a logarithmic transformation of U(.), V(.|θ ) = log[U(.|θ )]

results in the Luce error model, with μ = σ :

Pr[Aj|θ , σ ] = V(Aj|θ )
1
σ

V(Aj|θ )
1
σ + V(Aj|θ )

1
σ

All the above specifications assume homoskedastic variance. The error parameter σ

can then be decomposed into a component common to all choices and a measure of

distance between prospects. Wilcox (2008) suggests two alternative ways of including

heteroskedasticity into the error specification. A first is to link the error parameter to a

distance between outcomes. For example, in choices between a risky prospect x1jpx2j

and certain amounts, Bruhin et al. (2010) make the error parameter proportional to the

range |x1j − x2j| between outcomes: σj = σ × |x1j − x2j|. Another possibility is to link

the error parameter to a distance between the utilities of outcomes.

Instead of assuming identically distributed variance between successive tasks, a

task-varying error component can be specified. This assumption can reflect learning

or experience (if the error variance falls with experimental duration) or fatigue (if

error variance rises with experimental duration). Assume that the experimental choices

(j = 1, . . . , J) are indexed by the order in which the subject performs the decision tasks.
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One possible specification for a varying error component is exponential: σj = σ0 × eσ1j,

where the parameter σ0 indicates the error parameter at the beginning of the experiment

and σ1 shows how the error changes throughout the experiment. If σ1 > 0, then the

subject tires as the experiment progresses. If σ1 < 0, then the subject learns and makes

fewer errors.

Heterogeneity

Starting from Hey and Orme (1994) and Harless and Camerer (1994), a series of papers

use binary choices or indifferences between lotteries to consider heterogeneous risk

preferences. A first way is to estimate preferences separately for each individual for

a given decision model (e.g. expected utility). An extension is to estimate the preference

parameters for different decision models and select, for each subject, the best-fitting

model using a likelihood-ratio test or the Akaike information criterion. Hey and Orme

(1994) consider a series of 100 binary choices by subjects to identify the best-fitting

individual preferences by maximum likelihood. Stott (2006) uses the same method

and evaluates a pattern of 256 combinations of decision models and stochastic choice

patterns to find the best-fitting combination over the 96 experimental participants.

A second way of dealing with heterogeneity is to assume that preferences are fixed

for a reference individual and vary with some observable characteristics. Here the

preferences θi of subject i are conditional on a set of observable characteristics, Xi:

θi = XXXib (7.24)

where XXXi is a vector of regressors with the first element being one, and b is a parameter

vector. Harrison and Rutström (2008) use this specification to control for individual

characteristics in the measurement of the risk parameter θ using the Holt and Laury

(2002) method.

A third way to deal with heterogeneity is to estimate a random-coefficients model

in which the preference parameter is fixed for a given individual and varies randomly

across the population according to a given distribution (Loomes et al., 2002). For

example, Moffatt and Peters (2001) assume that the power/CRRA parameter 1 − θ is

lognormally distributed across the population, and Conte et al. (2011) assume that the

parameters from a two-parameter rank-dependent utility model have a bivariate distribu-

tion. If θ is drawn from a distribution with density g(θ ), then for a given set of decisions

j = 1, . . . , J, the likelihood associated with subject i’s choices, Zij, is

Li(θ , σ ) =
∫

⎡

⎣

J
∏

j=1

Pr[Aj|θ , σ ]Zij × (1 − Pr[Aj|θ , σ ])1−Zijg(θ )

⎤

⎦ dθ (7.25)

and the overall log likelihood is the sum of the logarithm of Li(θ , σ ) over all subjects.

For the sake of notational simplicity, the stochastic parameter σ in (7.25) is assumed to

be constant. If there is more than one preference parameter, as is often the case in non-

expected-utility models, then the distribution g(.) is a multivariate distribution and the

integral in (7.25) is multidimensional. Von Gaudecker et al. (2011) estimate a random-

coefficients model with four preference parameters. Each parameter is assumed to be
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the (transformed) sum of a term reflecting observed heterogeneity in the spirit of (7.24)

and a normally distributed unobserved heterogeneity term that is independent of the

regressors.28 In general, the integral in (7.25) does not have an analytical solution and

is approximated by simulation techniques (e.g. Monte Carlo, Halton draws). Simulation

methods approximate non-linear estimation problems by generating random draws that

aim to cover the area of integration. A typical simulation method for estimating, e.g. a

model with parameters distributed according to the density g() of a normal distribution

N (μ, ψ), proceeds as follows (Train, 2009; Moffatt, 2015):

1. Take a draw of θ from N (μ, ψ). Label this draw θ1, where the subscript denotes that

it is the first draw.

2. Determine Pr[Aj|θ , σ ] with this value of θ1 and for the value of σ and calculate

li1 =
∏J

j=1 Pr[Aj|θ1, σ ]Zij × (1 − Pr[Aj|θ1, σ ])1−Zij for each subject i over the J

choices.

3. Repeat steps 1 and 2 many times, for a total of R draws, and compute the

corresponding lir, r = 1....R.

4. Compute the average of the lirs, , r = 1....R. This average is the simulated individual

contribution to the likelihood, Li(θ , σ ). Sum the log of this quantity over subjects to

obtain the overall log likelihood for a given μ, ψ and σ .

5. Iterate over μ, ψ and σ using standard algorithms (BFGS, for example) to obtain the

maximum likelihood.

A fourth way of dealing with heterogeneity is to use a finite-mixture model. This

classifies individuals according to a given number of types in the population. Each type

h = 1, . . . , H is characterised by a specific preference parameter θh and each subject has

probability ph of belonging to type h.29 For a given type h and a given set of decisions

j = 1, . . . , J, the likelihood associated with subject i’s choices Zij is

Li(θh, σ ) =
J
∏

j=1

Pr[Aj|θh, σ ]Zij ×
[

1 − Pr
[

Aj|θh, σ
]]1−Zij (7.26)

and the overall log likelihood of the finite-mixture regression model is

LL(θ1, . . . , θh, p1, . . . , ph−1, σ ) =
N
∑

i=1

H
∑

h=1

phLi(θh, σ ) (7.27)

For the sake of notational simplicity, (7.26) and (7.27) assume that the stochastic param-

eter σ is constant. On the contrary, Bruhin et al. (2010) assume that the error parameter

is heteroskedastic and subject-dependent. They estimate the model using an iterative

expectation maximisation (EM) algorithm for a different number of types. They evalu-

ate the quality of classification via the average normalised entropy criterion and find that

H = 2 provides a satisfactory account of the heterogeneity in their data. Bruhin et al.

28 The sum of observed and unobserved heterogeneity is transformed to take restrictions on the sign or values

of the parameters into account.
29 It is also possible to define the type by assuming that different individuals use different preference functions

(Bruhin et al., 2010; Conte et al., 2011).
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(2010) and Conte et al. (2011) use finite-mixture models to characterise behaviour under

two alternative decision models: expected utility and prospect theory. Each experiment

has a different experimental design. Using a certainty-equivalence method, Bruhin et al.

(2010) find that 80% of subjects can be classified as prospect-theory type with an inverse

S-shaped probability weighting function. Using a paired-gamble comparison method, in

which subjects are known to be less prone to violations of expected utility, Conte et al.

(2011) find the opposite proportions.

Summary

This chapter provided an overview of statistical and econometric techniques that

are commonly used with experimental data. Starting from a working example of

second-price auctions, we first described what experimental data are in practice,

depending on their data types and the way sampling was achieved. The chapter paid

specific attention to exploratory data analysis, which is a fundamental way to get basic

information from the experimental data. Graphical tools, in conjunction with descrip-

tive statistics, are central for the researcher to learn the content of experimental data.

In analysing experimental data, measures of association, such as the Pearson correla-

tion, should be used with care. Anscombe’s quartet clearly shows the importance of

underlying assumptions in measurement and in the choice of the relevant indicator.

The chapter then moved to inference (as defined and discussed in Chapter 3) from

a practical point of view. Several cases for building confidence intervals for various

estimates, alongside the properties of estimators, are described. An important part of

the chapter is devoted to hypothesis testing, a central analytical tool in experimental

research. Hypothesis testing allows us to make a judgement about a parameter value by

setting this judgement up as a testing problem between two competing, mutually exclu-

sive, hypotheses regarding the true parameter value. Because experimental samples are

often of limited size, we draw particular attention to non-parametric hypothesis tests

and to issues related to sample size. This chapter does not intend to be exhaustive, but

rather to account for the main statistical tests available in the literature, depending on the

nature of the data (interval, nominal or categorical for example, or paired versus non-

paired data) and depending on the objective of the test. The last section is devoted to the

elicitation of risk preferences. This case study provides an overview of the experimental

data that are often encountered in the measurement of risk preferences. Based on vari-

ous decision theories, it also illustrates the main econometric and statistical techniques

that can be applied to experimental data in order to elicit or to estimate risk preference

parameters.





Part IV

What For? What Laboratory
Experiments Tell Us





8 The External Validity of
Experimental Results

The first question that comes to mind when wondering about how useful experiments
are is: what about real life? This question is methodologically sensitive because of the
specification of the design, chosen to enhance internal validity. The design of the exper-
iment is the experimental data-generating process. Internal validity requires pursuing
two (opposite) goals: identification and precision. Both goals require knowledge about
the noise in the empirical measure. The first is achieved by breaking any correlation
between the noise component and the experimental treatment and other control variables
required for identification purposes. The second requires that we hold the maximum of
variables constant, in order to maximise precision. As discussed at length in Chapter 5,
these concerns lead to the design of experimental situations that are as abstract, and to
some extent as far removed from their natural circumstances, as possible. This reflects
that most dimensions of social phenomena appear as noise with respect to the single
dimension under investigation. A key requirement for clean empirical measurement in
the laboratory is the proposition of a situation that is as different as possible from the
real-world situation of interest – this is why the laboratory is the appropriate place for
the empirical investigation of the mechanisms behind real-world phenomena, as shown
in Illustration 8.1.

External validity refers to the naturally occurring question once such measurement
has been carried out: what is the point of establishing accurate measurement if it has
nothing to do with social behaviour in real life? This chapter addresses this difficult
question in a number of steps. Section 8.1 shows that this (apparently) simple ques-
tion cannot easily be converted into a single definition of external validity. The question
rather leads to a number of different definitions, or degrees, of external validity, each
depending on the nature of the research question. Section 8.2 turns to the question of
how external validity can be assessed. Whatever the definition, external validity boils
down to an empirical question, as it requires the comparison of two empirical situations
(one in the laboratory, the other in the ‘real world’). The choice of the best empiri-
cal method to ascertain external validity is thus the main question to be addressed.
Section 8.2 describes the main features of laboratory experiments that may challenge
external validity, and reviews how these have been addressed in empirical research.
Empirical tests of external validity always involve the behavioural consequences of
some change in the design of the empirical analysis. As such, concerns about the exter-
nal validity of experimental results call for pledges for more replication studies, which
is the focus of the case study we present in this chapter.
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Illustration 8.1

Reversed external validity: experimental evidence on the winner’s curse in real

auction markets

Auctions are called ‘common value’ when all bidders on the market have the same valua-

tion of the good, as opposed to private-value auctions where the values are bidder-specific.

If the common value is perfectly known, the outcome is trivial as bidders simply bid this

common value and the market clears based on the tie rule. The literature has thus focused

on the special case in which the bidders only imperfectly know the common value. Typi-

cally, each bidder receives a signal about the value of the good that is partially informative.

Concretely, consider a two-bidder market (i = 1, 2), each with a signal εi uniformly drawn

on [0, 1], and for which the true value is ε∗ = (ε1 + ε2)/2. Bidders suffer from a winner’s

curse in this market: the bidder with the highest signal will bid more than the true value

of the good. This risk will be accommodated in equilibrium by bids that are lower than the

signal received. This set-up has long been recognised as relevant in many market settings.

For example, Capen et al. (1971) analyse oil-lease auctions by oil companies operating in

the Gulf of Mexico. They show that the industry rate of return is consistent with the lease

winner having the greatest overestimate of the resource. This is puzzling from the point of

view of game theory. Experienced bidders with considerable monetary incentives, such as oil

companies, should have learned about the winner’s curse. To investigate, Kagel and Levin

(1986) designed a first-price, sealed-bid, common-value experimental auction. Players pri-

vately submit their bid, and the winner pays the price of their bid. Players were found to bid

most of the time over the optimal strategy. In all but one experiment, average profits were

lower than the Nash prediction, and 34.8% of each experiment’s bids exceeded the expec-

tation of the object’s value conditional on winning. Bidders were, however, found to learn

from repeated exposure to the same market conditions, with bids that were closer to the

Nash equilibrium after several rounds of play. Moreover, on markets with fewer than five

bidders, profits were positive and on average equal to 65.1%. Learning was, however, lim-

ited to this context: the observed bids became even more aggressive after learning with higher

numbers of bidders, contrary to the Nash equilibrium strategy. With over five bidders, average

profits became negative. Kagel and Levin (1986) suggest that bidders are able to avoid the

winner’s curse in small groups, but do not show a real understanding of the winner’s curse

problem.

8.1 When and How Does External Validity Matter?

The question of external validity is easily seen to be both important and relevant: to what
extent can the results of a study be generalised to other situations and other individuals?
An early statement was that of Campbell and Stanley (1963, p. 5), who define exter-
nal validity as the question of ‘to what populations, settings, treatment variables, and
measurement variables can this effect be generalised?’ Manski (1999, p. 17) provides
a more statistically oriented definition, which clearly reveals its underlying complexity:
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‘an invariance assumption, used to apply outcomes of social experiments to predict the
outcomes of actual social programs. Distribution of outcomes realised by the treatment
group is the same as the distribution of outcomes that would be realised in an actual
program’.

When assessing external validity, ‘external’ is the key word, first because the question
is always whether the result observed inside the laboratory continues to hold ‘outside’ it
and second, because this underlies the difference between the two core validity issues:
internal (as discussed in Chapter 5) and external validity. In a nutshell, internal validity
is related to inference and identification inside the laboratory, and external validity con-
cerns inference and identification outside the laboratory. The requirement for external
validity is not self-evident. After all, why would we want to generalise observations that
were made in a well-defined and controlled environment? The desire to move outside
the laboratory reflects the need to understand what experiments tell us about the real
world. Unfortunately, while the lab environment is easily controlled, the same does not
hold for the ‘real world’. The difficulty here stems from there being as many definitions
of external validity as there are steps from the laboratory to the real-world counterpart.
This section describes the range of such definitions and identifies the associated chal-
lenges regarding the ability of laboratory experiments to inform us about real-world
situations.

8.1.1 The Many Meanings of External Validity

The existing definitions of external validity range from weak to far stronger require-
ments. As we will see, the assessment of the external validity of an experiment requires
this kind of plurality of definitions, as the choice of definition is closely related to the
inference that we would like to make.1

To help organise the discussion of external validity, it is useful to return to the defi-
nition of an experiment in Chapter 4. An experiment is a pseudo-real situation made up
of two different types of input: the controlled (i.e. chosen) inputs, denoted by xn, and all
of the others, x∞−n. Among the infinite possible consequences, the experiment defines
a subset of consequences of interest that are actually measured. An experiment can then
be summarised by the functional Fm(xn ∪ x∞−n), mapping a set of inputs to its observed
consequences. External validity refers to the relationship of the experiment to its real-
world counterpart. We define the real world as another functional G, resulting from an
infinite number of inputs (standing for the determinants of a given situation) producing
an infinite number of consequences G∞(Xn ∪ X∞−n). All of the definitions of external
validity compare the two functions F and G, to assess whether laboratory experiments

1 This question has recently became very controversial and main field of battle between those for and against
laboratory experiments in economics. It is, in addition, a deep epistemological question, referring to no less
than the scientific contribution of empirical evidence. For this perspective on external validity, we refer the
reader to specialised contributions such as Guala (2005).
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Focus 8.1

The many different meanings of external validity in experimental psychology

There is one exception to the many differences in experimental methodology between eco-

nomics and psychology: as in economics, the concept of external validity in psychology has

many different definitions and is still the subject of vivid debate. Perhaps the main difference

between the two fields in this context is that external validity has been discussed for longer in

psychology, and remains the subject of many methodological contributions. The most common

notion of external validity in psychology is ‘ecological validity’. This use of the terminology

is, however, significantly removed from that in the original definition in Brunswick (1956),

who defined ecological validity as the informational value of a signal received by a decision-

maker (see Hammond, 1998, for a refreshing and insightful historical perspective). Currently,

‘ecological validity’ often refers to the real-world conditions of the phenomenon studied in the

experiment (see e.g. Schmuckler, 2001, for an example in cognitive psychology). This defini-

tion is in fact closer to the terminology in Brunswick (1956) of a ‘representative design’, which

refers to an experimental design regarding a well-defined situation, where the components of

the experiment are representative. Design representativeness, referred to as ‘ecological valid-

ity’, is, for instance, part of the two main notions of external validity in psychology in the

survey by Brewer and Crano (2014) along with ‘robustness’ – the ability to replicate a result

in different conditions or with different samples. In addition to representativeness and robust-

ness, a third notion, ‘relevance’, considers whether a finding actually applies to real-world

problems.

inform us about real-world situations. The many different meanings of validity differ in
how components are matched between the two. As shown in Focus 8.1, this plurality
of definitions is not specific to economics, and is shared in particular with experimental
psychology. Parallelism is the most restrictive definition, asking whether experimental
results will continue to hold in the real world. Two other definitions refer more clearly
to generalisability, which aims to establish the range of input values for which the labo-
ratory results remain valid outside the laboratory. These definitions produce a grey zone,
with which we will conclude this section, regarding the link between external validity
and the target parameter of interest.

Definition 1: parallelism.

One of the first formal discussions of external validity in the experimental-economics
literature referred to a restrictive definition known as parallelism (Smith, 1982, p. 936).
Parallelism restricts external validity to the question whether ‘propositions about the
behaviour of individuals and the performance of institutions that have been tested in lab-
oratory micro-economies apply also to non-laboratory micro-economies where similar
ceteris paribus conditions hold’. The question can be rephrased as whether Fm coincides
with Gm ∈ G∞(Xn ∪ X∞−n) when xn ≡ Xn. The two situations are parallel, according
to this particular definition of external validity, if the causal relationship identified in
the laboratory continues to hold outside it under exactly the same circumstances – i.e.
when the controlled inputs are set to the same values in the real world as inside the
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laboratory. In the example of gift exchange in work situations discussed in Chapter 4,
Section 4.5.2, the field experiment of Gneezy and List (2006) does exhibit this weak
form of external validity, as the same phenomenon occurs in the real-world environment
that strictly replicates the laboratory setting – i.e. during the first 90 minutes of the
field experiment, which corresponds to the maximum typical duration of the laboratory
experiment. This form of external validity is also substantiated by the field experiment
in Falk (2007), finding higher donations when a gift is enclosed with solicitation letters,
and hence substantiating reciprocal behaviour in one-shot relationships in real life.

The main challenge faced by laboratory experiments with this weak form of exter-
nal validity is what Schram (2005) calls their artificiality. The desire to have as much
control as possible over the environment in order to help ensure internal validity leads
to the jettisoning of as many features of the real world as possible.2 The use of neu-
tral instructions with no reference to the actual context is the most obvious example
of this artificiality – raising the external-validity concern that behaviour in this abstract
environment might not be replicated when the same inputs are returned to their ‘natu-
ral’ surroundings. In other words, does the laboratory environment produce behaviour
that would not occur under the same conditions outside the laboratory? Some of the
criticisms of the external validity of the Zimbardo ‘Stanford prison’ experiment dis-
cussed in Chapter 5, Illustration 5.9, are along these lines. Many of the students who
took part in the experiment explained that they were only acting consistently with their
role of ‘guard’ or ‘prisoner’. In this reading of the data, the assignment of roles and
the need to underline their implications in order to explain the experiment to subjects
drove behaviour that would not have occurred under natural conditions. Similarly, Illus-
tration 8.2 describes an experimental test of the external validity of a very artificial set
of experiments, testing corruption behaviour based on modified gift-exchange games.

Definition 2: robustness.

The artificiality of the experimental environment also raises a closely related, but very
different, series of questions. The inputs are chosen following the requirements of the
experimental environment, but the experiment itself aims to replicate some relevant real-
world situation. The gift-exchange game, for instance, aims to import to the laboratory
some features of an employment situation: the interaction between an employer and an
employee, their different pecuniary interests, their joint production of economic surplus,
and the way in which the surplus is split between the two parties. The laboratory imple-
mentation reduces the real-world situation, in both scope – as many inputs are neglected
by design – and size – due to physical and/or methodological constraints. The question
of external validity here thus requires us to assess whether this restrictive definition of
the inputs affects the observed outcomes.

Robustness in applied work refers to the replication of an observed phenomenon
in an alternative context or a different empirical framework using similar values as
inputs. The causal mechanism of interest remains the same, and the empirical question is

2 Identification requires us to construct experiments with highly abstract and artificial institutions, which
resemble their real-world counterparts less and less as greater control introduces a setting that becomes
increasingly lab-specific.
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Illustration 8.2

The measure of corruption from laboratory bribery behaviour

Laboratory experiments are a natural way of collecting data on antisocial or illegal behaviour,

given the obvious limitations to their observation in the field. Among the possible challenges

to the external validity of corruption experiments, the most common are the failure to account

for non-monetary motives (e.g. ethical and legal motives), the effect of subjects’ awareness of

being monitored, and the fact that some relevant real-life features may not be reproducible in

a laboratory. Armantier and Boly (2013) aim to test the relevance of these factors using three

different versions of a corruption experiment: a laboratory experiment in a developed country,

a laboratory experiment in a developing country and a field experiment in this same devel-

oping country. The first design step is to define a task allowing the observation of corruption

that can easily be replicated both in the laboratory and in the field. To this end, the experiment

considers the behaviour of a grader who is offered a bribe to over-grade an exercise paper. As

a preliminary stage, some individuals were recruited in Montreal to take part in a dictation.

Seven papers, with varying numbers of mistakes, were selected and completed with 13 artifi-

cial papers, made up by the experimenters: this set of 20 papers constituted the pool of papers

to be graded by the participants. In the field experiment, which took place in Ouagadougou,

Burkina Faso, people were recruited via flyers, offering a part-time job for university students.

Subjects were not aware that they were taking part in an experiment. They were asked to

spellcheck the 20 papers, to report the number of mistakes in each of them and to decide on the

final result, pass or fail, with a passing threshold fixed at 15 mistakes. The grading took place

individually, in a closed room. The 11th paper from the stack came with some money and a

sticky note: ‘Please, find only a few mistakes in my examination paper’. Graders who informed

the supervisor of the bribe were asked to grade the paper as a fail. Once the grading was over,

participants were told that they were in an experiment and were paid the announced rate. In

addition to the field experiment, two laboratory experiments took place in Ouagadougou and

in Montreal, Canada, based on exactly the same protocol, with the exception that people knew

in advance that they were in an experiment. In each of these three experiments, subjects were

randomly assigned to one of four treatments: CONTROL, HIGH BRIBE, HIGH WAGE and MON-

ITORING, in which subjects face a potential double-check of some of the graded papers by the

supervisor. The main results appear in the following table (from Armantier and Boly, 2013,

p. 10, Table 2); stars indicate significant treatment effects (∗, significant at the 10% level,

∗∗, significant at the 5% level), and daggers a significant difference from the same treatment

in the laboratory in Ouagadougou (†, significant at the 10% level, ‡, significant at the 5%

level).

The outcomes obtained in the laboratory and field in Ouagadougou are very similar. Scrutiny

does not seem to have any distortionary effect. The reactions to the treatment variables are also

in line with what was expected, and of comparable size across environments and countries,

suggesting that results from a developed country can be extrapolated to a developing country.

In particular, higher wages unambiguously reduce corruption, but promote reciprocity (i.e.

over-grading of the 11th paper) by the bribe-takers.
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Environment Treatment No. of
Subjects

% of graders
who accept
the bribe

Average no. of
mistakes reported
for paper 11

Accepters Rejecters

Field (Ouagadougou) Control 36 50.0 14.7 16.4
High bribe 45 68.9∗∗ 13.1‡ 15.4
High wage 39 35.9∗ 12.9† 15.7‡

Monitoring 44 40.9 15.7† 15.9

Lab (Ouagadougou) Control 33 48.5 16.4 17.3
High bribe 33 66.7∗∗ 15.2 16.6
High wage 33 36.4∗ 14.9 17.5
Monitoring 34 41.4 17.5 16.5

Lab (Montreal) Control 30 66.7† 14.9 16.7
High Bribe 32 65.6 14.8 15.6
High Wage 31 48.4∗∗ 13.9 16.3†

Monitoring 32 65.6‡ 15.0‡ 15.5

the extent to which the occurrence of this mechanism depends on the context in which it
is investigated. In econometrics, for instance, robustness checks include changing the set
of control variables, applying alternative estimation models or replicating the analysis on
data sets from alternative sources. Applied to experiments, robustness amounts to check-
ing whether the behavioural regularity found with the set of inputs xn ∪ x∞−n continues
to hold under a somewhat different parametrisation of the environment. Robustness
here applies not only to the inputs, xn, but potentially also to those inputs that were
disregarded on purpose in the experiment. Section 4.3, in Chapter 4, contains a num-
ber of examples of such robustness checks regarding omitted inputs in the dictator
game example – the property rights over the endowment and the player’s position in
the game, the social distance between the two players, etc. Illustration 8.3 provides
an example of robustness checks of laboratory evidence from the gift-exchange game
regarding the inputs at stake in the target real-world situation. These additional inves-
tigations inform us about the degree of universality of the phenomenon: whether it
continues to hold as an increasing number of relevant dimensions are included in the
experiment.

Definition 3: inference.

As the neighbourhood of the inputs considered becomes wider, in both range and scope,
the question of generalisability to the real-world situation of interest becomes closer
to one of inference. The question is now whether the causal mechanism observed in
a given context continues to hold in significantly different cases. The changes in inputs
considered here are, e.g., the duration of the relationship or the type of subject pool. This
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Illustration 8.3

The external validity of gift exchange at work

As described in Chapter 4, Section 4.5.2, the relevance of gift exchange to describe work

relationships has been much disputed. To test the generalisability of the experimental results

to actual work relationships, Bellemare and Shearer (2009) conducted a field experiment on

worker responses to an exogenous gift. The main difference with previous field evidence was

to implement the experiment in a pre-existing work situation, and to use a one-shot gratifi-

cation – in order to closely replicate the treatment variable studied in the seminal laboratory

experiments. The study took place in a tree-planting firm in Canada, in which workers are

paid a piece rate according to the number of trees planted per day. The sample was a team

of 18 planters and the observation period was seven working days, from a Thursday to the

following Friday. On the second day of the experiment, workers received a surprise bonus

of $80. The workers were unaware that they were taking part in an experiment. They were

told the bonus was a gift from the firm, which decided to distribute some extra money due

to very exceptional circumstances. Workers were provided with a detailed credible explana-

tion of these circumstances and the gift was understood to be non-replicable. The aim of the

experiment was to measure the impact of this gift on productivity – interpreted as evidence

of reciprocity at work. To this end, an external data set was used providing information on

the productivity of the same workers under non-experimental conditions. The data allows for

the control of a number of environmental factors, like the day of planting or weather condi-

tions. This comparison shows that average productivity significantly rose on the day of the

gift by 118 trees per worker (average productivity during the experiment was 1075 trees per

worker per day). This effect is robust to weather shocks and day-of-the-week effects. Inter-

estingly, the bulk of the positive effect occurs only on the day of the gift, with no significant

productivity rise on subsequent days. In addition, the number of completed years of work

within the firm clearly plays an important role, suggesting repeated-interaction effects. These

results confirm that workers positively respond to a gift, even in the realistic environment of a

firm. The experiment also raises some questions about the profitability of gift-giving, in that

the average additional revenue generated by the incentive was much smaller than the cost of

the gift.

inference is a stronger form of external validity, as the differences here are more fun-
damental than those considered in robustness tests. Using the formalism developed in
Chapter 4, the question is to what set of values of real-world inputs Xn can we generalise
from what is observed with the experimental inputs xn. This view of external validity
is the most common one; it is also that which most often leads to confusing conclu-
sions. Conclusions regarding the external validity of experimental results based on this
definition require us to define the scope of generalisability that is required to match
the real-world situation of interest. This choice is obviously subjective and results in
cases for, or against, the external validity of experiments based on different views about
the kind of inference that should hold. For example, while a 30-minute task can rep-
resent some (short-run) work situations, six hours is more suited for others. But is this
enough? Would we instead want to see what happens over a full month? Or over two
years or even longer? Depending on the answer, the external validity of the results from
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the gift-exchange game will be judged differently. As we will see in the next section, the
answer will also lead us to rely on different empirical strategies to assess the external
validity of a set of experimental results.

8.1.2 External Validity and the Definition of the Target Parameters

The definitions above refer to increasingly strong versions of external validity as gen-
eralisability is extended to inputs that are increasingly different from those in the
experiment. The further we move in this direction, the closer the question becomes
to that of the multiplicity of the target parameter – which is arguably a matter not
of external validity, but rather of the relevance of what is measured by the research
question.

In the context of treatment effects (Section 3.2.3 in Chapter 3), for instance, two
parameters have received much attention: the average treatment effect, which is sup-
posed to show what would happen were the treatment to be applied to a randomly drawn
individual from the reference population; and the average treatment effect on the treated,
which applies only to those individuals who actually receive the treatment. As described
in Chapter 3, the difference between the two lies in the possible heterogeneity of the
causal mechanism. If individuals from the treated and untreated populations differ, not
only per se but also in how they react to the treatment, then the two parameters will
differ.

Obviously, we cannot in general measure the population average treatment effect from
the response of a selected subpopulation. For example, a vast majority of participants in
laboratory experiments are typically university students (this is a very common criticism
of laboratory experiments, which will be discussed in Section 8.3.3). If students behave
differently from the rest of the population for the tasks under consideration, the labora-
tory evidence might not be generalisable. As such, we identify an average treatment on
the treated, as for any empirical analysis of a particular sample, when the sample and
the rest of the population behave differently. It is important in terms of external validity
to establish whether the sub-sample is representative ‘enough’ of the target population
in the real world, i.e. whether the laboratory treatment effect is meaningful in real life.
External validity is, then, not so much a question of the empirical method, but rather
one of inference: to what extent is the causal parameter heterogeneous, and how large is
this heterogeneity? This question is in no way particular to laboratory experiments, or
even to experiments in general. It rather refers to the universal question of the represen-
tativeness of the samples in empirical work, the definition of the target parameters, and
the choice of what should be measured to answer the research question. These questions
are no different from those faced in field experiments (Do the results generalise to other
time periods? To alternative definitions? To different magnitudes and implementations
of the treatment? And so on) or the statistical analysis of natural data (see e.g. Heckman,
1996, 1997; Angrist and Imbens, 1999; Deaton, 2010).

The formal framework introduced by Falk and Heckman (2009) helps illustrate how
narrow the boundary is between external validity and the precise definition of the tar-
get parameter. Denote Y the outcome variable of interest and X1, X2, . . . , XJ a list of all
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determinants of Y , among which the effect of X1 on Y is the main focus of the empirical
analysis. Writing Y = fy(X1, . . . , XJ) as the true relationship determining Y , the causal
effect is defined as fy(�X1, X̃): the change in Y induced by a change in X1 holding all
other factors X̃ ≡ (X̃2, . . . , X̃J) constant. The inference of this measure to other situ-
ations, associated with different values {X′

1, X̃′}, crucially depends on the assumptions
about the function fy.

• If fy is assumed to be additively separable, such that Y = fx1 (X1) + fx̃(X̃), the causal
effect will be the same whatever the value of the controlled inputs X̃. The question
whether these inputs are set to their real-world values is thus irrelevant.

• If the function fx1 is further assumed to be linear, then the effect is also independent
of value of X1 at which the causal effect is observed.

In the general case, in which none of these assumptions hold, any empirical result
will be particular to both the values of X̃ and the neighbourhood in which X1 changes.
No empirical method (in particular, neither field nor laboratory experiments) can thus
deliver universally valid measures of the causal effect, unless the above two assump-
tions hold – in which case all empirical methods are equally capable of achieving this
goal.

To illustrate, consider the imaginary situation in Figure 8.1, first introduced by
Leamer (1983). Figure 8.1.a shows the outcomes following from two different values,
X′ and X, of the determinant of interest, X1. From this experiment, the causal change in
Y resulting from �X1 = X′ − X can be inferred, but there is no way of disentangling the
three underlying functions fy displayed as the continuous, dotted and dashed lines (out
of an infinite number of potential candidate relationships). As illustrated in Figure 8.1.b,
this comes about due to a lack of data: if the relationship is observed a number of times,
for a wider range of values of X1, then the nature of the underlying relationship can be
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Figure 8.1 The identification of heterogeneous treatment effects

Note. Each dot in the figure shows the value of the outcome variable obtained in a (thought)
experiment from the value of the target explanatory variable on the x-axis. The continuous lines
illustrate the variety of true causal relationships that are consistent with the observed data.
Source: Leamer (1983, p. 35, Figure 1-2)
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better determined. It also illustrates that the results from different methods each consid-
ering different neighbourhoods of X1 (e.g. a lab experiment looking at �Y|�X1=X′−X and
a field experiment looking at different values, �Y|�X1=X′′−X′ ) will reach different con-
clusions, as the value of the treatment effect is different. This results from their different
target parameters, all generated by the same, non-linear, true relationship.

When comparing the results from different methods, each measuring the causal effect
of interest at different points in the distribution of controls X̃, X̃′, X̃′′, and/or in different
neighbourhoods of the variable of interest, X1 = X, X′, X′′, the choice mainly reflects
the research question – which of these causal effects best defines the relevant target
parameter? In terms of inference, it is also worth stressing that there is no clear advan-
tage in choosing the measure delivered by {X, X̃} over that from {X′, X̃′} (or vice versa)
to infer the effect under conditions {X′′, X̃′′}: this limit is a direct consequence of the
data-generating process, and in no way depends on the method used to elicit the causal
effects under {X, X̃} or {X′, X̃′}. In these circumstances, the only way to generalise the
observed findings to alternative conditions is to obtain some knowledge of the function
fy – i.e. to combine empirical analysis with a theoretical model.

This point is illustrated in Figure 8.2, which considers a wide range of observed
treatment effects at many different values of X1. The true relationship here is very non-
linear and non-monotonic. As a result, different values of the true treatment effect will

Value of the treatment variable

O
u
tc

o
m

e
 v

a
ri

a
b
le

X X' X"

A

B

C

X''' X(4) X(5) X(6) X(7) X(8)

Figure 8.2 Many very heterogeneous treatment effects

Note. As in Figure 8.1, the dots shows the value of the outcome from a variety of values of the
target explanatory variable, shown on the x-axis. The continuous lines illustrate the variety of true
causal relationships that are consistent with the observed data.
Source: Leamer (1983, p. 36, Figure 3)
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potentially be identified in the variety of situations observed. However complete these
empirical observations, there will always be many ways of constructing a functional
form describing the relationship which matches all the observed points. If we then want
to pin down a particular candidate, some prior information is required.

8.1.3 The Wide Variety of Challenges to External Validity

Although the wide variety of definitions of external validity is with no doubt an imped-
iment to the clarity of methodological discussion, there is little hope of converging on a
unique definition that would universally apply to all laboratory experiments. This is the
case as external validity has to be assessed differently depending on the scientific answer
that is sought from the experimental evidence. From this point of view, the Roth (1988)
classification discussed in Section 4.1, Chapter 4, provides a useful starting point.3

When testing theory, the aim of the experiment is to replicate the theoretical envi-
ronment to assess whether the inputs do actually produce the theoretical prediction. It
has long been recognised that the external validity of the experiment in this context is
the same as that of the theoretical model to be tested (Plott, 1982). Theoretical models
reduce and simplify reality in exactly the same way as do experiments, as this is the
only way of being able to focus on cleanly defined mechanisms. This produces the same
departure from the complexity of reality as in experimental design, and gives rise to the
same doubts about the relevance of these mechanisms once the full complexity of the
real world is accounted for.

There are two main consequences for external validity in this context. First, the
burden of proof is reversed: the experiment can be seen as a complement to the the-
oretical insights, so that external-validity concerns apply rather to the model than to
the experiment. Second, the question mainly applies to experiments that produce results
supporting the theory, as only then do we wonder about the close relation of the theory
to reality. As stressed by Plott (1991, p. 905) ‘Models that do not apply to the simple
special cases [implemented in the laboratory] are not general and thus cannot be viewed
as such.’ In other words, when models are supported by the simple cases analysed in the
laboratory, the question of their generalisability is a natural further step. The laboratory
environment works as a ‘mediator’, an intermediary stage in the incremental process
from economic theory to its concrete application (Guala and Mittone, 2005). Schram
(2005, p. 232) illustrates the point with the development of a new aeroplane: it is only
if the plane does not crash in test-bed experiments that its use for passenger transport
will be actually considered. But before getting to this stage, many further empirical
investigations will be required to check the external validity of the results regarding nat-
urally occurring flying conditions. On a final note, this line of reasoning also explains
why external validity has long been seen as a second-order issue in the community:
most early experiments aimed to test clearly defined theoretical models or mechanisms,

3 As a reminder, Roth (1988) proposes a threefold classification of the objectives of laboratory experiments:
testing theory, i.e. assessing the empirical relevance of theoretical models; searching for facts, in which case
experiments use reality to inform theory; and whispering in the ears of princes, in which case experiments
serve to improve the decision-making process by informing regulators or decision-makers.
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putting aside the question whether the experiment itself provides relevant information
about the real world.

External validity has become much more central, by contrast, as more and more
experiments attempt to search for facts, which are strongly oriented towards real-world
phenomena. When the aim of the experiment is to detect empirical regularities, external
validity becomes a first-order question. Even if this makes external validity an impor-
tant concern when dealing with experiments looking for facts, two nuances should be
stressed. First, experiments that look for facts might be designed either to challenge or
to inform theory – in which case external validity needs again to be considered in rela-
tion to the target theoretical framework. Many of the decision heuristics documented
in Tversky and Kahneman (1974), for instance, are mainly aimed to reveal the limita-
tions of rationality assumptions, with an eye on the consequences for the behavioural
assumptions in theoretical models, rather than specific applications. Second, empirical
regularities can also be insightful in their own right – independently of their external
validity. Chetty (2015), for instance, notes that documenting the theoretical possibil-
ity of Giffen goods, even though goods with these properties are unlikely to exist in
most actual markets, delivers useful insights into consumer-behaviour analysis. Simi-
larly, documenting behavioural regularities, even in highly artificial contexts, provides
useful guidance into the most salient behavioural assumptions, independently of how
close they are to any real-world situations.

This view is also advocated by Camerer (2015), who labels it the ‘scientific view’
of laboratory experiments. From this point of view, a fact is a fact, and document-
ing individual responses to a well-defined environment helps us to better understand
behaviour, whether or not a real-world counterpart to this environment exists (‘The sci-
entific view is that all empirical studies contribute evidence about the general way in
which agents’ characteristics, incentives, rules, information, endowments, and payoff
structure influence economic behaviour,’ Camerer, 2015, p. 251). Here, external valid-
ity, while not entirely irrelevant, is not the first-order concern when considering an
experiment’s contribution. The ‘policy view’, on the contrary, aims to use behavioural
regularities observed in the lab to design real-world applications: to predict the effects
of a new policy, to suggest alternative implementations of a given rule, to isolate the
causes of unwarranted side effects, etc. It is only when the aim of the experiment is of
this kind that external validity becomes key. Both this classification and that of Roth
(1988) underline that the weight put on external validity depends on the nature of the
research question – about what does the experiment aim to provide information?

In the same vein, an additional dimension to consider is whether quantitative mea-
sures or qualitative changes are the main aim of the empirical analysis. As stressed by
Plott (1989, p. 1167), experiments predicated on the hypothesis that they were measur-
ing numerical constants of nature ‘would seem to require elaborate sampling procedures
and explicit definitions of the populations to which the measurement is to be applied’. In
many cases, however, experiments rather ‘involve hypotheses about relative behaviour
as opposed to numerical constants.’ The external validity of qualitative results is gener-
ally easier to attain, as the contrary would require the effect of the move from the lab to
the real world to be so strong as to reverse the sign of the observed relationship (Kessler
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and Vesterlund, 2015). Going back to a distinction made in Chapter 5, Section 5.1.2,
this often eases the generalisability requirement for experiments aimed at measuring
treatment effects (i.e. changes in behaviour caused by changes in the environment) as
opposed to measurement experiments.

8.2 Is External Validity Testable?

The previous section set out the definitions of external validity and how this depends
on the research question the experiment addresses. However, one crucial question has
been put to one side up to this point: how can external validity be addressed? What-
ever the definition retained, external validity always amounts to the comparison of two
empirical situations: one from the real world, consisting of an infinite number of dimen-
sions that cannot be reproduced in the laboratory, and one in the laboratory, with very
abstract environment and institutions. The question of external validity is not whether
these two situations are different or not. They most surely are, as the very purpose of the
laboratory is to overcome the lack of identification in naturalistic data by changing the
environment. What is important is rather the relevance of the behaviour in the laboratory
in the target situation, i.e. whether or not these differences produce fundamental changes
in behaviour.

Once the essentially empirical nature of external validity is recognised, the next step
is to say which empirical methods can be used to ascertain it. Siakantaris (2000) notes
that testing the external validity of experiments yields a dilemma. There are two broad
alternatives for testing external validity: the first uses experimental data and the second
naturalistic data. Naturally occurring observations are in a sense the ideal benchmark
for (and the only conclusive way to test) external validity, as what is observed comes
from the real world. But, obviously, the point of alternative empirical methods such as
experiments is the many limitations of such empirical investigations. When the research
question is such that an experiment is required, it is likely that only experiments can
ascertain the effect of any additional changes in the inputs. But if there are good reasons
to doubt the external validity of experiments per se, we have a vicious circle: if an
experiment aims to empirically establish the external validity of a previous experiment,
the same doubts will also apply to this second experiment. This will equally apply to
any subsequent additional experiments until the ultimate experiment replicates all of the
dimensions of the natural environment in which the phenomenon under consideration
occurs. But we already know that this cannot come about, as the real world cannot be
transposed to the laboratory.

This is not only a seductive rhetorical argument. It highlights that external validity
cannot in fact ever be proven. This echoes one of the conclusions of the discussion of
internal validity in Chapter 5. In the same way as proper identification relies on the
belief that there remains no confounding factor that is correlated with the measurement
of interest, no definite proof of external validity will ever arise. There will thus always
remain some room for methodological faith in favour of or against the external validity
of laboratory experiments. The mechanical differences between the laboratory and the
real world will always provide space for scepticism.
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Illustration 8.4

Laboratory evidence of the external validity of declarative surveys

Attitudinal surveys are a useful tool to measure social attitudes in representative population

samples. The World Values Survey (WVS), the General Social Survey and the German Socio-

economic Panel are among the most commonly used sources in the literature. The World

Values Survey has been run six times since 1981 across 80 countries. Social attitudes are mea-

sured through questions like ‘Do you think most people can be trusted or that one needs to

be very careful when dealing with people?’, with Yes/No answers as a measure of trust. It is

not clear whether these answers only measure intentions or actual actions: we might expect

individuals to overstate their trust towards others, as compared to their real-life behaviour.

Laboratory experiments, on the contrary, allow us to measure actions related to social atti-

tudes (altruism, trust and reciprocity) via behaviour in games such as the trust game that was

described in Illustration 4.5. A number of papers have combined these attitudinal questions

with laboratory experiments to test the external validity of the former. Glaeser et al. (2000)

first administered a survey on trust attitudes and behaviour to their student subject pool. Two

weeks later, a subgroup of these students then participated in two different trust games. No

correlation was found between declared trust attitudes and actual behaviour, so that general

attitudinal questions are poor predictors of real choices. This seminal contribution was com-

plemented by Johnson and Mislin (2012), who ran a trust game experiment in 35 countries

with over 23,000 participants, divided into givers and receivers. The authors again find no cor-

relation between the answers to the WVS questions and the amount sent by givers, which is

a behavioural measure of their trust towards receivers. Interestingly, subjects generally appear

to be more willing to trust than their survey answers suggested.

This does not, of course, mean that the investigation of external validity is a dead end.
In the exact same spirit as the investigation of confounding factors, a natural empirical
strategy is incremental (as described, e.g. by Guala, 2002). This process starts with the
well-identified dimensions of the experimental environment that (i) distinguish it from
its real-world counterpart, and (ii) are likely to influence behaviour to an extent that pre-
vents the empirical research question being answered by relying only on experimental
outcomes. The incremental process isolates the separate experimental dimensions and
establishes whether the experimental results are robust to changing them: the following
section will provide a number of different examples of such experiments. The validation
process ends when the robustness checks have successfully been applied to all of the
dimensions under suspicion. This is not a ‘proof’ of external validity, as the empirical
evidence remains conditional on the inferential properties of the empirical method used
to establish it. This should, however, suffice to establish the credibility of laboratory
observations in reflecting the real-world phenomenon, as this is the most that can be
done empirically.

If we take the incremental approach, the whole range of available empirical methods
can be used to investigate the effect of incriminated dimensions under consideration. The
preferred method will be the one that is best suited to this specific dimension – and labo-
ratory experiments may be well suited for testing the external validity of non-laboratory
measures, as shown in Illustration 8.4. A profusion of alternative empirical methods has
emerged in recent years, in part instigated by the increased focus on external validity.
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The list below provides an overview of these methods, ranked according to their distance
from the real world, and also in descending order of the degree of control provided over
the environment.

• Laboratory experiments. Although this may seem provocative at first glance, labo-
ratory experiments can help with the incremental assessment of external validity by
allowing additional relevant dimensions to be included in the experimental design. In
the incremental view described above, criticisms of the external validity of laboratory
experiments can be seen as a call for more experiments – with additional or different
controlled inputs. The assessment of the external validity of results from laboratory
experiments thus also makes use of two additional empirical methods: meta-analysis
and replication, which are discussed in detail as a case study at the end of this chapter
(Section 8.4).

• Mobile labs. These are laboratory experiments that are implemented outside the lab-
oratory. A typical example is an experiment performed in situ, at the same place
and with the same participants as the economic situation and agents under consid-
eration (in a firm or school, for example). In practice, computerised experiments are
run using tablets or laptops brought by the experimenter. The usual implementation
rules (described in Chapter 6) have to be adapted to the particularity of the setting.
For instance, preservation of anonymity via walls between participants, avoidance of
communication between participants before and after the experiment is carried out,
and control over interpersonal relationships between participants are all likely to be
restricted relative to the laboratory setting.

• Online experiments. The ability to perform experiments online enriches the sample
pool: first by adding more diverse participants in terms of individual demographics,
and second because simpler implementation than in a physical lab allows larger
sample sizes. This kind of experiment was first designed using online labour markets
such as Amazon’s Mechanical Turk (MT). This latter gives access to a very large pool
of people who register for paid work, and hence allows relatively cheap large-scale
experiments to be run. Existing work suggests that the respondents available on MT
are more diverse than in typical experimental subject pools (Buhrmester et al., 2011;
Paolacci and Chandler, 2014), although they are by definition a selected sample (in
terms, e.g., of age, labour-force status or education). Paolacci et al. (2010) survey the
internal-validity issues faced by social experiments on MT, Horton et al. (2011) dis-
cuss its use in economic experiments, and Crump et al. (2013) consider the particular
case of cognitive measures. An alternative to the use of a commercial online labour
market is the design of Web interfaces dedicated to online experimentation. In both
cases, there is a loss in control due to the online setting, in which instructions cannot
be explained face-to-face to participants, and decision-making takes place at home
without control over either the time it occurs or what subjects are doing while they
participate. Hergueux and Jacquemet (2015) provide a detailed discussion of how the
design of experiments can be adapted to such a setting. The existing evidence based
on comparisons between the lab and online implementations of the same experiment,
of which Table 8.1 provides an overview, suggests no noticeable difference between
the two.
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Table 8.1 In-lab versus online experiments: overview of experimental comparisons

Type of experiment Subject pool Main results

Anderhub et al. (2001a)
Individual-level
consumption/saving
decisions

47 in lab, 50 online (i) Similar economic behavior on
average, (ii) greater behavioural
variance online, (iii) shorter decision
times online

Shavit et al. (2001)
Individual
lottery-evaluation
decisions

65 in classroom,
70 online

(i) Lower risk aversion online, (ii)
greater behavioural variance online

Charness et al. (2007)
Lost-wallet game 178 in classroom,

124 online
Very little difference in average
economic behaviour

Fiedler and Haruvy (2009)
TG with pre-play
communication

136 in lab, 216
online

Lower levels of trust and
trustworthiness online

Chesney et al. (2009)
DG, UBG, PGG,
minimum-effort game,
guessing game

Resp. 30, 64, 32,
31 and 31 online

Behavioural results qualitatively in line
with previous laboratory-based
experiments

Horton et al. (2011)
Watershed experiment,
religiously primed and
unprimed versions of the
PD

Resp. 213, 189 and
113 online

Behavioural results qualitatively in line
with previous laboratory-based
experiments

Amir et al. (2012)
Public-good game,
dictator game, ultimatum
game, trust game

189 per game
online

Behavioural results qualitatively in line
with previous laboratory-based
experiments

Note. For each paper in a row, the table describes the decision task, the subject pool and the main
results from the comparison between an online implementation of the experiment and a standard
laboratory implementation.
Source: Hergueux and Jacquemet (2015, p. 254, Table 1)

• Field experiments. Although this use of the empirical method is subject to many
qualifications, as discussed in Section 3.5 of Chapter 3, field experiments allow the
replication of experiments in environments as close as possible to the real-world
phenomenon. As such, they are often considered to be the ultimate test of external
validity. This test comes at the price of weaker control over individual behaviour – the
accumulated evidence thus needs to be conclusive enough to be able to attribute any
differences in the field to the setting itself, rather than to some uncontrolled dimension
that is particular to the field experiment.

8.3 Testing External Validity

The incremental view of external-validity issues turns our attention to the features that
render laboratory experiments different from the real world and lead to worries about
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potential significant differences in behaviour. As an example, Levitt and List (2007,
p. 154) identify five significant differences between lab experiments and real-world
situations that may affect behaviour:

1. moral and ethical considerations,
2. the nature and extent of the scrutiny of one’s actions by others,
3. the context in which the decision is embedded,
4. the self-selection of the individuals making the decisions and
5. the size of the stakes of the game.

A flourishing literature has empirically investigated these dimensions – see e.g. Camerer
(2015) for a thorough review. One difficulty here is that the factors threatening exter-
nal validity are likely partly application-specific (those that arise for the analysis of
social preferences are likely different from those regarding risk or time preferences).
Illustration 8.5, for example, describes an attempt to use external validity as a criterion
to choose between measures of time preferences. It is part of the incremental process
to define the features that are likely to be of first-order importance. It is important to
underline that this means that no such collection of results can be thought of as proving
the external validity of laboratory experiments per se. We do not here aim to answer
this unanswerable question, but rather to highlight the doubts that are most commonly
expressed about the external validity of experiments, and illustrate how accumulated
evidence – making use of the whole scope of the toolbox described in the previous
section – helps to narrow down the question.

8.3.1 Parallelism: Experimenter-Demand Effects

One of the first historically documented failures of external validity took place in man-
agement science with the Mayo (1949) experiment (later revisited by Levitt and List,
2011). This experiment took place in the Hawthorne plant of the Western Electric Com-
pany, near Chicago, in 1924. The aim was to measure the effect of better workplace
lighting on performance at work. After observing a large performance improvement
with the better conditions, many different changes were considered, each time produc-
ing the same effect on productivity. This was considered puzzling, until the reversion
to the original lighting conditions was found to enhance productivity in exactly the
same way. The conclusion from this experiment was that the fact of being observed
was the main driver of the observed change in behaviour: workers complied with what
they thought observers expected from them. This phenomenon is now known as the
‘Hawthorne effect’ in experimental social sciences.

This effect can be found in laboratory experiments if subjects do not change their
behaviour according to the environment, but rather according to what they think the
experimenter expects from them. This is an obvious challenge to the weakest pos-
sible definition of external validity, as outcome behaviour in the experiment will
systematically differ from its non-experimental counterpart. A number of types of
‘experimenter-demand effects’ have been discussed in the literature. The first, scrutiny,
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Illustration 8.5

The predictive power of experimental time-preference measures

To test the external validity of time preferences elicited in the laboratory, Chabris et al. (2008)

correlated the real-world behaviour of their experimental subjects with their time preferences.

They obtain mixed results, with time preferences being only weakly correlated with behaviour,

but being at the same time the individual-specific covariate with the greatest explanatory

power. Given the wide variety of methods available to elicit time preferences (as described

in the case study in Chapter 6, Section 6.6), Burks et al. (2012) extend the research ques-

tion to the preference-elicitation method with the best external validity. The first experiment

aims to estimate the present-bias parameter and the discount factor in the quasi-hyperbolic

(β, δ) model. The elicitation of preferences is based on the binary-choice method described

in Section 6.6.1. The second measure elicits impulsiveness using a modified version of the

design in Mischel et al. (1989), in which participants are asked to choose between wait-

ing 10 minutes in front of a screen or pressing a button to reduce the waiting time and

so renouncing a certain amount of money. The third measure uses a multiple-choice sur-

vey eliciting self-reported impatience among participants. The subject pool is made up of

job trainees for whom a rich administrative data set of individual characteristics (e.g. demo-

graphic variables, cognitive test scores and financial variables such as family income and

monthly expenditure) is available, along with six real-life outcomes: smoking, body mass

index, the ‘FICO credit score’ (a measure of credit balance) and three job-outcome vari-

ables – whether participants leave their job during the 12 months following the training

programme (LEAVE), whether they quit the training programme (WASH OUT), and whether

they walk away from the job without resigning (i.e. is observed to be absent without leave,

AWOL). The main results are summarised in the following table (from Burks et al., 2012,

p. 318, Table 7), which displays the marginal effects of each measure on the behavioural

outcomes in OLS regressions. All estimates include the individual characteristics as control

variables.

Smoking Credit score BMI LEAVE WASH OUT AWOL

Present bias (β) −0.099∗∗ 0.014 0.025 −0.063∗ −0.080∗∗ 0.045
Discount factor (δ) −0.088∗∗ 0.124∗∗∗ −0.001 0.031 −0.066∗ −0.102∗∗∗

Impatience −0.014 0.038 −0.015 0.031 0.047∗∗ −0.006
Impulsivity 0.100∗∗∗ 0.055 −0.009 −0.005 −0.019 −0.035

No. obs. 754 845 782 958 958 853

The standard quasi-hyperbolic (β, δ) model performs the best, as it predicts four

of the six variables of interest. Present bias alone correctly predicts three out-

comes, while the measures of impatience and impulsiveness predict only one outcome

each.

is the same mechanism as that in the Hawthorne experiment. Participants react to the
very fact of being observed and may try to match the experimenter’s expectation that
they will react to the design. The same issue can arise with cues about how to play the
game that may produce social pressure on the subject from the experimenter. Consider,
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for instance, experimental instructions that provide subjects with a full characterisation
of the Nash equilibrium of the game that they are about to play, and a convincing
case that this strategy is the only payoff-maximising rule of thumb. Most people will
then seem to act consistently with the theoretical prediction, but the empirical evidence
here is obviously poor and likely induced by the experimenter’s manipulation of sub-
ject behaviour. Zizzo (2010) provides a full-length discussion of this phenomenon, with
illustrations from the literature.

Second, a similar kind of issue arises if experimental subjects ‘come to play’ – the
experimental set-up itself generates the desire to ‘do’ something, producing changes
in behaviour that spuriously appear to be related to the environment (Carpenter et al.,
2010). This might happen, for example, if subjects play a simple game many times
over with no change from one period to the next: subjects may want to avoid repeating
the same decision over and over again and make different choices just for the ‘fun’ of
bringing about a change in their current experience. A last dimension to consider, in
particular in experiments focusing on other-regarding behaviour, is the perceived wealth
of the experimenter. Subjects are aware that any amount of money they earn counts as
additional spending for the experimenter, and lower earnings saves research funds. This
motive might not appear in the field – for instance, if applied to tax compliance, citizens
may not care about government money to the same extent or in the same way as they do
about the experimenter’s research fund. Frank (1998) reports some reassuring evidence
that subjects do not actually seem to care about the experimenter’s wealth. Even so, the
more weight is given to this aspect, the more likely it is that a lab-specific experimenter-
demand effect will change behaviour. This would come about if, say, the experimental
instructions make clear that any money saved via lower earnings would allow for further
research on the topic or more credible scientific results.

All of these dimensions are clear examples of spurious changes in behaviour resulting
from the relationship between the subjects and the experimenter. Beyond the obvious
mechanisms described above, experimenter-demand effects are generally difficult to
prove or fully distinguish from legitimate design choices. There are both an experi-
menter and subjects in a laboratory experiment, and the experiment itself is the result
of their relationship: we can always suspect an experimenter-demand effect, as the
experiment reflects experimenter demand in itself. Last, to a large extent, all eco-
nomic situations involve some external authority (the state, the manager of a firm, the
market authority, etc.) that is in charge of implementing the rules surrounding decision-
making. The key question here regarding demand effects challenging external validity
is to ask whether subject compliance with the experimenter’s requests is different from
compliance with the same requests from real-world authorities.

8.3.2 Robustness: The Effect of Laboratory-Specific Implementation Rules

As discussed in Chapter 5, laboratory experiments aim to construct a microeconomic
system focusing only on the subset of factors under consideration. Concerns over
the internal validity of the measures lead to many implementation rules that seem
strange in comparison to the real world. By nature, all of these attempts to establish
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the identification of the target parameter (via greater internal validity) pose potential
problems for external validity, as behaviour might be significantly different once these
parameters take on their real-world values. This section provides a review of the features
that are most commonly identified as being laboratory-specific.

The Size of the Monetary Stakes

The dominance principle (described in Section 5.2.1) leads most experiments to offer
lower rewards than those in many economic situations. As the pool of subjects is typi-
cally mainly composed of undergraduate students, experiments often propose twice the
minimum wage for one hour of participation. If the experiment concerns, e.g., invest-
ment decisions by firms or employment contracts based on long-term relationships,
inference implicitly assumes the monotonicity of behaviour in the size of incentives.
Although potentially costly, robustness can be checked using additional treatments with
higher (or lower) incentives that better match the situation under consideration.

The literature review in Camerer and Hogarth (1999), described in Illustration 5.5,
finds mixed evidence of the robustness of experimental results to the size of monetary
rewards, although Holt and Laury (2002) and Lefebvre et al. (2010) uncover large
movements in risk attitudes as the size of the stakes increases. A recent research trend
overcomes the budget constraint associated with these robustness checks by chang-
ing the opportunity cost of the subject pool rather than the value of the stakes: the
experiment is run in countries with lower market wages – typically developing coun-
tries. For example, Andersen et al. (2011) analyse the ultimatum-bargaining game in
poor villages in north-east India with monetary amounts corresponding to between 1.6
and 1,600 hours of work. Figure 8.3.a depicts the observed behaviour of senders and
Figure 8.3.b that of receivers, both as a function of the monetary stakes (measured
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Figure 8.3 Social preferences when the monetary stakes are (very) high

Note. These figures show the share of the endowment offered by senders (left-hand panel) and the
rejection rates from receivers (right-hand panel) as a function of the monetary amounts measured
in Rupees.
Source: Andersen et al. (2011, p. 3431, Figure 1, p. 3434, Figure 3)
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in local currency). Senders’ behaviour does depend on the size of the stakes – higher
stakes reduce the share sent. But the most important difference compared to the stan-
dard stylised facts regards receiver behaviour: the rejection rates quickly drop to 0 as
stakes rise: the willingness to pay to punish unfair offers falls with the price of the
punishment.

The source of the monetary endowment

When subjects are required to spend some money in the experiment (e.g. by giving
money in a dictator game), it is common to endow subjects with windfall earnings at
the beginning of the experiment. This obviously stands in sharp contrast to most eco-
nomic situations, in which people spend money they previously earned as the reward
for some activity. External validity will be threatened if the property rights over the
endowment affect decisions. In this case, participants might act as if they are play-
ing with ‘easy’ house money (Thaler and Johnson, 1990; Cardenas et al., 2014).4 This
question can again easily be tackled via additional laboratory experiments in which the
endowment is earned rather than being a windfall. Money is earned by having sub-
jects participate in a preliminary task for which performance is compensated. In the
dictator game example, the evidence in Cherry et al. (2002), discussed at length in Sec-
tion 4.3.2, shows a considerable difference between subjects splitting what they see as
earnings from a general-knowledge quiz rather than windfall endowments. Oxoby and
Spraggon (2008) generalise the approach to receivers’ earned wealth, and again find a
large effect: offers rise compared to the benchmark with windfall endowments on both
sides. Equally, Augenblick et al. (2015) show that elicited preferences over time change
with monetary rewards and real effort. Their results suggest that money over time is
fungible, whereas real effort over time is less fungible and closer to a consumption
good.

Induced values and the artificiality of the choice task.

Induced values were first introduced in market-design experiments (see e.g. Sec-
tion 1.2.1 and Chapter 2 for examples) in order to increase experimental control over
individual preferences towards the good that is exchanged on the market. Greater
internal validity again comes at the cost of an artificial decision environment. Here
‘consumption’ for buyers amounts to being the owner of an artificial good about
which only some monetary value is known; producers similarly supply a good that is
defined only as a face-value marginal cost, etc. External validity can be assessed by
applying the same market mechanism to actual home-grown goods, as discussed, for
instance, in Illustration 2.1 for a Vickrey auction and Illustration 8.6 for a public-good
game.

This induced-value approach later became popular for the study of behaviour in a
wide range of decision contexts, and in particular effort at work. As shown by the exper-
iment described in Illustration 4.4, effort is reduced in these experiments to a simple

4 In choice under risk, Thaler and Johnson (1990) find that house money increases risk-taking in gains,
whereas Cardenas et al. (2014) find less support for the house-money effect in an experiment involving
both gains and losses.
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Illustration 8.6

External validity of free riding in voluntary-contribution mechanisms

To assess the external validity of the voluntary-contribution mechanism game as a measure

of free riding in public-good situations, Goeschl et al. (2017) explore whether the cooperative

behaviour observed in the laboratory generalises to a climate-change public-good game. The

experiment is based on two tasks: a real-contribution task and a laboratory public-good game.

In the real-contribution task, participants are given the possibility of using a share of their

show-up fee (e10) to reduce CO2 emissions by buying (and destroying) emission permits

from the European Emission Trading System (EU ETS). Participants are told the amount of

CO2 reduced per euro as well as the estimated delay in the resulting beneficial impact on

climate change. In the second task, subjects are randomly matched into groups and play ten

independent one-shot public-good games, each with a different combination of parameters

(group size, marginal per capita return and payoff structure). Two distinct pools of players

participated in the experiment: 43 students and 92 individuals from the general population.

External validity is measured by the correlation between the real-contribution task and the

public-good game. The main results are shown in the following Table (from Goeschl et al.,

2017, p. 9, Table 3, and p. 16, Table 4), with the ten independent one-shot public-good games

indexed a to j.

Decision Group size Symmetric MPCR Correlations

Non-students Students Whole sample

a Large Yes 0.10 0.0270 0.1689 0.0985
b Large No 0.10 0.1081 0.3723∗∗ 0.1822∗∗

c Large No 0.15 0.1319 0.3516∗∗ 0.2003∗∗

d Large Yes 0.20 −0.0184 0.2939∗ 0.0737
e Small No 0.33 0.0906 0.2964∗ 0.1713∗∗

f Small Yes 0.40 0.0827 0.1455 0.1404
g Large No 0.42 −0.0074 0.0570 0.0446
h Small No 0.46 0.0242 0.1880 0.0956
i Small No 0.53 −0.0452 0.1308 0.0042
j Small Yes 0.80 −0.0719 0.1138 0.0491

The comparison between the subject pools shows that students’ decisions are more consistent

(correlated) than are the non-students’ decisions. However, the correlations between average

contributions are rather small in both tasks for both samples. The table also shows considerable

changes in the correlations according to the experimental set-up. For example, the correlations

turn out to be higher when the marginal per capita return is lower and the group size is larger.

cost-benefit pair – the cost being paid by the employee for the benefit of the employer.
The external validity of the behaviour observed in this artificial task can be tested using
‘real-effort tasks’, in which performance depends on some individual skill – solving
mazes, adding up numbers, etc. (Charness and Villeval, 2009). This setting is closer to
the real-world idea of effort (see e.g. Gill and Prowse, 2015, for both an example and a
survey of existing types of real-effort task). This comes with a loss of control, since the
abilities that underlie individual performance are now private unobserved information.
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For instance, Takahashi et al. (2016) emphasise the importance of whether the task is
boring or interesting for subjects. Two different kinds of question arise regarding the
generalisability of the experimental results based on effort tasks. The first is whether
real effort changes behaviour relative to the induced-value setting. Bruggen and Strobel
(2007) make this comparison in the context of an employer–employee gift-exchange
game. They do not find any effect of switching from an induced-cost function to a
real-effort task based on mental calculations performed in a limited amount of time.
Lezzi et al. (2015) obtain similar results in a contest game. If real effort does indeed
change outcomes, the second question then turns to the choice of the real-effort task that
best matches the relevant real-life situation. For instance, Dutcher et al. (2015) distin-
guish tasks according to whether performance actually produces some wealth outside
the experiment (useful tasks) or not (trivial tasks).

The neutrality of the decision context

The decision context is a highly sensitive part of the experimental design and is thus
typically very specific to the laboratory. One of the rationales for this choice is to make
the decision context clear and simple, which by itself could affect behaviour – see Illus-
tration 8.7 for a robustness check about coordination behaviour. But the choice of the
decision context is particularly important for the analysis of morally loaded behaviour
(Cubitt et al., 2011; Masclet et al., 2003). Using words such as ‘cheating’ or ‘lying’ in
the framing of the experiment is expected to change the extent of such behaviour, pos-
sibly affecting the generalisability of the quantitative measures obtained from neutral
instructions in the laboratory. This question is addressed by Abbink and Hennig-Schmidt
(2006) in the context of corruption. Neutral instructions reduce bribery to a game in
which one player tries to affect another player’s decision by a monetary transfer. In
a separate treatment, this same environment is described to subjects using the words
found in real-life bribery situations, leading to corruption rates that are quantitatively
equivalent to those observed in a neutral context. If the aim of the experiment is rather
to measure qualitative changes in behaviour, the context will matter in terms of exter-
nal validity if it alters the way in which behaviour changes react to the environmental
factors.

Tax-compliance experiments provide a number of examples of attempts to measure
context effects. A tax-evasion game typically reduces compliance to the decision to
report the amount of an endowment to later be taxed by the experimenter (see e.g. Tor-
gler, 2002, for a survey). In this setting, the amount evaded is usually randomly fined.
The game can easily be framed as a tax-simulation exercise to enhance the external
validity of compliance behaviour. Choo et al. (2016) use this change in design to inves-
tigate the different compliance rates for student and non-student populations. They find
no difference in a neutral context, in which the game reduces to lottery choices, sug-
gesting that norms of compliance are an important driver of the difference observed in a
contextualised tax-evasion game. Cadsby et al. (2006) similarly find that the response to
the experiment’s economic parameters strongly depends on the wording of the taxation
exercise, with compliance elasticities becoming very small when reporting is framed as
obeying an authority’s request.
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Illustration 8.7

Overcoming coordination failures thanks to complexity

Coordination failures are experimentally widespread in classical coordination games (see

Chapter 5, Illustration 5.17). Experimental games, however, reduce coordination to its essen-

tial features – actions and payoffs – which arguably make the problem simpler and focus

attention on coordination issues. To assess the robustness of coordination behaviour observed

in the laboratory to more complex coordination situations, Parkhurst and Shogren (2005)

compare behaviour in two strategically equivalent versions of a coordination game. The first

version describes the actual target situation, in which farmers must choose simultaneously

and independently which part of their land they give up. The payoffs of the resulting outcome

are defined according to the objective of creating an adjacent protected area. Overall, the game

features four players and more than 68,000 possible choices, resulting in 68,0004 possible out-

comes, among which more than 9,000 are Pareto-rankable – and only one is Pareto-dominant.

The second version is a simplified coordination game, in which the situation is reduced to two

players and eight decisions. For each of the two versions, subjects play 20 rounds of the coor-

dination game in quasi-stranger design. The table below (from Parkhurst and Shogren, 2005,

p. 451, Table 1B) summarises the main results.

Normal form Grid game

Rounds Payoff-dominant N Payoff-dominant N

1–5 82.2% 80 35.0% 80
6–10 90.0% 80 88.8% 80
11–15 90.0% 80 100% 80
16–20 93.8% 80 100% 80

Repetition clearly helps coordination on the payoff-dominant action in both situations. Com-

plexity does impede coordination in the first few rounds, with more than twice as many

payoff-dominant actions in the simplified coordination game. The situation is, however,

reversed as time passes, coordination on the payoff-dominant action being achieved even more

often in the complex game than in its simplified version.

The duration of the experiment

For practical reasons, for both subjects and the researcher, a typical experiment lasts
between one and two hours. This is, of course, too short a period of time to be able to
safely replicate long-term economic relationships. It is worth noting that there are some
important exceptions to this rule. In particular, experiments that aim to elicit time prefer-
ences in a longitudinal setting need to be spread out over several sessions (Sayman and
Öncüler, 2008; Halevy, 2015). This introduces complications in the design, as described
in detail in Section 6.6. Another example comes from experiments in which the rules are
too complicated to be understood by subjects in the usual time period. Here the experi-
ment can be spread over several sessions, one in which instructions are described along
with practice periods, and another eliciting actual decisions (see e.g., Stranlund et al.,
2014, for an application to emission-permit markets).
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These designs produce a loss of internal validity due to the time elapsed between
the time slots, with, e.g., a risk that subjects interact regarding the experiment outside
the laboratory, or look for information on how to behave. The implementation of the
whole process within one single time period is therefore generally preferred. The field
evidence on the gift-exchange game presented in Chapter 4, Section 4.5.2, shows that
the duration of the experiment can drastically change the results. Normann et al. (2014)
provide an extreme test of this effect in the context of a duopoly experiment. The main
treatment of interest replicates a baseline two-player competition game, but spread out
over one month, with subjects deciding only once on each day. Two versions of the game
are considered, with firms endowed with either the same or different cost functions.
The results show no difference in either behaviour or market outcomes when the cost
functions are symmetric, and differences of only small size when they are asymmetric.

8.3.3 Inference: Subject-Pool Biases

Experiments are often run by faculty staff, who interact frequently with university stu-
dents. Students, moreover, are intellectually and cognitively competent, are flexible in
terms of their schedule, and generally have a low opportunity cost of time. For all of
these practical reasons, a large fraction of laboratory experiment subject pools are made
up of university students. One obvious challenge to external validity concerns situations
in which (i) the real-world economic agents are not university students, and (ii) there
are reasons to believe that student behaviour differs from that of the general population.
Before discussing these two conditions, it is worth stressing that external validity is chal-
lenged only if they apply simultaneously to an experimental design. There is nothing to
worry about if either students are the target population for which the results should be
applied (observations on students are obviously solid regarding their own behaviour), or
if there is no reason to expect their behaviour to be different from that of anyone else in
the context of the research.

Students differ from the general population in a number of ways (see e.g. Slonim
et al., 2013), just as any particular sub-sample of economic agents used in empirical
work do (people working in a particular firm, consumers of a particular product, peo-
ple living in a particular geographic area). The question in terms of external validity is
thus whether these characteristics are likely to systematically influence behaviour, so
that inference to other populations, with different values of these characteristics, can be
called into question. In this respect, the distinction between measurement experiments
and experiments aimed at measuring treatment effects (as described in Section 5.1.2)
is again useful: representativeness is more likely to be an issue if the experiment aims
to provide quantitative assessments of individual characteristics such as preferences or
beliefs. Representativeness might, however, extend beyond measurement experiments
if treatment effects are heterogeneous. Among student-specific characteristics (see Ball
and Cech, 1996, for a detailed discussion), the most often discussed are the narrow
age range and the low level of income as compared to the general population (e.g.
Choi et al., 2014). Representativeness is a serious issue, but only if the differences in
behaviour go beyond these observable individual characteristics: otherwise it suffices to
control for composition differences to infer the likely average behaviour in any other
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sub-population. Bellemare and Kröger (2007), for instance, find significant differences
in behaviour in a gift-exchange game when comparing a representative sample of the
Dutch population to the behaviour of experimental subjects. The lower levels of both
investment and returns observed in the latter group, however, vanish once individual
characteristics, such as age and gender, are taken into account.

Participants in experimental economics are also often enrolled in economics pro-
grammes. The choice of field of study may well be correlated with characteristics that
influence behaviour in the context of a particular experiment. For instance, Frank and
Schulze (2000) find evidence in a bribery experiment that economics students are more
corrupt than students in other disciplines, and other people in general. An additional
issue is the possibility of self-selection in the experiment, even within the selected sam-
ple of students – see Illustration 8.8 for an example. Anderson et al. (2013) perform
a two-step comparison of other-regarding preferences: between self-selected students
and self-selected adults, and between the latter and non-self-selected adults. They find
differences according to the sub-population (students versus adults), but no difference
resulting from selection.

Another particularity of the traditional experimental-economics literature is that the
vast majority of experiments have been run in Western countries, where there is more
investment in higher education, and easier access to facilities and research funds. In
an influential paper, Henrich et al. (2010) wonder if the behaviour of ‘WEIRD’ peo-
ple, from Western educated, industrialised, rich, and democratic countries, can be
generalised to other kinds of population. Their work covers a wide variety of stan-
dard experiments (from many fields, well beyond economics) carried out in different
parts of the world. For example, Figure 8.4 reports the results from two classic games

(a) Dictator game (b) Ultimatum-bargaining game
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Figure 8.4 Other-regarding behaviour in non-WEIRD populations

Note. These figures show the share of the endowment offered by proposers in the dictator game
(left-hand panel) and income-maximising offers in the ultimatum-bargaining game (right-hand
panel) in experiments run in different countries.
Source: Henrich et al. (2010, Figure 3, p. 6).
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Illustration 8.8

Self-selection in laboratory experiments

Participants in laboratory experiments are usually unaware ex ante of the game that they will

play. This then forces individuals to make decisions in economic environments that they might

avoid in real life. Lazear et al. (2011) provide evidence of the consequences of this phe-

nomenon in the context of a dictator game in a between-subject experiment. Participants in

the control group play the usual dictator game with an endowment of y = $10 to be shared.

Participants in the treatment group play a modified dictator game, where subjects can opt

out of the game. If they opt out, they receive an amount yout < y. The figure below (from

Lazear et al., 2011, p. 144, Figure 1A) shows the results from the experiment run at University

of California, Berkeley (additional experiments were run in other locations as a robustness

check).
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At least half of the players in the treatment group chose to opt out and receive yout. The

aggregate amount shared by dictators was consequently significantly lower than in the control

group. In particular, the share of people who gave nothing fell from 1/3 in the control group

to 1/10 in the treatment group. The figure above shows that over 25% of respondents would

share a positive amount in the control group but opt out in the sorting group. These ‘reluctant

sharers’ share – and even generously so – if they have to, but prefer to avoid the sharing task.

A second experiment tests the price sensitivity of opting out via a number of dictator games

in a within-subject design. The first condition is NO OPTING OUT and the second proposes

OPTING OUT with yout = y. The last part of the experiment consists of a series of increasing
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opt-out amounts of yout – from 5% to 100% of y. The aim is to induce reluctant sharers to re-

enter the game so that the total shared amount increases, while the conditional average shared

amount falls. When sorting is costless, 46% of people enter the game, sharing on average

$2.88. A one-dollar subsidy for entering increases entrance to 76%, but the average amount

shared falls to $2.22. Interestingly, subjects who first re-entered the game are those who share

less in NO OPTING OUT. This is not in line with the idea that generosity in the standard dictator

game is a good predictor of the utility of sharing.

on other-regarding behaviour: the dictator game (in Figure 8.4.a, which delivers a
measure of generosity to others) and receiver behaviour in the ultimatum-bargaining
game (summarised as the income-maximising offer, i.e. the offer that maximises
expected earnings given the observed distribution of refusals from the receivers, pro-
viding a measure of social norms). The behaviour elicited in the US is shown in both
cases as a typical WEIRD benchmark. In both respects, the other-regarding behaviour
in the US is a clear outlier. The main conclusion from the paper is that behavioural
science needs to widen the scope of its experimental pools to ensure the satisfactory
generalisability of the observed regularities. These observations led to great interest in
cross-cultural comparisons in the literature, to assess the robustness of standard results
to alternative populations. This is particularly welcome when the observed regularities
reflect cultural norms or habits in which significant differences can be observed across
the world. The main challenge in running this kind of cross-cultural study is to ensure
the comparability of the experiment across locations. The monetary incentives are typ-
ically converted using purchasing-power exchange rates. The experimental instructions
are generally translated to the other languages by a professional, and then translated
back to the original instructions. Any difference is resolved, and the translation process
is carried out again until convergence is attained (Brislin, 1970).

The external validity of experimental results is not only affected by the particulari-
ties of the subject pool, but also by any specific characteristics of the pool of economic
agents to which the results apply. If student behaviour is representative of the general
population, but the people in the target situation differ significantly from the gen-
eral population, student behaviour will not inform us about the target parameter. The
typical example here is experiments that aim to document behaviour for a particular
professional occupation or economic sector. Montmarquette et al. (2004), for instance,
compare decisions about a company merger taken in a real-task experiment by man-
agers in a large company with the decisions in the same situation made by students from
a standard subject pool. They find very similar outcomes, although the strategies differ
significantly. Fréchette (2015, 2016) provides a systematic review of the literature com-
paring student behaviour to that of both professionals from the relevant industries and
other population groups. There is in general little difference between the two, although
there are some exceptions (e.g. Palacios-Huerta and Volij, 2008, in a zero-sum game).

When professionals’ behaviour significantly differs from that of students, it is impor-
tant to understand what may lie behind this discord. One hypothesis is that experience
in the decision-making situation matters (this is an obvious, and significant, difference
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Illustration 8.9

The winner’s curse with experienced bidders

Dyer et al. (1989) provide an experimental test of the difference between experienced and

inexperienced players in common-value offer auctions – in which players compete not to buy

a good at the lowest price, but rather to sell at the highest price. Bidders receive an imperfect

signal of the common unknown cost of producing the good, and send a sealed price to the

buyer. The buyer buys the good from the bidder who announces the lowest price. The following

table (from Dyer et al., 1989, p. 11, Table 1) shows the results. The first column shows the

percentage of times that the lowest bid is submitted by the lowest-signal player, which is

a measure of the consistency of strategies across players. The second column shows average

profits. A negative profit corresponds to the winner’s curse. The last column shows the average

profit in the theoretical equilibrium.

Pool % of auctions won
by the low-signal
bidder

Average profits Average profit in
the theoretical equi-
librium

Naive 71 -0.37 5.02
Executive 79 -1.01 5.42

There are no significant differences across populations in any of these indicators. The auctions

are won 71% of the time by the low-signal bidder with ‘naive’ inexperienced players and 79%

of the time with the executives. Profits are negative or almost 0 in all experiments. In addition,

the share of bids under the expected cost is 66% for the naive players and 67% for executives.

From these results, Dyer et al. (1989, p. 113) conclude that ‘the winner’s curse phenomenon is

robust across auction form, market size and subject population’. Of course, executives could

not systematically make these losses in their industry, otherwise their firms would not survive.

This robustness result shows that experience cannot explain the behaviour observed in the

laboratory.

between professionals and the general population). This hypothesis goes well beyond
any comparison between professionals and others, and applies to any economic situa-
tion in which agents are frequently exposed to the same choices. Experience has been
shown to reduce market anomalies in selling and buying behaviour (List, 2003, 2004).
Illustration 8.9 provides another example relating to the winner’s curse. Experience has
also been identified as the main source of variation when comparing sample pools in
labour economics – see e.g. the survey in Falk and Fehr (2003), showing that experience
is more influential than socio-economic identity.

8.4 Case Study : Replication: Enhanced Credibility Thanks to Accumulated
Evidence

A last dimension that is discussed in the context of the validity of experimental results is
the size of the sample in published work. Bellemare et al. (2014) report that among the
71 papers published in the 2012 and 2013 issues of the journal Experimental Economics,
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the range of independent observations per treatment was between 13.5 and 420, with a
mean of 77 and a median of 51. Increasing the size of the experiment sample, although
costly, is as simple as adding more experimental sessions and inviting more experimen-
tal subjects. This can be done in the course of a single experiment, or accumulated from
a number of experiments with the same experimental environment. The independent
observations in the set of all such experiments is a meta-sample the size of which grows
as more experiments are run. This raises the question whether the experimental environ-
ments actually are the same, and if they are not exactly the same whether they deliver
similar-enough information to be seen as part of the same meta-sample. These questions
are exactly those raised in the context of a growing concern in empirical economics in
general, and experimental economics in particular: replication, which is seen as a way
to enhance the credibility of empirical results.

8.4.1 ‘Keeping the Con out of Experimental Research’: the Need for Replication

To simplify the exposition, we here frame the discussion in the particular context of
experiments aiming to detect a treatment effect – i.e. to know whether a change in one
dimension of the environment has a statistically significant effect on the outcome.5

The concern over sample size is a matter of statistical inference. As described in
Chapter 7, Section 7.3.1, decisions made on statistical tests (the statistical significance
of the difference in the outcome) are susceptible to two kinds of mistake: false positives
(type I errors, denoted α), and false negatives (type II errors, denoted β). As the two can-
not be minimised simultaneously, the common practice is to apply the Neyman principle
and arbitrarily fix the level of the test, α, which gives the probability of a false positive –
the probability that the statistical test rejects the null hypothesis even though the null
actually describes the data-generating process. Since this probability is embedded in the
definition of the test, it does not depend on the size of the sample, but rather applies to
resampling. This describes the asymptotic distribution of false positives in the popula-
tion of experimental results that are due to the very nature of the statistical test. The type
I error is thus in itself a first reason why replication is required to establish the credibil-
ity of empirical results. Out of a large number of identical attempts to measure the same
treatment effect that does not actually exist, α% will manage to find an effect. As this
argument is statistical, we never know whether the first appearance of a result should be
interpreted as (good) luck, or rather as an actually significant underlying effect – only
accumulated and consistent evidence will make it increasingly unlikely that significant
treatment effects are false positives.

This discussion applies to the repeated use of the same test, in particular with the
same value of β, the type II error, which measures the likelihood of a false negative –
the probability of failing to find an effect that actually exists. The Neyman principle
leads us to use the most powerful (if it exists) of the consistent tests, where a consistent
test is such that the power, 1 − β approaches 1 as the size of the sample goes to infinity.
In contrast to type I errors, this property of the test thus does depend on the sample

5 The title of this section is borrowed from two early contributions in this context, Leamer (1983) and Roth
(1994).
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Table 8.2 Calculation of the false-positive report probability

Truth of the alternative hypothesis
Significance of test

Significant Not significant Total

True association
(1 − β)ȳ β ȳ ȳ

[True positive] [False negative]

No association
α(1 − ȳ) (1 − α)(1 − ȳ) 1 − ȳ

[False positive] [True negative]

Total (1 − β)ȳ + α(1 − ȳ) β ȳ + (1 − α)(1 − ȳ) ȳ

Note. Given the true relationship in the rows, the cells show the probability of significant (first
column) and insignificant (second column) results in the literature according to the level (α)
and power of the statistical tests (β) as well as the share of true associations among those
investigated, y.
Source: Wacholder et al. (2004, p. 440, Table 1).

size. Moreover, the likelihood of a type II error is higher the smaller the difference
between the null hypothesis and the actual data-generating process. In other words, the
likelihood of a type II error is larger the bigger the sample size needed to achieve a given
power (see Focus 7.9 for an illustration of how the sample size is adjusted according to
power).

All empirical work is subject to both false positives and false negatives, but their
implications for the credibility of the results published in scientific journals exceed
their face value. Wacholder et al. (2004) develop a method to calculate the proba-
bility that a positive finding picked up in published research is actually false (see
Maniadis et al., 2014, for a transposition to experimental economics). This refers to
the probability that the null hypothesis is true given that a significant effect is found,
Pr[H0|d1] = Pr[θ0 ∈ �0|T(Y) ∈ R] – which is the reverse condition as compared to
the size of the test, calculated conditional on the null hypothesis being true. Table 8.2
shows the joint probability distribution of the conclusion of an empirical analysis and
the data-generating process, denoting by ȳ the proportion of all relationships that can
be investigated in a field that are actually true. The ‘false-positive report probability’
(FPRP) is the likelihood of a false positive among all the significant results that are
reported:

FPRP =
α(1 − ȳ)

α(1 − ȳ) + (1 − β)ȳ

Assuming that all tests are of the highest-level power (1 − β = 1), this probability is
the same as the standard size of significance tests (α = 0.05) only if half the relation-
ships under investigation are actually true (ȳ = 0.5): it is lower (higher) if this proportion
is lower (higher). As an extreme example, Wacholder et al. (2004) calculate an FPRP of
slightly over 98% when ȳ is 0.001 – i.e. one effect out of a thousand that are investigated
is actually true.

Ioannidis (2005) extends this framework in two ways. He first considers competition
between researchers in the quest for identification of each relationship. If n teams are
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looking for the same empirical result, all of which work with the same level of power,
then the probability of being the first to find a true relationship is (1 − βn)ȳ and the
probability of the appearance of the first false positive becomes [1 − (1 − α)n](1 − ȳ).
The resulting probability of a false negative among the ‘original’ results in the scientific
literature is

FPRP(n) =
[1 − (1 − α)n](1 − ȳ)

[1 − (1 − α)n](1 − ȳ) + (1 − βn)ȳ

This increases with n as long as (1 − β) > α.
On top of these pure consequences of the design of statistical inference, the credibility

of empirical results is also conditional on the spread of scientific malpractice. There are
many causes of these biases. A first is deliberate malpractice, such as the false reporting
of information and all imaginable kinds of fraud, sometimes referred to as ‘questionable
research practices’.6 These practices are designed to produce significant results where
none appear, trivially leading to a rise in the share of false positives. A less extreme
practice leading to the same kind of consequence is to widen the set of outcome vari-
ables when the hypothesised relationships are not found in the data, until significant
relationships appear (a practice often labelled ‘data mining’). This again leads to an
inflation of significant results in the literature, and more strongly so if the failure of the
first hypothesis is not reported.

But even truthful academic practice can yield biases. The two most important are
‘publication bias’ and ‘reporting bias’. Publication bias refers to the selection of scien-
tific results in academic journals from the willingness of editors and authors to increase
the impact of published research. Publication bias implies that innovative results are
more likely to appear in the academic literature than are failures, and the more so
the more surprising and unexpected are the results. The process of academic publish-
ing is therefore likely to distort the distribution of results in the literature towards
more false positives. Reporting bias, on the other hand, refers to the selection of the
data reported in a research article. As stressed by Roth (1994), this risk arises in par-
ticular when empirical findings come from a sequence of independent trials – e.g. a
first treatment is designed, and leads to unsatisfactory results, but provides insights
into the design of a subsequent treatment, etc. As such, independent trials are natural
parts of the scientific process, made up of trials and errors. But the question of which
results are finally reported arises; if only the most convincing results appear, while the
intermediary treatments do not, there is again distortion in the distribution of signifi-
cant findings that are conclusive, since the omitted treatments are more likely to have
produced non-results. This leads to the extreme ‘file-drawer problem’, consisting in
silence over failures to obtain significant results but the public release of significant
findings.

To quantify the effect of these biases on the credibility of empirical results, denote
by B the share of the overall set of positive results that arises due to this bias. Of the

6 See List et al. (2001) for empirical evidence on the extent of this in economics, and Stapel (2014) for
the detailed narrative of a recent example in experimental psychology, the impact of which was such that
Kahneman (2012) wrote an open letter arguing in favour of better-designed replications.
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Ȳ true relationships, a share (1 − β) will then be accurately found to be true and a
share B × β will be reported to be true due to the bias; equally, of the (1 − ȳ) zero
relationships, a share α will mistakenly turn out to be true due to type I error, and another
share B × (1 − α) will result from the bias. The share of false positives induced by the
bias is

FPRP(B) =
(1 − ȳ)[α + B(1 − α)]

(1 − ȳ)[α + B(1 − α)] + (1 − β)ȳ + Bβ ȳ

Ioannidis (2005) shows that this probability rises in B when α < 1 − β, in which case
higher bias leads to a greater share of false positives for the given levels of power and
size typically found in the field.

All of the above factors imply that the credibility of any empirical field of research
is challenged by a number of factors, which include, but are not limited to, sample
size. The assessment of the likely extent of these factors led Ioannidis and Doucou-
liagos (2013) to conclude that the credibility of empirical economics is likely not
strong. Replication is the most obvious way of addressing these issues in order to
enhance the credibility of empirical results: ‘as a profession, our best defence against
erroneous conclusions resulting from unreported or incompletely reported search is
to encourage experimenters to follow up on one another’s work’ (Roth, 1994, pp.
287–8).

8.4.2 From Replication to Cumulative Research

One comparative advantage of experiments is their reproducibility. Nothing is simpler
than running the same experimental treatment again, i.e. exposing different subjects to
the same rules and environment to see whether the same behaviour results as in the
first attempt (at least if researchers comply with the good practice of making public
the original instructions that were used to run the first experiment once the paper has
been published).7 It is an open question, however, whether replication should be strictly
restricted to the experiments with exactly the same design, or whether changes in the
design should be included.

Strictly defined, replication aims to increase the size of the original sample. This raises
two issues. First, this narrow definition would apply not only to the rules, parameters and
control variables, but also to any dimension of the original experiment. It is difficult,
for instance, to decide whether the individuals invited to participate in the replication
experiment belong to the same target population. The range of variation that falls into
the set of strict replication thus needs to be clearly defined. Second, narrowly defined
replications increase the power of tests in the new sample consisting of observations
from the two studies, but does not deliver additional information about whether the
combined result can be generalised. As noted by Roth (1994, p. 288),

7 This does not mean that experiments are less likely to give rise to false positives; arguably, as experi-
ments provide an easy way of generating data, they may even be more likely to produce malpractice and
competition effects.
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Table 8.3 Replication versus robustness: a classification

Sampling methods
reported in original
distribution of the
parameter
estimates

Sufficient
conditions for
discrepancy

Types Methods in follow-up
study versus methods
reported in original

Examples

Same Same Same
spec. spec. sample

Replication

Same Random Verification Yes Yes Yes Fix faulty measurement,
chance, error, code, data set,
or fraud Reproduction Yes Yes No address sampling

error, low power
Robustness

Different Sampling Reanalysis No Yes Yes/No Alter specification,
distribution recode variables
changed

Extension Yes No No Alter place or time,
drop outliers

Note. This table describes the main characteristics of replication (top panel) and robustness (bottom panel)
follow-up studies.
Source: Clemens (2016, p. 3, Table1).

when a carefully conducted experiment is repeated, the likelihood that the data will be similar
seems to be high. But precise replication gives little information about robustness. What
ultimately gives us our best indication of the robustness of experimental results is replication
with some variation of experimental parameters and conditions.

This kind of replication is what Ioannidis and Doucouliagos (2013) label ‘concep-
tual replications’, in which the research question and the design of the experiment are
defined in reference to the original experiment, but feature variations that aim to test its
robustness.

In an attempt to address these issues, Clemens (2016) provides guidelines on how
follow-up experiments can be classified as (i) replication studies; (ii) robustness checks,
and (iii) original contributions, as compared to the original experiment. Two dimensions
are key here. The first focuses on the target parameter that we wish to measure, in par-
ticular whether the results are expected to be the same or different. The second focuses
on the distribution of the sample parameters – whether the estimate calculated from the
new data is drawn from the same distribution as the original estimates. The first crite-
rion distinguishes replication in a broad sense from follow-up studies producing original
contributions: it is only when the same empirical findings are expected in the two stud-
ies that the follow-up is a replication. This definition is required to restrict replication to
work that aims to screen the false positives that appear in the process of statistical inves-
tigation. The second criterion can be used to distinguish strictly defined replication, in
which the sample parameters are drawn from the same distribution in the two studies,
from robustness checks that aim to measure the same target parameter but on a different
sample. Table 8.3 summarises the resulting classification and provides examples of the
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kinds of change that can be found for each type of follow-up. Each of these two groups
can be further split into two kinds of implementation. On the one hand, replications are
‘Verifications’ if they use exactly the same data as in the original study to which the
same analysis is applied, while they are ‘Reproductions’ if the analysis is performed
on new data, i.e. on a different sample drawn from the same population. Robustness
checks, on the other hand, take the form of ‘Reanalysis’ if a different statistical analysis
is performed on the same data, and ‘Extensions’ if this is carried out using different data.

These definitions do not include follow-up studies that introduce large enough distor-
tions in the design for the expected results to change. The above sections provided many
such examples, including, e.g., changes in the subject pool or the monetary stakes. These
changes no longer target the same population parameter: they rather aim to test the gen-
eralisability of experimental findings to alternative contexts, i.e. to assess how universal
the relationships documented within the context of a particular empirical framework are.

Whether it arises in the course of replications, robustness checks or such follow-
up investigations, this process produces accumulated empirical evidence regarding the
same research question, with differences in the empirical strategy ranging from almost
none beyond the sample size to more significant ones like the content of the exper-
imental instructions or the monetary stakes. We typically appeal to meta-analysis to
aggregate this information. This is a set of statistical tools for the collection and anal-
ysis of data referring to the same phenomenon. While most of the methodological
discussions of meta-analysis appear in fields where there is pressure for policy recom-
mendations with a considerable degree of confidence, such as in epidemiology leading
to the ‘MOOSE’ standard (Stroup et al., 2000), or health care interventions with the
‘PRISMA’ recommendation (Liberati et al., 2009), efforts have also been made in psy-
chology (American Psychology Association, 2008, defining the ‘MARS’ standard) and
economics (see e.g. Stanley et al., 2013, for a detailed checklist aiming to establish a
publication standard). These various recommendations yield the following guidelines
on how to undertake a meta-analysis.

1. The research strategy. This concerns the definition of the target parameter, i.e. the
precise theory or empirical phenomenon to be investigated, as well as its empirical
measurement, along with the definition of a common metric that will allow the effects
to be measured on a common scale.

2. Literature search. This covers the choice of databases and keywords to be used to
search for existing literature. A set of inclusion criteria splits studies that fall into the
range of the meta-analysis from those that do not.

3. Data collection. The retained studies have to be coded in a uniform way, which also
implies deciding what information to record from each study. This step will likely
require the interpretation of some of the information in the original papers (as this
information needs to be comparable between analyses).

The typical observation in the data set is the result of a statistical treatment applied
to the original sample. The secondary analysis requires particular statistical tools to
take into account, for example differences in sample size and standard errors between
observations. Hedges and Olkin (1985) is a seminal description of the statistical methods
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that can be applied. Brockwell and Gordon (2001) provide a comparison of the most
common techniques, while Rosenthal and DiMatteo (2001) focus on applications in
psychology.

8.4.3 Examples and Current Practice

Despite the growing case in academia for more replication studies, replications are
unanimously recognised as being underrepresented in economics compared to other
disciplines (see e.g. Duvendack et al., 2015, for a recent discussion and a historical
perspective). One obvious reason is that follow-up work, precisely because it covers
empirical findings that are already known, is both less exciting for researchers and
less attractive for editors (whose editorial responsibility is to publish results that will
attract the attention of the scientific community, for example via citations, which is less
likely to come about with consistent replications, and who might be reluctant to engage
in the struggle associated with negative replications of well-received results). Zimmer-
mann (2015), for example discusses the negative incentives authors, editors and referees
face regarding replication studies, and the case for a new journal dedicated to this
question.

There is, however, a growing willingness to overcome this lack of replication. For
instance, the Economic Science Association launched a new academic journal in 2015,
the editorial policy of which (as stated on the journal policy page, accessed on 17
January 2017) encourages the submission of ‘article types that are important yet under-
represented in the experimental literature (i.e. replications, minor extensions, robustness
checks, meta-analyses, and good experimental designs even if obtaining null results)’.
Even so, it is fair to say that replications of the above type remain scarce, representing
under 7% of the articles that have been published in this journal to date (possibly due
to a lack of submissions). Perhaps more promising is the recent launch of a number
of open-access databases referencing replications, of which the Replication Network
(https://replicationnetwork.com) or Curate Science (http://curatescience.org) are active
examples. This growing awareness also leads to more careful consideration of good
practice in other disciplines. The American Economic Association, for instance, now
offers a pre-registration system, mainly aimed at field experiments, whereby the main
features of an experiment can be registered before it takes place: typically, the treatment
to be used and the outcome variables that the treatment is supposed to affect. Pre-
registration aims to reduce both the file-drawer problem and data mining (see Olken,
2015, for a detailed discussion regarding field experiments). Coffman and Niederle
(2015) argue that the benefits of this practice might not outweigh the costs, in particular
in fields in which replication is easy. These pre-registration procedures are, however,
now available, and sometimes used, for laboratory experiments – e.g. https://osf.io or
aspredicted.org.

Given this situation, the vast majority of existing replications or robustness checks in
experimental economics are stand-alone replications of a given experiment. Typically,
an original experiment is replicated to serve as the baseline for a new treatment. Numer-
ous examples are available in the literature for the most popular experimental games,
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such as the voluntary-contribution, prisoners’ dilemma and social-preference games.8

Until recently, however, there were no examples in experimental economics of large-
scale replication experiments like those in the sciences or psychology – e.g. Klein et
al. (2014); Open Science Collaboration (2015). A notable exception is Camerer et al.
(2016), in which all 18 between-subject experimental contributions published in the
2011–14 issues of the American Economic Review and the Quarterly Journal of Eco-

nomics are replicated in the laboratory. Overall, 61% of the significant effects in the
original work were replicated, and the average size of the replicated effects was 66% of
their original value.

Summary

The concern for statistical inference based on experimental measures has led to design
choices where all of the features of the situation of interest producing noise and/or con-
founding variations have been eliminated. The experimental setting is consequently far
removed from the target real-world situation of interest. We thus worry about external
validity: what does laboratory evidence tell us about socio-economic reality? Can what
is observed in the highly controlled environment of the laboratory be generalised to the
more complicated and possibly different real-life situation? Depending on how the two
empirical situations (the real life we want to understand, and the laboratory producing
accurate measures of the mechanism analysed) are compared, there are different defini-
tions of external validity. We discuss the three most-common definitions, in increasing
order of requirements: parallelism, robustness and inference.

One common feature of all of these definitions is that they amount to the comparison
between two empirical situations, and are thus empirical in nature. The whole range
of empirical methods (laboratory, mobile and online controlled experiments, and field
experiments) can be used to ‘assess’ this external validity, i.e. to check whether the
experimental results are sensitive to features that may prevent the results being gener-
alised. The chapter concludes with the existing empirical evidence on this question, and
the increasing concern for greater replication, ensuring the credibility of the empirical
regularities that are observed in the laboratory.

8 Some would add to this list the classroom experiments that are increasingly used in economic classes.
The seminal example here is the classroom version of the Chamberlain and Smith market experiments, the
results of which have, as far as we know, been very well replicated in all instances. Walker (1987) discusses
the strengths of classroom experiments in teaching economics; for applications see e.g. Holt and Laury
(1997) for the voluntary-contribution game and Holt and Capra (2000) for the prisoners’ dilemma. Holt
(2006) provides a thorough survey.



More Accurate Theory and Better
Public Policies: the Contributions of
Experimental Economics

Three main reasons regarding the need for experiments were advanced in Chapter 4:

testing theory, looking for facts and designingbetter public policies. These three objec-

tives are well addressed by experiments,as the latter provide a bridge between economic

theory andthe real world. But experimentsare notan exact replica of the real world, and

the resulting differenceslead to the external-validity issues discussed in Chapter 8. Once

these issues have been tackled,the circle can be closed by the following questions: what

should we do with the theories once they have been convincingly tested? What do we

learn from theseresults from a public-policy perspective?

The answersto these questionsare closely related to the gaps between the behaviour

that is expected in economic situations and what is actually observedin the lab. To a

certain extent, the answersto these questionsare then thus more akin to the concerns of

behavioural economics— the literature that brings together economics and psychology

in orderto offer an empirically more meaningful view of individual decision-making —

than to experimental economics per se. As behavioural economics is beyond the scope

of this book, we will restrict ourselves here to a few examples aimedatillustrating

the ways in which these questions have been answeredin the existing literature, with a

particular focus on the methodologicalissues at stake.

The debate between neoclassical economics and behavioural economicsis rich and

can be considered from a numberofdifferent perspectives. One perspective discusses

and comparesthe underlying assumptions of the models, and anotheris to dismiss the

evidence collected in behavioural economicsas‘irrational’, inconsistent or irrelevant.

third,alternative, perspective is to take the collected body of behavioural economics

as an opportunity to make better predictions aboutthe effects of existing policies. This

chapter followsthis third perspective, and moreparticularly the review of behavioural

economics and public policy proposed by Chetty (2015). Thelatter distinguishesthree

main contributions of experimental and behavioural economics.First, the evidence col-

lected by experimental and behavioural economics might help to improve theory, and the

objective of improving theory is here to obtain better predictions. Sections 9.1 and 9.2

deal with these implications. Second, even in a neoclassical framework, the experimen-

tal methodallows the simulation and measurementofthe impactofpolicy interventions.

Section 9.3 illustrates this point with a case study of the design of matching markets.

Third, the accumulated evidence on behaviour collected from experiments offers new

policy tools allowing policymakers to expand the set of policy outcomes. Thefinal

Section, 9.4, addresses this point.
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9.1 Testing Theory: Drawing General Lessons from (Causal) Experimental
Evidence

Experiments that test theory apply a given model in the laboratory and then compare the
experimental observations to those predicted by theory. This can apply to the outcomes –
the decisions actually taken – but also to the behavioural assumptions of the model. The
elicitation procedures presented as case studies in the previous chapters are the standard
experimental tools used to test these assumptions. In both cases, there are three broad
types of conclusion: (i) accept the theory as it is, (ii) reject it, but also (iii) further qualify
the range of its application. Illustration 9.1 provides an example of the latter and shows
how experimental behaviour helps to produce a better understanding of the empirical
content of size effects in competitive collusion.

A common feature of conclusions (i)–(iii) is that they require a definition of the type
of empirical behaviour that should be considered in accordance with or contradictory to
a theory. This is not a trivial question following what we learned about theoretical mod-
els in Chapter 4. Theoretical models are purposefully wrong as they represent a simple
understanding of complex situations. Individual heterogeneity is a classic example of a
gap between experimental outcomes and theoretical predictions that is beyond the scope
of model testing. Accounting for individual heterogeneity (in beliefs or preferences,
for example) is extremely complex in theoretical models, producing probability distri-
butions over different states of the world or wealth distributions, for example, instead
of the much more convenient single-outcome prediction in models assuming identical
agents. It is obviously unfair to compare the experimental outcomes – from heteroge-
neous subjects – to the predictions from this model, and it is often worthless generalising
the model to include heterogeneity that adds complexity without producing additional
insights. The testing of theory thus is a subtle process requiring the definition of which
component of the distribution of observed behaviour is expected to inform us about
the theory’s relevance – see the ‘Testing theory’ section of Schotter (2015, p. 73) for a
detailed discussion.

Using these definitions, there are plenty of examples in which ‘economic theory
makes strong predictions . . . and is generally quite accurate in predicting behaviour in
the laboratory (Levine and Zheng, 2015, p. 43). This stands in contrast to the general
impression that the results in experimental economics typically do not provide evidence
in favour of rationality or equilibrium reasoning in actual behaviour. This contrast may
partly result from the first phase of what Camerer et al. (2003, p. 1216) consider to be the
two waves of the recent history of behavioural economics, which ‘identified a variety
of disparate phenomena that were all anomalous compared to rational choice predic-
tions, but which otherwise had little in common. As a result, early critics of behavioural
economics often complained that it was just a laundry list of departures from rational
choice’.

The crowding-out effect of monetary incentives, described in Illustration 9.2, is an
example of such an anomaly, which with no doubt contradicts one of the most fun-
damental parts of economic theory: that individuals respond positively to monetary
incentives. The aim of this section is to discuss how and to what extent these anomalies
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Illustration 9.1

Market size and collusion: ‘two are few and four are many’

As discussed in Chapter 4, Illustration 4.2, the ability to collude on competitive markets greatly

depends on the size of the market, as measured by the number of firms: collusion is more likely

to result with few firms. In an attempt to supply some empirical content to this theoretical

insight, Selten (1973) stated that ‘four are few and six are many’. Huck et al. (2004) provide an

experimental assessment of this claim, based on Cournot competition experiments (combined

with a meta-analysis of existing results, which we do not report here). A fixed number N of

firms compete in quantity, qi ∈ [0, 100], over 25 periods. The linear demand and cost functions

are specified in such a way that the one-shot Nash equilibrium is

Q∗
=

n∑

i=1

q∗
i = 99N/(N + 1)

The collusive level of output is QC = 49.5, and the competitive, zero-profit, quantities are

QR = 99. The between-subject treatment variable is the size of the market, which varies

from N = 2 to N = 5. Overall, six markets are observed for each size, and the exchange

rate is adjusted across treatments so that the monetary payoffs remain the same despite the

change in equilibrium behaviour . The table below shows the Nash equilibrium, the quantities

observed on all markets and those observed in the last periods of the experiment, and for both

of these the Pearson correlation coefficient (corr.) between the observed quantities and the

Nash equilibrium.

All periods of play Last periods

N Q∗ Q1−25 (St. dev) corr.1−25 Q17−25 (St. dev) corr.17−25

2 66.00 59.36 (3.76) 0.89 60.44 (7.05) 0.91
3 74.25 73.47 (6.85) 0.99 72.59 (4.53) 0.98
4 79.20 77.26 (7.75) 0.98 80.67 (4.85) 1.02
5 82.50 86.21 (7.11) 1.05 88.43 (8.80) 1.07

As expected, quantities fall with market size. For all sizes, the correlation with the Nash

equilibrium is over 80%, and higher at the end of the experiment than at the beginning. The

treatment differences are not significant when compared incrementally in size. The difference

between markets of size two and four is, however, strongly significant, with the quantities

becoming insignificantly different from the Nash equilibrium in the latter case. This supports

the main claim of the paper, from an empirical point of view: that two are few and four are

many.

contribute to the development of theoretical models. This inductive approach stands in
sharp contrast to the classic view of economic theory, which requires the clarification
of the aim and applicability of theoretical models. Disagreements in this respect are
numerous, and explain the variety of opinions about the empirical content of economic
theory (see the controversy in Binmore and Shaked, 2010; Fehr and Schmidt, 2010, for
an extreme example of how deep the disagreement can become). We summarise the
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Illustration 9.2

The hidden cost of incentives: motivation crowding out

Gneezy and Rustichini (2000) analyse the effect of monetary incentives on performance in

two different experiments. In the first, subjects take an IQ test. The between-subject treatment

variable is the piece rate offered for right answers: no piece rate at all, a small one (of 0.10

NIS cents, the local currency), a medium one (1 NIS) or a large one (3 NIS). The left-hand

side of the table below (from Gneezy and Rustichini, 2000, p. 797, Table 1) lists the average

number of right answers (out of 50 questions), along with the standard deviation and median

in the sample of subjects.

Experiment 1: IQ test Experiment 2: fund raising

No 10 1 NIS 3 NIS No 1% 10%
payment cents payment

Average 28.4 23.1 34.7 34.1 238.6 153.6 219.3
St. dev. 13.9 14.7 8.9 9.4 165.8 143.1 158.1
Median 31.0 26.0 37.0 37.0 200.0 150.0 180.0

Small monetary incentives do not improve performance, and even reduce it. Incentives only

improve performance if they are large enough, in which case performance increases by

50%. To check the robustness of these results, a second experiment was run in field con-

ditions: pairs of students participated in a fund-raising campaign (which traditionally takes

place in Israel). Again, the between-subject treatment is the piece rate: from no monetary

incentives in the baseline, the rate changes to 1% of the total amount collected in the first

treatment and 10% in the second. The right-hand side of the table above (from Gneezy and

Rustichini, 2000, p. 800, Table 4) shows the amount of money collected by each pair of

subjects. Monetary incentives here reduce performance: when there is only intrinsic motiva-

tion more money is raised than under performance-based incentives. As above, performance

does start to improve again when incentives are high enough – although performance is still

worse than with no incentives. These results illustrate robust findings in the literature that

extrinsic incentives might crowd out intrinsic motivation (see Frey and Jegen, 2001, for a

survey).

main arguments in these discussions in the following section, before moving on to the
question of induction itself.

9.1.1 Does Theory Have to Match the Facts?

There are two properties of the usual theoretical approach in economics that are worth
keeping in mind when discussing induction. First, theory is a broad term that might
refer to two very different objects: normative analysis, which attempts to establish
conclusions about what outcomes should be, and positive analysis which aims to
say what is expected to happen under a given set of circumstances. The question of
behavioural assumptions in normative analysis, and their empirical relevance, will be
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discussed in Section 9.4. One important point at this stage is that many anomalies
are considered irrelevant from a normative perspective: a failure to behave ratio-
nally does not lead us to discard rationality, just as a typo does not lead us to drop
grammar.

This does not mean, however, that what makes sense from a normative point of view
needs to hold in models that are developed for positive analysis. In this respect, ratio-
nality remains a useful guide to the implications of consistent behaviour: theory might
be ‘wrong’ but nonetheless remains ‘strong’ and provides a useful benchmark for the
interpretation of what is actually observed (Schotter, 2006). However, the reluctance of
the profession to split up the positive and the normative approaches mainly reflects the
second particularity of economic analysis, which has long been hypothetico-deductive
in nature: the predictions of outcomes come from consistent assumptions regarding
behaviour, and these outcomes are the only thing that matter (see Bardsley et al., 2009,
Chapter 4, for a detailed discussion).

This reasoning relies heavily on Milton Friedman’s famous exposition of the ‘as-if’
assumption – the empirical content of behavioural assumptions is irrelevant as long as it
leads to reasonable predictions. Since theories are always wrong by construction, mean-
ingful content does not imply that the theory perfectly describes all the details of a given
situation, but rather that (i) it contains plausible hypotheses, (ii) it leads to empirically
meaningful conclusions and (iii) it is robust to changes in its assumptions (Rubinstein,
2006a). As a result, meaningful content refers to whether the theory is useful or useless,
rather than correct or incorrect (Levine and Zheng, 2015). This view does, however,
restrict theory to its predictive power. But theory also serves an explanatory purpose
(Schotter, 2015): if an outcome is attained and/or changes in response to changes in the
environment, we want to know not only that it has happened, but also why it happened.
To this end, theoretical models have to be accurate in two dimensions: in terms of how
they predict outcomes, of course, but also regarding the driving forces of the behaviour
producing these outcomes.

9.1.2 What Kind of Data Deserves Induction?

The previous section suggested that the match of theory and facts is to be understood
depending on the objectives we assign to theory. With this statement in mind, we now
return to the crowding-out example described in Illustration 9.2. As the relationship
between performance and incentives is so central to economic theory, a theory that
can explain the crowding-out effect of monetary incentives is clearly required given the
existing empirical evidence. The surprising results in the latter suggest that the current
state of theory has missed out an important part of the story. As shown in Illustration 9.3,
the information conveyed by the choice of performance-based incentives might be an
important piece of any missing link when there is crowding-out.

As discussed in Chapter 4, a good theory solves the trade-off between accuracy and
parsimony. According to Stigler (1965), theories should then be judged according to
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Illustration 9.3

The informational content of incentives: an experimental test

Benabou and Tirole (2003) show that crowding-out can arise in a principal–agent framework

due to the informational structure of the relationship. They consider a principal who is better

informed about the difficulty of the task than the agent to whom it is delegated. For given

agent ability, the harder the task the greater the incentives proposed. This conveys discour-

aging information to the agent – if the incentives are higher then the goal is less likely to be

achieved – resulting in less effort and worse performance with higher incentives. Bremzen et

al. (2013) experimentally assess this insight, where a principal receives information about the

cost of effort and chooses the fixed wage level as well as an effort-based bonus. The agent

then receives a private signal about the cost of effort, and makes two effort decisions: the

effort put into the ‘joint production’ that benefits both the principal (directly) and the agent

(through the bonus), and the effort put into her ‘own project’ that benefits only the agent. The

two effort choices allow us to disentangle the incentive effect of the bonus from its informa-

tional effect on effort choice. As the cost of effort is the same for both projects, and the bonus

only applies to joint production, any change in the effort put into the own project following

a change in the bonus identifies the pure informational effect of incentives. In a control treat-

ment, an identical experiment is carried out, except that the principal does not receive any

information about the cost of effort. In the experiment, subjects playing the role of the prin-

cipal are seen to adjust the bonus according to the difficulty of the task, so that incentives

are an informative signal about the cost of effort: a high bonus is chosen 80% (32%) of the

time when the cost of effort is high (low). The figure below (from Bremzen et al. (2013),

p. 62, Figure 3, and p. 63, Figure 4) depicts, for each of the two projects, the difference in the

mean levels of effort between bonus and no bonus as a function of the signal received by the

agent.
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While bonuses do improve performance, the differences in effort put into the own project as a

function of effort cost confirm the main behavioural prediction of the model: higher-powered

incentives are interpreted as bad news about the cost of effort, which results in lower effort

being put into the own project.



More Accurate Theory and Better Public Policies 367

three criteria: congruence with reality, generality and tractability. These three elements
are to a large extent contradictory, and the choice of the facts that we take as relevant to
test the theory is accordingly difficult. In particular, many of the assumptions embedded
in theoretical models are not intended to exactly match empirical features, but rather to
reduce complex reality to a simple framework. The assumption of rationality arguably
plays this role in economic analysis. The assumption that people are selfish, for instance,
makes sense not ‘because economists believe that people are selfish – we doubt you
could find a single economist who would assert that – but rather because in competitive
markets it does not matter whether or not people are selfish because they have no oppor-
tunity to engage in spiteful or altruistic behaviour’. (Levine and Zheng, 2015, p. 47).
As an example, Illustration 9.4 shows that market arbitrage might discipline preference
reversals. The need for theoretical foundations of this kind of behaviour thus depends on
the circumstances under which the behaviour is analysed. Preference reversal may well
be irrelevant if decision-makers are in a market situation – even if it is a real component
of individuals’ decision-making.

As advanced by Shogren (2006), behavioural failures can rather be seen in this context
as market failures – the lack of well-defined incentives is responsible for the appearance
of dominated behaviour. ‘Institutional design’, whose ‘goal is to construct an institution
or context that can provide the incentives to induce people to act more rational (whether
they actually are or not is another question)’ (Shogren, 2006, p. 1148), thus appears
as an alternative path to induction – which rather aims to adapt theory to behavioural
anomalies. These remarks also illustrate that the empirical content of a theory cannot be
assessed without defining the range of situations to which it is expected to apply (what
Bardsley et al., 2009, Chapter 2, label the ‘domain’ of theoretical models). This should
be understood as restrictive not only for the theoretical model – which should be spec-
ified in reference to a particular domain – but also for the experiment. In particular, as
rationality is common in theoretical analysis in economics, failure to behave rationally
in a given situation cannot be considered as a test of the particular theoretical model
being tested in that situation (Sitzia and Sugden, 2011).

We can ask two questions regarding inference when the empirical facts convincingly
contradict theory. The first is to decide the range of empirical evidence that converts
casual observation into stylised facts that need to be included in the theory. As in the
classic example, repeatedly observing that crows are black does not prove the general
law that all crows are black. The commonly accepted response to this first question
is the reproducibility of experimental findings, and their replication (see Chapter 8,
Section 8.4, for a detailed discussion).

The second question concerns the direction in which theory should be amended
without throwing the baby out with the bathwater. While it took a great deal of very
inspired effort to formalise the meaning of ‘rationality’ in axiomatic terms (see e.g.,
Hammond and Zank, 2014), its behavioural content is straightforward and well-defined:
this essentially implies the consistency of choice and consequentialism. Departures
from rationality, by contrast, can take many different forms, and need not be consistent
with each other. As noted by Rabin (1998), the insights from psychological research
regarding individual decision-making do not necessarily imply a radical move away
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Illustration 9.4

Preference reversal in a market situation

The WTP/WTA discrepancy (see Chapter 5, Illustration 5.1) is an example of a more general

behavioural anomaly, preference reversal, that was first documented in betting experiments

by Lichtenstein and Slovic (1971). In these experiments, subjects face two different kinds

of lottery, a P-bet that offers a high probability of a low stake, and a $-bet that has a low

probability of a very high stake. Preferences over these two are elicited in two different ways:

when subjects are asked which lottery they prefer, they tend to favour the P-bet; however,

when subjects are rather asked which lottery has the higher value, they assign a larger figure to

the $-bet. This result is robust to more-experienced populations (for instance, casino players

in Lichtenstein and Slovic, 1973) and to changes in the experimental design (Grether and

Plott, 1979). Chu and Chu (1990) note that this kind of behaviour should not survive market

arbitrage: subjects who put a lower value on the P-bet, but at the same time have a strict

preference for the $-bet, can easily be fooled on a market that implements their preferences

if they are sold the P-bet at their self-reported price, and then offered to exchange it against

the $-bet which is then bought back at their self-reported price. Two experiments were run

to analyse the behavioural consequences of this property. In the first, subjects were asked to

choose between six lottery pairs, followed by the elicitation of their minimum selling prices.

One of the six lottery pairs was then chosen at random, and that which was selected was played

for real. The compensation of the price-elicitation part relies on a Becker–DeGroot–Marshak

procedure applied to the same gamble. In the second part of the experiment, subjects face a

series of arbitrages by a trader. The arbitrage takes place over a pair of lotteries for which

the largest number of preference reversals was observed in the first part of the experiment.

Subjects first face the same pair again and are asked both their preference order and the price

of both lotteries. In the case of preference reversal between the two decisions, the cheapest

lottery is sold to the participant and traded against the dominant one. The dominant lottery is

then purchased from the participant at the assigned fair price. The trader in the second part

thus instigates a money pump based on the discrepancy between choice and prices. The whole

sequence (choice, pricing and arbitrage) is repeated until the preference reversal disappears.

The table below (from Chu and Chu (1990), p. 907, Table 2, group B) shows the main results

from the experiment.

No preference reversal Preference reversal

Before arbitrage 78.2% 21.8%
After 1 transaction 5.4% 16.4%
After 2 transactions 14.6% 1.8%
After 3 transactions 1.8% 0%

The table lists the percentage of subjects (out of 55) who reverse their preferences (second

column) or do not (first column), both in the first part of the experiment (the first row) and

at each stage of the second part. Preference reversal quickly disappears once the decisions

are made in the presence of a market mechanism. Three repetitions suffice to make almost all

anomalies disappear.
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from the standard assumptions. The extension of preferences to include other-
regarding motives or relative rather than absolute outcomes can, for instance, easily
be embedded in a rational-choice framework – and arguably even does not con-
tradict its predictions (Levine and Zheng, 2015, p. 46). In this case, experimental
evidence allows us to ‘consolidate’ theory (Binmore, 1999), i.e. to obtain more
accurate definitions of the hypotheses and their consequences. By contrast, other
aspects of economic psychology, such as judgement biases or anomalies in deci-
sions over time, do contrast with the fundamental assumptions regarding rational
decision-making.

The strand of literature that attempts to revise theory to incorporate these features
is what Camerer et al. (2003, p. 1216) call the second wave in the recent history of
behavioural economics, which ‘represents a scientific consolidation [of the criticisms
addressed to the first wave]. Precise functions that add one or two free parameters to
standard rational theories are being applied to explain important anomalies and make
fresh predictions’ (see Bruni and Sugden, 2007, for a detailed historical perspective).
Rabin (2013, p. 2) recommends this approach to comply with the PEEM principle
(portable extensions of existing models), according to which, ‘One should (a) extend
the existing model by formulating a modification that embeds it as parameter values
with the new psychological assumptions as alternative parameter values, and (b) make
it portable by defining it across domains using the same independent variables in exist-
ing research, or proposing measurable new variables’. The case study in the following
section describes an example from game theory.

9.2 Case study: Rational Behaviour, Irrational Thinking: K - level Models

The guessing game is a good example of an attempt to adapt theory to behavioural reg-
ularities. A guessing game involves N individuals, each of whom is asked to choose
a number yi in the interval [0, 100]. Once all decisions have been privately made,
the average of all of the numbers ȳ =

∑
i yi/N is calculated. The winner of the

game is the player whose chosen number is the closest to a share p ∈ [0, 1] of the
group average ȳ. The winner’s payoff is a fixed amount, independent of both their
chosen number, yi, and the game parameter p – whose value is common knowledge
before the game starts. In the case of a tie, the payoff is equally split between the
winners.

The theoretical prediction of behaviour in this set-up is based on both the common
knowledge of rationality and the elimination of iterated dominated choices. To illustrate
the reasoning, consider the range of possible choices of yi in the game with p = 2/3.
All numbers between 67 (100×p) and 100 are weakly dominated by 67: as the numbers
are bounded by 100, p × ȳ cannot be over 67, so that any choice above this figure is
less likely to be further from the target. A rational player should therefore exclude all
numbers in the interval [67; 100]. If players also believe that all other players are rational
and follow the same reasoning, they should then all believe that nobody will choose a
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number in this same interval. As a result, all numbers between 67×p (≈ 45) and 100 are
weakly dominated by 67 × p: the target number resulting from the decisions of rational
players who believe that others have eliminated numbers over 67 cannot be greater than
67×p. A further round of reasoning suggests that players who know that the others will
not choose a number over 67 × p will eliminate all numbers above 67 × p × p, and so
on. The process ends when the number 0 is chosen, which is the Nash equilibrium of
the game when all players choose 0; they all choose the number that is exactly equal
to p × the target. Formally speaking, yi = 0, for all participants i is the unique pure-
strategy Nash equilibrium, obtained by the iterative elimination of weakly dominated
strategies.

This theoretical prediction holds for any value of p, as long as 0 ≤ p < 1. If p = 1,
the guessing game corresponds to the beauty contest in Keynes (1936), in which the
winners are those who correctly guess the average of all of the chosen numbers. In
this case, the game reduces to a coordination problem: all players have to coordinate
on the same number – and every such number is a Nash equilibrium of the game. The
reasoning behind this result is both convincing and elegant, but relies on very demanding
assumptions about players’ ‘depth of reasoning’ – their reliance on high-order beliefs,
involving not only what they think others will do, but also what they think others think
they themselves will do, etc.

9.2.1 The Empirical Depth of Reasoning

Nagel (1995) designed an experiment aimed at eliciting subjects’ depth of reasoning
based on their behaviour in a guessing game. The experiment is based on sessions with
15–18 subjects playing the game together four times, with full feedback from one round
to the next. The feedback includes all the numbers chosen by each of the N partici-
pants yi, i = 1, . . . , N, the mean ȳ, the product pȳ and the winning number. Two main
treatments are considered, with different levels of p: p = 1/2, 2/3.1

The distribution of behaviour observed for each treatment in the first round is dis-
played in Figure 9.1. In neither of the two treatments did any subject choose the
predicted number yi = 0, and only 6% of the chosen numbers fell below 10. While
this is not compatible with the theoretical prediction, purely naive choices are just as
uncommon: few subjects only make the weakly dominated choices comprised between
100 × p and 100. Moreover, subjects do not pick their numbers at random: subjects
choose higher numbers in treatment p = 2/3 than in treatment p = 1/2. Bosch-Domenech
et al. (2002) replicate these patterns of behaviour in the field, with over 7,500 vol-
unteers recruited via newspapers or magazines (the Financial Times in the United
Kingdom, Expansión in Spain and Spektrum der Wissenschaft in Germany). They find
spikes in the distribution at 33.33, 22.22 and 0. In sum, the observed behaviour is con-
sistent neither with fully rational players, nor with naive or random behaviour. The

1 A third value, p = 4/3, is used as a control – since p is greater than 1, there are two Nash equilibria using
the same reasoning as before: 0 and 100. The results from this treatment are not discussed here.
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Figure 9.1 The chosen numbers in the Nagel (1995) guessing games
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Source: Nagel (1995, p. 1316, Figure 1).

reasoning behind behaviour rather seems to lie somewhere in between those two polar
cases.

To shed light on observed choice behaviour, Nagel (1995) developed a simple model
in which players differ in their degree of sophistication – sharing some common fea-
tures with Stahl and Wilson (1995). The starting point is a particular specification of
the behaviour of degree-0 players, who do not think strategically at all. A common
choice is to assume that these players pick 50, which corresponds to the average value
if everybody else chooses at random – this choice is supported by the empirical evi-
dence provided by Burchardi and Penczynski (2014). The best reply to this behaviour
is to choose 50 × p: this is the decision of a rational player who thinks all others
are of degree 0. As this involves a higher degree of strategic reasoning, this is called
degree-1 strategic behaviour. Similarly, the best reply to degree-1 strategic behaviour
is to chose 50 × p2. In general, a player with strategic behaviour of degree h chooses
50 × ph. This simple model produces a number of modes in the distribution of observed
behaviour: these modes reveal the degree of player sophistication, with smaller values of
the mode corresponding to a greater number of iterations in the reasoning leading to this
action.

The experimental results discussed above are in line with this choice model: the dis-
tribution of answers is multimodal, with modes mostly around the values of 50, 50 × p

and 50 × p2. Another critical aspect of the data is that about 25–30% of subjects choose
a number that turns out to be optimal given the observed distribution of answers. In the
treatment with p = 2/3, for example, 0 is the optimal choice only under common knowl-
edge of rationality. This no longer holds if players exhibit varying degrees of strategic
behaviour. Given the observed behaviour in the subject population, the optimal choice
in the experiment is about 25, which corresponds to strategic behaviour of degree 2. In
this framework, the gap between optimal behaviour and bounded rationality arises not
because of rationality failure, but rather because the decision-maker does not believe
that other players will choose an equilibrium strategy.
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This simple model also allows us to take into account changes over time due to feed-
back: if information about others’ past behaviour is provided, the number should change
accordingly and will differ from 50. The changes over time in Figure 9.2 support this
finding. For each of the two specifications of the guessing game, the top panel shows the
distribution of numbers chosen in the second game (after subjects received feedback) as
a function of the first-period decisions, the middle panel the third-period decisions as a
function of second-period decisions, and the bottom panel fourth-period decisions as a
function of the third-period decisions. Rather than a change in levels of strategic sophis-
tication over time, the figures show that subjects tend to adapt their beliefs about the
likely behaviour of others based on previous play. Subjects do understand the reasoning
required to win this game, but to some extent fail to anticipate others’ behaviour when
choosing their own number. This produces convergence towards the Nash equilibrium
with more repetitions of the game.

9.2.2 The Level-k Specification of Strategic Reasoning

The results in the guessing game point to limitations in individuals’ abilities to think
about others’ behaviour in the depth presumed by the rational model of decision-making.
Similar evidence has been found on experimental asset markets (Akiyama et al., 2017)
where strategic uncertainty explains at most 70% of the observed deviations from the
fundamental values. Many attempts to incorporate more flexible kinds of strategic think-
ing have been proposed in the literature – e.g. equilibrium plus noise, k-rationalisability
and finitely iterated strict dominance. We herein focus on one of the most popular,
the level-k specification that generalises the behavioural model developed in the pre-
vious section. This class of models assumes that individuals form beliefs over their
opponents’ actions in discrete steps. Each player in a game is characterised by a
‘type’ describing their degree of sophistication about what they believe others will
do:

• A level-0 (or L0) player does not play strategically. The actions of L0 players may be
random, the best response to the rules of the game (ignoring opponents’ behaviour),
or use a focal point.

• A level-1 (or L1) player plays strategically and best-responds to the beliefs of all L0

players. The actions of L1 players reflect their beliefs about the distribution of actions
of L0 players.

• A level-2 (or L2) player plays strategically and best-responds to the beliefs of all
players that are L1. The actions of L2 players reflect their beliefs about the distribution
of actions of L1 players.

• . . .
• A level-k (or Lk) player plays strategically and best-responds to the beliefs of all play-

ers that are Lk−1. The actions of Lk players reflect their beliefs about the distribution
of actions of Lk−1 players.

A core assumption is that all players Lk, with k > 0, are rational, in the sense that they
best-respond to their beliefs, although these beliefs differ from those in standard game
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Illustration 9.5

The market-entry game

In a market-entry game, N players (or entrants) simultaneously decide whether to enter a mar-

ket with limited demand yd < N or to stay out. If yd or fewer players enter, all entrants earn

a positive profit: if more than yd players enter the market, all entrants lose money. Staying

out yields a profit of zero. Standard game theory predicts a unique mixed-strategy equilibrium

in which the probability of entering makes all players indifferent between the two possible

actions. A large body of experimental evidence (Camerer and Loewenstein, 2003) has shown

that actual entry rates are remarkably similar to that predicted in the symmetric equilibrium.

Moreover, the number of entrants rises with the capacity constraint yd , even though players

have no way of deliberately coordinating their choices. Observed behaviour, however, dif-

fers from the equilibrium prediction for extreme values of yd: for low values subjects tend

to over-enter the market, and for high values they under-enter. As shown in Camerer et al.

(2004) and Crawford and Iriberri (2007a), these results can be explained by strategic thinking,

and especially the ‘magic of tacit coordination’ (Kahneman, 1988) achieved in market-entry

games. As players are heterogeneous, higher-level players are able to predict the decisions

of less sophisticated players. Strategic thinking, because of its heterogeneous iterative men-

tal structure and the replication of lower types in the simulations made by higher types,

explains why coordination can occur in a simultaneous one-shot game played by independent

players.

theory. In one-shot games, for example, players no longer believe that others will play
an equilibrium strategy, but rather that they have a model of thinking that is simpler than
their own. Illustration 9.5 describes an application to a game that is strategically similar
to a guessing game: a market-entry game.

The level-k model is fairly simple to solve thanks to the assumption that players
best-respond to the behaviour at the level just below their own. This is the main dif-
ference from the cognitive-hierarchy model, presented in Focus 9.1, which extends
the framework by assuming that players respond to a mixture of all lower-level
players.

In practice, the actions of level-k players are determined recursively from the knowl-
edge of the behaviour of Lk−1 players. This recursive solution starts with the behaviour
assumed for L0 players. There are then two crucial elements in this model: the actions
of L0 players and the distribution of each type. It is worth noting that there may not be
any L0 players in the distribution: what matters is that the L0 actions are used by the
L1 to form their beliefs about players’ behaviour in the game, not that the L0 actions
are effectively undertaken. Based on this structure, level-k models treat deviations from
equilibrium as deterministic. This is the main difference from one of the most popular
alternatives, the QRE model presented in Focus 9.2, in which these deviations are treated
as noise or responses to noise.

A number of studies have underlined the use of level-k reasoning to rationalise
behaviour in guessing games. For example, Costa-Gomes and Crawford (2006) elicit
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Focus 9.1

The cognitive-hierarchy model

The cognitive-hierarchy model (CHM) (Camerer et al., 2004) features players who believe

that they each understand the game better than all other players. Decision-making is assumed

to be based on iterative decision rules, involving k steps of thinking. In the guessing game,

for example, L2 players believe the population of other players to be a mixture of L0 play-

ers, guessing 50 on average, and L1 players, guessing 2
3 × 50. The frequency distribution

g(k) of level-k players is assumed to be Poisson. For k ≥ 1, an Lk player normalises

the actual frequencies to form beliefs over all other (lower) types h = 0, . . . , k − 1

according to

gk(h) =
g(h)

∑k−1
j=0 g(j)

In this framework, beliefs are increasingly accurate as k rises. Moreover, the benefits from

deeper thinking are diminishing: the difference between successive levels disappears as k

grows. Camerer et al. (2004) present estimates of the Poisson parameter in 24 guessing games

with different values of p. They find a reasonable value for this parameter of 1.61 – with

some heterogeneity across populations: the value being, for instance, much higher for profes-

sional stock-market portfolio managers, Caltech students and game theorists. In entry games

(see Illustration 9.5), the value is typically between 1 and 2. Camerer et al. (2004) suggest

that a value of 1.5 could produce reliable predictions for many other games. To illustrate

the functioning of the model, the figure below displays simulations of player-type distri-

butions (on the left) and belief distributions (on the right) for players L2 to L5 under this

specification.

BeliefsTypes

0

.05

.1

.15

.2

.25

.3

.35

D
e
n
s
it
y

L0 L1 L2 L3 L4 L5 L6
0

.05

.1

.15

.2

.25

.3

.35

.4

.45

.5

.55

.6

.65

.7

D
e
n
s
it
y

L0 L1 L2 L3 L4

L2L3L4L5 L2L3L4L5 L2L3L4L5 L2L3L4L5 L2L3L4L5

The comparison of the distributions of L4 and L5 players illustrates the diminishing benefits

from thinking. The marginal gains from thinking are higher for L2 to L4 players and lower for

L5 players. The values of the Poisson parameter distribution also differ within subjects across

games.
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Illustration 9.6

Strategic thinking in the centipede game

As discussed in Chapter 1, Section 1.3.2, the experimental evidence on the centipede game

stands in sharp contrast to the theoretical predictions from backward induction. Kawagoe

and Takizawa (2012) use level-k and cognitive-hierarchy models to analyse behaviour in

centipede-game experiments, building on the original design of McKelvey and Palfrey (1992,

1998, with increasing amounts of money) and Fey et al. (1996, with a constant amount of

money). The two strategic-thinking models are tested with both parametric and non-parametric

distributions of types. Different kinds of L0 players are also considered: pure randomisers or

altruistic players choosing P at all nodes. The results show that a cognitive-hierarchy model

based on a Poisson distribution and with L0 players choosing at random is the best speci-

fication for centipede games with increasing amounts of money. For games with a constant

amount of money, where choices are closer to the sub-game perfect Nash equilibrium, how-

ever, the QRE model including a fraction of altruistic players (McKelvey and Palfrey, 1992,

1995) performs best. Alternative explanations that have been considered in the literature are

adaptative learning (Rapoport et al., 2003) and other-regarding preferences (Dufwenberg and

Kirchsteiger, 2004).

initial responses to 16 different games (the subjects are rematched with new partners at
each period and receive no feedback). In this experiment, subjects face a large strategy
space and both the target of the guessing game and the range in which guesses are
made vary independently across players and games. The results show that most subjects
try to maximise payoffs, but that their representation of others’ likely behaviour leads
to systematic deviations from equilibrium: other individuals are mainly thought to be
L1, L2 and L3 types. The following section shows how the model helps to understand
behaviour in auctions – see also Illustration 9.6 for the centipede game, and Crawford
et al. (2013) for a survey.

9.2.3 Level-k Reasoning and Behaviour in Auctions

A robust stylised fact in empirical auctions is that subjects tend to overbid – see
e.g. Kagel and Levin (1986); Goeree et al. (2002). In common-value auctions, this
phenomenon is the well-known winner’s curse – bidders fail to account for the common-
value nature of the auction – discussed in Illustration 8.1 in Chapter 8. In private-value
auctions, overbidding is usually explained by risk aversion, the joy of winning or non-
linear probability weighting. Crawford and Iriberri (2007b) appeal to level-k strategic
thinking to provide a unified explanation (‘level-k auction theory’) of overbidding in
both independent-private-value and common-value auctions.

As always in level-k models, the difficulty is to define the behaviour of the L0s.
Crawford and Iriberri (2007b) consider two specifications:

• Random: L0 players bid randomly from a uniform distribution over the feasible range.
L1 and L2 types faced in this specification base their actions on random L0 players.
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Focus 9.2

An alternative theoretical model of strategic thinking: quantal-response equilibrium

Probabilistic-choice models (Goeree et al., 2005) have been widely used in the analysis of

experimental data to include noise in decisions, reflecting, for instance, the errors individuals

make (Harless and Camerer, 1994; Hey and Orme, 1994). The quantal-response equilibrium

(QRE) model, proposed by McKelvey and Palfrey (1995), incorporates these noise elements

into the theoretical analysis of behaviour in games. The core assumption is that players use

noisy best responses. The distribution of actions under this noise is described by a quantal-

response function that replaces the usual best-response functions – according to which players

choose the best response to their beliefs about the other players’ strategies with probability

1. Under QRE, the best strategy is not necessarily chosen for sure, although strategies with

higher expected payoffs are more likely to be chosen. In this sense, the QRE model assumes

a form of bounded rationality. Importantly, this framework abandons neither equilibrium rea-

soning nor rational expectations. An equilibrium is reached when the beliefs of each player

are consistent with the (noisy) actions of others – the QRE is a fixed point in the space of the

distribution of actions, with each player’s distribution being the noisy best response to others’.

Compared to models representing choices as ‘equilibrium plus noise,’ under QRE each player

responds to the noise in others’ decisions. In empirical applications, it is commonly assumed

that players’ actions follow a logistic distribution with a precision parameter λ. Let a−i be the

strategy profile of players other than i, π (ai, a−i) the gain for i corresponding to the strategy

profile (ai, a−i) and Pr[a−i] the probability that other players choose the profile a−i. The prob-

ability that player i plays action ai in the set of all possible actions Ai is then given by a logit

formula:

Pr[ai] =
e
λ

∑
a−i∈A−i Pr[a−i]π (ai,a−i)

∑
aj∈Ai

e
λ

∑
a−i∈A−i Pr[a−i]π (aj,a−i)

When the precision, λ, is 0, players choose their actions at random and the choice probabilities

are uniform over all possible actions. When precision is perfect (λ → ∞), the probability of

choosing the best response is 1, and the QRE equilibrium corresponds to the Nash equilibrium.

The major difficulty of QRE is that it can rationalise virtually any distribution of actions in

normal-form games based on an appropriate specification of the distribution of the noise (Haile

et al., 2008). As a consequence, the QRE model cannot be falsified in its general form. From

the point of view of the analysis of experimental data, however, the logit quantal response

equilibrium has been shown to reproduce the empirically observed distributions of actions

(Goeree et al., 2005).

• Truthful: L0 players bid their expected value conditional on their own private infor-
mation. L1 and L2 types in this specification base their actions on truthful L0

players.

There are two key elements in the description of equilibrium strategies in auc-
tion theory. First, the bid is chosen trading off the cost of paying a higher price
and the benefit of a higher winning probability – the second-price auction eliminates
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this trade-off. Second, when the value is imperfectly known, which is typically the
case in common-value auctions, the value of the good conditional on winning should
be adjusted according to the informational content of this event. Depending on the
nature of the good (common-value versus independent-private-value auctions) and the
auction mechanism (first-price versus second-price auctions), the optimal bid of Lk

players takes into account either value adjustment or the cost–benefit trade-off or
both.

For instance, as random L0 players bid randomly over the feasible range, their bids
contain no information about the value of the good in the auction. L1 players, who
believe all other players to be random L0, therefore choose their bid based solely on
their own signal. Their bid is thus an increasing function of their private signal. The L2

players in this environment take this behaviour into account in determining their optimal
bids. The level-k model implies that random L2 players adjust their beliefs about the
expected value of the good using the information revealed by the event of winning the
auction – they know that if they win the auction, others’ private signals about the good’s
value are likely to be lower than their own, so that the latter overestimate the good’s
value. In this setting, value adjustment then makes bids strategic substitutes: this means
that if the L1 players overbid, then the L2 players will underbid. Crawford and Iriberri
(2007b) provide more detailed results depending on the type of auction, and derive the
equilibrium with truthful level-k players.

9.2.4 Observing the Empirical Distribution of Types

The predictive power of level-k models relies on the distribution of types: once the model
has been solved recursively, the distribution of behaviour can be predicted only when
the fraction of each type in the population is known. The empirical identification of this
distribution is rendered more difficult by the hierarchical nature of the model: for any
Lk, with k > 0, both beliefs about others and level of sophistication are correlated in the
data.

A number of different approaches have been used in the literature to measure the dis-
tribution of cognitive levels. In Agranov et al. (2012), the correlation between beliefs
about others and cognitive levels is broken by having subjects play a guessing game
with p = 2/3 against a set of computers that play uniformly over the support – a
strategy that is common knowledge. This corresponds to L0 players. As a conse-
quence, in this COMPUTER treatment, the numbers elicited reveal the ability to behave
like a Lk, k > 0 player conditional on the predetermined L0 behaviour. Two additional
treatments are considered: a CONTROL treatment in which subjects (undergraduate stu-
dents) play against each other, and a GRADUATE treatment in which subjects play
against graduate students who are trained in playing guessing games. The robustness
of the method is assessed using the strategy method to obtain subjects’ choices in
the guessing game when opponents are different mixes of ‘graduate’ opponents and
computers.

The experimental results are summarised in Table 9.1. The level classification in the
three treatments is the same as in Nagel (1995), whose results also appear in the table
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Table 9.1 Level classification in the control, graduate and computer treatments

CONTROL GRADUATE COMPUTER Nagel’s data

L0 8% 10% 9% 7.5%
L1 25% 20% 49% 26.0%
L2 18% 20% – 24.0%
L3 8% 5% – 2.0%
L∞ 0% 10%

Not classified 41% 35% 42% 40.5%

Note. For each of the column treatments, the table shows the share of sub-
jects who are classified in the row level. The classification follows the
method used in Nagel (1995), whose data appears in the last column.
Source: Agranov et al. (2012, pp. 456–7, Tables 2 and 4).

for the sake of comparison. Relative to the CONTROL treatment, the GRADUATE treat-
ment produces an upward shift in the distribution of observed cognitive levels. On the
contrary, the distribution of observed cognitive levels in the COMPUTER treatment shifts
towards lower cognitive levels compared to the CONTROL treatment. The results from
the COMPUTER treatment also show that about half of the subjects can reason at a level
of at least 1.

Arad and Rubinstein (2012) design a game (the ‘11–20’ game) that is specifically
intended to measure the distribution of types. In this game, L0’s action is unambiguous
and the identification of types based on the observed decisions is unique, based on L0.
The game is as follows:

‘You and another player are playing a game in which each player requests an amount of money.

The amount must be (an integer) between 11 and 20 shekels. Each player will receive the amount

they request. A player will receive an additional amount of 20 shekels if they ask for exactly one

shekel less than the other player. What amount of money would you request?’

A player who ignores strategic thinking will simply request the highest certain amount
(20 shekels) and give up any additional payment resulting from strategic thinking. For
strategic players, on the contrary, the description of the game actually corresponds to
their best-response function. An L1 player will best-respond to the L0 action and ask
for 19. An L2 player thus asks for 18, and so on. Moreover, the game is robust to the
specification of L0 behaviour: for an L1 player, answering 19 remains the best response
as long as 20 is the most probable strategy.2

Table 9.2 shows the distribution of choices in the experiment, along with the distri-
bution that would result in a symmetric (mixed-strategy) Nash equilibrium, assuming
that players maximise expected monetary payoffs. A total of 74% of subjects choose
numbers between 17 and 19, corresponding to L3, L2 and L1 types. This is much higher
than the 45% predicted in the Nash equilibrium. The share of L0-type subjects (6%) is
much lower than in other experiments. The estimation of a cognitive hierarchy model

2 Arad and Rubinstein (2012) also show that the game is robust to a wide range of beliefs about others’ types,
as well as to social preferences.
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Table 9.2 The distribution of behaviour in the 11–20 Game

Action 11 12 13 14 15 16 17 18 19 20

Equilibrium (%) 25 25 20 15 10 5
Results (%) 4 0 3 6 1 6 32 30 12 6

Note. For each number that can possibly be chosen in the columns, the first
row shows the observed distribution in the experiment, and the second the
distribution predicted in the symmetric Nash equilibrium.
Source: Arad and Rubinstein (2012, p. 3565, Table 1).

yields an estimated parameter for the Poisson distribution of 2.36, reflecting the higher
level of strategic thinking in the experiment.

Beyond these two examples, a flourishing literature has tried to elicit the distribution
of types in experimental games. To name a few examples, Costa-Gomes and Crawford
(2006) monitor the search for hidden payoff information by subject in games of vari-
ous types, and evaluate which level of cognitive reasoning is compatible with various
search patterns; Costa-Gomes and Weizsäcker (2008) elicit subjects’ beliefs about oth-
ers’ decisions using a quadratic scoring rule in a series of 14 asymmetric two-person 3
× 3 games; and Burchardi and Penczynski (2014) pair subjects in dyads with common
decisions and common objectives and study the transmission of information between
partners.

9.3 Test-Bedding Public Policies in the Laboratory: The Example of Matching
Markets

Economics is useful in the design of public policies in that it provides an understanding
of the kind of behaviour, interactions and hence outcomes that arise from a given set
of rules. It is important for the design of economic policy to understand, for instance,
how competition works and how firms decide on their prices as this provides guidelines
on how markets should be organised and what kind of practice should be curtailed to
promote competition – and provides insights into whether or not competition is war-
ranted. Experiments help with policy implications by assessing the empirical content
of the assumptions used in the theories. The contribution of experimental economics to
the design of public policies is not, however, restricted to those experiments that test
theory. When the situation is too complicated for theory, experimental facts can serve
as a substitute for convincing theoretical predictions, in order to test-bed any intended
changes in the decision environment.

Laboratory experiments have been applied to a wide variety of policy questions, such
as competition policy, auctions, pollution-permits markets and food safety (see Normann
and Ricciuti, 2009; Noussair and van Soest, 2014, for a survey). To illustrate, we here
focus on the example of matching markets. We describe first why matching markets are
important from a policy perspective, and then the experimental environment used in the
literature to assess their allocation properties – successfully enough for one of the main
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contributors to be awarded the Nobel Prize for his work on this topic (see Chapter 1,
Section 1.1 for more details).

9.3.1 The Policy Challenges of Two-Sided Matching Markets

In two-sided matching markets each agent on either side of the market has preferences
over the possible matches with all agents on the other side. Typical examples of such
markets are admissions to universities, the allocation of pupils to schools, the allo-
cation of public housing (and marriage, notwithstanding that the idea of a market is
somewhat less natural in this context). A famous practical example is the National Res-
ident Matching Program in the US, through which doctors and residency programs are
matched.

In all of these examples, there is a market matching problem. The final allocation
consists of matches, i.e. one-to-one mappings between the agents on either side of
the market (in the case of schools, for example, the agents would be considered as
seats in the school). When the market is decentralised, matching takes a considerable
time: agents need to meet to decide whether to match or move on to another option;
they want to wait for enough offers to be received and considered before concluding
on a match. This leads to congestion on the market, which economic agents typi-
cally deal with by acting well in advance – Kagel and Roth (2000) cite the example
of medical students in the UK in the 1960s, who were hired a year and half prior to
graduation.

The natural answer to this unravelling, where there is always an incentive to match
before everyone else, is to introduce centralised clearing houses. Here agents on both
sides report their preferences and a matching technology is used to decide the final allo-
cation. It is, of course, generally not the case that all preferences are jointly consistent:
whenever there is conflict in agents’ preferences, choices need to be made in comparing
and aggregating preferences to yield the final allocation. A variety of such choices are
contained in different matching mechanisms, the properties of which are the subject of a
large theoretical literature (see Roth and Sotomayor, 1992, for an early survey). One crit-
ical property of matching mechanisms is whether they produce stable matches, such that
(i) no agent prefers being single to being matched with their assigned partner, and (ii)
no two agents prefer each other to the partner they have been allocated. Kagel and Roth
(2000) provide an experimental analysis of both questions: how clearing houses solve
unravelling in decentralised markets, and the stability properties of different matching
mechanisms.

9.3.2 Design of the Experiment

The experimental markets consist of 12 subjects, half of whom are assigned the role of
a firm and the other half workers. Productivity differs within both groups of firms and
workers: half (three) in each group are low-productivity agents and the other three are
high-productivity. Subjects are randomly assigned to experimental markets, groups and
productivity types.
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Performance-based incentives depend on the final match. Remaining unmatched pro-
duces no payment. Being matched with a high-productivity agent leads to a payment
three times larger than a match with a low-productivity agent. All subjects on one side
of the market therefore prefer being matched with a high-productivity rather than a low-
productivity partner. However, there is variability within each productivity subgroup,
with each match producing a different payment: as a result, individuals’ preferences
over their potential partners differ.

The experiment features a large number of sequential matching markets. Each match-
ing market is divided into three periods, during which firms make offers to workers, who
can either accept or refuse them. Once a worker has accepted an offer, the two matched
agents exit the market. Matching is possible in any period, but a cost is imposed on
early matches – those achieved before the third period. Conditional on the productiv-
ity of the partner, later matches are better. The cost is, however, specified so that it is
more desirable to match early with a high-productivity partner than to match with a
low-productivity partner in the last period.

The experimental session is split up into two parts: the first with 10 decentralised
markets organised as described above. In the second part, subjects are informed that
the third period of each of the remaining 15 matching markets will now follow the
rules of a centralised market: unmatched agents are asked to submit a rank-order list
of their possible matches and the allocation is decided by a matching algorithm. Two
centralised allocation mechanisms are considered in this third period: the Newcastle
algorithm and the Gale–Shapley algorithm, implemented as between-subject treatment
variables.

The Newcastle algorithm is a priority algorithm. After each agent has ranked the
alternatives, the algorithm matches agents based on their mutual ranking by defining a
level of priority. Priority is defined as the product of mutual rankings. For example, if a
worker and a firm rank each other first, then this matching will be of priority 1. However,
if they mutually rank each other 4, the matching will be of rank 16. The algorithm then
matches agents sequentially by increasing order of priority – couples of priority 1 first,
then 2, then 3 and so on. To give an example, consider six firms (a1, a2, a3, a4, a5

and a6) that are to be matched with six workers (b1, b2, b3, b4, b5 and b6). Assume
each agent has ranked the potential partners as on the left-hand side of Table 9.3. In
each cell, the first value is the rank given by the firm (in the row) to the worker (in the
column), and the second value is the rank given by the worker to the firm. The right-
hand side of the table displays the Newcastle algorithm match score. The final matching
is by ranks. The pair (a1, b1) has rank 1 and is matched first. There are a number of
matches of rank 2: (a3, b4), (a4, b3), (a3, b3) and (a4, b4). Whatever the choice, the pair
with rank 3 is (a2, b2). The last two pairs are (a5, b6), with rank 6, and (a6, b5) with
rank 12. This last match is not stable as worker 5 and firm 5 would both prefer to be
matched together and have an incentive to match together before the implementation of
the algorithm.

The Gale–Shapley algorithm (also known as deferred acceptance (DA)) instead con-
siders each worker in turn, to whom a firm is attributed. If the firm is still available,
the match occurs. If the firm has already been matched, but prefers the new proposed
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Table 9.3 The Newcastle algorithm: a fictional example

Self-reported rank of potential partners Resulting scores of all matches

b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6

a1 (1,1) (2,2) (3,3) (4,4) (1,5) (3,6) 1 4 9 16 5 18
a2 (2,1) (1,3) (4,2) (3,4) (2,5) (2,6) 2 3 8 12 10 12
a3 (3,3) (3,4) (2,1) (1,2) (4,5) (4,6) 9 12 2 2 20 24
a4 (4,3) (4,4) (1,2) (2,1) (5,5) (5,6) 12 16 2 2 25 30
a5 (5,1) (5,2) (5,4) (5,5) (3,3) (1,6) 5 10 20 25 9 6
a6 (6,3) (6,1) (6,4) (6,5) (6,2) (6,6) 18 6 24 30 12 36

Note. The table shows a fictional example of the allocation produced by the Newcastle algorithm.
The left-hand side shows the rank given by firms (in rows) to workers and by workers to firms.
The right-hand side displays the scores according to which the allocation is decided.

worker, then a new match takes place. Otherwise, the firm rejects the worker and a new
firm is proposed to the worker until all matches are made. Based on the preferences
displayed on the left-hand side of Table 9.3, suppose workers b1, b2, b3, b4 and b6

are temporarily assigned to the firms a1, a2, a3, a4 and a5. The algorithm then offers to
match worker b5 with firm b1: the firm declines since the current match is better than the
new one. The algorithm moves to a second choice for worker b5, say firm a2, which also
declines. Finally, the algorithm offers worker b5 to be matched with firm a5. This firm
prefers the new offer, which is accepted, and breaks the pre-existing match with worker
b6. This worker b6 thus needs to find a new match. Say firms a5, a2, a1, and a4 are pro-
posed in sequence. They all decline but the last firm, a6, which is currently unmatched,
accepts the offer. The process is over, and the final allocation is (a1, b1), (a2, b2), (a3, b3),
(a4, b4), (a5, b5) and (a6, b6). In contrast to the outcome from the Newcastle algorithm,
this matching is stable.

9.3.3 The Results of the Experiment

Figure 9.3 displays the main outcome from the experiment regarding early matches,
i.e. the number of matches observed in the first (Figure a) and the second (Figure b)
periods – a measure of unravelling.3 In both figures, the first 10 periods of play feature
only decentralised markets. The remaining 15 are played with either the Newcastle or
the DA algorithm in the last market period.

The experimental market produces comparable behaviour to that previously observed
in decentralised two-sided matching markets. Subjects quickly adjust their strategies
to the institutional environment (very little change occurs from the first five markets
to the next five) and significant unravelling is observed. Despite the loss incurred,
a significant number of subjects decide to match early on: almost half of the six
matches that should occur on each market come about before the third period. As

3 Kagel and Roth (2000) use the level of the cost imposed on early matches as an additional treatment variable.
We here report only the results from conditions with high mismatch costs.
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(a) Matches in the first period (b) Matches in the second period
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Figure 9.3 Early matches in the Kagel and Roth (2000) experiment

Note. The figure shows the average number of early matches observed in each sequence of
five markets. After the first 10 matching markets, the third market period implements either the
Newcastle or the DA matching algorithm.
Source: Kagel and Roth (2000, p. 214, Figure 1, bottom panel).
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Figure 9.4 Matches by productivity type in the Kagel and Roth (2000) experiment

Note. The figure shows the average cost of early matches (used as a metric, since the cost is
higher the earlier the match) observed in each subgroup of five matching markets, separately for
high- and low-productivity agents. After the first 10 matching markets, the third market period
implements either the Newcastle or the DA matching algorithm.
Source: Kagel and Roth (2000, p. 217, Figure 2).

shown in Figure 9.4, this unravelling is mostly due to low-productivity types in
the second period, who face greater incentives to unravel given that they are less
attractive.

The introduction of a centralised clearing house reduces the number of early matches,
whatever the matching algorithm. The adjustment dynamics are, however, very dif-
ferent between the two mechanisms. Figure 9.4 further disaggregates the data into
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high- and low-productivity types. Early matches in periods 1 and 2 are pooled here
using the cost of the early match – which is higher the earlier the match occurs.
Under the Newcastle algorithm, the overall cost of early matches increases, while it
is sharply reduced under the DA algorithm – the threat of facing the Newcastle algo-
rithm thus increases unravelling, while DA reduces it. Again, this differential trend is
mainly due to different kinds of behaviour according to productivity type. The cost
of early matches steadily, and significantly, falls for high-productivity types under
the DA algorithm, while it increases under the Newcastle algorithm. After five cen-
tralised experimental markets, high-productivity workers refuse all first-period early
offers under the DA algorithm, while the acceptance rate remains at around 33% under
the Newcastle algorithm.4 These observations clearly show that the DA algorithm tends
to eliminate mismatches, while the Newcastle algorithm rather encourages them. The
results in the third period also show that the Gale–Shapley algorithm generates a sharp
reduction in the number of unmatched agents (see Kagel and Roth, 2000, p. 219, Fig-
ure 3), and reduces the number of unstable matches, as compared to the Newcastle
algorithm.

The experimental environment is thus a powerful tool for our understanding of two-
sided matching markets. These results suggest that the DA algorithm will produce better
allocations, by reducing unravelling and producing better matches. These results have
been extended by further work in a number of directions: Nalbantian and Schotter (1995)
consider the case of transferable utility between partners – the benefits from the match
are thus no longer partner-specific but can be shared between them; Haruvy and Ünver
(2007), Echenique and Yariv (2013) and Pais et al. (2012) focus on the stability of the
matching arising in repeated decentralised markets; Chen and Sönmez (2006), Pais and
Pintér (2008), Featherstone and Niederle (2016) and Echenique et al. (2016) widen the
scope of matching algorithms (including, e.g. the Boston or the top trading cycle algo-
rithm) and address a second major policy challenge in matching markets: whether agents
have an incentive to manipulate, or truthfully reveal, their private information on the
market.

9.4 Whispering in the Ear of Princes: Behavioural Public Policy

Decision-makers are interested in what would occur in a given situation were they to
implement a different set of rules regarding how people interact and make decisions.
They do not care about how universal/elegant/fruitful for further research is the frame-
work in which behaviour is analysed. As a result, the variety of behaviours observed in
experiments has quickly attracted the attention of decision-makers and become a cen-
tral topic in the analysis of public policies – even if their exact theoretical implications
largely remain an open question, as discussed in Section 9.1. The documented failures of
the rationality assumptions render the theoretical debate about the founding principles of

4 Moreover, all high-productivity firms make a second-period early offer after 10 rounds under the Newcastle
algorithm.
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public policies more complicated than it used to be. This point has been emphasised in
the recent literature on ‘liberal paternalism’, giving rise to the new policy tools known as
‘nudges’. This strand of literature is by far the best known of the recent advances in this
area, and has provoked a great deal of debate. One crucial issue is that liberal paternal-
ism takes departures from rational behaviour as granted, and carries out design choices
based on the social planner’s view of preferences. This leads us to think differently about
the welfare analysis of public policies, which is the question that ends this section.

9.4.1 Liberal Paternalism: Liberal or Paternalistic?

There are two opposing traditions in the design of public policies.5 On the one hand,
paternalism compels individuals to make choices that are considered to be the best for
them. The social planner decides on the final allocation of resources, and individuals
are expected to comply with this centralised allocation. There are two standard argu-
ments against this tradition in economics. First, the social planner has to be assumed to
be benevolent; second, paternalism requires an enormous amount of information about
individual preferences and the resources that are available to define the welfare function
used to determine the final allocation. These criticisms are the main arguments in favour
of liberalism, where freedom is best as it allows individuals to make choices in their
own best interest.

The most important change over the past two decades has been that behavioural
economics has shown that people are in fact very often not able to decide in their
own best interest. As an example, under the status quo bias (see Chapter 5, Illus-
tration 5.4) individuals who are statistically identical will make different decisions
depending on which option is framed as the status quo. Since at most one option
can be best for each decision-maker, decision-makers who are affected by the sta-
tus quo bias are unable to decide what is best for them due to the framing of the
situation.

This observation is the starting point for the recent discussions about ‘liberal paternal-
ism’ (Thaler and Sunstein, 2003). As cognitive biases prevent individuals from taking
the decisions that they intrinsically wish to take, public policies should be designed
to help them in this respect. More precisely, liberal paternalism assumes that indi-
viduals know what is best for them (this is the liberal part of the approach) but
that decision biases render them unable to make this choice. Public policies are thus
expected to design incentives taking these biases into account, to allow individuals
to take the decision they would have made had they been able to decide rationally.
This second part is the paternalistic component, as public policies have to rely on
some particular view of individuals’ ‘true’ preferences and the choice that they would
have made. The public-policy tools to take into account actual decision-making are

5 The discussion in this section is far too short to give this topic the attention it deserves. We apologise for
the many implicit assumptions we need to make to keep this presentation short and simple, and refer the
reader to specialised contributions for a more appropriate coverage of the topic – see e.g. Li et al. (2014)
for a literature review and insightful examples.
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called ‘nudges’ (see Focus 9.3 for an overview), defined by Thaler and Sunstein (2008,
p. 6) as:

‘any aspect of the choice architecture that alters people’s behaviour in a predictable way without
forbidding any options or significantly changing their economic incentives. To count as a mere
nudge, the intervention must be easy and cheap to avoid. Nudges are not mandates. Putting fruit
at eye level counts as a nudge. Banning junk food does not.’

Unsurprisingly, this approach has been criticised as sharing the drawbacks of both lib-
eral (Munnell, 2003) and paternalistic (Mitchell, 2005) policies, leading many authors
to consider it nothing more than an oxymoron. Sunstein and Thaler’s (2003) response to
these criticisms focuses on what they consider to be two misconceptions. The first is that
paternalism is seen by liberals as avoidable. This would be true if institutions could be
designed in which decisions are perfectly free. However, most choices involve unavoid-
able features that are known to influence choice. For instance, default rules (that apply
to applications such as marriage, health care or retirement plans, as illustrated in Sec-
tion 9.4.2 below) or starting values lead to anchoring as individuals overly rely on the
first piece of information they receive. As such, the framing of the decision influences
the decision itself. We thus have to make a choice regarding the architecture that is actu-
ally implemented. The typical example, first given by Sunstein and Thaler, is that of the
placement of meals in a self-service restaurant. People are hungry when they enter and
are thus more likely to choose the dishes that appear first in the line. Of course, there has
to be an order, but there are different orders, e.g. that which maximises welfare, a ran-
dom choice of order, or that which maximises obesity. If obesity reflects inconsistency
and reduces individual well-being, liberal paternalism recommends that we should help
them resist temptation by increasing transaction costs (for example, putting desserts at
the end and vegetables first).

The second misconception, according to Sunstein and Thaler, is to consider pater-
nalism as coercive. They rather argue that nudges induce an ‘oriented free choice’, and
hence maintain the freedom associated with liberal policies. Both of these answers leave
open the question of how the orientation can best be designed, i.e. (i) how actual mis-
takes can be disentangled from free choices (smoking might reflect time inconsistency,
or just as well a perfectly rational decision according to some authors, e.g. Becker and
Murphy, 1988) and (ii) how the social planner’s preferences can be defined without
knowing the true preference distribution in the population.6 We illustrate the practical
working of this approach in one of the most famous examples of a liberal paternalistic
policy: the default option in retirement plans.

9.4.2 An Example: Time Inconsistency and the Default Option

As discussed in detail in Chapter 6, Section 6.6, efficient inter-temporal decisions
require two central conditions on time preferences that are often found to be lacking in
experiments: stationarity and dynamic consistency (Strotz, 1955). Stationarity implies
that a decision made at date t does not change if all consequences of the choice are

6 Sunstein and Thaler suggest two avenues: relying on cost benefit analysis, or adopting the solution that a
majority would vote for – provided that votes are rational.
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Focus 9.3

Designing a liberal and paternalistic choice architecture

Choice architecture, defined as the design of the context in which people make decisions

(Thaler and Sunstein, 2008), is the central instrument of liberal paternalistic interventions.

Johnson et al. (2012) group the tools available into two broad categories, as shown in the table

below (from Table 1, p. 489).

Problem Choice-architecture tools Examples

Amount of information available to the decision-maker

Alternative
overload

Reduce number
of alternatives

Medicare drug plans (Kling et al., 2012),
investments (Cronqvist and Thaler, 2004)

Technology and
decision aids

Sorting on attributes (Lynch Jr and Ariely,
2000); mobile devices and applications (Cook
and Song, 2009); smart energy grids, decision
inertia, use default investments (Cronqvist and
Thaler, 2004; Madrian and Shea, 2001); insur-
ance (Johnson et al., 1993); organ donation
(Johnson and Goldstein, 2003)

Myopic pro-
crastination

Focus on
satisfying

Planning errors (Koehler, 1991; Weber and
Lindemann, 2011; Shu, 2008), job search
(Iyengar et al., 2006)

Limited time
windows

gift certificates (Shu and Gneezy, 2010),
retirement planning (O’Donoghue and Rabin,
1998), tax credits

Long search
process

Decision
staging

Automobile customisation (Levav et al., 2010),
product evaluation (Häubl et al., 2010)

Framing of the decision

Naive alloca-
tion

Partitioning of
options

Investments Langer and Fox (2005); Bardolet
et al. (2011), food menus, automobile attributes
(Martin and Norton, 2009)

Attribute
overload

Attribute
parsimony and
labelling

Good/bad labels for numeric information
(Peters et al., 2009)

Non-linear
attributes

Translate and
rescale
for better
evaluability

Credit card repayments (Soll et al., 2013), fuel-
mileage ratings (Larrick and Soll, 2008)

The first category, in the top panel of the table, refers to the amount of information provided to

the decision-maker. For a given amount of information, different decisions can result from the

way in which the decision is framed. This is the focus of the bottom part of the table. For each

of the two categories, the first column describes the decision-making feature to be addressed,

the second how the choice architecture can be adjusted to take the decision consequences into

account, and the third a list of empirical applications in the literature.
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delayed by the same amount of time. Under stationarity, the choice between two timed
outcomes thus only depends on the time distance between them, resulting in constant
impatience. Experimental evidence rather finds decreasing impatience (e.g. Frederick
et al., 2002), or present bias: more weight is given to the immediate present than to
similarly delayed future events. From a behavioural point of view, present-biased pref-
erences reflect a lack of self-control: the decisions people would like to make in the
future do not match their current behaviour.7 Self-control problems can explain a vari-
ety of real-world behaviour, such as smoking, over-response to pre-teaser interest rates
on credit cards, the overestimation of future health-club attendance and distorted views
of deadlines (see DellaVigna, 2009, for a survey).

Saving is a typical inter-temporal high-stake decision that is faced by most indi-
viduals. Due to self-control problems, people might lack the ability to reduce present
consumption in order to raise future consumption, for example during retirement. Com-
bined with the difficulty of the planning task and bounded rationality, household saving
rates may not be optimal.8 A series of papers has proposed liberal paternalistic solutions
to this kind of issue based on default rules.

Madrian and Shea (2001) consider the saving behaviour of employees at a large US
firm when changing the enrolment rule in the national pension savings plan, the ‘401(k)’.
Employees used to have to explicitly enrol, whereas now enrolment in the company’s
401(k) plan for newly hired employees is automatic, unless they opt out. As discussed in
Section 9.4.1, the status quo bias predicts that individuals will stick to the default option,
even when there is no cost to changing to a better option. A change in the default is thus
a typical tool in liberal paternalism, as people continue to have the choice to decide what
suits them best, but are encouraged to make the decision that is best for them. One key
point in preserving the libertarian nature of the ‘default setting’ is the cost of opting out:
freedom of choice is conserved only when this is kept low (Thaler and Sunstein, 2008).

Madrian and Shea observed a dramatic rise in 401(k) participation by new workers 15
months after the introduction of this new default option, from 37% to 86% after the intro-
duction of the automatic enrolment rule, leading to an 11% increase in overall 401(k)
participation. Choi et al. (2004) have replicated the strong effect of automatic enrolment
found by Madrian and Shea (2001) in three different companies. The results observed

7 As a result, this kind of behaviour has also been explained by models of multiple selves (Benabou and Pycia,
2002; Bernheim and Rangel, 2004; Fudenberg and Levine, 2006). In the saving example, time consistency
assumes that all selves agree on the saving plan. Under time inconsistency, on the contrary, the decision-
maker can no longer trust himself to limit (or increase) consumption in the future (Eeckhoudt et al., 2005;
Salanié and Treich, 2006): the self that consumes at time t has different preferences to the self that planned
the saving beforehand.

8 Although financial education has sometimes been suggested as a policy tool to circumvent the issues raised
by bounded rationality in planning, it does not address self-control problems. Health insurance decisions
are a typical example for which financial education plays a crucial role. For example, Bhargava et al. (2015)
analyse the health-insurance decisions of employees at a large US firm where a new menu plan included
a large share of financially dominated options. They find that a majority of employees make dominated
choices. They underline the considerable negative consequences of these dominated choices, with excess
spending of an average of 42% of the annual plan premium. In a series of hypothetical-choice experiments,
the authors show that the lack of understanding of basic health insurance concepts plays a fundamental role
in the observed choices.
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Figure 9.5 401(k) participation by tenure in Company A in Choi et al. (2004)

Note. For each tenure level, the figure shows the share of firm employees who enrolled in the
401(k) according to whether the default is to opt in or to opt out.
Source: Choi et al. (2004, p. 89, Figure 2.1).

in one of the three are shown in Figure 9.5, displaying the share of employees enrolled
before and after the switch to automatic enrolment as a function of tenure in the firm.
Before the introduction of automatic enrolment, the employee participation rate started
at under 10% and increased progressively with tenure to less than 70%. Under automatic
enrolment, the participation rate continued to start at a quite low level, but jumped after
three to four months’ tenure to 92%, and increased with tenure to almost 98%. These
results more generally hold for all three of the firms analysed: 401(k) participation rates
before automatic enrolment ranged from 26% to 69%, depending on the employees’
tenure, and jumped to over 85% once participation was made the default choice.

Thaler and Benartzi (2004) consider another change in the default, specifically aimed
at overcoming self-control problems. Their field experiment focuses on a programme
called ‘Save More Tomorrow’, in which participants are offered the 401(k) plan with
a very low initial contribution that increases over time – future pay raises are allocated
to the saving plan. Most employees (78%) subscribe to the plan, which results in a
rise from 3.5% to 13.6% in savings. These strong default-option effects are hard to
understand, unless an unrealistically large psychological transaction cost is associated
with switching. O’Donoghue and Rabin (2001, 1998) attempt to explain this effect. They
find that the strong effect of the default option is due to self-control problems in the first
place, which, combined with even a small amount of naivety, lead to potentially infinite
procrastination.

Overall, this evidence is consistent with small and simple changes in the default
having large consequences on behaviour. As such, behavioural policies might be much
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more effective than traditional policies – typically based on capital income tax. For
example, the US government spends around $100 billion per year in subsidising retire-
ment saving in 401(k) and IRA accounts (Chetty, 2015). Chetty et al. (2014) estimate
on Danish data that a one-dollar increase in defaults raises total savings by $0.85.
As default effects have been observed over a wide range of decisions, from organ
donation to car insurance plans and the consent to collect personal information, the
paternalistic design of the default option may be broadly applicable. The effect of
default options should not, however, be generalised too far, with a risk of overestima-
tion. In further analysis of their data, Choi et al. (2004) show that, while automatic
enrolment encourages 401(k) participation, it can anchor participants in conservative
investment strategies and low saving rates: automatic enrolment has little positive impact
on average long-run wealth accumulation. The main effect of automatic enrolment is
to reduce the variance of wealth accumulation by drastically cutting the fraction of
employees with no savings. In this case, the main effect of a change in the default
is to increase the lower bound of the distribution of wealth accumulation. Moreover,
setting a unique default is optimal only if a large number of employees share the
same optimum, and if the default choice coincides with this optimum. With more het-
erogeneity in employees’ preferences and personal characteristics, the welfare gains
associated with a given default may be much lower. As described in Focus 9.4, an alter-
native is to force individuals to actually make decisions with a different choice situation
architecture.

9.4.3 Welfare Evaluations

Rationality is not only a key requirement for free choices to match individually optimal
outcomes, it also allows us to carry out welfare analysis based on the observed choices.
In standard welfare analysis, with rational agents, the preferences revealed by choice are
assumed to match the decision-maker’s normative preferences perfectly. An economic
agent who decides not to save is assumed to have made an informed choice, reveal-
ing their preference for current over future outcomes: not saving is the optimal outcome
given these underlying individual preferences. Revealed preferences can thus be embed-
ded in welfare analysis and used to compare outcomes and reach conclusions regarding
the best decisions from the point of view of everyone’s preferences – and hence what
policies should be implemented.

This reasoning no longer holds under departures from rationality (McQuillin and Sug-
den, 2012). If the saving behaviour of this same decision-maker comes about due to
time-inconsistent preferences, it is no longer the case that this outcome is strictly pre-
ferred from the agent’s point of view. There is, however, ambiguity here: clearly, the
current choice of a time-inconsistent decision-maker is their best current outcome –
as otherwise they would have made another decision. But it is just as clearly not pre-
ferred for this same individual from the point of view of their future preferences over
future outcomes. Beshears et al. (2008) describe five kinds of situation in which norma-
tive preferences are likely to diverge from the preferences revealed by decision-makers’
choices.
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Focus 9.4

Opt-in/opt-out versus active decisions: a non-liberal-paternalistic tool to enhance

enrolment in 401(k) without default

In the two default options described in the text – automatic enrolment leading to an opt-out

choice and non-participation leading to an opt-in choice – the fallback position defines the

passive choice of the employee. Carroll et al. (2009) consider a third possibility, in which a

formal choice of enrolment is required from the employee. There is no longer a default since

employees must declare their enrolment preference in an active way. Paternalism is here lim-

ited to a cognitive and temporally limited intervention: employees are forced to think about

the economic problem and to make a decision, with no answer to the problem being pro-

posed by default. Carroll et al. (2009) collect data from one firm that switched unintentionally

from an active-decision type to a standard type. The results show a drop in the enrolment

rate from 69% under active decision to 41% under an opt-in choice. Conditional on demo-

graphics, the opt-in situation delayed the enrolment decision by 30 months, whereas active

decisions forced the employees to decide immediately. The average saving rate and accumu-

lated balances drastically increased thanks to this earlier enrolment. The authors also propose

a theoretical framework to evaluate the welfare consequences of the different types of enrol-

ment. The model shows that active decision is optimal when employees are present-biased, as

active decisions force employees to counterbalance the effects of procrastination. Bernheim et

al. (2015) show that defaults and penalties for passive choice are substitutable policy instru-

ments. The optimal default policy is either an attractive default associated with no penalty, or

an extremely high penalty with no matter which default.

1. Passive choice. This occurs when decision-makers face defaults that are set by some
third party, and passively accept these defaults even if they do not correspond to their
best option.

2. Complexity. Increased complexity is likely to generate noisier choices, complexity
aversion and more delayed choices.

3. Limited personal experience. Decision-makers are more likely to learn from their
own experience than from the experience of others. As a result, a lack of sufficient
personal experience might limit the ability to learn, and so choose the best option.

4. Third-party marketing can also bias true preferences by manipulating information.
5. Inter-temporal choice is a standard choice environment in which decision-makers’

choices are inconsistent.

When choice varies with arbitrary elements of the decision-making environment, the
preferences revealed by observed behaviour will not be the same as normative prefer-
ences. In the words of Kahneman et al. (1997), ‘experienced utility’ – which corresponds
to Bentham’s concept of utility, also called ‘true utility’ by Bernheim et al. (2009) –
is then different from ‘decision utility’ – the function that is maximised when deci-
sions are made. Decision utility here, then, no longer reflects well-being, so that the
use of revealed preferences and decision utility as normative tools is logically incon-
sistent (Goldin and Reck, 2015). There are, however, a variety of methods that allow
us to recover the decision-makers’ true preference based on their observed choices. For
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example, Beshears et al. (2008) describe six different ways of identifying normative
preferences under systematic decision-making errors.

1. Structural estimation of a behavioural model with a parameter vector θ and a set of
normative axioms that map the parameter vector into normative preferences. While
the behavioural model allows us to estimate all the components of the decision,
the set of normative axioms restricts the parameter space to the normative param-
eters only, and excludes all of the non-normative estimated parameters. For example,
Paserman (2008) estimates the degree of hyperbolic discounting in a job search
model and derives the optimal policy interventions aimed at reducing unemployment
by eliminating estimated present bias from the set of relevant parameters.

2. Active-decisions choice architecture, forcing decision-makers to explicitly choose an
option rather than opting for a default. Carroll et al. (2009), described in Focus 9.4,
is an example in the context of 401(k) plan participation.

3. Asymptotic choice that enables decision-makers to amass sufficient experience to
make more informed and so better choices than inexperienced decision-makers – see
Illustration 9.4 above for an example applied to preference reversal.

4. Aggregate revealed preferences can reveal normative preference if decision-making
errors are symmetrically distributed around 0. In that case, aggregating preferences
over individuals reveals the normative preferences of the representative agent.

5. Self-reported preferences are often considered less informative than revealed prefer-
ences, as they are a form of cheap talk. They nonetheless inform us about preferences,
and possibly do a better job than revealed preferences when there are departures from
rationality. Chetty (2015) argues that this approach, applied to subjective well-being,
has the same strengths and weaknesses as contingent evaluation (as discussed in Sec-
tion 2.4 of Chapter 2). Further criticisms regarding measurement, identification and
the aggregation of self-reported subjective well-being are set out in Bernheim (2009).

6. Informed preferences come either from external experts or from decision-makers
who have particularly good training and education regarding the choice to be made.
Since the preferences revealed by these agents are arguably more similar to norma-
tive preferences, they should be overweighted in measurement. Chetty et al. (2009),
for instance, rely on this method to consider the implementation of commodity taxes.

The above approaches amount to measuring well-behaved normative preferences
based on (assumed) badly behaved choices. An alternative is to revise the founda-
tions of welfare analysis in the light of behavioural economics. Bernheim (2009)
discusses two competing views for this normative framework. The first takes the stan-
dard preference-based approach and focuses on the decision-makers’ true objectives.
The normal welfare-analysis framework is thus generalised to models that rationalise
non-standard behaviour. The main difficulty here is the number of alternative rationali-
sations that can explain a given choice pattern. Bernheim (2009) argues that this plurality
will conceptually render identification of welfare criteria impossible.

The second approach, introduced by Bernheim et al. (2009) and Salant and Rubin-
stein (2008), generalises conventional choice-based welfare analysis to situations in
which agents make non-standard decisions. The welfare criterion (the ‘unambiguous
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Figure 9.6 Individual welfare optima and consistent arbitrariness

Note. The figure shows the indifference curves and the budget constraint leading to optimal
choices between good x and good y for two levels of anchoring, low (IL) and high (IH).
Source: Bernheim (2009, p. 303, Figure 1b).

choice relation’) is defined so as to ‘respect choice whenever it provides clear normative
guidance, and to live with whatever ambiguity remains’ (Bernheim et al., 2009, p. 53).
Choices are assumed to reflect normative preferences whenever decision-makers make
internally consistent decisions across the decision environments; the welfare relation is
otherwise assumed to be incomplete. To produce normative guidance, one possibility is
to construct welfare relations based on choice sets in which choices are consistent, and
ignore the others. Bernheim et al. (2009) show that this welfare choice criterion is the
only one to satisfy acyclicity (consistency), the respect of choice, and the fact that no
option can be classified as a behavioural mistake based on choice patterns alone.

This incompleteness of the welfare function is a challenge for the usual tools used
in welfare analysis, such as equivalent variations. When the standard axioms of choice
hold, revealed preferences correspond to normative preferences and there is no ambigu-
ity; when there are choice anomalies, by way of contrast, the welfare function only
provides a range of equivalent variations. Figure 9.6 illustrates the welfare function
associated with the consistent arbitrariness described in Focus 9.5. An individual s

faces different anchors that influence choice over two goods, y and x. Two indiffer-
ence curves are plotted along with the budget constraint: IH is the indifference curve
leading to optimal choice a under the high anchor, and IL that leading to optimal choice
b under the low anchor. Quantitative measures like equivalent variations will not be
unique here, and are instead defined over a range of possible values. The set of indi-
vidual welfare optima [a, b] converges to a single utility-maximising choice as the
anchoring effect is reduced. The standard welfare criterion thus appears as a limiting
case of this more general setting, and can still be applied if the resulting ambigu-
ity is small enough. It is only when large changes in behaviour are produced by the
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Focus 9.5

The malleability of consumer preferences: anchoring and consistent arbitrariness

A number of experiments have shown that decision-makers can be very sensitive to salient but

irrelevant features of the decision environment. Anchoring is a typical example, as highlighted

by Tversky and Kahneman (1974). In this experiment, subjects first draw a random number

(the ‘anchor’) and then face a judgement task involving a numerical assessment – for instance,

guessing whether the number of African nations in the United Nations is greater or lower than

the randomly drawn number. The results show that subjects’ estimates are correlated with the

arbitrary number drawn at the beginning of the experiment. Examples abound in the literature

on the influence of anchors on judgements (see Epley and Gilovich, 2006, for references) but

also on the elicitation of certainty equivalents for lotteries (Johnson and Schkade, 1989) or

willingness to pay for public goods (Green et al., 1998). Ariely et al. (2003) go beyond sub-

jective judgement and observe that a simple anchoring manipulation also affects preferences

in an experiment with standard consumption goods (computer accessories, bottles of wine,

luxury chocolate and books). In this experiment, subjects face a series of goods with almost

the same retail price (around $70) and are first asked whether they would buy each good for

a price that is equal to the last two digits of their social security number. After this anchor-

ing task, subjects are asked to state their willingness to pay for each good. At the end of the

experiment, one task is selected at random and played for real to determine payoffs based

on a Becker–DeGroot–Marshak mechanism. The following table (from Ariely et al., 2003,

p. 76, Table 1) lists the average willingness to pay for each good, by the five quintiles of

the social-security number distribution. The last column shows the correlation between these

numbers.

Quintile 1 2 3 4 5 Correlation

Cordless trackball 8.64 11.82 13.45 21.18 26.18 0.415
Cordless keyboard 16.09 26.82 29.27 34.55 55.64 0.516
Average wine 8.64 14.45 12.55 15.45 27.91 0.328
Vintage wine 11.73 22.45 18.09 24.55 37.55 0.319
Design book 12.82 16.18 15.82 19.27 30.00 0.419

Whatever the good considered, willingness to pay is significantly correlated with the social-

security number used as an anchor. The valuations in the top quintile are three times larger

than those in the bottom quintile. The absolute valuations of the goods thus appear to a large

extent arbitrary. The large majority of subjects, however, exhibit stable relative preferences:

the value of the cordless keyboard is twice as high as the cordless trackball, and vintage wine

is valued more than average wine. The relative valuations are thus consistent with demand

curves derived from fundamental preferences. The experiment then suggests that valuations

combine both arbitrariness and consistency. Bergman et al. (2010) replicate these findings on

willingness to pay, and Fudenberg et al. (2012) find small effects on both willingness to pay

and willingness to accept.
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anchor that the unambiguous choice relation used to evaluate welfare will differ notably
from a standard choice relation. In this case, the range of possible equivalent variations
is wide, and the welfare criterion no longer allows any fine distinctions between the
different allocations.

Bernheim et al. (2015) apply behavioural welfare analysis to study the welfare effects
of default options in the 401(k) case. They consider a number of theories of default
effects and evaluate their welfare consequences through two equivalent-variation mea-
sures associated with the change in policy. The first is the smallest increment in income,
in the context of the initial policy, such that the chosen bundle of goods under the initial
policy will unambiguously be chosen over the bundle obtained with the new policy. The
second is the largest increment in income, in the context of the new policy, such that the
chosen bundle of goods under the new policy is unambiguously chosen over the bundle
obtained with the initial policy. These two measures provide bounds on the equivalent
variations, as the policy change is worth no more than the first measure and at least
as much as the second. The analysis shows that the design of optimal welfare policy
depends critically on the underlying behavioural model of choice. When time consis-
tency or inattention matters, there is only little ambiguity about the normative effects of
default rules, even if the opt-out costs that rationalise standard behaviour are fairly large
in size. On the contrary, the degree of normative ambiguity for models with anchoring
is much larger. For models of time consistency, the results show that minimising the
opt-out cost by setting the default equal to the employer matching contribution cap is
a suitable welfare-maximising policy – in line with the results of Sunstein and Thaler
(2003). Last, the optimal default rate for models of anchoring is zero.

Summary

This chapter has focused on two questions. The first asked what should be done with
theories that have been widely and convincingly tested in the lab. The second is related
to the predictive value of experimental results from a public-policy perspective. The
first question stems from the observation of thirty years of investigations in experimen-
tal economics. Accumulated evidence has renewed and broadened the traditional view
of the determinants of economic behaviour. This accumulation of results has helped
economists to determine which elements of their toolbox were accurate and which
were not. In Section 9.1, we described how experimental economics has renewed the
debate over the status of models and theory in economics. In particular, we showed how
experimental results can help the economist to build better models, with an improved
understanding of human behaviour. The evidence accumulated has also raised new ques-
tions about the necessity (or lack of necessity) to improve models. Through various
examples and illustrations, this chapter has discussed from which kind of data it is legit-
imate to carry out induction and thereby improve models. We show that behavioural
failures might not always imply theoretical failure, but rather a failure in the range of
situations to which the theory applies. In Section 9.2, a case study on level-k reasoning
illustrated how these questions apply to game theory.
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The second part of the chapter focused on the public-policy consequences of the
decision-making processes observed in the lab. The accumulated experimental results
on rational behaviour show a balanced picture. Depending on the choice situations, insti-
tutions and incentives, the hypothesis of rational agents making decisions maximising
their utility is confirmed. However, in many instances, agents are unable to conform or
commit to these decisions. These situations have been systematically and extensively
studied by what is often called behavioural economics. Section 9.3 takes the example of
matching markets to show how the methodology of experimental economics can be used
to enhance our understanding of markets and regulations, using simple decision-making
in the lab. Section 9.4 discusses the public-policy consequences of the (experimentally)
documented failures of rationality assumptions. The recognition of these failures has
led to a complete renewal of thinking in public policy. This renewal has called the lib-
eral view, in which individuals are able to choose what is best for them, into question.
Section 9.4 presented and discussed the central element of this renewal, called liberal
paternalism. Section 9.4 also presented some of the consequences of the violations of
rationality in terms of traditional welfare analysis.
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random coefficients model, 317
reduced form, 66
structural approach, 53, 66, 67, 210, 393
structural parameter, 66, 305

elicitation method, 23, 127, 300
ambiguity attitude, 186
Bayesian truth serum, 184
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double blind, 97
experimental treatment, 150–1
external validity, 342, 348
factorial design, 156–9
formal representation, 95
infinitely repeated game, 107
matching market, 381–3
neutrality, 346
online experiment, 338
participation, 72
partner design, 169
pseudo-stranger design, 170
repeated sessions, 347
risk attitude, 291
social context, 150
stranger design, 170
strategy method, 121, 378
time preference, 218–9
treatment parameter, 147, 150–1
within-subject design, 152

experimental game, 13–21, 23
beliefs, 188
centipede game, 12
coordination game, 135
dictator game, 95
11–20 game, 379
gift-exchange game, 104
guessing game, 164
market-entry game, 374
minimum-effort game, 168
public-good game, 128
sequential game, 121
stag hunt game, 135
trust game, 111
ultimatum-bargaining game, 142
voluntary-contribution mechanism, 130

experimental instructions, 27, 159–63, 195–7, 212
definition, 27
external validity, 327
general principles, 161
implementation, 206
incentives, 144
internal validity, 159
pre-experiment questionnaire, 30, 162
replication, 356
script, 196
sequence, 196
wording, 162

experimental market, 6–9, 38–42
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Chamberlin’s experiment, 6
definition, 6
efficiency, 35, 38, 40, 41, 363, 385
equilibrium, 7, 35
second-price auction, 34
Smith’s experiment, 8
two-sided matching market, 381–5

experimental subject
acquaintances, 150, 168, 338
definition, 26
participation, 191
subject pool, 201, 208

experimenter-demand effect, 170, 173, 342, 340–2
explanatory variable, 57, 78

analysis of variance, 282
exogeneity, 75

exploratory analysis, 233–43
external validity, 25, 323–60

definition, 112, 325–36
field experiment, 327
incentives, 343–4
inference, 332
mediator, 334
meta-analysis, 358
parrallelism, 326
professional sample, 351
replication, 352–60
representative sample, 348
risk attitude, 293
statistical methods, 353–6
student sample, 348–9
WEIRD individual, 349

factorial design, 156–9
fair-wage hypothesis, 113
fairness, 104, 143–4
field experiment, 77, 328, 330

definition, 83
external validity, 327
fair-wage hypothesis, 113
gift-exchange game, 330
implementation, 84
incentives, 364
inference, 84
versus laboratory experiment, 84, 90
randomization, 85
reciprocity, 112, 115
replication, 339
spillover effect, 85

file drawer problem, 355
first-order stochastic dominance, 98, 102, 314
framing

beliefs, 185
corruption experiment, 163, 346
hypothetical bias, 41, 43
incentives, 134

public policy, 387
response time, 102
risk attitude, 301
tax-compliance experiment, 346
time preference, 218

free riding, 14, 24, 128–32, 154, 345
front-end delay, 219

game theory, 21, 11–22
repeated game, 372
backward induction, 16, 374
Bertrand competition, 93
cognitive-hierarchy model, 375
contingent plan, 121
Cournot–Nash competition, 93
dominant strategy, 18
equilibrium strategies, 19, 371
Gale–Shapley algorithm, 382
level-k model, 369–80
non-cooperative game, 13
Pareto-dominant outcome, 13
payoff dominance, 135
private information, 19, 20
quantal-response equilibrium, 377
repeated game, 107
risk dominance, 135
sequential-move game, 15
simultaneous-move game, 13, 374
sub-game perfectness, 16, 142

gender effect, 60, 76, 126
gift-exchange game, 103–5, 330
guessing game, 369

k-level model, 369–80
definition, 164

guilt, 141, 154

Hawthorne effect, see experimenter-demand effect
health economics, 24, 172, 228, 304, 310, 389
hedging, 179
heterogeneity, 63, 82, 229, 362
heuristics, 41, 47, 102, 138, 335, 342
histogram, 233
homegrown values, 42
Homer economicus, 12
homo economicus, 12, 21
house-money effect, 138
hypothetical bias, 37, 42

beliefs, 173
calibration, 42
certainty questions, 43, 46
cheap-talk script, 41, 45–7
consequential procedure, 43
dissonance minimization, 45, 46
elicitation method, 47, 41–7
ex-ante methods, 43–6
ex-post methods, 42–3
social context, 45



Cambridge University Press
978-1-107-06027-2 — Experimental Economics
Nicolas Jacquemet , Olivier L'Haridon 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press

436 Index

survey, 42
time preference, 217

hypothetical choice, 36–47, 137, 138, 155, 170, 173,
185, 217, 225, 300, 303, 364, 389

identification, 52, 55
control variable, 78
internal validity, 122
noise, 64
randomization, 75
selection bias, 69
time preference, 223

impatience, 211, 220, 389
implementation, 191–208

algorithm, 196
calendar, 202, 204–5
computerized experiment, 191, 196
consent form, 27, 203
cost of an experiment, 149, 195, 204
D-Day checklist, 207
data privacy, 203
experimental instructions, 195, 206
experimental room, 169, 192–4
external validity, 342–8
hardware, 193, 200
institutional review board, 195
invitation, 27, 202, 203
laboratory, 191
mobile lab, 338
payment, 145, 195, 207–8, 220, 222–3
pen and paper, 191, 197
pilot session, 205–6
registration, 202
script, 197
software, 196–201
subject pool, 201–4, 208
treatment, 150–60
waiting room, 169, 191

incentive compatibility, 44, 112, 134, 140
definition, 133

incentive scheme, 61, 70, 133
beliefs elicitation, 185
external validity, 343
house-money effect, 139, 344
integration, 140
internal validity, 139
isolation, 139, 140
meta-lottery, 140
portfolio effect, 139
random-incentive system, 139, 300
repeated task, 138
rescaling, 144
social context, 145
tournament, 80
wealth effect, 138

incentives, 77, 105, 133

auction, 33, 138
confounding factor, 144
data quality, 138
decision task, 138
definition, 133
experimental game, 138
external validity, 343–4
implementation, 195
incentive effect, 73
institutional design, 367
judgement task, 138
multiple decisions, 138
noise, 136
performance, 138, 364, 366
preference elicitation, 138
preference reversal, 368
real incentives, 44
reciprocity, 112
repeated task, 300
risk attitude, 139, 300
saliency, 135, 139, 300, 343
stake effect, 145
threshold effect, 133
time preference, 217, 222–3
wealth effect, 300

independence (statistical), 59
induced value, 7, 37–42, 120, 149

definition, 37, 344
external validity, 344

induction, 365–9
industrial organization, 23

anti-trust policy, 91
auction, 324
Bertrand competition, 93
collusion, 107, 14–109, 363
competitive market, 9, 91
Cournot–Nash equilibrium, 93, 363
duopoly experiment, 348
returns to scale, 62

inference, see also econometrics, 51, 54, 55
definition, 54, 55
external validity, 332
field experiment, 329
sample size, 55

in-sample prediction, 225
institutional design, 367
institutions, 41, 112, 115, 120–2, 127, 132, 147,

326, 336, 367
integration, 140
internal validity, 25, 109–10, 119–90, 325

causal effect, 109
definition, 109
identifying assumption, 122
incentives, 139

interval data
definition, 231



Cambridge University Press
978-1-107-06027-2 — Experimental Economics
Nicolas Jacquemet , Olivier L'Haridon 
Index
More Information

www.cambridge.org© in this web service Cambridge University Press

Index 437

statistical test, 266–85, 287–8
isolation, 139, 140

kindness, 131, 143

labour economics, 23
efficiency wage, 104, 105, 112
gender effect, 60, 76
matching, 381
minimum wage, 52
productivity, 52, 77, 340, 381
return to education, 60
wage, 61

law and economics, 24
corruption, 328, 346
incentives, 328
tax compliance, 346

law of large numbers, 55
learning, 40, 137, 160, 163, 166–70

auction, 324
cheap-talk script, 47
estimation, 316
game theory, 376
guessing game, 372
hypothetical bias, 43, 44
repeated interaction, 170
risk attitude, 316

level-k reasoning, 188
liberal paternalism, 386–91
likelihood, 36, 44, 56, 102, 147, 172, 186
loss aversion

belief elicitation, 177
definition, 124
elicitation method, 311
endowment effect, 124
risk attitude, 294, 310
status quo bias, 137

magnitude effect, 220
majority voting, 44
marginal per capita return, 130
market-entry game, 374
matching market, 380–5
matching probabilities, 181–4
matching task, 219, 294
measurement scale, 231
mechanism design, 133
meta-analysis, 96, 110

external validity, 338, 358
hypothetical bias, 42

meta-lottery, 140
microeconomic system, 119–43, 190, 342
minimum-effort game, 168
misconception, 43, 125
modelling, 92–4, 362, 364–5
multiple treatment, 156–60

Nash equilibrium, 13, 16, 93, 106, 129, 144, 164,
187, 324, 342, 363, 370, 372, 377, 379

natural experiment, 51, 52, 61, 67
neuroeconomics, 23
non-coordination, 13
non-excludable goods, 127
non-rival goods, 127
non-satiation, 133
non-standard preferences, 22, 361, 393

ambiguity model, 180, 312
external validity, 341
game theory, 376
other-regarding preferences, 140–7, 369
prospect theory, 294, 310
quasi-hyperbolic discounting, 221
rank-dependent utility, 180, 294, 305
reference-dependent preferences, 124
time preferences, 221

normal probability plot, 235–7
nudges, 386–91

observational data, 38, 47, 57, 63–79, 106
definition, 63
versus laboratory experiment, 90

observations, 53
opt out, 389, 392
order effect, 153, 155, 300
ordinal data, 239, 241

definition, 231
statistical test, 264, 265, 270–6, 283–5, 288

ordinary least squares
dependent variable, 57
error, 57
estimator, 57–79
independent variables, 57
observable variables, 57
properties, 58

out-of-sample prediction, 225
outlier, 233, 234, 269
overbidding, 376

parallel-trend assumption, 74, 158
parallelism, see also external validity, 133, 326
participant, see experimental subject
participation

deception, 163
decision, 72
implementation, 207
incentive, 134
opportunity cost, 134, 140

partner design, 169
perceived experiment, 159–63
perceived opponent, 166–70
perfect competition, 52
personel economics, 23, 61, 330

compensation schemes, 52, 53, 60, 61, 70, 76, 80,
112, 131
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fixed wage, 52, 61, 77, 104, 113, 366
piece rate, 52, 61, 65, 70, 77, 80, 81, 364

efficiency wage, 104
performance at work, 80, 81, 364, 366

physiological measures, 101, 149
piece-rate schemes, see personel economics
pilot session, 205
portfolio effect, 138
practice question, 40, 125, 206, 347
prediction market, 174
preference elicitation, see elicitation methods
preference reversal, 155, 219, 367, 368
present bias, 220, 341, 387–91, 393
price, see experimental market
pricing task, 368
principal–agent relationship, 61, 366
prisoners’ dilemma, 12–5, 18, 106, 107, 141, 143–5,

154, 179, 312, 360
probability distribution, 140, 171, 181, 240, 247,

362
probability weighting, 177, 178, 215, 301, 308, 313,

319, 376
definition, 310

proper scoring rule, 173–80, 380
prospect theory, 124, 137, 180, 183, 294, 305–19

definition, 310
psychology of behaviour, 23, 165, 326, 369

decision heuristics, 335
diminishing sensitivity, 124, 310
ecological validity, 326
gain/loss asymmetry, 220, 310
Hawthorne effect, 340
incentives, 136
morally loaded behaviour, 346
perception, 162
reference point, 310
relevance, 326
robustness, 326
role play, 148
social context, 148
status quo bias, 137
temporal referencing, 218

public economics, 127
public policy, 25, 52, 88, 361–96

behavioural public policy, 385–96
causal effect, 66
laboratory experiment, 90
liberalism, 386
nudges, 386–91
paternalism, 386
programme evaluation, 66, 75
social planner, 386
welfare evaluation, 391–6

public-good game, see voluntary contribution
mechanism

Q-Q plot, see normal probabability plot

quadratic scoring rule, 173
quasi-experiments, see natural experiments
questionable research practices, 355
questionnaire, see also survey, 23, 149

random choice, 18, 314, 377, 387
random sample, 232, 233
random-incentive system, 139
random-lottery incentive system, see

random-incentive system
randomization, 75–9, 85, 126, 139, 151–6
ratio scale, 232
rationality, 12, 155, 361, 365, 367, 391
real effort, 81, 344–6
real incentives, see incentives
reference point, 124, 137, 143, 294, 310, 311
referendum, 44
repeated task, 14, 18, 19, 59, 135, 138, 306

implementation, 169
incentives, 140, 300
partner design, 169
stranger design, 170

replication, 8, 95, 96, 110, 353, 356, 359, 352–60,
367

reporting bias, 355
representative sample, 188

external validity, 331, 337
methods, 233
student sample, 348, 349

resale value, 31–3, 37, 38
residual, 63
response time, 100–3
revealed preferences, 37, 391–6
revelation mechanism, 35–47
risk attitude, 10–1, 79, 176, 179, 293, 294, 303–4,

315, 368
Holt and Laury method, 298–305
probability weighting, 301
structural estimation, 305, 302–5
utility function, 291, 305–12

robustness, 327, 329, 342–8, 359
run chart, 237

saliency, see also incentives, 134, 145
sample, 53, 67, 113, 164, 356, 358

content, 53, 54, 56, 57, 63, 69, 244
cross-section, 172
definition, 53
independence, 172, 243
inference, 243–5
noise, 79, 152
sample mean, 53–5, 244
sample properties, 59
sample variance, 239
selection, 55, 232, 233, 338
statistics, 235, 241
variability, 54
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sample size, 79, 85, 233, 241, 244, 253, 254, 263,
352–4, 356, 358

between-subject design, 152
confidence interval, 251–2
factorial design, 159
small samples, 241

sampling, 56, 172, 232–3, 243
sampling distribution, 54, 204, 244–8

bootstraping, 244
central-limit theorem, 241
definition, 244
permutation test, 244
statistical test, 244

scatter plot, 237
searching for facts, 24, 88, 89, 110–5, 335, 361

definition, 89
second-price auction, 27–44
selection bias, 55, 69, 72

definition, 55
self-selection, 70

self-control, 389–91
self-selection, see also selection bias, 70, 82, 350
show-up fee, 207
social context, 12, 83, 145, 166

closeness, 150, 168
dictator game, 97
public-good game, 131

social preferences, 96, 143, 146
altruism-based model, 143, 145, 146
aversion to inequality, 141
intention-based model, 143
outcome-based model, 141, 146
prisoners’ dilemma, 145

software, 197–200
Java, 199
ORSEE, 201
PHP/MySQL, 198
Python, 200
Z-tree, 199

spurious correlation, 53
stag hunt game, 135
stated preferences, 41–7, 393
statistical methods, 25, 52

z-score, 249
mean absolute deviation, 254
median deviation, 254
bootstraping, 244
box plot, 234
confidence interval, 248–56
data transformation, 242
density, 235
descriptive statistics, 243, 237–43
empirical cumulative distribution function, 235
histogram, 233
jacknife, 244
loss function, 178, 246

Neymann principle, 353
non-parametric method, 240
normal probability plot, 235
parametric method, 240
scatter plot, 237
statistical tests, 256–89
uniform distribution, 178, 235
visualisation technique, 237, 233–7

statistical test
F test, 279
p-value, 263
t test, 266, 278
z test, 278
alternative hypothesis, 256
analysis of variance, 279
Anderson–Darling test, 274
Ansari–Bradley test, 284
Bartlett test, 283
Bayes factor, 265
Benjamini–Hochberg procedure, 261
binomial test, 273
Bonferroni correction, 261
Brown–Forsythe test, 285
chi-squared test, 268, 286
chi-squared goodness-of-fit test, 276
choice of a test, 264
Cochran Q test, 289
composite hypothesis, 257
compound symmetry, 287
critical region, 258
critical value, 258
decision rule, 256
definition, 256
Dixon test, 269
Dunn test, 285
Fisher exact test, 285
Friedman test, 288
Grubb test, 269
Holm–Bonferroni correction, 261
honestly significant difference, 281
Huynh–Feldt correction, 287
Jonckheere–Terpstra test, 285
Kolmogorov–Smirnov test, 272, 284
Kruskal–Wallis test, 284
large sample approximation, 277
left-tailed test, 257
Levene test, 285
likelihood-ratio test, 267
Lilliefors test, 273
Mann–Whitney test, 283
McNemar test, 289
multinomial test, 276
multiple test procedure, 261
Neyman principle, 263
null hypothesis, 256
paired t test, 287
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post hoc procedure, 281
procedure, 257
repeated-measure analysis of variance, 287
right-tailed test, 257
Rosner test, 269
run test, 275
sample size, 263
Scheffe method, 281
Shapiro–Wilk test, 274
Sidak correction, 261
Siegel–Tukey test, 284
sign test, 270
simple hypothesis, 257
sphericity, 287
statistical power, 261
test size, 260
test statistic, 258
Tukey and Scheffé method, 281
two-tailed test, 257
two-way analysis of variance, 282
type I error, 260
type II error, 261
Welch test, 278
Westfall–Young permutation procedure, 261
Wilcoxon matched-pairs test, 288
Wilcoxon test, 241, 271

status quo bias, 137, 386
stranger design, 170
strategy method, 121, 378
stylized fact, 110
supply, see experimental market
survey, 23, 37, 41, 42, 337

contingent valuation, 41
hypothetical bias, 42
Neyman’s optimal allocation, 233

testing theory, 4, 12, 24, 88, 89, 361–9
external validity, 334
internal validity, 109
laboratory experiment, 89
model, 103

time preference, 228, 208–396
axioms, 211, 215, 219, 227, 387
Becker-DeGroot-Marschak method, 214, 217
convex-time budget set, 223–5
direct method, 225–7

experimental design, 209, 211, 216, 218, 347
front-end delay, 219, 220
impatience, 211, 220
present bias, 220, 387–91
real incentives, 217, 220
sequence of outcomes, 209, 210, 225
utility function, 210, 211, 215, 223

token, 144
tournament, 80, 82
trade, see experimental market
treatment, 60, 147

definition, 60
treatment effect, 147, 229, 331

definition, 95
heterogeneity, 72, 332–4

treatment parameter, 150–1
trust game, 111, 337

definition, 111

ultimatum-bargaining game, 141, 142, 144, 154,
343, 351

definition, 142
unravelling, 381

valuation task, 186
Vickrey auction, see second-price auction
voluntary-contribution mechanism, 127–32, 157,

160, 345
beliefs, 167, 189
definition, 130

vote, see also elicitation method, 387

weak-link game, 168
wealth effect, 138
whispering in the ears of princes, see public policy
willingness to accept, 43, 123, 368, 395

definition, 7
willingness to pay, 35, 37, 43–5, 47, 123, 127, 186,

344, 368, 395
definition, 7

windfall money, 39, 99, 139, 344
winner’s curse, 242, 324, 376
within-subject design, 59, 152–6

zero-sum game, 12, 17–20, 188
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