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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new
philosophies…, new challenges. Much of this development work resides in indus-
trial reports, feasibility study papers, and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

Perhaps unsurprisingly, the classification and structure of control in the food
industry are remarkably similar to that of process control in the broad spectrum of
industrial and manufacturing processes. Industrial processes can be divided into
“primary” and “secondary” industries. Primary industrial processes convert raw
materials into materials ready for further processing or transformation. An example
is mineral processing where iron, copper, and aluminum ores are converted into
steel, copper, and aluminum, respectively. Even a raw material such as the water
held in lakes, reservoirs, or the sea has to be processed into drinking water.

Similarly in the food industries, raw materials such as sugar cane, wheat grains,
and olives need to be converted to sugar concentrate, flour, and olive oil, respec-
tively, all prepared for further processing. Such first-stage processes form a class of
“primary” food transformation industries. As with the primary industrial processes,
control adaptation to the variable quality of raw materials is one of the key issues.
Another key issue for these large-scale food processing plants is maintaining
consistent performance in the face of equipment wear and tear and component
failure. There is also an element of batch control as different batches of the raw
foodstuff input may have different physical properties. Some areas of food industry
processes are extremely labor-intensive with much lower levels of automation than
is found in inanimate material processing. Processes that deal with animals are
subject to a whole range of animal welfare regulations, and the scope for
automation is much reduced. All these factors and concerns make the Production
Planning and control of primary food industries very complex.
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In “secondary” food industries, the refined outcomes of the primary transfor-
mation industries enter a more straightforward field of food product manufacture.
For example, sugar concentrate, flour and olive oil, become the input ingredients to
say, the manufacture of confectionery, biscuits and bread, and sauces. Even here the
generic features of control are in evidence. Plant-wide planning and scheduling,
often with batch processing, forms a top level for the control hierarchy, while the
loop control of food-baking ovens and highly automated food production lines
prevails at the lower levels of the hierarchy. A typical Production Planning con-
straint is that in the manufacture of biscuits where the lighter-colored biscuits are
made first, followed by the darker-colored biscuits, with the darkest colored biscuits
being made last before the production line is cleaned thoroughly and the sequence
begins all over again.

What is a little surprising to the Series Editors is how infrequently they have had
the opportunity to publish a control monograph or attend a control conference
presentation for these very important and extensive food industry control applica-
tion areas. Thus, this monograph Production Planning, Modeling and Control of
Food Industry Processes by authors Pablo Cano Marchal, Juan Gómez Ortega, and
Javier Gámez García is a very welcome addition to the Advances in Industrial
Control series. The monograph opens with an overview and survey of the global
importance of food industries. The following three chapters examine model iden-
tification and then the control needed in the top and lower levels of the processing
control hierarchy. Chapter 5 focuses on the particular issues for Production
Planning in the food industry, while Chap. 6 presents a case study of these control
concepts and designs applied to olive oil production. The monograph is well
focused, and the Advances in Industrial Control Series Editors hope that there will
be more such food-industry-related monographs in the series in the future.

Glasgow, Scotland, UK Michael J. Grimble
M. A. Johnson

Industrial Control Centre
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Chapter 1
Introduction

The food and drink industry is a major sector in the world economy. The worldwide
turnover of the industry in 2012 amounted more than 2,700 billion (Europe 2014),
which represents a 2.7% of world GDP. The main actors in the industry are the
European Union, USA, and China, roughly accounting for 69% of the total, being
followed by Japan, Brazil, Mexico, Russia, and Australia (Europe 2014).

The objective of this chapter is twofold: First, it serves as an introduction to the
application of automatic control to food processes, by briefly exposing the typical
characteristics of food processing operations. Second, it introduces the framework
that unites the different chapters included in the book.

The following section briefly exposes the characteristics of food processing oper-
ations, with some emphasis on those that characterize these processes as somewhat
particular for the application of feedback techniques. In turn, Sect. 1.2 deals with
the convenience of the consideration of hierarchical control schemes to handle the
implications posed by these characteristics, along with the role of each of these
layers in the global process control. Finally, Sect. 1.3 presents an example of food
transformation processes and provides a real context for the ideas introduced in this
chapter.

1.1 Characteristics of Food Processing Industry

Food industry is quite broad, as it encompasses notably diverse raw commodities
and final products, which consequently entails different transformation processes.
Food processing involves transforming a set of raw inputs coming from agriculture,
stockbreeding, or fishing intofinished foodproducts, and the degree of transformation
of the products may range from a selection and packaging of the raw materials to
sophisticated processes involving different physical or chemical treatments of the
inputs.

© Springer Nature Switzerland AG 2019
P. Cano Marchal et al., Production Planning, Modeling and Control of Food
Industry Processes, Advances in Industrial Control,
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2 1 Introduction

Table 1.1 Divisions (two-digit codes) and classes (four-digit codes) related to food industry ac-
cording to the International Standard Industrial Classification of All Economic Activities (ISIC)
(UN 2008)

10-Manufacture of food products

1010-Processing and preserving of meat

1020-Processing and preserving of fish, crustaceans, and molluscs

1030-Processing and preserving of fruit and vegetables

1040-Manufacture of vegetable and animal oils and fats

1050-Manufacture of dairy products

1061-Manufacture of grain mill products

1062-Manufacture of starches and starch products

1071-Manufacture of bakery products

1072-Manufacture of sugar

1073-Manufacture of cocoa, chocolate, and sugar confectionery

1074-Manufacture of macaroni, noodles, couscous, and similar farinaceous products

1075-Manufacture of prepared meals and dishes

1079-Manufacture of other food products n.e.c.

1080-Manufacture of prepared animal feeds

11-Manufacture of beverages

1101-Distilling, rectifying, and blending of spirits

1102-Manufacture of wines

1103-Manufacture of malt liquors and malt

1104-Manufacture of soft drinks; production of mineral waters and other bottled waters

The diversity of food transformation industry can be properly appreciated exam-
ining the classification of economic activities that different governmental and public
institutions publish, such as North America’s NAICS (ECPC 2012), European U-
nion’s NACE (EU 2008), or United Nation’s ISIC classification (UN 2008). These
classifications primarily attend to the nature of the raw commodities or the final
products, which grants their utility to visualize the wide range of activities included
in the industry.

Table1.1 presents the groups and classes related to food processing industry ac-
cording to the ISIC classification. Packaging of fresh fruits (1030), pickling of veg-
etables(1030), production of olive oil (1040), manufacturing of flour (1061), refining
of sugar (1072), baking of cookies (1071),manufacturing of oven-ready pizza (1075),
or brewing of beer (1103) are examples of activities that illustrate the aforementioned
diversity of the industry.

On the other hand, food itself can also be classified, and it is of interest to consider
its classification according to the degree of transformation or processing it has been
subject to. TheWorld Health Organization (WHO) and the Food and Agriculture Or-
ganization of the United Nations (FAO) classify food commodities and animal feed-
stuffs into five classes, distinguishing between primary food commodities—classes
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Table 1.2 Proposed food classification systems according to the degree of processing of the food,
(adapted and reprinted from CODEX Alimentarius: List of standards, World Health Organization
and FAO, c©1993World Health Organization and Food and Agriculture Organization of the United
Nations, reproduced with permission, and also reprinted with permission from Springer, Current
Obesity Reports, Food Classification Systems Based on Food Processing: Significance and Impli-
cations for Policies and Actions: A Systematic Literature Review and Assessment, Moubarac et al.,
c©2014)

A, B and C—and processed food—classes D and E—(World Heath Organization and
FAO 1993). Recent efforts have been carried out to develop new classification sys-
tems that discriminate additional degrees of food processing, mostly motivated by its
application in the classification of diets and the study of their healthiness (Moubarac
et al. 2014). Table1.2 includes several of these recently proposed classification sys-
tems, together with the WHO/FAO one.

Following the guidelines suggested by these classifications, for our purposes it is
convenient to consider the following three classes of food:

1. Unprocessed commodities: These are the raw basic goods as delivered by the
primary activity responsible for their production. Examples of this class include
beet, sugar cane, grain, raw meat, raw fish.

2. Moderately processed products: This category includes basic transformed goods
that may be final products themselves or may constitute inputs of other food pro-
cessing operations. Olive oil, refined sugar, flour, or quality-selected vegetables
are examples of this class.

3. Processed products: This category comprises complex consumer-ready products
that require several ingredients from the former classes to be produced. Products
such as cookies, canned food, oven-ready pizza, or beer are included in this group.
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Now, using the categories defined above, we can roughly classify food processes
attending to their class of inputs and outputs:

1. Primary food transformations: These are the processes that take raw commodities
as inputs and deliver moderately processed products. Examples of this class are
the production of sugar from beet and the production of olive oil.

2. Secondary food transformations: These processes transform moderately pro-
cessed products into processed ones. The production of cookies from flour and
sugar and the production of pizza from flour, cheese, and toppings are activities
included in this category.

The wide scope of the industry naturally leads to processes that show different
particularities. However, the following distinctive characteristics are often found in
this industry:

• The variability of the properties of the inputs is usually high and constitutes a
major source of process disturbances that affect the process outputs of interest,
such as the quality of the final product or some measure of process yield.

• Food products are usually complex substances, whose properties of interest are
difficult to measure online.

• The processes are frequently multivariable, with couplings between different pro-
cess variables, and disturbances that are susceptible of being propagated through
the process.

Figure1.1 shows a Venn diagram representing these features, emphasizing that,
depending on the particular food transformation process considered, some or all of
them can be encountered.

These three features pose specific challenges that must be addressed for the auto-
matic control of this type of processes, thus requiring somewhat particular techniques
to deal with them. The following sections further elaborate on each of these charac-
teristics.

Fig. 1.1 Venn diagram
representing the three most
relevant characteristics
usually found in food
processing processes,
showing that not all
processes necessarily exhibit
all the characteristics
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1.1.1 Variability of Raw Inputs in Food Industry

As introduced above, the purpose of food processing operations is the transformation
of natural products coming from agriculture, stockbreeding, or fishing into final
products apt for their consumption.

Consumers require for the quality of the products they consume to be constant,
particularly if the product ismarketed associatedwith a brand. This quality of the final
products is often dramatically influenced by the features of the inputs employed in the
production process. Thus, one of the main objectives of food processing operations
is to damp the variability of the inputs, so that consistent quality products are finally
obtained.

This feature is particularly relevant for primary transformation processes, since
they employ unprocessed commodities whose variability is usually high, particularly
for agricultural goods (Perrot et al. 2006). On the other hand, secondary transforma-
tion processes employ moderately processed products as inputs, which show much
lower variability, since they are themselves already the output of a transformation
process where delivering consistent output quality is one of its objectives.

The variability in stockbreeding products is caused both by preslaughter and post-
slaughter factors. The breed of the animals, the feed commodities and the handling
conditions supplied during their breeding, the gender and age, and the biochemical
dynamics of the of the postmortem period are important factors that influence the
quality (Nollet and Toldra 2006). For fish, factors are similar: The type of species, the
physiological condition of the fish, the temperature and salinity of the water, killing
procedures, and the handling during the postmortem period greatly affect the quality
of the product (Rehbein and Oehlenschlager 2009).

The causes for the variability of agricultural raw inputs are diverse. First, it is not
strange that a food processing factory deals with raw inputs coming from different
varieties of the same species, with the corresponding different typical characteris-
tics of the product. It is sometimes the case that the different varieties are received
independently, with the grower stating the type of product, particularly for the fresh
fruit and vegetables packaging industry. However, for some other industries, it is not
uncommon to receive different varieties mixed, with the corresponding challenge of
determining the variety each element belongs to. Even when the different varieties
are determined beforehand, the acceptable standards for each feature may be differ-
ent for each variety, or even the relevant discriminating features may not be same for
all the varieties.

Another source of variability is the fact that most food industries receive raw
products from different growers, which may follow different agronomic practices
and may have their farmlands in locations with slightly different soil, topography, or
climate conditions, which provoke differences in the properties of the incoming raw
products (Forbes and Watson 1992).

In turn, the evolution of the properties of the products caused by their ripening
along the harvesting season introduces yet another source of variability. On the one
hand, the mentioned different conditions for different farmlands may provoke the
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reception of goods in different ripening stages. On the other hand, meteorologi-
cal variations from season to season may induce variations on the evolution of the
ripeness index of the fruits, inducing changes in the production scheduling.

Finally, the reception of potentially damaged goods due to plagues or adverse
meteorological phenomena, such as hail, is another source of variability for industries
that receive the raw products directly as they are harvested, with no previous selection
carried out by the growers.

The possible actions to reduce the effect of this input variability on the final
product depend on the particular process at hand. Traditionally, twomain approaches
are widespread:

• Classification of the incoming raw products according to their characteristics,
and separate processing of each of these categories. This approach is adopted in
processes where the input features influence very heavily the output characteristic.

• Adjustment of the values of other process variables to counteract the effect of the
disturbances induced by the inputs. This approach is applicable in multivariable
processes where the input features are not the only variables affecting the output
characteristics, and their effect is mild enough to be compensated by the effect of
other process variables.

1.1.2 Difficulty of Online Measurement of Food Properties

A common feature of unprocessed commodities, moderately processed, and pro-
cessed food is that obtaining fast accuratemeasurements of their properties of interest
is usually not an easy task.Well-established laboratory methods of reference are usu-
ally available to determine with sufficient accuracy the values of these properties—
otherwise that property could not be considered at all!However, being able to robustly
and accurately obtain values of these properties online is usually a quite challenging
problem (Huang et al. 2008).

Considered as a matrix for laboratory analysis, food is usually a complex one
and requires plenty of previous operations to prepare the sample before it is actually
analyzed with the corresponding equipment. Moreover, typically, the time required
to perform the analysis is significantly higher than the desirable sampling time for
the online monitoring of the process. The need for these previous operations and the
time required to perform the analysis make it difficult to adapt the reference labo-
ratory methods for the online measurement of the products. Thus, different analytic
methods, usually based on indirect measurements, must be considered for the online
analysis.

Food, be it the finished ready-to-market product or the raw inputs, is often a
complex mixture of different components. The already mentioned natural variability
of the product, together with the complexity of its composition, renders it sometimes
difficult to develop accurate indirect measurement methods, due to the interaction
and composition variation of the different components, yielding methods that might
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be quite population-specific and require frequent addition of new samples to the
calibration, along with a tight supervision of their performance.

These difficulties hold for the development of both indirect at-line and online
sensors. The adaption of the at-line measuring principles and equipment to online
devices provides challenges of its own. Practical implementation considerations,
such as the possible accumulation of substance in the sensor, or the ratio between
the required time for the analysis and the flow velocities of the substances subject to
analysis, impose further constraints that must be considered to successfully build or
use an online sensor.

Moreover, food properties such as aroma or flavor are the macroscopic result
of the composition of many chemical compounds that are present at quite low
concentrations. These quality characteristics are very difficult to assess using
instrumental methods and are usually determined by expert tasters. Assessing these
properties off-line is usually a difficult task, even without the constraints imposed
by the requirements of online measuremente, so performing these analysis online is
a major challenge.

Despite the difficulty of the task, considerable research effort has been devoted to
building and improving sensors and application methods capable of providing at-line
and online measurements of key variables of food processing operations, and many
successful applications have been reported (Sun 2004; Huang et al. 2008; Woodcock
et al. 2008; Wu and Sun 2013; Loutfi et al. 2015). Among the different technologies
of sensors applied, three may be highlighted for the extensive research and success in
commercial application:machine vision, infrared spectroscopy, and electronic noses.

Machine vision has been used in applications such as monitoring of both un-
processed commodities, such as grain (Majumdar and Jayas 2000), rice (Wan et al.
2000), or potatoes (Tao et al. 1995), and processed food, such as corn tortillas (Mery
et al. 2010) and pizzas (Sun 2000). The review papers, Davies (2009), Wu and Sun
(2013), Zhang et al. (2014), and Śliwińska et al. (2014), provide further examples of
applications.

In turn, infrared spectroscopy is probably one of the best known technologies for
the construction of indirect sensors for the food industry. This technology has been
employed in the measurement of meat properties (Savenije et al. 2006; Prieto et al.
2006), grain (Welle et al. 2003), dairy products (Kawasaki et al. 2008), or olive oil
(Jiménez et al. 2005). Additional examples can be found in the book Sun (2008) and
review papers Huang et al. (2008) and Śliwińska et al. (2014).

Electronic noses are an emerging technology, and its routine use is not really
spread in food industry yet (Loutfi et al. 2015). However, the reports of applications
at the research level have been increasing over the last years, and the time for its
adoption in industry is closer. Examples of its applications include the detection of
rancidity of milk (Capone et al. 2001) and olive oil (Aparicio et al. 2000), estimating
the shelf life of meat (Amari et al. 2009) or discriminating the quality of black tea
(Tudu et al. 2009a, b). Again, further examples are included in the review papers
Loutfi et al. (2015) and Śliwińska et al. (2014).

Despite the advances in the application of these technologies,many of the reported
applications are for at-line analysis. At-line devices improve the sampling rate and
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delay of the analysis results over the external laboratory alternative, but the sampling
rate is usually limited by the need of an operator to sample the process and perform
the analysis in the at-line device and usually still constitutes a limiting factor for the
use of these data in a feedback control structure.

Besides, plenty of food processes do not enjoy the possibility of performing online
or at-line analysis of the food products involved in the process, either because no
such analyzers are available in the market or because their price is prohibitively high
for the company carrying out the operations. In these circumstances, it is often the
expert operators that play the role of at-line sensor (Allais et al. 2007), assessing the
quality of the final products based on their experience, again, at a sampling rate that
constitutes a handicap for control applications (Allais et al. 2007; Caldwell 2012).

1.1.3 Complex Nature of Food Processes

As observed in the introduction, the degree of transformation of raw inputs in food
processes greatly varies from one industry to another. Consequently, so could be
expected from the complexity of the involved processes.

However, beyond those cases in primary processes where no transformation of the
inputs is intended at all, such as the packaging of fresh products, the processes that
drive the transformation of the inputs into the final products are usually complex,with
many biochemical reactions and matter transference between phases taking place,
even in primary processes.

Fermentation and cooking processes are clear examples where these types of
reactions take place. Still, some other processes where, at first sight, only physical
interactions occur also contain this type of reactions that greatly influence the quality
characteristics of the final products (Birle et al. 2013).

This intrinsic complexity often involves that the processes are not fully under-
stood, and even when the process is fully characterized, the values of the intervening
variables may not be easy to measure, making them difficult to be controlled.

The second source of complexity for food processing operations is their multi-
variable nature. Typically, several conflicting process objectives are considered in
the activity of the plant, with process variables causing opposite effects on them,
which leads to intertwined process dynamics.

At it mildest expression, a careful design in the pairing between controlled and
manipulated variables must be considered, if the system is to be controlled as a
series of isolated single variable control loops. In cases where the coupling between
variables is severer, full multivariable control schemes might be required to achieve
acceptable performance of the plant.

Another implication of this multivariable nature of the processes is that, as is
the case with process industry, in food industry the operating set-points are usually
chosen as the result of a trade-off between different effects of the process variables
in the product properties, technological constraints that limit the values of some
variables and cost considerations. Consequently, the economic facet of the problem
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highly encourages the selection of good process set-points, along with a good control
capable of maintaining the process variables as close as possible to these specified
set-points.

1.2 Characteristics of the Automatic Control of Food
Processing Industry

The features introduced in the previous section confer food processing operation’s
particular characteristics from the automatic control perspective. This section intro-
duces a conceptual model of food transformation processes and discusses a hierar-
chical approach for its automatic control.

1.2.1 Types of Variables and Process Dynamic Layers

In food industry processes, the relevant involved variables can usually be classified
into five categories, according to their role in the process:

• Process output variables (yh): These are the variables whose value conforms to
the final objective of the process. They can be quality characteristics of the final
product, or properties of the process, such as transformation or recovery yield.

• Intermediate process variables (yl ): These are the variables that are not directly
manipulable, but whose values influence the process output variables.

• Manipulable variables (u): These are the variables whose value can be set by the
process operators.

• Raw product properties ( f ): These are the properties of the input products and are
considered disturbances to the process, since their values cannot be changed.

• Fast process disturbances (d): These are the disturbances that affect the interme-
diate process variables (yl), and whose effect on the process output variables (yh)
is considered to be exerted exclusively via these variables.

The relations between these variables can be grouped into two layers:

– Lower-level dynamics (Gl): These are the process relations that associate ma-
nipulable variables (u) with the intermediate process variables (yl), subject to
the action of the fast process disturbances (d).

– Higher-level dynamics (Gh): These relations link the raw input properties ( f )
and the intermediate process variables (yl ) with the final process outputs (yh).

Figure1.2 depicts a block diagram showing the defined relations between the
different types of variables considered.

Two reasons motivate such a classification of the process variables and dynamics:
the diverse generality of the models for the low- and high-level dynamics, and the
different ease of measurement of the output variables of each layer.
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Fig. 1.2 Block diagram
showing the different groups
of variables considered in a
food transformation process
and the two layers of
dynamics that relate them
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Intuitively, the lower-level dynamics can be considered as the implementation
details of the process, while the higher-level layer regards recipe-like relations, i.e.,
relations among variables that are true in general for the process at hand and es-
sentially independent of the particularities of the concrete implementation of the
process.

The lower-level dynamics depend heavily on the particular characteristics of the
equipment used to carry out the process, and thus, models constructed for this layer
are only valid for a specific processing plant.

On the other hand, the higher-level layer regards the core relations that, being
specific to the process at hand, hold true for every instance of the process, irrespective
of the particular equipment employed. Thus, the models for this layer have a broader
range of validity. Indeed, it is this knowledge of this layer that allows an expert
operator to operate a plant with different low-level characteristics.

The often different ease of measurement of yl and yh is explained by the magni-
tudes that are typically included in each group. Intermediate process variables (yl )
are usually variables such as temperatures, tank levels, or flows, for which standard
online sensors are available. For these variables, the technically achievable minimal
sampling time is usually small compared to the characteristic time constant of the
process and does not constitute a limitation. Besides, the cost of obtaining a new
datum is usually irrelevant, once the required equipment is available.

In turn, process output variables and raw product properties, which are relevant to
the higher-level layer, are usually food characteristics much harder to measure. As
discussed in the previous section, its onlinemeasurement is usually quite challenging,
and the products are often analyzed either at-line or in a laboratory. This lack of online
measures naturally leads to having long sampling times for this type of variables and
a significant cost per obtained datum.
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1.2.2 Convenience of Hierarchical Control

The consideration of two layers of process dynamics, together with the different
sampling times of each type of variable, naturally introduces the convenience of
considering a hierarchical control structure for the global control of food processes.

The availability of fast online measurements of yl allows to devise control loops
with small sampling times that employ u as manipulated variables, to assure that the
elements of yl remain close to their specified set-points rl , despite the effect of d.

However, the output variable of real interest of the process is yh , which includes the
variables that characterize the quality of the produced product and other economically
relevant magnitudes. Essentially, the interest on yl is just due to its influence on yh .

If only the feedback control loops that consider yl as their output variables were to
be considered in the system, yh would be under open-loop control. Thus, disturbances
provoked by the input product characteristics ( f ) and errors in the Modeling of Gh

that may lead to selecting values of rl that do not yield the desired yh would not be
compensated. Therefore, although the difficulty in measuring yh and f restricts the
viable approaches, the inclusion of a higher-level control loop, explicitly accounting
yh as its controlled variable, is advisable.

However, none of the two variables affecting yh through Gh are directly manipu-
lable. The characteristics of the raw products ( f ) are considered disturbances, since
their values are considered to be given and cannot be chosen, while yl effectively
depends on the values of u and d and, thus, cannot be fixed arbitrarily.

Therefore, the inclusion of the lower-level controller on yl provides the basis to
assume that the reference values provided to this controller (rl) will eventually be the
values of yl despite the effect of d. Thus, the upper-level control layer can employ
rl as its manipulated variables, effectively constituting a master controller over the
lower-level feedback controllers on yl .

Given the fundamental influence of f on yh , the inclusion of feedforward action
based on the values of measurable components of f is usually appropriate. In cases
where the disturbances induced by f can be counteracted by the effect of other
variables involved in the process, this feedforward action can be exerted via variations
of rl , complementing the action of the high-level feedback controller. In situations
where the dependence of yl on f is such that the induced disturbances practically
impede reaching the specified rh , a feedforward action updating rh to a feasible
objective is usually useful. As discussed in the previous section, the production
objective of the process is often chosen as the result of a trade-off between competing
effects; if the previously selected objective is not achievable, it is of interest to
re-evaluate the decision and consider a new objective, optimal under the current
conditions.

The fundamental dependence of yh on f entails that some values of yh might not
be reached if the values of f are not adequate. If we assume that the target values of
yh are given by business-related considerations, we are implicitly setting a constraint
on the acceptable values of f , since those values that do not allow to reach yh should
be rejected.
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Fig. 1.3 Block diagram showing the proposed hierarchical control structure. Here, Cl represents
the low-level controller, Ch the high-level controller, Ph the Production Planning algorithm, and fg
the value of the raw product properties in the grove

Since typically f varies along the season, and so does the cost of inputs possessing
different values of f , a relevant question to address is when to produce so that the
value and cost of f are optimal for the given production objective. To answer this
question, aspects such as restrictions on the processing capacity of the facility and
on the availability and price of raw inputs with different values of f should be
considered. This problem effectively constitutes a Production Planning optimization
for the whole season and comprises a third layer on the global control of the process.

The control structure discussed is depicted in Fig. 1.3, showing the separate dy-
namic blocks and the three control layers. The next section discusses in more detail
the characteristics of each of these layers.

1.2.3 Characteristics of Each Controller Layer

Each of the three control layers devised in the global control diagram has a different
objective. The low-level control layer intends to maintain the values of the low-level
dynamic layer output variables (yl ) close to some reference values (rl) that, as far as
this control layer is concerned, are already given.



1.2 Characteristics of the Automatic Control of Food Processing Industry 13

In turn, the high-level control layer is responsible for providing appropriate val-
ues of rl to the underlying layer, so that the high-level outputs of the process (yh)
effectively attain the established objectives rh , or updating these rh in case that they
are not attainable, given the current available product characteristics ( f ).

Finally, the Production Planning layer deals with selecting when to produce each
product, attending to the possibly varying characteristics of the input products dur-
ing the season, and their cost. This layer, if market-related considerations are also
included, may also define the specific product to be produced in each considered
time period.

The diversity in the objectives of each of the layers is reflected on the different
aspects of the production process that are of interest for each of the controllers. The
low-level control layer deals with the relations between the manipulable variables,
low-level disturbances, and intermediate process variables yl . The high-level control
layer is focused on the relations between rl , f , and yh , while the planning layer
attends to how the evolution along the season of f may affect the production, mainly
from an economic point of view. The major characteristics of each of the three layers
are further discussed in the following subsections.

1.2.3.1 Low-Level Control Layer

The main concern of this layer is to improve the dynamic response of the plant
and reject the relatively fast disturbances that may affect yl , so that it effectively
reaches rl . In this layer, the dynamics of the involved systems are important, and the
characteristics of this lower layer of the process provide a fairly standard framework
for feedback control.

Since this layer is concerned with fairly low-level relations of the process, most
of the time simple SISO control schemes should be enough to achieve the required
performance and fulfill the objective of this control layer. In cases where the multi-
variable nature of the process is apparent at this layer, basic MIMO techniques could
be applied to improve the performance. However, the focus is on dealing with the
different parts of the process as independently from each other as possible, as the
multivariable nature of the process is dealt with in the high-level control layer.

The availability of online sensors for the output variables of interest (yl) allows
to include traditional system identification techniques as useful tools for Modeling
the different involved systems, as a previous step to the design of the controllers.

The kind of challenges presented by this control layer is completely analogous
with those faced when dealing with the low-level control layer of process indus-
try: existence of process delays, impact of disturbances, interaction between control
loops, etc.
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1.2.3.2 High-Level Control Layer

The objective of this control layer is to assure that yh effectively reaches the pre-
defined values rh . The fulfillment of the objective requires that yh is measured, so
that the deviations from the prescribed values are detected, and corrective actions
are proposed to counteract these deviations.

Even though the two actions mentioned above are common to every feedback
control scheme, they are explicitly stated since they represent the core challenges
found in this layer.

As already commented, the measurement of food properties is not an easy task,
and this constitutes the most representative characteristic of this layer. The sampling
rate at which the involved variables can be measured fundamentally conditions the
properties of the feedback loop to be implemented. For instance, an implication is the
inability to reject disturbanceswhose bandwidth is higher than the available sampling
rate.

The second requirement, that is, the computation of corrective actions based on the
measures of the output variables, is hindered by two aspects: the already mentioned
often inherent complexity of the relations between the variables of this layer and the
additional barrier that the difficulty of measuring the involved variables represent. If
themeasurement of the involved variables is complex and expensive, the experiments
required to perform an identification of the system of interest can be expected to be,
consequently, also complex and expensive.

Moreover, the fundamental influence of f on yh , and the fact that they are distur-
bances, that is, variables whose value cannot be chosen or modified, represents an
additional difficulty for the understanding of the system relations, since the identifi-
cation experiments must be carried out with the available values of f . It is regularly
the case that a particular set of values of f is only available during a very short time
period of the season, introducing further practical constraints to the task. Moreover,
if such is the situation, raw inputs exhibiting these values are usually appreciated,
and therefore, expensive, increasing the cost of the experiments.

In cases where the above difficulties are sufficiently mild, system identification
experiments can be performed, and models of the system can be constructed. How-
ever, it is not rare that carrying out such experiments is unfeasible, and some other
approaches must be sought to gather the required knowledge of the system.

The first concession is usually to settle with static models, as opposed to dynamic
models. That is, experiments to model the steady-state relations between the process
variables can be planned following factorial design procedures or other approaches.

Another common approach is to aim at obtaining useful information of the system
without performing experiments, resorting to the application of fuzzy techniques
to gather knowledge from expert process operators. This approach may intend to
directly elicit feedback control rules used by the expert to operate the system or to
obtain a fuzzy model of the system, which, in turn, would be used to design and
implement a model-based controller relying on this model.

The use of static models for this control layer is usually acceptable due to two
factors: The variations of f typically represent low-frequency disturbances, and the
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available sampling frequency of the involved variables found in practice is not fast
either, so the use of static models is usually good enough.

Usually, the key added value of this controller is not the improvement of the dy-
namic response of the plant, but rather the explicit consideration of the multivariable
nature of the system, and the capacity to modify the values of the process set-points
(rl) so that the output variables eventually reach the desired values, while considering
the process-specific trade-offs.

Thus, the type of controllers of interest for this layer should take into account the
multivariable nature of the system and compute the control action optimizing the
trade-offs of the process. Hence, Model Predictive Control is the perfect candidate
for the layer, as it allows to include multivariable models and take into account
constraints, and the control action is computed as the solution of an optimization
problem whose objective function can be designed to consider the trade-offs of
the process. Moreover, since the sampling time for this layer is usually quite high,
requiring a relatively long time to solve the optimization problem is usually not
a problem. A special feature of this layer is that, as discussed above, the models
employed by the controller are usually not traditional dynamic first-order plus dead-
timeones, but rather static or fuzzyones.However, the fundamental idea ofmeasuring
the current output, computing a sequence of control actions for the considered control
horizon, and applying just the first of those actions applies.

1.2.3.3 Production Planning Layer

The objective of this upper layer is to take into account that, although the properties
of the raw inputs are considered fixed once that they arrive at the production facil-
ities, the evolution through the season of the properties of the natural raw products
usually means that, depending on the current stage of the season, certain values of
the properties of these raw inputs, or certain cost of the inputs of a specific quality,
are expected.

The general idea is to decide when to produce so that the properties and cost of the
raw inputs are optimal for the final product intended to be produced. Thus, if models
of the evolution of these characteristics of the raw products are available, together
with the models that relate f with yh—which are often already available from the
previous control layer—a planning problem can be set up to decide what amounts
of which product quality to produce at each considered time period. If the available
models that relate f and yh are dynamic, they can be simplified to take into account
just the steady-state relations of the variables, since the dynamics of the relations
offer no extra insight or information to the problem, as the utility of the model is just
to provide a mapping from raw product properties ( f ) to final product characteristics
(yh).

The interest of the problem is greater in cases where different properties of the raw
products evolve in opposite directions; i.e., some properties may increase their fit for
the process production objective, while others decrease theirs; and if different final
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products can be produced with different requirements on the raw inputs properties
for each of them.

Market- and business-related aspects of the company carrying out the operations
are also of interest for the problem, since market prices and sales previsions for each
product quality are required to contemplate which product is more profitable, along
with the production limits for each of them.

Finally, capacity constraints due to the production facilities and supply limits,
related to a limited amount of available raw product for each time period, are also
required to pose the optimization problem.

Thus, the output of this layer is the solution of an optimization problem whose
objective is to maximize the profit of the whole season, and provides a production
plan for the season, that is, a sequence of the amounts of each final product to produce
at each time period.

1.3 Food Processing Examples

This section presents an example of a food transformation process and comments its
relevant features from the Modeling, control, and Production Planning perspective
in order to provide some real context for the ideas presented in the previous sections.
The Virgin Olive Oil production process is further treated in the case study presented
in Chap.6.

1.3.1 Virgin Olive Oil Production Process

The Virgin Olive Oil production process (VOOPP) is an industrial process whose
objective is the extraction of the oil out of the olives using mechanical means ex-
clusively. The process is composed of two main stages: the paste preparation and
the effective oil separation. The paste preparation encompasses the crushing of the
olives to form the so-called olive paste, and the heating and stirring of the paste in the
thermomixer. The oil separation is carried out feeding the paste to a solid bowl cen-
trifuge, where the oil is separated from the rest of the paste as a result of the different
density of these components. The oil that comes out of the decanter usually shows
an unacceptably high content of moisture and impurities, so a further separation step
is held, with the purpose of reducing the content of these undesirable components in
the oil prior to its storage. Figure1.4 shows a block diagram with the phases of the
process.

The relevant global output variables of the VOOPP are the quality (q) of the
obtainedVirginOliveOil (VOO) and the industrial yield (µ). The quality of the oil (q)
is determined by a series of physicochemical and organoleptic parameters included
in the European Norm 2568/91, while the industrial yield is the ratio between the
extracted oil and the total amount originally contained in the olives.
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Fig. 1.4 Block diagram showing the main stages of the Virgin Olive Oil elaboration process

The paste preparation phase exerts a great influence on the quality of the oil, while
also imposing an upper bound on the achievable yield. In turn, the oil separation stage
finally dictates the obtained yield, with its influence on the quality being scarce.

Themain variables that govern the paste preparation phase are the size of the sieve
employed in the mill used to crush the olives, the temperature of the olive paste in
the thermomixer, and the time that this paste remains there. Of these variables, the
sieve size is directly manipulable, while the kneading time and temperature are not.

Since these two variables are not directlymanipulable, and they exert an important
influence on the global output variables—quality and yield—it is advisable to include
feedback loops to assure that their values remain close to those desired.

The temperature of the paste inside the thermomixer depends on the temperature
and flow of the incoming paste, the temperature and flow of the heating fluid, the
heat exchange surface, the room temperature, and the outflow of paste. In turn, the
residence time of the paste inside the thermomixer depends on its volume and the
flows of paste entering and leaving it.

As can be seen, only variables directly related to the physical phenomena are
pertinent for these control loops,with the previous and subsequent steps of the process
being irrelevant. The typical manipulable variables used to control the kneading time
and temperature are the paste inflow to the thermomixer and the position of a valve
installed in the heating fluid pipe, respectively.

These loops constitute two examples of low-level control loops for the process:
The output variables of the loops are not the main variables of interest of the process,
they are easily measured using standard equipment, the achievable sampling times
do not impose any constraints on the control loop, and a very reduced number of
variables is of interest for the design of the controllers.

On the other hand, the control of the global output variables presents fairly dif-
ferent characteristics. To begin with, the measurement of the variables is not trivial.
Although the measurement of the yield can be carried out using near-infrared spec-
troscopy (NIR) equipment, devices capable of providing onlinemeasurements of this
variable are fairly expensive and still not a too mature technology, and their use is not
widespread in the industry at all (CanoMarchal et al. 2011). At-line equipment is far
more common, but its use introduces a severe constraint on the practically achievable
sampling time.

As for the quality, the situation is even less favorable for its online measurement:
There are many parameters that are relevant for the quality of the oil, but none of
them is currently being routinelymeasured online in the industry (CanoMarchal et al.
2011). For some of the physicochemical parameters, NIR equipment is a promising
technology, while for organoleptic parameters, the current research lines point to the
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use of electronic noses for their determination (Escuderos et al. 2007; Esposto et al.
2008). In any case, a similar sampling rate constraint is found for these parameters
as well.

Another key characteristic to consider for the control of the global outputs is the
high number of variables that play a role in the process, and their intertwined effects
on the output variables. Even disregarding the details of the low-level loops, and
just considering their set-points as representative variables, the number of variables
affecting the outputs is large enough to give rise to encountering a fat plant, with
more inputs than outputs. Of these inputs, some are manipulable variables and some
are to be considered as disturbances, but there are still extra degrees of freedom for
the control of the plant.

These extra degrees of freedom provide the opportunity to consider additional
objectives beyond that of the outputs reaching their specified set-points, such as
minimizing the production cost. Thus, dealing with the system as a whole, in a
multivariable framework, entails great interest.

Another argument that further supports the convenience of considering the system
in amultivariable framework emerges when contemplating the selection of set-points
for the global outputs. The opposite influence of some of the process variables on the
outputs effectively results in the appearance of a trade-off relation between these out-
puts. Thus, the selection of optimal set-points for these variables requires regarding
the constraints that fixing the value for one output imposes on the other.

Once that the interest for amultivariablemodel of the system has been established,
the questions of what type of model and what variables should be included arise.
The determination of the most convenient set-points for the output variables does not
require a dynamic model, since a model comprising just the steady-state relations of
the variables is adequate for this purpose. On the other hand, if themodel is to be used
in a model-based controller to close a feedback loop on the outputs, the dynamics
of the relations between variables are, in principle, relevant, so a dynamic model is
called for.

However, the typical large time constants of the systems involved, plus the limita-
tion on the sampling time to be used in practice due to the difficulties imposed by the
measurement of the variables, effectively limit the interest of dynamic models. Fur-
thermore, the development of dynamicmodels of the relations is usually prohibitively
expensive, due to the amount of samples required to perform an identification of the
subsystems involved. Taking into account the cost and the benefit of using dynamic
models, it is usually better to settle for static models, which will be able to take into
account the relations between the steady states of the variables, although not their
dynamic evolution.

This effectively means that the sampling frequency must be low enough to assure
that the variables are in steady state, thus limiting the bandwidth of the disturbances
that can be rejected by this high-level control loop. Here, the hierarchical control
approach shows its convenience: Due to the characteristics of the process, the high-
frequency disturbances of the process usually affect the intermediate variables, which
are under feedback loops with a much higher bandwidth that, therefore, should be
capable of rejecting them. In turn, the disturbances affecting directly the output
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variables, such as the properties of the incoming olive, typically show low-frequency
characteristics.

As for the variables to be included in the model, both process variables and raw
input properties should be introduced in the model, as their effects on the outputs
are important to be considered. Here, the hierarchical control structure allows to
obviate the low-level dynamics of the plant and just consider the output variables of
the low-level feedback loops, together with the manipulable variables that directly
affect the high-level outputs. In practice, this means that only the kneading time and
temperature must be considered along with the sieve size of the mill, allowing to
obviate the position of the heating liquid valve, the inflow of paste, etc. In turn, the
olive properties that affect the high-level outputs are the variety, the fat content, the
moisture content, the ripeness, and the health of the olives, i.e., if they are damaged
due to hail, plagues, or low temperatures.

The discussion about the characteristics and variables included in themodel of the
high-level layer of the VOOPP was motivated by the question of closing a feedback
loop on the high-level outputs of the system. However, before we address how to
tackle this feedback loop, it is desirable to know what reference values of the high-
level output variables must be maintained.

Since there is a trade-off relation between quality and yield, a sound method to
select what specific values of these variables to aim for is to set up an optimization
problem whose solution could provide these values.

Assuming that the maximization of the profit is the main objective of the VOOPP,
an objective function that encourages quality and yield and penalizes cost is appro-
priate. This optimization problem is necessarily constraint by the relations existing
among the different variables involved in the VOOPP, a model of which is the high-
level layer model already discussed. Thus, this model provides the knowledge of the
system required to select the most appropriate set-points for the high-level output
variables.

The production cost is related to the value of some of the process variables, but
the value of these variables is decision variables of the optimization problem, and
thus, their values are provided by the solution of the problem. The extra parameters
required for the model are the unitary cost of each process variable, and the different
market prices for each VOO quality.

The solution of this optimization problem provides both the reference values of
the high-level process outputs and the set-points to feed to the low-level control
loops. Furthermore, this optimization problem constitutes the base for the feedback
control strategy: A model-based feedback controller for the high-level outputs can
be devised considering a similar optimization problem and introducing an observer
to estimate the disturbance affecting the process. This way, feedback is introduced in
the control law, and disturbances and errors in the Modeling of the process models
can be compensated.

Finally, an important remark is that the values of the properties of the incoming
olives are fixed once that they arrive to the factory, but that they evolve along the
season in the groves. Thus, if a model of the evolution of these properties in the
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groves is available, we can introduce an additional degree of freedom to the problem
by considering the production date as a decision variable.

The introduction of this additional decision variable transforms the problem into a
Production Planning one, which requires, at least, to consider the trade-off relations
existing between quality and yield, and may be further refined to consider the impli-
cations on the process costs of the varying raw input properties. That knowledge of
the process is gathered in the models of the high-level layer of the process, so these
models, or simplified versions of them, can be used for this purpose.
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Chapter 2
Modeling and System Identification

In order to alter or influence the way a process operates, one should previously have
a proper understanding of the relations between its variables, its natural behavior,
and what is reasonable to expect of the controlled system. This understanding is
usually expressed using models, which are mathematical objects that represent the
behavior and features of the system that is of interest to us. The decision of which
features to include and to what degree of accuracy strongly depends on the purpose
of the model. Typically, models aimed at simulation require a higher level of detail
than those to be used strictly for control purposes. On the other hand, models to be
used for classical feedback control need to capture the dynamics of the system, while
static models are typically enough for production planning purposes.

As introduced in Chap.1, the low- and high-level control layers of food process
industry processes exhibit different requirements from a control point of view, so
the models needed vary accordingly. On the one hand, the low-level layer demands
dynamic models that capture the transient behavior of these systems. Output vari-
ables for these systems as usually easily measured online, so System Identification
techniques can be applied. Furthermore, these systems are sometimes simple enough
to employ first principles in order to obtain an appropriate model structure whose
parameters can be identified using experimental data. Section 2.1 introduces these
crisp Modeling techniques.

On the other hand, the complexity of the systems involved in the high-level layer
and the difficulty of measuring the relevant output variables lead to considering
alternative techniques for the construction of appropriate system models. In this
scenario, fuzzy logic emerges as a convenient tool and its fundamentals and some
particularly apt techniques are presented in Sect. 2.2.
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2.1 Crisp Modeling

Crisp Modeling techniques are applicable when either a good understanding of the
physics of the process or plenty of experimental data are available, as is typically the
case for the low-level layer of food manufacturing processes.

As discussed above, dynamic models provide more information than static ones
and they are typically indispensable for low-level control applications. Dynamic
models can be expressed using different mathematical formulations, each with dif-
ferent merits, that can be transformed from one into another quite easily. The main
formulations of interest to us are:

• Ordinary differential equations (ode): This is the typical formulation in which
physical and chemical laws are expressed, so it is a natural approach to constructing
models using first principles. This formulation is expressed as relations between
the derivatives of the variables involved. For a single-input, single-output (SISO)
system where u and y denote the input and output variables, respectively, a general
linear differential equation model is expressed as:

dny

dtn
+ an−1

dn−1y

dtn−1 + · · · + a1
dy

dt
+ a0y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1 + · · · + b1
du

dt
+ b0u

(2.1)

• State-space models: These models express the relations between the variables us-
ing two sets of equations and the notion of state variables. State variables capture
the status of the system, in the sense that knowing their value at a given instant
and the inputs from that point on allows to know the evolution of the system.
These models are constituted of two sets of equations: state transition equations
and output equations. The state transition equations relate the derivatives of state
variables with the state variables themselves and the inputs and describe the evo-
lution of the system. The output equations relate the output of the system with
the state variables. These models can be used for SISO systems and are specially
convenient for multiple-input, multiple-output (MIMO) systems.
A general nonlinear space-state model is expressed as

ẋ = f (x,u),

y = h(x,u).

Linear models can also be expressed very compactly using matrix notation as

ẋ = Ax + Bu,

y = Cx + Du.

Here, A, B, C, and D are matrices of appropriate dimensions.
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• Transfer function models: These models are typically used for SISO systems and
relate the Laplace transforms of the input and output variables. They are widely
used in control, as they provide valuable insight of the frequency response of the
system. The transfer function representation of the system modeled in Eq. (2.1)
is:

G(s) = Y (s)

U (s)
= bmsm + bm−1sm−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
(2.2)

Here, s represents the Laplace variable.

These models assume that the independent variable is time and that it is continu-
ous. When a controller is implemented in a digital computer, the data are collected
only at certain time instants and the computer effectively sees a collection of points. It
is sometimes desirable to directlymodel the relation between these number sequences
directly, particularly for System Identification purposes and when the sampling time
is relatively large compared to the process typical time constant. In process control,
it is not usually the case that fast dynamics arise; however, many of the available Sys-
tem Identification techniques are developed using sampled systems, as is the natural
way of dealing with the data available to perform the System Identification.

The analog of differential equations is difference equations, where the values of
past time instants of the variables of interest are related:

yt + a1yt−1 + · · · + anyt−n = b0ut + b1ut−1 + · · · + bmut−m. (2.3)

Discrete-time state-space models can also be constructed. These relate the value
of the state variables in the next time step with the current and past values of the
inputs and themselves:

xt = f (xt−1, xt−2, . . . , xt−n,ut−1, . . . ,ut−m) (2.4)

yt = h(xt,ut) (2.5)

Finally, discrete alternative of the transfer function models are also available via the
z-transform. A typical model is:

G(z−1) = Y (z−1)

U (z−1)
= b0 + b1z−1 + · · · + bmz−m

1 + a1z−1 + · · · + anz−n
(2.6)

Linear versus nonlinear versus linearization. In control engineering practice, it is
common to work with linear models of the systems. Systems in real life are rarely
linear. However, for control purposes, we usually want to have the system operating
close to a specified set-point. Under these circumstances, a linear model valid only in
the vicinity of the set-point is very useful. For simulation purposes, nonlinear models
are preferable, as a higher degree of accuracy and a higher range of validity of the
model are usually required.
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2.1.1 First Principles Modeling

First principle Modeling means using fundamental physical or chemical laws to
model the system of interest. These techniques are applicable when a good under-
standing of these relations is available and the system is simple enough for the task
to be tractable. Frequently, these laws provide the structure of the models, but the
specific values of some of the parameters may be unknown or difficult to estimate.
Under these circumstances, the first principle Modeling is used to provide a specific
model structure (order of the equations, existence an approximate order of magni-
tude of delays, existence of integrators in the model, etc.) whose parameters can be
determined using System Identification techniques.

Next, we briefly introduce the type of systems most frequently found in the low-
level layers of food processing and the laws that govern their behavior.
Material balances. Mass conservation is the physical principle that enables the
construction of material balance equations. Simply stated, the principle affirms that
whatever matter is introduced into the system either outputs it or is accumulated.
This can be expressed using an ordinary differential equation as:

qin(t) = qout(t) + dm(t)

dt
. (2.7)

Here, qin is the mass flow that inputs the system, qout is the mass flow that leaves
the system and dm(t)

dt is the accumulation term. This is a dynamic equation that is
useful for understanding how fast is mass accumulating in or leaving the system. In
steady state, that is, when variables do not change with time, all derivatives are zero,
so the input flow must be equal to the output flow and the mass inside the system
will not change.

This equation is applicable anywhere we have a flow of material entering and
leaving a system. Three aspects must be taken into account when writing the equa-
tions. The first is that the principle states that mass is conserved, not volume. That
means that if the material we are dealing with does not have constant density, mass
flows must absolutely be used; if the density is constant, volumetric flows are equiv-
alent to mass ones, so either one can be employed. The second consideration regards
flows that are compounded by different components that leave the system at differ-
ent stages. In this case, mass conservation can be applied to each of the components
individually. The final warning deals with systems where chemical reactions take
place. In this case, the mass balance must consider each of the elements individually.
Energy balance and heat transfer. Analogously to mass conservation, the first
principle of thermodynamics that states the conservation of energy is the driving
principle of energy balance equations. This principle can be stated as:

dH (t)

dt
= Q(t) − W (t). (2.8)
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Here, H (t),Q(t), and W (t) represent enthalpy, heat, and mechanical work, respec-
tively. For these balances,H (t),Q(t), andW (t) need to be particularized to reflect the
specifics of the process at hand, typically taking into account constitutive equations of
the materials and the physical phenomena involved. For instance, the energy balance
of a heat exchanger where there are not any phase transitions is much simpler than
the case when phase transitions indeed take place; however, both cases ultimately
respond to the fundamental law expressed in Eq. (2.8).

Heat transfer is the transmission of thermal energy between systems due to their
difference in temperature. Heat transfer laws typically need to be considered in
thermal systems to model the rate at which the energy transference is taking place.

There are three mechanisms of heat transfer: conduction, convection, and radia-
tion. Conduction is caused by the exchange of kinetic energy between particles of
adjacent systems; convection is provoked by the transportation of energy in moving
fluids, and radiation is the transmission of energy performed by photons in electro-
magnetic waves.

Any given system typically exhibits all the three different heat transfer mecha-
nisms, however with varying relative degrees of relevance. It is common practice
for the Modeling of systems, thus, to simplify the analysis and just consider those
mechanisms that exert the greatest influence in the overall heat transfer.

The laws that govern the heat transfer are different for each mechanism. Conduc-
tion is governed by a diffusion law and can be modeled as a term that is proportional
to the difference of temperature of the systems

dQ

dt
= k A

x
(T1 − T2).

Here, k is the heat conductivity, A is the area, and x is the width of the material.
Convection is also proportional to the difference of temperature of the systems

dQ

dt
= h A(T1 − T2).

Here, A is the area and h is the convection coefficient that takes into account the type
of fluid and the average velocity of the fluid. Radiation, in turn, is proportional to the
fourth power of the temperature

Q = εσ (T 4
1 − T 4

2 ).

Here, Q is the heat flux, ε is the emissivity, and σ is the Stefan–Boltzmann constant.
Mass transfer. Mass transfer is a phenomenon caused by a net movement of par-
ticles from one location to another. Typical examples of this phenomenon include
evaporation, membrane filtration, distillation, or precipitation. The driving force of
this phenomenon is the difference in concentration between the different media that
compose the system.
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Fig. 2.1 Block diagram of the orange juice concentration example

For a one-dimensional system, Fick’s Law expresses the relation between the
involved variables

J = −D
dc

dx
. (2.9)

Here, J is the diffusion flux, D is a diffusion coefficient, c is the concentration of the
component, and x represents the spatial dimension considered.
Hydraulic systems. Hydraulic systems can be used to model variation of level in re-
actors and tanks. These systems are basically mass conservation systems that include
a constitutive equation that somehow relates the output flow of the tank or reactor
with its current height.

For laminar flow, the output can be considered to be proportional to the height of
liquid, so the differential equation that models a tank of constant section is:

dh(t)

dt
= qin(t) − 1

R
h(t). (2.10)

Here, R is a constant that takes into account aspects such as the diameter of the output
nozzle, etc.

For turbulent flow, Torricelli’s law states that the output velocity of the fluid is
proportional to the square root of the height of fluid above; thus,

dh(t)

dt
= qin(t) − B

√
h(t). (2.11)

Again, B is a constant that takes into account different aspects, such as the geometry
of the output nozzle.

Let us consider, as an example, an orange juice concentration process as defined
in Fig. 2.1. Let us begin assuming that the mass flows coming into the blender are
constant, so the total mass inside the blender remains constant as well. Under these
circumstances, the blender can be modeled as a simple tank with perfect mixture,
where the output concentration is the one in the tank:
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Mb
dcout(t)

dt
= qc cc(t) + qb cin(t) − qout cout(t). (2.12)

If the incoming flows into the blender are allowed to vary as well, then we have
to set up two equations: one for the total mass of the system and a second for the
solid components.

The total mass conservation states that:

dMb(t)

dt
= qc(t) + qb(t) + qout(t). (2.13)

In turn, now balance for the solids now states:

d

dt
(Mb cout) = qc(t) cc(t) + qb(t) cin(t) − qout(t) cout(t),

Mb(t)
dcout(t)

dt
+ cout(t)

dMb(t)

dt
= qc(t) cc(t) + qb(t) cin(t) − qout(t) cout(t)

.

(2.14)
Using Eq. (2.13), this can be rewritten as:

Mb(t)
dcout(t)

dt
= qc(t) cc(t) + qb(t) cin(t) − qout(t) cout(t) − cout(t)

[
qc(t) + qb(t) + qout(t)

]

Mb(t)
dcout(t)

dt
= qc(t) (cc(t) − cout(t)) + qb(t) (cin(t) − cout(t)).

(2.15)

The equations that model the evaporator, assuming that we can simply choose qw
as desired, are equivalent to the ones in the blender:

dMe(t)

dt
= qe(t) − qw(t) + qc(t)

Me(t)
dcc(t)

dt
= qe(t) (cin(t) − cc(t)) + qw(t) cc(t)

(2.16)

The positive sign in the term regarding qw(t) means that the concentration in the
evaporator should rise if the flow of water increases, which makes intuitive sense.

So, if we assume constant flows and levels, the whole system can be modeled by
a second-order linear state-space model using the concentrations in the evaporator
and the tank as states. However, if we suppose that the levels and flows may vary,
then we have a fourth-order nonlinear system.

2.1.2 Black-Box Versus Gray-Box Versus White-Box
Modeling

First principle Modeling requires a fair understanding of the relations that exist
between the different variables of interest of the process. It is not rare that the process
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of interest is complex enough that the task of deriving a first principle model of it
is very arduous or even unfeasible. System Identification is an alternative approach
that can be considered if experimental data are available.

The idea behind System Identification is to excite the system using appropriate
inputs, record the response of the system outputs, and select, out of a set of possible
candidates, the model that best describes or reproduces the recorded experimental
behavior of the system.

Models that do not assume any knowledge of the system are called black-box
models, in the sense that the model is considered a box that simply provides the
correct outputs for the given inputs, without much regard of the inner workings
behind that relation. If some knowledge of the system is considered for the selection
of the model structure but its parameters are identified using experiments, the model
is referred to a gray-box model. Continuing the analogy, if a model structure and
parameters are derived using first principles exclusively, the model is labeled as a
white-box model, in the sense that all its inner workings are known.

There are very good software packages that implement the routines required to
perform a black-box System Identification, so the practitioner does not need to dwell
on the mathematical implementation details of the System Identification techniques.
Particularly fit for these purposes is the excellent System Identification Toolbox
of MATLAB (MATLAB System Identification Toolbox 2014). One drawback of
these packages is, precisely, their orientation toward black-box Modeling, which
makes using gray-box Modeling a more challenging task, since it might not be easy
to extract the value of the parameters of a custom model structure using standard
System Identification tools.

It is sometimes the case that some physical intuition can be used to select a specific
model structure, such as the order of the model or the existence of an integrator or
a time delay. In these cases, the models can also be referred to gray-box models, as
some knowledge has been put into them. It is usually good practice to reflect a bit
on these issues, as the selection of the system model and the disturbance dynamics
may have considerable influence in the final behavior of the system.

An indirect approach to gray-box Modeling is to identify a black-box model with
a prespecified structure and to find the relation between its parameters and those of
the white-box model, and consequently to identify the values of the parameters of
the latter. Depending on the structure of the models, it might be the case that only
ratios of some of the parameters can be known, and not the values of the independent
elements.

This arises the question of identifiability, that is, when is it possible to identify
a certain model using a certain set of experimental data. Or, in other words, what
characteristics should an experimental data set include to allow the identification of
a certain type of model.

The identification of a black- or gray-boxmodel can be performed using historical
process data or by performing a System Identification experiment. This issue of when
historical data can be used to identify the system or what is the best way to perform
a System Identification experiment is not trivial and will be further discussed in
Sect. 2.1.5.
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The type of models and the approximations used for its identification have im-
plications in their validity. First Principle models typically can be used in a wide
range of process situations, while black-box models, being linear approximations
of the real process, necessarily have a much narrower application range. A viable
approach to overcome this limitation is to identify different models for different
working regimes, however at the expense of additional work.

The core elements required to identify a system are the set of experimental data,
commonly denoted as Z and a set of candidates models. The idea is to choose
from that set of candidates the one that better fits the experimental data set. For
this selection, there are two main methodologies: On the one hand, prediction error
methods use an optimization approach to find the parameters of the model, while
subspace identification methods project the data into appropriate subspaces to find
these parameters. The next sections further detail these approaches.

2.1.3 Prediction Error Methods

Prediction error methods aim to identify the system model minimizing a function
that expresses some measure of the expected difference between a predicted system
output and the actual one. This predicted output is computed using a prespecified
model structure—whose unknown parameters are the optimization variables—and
the inputs and observed outputs up to a certain time instant. Mathematically, this
objective function can be expressed as:

J (θ) =
T−τ∑

t=1

∥∥yt+τ − ŷt+τ |t(θ)
∥∥ . (2.17)

Here, ŷt+τ |t(θ) denotes the predicted value of the output y at time t + τ computed
using the information available at time t for a model with parameters θ .

The fundamental model used for prediction error methods supposes that the sys-
tem output is composed of two terms: the effect of the measurable input signal ut
and the influence of unmeasured noise or disturbances et . Mathematically,

yt = G(z−1)ut + H (z−1)et (2.18)

Different types of models are considered in the literature depending on the struc-
ture of G(z−1) and H (z−1), each making distinct assumptions about the relations
between the model and the noise and providing different characteristics to the iden-
tified model. The most common way to generically express G(z−1) and H (z−1) is to
use discrete-time transfer functions:

G(z−1) = B(z−1)

A(z−1)F(z−1)
, H (z−1) = C(z−1)

A(z−1)D(z−1)
. (2.19)
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The coefficients of these polynomials are the parameters generically referred to
θ in Eq. (2.17) above. Identifiability considerations advocate for considering these
polynomials to be co-prime—i.e., supposed not to have common factors—and the
denominators to be monic—i.e., having 1 as the leading coefficient. The notion of
identifiability will be further discussed in Sect. 2.1.5; for now, it is enough to see that
a special structure of these polynomials is required.

Out of this general structure, the most common models usually employed are:

1. ARXmodels: This family ofmodels are called auto-regressive exogenous and can
be obtained from the general expression settingC(z−1) = D(z−1) = F(z−1) = 1;
thus,

yt = B(z−1)

A(z−1)
ut + 1

A(z−1)
et . (2.20)

In this model, G(z−1) and H (z−1) share all their poles and the coupling of the
input is defined through polynomial B(z−1).

2. ARMAXmodels: These are the auto-regressive moving average eXogenousmod-
els and generalize ARX models by allowing et to be colored by a polynomial
C(z−1):

yt = B(z−1)

A(z−1)
ut + C(z−1)

A(z−1)
et . (2.21)

3. Output error models: These models suppose that the noise directly affects the
output, without being filtered through the dynamics of the system:

yt = B(z−1)

F(z−1)
ut + et . (2.22)

Although playing the same role as A(z−1), the denominator of G(z−1) is denoted
F(z−1) to emphasize that there are no common dynamics with the noise model, as
A(z−1) is usually reserved to precisely denote common dynamics betweenG(z−1)

and H (z−1).
4. Box–Jenkins models: These are the most general models and consider indepen-

dent dynamics of G(z−1) and H (z−1):

yt = B(z−1)

F(z−1)
ut + C(z−1)

D(z−1)
et . (2.23)

For simplicity, we will focus on the ARXmodel to highlight the key ideas related
to prediction errormethod system identification. The objective is to find an expression
to compute a prediction of the value of y using the model in Eq. (2.20). For that, we
express it as a difference equation and reorganize the terms:
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A(z−1)yt = B(z−1)ut + et

yt + (A(z−1) − 1)yt = B(z−1)ut + et

yt =
(
1 − A(z−1)

)
yt + B(z−1)ut + et

yt = −a1yt−1 − · · · − anyt−n + b0ut + b1ut−1 + · · · + bmut−m + et

The key observation is that all the terms in the right member regarding y get up to
t − 1. This means that we can compute an estimate of the current value of y, namely
yt , if we know y up to the previous instant, along with the corresponding values of u
and e.

ŷt|t−1 = −a1yt−1 − · · · − anyt−n + b0ut|t−1 + b1ut−1 + · · · + bmut−m + et|t−1

(2.24)
The above equation includes the term ut|t−1, that is, in order to compute our estimate
we should know the value that u is to have the next time instant. There are two main
reasons why this is not a huge hurdle. The first is that u is the input variable, and as
such, its value is decided by the plant operator, so we can reasonably assume that
we know what value we are going to use in the following time instant. The second
consideration is that given the digital implementation of control systems, it is very
unlikely that the coefficient b0 is different from zero. That is, real control systems
usually show a time delay of at least one sampling instant, so the term requiring
knowledge of ut at time t − 1 simply vanishes due to its associated coefficient.

A greater challenge is posed by the term et|t−1. Since e is considered to be un-
measured, it is not only that we do not know what value will e have at the next time
instant, it is that we can not even know its value at the current time instant! We can,
however, characterize e statistically and make an educated guess of its most likely
value. Since e is usually supposed to have zero mean, the best guess is precisely zero.
If the model structure is other than ARX, terms like et−1|t−1 appear in the predictor
equation. These terms, unlike et|t−1, are not zero in general, but their value can be
estimated using past observations of y, so the predictor can also be computed with
the available experimental data.

Now that we know how to compute ŷt+τ |t , it is time to comment on the most
frequent choices for the particular measure of the prediction error used for J in Eq.
(2.17). Choosing the square of the differences gives rise to the least squares estimation
method, which is the default option for most applications. If the probability density
function of the ek is known, themaximum likelihood (MLE) or themaximum a poste-
riori Bayesian (MAP) methods can be used. The solution of the optimization method
provides the parameters θ that together with the model structure already specified
comprise the final model of the system identified from the available experimental
data.
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An initial educated guess of appropriate model structures can found using spectral
analysis or correlation methods. Also, subspace methods can be used to obtain an
initial estimation of appropriate dimensions of the model.

The literature on System Identification is rich, and plenty of good references can
be found. We refer the reader to Tangirala (2014), Ljung (1998), and Johansson
(1993) for a deep treatment of the subject. These methods are implemented in the ex-
cellent System Identification Toolbox ofMATLAB (MATLABSystem Identification
Toolbox 2014).

2.1.4 Subspace Identification

Subspace identification methods take a different approach from prediction error
methods. In this case, the aim is to identify a space-state model of the systemwithout
prespecifying any particular model structure. This lack of requirement of specifying
a structure is an important advantage of subspace methods over their prediction error
counterparts. For SISO systems, this property is handy but probably not a fundamen-
tal one, as it is not hard to propose a set of possible model structures, check their fit
and select the best one. This property is fully leveraged when we combine it with
the intrinsic suitability of space-space models to deal with multivariable systems. In
effect, prediction error methods have two drawbacks for multivariable systems: On
the one hand, transfer function models are less adequate for this type of systems; on
the other hand, if the exact structure of the models is not known, testing different
structures is much more time consuming due to the essentially combinatorial nature
of the task. Testing three-order models and three delays requires nine combinations
for a SISO system, while it requires 36 for a two-input, two-output MIMO system
and 81 for a three-input, three-output one.

Onedrawbackof subspacemethods is that standardmethods cannot accommodate
previous knowledge of the model structure into the identification procedure. This
restriction also implies that the realization of the identified space-state model may
not be easy to interpret physically.

Before delving into subspace identification, it is convenient to devote some at-
tention to the notions of controlability and observability, which are key properties
of state-space models. Controllability is concerned with whether we can drive the
system to any desired state, provided that we employ appropriate inputs, while ob-
servability deals with whether it is possible to obtain an estimate of the initial state
vector given sufficient observations of the output variables. For simplicity, we will
assume a SISO system, although the ideas are easily applied to MIMO systems.

Let us consider a discrete-time state-space model of the type:

xt+1 = Axt + But (2.25a)

yt = Cxt + Dut (2.25b)
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with A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and D ∈ R .
Let us further suppose that A, B, C, and D are known, we have access to ut and

yt for t ≥ 0, and our objective is to ascertain what the value of x0 was. Just knowing
y0 and u0 is not sufficient for recovering x0, as x ∈ Rn and the output equation of
the state-space model (Eq. 2.25b) just provides us with a single relation between the
variables. We must find n − 1 additional equations so that we have n equations for n
unknowns.

The first idea is noting that we can use the state transition equation (Eq. 2.25a)
recursively to express any subsequent vector state xt in terms of the initial one x0 and
the sequence of inputs exerted u0, u1, . . . ut :

x1 = A x0 + B u0;

x2 = A x1 + B u1 = A (A x0 + B u0) + B u1 = A2 x0 + [
AB B

] [
u0
u1

]

x3 = A x2 + B u2 = A

(
A2 x0 + [

AB B
] [

u0
u1

])
+ B u2 = A3 x0 + [

A2B AB B
]
⎡

⎣
u0
u1
u2

⎤

⎦

xt = Atx0 + [
At−1B At−2B · · · AB B

]

⎡

⎢⎢⎢⎢⎢
⎣

u0
u1
.
.
.

ut−2

ut−1

⎤

⎥⎥⎥⎥⎥
⎦

(2.26)

This expression provides some additional insight into the notion of controlability.
The extended controlability matrix Ct ∈ Rn×t is defined as

Ct = [
At−1B At−2B · · · AB B

]
. (2.27)

Equation (2.26) affirms that the states that can be reached must essentially lie in the
subspace spanned by the columns of Ct . If Ct spans the wholeRn, then any desired
state is reachable, as we could always find appropriate values for u0, u1, . . . , ut
such that we hit that point. This means that we need at least n time steps to span the
whole state space and that the matrix Cn must be invertible—i.e., its columns must
be linearly independent—for the system to be controllable.

Having Eq. (2.26) to compute any state in terms of the initial one and the inputs,
we can relate x0 not only with y0, but also with the subsequent output values available
y1, y2, . . . , yt :
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y0 = C x0 + D u0

y1 = C x1 + D u1 = C (A x0 + B u0) + D u1 = CA x0 + [
CB D

] [
u0
u1

]

y2 = C x2 + D u2 = C

(
A2 x0 + [

AB B
] [

u0
u1

])
+ D u2 = CA2 x0 + [

CAB CB D
]
⎡

⎣
u0
u1
u2

⎤

⎦

yt−1 = C xt−1 + D ut−1 = CAt−1 x0 + [
CAt−2B CAt−3B · · · CB D

]

⎡

⎢⎢⎢
⎣

u0
u1
.
.
.

ut−1

⎤

⎥⎥⎥
⎦

(2.28)
We can express the set of equations above in a matrix equation:

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

y0
y1
y2
...

yt−2

yt−1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

C
CA
CA2

...

CAt−2

CAt−1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

x0 +

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

D 0 0 · · · 0 0
CB D 0 · · · 0 0
CAB CB D · · · 0 0

...
...

...
. . . 0 0

CAt−3B CAt−4B CAt−5B · · · D 0
CAt−2B CAt−3B CAt−4B · · · CB D

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

u0
u1
u2
...

ut−2

ut−1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(2.29)
Here, the only unknown is x0. Let us introduce some further notation and rewrite
the above equation more compactly, using y0,t−1 ∈ R t, u0,t−1 ∈ R t, Ot ∈ R t×n and
Gt ∈ R t×t as:

y0,t−1 = Ot x0 + Gt u0,t−1. (2.30)

Rearranging the terms, we have:

x0 = O−1
t

(
y0,t − Gt u0,t

)
. (2.31)

Here, Ot is termed as the extended observability matrix. This equation shows that
the condition for the system to be observable is that Ot be invertible, so we need n
samples and the columns of Ot must be linearly independent.

With this discussion, we have fulfilled our objective of recovering the value of x0,
given full knowledge of the system matrices A, B, D, and D. The objective now is to
estimate the values of these matrices supposing that they are unknown.

Equation (2.30) is the key relation for subspace identification methods. Let us
begin noting that the same relation can be written if we move forward one step in
time; namely,

y1,t = Ot x1 + Gt u1,t . (2.32)

We can, of course, continue advancing time steps as long as we have experimental
data available:

ys−1,t+s−2 = Ot xs−1 + Gt us−1,t+s−2. (2.33)
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These equations above can be expressed more compactly as:

[
y0,t−1 y1,t · · · ys−1,t+s−2

] = Ot
[
x0 x1 · · · xs−1

] + Gt
[
u0,t−1 u1,t · · · us−1,s+t−2

]
.

(2.34)
This way, we can define the following matrices:

Yt,s =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

y0 y1 · · · ys−1

y1 y2 · · · ys
y2 y3 · · · ys+1
.
.
.

.

.

.
. . .

.

.

.

yt−2 yt−1 · · · ys+t−3

yt−1 yt · · · ys+t−2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, Ut,s =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

u0 u1 · · · us−1

u1 u2 · · · us
u2 u3 · · · us+1
.
.
.

.

.

.
. . .

.

.

.

ut−2 ut−1 · · · us+t−3

ut−1 ut · · · us+t−2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, Xs = [
x0 x1 · · · xs

]
,

(2.35)
which allow us to express Eq. (2.33) as:

Yt,s = Ot Xs + Gt Ut,s. (2.36)

Here, Yt,s ∈ R t×s and Yt,s ∈ R t×s are known, since they are just the experimental
data stored in a particular matrix form, but Xs ∈ Rn×s,Ot ∈ R t×n and Gt ∈ R t×t are
unknown.

The key idea behind subspace identification methods is to project the available
experimental data into appropriate subspaces so that some terms of Eq. (2.36) vanish.
We restrict our attention to a brief presentation of the multivariable output error state-
space (MOESP) method for noise-free systems to provide a feeling of the type of
reasoning and operations involved in subspace methods.

The first step is performing a LQ factorization of a composition of the Yt,s and
Ut,s matrices: [

Ut,s

Yt,s

]
=

[
L11 0
L12 L22

] [
QT

1
QT

2

]
. (2.37)

This factorization allows to find orthonormal basis for the column space of Ut,s

and its orthogonal complement U⊥
t,s, so that Yt,s can be expressed using these two

bases as:
Yt,s = L12 Q

T
1 + L22 Q

T
2 (2.38)

We can multiply Eq. (2.37) by the projection matrix onto the row space of Us,t :

L12 Q
T
1 ΠU⊥

s,t
+ L22 Q

T
2 ΠU⊥

s,t
= Ot Xs ΠU⊥

s,t
+ Gt Ut,s ΠU⊥

s,t
(2.39)

Now, due to orthogonality between the factors, the first and last terms of the
equation vanish to zero, resulting:

L22 Q
T
2 = Ot Xs ΠU⊥

s,t
(2.40)



38 2 Modeling and System Identification

Next, we multiply both terms by Q2 and note that QT
2 Q2 = I and ΠU⊥

s,t
Q2 = Q2,

since ΠUs,t is precisely the projection matrix to the space spanned by Q2, so we get:

L22 = Ot Ẋs Q2, (2.41)

At this point, given some technical conditions that guarantee that L22 is rank n,
we can recover the extended observability matrix by performing a singular value
decomposition on L22:

L22 = Ot Xs Q2 = [
U1 U2

] [
Σ1 0
0 0

] [
V1

V2

]
= U1Σ1V

T
1 . (2.42)

This equation states that up to a similarity transformation:

Ot = U1Σ
1/2
1 . (2.43)

The system matrices A and C can be obtained easily once we have Ot . Let Ot

denote the first t − 1 rows of the matrix Ot , while Ot represent the last t − 1 rows.
According to Eq. (2.29), the first row of Ot (for SISO systems, block for MIMO
systems) provides C, while A can be recovered noting that Ot = OtA, so

A = Ot
†
Ot . (2.44)

Recovering B and D is more involved and requires using Eqs. (2.36) and (2.37)
to set up a matrix equation which can be solved using least squares (see Tangirala
for details), but is also possible.

Other subspace methods, such as N4SID and CVA, take different approaches in
the projections they convey, but the general idea is the same as theMOESP algorithm.
Moreover, they can be shown to fit in a general frame that characterize each of them
as a particular choice of weight. Further details on subspace identification can be
found in Tangirala (2014) and Johansson (1993).

2.1.5 Design of Experiments

The design of experiments is a topic of great practical importance for System Iden-
tification. It is usually the case that performing a System Identification experiment
conveys some sort of additional costs besides the usual operation of the plant, usu-
ally in terms of production of substandard products or reduced plant yield. It is thus
important to reflect on the future use of the model, so that we build the simpler
possible that fits our purposes and analyze the experimental data acquired during the
normal operation of the plant to ascertain if experiments are needed at all. However,
normal operation is typically carried out under closed-loop control, which conveys
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additional challenges to the System Identification task, such as correlation between
inputs and disturbances and low excitation in both inputs and outputs.

The key concept in experiment design is the idea of an informative experiment.
Informally, an informative experiment is one that allows to obtain a satisfactory
model of the process by means of producing an informative data set. This depends
on two conditions that are related to each other: On the one hand, the system model
must be identifiable; on the other hand, the input must be persistently exciting.

Identifiability of a model is a concept that is related to the possibility of obtaining
an estimate of the value of each of its different parameters. In Sect. 2.1.3, we briefly
commented that the polynomials in the denominators of transfer functions in Eq.
(2.19) should be monic. The reason behind this is that we should fix the value of
the coefficient of the leading term of the denominator; otherwise, we would be able
to identify only the ratio between the rest of the parameters of the model and that
particular coefficient. There is, so, some constraints to be considered when defining
the structure of a gray-box model for identification.

There is, however, another facet of identifiability of a model that is closely related
to the characteristics of the input signal used in the corresponding experiment. To see
this, we can think of the simplest—and close to absurd—case: We have a stable dy-
namic system that has reached its steady state, and we want to obtain a model simply
observing its steady-state response without any input. Under these circumstances,
the output of the system will remain constant at whatever value it had reached, thus
providing no information whatsoever about what type of system we are facing. This
extreme example clearly shows that the possibility of discerning between candidate
models depends on the characteristics of the input signal applied during the data
gathering step.

This leads to the concept of persistently exciting input which, under more tech-
nical terms, states that the input should contain a sufficiently rich frequency content
in order to provide enough excitation to the system so that we can discern between
different model alternatives. The more complex the model, the richer the frequency
content required to carry out the experiment. A typical choice of input is pseudoran-
dom binary signals (PRBSs), which are deterministic signals that fluctuate between
two fixed values at pseudorandom time instants. Figure 2.2 includes a plot of pseudo-
random input and its associated output for a well damped linear second-order system.
Pseudorandom binary signals allow to choose their frequency content by selecting
appropriate clock sampling rate for its generation, so that it can be focused on the
frequency range where higher accuracy of the model is required. The main drawback
of these type of signals is that the switching between two fixed values does not allow
to detect nonlinearities of the system. For these systems, some variants of the PRBS
have been proposed, such as multivalued PRBS and amplitude-modulated PRBS.

Another very important consideration is what should be considered an input when
performing a System Identification experiment. Clearly, the manipulated variable of
the system at hand should be considered an input; however, other signals which
are commonly considered disturbances should also be considered as inputs if they
are measurable. If there are known disturbances affecting the process that are not
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Fig. 2.2 Pseudorandom binary signal

measurable, the amplitude of the input signals should be such that these disturbances
affect the process as mildly as possible.

2.2 Fuzzy Modeling

Fuzzy Modeling is an interesting alternative for situations where experimental data
are scarce or expensive to obtain, or the system of interest is complex and highly
nonlinear. At the core of fuzzy Modeling techniques is the concept of fuzzy set, an
extension to the concept of classical sets that allows for members to have a degree
of membership to the set, which will be presented in detail in the next section.

The most widely used fuzzy Modeling techniques are the rule-based fuzzy logic
systems (RBFLS). This type of models are constructed using fuzzy if-then rules
that relate the value of the input variables to the value of the outputs. These models
can be built in a white-box approach, using the knowledge of experts in the process
of interest, or in a more data-driven approach using available experimental data.
These two alternatives in the construction of the system are related to the two major
approaches forRBFLS:Mamdani andTakagi–Sugeno–Kang (TSK).Their difference
lies in theway that the value of the output variable is expressed, beingMamdani more
natural for the expert-based approach, while TSK is better suited for the data-driven
alternative.

The most common approach of RBFLS is flat RBFLS, meaning that all the
rules are defined over the same set of inputs and outputs. This method is appropriate
for systems with a moderate number of variables and is particularly apt for the
construction of rules based on experimental data. However, the number of possible
rules grows exponentially with the number of variables, so systems having a large
number of variables require ways to handle the additional complexity inherent in the
high number of potential relations. Hierarchical RBFLS (Torra 2002) are a way to
handle this complexity byModeling the complete system as a composition of smaller
subsystems. A Modeling methodology that makes use of this hierarchical approach
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and is particularly fit for Modeling complex food processes is Fuzzy Cognitive Maps
(FCM), which are presented in Sect. 2.2.3.

Neuro-fuzzy systems are fuzzy systems equivalent to RBFLS that are formulated
as neural networks and provide the means to leverage all the existing tools for neu-
ral network training into data-driven construction of fuzzy logic systems. They are
presented in Sect. 2.2.4.

Finally, some further comments on how to employ an hybrid approach to the con-
struction of FLS are included in Sect. 2.2.5, presenting some ideas to fully leverage
expert knowledge to provide a system structure and available experimental data to
fine-tune the parameters of these models.

2.2.1 Introduction to Fuzzy Logic

The key idea of fuzzy logic is the extension of the concept of membership of an
element to a set. In traditional crisp logic, an element either belongs or does not
belong to a given set, and thus, its membership value is either 1 or 0, respectively. In
fuzzy logic, this membership value is allowed to have any value in the [0, 1] interval,
thus allowing degrees of membership of an element to a set.

A classical example here is to consider the set of tall people. We can define such a
set as T = {x|x ≥ 1.90}. This expresses that all the people whose height is 1.90 m or
more belongs to the set. This definition implies that a person being 1.89 m does not
belong to this set of tall people T ; however, it makes intuitive sense to consider that
even if it does not exactly meet the requirements defined to belong to the set, some
degree of membership could be assigned to that element. Another person being 1.87
m could also be considered to somewhat belong to that set, but to a lesser degree
than the 1.90 m one. Figure 2.3 shows a plot showing the definition of the crisp set
T along with a fuzzy set T .

The set of crisp values that a given variable can have is called the universe of
discourse. In the previous example, the universe of discourse can be considered to be
a subset of the real numbers, say [0, 3]. Over this universe of discourse, we can also
define other fuzzy sets, such as the set of short people or the set of average height
people (Fig. 2.4).

The idea of assigning a partial degree of membership of an element to a set is
appealing; however, it is of limited practical interest on its own. The real advantage of
fuzzy logic comes into play when we try to establish relationships between variables
when there is some sort of uncertainty present, be it lack of knowing the precise value
of the variable or uncertainty on the precise relations existing between the variables.
This is where fuzzy inference systems (FIS) come into play.

Let us suppose that we want to build a system that helps us in brewing a cup of
tea. We can relate the temperature of water with how nice a cup of tea we can brew.
If temperature is not high enough, then most of the flavor will not be appreciated;
conversely, if temperature is too high, then maybe the flavor will not be as pleasant
as if the temperature is just the appropriate one.
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We can now consider the temperature of water as a fuzzy variable. In this case,
the universe of discourse can be the [0, 100] interval, if we express the temperature
in ◦C. Now, we can define the fuzzy sets of low, moderate, high, and very high.

Furthermore, we can define a variable called tea flavor and define some fuzzy
sets on its universe of discourse, for instance, unpleasant, nice, and excellent. An
important detail to notice here is that for this variable, although it is quite clear for a
human what these terms mean, there is no clear candidate set to be the universe of
discourse. We can, therefore, just choose an arbitrary set—say [1, 10]—and spread
these fuzzy sets over this universe of discourse.

A natural way of expressing our knowledge about the relations between these
variables is using if-then rules. Let us suppose that if the temperature is high, then
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the tea will be excellent, while if it is either not high enough or a bit too high, it will
be nice. Finally, if the temperature is way too low, then the tea will be unpleasant.
This can be expressed using fuzzy rules as:

• If temperature is VERYHIGH , the tea flavor is NICE.
• If temperature is HIGH , then tea flavor is EXCELLENT .
• If temperature isMODERATE, the tea flavor is NICE.
• If temperature is LOW , the tea flavor is UNPLEASANT .

In these rules, the terms HIGH , VERYHIGH ,MODERATE, LOW can be inter-
preted easily by a human and convey a explicit mathematical meaning that allow a
computer to calculate what degree of flavor we are going to enjoy in the cup of tea.

We can further elaborate this model and consider that not only the temperature of
the water is important, but the time allowed for the infusion also influences the final
flavor of the tea. Now, we can consider how these two variables influence the flavor
of the tea and express:

• If temperature is VERYHIGH and time isHIGH , the tea flavor isUNPLEASANT .
• If temperature is VERYHIGH and time is MODERATE, the tea flavor is NICE.
• If temperature is VERYHIGH and time is LOW , the tea flavor is NICE.
• If temperature is HIGH and time is HIGH , then tea flavor is NICE.
• If temperature isHIGH and time isMODERATE, then tea flavor is EXCELLENT .
• If temperature is HIGH and time is LOW , then tea flavor is NICE.
• If temperature isMODERATE and time is HIGH , the tea flavor is NICE.
• If temperature isMODERATE and time isMODERATE, the tea flavor is NICE.
• If temperature isMODERATE and time is LOW , the tea flavor isUNPLEASANT .
• If temperature is LOW and time is HIGH , the tea flavor is UNPLEASANT .
• If temperature is LOW and time isMODERATE, the tea flavor isUNPLEASANT .
• If temperature is LOW and time is LOW , the tea flavor is UNPLEASANT .

We can see that the number of rules required increases promptly with the number
of variables considered. If we were to consider three or more input variables, we
can see that the number of rules required to describe all the possible combination of
values pretty quickly provides a system that is hard to manage. In these cases, the
use of hierarchical fuzzy systems, such as the one presented in Sect. 2.2.3, is a good
way of dealing with this extra complexity by means of systematically considering
smaller subsystems and their relations.

2.2.2 Types of Fuzzy Logic Systems: Mamdani Versus
Takagi–Sugeno–Kang

The most common type of fuzzy logic systems (FLS) is rule-based FLS, and they
present the structure shown in the previous section: a collection of rules that relate
the values of input and output variables. The FLS select the relevant rules out of the
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pool of available ones and combines their outputs to provide the values of output
variables for the scenario at hand. The purpose of this section is to look in some
detail into the different steps that are required to carry out this computation, which
can be split into three main stages:

1. Decide what rules are relevant for the scenario at hand, that is, which rules are
best suited for the combination of input values considered.

2. Compute the values of the output variables provided by each rule.
3. Merge the proposals of each rule into a single final value for each output variable.

Similar to the notion of partial membership of an element to a set, the antecedent
part of the rule may be considered to be not completely true or completely false, but
true to some degree. This degree, in turn, should somehow affect the confidence we
have that the outputs will show values similar to the ones prescribed by the rule. This
degree of truth is usually called the firing strength of the rule.

The computation of this firing strength is easy for rules that involve a single-
input variable, as we may use its degree of membership to the FS included in the
antecedent of the rule as the firing strength. When we have more than one variable
in the antecedent clause, such as when we considered both time and temperature in
the tea brewing example, we need to combine the membership values of the inputs
to obtain the firing strength of the rule.

Let us suppose that both inputs are connected using the logical relation OR: This
means that if one input or the other has the value prescribed in the rule, then the rule
applies. In this case, it is clear that we can just split the rule in two: one considering the
first input and one considering the second input and just compute the firing strength of
each rule employing the membership value of the corresponding antecedent variable.

If the two inputs are connected by AND, then we cannot just simply split the
rule, as we need to consider both inputs at the same time to check to what degree
the rule is true in the given scenario. For Boolean logic, an AND operation implies
multiplying both membership values, as the result will only be 1 if both inputs are.
For fuzzy logic, there are twomain ways of computing this combination: product and
minimum. In both cases, the extreme membership values coincide with their crisp
counterparts; for any other values, each method provides different results. However,
both are used in practice, and the decision of which one to use is usually on practical
considerations, such as the computation burden or some others—the reader can find
further details in Mendel (2001).

Once that we have looked into how to compute the firing strength of the rules,
we need to address how to effectively compute the final value of the different output
variables present in the system. FLS almost always have more than one rule in their
rule set for each output variable. How do we combine the prescriptions of each of
these rules into a single value for each output variable?

The first point to consider is how is the information about the output provided in
the rule. There are two major approaches to this: Mamdani FLS provide fuzzy sets
as outputs of their rules, while Takagi–Sugeno–Kang (TSK) systems provide a crisp
value as the output, typically given as some function of the crisp values of the inputs.
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Fig. 2.5 Mamdani inference

For Mamdani FLS, the output of the fuzzy inference process is a FS, obtained
by combining the FS provided by each of the different rules. This combination is
typically carried out using sup-min combination and is graphically depicted in Figure
2.5. The first step is to compute the firing strength of each of the involved rules. Let
us assume that we choose the minimum implementation of the AND operator. Then,
the firing strength of the rule is the minimum of the membership values of the inputs.
That is depicted in the left side of Fig. 2.5. The output FS is computed computing
the minimum between the firing strength of the rule and the membership value to
the output FS for each element of the universe of discourse. This can be visualized
in the right side of Fig. 2.5.

The output FS is not yet a crisp value, so a further step called defuzzification needs
to be carried out. There are several ways of accomplishing this defuzzification step:
centroid (COG), mean of maxima, height, etc. These methods have varying levels of
computational complexity and generally provide different crisp values for the same
FS; the decision of which to use is, again, mostly based on practical considerations
and preference of the system designer.

In turn, in TSK systems, each rule provides directly a crisp value for the output
variable, usually given as a function of the crisp values of the inputs. In this type
of FLS, no fuzzification step is required, since all the consequents are already crisp
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numbers. The final value of a given output variable is computed simply as a weighted
average of the values provided by each rule, using the firing strengths as the weights.

We have so far only considered rules that provide a single-output variable. What
about rules that specify more than one output? It is easy to see that considering
single-output rules do not suppose a lose of generality, as similar to what we did for
rules where the inputs were combined using OR operators, we can simply separate
each of the output variables into its own rule. These rules will simply have identical
antecedents but different consequents. The interested reader can find more details in
the excellent book Mendel (2001).

2.2.3 Fuzzy Cognitive Maps

Flat FLS are convenient for systems that have a limited number of involved variables
or for systems where plenty of experimental data is available and a data-driven
approach is sought. For scenarios where there are many different relevant variables
and scarce experimental data, flat FLS are usually not the best option, as the number
of rules grows very rapidly with the number of variables and systems become hard
to manage very quickly. For these scenarios, hierarchical FLS are a better candidates
for the job.

Fuzzy Cognitive Maps (FCM) are a type of hierarchical FLS that are convenient
for systems with profuse variables, as they ease the elicitation of knowledge from
experts allowing a systematic approach to this elicitation process. There are many
different types of FCM proposed in the literature; the particular Modeling method
presented in this section is based on simplified dynamic cognitive networks (sDCN).

The FCM model is a graph composed of nodes that represent the variables of the
system and arcs that symbolize the relations between these variables. Formally, the
model is defined as a tuple:

M = 〈V,A〉, (2.45)

whereV designates the set of nodes andA stands for the set of arcs. Figure 2.6 shows
a generic multi-input, single-output FCM with a single layer.

The following properties are defined for each node vi ∈ V of the network:

• Uvi : the universe of discourse of the node, that is, the set of possible crisp values
of the variable.

• Hvi : the collection of FS Lkvi defined in Uvi :

Lkvi = {〈x, μLkvi
(x)〉 : x ∈ Uvi }, (2.46)

Hvi = {Lkvi , k = 1, 2, . . . ,Ki}. (2.47)

• Sc(vi): the crisp value of the node. Depending on the role of the node in the
network and the computation process, this value can be known—if the node is an
input node—or be the result of the inference process.
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Fig. 2.6 Generic
multi-input, single-output
model for traditional,
singleton FCM. A more
complex model can be built
by composition of this
elementary structure

v1

v2

...

vn

vm

ρ
m1 , R

m1

ρm2, Rm2

ρmn
, Rmn

crisp
input

crisp
input

crisp
input

Predecessors
Antecedents

Successors
Consequents

• Sf (vi): an array containing the degree of membership to each FS Lvi of the crisp
value of the node Sc(vi) (see Fig. 2.6).

Sf (vi) = [μL1vi
, . . . , μL

Ki
vi
]T . (2.48)

In turn, for each arc aij the following properties are defined:

• ρij: strength of the relation between the nodes vi and vj.
• Rij: causal relationship matrix. It defines the relationship between the FS of the
predecessor and the successor nodes connected by the arc. The size of the matrix
is Ki × Kj, with Ki and Kj being the number of labels in Hvi and Hvj , respectively.

The properties of the arcs emulate the rules in a rule-based FLS, as they encode
the relationships between the variables of the system. In the Rij matrix, each row
is associated with a FS defined in Uvi , while each column is associated with a FS
defined in Uvj . Each entry of Rij can be considered a rule relating the value of the
predecessor (node vj) with the successor (vi), where the rule weight is given by the
value of the entry times the weight associated with the arc. For example, let Lkvi be

triangular fuzzy sets, and let qi = [q1i q2i · · · qKi
i ]T denote the peaks of these fuzzy

sets. Then, each entry is associated with a rule of the type:
If vj is Lbvj Then vj is qai , with weight ρij Rab

ij .
As an example, consider the following matrix:
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Rij =
⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ . (2.49)

The shape of the matrix denotes that three fuzzy sets have been defined in both
Uvi and Uvj , and the associated rules are:

If vj is L1vj Then vi is q3i , with weight ωij.

If vj is L2vj Then vi is q2i , with weight ωij.

If vj is L3vj Then vi is q1i , with weight ωij.

The distribution of the nonzero entries in the relation matrices Rij allows to easily
encode certain predefined types of relations among variables, which eases the elici-
tation of knowledge from the experts. Positive and negative relations are considered,
along with three types of relations:

• Bivalent relations: For a positive (negative) bivalent relation, a low value of the
input variable tends to decrease (increase) the value of the output, and a high value
of the input tends to increase (decrease) the value of the output. The following
matrices R are examples of positive and negative, respectively, bivalent relations
for a system with three defined labels per node:

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ .

• Univalent relations: These are asymmetric relations, in the sense that some level of
values of the predecessor exert some influence on the successor, while others exert
none. Besides, the influence of the node always tends to increase (or decrease) the
value of the successor.

The following matrices are examples of univalent relations that always tend to
decrease and increase, respectively, the value of a node:

⎡

⎣
0 0.5 1
0 0 0
0 0 0

⎤

⎦ ,

⎡

⎣
0 0 0
0 0 0
0 0.5 1

⎤

⎦ .

The arranging of the entries of the matrices in the first or last rows guarantees that
the influence of the corresponding predecessor will be that of increasing (or de-
creasing) the value the node would have had if this node was not to exert influence.

It should be noted that, in order to make sense, nodes exerting this influence on a
successor are required not be the only predecessors, since that would either leave
the value of the node undefined (if the incidence of the node is zero) or always
having a extreme (maximum or minimum) value. However, this requirement is in
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line with the intuition that it is natural to think of a relation that moves the value of
a variable only when there is some other relation that establishes a reference value.

For the matrices presented above, higher values exert higher influence on the suc-
cessor. The following two matrices illustrate analogous behavior, but the influence
being exerted by lower values of the input:

⎡

⎣
1 0.5 0
0 0 0
0 0 0

⎤

⎦ ,

⎡

⎣
0 0 0
0 0 0
1 0.5 0

⎤

⎦ .

• Sweet-spot relations: A certain value of the input provokes the maximum (mini-
mum) value of the output, with higher and lower values of the input resulting in
lower (higher) values of the output. The following matrices exemplify a minimum
and maximum sweet-spot relations:

⎡

⎣
0 1 0
0 0 0
1 0 1

⎤

⎦ ,

⎡

⎣
1 0 1
0 0 0
0 1 0

⎤

⎦ .

Level dependent and saturation effects can also be easily expressed using these
matrices, as exemplified in the following two matrices:

⎡

⎣
0.5 0 0
0 1 0
0 0 2

⎤

⎦ ,

⎡

⎣
1 0 0
0 1 1
0 0 0

⎤

⎦ . (2.50)

Here, the matrix on the left expresses a relation where the strength of the effect is
magnified as the value of the input increases, while the matrix on the right shows a
saturation for high values of the input that results in the same effect on the output as
the one provoked by the moderate level.

The value of a successor node is computed according to the following steps:

1. The impact received by the node i is defined as:

wi =
ni∑

j=1

ρij RijSf (vj) = [w1
i w

2
i · · · wKi

i ]T (2.51)

2. The computation of the crisp value Sc(vi) of the node is performed using a
weighted average combination of the value of the peak of each fuzzy set using
the impact received by the node:

Sc(vi) =
∑Ki

k=1 w
k
i qki∑Ki

k=1 w
k
i

. (2.52)
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3. Finally, the fuzzy state vector of the node Sf (vi) is evaluated to capture the mem-
bership values for each FS as follows:

Sf (vi) = [μL1vi
(Sc(vi)) μL2vi

(Sc(vi)) · · · μL
Ki
vi
(Sc(vi))]T . (2.53)

Equation (2.52) performs the inference and defuzzification steps simultaneously
and is very similar to the zero-order Takagi–Sugeno–Kang (TSK)model computation
of the crisp value of the output of a set of rules.

It is important to remark the difference between the normalized impact w̄ and the
fuzzy state Sf (vi). Even though the defuzzification of both arrays renders the same
crisp value, both arrays are in general different.

The entries of w̄will, in general, be less sparse than those ofSf (vi), since the former
ones are the result of the impacts received by the node and, in general, may have
several nonzero elements. In particular, if univalent relations are present, nonzero
entries are expected in the first or last elements of w̄, which does not mean that the
resulting crisp value of the node necessarily presents nonzero membership to the
fuzzy associated with those elements.

For the propagation of the computations from node to node, it is important to use
Sf (vi) instead of w̄, since if asymmetric or level-dependent relations are present, w̄
might activate spurious contributions that should not be activated according to the
resulting value of the node. As an example, suppose that values for a node are given
by:

w̄ = [0.5 0 0.5], Sf (vi) = [0 1 0].

Then, for a relation matrix for a successor node to present a marked nonlinear be-
havior, such as: ⎡

⎣
5 0 0
0 1 0
0 0 1

⎤

⎦ , (2.54)

the impact given by w̄ would be [2.5 0 0.5], while Sf (vi) gives [0 1 0]. The different
contributions based on each of these vectors is noticeable.

Themain constraint of themethodology is the fact that rules can only have a single
variable in the premise clause, practically supposing that the effect of the inputs is
independent of each other, which may not always be true. However, this constraint
is also a desired property of the approach, as it eases the curse of dimensionality
by demanding that the influence of a single variable is considered at a time and
limiting the number of possible rules in the system. This constraint simplifies greatly
the work burden of the knowledge elicitation and provides visual representations of
the models that domain experts, without an engineering background, can understand
easily.
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2.2.4 Neuro-Fuzzy Modeling

Neural networks are well-known tools widely employed in artificial intelligence and
pattern recognition applications. Neural networks consist of a number of nodes that
represent computation entities and arcs that connect the nodes and show the flow
of information in the network. The major interest in these type of models lies in its
ability to learn from the data; i.e., there exist algorithms that can adjust the values
of the parameters of the network to minimize the discrepancy between the values
predicted by the network and the existing experimental data. The most well-known
and widely used algorithm is backpropagation.

As neural networks are a widespread technology, there are plenty of tools that
allow to efficiently implement them in practice. However, one of the main drawbacks
of neural networks is its black-box nature, meaning that it is usually difficult to
provide a physical meaning to the structure of the resulting model, thus hindering
the possibility of analyzing the inner computations to have some insight of possible
improvement routes if the performance does not fulfill the expectations.

One of the main strengths of FLS resides precisely in its interpretability, as the
fuzzy rules that compose the system can be understood by humans. Thus, the natural
step of merging the relativemerits of bothmethodologies gave rise to adaptive neuro-
fuzzy inference systems (ANFIS), which are a type of adaptive neural network with
a particular topology that are functionally equivalent to TSK FLS.

Figure 2.7 depicts the typical five-layer structure of an ANFIS, where each layer
performs a specific step of the fuzzy reasoning algorithm. The nodes in the first layer
represent linguistic labels, and the output of this nodes is themembership value of the
input value to the corresponding FS. The type of membership function is fixed and
specified by the designer, while the parameters that define the specific shape of the
FS are adaptive, meaning that their value will be provided by the learning algorithm.
Fig. 2.7 shows an ANFIS with two FS defined for each crisp input.

The second layer contains fixed nodes that perform the multiplication of the
incoming signals and play an analogous role to the computation of the firing strength
of a fuzzy rule. In effect, this multiplication can be viewed as performing an AND
combination of the membership values passed to them using the multiplication rule.

The third layer normalizes the firing strengths so that they add up to one. This
step can be interpreted quite intuitively, as we can think of these normalized firing
strengths as a relative measure of how closely each rule fit the scenario defined by
the current inputs.

The fourth layer simply computes the consequent part of each fuzzy rulemultiplied
by its corresponding normalized firing strength. If we are implementing a first-order
TSK system—i.e., the consequents of the rules are linear combinations of the values
of the inputs—the computation can be expressed as:

O4,i = w̄i(pi x + qi y + ri), (2.55)
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Fig. 2.7 Structure of a five-layer adaptive neuro-fuzzy inference system (ANFIS)

where w̄i is the normalized firing strength and pi, qi, ri are adaptive parameters called
consequent parameters.

Finally, the fifth layer does not have tunable parameters and provides the crisp
output value of the computation simply adding the signals coming from the previous
layer.

The discussion above shows that ANFIS is a convenient formalism that allows
to build TSK systems where the specific value of the parameters that define the
membership functions of the antecedents and the weights of the linear functions of
the consequents can be adjusted using experimental data.

2.2.5 Identification of Fuzzy Models Parameters

FLShave the interesting theoretical property of being universal approximators,mean-
ing that any sufficiently smooth function can be approximated using them with arbi-
trary precision. This property provides the theoretical basis that supports the interest
on this type of models.

If experimental data is available, there are different methods for constructing FIS
using a data-driven approach. The first family of methods is based on performing a
grid partition of the input space and using an optimization-based algorithm to adjust
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the parameters of the partition and the consequents of the fuzzy rules. A second
approach is clustering the experimental data points into homogeneous groups and
defining rules associated with each group. In this method, the fuzzy sets defined in
the input space are not shared by the rules, but different FS are defined for each rule.
ANFIS systems, as commented above, are also a popular method of constructing
FIS with a data-driven approach.

A well-known feature of Fuzzy Cognitive Maps that is of interest for the applica-
tion of the proposed methodology is the capability of adjusting the parameters of the
model based on experimental data. In order to study the inclusion of mechanism to
allow the adjustment of the parameters of the system based on eventually available
process data, we focus our attention to a model consisting of n inputs and one output.
A more complex network can be built connecting different subnets with the same
structure as the one analyzed.

For simplicity, we further suppose that all the nodes in the net have the same
number of fuzzy labels defined in their universe of discourse. This assumption does
not affect the generality of the analysis and simplifies the notation. Figure 2.6 shows
the graph being analyzed.

The formula for the computation of the state of the consequent node according to
the FCM formulation is:

Sc(y) = f (
∑

i

ωiRiSf (ui)),

with f (·) being the function that maps the impact received by the node wy to its final
crisp state Sc(y).

Let us define:
pi = ωiRiSf (ui) = [pi1 pi2 · · · pil] (2.56)

as the impact exerted by node ui on the node y. Then, the total impact on y can be
computed as:

w =
∑

i

pi. (2.57)

Letμij denote themembership grade of the i input to its j label, andFij the function
that maps the crisp value of the node i to its membership value for the j label, i.e.,

Sf (ui) = [μi1 μi2 . . . μil].

The first consideration is noting that we may split each node in the net into as many
nodes as labels are defined in their universe of discourse and construct a net that
computes the state of node y based on these disaggregated nodes. Figure 2.8 shows
the graph that implements these calculations, along with Fig. 2.9, which further
details the computation of pi from Sf (ui) and the properties of the relation ωi and Ri,
defining rkj as the elements of the matrix Ri.
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Fig. 2.8 Detailed expanded nodes graph. ( c©2017 IEEE. Updated and reprinted, with permission,
from Cano Marchal, P., García, J. G., and Ortega, J. G. Application of Fuzzy Cognitive Maps
and Run-to-Run Control to a Decision Support System for Global Set-Point Determination. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 47(8):2256–2267)

In the graph in Fig. 2.8, pik represents the impact of node i to the k label of node y.
Here, i ∈ {1, 2, . . . , n}, with n being the number of input nodes, and k ∈ {1, 2, . . . , l},
with l being the number of labels defined.

In turn, wk represents the impact of all the input nodes to the k label of y. Again,
k ∈ {1, 2, . . . , l}.

The nodes N normalize the components of the impact, i.e.,

N (wi) = w̄i = wi
∑l

k=1 wk

, (2.58)

and play a similar role to the functions that normalize the firing strength of a rule to
the sum of all rules’ firing strength in layer 3 of the ANFIS model.

Finally, the node DF computes the crisp value of y based on the normalized impact
and the kernels of the labels as defined in the previous section:

Sc(vi) =
l∑

k=1

w̄i
k m

i
k . (2.59)
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Once the crisp value of y is computed, it can be used to compute the fuzzy state
of the node Sf (y), which in turn may be the input to a subsequent node in a net.

The net in Fig. 2.8 shows a similar structure to the ANFIS system depicted in
Fig. 2.7. This structure allows the entries of the relation matrices can be computed to
fit eventually available data from the process using the backpropagation algorithm,
with the only limitation being the piecewise continuity of the membership functions
to the fuzzy labels Jang (1993).

This approach enables the incorporation of a data-driven approach to the building
or refining of the models. The relevant variables along with the type of relations
among the variables could be provided by experts, while the concrete values of the
entries of the matrices Rij along with the weights ρij could be computed applying the
backpropagation algorithm to the resulting graph.
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Chapter 3
Control of Lower-Level Dynamic Layers

As discussed in Chap. 1, the lower-level layer deals with the implementation details
of the process, and the objective of the control layer is precisely to make sure that
the low-level process variables actually attain and remain at the values prescribed by
the higher-level controller of the plant.

In this layer, we can generally assume that we have appropriate online sensors for
the variables, so that lack of data does not constitute an impediment for the control
task. The only exception to this assumption will be considered in Sect. 3.2.2 when
we talk about Run-to-run control, which is precisely used for situations in batch
production where certain measurements are scarce.

Two types of processes are considered here: continuous operation processes,
where there is an unending operation and materials are constantly being fed into
and removed from our system; and batch operation processes, where the output
product comes out in groups at certain instants of time and the operation can be
divided into a sequence of different steps that take place one after the other, i.e.,
feeding of materials, mixing, heating, and emptying.

The control ideas that are applied to continuous process control can also be applied
to the operation of batch processes, as set-point tracking and disturbance rejection
are relevant problems for these processes as well. However, the iterative nature of
batch processes may allow to learn something from one batch and incorporate that
knowledge into the next batch. That is the idea behind Iterative Learning Control,
which will be covered in Sect. 3.2.1.
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3.1 Control of Continuous Processes

The control of the lower layer of continuous processes for food industry is very
similar to the problems and challenges posed by process control in the chemical
industry. Indeed, the process objectives of obtaining consistent quality products with
high productivity and at minimum operating costs are shared for these industries, as
are the existence of delays and measured and unmeasurable disturbances.

We begin presenting the PID controller which is reported to be responsible for
more than 90% of the low-level control loops in industry. Then, the basic trade-off
between reference tracking and disturbance rejection motivates the consideration of
a more general control structure that allows more freedom to choose the response
of the system to changes in the set-point. Thus, two-degree-of-freedom control is
introduced and its advantages over simple error feedback controllers are discussed.
Finally, the last section presents feedforward control as a technique to make use of
information provided by additional sensors to counteract the effect of disturbances
that may have a large influence in the output in the process.

3.1.1 Basic PID Control

Proportional-Integral-Derivative (PID) control is the bread and butter of control engi-
neering. The PID controller is relatively simple to understand as its actions have a
very clear intuitive interpretation, yet it presents a remarkable effectiveness for pro-
cesses with benign dynamics.

A basic PID controller can be expressed as:

u(t) = KPe(t) + KI

∫ t

0
e(τ )dτ + KD

de(t)

dt
. (3.1)

The denomination Proportional-Integral-Derivative controller is quite obvious
in the light of Eq. (3.1), which shows that the control action is computed simply
applying these operations to the error and just adding them. The first addend is
called the proportional action and is used mainly to increase the speed of response
of the controlled system; the second term is called the integral action and provides a
means to completely eliminate the steady-state error for step inputs in the reference
and disturbances; the third element is the derivative action and helps to reduce the
oscillations that may arise from the inclusion of the integral action or due to relatively
high values of the proportional gain KP .

There are different procedures that help to select appropriate values for each
of the parameters of the controller—KP , KI , and KD—according to the degree of
knowledge about the process that the control engineer may have. The main strategies
can be classified into three major approaches: heuristic, experimental, and analytical.
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Heuristic in-line tuning of the parameters is fairly common and can be carried
out by expert operators for benign plants. The idea is just to perform an educated
trial-and-error procedure with the controller parameters having in mind the influence
that each of them have in the control signal. The typical procedure begins setting
KI and KD to zero and selecting a value of KP that provides roughly the required
bandwidth without having excessive oscillations. Then, if the output is not too noisy,
some derivative action can be added to dampen these oscillations. Once that the
response is satisfactory, the integral gain (KI ) is increased until the steady-state error
is removed at a convenient pace. The influence of the parameters will be revisited
when the analytic design methods are presented, and some further insight into the
influence of each of the control will be acquired.

Experimental methods, on the other hand, rely on the identification of some fea-
tures of the plant to provide the values for the parameters of the controller. The
autotuning algorithms that are usually available in commercial PID controller typ-
ically use this approach. The most famous method is the one proposed by Ziegler
and Nichols; however, it is far from being the only one—or even the one to pro-
vide the best parameters—as many variations and alternatives have been proposed
in the control literature. These methods all share the advantage of requiring a modest
amount of knowledge of control system theory to tune a satisfactory controller and a
moderate experimental burden. These methods typically require to perform a simple
experiment on the plant in order to identify some specific parameters upon which
the value of the controller parameters is computed. Some of these methods will be
presented in the next sections.

Finally, analytic methods take a more general approach to the controller design
problem and are also applicable to more general structures than the one imposed by
the PID. For these methods, the PID controller is seen as an integrator and two zeros
to be placed so that certain performance and robustness specifications are met. The
advantages of these methods are that they are very flexible and allow to design the
controller based on constraints derived from the target closed-loop behavior of the
system. The disadvantages are that they are more complex than the previous two
approaches and require a better hold of the concepts and theory of automatic control
and that a somewhat more detailed model of the process might be required, thus
demanding a higher workload in the identification of the system.

3.1.1.1 Experimental Tuning Methods

The Ziegler–Nichols tuning rules are probably the best known tuning algorithms for
undergraduate students having their first course on control engineering; their practical
interest, however, is not as high as their academic popularity. These tuning rules
typically provide poor transient responses to set-point changes, adequate disturbance
rejection capability, and poor robustness margins. Yet they provide a quite good
framework to develop and explain some ideas fundamental to control engineering
and encompass all the aspects that an experimental tuning method have, so we will
begin presenting them.



60 3 Control of Lower-Level Dynamic Layers

Ziegler and Nichols proposed two different methods. The first is based on the
open-loop step response of the plant and requires the identification of the parameters
of a first-order plus dead-time (FOPDT) model, so this method is only applicable to
systems that exhibit a monotonic step response. The second method is based on the
determination of the so-called ultimate gain and the ultimate period. The ultimate
gain is the value of gain that provokes sustained oscillations of the closed-loop
system, while the ultimate period is precisely the period of those oscillations. The
experimental determination of these parameters requires to perform a closed-loop
experiment with a proportional controller whose gain is progressively being turned
up until the oscillations are sustained.

The Ziegler–Nichols tuning methods are sometimes regarded to as the open-loop
and closed-loop methods, respectively. It is important to stress that open loop and
closed loop refer to the conditions of the experiment that needs to be performed; the
controllers are always implemented in a closed-loop control scheme, independently
of the method used to obtain their parameters.

Figure 3.1a shows the sigmoidal step response and how to graphically determine
the parameters of the FOPDT model. Table 3.1 includes the values of the parameters
for the different types of controllers according to the experimental values of K , T ,
and L obtained. In turn, Fig. 3.1b shows how to graphically determine the ultimate
period (Tcr ), with the corresponding tuning parameters included in Table 3.2.

As commented before, the performance of the Ziegler–Nichols PID controllers
is not completely satisfactory—although they are reported to still be widely used in
industry.Another popular tuning rule that provides a slightly improved robustness and
good disturbance rejection is the Cohen-Coon method. The method is also based on
the identification of a FOPDTmodel, and the corresponding parameters are included
in Table 3.3.

It is worth noting that both the Ziegler–Nichols and the Cohen-Coon provide a
better behavior for load disturbance rejection than for set-point changes. To further
illustrate this point, we can mention the tuning methods proposed by Chien, Hrones,
and Reswick that explicitly provided different parameters depending on whether the
designer assigns a greater importance to load disturbance rejection or stress a gentle
transient response to changes in the set-point—the proposed parameters, again based
on a FOPDT model, are included in Tables 3.4 and 3.5.

The reason for this explicit distinction is that there is a fundamental trade-off in
error feedback controllers that does not allow to have good disturbance rejection and
gentle set-point tracking at the same time. The fact that disturbance rejection is almost
always more important for process control than set-point tracking, as the set-points
change only sporadically, justifies the emphasis on disturbance rejection usually
found in experimental tuning rules. In order to obtain good performance for both
disturbance rejection and set-point tracking,weneed amore general control structure:
the so-called two-degree-of-freedom control that will be presented in Sect. 3.1.2.

Figure 3.2 shows the behavior of three PID controllers tuned using the open-loop
Ziegler–Nichols (ZG), Cohen-Coon (CC), and 20% overshoot regulation Chien–
Hrones–Reswick (CHR) methods for a second-order plant with a small delay. As
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Fig. 3.1 Experimental plots
for the Ziegler–Nichols
tuning rules
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(a) Response of an step test used for the open
       loop Ziegler-Nichols tuning method.
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(b) Sustained oscillations for the closed
   loop Ziegler-Nichols tuning method.

Table 3.1 Open-loop test
Ziegler–Nichols tuning rules

Controller Kp Ti Td

P 1
K

T
tm

∞ 0

PI 0.9
K

T
tm

3.33tm 0

PID 1.2
K ( T

tm
) 2tm 0.5tm

depicted in the figure, the response of the controllers is similar, yielding quite large
overshoots but satisfactory disturbance rejection capabilities.

The weak robustness margins offered by the experimental tuning rules are due
to an aggressive tuning based on a specification aiming for a quarter decay ratio for
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Table 3.2 Closed loop test Ziegler–Nichols tuning rules

Controller Kp Ti Td

P 0.5Kcr ∞ 0

PI 0.45Kcr Tcr/1.2 0

PID 0.6Kcr 0.5Tcr 0.125Tcr

Table 3.3 Cohen-Coon tuning rules, where r = tm
T

Controller Kp Ti Td

P 1
K r

(
1 + r

3

) ∞ 0

PI 1
K r

(
0.9 + r

12

)
tm

30+3r
9+20r 0

PID 1
K r

(
0.75 + r

4

)
tm

32+6r
13+8r tm

4
11+2r

Table 3.4 Chien–Hrones–Reswick tuning rules for disturbance rejection

No overshoot 20% overshoot

Controller Kp Ti Td Controller Kp Ti Td

P 0.3 T
K tm

∞ 0 P 0.7 T
K tm

∞ 0

PI 0.6 T
K tm

4tm 0 PI 0.7 T
K tm

2.3tm 0

PID 0.95 T
K tm

2.4tm 0.42tm PID 1.2 T
K tm

2tm 0.42tm

Table 3.5 Chien–Hrones–Reswick tuning rules for set-point tracking

No overshoot 20% overshoot

Controller Kp Ti Td Controller Kp Ti Td

P 0.3 T
K tm

∞ 0 P 0.7 T
K tm

∞ 0

PI 0.35 T
K tm

1.2tm 0 PI 0.6 T
K tm

tm 0

PID 0.6 T
K tm

tm 0.5tm PID 0.95 T
K tm

1.4tm 0.47tm

the amplitude of the effect of the disturbances. Next section presents some analytic
methods for the tuning of PID controllers and introduces in greater detail the notion
of robustness, its measures, and the associated trade-offs worth taking into account
the controller design process.

3.1.1.2 Robustness and Frequency Analysis

A fundamental idea in feedback control is that the models that can be obtained from
the real plant are accurate only up to a certain point and there is always a mismatch
between the real process and our model of it. Furthermore, different phenomena
such as wear, dirt accumulation, or fouling can alter the dynamics of the process, so



3.1 Control of Continuous Processes 63

0 100 200 300 400 500 600 700 800 900 1000
time (s)

0

0.5

1

1.5

2

ou
tp

ut
ZG
CC
CHR
ref

0 100 200 300 400 500 600 700 800 900 1000
time (s)

-2

0

2

4

6

8

10

u

ZG
CC
CHR

Fig. 3.2 Response of PID controllers tunedwith the open-loop Ziegler–Nichols (ZG), Cohen-Coon
(CC), and 20% overshoot regulation Chien–Hrones–Reswick methods (CHR). At t = 500, a load
disturbance enters the system

having an accurate model at the identification stage does not necessarily guarantee
having an accurate model some time into the normal operation of the plant.

With this idea in mind, it is natural to ask to what extent the controller that we
design will perform properly in the real plant. This is precisely the notion behind
robustness. Informally, robustness is concerned with what margin we have for the
actual plant to be different from the model that we used to design the controller,
usually called the nominal plant. The first concern is whether the controller will
guarantee a stable closed loop system, and the second is whether the performance
specifications that are achieved in the nominal plant will be also obtained in the actual
plant. The idea is so appealing that specific methods, commonly known as robust
control methods, have been developed to design controllers that guarantee explicit
margins given a nominal plant and an uncertainty model. The interested reader can
find more on this topic in the books (Skogestad and Postlethwaite 2005; Doyle et al.
2009; Zhou and Doyle 1997). Here, we will restrict our attention to some measures
of stability robustness.

In order to introduce these stability measures, we need to present frequency anal-
ysis. A somewhat intuitive idea as to why frequency analysis is useful is provided
by considering that any sufficiently smooth function can be, using Fourier series,
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decomposed into a sum of sine function. If we know how each of those sine function
is treated by our plant, we can know how a function composed of those elements will
be treated, as we are assuming that our plant is linear and the superposition principle
applies.

The response of a LTI system to sine function can be studied analyzing the value
of the transfer function that models the system G(s) for points in the imaginary
axis, i.e., s = jω. Two very common plots that are used to analyze the frequency
behavior of LTI system are the Bode and Nyquist plots. Both plots represent the
complex number G( jω). The Bode plot is composed of two graphs with a common
abscissa that represents the frequency ω, usually in a logarithmic scale. The upper
plot represents the magnitude of G( jω), usually in decibels, while the lower plot
represents its phase. In turn, the Nyquist plot uses a polar representation of G( jω),
so the abscissa represents the real part of G( jω) and the ordinate represents its
imaginary part. Each point of the Nyquist plot corresponds to a certain frequency
ω. Figure 3.3 shows the Bode and Nyquist plots.

An interesting property of the frequency analysis is that it allows to infer proper-
ties of the closed-loop system analyzing the loop transfer function L(s) = C(s)P(s).
The theory support for the conditional stability margins is provided by the Nyquist
theorem. The theorem states that for stable open loop plants, the Nyquist plot of
the loop transfer function L(s) must not have any encirclements of the point −1,
usually known as the critical point. There is also a more general theorem applica-
ble for unstable open-loop plants; however, since most of the plants found in food
transformation processes are open-loop stable, we restrict our attention to this case.

Figure 3.3 shows Bode and Nyquist plots with a graphical depiction of the three
major stability margins: the phase margin φm , the gain margin gm , and the stability
margin sm . The phase margin φm measures how much we need to rotate the Nyquist
plot, keeping the magnitude constant, to touch the critical point. It is related to what
amount of extra delay the system can tolerate without losing the stability. The gain
margin gm specifies how much can the open-loop gain be increased while leaving
the phase unchanged, so it quantifies the room for errors in the estimation of the
static gain of the plant. Finally, sm provides the shortest distance from the plot to the
critical point and captures in a single number the robustness of the design. Typical
desired values for these margins are 45–60◦ for φm , 2 for gm , and 0.5 for sm .

Similar to the discussion on the effect of the actions of the PID on the temporal
response of the closed-loop system, we can provide some rules of thumb on the
effect of the actions on the stability margins of the system. For this analysis, it is
more convenient to express the PID controller using an alternative factorization of
the parameters of the controller:

u(t) = KP(e(t) + 1

Ti

∫ t

0
e(τ )dτ + TD

de(t)

dt
. (3.2)

A straightforward comparison of this equation with Eq. (3.1) shows that the rela-
tion between the parameters are simply KI = KP

T i and KD = KP Td . Figure 3.4 shows
the Bode diagrams of PI and PID controllers with different parameters and is useful
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Fig. 3.3 Nyquist and Bode plots showing the phase, gain, and stability margins

for visualizing the following discussion. The general idea is that a more aggressive
tuning of the controller means poorer stability margins. An increase of the propor-
tional gain KP typically reduces all the margins, as it pushes upward the magnitude
plot of the Bode diagram while leaving the phase plot unchanged. This means that
ωc—the frequency where the magnitude is 1—is moved to the left, where there is
typically a lower value of phase, thus decreasing the phase margin φm . As the phase
does not change, ωpc—the frequency where the phase is −180◦—remains constant;
however, the magnitude |G( jωgc)| is increased, so the gain margin gm will also be
reduced.

The inclusion of integral action implies including an integrator in the loop transfer
function, which means that the phase at low frequencies will be reduced by 90◦. The
lower the value of TI , the further to the right that the phase gain induced by the zero
begins to counteract the effect of the integrator, thus acting negatively on the phase
margin φm .

The inclusion of derivative action, on the other hand, provides anotherboost for the
phase, thus potentially increasing the phase margin of the system. For this parameter,
the higher Td , the further to the right that the zero begins to influence the system,
thus providing a smaller increase of the phase margin. The other side of the coin is
that having the zero further to the right means that its associated magnitude increase
begins later, thus providing a lower increase of the high frequency gain, which is a
desirable feature.

3.1.1.3 Analytic Design Methods

The starting point for analytic methods is having a model of the plant. This model
may have been obtained using a simple step response test, similar to the ones used for
the experimental tuning methods, or it may arise from a more complex and accurate
System Identification procedure like the ones presented in Chap.2.



66 3 Control of Lower-Level Dynamic Layers

Fig. 3.4 Bode plots of a PI
and a PID controller, with
different parameters. An
increase of the gain moves
the magnitude upward while
leaving the phase constant
(plot (a), red line). A
decrease of Ti moves the
phase to the right (plot (a),
green line). An increase in
Td moves the phase to the
right (plot (b), red line)
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(b) PID controller.

Many of the analytic design methods to be presented below provide controllers
whose complexity is directly related to the complexity of themodel. Since the number
of parameters and the complexity of a PID is limited, so should be the models
employed in these methods. Furthermore, other methods assume a certain specific
type of model for their procedure to be applicable, typically FOPDT or SOPDT—
second-order plus dead-time —models. In order to use any of these approaches, it
is important to perform a model reduction procedure if our initially available model
of the system is too complex. Having an initial complex model, however, is not
harmful; on the contrary, having an accurate description of the plant helps being
aware of the limitations of what is reasonable to expect of the closed-loop system,
thus providing useful insight for making an educated decision when fixing its desired
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performance specifications. Many of the methods employ these specifications as the
design parameters, so choosing them wisely is capital for a successful design.

The fundamental common idea of analytic methods is to choose a target closed-
loop behavior and compute the required parameters of the controller using the avail-
able model of the plant. The differences between the methods mostly lie in how they
choose that target loop. Next, we present the pole placement, lambda tuning, and
Internal Model Control methods.

PolePlacement. Pole placement is a simplemethod that containsmost of the com-
mon features of the analytic design approach and is useful to illustrate the design
trade-offs. The idea is that the closed-loop behavior of the system is strongly influ-
enced by the location of the poles of T = PC

1+PC , so the parameters of the controller
are chosen so that these poles lie in desired locations.

Let us start considering a first-order model of the plant and a PI controller:

P(s) = K

τ s + 1
,

C(s) = KP

(
1 + 1

Ti s

)
= KP(s + 1/Ti )

s
.

Then, the closed-loop transfer function T is given by:

T (s) = KKP(s + 1/Ti )

s(τ s + 1) + KKP(s + 1/Ti )
=

KKP
τT i (Ti s + 1)

s2 + 1+KKP
τ

s + KKP
τTi

We can equal the characteristic polynomial with a standard second-order character-
istic polynomial expressed as s2 + 2ξωns + ω2

n and get:

KP = 2ξωnτ − 1

K
,

Ti = 2ξωnτ − 1

ω2
nτ

.

These expressions provide explicitly the parameters of the controller as functions
of ωn that controls the speed of the response and ξ that influences the shape of the
response. Note, however, that we are not free to fully specify the closed-loop behavior
because T has a zero in −1/T i that will also influence the shape of the response
to changes in the reference. A large value of ωn also improves load disturbance
rejection; however, a limit on the realistically achievable ωn is set both by physical
limitations of the actuator, restricting the maximum value of KP and the effect of
unmodeled dynamics.

Since the loop transfer function is

L(s) = KKP(s + 1/Ti )

s(τ s + 1)
=

KKP
Ti

(Ti s + 1)

s(τ s + 1)
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we could use the parameter Ti = τ to cancel the pole of the plant, which would result
in a first-order closed-loop transfer function, where we could choose KP to place the
closed-loop pole according to the required speed of response:

T (s) = 1
Ti

K KP
s + 1

.

This election provides a full control of the closed-loop transfer function to a step
response without overshoot. However, a closer look at the transfer function from the
load disturbances to the output shows that the pole of the plant is not canceled. This
is not troublesome if this pole is fast; however, if it is a slow pole, then the rejection
of load disturbances will be very sluggish.

The fact that the poles of the closed-loop transfer function could be located arbi-
trarily is due to the fact that the PI controller has two parameters, which is enough
to freely choose the roots of a second-order polynomial. Since the PID controller
has three parameters, it will allow to arbitrary choose the location of the roots of a
third-order polynomial, thus allowing to freely choose the closed-loop poles for a
second-order plant—note that the controller includes an integrator, thus increasing
in one the order of the characteristic polynomial of the closed-loop system.

The most general plant whose closed-loop poles can be arbitrary placed, thus, can
be expressed as

P(s) = b1s + b2
s2 + a1s + a2

This plant can be controlled with a PID controller expressed as

C(s) = k + ki
s

+ kds

to yield the following closed-loop transfer function

T (s) = (b1s + b2)(kds2 + ks + ki )

(s + αωn)(s2 + 2ξωns + ω2
n)

.

Here, the design parameters are α, ξ , and ωn . Under this setup, the parameters of the
controller are given by the following expressions:

k = a2b22 − a2b1b2(α + 2ξ)ωn − (b2 − a1b1)(b2(1 + 2αξ)ω2
n + αb1ω3

n)

b32 − b1b22(α + 2ξ)ωn + b21b2(1 + 2αξ)ω2
n − αb31ω

3
n

ki = (−a1b1b2 + a2b21 + b22)αω3
n

b32 − b1b22(α + 2ξ)ωn + b21b2(1 + 2αξ)ω2
n − αb31ω

3
n

kd = −a1b22 + a2b1b2 + b22(α + 2ξ)ωn − b1b2ω2
n(1 + 2αξ) + b21αω3

n

b32 − b1b22(α + 2ξ)ωn + b21b2(1 + 2αξ)ω2
n − αb31ω

3
n
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Again, we can choose the poles, but the location of the zeros will be fixed. Two-
degree-of-freedom control allows to maintain the good load disturbance rejection
properties while improving the response to step commands and will be presented in
Sect. 3.1.2.

Lambda Tuning. Lambda tuning is a common design method for process control
and can be thought of as a special case of pole placement. The plant model used is
FOPDT:

P(s) = K

τ s + 1
e−Ls . (3.3)

The idea of the method is to approximate the delay term and design a PI or PID
controller—depending on the approximation used for e−Ls—that cancels the plant
pole and sets a time constant the closed-loop system given by λ, which is the design
parameter of the method. The comment about the unsuitability of canceling slow
poles due to their effect on load disturbance rejection should be considered for this
method as well.

For the design of a PI controller, the delay is approximated using the first term
in a Taylor series expansion: e−Ls ≈ 1 − Ls. Choosing Ti = τ and requiring the
closed-loop pole to be at −1/λ yield the tuning rule:

KP = 1

K

τ

L + λ
,

Ti = τ.

The design of a PID controller uses the Padè approximation of the delay:

e−Ls ≈ 1 − L
2 s

1 + L
2 s

. (3.4)

This way the plant has two poles that will be canceled with the zeros of the controller.
Let the PID controller be expressed as:

C(s) = KP
(1 + sTi )(1 + sTd)

Ti s
,

then the tuning rules are given:

KP = 1

K

τ
L
2 + λ

,

Ti = τ,

Td = L

2
.
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Fig. 3.5 Internal Model Control

Internal Model Control. Internal Model Control (IMC) is a control design
approach that explicitly incorporates a model of the plant in the controller struc-
ture. As commented above, the complexity of the controller is directly related to
the complexity of the model of the plant, so although this control design technique
typically provides controllers whose structure is more complex than a PID, it can
also yield PID-like controllers if appropriate approximations of the plant model are
carried out.

Figure 3.5 depicts the block diagram for the IMC paradigm. The controller is
composed of three different transfer functions: P̂ , P̂†, and G f . P̂ is simply a model
of the plant, with the overbar notation explicitly stating that the model will have
some mismatch with the actual plant, while P̂† is an approximate inverse of P̂ . G f ,
in turn, is a low-pass filter that allows to explicitly take into account the robustness of
the design. The convenience of the inclusion of this filter is easily seen considering
the frequency response of P̂†. P̂ is a model of a real physical plant, and as such will
have very low values of gain in the high frequency band. On the other hand, P̂† is
an approximate inverse of this model, so it will show high gain in these same high
frequencies. In order to have a control signal u that does not have too much energy
in these high frequencies, it is wise to filter those components from the input to P̂†,
thus the adequacy of including G f .

Although innocent at first sight, the computation of an approximate inverse of a
plant is a sensitive topic that requires some care in order to arrive at a solution that
is both physically plausible and sufficiently accurate. A simple example to illustrate
the difficulties of finding a plant inverse is to consider a FOPDT model. The time
delay element cannot be exactly inverted, as it would require to foresee the future
value of the input. The next step might be to consider a Padè approximation of the
delay term and try to invert it. This approximation, given in Eq. (3.4), contains a
zero in the right half-plane, so its inverse would be unstable, as it would contain a
right-half-plane pole. It is not a good idea to have signals in the process that grow
unbounded, so it is not desirable to consider an unstable inverse.

For nonminimum phase systems, the usual approach is to use a stable pole that
is the specular image of the unstable zero. If we used this criterium for the Padè
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approximation of the delay term, we would end up with a term that is simply 1, as
the pole in the Padè approximation is precisely located at the specular reflection of
the pole. For a FOPDT model expressed as Eq. (3.3), a commonly used inverse is

P̂† = 1

K

1 + τ s

1 + τ
N s

, (3.5)

with N providing the frequency range where the approximation is accurate. As can
be seen, no term is included to account for the delay. The reason to include the
denominator term is to achieve a strictly proper transfer function that can be actually
physically deployed.

For the IMC control paradigm, P̂† is in series with G f , so a simpler inverse

P̂† = 1 + τ s

K
(3.6)

can be considered, as the transfer function G f P̂† will indeed be at least strictly
proper if G f is of order 1 or more.

The IMC control structure can be shown to be equivalent to a controller with the
expression

C(s) = G f P̂†

1 − G f P̂† P̂
. (3.7)

In fact, if the plant P̂ is a FOPDT model, P̂† is taken as Eq. (3.6) and G f is chosen
as a first-order filter

G f = 1

1 + τ f s
, (3.8)

the controllers provided by this method coincide with those proposed by the lambda
tuning method if τ f = λ, and the delay term in P̂ is approximated accordingly.
However, this method provides a more general framework that can tackle more
complex models of the plant at the expense of providing more complex controllers.
Finally, this method includes an implicit cancelation of the poles of the plant, so poor
rejection of load disturbances is expected if there are open-loop poles that are much
slower than the closed-loop poles.

Figure 3.6 shows the response of different controllers tuned according to the rules
presented in the section for a SOPDT plant. The upper plot shows the scenario when
the plant contains a pole that is substantially slower than the time constant of the
controlled system. As commented above and depicted in the plot, the cancelation of
this pole induced by the lambda tuning and IMC methods provokes a very sluggish
rejection of load disturbances. This effect is not present in Figure 3.6b, where the
plant poles and the time constant of the controlled system are of the same order of
magnitude. The reader can findmore details of PID tuning techniques in the excellent
books (Astrom and Hagglund 2006; Visioli 2010).
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(a) The plant contains a pole that is much slower
        than the closed loop time constant.
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       slower than the closed loop time constant.

Fig. 3.6 Comparison of the step responses and load disturbance rejection for controller using pole
placement, lambda tuning, Internal Model Control, and open-loop Ziegler–Nichols methods
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3.1.1.4 Integrator Windup, Derivative Kick, and Bumpless Transition

The previous sections provide guidelines to design PID controllers for varying
degrees of knowledge about the plant. There are, however, some practical details
that need to be considered when actually implementing a PID controller in an indus-
trial facility. The most important phenomena that should be born in mind in the
implementation stage are known as integrator windup, derivative kick, and bumpless
transition.

Integrator windup. A basic premise of the theory underlying the design of feedback
controllers is that the plant is a linear time-invariant (LTI) system. Although this is
rarely the case for real plants, it is a very good approximation for most systems
under feedback control, since the control precisely deals with keeping the output of
the system close to the set-point, thus maintaining the system close to an operating
condition where a linearized model can be identified.

However, the fundamental limitation on the range of values actually achievable by
the manipulated variable due to the limited size of real actuators conveys a nonlinear
behavior that must be considered for the actual implementation of PID controllers.

The phenomenon is called integratorwindup and is provoked by the increase of the
integral term of the controller when the control signal is beyond the saturation limit.
In these circumstances, the controller output is greater than the value that the actuator
can actually apply to the physical plant, which is limited precisely by the saturation
limit. While the error keeps the same sign, the integral action keeps increasing and
so does the controller output; however, the actual actuation to the plant is constant, as
it is limited by the saturation. When the error finally changes sign, the integral term
starts to decrease and so does the controller output; however, the actual control signal
applied by the actuator is kept constant until the controller output reaches a value
that is lower than the saturation limit. This behavior introduces a delay between the
intent of the controller to decrease the manipulated variable and its actual decrease,
thus provoking a sluggish and oscillatory response of the controlled variable.

There are many different techniques proposed in the literature to counteract this
behavior.Maybe the simplest to understand is limiting the increase of the integral term
when the output is saturated. This can be easily achieved in the digital implementation
of the controller simply including an appropriate if-then clause that checks if the
controller output is to provide a value that is beyond the saturation limit of the
actuator. If that were the case, then the integral accumulation term should not be
further increased, but kept constant.

Figure 3.7a shows the behavior of a PI controller with and without an antiwindup
scheme. The control signal reaches the saturation level quickly after the step in
the reference; however, the controller with the antiwindup scheme returns to the
linear regime earlier and yields a lower overshoot, noticeably improving the system
response.

Derivative kick. Another implementation detail that is typically overlooked at the
controller design stage is the so-called derivative kick phenomenon. This effect is
fairly simple to understand and is provoked by the sudden change in the error that
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is provoked by a change in the set-point, thus providing a very large instant value of
the derivative of the error. If derivative action is used in the controller, this means
that a very large spike is expected due to this high value of the derivative. This is
not a desirable behavior, as it might damage the physical actuators of the plant. The
solution to this problem is actually quite simple: It is enough to use the derivative of
the output instead of the derivative of the error to drive the derivative action. Since
the error is given by

e(t) = r(t) − y(t)

if r(t) is constant, as is usually the case for food transformation processes, then the
derivative of e(t) is equal to the negative derivative of y(t)

de(t)

dt
= dr(t)

dt
− dy(t)

dt
= −dy(t)

dt
.

Figure 3.7b shows the derivative kick and the behavior of the system for a PID
controller that uses the output to compute the derivative term of the controller. As
depicted in the plot, the control signals show a significantly slower spike when the
PID controller is used.

Bumpless transition. Real process plants are sometimes operated using the con-
trollers in manual mode; that is, the control input value is decided directly by the
operator. When the controller is changed frommanual to automatic mode, some care
must be taken so that an undesirable transient is not induced in the plant. The idea
is that the output of the PID controller should match the value of the manipulated
variable at the transition instant tc. In order for this to be so, the integrator term should
be recomputed just before the transition is made. Let us assume a PI controller for
simplicity, then we have that the controller output is given by

u(t) = KPe(t) + KI

∫ t

0
e(τ )dτ = KPe(t) + KI I (t).

We can easily force the controller to provide an output u(tc) = uc simply adjusting
the term I (t) which provides the value of the integral of the error

Ic = uc − KPe(tc)

KI
.

This forces the output of the controller to match the value of the manipulated variable
and assures that no transient due to the internal state of the controller will affect the
plant. Figure 3.8 shows the output of a plant for a manual–automatic switch for a case
when no precautions have been made in the commutation and when the presented
bumpless commutation strategy is employed.
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Fig. 3.7 Integrator windup and derivative kick effects in PI controllers
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Fig. 3.8 Effect of the inclusion of a bumpless commutation strategy to a PI controller

3.1.1.5 Effect of Measurement Noise

The inclusion of feedback has many advantages; however, some tolls have to be paid
in order to reap the benefits. The first is a purely economic one, as an investment
in a sensor is required to properly close a feedback loop on the variable of interest
of the plant. The second is inherent to the ability of having different poles in the
closed-loop system than the ones in the plant. This allows to stabilize open-loop
unstable plants, but also opens the door for the converse case: Open-loop stable can
be made unstable if the controller is not properly designed. This concern motivated
the robustness analysis presented in the previous sections.

The last issue provoked by the inclusion of feedback is connected with the fact
that every measurement inherently includes some level of noise. Feedback control
employs the measurements of the output variable to make decisions about the appro-
priate value of the manipulated variable, so the measurement noise will exert some
influence on the behavior of the manipulated variable. It is thus important in the
design of the controller to analyze the impact of the measurement noise on the con-
trol signal and assure that it is maintained within acceptable levels.

Frequency analysis is again the most useful tool to analyze the implications of
this noise in the control signal. Measurement noise typically concentrates its energy
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content in the high frequency bands, so it is important that the transfer function that
relates the noise with the control signal does not have large gain values for the high
frequency bands. This transfer function is

Gun = C

1 + PC
. (3.9)

Given the typical high-frequency roll-off present in real process plants, this transfer
function can be approximated as Gun ≈ C for the high frequencies, which suggests
that the high frequency gain of the controller should be limited. This is indeed the
case and provides support for the necessity of filtering the derivative action in a PID
controller.

Figure 3.9 shows the Bode diagrams of Gun and C for a plant P = and a PID
controller when the controller is and is not filtered. The time response plots to a
simulated high-frequency noise show the convenience of including the filtering in
the controller.

3.1.2 Two-Degree-of-Freedom Control

In continuous operations of food processes, the set-point is typically held constant
for long periods of time and the main control objective is to reject the disturbances
that may enter the process. Set-point tracking is, thus, not usual in these processes;
batch processes, on the other hand, do typically require variables to follow certain
trajectories until a steady condition is reached.

Several discussions in the previous section pointed out that there is a fundamental
trade-off between having good transient response to changes in the set-point and
rejecting load disturbances satisfactorily. In fact, the Chien, Hrones, and Reswick
experimental tuning rule explicitly provided twodifferent rules dependingonwhether
set-point transient response or load disturbance rejection is given more importance.

The good news is that this trade-off applies to error feedback systems, but not
to a more general control structure called two-degree-of-freedom control. The main
idea is to filter the reference before the error signal is constructed, with this filter F
providing an extra degree of freedom that can be used to improve the response of the
system to set-point changes. There are caseswhere this control scheme cannot be used
because the reference and the plant output are not available and only the error signal is
accessible; however, these cases are extremely rare in food transformation processes.
Another possible reason that may prevent from using two-degree-of-freedom control
is that there is already available dedicated control equipment does not allow it. In any
other case, there is no real reason not to use this control approach, as it requires no
additional hardware, does not complicate too much the control system, and allows to
decouple the set-point tracking and load disturbance rejection problems. When two-
degree-of-freedom control is used, the first step in the design process is to select a
feedback controller C that provides good load disturbance rejection capabilities and
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Fig. 3.10 Basic block diagram for the inclusion of two-degree-of-freedom control. The block F
filters the reference before the error signal is computed

appropriate robustness margins. Then, the filter F is selected to provide appropriate
response to set-point changes.

Figure 3.10 shows a block diagram implementing two-degree-of-freedom
approach. Under this control scheme, the transfer function that relates the output
with the reference is

Gyr = PCF

1 + PC
.

Let the plant P , the controller C , and the filter F be given by

P(s) = nP(s)

dP(s)
; C(s) = nC(s)

dC(s)
; F(s) = nF (s)

dF (s)
,

then Gyr can be expressed as

Gyr = nC nP nF

(nC nP + dC dP)dF
.

This representation of Gyr provides some insight into how to use the filter F to
improve the transient response to set-point changes. The denominator of F—namely,
dF—appears as a factor of the denominator of Gyr , so it could be used to cancel the
terms of the numerator of Gyr that are inconvenient for meeting the performance
specifications. In a way, the filter F can be thought of as a tool to move the zeros
of Gyr to some desired locations provided by nF . There is, however, a subtle but
important difference between the cancelation of factors of nC and nP : The transfer
function of the controller C is chosen and implemented by the control engineer, so
there is precise knowledge of the exact locations of its zeros. This means that the
cancelations of these factors using dF will be exact. On the other hand, nP is only
part of a model of a real plant, so the cancelation of its factors can only be carried
out approximately, as the exact location of the plant zeros is not exactly known. It is
important, thus, to have some care when trying to cancel slow process zeros, as some
residual slow dynamics may appear in the resulting closed-loop transfer function if
the cancelation is not precise enough.

Abasic formof two-degree-of-freedomcontrol is provided by the set-pointweigh-
ing capability available in many commercial PID controllers. The control law imple-
mented by this type of controllers can be expressed as

u(t) = KP(br(t) − y(t)) + KI

∫ t

0
e(τ )dτ + KD

de(t)

dt
,
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where b is the set-point weighing parameter to be tuned. This configuration is equiv-
alent to the block diagram shown in Fig. 3.10 having a controller C and a filter F
given by

C(s) = KDs2 + KPs + KI

s
, F(s) = KP b s + KI

KDs2 + KPs + KI
.

According to the discussion above, this effectively means that we can use b to choose
the location of the closed-loop zero given by the controller. Using this controller for
the pole placement design approach presented in Sect. 3.1.1.3 for the plant

P(s) = b1 s + b2
s2 + a1 s + a2

yields a closed-loop transfer function given by

Gyr (s) = (b1s + b2)(KP b s + KI )

(s + αωn)(s2 + 2ξωns + ω2
n)

. (3.10)

Here, the values of KP , KI , and KD can be computed using the same formulas
presented as functions of α, ξ , and ω0; however, now there is freedom to locate
one of the closed-loop poles of Gyr choosing b accordingly. Figure 3.11 shows the
behavior of the system for different values of b. As can be seen, having lower values
of b means less aggressive responses with less overshoot at the expense of a higher
rise time.

A more general two-degree-of-freedom scheme is shown in Figure 3.12, and it
includes a block that explicitly computes the steady-state value of u corresponding
to r . The closed loop transfer function is given by

Gyr = P(CMy + Mu)

1 + PC
= My + PMu − My

1 + PC
. (3.11)

This equation provides another point of view to design the transfer functions My and
Mu . The second equality shows that Gyr can be made to behave similar to My if the
fraction term is made small. This fraction can be made small either by having a large
denominator, i.e., 1 + PC being large or by choosing Mu so that the numerator is
small, i.e., having

PMu ≈ My . (3.12)

Having a small denominator is achieved by choosing C appropriately and has been
discussed extensively in the previous sections as is the key principle behind feedback
control. Making the numerator of the fraction small is a different approach that
requires a better knowledge of the behavior of P in order to include an approximate
inverse of it in Mu . This approach is very tightly connected with the feedforward
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Fig. 3.11 Inclusion of set-point weighting in the transient response of PI controllers
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Fig. 3.12 Complete block diagram for the inclusion of two-degree-of-freedom control. The block
My filters the reference before the error signal is computed, while the block Mu computes the
steady-state value for u according to r

control approach to be presented in the next section, so further comments on how to
choose appropriate values for Mu are delayed until the presentation of those ideas.

A final question of interest is to consider that, since it is typically desired that
the output variable y reaches the reference value r quickly, what could be done to
guarantee that this happens in the lowest possible time given the available actuators
and plant dynamics. This type of questions is addressed by optimal control and
will be covered in Chap.4 when Model Predictive Control (MPC) is presented.
For linear systems, a well-known result is that the optimal control strategy to have
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a minimum time response is given by the so-called bang–bang controller, which
commutes between the extremevalues of the control signal according to the dynamics
of the process model. If the plant controller is implemented using a digital computer,
this type of controllers can be easily included; commercial PID controllers, on the
other hand, do not typically provide this type of features.

3.1.3 Feedforward Control

Feedback controllers are the cornerstone of industrial control systems; however, they
act only when there is already a measurable error in the output. If the dynamics of the
system are such that the recovery from load disturbances is too slow, then it makes
sense to wonder if there is some other techniques that can be used to improve the
response of the system to these disturbances.

The idea of feedforward action is fairly simple, as it simply tries to account for the
influence that we expect that some disturbance will have on the output and correct the
value of the manipulated variable before this effect is actually seen on the output. In
order to implement this strategy, we need to know the magnitude of the disturbance
acting on the process; thus, additional sensors are required. The second requirement
is that, since we need to anticipate our response, we must have a good idea of how
the system is to behave due to the disturbance; thus, a reasonably good model of
the effect of the disturbance on the process must also be available. Notice here that,
although the model of this influence will never be perfect, the inclusion of feedback
action also helps to counteract the influence of these Modeling errors, thus easing
the precision requirements for this model.

Figure 3.13 depicts a feedforward control scheme where the plant P has been
factored into two components

P = P1 P2

in order to provide more flexibility for Modeling the inclusion of the measurable
load disturbance d in the control loop. Under this scheme, the closed-loop transfer
function is given by

P1C P2

Cff

+

d

- y

-
r

Fig. 3.13 Block diagram of the system including feedforward action. The plant P is factored into
two components P1 and P2 to allow a more general model of the inclusion of the disturbance d. The
block labeled C f f is the feedforward controller responsible for computing the feedforward action
u f f to compensate the effect of the measurable disturbance d
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Gyr = P1P2C

1 + P1P2C
(3.13)

and the transfer function from the disturbance to the output is given by

Gyd = P2(1 − P1 C f f )

1 + P1P2C
. (3.14)

Notice the similarity of this equation with Eq. (3.11). Analogously to what was
commented in Sect. 3.1.2, there are two ways to make this transfer function small:
forcing 1 + P1P2C to be large via designing C appropriately—i.e., the feedback
control approach—and having

P1C f f ≈ 1 (3.15)

so that the numerator is small. Equation (3.15) suggests thatC f f should be an inverse
of G1 in order to properly reject the influence of d. In Sect. 3.1.1.3, some comments
were included about the convenience anddifficulties of finding an inverse of a FOPDT
plant that can be actually implemented in practice. In general, plants that contain
nonminimum phase zeros are problematic, since their exact inverses are unstable
systems. The most common approach for these cases is to use the mirror reflection
of the unstable zero across the imaginary axis so that a stable inverse is obtained.
Another common issue with the construction of approximate inverses is causality, as
having a transfer functionwith a higher degree in the numerator than the denominator
cannot be implemented. The usual solution to this problem is to include additional
fast poles so that the approximate transfer function is strictly proper.

As commented in the previous section, feedforward control ideas can also be
applied to two-degree-of-freedom controllers, as the concept is essentially the same:
using knowledge about the value of an external signal—the measurable load dis-
turbance d for feedforward control and the reference r for two-degree-of-freedom
control—and a model of its influence on the output y to counteract its undesirable
effect before it can be actually measured via precomputing a supplementary control
action to be added to the feedback action.

The feedforward action is complementary to the feedback action, and it is wise
to use them together if the investment in extra equipment makes economic sense
supported the faster rejection of load disturbance and its influence on the quality of
the produced goods.

3.2 Control of Batch Processes

Manyof the challenges found in the automatic control of batch processes are common
to those in continuous process control. Batch processes are also subject to plant uncer-
tainty and are affected by disturbances that must be rejected, so feedback controllers
with appropriate robustness margins must be designed and implemented. The time-



84 3 Control of Lower-Level Dynamic Layers

limited nature of batch processes induces a special relevance to the set-point tracking
problem, as every batch will have a transient period where the system must evolve
from its initial condition to the corresponding steady-state operation values, usually
following a well-defined desired trajectory. Consequently, two-degree-of-freedom
control schemes are usually required to assure that these trajectories are followed
conveniently without compromising the load disturbance rejection capabilities of the
controlled system.

There is, however, a relevant distinctive feature of these processes that is not shared
with their continuous operation counterparts and that is the repetitive nature of batch
processes. Usually, once a batch operation is finished, an identical one is prepared
to be carried out. This provides the opportunity to examine the performance of the
batch that was just finished and find some guidance about how to improve the next
one; i.e., it offers the possibility to learn from past experiences in order to improve
the behavior of future batches.

There are two main approaches to systematically use these past experiences: Iter-
ative Learning Control and Run-to-run control. Iterative Learning Control is applica-
ble when the outputs of interest of the process are easily measured, and we can have
real-time measurements of their value, such as when dealing with temperatures or
other standard process variables. On the other hand, Run-to-run control is applicable
in situations where measurements are scarce and only available once that the batch
is already finished, as is usually the case when some complex quality feature is the
output variable of the process. The following sections detail these approaches.

3.2.1 Iterative Learning Control

Iterative Learning Control (ILC) is a control strategy that makes use of the repetitive
nature of a task to improve the system performance in future batches using informa-
tion about past iterations. The basic idea is to use a feedforward approach to modify
the reference signal or the manipulated variable so that errors that were observed in
previous iterations are compensated.

The analysis of ILC is helped by considering an additional dimension that accounts
for which iteration we are currently on. Typically, this dimension is denoted by an
iteration index k. The first time that the task is performed is assigned the index 0,
using 1 for the first time that ILC is actually applied, since before this iteration there
is no previous data that can be used to learn from.

In order to implement an ILC approach, the error and the applied control input
signals of previous iterationsmust be stored. Since these controllers are implemented
in digital computers, these signals need to be sampled and the data are only available
at given time instants. This setup is very naturally formulated using discrete-time
transfer functions, so those will be used in this section instead of the continuous time
transfer functions used in the previous section.

Figure 3.14 depicts two common alternatives for the deployment of an ILC
scheme. The upper configuration directly updates the control signal applied to the
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Fig. 3.14 Possible ILC schemes. The second is preferred, as it allows to be plugged into any
configuration

plant, while the lower configuration employs the ILC input to modify the actual
reference fed into the controller. Both configurations are equivalent; however, it is
often more useful to consider the second approach as there is no need to have direct
access to the manipulated variable. This allows to implement an ILC approach even
in cases where a nonaccessible commercial low-level controller is used, since only
the references that are passed to this controller need to be iteratively updated, and
those are typically more accessible.

Let P(z) designate the plant and C(z) the feedback controller. Let r(t) denote the
reference, y(t) the output, u(t) the manipulated variable computed by the controller
C(z), and uk(t) the signal generated by the ILC scheme. This way, according to Fig.
3.14 we can write

y(t) = T (z)
(
r(t) + uk(t)

)
. (3.16)

With this setup, the initial error is given by

e0(t) = r(t) − y0(t).

Note that r(t) does not include an iteration subindex, as it is implied that the reference
is kept constant during iterations. Indeed, the idea is to try to follow r(t) better with
each iteration using information about how we performed the previous iterations; in
order for this to be so, r(t) should not change between iterations. On the other hand,
for the first iteration it is common to take u0(t) = 0, as there is still no information
available that may suggest using any other values.

A simple analysis of the values of e0(t) can provide some initial insight into how
to use it for incrementally improving the tracking accuracy. The time instants where
the signal e0(t) is positive mean that output did not reach r(t), so u1(t) should be
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increased; conversely, if e0(t) is negative, u1(t) should be decreased so that y(t)
approaches r(t). This suggests using a simple proportional rule to update u1(t) for
the next iteration

u1(t) = u0(t) + Le0(t),

where L is the tuning parameter to be adjusted that determines how aggressively is
u1(t) modified. Following this approach, the general updating rule is given by

uk+1(t) = uk(t) + Lek(t). (3.17)

Using this equation, we can derive the following relations for the error ek+1:

ek+1(t) = r(t) − yk+1(t)

= r(t) − T (z) uk+1(t)

= r(t) − T (z)
(
uk(t) + L ek(t)

)

= r(t) − T (z) uk(t) − T (z) L ek(t)

= r(t) − yk(t) − T (z) L ek(t)

= ek(t) − T (z) L ek(t).

The last line can be rewritten as

ek+1(t) = (1 − T (z) L)ek(t), (3.18)

which provides a recurrence relation between ek+1 and ek that can be used to derive
the conditions for the convergence of the algorithm. If ‖1 − T (z) L‖ < 1, then the
error is guaranteed to decrease from one iteration to the next and eventually converge
to zero. If a model of T (z) is known, it can be used to choose an appropriate value
of L that guarantees the convergence of the algorithm.

Some valuable additional insight is provided by considering Eq. (3.18) in the
frequency domain. Let us suppose that P is modeled using a continuous time transfer
function T (z); then, we can generalize L to also be a transfer function L(z) instead
of a simple static gain. The convergence condition then states that

‖1 − T (z)L(z)‖ < 1. (3.19)

Furthermore, a closer look at Eq. (3.18) suggests that choosing L(z) as the inverse
of T (z) will provide perfect tracking in just one iteration. The difficulty of actually
implementing this theoretical result in practice is that, as with feedforward control,
T (z) may only be inverted approximately. There are, however, two advantages of
using an ILC scheme over just applying a feedforward filter. The first is that the
tracking error will decrease with each iteration if L(z) is chosen so that Eq. (3.18) is
fulfilled even if L(z)T (z) �= 1; i.e., there is no need to have a perfect inverse of T (z)
for the ILC approach to yield satisfactory results.
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The second is that the transfer function L(z) does not have to be causal, since the
error signal is completely known before the next iteration is started, so future values
are available for computation. This allowsmore freedom to compute the approximate
inverse of T (z) and helps to mitigate or completely remove the phase delay inherent
in filtering operations. However, obtaining an exact inverse of the model T (z) might
still not be a good idea, since the typical very low gains in the high frequency band for
real process plants would require very high gains of L(z). The reason that advocates
for limiting the gain of L(z) in the high frequency band is the effect of measurement
noise. Equation (3.17) shows that the high-frequency noise content in ek would be
amplified according to L(z) when computing uk+1.

A more general control update rule that explicitly takes into account the con-
venience of limiting the frequency band where the algorithm learns can be stated
as

uk+1(t) = uk(t) + Q(z)L(z)ek(t). (3.20)

With this formulation, L(z) is taken as an approximate inverse of T (z) as faithful
as possible, while Q(z) is a low-pass filter that explicitly limits the influence of the
high-frequency content of ek in uk+1.

Another topic of interest in ILC is the influence of random disturbances that do not
act in a predictable manner in all the iterations. The algorithm cannot discern which
parts of the error ek(t)were caused by the process dynamics and will be encountered
in every iteration or were caused by a random disturbance that will not be replicated
in subsequent iterations. Both types of errors are regarded as errors to be compen-
sated by the algorithm, so the manipulated variable for the next iteration is adjusted
accordingly to this available information. If this particular random disturbance does
not appear in the next iterations, then the control input would be compensating for
something that did not occur and would drive the output away from the reference.
This discussion motivates the convenience of filtering these errors so that random
disturbances do not affect too much the plant output.

Two comments are relevant to this concern. On the one hand, the already com-
mented systems that operate under ILC usually already have a PID-like controller
(C) that takes care of the rejection of random load disturbances, so their effect on
the output should already not be too high. On the other hand, there are extended
ILC schemes that consider more than one iteration for the computation of uk+1(t),
allowing a reduction of the effect of these random disturbances. A second-order ILC
update scheme can be expressed as

uk+1(t) = uk(t) + Q(z)T (z)
(
ω ek(t) + (1 − ω) ek−1(t)

)
. (3.21)

Here, the parameter ω ∈ [0, 1] governs how fast is new information considered
in the algorithm. An extreme value of ω = 1 is equivalent to just considering the last
iteration, while a value of ω = 0.5 entails averaging the errors of the two previous
iterations. Using values lower than 0.5 is not advised, as it does not provide any
further robustness and just assigns more weight to the older iteration, thus simply
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(a) High bandwidth Q filter.

(b) Low bandwidth Q filter.

Fig. 3.15 Convergence of an ILC controller and the effect of the filter Q

adding some delay in the inclusion of information. The extreme example would be
using a value of ω = 0 that entirely disregards ek and just uses ek−1 to compute uk+1.

Figure 3.15 shows the behavior of a ILC controller and the influence of the filter
Q for a plant controlled with just a proportional controller. As depicted in the figure,
the initial response of the system shows a significant offset of the output that is
completely removed even with the first iteration of the ILC controller. The upper
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plot shows the behavior of the system with a filter Q with higher bandwidth than
the one employed in the bottom figure. The major difference in the behavior of the
controllers is highlighted with the abrupt step-like change in the reference at t = 6
that introduces high-frequency content in the error signal. As expected, the upper
plots show a brisker response with a larger overshoot, while the lower plots show a
more conservative behavior. The interested reader is pointed to Moore (2013) and
Xu and Tan (2008) for further details on ILC.

3.2.2 Run-to-Run Control

The basic idea of Run-to-run control is exactly the same as that of ILC, i.e., using
information gathered from previous iterations to improve the performance of future
ones; however, the major difference is that the output variable can only be measured
once that the batch is finished, so there is not an error signal available that provides
the deviations of the output at each time instant of the progress of the batch, but just
one final measurement to assess the whole iteration.

This lack of information means that the ILC approach of modifying the reference
based on the actual error observed at each time instant cannot be implemented, as
we only have one measurement to update the control signal for the whole batch.
Furthermore, since the data of the evolution of the output during the batch are not
available, dynamic models cannot be developed and the relevant process variables
need to be related using static models exclusively.

These constraints are usually dealt with using the set-point of some process vari-
ables as the output of the controller; i.e., the Run-to-run controller provides updated
set-points to variables such as the time duration of the batch, the set-point tempera-
ture of a reactor, or some other relevant variables whose effective value will in turn
be controlled by a PID-like low-level controller.

In order to infer how to update these references, a solid notion of the influence
of these variables on the output is required. Accordingly, Run-to-run controllers
typically are model-based controllers that include an observer capable of estimating
the disturbance acting on the system. The basic idea is to use the model of the system
to compute the control action that allows to compensate for the estimated disturbance.

The best known Run-to-run controller is the exponentially weighted moving aver-
age (EWMA) controller. This controller assumes that the process is governed by a
linear relation between the input and the output and considers a disturbance acting
on the system according to the structure

yk = β uk + νk . (3.22)

Here, uk denotes the process input, yk stands for the process output, and νk designates
the disturbance acting on the k batch. Note that the variables do not depend on time,
but only on the iteration index k, as there is only one value of those variables available
per iteration. The process is modeled as
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ŷk = b uk + ν̂k, (3.23)

while the observer is given recursively by

ν̂k+1 = ω ν̂k + (1 − ω)(yk − b uk). (3.24)

It is customary in the Run-to-run literature to denote as T the target of the system,
that is, the desired value of the output. Adopting this notation and using Eqs. (3.23)
and (3.24), the control action can be computed inverting the model of plant as

uk+1 = T − ν̂k+1

b
(3.25)

Note that since the process model is static, we can perform an exact inversion of
the plant without needing to take into account the comments presented in Sect. 3.1.1
regarding the computation of inverses of dynamic models.

An interesting theoretical property of this controller is that if the disturbance
acting on the plant is an integrated moving average (IMA) process driven by a zero
mean random variable εk with variance σ , given by

νk = νk−1 − θεk−1 + εk, (3.26)

and the value of ω matches θ , then the observer provides the minimum mean square
error estimate of the disturbance. However, the interest of this property is purely
theoretical, as even in the case that the actual disturbance was effectively an IMA
process, it is very unlikely that value of θ was known. In practice, ω is usually used
as the tuning parameter for the controller, as it influences how fast the new estimation
of the disturbance is used to modify uk+1. The role of this parameter is analogous to
the one played by the one in Eq. (3.21), and similar comments can be made; namely,
low values of ω produce a more aggressive response of the controller that is useful
when the uncertainty of the measurement is low, while lower values provide a gentler
behavior and better performance if the uncertainty of the measurement is substantial.

Note that even though the models used in Run-to-run control are static, the
inclusion of Eq. (3.24) causes the controller to be a dynamic system in the iteration
dimension and, as such, introduces the possibility of having an unstable controlled
system. The stability conditions for this controller can be derived casting the EWMA
controller as an IMC controller and can be expressed as

0 < ω
β

b
< 2. (3.27)

This relation shows that overestimating the value of the process gain, i.e., having
ratios β/b < 1, is conservative for the stability of the controller. It also supports the
role of ω as a tuning parameter of the controller, as it also influences the stability of
the controlled system, with lower values of ω being on the side of safety.
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DifferentRun-to-run controllers can be implemented following the basic guideline
shown in the EWMA controller simply modifying the process or disturbance model
according to the situation at hand. TheEWMAcontroller is well suited to compensate
errors in the estimation of the model parameters and step-like disturbances. If the
disturbance affecting the process is similar to a drift, then the observer can bemodified
to reflect it.

If a more complex and accurate process model is available, it is also quite straight-
forward to introduce it in a Run-to-run scheme, as all that is required is to update
Eq. (3.23) and recompute Eq. (3.25) accordingly. Moreover, multivariable systems
can also be dealt with in this general framework andwill be presented in greater detail
in Sect. 4.2.2. Further details about Run-to-run control can be found in Adivikolanu
and Zafiriou (1997), Adivikolanu and Zafiriou (2000), Campbell et al. (2002), Good
and Qin (2006).
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Chapter 4
Control of Higher-Level Dynamic Layers

The higher-level layer of the hierarchical control structure deals with the relations
between those process variables that constitute the core of the process, i.e., the rela-
tions that define how the features of the final product yh are determined according
to the raw product characteristics f and the values of the set-points of the low-level
process variables rl . In a sense, the knowledge and experience in dealing with these
relations are the key features that define an expert operator of a process, so the task of
this layer is to somewhat assist these experts and easen their job by making educated
decisions that assure that the final product features yh will effectively reach the target
values especified by rh if the values of f make it possible, or suggest and achieve
the best reachable value of yh if the current objective is not feasible.

In order to accomplish this task, the controller needs to know in some detail how
the different raw input features and process variables influence the final product fea-
tures yh , that is, a somewhat detailed and precise model of the relations between
the variables of this layer is fundamental for the presented approach. Once that this
knowledge is available, the key idea is to use these models to infer what decision
to make according to the practical constraints that the two different types of vari-
ables of interest impose, as the set-points of process variables rl can be adjusted
during the operation of the plant but the characteristics of the raw inputs f cannot
be changed once that they arrive at the plant so, for all practical purposes, they need
to be regarded as disturbances. If these input properties can be measured, then that
information can be used to adjust the process to those conditions, exactly like mea-
surable disturbances are used in feedforward control of the lower-level control layer.
It is precisely this feedforward nature of the approach that requires the models to
be of an acceptable precision, as the inherent robustness induced by feedback is not
available in feedforward methods.

Food transformation operations are typically complex multivariable processes,
where there is usually more than one possible set of values of the process variables rl
that allow to attain a specific output target yh for a given set of input characteristics
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f . Conversely, different values of yh can typically be achieved for a given set of
f by choosing appropriate values of rl . This additional freedom can be used to try
to achieve the target output while considering additional factors, such as economic
efficiency in the operation.

A simple yet interesting idea is that optimizing the operation of a food transfor-
mation plant for a given batch of raw inputs can be thought of as two independent
problems: on the one hand, find the values of the technological variables that opti-
mize the production of each product that can be produced with that raw input; on
the other hand, once that the optimal operation conditions are known for each prod-
uct, find which of those products offer the greatest profitability. Note that these two
problems are in fact independent, in the sense that choosing which product offers
the greatest profitability from a set of candidates improves the operation of the plant
even if the production of each of the products is carried out suboptimally, meaning
that it could be completed at a higher efficiency level. In turn, finding how to carry
out the production of a given product as efficiently as possible is independent of
considering whether producing that particular product is indeed the most profitable
action for the given set of f .

The distinction between these two problems is of great practical interest due to the
different complexity of the models required to solve them: setting up a problem to
find the most profitable product for a given set of f can be accomplished with simple
models based on aggregate historical data, while finding the optimal parameters for
the production of a target yh requires a full model of the process.

The ability to manipulate the behavior of the process and dampen the effect of
f on yh is provided by the set-points of the lower layer outputs rl ; however, given
the frequently capital influence of the raw input features f on the final product
characteristics yh , the control authority provided by rl might not be enough to assure
that any desired value of yh can be reached. Typically, a sensible approach is to
consider the range of possible values of yh offered by f and to choose one of those
according to some criteria. This approach is equivalent to the finding which product
is most profitable and is presented in Sect. 4.1.1.

Once that the production objective is considered known, the next task is to effec-
tively operate the process, so that this objective is actually achieved successfully. At
this stage, proper values of the set-points of the low-level variables (rl) must be used.
As commented above, it is typically the task of expert process operators to provide
these values and supervise that the production objectives are actually met. If a proper
model of the process is available, this set-point proposal step could be assisted by an
expert system so that the burden laying on expert operators could be easened. This
scenario is equivalent to finding the values of rl that optimize the production of yh for
a given f , and Sect. 4.1.2 presents some ideas and methods that tackle this situation.

The feedforward nature of the ideas presented so far requires precise models for
them to be implemented successfully in practice. Moreover, if unmeasured distur-
bances affected the process and prevented it from effectively fulfilling the production
objective, the controller would not be able to update its proposed set-points. Even
though a typical feature of the final product characteristics is that they are hard to
measure, the inclusion of some feedback based on the available measurements or
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indications from expert operators is very advisable in order to add robustness to the
system. Section4.2 presents how Model Predictive Control and Run-to-run control
can be applied to this layer to introduce feedback from the process and robustify the
control system, providing a means to counteract Modeling errors and unmeasured
disturbances.

4.1 Feedforward of Input Characteristics

The fact that the characteristics of the raw inputs deeply influence the achievable
features of final products is common to most food transformation processes and
well known in the industry. These sections present the feedforward approaches that
employ the knowledge about the input characteristics to improve the operation of
the plant.

4.1.1 Production Objective Selection Based on Input
Properties

The most straightforward way to initially address the influence of the raw input
properties ( f ) on the final product is to explicitly consider what final product features
(yh) are reasonable to expect obtaining in the process for those input properties. From
a more formal point of view, this is equivalent to considering a mapping from f to
yh , i.e.,

yh = Φ( f ). (4.1)

This mapping Φ(·) can be obtained with varying degrees of detail depending
on the data and time available. If historical data are accesible, a simple yet useful
approach is to use these data to build a statistical input—outputmodel that completely
disregards the influence of the process. If the use of historical data is not viable, the
knowledge of expert operators can be used to construct a fuzzy model relating just
these sets of variables. Since the size of these sets is typically not too large, a standard
rule-based, single-layer, fuzzy logic system (FLS) could be used for this purpose.

If this relation Φ is one-to-one, meaning that for each point in the raw input
space there is only one possible reachable point in the product output space, then the
problem would already be solved, as measuring the values of f would immediately
provide the corresponding objective value rh for yh , provided that Φ is known. This
means that the properties of the inputs completely determine the output characteris-
tics, with the process variables not having any possibility to influence the value of
the output features; in this scenario, all that can be done is to detect which level of
quality of inputs is available and select the production objective directly evaluating
the mapping Φ with those values of f . Notice that for this section, we assume that
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the values of f are fixed; how to use this mapping to potentially improve the overall
operation of the plant by defining what values of f would be adequate to have is the
topic of Chap. 5.

However, having a one-to-one Φ is rare, so the more general case of having a
one-to-many Φ must be considered. In this scenario, the state of the raw inputs
conditions—but does not uniquely define—the properties of the outputs, leaving
some freedom for choosing which production objective to aim for. A systematic way
of dealing with this additional freedom is by defining an optimization problemwhose
solution should provide the desired production objective.

Defining an optimization problem involves establishing an objective function,
assigning costs to the different variables, and including the relevant relations of the
system as constraints, so that only physically plausible values are provided. For our
purposes, the optimization problem can be generally defined as

minimize
yh

C(yh)

subject to Φ( f ) = yh,
(4.2)

where C(yh) is the function that computes the total costs and revenues associated
to the values of yh . In this problem, yh is the variable whose values are modified in
order to find the point that provides the lowest possible value of C(yh) and f , as
commented above, is a fixed value. In general, we will consider both yh and f to
be vectors, i.e., yh ∈ Rnyh and f ∈ Rn f , with nyh and n f being the dimension of yh
and f , respectively.

The nature of the objective function and the constraints define the difficulty of
solving the problem. Linear problems, i.e., problems where both the objective func-
tion and the constraints are affine functions of the variables, can be solved very easily
even for really large problems—hundreds of variables and thousands of constraints.
The inclusion of nonlinearities in the objective function or the constraints complicates
the solution of the problem, practically limiting the size of tractable problems and
usually providing solutions that are not guaranteed to be the truly absolute optimum,
but just locally optimum in some area of the space of variables.

Although somewhat obvious, it is important to remark that the solution of an
optimization problem is optimal only for the objective function that was defined in
the problem, the costs assigned to the variables and the constraints included, so in
order to obtain useful insight from the solution of the problem, it must be carefully
set up to capture the essential relations of the system, with the costs assigned to the
variables being faithful representations of their actual expenses and remunerations
and the objective function being aligned with the actual economic objectives of the
operation.

Since the solutions of the optimization problem will be different depending on
the cost coefficients included in the function C(yh), it is appropriate to consider how
to define these values. There are different ways of tackling this task; the first is to
use historical data of previous operations to estimate the profit obtained per type of
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product produced and relate it to the components of yh , ignoring as many details
regarding the specifics of the process as possible.

Let us look in more detail at this approach with a simple example that will be
also useful in concretizing the general optimization setup.We have defined yh to be a
vector variable that includes information regarding the features of interest of the final
product. It is typically convenient to define the components of yh taking into account
how this final product is marketed. If there is a quality feature of the product whose
value affects the price continuously, then yh should include a component which is
a continuous variable that keeps track of the value of that particular feature. If, on
the other hand, our product is classified into a countable set of prespecified quality
levels and remunerated accordingly, then it makes sense to define discrete variables
that encode what quality level the product belongs to, ignoring to some extent the
underlying features that qualify the product as apt for that particular quality level.

Let us initially suppose that our product is classified into two quality levels—say
A and B—and the product is remunerated exclusively based on the quality level
it belongs to. With this simple setup, a convenient way to define yh is as a vector
having two components, each one encoding whether the product belongs to the
corresponding quality level or not

yh =
[
yA
h
yBh

]
.

Each of the two components of yh are binary variables, i.e., yA
h , yBh ∈ {0, 1}. Fur-

thermore, a product cannot belong to the two quality levels simultaneously, so we
must enforce this condition including the following constraint in the optimization
problem

yA
h + yBh = 1. (4.3)

This constraint effectively models our requirement because each of the components
of yh can only be either zero or one, so forcing their sum to equal 1 naturally induces
the value of exactly one of them to be 1, while the other will be 0.

The conditions imposed by f on yh can be modeled defining a function Φk for
each quality k that determines whether this particular quality level can be produced
with the current value of f – for this simple example, k ∈ {A, B}. This function
can be built to return a 1 if the product can be produced and 0 otherwise. Note that
although Φk( f ) depends on f , since the value f is fixed at the time that we need to
solve the optimization problem, Φk( f ) will be a constant parameter in that instance
of the optimization problem.We can make this more explicit by defining a parameter

δkf = Φk( f ) (4.4)

so that the constraint can be expressed as

ykh ≤ δkf . (4.5)
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Let pA and pB denote the selling price of the product for quality A and B, respec-
tively, and cA and cB denote the corresponding production costs obtained from his-
torical records. Then, the objective function can be defined as

C(yh) = (cA − pA) yA
h + (cB − pB) yBh , (4.6)

which simply states that the total cost incurred is the production costminus the selling
price for each quality.

The optimization problem, thus, can be written as

minimize
yAh ,yBh

(cA − pA) yA
h + (cB − pB) yBh

subject to yA
h ≤ δA

f ,

yBh ≤ δB
f ,

yA
h + yBh = 1,

yA
h , yBh ∈ {0, 1}.

(4.7)

Let us analyze the solutions provided by the problem for some scenarios. If both
products can be produced with the current value of f , i.e., both δA

f and δB
f equal 1,

then the first two constraints, which define which products can be produced, do not
have any influence in the optimization problem and the product that offers a better
profitability is selected, as we have included a constraint that forces to provide just
one product.

If the value of f is such that we can only produce one type of product, it will be
selected, as the first two constraints will force the other product to have a value of
0 and we have explicitly stated that one product must be selected by defining (4.8)
with an equality constraint. Note that this also implies that if f does not qualify to
produce any of the two products, i.e., δA

f = δB
f = 0, then the problem is unfeasible

and the solver would throw an exception. If, instead, we prefer the problem to remain
feasible, we can relax (4.8) into

yA
h + yBh ≤ 1. (4.8)

This way, we guarantee that we produce at most one product, but we are no longer
requiring that one of the two components of yh should be 1. Note that as long as
producing a product is profitable, that is, as long as

ck − pk < 0 (4.9)

for some k, the variable ykh will be driven to be 1 by the optimization problem if
that is compatible with the rest of constraints. There is another small implication of
relaxing (4.8) into (4.9); if the equality constraint is used, production will be assigned
to a product—if the quality constraints allow it—even if it operates at a loss, while
using the inequality will only assign production if the product is profitable.
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Another interesting remark is that, as long as

cA − pA �= cB − pB (4.10)

that is, as long as the products are not exactly equally profitable, we can relax the
condition requiring ykh to be binary into just requiring it to be between 0 and 1

0 ≤ ykh ≤ 1, (4.11)

since the optimal solution will always be to produce the product with the highest
profitability, thus the corresponding ykh will always have the maximum possible
value, which is 1. This substitution changes the nature of the problem from a Integer
Linear Problem to a Linear Problem, which is much easier to solve. This idea of
replacing a constraint by another that does not change the feasible set and provides
the same optimal value at a lower computational complexity level is ubiquitous and
important to keep in mind when defining optimization problems, particularly when
their sizes begin to be considerable.

If we take a step back and analyze the discussion above about the solutions that
this optimization problem provides, we can realize that the problem just supplies
the answer that common sense applied to the particular situation would, which is
to produce the most profitable product possible. For such a simple setup, there is
a product that is always more profitable than the other, and the only reason not to
produce it is if it is not possible because of the value of f . The difficulty for setting
up the problem is in determining accurately the production costs cA and cB , as
these parameters deeply influence the solution of the problem. Note that assigning a
constant value to these parameters means that the production costs are not influenced
whatsoever by the value of f , which is typically a quite crude simplification.

What is remarkable and useful of the presented approach is that it can handle
a large variety of situations in a very compact way that allows to easily include
other characteristics into the problem. Let us illustrate it by slightly increasing the
complexity of the problem supposing that our product, besides being classified into
two quality levels, also has a feature that is remunerated linearly at two different
prices depending on the quality assigned to the product. To model this new scenario,
we can extend yh with a component to contain the value of the remunerated quality
feature

yh =
⎡
⎣yA

h
yBh
yQh

⎤
⎦ .

Under this setup, the cost function can be expressed as

C(yh) = cA yA
h − pA yA

h yQh + cB yBh − pB yBh yQh . (4.12)

Note that the cost function is no longer linear, as there are products of variables
in it. Note also that, under this new setup, there might no longer be a more prof-
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cB-pByQh

cB-pAyQh

yQh

cB-pByQh

cB-pAyQh

yQh

Fig. 4.1 Profitability of products A and B as a function of yQh . Depending on the values of ck and

pk there may be a more profitable product for every value of yQh or it may depend on yQh

itable product, but that it may depend on the value of yQh , even assuming that the
same level of yQh is reached for both levels of quality. Figure4.1 depicts an example
where yQh determines the profitability (left) and an example where the profitability is
independent of yQh (right). In the latter case, it is not necessary to include yQh in the
optimization problem as it does not influence the solution of the problem; a model
like (4.7) that considers only the two quality levels would provide the same result
with lower complexity.

In the scenario shown in the left plot of Fig. 4.1, the features of the raw inputs
condition the production in two different ways: on the one hand, analogously to the
previous example, they may prevent one of the products to be produced due to the
quality threshold encoded by δkf ; on the other hand, they influence the profitability

via their effect on yQh . Let us assume that the final value of yQh depends on which
type of product is produced but is fixed for the product, i.e., every time that product
k is produced, the value of yQh is γ k

f . This can be modeled as a linear equality

yQh = γ A
f yA

h + γ B
f yBh , (4.13)

which yields the optimization problem

minimize
yAh ,yBh

cA yA
h − pA yA

h yQh + cB yBh − pB yBh yQh

subject to yA
h ≤ δA

f ,

yBh ≤ δB
f ,

yA
h + yBh = 1,

yQh = γ A
f yA

h + γ B
f yBh ,

yA
h , yBh ∈ {0, 1}.

(4.14)
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Note that yQh is linked to yA
h and yBh via a linear equality constraint; this means that

the problem can be rewritten eliminating yQh from the problem. Substituting yQh using
Eq. (4.13) in the objective function yields

C(yh) = cA yA
h − pA yA

h

(
γ A
f yA

h + γ B
f yBh

) + cB yBh − pB yBh
(
γ A
f yA

h + γ B
f yBh

)
.

This expression can be greatly simplified using the binary and mutually exclusive
nature of yA

h and yBh . These properties allow to write

yA
h yA

h = yA
h ,

yBh yBh = yBh ,

yA
h yBh = 0.

Using these expressions and removing the constraint containing yQh , the optimization
problem is written as

minimize
yAh ,yBh

(cA − pA γ A
f ) yA

h + (cB − pB γ B
f ) yBh

subject to yA
h ≤ δA

f ,

yBh ≤ δB
f ,

yA
h + yBh = 1,

yA
h , yBh ∈ {0, 1}.

(4.15)

This problem is remarkably similar to (4.7), the only difference being the substitution
of pk with pk γ k

f . Note that both pk and pk γ k
f are constant parameters whose values

are known and fixed before the optimization problem is solved, so for the practi-
cal purposes of solving the optimization problem there is absolutely no difference
between problems (4.7) and (4.15); there are, however, important differences in the
assumptions used to derive these models and the meaning of the coefficients in the
objective function.

The key aspect that explains that we arrive at problems with the same structure is
the fact that we assume that f is fixed and we are taking into account the influence of
the process via the parameters ck that account for the production expenses. At the end
of the day, the optimization problem, as commented before, will just provide themost
profitable product that is possible to produce. The profitability is entirely determined
by the coefficients of the objective function; it is how these coefficients are computed
where the difference between themodels resides, but how these coefficients are found
is transparent to the optimization problem itself.

Note, for instance, that the requirement that γ k
f does not depend on f , but only

on the product k can be generalized to consider that γ k
f does in fact depend on the

value of f without having to alter the optimization problem at all. There would be,
of course, a difference when applying the technique to a real plant, as for the case
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when γ k
f does not depend on f those parameters need to be estimated only once,

while having γ k
f varying with f requires to update these parameters for every batch

of raw inputs received.
Another interesting remark is that the optimization problem (4.15) can also model

a scenario where the production of the product is subject to a certain yield that may
vary depending on the value of f . This yield can be captured in a parameter γ k

f , and
it would provide exactly the same objective function and constraints.

The substitution of variables and simplification of optimization problems with
the intention of transforming problem (4.14) into (4.15) is interesting as provides a
simpler problem that can be solved more easily and faster. However, these benefits
come at the expense of the interpretability of the problem; it is easier to visualize
which assumptions are made in the former optimization than in the condensed latter.
Consequently, it is oftenmore interesting toworkwith relatively verbose optimization
problems in terms of variables and constraints but that are easier to interpret, rather
than reducing the number of constraints and variables since the beginning. Most
commercial and open-source solvers already include some preprocessing stepswhere
they actively use this type of substitution techniques to effectively reduce the sizes
of the problems in order to solve them faster and more efficiently, so the price
paid in terms of solution time is usually not worth the additional effort required to
interpret the solutions provided, particularly when initially setting up and debugging
the problem.

4.1.2 Set-Point Selection of Intermediate Process Variables

One of the common features between food and process industry is that their pro-
duction objectives are typically the result of a careful consideration of different
competing effects to provide an overall optimum from an economic point of view.
As presented in the previous section, the features of the raw inputs condition the set
of feasible production objectives;however, it is the process variables that ultimately
define what specific values of yh are achieved out of those that could in principle
be attained. Furthermore, these process variables often have a large influence on
the operation cost of the production process, so choosing adequate values for these
variables is important both to actually achieve the production objective and to do so
efficiently from a economic point of view.

Food transformation processes typically have more inputs than outputs, so they
are typically fat plants where the same output yh can be achieved using different
sets of values of rl . Analogously to what was commented for the selection of the
production objective for one-to-many relations between f and yh , this additional
freedom can be used to try to achieve the target output while considering additional
factors, such as economic efficiency in the operation. These additional considerations
can again be formulated into an objective function, so that it can be included in an
optimization problem whose solution provides the corresponding optimal values of
the process variables.
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Note that, unlike the optimization problem in the previous section, the variables
being optimized in the problem are no longer the production objective yh , but the
process variables rl . Consequently, the set of constraints included in this optimization
problem must contain a model that relates the outputs with the input features and
the process variables, that is, this optimization problem requires a full model of the
process relations. The problem presented in the previous section did not require this
full model of the process to determine which values of yh to aim for because all the
influence of the process variables was condensed into precomputed parameters that
were considered to be available before solving the problem instance—the solution of
the optimization problems presented in this section is precisely one way to provide
these coefficients to the objective selection optimization problem.

The optimization problem whose solution provides the optimal process variables
to obtain a target output y∗

h for a given input characteristics f ∗ can be defined as

minimize
rl

J (rl, yh)

subject to yh = Φ(rl, f ),

f = f ∗,
yh = y∗

h .

(4.16)

Here, J (rl, yh) is the objective function and Φ(rl, f ) denotes the model of the pro-
cess. Note that for this problem to be feasible, y∗

h should be compatible with f ∗; that
is, there should exist some value of rl such that y∗

h could be obtained from f ∗. If
that were not the case, then the problem would be unfeasible and the solver would
throw an exception when trying to solve it. Note that solving this optimization does
not imply that obtaining y∗

h from f ∗ is the optimal decision, the solution to this
problem simply provides the values of rl that allow to carry out that production plan
optimally; it might be the case that aiming to produce some other yh might offer a
higher rentability.

The decision of producing y∗
h from f ∗ would typically not be arbitrary, but would

came from the solution of an optimization problem similar to the ones proposed in
the previous section, like problem Eq. (4.2). However, since problem (4.16) is more
general than Eq. (4.2), it can be modified to choose the target value for yh with little
extra effort, simply by including terms in the cost function that model the revenue
obtained based on the values of yh and adding yh into the set of variables being
optimized

minimize
rl ,yh

J (rl, yh)

subject to yh = Φ(rl, f ),

f = f 0.

(4.17)

The main caveat of this approach is, precisely, the necessity of having a reasonably
accurate model of the process relations Φ(rl, f ) to set up the optimization problem.
This is also the reason why the approach presented in the previous section is useful.
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The number of variables included in this type of models is typically much larger
than those required to construct a direct mapping from f to yh , so the complexity of
constructing this type of models is much higher.

However, once that the Φ(rl, f ) is known, the fact that a model that relates all
the relevant variables in the plant is available offers great possibilities for optimizing
the process. For instance, it is also possible to suppose that f is not fixed and solve
a modified version of (4.19) that theoretically also provides the optimal value of f

minimize
rl , yh , f

J (rl, yh)

subject to yh = Φ(rl, f ).
(4.18)

By allowing f to be optimized as well, the solution to this problemwould provide the
absolutely most profitable—according to J (rl , yh)—production scenario. Note that
the solution of this problem, although theoretically appealing, provides indications
for just one production scenario; in practice, the values of f will not always be the
optimal ones, so it is of interest to consider a more general approach that offers
insight for a wider set of production conditions.

One optimization technique that can be used to take full advantage of the process
model Φ(rl, f ) to obtain valuable insight is multiobjective optimization. Multiob-
jective optimization is a generalization of the optimization problems presented so
far that allows to deal with different competing objectives in a systematic way. The
key difference between scalar optimization and multiobjective optimization is that
the objective space induced by the competing objectives is no longer an ordered
space, meaning that it is not always clear if a point represents a better alternative
than another. The solution of this type of problems is given by a so-called Pareto
frontier that includes the optimal alternatives for the different competing objectives.

Let us illustrate the technique with an example. Suppose that the final product
possesses two desirable features whose relation represents a trade-off: Increasing the
value of one is achieved at the expense of the other. This a very common situation
that reflects the typical trade-off between some notion of quality for the product and
some notion of productivity or yield. In this example, the vector yh can be defined
to have two components

yh =
[
yA
h
yBh

]
.

Here, yA
h , yBh ∈ R, i.e., the components of yh are continuous variables. Let us further

suppose that yh is defined so that we our competing objectives are to minimize the
value of each of the components of yh

F =
[
minimize

rl
y A
h

minimize
rl

yBh

]
.
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Fig. 4.2 Objective space for
the multiobjective
optimization example. The
points labeled 1 and 2 are
non-dominated, while the
points 3 and 4 are dominated

2 3

1

4

yBh

yAh

The optimization problem, assuming that we consider the raw input features to
be fixed, can then be expressed as

minimize
rl

F

subject to yh = Φ(rl, f ),

f = f 0.

(4.19)

A key notion in multiobjective optimization is the idea of non-dominated point.
In general, non-dominated points are points where, in order to improve in one of the
objectives, at least one of the others must decline. For our example, since we only
have two objectives, a non-dominated point is a point where we must diminish one
objective in order to enhance the other.

This concept can be visualized nicely, as the components of yh can be plotted
jointly in a plane as depicted in Fig. 4.2. In this figure, the points labeled 1 and
2 represent non-dominated points, while 3 and 4 are dominated points. The point
labeled 1 has a lower value of yBh than point 2 at the expense of having a larger value
of yA

h . The point labeled 3 shows the same value of yBh than point 2, however, the
value yA

h could still be decreased more, so it is not an optimal point. Non-dominated
points are also usually called Pareto-optimal points, and the line where these points
lie is called the Pareto frontier.

Note that the one of the keys ideas in multiobjective optimization is that all the
objectives are given equal relevance, the Pareto frontier offers the set of points that
are achievable given the problem constraints, offering no preference for neither of
those. This approach is interesting, for instance, when the prices associated with the
output features are not fixed; this technique offers the set of possible alternatives, so
that educated decisions can be made.
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Another important remark is that the solution to the optimization problemprovides
not only the set of Pareto-optimal alternatives, but also the values of the process
variables rl that are required to achieve each of those points. Since the process costs
are usually tightly related to the values of these variables, this information can be
used to estimate these costs and offer more insight for the decision-making process
regarding product prices commented in the paragraph above.

The problem (4.19) cannot be fed as is to a solver for its solution, as solvers can
only deal with scalar objective functions. There are different techniques that allow
the construction of the Pareto frontier, and they typically require solving a set of
optimization problems that have scalar objective functions derived from the vector
F . A common and simple approach is called weighted sum scalarization, which
requires finding the solution to the following problems

minimize
rl

K∑
k=1

ωk Fk

subject to yh = Φ(rl, f ),

f = f 0,

(4.20)

for different combinations of scalarization weights ωk . Here, k = 1, . . . , K indexes
the objectives.

Lexicographical optimization is another useful approach to the solution of multi-
objective optimization problems. The key idea is to prioritize the elements of F and
solve the problem for one objective at a time, including the values of the previous
objective functions as constraints for the following optimization problems. For our
example, since we only have two objectives, we should choose which one to prior-
itize. Let us suppose that we want to optimize yA

h first, so the first problem to solve
would be

minimize
rl

y A
h

subject to yh = Φ(rl, f ),

f = f 0.

(4.21)

Let us denote the optimal value of yA
h as yA∗

h , then the second optimization problem
is given by

minimize
rl

yBh

subject to yh = Φ(rl, f ),

f = f 0,

yA
h = yA∗

h .

(4.22)

Note the inclusion of the last constraint. Note also that the constraint is set for yA
h ,

not for rh . The reason for this is that we assuming a fat plant, so there may potentially
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be another set of values of rh that provide yA∗
h while yielding a better value for yBh

than the one provided by the solution of problem (4.21).
The lexicographical optimization approach typically offers very different solu-

tions depending on the order of solution of the problems, i.e., depending on the
ordering of the elements of the objective vector. The reason is that each subproblem
completely disregards the following objectives, so it tends to offer extreme values
of the Pareto frontier. This behavior is typically not wanted in cases like the one
presented in the example, where the two objectives can be considered very similar
to each other in relevance. However, this approach can be used, for instance, for
minimizing the operation costs once that a production objective has been defined,
making sure that the solution of the problem minimizing the costs yields the very
same objective as computed without consideration of the costs and not just a close
one.

4.2 Feedback of Final Product Properties

One of the defining features of the output variables of the higher-level control layer
yh is their difficulty to be measured; however, the inclusion of feedback is so bene-
ficial that it is worth analyzing what can be done with the measurement possibilities
available in each case.

If the measurement of the outputs can be carried out on-line or with a large
enough sampling rate, Model Predictive Control (MPC) is a well-known approach
that is widely used in process industry for tasks similar to the one considered here.

If the availablemeasurements are scarce, then it is not really possible to implement
a full classical MPC approach; however, the inclusion of some modifications under
the point of view of Run-to-run control offers a viable approach that, although less
powerful than the full MPC, still offers an increase of the robustness of the control
system versus a pure feedforward approach.

4.2.1 Model Predictive Control

Model Predicitive Control is a control paradigm that is extensively employed in
the higher layers of hierarchical control schemes for the process industry. It is a
quite powerful approach that allows to take into account easily aspects, such as
the existence of limits in the control action or the inclusion of explicit objective
functions, that are difficult to handle in the classical design of feedback controllers.
Furthermore, its approach makes it very easy to work with multivariable systems,
which is one of the key aspects of the higher layers of the hierarchical control scheme.

The basic idea of the approach is to make explicit use of a model of the system to
find a sequence of inputs that drives the output from its current value to the desired one
in a certain period of time. This sequence of inputs is found solving an optimization
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problem that includes this model of the system as one of its constraints. This problem
is solved at each sampling time and provides the whole sequence of values for the
control input; however, only the first value is actually applied to the plant, as the
next sampling instant the problem is solved again using the updated information
obtained from the sensors, so that an updated value of input can be applied to the
plant. This idea of applying only the first computed input signal and redoing all the
computations the next sampling instant is called receding horizon and is one of the
key concepts of MPC and the one that provides its closed-loop nature, as opposed to
open-loop feedforward approaches where the control signal is computed once and
applied irrespective of the actual evolution of the plant.

This discussion onMPC is presented in the context of the higher-level layer of the
control hierarchical control structure, where the control signal is denoted by rh—as
it is these values that constitute the manipulated variables in the control setup—yh
designates the output and the reference is represented by rh . However, throughout
this section we will use standard notation typically used in the MPC literature in
order to simplify the work for readers interested in further reading about MPC using
the excellent resources available. This way, the control signal will be denoted u, the
reference r , and the output y.

Many different flavors of MPC exist in the control literature, with their major
differences being the type ofmodel and objective function employed. For this section,
wewill assume that the system ismodeled using a discrete state-space representation,
however, most of the comments in the section carry out with no modifications if the
type of model employed is of different nature. Let the model of the plant be given
by a standard state-space formulation without the feedforward term as

x(t + 1) = A x(t) + B u(t),

y(t) = C x(t).
(4.23)

It is very frequent in MPC to employ the difference of the control input as the
manipulated variable instead of its absolute value, so we can define

Δu(t) = u(t) − u(t − 1). (4.24)

In order to employ Δu(t) as the control signal in the formulation of the model,
an additional variable needs to be included in the state to keep track of the absolute
value of u(t), yielding the augmented model

[
x(t + 1)
u(t)

]
=

[
A B
0 I

] [
x(t)

u(t − 1)

]
+

[
B
I

]
Δu(t)

y(t) = [
C 0

] [
x(t)

u(t − 1)

]
.

(4.25)
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This system can be rewritten more compactly as

x̃(t + 1) = Ã x̃(t) + B̃ Δu(t),

y(t) = C̃ x̃(t),
(4.26)

with the definitions of x̃(t), Ã, B̃, andC̃ being easily deduced by direct comparison
of Eqs. (4.25) and (4.26). The predicted output j time instants ahead from a given
time t0 can be computed using this process model and is given by

ŷ(t0 + j | t0) = C̃ Ã j x̃(t0) +
j−1∑
i=0

C̃ Ã j−i−1 B̃Δu(t0 + i). (4.27)

The hat included in the notation ŷ(t0 + j | t0) is used to emphasize that ŷ is a predic-
tion of y, not necessarily its actual value, while the conditioning that appears in the
argument is used to accentuate the fact that this prediction is made with information
available up to time t0. Let us assume that we can measure the whole state vector at
time t0 x̃(t0), then note that the first addend of the right term is a fixed known value.
The second addend, in turn, is not fixed and depends on the inputs to be applied to
the plant from time t0 until time t0 + j − 1. This equation can be particularized for
the different time instants of interest to us and each of those instances included as
constraints for the optimization problem to be solved, as they relate the correspond-
ing values of Δu, which can be chosen by us, with the values of ŷ, which are our
outputs of interest. Particularizing Eq. (4.27) for the first few time instants yields

ŷ(t0 + 1 | t0) = C̃ Ãx̃(t0) + C̃ B̃Δu(t0)

ŷ(t0 + 2 | t0) = C̃ Ã2 x̃(t0) + C̃ Ã B̃Δu(t0) + C̃ B̃Δu(t0 + 1)

.

.

.

ŷ(t0 + k | t0) = C̃ Ãk x̃(t0) + C̃ Ãk−1 B̃Δu(t0) + C̃ Ãk−2 B̃Δu(t0 + 1) + · · · + C̃ B̃Δu(t0 + k − 1).

This construction is analogous the one presented in Chap.2 in the context of
subspace identification, and can be rewritten in matrix form as

⎡
⎢⎢⎢⎣

ŷ(t0 + 1 | t0)
ŷ(t0 + 2 | t0)

.

.

.

ŷ(t0 + k | t0)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

C̃ Ã
C̃ Ã2

.

.

.

C̃ Ãk

⎤
⎥⎥⎥⎥⎦ x̃(t0) +

⎡
⎢⎢⎢⎢⎣

C̃ B̃ 0 . . . 0
C̃ Ã B̃ C̃ B̃ . . . 0

.

.

.
.
.
.

. . .
.
.
.

C̃ Ãk−1 B̃ C̃ Ãk−2 B̃ . . . C̃ B̃

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Δu(t0)
Δu(t0 + 1)

.

.

.

Δu(t0 + k − 1)

⎤
⎥⎥⎥⎦

This equation can be written more compactly as

y = F x̃(t0) + Hu, (4.28)
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where the terms are defined as

y =

⎡
⎢⎢⎢⎣
ŷ(t0 + 1 | t0)
ŷ(t0 + 2 | t0)

...

ŷ(t0 + k | t0)

⎤
⎥⎥⎥⎦ , u =

⎡
⎢⎢⎢⎣

Δu(t0)
Δu(t0 + 1)

...

Δu(t0 + k − 1)

⎤
⎥⎥⎥⎦ ,

F =

⎡
⎢⎢⎢⎣
C̃ Ã
C̃ Ã2

...

C̃ Ãk

⎤
⎥⎥⎥⎦ , H =

⎡
⎢⎢⎢⎣

C̃ B̃ 0 . . . 0
C̃ Ã B̃ C̃ B̃ . . . 0

...
...

. . .
...

C̃ Ãk−1 B̃ C̃ Ãk−2 B̃ . . . C̃ B̃

⎤
⎥⎥⎥⎦ .

Equation (4.28) is just a linear system of equations that relate y and u with x̃(t0)
using coefficients that are derived from the known model of the process. Note that
although y is completely determined by x̃(t0) and u, its value is not known, as u is
not fixed. Indeed, we intend to solve an optimization problem to provide us with the
values of u that supply the values of y that minimize a certain objective function.

The objective function most frequently used in MPC is comprised of two terms:
one that penalizes the deviations of the output from the reference and another intended
to limit the control effort. An example of such a function is given by

J (ŷ(t),Δu(t)) =
N2∑

j=N1

δ( j)
(
r(t + j) − ŷ(t + j | t)

)2 +
Nu∑
j=1

λ( j)
(
Δu(t + j − 1)

)2
.

(4.29)
This objective function includes the parameters N1, N2, and Nu that exert a funda-
mental influence in the behavior of the controller. N1 and N2 determine the time span
where it is important that the output follows the reference. N2 is the maximum pre-
diction horizon, and delimits how far into the future we are predicting the evolution
of ŷ(t), while N1 determines when to start to penalize deviations of ŷ(t) from r(t).
If N1 is chosen to be 1, it means that we are immediately penalizing these devia-
tions, while having a larger value allows for the system to evolve without considering
those deviations in the objective function. Having values larger than 1 for N1 is quite
common for systems with time delays or inverse responses, since for these systems
it is known that the system will take some time to start approaching the reference,
and it makes sense to leave some room for these dynamics to take place and begin
considering the deviations after this time.

Nu , in turn, is called the control horizon and is used to influence the shape of the
control input. Having a value of Nu lower than N2 is typically attached to forcing
that, from that point on, the change of the control signal should be 0

Δu(t + j) = 0, j > Nu .
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Finally, the factors δ(t) and λ(t) can be used for two things; on the one hand, if
they are taken as constants δ(t) = δ and λ(t) = λ, they are used to define the relative
importance assigned to deviations from the reference and variations of the control
input. If they are allowed to change with time, they can be further employed to assign
different relevance to errors happening at different times, which in turn can be used
to induce a more conservative or more aggressive control action.

Joining all the elements of the previous discussions, the optimization problem
whose solution provides the sequence of inputs can be written

minimize
Δu(t)

N2∑
j=N1

δ( j)
(
r(t + j) − ŷ(t + j | t)

)2 +
Nu∑
j=1

λ( j)
(
Δu(t + j − 1)

)2

subject to y = F x̃(t0) + Hu.

(4.30)
This is just an equality constraint optimization problem whose solution can be

computed analytically, as we can use the relations defined in the constraints to elim-
inate the variables ŷ(t + j | t) of the objective function and just minimize a function
of the variables Δu(t). For δ(t) = 1 and λ(t) = λ, this solution is given by

u = (
HTH + λI

)−1
HT

(
r − F x̃(t0)

)
. (4.31)

If the control and maximum prediction horizons, i.e., Nu and N2, respectively,
tend to infinity, this solution coincides with the well-known LQR controller, which
provides the grounds for some theoretical analysis of the convergence and stability
of MPC controllers.

The inclusion of additional constraints to the problem, such as limiting absolute
value of the control action or restricting its rate of change, lead to it not having
a closed-form solution any more. However, depending on the type of constraints
included, this may not impose any practical difficulty. The problem (4.30) is not
a Linear Optimization Problem because the objective function presents quadratic
terms, however, it belongs to a special class of nonlinear optimization problems
called Convex Optimization Problems. These problems have a special structure that
make them almost as easy to solve as Linear Problems, so they can be solved really
fast in practice, and the specific nature of MPC, where different but very similar
problems are to be solved repeatedly, can be exploited to make the solution of these
problems even more efficient.

Once that we no longer require a closed-form solution of the optimization prob-
lem, different types of convex objective functions can be used without significantly
complicating the solution of the problem,which opens the door to tailoring the design
of this function to better fit the actual control objectives. For instance, using absolute
values—l1 norms—instead of squared differences in the objective function is known
to induce sparsity in the solution of the problem, meaning that many of the values of
Δu(t) provided will be zero, which might be a desirable feature.
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Furthermore, the inclusion of additional constraints on the optimization problem
is typically good for shaping to some extent the control action provided. For instance,
the alreadymentioned limits on the change of the control action, besidesModeling an
actual limitation of many real actuators, can be used to obtain gentle control actions
that do not include undesirable high-frequency components.

So farwehave supposed that all the state vector ismeasurable. This strong assump-
tion can be relaxed employing an observer. An observer makes use of the model of
the system and of the available measurements to construct an estimation of the value
of the vector state. A full Luenberger state observer is given by

x̂(t + 1) = Ax̂(t) + Bu(t) + L
(
y(t) − Cx̂(t)

)
. (4.32)

The construction of this observer supposes having a dynamical system for the error
of prediction whose eigenvalues can be located by appropriately choosing the value
of L . Let the estimation error be given by

e(t) = x(t) − x̂(t), (4.33)

then the error at the next time instant can be computed using Eq. (4.32) as

e(t + 1) = Ax(t) + Bu(t) − Ax̂(t) − Bu(t) − L
(
y(t) − Cx̂(t)

)

e(t + 1) = Ax(t) − Ax̂(t) − L
(
Cx(t) − Cx̂(t)

)

e(t + 1) = (
A − L C

)
e(t)

(4.34)

This last line shows that the dynamics of the estimation error are indeed governed
by the eigenvalues of A − L C , which, as commented, can be located appropriately
choosing an adequate value of L using the Ackermann formula or other more numer-
ically robust alternative. If noise is affecting the measurements, then it could be of
interest to design a Kalman filter to construct the estimation of the state vector. The
reader can find a very thorough treatment of MPC in Camacho and Bordons (2004).

4.2.2 Run-to-Run Control

In situationswheremeasuring the outputs of interest of the plant is difficult and cannot
be made online, it is difficult to obtain a dynamic model of the system, so Model
Predictive Control cannot be applied. If a static model of the system is available,
then this knowledge can be used, together with the accessible measurements of the
output, to include feedback into the higher-level layer applying Run-to-run control
ideas to these multivariable systems.

The main reason to apply feedback to the higher-level layers is to correct even-
tual deviations of the high-level outputs from their desired values. These deviations
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may arise from different origins: lack of precision of the model employed in the
feedforward computations, errors in the estimation of the properties of the inputs or
existence of unmeasured disturbances acting on the system. In effect, if the models
used to compute the set-points of the process variables are not precise enough, the
feedforward approach presented in Sect. 4.1.2 will provide values that will be slightly
off, thus yielding an output value that will not exactly match the target value. In turn,
even if the models were perfectly accurate, errors on the estimation of the properties
of the raw inputs may also drive the feedforward system to provide reference values
that again miss the target. Finally, without the inclusion of some sort of feedback
on the system, the effect of unmeasured disturbances on the ouptut cannot be coun-
teracted. Note that in practice, it is typically quite difficult to find out the actual
reason that drives the output away from its target, however, all of these effects can
be compensated for with the inclusion of a Run-to-run controller in the high-level
layer.

Run-to-run controllers are typically composed of a model of the plant and an
observer used to estimate the disturbances affecting the plant – note that both errors
in the estimation of the properties of the inputs and Modeling errors can be modeled
as a disturbance acting on the system. The basic idea is to use the model of the
system to calculate what control action to apply, so that it counteracts the effect of
the estimated disturbance.

For SISO systems, the implementation of this idea is quite simple, as all that is
needed is to use the model to compute how much to increase or decrease the value
of the only input of the system. The EWMA controller presented in Chap. 3 is a
classical Run-to-run controller that applies this idea. For MIMO systems, however,
the scenario is a bit more complex, as there is more than one input in the system and
it might not be evident which of those inputs should be adjusted to drive the outputs
close to their references.

Let us initially suppose that we do not explicitly consider the action of a distur-
bance on the system and the static model that relates the inputs and outputs of the
MIMO system is linear and given by:

y = Bu

with y ∈ Rn , u ∈ Rm and B ∈ Rn×m . If the model is accurate and the plant does
not vary its parameters, this relation is true for all the iterations that are carried out,
so we can particularize it for the batches characterized by indexes k and k + 1:

yk = B uk,

yk+1 = B uk+1.
(4.35)

Analogously to what was done in the MPC formulation, we can define the change
of control action Δuk+1 as

Δuk+1 = uk+1 − uk . (4.35a)
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Using this definition and subtracting the expressions in Eq. (4.35), we can express
the value of the output in the iteration k + 1 in terms of its value in the previous
iteration and the change of control action performed

yk+1 = yk + B Δuk+1. (4.36)

Let us assume that we denote as T the target value for y, then we can find the value
of Δuk+1 we need to apply using (4.36) directly

Δuk+1 = B†
(
T − yk

)
, (4.37)

where B† denotes a pseudo inverse of B. If B has full row rank, then this inverse is
given by

B† = BT (B BT )−1 (4.38)

and provides the value of Δuk+1 with minimum Eucledian norm (Greville 2003). Of
course, in order to apply this method in practice, the value of uk must be recorded,
so that uk+1 can be reconstructed using Δuk+1 and Eq. (4.35a).

If we define the error incurred in each iteration as

ek = T − yk,

we can use Eq. (4.35) and Eq. (4.35a) to analyze the convergence conditions of the
algorithm, leading to the equation

ek+1 = (
I − B B†

)
ek . (4.39)

Given that this is a matrix equation, the vector error is guaranteed to converge to
zero if all the eigenvalues of the matrix I − B B† have a norm that is less than 1.
Note that this convergence depends only on the accuracy of the model B; if B were
perfect, then B B† = I and the error reaches zero in one iteration. However, this
approach does not offer any parameter that can be tuned to modify the behavior of
the controller.

This parameter can be included in the system explicitly considering that a distur-
bance is acting on the system and introducing an observer to estimate it. This way,
the model of the system is now

yk = Buk + νk,

where νk is the disturbance acting on the system. The observer is given by

ν̂k+1 = ω ν̂k + (1 − ω)(yk − B uk). (4.40)

Again, the fact that food processing plants are typically fat opens the door to
using optimization problems that help to make these decisions based on minimizing
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an objective function that encode additional preferences on the system behavior. This
way, the Run-to-run control approach for multivariable systems is very similar to the
MPC control principle, in the sense that the control action is computed solving an
optimization problem each time that we have fresh data about the problem. Themajor
difference is that, since the models are static, only one value of the control action is
computed, as opposed to the whole trajectory of control actions provided by MPC.

As presented in the previous section, a classical objective function is to consider
a term that penalizes the deviations of the outputs and another that limits the control
signal. For the Run-to-run approach, the optimization problem can be defined as

min
uk

J = (
T − ŷk

)T
Q

(
T − ŷk

) + uT
k Ruk + ΔuT

k SΔuk (4.41)

s.t. ŷk = Buk + ν̂k . (4.42)

Here, Q weights the importance of the deviations from the target, R penalizes the
value of the inputs, and S restricts the changes in the input values. If no constraints on
the values of the inputs are considered, then the solution of the optimization problem
is Good and Qin (2006):

uk = (
BT Q B + R + S

)−1 (
Suk−1 + BT Q (T − ν̂k)

)
.

If restrictions on the values of the inputs are considered, then the problem no longer
has an analytic solution, and a numeric solution should be found.

The conditions for the stability of the controller for the unconstrained case and
S = 0 can be found in Good and Qin (2006). The closed-loop computation formula
of the observed disturbance is:

ν̂k+1 = (I − (I − Iω)ξ)ν̂k + (I − Iω)(ξT + νk), (4.43)

with
ξ = (β − B)(BT QB + R)−1BT Q + I. (4.44)

If we denote the eigenvalues of ξ as λ j = a j + b j i , the stability criterion can be
expressed as:

a2j + b2j − 2a j

a2j + b2j
< ω < 1. (4.45)

This way, the introduction of the parameter ω, analogously to the SISO case, allows
to tune the behavior of the controller and be more aggressive for scenarios where
the models of the system are known to be accurate, and more conservative if the
uncertainty about the models is larger.
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Chapter 5
Production Planning for Food
Transformation Processes

The higher-level control layer presented in Chap.4 can be used to improve the oper-
ation of a food processing plant from two different perspectives: on the one hand, it
can be used to decide which product is most profitable to produce given the current
features of the raw inputs; on the other hand, it can provide which values of the
process variables can be used to produce the target product so that a certain objective
function is optimized.

The discussion introduced in Chap. 4 made some important assumptions: All the
required input materials for the production are already available, their properties are
fixed, and, once that we have decided which product is the most profitable one, that is
the only product that we have to produce. The first and the last assumptions disregard
aspects of Production Planning that may have an impact on the profitability of the
operation, while the second assumption leaves an important question unanswered:
Given that the properties and prices of agricultural products typically vary through
the year, it is relevant to consider when to schedule the production of the final goods
so that the profit of the whole year is maximized.

This chapter presents how these facets can bemodeled and included as constraints
in optimization problems to optimize an operational criteria formalized in the corre-
sponding objective function. Section5.1 considers the application of classical ideas
regarding batch Production Planning to food processing operations, while Sect. 5.2
deals with the formalization and solution of an optimization problem to provide a
season-wide production plan taking into account the variations of raw input price
and properties throughout the year.

5.1 Batch Production Planning

This topic deviates a bit from the hierarchical control structure presented in Chap.1
that constitutes the backbone of the book; however, the direct applicability of these
ideas and the fact that themathematical techniques and abstractions required to apply
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them are essentially the same as those required for the season-wide optimization of
the production advocated for their inclusion in the book.

Batch Production Planning is a classical tool for the manufacturing industry.
Fortunately, many of its ideas can be readily applied to food processing operations
that present similar problems to the ones faced by general manufacturing operations.
The simplest examplewhere the utility of these techniques canbe easily appreciated is
food packaging operations; here, the typical issues that need to be addressed include
when to order the incoming raw goods so that the demand is met without having
inputs rot due to excessive storage time and scheduling the production of different
final products limiting their stock but also assuring that excessive time is not wasted
in changing between products.

The following sections introduce different models that take into account this type
of problems with progressively increasing levels of detail, along with some ideas
regarding their solutions.

5.1.1 mrp Model

The simplest classical model that deals with batch Production Planning is the mate-
rials requirement planning (mrp) model. This model was not originally formalized
to be included as a constraint for an optimization problem like the ones we have
considered in Chap.4; instead, the production plan was provided using a dedicated
algorithm to find the solution that allows to produce the items as late as possible while
meeting the requirements of the demand. In this section, we will present a version of
the problem that takes into account the same elements as the original problem, but
that is formalized to be solved using the already familiar optimization structure.

The purpose of the model is to provide a production plan for a set of final goods,
whose demand is considered known, that may share some of their components.
These components may be bought from external suppliers or produced in-house.
In the mrp literature, the term stock keeping unit (SKU) is employed to denote the
different products and materials that are involved in the production process, be it raw
inputs, semi-processed goods, or final products.

In order to establish a production plan, wemust specify both the time span that the
plan covers and its granularity, i.e., whether the considered time periods represent
days, weeks, months. The selection of the appropriate granularity and time span
depends on the purpose and level of detail of the model: If we are providing a rough
estimate of the production plan for the year, then a biweekly or monthly schedule
is appropriate; if, in turn, we are planning the detailed production schedule for the
followingmonth, maybe using days as the time period of the model is the appropriate
choice.

Let us suppose that we have I different SKU and that we are planning the pro-
duction for an horizon consisting of T time periods. Associated with each SKU and
time period, we shall define a variable xi,t that represents what amount of SKU i
is to be set for production at time period t . This way, we have T variables for each
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SKU, totaling I × T variables in the whole model. Conversely, the production for
each time period t is encoded in I variables, one for each of the SKU in the model.

The basic law that relates these xi,t variables is a simple conservation equation:
The elements already available plus the produced ones must equal the demand of
goods. For a final product that is sold to external parties, this can be modeled as:

S(i, 0) +
t−LT (i)∑

τ=1

xi,τ ≥
t∑

τ=1

D(i, τ ). (5.1)

Here, S(i, 0) refers to the stock of the SKU i that is available at the beginning of
the time period considered and D(i, t) is the demand for the SKU i at time t . Both
S(i, 0) and D(i, t) are external pieces of data that are required to be known in order
to set up the optimization problem.

An important remark about Eq. (5.1) is that this expression actually implies T
constraint equations for the optimization problem, one for each time period t . That
is, in order to fulfill the demand, we must enforce that this constraint is met at each
time period, not just in the final step when t = T . Note that the expression is an
inequality, meaning that it is OK if more items of SKU i than the ones demanded
at time t are available at that time. Changing this expression into an equality would
imply that the number of elements of SKU i should match exactly its demand at each
time instant which, besides being a much stronger constraint that greatly restrict the
set of feasible solutions, does not reflect the practical situation we are Modeling.

Another important remark about Eq. (5.1) involves the limits for the summation
term of xi,t . Note that the superior limit is t − LT (i). The term LT (i) is the lead
time for SKU i , that is, the amount of time that elapses between the placing of a
supply order and the receiving of the goods. If we want to have a certain amount
of SKU i at time t , then the production needs to be scheduled at time t − LT (i);
that is the reason of this somewhat strange summation limit. This is easily seen if
we particularize the expression with a very simple example. Suppose that we are
considering the initial time instant, i.e., t = 1 and that the lead time for the SKU i
is LT (i) = 0; that is, the element is available in the same time period as scheduled.
Then, Eq. (5.1) provides

S(i, 0) +
1−0∑

τ=1

xi,τ ≥ D(i, 1),

S(i, 0) + xi,1 ≥ D(i, 1).

This equation means that the demand of SKU i in the first time step can be covered
with the initial stock S(i, 0) and whatever is set to production in the first time step
xi,1.

Let us consider now that the lead time for SKU i is LT (i) = 1, meaning that
the items are available the next time period after they are set to production. Then,
Eq. (5.1) yields
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S(i, 0) +
1−1∑

τ=1

xi,τ ≥ D(i, 1),

S(i, 0) ≥ D(i, 1).

Here, the upper summation limit is 0, which is lower than the initial τ = 1. We adopt
the convention that if the upper limit of the summation is greater than the lower, then
we consider that are no terms in the summation. This means that the only way that
we can supply the demand at time t = 1 is if we have enough initial stock, as we do
not have time to produce any items of SKU i because of its lead time.

Equation (5.1) applies for elements whose demand is exclusively external, mean-
ing that they are not used to produce any other SKU. This equation can be generalized
to cover the case of SKU that are used in the production of other SKU by simply
including a term that accounts for this internal demand. In order to do so, we need to
knowwhat elements are required to produce each SKU. This information is provided
by the Bill of Materials (BOM), which is a list that contains this information. In order
to include this information into the corresponding constraint, the BOM is encoded
into a matrix R, whose element R(i, j) represents the number of elements of SKU
i needed to produce an item of SKU j . This way, the amount of SKU i required to
cover the demand due to its usage in other SKU at time t is given by

I∑

j=1

R(i, j) x j,t ,

that is, the sum of the elements that are required for each SKU. Note that it is not
necessary to remove index i from the summation of the above equation as R(i, i)
can be simply considered to be 0. Including this demand term in Eq. (5.1) provides

S(i, 0) +
t−LT (i)∑

τ=1

xi,τ ≥
t∑

τ=1

(
D(i, τ ) +

I∑

j=1

R(i, j) x j,τ

)
. (5.2)

This equation covers all the possible cases for all the SKU in the system, simply
assigning appropriate values to R(i, j) and D(i, t).

A fairly common situation in practice is for SKU to have a minimum production
quantity, that is, aminimumamount of SKU that are availablewhen an supply order is
created, be it the minimum amount provided by an external supplier or the minimum
batch size for in-house production. This lower limit is usually denominatedminimum
lot size and designated by LS(i).

The inclusion of this constraint means that the minimum amount of produced
goods of SKU must be, at least, LS(i). Let us consider the constraint

xi,t ≥ LS(i).
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This equation forces the production of xi,t to be larger than the minimum lot size for
each time instant. If we were to schedule production in the time instant t , then this
constraint correctly models our requirement; however, if we were not to schedule
production for that period, this constraint still enforces that the production is at
least LS(i), which is undesirable. The behavior that we really want to model is that
whenever we produce SKU i , we need to produce at least LS(i); however, we may
very well not produce any amount of SKU i at a given time period t , so xi,t may be 0.

In order to correctly model this behavior, we need to introduce the so-called indi-
cator variables that encode whether there is production scheduled for SKU i at time
t or not. This variables are denoted δi,t and are binary. The associated constraints are

xi,t ≥ δi,t LS(i),

δi,t ≥ xi,t
M

.

Here, M is a constant such that it is greater than the total demand for SKU i for the
whole production plan. This way, if xi, j is greater than 0, then δi,t needs to be 1, thus
enforcing the constraint that xi,t must be greater than LS(i). If, on the contrary, xi,t is
0, then δi, j is also 0, thus effectively disabling the minimum lot size constraint. The
inclusion of these indicator variables, however, makes the problem not being linear
any more, thus substantially increasing the complexity of its solution.

In order to formalize a proper optimization problem, we need to establish the
objective function to be minimized. In the mrp model, the original objective was to
produce the goods as late as possible while meeting the demand. This objective can
be modeled using the following optimization function

I∑

i=1

T∑

t=1

(T − t) xi,t .

Note that this is a linear objective function that assigns more cost to elements pro-
duced in earlier periods, as lower values of t correspond to higher values of T − t ,
which is the factor that represents the cost of xi,t . Since this objective function is to
be minimized, the values of xi,t have to be constrained into being positive to assure
that the problem is not unbounded.

Gathering all the discussion above, the mrp optimization problem can be defined
as

minimize
xi,t

I∑

i=1

(T − t) xi,t

subject to S(i, 0) +
t−LT (i)∑

τ=1

xi,τ ≥
t∑

τ=1

(
D(i, τ ) +

I∑

j=1

R(i, j) x j,τ

)
,

xi,t ≥ δi,t LS(i), (5.3)
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SKU Name Type
1 Lettuce Salad Final Product
2 Mixed Salad Final Product
3 Chopped Lettuce Intermediate Product
4 Chopped Carrot Intermediate Product
5 Chopped Red Cabbage Intermediate Product
6 Lettuce Raw Input
7 Carrot Raw Input
8 Red Cabbage Raw Input

3 4 5

6 7 8

1 2

0.9

0.9
0.8

0.9

0.2

0.9

0.2

Fig. 5.1 Definition of SKUs and bill of materials for the salad manufacturing example

Table 5.1 Demands for the salad manufacturing example

SKU 1 2 3 4 5 6 7 8 9 10 11 12

1.0 10.0 30.0 10.0 20.0 30.0 20.0 30.0 40.0 20.0 10.0 20.0 10.0

2.0 10.0 20.0 50.0 20.0 80.0 40.0 10.0 90.0 20.0 60.0 70.0 20.0

δi,t ≥ xi,t
M

,

δi,t ∈ {0, 1},
xi,t ≥ 0.

Depending on the specific application, it is a common requirement to have xi,t
assigned integer values. Enforcing that condition complicates the solution of the
optimization problem; however, it is usually not really necessary to actually include
this integrality constraint, as if the value of xi,t is large enough, it is usually acceptable
to just round it to the closest integer without introducing errors that are substantially
larger than the uncertainty in the values of the parameters of the problem.

In order to illustrate the method with an example, let us consider a facility that
produces packaged salads out of raw agricultural products. Let us further assume
that it produces two final products: lettuce salad and mixed salad that include lettuce
and two other ingredients: carrot and red cabbage. The production process consists
of washing and chopping the incoming products and packing the ingredients that
constitute the final products. Figure5.1 includes a table with the definition of the
different SKUs considered in the process and a graph that depicts the BOM, while
Table5.1 contains the demand for each output SKU and each of the 12 time steps
consideredin the planning.

Tables5.2 and 5.3 show the solutions to the Production Planning problems for two
scenarios; Table5.2 shows a case where the minimum lot requirements for each SKU
are low (scenario I), while Table5.3 shows the planning when LS has much larger
values for certain SKUs (scenario II). As seen in the tables, the scenario I provides a
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Production Plan that is more evenly spaced, while the constraints of scenario II force
production to be more concentrated in certain time instants.

5.1.2 Other Optimization Problems

The mrp model introduced above does not include some aspects that are usually
important to consider when planning the production of a facility, being the most
relevant one capacity. Indeed, capacity constraints are an important factor to take
into account as they may prevent a production plan to be actually implemented.

In order to consider capacity constraints, it is interesting to introduce the notion
of resource. A resource is any element of the production facility that needs to be
used to produce some SKU. Machines are the paradigmatic example, but the con-
cept can also be applied to available labor hours, etc. Since the concept of resource
encompasses many different elements, the units used to measure their capacity will
be heterogeneous. In order to simplify dealing with this heterogeneity, it is useful to
introduce the concept of utilization fraction, which is the fraction of the total avail-
able capacity that is required to produce one item of SKU. This way, the parameter
used to encode the capacity is dimensionless.

Along with the notion of resource comes the notion of routing, which is the list of
resources required to produce a given SKU. Analogously to the approach used for the
BOM, the routing can be encoded into a matrix U (i, k) that contains the utilization
fraction of resource k required to produce a unit of SKU i . This way, the capacity
constraint for a given resource k can be expressed as

I∑

i=1

U (i, k) xi, t ≤ 1. (5.4)

This equation provides K × T different constraints, one for each resource and time
instant. If the availability of the resources is not fixed through the time horizon
considered in the planning, the matrix U can be generalized into a hypermatrix
U (i, k, t) including one index to keep track of the time instant. Note, however, that
the number of constraints is not changed by this generalization ofU , as there are still
the same number of resources and time steps; the only change is that the factor that
multiplies xi, t for a given resource k is no longer the same in all time instants.

The model that is built introducing constraint (5.4) into the mrp problem given
in Eq. (5.3) is called manufacturing resources planning and usually abbreviated as
MRPII, to emphasize its differencewithmrp.Note that the inclusion of these capacity
constraints increases substantially the difficulty of employing a custom heuristic
algorithm for finding the optimal production plan; however, from the optimization
point of view, it does not complicate substantially the solution of the problem, as the
capacity constraints are linear.
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The mrp problem considered a minimum lot size constraint. Sometimes, this con-
straint is an exact model of the actual business operations, such as dealing with
minimum orders from suppliers; however, some other times this constraint is used
as a crude model for situations where there is no real hard bound on the minimum
number of elements in a lot, as is typically the case when using this constraint to force
internal production to have a minimum quantity. The reason for this is that changing
the production from one product to another— usually known as changeover— typ-
ically requires to change some tools or to clean some machine, thus rendering the
involved resources unavailable for some time; also, starting the production of a prod-
uct typically involves having some substandard products while the process is being
adjusted. Both phenomena imply that there is a cost associated with changeovers,
thus the requirement of having a minimum lot size in order to limit them.

The constraint of having a minimum lot size can be suppressed if these costs
associated with changeovers are explicitly included in the model. The simplest way
of considering them is defining two new parameters: V (i, k) that accounts for the
amount of resource k required to start producing SKU i ; and W (i, j) that accounts
for howmany items of SKU i are wasted when changing over to SKU j . Note that the
elements of this matrix will almost all be zero except for the diagonal that represent
the elements of SKU i that are wasted when the production of that very SKU i is
produced. Note that the off-diagonal entries of W (i, j) do not have to reflect the
same data as R(i, j), as the SKUs that are required to produce wasted SKU i are
already accounted for in the material requirement constraint; the off-diagonal entries
of W (i, j) should only contain additional elements that are wasted.

Introducing these newelements, thematerial requirement constraint can bewritten
as

S(i, 0) +
t−LT (i)∑

τ=1

xi,τ ≥
t∑

τ=1

(
D(i, τ ) +

I∑

j=1

(
R(i, j) x j,τ + W (i, j) δ j,τ

))
,

while the capacity constraint is given as

I∑

i=1

(
U (i, k) xi, t + V (i, k) δi,t

) ≤ 1. (5.5)

Here, the variable δi,t , just as in themrpmodel, encodeswhether there is production
of SKU i assigned to time instant t .

The changeover Modeling presented here is very simple and does not consider
effects such as variable values of V (i, k) depending on what product was being
produced before or what happenswhen the production of SKU i expands several time
steps. These and other advanced topics are out of the scope of this book; however,
there is plenty of literature dealing with this topics. We refer the reader to the book
Voß and Woodruff (2010) for further reading.
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5.1.3 Solution to the Optimization Problems

The difficulty of solving an optimization problem is intimately relatedwith the nature
of its variables, constraints and objective function, so having a broad perspective on
how difficult it is to solve a particular type of problem is important to make decisions
about whether the inclusion of some constraints is worth the additional complexity
introduced for its solution.

A general common form of expressing an optimization problem is

minimize
x

f (x)

subject to gi (x) ≤ 0, i = 1, . . . ,m, (5.6)

h j (x) = 0, j = 1, . . . , p.

From a mathematical point of view, optimization problems can be classified into
classes according to the nature of their objective functions, constraints, and variables.
These classes indicate the complexity of solving the problem or, equivalently, the
typical size of the problem that can be solved in a reasonable amount of time. The
classes of optimization problems that we are going to discuss are Linear Problems,
Mixed Integer Linear Problems, Convex Problems and General Nonlinear Problems.

Linear Problems (LP). These problems have affine constraints, and objective func-
tions, and the variables are real numbers. This class of problems can be generically
expressed as

minimize
x

cT x

subject to aT
i x ≤ b, i = 1, . . . ,m. (5.7)

x ∈ Rn

Here, cT ∈ Rn represents a vector containing the cost assigned to each element
of the vector variable x and ai ∈ Rn and bi ∈ R are vectors and scalars, respectively,
that contain the coefficients that define the affine constraints of the problem. Note
that expressing the constraint using ≤ does not constitute a loss of generality, as
the coefficients of ai and b can be adjusted in case that the constraint was origi-
nally expressed as ≥, and equality constraints can be imposed simply introducing
corresponding ≥ and ≤ constraints.

The solution to these problems can be found using the simplex or interior point
methods Boyd and Vandenberghe (2004), of which many reliable implementations,
both commercial and open source, exist—see, for instance, Gurobi, CPLEX and
GLPK. This class of problems is the simplest to solve and constitute a fundamental
base for the solution ofmore complex optimization problems,whose solution strategy
typically implies solving a series of related linear problems.

These problems are relatively simple to solve, with a standard desktop computer
being able to solve general problems with hundreds of variables and thousands of
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constraints in a few seconds. If the problem shows some special structure, then the
size of the problem can be increased even more.

Mixed Integer Linear Problems (MILP). These problems, like Linear Problems,
have affine objective functions and constraints; however, their variables are no longer
exclusively real numbers, but also include binary or integer variables. This type of
problems can be expressed as

minimize
x,δ

cT x + dT δ

subject to aT
i x + lTi δ ≤ bi , i = 1, . . . ,m. (5.8)

x ∈ Rn

δ ∈ Z p.

If the variable δ is binary, the last constraint can be changed to δ ∈ 0, 1. This class
of problems, although innocent looking at first sight, are actually quite hard to solve,
requiring the use of branch-and-bound algorithms for their solution. These algorithms
require to solve a number of Linear Problems that is theoretically exponential in the
number of binary or integer variables. This means that extending the number of real
variables does not increase significantly the time required to solve the problem, while
including additional binary or integer variables do have a large impact on the solution
time. This way, it is important to formulate the models of the problem limiting the
number of integer of binary variables (Pochet and Wolsey 2006).

As with linear programming, both commercial and open-source solvers are avail-
able for this class of problems; however, commercial solvers usually include a pre-
processing step where different proprietary heuristics are applied in order to reduce
the size of the problem and formulate it more efficiently, so for these problems there
is a considerable difference between the performance of commercial solvers, such
as Gurobi, versus open-source alternatives like GLPK.

Convex Problems (CP). These problems allow to have nonlinear functions both in
their objective function and their constraints; however, two limitations apply:

• All the nonlinear functions need to be convex.
• The nonlinear convex functions cannot appear in equality constraints.

The general Convex Problem can be expressed as

minimize
x

f (x)

subject to gi (x) ≤ 0, i = 1, . . . ,m, (5.9)

aT
i x = bi , j = 1, . . . , p.

Here, f (x) and gi (x) are required to be convex functions. A function f (x) : Rn →
R is said to be convex if

f
(
αx1 + (1 − α)x2

) ≤ α f (x1) + (1 − α) f (x2).
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Fig. 5.2 Plot of a convex
function. The segment that
joins any two points always
lies above the curve

The convexity condition is very easily visualized for functions of one variable, and
it basically requires the function to be below the segment created joining the images
of any two points in its domain. Figure5.2 depicts this.

Convex Problem is nonlinear; however, somewhat surprisingly, they are much
easily solved that MILP problems; in fact, they are only slightly harder to solve than
a LP. Loosely speaking, the reasons that provide such benevolent features to this class
of problems are two: On the one hand, limiting the inequality constraints to being
convex assures that the feasible set is convex; on the other hand, the fact that the
objective function is convex means that if we find a local minimum, it is guaranteed
to be a global minimum. Note that the sign of the inequality and the fact that we are
minimizing the objective function are key for the properties of the problem.

Convex Problems are a quite broad family that include some interesting problems
that are well known. For instance, least squares fitting is a Convex Problem, just like
(convex) quadratic programming (QP), where the objective function is quadratic and
the constraints are affine, and (convex) quadratically constrained quadratic program-
ming (QCQP), that also includes quadratic constraints.

Different software tools specific for Convex Optimization Problems are avail-
able, both solvers and Modeling tools. On the solver side, we can mention ECOS
(Domahidi et al. 2013), CVXOPT (Andersen et al. 2013) and SCS (O’Donoghue
et al. 2017); on the Modeling side, it is worth highlighting CVXPY (Diamond and
Boyd 2016), a Modeling tool that allows to write and debug Convex Problems quite
easily via its Disciplined Convex Programming functionality, that allows to assure
the convexity of the constraints included in the model.

Convex Problems provide more room to tailor the objective function and the
constraints of a problem to reflect the features of the system more accurately than
using just affine functionwouldwithout considerably increasing the complexity of the
solution procedure, thus representing a very interesting alternative from a practical
point of view.
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General Nonlinear Problems (GNLP). This class of problems is very broad, as it
includes all the problems not included in the classes defined above. These problems
are typically very hard to solve, requiring long computation times to find the global
optimal solution. Sometimes, however, the advantage of finding the truly global opti-
mal solution of the problem is not significantly greater than finding a good solution.
In this context, good solutions are local optima, i.e., points that are the optimum
of a certain region of the feasible set, although not necessarily the global optimum.
Algorithms that find and report local optima are called local optimization algorithms,
while global optimization algorithms actually try to guarantee that the solution pro-
vided is the global optimum.

Local optimization algorithms are much faster than global optimization ones, as
the global optimization algorithms need to partition the feasible space and make sure
that there is no other point that offers a lower value of the objective function. In
order to do this, they typically need to solve many local optimization algorithms in
different regions of the domain, similar to the approach used by branch-and-bound
algorithms.

The formulation of amodel that results in aGeneralNonlinear Problem is typically
best avoided if possible, as finding its solution is not an easy task at all. If the
approximation of the model so that it fits some of the other classes is not easy or
possible, then the modeler should aim to reduce the size of the problem, i.e., the
number of variables and constraints, as much as possible. General nonlinear solvers,
both local and global, can also be found, for instance, Baron (Tawarmalani and
Sahinidis 2005), Couenne (Belotti et al. 2009) and PSWarm (Vaz and Vicente 2007).

Optimization is a very large and interesting topic itself; we refer the interested
reader to Vanderbei (2007) for linear programming fundamentals, Boyd and Vanden-
berghe (2004) for convex optimization and Nocedal and Wright (2006) for general
nonlinear optimization.

5.2 Production Planning for Varying Input Products

Many of the raw input products of food transformation processes, particularly agri-
cultural goods, present an evolution in their price and features during the year. Some
products are available only in a specific season, and even within that period, their
prices and quality features may show significant variations.

The operation of a food transformation facility can be carried out using two
different points of view; on the one hand, production-oriented operations assume
that any product will be absorbed by the market and decide what products to produce
based on the characteristics of the incoming raw inputs; on the other hand, market-
oriented operations plan the production according to an estimation of what products
are demanded by themarket and thus require the raw inputs to fulfill certain standards
in order to be able to produce those items demanded by the market.

Both approaches can benefit from a yearly plan that takes into account the vari-
ability of the raw inputs. For production-oriented operations, since there are no
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constraints regarding what products to produce, it is clearly of interest to consider
what products offer the highest return for each condition of the inputs and plan
the production accordingly, as the total amount of processed inputs and processing
capacity is obviously limited. For market-oriented operations, since the products are
already considered fixed, it is interesting to plan the production so that the raw inputs
are such that allow to produce those products while minimizing the total cost.

The approach proposed to obtain this production plan is essentially to set up an
optimization problem that takes into account the evolution of the properties of the
raw inputs, along with the relevant business and operational constraints, and whose
solution provides the plan. The following sections detail this approach.

5.2.1 Optimization Problem Definition

In Chap.4, we addressed the problem of how to optimally choose the production
objective yh for a given particular set of characteristics of the inputs f . We discussed
the convenience of separating the problems of finding how to optimally produce a
product and choosing which of those products are optimal to produce. We examined
howwe could define yh so that it encoded different quality levels that are remunerated
differently and that considering a remuneration proportional to a quality feature could
be modeled just modifying the computation of the coefficient of the corresponding
objective function.

The problem that we consider in this section is a generalization of that problem,
since choosing what to produce for the whole season obviously requires choosing
what to produce at a given time instant where the properties of the inputs can be
considered to be fixed. However, if we assume that the total amount of inputs that the
facility can produce is limited, which is a fairly common situation, then the solution
of the season-wide problem requires to consider the production of all the year at the
same time to correctly allocate the limited inputs to the time periodswhere production
is more profitable overall.

Since we need to consider the whole season at once, we need to have an estimation
of the values of the input properties for each time slot considered in the optimization
problem, as their actual values are obviously not available. These estimations play
a fundamental role in the approach, and they may come from simple extrapolations
of historical data available at the company or be provided by sophisticated models
that take into account meteorological data and other sources of information. These
models can be deterministic or may include stochastic components that take into
account the inherent variability and unpredictability of the conditions affecting the
evolution of the crop.

The approach to formulate the optimization problem takes advantage of the con-
cept of SKU introduced in the previous section and the decoupling of the problems
of producing optimally any product and choosing which product to produce. Anal-
ogously to Sect. 5.2, let xi,t denote the amount of SKU i at time t . If the SKU is a
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raw product, this variable requires having the corresponding stock at the factory; if
the SKU is a produced item, the variable represents a production order.

The constraints that restrain the operation can also be expressed quite naturally
with this definition of variables. Let us introduce the sets I and T that contain the
indexes associated with the different SKUs and time steps, respectively. For this
purpose, it is useful to consider that the set I contains two subsets: The set G that
represents the indexes of SKUs that are inputs to the process, and the set F that
represents the indexes of SKUs that are final products. Note that the union of G and
F is not required to contain all the elements of I, meaning that we can consider I to
also contain intermediate products.

The fundamental constraints that govern the operations are the conservation rela-
tions that can be established between the input products and the final goods. These
relations, analogously to the approach presented in Sect. 5.2, can be encoded using
a matrix R(i, j), whose entries represent how many elements of input SKU i are
required to obtain one element of output SKU j . This way, these constraints can be
written as ∑

j∈I
R(i, j) x j,t ≤ xi,t , i ∈ I. (5.10)

This equation is a simplified version of Eq. (5.2) that assumes that the constituent
materials are immediately available and transformed into the final goods. This con-
straint also implies that only the raw inputs received at time t can be used to produce
the final goods at time t . The rationale behind this constraint is that the properties of
the raw inputs evolve with time, so we cannot be sure that the storage of those inputs
for a given period of time does not imply a change in their properties that may mean
that they are no longer apt for use. If we have an estimation of how many time steps
these inputs can be considered to remain in proper conditions, it is certainly possible
to include these considerations in the model, simply allowing to use raw inputs from
earlier time steps

∑

j∈I
R(i, j) x j,t ≤

t∑

τ=t−ST (i)

xi,τ , i ∈ I.

Here, ST (i) represents the number of time steps that SKU i maintains its quality.
A difference between Eqs. (5.10) and (5.2) that is worth commenting is the omis-

sion of production lead times in Eq. (5.10). The reason for this is the different focus
of the optimization problems that provides different relevance to some of the aspects
that comprise the production process. The focus of yearly Production Planning is
to assign the production of the different products throughout the year, i.e., to obtain
the big picture of the production of the year, so typically large time periods are con-
sidered for the time steps. With this time resolution, it is typically not relevant to
consider the constraints imposed by lead times, as they are usually phenomena that
takes place at a lower time scale. For the mrp and MRPII, on the other hand, lead
times are a fundamental aspect of the problem, as the focus of these problems is
precisely to consider this type of details of the production process.
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Another set of constraints that need to be considered are the limitations on the
yearly demand of the products, both in total and individually. These can be expressed,
respectively, as ∑

t∈T

∑

i∈F
xi,t ≤ D,

∑

t∈T
xi,t ≤ D(i), i ∈ F.

Note that considering a constraint on the demand for a SKU and time instant, that is,

xi,t ≤ D(i, t), i ∈ F,

is not really of much practical use for the purpose of the optimization problem unless
there are perishable items that need to be sold within a specified time period, thus
requiring to limit the production to what is expected to be absorbed by the market at
that time.

For the inputs, limitations on the availability of the products impose constraints
that are structurally identical to the ones above

∑

t∈T

∑

i∈G
xi,t ≤ S,

∑

t∈T
xi,t ≤ S(i), i ∈ G,

xi,t ≤ S(i, t), i ∈ G.

However, their interpretation is quite different. In this case, the limitation on the
availability of a particular input SKU at a time period plays a fundamental role on
the problem, as it is a natural way of implementing the implications of the raw input
evolution model in the optimization problem.

The connection of the input SKUs with the final goods via the R(i, j) matrix
implicitly assumes that the set of features of input SKU i are appropriate to obtain
output SKU j . That is, associated with each input, SKU is a known set of values for
the features that the raw products need to have in order to consider that those SKUs
are available. This way, setting the supply of input SKU i at time t as zero means
that the corresponding raw inputs do not possess the appropriate features to qualify
for the associated quality level, which, due to the relations contained in Eq. (5.10),
prevent the production of the associated output SKUs.

These connections between the features of the raw inputs and the output products
require some knowledge about the process, be it just a simple informal model based
on the experience of the operators or a sophisticated one. Conversely, the model of
the evolution of the input properties may range from a simple criterion based on past
experience that determines whether it is realistic to expect a certain SKU at a certain
time step, to a full model of the evolution of the properties augmented with threshold
functions to determine what input SKUs are available at each time. Whatever the
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case, the key idea is that the supply of each SKU are given data for the optimization
problem; that is, they are parameters of the optimization problem.

The fact that the parameters of the problem are data that is available before its
solution opens the door to introducing more sophisticated effects into the problem
without changing its structure. For instance, it is not unusual that the transformation
yield from input to outputs may vary in time; this behavior is easily modeled simply
augmenting thematrix R to consider time aswell, thus having R(i, j, t). The structure
and difficulty of solving the optimization problem remain unchanged, as all that
changes are that the coefficients of some constraints are no longer the same. The
values of these entries, again, may come from experience, historical data, or a model;
for the optimization problem, the origin of these values is transparent.

Another important aspect of production, relevant for the focus of the problem, is
capacity constraints. These can be includedwithout substantially increasing the com-
plexity of the model using the concept of utilization fraction introduced in Sect. 5.2.
This way, we may define a matrix U (i, k) that encodes the utilization fraction that
the production of SKU i requires of resource k and express the constraint as

∑

i∈I
U (i, k) xi,t ≤ 1, t ∈ T .

Once that we have discussed the relevant set of constraints of the problem, we
need to address the definition of the objective function. Let us define C(i, t) as the
cost associated with the SKU i at time t and let P(i, t) denote the unitary income of
selling SKU xi,t . With these elements, the objective function can be written as

minimize
xi,t

∑

t∈T

∑

i∈I

(
C(i, t) − P(i, t)

)
xi,t . (5.11)

This objective function captures the essence of what we are trying to achieve.
SKUs that represent final products have positive values of P(i, t), so the associated
negative signwill induce the corresponding xi,t to be as large as possible. Conversely,
input SKUs have positive C(i, t), so the positive sign drives those variables toward
their minimum possible values. The summation over all the time steps forces to take
into consideration the whole season.

Note that both C(i, t) and P(i, t) are allowed to vary with time. The definition
of these values is the task of external models that reflect the operational expenses
and market conditions that the production and commercialization of the goods face.
Regarding the computation of the costs C(i, t), it is interesting to note the differ-
ences between input and output SKUs. For input SKUs, C(i, t) should reflect the
purchasing and transportation costs associated with the acquisition of the goods,
while for output SKUs, C(i, t) should contain the process costs, such as labor or
energy, without including cost of the raw materials, as they already accounted for
in the corresponding input SKU terms. Commercialization costs can be included in
this term C(i, t) as well or directly deduced from the sale prices, which would yield
P(i, t) to be interpreted not as the sale price, but as the net income per sold item. Since
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C(i, t) and P(i, t) appear subtracted in the objective function, both approaches are
absolutely equivalent, and it is up to themodeler and the idiosyncrasy of the company
to choose one or another.

Collecting all the elements discussed in the section, the production planning prob-
lem can be expressed as

minimize
xi,t

∑

t∈T

∑

i∈I

(
C(i, t) − P(i, t)

)
xi,t

subject to
∑

j∈I
R(i, j) x j,t ≤

t∑

τ=t−ST (i)

xi,τ , i ∈ I,

∑

i∈I
U (i, k) xi,t ≤ 1, t ∈ T

∑

t∈T

∑

i∈F
xi,t ≤ D,

∑

t∈T
xi,t ≤ D(i), i ∈ F, (5.12)

xi,t ≤ D(i, t), i ∈ F,
∑

t∈T

∑

i∈G
xi,t ≤ S,

∑

t∈T
xi,t ≤ S(i), i ∈ G,

xi,t ≤ S(i, t), i ∈ G.

This problem, as commented at the beginning of the section, requires to have an
estimation of the evolution of the properties of the inputs to be solved. However,
as the season evolves, new information may be available that may refine our esti-
mations. It is perfectly possible to take an approach similar to the receding horizon
strategy applied in Model Predictive Control and solve the problem each time that
new information may modify our estimations of the parameters of the problem. This
way the optimization problem reflects all the information available up to that moment
and optimizes the production from that point on taking into account the actual events
that have already occurred.

5.2.2 Models of the Evolution of the Raw Product and the
Process

As presented in the previous section, the role of raw input evolution and process
models is to provide the values of some the coefficients that appear in the optimization
problem, namely R(i, j, t), S(i, t), and C(i, t).



136 5 Production Planning for Food Transformation Processes

This separation between the optimization problem and the models has two impor-
tant implications: On the one hand, the mathematical structure of the models used
to generate the values of the coefficients for the optimization problem does not have
any influence in the ease or difficulty of the solution of the optimization problem; on
the other hand, the mathematical structure of the optimization problem is not altered
if the type of models used for computing its coefficients is modified.

These observations invite to having amodular approach for the construction of this
type of optimization problems. Thefirst effort needs to be devoted to the identification
and Modeling of the different relevant SKU and resources involved in the process.
Then, the relation between the different SKU needs to be encoded with a matrix R
whose entries can be obtained from the assessment of expert operators based on their
experience. The same expert-based approach can be used to estimate the availability
of raw inputs (S(i, t)) and costs C(i, t). This first prototype problem can be solved,
and the solutions it provides are analyzed to verify that the formulation captures all
the essential effects that characterize the yearly operation of the plant.

Once that this problem is set up, the inclusion of more sophisticated means of
providing the values for R(i, j, t), S(i, t), and C(i, t) only needs to modify the files
that feed the data to the optimization problem, as the problem structure remains
unaltered.

If models of the high-level layer of the process are available, they can be used to
compute these coefficients. The idea is to solve a set-point definition problem for each
output SKU and time step with the values of the properties of the raw inputs provided
by the evolution model. This way, let us denote the product features associated with
the output SKU as y∗

h and the raw product characteristics as f ∗; then, the solution of
the optimization problem

minimize
rl

J (rl , yh)

subject to yh = Φ(rl, f ), (5.13)

f = f ∗,
yh = y∗

h .

provides the values of the set-point of the process variables rl that allow to obtain y∗
h

if the raw input features are f ∗. With these values of rl , it is typically an easy task to
compute an accurate estimation of the process costs C(i, t).

Furthermore, the solution of this problem can also typically provide enough infor-
mation for the computation of R(i, j, t). As an example, suppose that one of the
elements of the vector yh contains, besides the quality features of the product, some
measure of production yield. In this case, it is convenient to split the vector into two
components: one that contains the quality features (yQh ) and the rest (yRh ). The idea
is to force the quality features to have the required values, while allowing the yield
related variables to be optimized once the other requirements are met. This can be
expressed as
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minimize
rl

J (rl , y
R
h )

subject to yh = Φ(rl, f ), (5.14)

f = f ∗,

yQh = y∗
h .

The solution of this optimization problem, then, provides all the information required
to compute the values of R(i, j, t), as the yield related variables are also available.

Finally, if the above problem is unfeasible, then the constraint yQh = y∗
h cannot be

met with the available values of f ∗; this means that the values of the input properties
does not allow to produce the SKU associated with the quality features defined by
y∗
h , so the input SKU associated with that product should have a supply of zero for

that time period.

5.2.3 Types of Optimization Problems and Solutions

As commented in Sect. 5.1, the difficulty of solving one problem is given by the
number and type of constraints and variables that it includes. The basic optimization
problem presented in Sect. 5.2.1 is a linear problem, as all the constraints and the
objective function are affine and the variables are real numbers.

Depending on the particularities of the factory operation, additional constraints
may be required to include some phenomenon that need to be captured. For instance,
if contraints regarding minimum lot size need to be included, then binary variables
would have to be added to the formulation in a completely analogously way to the
considerations presented in Sect. 5.1.1.

Another scenario that requires the addition of binary variables is found when
needing to model costs incurred by having the factory open that are independent of
actually assigning production to that time slot. These costs are convenient when we
need to assure that the production is assigned to consecutive time periods, without
leaving empty slots.

In order to model this effect, two new sets of binary variables (δA
t and δB

t ) need
to be defined, along with the constraints:

∑

i∈I

∑

τ≥t

xi,τ ≤ MδA
t

∑

i∈I

∑

τ≤t

xi,τ ≤ MδB
t .

(5.15)

Here,M stands for a constant such that ismuch larger than the possible production
of all SKUs considered in the problem. The enforcement of these constraints induces
δA
t to equal one if there is production in or after the time instant t , while δB

t is one
whenever production is assigned during or before t .
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Four possibilities exist for any given time instant:

• Production has not been started yet. In this case, δA equals 1 and δB equals 0.
• Production has been assigned to the considered time period. Here, both δA and δB

equal 1.
• Production has already started and has not yet finished, but there is no production
assigned to the considered time period. In this case, again both δA and δB equals
1.

• Production has already finished. In this scenario, δA equals 0, with δB being 1.

With this definition of constraints and variables, the absolute value of the difference
between δA and δB equals 1whenever the factory either has not started production yet
or has alreadyfinished.Thevalue of this difference is 0when either there is production
assigned to the time instant or both before and after the considered period. This way,
the number of time instants where the factory is open can be computed subtracting
the sum of the absolute value of the difference of δA and δB to the total number of
time steps considered.

It is convenient to introduce two new sets of binary variables (ξ A and ξ B), along
with the constraints:

ξ A
i − ξ B

i = δA
i − δB

i ,

ξ A
i + ξ B

i ≤ 1.
(5.16)

With these variables, the total number of open time periods can be computed
simply by

n = T −
∑

i

(ξ A
i + ξ B

i ), (5.17)

and the cost function can be augmented with a term penalizing the number of time
steps when the factory is open.

The downside to the inclusion of these extra variables and constraints reside in
the additional computational complexity of finding the solution to an optimization
problem that is no longer linear. Obviously, the discussion presented in the previous
section regarding the different types of optimization problems and their relative
complexity fully applies to this application. It is up to the modeler to decide whether
the additional complexity introduced by the inclusions of these extra constraints is
worth the effort and the additional time required to solve the problem.
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Chapter 6
Case Study: Virgin Olive Oil Production
Process

This chapter details a case study where the ideas and approaches presented in the
previous chapters are applied to a real industrial example: the production of Virgin
Olive Oil (VOO), which was introduced in Sect. 1.3.1.

The application of regular control techniques to the lower-level layer is illustrated
with the physical Modeling and System Identification of the heat transfer process
that takes place in the thermomixer in Sect. 6.1. Then, these models are used to tune
a PI controller to close a low-level feedback loop for the paste temperature in the
thermomixer in Sect. 6.2; then, Sect. 6.3 shows how the application of ILC to the
batch operation of the thermomixer can improve the response of the system.

Section6.4 includes the application of fuzzy Modeling to design a controller for
the olive crushing stage from a lower-level layer perspective, while Sect. 6.5 shows
the application of FuzzyCognitiveMaps for construction of a high-level fuzzymodel
for the whole paste preparation step.

Then, Sect. 6.6 shows how the model developed in Sect. 6.5 can be used to deter-
mine appropriate production objectives and references for the lower-level variables
using the optimization setup described in Chap. 4 and how to add an observer to
implement a Run-to-run approach that allows to include feedback to the higher-level
layer of the plant.

Finally, Sect. 6.7 shows the application of season-wide planning to select the olive
harvesting dates in order to maximize the profit of the whole year.

6.1 Traditional System Identification: Thermomixer
Heat Transfer

The kneading temperature is a key element in the VOOPP, as it affects both the
quality of the obtained oil and the extraction yield, so it is probably the variable that
is controlled most frequently in a feedback loop in the process. In order to design a
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Fig. 6.1 Picture of an industrial olive oil production plant

proper controller for this control loop, it is interesting to have a reasonable model of
the behavior of the temperature of the olive paste.

6.1.1 Physical Modeling of the Heat Transfer

Figure6.1 shows apicture of an industrial olive oil production plant. The thermomixer
is a machine that is composed of a stainless steel tank equipped with heat exchanging
surfaces and a motor that impulses the set of blades used to gently stir the paste.
Traditional thermomixers are typically composed of several connected vessels in
order to increase the residence time of the paste.

An important skill for Modeling is the ability to focus on the phenomena relevant
to the purpose of the model, disregarding other elements that, although might be
essential to fully understand all the facets of the process, do not exert a capital
influence on the variables of interest. The temperature of the olive paste is determined
fundamentally by the heat transference process that takes place in the thermomixer
between the olive paste and the heating fluid that traverses its heating pipes; so for the
Modeling of this heat transference, all the other biochemical and physical processes
that take place in the thermomixer and influence the aroma, etc., can be completely
disregarded, as they do not exert significant influence on the temperature of the paste.

A model of the heat transference process can be obtained applying the energy
conservation law to the olive paste and the heating fluid. If we consider a single
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vessel of a thermomixer, the energy conservation for the olive paste can be written
as

d

dt

(
m(t) cpp T (t)

) = Fi (t) cpp Ti (t) − Fo(t) cppT (t) + Q̇(t) + Q̇l(t). (6.1)

Here, cpp is the specific heat of the olive paste, Fi and Fo are the paste mass inflow
and outflow, respectively, m represents the total paste mass inside the container, and
Q̇ and Q̇l stand for the heat transference with the heating fluid and the ambient. In
turn, the mass conservation law provides the relation that connects the flows with the
total mass in the vessel

d

dt
m(t) = Fi (t) − Fo(t), (6.2)

The expansion of the first term of (6.1) and the substitution of this Eq. (6.2) provide

m(t) cpp
d

dt
T (t) = Fi (t) cpp

(
Ti (t) − T (t)

) + Q̇(t) − Q̇l(t). (6.3)

This equation supplies the relation that links exclusively the changeof the temperature
with the incoming paste temperature and the heat exchanges with the heating fluid
and the ambient. A similar balance can be applied to the heating fluid, providing

mw(t) cp
d

dt
T w(t) = Fw

i (t) cp
(
Tw
i (t) − Tw(t)

) − Q̇(t) − Q̇w
l (t). (6.4)

The negative sign in Q̇ accounts for the convention that heat transfer term will be
signed so that Q̇ is positive if heat is transferred from the fluid to the paste. The
known variables in Eq. (6.3) are the input temperatures of the paste Ti and heating
fluid Tw

i , while T , Tw, Q̇, Q̇w
l , and Q̇w

l are unknown. These elements can be related
using heat transfer laws if we introduce some additional assumptions on how these
processes are carried out.

The most important term is Q̇, that is essentially the term driving the temperature
increase of the paste. The construction details of thermomixers typically vary for
different manufacturers and models; however, a reasonable assumption that has been
employed in the literature is to consider that the driving term for the heat exchange is
proportional to difference of output temperatures for thewater and the paste (Bordons
and Núñez-Reyes 2008)

Q̇ = AU
(
Tw − T

)
. (6.5)

The ambient loss terms are essentially convection processes, so a simple proportional
term is a reasonable model

Q̇l = k(T − Ta),

Q̇w
l = kw(Tw − Ta).

(6.6)
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Here, Ta represents the ambient temperature and k and kw are parameters that account
for the surface and convection coefficients. Equations (6.5) and (6.6) can be used to
express (6.3) and (6.4) exclusively in terms of flows and temperatures

m(t) cpp
d

dt
T (t) = Fi (t) cpp

(
Ti (t) − T (t)

) + AU
(
Tw(t) − T (t)

) − k
(
T (t) − Ta(t)

)

mw(t) cp
d

dt
Tw(t) = Fw

i (t) cp
(
Tw
i (t) − Tw(t)

) − AU
(
Tw(t) − T (t)

) − kw
(
Tw(t) − Ta(t)

)

(6.7)
These equations, alongwith themass balance Eq. (6.2) and the corresponding one the
heating fluid, provide a nonlinear state-space representation of the heat transference
system. The system is nonlinear due to the product of flow and mass variables with
temperature variables; if the flows and masses were to be considered constant, then
the system would be represented by a linear model due to the assumptions made in
the heat transfer terms.

6.1.2 System Identification Approach

The online measurement of the temperature of the paste does not represent any tech-
nical challenge, so a data-driven approach based on traditional System Identification
techniques is a viable alternative for the construction of a model of the system.
The nonlinear nature of the system makes it important to select properly the

conditions of the System Identification experiments, as the accuracy of the obtained
models degrades as the process operates further from the identification conditions.

As presented in the previous section, the nonlinearity of the process is due to the
masses and flows acting as multiplicative factors of the temperatures; thus, having
these terms constant eliminates the nonlinearities for the model. Taking this into
account, it is reasonable to identify the system in a scenario where the mass in the
thermomixer is constant and the input flowofmass is held steady aswell; furthermore,
this is the normal operating condition of the plant. The heating water flow, however,
cannot be held constant, as it constitutes the manipulated variable. With this in mind,
the operating point for the System Identification is chosen to be that defined by
having the heating flow in an intermediate position through its operational range.

The identified system is a thermomixer composed of three vessels of 1500kg of
capacity each. The input signal for the identification experiment was a pseudorandom
binary signal with its mean matching the middle of the operation range and an
amplitude covering as much of the range as possible.

The models were identified using subspace identification with the n4sid func-
tion of the System Identification Toolbox of MATLAB. The insight offered by the
physical Modeling of the previous section suggests choosing first-, second-, and
third-order models for the temperatures of the first (T1), second (T2), and third (T3)
vessels of the thermomixer, respectively. The identification of the models with these
orders for T2 and T3 provided models with zeros and poles very close to each other
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Fig. 6.2 Data for the identification of the paste temperature model

that were even complex for the third-order system. This way, first-order models were
identified for all the systems.

Figure6.2 shows the data obtained for the identification of the system, while
Fig. 6.3 depicts the validation set and the output of the identified models. As seen
in the figure, the behavior of the models is quite satisfactory, as they capture the
fundamental time constant and dynamics of the processes. The identified gains offer
a larger error; however, given the nonlinear nature of the plant, this could be expected.
The process models identified will be used in Sect. 6.2 to design a PI controller for
the temperature loop. The identified models are included in Table6.1.

Table 6.1 Identified models
for the temperature in the
three vessels of the
thermomixer

Variable Model

T1 G1(s) = 2.43
527.08s+1

T2 G2(s) = 2.42
791.15s+1

T2 G3(s) = 1.43
502.28s+1
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Fig. 6.3 Validation data and model output for the identified models of the paste temperature

6.2 Continuous Process Control: Thermomixer
Temperature

The control of the temperature of the paste in the thermomixer is the most common
control loop in olive oil factories. Given the slow but simple dynamics of the process,
this control loop can be successfully controlled by a PI using the models identified
in Sect. 6.1 can be used to tune it. The output variable chosen was T3, as it is the
temperature of the paste just before it is injected into the decanter.

The method employed for the tuning of the controller was the pole placement
approach presented in Sect. 3.1.1.3, as it typically offers good disturbance rejec-
tion capabilities, which is the main concern for the continuous operation of the
thermomixer, as changes in the set-point are not too frequent. For this method, the
design parameters are the natural frequency and the damping ratio of the closed loop.
Since the time constant of the identified system for T3 was around 500s, we selected
a natural frequency for the controlled system of 1

300 and a damping ratio of 0.7.



6.2 Continuous Process Control: Thermomixer Temperature 147

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
time (s)

15

20

25

30

35
T 

(º
C

)
T1
T2
T3
ref

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

2

4

6

8

w
at

er
 fl

ow
 (k

g/
s)

Fig. 6.4 Response of the temperatures in the thermomixer under PI controller

Figure6.4 shows the performance of the controlled system. As seen in the plot,
the response of the controlled variable is quite good, and disturbances acting on the
system are rejected. At time t = 4000, a sudden drop of 5 ◦C of the temperature of
the input paste flow affects the system, and while T1 clearly shows a decrease of its
value, T3 remains at its prescribed value without even requiring too much change of
the manipulated variable, as the system naturally dampens this type of disturbances.
At time t = 1200, the inflow of paste is suddenly decreased, again having some
influence on T1 but being completely rejected in T3 by a slight decrease of the value
of the manipulated variable.

The noise affecting the temperaturemeasurements, however, provokes someunde-
sirable relatively high-frequency variations of the manipulated variable that con-
tribute to wearing out the control valve. These variations can be decreased introduc-
ing some filtering of the error signal before feeding it to the PI controller. Figure6.5
shows the behavior of the system when a first-order filter is included in the con-
trol loop. The control signals show a lower level of high-frequency variations at the
expense of a slightly higher overshoot in the set-point changes. If this overshoot were
too high, the inclusion of set-point weighting in the controller could improve this
behavior, as demonstrated in the next section.
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Fig. 6.5 Response of the temperatures in the thermomixer under PI controller when a low-pass
filter for the noise is included

6.3 Batch Process Control: Batch Thermomixer

Batch operation of the thermomixer is common in countries like Italy and Argentina,
where the olive growers rent the facilities of the factory to produce their own olive
oil. In Spain, most of the production is carried out with a continuous operation
of the plan; however, batch operation in small thermomixers is usually carried out
when the objective of the production is obtaining a very high-quality product. Batch
production, unlike continuous operation, requires to fill up and completely empty
the thermomixer vessel very frequently—in fact, once per batch—which causes the
system to be operating at transient regimes regularly, thus requiring more attention
to these transient periods than the continuous operation.

Figure6.6 shows the evolution of the temperature of a batch for two different
PI controllers with the same values of Kp and Ti . The blue line shows the perfor-
mance a plain PI controller tuned for the continuous operation of the thermomixer.
As observed in the plot, the system shows a small overshoot that is not helpful
if the objective is to obtain high-quality oil. The transient response of PID con-
trollers, as commented in Chap.3, can be improved using set-point weighting. The
red line of Fig. 6.6 shows the response of the system when this technique is included
in the controller. As depicted in the figure, the rise time of the controlled system
remains basically unaltered, while the settling time is improved and the overshoot
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Fig. 6.6 Response of the temperature of a batch thermomixer controlled by a PI controller (blue)
and a PI with set-point weighting (red)

is completely eliminated. A close inspection of the plots shows a slight bump in the
temperature a bit earlier than 1000s and a corresponding decrease of the manipu-
lated variable. This effect is due to stopping the inflow of mass into the vessel when
it reaches its prescribed level, and shows that the disturbance rejection capabilities
of both controllers are identical, as is expected from the theory presented in Sect. 3.

The batch nature of the process naturally provides a setup that allows to apply
an alternative approach, based on Iterative Learning Control, to improve the perfor-
mance of the operation. Figure6.7 depicts the behavior of the system when an ILC
is introduced to modify the references passed to the PI controller without set-point
weighting. Surprisingly, the response of the system is progressively degraded in each
iteration, as the overshoot that was supposed to be decreasing is actually increasing.
The reason for this unexpected behavior can be deduced observing the behavior of
the manipulated variable for the successive iterations. As depicted in the plot, the
manipulated variable is saturated, and this behavior is due to the integrator windup
phenomenon.

Figure6.8 shows the behavior of the system when an antiwindup scheme is intro-
duced in the PI controller. As observed in the figure, the system quickly converges to
a response that is very similar to the one obtained using the two-degree-of-freedom
controller but offers a slightly better rise time. The ILC approach has the advantage
that is a method that is applicable even if the structure of the main controller of the
plant is fixed and does not offer the possibility of using set-point weighting, as all
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Fig. 6.7 Response of the system when Iterative Learning Control is applied using a PI without
antiwindup
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Fig. 6.8 Response of the system with the application of Iterative Learning Control when an
antiwindup scheme is included into the PI controller
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Fig. 6.9 Response of the systemwhen perturbations act during the learning iterations of the Iterative
Learning Control approach

that is required to implement it is the possibility of updating the references fed to the
controller.

One of themain drawbacks of ILC is that it theoretically requires to have identical
initial conditions for each batch, which leads to problems in the convergence of the
controller if this condition is not met. Figure6.9 shows the response of the system
when there are variations in the incoming temperature of the paste. A seen in the
plot, the convergence of the algorithm is no longer as smooth as the case shown in
Fig. 6.8. There is, however, an important practical point that is worth emphasizing:
The variations in the incoming temperature affect the convergence of the algorithm
if these variations occur while the controller is learning, and, as seen in Fig. 6.8, it
converges quite quickly, so two or three iterations are enough.

If these variations occur once that the learning mechanism has been switched off,
then the response of the system is equivalent to the way a noniterative controller
may behave. Figure6.10 compares the responses of the ILC and the PI controller
with set-point weighting. As shown in the plots, both approaches show acceptable
behavior, with the ILC approach providing a bit more aggressive response that yields
some overshoot but offers better rise and settling times.
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(a) ILC.
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(b) Set-point weighting.

Fig. 6.10 Response of the system under ILC and set-point weighting control when perturbations
act after the ILC learning is finished

6.4 Fuzzy Low-Level Modeling: Crusher

The crushing step is an important part of the paste preparation process that, as will
be presented with more detail in Sect. 6.5, affects both the yield and the quality of
the produced oil. If we focus on the low-level operation of the crusher, the most
important aspect to consider is preventing an excessively high power consumption,
as operating in this condition provokes a higher wear of the crusher components and
may even lead to the total blockage of the crusher.

The power consumption depends on the properties of the olives, mainly ripeness
andhumidity, the inflowof olives, and the size of the sieve. The size of the sieve cannot
be changed without stopping the operation, as changing it requires to disassemble
part of the crusher and physically change a specific part. This way, the inflowof olives
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and the addition of water are the two variables that are typically used to dampen the
disturbances induced by the change of the olive properties.

The control of this step is often manual, with the operators adjusting the damper
of the hopper to manipulate the inflow of olives and manually adjusting a valve
that regulates the flow of water that showers the olives. The rule of thumb for the
operation of the crusher is to add water if the olives are dry and reduce the flow if
the power consumption is too high. These premises can be easily included in a fuzzy
controller that mimics the behavior of the operators. Note that, unlike the high-level
Modeling that will be presented in the next section, where the model reflects the
relations between the variables of the plant, the approach taken for this low-level
operation is to directly model the behavior of the operator.

The reason for this approach is that the number of variables and rules that are
required in the fuzzy system is modest, so it is easier to simply encode the possible
situations that may arise during production and the corresponding actions taken
by the operators than to model the physical relations of the plant and setting up a
model-based controller based on these relations. For the high-level layer, the number
of variables is much larger and leads to a prohibitively high number of possible
operation scenarios, so the construction of a controller that encodes the responses of
the operator to these scenarios is not tractable.

The universe of discourse and the fuzzy sets of the variables of the system are
included in Fig. 6.11. As seen in the figure, three terms are considered for the olive
and the water addition, five terms for the error, and seven terms for the outputs
of the controller. The fuzzy sets of the controller inputs are defined using triangular
membership functions, while the outputs are fuzzy singletons. Note that the humidity
of the olives, although it is a very relevant parameter that influences the behavior of
the system, is not included. The reason for this is that there are no off-the-shelf online
sensors that provide this values, so the controller needs to be implemented without
this information. The way to circumvent this difficulty is considering the relation
between the inflow of olives and the power consumption. If the inflow is relatively
low but the power consumption is relatively high, it must be because the moisture
content of the olives is low; this logic can be easily included in the controller to
use the addition of water when needed. The set of rules defined in the controller are
included in Table6.2, and the defuzzification step is carried out using the center of
gravity for singletons method.

The structure chosen for the developed controller is a fuzzy PI, as it provides the
change of the manipulated variables, thus implicitly including integral action to the
system. An important parameter that influences the behavior of the controller is the
sampling time used for its implementation. This sample time must be chosen so that
the control action is not too sluggish but also taking into account that the system
is affected by relatively high-frequency disturbances due to the inhomogeneity of
the olive moisture. These disturbances are faster than the typical bandwidth offered
by the damper of the hopper, so the controller should not exert too much control
action trying to reject them. Another important implication of the selection of the
sampling time is that, since the controller provides the change of the control signals,
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Fig. 6.11 Membership functions and universes of discourse of the variables involved in the crushing
stage and included in the fuzzy controller

the selection of the output values of the fuzzy rules needs to be coordinated with this
sampling time, as the effective gains of the controller depend on both parameters.

Fuzzy controllers are often designed taking into account both the error and the
change of the error, but since the dynamics of the crusher are essentially first order,
derivative action is not really needed to obtain an acceptable behavior of the controlled
system.

Figure6.12a shows the response of the system to a step disturbance in themoisture
content of the olives fed to the crusher (t = 200). As depicted in the graph, this
disturbance drives a decrease of the inflow of olives to the crusher and an increase of
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Table 6.2 Rules of the fuzzy controller for the crusher

If W is L and Q is L and e is N Then DW is PM;

If W is L and Q is M and e is N Then DW is PL;

If W is L and Q is H and e is N Then DW is PL;

If W is M and Q is L and e is N Then DW is PM;

If W is M and Q is M and e is N Then DW is PL;

If W is M and Q is H and e is N Then DW is PL;

If W is H and Q is H and e is PS Then DW is NS;

If W is H and Q is M and e is PS Then DW is NS;

If W is H and Q is L and e is PS Then DW is NM;

If W is H and Q is L and e is PS Then DW is NM;

If W is M and Q is H and e is PS Then DW is NS;

If W is M and Q is M and e is PS Then DW is NS;

If Q is L and e is P Then DQ is PL;

If Q is M and e is P Then DQ is PM;

If Q is H and e is P Then DQ is PS;

If Q is H and e is N Then DQ is NS;

If W is H and Q is M and e is N Then DQ is NS;

If W is M and Q is M and e is N Then DQ is NS;

the addition of water, which is progressively decreased afterward. At t = 400, a step
change of the reference shows an acceptable behavior of the system for the transient
response, providing a higher rate of olive inflow and water addition. Figure6.12b, in
turn, shows the rejection of drift disturbances in the moisture content, again yielding
an acceptable behavior. It isworth highlighting that the control signals for the actuated
variables do not exhibit too much response to the high-frequency variations of the
moisture, but are capable to successfully reject the low-frequency disturbances.

6.5 Fuzzy High-Level Modeling: Paste Preparation

This section details the application of the Fuzzy Cognitive MapModeling technique
presented in Chap.2 for the construction of the model of the high-level layer of the
paste preparation phase of the Virgin Olive Oil production process (VOOPP).

The preparation of the paste is a key step in the VOOPP, as it influences both
the extraction yield and the quality of the obtained oil. The paste preparation stage
consists basically of two steps: the crushing of the olives in the crusher, where the
cells that contain the olive oil are broken, and the kneading that takes place in the
thermomixer, where the size of the oil droplets is increased so that it is easier to
separate the oil from the rest of the components of the paste.
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(a) Response of the controlled system to step disturbances in the moisture content of the olives

(t = 200) and changes in the reference (t = 400).
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(b) Response of the controlled system to drifts in the moisture content of the olives.

Fig. 6.12 Response of the crusher with the fuzzy controller designed to control the power con-
sumption
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The construction of the system followed the expert knowledge-based approach.
Interviews with a reduced number of experts on the VOOPP, along with an extensive
reviewof the published literature onVOOPP and some years of personal professional
experience in the industry, were the foundations for the construction of the model.

6.5.1 Definition of Nodes

The nodes involved in the VOOPP model can be divided into two major groups,
according to the nature of the value of the variable they symbolize:

• Nodes that represent typical physical variables, such as temperature, time, size.
These variables have a natural universe of discourse, namely their typical variation
range for the process.
Since the inference of the system is defined by relations between the different
labels of the variables, it is important to have a good definition of the fuzzy sets
and the labels defined over this universe of discourse.
Experts were asked to provide a representative value for each label, and this value
was used as the kernel of the membership function defining the label.
The value of this type variable is typically provided by sensors, so a previous
fuzzification step is required before using these data for the computation of the
system outputs.

• Nodes that represent variables for which there are typically no available sensors,
such as paste preparation (Kneading State (Ks)). These variables may be consid-
ered as inherently fuzzy, since it is the expert operator of the factory that determines
their value based on indirect measurements, visual inspection, etc. For these vari-
ables, the input to the system is already provided fuzzified and the meaningful
value of the output is also fuzzy, so the definition of the universe of discourse is
arbitrary.

The nodes can also be classified according to the role of the variable they represent
in the VOOPP:

• Properties of the incoming olives: this group includes Ripeness (R f ), Incoming
Olive Moisture (H I

o ), and Fruit State (E f ). The value of these variables is deter-
mined by the evolution of the olives in the grove as influenced by cultivar and
meteorological factors, the harvest date and the handling of the olives during the
harvesting and transportation.

• Technological parameters: this group comprises all those variables whose set-
points are susceptible to be specified by the operator of the factory. Examples of
these variables are Kneading Time (tb) or Sieve Size (Cs).

• Auxiliary parameters: these are parameterswhose value depends onother upstream
variables, and thus cannot be chosen arbitrarily, but do not represent an output
variable of the process. An example of this type of variables is Paste Emulsion
(PE ).
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• Output parameters: these are the variables that are usually included in the pro-
duction objective of the process. Examples of this type are Yield (X) and Fruity
(F).

This last classification of the nodes will be particularly relevant when addressing
the optimization problems to find the production objective and its corresponding
set-points.

Five labels were considered for the partition of the universe of discourse of each
variable. This number was selected as it represented a balanced trade-off between
resolution of the model and complexity. Triangular membership functions that inter-
sect at 0.5 membership grade were used for each term of the model for simplicity
reasons and to guarantee that the sum of the elements in S f (vi ) adds up to one, so
that the relative weights defined in the relations are not altered due to this factor.

6.5.2 Definition of Relations

The elicitation of the relations between variables was carried out using a two-step
approach:

1. A first characterization of the relations is elicited, and a prototype system is built
upon these.

2. The behavior of the system is studied, and the relations of nodes that do not show
satisfactory results are fine-tuned.

For the first step, experts were asked to define the type, the sign, and the strength
of the relation between the nodes. As is common practice in the construction of
FCM from expert knowledge Stach et al. (2010), experts were asked to describe
the strength using a linguistic term, which was afterward mapped to a numerical
value according to Table6.3. Also, experts were asked if any nonlinear effect, such
as saturation, thresholds, were to be included in the relations, explicitly asking for
a mapping from input to output in case these effects were present. Regular relations
were translated into Ri j according to the structure defined in Chap.2.

The second step involved studying the values of the nodes as the predecessor
nodes swept through their universe of discourse. These obtained values were plotted
in contour plots and studied to find regions of odd behavior in order to fine-tune the
model accordingly.

Once this lower-level inspection of the system was finished, a more global
approach was tackled, defining different scenarios of properties of the incoming
olives and checking the output variables for different values of olive properties and
process variables. The purpose of this study was to assure that the flow of effects
across the model was correct. Some examples of these plots are included in the next
section, along with the structure of the models and some comments.
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Table 6.3 Definition of the weight levels employed for the VOOPP model

Influence Value

Very strong 1

Strong 0.75

Moderate 0.5

Weak 0.25

6.5.3 Fuzzy Cognitive Map Model of the Paste Preparation

The graph of the paste preparation model is included in Fig. 6.13. The properties
of the incoming olives are defined by the nodes Incoming Olive Moisture (H I

o ),
Ripeness (R f ), Pit-Flesh Ratio (Rp), Incoming Fruit State (E I

f ), and Olive Illnes
(OI ). The values of these parameters depend on their evolution in the orchards, the
moment the harvesting is carried out, and the method used for the harvesting and the
transportation. However, when olives arrive at the almazara, their values are already
set, so in the model they are considered fixed value inputs.

Once in the factory, olives are fed into hoppers and the time they remain there
effectively alters their properties. This effect is included in the system using the
node Storage Time in Hopper (Ts), which reflects the time that olives are stored
in the hoppers, and exerts influence on Fruit State (E f ) and Olive Moisture (Ho).
These nodes represent the same physical variable as Incoming Fruit State (E I

f ) and
Incoming Olive Moisture (H I

o ), respectively, but at the moment the olives are taken
from the hoppers and fed to the following stage in the VOOPP. The storage of olives
in the hoppers decreases Fruit State (E f ) and Olive Moisture (Ho), as depicted in
Fig. 6.14a and b. These effects favor having a low level of Paste Emulsion (PE ),
which in turn helps having good Kneading State (Ks). The price to be paid is the
increase in Defect (D) and a slight decrease in Fruity (F), which decrease the quality
of the obtained oil.

The crushing process is responsible for the breaking of the olive cells and thus
freeing the oil. Different crusher technologies are available for the VOOPP, but, by
far, the most extended is the hammer crusher. Focusing on just this type of crusher,
there are still alternatives in the type and size of the sieve to be used. These alternatives
are included in the nodes Sieve Type (St ) and Sieve Size (Cs), respectively. Sieve
Type (St ) presents only three possible values, one for each of the alternatives existing
in the industry.

The effect of these variables is combined into an intermediate node denominated
Sieve Size (Cse), which in turn exerts its influence on the subsequent nodes.

Crushing Degree (Gm) is the variable that represents the resulting particle size of
the olive paste, and it has a strong influence on the final yield. It depends on Sieve
Size (Cse), as well as on some olive properties, namely Pulp Firmness (PF ) and
Pit-Flesh Ratio (Rp). Pulp Firmness (PF ) is a characteristic of the olives, but can be
related to Ripeness (R f ) and Fruit State (E f ), and since Fruit State (E f ) is affected
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(a) Fruit State (Ef ) (b) Olive Moisture (Ho)

Fig. 6.14 Influence of Storage Time in Hopper (Ts) on Fruit State (E f ) and Olive Moisture (Ho),
respectively. The vertical axes represent Incoming Fruit State (E I

f ) (a) and IncomingOliveMoisture

(H I
o ) (b)

(a) (b) (c)

Fig. 6.15 Values of Crushing Degree (Gm) as a function of Sieve Size (Cse) and Pulp Firmness
(PF ) for three different values of Pit-Flesh Ratio (Rp)

by Storage Time in Hopper (Ts), the value of this parameter is inferred based on
these two properties of the olives. In turn, Pit-Flesh Ratio (Rp) is a characteristic
of the incoming olives that is defined mainly by their variety, and is another input
variable to the system. Figure6.15 renders the values of Crushing Degree (Gm) as
a function of Sieve Size (Cse) and Pulp Firmness (PF ) for three different values of
Pit-Flesh Ratio (Rp).

Besides CrushingDegree (Gm), Paste Emulsion (PE ) is another important param-
eter whose value is defined by the crushing process. It is affected by all the parameters
that influence Crushing Degree (Gm), plus OliveMoisture (Ho), which plays a major
role in its value. Values of Olive Moisture (Ho) below a certain threshold completely
inhibit the emergence of emulsions,while higher values of the parameter dramatically
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(a) (b) (c)

Fig. 6.16 Values of Paste Emulsion (PE ) as a function of Sieve Size (Cse) and Olive Moisture
(Ho) for three different values of Sieve Worn (Dc)

contribute to their formation (Cert et al. 1996). Besides this, Sieve Worn (Dc) and
Hammer Worn (Dh) also exert some influence in the final value of Paste Emulsion
(PE ). Figure6.16 renders the values of Paste Emulsion (PE ) as a function of Sieve
Size (Cse) and Olive Moisture (Ho) for three different values of Sieve Worn (Dc).
This figure highlights the major influence of the Olive Moisture (Ho), while the
influence of Sieve Worn (Dc) is very slight.

The final step in the paste preparation process is the kneading of the paste inside
the thermomixer. This is probably the most important part in the whole VOOPP, due
to the influence it presents on both quality and yield (Clodoveo 2012).

If the value of Paste Emulsion (PE ) is high, then coadjuvants are added to the
paste to reduce this value. The node Coadjuvant Addition (Ac) represents the amount
of coadjuvant added to the paste, and Corrected Paste Emulsion (PEC) symbolizes
the resulting level of emulsions in the paste after the addition of the coadjuvants.

The value of Paste Moisture Content (PH ) is also very important in the process,
with values too high and too low affecting negatively the Kneading State (Ks). If
Paste Moisture Content (PH ) is low, then some water can be added at this stage
of the process, as represented by Thermomixer Water Addition (AB) node. If Paste
Moisture Content (PH ) is too high, then the addition of coadjuvant may moderately
attenuate its negative influence on the yield.

Lastly, Kneading Temperature (Tb) and Kneading Time (tb) are the par excellence
parameters that influence the kneading process. Higher values of both variables tend
to increase Kneading State (Ks) and penalize Fruity (F), with a stronger influence
shown by Kneading Temperature (Tb). Some nonlinear behavior of the parameters is
considered, as reflected by the entries of the corresponding relationmatrices included
in Table6.4.

Figures6.17 and 6.18 illustrate the influence of Kneading Temperature (Tb) and
Kneading Time (tb) for a combination of three values of PasteMoisture Content (PH )

and Corrected Paste Emulsion (PEC) on Kneading State (Ks). This figure shows that
Kneading State (Ks) is worse for low and high values of Paste Moisture Content
(PH ), as well as the negative influence exerted by Corrected Paste Emulsion (PEC).
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Table 6.4 Relation matrices for some the arcs of the VOOPP paste preparation model

Predecessor Olive moisture (Ho) Kneading temperature (Tb) Kneading time (tb)

Successor Paste emulsion (PE ) Fruity (F) Fruity (F)

ρi j 1 0.75 0.25

Ri j

⎡

⎢
⎢
⎢⎢
⎢
⎣

20 20 2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 2

⎤

⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎣

0 0.25 0.5 1.0 3.0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢
⎢⎢
⎢
⎣

0 0.25 0.5 1.0 1.0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥
⎥
⎥⎥
⎥
⎦

Predecessor Ripeness (R f ) Kneading temperature (Tb) Kneading time (tb)

Successor Fruity (F) Kneading state (Ks) Kneading state (Ks)

ρi j 0.75 0.75 0.5

Ri j

⎡

⎢
⎢⎢
⎢⎢
⎣

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

⎤

⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎣

2.0 0 0 0 0

0 1.0 0 0 0

0 0 1.0 0 0

0 0 0 1.0 0

0 0 0 0 0.75

⎤

⎥
⎥⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎣

1.0 0 0 0 0

0 1.0 0 0 0

0 0 1.0 0 0

0 0 0 0.75 0.75

0 0 0 0 0

⎤

⎥
⎥⎥
⎥⎥
⎦

Also, the higher weight of Kneading Temperature (Tb) compared to Kneading Time
(tb) is patent in the almost vertical transition lines shown in these plots.

Finally, Fig. 6.18 shows the values of Fruity (F) as a function of Kneading Tem-
perature (Tb) and Kneading Time (tb) for a combination of three values of Ripeness
(R f ) and Milling Temperature Increase (ΔTm). The figure clearly illustrates the
requirement of having an adequate value of Ripeness (R f ) for having high values of
Fruity (F), as well as the relative low range of possible process values if very high
values of Fruity (F) are to be obtained.

6.6 High-Level Control: Paste Preparation Set-Point
Determination

The model developed in the previous section can be used to answer the following
questions regarding the process:

1. Which production objectives are possible, given the batch of olives to be pro-
cessed?

2. Which of those possible objectives should be selected?
3. What set-points of the process variables allow to reach that production objective?

The multi-objective nature of the VOOPP already became apparent in Sect. 1.3.1
during the brief description of its operations: The opposite influence of several pro-
cess variables on relevant process outputs supposes having to compromise the value
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.17 Values ofKneading State (Ks) as a function ofKneading Temperature (Tb) andKneading
Time (tb) for three different values of Paste Moisture Content (PH ) and Corrected Paste Emulsion
(PEC )

of one output for the other. This multi-objective characteristic can be formalized by
the definition of an objective vector, where each element of the vector represents a
desirable characteristic of the output of the process, such as having high fruity, good
yield, or low elaboration costs.

The existence of trade-offs between desirable characteristics of theVOO supposes
that, in general, there is not a unique set of values of the process variables that
concurrently optimize all the elements of the objective vector, but a Pareto boundary
of nondominated objective points. These Pareto points represent those situations
where an improvement in the value of an objective necessarily means a decrease in
the value of another. Finding this boundary answers a slightly improved version the
first of the posed questions, namely which efficient objectives are possible?
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.18 Values of Fruity (F) as a function of Kneading Temperature (Tb) and Kneading Time
(tb) for three different values of Ripeness (R f ) and Milling Temperature Increase (ΔTm)

The selection of just one of these Pareto frontier points as production objective
depends on the relevance assigned to each of the components of the objective vector.
For instance, depending on the characteristics of the incoming olives and the market,
obtaining a high yieldmight bemore important than preserving the fruity of theVOO,
or obtaining a VOO without any organoleptic defect might be the first concern in the
elaboration. This point is addressed in Sect. 6.6.2 and leads to answering the second
question: Which of the possible objectives should be chosen.

Finally, the answer to the last question, i.e.,which set-points of the process variable
should we use to obtain the defined objective, emerges naturally from the mathemat-
ical structure used to answer the previous questions, as the decision variables in
the optimization problems are, precisely, the values of those desired set-points. The
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question of obtaining those optimal for a given production objective is discussed in
Sect. 6.6.

For the setup of the optimization problems, we classify the VOOPP variables
according to their role in the optimization problem as:

• Parameters (p): these VOOPP variables are considered to have a fixed value for
the optimization problem at hand. They will usually include the properties of the
incoming olives, alongwith some other process parameters whose value is justified
to be fixed for the current problem.

• Decision variables (u): these VOOPP variables are the ones whose value is to be
specified by the optimization problem. Usually, they will be a subset of the process
variables.

• Objective variables (y): these are the VOOPP variables that are considered the
output of the process and are included in the objective vector.

Since the values of the objective variables (y) depend on the parameters (p) and
decision variables (u), we may represent these relations as:

y = f (u, p).

The VOOPP model obtained in the previous section provides an approximation
of this f function, as it relates the values of the output parameters with properties of
the incoming olives and the technological parameters.

Following this notation, we may define the objective vector of the multicriteria
optimization problem as:

F(y,u | p) =

⎡

⎢⎢
⎢
⎣

f1(y,u | p)

f2(y,u | p)
...

fn(y,u | p)

⎤

⎥⎥
⎥
⎦

,

with fi , i ∈ {1, 2, . . . , n} representing each of the objectives.
The problems we are to solve for the answer of the different posed questions have

the general structure:
minimize F(u | p)

subject to y = f (u, p)

p = p0

with the meaning of minimize being properly defined in each particular problem
studied.
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6.6.1 Achievable Production Objectives

This section covers the determination of the Pareto boundary of possible production
objectives given a set of fixed parameters of the process. In this optimization problem,
it is natural to consider that p is composed of the properties of the incoming olives.
However, any condition of the process variable whose value was to be regarded as
fixed could also be included in the array.

The weighted sum scalarization method was used to obtain the different plots
included below. Thismethod requires finding the solutions to the following problems:

minimize
u

J =
c∑

k=1

ωk fk(y,u)

subject to y = f (u,p)

p = p0

umin ≤ u ≤ umax

for different combinations of scalarization weights ωk .
The elements of the objective vector considered were the quality characteristics of

the obtained VOO included in the paste preparation model developed in the previous
section, namely Fruity (F) and Defect (D), and Kneading State (Ks).

An analysis of the paste preparation model shows that there is no real trade-off
between Defect (D) and Fruity (F). The only node that influences both variables is
Fruit State (E f ), and the effect of this parameter in both variables shows the same
sign. Taking this fact into account, the value of both nodes was combined into a single
objective in order to reduce the analysis to a bi-objective problem and facilitate the
visualization of the results. As for the weight considering the relative relevance of
Fruity (F) andDefect (D), a value ofωq = 0.5was chosen to assign the same priority
to both parameters. The influence of assigning different priorities to these variables
is illustrated in Sect. 6.6.2, when dealing with the selection of a single production
objective. This way, the objective vector analyzed was:

F(y,u | p) =
[
f1(y,u | p) = ωq F + (1 − ωq) D
f2(y,u | p) = Ks

]
.

We begin showing how we can analyze the impact on the achievable produc-
tion objectives and their trade-offs caused by the different properties of the olives.
Figure6.19a shows points in the Pareto front for different values of Incoming Olive
Moisture (H I

o ), with the rest of olive characteristics considered defined in Table6.5.
The different starting points for the frontier in the highest achievable Fruity (F) area,
showing lower values of Kneading State (Ks) for wetter olives, illustrate the more
challenging conditions of obtaining good yields from wet olives while preserving
the quality. However, the most noticeable difference is illustrated in the plot relating
Defect (D) andKneading State (Ks), as obtaining high values ofKneading State (Ks)
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(a) Points belonging to the Pareto boundary for the different values of Incoming Olive Moisture
(HI

o) specified in the legend, with the rest of the olive properties and fixed process parameters
specified in Table 6.5.

(b) Process Set-Points for the points in the Pareto boundary shown in Figure 6.19a. The title of the
subplot indicates the value of Incoming Olive Moisture (HI

o) considered.

Fig. 6.19 Pareto boundary and process set-points for different values of Incoming Olive Moisture
(H I

o )
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Table 6.5 Value of the olive properties and fixed VOOPP parameters for Figs. 6.12 and 6.20

Value

Dirtiness (Dt ) VL

Hammer worn (Dh) VL

Incoming fruit state (E I
f ) VH

Incoming olive moisture (H I
o ) M

Olive illness (OI ) VL

Pit–flesh ratio (Rp) M

Ripeness (R f ) M

Sieve type (St ) M

Sieve worn (Dc) VL

Fig. 6.20 Points belonging to the Pareto boundary for the different values of Ripeness (R f )

specified in the legend, with the rest of the olive properties and fixed process parameters specified
in Table6.5

conveys having a remarkable increase in Defect (D). A plot of the decision variables
for the different problems solved when Incoming Olive Moisture (H I

o ) is V H and
H is included in Fig. 6.19b. An inspection of this plot shows that main responsible
for this behavior is the increase in Storage Time in Hopper (Ts) required to decrease
Corrected Paste Emulsion (PEC) beyond the point that Coadjuvant Addition (Ac)

can provide.
Another parameter that is interesting to analyze is the influence of Ripeness (R f )

on the different values of Fruity (F) which are achievable. Figure6.20 shows the
Pareto front of this relation, with lower values of Ripeness (R f ) always offering
higher values of Fruity (F) for every value of Kneading State (Ks). It is also worth
noticing the reduction of choices for interesting process objectives as Ripeness (R f )

increases, patent in the increasing slope of the Pareto frontier showing that decreasing
aimed Kneading State (Ks) yields smaller improvements of Fruity (F).
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Table 6.6 Value of the olive properties and fixed production parameters for each of the scenarios
considered in Fig. 6.21

November December January
healthy

January
damaged

February March

Dirtiness (Dt ) VL VL VL VL VL VL

Hammer
worn (Dh)

VL VL VL VL VL VL

Incoming fruit
state (E I

f )

VH VH VH M M L

Incoming olive
moisture (H I

o )

VH H M M L L

Olive illness (OI ) VL VL VL VL VL VL

Pit–flesh
ratio (Rp)

M M M M M M

Ripeness (R f ) VL L M M H VH

Sieve type (St ) M M M M M M

Sieve worn (Dc) VL VL VL VL VL VL

Although the properties of the olives are theoretically independent variables, they
usually present some correlation in their values (Hermoso et al. 1997). That is, some
combinations of values of the properties aremore likely to be found in a real scenario,
while others are very unlikely. We analyze next the achievable objectives for some
typical combination of the properties of the olives found through the season, as
included in Table6.6.

Figure6.21 shows the points of the Pareto boundary for each of these scenarios. A
first inspection of this figure draws the attention to the decrease of the maximum val-
ues for Fruity (F) and increase of theminima forDefect (D) for successive scenarios.
As commented in the previous section, the progressive increase of Ripeness (R f )

and decrease of Fruit State (E f ) are responsible for this behavior. This is coherent
with the well-known fact in the industry that, in order to obtain good VOO quality,
the olive conditions must meet some requirements, with the VOOPP not being able
to compensate for the lack of quality of the olives.

The increase in Defect (D) when approaching the higher Kneading State (Ks)

values in the two first scenarios can be attributed to the higher Olive Moisture (Ho)

considered and the associated increase of Storage Time in Hopper (Ts), a behavior
already depicted in Fig. 6.19a. In turn, the vertical disposition of the points in the
plot on the right of Fig. 6.21 for the lower-quality scenarios reveals that good yields
do not necessarily convey an increase in Defect (D), but a toll is paid in the decrease
of Fruity (F).

The values of the set-points for each considered scenario and relative weight of
the objectives are commented below:

• November: Thevalues of the process variables for lowvalues ofω,which represent
the priority of Kneading State (Ks), reflect the traditional recipe for elaborating
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Fig. 6.21 Points belonging to the Pareto boundary for the different scenarios specified in the
legend, with the corresponding olive properties and fixed process parameters specified in Table6.6

VOO without caring about its quality: high Storage Time in Hopper (Ts) to allow
for the olives to lose moisture at the expense of increasing Defect (D), and high
values of Kneading Temperature (Tb) and Kneading Time (tb), which offer good
Kneading State (Ks) while reducing Fruity (F). The high value of Coadjuvant
Addition (Ac) is explained by the existence of emulsions even after the storage in
the hopper.
As quality increases its weight in the objective function, the first variables to
decrease their values are Storage Time in Hopper (Ts), as it affects both Fruity
(F) and Defect (D), and Kneading Time (tb), which favors a increase in Fruity
(F) without affecting too seriously Kneading State (Ks). As ω keeps increasing,
Kneading Temperature (Tb) begins to drop, initially being compensated with an
increase of Kneading Time (tb). Finally, when all the relevance is given to the
quality, Storage Time in Hopper (Ts), Kneading Temperature (Tb), and Kneading
Time (tb) are assigned their lowest possible values (Fig. 6.22).

• December and January healthy: The evolution of the process set-points is very
similar in these scenarios to the November scenario. The values of Storage Time in
Hopper (Ts) are lower, since Incoming Olive Moisture (H I

o ) is also lower than in
the previous scenario, and less time is required for it to be reduced. This explains
the lower values of Defect (D) of this scenario for equivalent values of Kneading
State (Ks), as visible in Fig. 6.21.
It is also visible the tendency of requiring higher weights in the objective function
for the process variables to adapt to values promoting the quality of the oil, as the
final value of this quality decreases from one scenario to the next (Fig. 6.23).

• January damaged, February and March: These scenarios represent conditions
where olives already present values of IncomingOliveMoisture (H I

o )which do not
provoke problems related to the formation of emulsions. Because of this, the value
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Fig. 6.22 Process set-points for different scalarization weights in the scenario November. The
corresponding points in the Pareto boundary are shown in Fig. 6.21

Fig. 6.23 Process set-points for different scalarization weights in the scenario December. The
corresponding points in the Pareto boundary are shown in Fig. 6.21

of both Storage Time in Hopper (Ts) and Coadjuvant Addition (Ac) is saturated at
its minimum value for all points (Fig. 6.24). The low quality of the olives conveys
the suggestion of set-points aiming for favoring Kneading State (Ks) for almost
every value of ω, what is also reflected in the higher concentration of the points in
the Pareto plot of Fig. 6.21.
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Fig. 6.24 Process set-points for different scalarization weights in the scenario January damaged.
The corresponding points in the Pareto boundary are shown in Fig. 6.21

6.6.2 Selection of the Optimal Production Objective

Once that the points in thePareto frontier havebeen found and thepossible production
objectives are available, it is for the decision maker to choose which of these points
should be aimed at, or to establish criteria for its selection (Fig. 6.23).

The weight assigned to each of the quality elements of the objective function is
likely to change during the season. For instance, in the early season, when having
defect is not unavoidable, keeping the defect as zero is likely to have the greatest
importance for the process, as having a defect immediately means that the quality
of the VOO is no longer Extra VOO, and consequently, the price might decrease
substantially.

On the other hand, when some defect is unavoidable due to the olive properties,
then it might not be so important to prevent increasing the defect if it remains below
the bounds of lampante, which might leave room for focusing on obtaining better
industrial yield.

An obvious approach to take into account the above discussion is to find the pro-
duction objective that maximizes the income of the produced oil for each production
scenario. Two evident factors affect the obtained revenue: the obtained quantity of
VOO and its quality, as it affects its market price. A third factor to be considered
could be the possibly different production costs of elaborating VOO of different
qualities.

To implement this approach, a function that maps the properties of the VOO to a
price, a model that provides the industrial yield based on Kneading State (Ks), and
a function providing the production costs are required.

The current model of the paste preparation stage is useful when finding the Pareto
optimal values, as obtaining good values of Kneading State (Ks) is known to provide
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good industrial yields.However,when selecting the optimal elaboration point accord-
ing to an economic criterion, we need to know the value of industrial yield expected
from the operation. This amount can be obtained employing the VOO separation
model, assuming that the separation is carried out optimally.

Some comment on the way of considering the industrial yield is required. The
total amount of oil obtained per mass unit of processed olives does not depend
only on Yield (X) but also on the total amount of oil that the olives convey. It has
already been mentioned that there is an evolution of this amount of fat contained in
the olives through the season and that variation might be relevant if the additional
freedomofwhen to harvest the olives is granted. In this section, however, we embrace
the hypothesis that the olives are already at the factory, which leaves the question of
considering howmuch oil the olives contain irrelevant for the solution of the problem,
as this quantity is fixed, and the same irrespective of what quality of VOO we finally
produce. The selection of the optimal production objective when that hypothesis is
relaxed is also an interesting problem, that is dealt with in Sect. 6.7.

As for the function that maps the properties of the VOO to its price, we may rely
on the published bulk market price of the VOO according to its commercial quality,
and consider a function that provides this quality based on the VOO characteristics.
Such function, applying the European Norm 2568/91, is:

q(F, D) =

⎧
⎪⎨

⎪⎩

Extra Virgin Olive Oil if D = 0 and F > 0

Virgin Olive Oil if 0 < D ≤ 3.5 and F > 0

Lampante Olive Oil if D > 3.5 or F = 0

Once that the income is available, the production cost should also be taken into
account. This production cost can be estimated based on the values the optimal set-
points assigned for the objective, which are also available, as commented in the
previous section. A simple estimation of the unitary cost per resource allows to
include this consideration.

The above discussion suggests the following objective function of the problem to
be solved:

J = X p(q(F, D)) −
∑

j

c j x j , (6.8)

where p(·) denotes the function that maps the commercial quality of the oil to its
market price, and c j is the unitary cost of the process variable x j , with j indexing
all the relevant process variables.

The sale prices have been taken from the average bulk sale prices for the Extra,
Virgin, and Lampante qualities from the Poolred system Poolred (2014) from
June to July period of 2013 and included in Table6.7. A fourth quality, namely
Extra superior not included in the official quality classification, is included in this
table. This category regards Extra VOO that possesses high values of Fruity (F)

of, and that, although they are technically classified as just Extra VOO, from a
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Table 6.7 Sale prices in each scenario (Euros/kg)

Product Extra sup. Extra Virgin Lampante

Price 4 2.71 2.51 2.36

Fig. 6.25 Pareto plot of the optimal production points according to the prices defined in Table6.7,
considering that Extra VOO is obtained with any positive value of Fruity (F)

consumer-oriented quality perspective they are different from regular Extra VOO in
that the market is willing to pay a higher price for them.

Figure6.25 shows the optimal production points according to the application of a
strict definition of the quality classification of VOO. Here, the November point aims
at obtaining the characteristics for Extra superior, defined by requiring a minimum
value of Fruity (F) of H . The December point, surprisingly, drops its Fruity (F) aim
to L . This is a consequence of applying strictly the technical quality classification,
as for a VOO to be Extra it is just required to have nonzero Fruity (F) and zero
Defect (D). However, from a market-oriented perspective, VOO with such low
values of fruity would not be considered as Extra and, thus, would not be paid the
corresponding price.

Figure6.26 shows the production objective for a situation where a market-aware
interpretation of the quality of the VOO is applied, considered as requiringminimum
values of Fruity (F) for a VOO to be classified as Extra or Virgin. In turn, Fig. 6.27
shows the corresponding set-points of the process variables for those objectives.
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Fig. 6.26 Pareto plot of the optimal production points according to the prices defined in Table6.7,
considering that a small minimum value of Fruity (F) is required for obtaining Extra VOO

Fig. 6.27 Values of the process set-points for the optimal production points according to the prices
defined in Table6.7, considering that a small minimum value of Fruity (F) is required for obtaining
extra VOO. The November scenario corresponds to ω = 0, while March corresponds to ω = 5
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The November scenario still aims at Extra superior quality, with prescribed set-
points according to this objective: very low value of Storage Time in Hopper (Ts) so
that no organoleptic defect is provoked on the oil and use of Coadjuvant Addition
(Ac) to reduce the emulsions; low value of Kneading Temperature (Tb) andmoderate
of Kneading Time (tb) to preserve the Fruity (F) of the oil.

The target in December is Extra VOO, as Fruity (F) would not be high enough
to reach the threshold required for Extra superior, as depicted in Fig. 6.21. Since the
objective of Fruity (F) is milder, slightly more aggressive conditions are prescribed
for the elaboration, increasing slightly both Kneading Time (tb) and Kneading Tem-
perature (Tb).

The conditions for both scenarios considered in January are very similar, being
the objective in both producing Virgin VOO. Kneading Temperature (Tb) shows
moderate values to preserve Fruity (F) into the limits for the prescribed quality. A
slightly slower value of the parameter is set for January damaged, as the quality
condition of the olives is worse.

Lastly, the objective for February andMarch is also very similar, and the process
conditions are prescribed identical. In these scenarios, the focus is on obtaining the
highest possible quantity of oil, as the quality is already lost; consequently, high
values of Kneading Temperature (Tb) and Kneading Time (tb) are suggested.

6.6.3 Inclusion of Feedback: Run-to-Run Control

The approach taken to implement feedback into the higher layer of the process is, as
presented in Chap.4, to augment the system with an EWMA-like observer and use
the nonlinear models developed in the previous section. Using a quadratic objective
function, the proposed Run-to-run controller is:

minimize
uk

J = (ŷk − T )T Q (ŷk − T ) + uT
k R uk

subject to ŷk = f (uk,p) + ν̂k

p = p0

umin ≤ u ≤ umax

ν̂k = ω ν̂k−1 + (1 − ω) (yk−1 − f (uk−1,p0)),

where Q, R, and ω are their tuning parameters.
Two main types of disturbances have been studied in the Run-to-run literature:

steps disturbances and process drifts. Steps disturbances model well sudden changes
in the operating condition that remain constant for successive operations, while drifts
are better for considering situations where some effect continuously varies from one
batch to the next, such as accumulation of dirt (Lee et al. 2008).

This chosen observer structure is known to work well with step disturbances, not
being so effective when drift disturbances affect the process. Selecting this observer
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Fig. 6.28 Values of the process outputs and prescribed set-points by the Run-to-run controller for
ω = 0.2, when the priority is set to Kneading State (Ks) and a constant disturbance is acting on
Fruity (F), for the December scenario

structure implicitly assigns more relevance to step disturbances in the process than
drifts, that is, indeed, the case for our application of the method to the VOOPP. Since
the models are static, a step disturbance is a good approximation for a mismatch of
the gain of the process Lee et al. (2008), which is the most appealing use case for
the feedback approach. On the other hand, drift disturbances are less likely to occur
to the process at the high-level layer. One possible drift could be the progressive
moisture loss of the olives in the hoppers as they remain there, but this effect is
already considered in the model, so updating the value of Storage Time in Hopper
(Ts), this effect is already accounted for. In the proposed scheme, we suppose that
the operator measures all the relevant process variables in the VOOPP in each batch,
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Fig. 6.29 Values of the process outputs and prescribed set-points by the Run-to-run controller for
ω = 0.2, when the priority is balanced and a constant disturbance is acting on Fruity (F), for the
December scenario

and these values are supplied to the system, thus providing some feedforward action
for the change of these variables.

The proposedRun-to-run controller has three parameters susceptible of tuning: Q,
R, and ω. The first two influence the assignment of relative importance to the errors
in the output process variables and the control action, while the latter influences the
way the observer estimates the disturbance affecting the system, thus influencing the
convergence rate of the controller. This effect can be visualized in the comparison
of Figs. 6.28, 6.29, and 6.30.

In order to illustrate the influence of the process parameters, let us analyze in some
detail the scenario December, as it presents a balanced situation between achieving
good quality and good yield. Let us assume that the production objective for the
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Fig. 6.30 Values of the process outputs and prescribed set-points by the Run-to-run controller for
ω = 0.2, when the priority is set to Fruity (F) and a constant disturbance is acting on Fruity (F),
for the December scenario

scenario is given by the economic criterion presented in Sect. 6.6.2 and that there is
a mismatch between the model used for obtaining the optimal production set-points
and the actual plant, modeled as an offset affecting Fruity (F).

If we apply the set-points computed according to the method proposed in the
previous section, we will find that the process outputs do not exactly match the
objective, as Fruity (F) is below the desired values. Iteration 0 of Figs6.28, 6.29,
and 6.30 shows this behavior.

Given the multi-objective nature of the VOOPP, it is expected that in order to
reduce the mismatch in Fruity (F), some toll had to be paid in the rest of outputs.
So, a preference in the tolerance against deviations in the different outputs should be
established, which is exactly the role of parameter Q in the controller.
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Fig. 6.31 Values of the process outputs and prescribed set-points by the Run-to-run controller for
ω = 0.8, when the priority is set to Fruity (F) and a constant disturbance is acting on Fruity (F),
for the December scenario

Figure6.28 shows the situation when the preferred output is Kneading State (Ks).
Given that the desired value of the parameter is obtained, no major changes are
suggested for the process variables, just a slight correction to further reduce Defect
(D) which does not imply a change in Kneading State (Ks). The error showed in
Fruity (F) is tolerated, and no further actions are prescribed.

In turn, Fig. 6.29 shows the case when the deviations in each of the process vari-
ables are equally penalized. As expected, the stipulated process set-points are slightly
modified to decrease the error in Defect (D) at the expense of lightly worsening
Kneading State (Ks).

To complete the discussion, if the emphasis is put on achieving the prescribed
Fruity (F), disregarding the decrease of Kneading State (Ks), the sequence of
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Fig. 6.32 Values of the process outputs and prescribed set-points by the Run-to-run controller for
ω = 0.2, when the priority is set to Fruity (F) and a stochastic disturbance is acting on Fruity (F),
for the December scenario

proposed set-points by the algorithm is portrayed in Fig. 6.30. In this scenario, the
desired level of Fruity (F) is almost exactly achieved, at the expense of a higher
decrease of Kneading State (Ks).

The influence of ω can be observed comparing Figs. 6.30 and 6.31. In these plots,
Q and R have the same value, while ω is set to 0.2 and 0.8, respectively, in each
figure. The final values of both the outputs and the process set-points end being equal,
but the convergence rate in the first case is much higher than in the second.

However, choosing small values of ω yields higher convergence rate in the case
of a fixed deterministic step disturbance, but the algorithm is less robust to the
existence of stochastic noise, as the filtering performed by the observer is much
milder. To illustrate this effect, Figs. 6.32 and 6.33 show the response of the system
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Fig. 6.33 Values of the process outputs and prescribed set-points by the Run-to-run controller for
ω = 0.8, when the priority is set to Fruity (F) and a stochastic disturbance is acting on Fruity (F),
for the December scenario

when independent randomGaussian noise of zero mean and variance 0.25 is applied.
The aggressive tuning shows a much greater variability of the prescribed process set-
points, while the behavior is smoother for the more conservative one.

Equation4.44 provides the condition for convergence of the algorithm for the
MIMO unconstrained linear case. Using this Equation as guideline, the candidate
range of values of ω so that the system converges is the [0, 1] interval. Employing
a constant value of 1 for every iteration of the controller is equivalent to actually
not including any feedback action at all, since we do not update the estimate of the
disturbance and stick to whatever value we considered for the initial iteration.

The other extreme in the range supposes completely disregarding previous esti-
mates of the disturbance, and select the observed mismatch in the last iteration as
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Fig. 6.34 Values of the process outputs and prescribed set-points by the Run-to-run controller for
ω = 0.2, when the priority is set to Fruity (F) and a disturbance of the form ηk = α yk is acting on
Fruity (F), for the December scenario

the estimate. In turn, simulating the system for values of ω higher than 1 effectively
conveys the nonconvergence of the algorithm.

Finally, Fig. 6.34 shows the suggested set-points for a scenario where a level-
dependent disturbance of the form:

ηk = α yk

is acting on the system. The plot shows a satisfactory behavior of the system, similar
to that obtained for the constant disturbance considered before.
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6.7 Production Planning: Selection of Harvesting Dates

The properties of the olives depend heavily on their ripeness, which in turn depends
on the moment they are harvested. This way, the assumption that the olives are
already harvested conveys that a key decision with a fundamental influence on the
properties of the elaborated VOO has already been made. This decision, in turn,
influences the profitability of the operation, so a relevant question to address is to
find what amounts of what quality of VOO should be produced to maximize the
profit for the year, which in turn requires choosing when to harvest the olives so that
their properties allow to carry out this schedule.

This production plan can be found applying the methodology proposed in Section
5. According to the guidelines of the proposed method, a SKU can be defined for
each final product, considering the product as a combination of the properties of
the produced good and the marketing particularities used for its commercialization.
For simplicity, let us consider four quality levels, namely Lampante, Virgin, Extra,
and Extra Sup, and that all the products will be sold in bulk except for the highest
quality product that will be sold exclusively bottled. This way, we shall define four
SKUs according to four quality levels for the final VOO produced. As VOO is not
perishable, the limits on the demand of each SKU (D(i)) need to be defined only
for the whole season, and these values need to be provided by estimations of the
capacity of the company to sell each of the products.

The only raw inputs that are required for the production of VOO are olives, so we
define four SKUs to represent olives with properties matching the quality require-
ments of the output SKUs. The connection between the input and output SKUs is
provided by the matrix R, whose entries define how much of each input SKU is
required to produce a unit of output SKU. These entries encode key information
about the process that influence the solution of the optimization problem, so provid-
ing sensible and accurate values for them is important. The other parameters of the
problem whose values need to be defined taking into account process considerations
are C(i, t) that represents the production cost and may be influenced by the proper-
ties of the inputs, and thus change from one time instant to the next, and S(i, t) that
represents the supply of the corresponding input SKUs, thus representing the avail-
ability of raw inputs with adequate properties for the production of the corresponding
output SKU.

Figure6.35 shows a block diagram of the flow of data for the optimization setup.
As depicted in the figure, the origin is a model of the evolution of the olives that
provide the values of their key features. These values, in turn, are used by a model
of the process that provides, for each output SKU, the values that allow to compute
the parameters R(i, j, t), S(i, t), and C(i, t). Finally, these parameters are used in
the optimization problem to provide the production plan, i.e., the variables xi,t .
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Fig. 6.35 Block diagram of the flow of information for the Production Planning optimization setup

The following sections further elaborate on how the olive evolution model can be
constructed and how to compute the parameters S(i, t) andC(i, t) from the available
process models.

6.7.1 Model of the Evolution of the Olive Properties

The foundation of the approach is a model that provides the values of the relevant
features of the inputs for each time instant considered. In our case, the characteristics
of the olives relevant to the problem are the ripeness (R f ), the fat content (Xo), and
the humidity (Ho).

As commented in Chap.5, different levels of sophistication and effort can be
devoted to the construction of these models. On the one hand, the simplest approach
is to use historical data or published bibliography to obtain average values of the
expected properties of the olives. On the other hand, if a large database of historical
data that contains additional information, such as pluviometry or other meteorologi-
cal factors is available, then a bit more sophisticated approach of trying to select the
subset of the data that most faithfully resembles the conditions of the current season
can be pursued.

In our case, the data provided in Jimenez Herrera et al. (2012) and Gutiérrez et al.
(1999) were used for the ripeness and oil content, respectively, and implemented as a
lookup table. Quite surprisingly, no data of the evolution of Ho could be found in the
published bibliography, so typical evolution data were provided by experts in VOO
elaboration and incorporated into the lookup table model.

6.7.2 Process Models

The role of the process models is to provide the values of the parameters R(i, j, t),
C(i, t), and S(i, t) for the optimization problem. For this purpose, the high-level
models of the process presented in Sect. 6.5 and techniques presented in Sect. 6.6 can
be used, as they provide the reference values of the process variables and the expected
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values of the output variables, thus providing the basic data for the computation of
these parameters.

The entries of R(i, j, t) basically model the relation between the amount of olives
processed and oil obtained. The fundamental factors that define this relation are two:
the composition of the olives and the amount of oil that the process is capable
of extracting. Obviously, the composition of the olives determines how much oil
they contain in the first place; however, the moisture content of the olives is also a
parameter of interest, as it also influences the extractability. This extractability, as
shown in the previous section, also depends on the target quality of the produced oil,
so a problem like

minimize
u

J = f (y,u)

subject to y = f (u,p)

p = p0

yq = y0q
umin ≤ u ≤ umax

needs to be solved for each time instant t and output SKU. Here, y0q represents the
required quality for the corresponding SKU and p0 contains the values of the input
olives obtained from the evolution model. If this problem is unfeasible, then the
quality of the inputs is not enough to produce the corresponding SKU, so S(i, t)
must be set to zero. On the other hand, if the problem is feasible, then S(i, t) must
be set to the forecasted supply of olives at that time instant and the solution of the
problem provides the expected extractability and the values of the process variables
that allow to obtain it.

Performing a mass balance on the inputs and outputs of the process, the following
relation can be derived:

R(i, j, t) =
(
1 − Hoi

100

) (
Xoi − γi

100

) (
1 − γi

100

)−1
, (6.9)

where Xoi and Hoi account for the composition of the olives and γi represents the
extractability obtained from the solution of the optimization problem (6.9).

Once the values of the process variables are defined, the computation of approxi-
mate process costs can be performed via simple relations. The values of the time that
the olives are held in the hopper, and the choice of sieve size does not have much
influence in the process costs and can be omitted. The cost associated with the use
of microtalc can simply be modeled by:

cAt = At · ptalc, (6.10)

where ptalc is the price per kg. of the microtalc employed. The cost of heating the
olive paste can be estimated as:
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cTb = (Tb − Tamb) · cpaste · p f uel

pci f uel
, (6.11)

with cpaste being the heat capacity of the olive paste, pci f uel and p f uel the lower
heating value and price of the fuel, respectively.

The value of the kneading time tb does not significantly influence the total pro-
cessing cost, since it is the rate of flow of paste into the decanter that determines
the production rate and, consequently, the amount of time that the factory must be
operating in order to process the olives.

Lastly, the man labor cost in the factory is basically independent of the quality
that is being produced, and can also be disregarded in this initial overview.

The analysis above finally renders the simple process cost estimation equation:

C(i, t) = cAt i
+ cTbi (6.12)

6.7.3 Optimization Problem Definition

Once that the process-related parameters of the problem are available, the next step
is to particularize the constraints that need to be considered in the optimization
problem. The choices made in the definition of the SKUs imply that there is a one-
to-one relation between input and output SKUs, so the associated constraints can be
expressed as

R(i, j, t)x j,t ≤ xi , t ∈ T, i ∈ F.

Here, F represents the subset of I that contains the indexes of the four output SKUs
considered, and j is associated with the corresponding value of i . This way, there
are four constraints—one per each output SKU—for each time step considered in
the problem.

The capacity constraints imposed by the finite processing capacity of the almazara
can be modeled using a single resource U to represent the processing capacity of
the facility, as all the products basically undergo the same routing through the same
machines. This way, the capacity constraint can be formulated as

U
∑

i∈Ip
xi,t ≤ 1, t ∈ T .

As commented before, since the output SKU is not perishable, then there is no
reason to include demand constraints for the individual time steps. Typical market
conditions for bulk VOO are such that the demand can be regarded as unbounded
for all practical purposes, so the demand constraint needs to be included only for the
Extra sup. SKU (i = 4), which is sold bottled



6.7 Production Planning: Selection of Harvesting Dates 189

Fig. 6.36 Quality evolution of the olives for the different scenarios considered. ( c©2014 IFAC.
Reprinted, with permission, from Cano Marchal, P., Martínez Gila, D., Gámez García, J., and
Gómez Ortega, J. Optimal production planning for the virgin olive oil elaboration process. In IFAC
World Congress, volume 19, pages 8921–8926)

∑

t∈T
x4,t ≤ D4.

The raw input supply limitations for each time step can be expressed as

xi,t ≤ S(i, t), i ∈ G, (6.13)

while the total availability of raw materials for the season can be modeled as

∑

i∈G

∑

t∈T
xi,t ≤ S. (6.14)

In both cases, G stands for the subset of I that contains the indexes of the raw
input SKUs. Putting all these constraints together with the objective function, the
optimization problem to be solved can be formalized as

minimize
xi,t

∑

t∈T

∑

i∈I

(
C(i, t) − P(i, t)

)
xi,t

subject to R(i, j, t)x j,t ≤ xi , t ∈ T, i ∈ F.,

U
∑

i∈F
xi,t ≤ 1, t ∈ T,

(6.15)
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Table 6.8 Sale prices in each scenario (Euros/kg)

Product Extra sup. Extra Virgin Lampante

Scenarios IA-IB 4 2.71 2.51 2.36

Scenarios
IIA-IIB

3.5 1.75 1.65 1.59

Fig. 6.37 Optimal production plan for scenario IA. Previously published in Cano Marchal et al.
(2014) c©2014 IFAC, used with permission

∑

t∈T
x4,t ≤ D4,

xi,t ≤ S(i, t), i ∈ G,
∑

i∈G

∑

t∈T
xi,t ≤ S.

In order to illustrate the proposed method, four scenarios have been considered
based on two different values for two parameters.

First, two different scenarios of the evolution of the quality of the olives in the
orchards are considered. Scenario A considers a regular evolution of the quality,
while scenario B considers the situation when some factor, such as a plague or hail,
supposed to occur on the first week of November, provokes a substantial decrease
of the quality. Figure6.36 depicts the evolution of the quality for the considered
scenarios.

The second parameter considered is the price for the different SKUs. Two different
sets of sale prices have been taken from the average bulk sale prices for the Extra,
Virgin, and Lampante qualities from the Poolred system (Poolred 2014). Data for
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Fig. 6.38 Optimal production plan for scenario IIA. Previously published in Cano Marchal et al.
(2014) c©2014 IFAC, used with permission

Fig. 6.39 Optimal production plan for scenario IB. Previously published in Cano Marchal et al.
(2014) c©2014 IFAC, used with permission

scenario I are taken from June to July period of 2013, while scenario II considers the
same period of 2012. For the Extra superior product, since there are no published
data, the sale price has been fixed as a typical sale price for that product. The different
prices are gathered in Table6.8, and Fig. 6.37 plots the optimal production plan for
scenario IA, while Fig. 6.38 depicts scenario IIA.

As can be seen, both scenarios are quite similar, just implying a small shift in pro-
duction toward the final part of the harvest season for IIA. The comparison between
scenarios IA and IB (Fig. 6.39) shows the convenience of starting to harvest earlier
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Fig. 6.40 Optimal production plan for scenario IIB. Previously published in Cano Marchal et al.
(2014) c©2014 IFAC, used with permission

when the quality drops sharply and the spread between prices for the products is
high.

The remarkably different plans provided for scenarios IB and IIB (Fig. 6.40) high-
light the fact that if the spread of prices is not high enough, and the base quality is
low, it is better to plan the production just aiming tomaximize the amount of obtained
oil. Finally, it is worth noting that the production of Extra superior remains constant
between scenarios, and limited by the selling capacity considered. The fact that it is
produced as late as possible is justified by the increasing fat content and extractability
due to the evolution of the ripeness of the olives.
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Chapter 7
Conclusions and Future Directions

7.1 Conclusions

In this book, we have delved into the particularities of the application of automatic
control techniques to food transformation processes. The broad nature of the food
processing industry encompasses processes whose complexity ranges from selection
and packaging of fruits and vegetables, to the production of prepared meals, passing
through the brewing of beer or the manufacture of dairy products.

This heterogeneity undoubtedly implies that there is a wide spectrum of different
situations where the application of automatic control can provide its benefits to the
processes, but also means the existence of diverse challenges to overcome for its
successful utilization. Many of these challenges are common to the ones faced by
process industry: dead-times, disturbances, intertwined dynamics in multivariable
systems, etc. However, the key particularity of food industry is that quite often the
variables of interest of the final products cannot be easily measured online, so the
application of automatic control to these variables needs to be tailored to this special
circumstance.

The best way to tackle the complications that arise by this lack of measurements
is by leveraging the hierarchical control paradigm to split the plant into two layers:
a lower-level one where the measurement of the variables does not suppose any
problems, and a higher-level layer where measuring the output variables of interest
is restricted.Under this scheme, the lower-level layer can be controlled using standard
control techniques, while the higher-level layer can focus its attention to the relations
between the references of the lower-level control loops and the product features.

Having appropriatemodels of the processes is often the first step for the successful
design of a control system. The purpose of the model and the availability of online
experimental data greatly determine the type and complexity of the model. The
tuning of the lower-level feedback loops requires relatively simple processmodel that
can be identified using standard System Identification approaches, such as subspace
methods. On the other hand, obtaining models for the upper layer typically requires a
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different approach, as the System Identification route often is not an option due to the
lack of online measurements. For this layer, the application of fuzzy techniques is an
interesting alternative, as it allows to employ expert knowledge for the construction
of the models and admits to fine-tune their parameters using eventually available
experimental data. The precision requirements of the upper-layermodels are typically
more demanding than those of the lower-level layer, mainly due to the preponderance
of feedforward over feedback techniques for the control of these outputs.

As alreadymentioned above, the challenges of the control of the lower-level layers
of the food transformation processes are quite similar to the ones faced by process
industry, so many of the control ideas and techniques that are applicable to process
industry are useful for the control of this layer. Consequently, PID control constitutes
the basic tool for this layer, and the tuning of these controllers can be done using
different methods according to the available knowledge about the system.

Beyond the basic PID, feedforward actions are also useful when there are measur-
able disturbances that affect the controlled output and two-degree-of-freedom control
plays an important role for situations where the set-point of the variables is changed
frequently or the controlled outputs need to follow a certain trajectory.

Batch operation of food processes is fairly common, so the application of specific
techniques for this type of scenarios, such as Iterative Learning Control or Run-to-
run control, may also have a positive impact on the behavior of the controlled system
as they allow to learn from previous operations and use that knowledge to improve
the current batch.

The control of the higher-level layer is where the challenges that are more specific
to food industry reside. The key idea is that just controlling the lower-level layer does
not guarantee that the outputs of the process, considered as the set of features that
are important for the final consumer and the economic profitability of the operation,
will have the desired values. In fact, if only the lower-level layer is under feedback
control, then the relation between the outputs of the lower-level layer and the actual
outputs of interest of the process is left in an open loop. This means that if the values
chosen for the outputs of the lower layer do not provide the desired process outputs,
then there is no mechanism capable of detecting this deviation and correcting it. The
key element, again, is the difficulty of measuring online the values of the process
outputs, and the sampling rate at which these variables can be assessed fundamentally
defines what techniques can be implemented.

This frequent difficulty in obtaining measurements of the outputs implies that the
implementation of feedforward schemes is easier to carry out in practice, however,
at the cost of requiring models of better quality. Once that a model that relates the
set-points of the low-level layer with the process outputs is available, it can be used
for different purposes. The general strategy is to set up an optimization problem
that includes the process model as a constraint and define an objective function that
captures the production goals. Since the features of the incoming raw inputs typically
exert a very high influence on the characteristics of the final products, the first utility
of this approach is to define what production objective to aim for taking into account
the features of the input materials. Furthermore, the solution of this problem also
provides what reference values of the lower-level variables should be provided.



7.1 Conclusions 197

Despite the advantages of including these feedforward schemes, the inclusion of
feedback in the higher-level layer is also desired, as it provides robustness against
Modeling errors, disturbances, and uncertainty in the assessment of the properties
of the raw inputs. The idea is to leverage the setup already available and include an
observer that incorporates actual information about the process into the optimization
problem, thus allowing to update the set-points according to the actual behavior of
the process. This constitutes an approach that is very similar to Model Predictive
Control and that, depending on the available sampling rate of the output variables,
can be seen more as a Run-to-run control approach.

Finally, the seasonal availability of the different inputs makes it interesting to
consider when to plan the production so that the profit of the year is maximized.
This can be done making use of the models above—or simplified versions of them—
defining an optimization problem that decides which products to produce based on
an estimation of the properties of the incoming goods.

7.2 Future Directions

As highlightedmultiple times in the book, the greatest limitation in the application of
feedback ideas to food processes is the difficulty of measuring online the features of
interest of the final products. It is the opinion of the authors that the development of
sensors capable of performing this task is the key step thatmay enable a breakthrough
in the industry. The amount of research effort devoted to this topic during the last
years demonstrates that the authors are not alone in this point of view.

The three most widely researched technologies for this purpose are near-infrared
spectroscopy, computer vision, and electronic noses. Plenty of research effort has
been devoted to these technologies, as they show features that are necessary con-
ditions for their application online: They don’t destroy the samples in the analysis,
don’t require preparation of the samples and are relatively fast. Unfortunately, these
conditions are far from sufficient and many technological challenges still need to be
resolved before they are routinely used in every food transformation process in the
industry.

One of the essential difficulties for the application of these technologies is the
inherent heterogeneity of foodmaterials, whichmakes it sometimes difficult to obtain
robust calibrations, particularly for near-infrared spectroscopy applications. Fortu-
nately, this shortcoming is likely to be superseded by the inclusion of smart functions
and Internet of Things (IoT) ideas in the sensors. It is a well-known fact that having a
large and heterogeneous set of samples is a key aspect for the construction of robust
calibrations. The possibility of having the sensors, in different geographical locations,
continually collects and submits data to centralized servers, drastically reduces the
costs of obtaining data representative of the different possible states of the product,
and offers a scenario where the continuous improvement of the calibrations can be
performed at a relatively low cost.
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Still, the requirement of having a external method of reference providing values
for the update of the calibrations and the consequent necessity of sampling require
additional work for the operators of the factory. However, even in absence of these
values, nonsupervised techniques could be applied to cluster the data and minimize
the number of reference values required to expand or robustify the calibrations.

Another major difficulty is the adaption of the instruments and techniques to the
requirements imposed by online measurement. In effect, aspects such as production
cadence, physical accessibility of the product, fouling of the sensors or vibrations
may complicate substantially the application of an already well-tested method in
laboratory conditions. These aspects complicate the acquisition of the primary data,
usually providing worse signal-to-noise ratios than the laboratory conditions, thus
further complicating the construction of robust calibrations.

Onepossible alternative is the development of customautomated samplingdevices
that allow to perform at-line measurements at a relatively high rate, without requiring
the intervention of human operators. The drawback of this approach is the additional
cost of the sampling devices and the inclusion of additional elements that need to be
maintained.

Yet another source of information from the process are evaluations from expert
operators. The use of these evaluations for the control of the process has been explored
in the literature and is a line of work that is interesting as well. The main drawback
of this alternative is the reliance on human operators for the task, which makes it
more difficult to assure a consistent source of data for the process, in terms of both
sampling time and uncertainty in the provided information.

The use of these evaluations, however, as targets for other sensors in a calibration
scenario, again leveraging the IoT capabilities, may result in an interesting research
line. The objective is not to have an online sensor capable of providing the informa-
tion that a reference analysis provides, but a sensor that is capable of reproducing the
assessments that an expert operator employs to operate the plant. This type of infor-
mation can be enough to introduce feedback into the process, as it merges naturally
with the fuzzy models of the higher-level layer.

Another foreseeable tendency in the food processing industry is consumer-driven
production, considered as explicitly contemplating the preferences and choices of
the consumers when selecting the production objectives of process. The practical
implementation of this tendency requires an additional model capable of mapping
the perceptions and preferences of the consumers to the values of measurable out-
put features of the products. It might be case that these features regarded by the
consumers are not classically included in the set of variables usually considered in
the process, thus requiring the development and implementation of process models
that explicitly relate these new outputs with the corresponding raw input features
and process variables. The modular nature of the Fuzzy Cognitive Maps Modeling
approach offers advantages in these scenarios, as it is easy to extend existing models
with new output variables.

The drastic decrease of cost of sensors and electronics and the pervasiveness of
IoT approaches getting into precision agriculture could again set a new ground for the
industry, as many of the variability of the incoming raw products could be dampened
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by appropriate actions in the groves. Furthermore, the knowledge of these properties
may trigger a better decision-making process regarding harvesting times, etc., and
also provide data for the season-wide Production Planning problems that would have
more reliable information and the possibility, again, of building better models of the
evolution of the raw input properties.

Finally, the challenge of sustainability in the food industry can also be helped by
the inclusion of automatic control ideas. The use of model-based controllers under
an optimization scheme can accommodate terms explicitly accounting for the energy
consumption, thus leading tomore efficient operations of the processes. Furthermore,
the development of precision agriculture may also have a positive impact on the
consumption of resources in the groves, as having explicit data may prevent an
excessive use of inputs due to uncertainty in the needs of the crops.
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