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EDITORS' PREFACE 

THE increasing specialisation in biological mqmry 
has made it impossible for anyone author to deal 
adequately with current advances in knowledge. It 
has become a matter of considetable difficulty for a 
research student to gain a correct idea-of the present 
state of knowledge of a subject in which he himself is 
interested. To meet this situation the text-qook is 
being. supplemented by the monograph. 

The aim of the present series is to provide authori­
tative accounts of what has been done in some of the 
diverse branches of biological investigation, and at 
the same time to give to those who have contributed 
notably to the development of a particular field of 
inquiry an- opportunity of presenting the results of 
their researches, scattered throughout tlie scientific 
journals, in' a more extended form, showing their 
relation to \Yhat has already been done and to 
problems that remain to be solved. 

The present generation is witnessing H a return to 
the practice of older days when animal physiology 
was not yet divorced from morphology." Con­
spicuous progress is now being seen in the field of 
general physiology, of experimental biology, and in 
the application of biological principles to economic 
problems. Often the analysis of large masses of 
data by statistical methods is necessary, and the 
bic;>logical worker is continually encountering advanced 
statistical problems the adequate solutions of which 

vii 



'viii EDITORS' PREFACE 

are not found in current statistical text-books. 'To 
meet these needs the present monograph was pre­
pared, and the early call for the second and later 
editions indicates the success attained by the author 
in this project. 

F. A. E. C. 
D. W. C. 



PREFACE TO ELEVENTH EDITION 

F OR several years prior to the preparation of this 
book, the author had been working in somewhat 
intimate co-operation with a number of biological 
research departments at Rothamsted; the book was 
very decidedly the product of this circumstance. 
Daily contact with statistical problems as they 
'presented themselves to laboratory workers stimulated 
the purely mathematical researches upon which the 
new methods were based. I t was clear tnat the 
traditional machinery inculcated by the biometrical 
school was wholely unsuited to the needs of practical 
research. The futile elaboration of innumerable 
measures of correlation,. and the evasion of the real 
difficulties of sampling problems under cover of a 
contempt for small samples; were obviously beginning 
to make its pretentions ridiculous. These procedures 
were not only ill-aimed, but, for all their elaboration, 
not sufficiently accurate. Only by tackling small 
sample problems 'on their merits, in the author's view, 
did it seem possible to apply accurate tests to practical 
data. With the encouragement of my colleagues, and 
the valued help of the late W. S. Gosset (" Student "), 
his assistant Mr E. Somerfield, and Miss W. A. 
Macken,zie, the first edition was prepared and weathered 
the hostile criticisms inevitable to such a venture. 

To-day exact tests of significance need no apology. 
The demand, steadily increasing over a long period, 
for a book designed originally for a much smaller 
public has justified at'least some of the innovations in 

ix 



x PREFACE TO ELEVENTH EDITION 

its plan which at first must have seemed questionable. 
(The recognition of degrees of freedom; the use of 
fixed probability levels in tabulating the functions 
used in tests of significance; the analysis of variance; 
the need for randomisation in experimental design, etc.) 
The author was impressed with the practical import­
ance of many recent mathematical advances, which to 
others seemed to be merely academic 'refinements. 
,He felt sure, too, that workers with ~esearch experience 
would appreciate a book which, without entering into 
the mathematical theory of statistical methods, should. 
embody the latest results of that theory, presenting 
them in the form of practical procedures appropriate 
to those types of data with which research workers 
are actually concerned. The practical application of 
general theorems is a different art from their establish­
ment by mathematical proof. It requires fully as 
deep an understanding of their meaning, and is, more­
over, useful to many to whom the other is unnecessary. 
To carry put this plan new matter has had to be 
added with each new edition, to illustrate extensions 
and improvements, the value of which had in the 
meantime been established by experience. 

In most cases the new methods actually simplify 
the handling of the data. The conservatism of some 
university courses in elementary statistics, in stereo­
typing unnecessary approximations and inappropriate 
conventions, still hinders many s1!Udents in the use of 
exact methods. In reading this book they should try 
to remember that departures from tradition have not 
been made capriciously, but oniy when they have been 
found to be definitely helpful. 

Especially in the order of presentation, the book 
bears traces, of the state of the subject when it first 
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appeared. More recent books have, rightly from 
the teacher's standpoint, introduced the analysis of 
variance earlier, and' given it more space. They have 
thus carried further than I the process of abstracting 
from the field formerly embraced oy the correlation 
coefficient, problems capable of a more direct approach. 
In excusing myself from the difficult task of a funda­
mental rearrangement, I may plead that it is of real 
value to understand the problems discussed by earlier 
writers, and to be able to translate them into the 
sys,tem of ideas in whi,ch they may be more simply or 
more comprehensively resolved. I have therefore 
contented myself with indicating the analysis of 
variance procedure as an alternative approach in some 
early examples, as in Sections 24 and 24'1. 

With a class capable of mastering the whole 
book, I should now postpone the matter of Sections 
30 to 40, dealing with correlation, until further 
experience has been gained of the applications of the 
Analysis of Variance, but should later give time to the 
ideas of correlation and partial correlation, for their-im­
portance in understanding the literature of quanlitative 
biology, which has been so largely influenced by them. 

In the second edition the importance of providing 
a striking and detailed illustration of the principles of 
statistical estimation led to the addition' of a ninth 
chapter. The subject had received only general 
discussion in the first edition, and, in spite of its 
practical importance, had not yet won sufficient 
attention from teachers to drive out of practice the 
demonstrably defective procedures which were still 
,unfortunately taught to students. The new chapter 
superseded Section 6 and Example I of the first 
edition; in the third edition it was enlarged by two 
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new sections (57·I and 57.2) illustrating further the 
applicability of the method of maximum likelihood, 
and of the quantitative evaluation of information. 
Later K. Mather's admirable book The Measurement 
of L£nkage £n Hered£ty has illustrated the appropriate 
procedures for a wider variety of genetical examples. 

In Section 27 a general method of constructing the 
series of orthogonal polynomials was added to the third 
edition, in response to the need which is felt, with 
respect to some important classes of data, to use 
polynomials of higher degree than the fifth. Simple 
and direct algebraic proofs of the methods of Sections 
28 and 28·I have been published by Miss F. E. Allan. 

In the fourth edition the Appendix to Chapter II I, 
on technical notation, was entirely rewritten, since 
the inconveniences of the moment notatjon seemed 
by that time definitely to outweigh the advantages 
formerly conferred by its familiarity. The principal 
new matter in that edition was added in response to 
the increasing use of the analysis of covarianc;e, which 
is explained in Section 49· I. Since several writers 
had found difficulty in applying the appropriate tests 
of significance to deviations from regression formulce, 
this section was further enlarged in the fifth edition. 

Other new sections in the fifth edition were 2I.OI, 
giving a correction for continuity recently introduced 
by F . Yates, and 2 I ·02 giving the exact test of signifi­
cance for 2 X 2 tables. Workers who are accustomed 
to handle regression equations with a large number 
of variates will be interested in Section 29· I, which 
provides the relatively simple adjustments to be made 
when, at a late stage, it is decided that one or more 
of the variates used may with advantage be omitted. 
The possibility of doing this without laborious 
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recalculations should encourage workers to make the 
list of independent variates included more compre­
hensive, than has, in the past, been thought advisable. 

Section 5, formerly occupied by an account of the 
tables available for testing significance, was given to 
a historical note on the principal contributors to the 
development of statistical reasoning. 

In the sixth edition Example 15'1, Section 22, 

gave a new test of homogeneity for data with 
hierarchical subdivisions. Attention was also called 
to Working and Hotelling's formula for the sampling 
error of values estimated by regression, and in Section 
29'2 to an extended use of successive summation in 
fitting polynomials. 

I am indebted to Dr W. E. Deming for the 
extension of the Table of z to the o· I per cent. level 
of significance. Such high levels of significance are 
especialfy useful when the test we make is the most 
favourable out of a number which a pr£ori might 
equally well have been chosen. 

Two. changes in the seventh edition may be 
mentioned. Section 27 was expanded so as to give 
a fuller introduction to the theory of orthogonal 
polynomials, by way of orthogonal comparisons 
between observations, which most practical workers. 
find easier to grasp. The arithmetical construction 
is simpler by this path, and the full generality of the 
original trea:tment can be retained without very 
complicated algebraic expressions. A useful range of 
tables giving the serial values to the fifth degree is 
now available in Statistical Tables. 

Section 49'2 was added to give an outline of the 
important new subject of the use of multiple measure­
ments to form the best discriminant fl,mctions of wi1ich 
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they are capable: The tests of significance appropriate 
to this process are approximate anp deserve further 
study. The diversity of prqblems w~ich yield to this 
method is very striking. ' 

A section new in the ninth edition is given to the 
test of homogeneity of evidense ~sed in estimation, 
since this subject is the natural and logical com­
plement to the methods of combining independent 
evide!lce illustrated in the previous examples. In 
~the tenth edition is an extension of the (-test to find 
-fiducial limits for the ratio of means or regression 
coeffi~ie~'ts (Section 26· 2). 

The sections of Chapter V I II, the Principles of 
Experimentation, which have always been too short 
to 'db justice to aspects of the subject other than 
the purely statistical, have since developed into an 
independent book, The Des£gn of Experiments (Oliver 
and Boyd, 1935, 1937, 1942, 1946). The tabl~s of this', 
book, together with a number of othe;s calculated 
for a variety of statistical purposes, with illustrations 
of their. use, are now available und~r the title of 
Stat£stical Tables (Oliver and Boyd, 1938, 1943, 1946). 
Both ,of these publications relieve the present work of 
claim? for expansion in directions which 'threatened 
to obstruct its usefulness as a single coutse of study. 
The serious student should make sure that these 
volumes also are accessible to him. 

I t should be noted that numbers of sections, tables 
and 'examples have been unaltered by the insertion of 
fresh material, so that references to them, though not 
,to pages, will be valid irrespective of the edition used. 

DEPARTMEN'T OF G~NETICS, CAMBRID.E 

1949 
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I 

INTRODUCTORY 

I. The Scope of Statistics 

THE science of statistics is essentially a branch of 
Applied Mathematics, and may be regarded as 
mathematics applied to observational data. As in 
other mathematical studies, the same formula is equally 
relevant to widely different groups of subject-matter', 
Consequently the unity of the different applications 
has usually bee'n overlooked, the more naturally 
because the development of the underlying mathe~ 
matical theory has been much neglected. We shall 
therefore consider the subject-matter of statistics 
under three different aspects, and then show in more 
mathematical language that the same types of prob­
lems arise in every case. Statistics may be regarded 
as (i) the study of populations, (ii) as the study 
of variation, (iii' as the study of methods of the 
reduction of data. 

The original meaning of the word "statistics" 
suggests that it was the study of populations of human 
beings living in political union. The methods 
developed, however, have nothing to do with the 
political unity of the group, and are not confined 
to populations of men or of social insects. Indeed, 
since no observational record can completely specify 
a human' being, the populations studied are always 
to some extent abstractions. If we have records of 
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STATISTICAL METHODS (§ I 

the stature of 10,000 recruits, it is rather the popula­
tion of statures than the population of recruits that is 
open to study. Nevertheless, in a real sense, statistics 
is the study of populations, or aggregates of indi­
viduals, rather than of individuals. Scientific theories 
which involve the properties of large aggregates of 
individuals, and not necessarily the properties of the 
individuals themselves, such as the Kinetic Theory 
of Gases, the Theory of Natural Selection, or the 
chemical Theory of Mass Action, are essentially 
statistical arguments, and are liable to misinterpreta­
tion as soon as the statistical nature of the argument 
is lost sight of. In Quantum Theory this is now 
clearly recognised. Statistical methods are essential 
to social studies, and it is principally by the aid of 
such methods that these studies rna y be raised to 
the rank of sciences. This particular dependence of 
social studies upon statistical methods }las led to the 
unfortunate misapprehension that statistics is to be 
regarded as a branch of econoI?ics, whereas in truth 
methods adequate to the treatment of economic data, 
in so far as these exist, have only been developed in 
the study of biology and the other sciences. 

The idea of a population is to be applied not only 
to living, or even to material, individuals. If an obser­
vation, such as a simple measurement, be repeated 
indefinitely, the aggregate of the results is a popu­
lation of measurements. Such populations are the 
particular field of study of the Theory of Errors, one 
of the oldest and most fruitful lines of statistical 
investigation. Just as a single observation may 
be regarded as an individual, and its repetition as 
generating a population, so the entire result of an 
extensive experiment may be regarded as but one of 
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a possible population of such experiments. The 
salutary habit of repeating important experiments, 
or of carrying out original observations in replicate, 
shows a tacit appreciation of the fact that the object 
of our study is not the individual result, but the 
population of possibilities of which we do our best 
to make our experiments representative. The calcula­
tion of means and standard errors shows a deliberate 
attempt to learn something about that population. 

The conception of statistics as the study of varia­
tion is the natural outcome of viewing the subject as 
the study of populations; for a population of indi­
viduals in all respects identical is completely described 
by a Clescription of anyone individual, together with 
the number in the group. The populations which 
are the object of statistical study always display 
VarIatIOn in one or more respects. To speak of 
statistics as the study of variation also serves to 
emphasise the contrast between the aims of modern 
statisticians and those of their predecessors. For, 
until 'comparatively recent times, the vast majority 
of workers in this field appear to have had no other 
aim than to ascertain aggregate, or average, values. 
The variation itself was not an object of study, but 
was recognised rather as a troublesome circumstance 
which detracted from the value of the average. The 
error curve of the mean of a normal sample has been 
familiar for a century, bu~ that of the standard devz'a­
tion was the object of researches up to I9I5. Yet, 
from the modern point of view, the study of the causes 
of variation of any variable phenomenon, from the 
yield of wheat to the intellect of man, should be begun 
by the'examination and measurement of the variation 
which presents itself. 
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The study of variation leads immediately to the 
concept of a frequency distribution. Frequency dis­
tributions are of various kinds; the number of classes 
in which the population is distributed may be .finite or 
infinite; again, in the case of quantitative variates, 
the intervals by which tHe classes differ may be finite 
\)r infinitesimal. In the simplest possible case, in 
which there are only two classes, such as male and 
female births, the distribution is simply specified by 
the proportion in which these occur, as for example 
by the statement that 5 I per cent. of the births are 
of males and 49 per cent. of females. In other cases 

-the variation may be discontinuous, but the number 
of classes indefinite, as with the number of children 
born to different married couples; the frequency 
distribution would then show th~ frequency with 
which 0, I, 2 ... children were recorded, the number 
of classes being sufficient to include the l::\.rgest family 
in the record. The variable quantity, such as the 
number of children, is called the variate, and the 
frequency distribution specifies how frequently the 
variate takes each of its possible values. In the 
third group of cases, the variate, such as human 
stature, may take any intermediate value within its 
range of variation; the variate is then said to vary 
continuously, and the frequency distribution may be 
expressed by stating, as a mathematical function of 
the variate, either (i) the proportion of the population 
for which the variate is less than any given value, 
or (ii) by the mathematical device of differentiating 
this function, the (infinitesimal) proportion of the 
population for which the variate faIls within any 
infinitesimal element of its range. 

The idea of a -frequency distribution is applicable 
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either to populations which are finite in number, or to 
infinite populations, but it is more usefully and more 
simply applied to the latter. A finite population can 
only be divided in certain limited ratios, and cannot in 
any case exhibit continuous variation. Moreover, in 
most cases only an infinite population can exhibit 
accurately, and in their true proportion, the whole of 
the possibilities arising from the causes actually at 
work, and which we wish to study. The actual 
observations can only be a sample of such possibilities. 
With an infinite population the frequency distribution 
specifies the fractions of the population assigned to 
the several classes; we may have (i) a finite number 
of fractions adding up to unity as in the Mendelian 
frequency distributions, or (ii) an infinite series of 
finite fractions adding up to unity, or (iii) a mathe­
matical function expressing the fraction of the total 
in each of the infinitesimal elements in which the range 
of the variate may be divided. The last possibility 
may be represented by a frequency curve; the values 
of the variate are set out along a horizontal axis, the 
fraction of the total population, within any limits of 
the variate, being represented by the area of the curve 
standing on the corresponding length of the axis. It 
should be noted that the familiar concept of the 
frequency curve is only applicable to art infinite 
population with a continuous variate. 

The study of variatipn has led not merely to 
measurement of the amount of variation present, but 
to the study of the qualitative problems of the type, or 
form, of the variation. Especially important is the 
study of the simultaneous variation of two or more 
variates. This study, arising principally out of the 
work of Galton and Pearson, is generally known 
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under the name of Correlation, or, more descriptively, 
as Covariation. 

The third aspect under which we shall regard the, 
scope of statistics is introduced by the practi<;:al need 
to reduce the bulk of any given body of data. Any 
investigator who has carried out methodical and 
extensive observations will probably be familiar with 
the oppressive necessity of reducing his results to a 
more convenient bulk. No human mind i~ capable of 
grasping in its entirety the meaning of any consider­
able quantity of numerical data. We want to be able 
to express all the relevant information contained in 
the mass by means of comparatively few numerical 
values. This is a purely practical need which the 
science of statistics is able to some extent to meet. In 
some cases at any rate it Z"S possible to give the whole 
of the relevant information by means of one or a few 
values. In all cases, perhaps, it is poss~ble to reduce 
to a simple numerical form the main issues which the 
investigator has in view, in so, far as the data are com­
petent to throw light on such issues. The number of 
independent facts supplied by the data is usually far 
greater than the number of facts sought, and in conse­
quence much of the information supplied by any body 
of actual data is irrelevant. It is the object of the 
statistical processes employed in the reduction of data 
to exclude this irrelevant information, and to isolate the' 
whole of the relevant information contained in the data. 

2. General Method, Calculation of Statistics 

The discrimination between the irrelevant informa­
tion and that which is relevant is performed as follows. 
Even in the simplest cases the values (or sets of 
values) before us are interpreted as a random sa~e 
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of a hypothetical infinite population of such valu~s as 
might have arisen in the same circumstances. The 
distribution of this population will be capable of some 
kind of mathematical specification, involving a certain 
number, usually few, of parameters, or "constants" 
entering into the mathematical formula. These para­
meters are the characters of the population. If we 
could know the exact values of the parameters, we 
should know all (and more than) any sample from 
the population could tell us. We cannot in fact know 
the parameters exactly, but we can make estimates 
of their values, which will be more or less inexact. 
These estimates, which are termed statistics, are of 
course calculated from the observations. If we can 
find a mathematical form for the population which 
adequately represents the data, and then calculate from 
the data the best possible estimates of the require~ 
parameters, then it would seem that there is little, 
or nothing, more that the data can tell us; we shall 
have extracted from it all the available relevant 
information. 

'The value of such estimates as we can make is 
enormously increased if we can calculate the magnitude 
and nature of the errors to which they are subject. If 
we can rely upon the specification adopted, this pre­
sents the purely mathematical problem of deducing 
from the nature of the population what will be the 
behaviour of each of the possible statistics which can 
be calculated. This type of problem, with which until 
recent years comparatively little progress had been 
made, is the basis of the test\3 of significance by which 
we can examine whether or not the data are in harmony 
with any suggested hypothesis. In particular, it is 
necessary to test the adequacy of the hypothetical 



8 STATISTICAL METHODS [§ 2 

specification of the population upon which the method 
of reduction was based. 

The problems which arise in the reduction of data 
may thus conveniently be divided into three types: 

(i) Problems of Specification, which arise in the 
choice of the mathematical form of the population. 

(ii) When a specification has been obtained, 
problems of Estimation arise. These involve the 
choice among the methods of calculating, from 
our sample, statistics fit to estimate the unknown 
parameters of the population. 

(iii) Problems of Distribution include the mathe­
matical deduction of the exact nature of the dis­
tributions in random samples of our estimates of the 
parameters, and of other statistics designed to test 
the validity of our specification (tes_!s of Goodness of 
Fit). 

The statistical examination of a bodJt of data is 
thus logically similar to the general alternation of 
inductive and deductive methods throughout the 

tsciences. A hypothesis is conceived and defined with 
all necessary eXilctitude; its logical consequences are 
ascertained by a deductive argument; these conse­
quences are compared with the available observations; 
if these are completely in ,accord with the deductions, 
the hypothesis is justified at least until fresh and more 
stringent observations are available. The author 
has attempted a fuller examination of the logic of 
planned experimentation in his book, The Design of 
Exper£ments. 

The deduction of inferences respecting samples, \, 
from assumptions respecting the populations from 
which they are drawn, shows us the position in 
Statistics of the classical Theory of Probability. For 
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a. given population we ,may calculate the probability 
with which any given sample will occur, and if we 
can solve the purely mathematical problem presented, 
we can calculate the probability of occurrence of any 
given statistic calculated from such a sample. The 
problems of distribution may in fact be regarded as 
applications and extensions of the theory of proba­
bility. Three of the distributions with which we 
shall be concerned, Bernoulli's binomial distribution, 
Laplace's normal distribution, and Poisson's series, 
were developed by writers on probability. For many 
years, extending over a century and a half, attempts 
were made to extend the domain of the idea of prob­
ability to the deduction of inferences respecting 
populations from assumptions (or observations) 
respecting samples. Such inferences are usually 
distinguished under the heading of Inverse Probability, 
and have at times gained wide acceptance. This is 
not the place to enter into the subtleties of a prolonged 
controversy; it will be sufficient in this general 
outline of the scope of Statistical Science to reaffirm 
my personal conviction, which I have sustained 
elsewhere, that the theory of inverse probability is 
founded upon an error, and must be wholly rejected. 
Inferences respecting populations, from which known 
samples have been drawn, cannot by this method be 
expressed in terms of probability, except in the trivial 
case when the population is itself a sample of a super­
population the specification of which is known with 
accuracy. 

The probabilities established by those tests of 
significance, which we shall later designate by t and z, 
are, however, entirely distinct from statements of 
inverse probability, and are free from the objections 
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which apply to these latter. Their interpretation as 
probability statements respecting p<?pulations con· 
stitute an application unknown to the classical writers 
on probability. To distinguish such statements as to 
the probability of causes from the earlier attempts 
now discarded, they are known as statements of 
Fiducial Probability. 

The rejection of the theory of inverse probability 
was for a time wrongly taken to imply that we cannot 
dra.w, from knowledge of a sample, inferences respect· 
ing the corresponding population. Such a view would 
entirely deny validity to all experimental science. 
What has now appeared is that the mathematical 
concept of probability is, in most cases, inadequate to 
express our mental confidence or diffidence in making 
such inferences, and that the math~matical quantity 
which appears to be appropriate for measuring our 
order of preference among different poss~ble popula­
tions does not in fact obey the laws of prob9.bility. 
To distinguish it from probability, I have used the 
term "Likelihood" to designate this quantity *; since 
both the words" likelihood" and" probability" are 
loosely used in common speech to cover both kinds 
of relationship. 

3. The Qualifications of Satisfactory Statistics 

The solutions of problems of distribution (which 
may be regarded as purely deductive problems in the 
theory of probability) not only enable us to make 
critical tests of the significance of statistical results, and 
of the adequacy of the hypothetical distributions upon 

* A more special application of the likelihood is its use, under the \ 
name of "power function," for comparing the sensitiveness, in some 
chosen respect, of differf(nt possible tests of significance. 
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which our methods of numerical inference are based, 
but afford real guidance in the choice of appropriate 
statistics for purposes of estimation. Such statistics 
may be divided into classes according to the behaviour 
of their distributions in large samples. 

If we calculate a statistic, such, for example, as the 
mean, from a very large sample, we are accustomed to 
ascribe t~ it great accuracy; and indeed it will usually, 
but not always, I be true, that if a number of such 
statistics can be obtained and compared, the discrep­
ancies among them will grow less and less, as the 
samples from which they are drawn are made larger 
and larger. In fact, as the samples are made larger 
without limit, the statistic will usually tend to some 
fixed value characteristic of the population, and, there­
fore, expressible in terms of the parameters of the 
population. I f, therefore, such a statistic is to be used 
to estimate these parameters, there is only one para­
metric function to which it can properly be equated. 
If it be equated to some other parametric function, we 
shall be using a statistic which even from an infinite 
sample does not give the correct value; it tends 
indeed to a fixed value, but to a value which is 
erroneous from the point of view with which it 
was used. Such statistic.s are termed Inconsistertt 
Statistics; except when the error is extremely minute, 
as in the use of Sheppard's adjustments, inconsistent 
statistics should be regarded as outside the pale of 
decent usage. 

Consistent statistics, on the other hand, all tend 
more and more nearly to give the correct values, as 
the sample is more and more increased; at any rate, 
if they tend to any fixed value it is not to an incorrect 
one. In the simplest cases, with which we shall be 
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concernea., they not only tend to give the correct 
value, but the errors, for samples of a given size, tend 
to be distributed in a well-known distribution (of which 
!TIore in Chap. III) known as the Normal Law of 
Frequency of Error, or more simply as 'the normal 
distribution. The liability to error may, in such cases, 
be expressed by calculating the mean value of the 
squares of these errors, a value which is known as 
the variance ; and in the class of cases with which we 
are concerned, the variance falls off with increasing 
samples, in inverse proportion to the number in the 
sample. 

Now, for the purpose of estimating any parameter, 
such as the centre of a normal distribution, it is usually 
possible to invent any number of statistics such as the 
arithmetic mean, or the median, etc., which shall be 
consistent in the sense defined above, and each of 
which has in large samples a variance falling off 
inversely with the size of the sample. But for large 
samples of a fixed size the variance of these different 
statistics will generally be different. Consequently, 
a special import~nce belongs to a smaller group of 
statistics, the error distributions of which tend to the 
normal distribution, as the sample is increased, with 
the least possible variance. We may thus separate 
off from the general body of consistent statistics a 
group of especial value, and these are known as 
efficient statistics. 

The reason for this term may be made apparent by 
an example. If from a large sample of (say) 1000 

observations we calculate an efficient statistic, A, and 
a second consistent statistic, B, having twice the 
variance of A, then B will be a valid estimate of the 
required parameter, but one definitely inferior to A 
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in its accuracy. Using the statistic B, a sample of 
2000 values would be required to obtain as good an 
estimate as is obtained by using the statistic A from 
a sample of lOOO values. We may say, in this ?ense, 
that the statistic B makes use of 50 per cent. of the 
relevant information available in the observations; 
or, briefly, that its efficiency is 50 per cent. The term 
I< efficient" in its absolute sense is reserved for 
statistics the efficiency of which is roo per cent. 

Statistics having efficiency less than roo per cent. 
may be legitimately used for many purposes. It is 
conceivable, for example, that it might in some cases be 
less laborious to increase the number of observations 
than to apply a more elaborate method of calculation 
to the results. It may often happen that an inefficient 
statistic is accurate enough to answer the particular 
questions at issue. There is however, one limitation 
to the legitimate use of inefficient statistics which 
should be noted in advance. If we are to make 
accurate tests of goodness of fit, the methods pf fitting 
employed must not introduce errors of fitting compar­
able to the errors of random sampling; when this 
requirement is investigated, it appears that when tests 
of goodness of fit are required, the statistics employed 
in fitting must be not only consistent, but must be of 
100 per' cent. efficiency. This is a very serious limita­
tion to the use of inefficient statistics, since in the 
examination of any body of data it is desirable to be 
able at any time to test the validity of one or more 
of the provisional assumptions which have been made. 

Numerous examples of the calculation of statistics 
will be given in the following chapters, and, in these 
illustrations of method, efficient statistics have been 
chosen. The discovery of efficient statistics in new 
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types of problem may require some mathematical 
investigation. The researches of the author have led 
him to the conclusion that an efficient statistic can 
in all cases be found by the Method of Maximum 
Likelihood; that is, by choosing statistics so that the 
estimated population should be that for which the 
likelihood is greatest. In view of the mathematical 
difficulty of some of the problems which arise it is also 
useful to know that approxzmatz'ons to the maximum 
likelihood solution are also in most cases efficient 
statIstICS. Some simple examples of the application 
of the method of maximum likelihood, and other 
methods, to genetical problems are developed in the 
final chapter. 

F or practical purposes it is not generally n,ecessary 
to press refinement of methods further than the stipula­
tion that the statistics used should be efficient. With 
large samples it may be shown that all lefficient 
statistics tend to equivalence, so that little i,ncon­
venience arises from diversity of practice. There is, 
however, one class of statistics, including some.of the 
most frequently recurring examples, which is of 
theoretical interest for possessing the remarkable 
property that, even in small samples, a statistic of this 
class alone includes the whole of the relevant informa­
tion which the observations contain. Such statistics 
are distinguished by the term sufficient and, in the 
use of small samples, sufficient statistics, when they 
exist, are definitely superior to other efficient statistics. 
Examples of sufficient statistics are the arithmetic 
mean of samples from the normal distribution, or 
from the Poisson series; it is the fact of providing 
sufficient statistics for these two important types of 
distribution which gives to the arithmetic mean its 
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theoretical importahce. The method of maximum 
likelihood leads to these sufficient statistics when 
they exist. By a further extension, also depending 
on a special, but not uncommon, functional relation­
ship, the advantage of sufficient statistics, namely 
exhaustive estimation may be gained by using 
ancillary statistics, even when no statistic sufficient 
by itself exists. 

While diversity of practice within the limits of 
efficient statistics will not with large samples lead to 
inconsistencies, it is, of course, of importance in all 
cases to distinguish clearly the parameter of the 
population, of which it is desired to estimate the value 
from the actual statistic employed as an estimate of its 
value; and to inform the reader by which of the 
considerable variety of processes which exist for the 
purpose the estimate was actually obtained. 

4. Scope of this Book 

The prime object of this book is to put into the 
hands of research workers, and especially of biologists, 
the means of applying statistical tests accurately to 
numerical data accumulated in their own laboratories 
or available in the literature. Such tests are the result 
of solutions of problems of distribution, most of which 
are but recent additions to our knowledge and have 
previously only appeared in specialised mathematical 
papers. The mathematicaf complexity of these prob­
lems has made it seem undesirable to do more than 
(i) to indicate the kind of problem in question, 
(ii) to give numerical illustrations by which the whole 
process may be checked, (iii) to provide numerical 
tables by means of which the tests may be made 
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without the evaluation of complicated algebraical 
expreSSIOns. 

I t would have been impossible to give methods 
suitable for the great variety of kinds of tests which 
are required but for the unforeseen circumstance that 
each mathematical solution appears again and again 
in questions which at first sight appeared to be quite 
.distinct. For example, Helmert's solution in 1875 
of the distribution of the sum of the squares of 
deviations from a mean, is in reality equivalent to the 
distribution of x2 given by K. Pearson in 1900. It 
was again discovered independently by " Student" 
in 1908, for the distribution of the variance of a 
normal sample. The same distribution was found by 
the author for the 'index of dispersion derived from 
small samples from a Poisson series. What is even 
more remarkable is that, although Pearson's paper 
of 1900 contained a serious error, which viti~ted most 
of the tests of goodness of fit made by this method 
lmtil 1921, yet the correction of this error, when 
efficient methods of estimation are used, leaves the 
form of the distribution unchanged, and only requires 
that some few units should be deducted from one of 
the variables with which the Table of x2 is entered. 

I t is equally fortunate that the distribution of t, 
first established by " Student" in 1908, in his study 
of the probable error of the mean, should be applicable, 
not only to the case there treated, but to the more 
complex, but even more frequently needed problem 
of the comparison of two mean values. It further 
provides an exact ~olution of the sampling errors of the 
enormously wide class of statistics known as regression 
coefficients. 

In studying the exact theoretical distributions in 
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a number of other problems, such as those presented 
by intraclass correlations, the goodness of fit of regres­
sion lines, the correlation ratio, and the multiple cor­
relation coefficient, the author has been led repeatedly 
to a third distribution, which may be called the 
distribution of z, and which is intimately related to, 
and indeed a natural extension of, the distributions 
introduced by Pearson and" Student." It has thus 
been possible to classify the necessary distributions 
covering a very .great variety of cases, under these 
three main groups; and, what is equally important, 
to make some provision for the need for numerical 
values by means of a few tables on1y. Tables needed 
for a wider range of problems, with illustrations of 
their use, have since been published separately. 

The book has been arranged so that the student 
may make acquaintance with these three main 
distributions in a logical order, and proceeding from 
more simple to more, complex cases. Methods 
developed in later chapters are frequently seen to 
be generalisations of simpler methods developed 
previously. Studying the work methodically as a 
connected treatise, the student will, it is hoped, not 
miss the fundamental unity of treatment under which 
such very varied material has been brought together; 
and will prepare himself to deal competently and with 
exactitude with the many analogous problems which 
cannot be individually e~emplified. On the other 
hand, it is recognised that many will wish to use the 
book for laboratory reference, and not as a connected 
course of study. This use would seem desirable 
only if the reader will be at the pains to work 
through, in all numerical detail, one, or more of the 
appropriate examples, so as to assure himself, not 

C 
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only that his data are appropriate for a parallel 
treatment, but that he has obtained a critical grasp 
of the meaning to be attached to the processes and 
results. 

I t is necessary to anticipate one criticism, namely, 
that in an ~lementary book, without mathematical 
proofs, and designed for rea4ers without special 
mathematical training, so much has been included 
which from the teacher's point of view is advanced; 
and indeed much that has not previously appeared 
in print. By way of apology the author would like to 
put forward the following considerations. 

(I) For non - mathematical readers, numerical 
tables ar~ in any case necessary; accurate tables 
are no more difficult to use, though more laborious 
to calculate, than inaccurate tables .embodying the 
approximations formerly current. 

(2) The process of calculating a prbbable or 
standard error from one of the established formulce 
gives no real insight into the random sampling dis­
tribution, and can only supply a test of significance by 
the aid of a table of deviations of the normal curve, 
and on the assumption that the distribution is in fact 
very nearly normal. Whether this procedure should, 
or should not, be used must be decided, not by the 
mathematical attainments of the investigator, but by 
discovering whether it will or will not give a sufficiently 
accurate answer. The fact that such a process has 
been used successfully by eminent mathematicians 
in analysing very extensive and important material 
does not imply that it is sufficiently accurate for 
the laboratory worker anxious to draw correct conclu­
sions from a small group of perhaps preliminary 
observations. 
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(3) The exact distributions, with the use of which 
this book is chiefly concerned, have been in fact 
developed in response to the practical problems arising 
in biological and agricultural research; this is true not 
only of the author's own contribution to the subject, 
but from the beginning of the critical examination of 
statistical distributions in "Student's" paper of 
1908. 

The greater part of the book is occupied by 
numerical examples; and these have steadily 
increased in number as fresh points needed illustration. 
In choosing them it has appeared to the author a 
hopeless task to attempt to exemplify the great variety 
of subject-matter to which these processes may be 
usefully applied. There are no examples from 
astronomical statistics, in which important work has 
been done in recent years, few from social studies, 
and the biological applications are scattered un­
systematically. The examples have rather been 
chosen each to exemplify a particular process, and 
seldom on account of the importance of the data 
used, or even of similar examinations of analogous 
data. By a study of the processes exemplified, the 
student should be able to ascertain to what questions, 
in his own material, such processes are able to give a 
definite answer; and, equally important, what further 
observatioI}s would be necessary to settle other out­
standing questions. In q:mformity with the purpose 
of the examples the reader should remember that they 
do not pretend to be discussions of general scientific 
questions, which would require the examination of 
much more extended data, and of other evidence, but 
are solely concerned with the critical examination of 
the particular batch of data presented. 
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5. Historical Note 

Since much interest has been evinced in the 
historical origin of the statistical theory underlying 
the methods of this book, and as some misappre­
hensions have occasionally gained publicity, ascribing 
to the originality of the author methods well known 
to some previous writers, or ascribing to his 
predecessors modern developments of which they 
were quite unaware, it is hoped that the following 
notes on the principal contributors to statistical 
theory will be of value to students who wish to see 
the modern work in its historical setting. 

Thomas Bayes' celebrated essay published in 
1763 is well known as containing the first attempt 
to use the theory of probability as an instrument 
of inductive reasoning j that is, for arguing from 
the particular to the general, or from the sample 
to the population. It was published posthumously, 
and we do not know what views Bayes would have 
expressed had he lived to publish on the subject. 
We do know that the reason for his hesitation to 
publish was his dissatisfaction with the postulate 
required for the celebrated" Bayes' Theorem." While 
we must reject this postulate, we should also recognise 
Bayes' greatness in perceiving the problem to be 
solved, in making an ingenious attempt at its solution, 
and finally in realising more clearly than many 
subsequent writers the underlying weakness of his 
attempt. . 

Whereas Bayes excelled in logical penetration, 
Laplace (1820) was unrivalled for his mastery of 
analytic technique. He admitted the principle of 
Inverse probability, quite uncritically, into the 
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foundations of his exposition. On the other hand, 
it is to him we owe the principle that the distribution 
of a quantity compounded of independent parts shows 
a whole series of features-the mean, variance, and 
other cumulants (p. 73)-which are simply the sums of 
like features of the distributions of the parts. These 
seem to have ,been later discovered independently by 
Thiele (1889), but mathematically Laplace's methods 
were more powerful than Thiele's and far more 
influential on the development of the subject in France 
and England. A direct result of Laplace's study 
of the distribution of the resultant of numerous 
independent causes was the recognition of the normal 
law of error, a law more usually ascribed, with some 
reason, to his great contemporary, Gauss. 

Gauss, moreover, approached the problem of 
statistical estimatio:n in an empirical spirit, raising the 
question of the estimation not only of probabilities 
but of other quantitative parameters. He perceived 
the aptness for this purpose of the Method of 
Maximum Likelihood, al,though he attempted to 
derive and justify this method from the principle of 
inverse probability. The method has been attacked 
on this ground, bllt it has no real connection with 
inverse probability. Gauss, further, perfected the 
systematic fitting of regression formulce, simple and 
multiple, by the method of least squares, which, in 
the cases to which it is appropriCJote, is a particular 
example of the method of maximum likelihood. 

The first of the distributions characteristic of 
modern tests of significance, though originating with 
Helmert, was rediscovered by K. Pearson in 1900, 
for the measure of discrepancy between observation 
and hypothesis, known as x2 • This, I believe, is the 
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great contribution to statistical methods by which 
the unsurpassed energy of Prof. Pearson's work will 
be remembered. It supplies an exact and objective 
measure of the joint discrepancy from their expecta­
tions of a number of normally distributed, and mutually 
correlated, variates. In its primary application to 
frequencies, which are discontinuous variates, the 
distribution is necessarily only an approximate one, 
but when small frequencies are excluded the approxi­
mation is satisfactory. The distribution is exact 
for other problems solved later. With respect to 
frequencies, the apparent goodness of fit is often 
exaggerated by the inclusion of vacant or nearly 
vacant classes which contribute little or nothing to 
the observed x2, but increase its expectation, and 
by the neglect of the effect on this -expectation of 
adjusting the parameters of the population t9 fit those 
of the sample. The need for correction on this 
score was for long ignored, and later disputed, but is 
now, I believe, admitted. The chief cause of error 
tending to lower the apparent goodness of fit is the 
use of inefficient methods of fitting (Chapter IX). 
This limitation could scarcely have been foreseen in 
1900, when the very rudiments of the theory of 
estimation were unknown. 

The study of the exact sampling distributions of 
statistics commences in 1908 with I< Student's" paper 
The Probable Er.ror of a Mean. Once the true 
nature of the problem was indicated, a large number 
of sampling problems were within reach of mathe­
ma~ical solution. It Student" himself gave in this and 
a subsequent paper the correct solut,ions for three 
such problems-the distribution of the estimate of the 
variance, that of the mean divided by its estimated 
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standard deviation, and that of the estimated correla­
tion coefficient ·between independent variates. These 
sufficed to establish the position of the diStributions 
of x2 and ot t in the theory of samples, though 
further work was needed to show how many other 
problems of testing significance could be reduced 
to these sarrie ,two forms, and to the more inclusive 
distribution of z. l( Student's" work was not quickly 
appreciated (it had, in fact, been totally ignored in 
the journal in which it had appeared), and from the 
first edition it has been one of the chief purposes of 
this book to make better known the effect of his 
researches, and of mathematical work consequent 
upon them, on the one hand, in refining the traditional 
doctrine of the theory of errors and mathematical 
statistics, and on the other, in simplifying the arith­
metical processes required in the interpretation of 
data. 



II 

DIAGRAMS 

7.- The preliminary examination of most data is 
facilitated by the use of diagrams. Diagrams prove 
nothing, but" bring outstanding features readily to the 
eye; they are therefore no substitute for such critical 
tests as may be applied to the data, but are valuable in 
suggesting such tests, and in explaining the conclusiqns 
founded upon them. 

8. Time Diagrams, Growth Rate, and Relative 
Growth Rate 

The type of diagram in most frequent use consists 
in plotting the values of a variable, such as the weight 
of an animal or of a sample of plants against its age, 
or the size of a population at successive intervals of 
time. Distinction should be drawn between those 
cases in which the same group of animals, as in a 
feeding experiment, is weighed at successive intervals 
of time, and the cases, more characteristic of plant 
physiology, in which the same individuals cannot be 
used twice, but a parallel sample is taken at each 
age. The same distinction occurs in counts of micro­
organisms between cases in which counts are made 
from samples of the same culture, or from samples of 
parallel cultures. If it is of importance to obtain the 
general form of the growth curve, the second method 
has the advantage that any deviation from the expected 
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curve may be confirmed from independent evidence 
at the next measuremertt, whereas using the same 
material no such independent confirmation is obtain­
able. On the other hand, if interest centres on the 
growth rate, there is an advantage in using the same 
material, for only so are actual increases in weight 
measurable. Both aspects of the difficulty can be got 
over only by replicating the observations·; by carry­
ing out measurements on a number of animals under 
parallel treatment it is possible to test, from the 
individual weights, though not from the means, 
whether their growth curve corresponds with an 
assigned theoretical course of development, or differs 
significantly from it or from a series differently treated. 
Equally, if a number of plants from each sample are 
weighed individually, growth rates may be obtained 
with known probable errors, and so may be used for 
critical comparisons. Care should of course be taken 
that each is strictly a random sample. 

Fig. I represents the growth of a baby weighed 
to the nearest ounce at weekly intervals from birth. 
Table I indicates the calculation from these data of 
the absolute growth rate in ounces per day and the 
relative growth rate per day. The absolute growth 
rates, representing -the average actual rates at which 
substance is added during each period, are tound by 
subtracting from each value that previously recorded, 
and dividing by the iength of the period. The relative 
growth rates measure the rate of increase not only per 
unit of time, but also per unit of weight already 
attained; using the mathematical fact, that 

!_ d~ = (log. m), 
m dt 

it IS seen that the true average value of the relative 



260 

o 2 

o 2 

4 

AGE IN ~ WEEKS 

4 6 

AGE IN WEEKS 

FIG. I. 

8 

8 10 12. 13 

10 12 13 



§ 8] DIAGRAMS 27 

growth rate for any period is obtained from the natural 
logarithms of the successive weights, just as the actual 
rates of increase are from the weights themselves. 

TABLE 1 

Weight Growth Natural 
Relative 

Age in in Increase. Rate Log of Increase. 
Growth 

Weeks. Ounces. per Day Weight. 
Rate 

(Oz.). per cent. 
per Day. 

t 
3m 

3m log !!!_ 3Iogm ~logm 
7 

m Tt 100 

0 1I0 '0953 
4 '57 '°357 '51 

I 114 '13 10 

14 2'00 ' 1I59 I 1·66 
2 128 '2469 

19 2'71 '1384 1'98 
3 147 '3853 

16 2'29 ' 1033 1'47 
4 163 '4886 

9 1'29 '°537 '77 
5 172 '5423 

14 2'00 '°783 1'12 
6 186 ·6206 

12 I' 71 ' 0625 ·89 
7 198 ' 6831 

10 1'43 '°493 '70 
8 208 '7324 

5 '71 ' 0237 '34 
9 213 '7561 

19 2'71 ' 0855 I' 22 
10 232 '8416 

8 1'14 '0339 '48 
II 240 '8755 

14 2\00 '0567 ·81 
12 254 '9322 

7 1'00 '0272 '39 
13 261 '9594 

Such relative rates of increase are conveniently 
multiplied by 100, and thereby expressed as the 
percentage rate of increase per day. If these 
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percentage rates of increase had .been calculated on 
the principle of simple interest, by dividing the actual 
increase by the weight at the beginning of the period, 
somewhat higher values would have been obtained; 
the reason for this is that the actual weight of the baby 
at any time during each period is usually somewhat 
higher than its weight at the beginning. The error 
introduced by the simple interest formula becomes 
exceedingly great when the percentage increases 
between successive weighings are large. 

Fig. I A shows the course of the increase in 
absolute weight; the average slope of such a 'diagram 
shows the absolute rate of increase. In this diagram 
the points fall approximately on a straight line, show­
ing that the absolute rate of increase was nearly 
constant at about I ·66 oz. per diem. Fig. I B shows 
the course of the increase in the natural iogarithm of 
the weight; the slope at any point shows th~ relative 
rate of increase, which, apart from the first week, falls 
off perceptibly with increasing age. The features of 
such curves are best brought out if the scales of the 
two axes are so chosen that the graph makes with 
them approximately equal angles; with nearly 
vertical, or nearly horizontal lines, changes in the 
slope are not so readily per~eived. 

A rapid and convenient way of displaying the line 
of increase of the logarithm is afforded by the use of 
graph paper in which the horizontal rulings are spaced 
on a logarithmic scale, with the actual values indicated 
in the margin (see Fig. 5). The horizontal scale can 
then be adjusted to give the line an appropriate slope. 
This method avoids the use of a logarithm table, 
which, however, will still be required if the values of 
the relative rate of increase ar.e needed. 
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In making a rough examination of the agreement 
of the observations with any law of increase, it is 
desirable so to manipulate the variables that the law 
to be tested will be represented by a straight line. 
Thus Fig. I A is suitable for a rough test of the law 
that the absolute rate of increase is constant; if it 
were suggested that the relative rate of increase were 
constant, Fig. I B would show clearly that this was 
not so. With other hypothetical growth curves other 
transformations may be used; for example, in the 
so-called "autocatalytic" or "logistic" curve the 
relative growth rate falls off in proportion to the 
actual weight attained at any time. If, therefore, 
the relative growth rate be plotted against the actual 
weight, the points shoul!i fall on a straight line if the 
" autocatalytic" curve. fits the facts. For this 
purpose it is convenient to plot against each observed 
weight the mean of the two adjacent relative growth 
rates. To do this for the above data for the growth 
of an infant may be left as an exercise to the student; 
twelve points will be available for weights I I4 to 
254 ounces. The relative growth rates, even after 
averaging adjacent pairs, will be very irregular, 
so that no clear indications will be found from these 
data. If a straight line is found to fit the data, the 
weight at which growth will cease, supposing the 
law of growth continues unchanged, is found by 
producing the line to m~t the axis. 

9. Correlation Diagrams 

Although most investigators make free use of 
diagrams in which an uncontrolled variable is plotted 
against the time, or against some controlled factor such 
as concentration of solution, or temperature, much 
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more use might be made of correlation diagrams in 
which one uncontrolled factor is plotted against 
another. When this is done as a dot diagram, a 
number of dots are obtained, each representing a single 
experiment, or pair of observations, and it is usually 
clear from such a diagram whether or not any close 
connexion eJ>ists between the variables. When the , 
observations are few a dot diagram will often tell us 
whether or not it is worth while to accumulate observa­
tions of the same sort; the range and extent of our 
experience is visible at a glance; and associations may -, 
be revealed which are worth while following up. 

If the observations are so numerous that the dots 
cannot be clearly distinguished, it 'is best to divide up 
the diagram into squares, recording the frequency in 
each; this semi-diagrammatic record is a correlation 
table. 

Fig. 2 shows in a dot di_g.gram the yiel1ds obtained 
from an experimental plot of wheat (dunged plot, 
Broadbalk field, Rothamsted) in years with different 
total rainfall. The plot was under uniform treatment 
during the whole period 1854-1888; the 35 pairs 
of observations, indicated by 35 dots, show well the 
association of high yield with low. rainfall. Even 
when few observations are available a dot diagram 
may suggest associations hitherto unsuspected, or 
what is equally important, the absence of associations 
which would have been confidently predicted. Their 
value lies in giving a simple conspectus of the 
experience hitherto gathered, and in bringing to the 
,mind suggestions which may be susceptible of more 
exact statistical or experimental examination. ' 

Instead of making a dot diagram the device is 
sometimes adopted of arranging the values of one 
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variate in order of magnitude, and plotting the values 
of a second variate in the same order. If the line 
so obtained shows any perceptible slope, or general 
trend, the variates are taken to be associated. Fig. 3 
represents the line obtained for rainfall, when the 
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FIG. 2.-Wheat yield and rainfall for 35 years, x854"-x888. 

years are arranged in order of wheat yield. Such 
diagrams are usually far less informative than the 
dot diagram, and often conceal features of importance 
brought out by the former. In addition, the dot 
diagram possesses the advantage that it is easily used 
as a correlation table if the number of dots is small, 
and easily transformed into one if the number -of dots 
is large. 
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In the correlation table the values of both variates 
are divided into classes, and the class intervals should 
be equal for all values of the same variate. Thus 
we might divide the value for the yield of wheat 
throughout at intervals of one bushel per acre, and 
the values of the rainfall at intervals of a I inch. The 
diagram is thus divided into squares, and the number 
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FIG. 3.-Rainfall and yield of 35 years arranged in order of yield. 

of observations falling into each square is counted and 
recorded. The correl~tion table is useful for three 
distinct purposes. It affords a valuable visual -repre­
sentation of the whole of the observations, which with 
a little experience is as easy to comprehend as a dot 
diagram; it serves as a compact record of extensive 
data, which, as far as the two variates are concerned, 
is complete. With more than two variates correlation 
tables may be given for every pair. This will not 
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indeed -enable the reader to reconstruct the original 
data in its entirety, but it is a fortunate fact that for the 
great majority of statistical purposes a set of such 
twofold distributions provides complete information. 
Original data involving more than two variates are 
most conveniently recorded for reference on cards, 
each case being given a separate card with the several 
variates entered in corresponding positions upon 
them. The publication of such complete data presents 
difficulties but it is not yet sufficiently realised how 
much of the essential information can be presented in 
a compact form by means of correlation tables. The 
third feature of value about the correlation table is 
that the data so presented form a convenient basis for 
the immediate application of methods of statistical 
reduction. The most important statistics which the 
data provide, means, variances, and covariance, can 
be most readily calculated from the correlation table. 
An example of a correlation table is shown in Table 31, 
p. 178. 

10. Frequency Diagrams 

When a large number of individuals are measured 
in respect of physical dimensions, weight, colour, 
density, etc., it is possible to describe with some 
accuracy the population of which our expetience may 
be regarded as a sample. By this means it may be 
possible to distinguis~ it from other populations 
differing in their genetic origin, or in environmental 
circumstances. Thus local races may be very different 
as populations, although individuals may overlap in 
all characters; or, under experimental conditions, the 
aggregate may show environmental effects, on size, 
death-rate, etc., which cannot be detected In the 

D 
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individual. A visible representation of a large number 
of measurements of anyone feature is afforded by a 
frequency diagram. The feature measured is used 
as abscissa, or measurement along the horizontal axis, 
and as ordinates are set off vertically the irequencz'es, 
corresponding to each range. 

Fig. 4 is a freq~g:ram illustrating the 
distribution in stature of 1375 women (Pearson and 
Lee's data modified). The whole sample of women is 
divided up into successive height ranges of 1 inch. 

200 
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FIG. 4. 

Equal areas on the diagram represent equal fre­
quency; if the data be such that the ranges into which 
the individuals are subdivided are not equal, care 
should be taken to make the areas correspond to the 
observed frequencies, so that the area standing upon 
any interval of the base line shall represent the actual 
frequency observed in that interval. 

The class containing the greatest number of 
observations is technically known as the modal class. 
In Fig. 4 the modal class indicated is the class whose 
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central value is 63 inches. When, as is very frequently 
the case, the variate varies continuously, so that all 
intermediate values. are possible, the choice of the 
grouping interval and limits is arbitrary and will 
make a perceptible difference to the appearance of the 
diagram. Usually, however, the possible limits of 
grouping will be governed by the smallest units in 
which the measurements are recorded. If, for 
example, measurements of height were made to the 
nearest quarter of an inch, so that all values between 
66! inches and 67'i were recorded as 67 inches, all 
values between 6ii and 67'1 were recorded as 671, 
then we have no choice but to take as our unit of 
grouping I, 2, 3, 4, etc., quarters of an inch, and the 
limits of each group must fall on some odd number of 
eighths of an inch. F or purposes of calculation the 
smaller grouping units are more accurate, but fOF 
diagrammatic purposes coarser grouping is often 
preferable. Fig. 4 indiQates a unit of grouping suitable 
in relation to the total range for a large sample; with 
smaller samples a coarser grouping is usually necessary 
in order'that suffic-ient observations may fall in each 
class. 

I 

In all cases where the variation is continuous the I 
frequency diagram should be in the form of a histo­
gram, rectangular areas standing on each grouping I 
interval showing the frequency of observations in that 
in~erval. The alternative practice of indicating the 
frequency by a single ordinate raised from the centre 
of the interval is sometimes preferred, as giving to the 
diagram a form more closely resembling a continuous 
curve. ~The advantage is illusory, for not only is 
the form of the curve thus indicated somewhat mis­
leading, but the utmost care should always be taken 
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to distinguish the infinitely large hypothetical popu­
lation from which our sample of observations is 
drawn, from the actpal sample of observations which 
we possess; the conception of a continuous frequency 
curve is applicable only to the former, and in illus,trat­
ing the latter no attempt should be made to slur over 
this distinction. 

This consideration s~ould in no way prevent a 
frequency curve fitted to the data from being'Super­
imposed upon the histogram (as in Fig. 4); the con­
trast between the histogram representing the sample, 
and the continuous curve representing an estimate of 
the form of the hypothetical population, is well brought 
out in such diagrams, and the eye is aided in detect­
ing any serious discrepancy between the observations 
and 'the hypothesis. No eye obs~rNation of such 
diagrams, however experienced, is really ~apable of 
discriminating whether or not the observations differ 
from expectation by more than we should expect from 
the circumstances of random sampling. Accurate 
methods of making such tests will be developed in 
later chapters. 

With discontinuous variation, when, for example, 
the variate is confined to whole numbers, the reasons 
given' for insisting on the histogram form have little 
weight, for there are, strictly speaking, no ranges of 
variation within each class. On the other hand, there 
is no question of a frequency curve in such cases. 
Representation of such data by means 9f a histogram 
is usual and not inconvenient; it is especially appro­
priate if we regard the discontinuous variation as 
due to an underlying continuous variate, which 
can, however, express itself only to the nearest whole 
number. 
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10'1. Transformed Frequencies 

I t is, of cours~, possible to treat the values of the 
frequency ·li~e any other variable, by plotting the 
value of its logarithm, or its actual value on loga-
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-rithmic paper, when it is desired to illustrate the 
agreement of the observations with any particular law 
of frequency. Fig. 5 shows in this way the number of 
flowers (buttercups) having 5 to 10 petals (Pearson's 
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data), plotted upon logarithmic paper, to facilitate 
comparison with the hypothesis that the frequency, 
for petals above five, falls off in geometric progression. 
Such illustrations are not, properly speaking, frequency 
diagrams, (although the frequency is one of the 
variables employed, because they do not adhere to the 
convention that equal frequencies are represented by 
equal areas. 

A useful form, similar to the above, is used to 
compare the death-rates, throughout life, of different 
populations. The logarithm of the number of sur­
vivors at any age is plotted against the age attained. 
Since the death-rate is the rate of decrease 0[' the 
logarithm of the number of survivors, equal gradients 
on such curves represent equal death-rates. They 
therefore serve well to show the ill crease of death­
rate with increasing age, and to compare pop':llations 
with different death-rates. Such diagra~s are less 
sensitive to small fluctuations than would be the 
corresponding frequency diagrams showing .the dis­
tribution of the population according to age at death; 
they are therefore appropriate when such small 
fluctuations are due principally to errors of random 
sampling, which in the more sensitive type of diagram 
might obscure the larger features of the comparison. 
It shouM. always be remembered that the choice 
of the appropriate methods of statistical treatment 
is quite independent of the choice of methods of 
diagrammatic representation. 

A need which is felt frequently in Genetics and 
occasionally in other studies is to survey the evidence 
on some particular frequency ratio provided by a 
number of different samples, which mayor may not 
be homogeneous in this respect. The classification 
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of samples, such as progenies of plants or animals, 
according to the frequency-ratio they exhibit, and 
the homogeneity of the samples classified alike, are 
in such studies of critical importance, and the explicit 
tests of Chapter IV will usually be needed. A 
graphical survey of the evidence gives useful guidance 
as to what particular points should be tested, and ,is 
of further value, as a means of presenting the evidence 
most simply to the reader. 

The frequencies observed of the two alternatives 
in each sample may be used as co-ordinates of a 
point, so that just so many. points are shown as 
there are samples. In Fig. 5'1 the usefu~ device has 
been adopted of plotting not the absolute frequencies, 
but their square roots. Points representing samples 
of n observations will then fall on a quadrant of a 
circle of radius vii. Samples showing a frequency 
ratio p: q, where p+q = I, will fall on a radius 
vector making an angle cfo with the axis, such that 

sin2cfo = p, cos2cfo = q. 

The device thus allows the diagram to exhibit 
a wider range of sample size, and a wider range of 
frequency ratio, than would otherwise be possible. 
Graph paper embodying this principle has been 
designed by F. Mosteller and J. W. Tukey and is 
now available. 

Since, moreover, the standard error of random 
sampling of cA, for given~n, is proportional to I!Vn, 
and is independent of cfo, it follows that the scatter of 
the observation points on either side of the radii to 
which they approximate is nearly equal in all parts 
of the diagram, and the eye is thus materially aided 
in recognising homogeneous groups. 
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In the material for Lythrum salz"carz"a illustrated 
in Fig. 5·1, three classes represented by I, 19 and 7 
families respectively, appeared according to expecta­
tion. The one family of 41 plants all mid-styled, 
which evidently belongs to a fourth class, was un-
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expected; later experiments showed it to contain 
three dominant genes for Mid, due to double reduction 
having' occurred in the preceeding meiosis, and that 
by:the same process it gave about 2 per cent. Longs 
in a more extensive test. 
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DISTRIBUTIONS 

II. The idea of an infinite population distributed 
in a frequency distribution in respect of one or more 
characters is fundamental to all statistical work. 
From a limited experience, for example, of individuals 
of a species, or of the weather of a locality, we may 
obtain some idea of the infinite hypothetical popula­
tion from which our sample is drawn, and so of the 
probable nature of future samples to which our con­
clusions are to be applied. If a second sample belies 
this expectation we infer that it is, in the language of 
stati$tics, drawn from a different population; that the 
treatment to which,the second sample of organisms had 
been exposed did in fact make a material difference, 
or that the climate (or the methods of measuring it) 
had materially altered. Critical tests of this kind 
may be called tests of significance, and when such 
tests are available we may discover whether a second 
sample is or is not significantly different from the 
first. 

A statistic is a value calculated from an observed 
sample with a view 'to characterising the population 
from which it is drawn. For example, the mean of a 
number of observations Xl, X 2 •.. X"' is given- by 
the equation 

x = ~ Sex), 
n 

where S stands for summation over the whole sample 
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(this symbol is the one regularly used in our subject), 
and n for the number of observations. Such statistics 

,are of course variable from sample to sample, and 
the idea of a frequency ~istribution is applied with 
especial value to the variation of such statistics. If 
we know exactly how the original population was 
distributed it is theoretically possible, though often a 
matter of great mathematical difficulty, to calculate 
how any statistic derived from a sample of given size 
will be distributed. The utility of any particular 
statistic, and the nature of its distribution, both 
depend on the original distribution, and appropriate 
and exact methods have been worked out for only a 
few cases. The application of these cases is greatly 
extended by the fact that the distribution of many 
statistics tends to the normal form as the size of the 
sample is increased. For this reason It is customary 
to apply to many cases what is called U the fheory of 
large samples" which is to assume that such statistics 
are normally distributed, and to limit consideration of 
their variability to calculations of the standard error. 

In the present chapter we shall give some account 
of three principal distributions-(i) the normal distri­
bution, (ii) the Poisson series, (iii) the binomial 
distribution. It is important to have a general 
knowledge of these three distributions, the mathe­
matical formulce by which they.are represented, the 
experimental conditions upon which they occur, and 
the statistical methods of recognising their occurrence. 
On the latter topic we shall be led to some extent to 
anticipate methods developed more systematically in 
Chapters IV and V. 
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12. The Normal Distribution 
A variate is said to be normally distributed when 

it takes all values from - 00 to + 00, with frequencies 
given by a definite mathematical law, namely, that the 
logarithm of the frequency at any distance d from 
the centre of the distribution is less than the logarithm 
of the frequency at the ,centre by a quantity propor­
tional to d2 • The distribution is therefore symmetrical, 
with the ·greatest frequency at the centre; although 

A 

-3 -I o 3 

FIG. 6.-Showing a way in which a symmetrical frequency Gurve may depart 
from the normal distribution. A, flat-topped curve (Y2 negative); B, normal 
curve (Y2 = 0). 

the var;iation is unlimited, the frequency falls off to 
exceedingly small values at any considerable distance 
from the centre, since a large negative logarithm 
corresponds to a very small number. Fig. 6 B repre­
sents a normal curve of distribution. The frequency 
in any infinitesimal range dx may be written as 

I ~ _! (x-IL)' 
df= -==- e . aa- dx 

uV 27T ' 

where X-I-' is the distance of the observation, X, 

from the centre of the distribution, 1-'; and u, called 
the standard deviation, measures in the same units 
the extent to which the individual values are scattered. 
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Geometrically U is the distance, on either side of the 
centre, of the points at which the slope is steepest, 
or the points of inflexion of the curv~ (Fig. 4). 

In practical applications we do not so often want to 
know the frequency at any distance from the centre 
as the total frequency beyond that distance; this is 
represented by the area of the tail of the curve cut 
off at any point. Tables of t:_his total frequenc;z, 
or probability integral, have been constructed from 
which, for any value of (x-f-G)/u, we can find what 
fraction of the total population has a larger deviation; 
or, in other words, what is the probability tha~e 
so distributedJ cho§.ellJl.t random, .shaIL~xc~.S!.9. a given 
deviation .... , Tables I and II have been constructed 
to show the deviations corresponding to different 
values of this probability. The rapidity with which 
the probability falls off as the deviation increases is 
well shown in these tables. A deviation ~xceeding 
the standard deviation occurs about once in three 
trials. Twice the standard deviation is exceeded only 
about once in 22 trials, thrice the standard deviation 
only once in 370 trials, while Table II shows that to 
exceed the standard deviation sixfold would need 
nearly a 'thousand million trials. The value for which 
P = '05, or 1 in 20, is 1'96 or nearly 2; it is convenient 
to take this point as a limit in judging whether a 
deviation is to be considered significant or not. 
Deviations exceeding twice the standard deviation are 
thus formally regarded as significant. U sing this 
criterion we should be led to follow up a false indication 
only once in 22 trials, even if the statistics were the only 
guide available. Small effects will still escape notice 
if the data are insufficiently numerous to 'bring them 
out, but no lowering of the standard of significance 
would meet this difficulty. 
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Some little confusion is sometimes introduced by 
the fact that in some cases we wish to know the prob­
ability that the deviation, known to be positive, shall 
exceed an observed value, whereas in other cases the 
probability required is that a deviation, which is 
equally frequently positive and negative, shall exceed 
an observed value; the latter probability is always 
half the former. For example, Table I shows that the 
normal deviate falls outside the range ± I· 598I93 in 
I I per cent. of cases, and consequently that it exceeds 
+I·598I93 in 5·5 per cent. of cases. 

The value of the deviation beyond which half the 
observations lie is called the quartile distance, and 
bears to the standard deviation the ratio ·67449. 
I t was formerly a common practice to calculate the 
standard error and then, multiplying it by this factor, 
to obtain the probable error. The probable error is 
thus about two-thirds of the standard error, and as 
a test of significance a deviation of three times the 
probable error is effectivelY' equivalent to one of twice 
the standard error. The common use of the probable 
error is its only recommendation; when any critical 
test is requited the deviation must be expressed in 
terms of the standard error in using the tables of 
normal deviates (Tables I and I I). 

Further tables of the normal distribution are given 
in Stat£stical Tables IX and X, and in Sheppard's 
Tables, I938. 

13. Fitting the Normal Distribution 

From a sample of n individuais of a normal 
population the mean and the standard deviation of 
the population may be estimated by using tw~ easily 
calculated statistics. The best estimate of ft is x where 

x =: Sex), 
n 
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while for the best estimate of (1, we calculate s from 

S2 = _1_ 5(X-X)2; 
n-I 

these two statistics are calculated from the sums 
of the first two powers of the observations (see 
Appendix, p. 70), and are specially related to the 
normal distribution, in that they summarise the whole 
of the information which the sample provides as to 
the distribution from which it was drawn, provided 
the latter was normal. Fitting by sums of powers, 
and especially hy the particular system of statistics 
known as moments, has also been widely applied to 
skew (asymmetrical) distributions, and others which 
are not normal; but such distributions have not 
generally the peculiar properties which make the first 
two powers especially appropriat~ and where the 
distributions differ widely from the normal form the 
two statistics defined above may be of littVe or no use. 

Ex. 2. Fz'ttz'ng a normal dzstrz'butz"on to a large 
sample.-I n calculating the statistics f~om a large 
sample it is not necessary to calculate individually 
the squares of the deviations from the mean of 
each measurement. The measurements are grouped 
together in equal intervals of the variate, and the 
whole of the calculation may be carried out rapidly as 
shown in Table 2, where the distribution of the stature 
of II64 men is analysed. 

The first column shows the central height in 
inches of each group, followed by the corresponding 
frequency. A central group (68'5") is chosen as 
it working mean." To form the next column the 
frequencies are multiplied by I, 2, 3, etc., according to 
their distance from the working ~; this process 
being r~peated to form the fourth column, which is 
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TABLE 2, 

Central Height Men Frequency Frequency 
X X Women, (Inches), (Frequency), Deviation, (Deviation)", 

52'S '" .. , ... 
53'S ... '" ... 
54'S ... .. , ... 
55'S ... '" ... 
56'S .. , '" ... 
57'5 '" .. , ... 
58' 5 ... .., .. , 
59'S I - 9 

I 81 
60'5 2'5 - 20 160 
61'S 1'5 - 10'5 73'S 
62'S 9'5 - 57 342 
63' 5 31 -ISS 775 
64'S 56 -224 896 
65' 5 7~' 5 -235' 5 706'5 
66'S 127 -254 508 
67' 5 178'5 -178'5 178, 5 
68,S 189 -II43' 5 
69'S 137 137 137 
7°'5 137 274 548 
71' 5 93 279 837 
72' S 52' 5 210 840 
73'S 39 195 975 
74'S 17 102 612 
75' 5 6'5 45' 5 318' 5 
76,6 3'5 28 224 
77'5 1 9 81 
78' 5 2 20 200 
79'S I II 121 

1310' 5 
II 64 +167 8614 

" Mean +1435. 
Correction for mean 1672-:--1164 ..... _ 23' 96 
Corrected sum of squares 8590'04 
Sampling variance of mean 
Sampling variance of variance 
Adjustment for grouping 
Adjusted variance 

-
'5 
'5 

'" 
I 
5 

IS 
IS' 5 
52 

101 
150 
199 
223 
215 
169' 5 
lSI' 5 
81' 5 
40'5 
19' 5 
10 
5 

'" 
1 

'" 
... 
'" ... 
' .. 
'" 

1456 

Es6mated 
Variance, 

7'3861 ./ 
' 006345 
'09382 
' 0833 

7' 3028 

S,D. 

2' 7177 
'0797 
'3°63 
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summed from top to bottom in a single operation; 
in the third column, however, the upper portion, 
representing negativ.e deviations, is summed separately 
and subtracted from the sum of the l<?wer portion. 
The difference, in this case positive, shows that the 
whole sample of II64 individuals has in all r67 inches 
more than if every individual were 68· 5" in height. 
This balance divided by II64 gives the amount 
by which the mean of the sample exceeds 68·5". 
The mean of the sample is therefore 68·6435". 

From the sum of the fourth column is subtracted a 
correction to give the value we should have obtained 
had the working mean been the true mean. This correc­
tion is the product of the total, r67", and the mean 
D· I435" derived frDm it. The cDrrected sum ,of squares 

. divided by II63, one less than the sampJe number, pro­
vides the estimate of the variance, 7· 3S6r square inches, 
which is the basis of all subsequent calculatiop.s.' 

Corresponding to any estimate of a variance, we 
have, by taking the square root, the corresponding 
estimate of the standard deviation. Thus from the 
value 7· 386I square inches, we obtain at once the 
estimate 2·7I77 inches for the standard deviation. 
This, however, represents the stldard deviation of 
the population as grouped. The rocess of grouping 
may be represented as the additi n to any true value 
of a grouping error, positive or negative, which takes 
all values from -1 to 1 of a grouping unit with equal 
frequency. The effect of this on the population, and 
its average effect upon samples, is to add a constant 
quantity i\ (=.0833) to the variance. ~ 
~u_~tm~!lt fQr grDuping consists in deducting this 
quantity from the estimate of variance of the population 
as grouped. This gives 7· 3028 square inches for the 
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adjusted variance, and 2'702 for the corresponding 
estimate of the standard deviation. 

Any interval may be used as a unit of grouping; 
and the whole calculation is carried through in such 
units, the final results being transformed into other 
units if required, just as we might wish to transform 
the mean and standard deviation from inches to centi­
metres by multiplying by the appropriate factor. It 
is advantageous that the units of grouping should be 
exact multiples of the units of measurement; so that 
if the above sample had been measured to tenths of an 
inch, we might usefully have grouped them at intervals 
of 0·6" or 0'7". 

Regarded as estimates of the mean and the standard 
deviation of a normal population of which the above is 
regarded as a sample, the values found are affected by 
errors of random sampling; that is, we should not 
expect a second sample to give us exactly the same 
values. The V9-lues for diff~@nt (large) samples of 
the sam~ size would, <howe~er, be distributed ~ery­
accurately _ilL no..rmaL distributions, s7:, the aCCl,lracy 
o( anyone such estirp.a~e may he satisfactorily 
expressed by it~dat:.g er_~r. These standard errors 
may be calculaCedtrom the variance of the grouped 
population, and in treating large samples we take our 
estimate of this variance as the basis of the calculation. 

The formulce for the variances of random sampling 
of estimates of the mean and of the variance of a 
normal population are (as given in Appendix, p. 70) 

a2 za4 

-, --. 
n n-l 

Putting our value for kg, 7'3861, in place of as in 
these formulce, we find that our estimate of the mean 
has a sampling variance '006345 square inches, or, 

E 
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taking the square root, a standard error ·0797 inches. 
From this value it is seen that our sample shows 
significant aberration (± twice standard error) from 
any population whose mean lay outside the limits 
68.48" to 68·80". It is therefore probable, in the 
fiducial sense, that the mean of the population from 
which our sample was drawn lay between these limits. 
Similarly, our value for the variance of the population 
is seen to have a sampling variance .09382, or a 
standard error· 30.63; we have therefore equally good 
evidence that the variance of the grouped population 
from which our sample was drawn lay between 
6·773 and 7·999 square inches. For the ungrouped 
population we should deduct .083 from both limits. 

It may be asked, Is nothing lost by grouping? 
Grouping in effect replaces the actual-data by fictitious 
data placed arbitrarily at the central val.ues of the 
groups; evidently a very coarse grouping might 
be very misleading. It has been shown that as regards 
obtaining estimates of the parameters of a normal 
population, the loss of information caused by grouping 
is less than I per cent., provided the group interval 
does not exceed one-quarter of the standard deviation; 
the grouping of the sample above in whole inches is 
thus somewhat too coarse; the loss in the estimation 
of the standard deviation is 2·28 per cent., or about 
27 observations out of II64; the loss in the estimation 
of the mean is half as great. With suitable group 
intervals, however, little is lost by grouping, and' 
much labour is saved. 

Another way of regarding the loss of information 
involved in grouping is to consider how near the 
estimates obtained for the 'mean and the standard 
deviation will be to the estimates obtained without 
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groupin0From this point of view we may calculate 
a standard error of grouping, not to be confused with 
the standard error of random sampling which measures 
the deviation of the sample values from the population 
value. In grouping units, the standard error due to 
grouping of both the mean and the standard deviation is 

y'12n' 

or in this case .0085". For sufficiently fine grouping 
this should not exceed one-tenth of the standard error 
of random sampling. 

In the analysis' of a large sample the estimate of the 
variance often employed is 

.! Sex - x)2, 
n 

-which differs from the formula given previously (p. 46) 
in that we have divided by n ipstead of by (n- I). In 
large samples the difference between these formulce is 
small, and that using n may claim some theoretical 
advantage if we wish for an estimate to be used in <;on­
junction with th.e estimate of the mean from the same 
sample, as in fitting a frequency curve to the data; 
in general it is best to use (n-I). In small samples 
the difference is still small compared to the probable 
error, but becomes important if a variance is estimated 
by averaging estimates from a number of small samples. 
Thus if a series of experiments are carried out each 
with six parallels and we have reason to believe that 
the variation is in all cases due to the operation of 
analogous causes, we may take the average of such 
quantities as 1 I 

- S(X-X)2 = - S (X-X)2 
n-1 5 

to obtain an unbiased estimate of the variance, whereas 
we should underestimate it were we to divide by 6. 
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14. Test of Departure from NormalJty 

I t is sometimes necessary to test whether an 
observed sample does or does not depart significantly 
from normality. For this purpose the third, and some­
times the·fourth powers, are used; from each of these 
it is possible to calculate a quantity, g, the average 
value of which is zero for a norrJ:?al distribution, and 
which is distributed normally for large samples-the 
standard error being calculable from the size of the 
sample. The quantity gl, which is calculated from the 
third powers, is essentially a measure of asymmetry; 
the parameter Yv of which it provides an estimate, may 
be equated to ± '\/fil of Pearson's notation, though 
Pearson also used f31 to designate a statistic which is 
not the equivalent of g12 ; g2' calculated-from the fourth 
powers, is in like manner a measure of departure from 
normality, in this case of a symmetrical type,1 by which 
the' apex and the two tails of the curve are increased 
at the expense of the intermediate portion, or when 
negative, the top and tails are dt;pleted and the 
shoulders filled out, making a relatively fiat-topped 
curve. (See Fig. 6, p. 43.) 

Ex. 3. Use oj hz"gher powers to test normal£ty.­
Departures from normal form, unless very strongly 
marked, can only be detected in large samples; con­
versely, they make little difference to statistical tests on 
other questions. We give an example (Table 3) of 
the calculation for 90 values of the yearly rainfall at 
Rothamsted; the process of calculation is similar to 
that of finding the mean and standard deviation, but 
it is carried two stages further, in the summation of 
the 3rd and 4th powers. The formulce by which the 
sums are reduced to the true mean and the statistics 



TABLE 3 

TEST OF NORMALITY OF YEARLY RAINFALL 

Year's rain in Frequency. inches. 

16 I -12 144 -1728 20736 
17 ... . .. ... . .. . .. 
18 ... ... . .. . .. . .. 
19 , 3 -27 243 -2187 I 19683 
20 2 -16 128 - 1024 8192 
21 3 -21 147 - 1029 7203 
22 ... ... .., . .. ... 
23 3 -15 75 -375 1875 
24 2 -8 32 -128 512 
25 12 -36 108 -324 97 2 
26 4 -8 16 -32 64 
27 7 ~7 7 -7 7 

28 4 ... ... ... . .. 

. 29 8 8 8 8 . 8 
30 9 18 36 72 144 
31 6 18 54 162 486 
32 7 28 1I2 448 1792 
33 4 20 100 500 2500 
34 4 24 144 864 5184 
3S 4 28 196 1372 9604 
36 3 24 192 1536 IZ288 

37 3 27 243 2187 19683 
38 .. , ... .. , ... .. ' 
39 I II 121 1331 14641 

S 90 56 2106 1646 125574 

Corrections { 
-34'84 -3931'2 -4096'7 

to +43'4 +4892'2 

Mean -40'S . 
S 90 .. , 2071' 16 -2241' 8 126329'0 
k ... '62 23'2715 -25'761 -162'487 

Adjustment ... ... -' 0833 +'008 

k' '62 23' 1882 -25'761 -162'479 
g -'231 -'302 

Standard ±'254 ±'503 
error 

53 
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k and g are calculated, are gathered in an Appendix, 
p. 70. For the k statistics we obtain in terms of 
group intervals 

kl ='6z, k2 =23'2 715, k3 =-2S·76. k4 =-162'49, 

whence are calculated 
g'l = k'3/k '2

3
/2 = -'23 1 , g'2 = k'4/k 'a2 = -'302 . 

F or samples from a normal distribution the sampling 
variances of gl and g2 are given exactly by the formulce 
in the Appendix, and the numerical values of the 
standard error have been appended in Table 3. It 
will be seen that neither are significant, or even 
exceeds its standard error. A negative value of Yl' 
which is suggested but not established by the data, 
would indicate an asymmetry of the distribution in 
the sense that moderately dry and very wet years 

...- " are respectively less frequent than moder,ately wet 
and very dry years. 

IS. Discontinuous Distributions 

I:requently a variable is not able to take all possible 
values, but is confined to a particular series of values, 
such as the whole numbers. This is obvious when the 
variable is a frequency, obtained by counting, such as 
the number of cells on a square of a hcemacytometer, 
or the number of colonies on a plate of culture medium. 
The normal distribution is the most important of the 
continuous distributions; but among discontinuous 
distributions the Poisson series is of the first importance. 
If a variate can take the values 0, I, 2, ' , ., x, .. " 
and the relative frequencies with which the values occur 
are given by the series 

( 
m2 mOl ) 

e-m 
I, m, I' . . . , -, ' . , . 

2. X. 
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(where X! stands for'" factorial x)) = X(X-I) (X-2) 
... I), then the number is distributed in the Poisson 
senes. The total frequency is unity, since 

1n2 m 3 

em = I+m+ 2T+3T+' ... 

Whereas the normal curve has two unknown para­
meters, f.L and CT, the Poisson series has only one. 
This value may be estimated from a series of observa­
tions, by taking their mean, the mean being a statistic 
as appropriate to the Poisson series as it is to the 
normal curve. It may be shown theoretically that 
if the probability of an event is exceedingly small, 
but a sufficiently large number of independent cases 
are taken to obtain a number of occurrences, then this 
number will be distributed in the Poisson series. For 
example, the chance of a man being killed by horse­
kick on anyone day is exceedingly small, but if an 
army corps of men are exposed to this risk for a year, 
often one or more of them will be killed in this way. 
The following data (Bortkewitch's data) were obtained 
from the records of ten army corps for twenty years, 
supplying 200 such observations. 

TABLE 4 

Deaths. Frequency Expected. observed. 

0 109 108·67 
1 65 66'29 
2 22 20'22 

3 3 4' II 
4 I '63 
5 ... '08 
6 ... '01 
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The average, x, is 0·61, and taking this as an 
estimate of m the numbers calculated agree-excellently 
with 'those observed. 

The importance of the Poisson series in biological 
research was first brought out in connexion with the 
accuracy of counting with a hcemacytometer. It was 
shown that when the technique of the counting process 
was effectively perfect, the number of cells on each 
,square should be ,theoretically distributed in a Poisson 
series; it was further shown that this distribution 
was, in favourable circumstances, actually realised 

TABLE 5 

Number of Cells. Frequency observed. Frequency expected. 

° ... -:1' 71 . 
I 20 17' 37 
2 43 40:65 \ 
3 53 63'41 
4 86 74'19 
5 7° 69'44 
6 54 54'16 
7 37 36'21 
8 18 21' 18 
9 10 II'02 

10 5 5' 16 
II 2 2' 19 
12 ' 2 ·86 
13 ... '31 
14 ... '10 
IS ... '°3 
16 ... '01 

Total 400 4°0'00 

in practice. Thus the preceding table (It Student's" 
data) shows the distribution of yeast cells in the 400 

squares into which one square millimetre was divided . 
• 
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The total number of cells counted is 1872, and the 
mean number is therefore 4.68. The expected 
frequencies calculated from this mean agree well 
with those observed. The methods of testing the 
agreement are explained in Chapter IV. 

When a number is the sum of several components, 
each of which is-'independently distributed in a Poisson 
series, then the total number is also so distributed. 
Thus the total count of 1872 cells may be regarded as 
a sample of one individual from a series, for which m 
is not far from 1872. The variance of a Poisson 
series, like its mean is equal to m; and for such large 
values of m the distribution of numbers approximates 
closely to the normal form; we may therefore attach 
to the number counted, 1872, the standard error 
± v' 1872 = ±43·26, to represent the standard error 
of random sampling of such a count. The density of 
cells in the original suspension is therefore estimated 
with a standard error of ~. 3 I per cent. If, for instance, 
a parallel sample differed by 7 per cent., the technique 
of sampling would be suspect. 

16. Small Samples of a Poisson Series 

Exactly the same principles as govern the accuracy 
of a hcemacytometer count would also govern a count 
of bacterial or fungal colonies in estimating the 
numbers of those organisms by the dilution method, 
if it could be assumed that the technique of dilution 
afforded a perfectly random distribution of organisms, 
and that these could develop on the plate without 
mutual interferen~e. Agreement of the observations 
with the Poisson distribution thus affords in the dilution 
method of counting a te$t of the suitability of the 
technique and 'medium similar to the test afforded of 
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the technique of hcemacytometer counts. The great 
practical difference between these cases is that from 
the hcemacytometer we can obtain a record of a large 
number of squares with only a few organisms on each, 
whereas in a bacterial count we may have only 5 
parallel plates, bearing perhaps 200 colonies apiece. 
From a single sample of 5 it would be impossible to 
demonstrate that the distribution followed the Poisson 
series; however, when a large number of such samples 
have been obtained under comparable conditions, it 
is possible to utilise the fact that for all Poisson series 
the variance is numerically equal ~o the mean. 

For each set of parallel plates with Xli X2 ••• , zn 
colonies respectively, after finding the mean x, an 
indextof dispersion may be calculated by the formula 

x2 = SCX-:X)2. 
oX 

I t has been shown that for true samples of a Poisson 
series, X2 calculated in this way will be distributed 
in a known manner; Table III (p. 112) shows the 
principal values of x2 for this distribution; entering 
the table with n equal to one less than the number 
of parallel plates. F or small samples the permissible 
range of variation of x2 is wide; thus 'for five plates 
with n=4, x2 will be less than 1'064 in 10 per cent. of 
cases, while the highest 10 per cent. will exceed 7'779 ; 
a single sample of 5 thus gives us little information; 
but if we have 50 or 100 such samples, we are in 
a position to verify with accuracy if the expected 
distribution is obtained. 

Ex. 4. Test of agreement wz"th Poisson series of 
a number of small samples.-From 100 counts of 
bacteria in sugar refinery products the following values 
were obtained (Table 6); there being 6 plates in each 
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case, the values of x2 were taken from the x2 table 
for n = 5. 

TABLE 6 

I 

x"· Expected. Observed. I Expected 
43 per cent. 

0 
I 26 ·43 

·554 
I 6 °43 

.75 2 
3 II I· 29 

1·145 
5 7 2·15 

1·610 
10 7 4·3 

2· 343 
10 2 4·3 

3. 000 
20 12 8·6 

4.35 1 
20 7 8·6 

6. 064 
10 3 4·3 

7. 289 
10 4 4·3 

9. 236 
5 I 2· IS 

11·070 
3 3 I· 29 

13· 388 
I 0 ·43 

15. 086 
I II ·43 

Total 100 100 43. 00 

I t is evident that the observed series differs strongly 
from expectation; there is an enormous excess in the 
first class, and in the high values over IS; the rela­
tively few values from 2 to IS are not far from the 
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expected proportions, as is shown in the last column by 
taking 43 per cent. of the expected values. I t is possible 
then that even in this case nearly half of the samples 
were satisfactory, but about 10 per cent. were exces­
sively variable, and in about 45 per cent. of the cases 
the variability was abnormally depressed. 

I t is often ,desirable to test if the variability is 
of the right magnitude when we have not accumulated 
a large number of counts, all with the same number 
of parallel plates, but where a certain number of 
counts are available with various numbers of parallels. 
In this case we cannot indeed verify the theoretical 
distribution with any exactitude, but can test whether 
or not the general level of variability conforms with 
expeqtation. The sum of a number of independent 
values of x2 is itself distributed in t~~ manner shown 
in the Table of x2 , provided we take for n the number 
Sen), calculated by adding the several values of n 
for the separate experiments. Thus for six sets of 
4 plates each the total value of x2 was found to be 13.85, 
the corresponding value of n is 6 x 3 = 18, and the x2 

table shows that for n = 18 the value 13.85 is exceeded 
in between 70 and 80 per cent. of cases; it is tlierefore 
not an abnormal value to obtain. In another case the 
following values were obtained: 

TABLE 7 

Number of Number of 
Sen). Total X:. Plates in Set. Sets. 

4 8 24 27· 31 
5 36 144 133.96 
9 1 8 8'73 

Total ... 176 17°. 00 
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We have therefore to test if X2 = 170 isan unreason­
ably small or great value for n = 176. The X2 table 
has n9t been calculated beyond n :::;:: 30, but for higher 
values we make use of the fact that the distribution of 
X becomes nearly normal. A good approximation is 
given by assuming that (v' 2X2 - v' 2n- I) is normally 
distributed about zero with unit standard deviation. 
If this quantity exceeds 2, or even 1·645 for the' 
5 per cent. level, the value of X2 significantly exceeds 
expectation. In the examRle before us 

2X2 = 340, V2X2 = 18·44 

2n-I = 351, V2n-I = 18·73 

Difference = - ·29 

The set of 45 counts thus shows variability between 
parallel plates, very close to that to be expected theo­
retically. The internal evidence thus suggests that 
the technique was satisfactory. 

17. Presence and Absence of Organisms in Samples 

When the conditions of sampling justify the use of 
the Poisson series, the number of samples containing 
0, I, 2, ... organisms is, as we have seen, connected 
by a calculable relation with the mean number of 
organisms in the sample. With motile organisms, or 
in other cases which do not allow of discrete colony 
formation, the mean number of organisms in the 
sample may be inferred f.rom the proportion of fertile 
cultures, provided a single organism is capable of 
developing. If m is the mean number of organisms in 
the sample, the proportion of samples containing none, 
that is the proportion of sterile samples, is e-m

, from 
which relation we can calculate, as in the following 
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table, the mean number of organisms corresponding 
to 10 per cent., 20 per cent., etc., fertile samples. 

TABLE 8 
Percentage of 

fertile samples 10 20 30 40 50 60 70 80 90 
Mean number 

of organisms '1054 '2231 '3567 '5108 ·69~2 '9163 1'20401.60942'3026 

In' connexion with the use of the table above it 
is worth noting that for a given number of samples 
tested the frequency ratio of fertile to sterile is most 
accurately determined at 50 per cent. fertile, but for 
the minimum percentage error in the estimate of the 
number of organisms, nearly 80 per cent. fertile or 1·6 

organism per sample is most accurate. At this point 
the standard error of sampling may be reduced to 
10 per cent. by taking about ISS samples, whereas at 
50 per cent., to obtain the same accuracy, 208 samples 
would be required. (See Deszgn 0/ Exper£ments, 
Section 68.) 

The Poisson series also enables us to calculate 
what percentage of the fertile cultures obtained have 
been derived from a single organism, for the percentage 
of impure cultures, i.e. those derived from 2 or more 
organisms, can be calculated from the percentage of 

, cultures which proved to be fertile. If e-m are sterile, 
me-m will be pure cultures, and the remainder impure. 
The following table gives representative values of 
the percentage of cultures which are fertile, and the, 
percentage of fertile cultures which are iIItpure : 

Mean number of organisms 
in sample. 

Percentage fertile 
Percentage of fertile cul­

tures impure 

TABLE 9 

'1 '2 '3 '4 '5 ,6 '7 
9'52 r8'I3 2'5'92 32'97 39'35 45'12 50'34 
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I f it is desired that the cultures should be pure with 
high probability, a sufficiently low concentration must 
be used to render p.t least nine-tenths of the samples sterile. 

18. The Binomial Distribution 

The binomial distribution is well known as the first 
example of a 'theoretical distribution to be established. 
1 t was found by Bernoulli, about the end of the 
seventeenth century, that if the probability of an event 
occurring were p and the probability of it not occurring 
were q( = I - p), then if a random sample of n trial 
were taken, the frequencies with which the event 
occurred 0, I, 2, ... , n times were given by the 
expansion of the binomial 

(q+p)n. 

This rule is a particular case of a more general 
theorem dealing with cases in which not only a simple 
alternative is considered, but in which the event may 
happen in s ways with pr'ob~bilities PI, P2, ... , Ps ; 
then it can be shown that the chance of a random 
sample of n giving tZt of the first kind, a2 of the second, 

., as of the last is 

n' ---;----;-_' _-----; P a'P a, pas -, , , 1 2 ••• •• 
a1,a2, , , , as' 

which is the general term in the multinomial expansion 
of (h+P2+ : ' , +p.)n, 

" Ex,S. Binomial distribution given by dice records. 
-I n throwing a true die the chance of scoring more 
than 4 is 1/3. and if 12 dice are thrown together the 
number of dice scoring 5 or 6 should be distributed 
with frequencies given by the terms in the expansion 
of (.2.+~)12 3 3, ' 
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If, however, one or more of the dice were not true, but 
if all retained the, same bias throughout the experiment, 
the frequencies should be given approximately by 

(q+p)12, 

where p is a fraction to be determined from the data. 
The following frequencies were observed (Weldon's 
data) in an experiment of 26,306 throws. 

TABLE 10 

x' 
Number of Observed Expected Expected Mefl,sure of Divergence_. 
Dice with Biased m 

5 or 6. 
Frequency. True Dice. Dice. True Dice. Biased Dice. 

0 185 202'75 187' 38 I' 554 '030 
1 II49 1216· 50 1146'5 1 ...3'745 '°°5 
2 3265 3345' 37 321 5' 24 1"931 '77° 
3 5475 5575'61 5464'7° 1" 81 5 ' 01 9 
4 6II4 62 72' 56 6269'35 4'0081 3'849 
5 51 94 5°18'°5 51I4' 65 6' 169 1'231 
6 3°67 2927'20 3042'54 6'677 . 197 
7 1331 1 254' 51 / 1329'73 4'664 '001 
8 403 392'°4 423' 76 '306 1"017 
9 105 87'12 96'°3 3. 67° '838 

10 14 13'°7 14' 69} 
II 4 1" 19 '1" 36 '952 '222 
12 '" '°5 '06 

26306 263°6'02 263°6'00 35'491 8'179 

n =10 n=9 

I t is apparent that the observations are not 
compatible with the assumption that the dice were 
unbiased. With true dice we should expect more 
cases than have been observed of 0, I, 2, 3, 4, and fewer 
cases than have been observed of 5, 6, ... , I I dice 
scoring more than four. The same conclusion is more 
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clearly brought out in the fifth column, which shows 
the values of the measure of divergence 

x2 
-, 
m 

where m is the expected value and x the difference 
between the expected and observed values, The 
aggregate of these values is x·2, which measures the 
deviation of the whole series from the expected series 
of frequencies, and the actual chance of x2 exceeding 
35'49, 'the value for the hypothesis that the dice are 
true, is '0001. (See Section 20,) 

The total number of times in which a die showed 
5 or 6 was I06,602, out of 315,672 trials, whereas the 
number expected with true dice is I05,224; from the 
former number, the value of p can be calculated, and 
proves to be '337,698,6, and hence the expectations of 
the fourth column were obtained, These values are 
much more close to the observed series, and indeed fit 
them satisfa.ctorily, showing that the conditions of the 
experiment were really such as to give a binomial series. 

The variance of the binomial series is pqn, Thus 
with true dice and 315,672 trials the expected number 
of dice scoring more than 4 is 105,224 with variance 
70I49' 3 and standard error 264'9; the observed 
number exceeds expectation by 1378, or 5'20 times 
its standard error; this is the most sensitive test of 
the bias, and it may be legitimately applied, since 
for such large sample§ the binomial distribution 
closely approaches the normal. From the table of 
the probability integral it appears that 'a normal 
deviation only exceeds 5'2 times its standard error 
once in 5 million times. 

The reason why this last test gives so much higher 
odds than the test for goodness of fit, is that the latter 

F 



66 STATISTICAL METHODS [§ 1,8 

is testing for discrepancies of any kind, such, for 
example, as cbpying errors would introduce. The 
actual discrepancy is almost wholly due to a single 
item, namely, the value of p, and when that point 
is tested separately its significance is more clearly 
brought out. 

Ex. 6. Comparison oj sex rat£o in human jami/z"es 
with bz"nomz"al dz"strib?tHon.-Biological data are rarely 
so extensive as this experiment with dice; Geissler's 
data on the sex ratio in German families will serve 
as an example. I t is well known that male births 
are slightly more numerous than female births, so 
that if a family of 8 is regarded as a random sample 
of 8 from the general population, the number of 
boys in such families should be distributed in the 
binomial 

where p is the proportion of boys. If, I however, 
families differ not only by chance, but by a tendency 
on the part of some parents to produce males or 
females, then the distribution of the number of boys 
should show an excess of unequally divided families, 
and a deficiency of equally or nearly equally divided 
families. The data in Table I I show that there is 
evidently such an excess of very unequally divided 
families. 

The observed series differs from expectation 
markedly in two respects: one is the excess of unequally 
divided families; the other is the irregularity of the 
central vaiues, showing an apparent bias in favour of 
even values. No biological reason is suggested for 
the latter discrepancy, which therefore detracts from 
the value of the data. The excess of the extreme 
types of family may be treated in more detail by 
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comparing the observed with the expected variance. 
The expected variance, njq, is 1'998,28, while that 
calculated from the data is 2'067>45, showing an 
excess of '06917, or 3'46 per cent. The sampling 
variance of this estimate of variance is (p. 77) 

2 
~+~ 
N-r N 

where N is the number of families, and K2 and K4 

are the second and fourth cumulants of the theoretical 
distribution, namely, 

K2 = npq = 1'99828 
K4 = npq(r-6pq) = -'99656. 

The values given are calculated from the v~lile of p 
as estimated from the frequency of boys in the sample. 
The standard error of the variance, which as the values 
show is nearly V 7 IN, is found to be ·OII4I. The 
excess of the observed variance over that appropriate 
to a binomial distribution is thus over six times its 
standard error. 

TABLE II 

Number of x' 

'I Number of Boys. Families Expected. Excess (x). -
Observed. m 

0 21 5 165' 22 + 49'78 14'998 
I 1485 14°1'69 + 83'31 4'952 
2 5331 5202 '65 +128'35 3'166 
3 10649 ~1034'65 -385'65 13'478 
4 14959 1462 7'60 +331'4° 7' 508 
5 II929 124°9. 87 -;480'87 18·633 
6 6678 6580'24 + 97'76 1'452 
7 2P92 1993'78 + 98'22 4'839 
8 342 264' 30 + 77'7° 22·843 

53680 53680'00 91.869 
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One possible cause of the excessive variation .lies 
in the occurrence of multiple births, for it is known 
that children of the same birth tend to be of the same 
sex. The multiple births are not separated in these 
data, but an idea of the magnitude of this effect may 
be obtained from other data for the German Empire. 
These show about 12 twin births per thousand, of 
which i are of like sex and i of unlike, so that one­
quarter of the twin births, 3 per thousand, may be" 
regarded as "identical" or necessarily alike in sex. 
Six children per thousand would thet:"efore probably 
belong to such " identical " twin births, the additional 
effect of triplets, etc., being small. Now with a 
population of identical twins it is easy t9 see that the 
theoretical variance is doubled; consequently, to 
raise the variance by 3' 46 per cent. we_ require that 
3' 46 per cent. of the children should be " identical" 
twins; this is more than five times the Igeneral 
average; and, although it is probable that the pro­
portion of twins is higher in families of 8 than in the 
general population, we cannot reasonably ascribe more 
than a fraction of the excess variance to multiple births. 

19. Small Samples of the Binomial Series 

With small samples, such as ordinarily occur in 
experimental work, agreement with the binomial 
series cannot be tested with much precision from a 
single sample. it is, however, possible to verify that 
the variation is approximately what it should be, 
by calculating an index of dispersion similar to that 
used for the Poisson series. 

Ex. 7. The accuracy of estz'mates oj z'njestatz'on.­
The proportion of barley ears infested with gout­
fly may be ascert~ined by examining 100 ears, and 
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counting the infested specimens; if this is done 
repeatedly, the numbers obtained, if the material is 
homogeneous, should be distributed in the binomial 

(q+p)100, 

where p is the proportion infested, and q the propor­
tion free from infestation.. The following are the data 
from 10 stIch observations made on the same plot 
(J. G. H. Frew's data) : 

16, IS, II, IS, 21, 10, 20, IS, 17, 21. Mean 17.0. 

Is the variability of these numbers ascribable to 
random sampling; z".e. Is the material apparently 
homogeneous? Such data differ from those to which 
the Poisson series is appropriate, in that a fixed total 
of 100 is in each case divided into two classes, infested 
and not infested, so that in taking the variability of 
the infested series we are equally testing the variability 
of the series of numbers not infested. The modified 
form of x2 , the index of dispersion, appropriate to the 

binomial is S(X_X)2 S(X-x)2 x2 - -.!.... _ _:._ 

npq xq 

differing from the form appropriate to the Poisson 
series in containing the divisor q, or in this case, ·S3· 
The value of x2 is 9.21, which, as the x2 table shows, is 
a perfectly reasonable value for n = 9, one less than 
the number of values avail,able. 

Such a test of the single sample is, of course, far 
from conclusive, since x2 may vary within wide limits. 
If, however, a number of such small samples are 
available, though drawn from plots of very different 
infestation, we can test, as with the Poisson series, if 
the general trend of variability accords with the 
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binomial distribution. Thus from 20 such plots the 
total x2 is 193.64, while S(n) is 180. Testing as before 
(p. 61), we find 

V 387.28 = 19.68 

V359 = 18·95 

Difference -h·73. 

The difference being less than one, we conclude 
that the variance shows I!-0 sign of departure from that 
of the binomial distribution. The difference between 
the method appropriate for this case, in which the 
samples are small (10), but each value is derived from 
a considerable number (100) of observations, and that 
appropriate for the sex distribution in families of 8, 
where we had many families, each of only 8 observa­
tions, lies in the omission of the term 

K, = npq(I-6pq) 

in calculating the standard error of th~ variance. 
When n is 100 this term is very small com pared to 
2n2p2q2, and in general the x2 method is highly accurate 
if the number in all the observational categories is as 
high as 10. 

ApPENDIX ON TECHNICAL NOTATION AND FORMULJE 

A. Statz"s#cs derz"ved from sums of powers. 

If we have n observations of a variate x, it is easy 
to calculate for the sample the sums of the simpler 
powers of the value~ observed; these we may write 

and so on. 

Sl = Sex) 
Sa = S(x3) 

S2 = S(x2) 

S, = Sex') 

I t is convenient arithmetically to calculate from 
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these the sums of powers of deviations from the mean 
defined by the equations 

Many statistics in frequent use are derived from these 
values. 

(i) Moments about the arbitrary origin, x = 0 ; 

these are derived simply by dividing the corresponding 
sum by the number iIl the sample; in general if p stand 
for I, 2, 3, 4, ... , they are defined by the formula 

I 1 
m';p=-s;p 

n 

Clearly mil is the arithmetic mean, usually written .x. 
(ii) In order to obtain values independent of the 

arbitrary origin, and more closely related to the 
intrinsic characteristiCS of the population sampled, 
values called" moments about the mean" are widely 
used, which are found by divining tfle sums of powers 
about the mean by the sample number;, thus if 
p = 2, 3, 4, ... 

these are the momentS which would have been obtained 
if, as would usually be inconvenient arithmetically, the 
arithmetic mean had been chosen as origin. 

(iii) A more recent system which has been shown 
to have great theoretical advantages is to replace the 
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mean and the moments about the mean by the single 
series of k-statistics 

k - n S 
3 - (n-I) (n-2) 3 

I t is easy to verify the following relations : 

m'l = kl 

n-I 
m2= --kg 

n 

(n- r) (n-2) k 
m3= 3 

n
2 

\ 

m4= n2~n~\) {(n-z) (n-3)k1+3(n-I)2k22}, 

by which the momen..t statistics, when they are wanted, 
may be obtained from the k-statistics. 

(iv) I t is of historical interest to' note that a) series 
of statistics, termed half-invariants, were defined by 
Thiele, which are related to the moment statistics m' 
and m in exactly the same way as the cumulants (see 
B below) are related to the moments f-t' and f-t of the 
population. Thus if hl' h2' hal' stand for the half­
invariants, we have 

hl = m'l h2 = m2 ha = ma 
h4 = m4-3m 2

2 h5 = m5- Iomam 2 

and so on. Thiele used the same term "half­
invariants" also to designate the population parameters 
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of which these statistics may be regarded as estimates, 
just as the single term" moments" has been used in 
both senses by Pearson and his followers, so that the 
cumulants have been frequently referred to as half­
invariants or semi-invariants of the population, and 
even the k-statistics have been mistakenly called semi­
invariants of the sample. The half-invariants as 
originally defined ,by Thiele are not now of importance, 
and are only mentioned here to clear up the confusion 
of terminology . 

. B. Moments and clImllJants of theoretz'cal distributz'ons. 

Either of the systems of statistics derived from 
sums of powers may be regarded as estimates of 
corresponding parameters of theoretical distributions, 
to which they would usually tend if the sample were 
increased indefinitely. These true, or population, 
values are designated by Greek letters; thus m' 4 is an 
estimate of fJ-' 4, the fourth moment of the population 
about an arbitrary origin, m 4 is an estimate of fJ-4, the 
fourth moment of the population about its mean, and 
k4 is an estimate of /(4' the fourth cumulant of the 
population. The relations hetween these population 
values are simpler than those between m and k, thus 

, 
fJ- 1 = /(1 fJ-2 = /(2 fJ-s = /(s 

fJ-4 = /(4+ 3/(22 fJ-5 = /(5+ IO/(S/(2 

and so on. The general rule for the formation of the' 
coefficients may be seen from the facts that three 
is the number of ways ,of dividing four objects into 
two sets of two each, while ten is the number of ways 
of dividing five objects into sets of two and three 
respectively. 

In respect of the relationship between the estimates 
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and the corresponding parameters, the only elementary 
point to be noted is that whereas the mean value of 
any m' from samples of n is equal to the corresponding 
p.' and the mean value of any k equal to the corn~­
sponding K, this property is not enjoyed by the series 
of moments about the mean m2, m 3, m" ... , for 

_ (n- I) (n-z) 
m3 = n 2 1-'-3 

a series of formulce which sufficiently exhibits the 
practical inconvenience of using the moments about 
the mean, and which is typical of the-much heavier 
algebra to which the use of these statistics Ileads, in 
comparison with the k-statistics. 

The half-invariants, h, of Thiele suffer from the 
same drawback; for, though they may be regarded 
as estimates of the cumulants K, their mean values 
from the aggregate of finite samples are not equal to 
the corresponding values K. In fact, 

_ n-I 
h2 = -- K2 

n 

~_ (n-I) (n-2) 
h3 = n 2 K3 

showing that the higher members of this series suffer 
from the same degree of troublesome complexity as do 
the moments about the mean. 
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The table beldw gives the first four cumulants of 
the three distributions considered in this chapter In 

terms of the parameters of the distribution: 

Symbol. Normal. Poisson. Binomial. 

Mean Kl f:L m np 
Variance K2 a 2 m npq 
Third cumulant K3 0 m -npq(p-q) 
Fourth cumulant . K4 0 m npq(I-6pq) 

C. Samplz"ng variance of statz"s#cs derz"ved from samples of N. 

Sampling variances are needed primarily for tests 
of significance. The principal use so far developed for 
sums of powers higher than the second is in testing 
normality. The two simplest measures of departure 
from normality are those dependent from the statistics 
of the 3rd and 4th degree, defined as 

il = k3/k 23/2 g2 = k4/k",2. 

I t should be noted that these do not exactly corre­
spond to the statistics Yl and Y2 defined in the first 
three editions. These Greek symbols are best used not 
for statistics, but for the parameters of which gl arrd g2 
are estimates. The sampling variances are shown below. 

Variance of General Form. Normal. 

kl ~2 a 2 

N , N 

k2 
.!:._4 + 2K22 2a4 

N N-I N-I 

gl 
6N(N-r) ... 

(N -2) (N +1) (N +3) 

g2 
24N(N-I)2 ... 

(N-3) (N-2) (N+3) (N+S) 
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D. AdJustments for groupz'ng. 

When the sums of powers are calculated from 
grouped data, it is desirable for some purposes to 
introduce an adjustment designed to annul the average 
effect of the grouping process. These adjustments 
were worked out for the moment notation by Sheppard, 
and affect the sums of even powers about the mean. 
U sing unit grouping interval, the ;:tdjusted values of 

'the second and fourth k-statistics, represented by k' 2 

and k' 4, may be obtained from the formulce 

These adjustments should be used for purposes of 
estimation, but not :usually for tests of significance. 
Thus k'2 will be a better estimate of the variance 
than k2' but the sampling variance, or st9-ndard error, 
both of the mean and of the variance, should be 
calculated from the unadjusted value, k2 • I 
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IV 

TESTS OF GOODNESS OF FIT, INDEPENDENCE 
~ND HOMOGENEITY; WITH TABLE OF X2 

20. The X2 Distribution 

IN the last chapter some use has been made of the 
X2 distribution as a means of testing the agreement 
between observation and hypothesis; in the present 
chapter we shall deal more generally with the very wide 
class of problems which may be solved by means of 
the same distribution. 

The element common to these tests is the com­
parfsoI) o( the n4mb~rs ~~t1..!~lly qpseIy_e? tal fall into 
any number of classes. with_the numbe_rs which _upoI). 
~ome hypothesi.s a~e e~p_ect~\;l. If m is the number 
expected, and m+x the number observed, in any 
class, we calculate 

X2= S (~), 

the summation extending over all the classes. This 
formula gives the value of x2, and it is clear that the 
more closely the observed I)y.mbE!~_j!gree wj!P tho.§..e 
e~ect~d_ the_~rp~ll~r wiU.x _b~; in order to utilise the 
table it is necessary to know also the value of n with 
which the table is to be entered. The rule for finding 
n is that n is equal to the n.lli!!12_e_t 9f deg~es of freedom 
in whic~ the observed _series may <;lifter (ro!.rI. th~ 
l!Ypotheti~al; in other words, it is equal to the number 
of classes the frequencies in which may be filled up 

78 
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arbitrarily, without altering the expectations. Several 
examples will be given to illustrate this rule. 

For any value of n, which must be a whole number, 
the form of di:stribution of x2 was established by :pears2..n 
in 19.00; it is therefore possible to calculate in what 
p;;portion of cases any vaiue of x2 will be exceeded. 
This proportion is represented b~ which is there­
fore the probability that x2 shall exceed any specified 
value. To every value of x2 there thus corres_po_I}ds_ a 
certain value of P; as x2 is increased(romo to infinity, 
P djminishes from I to o. Equally, to any value of 
P in this range there corresponds a certain value of x2 • 

Algebraically the relation between these two quantities 
is a complex one, so that it is necessary to have a table 
of corresponding values, if the x2 test is to be available 
for practical use. 

An important table of this sort was prepared by 
Elderton, and is known as Elderton's Table of Good­
ness of Fit. Elderton gives the values of P ,to six 
decimal places corresponding to each integral value 
of x2 from I to 30, and thence by tens to 70. In place 
of n, the quantity n' ( = n+ I) was used, since it was 
then believed that this could be equated to the number 
of frequency classes. Values 9f n' from 3 to 30 were 
given, these corresponding to values of n from 2 to 
29. A table for n' = 2, or n = I, was subsequently 
supplied by Yule. Owing to copyright restrictions 
we have not reprinted Elderton's table, but have given 
a new table (Table I I I, p. I I 2) in a form which experi­
ence has shown to be more convenient. Instead of' 
giving the values of P corresponding to an arbitrary 
series of values of x2 , we have given the values of x2 

corresponding to specially selected values of P. We 
have thus been able in a compact form to_ cover those 
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parts of the distributions which have hitherto not 
been available, namely, the values of X2 IE;sS than unity, 
which frequently occur for small values of n, and the 
values exceeding 30, which for larger values of n 
become of importance. 

I t is of interest to note that the measure of disper­
sion, Q, introduced by the German economist Lexis, 
is, if accurately calculated, equivalent to x2 In of our 
notation. In the many references in English to the 
method of Lexis, it has not, I believe, been noted that 
the discovery of the distribution of x2 in reality com­
pleted the method of Lexis. If it were desired to 
use Lexis' notation, our table could be tral).sformed 
into a table of Q merely by dividing each entry 
by n. 

In preparing this table we have borne in mind that 
in practice we do not want to know' the exact value of 
P for any observed x2 , but, in the first pla,ce, whether 
or not the observed value is open to suspicion. If._£ 
is beJ:.\Y_e_en_ . I and ·9 _t4ere _!2_cer~ajnly_ go n~ason_ t_o 
~uspect..the_ hy.pothesis t~sle.9-. If it is bel~w ·02 it is 
strongly jn_Qicated that the hy.poth~~is fail§. to accou!!t 
for the whole,of the facts. We shall not often be astray 
if we draw a conventional line at ·05, and consider that 
higher values of x2 indicate a real discrepancy. 

To compare values of x2 , or of P, by means of a 
" probable error" is merely to substitute an inexact 
(normal) distribution for the exact distribution given 
by the x2 table. 

The term Goodness of Fit has caused some to fall 
into the fallacy of believing that the higher the value 
of P the more satisfactorily is the hypothesis verified. 
Values over ·999 have sometimes been reported which, 
if the hypothesis were true, would only occur once 
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in a thousand trials. Generally such cases are demon­
strably due to the use of inaccurate formulre, but 
occasionally small values of x2 beyond the expected 
range do occur, as in Ex. 4 with the colony numbers 
obtained in the plating method of bacterial counting. 
In these cases the hypothesis considered is as definitely 
disproved as if P had been ·oor. 

When a large numb_er of values of x2 at:_e av.§:ilabl_e 
for te~!ng,_it may be possible to reveal discrepanci~ 
which are too small to show up in a single value; we 
JE.ay th~n c9mpare the observed di~t~ibutionQf x2 with 
t3~t_expected. This may be done immediately by 
simply distributing the observed values of x2 among 
the classes bounded by values given in the x2 table, 
as in Ex. 4, p. 58. The expected frequencies in 
these classes are easily written down, and, if necessary, 
the x2 test may be used to test the agreement of the 
observed with the expected frequencies. 

,::::::; I t is useful to remeplber that the sum of any number 
of quantities, x2

, is distributed in the x2 distribution, 
with n equal to the sum of the values of n correspond­
ing to the values of x2 used. Such a test is sensitive, 
and will often bring to light discrepancies which are 
hidden or appear obscurely in the separate values. 

The table we give has values of n up to 30; 
beyond this point it will be found sufficient to assume 
that v 2X2 is distributed normally with unit standard 
deviation about a mean" V 2n - I. The values of P 
obtained by applying this rule to the values of x2 given 
for n = 30, may be worked out as an exercise. ' The 
errors are small for n = 30, and become progressively 
smaller for higher values of n. 

Ex. 8. Comparz"son wz"th expectatz'on of Mendelz'an 
class frequendes.-In a cross involving two Mendelian 

G 
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factors we expect by intet;breeding the hybrid (Fl) 
generation to obtain four classes in the ratio 9: 3 : 3 : r; 
the hypothesis in this case is that the two factors 
segregate independently, and that the four classes 
of offspring are equally viable. Are the following 
observations on Prz'mula (de Winton ~nd Bateson) in 
accordance with this hypothesis? 

TABLE 12 

Flat Leaves. Crimped Leaves. 

Normal Primrose Lee's Primrose 
Total. 

Eye. Queen Eye. Eye. Queen Eye. 

Observed (m+x) 328 122 77 33 560 
Expected (in) 

I 
315 105 105 35 560 

x 2/m '537 2' 752 7'467 . 114 10.870 

The expected values are calculatedl from the 
observed total, so that the four classes must agree in 
their sum, and if three, classes are filled in arbitrarily 
the fourth is therefore determinate; hence n = 3 ; 
x2 = 10'87, the chance of exceeding which value is 
between 'or and '02; if we take P = '05 as the limit 
of significant deviation, we shall say that in this case 
the deviations from expectation are clearly significant. 

Let us consider a second hypothesis in relation 
to the same data, differing from the first in that we 
suppose that tlle plants with crimped leaves are to 
some extent less viable than those with flat leaves. 
Such a hypothesis could of course be tested by means 
of additional data; we are here concerned only with 
the question whether or no it accords with the values 
before us. The hypothesis tells us nothing of what 
degree of relative viability to expect; we therefore take 
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the totals of flat and crimped leaves observed, and 
divide each class in the ratio 3 : I. 

TABLE 13 

Flat Leaves. Crimped Leaves. 

Normal Primrose Lee's Primrose 
X'· 

Eye. Queen Eye. Eye. Queen Eye. 
---

Observed 328 122 77 33 ... 
Expected 337' 5 112'5 82' 5 27' 5 ... 
x2/m ' 267 ·802 '367 I" 100 2'536 

I 

The value of n is now 2, since only two entries can 
be made arbitrarily; the value of x'2, however, is so 
much reduced that P exceeds . 2, and the departure 
from expectation is no longer significant. The sig­
nificant part of the original discrepancy lay in the 
proportion of flat to crimped leaves. 

I t was formerly believed that, in entering the x2 

table, n was always to be equated to one less than the 
number of frequ~ncy classes; this view led to many, 
discrepancies, and has since been disproved with the 
establishment of the rule stated above. On the old 
view, any complication of the hypothesis such as that 
which in the instance above admitted differential 
viability, was bound to give an apparent improvement 
in the agreement qetween observation and hypothesis. 
When the change in n is allowed .for, this bias dis­
appears, and if the valu~ of P, rightly calculated, is 
many fold increased, as in this instance, the increase rna y 
safely be ascribed to an improvement in the hypothesis. 
and' not to a mere increase in the number of para­
meters which may be adjusted to suit the observations. 

Ex. 9. Comparison wz"th expectatz'on of the Po£sson 
senes and B£nom£al serz'es.-In Table 5, p. 56, we 

I 
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give the observed and expected frequencies in the case 
of a Poisson series. In applying the x2 test to such 
a series it is desirable that the number expected should 
in no group be less than 5, since the calculated distribu­
tion of x2 is not very closely realised for very small 
classes. We therefore pool the numbers for 0 and I 
cells, and also those for 10 and more, and obtain the 
following comparison: 

TABLE 14 

o and 1 2 3 4 5 6 7 8 9 
10 and 

Total more 

--
Observed 20 43 53 86 70 54 37 18 10 9 400 

--
Expected 21°08 40°65 63°41 74°19 69°44 54°16 36021 21 018 11°02 8°66 400 

--
x'lm °055 °136 1°709'10880 °005 °000 °017 °A77 °093 °01 3 4°385 

U sing 10 freg uency classes we have x2 = \ 4.385; in 
ascertaining the value of n we have to remember that 
the expected frequencies have °been calculated, not 
only from the total number of values observed (400), 
but also from the observed mean i there remain, there­
fore, 8 degrees of freedom, and n = 8. For this value 
the x2 table shows that P is between ·8 and ·9, showing 
a close, but not an unreasonably close, agreement with 
expectation. 

Similarly, in Table 10, p. 64, we have given the 
value of x2 based upon I I classes for the two hypo­
theses of It true dice" and ." biased dice"; with 
It true dice" the expected values are calculated from 
the total number of observations alone, and n = 10, but 
in allowing for bias we have brought also the means 
into agreement so that n is reduced to 9. In the first 
case x2 is far outside the range of the table showing a 
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highly significant departure from expectation; in the 
second it appears that P lies between· 5 and ·7, so that 
the value of ,x2 is within the expected range. 

2I. Tests of Independence, Contingency Tables 

A special and important class of cases where the 
agreement between expectation and observation may 
be tested comprises the tests of independence. If the 
same group of individuals is classified in two (or 
more) different ways, as persons may be classified as 
inoculated and not inoculated, and also as attacked 
and not attacked by a disease, then we may require to 
know if the two classifications are independent. 

In the simplest case, when each classification 
comprises only two classes, we have a 2 X 2 table, or, 
as it is often called, a fourfold table. 

Ex. 10. The following table is taken from Green­
wood and Yule's data for Typhoid: 

I 
Inoculated 

Not inoculated 

Total 

I 
Inoculated 

Not Inoculated . 

Total I 

TABLE IS 
OBSERVED 

Attacked. I Not Attacked. 

56 

272 

328 

TABLE 16 
El\,PECTED 

6,759 

II,396 

18,155 

I 

I 

Attacked. , No' Atl,"""d. f 

120'94 I 6,694. 06 I 

207.06 I 11,460·94 
I 

328 
I 

18,155 I 

Total. 

6,815 

II,668 

18,483 I 

Total. 

I 
6,815 

11,668 

18,483 
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In testing independence we must compare the 
observed values with -values calculated so that the four 
frequencies are z"n proportion; since we wish to test 
independence only, and not any hypothesis as to the 
total numbers attacked, or inoculated, the" expected" 
values are ddculated from the marginal totals observed, 
so that the numbers expected agree with the numbers 
observed in the margins; only one value need be 
calculated, e.g. 

328 X6815 :::..__----=- = 120'94 . 
18483 ' 

the others are written down at once by subtraction 
from the margins. It is thus obvious that the observed 
values can differ from those expected in only I degree 
of freedom, so that in testing independence in a four­
fold table, n = 1. Since x2 = 56' 234 the observations 
are clearly opposed to the hypothesis of indepyndence. 
Without calculating the expected values, x2 may, for 
fourfold tables, be directly calculated by the formula 

2 _ (ad-bc)2(a+b+c+d) 
X - (a+b) (c+d) (a+c) (b+d), 

where a, b, c, and d are the four observed numbers. 
When only Qne of the classifications is of two 

classes, the calculation of X2 may be simplified to some 
extent, if it is not desired to calculate the expected 
numbers. If a, a' .represent any pair of observed 
frequencies, and n, n' the corr~sponding totals, we 
may, following Pearson, calculate from each pair 

I ( I ')2 -+ I an-an, a a 

and the sum of these quantities divided by nn' will 
be x2

• 
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An alternative formula, which besides being 
quicker, has the advantage of agreeing more closely 
with the general method used in the Analysis of 
Variance, has'been developed by Brandt and Snedecor. 
From each pair of frequencies the fraction, 

p = aj(a+a'), 

is calculated, and from the totals 

p = nj(n+n') ; 
then 

x2 = p~ {S(ap)-nJ}, 

where ""if = 1- p. It is a further advantage of this 
method of calculation that it shows the actual fractions 
observed in each class; where there is any great 
difference between the two rows it is usually convenient 
to use the smaller series of fractions'. 

Ex. I I. Test of z'ndependence z'n a 2 X n' classijica~ 
It"on.-From the pigmentation survey of Scottish 
children (Tocher's data} the following are the numbers 
of boys and girls from the same district (No. I) whose 
hair colour falls into each of five classes: 

Fair. 

Boys 592 

Girls 544 
-

Total 1136 

Sex Ratio . 52113 

TABLE 17 

HAIR COLOUR 

Red. Medium. 

II9 849 

97 v 677 

216 1526 

'55°93 "55636 

Dark. Jet Black. Total. 

504 36 2100 

451 14 1783 

955 50 3883 

'52775 '7 2000 '54°82 

The sex ratio, proportion of boys, is given under 
the total for each hair colour; multiplying each by the 
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number of boys, and deducting the corresponding 
product for the total, there remains 2.603, which on 
dividing by pq gives x2 = 10'48. 

In this table 4 values could be filled in arbitrarily 
without 'conflicting' with the marginal totals, so that 
n = 4. The value of P is between '02 and '05, so that 
sex difference in the classification by hair colours is 
probably significant as judged by this d\~trict alone. 
I t is to be noticed that, with this method, the ratios 
must be calculated with somewhat high precision. 
U sing five decimal places,' the value of x2 given is not 
quite correct in the second decimal, and to avoid 
doubts as to the precision of calculation two more 
places would have been desirable. It is evident from 
the ratios that the principal discrepancy is due to 
the excess of boys in the" Jet Black" class. 

Ex. 12. Test of z'ndependence z'n a 4 X 4 classifica­
tz'on.-As an example of a more complex cdntingency 
table we may take the results of a series of back­
crosses in mice, involving the two factors Black­
Brown, Self-Piebald (Wachter's data) : 

TABLE 18 

Black Self. Black Piebald. Brown Self. Brown Piebald. Total. 

----
Coupling-

Fl Males. 88 (85'37) 82 (75'24) 75 (70'93) 60 (73'46) 305 
Fl Females 38 (34'43) 34 (30'34) 30 (28-60) 21 (29-63) 123 

Repulsion-
Fl Males _ liS (117-00) 93 (103- 1 I) 80 (97-21) 130 (100-68) 418 
Fl Females 96 (100-20) 88 (88-31) 95 (83-26) 79 (86-23) 358 

Total 337 297 280 290 1204 

The back-crosses were made in four ways, accord­
ing as the male or female parents were heterozygous 
(F1) in the two factors, and according to whether the 
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two dominant genes were received both ,(rom one 
(Coupling) or one from each parent (Repulsion). 

The simple Mendelian ratios may be disturbed by 
differential v'iability, by .linkage, or by -linked lethals. 
Linkage is not suspected in these data, and if the 
only disturbance were due to differential viability of the 
four genotypes, these should always appear in the 
same proportion; to test if the data show significant 
depa.rtures we may apply the x2 test to the whole 
4 X 4 table. The values expected on the hypothesis 
that the proportions are independent of the matings 
used, or that the four series are homogeneous, are 
given above in brackets. The contributions to x2 

made by each cell are given below (Table 19). 

TABLE 19 

·081 ' 607 ·234 2'466 3'388 
·370 '442 . 069 2' 514 3' 395 
'°34 '991 3'047 8' 539 I2'6II 
·I76 'OOI I'655 '606 2'438 

·661 2'041 5'005 14' I25 2I'832 

The ,value of x2 is therefore 2r·832; the value of 
n is 9, for we could fill up a block of three rows and 
three columns and still adjust the remaining entries to 
check with the margins. In general for a contingency 
table of r rows and c columns n = (r- r) (c- I). For 
n = 9, the value of x2 shows that P is less than '01, and 
therefore the departures from proportionality are not 
fortuitous; it is apparent that the discrepancy is due 
to the exceptional number of Brown Piebalds in the F] 
males Repulsion series. 

I t should be noted that the methods employed in 
this chapter are not designed to measure the degree of 
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association between one classification and another, but 
solely to test whether the observed departures from 
independence are or are not of a magnitude ascribable 
to chance. The same degree of association may be 
significant for a large sample but insignificant for a 
small one; if it is insignificant we have no reason on 
the data present to suspect any degree of association at 
all, and it is useless to attempt to measure it. If, on 
the other hand, it is significant ,the value of x2 indi­
cates the fact, but does not measure the degree of 
association. Provided the deviation is clearly signifi­
cant, it is of no practical importance whether P is 'OI 

or 'OOO,OOI, and it is for this reason that we have not 
tabulated the value of x2 beyond ·OI. To measure 
the degree of association it is necessary to have some 
hypothesis as to the nature of the -departure from 
independence to be measured. With Mendelian fre­
quencies, for example, the recombination Ipercentage 
may be used to 'measure the degt:ee of association of 
two factors, and the significance of evidence for linkage 
may be tested by comparing the difference between the 
recombination percentage and 50 per cent. (the value 
for unlinked factors), with its standard error. Such a 
comparison, if accurately carried out, must agree 
absolutely with the conclusion drawn from the x2 

test. To take a second example, the values in a four­
fold table may be sometimes regarded as due to the 
partition of a normally correlated pair of variates, 
according as the values are above or below arbitrarily 
chosen dividing-lines; as if a group of stature measure­
ments of fathers and sons were divided between those 
above and those below 68 inches. In this case 
the dep'arture from independence may be properly 
measured by the correlation in stature between father 
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and son; this quantity can be estimated from the 
observed frequencies, and a comparison between the 
value obtained and its 'standard error, if accurately 
carried out, will agree with the x2 test as to the signifi­
cance of the association; the significance will become 
more and more pronounced as the sample is increased 
in size, but the correlation obtained will tend to a 
fixed value. The x2 test does not attempt to measure 
the degree of association, but as a test of significance 
it is independent of all additional hypotheses as to the 
nature of the association. 

Tests of homogeneity are mathematically identical 
with tests of independence; the last example may 
equally be regarded in either light; in Chapter I I I 
the tests of agreement with the Binomial series were 
essentially tests of h0mogeneity; the ten samples 
of 100 ears of barley (Ex. 7, p. 68) might have 
been represented as a 2 X 10 table. The x2 index of 
dispersion would then ,be equivalent to the x2 obtained 
from the contingency table. The method of this 
chapter is more general, and is applicable to cases in 
which the successive samples are not a1l of the same size. 

Ex. 13. Homogenez"ty oj different jamz"/£es £n 
respect oj rat£o 'black : red.-The following data show 
in 33 families of Gammarus (Huxley's data) the 
numbers with black and red eyes respective~y : 

TABLE 20 . 
Black 79 1:20 24 II7 62 79 66 45 61 64 208 154 31 158 21 105 28 

Red 14 31 6 29 17 20 12 II 14 13 52 45 4 45 4 28 7 

Total 93 151 30 146 79 99 78 56 75 77 260 199 35 203 25 133 35 

Black 58 81 25 95 47 67 30 70 139 179 129 44 24 19 45 91 2565 
Red 19 27 8 29 16 21 II 28 57 62 44 17 9 8 23 41 772 

--
Total 77 108 33 124 63 88 41 98 196 241 173 61 33 27 68 132, 3337 
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The totals 2565 black and 772 red are distinctly 
not in the ratio 3 : I; the discrepancy is ascribed to 
linkage. The question before us is whether or not all 
the families indicate the same ratio between black and 
red, or whether the discrepancy is due to a few families 
only. For the whole table x2 = 35.620, n = 32. This 
is beyond the range of the table, so we apply the 
method explained on p. 8 I : 

V2X2 = 8'44; 

V2n-I =7'94; 

Oifferenc~ = + . 50 ± I. 

The series is therefore not significantly hetero­
geneous; effectively all the families agree and confirm 
each other in indicating the black-red ratio observed 
in the total. 

Exactly the same procedure would be \adopted if 
the black and red numbers represented two samples 
distributed according to some character or characters 
each into 33 classes. The question" Are these samples 
of the same population? " is in effect identical with 
the question " Is the proportion of black to 'ted the 
same in each famjly?" To recognise this identity 
is important, since it has been very widely disregarded. 

21'01. Yates' Correction for Continuity 

The distribution of x2, tabulated as in Table II I, 
is a continuous distribution. The distribution of 
frequencies must, however, always be discontinuous. 
Consequently, the use of x2 in the comparison of 
observed with expected frequencies can only be of 
approximate accuracy, the continuous distribution 
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being in fact die limit towards which the true dis­
continuous distribution tends as the sample is made 
ever larger. It was in order to avoid the irregularities 
produced by small numbers that we have stipulated 
above that in no group shall the expected number be 
less than five. This safeguard generally ensures that 
the number of possible sets of observations shall be 
large, each occurring with only a small frequency, 
so giving to X2 a distribution closely simulating the 
continuous distribution of the table. 

A case of special interest arises, however, when 
there is only I degree of freedom, and when the 
value of X2 can, consequently, be calculated from the 
number observed in a single class. If the number 
in this class is small, e.g. 3, the probability of this 
number may be by no means negligible compared 
with the sum of the probabilities of the more extreme 
deviations represented by 2, ~, or 0 occurrences in 
the class. If we want to know whether the observed 
number, 3, is so small as to. indicate a significant 
departure from expectation, we require to know 
whether the sum of the probabilities of 3, 2, I or 0 

together is less than a standard value, such as '05 ; 
or, in other words, whether the total probability of 
obtaining our observed deviation, or any deviation 
more extreme, is so small that we should be 
unwilling to ascribe the deviation observed to mere 
chance. v 

Our actual problem, therefore, when stated exactly, 
concerns a limited number of finite probabilities, which 
in simple cases 'it may be convenient to calculate 
directly. The Table of x2

, on the other hand, gives 
the area of the tail of a continuous curve. I nas­
much, however, as this curve supplies a close 
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approximation to the actual distribution, the area 
between the values of x2 corresponding to observed 
frequencies of 3t and 2t will be a good approximation 
to the actual probability of observing 3; and the area 
of the tail beyond the value of x2 corresponding to 
3f will be a good approximation to the sum of the 
probabilities of observing 3 or less. Thus our 'actual 
problem will best be resolved by entering the table 
of x2 , not with the value calculated from the actual 
frequencies, but with the value it would have if our 
observed frequencies had been less extreme than they 
really are each by half a unit. This useful adjustment 
is due to F. Yates., 

Ex. 13.1. Frequency of crz"mz"nal£ty among the 
twin brothers or sisters of criminals.-Among 13 
criminals who were monozygotic twins~Lange reports 
that 10 had twin brothers or sisters who had also 
been convicted, while in 3 cases the twin brQther had, 
apparently, not taken to crime. Among 17 criminals 
who were dizygotic twins (of like sex), 2 had convicted 
twin brothers or sisters, while those of the' other 15 
were not known to be criminals. I t is argued that 
the environmental circumstances are a~ much alike for 
dizygotic twins of like sex as for monozygotic twins, 
and that if the latter are more alike in their social 
reactions these reactions must be largely conditioned 
by genetic factors. Do Lange's data show that 
criminality is significantly more frequent among the 
monozygotic twins of criminals than among the 
dizygotic twins of crimjnals ? 

Our data consist of the four-fold table:-
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TABLE 20'1 

Convicted. Not Convicted. Total. 

Monozygotic '. 10 3 13 

Dizygotic 2 15 17 

Total 12 18 30 

The difference (ad-be) is 144 and 
II 

2 = 144.30 = 1 0 2 
X 12.18.13. 17 3· 3 

a very significant value, equivalent to a normal deviate 
3 ·61 times its standard error. The probability of 
exceeding such a deviation in the right direction is 
about I in 6500. 

U sing Yates' adjustment we should rewrite the 
table with tpe larger fre.quencies 10 and 15 reduced by 
a h~lf, and the smaller frequencies 2 and 3 increased 
by half. 

The difference between the cross products ad-be 
is now reduced to 129, which, it may be noted, 
is just IS, or half the total number of observations, 
less than its previous value 144. In other respects 
the calculation is unchanged. The new value of xl! is 
10'458, still a very significant value for I degree 
of freedom, but now corresponding to a normal 
deviation of 3 '234 times its standard error, or to odds 
of I in 1638. The exact odds in this case are I in 
2 I 50, as will be shown in the next section. The 
adjustment has slightly over-corrected the exaggera­
tion of significance due to using a table of a continuous 
distribution. 
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21 '02. The Exact Treatment of 2 X 2 Tables 

The treatment of frequencies by means of x2 is an 
approximation, which is useful for the compa..rative 
simplicity of the calculations. Th~ exact treatment 
is somewhat more laborious, though necessary in 
cases of doubt, and valuable as displaying the true 
nature of the inferences which the method of x2 is 
designed to draw. 

If p is the probability of any event, the probability 
that it will occur a times in (a+b) independent trials 
is the term of the binomial expansion, 

(a+b)! b aTb! paq, 

,where q = I -po The probability that in a sample of 
(c+d) trials it will occur c times is 

(c+d)! p"qd 
c! d! . 

So that the probability of the observed frequencies 
.a, b, c, and d in a 2 X 2 table is the product 

(a+b)! (c+d)! pa+c b+d 
a! b! c! d! q, 

and this in general must be unknown if p is unknown. 
The unknown factor involving p and q will, however, 
be the same for all tables having the same marginal 
frequencies a+c, b+d, a+b, c+d, so that among 
possible sets of oh'servations having the same marginal 
frequencies, the probabilities are in proportion to' 

I 

a! b! c! d!' 

whatever may be the value of p, or, in other words 
for all populations in which the four frequencies are 
in ,proportion. 
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Now the sum' of the quantities I/a! b! c! d! for all 
samples having th~ same margins ,is found to be 

nl 
(a+b)! (c+d) ! (a+c) ! (b+d) ! 

where n = a+b+c+d; so that, given the marginal 
frequencies, the probability of any observed set of 
entries is 

(a+b) ! (c+d) ! (a+c) ! (b+d) ! 
n! a! b! c! dl' 

In the case considered m Ex. I3'I, we have 
therefore 

18!I2!I7!I3!{ I I I} 
30! 2! 3! ro! I5! ' 2! III 161 ' I! I2! I7! 

for the probabilities of the set of frequencies observed, 
and the two possible more extreme sets of frequencies 
which might have been observed. Without any 
assumption or approximation, therefore, the table 
observed may be judged significantly tQ contradict 
the hypothesis of proportionality if 

I8! I3! ( _ ) 
--1- 2992+ 102+ I 

30 . 

is a small quantity. This amounts to 6I9/I330665, 
or about 1 in 2150, showing that if the hypothesis 
of proportionality were true, observations of the kind 
recorded would be highly exceptional. 

2I '03. Exact Tests based on the X2 Distribution 

In its primary purpose of the comparison of a 
series of observed frequencies with those expected 
on the -hypothesis to be tested, the X2 test IS an 

H 
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approximate one, though validly applicable in an 
immense range of important cases. For other tests 
where the observations are measurements, instead of 
frequencies, it provides exact tests of significance. 
Of these the two most important are:-

(i) its use to test whether a sample from a 
normal distribution confirms or contra­
dicts the variance which this distribution 
is expected on theoretical grounds to 
have, and 

(ii) its use in combining the indications drawn 
from a number of independent tests of 
significance. 

Ex. 14. Agreement w£th expecta#on of normal 
varz"ance.-If Xl' x 2 , ••• , are a sample of a normal 
population, the standard deviation of which population 
is a, then 

I 
~ S(X-X)2 

is distributed in random samples as is x2 , taking n 
one less than the number in the sample. J. W. Bispham 
gives three series of experimental values of the partial 
correlation coefficient, each based on thirty observa­
tions of the values of three variates, which he assumes 
should be distributed so that I/a2 = 29, but which 
properly should have I/a2= 28. The values of S(x-.£')2 
for the three samples of rooo, 200, 100 respectively 
are, as judged from the grouped data, 

35.02 79, 7·4573, 3.6146, 

whence the values of x2 on the two theories are those 
given in Table 2 r. 
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TABLE 21 

Exp. r. 2. 3· Total. V2X'· 
Differ-
ence. 

--- --------- ------
29 S(x-x)' . 101 5.81 216:26 1°4'82 1336.89 51 '7 1 +'79 
28 S(x-;-x)' . 980'78 208·80 101'21 129°'79 5°·81 -'II 
Expectation (n) 999 199 99 1297 5°'92 

I t will be seen that the true formula fot the variance 
gives slightly the better agf~ement. That the differ­
ence is not significant may be seen from the last two 
columns. About 6000 observations would be needed 
to discriminate experimentally, with any certainty, 
between the two formulce. 

2X·X. The Combination of Probabilities from 
Tests of Significance 

When a number of quite independent tests of 
significance have been made, it sometimes happens 
that although few or none can be claimed individually 
as significant, yet the aggregate gives an impression 
that the probabilities are on the whole lower than 
~ould often have been obtained by chance. It is 
sometimes desired, taking account only of these 
probabilities, and not of the detailed composition of 
the data from which they are derived, which may be 
of very different kinds, to obtain a single test of the 
significance of the aggregate, based 'on the product 
of the probabilities individually observed. 

The circumstance that the sum of a number of 
values of x2 is itself distributed in the x2 distribution 
with the appropriate number of degrees of freedom, 
may be made the basis. of such a test. F OF in the 
particular case when n = 2, the natural logarithm of 
the probability is equal to _tx2. If therefore we take 
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the natural logarithm of a probability, change its sign 
and double it, we have the equivalent value of x2 for 
2 degrees of freedom. Any number of such values 
may be added together, to give a composite test, 
using the Table of x2 to examine the significance of 
the result. 

Ex. 14' I. S£gnzjicance of the product of a number of 
£ndependent probab£l£t£es.-Three tests of significance 
have yielded the probabilities '14S, '263, '087; test 
whether the aggregate of these three tests should be 
regarded as significant. We have 

P -log.P Degrees of 
Freedom . 

. 145 1'9310 z 
' 263 I' 3356 2 
'087 2'4419 z 

5'7°85 6 

\ 
For 6 degrees of freedom we have found a value 

II'4I7 for x2
• The S per cent. value is I2'S92 while 

the 10 per cent. value is IO·64S. The probability of 
the aggregate of the three tests occurring by chance 
therefore exceeds 'os, and is not far from ·07S. 

I n applying this method it will be noticed that we 
require to know from the individual tests not only 
wh~ther they are or are not individually significant, 
but also, to two or three figure accuracy, what are the 
actual probabilities indicated. For this purpose it is 
convenient"and sufficiently accurate for most purposes 
to interpolate in the table given (Table I I I), using the 
logarithms of the values of P shown. Either natural 
or common logarithms may equally be employed. We 
may exemplify the process by applying it to find the 
probability of x2 exceeding II '417, when n = 6. 
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Our value df x2 exceeds the 10 per cent. point by 
'772, while the 5 per cent. point exceeds the 10 per 
cent. point by 1'947; the fraction 

'772 

1'947 = '397· 

The differe~ce between the common logarithm of 5 
and of 10 is '3010, which multiplied by '397 gives 'II9 ; 
the negative logarithm of the required probability is 
thus found to be 1'119, and the probability to be '076. 
F or comparison, the value calculated by exact methods 
is '07631. 

22. Partition of X2 into its Components 

Just as values of x2 may be aggregated together to 
make a more comprehensive test, so in some cases it is 
possible to separate the contributions to x2 made by 
the individual degrees of freedom, and so to test the 
separate components of a discrepancy. 

Ex. IS. Partz"t":on of observed d":screpanct"es from 
Mendelz'an expectation.-The table on p. 102 (de 
Winton and Bateson's data) gives the distribution of 
sixteen families of Primula in the eight classes obtained 
from a back-cross with the triple recessive. 

The'theoretical expectation is that the eight classes 
should appear in equal numbers, corresponding to the 
hypothesis that in each factor the allelomorphs occur 
with equal frequency, and that the three factors are 
unlinked. This expectation is fairly realised in the 
totals of the sixteen families, but the individual 
families are somewhat irregular. The values of x2 

obtained by comparing each family with expectation 
are given in the lowest line. These values each 
correspond to 7 degrees of freedom, and it appears that 
in 6 cases out. of 16, P is less than '1, and of these 
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2 are less than '02. This confirms the impression of 
irregularity, and the total value of x2 (not to be con­
fused with x2 derived from the totals), which corre­
sponds to I 12 degrees of freedom, is 151 '78. 

Now V223 = I4'93 j 

V30 3'S6 = I7'42'; 

J!ifference = +2'49 ; 

so that, judged by the total x2
, the general evidence 

for departures from expectation in individual families 
is clear. 

Each family is free to differ from expectation 
in seven independent ways. To carry the analysis 
further, we must separate the contribution to X2 
of each of these 7 degrees of freedom. Mathe­
matically the subdivision may be carried out in more 
than one way, but the only way which appears to 
be of biological interest is that which separates the 
parts due to inequality of the allelomorphs of the 
three factors, and the three possible linkage con­
nexions. If we separate the frequencies into positive 
and negative values according to the following 
seven ways:-

TABLE 23 

Ch. G. W. GW. ChW. ChG. 'chGW. 

----------

ChGW + + +" + + + + 
Ch Gw + + ~ - - + -
ChgW + - + - + - -
Ch gw + - - + - - + 
ch GW - + + + - - -
ch G w - + - - + - + 
ch gW - - + - - + + 
chgw - - - + + + -
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then it will be seen that all seven subdivisions are 
wholly independent, since any two o( them agree 
in four signs and disagree in four. The first 3 
degrees of freedom represent the inequalities in the 
allelomorphs of the three factors Ch, G, and W; the 
next are the degrees of freedom involved in an inquiry 
into the linkage of the three pairs of factors, while 
the 7th degree of freedom has no simple biological 
meaning but is necessary to complete the analysis. 
If we take in the first family, for example, the differ­
ence between the numbers of the Wand w plants, 
namely 8, then the contribution of this pegree of 
freedom to x2 is found by squaring the difference 
and dividing by the number in the family, e.g. 
82--;-72 = '889. In this way the contribution of 
each of the I 12 degrees of freedom in the sixteen 
families is found separately, as sho~n in the following 
table;- \ 

TABLE 24 

Family. Ch, G, W, GW, ChW. ChG. Ch·GW. Total. 

------_-------
54 3'556 2'000 ,889 '222 2'000 ·889 '222 9'778 
55 '076 3'034 '°76 3'034 '412 1'01 7 '21O 7'859 
58 '82O ·820 '82O '295 1'607 ·820 '295 5'477 
59 '153 ,831 4'8g8 '017 6'IIg ·831 '153 13'002 

107 6'720 '269 3'108 1'81 7 '097 '269 ' 269 12'549 
110 14'821 1'282 ,821 '821 ' 205 1 '282 0 19'232 
II9 6'261 '391 '39 1 '174 2'130 '°43 ,696 10'086 
121 11'000 0 0 '364 ,818 '091 '091 12'364 
122 '161 6'200 1'090 1,865 '5 23 '316 7'9°3 18'058 
127 ,610 '024 '220 ,610 1'195 '220 1'97,6 4,855 
129 '9°° 1,600 ° '400 '100 '9°0 '900 4,800 
131 '172 '062 '062 '062 '062 '338 8'448 9'206 
132 ' 163 '791 '32O '32O '059 1 '471 '059 3' 183 
133 '22O '220 4'122 '024 8'805 '22O ,610 14'221 
135 '21I 3'368 1'316 '053 '053 ° '053 5'054 
178 '258 '835 '093 '093 '010 '258 '505 2'052 

---------------
Total 46' 102 21'727 18'226 10' 171 24'195 8'965 22'390 15 1'776 
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Looking at' the total values of x2 for each column, 
since n is 16 for these, w,e see that all except the 
first have values of P between 'as and '95, while 
the contribution of the 1st degree of freedom is very 
clearly significant. J t appears then that the greater 
part, if not the whole, of the discrepancy is a.scribable to 
the behaviour of the Sinensis-Stellata factor, Ch, and 
its behaviour strongly suggests close linkage with a 
recessive lethal gene of one of the familiar types. In 
four families, 107-121, the only high contribution is in 
the first column. I f these four families are excluded 
x2' = 97'545, and this exceeds the expectation for 
n = 84 by only just over the standard error; the total 
discrepancy cannot therefore be regarded as significant. 

There does, however, appear to be an excess of very 
large entries, and it is noticeable of the seven largest, 
that six appear in pairs belonging to the same family. 
The distribution of the remaining 12 families according 
to the value of P is as follows :-

TABLE 25 

Po 0 I 1'0) 09 ! osl'7) 05 1 03 1'2 ) 01 1005100,2)001 I ° I Total 

Families I I II I 0 I 41 I 1 21 0 I I II I I I 0 I 12 

from which it would appear that there is some 
slight evidence of an exc~ss of families with high 
values of x2 • This effect, like other non-significant 
effects, is only worth further discussion in con­
nexion with some plausible hypothesis capable of 
explaining it. 

The general pro~edure to follow in analysing x2 

into its components will be developed in, Section 55. 
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Ex. IS·I. Complex test on homogenez'ty z'n data 
wz'th hz'erarchz'ca! subdz'vz'sions.-Table 25'1 shows the 
total number of offspring and the number of recom-

TABLE :25'1 

TOTAL PLANTS (T) AND RECOMBINATIONS (C) IN 22 PROGENIES 
AND IN THE AGGkEGATES OF PROGENIES IN WHICH THEY ARE 
GROUPED. 

Descendants of 

Single Fraternities. Parents Grandparents Total. Plants. Fa· F z· 

T c T c T c T c T c 
34 ~ } 77 II} 43 171 21 
94 10 94 10 
73 

0 ~ 

20 

,] 
427. A2 

1 
16 130 

21 
256 21 

31 n I 51 126 l 29 
15 922 r'05 
64 I~ } 

II9 22 II9 22 II9 22 I 55 
55 ~ } 89 12 89 

': } 
I 34 

I 37 3 37 3 37 
45 

~t 
376 41 ) 

28 108 

J 
-

35 250 26 68 
44 142 
30 

binations found in 22 progenies of the garden pea" 
grown by Rasmusson. Each progeny was derived 
from a single plant, tested by back-crossing. Unequal 
numbers of these plants belonged, as shown by the 
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table, to 9 different fraternities, for each of which 
the total number, of offspring and the total recom-

TABLE 25'2 
c1 

VALUES OF T FOR ALL GROUPS AND SUBGROUPS 

Individual Fr\lternities. Parents Grandparents Total. Plants, Fa· Fa· 

0'26471 } 
I' 57143 } 1'48837 

'·57895 } 1' 06383 1' 06383 

o· "3'9 } 0'20000 
0'492 31 1 4'I3II~ I 

0' 25°00 
0'°4762 

I' 72266 
,..6"9 } 

I' 34127 j 0'31373 
0'13793 
0'06667 >- 11'95770 
I' 26562 } 

4' 06723 4' 06723 4' 06723 I 3'07 273 
0'89°91 } 1',61 798 1' 61798 , 

I, 0'73529 

0·'43'4 J 0'24324 0' 24324 I 
1' 08889 } 4'47°74 ) 
0'00000 0·"000 } 
o· II429 
0' 94II8 } 

2'70400 

0' 56818 2'°35 21 
0' 53333 

, 

14' 57IIO 13' 18250 12'934°6 12'66912 II' 95770 

~ 

I' 38860 0'24844 0' 26494 o· 7II42 Differences, 
13'760 2'462 2' 625 7'050 x2 

13 3 3 2 n . 
binations are shown in the table, In three cases, 
moreover, 2 fraternities had been derived by different 
matings of the same parent plants, which had been 
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bred with a view to this linkage test, so that the 
9 fraternities were the offspring of' 6 F 3 parents, 
whi~h in turn were derived from 3 F 2 grandparents. 
In all, the final generation yielded 922 plants, of which 
105 were of the types recognised as recombinations. 
I t is required to test whether heterogeneity in the 
fraction of recombinations obtained occurs at any 
of the four stages represented' by the groups and 
subgroups of progenies. 

The method of Brandt and Snedecor is of great 
value when adapted to the analysis of data of this 
kind. If in any progeny, or group of progenies, we 
have c recombinations out of T plants, we may at 
once calculate c2 IT for each group in the record. 
These ratios appear in T~ble 25'2 arranged to show 
the affiliations of the different groups and subgroups. 
Whenever the proportion of recombinations observed 
is different for different subgroups of the saine group, 
the values for these subgroups will together exceed 
the value for the corresponding group; thus the 
five totals shown in Table 25'2 form a diminishing 
series, the successive differences between the terms of 
which afford measures of the heterogeneity observable. 

If such a process were applied to completely 
homogeneous material, it would only be necessary to 
divide each of these differences by the same quantity, 
pq, where p is the proportion of recombinations and 
q of old combinations, to obtain values distributed 
in X2 distributions. The numbers of degrees of free­
dom approprjate to each are the differences between 
the numbers of entries in the successive columns. 

I t is apparent from the values at the foot of the 
table that the only apparent. heterogeneity in the 
linkage values occurs among the F 2 plants, or at 
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the earliest stage at which segregation mIght appear. 
Here the value of X2 is 7'050 for 2 degrees of freedom, 
a value which lies between the 5 per cent. and the 
2 per cent. points. I t is probable, therefore, that 
segregations affecting linkage occurred at this stage, 
and, in consequence, the values we have obtained for 
later stages must be revised with this heterogeneity 
III VIew. 

TABLE 25'3 

DIFFERENCES AMONG SISTER PLANTS AND SUBGROUPS, WITH 

DEGREES OF FREEDOM CORRESPONDING 

Sister I Half-sister Fa Plants. F. Plants. Plants_ Progenies. 

· 18~~.S (I) } 
. 

. 05631 (I) } 
'12860 (3) l . II092 (I) .,':6 (,) } 
· 33835 (.3') J 
· 27112 (I) ... . 71142 (2) 
'00822 (I) ... 

l ... . .. 
'09448 (2) '45318 (2) l '08121 (I) J '00748 (2) J 

A generally applicable procedure would be to 
recalculate the divisor, pq, for each of the three 
F z plants. In this case, however, it is evident that 
the first and third of these differ but little, having 
recombination fractions 9',836 per cent. and 10'904 per 
cent. respectively, while both show closer linkage than 
is shown by the descendants of the second plant, 
which gave 18'487 per cent, We shall, therefore, in 
recalculating XZ use the same fraction, 83/8°3, for the 
descendants of the first and third F 2 plants, and the 
fraction 22/II9 for the descendants of the second plant. 
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When different factors are to be applied in different 
parts of the table a convenient first step is to take 
the differences between the total value for the sub­
groups, and the ~alue for the group to which they 
belong, in each available case, as is shown in 
Table 25'3. In this table the whole set of 21 degrees 
of freedom has been partitioned among 13- entries. 
The values of x2 to which these parts correspond 
depend on the values of pq, by which they are divided. 
In the case of the 2 degrees of freedom among the 
F2 plants we must use p = 105/922, obtaining as 
before x2 = 7 '0498 for 2 degrees of freedom. For the 
descendants of the first and third F 2 plants we divide 
by '0926786, and for the descendants of the second 
plant by '1506956, so obtaining the values of x2 shown 
in Table 25'4. 

TABLE 25'4 
x2 FOR 13 RELEVANT SUBDIVISIONS 

, 

Sister Half-sister Fa Plants. F2 Plants. Plants. Progenies. 

1'9600 (1) } '6°76 (1) } ... 
r8~9J (,) } I' 3876 (3) } 1'1968 (I) 

3'6508 (3) 
I" 7991 (I) ... 7'°498 (2) 
'0887 (7) 

'8~:~3 (I) } 

... 1'0194 (2) 
4'8898 (2) } '0807 (2) 

13'8567 2·68°7 2'8587 7'°498 

13 3 3 2 

The totals for the different sUQdivision stages do 
not differ greatly from those shown in Table 25'2, but 
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afford a better test for heterogeneity in these later 
stages, once it is suspected that the F2 plan,ts were 
not homogeneous. I t will be observed, in fact, that 
the value of x2 for the 3 degrees of freedom representing 
differences between tne pairs of half~sister progenies 
from the same F 3 plants, and that for differences 
among the F 3 plants, are slightly raised, through using 
a smaller divisor for the descendants of the first and 
third F2 plants, since in these columns there is no 
compensation due to using a larger divisor for the 
descendants af the second plant. 

The absence of significant values in the first three 
columns of Table 25·4 shows that no further modifica~ 
tions of the divisors are necessary, since there is no 
further evidence of heterogeneity. 

[TABLE 
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n. p=,gg, 

I '0001 57 
2 '0201 

3 'lIS 
4 '297 

5 '554 
6 ,872 

7 1'239 
8 1.646 

9 2'088 

10 2'558 

I [ 3'°53 
12 3'571 

13 4' 107 
14 4,660 

IS 5'229 
16 5,812 

17 6'408 

18 7'°15 
19 7,633 
20 8'260 

21 8,897 

22 9'542 

23 10'196 

24 10,856 

25 II'5 24 
26 12'198 

27 12,879 

28 13'565 
29 14:256 

3° 14'953 

STATISTICAL METHODS 

,g8, '95· . go, 

'000628 '°°393 '°158 

'0404 ,1°3 '2II 

' 185 '35 2 '584 

'429 'F I 1'064 

'752 1'145 1·610 

1'134 1,635 2'2°4 

1'564 2' 167 2·833 

2'032 2'733 3'49° 
2'532 3'325 4'168 

3,°59 '3'94° 4.865 

3,6°9 4'575 5'57 8 

4'178 5'226 6'3°4 

4'765 5.892 7,,;>42 

5'368 6'S7I 7'79° 
5'985 7'261 8'547 
6.614 7'962 9'3 12 

7'255 8'Q7 2 10'°85 

7'9°6 9'39° 10.865 

8'567 10'1I7 II,65 1 

9'237 10,851 12'443 

9'91 5 II'591 13'24° 
10·600 12'338 14'041 

II'293 13'°91 14,848 

11'99 2 13.848 15.659 
12,697 !4,6II 16'473 

13'4°9 15'379 17'292 

14' 125 16'151 18, I 14 

14,847 16'928 18'939 

15'574 q'708 19'768 

16'3°6 18'493 20· 599 

--------

[§ 22 

TABLE IlI-

,80. '70 . 

'0642 '148 

'446 '7 13 
I' Gl05 1'424 
1.649 2'195 

2'343 3'°°0 

3'°7° 3,828 

3,822 4,6JI 

4'594 5' 527 
5'380 6'393 
6'179 7' 26 7 

6'989 8'148 

7,8°7 9'°34 
8,634 9'926 

9'4 67 ! 
10,821 

110'307 1I'721 

11'152 12,624 
12,002 13' 531 

12·857 14'44° 
13'716 15'352 

14'578 16'266 

15'445 17' r82 

16'314 18· 101 

17' 187 19'02 I 

18'062 19'943 

18'94° 20, 867 

19,820 21'792 

2°'7°3 22'719 
2 r· 588 23,647 

22'475 24' 577 

23'364 25'508 

For larger values of n, the expression J2X2- Jzn- r 
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TABLE OF X2 

'5°· '30. ,20. ·10. ·OS· '02. 

I 
'01. 

'455 1'074 1;642 2'7°6 3.841 5'4 12 6·635 

1'386 2'4°8 3' 21 9 4.6°5 5'991 7. 824 9'210 

2'366 3.66 5 4. 642 6'25 1 7. 81 5 9· 8-l1 12'345 ...-
4·87~ 5'989 9'488 II·668 3'357 7'779 13' 2 7 7 

4'35 1 6'064 7"2 89 9'236 11'°7° 13'388 15'°86 

5'348 7'231 , 
8'558 [0.645 12' 592 15'°33 16·812 

6'346 8'383 9.8°3 12'01 7 14'06 7 16·622 18'475 

7'344 9'524 11'°30 13' 362 15'5°7 18'168 20'°9° 

8'343 10.656 12'242 14.684 16'919 19.679 2[·666 

9'342 II'7 81 13'442 15'987 18'307 21'161 23'2°9 

10'341 12·899 14.631 17"275 19.675 22·618 24' 725 

II'34° 14'OII 15.812 18'549 21'026 24'°54 26'217 

12'34° 15'119 16'985 19-812 22-362 25'472 27-688 

13-339 16'222 18'151 21-064 23.685 26·873 29'141 

14'339 17-322 19-31! 22- 307 24'996 28'259 30-578 

15' 338 ,18'418 2°'465 23- 542 26- 296 29.633 32'000 

16'338 19' 5 II 21.61 5 24- 769 27'587 30'995 33'4°9 

17'338 20,601 22'7 60 25'989 28,869 32-3;46 34-805 

18'338 21. 689 23-900 27'2°4 3°- 144 33.687 36'191 

19' 337 22-775 25'°38 28'4 12 31-410 35'020 37'566 

20'337 23. 858 26-171 29- 61 5 32-671 36-343 38'932 

2 I, 337 24'939 27'301 30-81 3 33'924 37.659 40' 289 

22'337 26'018 28'429 32'°°7 35'172 38'968 41,638 

23'337 2'7'096 29'553 33' 196 36'4 1 5 40'270 42 '980 

24'337 28, 172 3°·675 34'382 37.652 41' 566 44'3 14 

25'336 29'246 31'795 35'563 38,885 42.856 45,642 

26-336 30'3 19 32 '912 36, 741 4o'II3 44' I Ao 46'963 

27'336 31'391 34-02 7 37'916 41'337 45'419 48'278 

28'336 32 '461 35' 139 39'08 7 42 '557 46.693 49'5 88 

29'336 33'530 36'250 40'25 6 43'773 47-962 50.892 

I 

may Be used as a normal deviate with unit variance, 
I 
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TESTS OF SIGNIFICANCE OF MEANS, DIFFER­

ENCES OF MEANS, AND REGRESSION CO­
EFFICIENTS 

23. The Standard Error of the Mean 

THE fundamental proposition upon which the statis­
tical treatment of mean values is based is that-If a 
quantity be normally distributed with variance a 2, then 
the mean of a random sample of n such quantities is 
normally distributed with variance a2 In. 

The utility of this proposition is somewhat increased 
by the fact that even if the origina1-distribution were 
not exactly normal, that of the mean usm+lly tends to 
normality, as the size of the sample is increased; the 
method is tht!!refore applied widely and legitimately 
to cases in which we have not sufficient evidence to 
assert that the original distribution was normal, but 
in which we have reason to think that it does not 
belong to the exceptional class of distributions for 
which the distribution of the mean does not tend 
to normality. 

If, therefore, we know the variance of a population, 
we can calculate the variance of the mean of a random 
sample of any size, and so test whether or not it' 
differs significantly from any fixed value. If the 
difference is many times gr~ater than the standard 
error, it is certainly significant, and it is a convenient 
convention to take twice the standard error as the 
limit of significance; this is roughly equivalent to 



SIGNIFICANCE OF MEANS, ETC. lIS 

the corresponding limit P = '05, already used for the 
x2 distribution. The deviations in the normal distri· 
bution corresponding to a number of values of Pare 
given in the lowest line of the Table of t at the .end of 
this chapter (p. 174). More detailed information has 
been given in Table I. 

Ex. 16. Sz'gnzjicance of mean of a large sample.­
We may consider from this point of view Weldon's 
die-casting experiment (Ex. 5, p. 63). The variable 
<J..uantity is the number of dice scoring " 5 " or " 6 " 
in a throw of 12 dice. In the experiment this number 
varies from zero to eleven, with an observed mean of 
4'0524; the expected mean, on the hypothesis that 
the dice were true, is 4, so that the deviation observed 
is '0524. If now we estimate the variance of the 
whole sample of 26,306 values as explained in Ex. 2, 
without using Sheppard's correction (for the data are 
not grouped, and even with grouped data, since the 
mean is affected by grouping errors, its variance 
should be estimated without this adjustment), we find 

whence 

and 

u 2 = 2'69826, 

u2jn = '0001026, 

ujvn = '01013, 

The standard error of the mean is therefore about 
'01, and the observed deviation is nearly 5'2 times as 
great; thus by a slightly different path we arrive at 
the same conclusion as that of p. 65. The difference 
between the two methods is that our treatment of 
the mean does not depend upon the hypothesis that 
the distribution is of the binomial form, but on the 
other hand we do assume the correctness of the value 
of u- derived from the observations. This assumption 
breaks down for small samples, and the principal 
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purpos~ of this chapter is to show how accurate 
allowance can be made in these tests of significance 
for the errors in our estimates of the standard 
deviation. 

To return to the cruder theory, we may often, as 
in the example above, wish to compare the observed 
mean with the value appropriate to a hypothesis which 
we wish to test; but equally or more often we wish to 
compare two experimental values and to test their 
agreement. I n such cases we require the variance of 
the d,ifference between two quantities whose variances 
are known; to find this we make use of the pro­
position that the variance of the difference of two 
independent variates is equal to the stirn of their 
variances. Thus, if the standard deviations are 0'1' 

0'2, the variances are 0'12 and 0'2 2 ; consequently the 
variance of the difference is 0'1 2 +0'22, arid the standard 
error of the difference is V0'12 +0'22 • I 

Ex. 17. Standard error oj difference oj means 
from large samples.-In Table 2 is given the distribu­
tion in stature of a group of men, and also of a group of 
women; the means are 68'64 and 63'87 inches, giving 
a difference of 4'77 inches, The variance obtained 
fot the men was 7'3861 square inches. Dividing 
this by 1164, we find the variance of the mean is 
'006345. Similarly, the variance for the women is 
6-7832, which divided by 1456 gives the variance of 
the mean of the women as '004659, To find the 
variance of the difference between the means, we must 
add together these two contributions, and find in all 
'011004; the standard error of the difference betweel) 
the means is therefore '1049 inches, The sex difference 
in stature may therefore be expressed as 

4'77±'lo5 inches. 
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I t is manifest that this difference is significant, 
the value found being over 45 times its standard 
error. In this case we can not only assert a significant 
difference, but place its value with some confidence at 
between 4t and 5 inches. I t should be noted that we 
have treated the two samples as z'ndependent, as though 
they had been given by different authorities; "as a 
matter of fact, in many cases brothers and sisters 
appeared in the two groups; since brothers and sisters 
tend to be alike in stature, we have overestimated the 
probable error of our estimate of the sex difference. 
Whenever possible, advantage should be taken of 
such facts in designing experiments. In the common 
phrase, sisters provide a better "control''' for their 
brothers than do unrelated women. (See Design oj 
Experz'ments, Chap. II 1.) The sex difference could 
therefore be more accurately estimated from the com­
parison of each brother with his own sister. In the 
following example (Pearson and Lee's data), taken from 
a correlation table of stature of brothers and sisters, 
the material is nearly of this form; it differs from it 
in that in some instances the same individual has been 
compared with more than one sister, or brother. 

Ex. 18. Standard error oj mean oj differences.­
The following table gives the distribution of the excess 
in stature of a brother over his sister in 1401 pairs. 

Stature ) 
difference J -5 -4 
in inches 

TA>BLE 26 

-3 -2 -I ° 2 3 4 5 

Frequency '25 1'5 1'25 4'5 II'25 27'5 71'75 122'75 171'75 209'75 220'5 

Stature } 
difference 6 
in inches 

7 8 9 10 I I 12 13 14 15 16 Total 

Frequency 205'5 148'75 95'75 57 26 11'25 8'5 2'75 I '75 1401 



IIS STATISTICAL METHODS [§ 23 

Treating this distribution as before, we obtain: 
mean = 4.895, estimate of variance = 6.5480, variance 
of mean = .004674, standard error of mean = ·0684; 
showing that we may estimate the mean sex difference 
as 41 to 5 inches. 

In the examples given above, which are typical of 
the l1se of the standard error applied to meari values, 
we have assumed that the variance of the population 
is determined with exactitude. It was pointed out by 
" Student" in I908, with small samples, such as are 
of necessity usual in field and laboratory experiments, 
where the variance of the population can only be 
roughly estimated from the sample, that the errors of 
estimation are calculable, and that accurate allowance 
can be made for them. 

If x (for example the mean of a s3-mple) is a value 
normally distributed about zero, 'and a is its true 
standard error, then the probability that ~/a exceeds 
any specified value may be obtained from the appro­
priate table of the normal distribution; but if we do 
not know a, but in its place have s, an estimate of the 
value of a, the distribution required will be that of xIs, 
and this is not normal. The true value has been 
divided by a factor, sla, which introduces an error. 
We have seen in the last chapter that the distribution 
in random samples of s2/a2 is that of x2ln, when n is 
equal to the number of degrees of freedom, in the group 
(or groups) of which S2 is the mean square deviation. 
Consequently, the q.istribution of sja is calculable, 
and although a is unknown, we can use in its place 
the fiducial distribution of a given s to find the 
probability of x exceeding a given multiple of s. 
Hence the true distribution of xIs is all that is 
required. The only modification required in these 
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cases depends solely on the number n, representing 
the number of degrees of freedom available for the 
estimation of (j. The necessary distributions were 
given by "-Student" in 1908; fuller tables have since 
been given by the same author, and at the end of this 
chapter (p. 174) we give the distributions in a similar 
form to that used for our Table of x2 • 

24. The Significance of the Mean of a 
Unique Sample 

If Xli X2, ••• X n, is a sample of n' values of a 
variate X, and if this sample constitutes the whole of 
the information available on the point in question, 
then we may test whether the mean of X differs 
significantly from zero by calculating the statistics 

x= ~ Sex), 
n 

S2 I 

n' = 'e' ) sex-x)2, n n-l 

t=X7~;' n 
n= n'-I. 

Arithmetically, the calculations depend on the 
simple fact that the sum of squares of deviations from 
the mean may be obtained from the sum of squares 
of deviations from zero by deducting the, product of 
the total and the mean. Thus, 

S(x2) = Sex-x? + xS(x). 

This is a sub-division of the sum of squares of x 
into two portions, the first of which represents varia­
tion within the sample, while the second is due only 
to the deviation of the observed mean from zero. 
The first part has n - 1 degrees of freedom, and the 
second part only 1. The more complex cases treated 
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in later chapters are greatly simplified by setting out 
these two sub-divisions, of the sum of squares and of 
the degrees of freedOl;n, in parallel columns and 
comparing the mean squares in each class. Thus in 
this case we have 

Degrees of 

I· 
Sum of Mean Square. Freedom. Squares. 

Deviation I xS(x) t2s2 
Within sample n-I S(X-X)2 S2 

Total n S(X2) 

The mean squares are obtained in each class by 
dividing the sum of squares by the corresponding 
degrees of freedom. The observed ratio of the mean . 
squares is, in this case, t2• This useful form of arrange­
ment is of much wider application than th~ algebraical 
expressions by which the calculations can be expressed, 
and is known as the Analysis of Variance. ' 

The distribution of t for random samples of a normal 
population distributed about zero as mean is given in 
the Table of t for each value of n. The successive 
columns show, for each value of n, the values of I for 
which P, the probability of falling outside the range 
±t, takes the values '9, ... , '01, at the head of the 
columns. Thus the last column shows that, wnen 
n = 10, just I per cent. of such random samples will give 
values of t exceeding + 3' 169, or less than - 3 '169. If 
it is proposed to consider the chance of exceeding the 
given values of I, in a positive (or negative) direction 
only, then the values of P should be halved. It will 
be seen from the table that for any degree of certainty 
we require higher values of I, the smaller th~ value 
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of n, The bottom line of the table, corresponding to 
infinite values of n, gives the values of a normally 
distributed variate, in terms of its standard deviation, 
for the same values of p, 

Ex, I9, Sz'gnzjicance of mean of a small sample,­
The following figures (Cushny and Peebles' data), 
which I quote from « Student's" paper, show the result 
of an experiment with ten patients on the effect of 
two supposedly soporific drugs, A and B, in producing 
sleep, TABLE 27 

\ 

ADDITIONAL HOURS OF SLEEP GAINED BY THE USE 
OF TWO TESTED DRUGS. 

Difference Patient. A. B. 
(B-A). 

I 
+0'7 +1'9 +1'2 I 

2 '-1,6 +0'8 +2'4 
3 -0'2 +1'1 +1'3 
4 -1'2 +0'1 +1'3 
5 -0'1 -0'1 0'0 
6 +3'4 +4'4 +1'0 
7 +3'7 +5'5 +1'8 
8 +0,8 +1'6 +0'8 
9 0'0 +4'6 +4'6 

10 +2'0 +3'4 +1'4 
-----------_ 

Mean (x) +"75 +2'33 +1'58 

r 
I 

The last column gives a controlled comparison of 
the efficacy of the two drugs as soporifics, for the same 
patients were used to ~test each; from the series of 
differences we find x=+1'S8, 

s2 
- = '15 13 
10 ' 

S/V10 = '3890, 
t = 4'06, 
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For n = 9, only one value in a hundred will exceed 
3'250 by chance, so that the difference between the 
results is clearly significant. By the methods of the 
previous chapters we should, in this case, have been led 
to the same conclusion with almost equal certainty; 
for if the two drugs had been equally effective, positive 
and negative signs would occur in the last column 
with equal frequency. Of the 9 values other than 
zero, however, all are positive, and it appears from 
the binomial distribution, 

C!+l)9, 
that all will be of the same sign, by chance, only twice 
in 5 I 2 trials. The method of the present chapter 
differs from that in taking account of the actual values 
and not merely of their signs, and is consequently 
the more sensitive method when the actual values are 
available. ~ 

24·I. Comparison of Two Means 

In experimental work it is even more frequently 
necessary to test whether two samples differ signi­
ficantly in their means, or whether they may be 
regarded as belonging to the same population. In the 
latter case any difference'in treatment which they may 
have received will have shown no significant effect. 

If Xl' X 2, ••• , X n1+1 and x'v X'2, .•• , X'na+ I be 
two samples, the significance of the difference between 
their means may be tested by calculating the foIIowing ... 
statistics: 

x = _+1 Sex), X' = +1 Sex'), 
nl 1 n2 I 

S2 = _1_ {S(X-X)2+ S(X'-X')2} 
nl+n2 

't = x-x/~(nl+I)(n2+I), 
s nl+n2+2 

n= nl+n2' 
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The means ate calculated as usual; the standard 
deviation is estimated by pooling the sums qf squares 
from the two samples and dividing by the total number 
of the degrees of freedom contributed by them; if a 

were the true standard deviation, the variance of the 
first mean would be a 2/Cnl + I), of the second mean 
a 2/(n2+ r), and therefore that of the difference would 
be a2 {r/Cnl + 1)+ r/(n2 + r)}; t is therefore found by 
dividing x-x' by its standard error as estimated, and 
the error of the es~imation is. allowed for by entering 
the table with n equal to the number of degrees of 
freedom available for estimating s; that is n=nl +n2. 
I t is thus possible to extend II Student's" treatment of 
the error of a mean to the comparison of the mean~ of 
two samples. 

The method of building the corresponding analysis 
of variance for this case should be studied. I f we 
put down the analyses for the two samples separately 
and add their items, we have 

Degrees of 
Sum of Squares. Freedom. 

Deviatio~s 2 xS(x) +x'S(x') 

Within samples . n1+n2 S(X-X)2+S(X' -X')2 
---

Total n1+nz+2 S(x2)+S(X'2) 
-

But if we had treated all the observations as a single 
sample with mean m, we should have 

Degrees of' Sum of Squares. Freedom. 

Deviations I mS(x) +mS(x') 

Within samples . n1+n2+I S(x-m)2+S(x' -m)2 
-

Total n1+n2+2 S(x2)+S(X'2) 
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These are two different analyses of the same total, 
and since all comparisons within the separate samples 
are also comparisons within the grand sample made 
by throwing them together, we may subtract one 
from the other, obtaining 

Degrees of Sum of Squares. Freedom. 

Difference I xS(x)+x'S(x')-mS(x)-mS(x') 

Within samples . n1+n2 S(x-X)2+S(X' _X')2 
-

Total n1+n2+1 I S(X2) +S(X'2) -mS(x) -mS(x') 
I 

Each item is now easily calculated. The student 
will do well to verify that t2 obtained fr~m the pro­
cedure first set out is in fact the ratio of the mean 
squares obtained from the analysis of v_ariance. 

It may be noted in connexion with this method, 
and with later developments, which also ~nvolve. a 
pooled estimate of the variance, that a difference in 
variance between the populations from which the 
samples are drawn will tend sometimes to enhance the 
value of t obtained. The test, therefore, is decisive, 
if the value of t is significant, in showing that the 
samples could not have been drawn from the same 
population; but it might conceivably be claimed 
that the difference indicated lay in the variances and 
not in the means. The theoretical possibility, that 
a significant value of t should be produced by a 
difference between the variances only, seems to be 
unimportant in the application of the method to experi­
mental data; as a supplementary test, however, the 
significance of the difference between the variances may 
always be tested directly by the method of Section 4I. 

I t has been repeatedly stated, perhaps through a 
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misreading of the last paragraph, that our method 
involves the" assumption" that the two variances are 
equal. This is an incorrect form of statement; the 
equality of the variances is a necessary part of the 
hypothesis to be tested, namely that the two samples 
are drawn from the same normal population. The 
validity of th~ t-test, as a test of this hypothesis, is 
therefore absolute, and requires no assumption what­
ever. It would, of course, be legitimate to make a 
different test of significance appropriate to the 
question: Might ,these samples have been drawn from 
different normal populations having the same mean? 
This problem has, in fact, been solved, but in relatiQn 
to the real situations arisir{g in biological research, the 
question it answers appears to be somewhat academic. 
Numerical tables of this test were first calculated by 
P. V. Sukhatme, and are of use, when there is reason 
to suspect unequal variances, in removing any doubt 
from the interpretation of the test of significance. 
(Statz'stzcal Tables, VI and V2.) 

Ex. 20 Sz'gnzjicance of dzfJerence oj means of 
small samples.-Let us suppo?e that the figures of 
Table 27 had been obtained using different patients 
for the two drugs; the experiment would have been 
less well controlled, and we should expect to obtain 
less certain results from the same number of observa­
tions, for it is a prz'orz' probable, and the above figures 
suggest, that personal variations in response to the 
drugs will be to some extent similar. 

Taking, then, the figures to represent two different 
sets of patients, we have 

.i'-.i"=+I·S8, 
s2(io+io) = '7210, 

t = +1 '861, 
n= 18. 
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The value of P is, therefore, between '1 and '05, and 
cannot be regarded as significant. This example 
shows clearly the value of design in small scale experi­
ments, and that the efficacy of such design is capable 
of statistical measurement. 

The use of (( Student's" distribution enables us to 
appreciate the value of observing a sufficient number 
of parallel cases; their value lies, not only in the fact 
that the standard error of a mean decreases inversely 
as the square root of the number of parallels, but in 
the fact that the accuracy of our estimate of the 
standard error increases simultaneously. The need for 
duplicate experiments is sufficiently widely realised; 
it is not so widely understood that in some cases, when 
it is desired to place a high degree of confidence (say 
P = '01) on the results, triplicate e~periments will 
enable us to detect differences as small as one~ 
seventh of those which, with a duplicate e~periment, 
would justify the same degree of confidence. 

The confidence to be placed in a res~lt depends not 
only on the magnitude of the mean value obtained, 
but equally on the agreement between parallel experi­
ments. Thus, if in an q.gricultural experiment a first 
trial shows an apparent advantage of 8 bushels to the 
acre, and a duplicate experiment shows an advantage 
of 9 bushels, we have n = 1, t = 17, and the results 
would justify some confidence that a real effect had 
been observed; but if the second experiment had 
shown an apparent advantage of 18 bushels, although 
the mean is now higher, we should place not more but 
less confidence in the conclusion that the treatment was 
beneficial; for t has fallen to 2'6, a value which for 
n = 1 is often exceeded by chance. The apparent 
paradox may be explained by pointing out that the 
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difference -of IO' bushels between the experiments 
indicates the existence of uncontrolled circumstances 
so influential that in both cases the apparent benefit 
may. be due t9 chance, whereas in the former case the 
relatively close agreement of the results suggests .that 
the uncontrolled factors were not so very influential. 
Much of the 'advantag_e of further replication lies in 
the fact that when few tests are made, and these only 
duplicated, our estimate of the importance of the 
uncontrolled factors is extremely hazardous. 

In cases in which each observation of one series 
corresponds in some respects to a particular 0 bserva­
tion of the second series, it is always legitimate to 
take the differences and test them, as in Ex. I9, as 
a single sample; but it is not. always desirable to do 
so. A more precise comparison is obtainable by this 
method only if the corresponding values of the two 
series are positively correlated, and only if they are 
correlated to a sufficient extent to counterbalance the 
lo.ss of predsion due to basing our estimate of variance 
upon fewer degrees of freedom. An example will 
make this plain. 

Ex. 2 I. Sz'gnzjicance of change -in oac~erz'al 
numbers. - The following table shows the mean 
number of bacterial colonies per plate obtained by 

TABLE 28 

Method. 4 P.M. 8 P.M. Difference. 
" 

A 29'75 39'20 +9'45 
B 27' 50 4°'60 +13'10 
C 3o'25 36'20 +5'95 
D 27'80 42'4° +14'60 

Mean 28'825 39'60 +10'775 
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four slightly different methods from soil samples taken 
at 4 P.M. and 8 P.M. respectively (H. G. Thornton's 
data). 

From the series of differences we have Z= + lO·77S, 
iS2 = 3°756, t· 5°560, n = 3, whence the table shows 
that P is between °or and °02. If, on the contrary, we 
use the method of Ex. 20, ansi treat the two separate 
series, we find x-z'=+roo775, !S2=2°188, t=7·285, 
n = 6; this is not only a larger value of n but a larger 
value of t, which is now far beyond the range of the 
table, showing that P is extremely small. In this 
case the differential effects of the different methods 
are either negligible, or have acted quite differently 
in the two series, so that precision was lost in compar­
ing each value with its counterpart in the other series. 
In cases like this it sometimes occurs that one method 
shows no significant difference, while tne other brings it 
out; if either method indicates a definitely Isignificant 
difference, its testimony cannot be ignored, even if 
the other method fails to show the effect. When no 
correspondence exists between the members of one 
series and those of the other, the second method only 
is available. 

25. Regression Coefficients 

The methods of this chapter are applicable not 
only to mean values, in the restricted sense of the 
word, but to the very wide class of statistics known 
as regression coefficients. The idea of regression used 
usually to be introduced in connexion with the theory 
correlation, but it is in reality a more general, 
and a simpler idea; moreover, the regression co­
efficients are of interest and scientific importance in 
many classes of data where the correlation coefficient, 
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if used at all, is ah artificiai concept of no real utility. 
The following qualitative discussion is intended to 
familiarise the student with the concept of regression, 
and to prepare the way for the accurate treatment of 
numerical examples. 

I t is a commonplace that the height of a child 
depends on his age, although, knowing his age, we 
cannot accurately calculate his height. At each age 
the heights are scattered over a considerable range in 
a frequency distribution characteristic of that age; 
any feature of this distribution, such as the mean, 
will be a continuous function of age. The function 
which represents the mean height at any age is termed 
the regression function of height on age; it is repre­
sented graphically by a regression curve, or regression 
line. In relation to such a regre~sion line age is 
termed the independent variate, and hez'ght the 
dependent variate. 

The two variates bear very different relations to the 
regression line. If errors occur in the heights, this 
will n1>t influence the regression of height on age, 
provided that at all ages positive and negative errors 
are equally frequent, so that they balance in the 
averages. On the contrary, errors in age will in 
general alter the regression of height on age, so that 
from a record with ages subject to error, or classified 
in broad age groups, we should riot obtain the true 
physicaJ relationship bet :yveen mean height and age 
A second difference should also be noted: the 
regression function does not depend on the frequency 
distribution of the independent variate, so that a true 
regression line may be obtained even when- the age 
groups are arbitrarily selected, as when an investiga­
tion deals with children of tc school age." On the 

K 
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other hand, a selection of the dependent variate may 
change the regression line altogether. 

I t is clear from these two instances that the 
regression of height on age is quite different from the 
regression of age on height; and that one may have a 
definite physical meaning in cases in which the other 
has only the conventional meaning given to it by 
mathematical definition. In certain cases both regres­
sions are of equal standing; thus, if we express in 
terms of the height of the father the average adult 
height of sons of fathers of a given height, observation 
shows that each additional inch of the fathers' height 
corresponds to about half an inch in the mean height 
of the sons. Equally, if we take the mean height of 
the fathers of sons of a given height, we find that each 
additional inch of the sons' height corresponds to half 
an inch in the mean height of the' fathers. No selection 
has been exercised in the heights ei,her of fathers 
or of sons; each variate is distributed normally, and 
the aggregate of pairs of values forms a normal cor­
relation surface. Both regression lines are straight, 
and it is consequently possible to express the facts of 
regression in the simple rules stated above. 

When the regression line with which we are con­
cerned is straight, or, in other words, when the regres­
sion function is linear, the specification of regression 
is much simplified, for in addition to the general means 
we have only to state the ratio which the increment of 
the mean of the dependent variate bears to the corre­
sponding increment of the independent variate. Such 
ratios are termed regression coefficients. The regres­
sion function takes the form 

Y = a+b(x-x), 



SIGNIFICANCE OF MEANS, ETC. 13 1 

where b is the regression coefficient of y on x, 
and Y is the predicted value of y for each value of x. 
The physical dimensions of the regression coefficient 
depend bn those of the variates; thus, over an age 
range in which growth is uniform we might express 
the regression of height on age in inches per annum, in 
fact as an ?-verage growth rate, while the regression of 
father's height on son's height is half an inch per inch, 
or simply i. Regression coefficients may, of course, 
be positive or negative. 

Curved regression lines are of common occurrence; 
in such cases we may have to use such a regression 
function as 

in which all four coefficients of the regression function 
may, by an extended use of the term, be called regres­
sion coefficients. More elaborate functions of x may 
be used, but their practical employment offers diffi­
culties in cases where we lack theoretical guidance in 
choosing the form of the regression function, and at 
present the simple power series (or polynomial in x) 
is alone in frequent use. By far the most important 
case in statistical practice is the straight regression 
line. 

26. Sampling Errors of Regression Coefficients 

The linear regression formula contains two para­
meters which. are to be estimated from the data. 
I f we use the form 

Y=a+b(x-x) 

then the value chosen for a will be simply the mean, y, 
of the observed values of the dependent variate. This 
ensures that the sum of the residuals y-Y shall be 
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zero, for the sum of the values of b(x-x) must be 
zero, whatever may be the value of b. 

The value given to 0, our estimate of the regressi6n 
coefficient of y on x, is obtained from the sum of the 
products of x and y. Just as with a single variate 
we estimate the variance from the sum of squares, first 
by deducting nx2 , so as to obtain the sum of the 
squares of deviations from the mean, in accordance 
with the formula, 

S{(x-x)2} = S(x2)-nx2, 

and then dividing by (n- I) to obtain an estimate of 
the variance; so with any two variates x and)" we 
may obtain the sum of the products of deviations from 
the means by deducting nxj; for 

S{(x-x)(y-ji)} = S(xy)-nxji. 

The mean product of two variates, thus measured from 
their means, is termed their covariance, and, just as in 
the case of the varian'ce of a single variate, we estimate 
its value by dividing the sum of products by n- I. 

The sum of products from which the covariance is 
estimated may evidently be written equally in the forms 

S{y(x-x)}, S{x(y-y)}. 

Our estimate of 0 is simply the ratio of the 
covariance of the two variates, to the variance,pf the 
independent variate; or, since we may ignore the factor 
(n- I) which appears in both terms of the ratio, our 
method of estimation may be expressed by the formula 

b = S{y(x-x)}. 
S{(x-x)2} 

We thus have estimates calculable from the observa­
tions, of the two parameters, needed to specify the 
straight line. The true regression formula, which we 
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should obtain from an infinity of observations, may be 
represented by 

Y = a+.Bex-x) 

and the diffe'rences a ~ a, b - f3, are the errors of random 
sampling of our statistics. 

To ascertain the magnitude of the sampling errors 
to which they are subject consider a population of 
samples having the same values for x. The variations 
from sample to sample in our statistics will be due only 
to the fact that for a given value of x the values of y 
in the population sampled are not all equal. If 0'2 

represent the varia:pce of y for a given valye of x, then 
clearly the error of a is merely the rpean of n' 
independent errors each having a variance 0'2, so that 
the variance of a is O'2/n'. The second statistic b is 
also a linear function of the values, y, and its sampling 
variance may be obtained by an extension of the same 
reasoning. In this case each deviation of y from the 
true regression formula is multiplied by x-x; the 
variance of the product is therefore O'2(X-£)2, and that 
of the sum of the products, which is the numerator of 
the expression for b, must be 

O'2S(X_X)2. 

To find b we divide this numerator by SJ(X-X)2} so 
that the variance of b is found by dividing the variance 
of the numerator by S2{(X_X)2~ which gives us the 
expresSIOn 

S(x-x)2 

for the sampling variance of the statistic b. 
I t will be noticed that the value stated for the 

sampling variance of a is not merely the sampling 
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variance of our estimate of the mean of y, but of our 
estimate of the mean of y for a given value of x, this 
value being chosen at, or near to, the mean of our 
sample, and supposed invariable from sample to 
sample. The distinction, which at first sight appears 
somewhat subtle, is worth bearing in mind. From a 
set of measurements of school children we may make 
estimates of the mean stature at age ten, and of the 
mean stature of the school, and these estimates will 
be equal if the mean age of the school children is 
exactly ten. Nevertheless, the former will usually be 
the more accurate estimate, for it eliminates the varia­
tion in mean school age, which will doubtless contribute 
somewhat to the variation in meari school stature. 

In order to test the significance or'the difference 
between 0, and any'hypothetical valu~ {3, to whicb it 
is to be compared, we must estimate the value of u 2 ; 

the best estimate for the purpose is 

I 
$2 = -'-2 S(y- y)2, 

n-

found by summing the squares of the deviations of y 
from its calculated value Y, and dividing by (n' - 2). 
The reason the divisor is (n' - 2) is that from the 
n' values of y two statistics have already been calcu­
lated which enter into the formula for Y, consequently 
the group of differences, y-Y, represent in reality 
only n' - 2 degrees of freedom. 

When n' is small, the estimate of S2 obtained above 
is somewhat uncertain, and in comparing the difference 
b- {3 with its standard error, in order to test its signifi­
cance we shall have to use" Student's" method, with 
n = n' - 2. When n' is large the t-distribution tends 
to normality. The value of t with which the table 
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must be entered is found by dividing (b- fJ) by its 
standard error as estimated, and is therefore, 

(b-fJ)VS(x-x)2 
t= . 

s 

Similarly, to test the significance of the difference 
between a and any hypothetical value a, the table is' 
entered with . 

(a-a)Vn' 
t= • n=n'-2; 

s 

this test for the significance of a-will be more sensitive 
than that ignoring the regression, if the variation in 
y is to any considerable extent expressible in terms 
of that of x, for the value of s obtained from 
the regression line will then be smaller than that 
obtained from the original group of observations. 
On the other hand, I degree of freedom is always 
lost, so that if b is small, no greater precision is 
obtained. 

In general, when the me;an value of the dependent 
variate is estimated for values other than the mean 
of the independent variate, we need, as was shown 
by Working and Hotelling, to know the sampling 
variance of the estimate 

Y = a+b(x-x). 

Since the sampling errors of a and b are independent, 
this is given by 

V(a)+(x,-x)2V(b), 

where-V(a) and V(b) stand for the sampling variances 
of our estimates a and b. 

We have, therefore, 

V(Y) = a2(.!. + (X_X~2) 
n S(X_X)2 
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where 0'2 is the true variance of y for given x. For 
values of x near the mean, that is, where (x-x) is 
small, this variance will not greatly exceed that at 
the mean of the observed sample, but for values 
more remote from the centre of our experience the 
precision of the estimate is naturally lower, and the 
second component of error, due to the estimation 
of b, becomes predominant. 

Ex. 22. Effect of nZ"trogenous jertz"lz"sers z"n maz"n­
taz"nz"ng yz"eld.-The yields of dressed grain in bushels 
per acre shown in Table 29 were obtained from two 
plots on Broadbalk wheat field during thirty years; the 
only difference in manurial treatment was that Ii 9 a " 
received nitrate of soda, while It 7 b " received an equi­
valent quantity of nitrogen as sulphate of ammonia. 
In the course of the experiment plot" 2. a" appears to 
be gaining in yield on plot It 7 b." Is this apparent 
gain significant? \ 

A great part of the variation in yield from year to 
year iq evidently similar in the two plots; in conse­
quence, the series of differences will give the clearer 
result. In one respect these data are especially simple, 
for the thirty values of the independent variate form 
a series with equal intervals between the successive 
values, with only one value of the dependent variate 
corresponding to each. In such cases the work is 
simplified by using the formula 

S(X-X)2 = i2n'(n'2- I), 

where n' is 'the number of terms, or 30 in this case. 
To evaluate b it is necessary to calculate the sum 

of products 
S{y(x-x)} ; 

which bears the same relation to the covariance of two 
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variates as does the sum of squares to the variance 
of a single varia'te; this may be done in several ways, 

TABLE 29 

Harvest 9 a, 7 b. 9 a-7 b. Year. -_ 
1855 29'62 33'00 -3'38 
1856 32'38 36"91 -4'53 
1857 43'75 44'84 -1'09 
1858 37'56 38'94 -1'38 
1859 30'00 34'66 -4'66 
1860 32'62 27' 72 +4'90 S(x-x)2 = 

n'(n'2- 1) 

1861 33'75 34'94 -1'19 12 = 2247' 5 
1862 43'44 35'88 +7'56 
1863 55'56 53'66 +1'9° b = '26679 
1864 51'06 \45' 78 +5'28 
1865 44'06 40'22 +3'84 S(y_ji)2 = 1020' 56 
1866 32'50 29'91 +2'59 /PS(x-xF = 159'97 
1867 29'13 22' 16 +6'97 -_ 
1868 47'81 39'19 +8,62 S(y_Y)2 = 860'59 
1869 39'00 28'25 +10'75 
1870 45'50 41'37 +4'13 S2=30'74 
1871 34'44 22'31 +12'13 
1872 40'69 29'06 +Il'63 s2jS(X_X)2 = '013675 
1873 35'81 22'75 +13'°6 
1874 38'19 39'56 -1'37 = (, II694)2 
1875 30'50 26'63 +3'87 
1876 33'31 25'50 +7,81 t = 2'2814 
1877 40'12 19' 12 +21'00 
1878 37'19 32' 19 +5'00 1& = 28 
1879 21'94 17' 25 +4'69 
1880 34'06 34'31 -'25 
1881 35'44 26'13 +9'31 
1882 31'81 34'75 -2'94 
1883 43'38 36'31 +7'ot 
1884 4°'44 37'75 +2'69 

-----
Mean 37'50 33'03 +4'47 

We may multiply the successive values of y by - 29, 
-27, ' , , +27, +29, add, and divide by 2. This 
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is the direct method suggested by the formula. The 
same result is obtained by multiplying I, 2, ... , 30 

and subtracting I5i ( = n' ;- I) times the sum of values 

of y; the latter method may be conveniently carried 
out by successive addition. Starting from the bottom 
of the column, the successive sums 2·69, 9'76, 6·82, ... 
are written down, each being found by adding a new 
value of y to the total already accumulated; the sum 
of the new column, less 1St times the sum of the 
previous column, will be the value required. In this 
case we find the value 599'615, and dividing by 2247'5, 
the' value of 0 is found to be '26679. The yi,eld of 
plot /I 9 a JJ thus appears to have gained on that of 
tI 7 0 " at a rate somewhat over a quarter of a bushel 
per acre per annum. 

To estimate the standard error of 0, we require the 
value of the sum of squares of the deviatiops, or 
residuals, from the regression formula, 

S(y-Y)2; 

knowing the value of 0, it is easy to calculate the thirty 
values of Y from the formula 

Y =y+(x-x)b; 

for the first value, x-x = -14'5, and the remaining 
values of Y may be found in succession by adding 
b each time. By subtracting each value of Y from the 
corresponding y, squaring, and adding, the required 
quantity may be calculated directly. This method is 
laborious, and it is preferable in practice to utilise the 
.algebraical fact that 

S(y- y)2 = S(y-y)2-b2S(x-x)2 
= S(y2)-n'ji2-b2S(x-x)2. 
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The work then consists in squaring the values of y and 
adding, then subtracting the two quantities, which can 
be directly calculated' from the mean value of y and 
the value 0[- b. In using this shortened method it 
should be noted that small errors in ji and b may intro­
duce considerable errors in the result, so that it is 
necessary to be sure that these are calculated accurately 
to as many significant figures as are needed in the 
quantities to be subtracted. Errors of arithmetic 
which would have little effect in the first method 
may altogethet vitiate the results if the second method 
is used. The subsequent work in calculating the 
standard error of b may best be followed in the scheme 
given beside the table of data; the estimated standard 
error is . I 169, so that in testing the hypothesis that 
f3 = 0, that is that plot lC 9 a" has not been gaining 
on plot lC 7 b," we divide b by this quantity and 
find t = 2 '2814. Since s was found from 28 degrees of 
freedom n = 28, and the result of t shows that P is 
between '02 and '05. 

The result must be judged significant, though 
barely SC); in view of the data we cannot ignore the 
possibility that on this field, and in conjunction with 
the other manures used, nitrate of soda has conserved 
the fertility better than sulphate of ammonia; the 
data do not, however, demonstrate this point beyond 
possibility of doubt. 

The standard error qf ji, calculated from these 
data, is I '012, so that there can be no doubt that the 
difference in mean yields is significant; if we had 
tested the significance of the mean, without regard to 
the order of the values, that is calculating S2 by 
dividing 1020' 56 by 29, the standard error would have 
been I '083. The value of b was therefore high enough 
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to have reduced the standard error. This suggests 
the possibility that if we had fitted a more complex 
regression line to the data the probable errors would 
be further reduced to an extent which would put the 
significance of b beyond doubt. We shall deal later 
with the fitting of curved regression lines to this type 
of data. 

26· I. The Comparison of Regression Coefficients 

Just as the method of comparison of means is 
applicable when the samples are of different sizes, if 
we obtain an estimate of the error by co.mbining the 
sums of squares derived from the two different 
samples, so we may compare regression coefficients 
when the series of values of the independent variate 
are not identical; or if they are identical we can ignore 
the fact in comparing the regression c6efficients. 

Ex. 23. Compar£son of relatz've growth rafe of two 
cultures of an alga.-Table 30 shows the logarithm 
(to the base IO).of the volumes occupied by algal cells 
on successive days, in parallel cultures, each taken 
over a period during ,which the relative growth rate 
was approximately constant. In culture A nine 
values - are available, and in culture B eight (Dr 
M. Bristol-Roach's data). 

The method of finding Sy(x-x) by summation is 
shown in the second pair of columns: the original 
values are added up from the bottom, giving successive 
totals from 6'087 to 43 '426; the final value should, of 
course, tally with the total below the original values. 
From the sum of the column of totals is subtracted the 
sum of the original values multiplied by 5 for A and 
bY.4t for B. The differences are Sy(z-x); these 
must be divided by the respective values of S(X_X)2, 

/ 
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namely, 60 and 42, to give the values of b, measuring 
the relative growth rates of the two cultures. To test 
if the difference is significant we calculate in the two 
cases S(y2), 'and subtract successive'ly the product of 
the mean with the total, and the product of b with 
Sy(x-x); this process leaves the two values of 
S(y- y)2, which are added as shown in the table, and 

TABLE 30 
~-

Log Values. Summation Values. 

A, B A, B, 

-- ----
3'592 3'538 43'426 38 '358 S(y-Y)', A '05089 
3'823 3'828 39'834 34'820 

" 
B '07563 

4'[74 4'349 36 '011 30 '992 --
4'534 4'833 3[ ,837 26,643 ns' ' 12652 
4'956 4'911 27'3°3 21'810 s' '009732 

5'163 5'297 22'347 16,899 s'/60 '0001622 
5'495 5'566 17'184 11'602 s'/42 '0002317 
5,602 . 6'036 II '689 6'036 ---
6'087 ,,' 6'087 ", '0003939 
---

Total 43'426 38'358 235'718 187'160 Standard error '01985 
Mean 4'8z51 4'7947 217'13° 172'611 b'-b '0366 

Sy(x-x) 18'588 14'549 t 1,844 

b '3098 '3464 n 13 

the sum divided by n, to give S2. The value of n is 
found by adding the 7 degrees of freedom from series 
A to the 6 degrees from series B, and is therefore 13. 
Estimates of the varial)ce of the two regression 
coefficients are obtained by dividing S2 by 60 and 42, 
and that of the variance of their difference is the sum 
of these. Taking the square root we find the standard 
error to be '01985, and t = I ·844. The difference 
between the regression coefficients, though relatively 
large, cannot be regarded as significant. There is 
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not sufficient evidence to assert that culture B was 
growing more rapidly than culture A. 

26'2. The Ratio of Means and Regression' Coefficients 

Ex. 23·1. When pairs of observations are avail­
able, such as those shown in Table 27 (page 121), 
showing as these do a decidedly significant difference 
between the means, we have gained some idea of the 
magnitude of the true difference between the means, 
which we may expect to lie between limits given by the 
observed value plus or minus an appropriate multiple 
of its standard error. This multiple specifies the level 
of significance chosen and, in a sense, the probability 
that the true difference should lie between the limits 
assigned. Thus this probability is 95 per cent. if 
we choose as the appropriate multiplier the 5 per'cent. 
value of t (or the number of degrees of freedom 
available, or 2'262 for the 9 degrees of fre~dom in 
that example. 

I t may well be tha~ the difference between the 
average effects of two treatments is of less intrinsic 
interest than the ratio of their effects. This will be 
so if the effect of each drug is prop9rtional to the 
quantity used, but in other cases also the ratio of 
the effects may be constant, so that at any dosage 
the ratio of the effects provides an estimate of the 
potency ratio; while the difference between the 
average effects of a chosen dose will depend greatly 
on the experimental material used, on the conditions of 
the experiment, and on the actual amount of the dose. 
r t is useful, therefore, to be able to assign similar 
limits for a presumed constant ratio between the effects 
in place of those for a presumed constant difference. 

Now, if x al}d yare the observed effects of t~eat-
r 
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ments A and B in any particular case, and a stands 
for the potency 'Of A relative to that of B (in the 
simplest case, the weight of B equivalent to unit 
weight of A), then we may consider the quantity 

z = x-ay 

as an observed value, variations of which 'from case 
to case may be estimated from the experimental data. 
The arithmetic required is nearly the same as that 
of Eocample 20, namely the means and sums of 
squares of the variates x and y, with the addition of 
their sum of products'. 

Thus for x we have 

for y 

S(X2) 
xS(x) 

S(X-X)2 

S(y2) 
jiS(y) 

S(y-ji)2 

34'43 
5'625 

28'8°5 

9°'37 
54'289 

36 '081 

and, for the product, 

Sexy) 43'11 
xS(y) = jiS(x) 17'475 

S(x-x)(y-ji) 25'635· 

Then, leaving a still undetermined, it is clear that 

S(z) = 7'5-23'3a 
and 

S(Z_Z)2 = 28'805-2a(25 '635)+ a2(36·oSI). 

Moreover, the data will show a significant deviatton 
from the value of a adopted if 

.2_ S2(Z) > t2S(Z_Z)2. 
10 



144 STATISTICAL METHODS 

Taking, for the 5 per cent. point, 
t = 2 '262, t2' = S· 116644, 

then the equation for a becomes 

303'9874a2-z6'I098(2a)-96'7599 = 0, 

which is satisfied by the values 
a = +'6566 and -:4848. 

[§ 26'2 

I t is thus clear that no estimate of the relative 
potency of drug A compared with d,rug B exceeding 
'6566, or rather less than two-thirds, is compatible 
with the data presented. The fact that the other 
value is negative shows that these data do not establish 
any positive soporific effect at all for drug A at the 
significance level used. It might, in fact, have 
exerted an antisoporific effect nearly one-half as 
potent as the soporific effect of drug B before the 
observed difference in efficacy between the two drugs 
would be significantly exceeded. \ 

A method very similar in principle may be used 
to find limits for the value of the independent 
variate at which the regression function attains a 
given value, or the value at which two regression 
lines intersect. 

If a1 and U2 are the true means and /31' /32 the 
true coefficients of regression of two dependent 
variates, then the point of intersection is the value of 
the unknown, X, satisfyir:g the condition 

u1+(X-X1)/31 = U2+(X-X2)/32' 

Now the sampling variance of 
lZl+(X-X1)bl-lZ2-(X-X2)b2 

IS 
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where Sl and S2 are the sums of squares of deviations 
of the independent variate for the two samples, and 
S2 is the mean square deviation of the dependent 
variates from the fitted regression lines. Hence if 
we equate 

to 

s2t2{~ + ~ + %1
2 + %2

2 
_2X(%1 + ~)+X2(2 + .:.)}, 

N 1 N 2 ~1 S2 S1 S2 S1 S2 

we shall have a quadratic equation for X of which 
the roots are the limiting values possible at the level 
of significance represented by the value t. 

Ex. 23'2. The age at whz'ch gz'rls become taller 
than boys.-Karn (1934) gives values derived from 
measurements of 4007 school children in the borough 
of Croydon. .-

Number Mean age Mean Hei~bt Re~ression Sex-i)' 
N :i (years) a (inches b (ms./yr.) (yr.)' 

--

Boys 1946 12'2016 56'004 1·60 337·894 

Girls 2061 12'1300 56'550 2'45 382 .835 

The mean square deviation from the fitted regres­
sion lines, S2, is . 

8'17915, 

based on 3991 degrees of freedom. For limits at the 
5 per cent. point we may therefore take 

t = 1'96 
and 
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From the remaining data we have, taking x as the 
excess of the age over 12 years, 

aa-al-baxa+blXl 

(b2-b1)X 

( .!_ + _!_)X2 
S1 S2 

.001163582 

·005S7160(X2). 

The quadratic equation fqr X is therefore 

C·54743S)X2+C·497064)2X+·266122 = 0, 

of which the roots are 

-1·490, -'326 

corresponding with ages 

10· 510 and I I '674 years. 

The estimate derived from the means and regres­
sions given is II'353 years, much nearer to the 
upper than to the lower limit. The children were 
nearly all measured in their IIth and 12th years, 
and the precision of the comparison falls considerably 
at the lower ages, with the consequence that the 
lower limit differs widely from the ~:lirect estimate. 
With tlii~ number of children a much higher accuracy 
would have been obtained had they been measured a 
year earlier, or over a wider age-range. 
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27. The Fitting of Curved Regression Lines 

But slight use has been made of the theory of 
the fitting qf curved regression lines, save in the 
limited but mpst important case when the variability 
of the dependent variate is the same for all values 
of the independent variate, and is normal for each such 
value. When this is the case a technique has been 
fully worked out for fitting by successive stages any 
line of the form 

Y = a+bx+cx2+dx3+ . . .; 

we shall give details of the case where the successive 
values of x are at equal intervals. The more general 
case, when varying numbers of observations occur 
at different values of x, is best treated by the method 
of Section 29'2; when the intervals also are unequa,l, 
the general method of Section 29 is available, using 
the powers of x as independent variates. 

As it stands the form given would be inconvenient 
in practice, in that the fitting could not be carried 
through in successive stage~, What is required is to 
obtain successively the mean of y, an equation linear 
in x, an equation quadratic in x, and so on, each 
equation being obtained from the last by adding a new 
term; this being calculated by carrying a single 
process of computation through a new stage. In 
order to do this I we take 

Y = A+Bel+Ce2+Dea+ . .. , 

where el' ell, ea shall be functions of x of the 1st, 2nd, 
and 3rd degrees, out of which the regression formula 
may be built. 

These functions of x may be regarded as the 
coefficients of the corresponding observations in cj:!rtain 
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comparisons, 'Or components of variation among them. 
Thus '1 is always chosen to be x-x; e.g. if there were 
7 observations the values of 'i would be - 3, - 2, 

- I, 0, I, 2, 3; so that the comparison corresponding 
with the 1st degree in x is 

(i) -3Yl- 2Y2-Ya+ OY4+Y5+ 2Y6+3Y7' 

Again, g2 might be taken as the coefficients In 

the comparison 

(ii) SY1+ 0Y2- 3Ya-4Y4- 3YS+OY6+ SY7' 

Here the coefficients are expressi.ble as a quadratic 
in x, namely 

(x-x)2-4 = g12-4 = g2' 

and it is to be noticed that the SHm of the coefficients, 
and the sum of their products with those of gll are 
both zero. 

For the 3rd, 4th and 5th degrees' we I may use 
In turn 

(iii) -Yl+Y2+Ya-Ys-Y6+Y7 gl('12""-7)/6 
(iv) 3Yl-7Y2+Ya+6Y4+Ys-7Y6+3Y7 (7g14-67g12+72)/I2 
(v) -Yl+4Y2-5Ya+ SYs-4Y6+Y7; (2I'15- 24Sg13+ 524'1)/60. 

Note that the sum of the coefficients is zero in each 
case, so that each expression is properly a comparison 
among the values of y; moreover, the sum of the 
products of corresponding coefficients in any two 
expressions is zero, so that the comparisons made 
are properly independent. 

In fitting a curve, the expressions iny are evaluated, 
each divided by the sum of the squares of its coefficients, 
and are then used as multipliers of the corresponding 
functions of x in the fitted curve. Thus the sums of 
squares of the five expressions above are 28, 84, 6, 
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154, 84. Consequently, the successive terms 9f the 
fitted curve are :-

(-3Yl- 2Y2-YS+Y5+ 2Ys+ 3Y7)~1/4.8 
(SYl- 3Ys-4Y4- 3Ys+ SY7)(g12_4)/84 
(-Yl +Y2+Y3-YS-YS+Y7)(~13_7g1)/36 
(3Yl-7Y2+Ys+6Y4+Ys-7Ys+ 3Y7)(7g14

- 67g12+72)/ 1 848 
(-Yl+4Y2- 5Y3+ 5Y5-4Y6+Y7)(2I~l-245~ls+ S24~1)/5040 

The first of'these expressions gives the best fitting 
straight line. By using the first two terms we have 
the best fitting parabola, the 3rd terms adjust it to the 
best fitting cubic, and so on. 

Based on these orthogonal polynomials, inde­
pendent comparisons convenient for fitting series to 
the 5th degree are given so far as n = 75 in Stat£st£cal 
Tables. The general formulce are given in editions 3 
to 6 of this book, but for higher degrees and longer 
series it is best to, use the arithmetical approach 
illustrated in the following sections. 

The components C\re also expressible in terms of 
the successive differences of the series Yn' Thus those 
given above might be written 

(i) ,i(3Yl+ 5 Y2+ 6yS+ 6Y4+ SY.s+3Ys) 
(ii) ,i2(SYl + IOY2+ I2Ys+ IOY4+ 5Ys) 
(iii) ,i3(Yl+2Y2+2YS+yJ 
(iv) ,i4(3Yl+ 5Y2+3Ys) 
(v) ,is(Yl+Y2) 

where ,iYl stands for Y2 -Yll and so on. In place of 
the sum of the squares of the coefficients of the 
explicit formulce, we should then use the square of 
the sum of the coefficients of the differences of the 
appropriate degree, divided by 

n(n2- r), ... (n2-r2) . 
(2.6)(6.10) ... {(4r-2)(4r+2)} 
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for the term of degree 'r. This device of using 
differences sometimes saves an immense amount of 
labour, since the differences are often smaller numbers 
than those from which they are derived, and fewer 
of them are to be used. The sign of the coefficients 
also is always positive. Coefficients of such expansions 
in differences may be found for any degree by starting 
with unity, and multiplying successively by 

(r+ 1 )(n-,.- I) (,.+ 2 )(n-,.- 2) 

I(n- I) , 2(n-2) , ... 

a method which may be simply' illustrated by con­
structing in this way the formula given above for 
n = 7, 'r = 4; thence by differencing four times con­
struct the actual coefficients of the fourth component. 

Although, for arithmetical purposes, it is convenient 
to leave these expressions indeterminat~ in respect of 
constant factors, so that on removing any common 
factor, or clearing fractions, the expression\ may be 
used in its simplest form, algebraically, it IS convenient 
to introduce the convention that in the polynomials 
the coefficient of the leading term is unity. Thus '3 
above is taken to be e1

3-7 ell with values 6 times the 
coefficients of the expression used. With this convention, 
the sum of the squares of the coefficients is found to be 

n(n2- I) ... (n2-r2) en+,.)! r!' 
12.15 ... (16-4/r2) = (n-r-I)! . (r)!(2r+I)1 

so that the process of fitting may now be represented 
by the equations 

_ 1 

A =y = -; S(y), 
n 

12 
B = 'e'2 ) S(y,V, n n -I 

180 

C = n'(n'3_ I) (n'I-4) S(Y'I), 
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where, in general, the coefficient of the term of the 
:rth degree is 

(21") ! (21'+ I)! 
(1:!)4n'(n'2- 1) ... (n'2- r2) Seyer)' 

As each term is fitted the regression line approaches 
more nearly to the observed values, and the sum of the 
squares of the deviations 

S(y_Y)2 

is diminished. It is desirable to be able to calculate 
this quantity, without evaluating the actual values of 
Y at each point of the series; this can be done by 
subtracting from S(y2) the successive quantities 

n'A2 n'(n'2- I) B2 n'(n'2- r) (n'2-4) C2 
, 12 ' 180 ' 

or more simply 
AS(y), BS(ye1), ~S~ye2)' 

and so on. These quantities represent the reduction 
which the sum of the squares of the 'residuals suffers 
each time the regression curve is fitted to a higher 
degree; and enable its value to be calculated at any 
stage by a mere extension of the process already used 
in the preceding examples. To obtain an estimate, S2, 

of the residual variance, we divide by n, the number of 
degrees of freedom left after fitting, which is found 
from n' by subtracting from it the number of constants 
in the regression formula. Thus, if a straight line has 
been fitted, n = n' - 2; while if a curve of the 5th 
degree has been fitted, n = n' -6. 

28. The Arithmetical Procedure of Fitting 

The main arithmetical labour of fitting curved 
regression lines to data of this type may be reduced to 
a repetition of the process of summation illustrated in 
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Ex. 23. We shall assume that the values of yare 
written down in a column in order of increasing values 
of x, and that at each stage the summation is com­
menced at the top of the column (not at the bottom, as 
in that example). The sums of the successive columns 
will be denoted, by Sll S2' .. , When these values have 
been 0 btained, each is divided by an appropriate divisor, 
which depends only on n', giving us a new series of 
quantities a, b, c, ... according to the following 
equations 

I I 
a = -, S1 =-, S(y) =y, 

n n 

1.2 

b = n'(n'+I) S2, 

1.2·3 S 
c = n'(n'+I) (n'+2) 3' 

and so on. 
From these a third series of quantities ~', b', c'. 

are obtained by equations independent of n', of 
which we give below the first six, which are enough to 
carry the process of fitting up to the 5th degree: 

a'=a, 
/1' = a-;,b, 
c' = a-3b+2c, 
d' =a-6b+IOc-sa, 
e' = a-lOb+30c-3sd+14e, 
f' = a-Isb+70c-I40d+I26e-42j. 

The rule for the formation of the coefficients is to 
multiply successively by 

1'(1'+1) (1'-1) (1'+2) (1'-2) (1'+3) 
~'2·3 3·4 

and so on till the series termin"ates. 
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These new quantities are proportional to the 
required coefficients of the regression equation, and 
need only be divided by a second group of divisors to 
give the actual values. The equations are 

A=a', B=_6_ b, 
n'-1 I 

c- 30 c' D= 140 d' 
-(n'-I)(n'~Z) , (n'-r) (n'-z) (n'-3) I 

E= 630 , F= z772 l' 
(n'-r)(n'-z) ... (n'_4)e, (n'-I) ... (n'-5) , 

the numerical part of the factor being 

(zr+r)! 
(r!)2 

for the term of degree 1'. 

If an equation of degree l' has been fitted, the 
estimate of the standard errors of the coefficients are 
all based upon the same value of S2, i.e. 

2 __ I (S( 2)_ 'A2- n'(n'2- I) B2_ } 
S , 1 Y n . .. , 

n -1'-1 ~ 1Z 

from which the estimated standard error of any co­
efficient, such as that of gp, is obtained by dividing by 

S(C 2) (p!)4 '('2) .. (n'2_p2) 
\'2) = ( )I( +)1 n n - r . 2p . 2p r. 

and taking out the square root. The number of 
degrees of freedom upon which the estimate is based 
is (n' -1'- I), and this must be equated to n in using 
the Table of t. 

A suitable ~xample for using this method may be 
obtained by fitting the values of Ex. 22 (p. 136) with 
a curve of the 2nd or 3rd degree. 
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28·1. The Calculation of the Polynomial Values 

The methods of the preceding sections provide an 
analysis of a series into the components which can 
be represented by polynomial terms of any required 
degree, and the remainder which cannot be so repre­
sented. For much work of this kind it is desirable to 
carry out this analysis without the labour of calculating 
the polynomial values, Y, at each point of the series. 
Sometimes. however, it is desirable to have these 
values, either to construct a graph, to examine the 
deviations in regions of special interest, or because 
doing so provides a completely satisfactory check 
upon the results calculated. 

The very tedious procedure of calculating the 
individual values of e, and from them, and the calcu­
lated coefficients, forming the individual values of the 
polynomial, may be avoided by building up the whole 
series, by a continuous process, from its qifferences. 
The process is obvious when a straight line is fitted. 
For the terminal value, and the constant differ~nce 
between successive values, vye take 

Y1 =a'+3b', 

~Yl=-~b', 
n -I 

and build up all .. the other values of Y by continuous 
addition of the constant difference. The method is, 
however, applicable to polynomials of high order, and 
in such cases appears to save more than'three-quarters 
of the labour of calculation. F or curves of the 2nd 
degree the equations are: 

Y1 = a'+3b'+Sc', 

~Yl'= - ~ (b'+sc'), 
n -I 

~2y 60 , 
1 = (n'-I) (n'-2) c. 
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Starting with'the terminal value /). YII the series of 
first differences is built up by successive addition of the 
constant second difference /).2Y1 ; then starting from 
YII and adding successively the first differences, the 
series of values of Y is built up in turn. 

The formulce for any degree are constructed using 
the factors, with alternate positive and negative signs, 

-2·3 3·4·5 -4·5·6·7 
I --, n'-I' (n'-I) (n' -2)' (n' -I) (n' -2) en' -3)' ... 

together with expressions in a', b', c', . . . with the 
same coefficients, as given in Table 30'2, whatever the 
degree of the curve. 

The arithmetical procedure, which consists almost 
entirely of successive addition, may be illustrated on 
the series of Ex. 22. Table 30'I shows on the left the 

TABLE 30'1 

Observed Poly· lsI 2nd 3rd 
Values. 1St Sum. 2nd Sum. 3rd Sum. nomiaI Difference. Difference. Difference. Values. 

--
... ... ... .. , '" . .. ... 

-0'25 1'17.88 960'77 444°'58 5.86 '739 -'1280 
+9'31 127'19 1087'96 5528 '54 4'99 ·871 -'1320 
-2'94 124'25 1212'21 674°'75 3'98 1'008 -'1361 
+7'°7 131 '32 1343'53 8084'28- 2·84 1'148 -'14°2 
+2·69 134'01 1477'54 9561 ·82 1'544 1'2919 -'14423 '°°4°61 

134'01 1477'54 9561 .82 39167'21 134'00 
4'467000 3'1775°5 1'927786 0'957165 

I 
4'467°00 1'289495 -1'2°9431 -'1°5995 

last five lines of the summations needed to fit a curve 
of the 3rd degree, and on the right the first five lines 
of the summations by which the polynomial values 
are built .up. 

Below the first four columns are shown the values 
of a, ... , d derived directly from the totals, and of 
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a', ... , d' derived from them. If we want the 
values of Y to two decimal places, it will be as well to 
calculate YI to three places, and each difference to 
one more place than the last, discarding one place for 
the subsequent differences of each series. With this 
in view six decimal pla:ces will be sufficient for 
a, ... , d. Any further degree of accuracy required 
may be obtained merely by retaining additional digits. 
The sum of the column of polynomial values, which 
must tally with that of those observed, provides an 
excellent check of the latter parts of the procedure, 
but not of the correctness of the initial summations. 

TABLE 30'2 
COEFFICIENTS OF a', bl, c', ... IN THE TERMINAL VALUES OF Y 

AND rTs DIFFERENCES 

3 5 7 9 II 13 15~ 17 19 21 

5' 55 
r 285 385 I 14 30 91 140 204 

1 7 27 77 182 378 714 1254 2079 
1 9 44 156 450 ,1I221 2508 5148 

I II 65 275 '935 2717 7007 
I 13 90 442 1729 5733 

I IS II9 665 2940 

17 152 95 2 

19 189 
I 21 

The coefficients used in this method in the expres­
sion for Y l , Ll Yv Ll2YV ••• in terms of a', b', c', 
are given in Table 30'2 up to the loth degree. 

29. Regression with several Independent Variates 

I t frequently happens that the data enable us to 
express the average value of the dependent variate y, 
in terms of a number of different independent variates 
Xl' X2, ••• xp. For example, the rainfall at any 
point within a district may be recorded at a number 
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of stations for which the longitude, latitude, and alti­
tude are all known. I f all of these three variates 
influence the rainfall, it may be required to ascertain 
the average' effect of each separately. In speaking 
of longitude, latitude, and altitude as independent 
variates, all that is implied is that it is in terms of 
them that the ,average rainfall is to be expressed; it 
is not implied that these variates vary independently, 
in the sense that they are uncorrelated. On the con­
trary, it may well happen that the more southerly 
stations lie on the whole more to the west than do the 
more northerly stations, so that for the stations avail­
able longitude measured t~ !he west may be nega­
tively correlated with latitude measured to the north. 
If, then, rainfall increased to the west but was 
independent of latitude, we should obtain, merely by 
comparing the rainfall recorded at different latitudes, 
a fictitious regression indicating that rain decreased 
towards the north. What we require is an equation, 
taking account of all three variates at each station, 
and agreeing as nearly as possible with the values 
recorded; this is called a partial regression equation, 
and its coefficients are known as partial regression 
coefficients. 

To simplify the algebra we shall suppose that 
y, Xl' X 2, X 3 , are all measured from their mean values, 
and that we are seeking a formula of the form 

Y = blXl+b2X2+b3X3' 

If S stands for summation over all the sets of observa­
tions we construct the three equations 

b1S(X12)+b2S(X1X2)+b3S(X1X3) = S(XIY)' 
blS(XlX2)+b2S(X22)+b3S(X2X3) = S(X2Y), 
blS(X1X3)+b2S(X2X3)+b3S(xa2) = S(xaY), 
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of which the nine coefficients are obtained from the 
data either by direct multiplication and addition, or, 
if the data are numerous, by constructing correlation 
tables for each of the six pairs of variates. The three 
simultaneous equations for bll b2 , and bs are solved in 
the ordinary way; first ba is eliminated from the first 
and third, and from the second and third equations, 
leaving two equations for b1 and b2 ; eliminating b2 

from these, b1 is found, and thence by substitution, 
62 and ba• 

I t frequently happens that, for the same set of 
values of the independent variates, it is desired to 
examine the regressions for more than one set of values 
of the dependent variate; as, for example, if for the 
same set of rainfall stations we had data f9r several 
different months or years. In suc~ cases it is pre­
ferable- to avoid. solving the simultaneous equations 
afresh on each occasion, but to obtain I a simpler 
formula which may be applied to each new case. 

This may be done by solving once and for all the 
three sets, each consisting of three simultaneous 
equations: 

b1S(X12)+b2S(X1X2)+baS(X1Xs) = I, 

b1S(X1X~+b2S(X22)+bsS(X2X3) = 0, 

b1S(X1XS)+b2S(Xsxs)+baS(Xs2) = 0, 

0, 

I, 

0, 

0, 

0, 

I . , 

the three solutions of these three sets of equations may 
be written 

01 = Cll, C12, CISI 

b2 = C12, C2~' C23. 

b3 = C13. C2s, Css· 

Once the six values of & are known, then the partial 
regression coefficients may be obtained in any particular 
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case merely by calculating S(xI)'), S(x2.Y), S(xsy) and 
substituting in the formulce, 

b1 = CUS(XIY) +C12S(X2Y) +C13S(XSY)' 
b2 = C12S(XIY) +C22S(X2Y) +C2sS(XaY), 
ba = ClSS(XlY)+C2SS(X2Y)+C3sS(XaY)· 

The c-values, which are known as the covariance 
matrix, also serve to determine the precision of the 
regression co-efficients, so that this indirect method of 
obtaining them is generally to be recommended. 

The method of partial regression is of very wide 
application. I t is worth noting that the different 
independent variates may be related in any way; 
for example, if we desired to express the rainfall as 
a linear function of the latitude and longitude, and 
as a quadratic function of the altitude, the square 
of the altitude would be introduced as a fourth inde­
pendent variate, without in any way disturbing the 
process outlined above, save in such points as that 
S(XSX4) = S(xa3) would be calculated'directly from the 
distribution of altitude. 

The analysis of sequences, exhibited in Section 27 
and 28 by means of orthogonal polynomials, could 
therefore alternatively have been carried out by the 
multiple regression method. In the case specially 
treated, in which we have a simple sequence of 
observations of a dependent variate, one for each of a 
series of equally spaced values of the independent 
variate, as in annual returns of economic arid socio­
logical data, the use of orthogonal polynomials presents 
manifest advantages. When, however, the number of 
observations is variable, or the intervals are not equally 
spaced, the method of orthogonal polynomials, which 
can be generalised to cover such cases, is artificial, and 
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less direct than the treatment of the data by multiple 
regression. The equations of multiple regression are 
moreover equally applicable to regression equations 
involving not merely powers, but other functions such 
as logarithms, exponentials or trigonometric functions 
of the independent variate. 

In estimating the sampling errors of partial 
regression coefficients we require to know how nearly 
our calculated value, Y, has reproduced the observed 

, values of y; as in previous cases, the sum of the squares 
of (y- Y) may be calculated by differences, for, with 
three variates, 

S(y-y)2 = S(y2)-b1S(X1y)-b2S(X2y)-baS(xaY). 

I f we had n' sets of observations, and p independent 
variates, we should therefore first calculate 

1 
S2 = , S(y- y)2, 

n -p-l 

and to test if b1 differed significantly from any hypo­
thetical value, /31' we should calculate 

b1-f31 
t=-=, 

svcu 

entering the Table of t with n = n' -p- r. 
In the practic~l use of a number of variates it is 

convenient to use cards, on each of which is entered the 
values of the several variates which may be required. 
By sorting these cards in suitable grouping units with 
~espect to any two variates the corresponding correla­
tion table may be constructed with little risk of error, 
and thence the necessary sums of squares and products 
obtained. 

Ex. 24. Dependence of ra£nfall on pos£t£on and 
alt£tude.-The situations of 57 rainfall stations in 
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Hertfordshire have a mean longitude I2"4 W" a 
mean latitude 5 I 0 48"5 N" and a mean altitude 302 

feet, Taking as units two minutes of longitude, one 
miI;lute of latitude, and twenty feet of altitude, the 
following values of the sums of squares and products 
of deviations from the mean were obtained: 

S(X12) = 1934'1, 
S(X22) = 2889' 5, 
S(XS2) = 1750'8, 

S(X-2XS) = +II9'6, 
S(xaxJ = +924' I, 
S(XIX~ = -77'f,2, 

To find the multipliers suitable for any particular 
set of weather data from these stations, first solve the 
equations 

1934'1 &11- 772 '2 &12+ 924'1 c13 = I 

-772 '2 &11+2889'5 &12+ II9'6 &IS = 0 
+924'1 &11+ II9'6 &12+ 175°'8 CI3=0; 

using the last equation to eliminate C13 from the first 
two, we have 

2532 '3 &11-1462 '5 &12 = 1'7508 
-1462 'S &11+5°44'6 &12 = 0; 

from these eliminate cu , obtaining 

10,635' 5 ell = 8,8321 ; 
whence 

the last two being obtained successively by substitution, 
Since the corresponding equations for cu, C22, C23 

differ only in changes in the right-hand member, we 
can at once write down 

-1462 'S C12+5044'6 C22'= 1'7508 ; 

whence, substituting for Cl2 the value already obtained, 

C22 = '00041686, C23 = -'00015555; 
M 
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finally, to obtain CS3 we have only to substitute in the 
equation 

gIvmg 
ca3 ='00082183, 

I t is usually worth while, to facilitate the detection 
of small errors by checking, to retain, as above, one 
more decimal place than the data warrant, 

The partial regression of any particular weather 
data on these three variates can now be found with 
little labour, In January 1922 the mean rainfall 
recorded at these stations was 3 '87 inches, and the 
sums of products of deviations with those of the three 
independent variates were (taking 0'1 inch as the unit 
for rain) 

S(XlY) = +1137'4, S(X2Y) = -592'9, 5(xsY) = +891,8; 

multiplying these first by Cll> C12 , C13 ard <lidding, we 
have for the partial regression on longitude 

b1 = '39624; 

similarly, using the multipliers C12 , C22, C23 we obtain for 
the partial regression on latitude 

b2 = -' I 1204 ; 

ansi finally, by using C1S' C23 ' CS 3, 

b3 = '30 788 

gives the partial regression on altitude, 
Remembering now the units employed, it appears 

that in the month in question rainfall increased by 
'0198 of an inch, for each minute of longitude west­
wards, it decreased by '01 12 of an inch for each minute 
of latitude northwards, and increased by 'OOI54 of an 
inch for each foot of altitude, 
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Let us calculate to what extent the regression on 
altitude is affected by sampling errors, For the 57 
recorded deviations of the rainfall from its mean value, 
in the units' previously used • 

S(y2) = 1786,6 ; 

whence, kl10wing the values of bll b2 , and ba we 
obtain by subtraction 

S(y_Y)2 =994'9. 

To find S2, we must divide this by the number of 
degrees of freedom remaining after fitting a formula 
involving three variates-that is, by 53-SO that 

S2 = 18'772 ; 

multiplying this by ~33 and taking the square root, 

SYC33 = '12421. 

Since n is as high as 53 we shall not be far wrong in 
taking the regression of rainfall on altitude to be in 
working units '308" with a standard error 'I24; or 
in inches of rain per IOO feet as 'I54, with a standard 
error '062. 

The importance of the procedure developed in 
Ex. 24 lies in the generality of its applications, and 
in the fact that the same process is used to give in 
succession (a) the best regression equation, of a given 
form, and (b) the materials for studying the residual 
variation, and the precision of the coefficients of our 
equation. " 

We have illustrated and used the fact that the 
. sampling variance of any coefficient, such as b1, is given 
by multiplying the estimated residual variance, S2, by 
the factor Cll derived wholly from the independent 
variates, In many applications the calculation of the 
multipliers c is of further value owing to the fact that 
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~he sampling covariance of any two coefficients, such 
as 01 and O2 , is given by multiplying the same estimated 
variance by C12' We may, therefore, without repeating 

. the primary calculations, review the results from a 
variety of different points of view. Although it would 
be of little interest in the meteorological problem, 
it will pin other cases be frequently important to 
compare the magnitude of two different coefficients, 
e.g. to ask if 01 is, significantly greater than o~. We _ 
need to compare the difference 01-02 with its estimated 
standard error, and this will be the square root of 

s2(cn-2C12+C22), 

since the variance of the differences of any two 
quantities must be the sum of their variances, less 
twice their covariance, as is apparent from the 
algebraic identity 

(X-y)2 = X2-2XY+ y2, 

By the use of the c multipliers, we are thus able'to 
test the significance of the sum or difference, or: indeed 
any linear function, of two or more regression 
coefficients, by calculating its standard error, and 
recognising the ratio it bears to its standard error 
as t, having degrees of freedom appropriate to the 
estimation of the residual variance. 

29' I. The Omission of an Independent Variate 

I t may happen that after a regression equation 
has been worked out, it appears that one of the 
independent variates used is of little interest, and, 
that it would have been preferable to have omitted 
it, and to have calculated the regression on the' 
others. This could be done by solving anew the set 
of equati<;ms involving only the squares and products 
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of the remaining 'variates, but this labour may be 
avoided. The omission of a single variate will always 
increase the number of residual degrees of freedom 
by unity, and correspondingly will increase t,he sum 
of squares of deviations from the regression formula 
by a quantity corresponding to this I degree of 
freedom. If %s stands for the variate to be omitted, 
we may recall that the variance of the corresponding 
coefficient bs was given by the expression a2css. The 
variance of bs/v' CS 3 will therefore be a 2 , and 

bS
2

/C33 

must be the increment added to the sum of squares 
by the omission of the variate %s. 

Equally, if, in the regression formula, we had 
wished to replace bs, not by zero, but by a theoretical 
value f3s, the increment would have been 

(bs-f3s)2/css· 

We may also wish to adjust the coefficients of 
the remaining variates, whic!} have been already 
calculated, to what they would have been if any 
particular variate, such as %3' had been omitted. 
This is easily done by subtracting from b1 the 
quantity 

C13 b 
- S, 
C33 

and applying a similar adjustment of the other 
coefficients. 

lowe to Professor H. ~Shultz of Chicago a more 
comprehensive application of this method than was 
given in the fifth edition. This is to recalculate the 
c-matrix·from formulce of the form 
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The values c' supply the c-matrix which .would 
have been obtained had variate (3) been omitted. 
These give the variances and covariances of the 
adjusted coefficients, and also the means of making 
the further adjustments needed should it be desired to 
omit a second variate, or indeed more, in succ.ession. 

Thus, if the regression of a dependent variate be 
worked out on a considerable group of six or more 
variates, which are regarded as possibly influential, 
it is always possible, with very little labour, if any 
one of them is found to be really unimportant, to 
obtain from our formula the result which would have 
been obtqined had this one been omitted from the 
original calculations. More laboriously a succession 
of unwanted variates may be d.g,carded in turn. 

29.2. Polynomial Fitting when the /Frequencies 
are Unequal I 

The advantages of the arithmetical procedure of 
Sections 28 and 28·1 may still be obtained when it 
is desired to fit a polynomial regression curve of any 
specified degree to a set of observations of the 
dependent variate, th~ frequencies of which at different 
values of the independent variate are unequal. Here 
we shall not ·be concerned to obtain a sequence of 
polynomials of different degrees, but only to obtain a 
single formula, the coefficients of which will not require 
separate tests of significance. We shall )llustrate the 
process in detail for fitting a cubic curve to the times 
taken to run 100 yards by 988 boys at various ages 
from 9.25 to 19.25 years (H. Gray's data). 

The addition process is applied separately to the 
frequencies and to the totals of sprinting time. 
Table 30.3 shows the frequencies in 21 half-year 



§ 29'2] SIGNIFICANCE OF MEANS, ETC. 167 

classes. To fit a cubic, these are summed seven times 
(numbered from 0 to 6), though the last summation 
need not be written out. Much labour is saved by 
choosing a ,II working zero," which we have placed 

TABLE 30'3 

ABBREVIATED SUMMATION PROCESS FOR FREQUENCIES 

Summation. 

Age, Fre, 
quency. I 0, I, 2, 3, 4, 5, 6, 

-- ------- -- --- --- ------

9'25 6 6 6 6 6 6 6 
9'75 8 14 20 26 32 38 44 

10'25 10 24 44 70 102 140 184 
10'75 28 52 96 166 268 408 592 
II'25 29 81 177 343 6II 1019 16II 
II'75 46 127 304 647 1258 2277 3888 
12'25 40 167 471 lII8 2376 4653 8541 
12'75 53 220 691 1809 4185 8838 17379 
13'25 54 274 965 2774 6959 15797 33176 
13'75 66 340 1305 4079 II 038 26835 600 II 

14'25 87 648 I 14'75 71 561 2296 
15'25 98 490 1735 4975 

I 
15'75 84 392 1245 3240 7398 
16'25 85 308 853 1995 4158 7961 
16'75 67 223 545 II 42 2163 3803 6309 
17'25 65 156 322 597 1021 1640 2506 
17'75 44 91 166 275 424 61 9 866 
18'25 25 47 75 109 149 195 247 
18'75 16 22 28 34 40 46 52 
19'25 6 6 6 6 6 6 6 

-- ----- -- -- --- --- ---. 
S 988 991 9054 -3640 34796 -53702 129109 

at 14'25 years. Only die frequencies for age groups 
younger than this are summed forward. The 
frequencies for the older age groups are summed 
backward. The'first backward summation (number 0) 
includes the working zero; the others each stop one 
step short of the summation before. F or the columns 
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of even number the forward and backward totals are 
added, while for those of odd number the forward is 
subtracted from the backward total. The resulting 
sums are represented by So, Sl' ... S6. 

Age 

9. 25 
9·75 

10·25 , 
10·75 
II·25 
II·75 
12· 25 
12·75 
13. 2 5 
13·75 

14. 25 
14·75 
15. 25 
15·75 
16·25 
16·75 
17· 25 
17·75 
18·25 
18·75 
19. 25 

TABLE 30·4 
SUMMATION OF TOTAL TIMES 

Total o. Times. 1. 2. 

JOI·4 101·4 101·4 101'4 
127. 2 228·6 33°. 0 431.4 
167. 0 395. 6 725. 6 Il57· 0 
445. 2 84°·8 1566·4 27 23.4 
475. 6 1316.4 2882·8 5606·2 
713. 0 2029.4 4912. 2 1°518.4 
612·0 2641"4 7553. 6 18072·0 
800·3 3441"7 1°995.3 ,29°67.3 
810·0 42 51" 7 15247. 0 443i4·3 
943. 8 5195.5 2°442.5 64756.8 

12°9·3 8354·9 
958.5 7145. 6 28656.9 

13°3·4 6187. I 21511.3 61169. 6 
1075. 2 4883.7 15324. 2 39658.3 
1088·0 3808.5 10440· 5 24334· I 
83°·8 2720.5 6632.0 13893. 6 
780·0 1889.7 39II• 5 7261"6 
541. 2 II09·7 2021"8 335°·1 
297· 5 568.5 912. 1 1328.3 
198.4 271·0 343. 6 416. 2 

72.6 72.6 72.6 72.6 

1355°·4 8214"4 125926"4 

3· 

-86433"4 

A similar process with only four summations 
(0 to 3) is then applied to the total sprinting times, 
as in Table 30'4, using the same working zero. 

In the previous sections, where our regression 
function is built up of polynomials of specially chosen 
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simplicity, the toefficients were ,obtf!-ined by the 
solution of simple equations. In this, as in the last 
section, the equations are simultaneous. Four will 
be needed for the coefficients of a cubic, and we take 
the four sums obtained above from the total times 
as the right-hand members of them. The coefficients 
of the unknowns on the left-hand sides are obtained 
from the totals So ... S6' derived from the frequencies, 
according to the, following scheme: 

50 51 52 53 
51 252+51 353 +252 45,+353 
52 353+252 654 +653+52 1055 +125,+353 
5a 45,+353 1055+125,+353 2056+3°55+125,+53 

This table is not changed, but if necessary extended, 
when curves are fitted of degrees other than three. 
I t is a good intelligence test to write down the next 
two or three rows and columns from those given for 
a cubic curve. We are brought therefore to the 
equations 

Right.hand 
Values, 

988A + 99IB + 9054C - 3640D = 13550'4 
99IA + 19099B + 7I88C + I28264D = 8214'4 

905¢ + 7188B + I95990C - 130388D = 125926'4 
-3640A + I28264B - I30388C + 1385032D = -86433'4 

Check 
Column, 

2°943'4 
163756'4 
207770'4 

1292834.6 

where the unknowns A, B, C and D are the polynomial 
value at the working zero, and its first three ',advancing 
differences. The process of solution is ~hown in full 
below. Since the coefficients on the left form a 
symmetrical:- matrix, duplicate values may be omitted. 
The work in this example is also arranged to exhibit 
the use of a check cblumn, which is merely the SUn;l 

of the numbers in the same row, irrespective of which 
side of the equation they belong to. The numbers in 
this column are treated just as are those in the 



STATISTICAL METHODS [§ 29'2 

adjacent column at each stage of the solution of the 
equations, and afford a check for each row of figures 
as it is completed, The arithmetical details are given 
III Table 30'5 as arranged for machine calculation, 

TABLE 30-5 

STEPS ,IN THE DIRECT SOLUTION OF FOUR EQUATIONS 

Coefficients of Unknowns. Right-hand 

I 
Check 

Side, Column, 

I 

988 991 9054 -3640 13550'4 2°943'4 
19099 7188 128264 8214'4 163756'4 

195990 -13°388 12~925-4 207770'4 
1385032 -86433'4 1292834'6 

1-355162 1 ,839448 12'06547 18'45312 ' 33'71320 
10'00107 26,6797° 22'46350 6°'98372 

254'45 14 163'1422 456'3388 

1'992473 1'461470 27'27°35 3°'72429 
18'32980 13,63284 33'42411 

, 

34'385737 

\ 
When the number of equations has been reduced to 
one, the value of A is calculated; B is then found by 
substitution in the second equation, and a new value 
for A from the first of the pair of equations at the 
penultimate stage, In the same way C, B and A are 
calculated from the trio of equations, and D, C, B and A 
from the original equations by substitution for each 
unknown always in its appropriate equation, Such a 

,TABLE 30'6 
SOLUTIONS CHECKED BY EACH EQUATION 

A, B, C. D. 

13'95742 
42 _, 3690990 

I 
42 90 -01802630 
42 83 49 -01015438 

I I -



TABLE 30'7 

DEVELOPMENT OF POLYNOMIAL VALUES FROM THE SOLUTIONS 
OF THE EQUATIONS 

Observed Fitted I Differences. 

Mean Polynomial 
Times. Values. 1st. 2nd. 3rd. 

i6'9 16'4° 

16'41 
t'009 

-' 0835 15'9 
-'°74 

16'7 16'34 -'°734 
-'148 

15'9 16'19 -' 0632 
-'211 

16'4 15'98 -'°53° 
-'264 

IS' 5 IS' 72 -'°429 
-'3°7 

15' 3 15'41 -'°32 7 
-'34° 

15' I 15'°7 -'0226 
-'362 

15'0 14'71 -'0124 
-'375 

14' 3 14' 33 -' 0023 
-'377 

13'9 13'957 +'°°79 
-'3691 

13' 5 13' 59 ' oI803 
-'351 ' 010154 

13' 3 13'24 '0282 
-'323 

12·8 12' 91 '°383 
-'285 

12·8 12·63 '°485 
-'236 

12'4 12' 39 '°586 
-'178 

12'0 12' 21 '0688 
-' 109 

12' 3 12'11 '°79° 
-'°3° 

II'9 12'08 ' 0891 
+°59 

12'4 12'14 '°993 
'159 

1.2' 1 12'29 
I 
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complete system of checking obviates all arithmetical 
errors, and from the extent of the variations observed 
in the solutions gives an idea of the extent to which 
the limited accuracy of the process of solution can 
affect the results. . 

To obtain the fitted polynomial values to 2 decimal 
places, we may retain 3,4,5 and 6 places in A, B, C, D 
and build up the· polynomial by successive addition as 
in Table 30'7. It will be understood that in forming 
the second differences on a machine, 6 places are visible 
at each stage, although only 4 t;leed be written down, 
using the neares~ integer in the 4th place. F or the rest, 
the table explains itself. 

The sum of the squares of the polynomial values, 
multiplied by their appropriate frequencies, is found as 
usual by multiplying the solution of the regression 
equations by the right-hand values.- Since in this 
case the regression equations contain a~ absolute 
term, A, this will not give the sum of squares of 
deviations from the mean, but from zero. To reduce 
to ,the mean we must deduct (13550'4)2 -=-988, leaving 
for 3 degrees of freedom the value 1645'58, Deducting 
this from the 20 degrees of freedom for differences 
among classes, there remains 31'24 representing 
residual deviati,ons from the function fitted, 

Degrees of Sum of Mean 
Freedom. Squares. Square. 

Regression 3 1645' 58 548'53 

Residual differences 17 31'24 1'838 

Within age groups 967 1620'27 1.676 

Total . 987 3297'09 
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The adequacy of the form of 'curve chosen for 
representing the sequence of means observed may be 
judged by comparing the mean square derived from 
the deviations with that within age classes. The 
average sum of squares within age groups, derived 
from the standard deviations at each age given by 
Gray, is 1629.27. The whole variation among the 
988 times recorded has thus been analysed into 
three portions (see preceding Table). 

Since the mean square for residuals approxi­
mates closely to that observed among runners of 
the same age, it is evident that no curve could 
fit the data appreciably better. In applying this 
test we have anticipated the method explained in 
Section 44. 



'" 9 

0 

~I 
~I 
~I 

174 STATISTICAL METHODS [§ 29'2 

,....... lr;I to-: ._,. N r-.. 0\ tr.> 0 :;;;-. \0 If) 1!'1 r- ,r.... .... 00 00 "-! l.r) C"I ,....... r- ,t-.... 0\ Ioooj ~\O 0 
1.Jj ('\I "1' a !"") 0 0'. V) tr)\Q 0 tn .... r-- ~ N Q\ l'\Q "¢ C'I"~ .... 0 0 CQ l .... "'''' 1..f) to 

'-D 0">00 \0 0 '" 'q" f"'J ~ '"'" l-j 0 0 0\ 0\ 0\00 00 co 00 co 00 00 r-.. r--.. 'r--.. " {' , .... t--

h&.tn~~hh~~hir>~hNNNNNNN NNNNNr:!iNNNN 
'0 

H \.r)!-I t-... In ('I'",)t:(') \CI .... "¢' 00 ~ 0 -.:;t ~ ('t") r- C'1 0\00 CO CO a N 1..f) 0\ ('f'j t-... N ~ 
N'O "<t 'l"'D "T 0\ 0\ N '0 .... 00 to N 000'0 to "l N .... 0 0 0\00 r-. .... 'O '0 to 

00 0\ to r-. "l .... 0\00 00 r-. .... '0 \Q \Q \Q V) V) V) V) V) V) V) to 'l" "T '<t '<t '<t "T '<t 
;,~~c:-,h~NNNN NNNNNNNNNN NNNNNNNNNN 
"l 

'0 ''IN'O .... r-. V)'O NOO .... 0\0 V) .... 0 0 .... "l'O 0 "<to\"<tO'D NOO tON 
0 000 " ....... "1'\0 0'0 '" 0 r-.'O "<t"lN .... 0 0\00 00 r-.'O '0 '0 tOV)"<t'l"'l" 
"~!-It---.lf)~('1jtl')N " " '"' '"' '"' .... '"' '"' >:' 0 9 0 0 9 0 0 0 0 0 0 0 
~~MNNNNNN '" '" .. .. .. .. .. .. " " N N " N '" '" " " N N '" " 

"<to "l"v)"lV)0 ''IN 'DN .... H"l'OO"<tO\V) Hr-."<tHOO'O"l .... O\r-. 
.... N V) "l '"' "<t 0\'0 "l.... 0\00 "''0 V)"<t 'l" "l N N N H .... H 0 0 0 0 0\ 0\ 
t't",) 0\ ~ looI 0 0\00 co c¢ co r- '" I;-... 1'- 1'0 t--. t-... t--...t... r-... r.... r.... ........ r- ~ t--- r-... ('000\0 \0 

t..6N;'NN~~~':'M ~~H;"~;"MHMM MMMHM;"M;"HM 

00 \Q 00 "l\O 0 \I)'_ t'l" t'l\O 0 \I)'" r-. t'l 0 00 \I') "l.... 0\ 00 \0 \I) '<t t'l... 0 ['co t"",) ('tj" ~ !-I 0'00 ....... \Cl 1..f) 1.1) '¢' o:::t' M M ('f') N N N N 1-4 1-4 !-I I-! !-( !-I H !-I 

OOO'DtO"<t'l""<t"l"l"l"l"l"l"l"l"l"l"l"l"l~~~~~~~~~~ 
M~MMMMMM':'M MMMM":'M~MMM I-IH!-IHI-!!-I!-IIooIHH 

~ 

"l'D 0 0\0 '<t 0\00 0 "l00 "l0\'D <1" .... 0\ .... '0 '<t "l .... 0 0\00 00 t-.'D l/')l/') 

\000 1.I")0'Il1":lt'.f)1-I 0 0 0\ 00 00 t--. r-... r-... ....... \O \0 \0 \0 'i)\O'i) l.()tr)1..f)tn\()V)1..f) 

O\"lN .... .... .... .... .... .... 0 0 0 9 9 9 9 0 0 0 0 9 0 0 3 0 9 0 9 9 0 
.... .... .... H .... .... ;.. ;.. ;.. .... .... .... .... '"' '"' .... .... .... .... .... '"' 

;.. ;.. .... .... '"' .... '"' .... 

o '0 l/') .... r-.oo '"' '0 "l 0 ,._ l/') <I" '" H 0 0\00 00 r-. '0 '0 l/') l/') <I" '<t '<t "l <"l <"l 
o '"' '0 'l" '" .... H 0 0 0 0\ 0\ 0\ 0\ 0\ 0\00 00 00 00 00 00 00 00 00 00 00 00 00 00 
9~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .... 

'" ,._ <I" 0\ 0\ "l 0 '0 <"l N 0 0\00 .... \0 to <I" '<t "l <"l .. N N '"' .... '"' H 0 0 0 
'" .... 00\0 tOtO'<t'l"'<t"<t "T"l"ltfl"ltflC"l"l"l"l ''It'lt'lM''l''l''l''l''l''l 
':'~ U) \.r) 1.1) ~ ~ VI u; ~ ';l~ ~ ~ ~ ~ ':' ':)~ ~ '-11 ~'-:' ~~ ~ ~ ~~ ~ 

\Q 
0\ 
0\ 
to 
0\ 
.... 

Vl 
Vl _' 

00 

'" ;.. 

"l 
'<t 
'0 
"l 
0 

'" o U) '<t '<too '<t N 0\00 ,._ \0 to <I" "l M N '" N '"' '"' H 0 0 0 0 0 0\ 0\ 0\ 0\ ~ 
H .... '" '"' 0 0 0 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\00 00 00 00 00 
,!,;r.,.;r.,.;r.,.~~~ ~~~':l~~~~~':l ~~~~~~':l~~~ <"l 

l/') 0\ t-. '"' .... U) "l N .... 0 0 0\ 0\00 00 00 ........ r-. '" r-.'O '0 '0 '0 '0 '0 '0 '0 '0 
N 00 ........ '0 '0 \0 '0 \Q \Q \Q l/') U) l/') l/') \I') Vl Vl Vl Vl to tr) Vll/') tr) Vl Vl Vll/') Vl 
('I) N ~ r:- ~ ~ ~ ~ ~ ~ ~.~ ~ ~ ~ ~ c:- ('II N N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

0\00 00 co co 00 00 ~ r- r­
N N N N N N N N N N 
!-I H ~ ~ H ~ ~ ~ ~ ~ 

.... N "l"<t \1')'0 ..... 00 0\ 0 
M ~ !-I ~ ~ ~ H ~ !-I ('II 

~~"~".r;-...r;-....r;-...{-... ....... 
N N N N N N N N ~ N 
~ ~ ~ M ~ ~ ~ ~ ~ ~ 



VI 

THE CORRELATION COEFFICIENT 

30. No quantity has been more characteristic of 
biometrical work than the correlation coefficient, and 
no method has been applied to such various data 
as the method of correlation. Observational data in 
particular, in cases where we can observe the occur­
rence of various possible contributory causes of 
a phenomenon, but cannot control them, has be'en 
given by its means an altogether new importance. 
In experimental work proper its position is much 
less central j it will be found useful in the exploratory 
stages of an inquiry, as when two factors which had 
been thoug~t independent appear to be associated 
in their occurrence; but it is seldom, with controlled 
experimental conditions, that it is desired to express 
our conclusion' in the form of a correlation coefficient. 

One of the earliest and most striking successes of 
the method of correlation was-in the biometrical study 
of inheritance. At a time when nothing was known 
of the mechanism of inheritance, or of the structure of 
the germinal material, it was possible by this method 
to demonstrate the existence of inheritance, and to 
" measure its intensity"; and this in an organism in 
which experimental breeding could not be practised, 
namely, Man. By comparison of the results obtained 
from .the physical measurements in man with those 
obtained from other organisms, it was established that 
man's nature is not less governed by heredity than 

175 
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that of the rest of the animate world. The scope of 
the analogy was further widened by demonstrating 
that correlation coefficients of the same magnitude were 
obtained for the mental and moral qualities in man 
as for the physical measurements. 

These results are still of fundamental importance, 
for not only is inheritance in man still incapable_ of 
experimental study, and existing methods of mental 
testing are still unable to analyse the mental disposi­
tion, but even with organisms suitable for experiment 
and meaSUI:ement, it is only in the most favourable 
cases that the several factors causing fluctuating 
variability can be resolved, and their effects studied, 
by Mendelian methods. Such fluctuating variability, 
with an approximately normal distribution, is character­
istic of the majority of the useful qualiti!!s of domestic 
plants and animals; and although there is strong 
reason to think t~at inheritance in such Icases is 
ultimately Mendelian, the biometrical method of study 
is at present alone capable of holding out hopes of 
immediate progress. 

That this method was onc~ centred on the corre­
lation coefficient gives to this statistic a certain 
importance, even to tho~e who prefer to develop their 
analysis in other terms. 

We give in ,Table 3I an example of a correlation 
table. It consists of a record in compact form of the 
stature of I376 fathers and daughters. (Pearson ~nd 
Lee's data.) The measurements are grouped in 
inches, and those whose measurement was recorded as 
an integral number of inches have been split; thus a 
father recorded as of 67 inches would appear as t under 
66'5 and t under 67'5. Similarly with the daughters; 
In consequence, when both measurements ar~ whole 
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numbers the case appears in four q4arters. This 
gives tne table a confusing appearance, since the 
rriajority of entries are fractional, although they 
represent frequencies. The practice of splitting 
observations is not to be deliberately imitated. A 
little care in the choice of group limits will avoid 
a_ll ambiguity. When many items are split, Sheppard's 
corrections are no longer accurate. 

The most ohvious feature of the table is that cases 
do not occur in which the father is very tall and the 
daughter very short, and v£ce versa; the upper right­
hand and lower left-hand corners of the table are blank, 
so that we may conclude that such occurrences are too 
rare to occur in a sample of about 1400 cases. The 
observations recorded lie in a roughly elliptical figure 
lying diagonally across the table. If we mark out the 
region in which the frequencies exceed 10 it appears 
that this region, apart from natu~al irregularities, is 
similar, and similarly situated. The frequency of 
occurrence increases from all sides to the central region 
of the table, where a few frequencies over 30 may 
be seen. The lines of equal frequency are roughly 
similar and similarly situated ellipses. In the quter 
zone observations occur only occasionally, and there­
fore irregularly; beyond this we could only explore 
by taking a much larger sample. 

The table has been divided into four quadrants by 
marking out central values of the two variates; these 
values, 67'S inches for .the fathers and 63'S inches for 
the daughters, are near the means. When the table 
is so divided it is obvious that the lower right-hand 
and upper left-hand quadrants are distinctly more 
populous than the other two; not only are more 
squares occupied, but the frequencies are higher. It 

N 



':fABLE 

Height of 

I 

I 

~I~ I 58'S 59'S 60'S 63'S 64:5 65'S 66,S 

- ---- --'-- ------

52'S '" '" '" '" '25 '25 ", '" '" 

53'S '" ,,' ", .. , '25 '25 '" .. , .. , 

54'S .. , .. , .. ' .. , .. , .. , .. , .. , .. , 
55' 5 '" ", .. , .. , .. , .. , ... 1 '" 

56,S '23 '::';5 .. , '25 1'25 '5 .. , I '5 

57'5 '25 '25 '5 1'5 4'5 I 1 '5 I' 5 2'5 

58 'S '25 '75 '5 '75 '75 1 1'75 1'25 5 

59'S '5 I 2 .. , 6 4'75 5 6'25 II'75 
vi 
'" 60'S 8 6:25 18'25 ,.<:1 '75 '75 .. , 2'5 12'5 20'25 () 
I'i -.... 

,S 61'S .. , '5 1 '75 2 9'75 II'S ',13 23'75 23'75 

~ 
62'5 '" ..., .. , I 2'25 2 4'5 12 22'75 \ 26 33 

,.<:1 
bJl - - - - - - - - - -;:l 
ell 
0 63'S .. ' .. , '25 .... 2 6 8'25 II 27'25 35'75 
0 .., - - - - - - - - - -,.<:1 
bJl 64'S '25 2'5 1'75 3'25 9'25 23 18'75 '" .. , .. , 

:r:: 
6~'5 .. , .. ' .. , '5 I '5 II 12'25 9'25 

66,S .. , , .. , .. '5 '5 1'5 3'25 7'25 8'75 

67'S , .. .. , .. , .. , .. , , .. 1 5'75 7 

68'S '" .. , , .. .., '25 '25 '25 '25 1 'S 

69'S .. , .. , , .. .. , '25 '25 '25 '25 '25 

7°'5 .. , .. , , .. .. , .. , .. , , .. .. , ... 
71'S , .. , .. .. , .. , .. , .. , .. , .. , ... 

I 

72 'S .. , , .. .. , , .. .., , .. .. , .. , .. , 
- ------ -- ---- '-- ---- --

Total 2 4'5 7'5 14'5 45 51 '5 92 'S, ISS 178 
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Fathers in Inches, 
------

67'S 68,S 69'S 7°'5 71 'S 72 'S 73'5 74'S 75'S Total. 

-- ------_ -------- ----
.. ' ," .. ' '" .. , .. , .. , .. , .. , '5 . 
.. ' .. , " . .. , .. , .. , .. , .. , , .. '5 

.. , .. , .. , .. , .. , .. , .. , .. , .. , .. , 

.. , .. , .. , .. , .. , .. , , .. .. , .. , I 

'5 , .. .. , ... '" .., .. , , .. .., 4'5 

... '5 '5 , .. .., .., .. , , .. .. ' 14'5 

2'75 '5 '25 .. ' .. , .. , .. , .. , , .. IS'S 

3'5 3'5 2 1'75 '5 .. , ... .. , , .. 48'S 

II 9 4'75 2'5 1'25 1'25 , .. ... , .. 99 

20'25 16'5 10'25 4'25 3 1'25 , .. , .. .. , 141'5 

28'25 24'75 14'25 13'75 4'75 '75 '5 .. , ~ .. 190 '5 

- - - - - --- - - - -
37'25 31'S 26'25 16'25 7'75 1'5 '75 '25 .. , 212 

- ~ - - - - - - - -
28,S 33 34'25 24'S 1I'7S 5'5 1 '25 1 198'5 

19'75 30 26,S 22'25 15 4'75 3'75 2 I 159'5 

16 26'25 26'75 20'S 18'5 7'75 4'25 '~5 '5 142'5 

4 14'25 13'25 12 11'25 4'5 3'75 '75 .. , 77'S 

3 5'5 4'25 5'75 j'25 3'75 2'5 1'5 2 36 

'25 I 2'5 6'5 2'25 2'75 2 1 .. , 19'5 

... 1'75 '25 4'5 '75 1'25 '75 '25 . .. 9'5 

... '5 . .. '5 '5 1'5 '75 '25 . .. 4 

... I ... ... . .. ... ... . .. .., I 

---- --~ ------ - ~ -- ----

175 199'5. 166 135 82'5 36'S 20 6'5 4'5 1376 

119 
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is apparent that tall men have tall daughters more 
, frequently than the short men, and vice versa. The 

method of correlation aims at measuring the degree 
to which this association exists. 

The marginal total~ show the frequency distribu­
tions of the fatherp and the daughters respectively. 
These are both approximately normal distributions, 
as is frequently the case with biometrical data collected 
without selection. This marks a frequent difference 
between biome_trical and experimental data. An 
experimenter would perhaps have bred from two con­
trasted groups of fathers of, for example, 63 and 
72 inches in height; all his fathers would then belong 
to these two classes, and the correlation coefficient, if 
used, would be almost meaningless. Such an experi­
ment would serve to ascertain the _regression of 
daughter's height on father's height and so to deter­
mine the effect on the daughters of selectiorl applied 
to the fathers, but it would not give us the correlation 
coefficient, which is a descriptive observational feature 
of the population as it is, and may be wholly vitiated 
by selection. 

Just as normal variation with one variate may 
be specified by a frequency formula in which the 
logarithm of the frequency is a quadratic function 
of the variate, so with two variates the frequency 
may be expressible in terms of a quadratic function 
of the values of the two variates. We then have a 
normal correlation surface, for which the frequency 
may conveniently be written in the form 

I { x' 2pXY y.} 
df = I e - 2(I-p') 0-;;'- a,a. + 00' dxdy. 

27TU1U2V I _p2 

In this expression x and yare the deviations of 
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the two. variates 'from their means, U 1 and Uz are the 
two standard deviations, and p is the correlat-ion 
between x and y. The correlation in the above 
expression may be positive or negative, but cannot 
exceed unity in magnitude; it is a pure number 
without physical dimensions. If p = 0, the expression 
for the frequency degenerates into the product of the 
two factors 

x' y' 
I --d I --_ /_ e 2U12 x. _ /_ e 2U.2 dy, 

ufV 27T uav 27T 

showing that the limit of the normal correlation sur­
face, when the correlation vanishes, is merely that of 
two normally distributed variates varying in complete 
independence. At the other extreme, when p is + I 
or - I, the variation of the two variates is in strict pro­
portion, so that the value of either may be calculated 
accurately from that of the other. In other words, we 
cease strictly to have two variates, but merely two 
measures of the same variable quantity. 

If we pick out the cases in which one variate has 
an assigned value, we have what is termed an array; 
the columns and rows of the table may, except as 
regards variation within the group limits, be regarded 
as arrays. With normal correlation the variation 
within an array may be obtained from the general 
formula, by giving x a constant value, (say) a, and 
dividing by the total frequency with which this value 
occurs; then we have 

I I ( au")! 
df = _ / V . e - 2{I- p2)U." y- p~ dy, 

U2 V 27T l-p2 

showing (i) that the variation of y within the array is 
normal; (ii) that the mean value of y for that array is 
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PtZa2/Ul> so that the regression of y on x is liQear, with 
regression coefficient 

and (iii) that the variance of y within the array is 
u 2

2(I _p2), and is the same within each array. We 
may express this by saying that of the total variance 
of y the fraction (1 _p2) is independent of x, while 
the remaining fraction p2, is determined by, or cal­
culable from, the value of x. 

These relations are reciprocal; the regression of x 
on y is linear, with regression coefficient PU1/U2; the 
correlation p is thus the geometric mean of the two 
regressions. The two regression Jines representing 
the mean value of x for given y, and the mean value of 
y for given x, cannot coincide unless p = ± I. The 
variation of x within an array in which y is fixed is 
normal with variance equal to u 1

2(I _p2), so that we 
may say that-of the variance of x the fraction (l-i~) 
is independent of y, and- the remaining fraction, p2, is 
determined by, or calculable from, the value of y. 

Such are the formal mathematical consequences of 
normal correlation. Much biometric material certainly 
shows a general agreement with the features to be 
expected on this assumption; though I am not 
aware that the question has been subjected to any 
sufficiently critical inquiry. Approximate agreement 
is perhaps all that is needed to justify the use of the 
correlation as a quantity descriptive of the population; 
its efficacy in this respect is undoubted, and it is not 
improbable that in some cases it affords, in conjunction 
with the means and variances, a complete description 
of the simultaneous variation of the variates. 
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31. The Statistical Estimation of the Correlation 

Just as the variance of a normal population in one 
variate may be most satisfactorily estimated from the 
sum of the sq~ares of deviations from the mean of 
the observed distribution, so, as we have seen, the 
only satisfactory estimate of the covariance, when the 
variates are normally correlated, is found from the sum 
of the products. The estimate used for the correlation 
is the ratio of the covariance to the geometric mean of 
the two variances. If x and'y represent the deviations 
of the two variates from their means, we calculate the 
three statistics SlI S2, r by the three equations 

then Sl and S2 are estimates of the standard deviations 
01 and 02, and r is an estimate of the correlation p. 

Such an estimate is called the correlat-ion coeffic-ient, 
or the product moment correlaNon, the latter term 
referring to the summation of the product terms, ~, 
in the last equation. The value used for n should 
'properly be the number of degrees of freedom, or one 
less than the number of pairs of observations in the 
sample. As far as the value obtained for r is con­
cerned, however, the value used for n is indifferent, 
and it is usually convenient to base the calculation 
directly on the sums of squares and products without 
dividing by n. 

The method of calculation might have been derived 
from the consideration that the correlation of the 
population is the geometric mean of th~ two regression 
coefficients; for our estimates of these two regressions 
would be Sexy) Sexy) 

S(X2) and S(y2)' 
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so that it is in accordance with these estimates to take 
as our estimate of p 

sexy) 
r = -'\I'''=s=;:=( X~2)==. =O:S=?(y=;;:'2)' 

which is in fact the product mom~nt correlation. 
Ex. 25. Parental correlatz"on z"n stature.-The 

numerical work required to calculate the correlation 
coefficient is shown in Table 32. 

The first eight columns require no explanation, 
since they merely repeat the usual process of finding 
the mean and variance of the two marginal distribu­
tions. I t ,is not necessary actually to find the mean, 
by dividing the total of the 3rd column, 480.5, 
by 1'376, since we may work all through with the 
undivided totals. The correction for the fact that 
our working mean is not the true mean is performed 
by subtracting (480.5)2-;-1376 in the 4th. column; 
a similar correction appears at the foot of ~he 8th 
column, and at the foot of the last column. The 
correction for the sum of products is performed by 
subtracting 480.5 x260·57I376. This correction of 
the product term may be positive or negative; if the 
total deviations of the two variates are of opposite sign, 
the correction must be added. The sum of squares, 
with and without Sheppard's adjustment' (1376712), 
are shown separately; there is no corresponding 
adjustment to be made to the product term. 

The 9th column shows the total deviations of the 
daughter's height for each of the 18 columns in which 
Table 3 I is divided. When the numbers q_re small, 
these may usually be written down by inspection of 
the table. In the present case, where the numbers 
are large, and the entries are complicated by quarter­
ing, more care is required. The total of column 9 
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checks with that of the 3rd column. In order. that it 
shall do so, the central entry + 15'5, which does not 
contribute. to the products, has to be included. Each 
entry in the 9th column is multiplied by the paternal 
deviation to give the loth column. In the present 
case all the entries in column 10 are positive; fre­
quently both positive and negative entries occur, and 
it is then convenient to form a separate column for 
each. A useful check is afforded by repeating the 
work of the last two columns, interchanging the 
variates; we should then find the total deviation of 
the fathers for each array of daughters, and multiply 
by the daughters' deviation. The uncorrected totals, 
5136'25, should then agree. This check is especially 
useful with small tables, in which the work of the 
last two columns, carried out rapidly ~ is liable to 
error. 

The value of the correlation coefficien~, using 
Sheppard's adjustment, is found by dividing 5045'28 
by the geometric mean of 9209'0 and 10,392'5; its 
value is + ·~157. If Sheppard's adjustment 'had not 
been used, we should have obtained + '5097. The 
difference is in this case not large compared to the 
errors of random sampling, and the full effects on the 
distribution in random samples of using Sheppard's 
adjustment have never been fully examined, but there 
can be little doubt that Sheppard's adjustment should 
be used, and that its use gives generally an improved 
estimat~ of the correlation. On the other hand, the 
distribution in random samples of the uncorrected 
value is simpler and better understood, so that the un­
corrected value should be used in tests of significance, 
in which the effect of correction need not, of course, be 
overlooked. For simplicity coarse grouping should 



§ ,3 2] THE CORRELATION COEFFICIENT 

be avoided where such tests are intended. The fact 
that with small samples the correlation obtained by 
the use of Sheppard's adjustment may exceed unity 
-illustrates the disturbance introduced into the random 
sampling distribution. 

32. P~rtial Correlations 

A great extension of the utility of the idea of 
correlation lies in its application to groups of more than 
two variates. In such cases, where the correlation 
between each pair of three variates is known, it is 
possible to eliminate anyone of them, and so find 
what the correlation of the other two would be in a 
population selected so that the third variate was 
constant. 

When estimates of the three correlations are 
obtainable from the same body of data the process of 
elimination shown below will give an estimate of the 
partial correlation exactly comparable with a direct 
estimate. 

Ex. 26. Eliminatz'on of age in organic correlations 
with growz."ng children.-For example, it was found 
(Mumford and Young's data) in a group of boys of 
different ages, that the correlation of standing hez"ght 
with chest girth was + '836. One might expect that 
part of this association was due to general growth with 
increasing age. It would be more desirable for many 
purposes to know the correlation between the variates 
for boys of a given age; but in fact only a few of the 
boys will be exactly of the same age, and even if we 
make age groups as broad as a year, we shall have 
in each group many fewer than the total number 
measured. In order to utilise the whole material, we 
only need to know the correlations of standing height 
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with age, and of chest gz"rth with age. These are given 
as '7I4 and .708. 

The fundamental formula in calculating partial 
correlation coefficients may be written 

1'12-1'131'23 
1'12'3 = . 

V(l -1'132) (I -1'232) 

Here the three variates,are numbered I, 2, and 3, and 
we wish to find the correlation between I and 2, when 
3 is eliminated; this' is called the" partial" correlation 
between I and 2, and is designated by 1'12'3, to show 
that variate 3 has been eliminated. The symbols 1'12, 

1'13,1'23 indicate the correlations found directly between 
each pair of variates, these correlations being dis­
tinguished as " total " correlations. 

Inserting the numerical values in the fQrmula 
given we find 1'12'3 = ·668, showing that~when age is 
eliminated the 'Correlation, though still considerable, 
has been markedly reduced. The mean valu~ stated 
by the above-mentioned authors for the correlations 
found by grouping the boys by years, is ·653, not a 
greatly different value. In a similar manner, two or 
more variates may be eliminated in succession; thus 
with four variates, we may first eliminate variate 4, 
by thrice applying the formula to find 1'12'4' 1'13-4' and 
1'2304. Then applying the same formula again, to 
these three new values, we have 

1'12·34 = . / . 
'V (1 -1'13'42) (1 -1'23-42) 

The labour increases rapidly with the number of 
variates to be eliminated. To eliminate s variates, 
the number of operations involved, each one applica­
tion of the same formula, is -1S(S+I)(S+2); for 
values of s from I to 6 this gives I, 4, 10, 20, 35, 56 
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operations. Much Of this labour may be saved by using 
tables of v I -1'2 such as that published by J. R. Miner. 

Like the independent variates in regression, the 
variates eliminated in correlation analysis need not be 
distributed even approximately in normal distributions. 
Equally, and this is most frequently overlooked, 
random errors in them introduce systematic errors in 
the results. For example, if the partial correlation of 
variates (r) and (2) were really zero, so that 1'12 were 
equal to 1'13 1'23' random errors in the measurement or 
evaluation of variate (3) would tend to reduce both 
1'13 and r23 numerically, so that their product must 
be numerically less than 1'12. An apparent partial 
correlation between the first two variates will therefore 
be produced by random errors in the third. 

The meaning of the correlation coefficient should 
be borne clearly i,n mind. The original aim to 
measure the "strength of heredity" by this method 
was based clearly on the supposition that the whole 
class of factors which tend to make relatives alike, in 
contrast to the unlikeness of unrelated persons, may 
be grouped together a_s heredity. That this is so for 
all practical purposes is, I believe, admitted, but the 
correlation does not tell us that this is so; it merely 
tells us the degree of resemblance in the actual popula­
tion studied, between father and daughter. 'It tells 
us to what extent the height of the father is relevant 
information respecting the l}eight of the daughter, ot, 
otherwise interpreted, it tells us the relative importance 
of the factors which act alike upon the heights of father 
and daughter, compared to the totality of factors at 
work. If we know that B is caused by A, together 
with other factors, independent of A, and that B has 
no influence on A, then the correlation between A 
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and B does tell us how important, in relation to the 
other caus'es at work, is the influence of A: If we have 
not such knowledge, the correlation does not tell us 
whether A causes B, or B causes A, or whether both 
influences are at work, with or without the effects of 
common causes. 

This is true equally of partial correlations. If we 
know that a phenotpenon A is not itself influential in 
determining certain other phenomena B, C, D, ... , 
but on the contrary is probably directly influenced by 
them, then the calculation of the partial correlations 
A with B, C, D, ... , in each case eliminating the 
remaining values, will form a most valuable analysis 
of the causation of A. If on the contrary we choose 
a group of social phenomena with no antecedent 
knowledge of tile causation or absen~e of causation 
among them, then the calculation of correlation 
coefficients, total or partial, will not adv$,nce us a 
step towards evaluating the importance 'of the causes 
at work. 

The correlation between A and B measures, on a 
conventional scale, the importance of the factors which 
(on a balance of like and unlike action) act alike in 
both A and B, as against the remaining factors which 
affect A and B independently. If we eliminate a third 
variate C, we are removing from the comparison all 
those factors which become inoperative when C is 
fixed. If these are only those which affect A a{ld B 
independently, then the correlation between A and B, 
-whether positive or negative, will be numerically 
increased. We shall have eliminated irrelevant dis­
turbing factors, and obtained, as it were, a better 
controlled experiment. We may also require to 
eliminate C if these factors act alike, or oppositely 
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on the two variates correlated; in such a case. the 
variability of C actually masks the effect we wish to 
investigate. Thirdly, C may be one of the chain of 
events by the mediation of which A affects B, or vz'ce 
versa. The extent to which C is the channel through 
which the influence passes may be estimated by 
eliminating C; as one may demonstrate the small 
effect of latent factors in human heredity by finding 
the correlation of grandparent al1d grandchild, elim­
inating the intermediate parent. In no case, however, 
can we judge whether or not it is profitable to eliminate 
a certain variate unless we know, or are willing to 
assume, a qualitative scheme of causation. For the 
purely descriptive purpose of specifying a population 
in respect of a number of variates, either partial or 
total correlations are effective, and correlations of either 
type may be of interest. 

As an illustration we may consider in what sense the 
coefficient of correlation does measure the " strength 
of heredity," assuming that heredity only is concerned 
in causing the resemblance, between relatives; that 
is, that any environmental effects are distributed at 
haphazard. In the first place, we may note that if 
such environmental effects are increased in magni­
tude, the correlations would be reduced; thus the 
same population, genetically speaking, would show 
higher correlations. if reared under relatively uniform 
nutritional conditions, than they would if the nutri­
tional conditions had been very diverse, although the 
genetical processes in the two cases were identical. 
Secondly, if environmental effects were at all influential 
(as in the population studied seems not to be indeed the 
case), we should obtain higher correlations from a 
mixed population of genetically very diverse strains 
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than we should from a more uniform population. 
Thirdly, although the influence of father on daughter 
is in a certain sense direct, in that the father contri­
butes to the germinal composition of his daughter, we 
must not assume that this fact is necessarily the cause 
of the whole of the correlation; for it has been shown 
that h}lsband and wife also show considerable resem­
blance in stature, and consequently taller fathers tend 
to have taller daughters partly because they choose, or 
are chosen by, taller wives. For this reason, for 
example, we should expect to find a noticeable positive 
correlation between stepfathers and stepdaughters; 
also that, when the stature of the wife is eliminated, 
the partial correlation between father and daughter 
will be found to be lower than the total cor.r;elation. 
These considerations serve to some extent to define the 
sense in which' the somewhat vague phrase " strength 
of heredity" must be interpreted, in speaking of the 
correlation coefficient. It will readily be understood 
that, in less well understood cases, analogous considera­
tions may be of some importance, and should be 
critically considered with all possible care. 

33. Accuracy of the Correlation Coefficient 

With large samples, and moderate or small corre­
lations, the correlation obtained from a sample of n 
pairs of values is distributed normally about the true 
vctlue p, with variance, 

it is therefore usual to attach to an observed value 1", 

a standard error (r -r2)/v~, or (r -r2)/v n. This 
procedure is only valid under the restrictions stated 
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above; with small samples the value of r is often very 
different ftom the true value, p, and the factor 1--1"2, 

correspondingly in error; in addition, the distribution 
of r is far from normal, so that tests of significance 
based on the large-sample formula are often very 
deceptive. Since it is with small samples, less than 
100, that the practical research worker ordinarily 
wishes to use the correlation coefficient, we shall give 
an account of more accurate methods of handling the 
results. 

In all cases the procedure is alike for total and 
for partial correlations. Exact account may be taken 
of the differences in the distributions in the two 
cases, by deducting unity from the sample number 
for each variate eliminated; thus a partial correlation 
found by eliminating three variates, and based on 
data giving 13 values for each variate, is distributed 
exactly as is a total correlation based on 10 pairs of 
values. 

34. The Significance of an Observed Correlation 

In testing the significance of an observed correla­
tion we require to calculate the probability that such 
a correlation should arise, by random sampling, from 
an uncorrelated population. If the probability is lpw 
we regard the correlation as significant. The Table 
of t given in the preceding chapter (p. 174) may be 
utilised to make an exact test. If n' be the numbers 
of pairs of observations on which the correlation is 
based, and r the correlation obtained, without using 
Sheppard's adjustment, then we take 

t- r .1-'­
- VI-r2 . v n -2, 

n = n'.-2, 
o 
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and it may be demonstrated that the distribution of 
t so calculated, will agree \yith that given in the table. 

It should be observed that this test", as is obviously 
necessary, is identical with that given in the last 
chapter for testing whether or not the linear regression 
coefficient -differs significantly from zero. 

Table V.A. (p. 209) allows this test to be applied 
-directly from the value of r, for samples up to 100 

pairs of observations. Taking the four definite levels 
of significance, represented by P = '10, '05, '02, and 
'01, the table shows for each value of n, fr()m I to 20, 
and thepce by larger steps to 100, the corresponding 
values of r. 

Ex. 27. Significance of a cor:elatz"on coeffident 
between autumn rainfall and wheat crop.-For the 
twenty years 1885-1904, the mean wheat yield of 
Eastern E~gIand was found to be "correlated with the 
autumn rainfall; the correlation. fO'l.1nd Iwas - '629. 
Is this value significant? We obtain in succession 

1-1'2 = ,6°44, 

VI _1'2 = '7774. 
rjVI _1'2 = -'8°91, 

t = -3'433. 

For n = 18, this shows that P is less than ·01, and 
the correlation is definitely significant. The same 
conclusion may be read off at once from Table V.A. 
entered with n = 18. 

If we had applied ,the standard error, 
1-1'2 

U r = , 
Vn'-I 

we should have 
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a much greater value than the true one, very much 
exaggerating the significance. In addition, assuming 
that r was normally distributed (n=co), the signifi­
cance of the result would be even further exaggerated. 
This illustration will suffice to show how deceptive, in 
small samples, is the use of the standard error of the 
correlation coefficient, on the assumption that it will 
be normally distributed. Without this assumption 
the standard error is without utility. The misleading 
character of the formula is increased if n' is substituted 
for n' - I, as if often done. Judging from the normal 
deviate 4' 536, we should suppose that the correlation 
obtained would be exceeded in random samples from 
uncorrelated material only 6 times in a million trials. 
Actually it would be exceeded about 3000 times in 
a million trials, or .with 500 times the frequency 
supposed. 

I t is necessary to warn the student emphatically 
against the m~sleading character of the standard error 
of the correlation coefficient deduced from a small 
sample, becatfse the principal utility of the correlation 
coefficient lies in its application to subjects of which· 
little is known, and upon which the data are rela­
,tively scanty. With extensive material appropriate 
for biometrical investigations there is little danger 
of false conclusions being drawn, whereas with the 
comparatively few cases to which the experimenter 
must often look for .guidance, the uncritical applica­
tion of methods standardised in biometry must be so 
frequently misleading as to endanger the credit of this 
most valuable weapon of research. I t is not true, as 
the example above shows, that valid conclusions cannot 
be drawn from small samples; if accurate methods 
are used in calculating the probability, we thereby 
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make full allowance for the size of the sample, and 
should be influenced in our judgment only by the value 
of the probability indicated. The great increase of 
certainty which accrues from increasing data is 
feflected in the value of P, if accurate methods are 
used. 

Ex. 28. Significance of a partial correlaNon 
coeffic£ent.-In a group of 32 poor law relief unions, 
Yule found that the percentage change from 1881 to 
1891 in the percentage of the population in receipt of 
relief was correlated with the corresponding change in 
the ratio of the numbers given outdoor relief to the 
number~ relieved in the workhouse, when two other 
variates had been eliminated, namely, the correspond­
ing changes in the percentage of the population over 
65, and in the population itself. 

The correlation found by Yule after eliminating 
the two variates was + '457; such a correlation is 
termed a partial correlation of the second order. Test 
its significance. 

I t has been demonstrated that the distribution in 
random samples of partial correlation coefficients may 
be derived from that of total correlation coefficients 
merely by deducting from the number of the sample 
the number of variates eliminated. Deducting 2 from 
the 32 unions used, we have 30 as the effective number 
of the sample; hence 

n = 28. 

Calculating t from r as before, we fiI!d 

t = 2'7I9, 

whence it appears from the table that P Jies between 
'02 and '01. The correlation is therefore significant. 
This, of course, as in other cases, is on the assump-
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tion that the variates correlated (but not necessarily 
those eliminated) are normally distributed; economic 
variates seldom themselves give normal distributions, 
but the fact that we are here dealing with rates of 
change makes the assumption of normal distribution 
much more plausible. The values given in Table V.A. 
for n = 25, and n = 30, give a sufficient indication of 
the level of significance attained by this observation. 

35. Transformed Correlations 

In addition to testing the significance of a correla­
tion, to ascertain if there is any substantial evidence 
of association at all, it is also frequently required to 
perform one or more of the following operations, for 
each of which the standard error would be used in the 
case of a normally distributed quantity. With cor­
relations derived from large samples the standard 
error may, therefore, be so used, except when the 
correlation approaches ±I; but with small samples 
such as frequently occur in practice, special methods 
must be applied to obtain reliable results. 

(i) To test if an observed correlation differs 
significantly from a given theoretical value. 

(ii) To test if two observed correlations are 
significantly different. 

(iii) If a number of independent estimates of a 
correlation are available, to combine them 

r' into an improved estimate. 
(iv) To perform tests (i) and (ii) with such 

average values. 

Problems of these kinds may be solved by a method 
analogous to that by which we have solved the problem 
of testing the significance of an observed correlation. 
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In that case we were able from the given value r to 
calculate a quantity t which is distributed' in a known 
manner, for which tables were available. The trans­
formation led exactly to a distribution which had 
already been studied. The transformation which we 
shall now employ leads approximately to the normal 
distribution in which all the above tests may be carried 
out without difficulty. Let 

z = Hlog,(I+r)-log,(I-r)}, 
= r+lr3+1r5+ ... , 

then as,r.changes from 0 to I, z will pass· from 0 to 00. 

For small values of r, z is nearly equal to r, but as 
r approaches unity, z increases without limit. For 
negative values of r, z is negative. The advantage of 
this transformation of r into z lies in the distribution of 

~' 

these two quantities in random samples. The standard 
deviation of r depends on the true value of the corre­
lation, p, as is seen from the formula 

I-p2 
CI, = . 

Vn'-I 

Since p is unknown, we have to substitute for it the 
observed value r, and this value will not, in small 
samples, be a very accurate estimate of p. The 
standard error of z is simpler in form, approximately 

a.= ... ~, 
vn-3 

and is practically independent of the value of the 
correlation in the population front which the sample is 
drawn. 

In the second place, the distribution of r is not 
normal in small samples, and even for large samples it 
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remains far fFom normal for high correlations. The 
distribution of z is not strictly normal, but it tends to 
normality rapidly as the sample is increased, whatever 
may be the value of the correlation. We shall give 
examples to test the effect of the departure of the z 
distribution from normality. 

Finally, the distribution of l' changes its form 
rapidly as p is changed; consequently no attempt can 
be made, with reasonable hope of success, to allow for 
the skewness of the distribution. On the contrary, the 
distribution of z is nearly constant in form, and the 
accuracy of tests may 'be improved by small correc­
tions for departure from normality; such corrections 
are, however, too small to be of practical importance, 
and we shall not deal with them. The simple assump­
tion that z is normally distributed will in all ordinary 
cases be sufficiently accurate. 

These three advantages of the transformation from 
r to z may be seen by comparing Figs. 7 and 8. In 
Fig. 7 are shown the actual distributions of 1', for 8 
pairs of observations, from populations having cor­
relations 0 and 0·8; Fig. 8 shows the corresponding 
distribution curves for z. The two curves in Fig. 7 
are widely different in their modal heights; both are 
distinctly non-normal curves; in form also they are 
strongly contrasted, the one being symmetrical, the 
other highly unsymmetrical. On the contrary, in 
Fig. 8 the two curves do not differ greatly in height; 
although not exactly normal in form, they come so 
close to it, even, for a small sample of 8 pairs of observa­
tions, that the eye cannot detect the difference; and 
this approximate normality holds up to the extreme 
limits p :;= ± I. One additional feature is brought out 
by Fig. 8; in the distribution for p = 0'8, although the 
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curve itself is as symmetrical as the eye can judge of, 
yet the ordinate of zero error is not centrally pla~ed. 
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The figure, in fact, reveals the small bias which 
is introduced into the estimate of the correlation 
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coefficient as -ordinarily calculated: we shall treat 
further of this bias in the next section, and in the 
following chapter shall deal with a similar bias intro­
duced in the calculation of intraclass correlations. 

To facilitate the transformation we give in Table 
V.B. (p. 210) the values of.r corresponding to values of 
z, proceeding by intervals of '01, from 0 to 3. In the 
earlier part of this table it will be seen that the values 
of rand z do' not differ greatly; but with higher cor­
relations small changes in r correspond to relatively 
large changes in z. In fact, measured on the z-scale, 
a correlation of '99 differs· from a correlation '95 
by more than a correlation ,6 exceeds zero. The 
values of z give a truer picture of the relative import­
ance of correlations of different sizes than do the 
values of r. 

To find the value of z corresponding to a given 
value of r, say '6, the entries in the table lying on 
either side of ·6 are first found, whence we see at once 
that z lies between ;69 and '70; the interval b~tween 
these entries is then divided proportionately to find 
the fraction to be added to 69. I n this case we 
have 20/64, or '31, so that z = '6931. Similarly, in 
finding the value of r corresponding to any value 
of z, say '9218, we 'see at once that it lies between 
'7259 and '7306; the difference is 47, and 18 per 
cent. of this gives 8 to be added to the former value, 
giving us finally r = '7267. The same table may 
thus be used to transform r into z, and to reverse the 
process. 

Ex. 29. Test of the approx£mate normalz'ty of the 
d£strz'butz'on of z.-In order to illustrate the kind of 
accuracy obtainable by the use of z, let us take the 
case that has already been treated by an exact method 
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in Ex. 27. A correlation of - '629 has been obtained 
from 20 pairs of observations; test its significan~e. 

For r = - '629 we have, using either a table of 
natural logarithms, or the special table for z, Z= - '7398. 
To divide this by its standard error is equivalent to 
multiplying it by v 17. This gives - 3 '050, which we 
interpret as a normal deviate. From the -table of 
normal deviates it appears that this valu~ will be 
exceeded about 23 times in 10,000 trials. The true 
frequency, as we have seen, is about 30 times m 
10,000 trials. The error tends only slightly to 
exaggerate the significance of the result. 

Ex. 30. Further test of the normalz'ty of the' 
d£stributz'on of z.-A partial correlation + '457 was 
obtained from a sample of 32, after eliminating two 
variates. Does this differ significantly from zero? 
Here z = '4935; deducting the two eliminated variates 
the effective size~f the sample is 30, anc!Jhe standard 
error of z is l/V 27; multiplying z by V 27, we have as 
a normal variate 2'564. Table I (or the bottom line 
of Table IV) shows, as before, that P is just over '01. 

There is a slight exaggeration of significance, but it is 
even slighter than in the previous example. 

These examples indicate that the z transformation 
will give a variate which, for most practical purposes, 
may be taken to be normally distributed. In the 
case of simple tests of significance the use of the Table 
of t is to be preferred; in the fdllowing examples this 
method is not available, and the only method available 
which is both tolerably acclJ.rate and sufficiently rapid 
for practical use lies in the use of z. 

Ex. 3 I. Sz'gnzjicance of deviation from expectation 
of an observed correlation coeiJicient.-In a sample of 
25 pairs of parent and child the correlation was found 
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to be ·60. Is 'this value consistent with the view that 
the true correlation in that ch'aracter was '46 ? 

The first step is to find the difference of the corre­
sponding'values of z. This is shown in Table 33. 

To obtain the normal deviate we multiply by V 22, 
and obtain '918. The deviation is less than the 
standard deviation, and the value obtained is therefore 
quite in accordance with the hypothesis. 

TABLE 33 

r. z. 

Sample value ·60 '693 1 

Population value '46 '4973 

Difference '1958 

Ex. 32. Sz'gmjicance of difference between two 
observed' corrclat£ons.-Of two samples the first, of 
20 pairs, gives a correlation ·6, the second, of 25 

pairs, gives a correlation ,8: are these values signi­
ficantly different? 

In this case we require not only the difference of 
the values of z, but the standard error of the difference. 
The variance of the difference is the sum of the 
reciprocals of 17 and 22; the work is shown below. 

TABLE 34 

,.. z. n'-3· Reciprocal. 

1St sample ·60 '693 1 17 '05882 

2nd sample '80 1'0986 22 '04545 

Difference . 4055 ±. 3230 Sum ' 10427 
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The standard error which is appended to the 
difference of the values of z is the square root of the 
variance found on the -same line. The difference does 
not exceed twice the standard error, and cannot there­
fore be judged significant. There is thus no sufficient 
evidence to conclude that the two samples are not 
drawn from equally correlated populations. 

Ex. 33. Comb£na#on of values from small samples. 
-Assuming that the two samples in the last example 
were drawn from equally correlated populations, 
estimate the value of the correlation. 

The two values of z must be given weight in­
versely proportional to their variance. We therefore 
multiply the first by 17, the second by 22 and add, 
dividing the total by 39. This gives an estimated 
value of z for the population, ane!. the corresponding 
value of r may be found from the table. 

TABLE 35 I 

r. z. n'-3· (n'-3)z. 

1St sample ·60 '6931 17 II' 7827 

2nd sample ·80 1" 0986 22 24' 1692 

'7267 '9218 39 35'9519 

The weighted average value of z is .9218, to which 
corresponds the value r = .7267; the value of z so 
obtained may be regarded as subject to normally 
distributed errors of random sampling with variance 
equal to 1/39. The accuracy is therefore equivalent 
to that of a single value obtained from 42 pairs of 
observations. Tests of significance may thus be 
applied to such averaged values of z, as to individual 
values. 
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36. Systematic Errors 

In connexion with the averaging of correlations 
obtained from small samples it is worth while to 
consider the effects of two classes .of systematic errors, 
which, although of little or no importance when single 
values only are available, become of increasing im­
portance as larger numbers of samples are averaged. 

The value of z obtained from any sample is an 
estimate of a true value, " belonging to the sampled 
population, just as the value of r obtained from a 
sample is an estimate of a population value, p. If the 
method of obtaining the correlation were free from 
bias, the values of z would be normally distributed 
about a mean z, which would agree in value with ,. 
Actually there is a small bias which makes the mean 
value of z somewhat greater numerically than ,; 
thus the correlation, whether positive or negative, is 
slightly exaggerated. This bias may effectively be 
corrected by subtracting from the value of z the 
correction 

p 
2(n'-I)" 

For single samples this correction is unimportant, 
being small compared to the standard error of z. For 
example, if n' = 10, the standard error of z is .378, 
while the correction is p / 18' and cannot exceed .056. 
If, however, 12 were the mean of 1000 such values of z, 
derived from samples of 10, the standard error of z 
is only ·012, and the correction, which is unaltered by 
taking the mean, may well be of great importance. 

The second type of systematic error is that intro­
duced by neglecting Sheppard's adjustment. In calcu­
lating the value z, we must always take the value of 
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r found without using Sheppard's CJ,djustment, smce 
the latter complicates the distribution. 

But the omission of Sheppard's adjustment intro­
duces a systematic error, in the opposite direction to 
that mentioned above; and which, though normally 
very small, appears in large as well as in small samples. 
In the case of averaging the correlations from a number 
of coarsely grouped small samples, the averagez should 
be obtained from values of r found without Sheppard's 
adjustment, and to the result a correction, representing 
the average effect of Sheppard's adjustment, may, be 
applied. 

37. Correlation between Series 

The extremely useful case in which it is required to 
find the correlation between two series of quantities, 
such as annual figures, arranged in order at equal 
intervals of time, may be regarded as a case of partial 
correlation, although _it may be treated morel directly 
by the method of fitting curved regression lines given 
in Section 27 (p. I47). 

, If, for example, we had a record of the number 
of deaths from a certain disease for successive years, 
and wished to study if this mortality were associated 
with meteorological conditions, or the incidence of 

. some other disease, or the mortality of some other age 
group, the outstanding difficulty in the direct applica­
tion of the correlation coefficient is that the number 
of deaths considered probably exhibits a progressive 
change during the period available. Such changes 
may be due to changes in th~ population among which 
the deaths occur, whether it be the total population 
of a district, or that of a particular age group, or 
to changes in the sanitary conditions in which the 
population lives, or in the skill and availability of 
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medical assistance; or to changes in the racial or 
genetic composition of the population. In any case, 
it is usually found that the changes are still apparent 
when the number of deaths is converted into a death­
rate on the existing population in each year, by which 
means one of the direct effects of changing population 
is eliminated. 

I f the progressive change could be represented 
effectively by a straight line it would be sufficient to 
consider the time as a third variate, and to eliminate 
it by calculating the corresponding partial correlation 
coefficient. Usually, however, the change is not so 
simple, and would need an expression involving the 
square and higher powers of the time adequately to 
represent it. The partial correlation required is one 
found by eliminating not only t, but t2, t3, t4, ... , 
regarding these as separate variates; for if we have 
eliminated all of these up to (say) the 4th degree, we 
have incidentally eliminated from the correlation 
any function of the time of the 4th degree, includ­
ing that by which the progressive change is best 
represented. 

This partial correlation may be calculated directly 
fro~ the coefficients of the regression function obtained 
as in Section 28 (p. 151). If y and y' are the two 
quantities to be correlated, we obtained for y'the co-
efficients A, B, C, ... , and for y' the corresponding 
coefficients A', B', C', ... ; the sums of the squares of 
the deviations of the variates from the curved regres­
sion lines are obtained as before, from the equations 

n'(n'2 r) 
S(y-y)2 = S(y2)-n'A2 - - B2_".

J 
12 

'('2 ) 
S(y' - Y')2 = S(y'2),-n'A'2 _ n nl~-1 B'2- . . . , 
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while the sum of the products may be obtained from 
the similar equation 

'('2 ) 
S{(y-Y)(y'-Y')}=S(yy')-n'AA,_n n -I BB'-

12 

the required partial correlation being, then, 

r = ~S~{(:::y===.=Y~) (~y~' =oY='~)}~ 
vS(y-Y)2 . S(y'-Y')2 

In this process the number of variates eliminated 
is equal to the degree of t to which the fitting has been 
carried; it will be understood that both variates must 
be fitted to the same degree, even if one of them is 
capable of adequate representation by a curve of lower 
degree than is J:he other. 

TABLE] 
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TABLE V.A.-VALUES OF THE CORRELATION COEFFICIENT 

FOR DIFFERENT LEVELS OF SIGNIFICANCE 

11. P:=·I. ·OS· '02. I 
.01. 

I '98769 '996917 '9995°66 '9998766 
2 '9°000 '95°00 '98000 '99°000 
3 ·8°54 .8783 '93433 '95 873 
4 '7293 ·8II4 ·8822 '917 20 
5 .6694 '7545 .8329 .8745 
6 .621 5 '7°67 '788 7 ·8343 
7 '5822 ·6664 '7498 '7977 
8 '5494 .63 19 '7155 '7 646 
9 '5 214 ·6021 .6851 '7348 

10 '4973 '5760 .6581 '7°79 

II '4762 155 29 .6339 .6835 
12 '4575 '5324 ·6120 .6614 
13 '44°9 '5 1 39 '5923 .6411 
14 '4259 '4973 '5742 ·6226 
IS '4124 '4821 '5577 .6°55 
16 '4°°0 '4083 '54 25 '5897 
17 '3887 '4555 '5 285 . 575 1 
18 '3783 '4438 '5 155 '5 614 
19 '368 7 '4329 '5°34 '5487 
20 '3598 '422 7 '4921 '5368 

25 '3233 '38°9 '445 1 '4869 
30 '2960 '3494 '4°93 '4487 
35 '2746 '3 246 '3810 . '4 182 
40 '2573 '3°44 '3578 '3932 
45 '2'428 ' 2815 '3384 '37 21 
50 '23°6 '2732 '3218 '3541 
60 '2108 '25°° '2948 '3248 
7° '1954 '23 19 '2737 '3°17 
80 ' 1829 ' 21 72 '2565 ' 283° 
90 '1726 '2°5° '2422 ' 26 73 

100 ' 1638 '1946 '23°1 '254° 

For a total correlation, n is 2· less than the number of pairs in the 
sample; for a partial correlation, the number of eliminated variate)1 also 
should be subtracted. 

p 
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VII 

INTRACLASS CORRELATIONS AND THE 
ANALYSIS OF VARIANCE 

38. A type of data, which is of very common occur­
rence, may be tre<;tted by methods closely analogous 
to that of the correlation table, while at the same time 
it may be more usefully and accurately treated by the 
analysis of variance, that is by the separation of the 
variance ascribable to one group of causes from the 
variance ascribable to ot{ler groups. We shall in this 
chapter treat first of those cases, arising in biometry, in 
which the analogy with the correlations treated in the 
last chapter may most usefully be indicated, and then 
pass to more gener~l cases, prevalent in experimental 
results, in which the treatment by correlation appears 
artificial, and in which the analysis of variance appears 
to throw a real light on the problems before us. A 
comparison of the two methods of treatment illustrates 
the general principle, so often 10,st sight of, that tests of 
significance, in so far as they are accurately carried 
out, are bound to agree, whatever proces; of statistical 
reduction may be employed. 

If we have measurements of n' pairs of brothers, 
we may ascertain the correlation between brothers in 
two slightly different ways. In the first place we may 
divide the brothers into two classes, as for instance 
elder brother and younger brother, and find the corre­
lation between these two classes exactly as we do with 
parent and child.. If we proceed in this manner we 
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shall find the mean of the measurements of the elder 
brothers, and separately that of the younger brothers. 
Equally the standard deviations about the mean are 
found separately for the two classes. The correlation 
so obtained, being that between two classes of measure­
ments, is termed for distinctness an inter_class correla­
tion. Such a procedure would be imperative if the 
quantiti~s to be correlated were, for example, the 
ages, or some characteristic sensibly dependent upon 
age, at a fixed date. On the other hand, we may not 
know, in each case, which measurement belongs to the 
elder and which to the younger brother, or, such a 
distinction may be quite irrelevant to our purpose; in 
these cases it is usual to use a common mean derived 
from all the measurements, and a common standard 
deviation about that mean. If Xv X'I;_ X 2, X'2; •.. ; 

X n" X'1I' are the pairs of measurements given, we 
calculate \ 

I 
X = -, S(z+z'), 

2n 

I 
r = -2 S{(z-X) (x' -x)}. 

ns 

When this is done, ?' is distinguished as an intra­
class correlation, since we have treated all the brothers 
as belonging to the same class, and having the same 
mean and standard deviation. The intraclass correla­
tion, when its use is justified by the irrelevance of any 
such distinction as age, maybe expected to give a more 
accurate estimate of the true value than does any of 
the possible interclass correlations derived from the 
same material, for we have used estimates of the mean 
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and standard deviation founded on 2n' instead of 
on n' values. This is in fact found to be the case; 
the intraclass correlation is not an estimate equivalent 
to an interclass correlation, but is somewhat more 
accurate. The error distribution is, however, as we 
shall see, affected also in other ways, which require the 
intraclass correlation to be treated separately. 

The analogy of this treatment with that of inter­
class correlations may be further illustrated by the 
construction of what is called a symmetrical table. 
Instead of entering each pair of observations once 
in such a correlation table, it is entered twice, the 
co-ordinates of the two entries being, for- instance, 
(Xl' x't) and (X'lI Xl)' The total entries in the table 
will then qe 2n', and the two marginal distributions 
will be identical, each representing the distribution of 
the whole 2n' observations. The equations given, 
for calculating the intraclass correlation, bear the same 
relation to the symmetrical table as the equations for 
t4e interclass correlation bear to the corresponding 
unsymmetrical table with n' entries. Although the 
intraclass correlation is somewhat the more accurate, 
it is by no means so accurate as is an interclass correla­
tion with 2n' independent pairs of observations. 

The contrast between the two types of correlation 
becomes more obvious when we have to deal not with 
pairs, but with sets of three or more measurements; 
for example, if three brothers in each family have been 
measured. In such cases also a symmetrical table 
can be constructed. Each trio of brothers will pro­
vide three pairs, each of which gives two entries, so 
that each trio provides 6 entries in the table. ~o 
calculate the correlation from such a table is equivalent 
to the following eq4ations : 



214 STATISTICAL METHODS 

x = _:, S(x+x' +x"), 
3n 

I 
S2 = 3

n 
S{(X_X)2+(X~_Xyl+(X'" _X)2}, 

,. = ~ S{(X' -x) (x" -x) + (X" -X) (X-X)+(X-X) (x' -x)}. 
3m 

In many instances of the use of intraclass cor­
relations the number of observations in the same 
(t family" is large, as when the resemblance between 
leaves on the same tree was studied by picking 26lea ves 
from a number of different trees, or when 100 pods 
were taken from each tree in another group of cor­
relation studies. If k is the number in each family, 
then each set of k values will provide k(k- I) values 
for the symmetrical table, which thus may contain an 
enormous number of entries, and be-very laborious to 
construct. To obviate this difficulty Harri3 introduced 
an abbreviated method of calculation by which the 
value of the correlation given by the symmetrical table 
may be obtained directly from two distributions: 
(i) the distribution of the whole group of kn' observa­
tions, from which we obtain, as above, the values of 
,x and s; (ii) the distribution of the n' means of 
families. If ~1' £2' ... , £"" represent these means 
each derived from k values, then 

4S(xSI-x)~ = ns2{1 +(4-I)r} 

is an equation from which can be calculated the value 
of r, the intraclass correlation derived from the sym­
metrical table. It is instructive to verify this fact, 
for the case k = 3, by deriving from it the full formula 
·for r given above for that case. 

One salient fact appears from. the above relation: 
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the sum of a number of squares, and therefore the 
left hand of this equation, is necessarily positive. 
Consequently r cannot have a negative value less than 
- IJ(k- I). There is no such limitation to positive 
values, all values up to + I being possible. Further, 
if k, the number in any family, is not necessarily less 
than some fixed value, the correlation in the population 
cannot be negative at all. For example, in card games, 
where the number of suits is limited to four, the corre­
lation between the number of cards in different suits 
in the same hand may have negative values down to 
-1; but there is probably nothing in the production of 
a leaf or a child which necessitates that the number in 
such a family should be less than any number however 
great, and in the absence of such a necessary restric­
tion we cannot expect to find negative correlations 
within such families. This is in the sharpest contrast 
to the unrestricted occurrence of negative values 
among interclass correlations, and it is obvious, since 
the extreme limits of variation are different in the two 
cases, that the distribution of values in random samples 
must be correspondingly modified. 

39. Sampling Errors of Intrac1ass Correlations 

The case k = 2, which is closely analogous to an 
interclass correlation, may be treated by the trans­
formation previously employed, namely 

z = i{log (r +r)-log (r -r)}; 

z is then distributed very nearly in a normal distribu­
tion, the distribution IS wholly independent of the 
value of the correlation p in the population from 
which the sample is drawn, and the variance of z 
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consequently depends only. on the size of the sample, 
being given by ~he formula 

2 I 
u. = n'-3/2 ' 

The transformation has, therefore, the same 
advantages in this case as for interclass correlations. 
I t will be observed that the slightly greater accuracy 
of the intraclass correlation, compared to an ~nterc1ass 
correlation based on the same number of pairs, is 
indicated" by the use of n' - 3/2 in place of n' - 3. The 
advantage is, therefore, equivalent to It additional 
pairs of observations. A second difference lies in the 
bias to which such estimates are subject. For inter­
class correlations the value found in samples, whether 
positive or negative, is exaggerated to the extent of 
requiring a correction, 

p 
Zen'-I)' 

to be applied to the average value of z. With intra­
class correl~tions the bias is always in the negative 
direction, and is independent of p; the correction 

n' 
necessary in these cases being +t log -, -, or, 

n -I 
. I I approXlmate y, + ---",---

2n -I 
This bias is characteristic 

of intrac1ass correlations for all values of k, and 
arises from the fact "that the symmetrical table does 
not provide us with quite the best estimate of the 
correlation. ' 

The effect of the transformation upon the error 
curves may be seen by comparing Figs. 9 and 10. 

Fig. 9 shows the actual error curves of r derived from a 
symmetrical table formed from 8 pairs of observations. 
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drawn from populations having correlations 0 and 0·8. 
Fig. IO shows the corresponding error curves for the 
~ ______________________________________ --__ ~4 
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d,istribution of z. The three chief advantages noted 
in Figs. 7 and 8 are equally visible in the comparison 



218 STATISTICAL METHODS [§ 39 

of Figs. 9 and 10. Curves of very unequal variance 
are replaced by curves of equal variance, skew curves 
by approximately normal curves, curves of dissimilar 
form by curves of similar form. In one respect the 
effect of the transformation is more perfect for the 
intraclass than it is for the interclass correlations, for, 
although in both cases the curves are not precisely 
normal, with the intraclass correlations they are 
entirely constant in variance and f~rm, whereas with 
interclass correlations there is a slight variation in both 
respects, as the correlation in the population is varied. 
Fig. 10 shows clearly the effect of the bias introduced 
in estimating the correlation from the symmetrical 
table; the bias, like the other features of these curves, 
is absolutely constant in the scale of z. 

Ex. 34. Accuracy of an' observed £ntraclass cor­
relatz'on.-An intraclass correlation ·8000 is derived 
from 13 pairs of observations: estimate the correlation 
in the population from which it was drawn, and find 
tl;le limits within which it probably lies. 

Placing the values of l' and z in 'parallel columns, 
we have 

TABLE 36 

r, z. 
_._- -----

Calculated value +'6000 + '6931 
Correction . ... + '0400 

Estimate +' 6250 + '7331 
Standard error ... ± '2949 
Upper limit . + 8675 +1'3 229 
Lower limit . +'1423 + '1433 

The calculation is carried through in the z column, 
and the corresponding values of l' found as required 
from the Table V.B. (p. 210). The value of l' is 
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obtained from the symmetrical table, and the corre­
sponding value of z calculated. These values suffer 
from a small negative bias, and, this is removed by 
addiJ?g to z the correction; the unbiased estimate of z 
is therefore '7331, and the corresponding value of r, 
'6250, is an unbiased estimate, based upon the sample, 
of the correlation in the population from which the 
sample was drawn. To find the limits within which this 
correlation may be expected to lie, the standard error 
of z is calculated, and twice this value is added and 
subtracted from the estimated value to obtain the 
values of z at the upper and lower limits. From 
these we obtain the corresponding values of r. The 
observed correlation must in this case be judged 
significant, since the lower limit is positive; we shall 
seldom be wrong in concluding that it exceeds '14 
and is less than ·87. 

The sampling errors for the cases in which k 
exceeds 2 may be more satisfactorily treated from the 
standpoint of the analysis of variance; but whenever 
it is preferred to think in terms of c~rrelation, it is 
possible to use an analogous transformation suitable 
for all values of k. Let 

11 I+(k-I)r 
z=~ og J 

1-1" 

a transformation, which reduces to.the form previously 
used when k = 2. Then, in random samples of sets of 
k observations the distribution of errors in z is inde­
pendent of the true valu-e, and approaches normality 
as n' is increased, though not so rapdilyas when k = 2. 

The variance of z may be taken, when n' is sufficiently 
large, to be approximately 

k 
2(k-l) (n'-2)' 
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To find r for a given value of z in this ~ransforma­
tion, Table V.B. may still be utilised, as in the 
following example. 

Ex. 35. Extended use of Table V.B.-Find the 
value of r corresponding to z = + I '0605, when 
k = 100. 

First deduct from the giv.en value of z half the 
natural logarithm of (k- I); enter the difference as 
<I z" in the table and multiply the corresponding 
value of" r" by k; add k-2 and divide by 2(k- I). 
The numerical work is shown below: 

TABLE 37 

z . 
t log (k-I) = t log 99 

"z" 
ur" 

£ " r " = 100 " r " 
k-2 

2r(k-I) = 198r 
r . 

+1'0605 
2'2975 

-1'2370 

_._-·8446 
-84'46 

98 

Ex. 36. Significance of intrae/ass correlatz"on 
from large samples.-A correlation + '0684 was found 
between the "ovules failing" in the different pods 
from the same tree of Cercis Canadensis. 100 pods 
were taken from ,each of 60 trees (Harris's data). 
Is this a significant correlation? 

As the last example shows, z = 1'0605; the 
standard error of z is '0933. The value of z exceeds 
its standard error over I I times, and the correlation is 
undoubtedly significant. 

When n' is sufficiently large we have seen that, 
subject to somewhat severe limitations, it is possible 
to assume that the interclass correlation is normally 
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distributed in random samples with standard error 

r_p2 

v'n'-r· 

221 

The corresponding formula for intra class correlations, 
using k in a class, is 

(r -p){r +(k-r)p} 
v'tk(k-r)n" . 

The utility of thIs formula is subject to even more 
drastic limitations' than is that for the interclass 
correlation, for n' is more often small. In addition, 
the regions for which the formula is inapplicable, even 
when n' is large, are now not in the neighbourhood 

of ±I, but in the neighbourhood of + I and - k I l' 

When k is large the latter approaches zero, so that 
an extremely skew distribution for r is found not 
only with high correlations but also with very low 
ones. I t is therefore not usually an accurate formula 
to use in testing significance. This abnormality in 
the neighbourhood of zero is particularly to be noticed, 
since it is only in this neighbourhood that much is to 
be gained by taking high values of k. Near zero, as 
the formula above shows, the accuracy of an intraclass 
correlation is with large samples equivalent'to that of 
ik(k- I)n' independent pairs of observations; which 
gives to high values of k an enormous advantage in 
accuracy. For correlations near ·5, however great k 
be made, the accuracy is no higher than that obtain­
able from 9n' /2 pairs; while near + I it tends to be 
no more accurate than would be n' pairs. 
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40. Intraclass Correlation as an Example of the Analysis 
of Variance 

A very great simplification is introduced into 
questions involving intraclass correlation when we 
recognise that in such cases the correlation merely 
measures the relative importance of two groups of 
factors causing variation. We have seen that in the 
practical calculation of the intraclass correlation we 
merely obtain the two necessary quantities kns2 and 
ns2{I+(k-I)r}, by equating them to the two 
quantities 

lln' n' 
S(X_X)2, kS(x,,-x) 2, 
I I 

of which the first is the sum of the squares (kn' in 
number) of the deviations of all the ol'fservations from 
their general mean, and the second is k tim~s the sum 
of the squares of the n' deviations of the mean of 
each family from the general mean. Now it may 
easily be shown that 

1m' n' 1m' 
S(X-X)2 = kS(X,,-X)2+S(X-X,,)2, 
J I I 

in which the last term is the sum of the squares of 
the deviations of each individual measurement from 
the mean of the family to which it belongs. The 
following table summarises these relations by showing 
the number of degrees of freedom involved in each 
case, and, in the last column, the interpretation put 
upon each expression in the calculation of an intraclass 
correlation from a symmetrical table. 
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TABLE 38 

Degrees of Sum of Squares. Freedom. 

1m' 
Within families n'(k-I) Sex-x",)a ns2(k-I)(I-r) 

I 

n' 
Between families n'-I kS(x",_X)2 ns2{I +(k- I)r} 

I 

kn' 
Total n'k-I S(X-x)1 ns2k 

I 

It will now be observed that z of the preceding 
section is, apart from a constant, half the difference of 
the logarithms of the two parts into which the sum of 
squares has been analysed. The fact that the form 
of the distribution of z in random samples is inde­
pendent of the correlation of the population sampled, 
is thus a consequence of the fact that deviations of 
the individual obsel,'"vations from the means of their 
families are £ndependent of the deviations of those 
means from the general mean. The data provide us 
witli independent estimates of two variances; if these 
variances are equal the correlation is zero; if our 
estimates do not differ significantly the cor,relation 
is insignificant. If, however, they are significantly 
different, we may if we choose express the fact in terms 
of a correlation. 

The interpretation of such an inequality of variance 
in terms of a correlation may be made clear as follows, 
by a method which also serves to show that the inter­
pretation made by the use of the symmetrical table is 
slightly defective. Let a quantity be made up of two 
parts, each normally and independently distributed; 
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let the variance of the first part be A, and tha~ of the 
second part B; then it is easy to see that the variance 
of the total quantity is A+ B. Consider a sample of 
n' values of the first part, and to each of these add a 
sample of k values of the second part, taking a fresh 
sample of k in each case. We then have n' families of 
values with k in each family. In the infinite population 
from which these are drawn the correlation between 
pairs of members of the same family will be 

A 
P=A+B· 

From such a set of kn' values we may make 
estimates of the values of A and B, or in other words 
we may analyse the variance into the portions contri­
buted by the two causes; the intracl<!Ss correlation 
will be merely the fraction of the total variance due 
to that cause which observations in the, same family 
have in common. The value of B may be estimated 
directly, for variation within each family is due to this 
cause alone, consequently 

kn' 

S(X_Xf»2 = n'(k-I)B. 
1 

The mean of the observations i~ any family is 
made up of two parts, the first part with variance A, 
and a second part, which is the mean of k values 
of the second parts of the individual values, Clcnd 
has therefore a variance Blk; consequently from 
the observed variation of the means of the families, 
we have n' 

kS(X",-X)2 = (nfL-I) (kA+B). 
1 

Table 38 may therefore be rewritten, writing III the 
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lasf column S2 for A+ B, and r for the unbiased 
estimate of the correlation. 

TABLE 39 

Degrees of Sum of 
Freedom. Squares. 

1m' 
Within n'(k-I) ~(X_.x,,)2 n'(k-r)B = n's2(k-r)(I-r) 
families 

n' 
Between n'-x 
families 

k~(xp-.i)2 (n'-r)(kA+B) = (n'-r)s2{r+(k-r)r} 

kn' 
Total n'k-I S(X-X)2 (n'-r)kA+(n'k-r)B = s2{n'k-I-(k-r)r} 

1 

Comparing the last column with that of Table 38 
it is apparent that the difference arises solely from 
putting n' for n in the first line and n' - I for n in the 
second; the ratio between the sums of squares is altered 
in the ratio n': (n' - I), which precisely eliminates the 
negative bias observed in z derived by the previous 
method. The error of that method consisted in 
assuming that the total variance derived from n' sets 
of related, individuals could be accurately estimated by 
equating the 'sum of squares of all the individuals from 
their mean, to ns2k just as if they were all unrelated; 
this error is unimportant when n' is large, as it usually 
is when k = 2, but with higher values of k, data may 
be of great value even when n' is very small, and in 
such cases serious discrepancies arise from the use of 
the uncorrected values. 

The direct test of the significance of an intraclass 
correlation may be applied to such a table of the 
analysis of variance without actually calculating r. 
If there is no correlation, then A is not significantly 

. different from zero; there is no difference between the 
Q 
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several families which is not accounted for, as a random 
sampling effect of the differences within each family. In 
fact the whole group of observations is a homogeneous 
group with variance equal to B. 

41. Test of Significance of Difference of Variance 

The test of significance of intraclass correlations 
·i~ thus simply an ,example of the much wider class of 
tests of significance which arise in the analysis of 
variance. These tests are all reducible to the single 
problem of testing whether one estimate of variance 
derived from nl degrees of freedom is significantly 
greater than a second such estimate derived from n 2 

degrees of freedom. This problem is reduced to its 
simplest form by calculating z equal ,to half the 
difference of the natural logarithms of the estimates 
of the variance, or to the difference of -the logarithms 
of the corresponding standard deviations. Then if P 
is the probability of exceeding this value by thance, it 
is possible to calculate the value of z corresponding 
to different values of P, nl, and n2. 

A full table of this kind, involving tq.ree variables, 
would be very extensive; we therefore give tables 
for three especially important values of P, and for 
a number of combinations of nl and n2, sufficient to 
indicate the values for other combinations. (Table VI, 
pp. 242-247). We shall giye various examples of the 
use of this table. When both n l and n2 are large, 
and also for moderate values when they are equal or 
nearly equal, the distribution of z is sufficiently near 
normal for effective use to be made of its standard 
deviation, which may be written 

~!_ (~+ ~). 
2 nl n2 
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This includes the case of the intraclass correlation, 
when k = 2, for if we have n' pairs of values, the varia­
tion between classes is based on n' - I degrees of 
freedom, and that within'classes is based on n' degrees 
of freedom, so that 

nl=n'-I, n2=n', 

and for moderately large values of n' we may take z 
to be normally distributed as above explained. When 
k exceeds 2 we have 

nl=n'-r, n2=(k-r)n'; 

these may be very unequal, so that unless n' be quite 
large, the distribution of z will be perceptibly asym­
metrical, and the standard deviation will not provide 
a satisfactory test of significance. 

Ex. 37. Sex dzjJerence z"n varz"ance of stature.­
From 1164 measurements of males the sum of squares 
of the deviations was found· to be 8590; while from 
1456 measurements of .females it was 9870: is there a 
significant difference in absolute variability? 

TABLE 40 

Degrees of Sum of Mean Log (Mean lIn. Freedom. Squares. Square. Square). 

Men II 63 8590 7'386 1'9996 '0008598 

Women 1455 9870 6'783 1 '9145 '0006873 
--

Difference '0851 Sum '0015471 

. 
The mean squares are calculated from the sum of 

squares by dividing by the degrees of freedom; the 
difference of the logarithms is '0851, so that z is '0426. 
The variance of z is half the sum of the last column, 
so that the standard deviation of z is '02781. The 
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difference in variability, though suggestive of a real 
effect, cannot be judged significant on these data. 

Ex. 38. Homogeneity of small samples.-In an 
experiment on the accuracy bf counting soil bacteria, 
a soil sample was divided into four parallel samples, 
and from each of these after dilution seven plates were 
inoculated. The number of colonies on each plate is 
shown below. Do the results from the four samples 
agree within the limits of random sampling? In 
other words, is the whole set of 28 values homogeneous, 
or is there any perceptible intrac1ass correlation? 

TABLE 41 

Sample. 
Plate. 

I. II. 

I 72 74 
2 69 72 
3 63 70 
4 59 69 
5 59 66 
6 53 58 
7 51 52 

Total 4 26 461 
Mean 60·86 65. 86 

From these values we obtain 
TABLE 42 

Degrees of Sum of 
Freedom. Squares. 

Within classes 24 1446 

Between classes 3 94'96 

Total. 27 1540 '96 

III. 

-
78 
74 
70 
58 
58 
56 
56 

450 
64'28 

Mean 
Square, 

60'25 

31'65 

' 57'07 

IV. 
, 

69 

~g 
64 
62 
58 
54 

440 
62'86 I 

S.D. LogS.D. 

--
7'762 2'0493 

5.626 1 '7274 

7'55 -'3219 
(Difference) =8 
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The variation within classes is actually the greater, 
so that if any correlation is indicated it must be 
negative. The numbers of degrees of freedom are 
small and unequal, so we shall use Table VI. This 
is entered with nl equal to the degrees of freedom 
corresponding to the larger variance, in this case 24 ; 
also, n2 = 3. The table gives 1 '0781 for the 5 per cent. 
point; so that the observed difference, '3219, is ;eally 
very moderate, and quite insignificant. The whole set 
of 28 values appears to be homogeneous with variance 
about 57'07. 

I t should be noticed that if 9nly two samples had 
been present, the test of homogeneity would have been 
equivalent to testing the significance of t, as explained 
in Chapter V. In fact the values for nl = 1 in the 
table of z (p. 242) are nothing but the logarithms of 
the values, for P= 'oS and '01, in the Table oft(p, 174). 
Similarly, the values for n2 = I in Table VI are the 
logarithms of the reciprocals of the values, which would 
appear in Table IV under P = '95 and '99. The 
present method may be regarded as an extension of 
the method of Chapter V, appropriate when we 
wish to compare more than two means. Equally it 
may be regarded as an extension of the methods of 
Chapter IV, for if na were infinite z would equal 

2 t log ~ of Table III for P = '05 and '01, and if n1 n 
2 

were infinite it would equal -i log K.. for P = '95 and 
n 

'99. Tests of goodness of fit, in which the sampling 
variance is not calculable a priori, but may be esti­
mated from the data, may therefore be made by 
means of Table VI. (See Chap. VII 1.) 

Ex. 39. Comparison of intraclass correlatz'ons.-
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The following correlations are given (Harris's data) 
for the number of ovules in different pods of the same 
tree, 100 pods being counted on each tree (Cerc£s 
C anadensz"s) : 

Meramec Highlands , 
Lawrence, Kansas 

, 60 trees + .3527 
- 22 trees + ·3999 

Is the correlation at Lawrence significantly greater 
than that in the Meramec Highlands? 

First we find z in each case from the formula 
z = Hlo~ ,(I +ggr)-log (I -r)} 

(p. 219); this gIves z=2·0081 for Meramec and 2.1071 
for Lawrence; since these were obtained by the method 
of the symmetrical table we shall insert the small 
correction 1/(2n' - I) and obtain 2.0165 f<;>r Meramec, 
and 2.1304 for Lawrence, as the valu~~ which would 
have been obtained by the method of the analysis of 
variance. \ 

To ascertain to what errors these determinations 
are subject, consider first the case of Lawrence, which 
being based on only 22 trees is subject to 'the larger 
errors. We have nl=21, n2 =22 ><99=2178. These 
values are not given in the table, but from the 
value for n1 = 24, n2 = 00 it appears that positive 
errors exceeding .2085 will occur in rather more 
than 5 per cent. of samples. This fact alone settles 
the question Of significance, for the value for 
Lawrence only exceeds that obtained for Mer~mec 
by ·II39. 

In other cases greater precisi<;m may be required. 
In the Table for z the five values 6, 8, 12, 24, 00 are 
chosen for being in harmonic progression, and so 
facilitating Interpolation, if we use lin as the variabie. 
If we have to interpolate both for n1 and n2 , we proceed 
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in three steps. We find first the values of z for n1 = 12, 

n2 = 2178, and for nl = 24, n2 = 2178, and from these 
obtain the required value for n1 = 21, n2 = 2178. 

To find the value for nl = 12, n2 = 2178, observe that 
60 
-- = '0275 
2178 ' 

for n2 = Cf:) we have '2804, and for n2 = 60 a value 
higher by '0450, so that '2804+ '0275 x '0450 = '2816 
gives the approximate value for n2 = 2178. 

Similarly for n1 = 24 

'2085+'0275 X '0569 = ·2IOr. 

From these two values we must find the value for 
n1 = 21 ; now 

24 I 

'21 = I +'7' 
so that we must add to the value for nl = 24 one-seventh 
of its difference from the value for nl = 12; this gives 

'07 15 
'2101+ -- = '2203, 

. 7 

which is approximately the positive deviation which 
would be exceeded by chance iI). 5 per cent. of random 
samples. 

Just as we have found the 5 per cent. point for 
positive deviations, so the 5 per cent. point for negative 
deviations may be found by interchanging nl and n2 ; 

this turns out to be '2978. If we assume that our 
observed value does not transgress the 5 per cent. point 
in either deviation, that is to say that it lies iIi the 
central nine-tenths of its frequency distribution, we 
may say that the value of z for Lawrence, Kansas, 
lies between I '9101 and 2 '4282; these fiducial limits 
being found respectively by subtracting the positive 
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deviation and adding the negative deviation to the 
observed value. 

The fact that the two deviations are distinctly 
unequal, as is generally the case when nl and na are 
unequal and not both large, shows that such a 
case cannot be treated accurately by means of a 
probable error. 

Somewhat more accurate values than the above 
may be obtained by improved methods of interpola­
tion; the method given will, however, suffice for all 
ordinary requirements, except in the corner of the 
table where nl exceeds 24 and n2 exceeds 30. For cases 
which fall into this region, the following formula gives 
the 5 per cent. point within one-hundredth of its value. 
If h is 'the harmonic mean of n1 and n2 , so that 

.:-~+~ 
h - nl na' 

then z = 1'6449 - '7843 (.-: _ ~). 
Vh-l nl n2 

Similarly, the I per cent. point is given approxI­
mately by the formula 

2'3263 . (1 1) z= -1'235 ---. 
Vh-l'4 nl n2 

For the 0'1% point we may use 

3'0902 ( 1 1 ) 
Z=.I - 1'92 5 --- . 

V h-2'I nl n2 

The modification of the v' h- I, which is good for 
the 5% point, used for the higher levels of significance, 
is due to W. G. Cochran. 

Let us apply this formula to find the 5 per cent. 
points for the Meramec Highlands, n1 = 59, n2 = 5940 ; 
the ca lculation is as follows: 
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TABL;E 43 

I/nl '01695 vk-I 10'76 

1/n2 '00017 I/Yk-1 '09294 First term '15288 

21k '01712 l/n1-I/n. '01678 Second term '01 316 

I/k '00856 Difference '1397 
k 116·8 Sum '1660 

The 5 per cent. point for positive deviations is 
therefore ·I397. and for negative deviations 'I660; 
with the same standards as before, therefore, we may 
say that the value for Meramec lies between I ,8768 
and 2'I825 with a fiducial probability of 90 per cent. ; 
the large overlap of this range with that of Lawrence 
shows that the correlations found in the two districts 
are not significantly different. 

42. Analysis of Variance into more than Two Portions 

I t is often necessary to divide the total variance 
into more than two portions; it sometimes happens 
both in experimental and in observational data that 
the observations may be grouped into classes in more 
than oI?-e way; each observation belongs to one class 
of typ~ A and to a different class of type B. In such 
a case we can find separately the variance between , 
classes of type A and between classes of type B; the 
balance of the total variance may represent only the 
variance withif;l each subclass, or there may be in 
addition ctn interaction of causes so that a change in 
class of type A does not have the same effect in all 
B classes. If the <;>bservations do not occur singly in the 
subclasses, the variance within the subclasses may be 
determined independently, and,the presence or absence 
of interaction verified. Sometimes also, for example, 
if the observations are frequencies, it is possible to 
calculate the variance to be expected in the subclasses. 

Ex. 40. Dz'urnal and annual varz'atz'on of ra£n 
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frequency.-The frequencies of rain at different hours 
in different months (Table 44) were observed at 
Richmond during 10 years (quoted from Shaw, with 
two corrections in the totals). 

The variance may be analysed as follows: 
TABLE 45 

Degrees of Sum of Mean 
Freedom. Squares. Square. 

Months II 6,568 .58 597. 144 
Hours 23 1,539·33 66.928 
Remainder 253 3,81 9.58 15·°97 

Total 287 11,927· 50 

The mean of the 288 values given in the table is 
24·7, and if the original data had represented inde­
pendent sampling chances, we should expect the mean 
square residue to be nearly as great as this, or greater, 
if the rain distribution during the day differs in different 
months. Clearly the n~sidual variance is subnormal, 
and the reason for this is obvious when we consider 
that the probability that it should be raining in the 
2nd hou~ is not independent of whether it is raining 
or not in the 1st hour of the same day. Each shower 
will thus often have been entered twice or more often, 
and the .values for neighbouring hours in ~he same 
month will be positively correlated. Much of the 
random variation has thus been included in that 
ascribed to the months, _and probably accounts for 
the very irregular sequence of the monthly totals. The 
variance between the 24 hours is, however, qu'ite 
significantly greater than the residual variance, and 
this shows that the rainy hours have been on the 
whole similar in the different months, so that the 
figures clearly indicate the influ~nce of time of 
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day. From the data it is not possible to estimate the 
influence of time of year, or to discuss whether the 
effect of time of day is the same in all months. 

Ex. 41. Analysz's of varz'atz'on z"n experz'mental 
field trz'als.-The table on the following page gives the 
yield in lb. per plant in an experiment with potatoes 
(Rothamsted data). A plot of land, the whole of 
which had received a dressing of dung, was divided 
into 36 patches, on which 12 varieties were grown, each 
variety having 3 patches scattered over the area. Each 
patch was divided into three lines, one of which received, 
in addition to dung, a basal dressing only, containing no 
potash, while the other two rece,ived additional dress­
ings of sulphate and chloride of potash respectively. 

From data of this sort a variety of information may 
be derived. The total yields of the 36 patches give 
us 35 degrees of freedom, of which I I represent 
differences among the 12 varieties, and 241 represent 
the differences 'between different patches growing the 
same variety. By comparing the variance in these 
two classes we may test the significance of the varietal 
differences in yield for the soil and climate of the 
experiment. The 72 additional degrees of freedom 
given by the yields of the separate rows consist ,of 
2 due to manurial treatment, which we can subdivide 
into one representing the differences due to a potash 
dressing as against the basal dressing, and a second 
representing the manurial difference between the 
sulphate and the chloride; and 70 more representing 
the differences observed in manurial response in the 
different patches. These latter may in turn be divided 
into 22 representing the difference in manurial response 
of the different varieties, and 48 representing the 
differences in manurial response in different patches 
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growing the same variety. To test the significance of 
the manurial effects, we may compare the variance in 
each of the two manurial degrees of freedom with that 
in the remaining 48; to test the significance of the 
differences in varietal response to manure, we compare 
the variance in the 22 degrees of freedom with that in 
the 48; while to test the significance of the difference 
in yield of the same variety in different patches, we 
compare the 24 degrees of freedom representing the 
differences in the yields of different patches growing 
the same variety with the 48 degrees representing the 
differenc~s of manurial response on different patches 
growing the same variety. 

For each variety we shall require the total yield 
for the whole of each patch, the total yield for the 
3 patches and the total yield for each manure; we 
shall also need the total yield for each manure for the 
aggregate of the 12 varieties; these values are given 
on page 238 (Table 47). 

The SUrrl of the squares of the deviations of all 
the 108 values from their mean is 7I '699; divided, 
according to patches, in 36 classes of 3, the value for 
the 36 patches is 61 '078; dividing this again accord­
ing to vanetles into 12 classes of 3, the value for the 
12 varieties is 43'638. We may express the facts so 
far as follows: 

TABLE 48 

Variance. Degrees of Sum of Mean Log (S.D.) Freedom. Squares. Square. 

Between varieties II 43.6384 3'967 .689° 
Between patches for 

same variety 24 17'44°1 '727 -'1594 

Within patches 72 10·62°4 ... '" 

Total 107 71.6989 
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The value of z, found as the difference of the loga­
rithms in the last columI1:, is '8484, 'the corresponding 
I per cent. value being about· 564 j the effect of variety 
is therefore very significant. 

Of the variation within the patches the portion 
ascribable to the two differences of manurial treatment 
may be derived from the totals for the three- manurial 
treatments. The sum of the squares of the three 
deviatjons, divided ,by 36, is '3495; of this the square 
of the difference of the totals for the two potash dress­
ings, divided by 72, contributes '0584, while the square 
of the difference between their f\1ean and. the total 
for the basal dressing, divided by 54, gives the 
remainder, '29I I. It is possible, however, that the 
whole effect of the dressings may not appear in these 
figures, for if the different varieties had responded in 
different ways, or to different extentS, to the dressings, 

. the whole effect would not appear In th1 totals. The 
70 remaining degrees of freedom would not be 
homogeneous. The 36 values, giving the totals for 
each manuring and for each variety,' give us 35 
degrees of freedom, of which I I represent the differ­
ences of variety, 2 the differences of manuring, and the 
remaining 22 show the differences in manurial response 
of the different varieties. The analysis of this group is 
shown below: 

TABLE 49 

Variance due to Degrees of Sum of I Mean 
Freedom. Squares. Square. 

Potash dressing 1 '291I '2911 
Sulphate v. chloride 1 '0584 '°584 
Differential response of varieties 22 2'1911 '°996 
Differential response in patches 

with same variety 48 8'0798 '1 683 

Total 72 10'62°4 
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To test the significance of the variation observed 
in the yield of patches bearing the same variety, we 
may compare the value '727 found above from 24 
degrees of freedom, with '1683 just found from 48 
degrees, The value of z, half the difference of the 
logarithms, is '7316, while the I per cent. point is 
about '394. The evidence for unequal fertility of the 
different patches is therefore unmistakable. As is 
always found in careful field trials, local irregularities 
in the nature or depth of the soil materially affect the 
yields. In this case the soil irregularity was perhaps 
combined with unequal quality or quantity of the dung 
supplied. 

There is no sign of differential response among the 
varieties; indeed, the difference between patches with 
different varieties is less than that found for patches 
with the same variety. The difference between the 
values is not significant; z = '2623, while the 5 per 
cent. point is about '33. 

Finally, the effect oflhe manurial dressings tested 
is small; the difference due to potash is indeed greater 
than the value for the differential effects, which we may 
now call random fluctuations, but z is only '3427, and 
would require to be about '7 to be significant. With 
no total response, it is of course to be expected, though 
not as a necessary consequence, that tile differential 
effects should be insignificant. Evidently the plants 
with the basal dressing had all the potash necessary, 
and in addition no apparent effect on the yield was 
produced by the difference between chloride and 
'sulphate ions. 

[TABLE 

R 
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TABLE 

5 PER CENT. POINTS OF 

, I 

Values 

J. 2. 3· I 4-

1 2' 5421 2·6479 2·.687° 2'7°7 1 
2> 1'4592 1'4722 1'4765 1'4787 
3 1'1577 1'1 284 1'1137 1'1°51 
4 1'0212 '969° '94.29 '9272 
5 '9441 ·8777 .8441 .82 36 
6 .8948 ·8188 '7798 '7558 
7 ·8606 '7777 '7347 '7°80 
8 .8355 '7475 '7°14 .67 25 
9 .8163 '7 242 ·6757 ·645° 

10 ·8012 '7°5 8 ·6553 .62 32 

II '7889 .69°9 .6387 .6°55 
12 '7788 .6786 .62 5° '59°7 
13 '77°3 ·6682 .61 34 '5783 
14 '763° ·6594 .6°36 I '56 77 

Co IS '75 68 .65 18 '595° '55 85 
;: 16 '75 14 .645 1 '58 76 '55°5 '0 17 '74?6 .6393 '581 I '5434 '" Q) 

18 '7424 .6341 '5753 '5371 " '" '7386 .62 95 '57°1 '53 15 :> 19 
20 '735 2 .62 54 '5 654 '5265 

21 '7322 ·6216 '5 612 '521 9 
22 '7 294 ·6182 '5574 '5178 
23 '7269 .61 51 '554° '5 14° 
24 '7 246 .6123 '55°8 '5 106 
25 '7 22 5 .6°97 '5478 '5°74 
26 '72°5 .6°73 '545 1 '5°45 
27 '7 187 .6°51 '54 2 7 '5°'17 
28 '7 1 71 .6°3° '54°3 '4992 
29 '7 155 ·60II '5382 '4969 . 3° '7 141 '5994 '5362 '4947 

60 .6933 '5738 '5°73 '4632 

CO .67 29 '5486 '4787 '43 19 
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THE DISTRIBUTION OF Z 

of Up 

5, 6, 8, 12, 24, 00, 

2'71'94 2'7 276 2'7380 2'7484 2'7588 2'7693 
1'4800 1'4808 1'481 9 1'4830 1'4840 I'4851 
1'0994 1'0953 1'°899 I'Q842 I,0781 I,07 16 
'9168 '9093 ,8993 ,8885 ,8767 ,8639 
,8097 '7997 '7862 '77 14 '755° '7368 
'7394 '7274 '71 12 ,693 1 ,67 2 9 ,6499 
,6896 ,6761 ,6576 ,6369 ,61 34 '5 862 
,65 25 ,6378 ,61 75 '5945 '5682 '537 1 

,6238 ,608o '5862 '5 61 3 '53 2 4 '4979 
,6009 '5843 '56 II '5346 '5°35 '4 657 

'5822 '5648 '5406 ' 5I26 '4795, '4387 
'5666 '5487 '5 234 '4941 '4592 '4156 
'5535 '535° '5089 '47 85 '4419 '3957 
'5423 '5 233 '4964 '4649 '4269 '3782 
'5326 '5 131 '4855 '4532 '4138 '3628 
'5241 '5°42 '476o '4428 '4°22 '349° 
'5 166 '4964 '4676 '4337 '3919 '3366 
'5°99 '4 894 '4602 '4 255 '382 7 '3 2 53 
'5°4° '4832 '4535 '4182 '3743 '3 151 
'4986 '4776 '4474 '4116 '3668 '3057 

'4938 '47 25 '442O I '4°55 '3599 '2971 
'4894 "4679 '437° '4001 '3536 ' 2892 
'4 854' '4636 '4325 '395° '3478 '2818 
'4817 '4598 '4 283 '3904 '34 25 '2749 
'4783 '4562 '4244 '3862 '337 6 '2685 
'4752 '45 29 '4 2°9 '3823 '333° ' 262 5 
'4723 '4499 '4176 '3786 '328 7 '2569 
'4696 '4471 '41 46 '375 2 '3248 '25 I6 
'4671 '4444 '411 7 '37 2O '32Il '2466 
'4648 '442O '4°9° '3691 '3176 '241 9 

'43 11 '4°64 '37°2 '3255 '2654 ' 1644 

'3974 '3706 '33°9 ' 2804 '2085 0' 
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TABLE 

1 PER CENT. POINTS OF 

Values 

I. 2.- 3· 4· 

4'1535 4'2585 4'2974 4'3175 
2-295° 2'2976 2'2984 2'29?8 
1'7649 1'714° 1.6915 1.6786 
I' 5270 1'4452 1'4075 1'3856 
1'3943 1'2929 1'2449 1'2164 
1'31°3 1'1955 1'14°1 1'1068 
1.2526 1'1281 1·6672 1'°3°0 
1'2106 1'°787 1'0135 '9734 
1'1786 1'04II '97 24 '9299 
I-I535 l'OII4 '9399 ·8954 

1·1333 '9874 '9136 .86 74 
l'II66 '9677 .8919 ·8443 
1,1027- '95 II ·8737 

I 
.82 48 

1-°9°9 '937° .8581 ·8082 
1·08°7 '9249 .8448 '7939 
1'°7 19 '9144 ·8331 '7814 
1.0641 '9°5 1 .822 9 '77°5 
1'°572 .897° .81 38 '76°7 
1'°5 11 .8897 ·8°57 '75 21 
1'°457 .8831 '7985 '7443 

1'°4°8 .8772 '7920 '7372 
1'°363 .87 19 '7860 '73°9 
1'°322 .86 7° '7806 '7251 
1'°285 ·8626 '7757 '7197 
1.02 51 .8585 '77 12 '7148 
1'0220 .8548 '767° '7 1°3 
1'°191 .85 13 '7631 '7°62 
1.0164 .8481 '7595 '7°23 
1'0139 .8451 '7562 .6987 
1'0116 .8423 '753 1 ·6954 

'9784 .802 5 '7°86 .6472 

'9462 '7636 .665 1 '5999 
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VI.-Continued 

THE DISTRIBUTION OF 'z 

of nl' 

5· 6. 8. 12 24- 00. 

4'3 2 97 4'337'9 4'3482 4'3585 4'3689 4'3794 
2'2991 2'2992 2'2994 2'2997 2'2999 2'3°01 
1·67°3 1·6645 1.6569 1.6489 1·64°4 1.6314. 
1'37 II 1'36°9 1'3473 1'3327 

, 
1'317° 1'3°00 

1'1974 1' 1838 1'1656 1'1457 1' 12 39 1'°997 
1'0843 1'0680 1'°460 1'0218 '994 8 '9643 
1'°°48 '9864 '9614 '9335 '9°20 .8658 

'9459 '9259 .8983 .8673 .83 19 '79°4 
'9°06 .879 1 .8494 .81 57 '7769 '73°5 
.8646 .8419 ·81°4 '7744 '7324 ·6816 

·8354 ·8Il6 '7785 '74°5 .6958 ·64°8 
·8Ill '7864 '75 20 '7 122 ·6649 ·6061 
'79°7 '7652 '7 295 ·6882 .6386 '5761 
'7732 '747 1 '7 1°3 .6675 .61 59 '55°° 
'7582 '7314 ·6937 .6496 '5961 '5269 
'745° '7177 .6791 .6339 '5786 '5°64 
'7335 '7°57 .6663 .61 99 '5 63° '4879 
'7 232 .695° .6549 ·6°75 .5491 '47 12 
'714° .6854 .6447 '5964 '5366 '4560 

'7°58 .6768 .6355 '5864 '5 2 53 '4421 

.6984 .669° ·62r~ '5773 '5 15° '4 2 94 

.6916 ,662O ,6196 '5691 '5°56 '41 76 

.6855 ,6555 .612 7 '5 61 5 '4969 '4°68 

" 
·6799 ,6496 .6064 '5545 '489° '3967 
.6747 .6442 ,6006 '5481 '4816 '3872 
.6699 ,6392 '595 2 '5422 '4748 '3784 
·6655 .6346 '59°2 '5367 '4685 '37°1 
.661 4 .63°3 '5856 '53 16 '462,6 '3624 
.6576 ,6263 '581 3 '5 269 '457° '355° 
·654° ·6226 '5773 '5 224 '45 1 9 '3481 

·6028 '5 68 7 '5 189 '4574 '3746 '235 2 

'5522 '5 1 52 '46°4 '39°8 '291 3 ° 
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TABLE 

0'1 PER CENT, POINTS OF 

Values 

I. I 2. 3, 4, 

6'4577 6, 5612 6'5966 6,6201 
3'4531 3'4534 3'4535 3'4535 
2'5604 2'5003 2'4748 2'4603 
2' 1529 2'0574 2' 0143 1'9892 
1'9255 1'8002 1'7513 1'71.84 
1'7849 1' 6479 I' 5828 I' 5433 
1'6874 1'5384 1'4662 1'4221 
1' 61 77 1'4587 I' 3809 I' 3332 
1'5646 I' 3982 I' 3160 I' 2653 
I' 5232 I' 3509 1' 2650 I'2II6 

1'4900 I' 3128 1'2238 1' 1683 
1'4627 I' 2814 1'1900 1'1326 
1'4400 I' 2553 I',l-{)16 1'1026 
1'4208 I' 2332 1'1376 1'0772 
1'4043 I' 2141 1' 1169 I 1'0553 
1'3900 1'1976 1'0989 1'0362 
I' 3775 1' 1832 1'0832 1' 01 95 
I' 3665 1'1704 1'0693 1'0047 
I' 3567 1'1591 1'0569 '9915 
I' 3480 1'1489 1'0458 '9798 

I' 3401 1'1398 1'0358 '9691 
I' 3329 (, 1315 1'0268 '9595 
I' 3264 I'124° 1'0186 '95°7 
I' 32°5 1'1'171 1'0111 '9427 
I' 3151 1'1108 1'0041 '9354 
I' 3101 1'10'50 '9978 '9286 
I' 3055 1'0997 '9920 '9223 
I' 3013 1'0947 '9866 '9165 
I' 2973 1' 0903 '9815 '9II2 
I' 2936 1' 0859 '9768 '9061 

I' 2413 1' 0248 '910O '8345 

1'1910 '9663 '8453 '7648 

The author is indebtep. to Dr Deming~ 
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VI.-Continued 

THE DISTRIBUTION OF Z 

of nl' 

5, 6, 8, 12, 24, oc, 

6'6323 6'64°5 6'65°8 6'66II 6'6715 6' 6819 
3'4535 3'4535 3'4536 3'4537 3'4536 3'4536 
2'45 II 2'4446 2'4361 2'4272 2'4179 2'4081 
1'9728 1"9612 I" 9459 1'9294 1"9118 1" 8927 
1" 6964 1'.6808 1'6596 1'637° I" 6123 I" 5845 , 
I' 5177 1"4986 1"4730 1"4449 1"4134 I" 3783 
I" 3927 I" 37II I" 3417 1"3090 1'2721 I' 2296 
I" 3008 1" 2770 1'2443 I' 2077 1" 1662' I' II69 
1'2304 I" 2047 1' 1694 I" 1293 1' 083° 1' 02 79 
I" 1748 1'1475 I" 1098 1'0668 1" 0165 '9557 

1' 1297 1'1012 I" 0614 1" 01 57 '961 9 '8957 
1'0926 1"0628 1" 0213 '9733 '9162 '845° 
1'0614 1'0306 '9875 '9374 '8774 ' 8014 
1'0348 1" 0031 '9586 '9°66 '8439 '7635 
1"0119 '9795 '9336 ,880O ' 8147 '73°1 

'992O '9588 '9119 '8567 '7891 '7°°5 
'9745 '94°7 '8927 '8361 '7664 '674° 
'959° '9246 '8757 '8178 '7462 ,65°2 
'9442 '9103 '86°5 ' 8014 '7277 ' 6285 
'9329 '8974 '8469 '7867 ' 7115 '6086 

'921 7 '885,8 '8346 '7735 '6964 '5904 
'9II6 '8753 ' 8234 '7612 ,6828 '5738 
'9°24 ' 8657 ' 8132 '75°1 '67°4 '5583 
'8939 '8569 ' 8038 '74°° '6589 , '544° 
'8862 '8489 '7953 '7306 '6483 '53°7 
'8791 '8415 '7873 '7 22O ,6385 '5183 
'8725 '8346 '780O '714° ' 6294 '5°66 
'8664 '8282 '7732 '7°66 ' 6209 '4957 
'86°7 ' 8223 '7679 '6997 ' 6129 '4853 
'8554 ,8168 '7610 '6932 ' 6056 '4756 

'7798 '7377 '676o '5992 '4955 '3198 

'7°59 I 
,6599 '5917 '5°44 ' 3786 ° 

for this section of the Table of z. 



VIII 

FURTHER APPLICATIONS OF THE 
ANALYSIS OF VARIANCE 

43. We shall in this chapter give examples of the 
further applications of the method of the analysis of 
variance developed in the last chapter in connexion 
with the theory of intraclass correlations. I t is 
impossible in a short space to give examples of all 
the different applications which may be made of this 
method; we shall therefore limit ourselves to those 
of the most immediate practical importance, paying 
especial attention to those cases whet:'e erroneous 
methods have been largely used, or where no alterna­
tive method of attack has hitherto been put forward. 

44. Fitness of Regression Formula:: 

There is no more pressing need in connexion with 
the examination of experimental results than to test 
whether a given body of data is or is not in agree'­
ment with any suggested hypothesis. The previous 
chapters have largely been concerned with such 
tests appropriate to hypotheses involving frequency 
of occurrence, such as the Mendelian hypothesis of 
segregating genes, or the hypothesis of linear arrange­
ment in linkage groups, or the more general hypotheses 
of the independence or correlation of variates. More 
frequently, however, it is desired to test hypotheses 
involving, in statistical language, the form of regression 

248 
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lines. We may wish to test, for example, if the growth 
of an animal, plant or population follows an assigned 
law, if for example it increases with time in arithmetic 
or geometric progression, or according to the so~called 
It autocatalytic," or It logistic," law of increase; we may 
wish to test if with increasing applications of manure, 
plant growth increases in accordance with the laws 
which have been put forward, or whether in fact the 
data in hand are inconsistent with such a supposition. 
Such questions arise not only in crucial tests of widely 
recognised laws, but in every case where a relation, 
however empirical, is believed to be descriptive of the 
data, and are of value not only in the final stage of 
establishing the laws of nature, but in the early stages 
of testing the efficiency of cr technique. The methods 
we shall put forward for testing the Goodness of Fit 
of regression lines are aimed both at simplifying the 
calculations by reducing them to a standard form, 
and so making accurate tests possible, and at so dis~ 
playing the whole process that it may be apparent 
~xactly what questions can be answered by such a 
statistica-l examination of the data. 

If for each of a number of selected values of the 
independent variate x a number of observations of 
the dependent variate y is made, let the number of 
values of x available be a; then a is the number 
of arrays in our data. Designating any particular 
array by means of the suffix p, the number of observa­
tions in any array will be denoted by np, and the mean 
of their values by Y'P; y being the general mean of 
all the values of y. Then whatever be the nature of, 
the data, the purely algebraic identity' 
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expresses the fact that the sum of the squares of the 
deviations of all the values of y from their general 
mean may be broken up into two parts, one repre­
senting the sum of the squares of the deviations of the 
means of the arrays from the general mean, each 
multiplied by the number in the array, while the 
second is the sum of the squares of the deviations of 
each pbservation from the mean of the array in which 
it occurs. This resembles the analysis used for imra­
class correlations, save that now the numher of 
observations may be different in each array. The 
deviations of the observations from the means of the 
arrays are due to causes of variation, including 'errors 
of grouping, errors of observation, and so on, which 
are not dependent upon the value of x; the standard 
deviation due to these causes thus provides a basis for 
comparison by which we can test whether the devia­
tions of the means of the ,arrays from th~ values 
expected by hypothesis are or are not significant. 

Let Yp represent in any array the mean value 
expected on the hypothesis to be tested, then 

S{n 1J(Y2>- Y 1J)2} 

will measure the discrepancy between the data and the 
hypothesis. In comparing this with the variation 
within the arrays, we must of course consider how 
many degrees of freedom are available, in which the 
observations may differ from the hypothesis. In some 
cases, which are relatively rare, the hypothesis specifies 
the actual mean value to be expected in each array; 
in such cases a degrees of freedom are available, 
a being the number of the arrays. More frequently, 
the hypothesis specifies only,the form of the regression 
line, having one or more parameters to be determined 
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from the observations, as when we wish to test if the 
regression can be represented by a straight line, so 
that our hypothesis is justified if any straight line fits 
the data. In such cases to find the number of degrees 
of freedom we must deduct from a the number of 
parameters obtained from the data. 

Ex. 42. Test of straz'ghtness of regressz'on Nne.­
The fQllowing data are taken from a paper by A. H. 
Hersh on the influence of temperature on the number 
of eye facets in Drosophz'la melanogaster, in various 
homozygous and h~terozygous phases of the " bar" 
factor. They represent females heterozygous for 
" full" and ii double-bar," the facet number being 
measured in factorial units, effectively a logarithmic 
scale. Can the influence of temperature on facet 
number be represented by a straight line, in these 
units? 

[TABLE 



STATISTICAL METHODS [§ 44 

TABLE 50 

Temperature DC. IS°· 17°. 19°. ~no. 23°. 25·, :::_I~ ~ Total. ----
+ 8'07 3 I I .. , .. ' .. , .. , .. , .. , 5 
+ 7'07 5 2 5 I 13 
+ 6'07 13 7 3 23 
+ 5'07 25 9 2 37 
+ 4'07 22 10 16 2 50 
+ 3'°7 12 10 12 6 3 44 + 2'07 7 5 14 16 2 2 46 
+ 1'07 3 4 14 21 8 9 59 
+ '07 3 7 26 7 19 I 63 
- '93 7 12 II 24 3 I 59 
- 1'93 9 14 22 8 6 60 
- 2'93 2 5 12 IS 15 4 54 
- 3'93 2 19 18 44 IO I 94 
- 4'93 4 4 26 6 6 47 
- 5'93 2 2 19 14 13 50 
- 6'93 2 II 28 9 50 
- 7'93 3 8 8 8 28 
- 8'93 I 2 5 5 13 
- 9'93 4 4 8 
-10'93 ~o 2 12 
-11'93 1 .. ,- I 2 4 
-IZ'93 '5 1'5 2 
-13'93 '5 1'5 
-14'93 .~ . 
-15'93 

- ----- - ------
Total go 54 83 100 86 122 137 98 53 823 

There are 9 arrays representing 9 different 
temperatures. Taking a working mean at - I '93 
we calculate the total and average excess over the 
working mean from each array, and for the aggre­
gate of all 9. Each average is found by dividing 
the total excess by the number in the array; three 
decimal places are sufficient save in the aggregate, 
where four are needed. We have 

[TABLE 
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TABLE 51 

Array, 'S, '7, '9, 21, 23, 25, 27, 2g, 3 1 , Aggregate 

-- -_ -- ---- --------
Total} 

583 367 +37 -369 -463'5 -306 '5 +324 excess 294 225 -43 

Mean} 6'478 +'303 -2,693 -4'7301-5'783 +'3937 excess 5'444 4'422 2'250 -'SOD 

The sum of the products of these nine pairs of 
numbers, less the product of the final pair, gives the 
value of 

while from the distribution of the aggregate of all the 
values of y we have 

S(1,-:9)2 = 16,202, 

whence is deduced the following table: 

TABLE 52 

.variance, Degrees of Sum of 
Freedom, Squares, 

Between arrays 8 12,370 

Within arrays 814 3,832 

Total 822 16,202 

Mean 
Square, 

.. , 
4'7<:>8 

The variance within the arrays is thus only about 
4 '7; the variance between the arrays will be made up 
of a part which can be represented by a linear regres­
sion, and' of a part which represents the deviations of 
the observed means of arrays from a straight line. 
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To find the part represented by a linear regressIon, 
calculate 

S(X_X)2 = 4742'21 
and 

Sex-x) (y-ji) = -7535'38, 

which latter can be obtained by multiplying the above 
total excess values by x-x; then since 

(7535'38)2 =. II 974 
4742 '21 ' 

we may complete the analysis as follows: 

TABLE 531 

Variance between Arrays due to Degrees ot Sum of Mean 
. Freedom. Squares, Square, 

~ 

Linear regression 1 11,974 " , 

I 
Deviations from regression 7 396 56'6 

Total 8 12,370 

It is useful to check the figure, 396, found by 
differences, by calculating the actual value of Y for 
the regression formula and evaluating 

S{n",(jip-Y ",)2}; 

such a check has the advantage that it shows to which 
arrays in particular the bulk of the discrepancy is due, 
in this case to the observations at 23 and 25 0 C, 

The deviations from linear regression are evidently 
larger than would be expected, if the regression were 
really linear, from the variations within the arrays, 
For the value of z, we have 
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TABLE 54 
-

Degrees of Mean Square. Natural Log. I ! Log,. Freedom. 

7 56'6 4'0360 2'0180 

814 4'7°8 l' 5493 '7746 

Difference (z) ... I' 2434 

while the I per cent. point is about '488. There can 
therefore be no question of the statistical significance 
of the deviations from the straight line, although the 
latter accounts for the greater part of the variation. 

Note that Sheppard's adjustment is not to be 
applied in making this test; a certain proportion both 
of the variation within arrays and of the deviations 
from the regression line is ascribable to errors of 
grouping, but to dedU(~t from each the average error 
due to this cause would be unduly to accentuate their 
inequality, and so to render inaccurate the test of 
significance. 

The example of regression worked out in 
Section 29'2 supplies a further illustration, to which 
the test given in this section is equally applicable. 

45. The "Correlation Ratio" 'I] 

We have seen how, from the sum of the squares of 
the deviations of all observations from the general 
mean, a portion may be separated representing the 
differences between different arrays. The ratio which 
this bears to the whole is often denoted by the sym,bol 
'1]2, so that 
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and the square root ·of this ratio, 7], is called the corre­
lation ratio ofy on x. Similarly, ifY is the hypothetical 
regression function, we may define R, so that 

R 2 :_ S{nl>(Y _ji)2}-;'-S(y_ji)2, 

then R will be the correlation coefficient between y and 
Y, and if the regression is linear, R2 = r2, where r 
is the correlation coefficient between x and y. From 
these relations it is obvious that 7] exceeds R, and thus 
that 7] prov~des an upper limit, such that no regression 
function can be found, the correlation of which with 
y is higher than 7]. 

As a descriptive statistic the utility of the correla­
tion ratio is extremely limited. I t will be noticed that 
the number of degrees of freedom in the numerator of 
7]2 depends on 'the number of the arrayst so that, for 
instance in Example 42, the value of 7] obtained will 
depend, not only on the range of temperatures d:plored, 
but on the number of temperatures employed within a 
given range. 

To test if an observed value of the correlation 
ratio is significant is to test if the variation between 
arrays is significantly greater than is to be expected, 
in the absence of differentiation, from the variation 
within the arrays; and this can be done from the 
analysis of variance (Table 52) by means of the Table 
of z. Attempts have been made to test the significance 
of the correlation ratio by calculating for it a standard 
error, but such attempts overlook the fact that, even 
with indefinitely large samples, the distribution of 7] 

for undifferentiated arrays does not tend to normality, 
unless the number of arrays also is increased without 
limit. On the contrary, with very large samples, 
when N is the total number of observations, N7]2 tends 
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to be distributed as is x2 when n, the number of degrees 
of freedom, is equal to (a- r), that is, to one less than 
the number of arrays. 

46. Blakeman's Criterion 

In the same sense that 7]2 measures the difference 
between different arrays, so (7]2- R2)/(r - R2) measures 
the' aggregate deviation of the means of the arrays 
from the hypothetical regression line. The attempt to 
obtain a criterion of linearity of regression by com­
paring this quantity to its standard error results in 
the test known as Blakeman's criterion. In this 
test, also, no account is taken of the number of the 
arrays, and in consequence it does not provide even 
a first approximation in estimating what values of 
7]2 -1'2 are permissible. Similarly with 7]2 with zero 
regression, so with 7]2_1'2, the regression being linear, 
if the nUl~ber of observations- is increased without 
limit, the distribution does not tend to normali~y, but 
that of N(7]2-1'2)/(r-1'2) tends to be distributed as 
is x2 when n = a-2. Its mean value is then (a-2), 
and t.o ignore the value of a is to disregard the main 
feature of its sampling distribution. 

In Example 42 we have seen that with 9 arrays 
the departure from linearity was very markedly 
significant; it 'is easy to see that had there been 90 
arrays, with the same values of 7]2 and 1'2, the departure 
from linearity would have been even less than the 
expectation based on the variation within each array. 
U sing Blakeman's criterion, however, these two 
opposite conditions are indistinguishable. 

As in other cases of testing goodness of fit, so in 
testing regression lines it is essential that if any 

s 
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parameters have to be fitted to the observations, this 
process of fitting shall be efficiently carried out. 

Some account of efficient methods has been given 
in Chapter V. In general, save in the more compli­
cated cases, of which this book does not treat, -the 
necessary condition may be fulfilled by the procedure 
known as the, Method of Least Squares, 'by which the 
measure of deviation 

S{n,,(y,,-Y,,)2} 

is reduced to a minimum subject to the hypothetical 
conditions which govern the form of Y. 

In the cases to which it is appropriate this method 
is a special application of the Method of Maximum 
Likelihood, from which it may be derived, and which 
will be more fully discussed in Chapter IX. 

47. Significance of the Multiple Correlation COffficient 

If, as in Section 29 (p. I56), the regression of 
a dependent variate y on a number of independent 
variates Xl, X 2 , Xa is. expressed in the form 

Y = blXI +b2X2+baxa, ' 

then the con-elation between y and Y is greater than 
the correlation of y with any other linear function of 
the independent variates, and thus measures, in a sense, 
the extent to which the value of y depends upon, or is 
related to, the combined variation of these variates. 
The value of the correlation so obtained, denoted by R, 
may be calculated from the formula 

R2 = {bIS(XIy)+b2S(X2y)+baS(xay)}-;-S(y2). 

The multiple correlation, R, differs from the correla­
tion obtained with a single independent variate in that 
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it is always positive; moreover, -it has been recognised 
in the case of the multiple correlation that its random 
sampling distribution must depend on the number of 
independent variates employed. The exact treat~ent 
is in fact strictly parallel to that developed above 
(Section 45) for the correlation ratio, with a similar 
analysis of variance. 

In the section referred to we made use of the fact 
that 

S(y2) = S(y-Y)2+{b1S(X1Y) +b2S(X2Y) +b3 S(X3Y)}; 

if n' is the number of observations of y, and p the 
number of independent variates,. these three terms will 
represent respectively n' - I, n' -p- I, and p degrees 
of freedom .. Consequently the analysis of variance 
takes the form: 

TABLE 55 

Variance due to Degrees of Freedom. Sum of Squares. 

Regression function . p b1S(xIY)+ ... 
Deviations from the regression 

function. n'-P-I S(y_Y)2 

Total 
, 

n -I S(y2) 

it being assumed that y is measured from its mean 
value. 

If in reality there is no connexion between the 
independent variates and the dependent variate y, the 
values in the column headed " sum of squares" will 
be divided approximately in proportion to the number 
of degrees of freedom; whereas if a significant con­
nexion exists, then the p degrees of freedom in the 
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regression function will obtain distinctly more than 
their share. The test, whether R is or is not significant, 
is in fact exactly the test whether the mean square 
ascribable to the regression function is or is not 
significantly greater than the mean square of devia­
tions from the regression function, and may be carried 
out, as in all such cases, by means of the Table of z. 

Ex. 43. Sz"gnijicance 0/ a multz"ple correlat£on.­
To illustrate the process we may perform the test 
whether the rainfall data of Example 24 was signifi­
cantly related to the longitude, latitude, and altitude 
of the recording stations. From the values found in 
that example, the following table may be immedi?-tely 
constructed: 

TABLE 56 
-

Variance due to \ Degrees of Sum of Mean 
~ Log. Freedom, Squares, Square, 

Regres"ion formula I 3 791' 7 263'9 2'7878 

Deviations . 53 994'9 18'77 I 1'4661 

Total 56 1786·6 
I 

I 
I 

I I -

The value of z is thus 1'3217 while the I per cent. 
point is about '714, showing that the multiple correla­
tion is clearly significant. The actual value of the 
multiple correlation may easily be calculated from the 
above table, for 

R2= 791 '7-7- 1786'6='4431, 
R=·66S7 ; 

but this step is not necessary in testing the significance. 
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48. Technique of Plot Experimentation 

The statistical procedure of the analysis of variance 
is essential to an understanding of the principles under­
lying modern methods of arranging field experiments. 
This section and the two following illustrate its 
application to these methods. Since they were 
written the cognate subject of experimental design 
has developed rapidly, and a much fuller account of 
the principles and logic of experimentation will be 
found in The Design of Experz"ments. 

The first requirement which governs all well­
planned experiments is that the experiment should 
yield not only a comparison of different manures, 
treatments, varieties, etc., but also a means of testing 
the significance of such differences as are observed. 
Consequently all treatments must at least be 
duplicated, and preferably further replicated, in order 
that a comparison of replicates may be used as a 
standard with which to compare the observed differ­
ences. This is a requirement common to most types 
of experimentation; the peculiarity of agricultural 
field experiments lies in the fact, verified in all careful 
uniformity trials, that the area of ground chosen for 
the experimental plots may be assumed to be markedly 
heterogeneous, in that its fertility varies in a systematic, 
and often a complicated manner from point to point. 
F or our test of significance to be valid the differences 
in fertility between plots chosen as parallels must be 
truly representative of the differences between plots 
with different treatment; and we cannot assume that 
this is the case if our plots have been chosen in any 
way according to a prearranged system; for the 
systematic arrangement of our plots may have, and 
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tests with the results of uniformity trials show that it 
often does have, features in common with the systematic 
variation of fertility, and thus the test of signific.;ance 
is wholly vitiated. 

Ex. 44. Accuracy atta£ned by random arrange­
ment.-The direct way of overcoming this difficulty 
is .to arrange the plots wholly at random. For 
example, if 20 strips of land were to be used to test 
5 different treatments each in quadruplicate, we 
might take such an arrangement as the following, 
found by shuffling 20 cards thoroughly and setting 
them out in order: 

TABLE 57 

B e A e E E E A D A 

B e B D D B A D Ie E 

3416 32 91 3244 3210 3168 3195 3330 3II8 3029 3085 

The letters represent 5 different treatments '; beneath 
each is shown the weight of mangold roots obtained by 
Mercer and Hall in a uniformity trial with 20 such 
strips. 

The deviations in the total yield of each treatment 
ai"e 

ABC D E 
+290 +216 -59 -243 - 204; 

in the analysis of variance the sum of squares corre­
sponding to " treatment" will be a quarter of the sum 
'of the squares of these deviations. Since the sum of 
the squares of the 20 deviations from the general mean 
is 289,766, we have the following analysis: 
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TABLE 58 

Variance due to Degrees of Sum of Mean Standard 
Freedom. Squares. Square. Deviation. 

---

Treatment 4 58,7 26 14,681 121' I 

Experimental error . 15 231,040 15,403 124' I 

Total. 19 289,766 15,251 123' 5 

I t will be seen that the standard error of a single plot 
estimated from sueh an arrangement is 124'I,whereas, 
in this case, we know its true value to be 123'5; this 
is an exceedingly close agreement, and illustrates the 
manner in which a purely random arrangement of plots 
ensures that the experimental error calculated shall be 
an unbiased estimate of the errors actually present. 

Ex. 45. Restrz'ctz'ons upon random arrangement.-,­
While adhering to the essential condition that the 
errors by which the observed values are affected shall 
be a random sample of the errors which contribute to 
our estimate of experimental error, it is still possible , 
to eliminate much of the effect of soil heterogeneity, 
and so increase the accuracy of our observations, by 
laying restrictions on the order in which the strips are 
arranged. As an illustration of a method ,which is 
widely applicable, we may ,divide the 20 strips into 
4 blocks, and impose the condition that each treatment 
shall occur once in eacn block; we shall then be able 
to separate the variance into three parts representing 
(i) local differences between blocks, (ii) differences due 
to, treatment, (iii) experimental errors; and if the 5 
treatments are arranged at random within each block, 
our estimate of experimental error will be an unbiased 
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estimate of the actual errors in the differences due to 
treatment. As an example of a random arrangement 
subject to this restriction, the following was obtained: 

AECD,B r CBEDA I ADEBC I CEBAD. 

Analysing out, with the same data as befor~, tqe 
contributions of local differences between blocks, and 
of treatment, we find ' 

TABLE 59 • 

I Variance due to Degrees of Sum of Mean Standard 
Freedom. Squares. Square. Deviation. 

Local differences 3 154,483 51,494 ... 
Treatment 4 40 ,859 10,21 5 ... 
Experimental error . 12 94,424 7,869 -88'7 
Treatment +error 16 135,283 8,455 92 '0 

The local differences between the blocks lare very 
significant, so that the accuracy of our 'comparisons 
is much improved, in fact the remaining variance is 
reduced almost to 55 per cent. of its previous value. 
The arrangement arrived at by chance has happened 
to be a slightly unfavourable one, the errors in the 
treatment values being a little more than usual, while 
the estimate of the standard error is 88'7 against a 
true value 92 '0. Such variation is to be expected, and 
indeed upon it is our calculation of significance based. 

It might have been thought preferable to arrange 
the experiment in a systematic order, such as 

ABC DEI ED C B A I ABC DEI ED C B A, 

and, as a matter of fact, owing to the marked fertility 
gradient exhibited by the yields in the present example, 
such an arrangement would have produced smaller 
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errors in the totals of the 5 treatments. With such 
an arrangement, however, we have no guarantee that 
an estimate of the standard error derived from the 
discrepancies between parallel plots is really repre­
sentative of the differences produced between the 
different treatments, consequently no such estimate of 
the standard error can be trusted, and no valid test 
of significance is possible. 

That part of the fertility gradient which is not 
included in the differences between blocks may, how­
ever, be eliminated by regarding position within the 
plocks, z".e., the ordinal numbers, I 2, 3, 4, 5, or more 
simply -2, -1,0, I, 2, as an independent variate for 
each plot, from which the yield as dependent variate 
may be predicted by the regression. An analysis of 
covariance of the ordinal numbers (x) and the yields 
(y), as explained in Section 49·r, gives the following 
results ;-

TABLE 59.1 
ANALYSIS OF COVARIANCE OF YIELD (y), AND ORDER 

WITHIN BLOCK (x) 

Degrees • Mean of x 2. xy. y2. Yx· Square. Freedom. 

Blocks 3 ° ° 154483 
Treatments 4 5·5 - 268·25 40859 28678 7169.5 
Error 12 34·5 -1206·75 94424 52214 4746.7 
Treatments 

and Error 16 4°. 0 -1475. 00 135283 80892 5392.8 

I t will be seen that the precision of the experiment 
has been increased. The mean square for treatments 
plus error is now 5393; in contrast, using bloc~s only, 
it was 8455, while disregarding blocks it was r5251. 

If we take as having unit value an experiment 
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giving comparable yields subject to a standard error 
<;>f 10 per cent., the value of such an experiment as this, 
in quadruplicate, may be found by squaring one-tenth 
of the mean yield, multiply;ing by four (giving 431816), 
and dividing by the mean square obtained by each 
method of procedure. For randomisation without 
blocks we have then 

43 1816 = 28'18 
152$0'8 

units of information. Using randomised blocks we 
have 5 1'07, while adjustment for ordinal position 
within the block raises the value to 80'07 units. 

In this case, as in many others, the lower mean 
square is obtained at the expense of some reduction 
of the number of degrees of freedom on which the 
estimate of error is based. This makes the tests of 
significance somewhat less stringent. If n is the 
number of degrees of f~eed"om for error, \ the loss 
of information due to this cause is found (DesJgn 
of Experiments, xi.) to be the fraction 2J(n+ 3), so 
that, taking this factor into consideration, we may 
summarise the results as follows :-

TABLE 59'2 

AMOUNTS OF INFORMATION ELICITED BY DIFFERENT METHODS 

Degrees 
U nits of Information. 

of Freedom for 
Error. Crude. Adjusted. 

Randomisation of 20 plots IS 28' 18 25'°5 

Randomisation in 4 blocks 12 51'°7 44'26 

Eliminating order in block II 80'07 68'63 
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Even when allowance is thus made for the degrees 
of freedom absorbed, it is clear that in this case botlol. 
the use of blocks, and that of order within the block, 
have been exceedingly profi~able. The latter, of 
course, is due to the exceptionally regular gradient of 
fertility which these data exhibit. 

49. The Latin Square 

The method of laying restrictions on the distribu­
tion of the plots and eliminating the corresponding 
degrees of freedom from the variance is, however, 
capable of some extension in suitably planned experi­
ments. In a block of 25 plots arranged in 5 rows and 
5 columns, to be used for testing 5 treatments, we can 
arrange that each treatment occurs once in each row, 
and also once in each column, while allowing free 
scope to chance in the distribution subject to these 
restrictions. Then out of the 24 degrees of freedom, 
4 will represent treatment; 8, representing soil differ­
ences between different rows or columns, may be 
eliminated; and 12 will remain for the estimation of 
error. These 12 will provide an unbiased estimate of 
the errors in the comparison of treatments, provided 
that every pair of plots, not in the same row or column, 
belong equally frequently to the same treatment. 

Ex. 46. Doubly restricted arrangements. - The 
following root weights for mangolds 'were found by 
Mercer and Hall in 25 plots; we have distributed 
letters representing 5 different treatments at random 
in such a way that each appears once in each row 
and column. 
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TABLE 60 

Total of 
Row. 

--

D 376 E 371 C 355 B 356 A 335 1793 
B 316 D 338 E 336 A 356 C 332 1678 
C 326 A 326 B 335 D 343 E 33q 1660 
E 317 B 343 A 330 C 327 D 336 1653 
A 321 C 332 , D 317 E 318 B 306 1594 

Total 1656 1710 1673 17°° 1639 8378 

Analysing out the contributions of r"9ws, columns, 
and treatments we have 

TABLE 61 

Differences between Degrees of Sum of Mean S.D. Freedom. Squares. Square. 

Rows \ 
4 424°'24 ... ... 

Columns 4 7°1'84 ... '" 
Treatments 4 330 '24\ 
Remainder 12 1754'32) 13°'3 II'41 

- --
Total 24 7°26'64 29 2 '8 17'!I 

By eliminating the soil differences between different 
rows and columns the mean square has been reduced 
to less than half, and the value of the experiment as 
a means of detecting differences due to treatment is 
therefore more thaq doubled. This method of equal­
ising the rows and columns may with advantage be 
combined with that of equalising the distribution over 
different blocks of land, so that very accurate results 
may be obtained by using a number of blocks each 
arranged in, for example,s rows and columns. In 
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this way the method may be applied even to cases 
with only 3 treatments to be comparetl. Further, 
since the method is suitable whatever may be the 
differences in actual fertility of the soil, the same 
statistical method of reduction maybe used when, for 
instance, the plots are 25 strips lying side by side~ 
Treating each block of 5 strips in turn as though they 
were successive columns in the former arrangemen~, 
we may eliminate, not only the difference between the 
blocks, but such differences as those due to a fertility 
gradient, which affect the yield according to the order 
of the strips in the block. When, therefore, the 
number of strips employed is the square of the number 
of treatments, each treatment can be not only balanced 
but completely equal£sed in respect to order in the 
block, and we may rely upon the (usually) reduced 
value of the standard error obtained by eliminating 
the corresponding degrees of freedom. Such a double 
elimination may be especially fruitful if the blocks of 
strips coincide with some physical feature of the 
field such as the ploughman's II lands," which often 
produce a characteristic periodicity in fertility due 
to variations in depth of soil, drainage, and such 
factors. 

To S1+m up: systematic arrangements of plots in 
field trials should be avoided, since with these it is 
usually possible to estimate the experimental error in 
several different ways, giving widely different results, 
each way depending on some one set of assumptions 
as to the distribution of natural fertility, which may 
or may not be justified. With unrestricted random 
arrangement of plots the experimental error, though 
accurately estimated, will usually be unnecessarily 
large. In a well-planned experiment certain restrictions 
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may be imposed upon the random arrangement of 
the plots in such a way that the experimental error 
may still be accurately estimated, while the greater 
part of the influence of soil heterogeneity may be 
eliminated. 

I t must be emphasised that when, by an improved 
method of arranging the plots, we can reduce the 
standard error to one-half, the value of the experiment 
is increased at least fourfold; for only by repeating 
the experiment four times in its original form could the 
same accuracy have been attained. This argument 
really under - estimates the preponderance in the 
scientific value of the more accurate experiments, 
for, in agricultural plot work, the experiment cannot' 
in practice be repeated upon identical conditions of 
soil and climate. 

49' I. The Analysis of Covariance 

I t has been shown that the precision of an experi­
ment may be greatly increased by equalising, among 
the different treatments to be compared, certain 
potential sources of error. Thus in dividing the area 
available for an agricultural experiment into blocks, 
in each of which all treatments are equally represented, 
the differences of fertility between the different blocks 
of land, which without this precaution would be a 
source of experimental error, have been eliminated from 
the comparisons, and, by the analysis of variance, are 
eliminated equally from our estimate of error.' In the 
Latin square any differences in fertility between entire 
rows, or between entire columns, have been eliminated 
from the comparisons, and from the estimates of 
error, so that the real and apparent precision of the 
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comparison is the same as if the experiment had been 
performed on land .in which the entire rows, and also 
the entire columns, were of equal fertility. 

A strictly analogous equalisation is widely applied 
in all kinds of experimental work. Thus in i1Utritional 
experiments the growth rates of males and females may 
be distinctly different, while nevertheless both sexes 
may be equally capable of showing the advantage of 
one diet over another. The effect of sex, on the 
growth rates compared, will, therefore, be eliminated 
by assigning the same proportion of males to 
each experimental treatment, and, what is more 
often neglected, eliminating the average difference 
between the sexes from the estimate of error. Notably 
different reactions are often found also in different 
strains or breeds of animals, and for this reason 
each strain employed should be used equally for all 
treatments. The effect of strain will then be eliminated 
from the comparisons, and may be easily eliminated 
by the analysis of variahce from the estimate of 
error. I t is sometimes assumed that all the animals 
in the same experiment must be of the same strain, 
and adequate replication is in consequence believed 
to be impossible for lack of a sufficient quantity 
of homogeneous material. The examples already 
discussed show that this requirement is superfluous, 
and adds nothing to the precision of the comparisons 
actually attained. Indeed, while adding nothing to 
the precision, this course detracts definitely from the 
applicability of the results; for results obtained from 
a number of strains are evidently applicable to a 
wider range of material than results only established 
for a single strain; and, working from highly homo­
geneous material, there is a real danger of drawing 
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inferences, which, had we had a wider inductive basis, 
would have been seen to be insecure. 

There are, however, many factors relevant to the 
precision qf our comparisons, which, while they cannot 
be equalised, can be measured, and for which we may 
reasonably attempt to make due allowance. Such are 
the age and weight of experimental animals, the .initial 
weight being particularly relevant in experiments on 
the growth rate. In field experiments with roots the 
yield is often notably affected by the plant number, 
and if we have reason to be willing to ignore any 
effect our treatments may 'have on plant number, 
it would be preferable to make our comparisons 
on plots with an equal number of plants. Again, 
although we cannot equalise the fertility of the 
plots used for different treatments, the same land 
may be cropped in a previous year under uniform 
treatment, and the yields of this uniformity trial will 
clearly be relevant to the interpretation of our 
experimental yields. This principle is of particular 
importance with perennial crops, for there is here 
continuity, not only of the soil, but of the individual 
plants growing upon it; ~nd the much more limited 
facilities for confirming results on a new, or unused, 
plantation make it especially important to increase 
the precision of such material as we have. 

Ex. 46'1. Covariance of tea yields in successive 
perz'ods.-T. Eden gives data for successive periods 
each of fourteen pluckings from sixteen plots of tea 
bushes intended for experimental use in Ceylon. The 
yields are given in per cent. of the average for each 
period, but the process to be exemplified would apply 
equally to actual yields. We give below (Tables 61 '1, 
61 '2) data for his second and third periods, which 
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for our purpose may be regarded as preliminary and 
experimental yields respectively. The sixteen plots 
are arranged in a 4 X 4 square. 

TABLE 61'1 

PRELIMINARY YIELDS OF TEA PLOTS 

88 102 91 88 369 
94 lIO ". 109 liS 431 

109 105 115 94 423 
88 102 91 96 377 

379 419 406 396 1600 

TABLE 61'2 

EXPERIMENTAL YIELDS OF TEA PLOTS 

90 I, 93 85 81 349 
93 106 114 121 434 

II4 106 III 93 424 
92 107 92 102 393 

389 412 402 397 1600 

Let us suppose the area in the experimental period 
had been occupied by a Latin square in 4 treatments. 
Of the IS degrees of freedom, 6 representing'differences 
between rows and columns would then he eliminated, 
and the remaining 9 would be made up of 3 f~r 
differences between treatments, and 6 for the estima­
tion of error. Since no actual treatment differences 
were applied, we shall use all 9 for the estimation of 
error. The experimental yields then give 

[TABLE 

T 
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TABLE 61'3 

ANALYSIS OF EXPERIMENTAL YIELDS 

Degrees of Sum of Mean 
Freedom. Squares. Square. 

Rows 3 1095' 5 ... 

Columns 3 69'5 ... 

Error 9 875'0 97' 22 

Total IS 
I 

2°4°'0 136'00 

Even after eliminating the large variance among 
rows, the residual variance is as high as 97 '22; the 
standard error of a single plot is, therefore, about 
9.86 per cent., and that for the total of four plots 
about 4'93 per cent. \ 

I t is, however, evident that a great part of this 
variance of yield in the experimental 'period has been 
foreshadowed in the yields of the preliminary period. 
A glance at the table will show that of the eight plots 
which were above the average in the experi~ental 
period, seven were above the average in the pre­
liminary period. I n fact, by choosing sets of plots 
which in the first period yielded nearly the same total 
for each set, and assigning these sets to treatments in 
the experimental period, we might have very materially 
reduced the experimental error of our treatment com­
p_arisons. The equalisation of the total preliminary 
yields has often been advocated, but seldom practised 
for reasons which will become apparent. The common­
sense inference that sets of plots, giving equal total 
yields in the preliminary period, should under equal 
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treatment give equal totals in the experimental period, 
implies that the expectation of subsequent yield of any 
plot is well represented in terms of the preliminary 
yield by a linear regression function. The important 
point is that the adjustments of the results of the 
experiment appropriate to any regression formula (of 
which the linear form is obviously the most important) 
may be made from the results of the experiment 
themselves without taking any notice, in the arrange­
ment of the plots, of the previous yields. The method 
of regression also avoids two difficulties which are 
encountered in the equalisation of previous yields, 
namely, that the advantage of eliminating differences 
between rows and columns (or blocks) would often 
have to. be sacrificed to equalisation, and that such 
equalisation as would be possible would always be 
inexact. 

The adjustment to be made in the difference in 
yield between two plo~s, the previous yields <;:>f which 
are known, is evidently the difference to be expected 
in the subsequent yields, judged from the difference 
observed between plots treated alike. The appropriate 
coefficient of linear regression is given by the ratio of 
the covariance to the variance of the independent 
variate, which in this case is the variance in the 
preliminary yields ascribable, in our experimental 
arrangement, to error. To find this variance of the 
independent variate, the preliminary yields are analysed 
in exactly the same way as the experimental yields. 
A third table, this time an analysis of the covariance 
of the preliminary and the experimental yields, is con­
structed by using at every stage, products of the yields 
in these two periods in place of squares of yields at 
either ,one period .. 
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TABLE 61'4 

ANALYSIS OF PRELIMINARY YIELDS 

I Degrees of I Sum of 
Freedom, Squares. 

Rows 3 745'0 

Columns 3 213'5 

Error 9 567' 5 

Total IS I526 'O 

The exact similarity of the arithmetic in construct­
ing these three tables may be illustrated by taking out 
in parallel the contributions of " colnmns" to each 
table. In Tables 6I'I and 6I'2 the- mean of the 
column totals is 400, the deviations in the firs~ columns 
are - 2 I and - II; denoting these by x and y, the 
squares and products of these pairs of numbers are 
written in parallel below:-

TABLE 61'5 

x2 xy y2 

44I +231 121 

361 +228 144 
36 +12 4 
16 +12 9 

854 +483 278 

Dividing these totals each by 4 (the number of 
plots contributing to each), we have the corresponding 
entries in the triple table :-
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TABLE 61·6 

SUMS OF SQUARES AND PRODUCTS 

Degrees of x 2 xy y2 
Freedom. 

Rows 3 745. 0 837. 0 1°95.5 

Columns 3 213.5 120·75 69·5 

Error 9 567.5 654. 25 875'° 

Total 15 I5~6·0 1612·00 2°4°'0 

in which the variances of the two variates, and their 
covariance are analysed in parallel columns. 

Relationships expressed either by regression or by 
correlation, between the two variates, may now be 
determined independently for the different rows of the 
table. In particular we need the ratio 654.251567.5 
representing the regression of y on x, for plots treated 
alike, after eliminating the differences between rows 
and columns. This is evidently the correct allowance 
to be deducted from any experimental yield y, for each 
unit by which the corresponding x is in excess of the 
average. 

The correction, being linear, may be applied to 
individual plots, or to the composite totals represented 
by rows, columns or treatments. More compre­
hensively, the result of applying the correction and 
analysing the variance of the adjusted yields, may be 
derived directly from the analysis of sums and products 
already presented. For, if b stand for the regression 
coefficient, comparisons of adjusted yields. will be in 
fact comparisons of quantities (y-bx). Now 

(y-bX)2 = b2x2_2bxy+y2; 
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so that, to obtain the sum of squares for the adjusted 
yields in any line, we need only multiply the entries in 
the table already constructed by b2

, - 2b and unity, and 
add the products. 

In the present example b = I 'I529, b2 = I '3291. 

glvmg :-

Rows 

Columns 

Error 

Total 

TABLE 6r'7 

ANALYSIS OF ADJUSTED YIELDS 

Degrees of Sum of 
Freedom. Squares. 

3 155'8 

3 74'8 

I 8 120'7 

I 
14 35 1 ' 3 

Mean 
Square . 

. 
51"93 

24'93 

15'°9 
~ 

25'°9 

I 

I t will be noticed that the total number bf degrees 
of freedom has been diminished fro!I;l 15 to 14, to 
allow for the one adjustable constant in the regression 
formula, and that this I degree has been subtracted 
from the particular line from which the numerical 
value of the regression has been estimated., In this 
line, in fact, b has been chosen so that 

bS(x2) = Sexy) 

and consequently, so that 

S(y-bx)2 = S(y2)-S2(xy)jS(X2); 

showing that the entry in this line is always diminished 
by the contribution of I degree of freedom. In the 
other lines the entry may be either increased or 
diminished by the adjustment. 
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The value of b' used in obtaining the adjusted 
yields is a statistical estimate subject to errors of 
random sampling. In 'consequence, although the 
quantities y-bx are appropriate estimates of the 
corrected yields, they are of varying precisjon, as shown 
in Section 26; the sums of their squares in the lines 
of the table from which b has not been calculated do 
not therefore supply exact material for testing the 
homogeneity of deviations from the simple regression 
formula. This test we should wish to make if real 
differences of treatrhent had been given to our plots, 
in which case for each variate we should have 3 
degrees of freedom assigned to treatm~nts, and only 
6 left for error, from which 6 the value of b would 
be calculated. In our example there are no real tr~at­
ments, and we shall iI1ustrate the test of significance 
by applying it to the rows, the significance of which 
is in. reality of no consequence to the result of the 
experiment. 

Taking those parts of Table 61'7 which refer to 
rows and error only, we obtain the reduced values 
of the sum of squares of the dependent variate )" 
respectively for the error and for the total, by 
deducting in each case from S(y2), the quantity 

S2(xy)jS(X2) 

derived from the same line. This gives for the 
error, the reduced value of the sum of squares of y, 
120'7, as in Table 61'7; for the total we have 
1970'5- 1694"3 = 276'2, corresponding to II degrees 
of freedom. Subtracting the first from the second, 
we find the reduced sum of squares ascribable to the 
3 degrees of freedom for rows to be 155'5, which 
is the value to be compared with the reduced sum of 
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squares fqr error, in making an exact test. The whole 
process is shown in Table 61 '71'. (See also Table 59'1.) 
In this case it is obvious that the sum of squares 
of (y-bx) would have provided an excellent approxip 
mation. As such, however, it is, always to some 
extent, and sometimes greatly, inflated by the sampling 
errors of b; and there is no difficulty in applying the 
exact test, which makes proper allowance for these 
sampling errors. 

TABLE 61'71 

TEST OF SIGNIFICANCE WITH REDUCED VARIANCE 

Degrees of 
x' y' Degrees of Reduced Mean 

Freedom, xy Freedom. y' Square. 

-- -- ----. 
Rows 3 745'0 837'0 1095'5 3 ISS'S 51'83 

Error 9 567'5 654'25 875'° 8 120'7 15'09 

Total 12 1312 'S 1491 '25 1970'5 -II 276'2 . 
\ 

Comparing the analysis of the adjusted yields 
with that obtained without using the preliminary 
pluckings, the most striking change is the reduction 
of the mean square error per plot from 97 '22 to 15'09, 
in spite of the reduction in the degrees of freedom, 
showing that the precision of the comparison has 
been increased over six-fold, A second point should 
also be noticed, The large difference in yield between 
different rows, which appears in the original analysis, 
has fallen to about one-seventh of its original v_alue. 
I t appears therefore that the greater part of this 
element of heterogeneity may be eliminated in 
favourable cases by the use of preliminary yields; 
but this does not diminish the importance, when 
such preliminary yields are available, of eliminating 
from the comparisons differences between the larger 
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areas of land, blocks, rows, columns, etc, In fact, the 
elimination of rows and columns is more important in 
the adjusted yields, where it reduces the mean square 
from 24'08 to I5'09, than in the unadjusted yields, 
where it reduced it from 136 to 97'2, If, for example, 
we take an experiment with 10 per cent, error in the 
means of treatments, to have unit value, the elimination 
of rows and columns in the unadjusted yields only 
increased the value from 2'94 to 4'I2, a net gain of 
1'18 units; while the same elimination in the adjusted 
yields increases the value from I6'6I to 26'51, a net 
gain of 9'90 units, or nearly nine times as much, In 
practice, however, especially when the numbers of 
degrees of freedom are small, it is desirable to base 
such compar(sons on the quantity of information 
realised, making due allowance for the number of 
degrees of freedom available in each of the cases to be 
compared as in Table 59'2, 

An examination of the process exemplified in 
the foregoing example shows that it combines the 
advantages q.nd reconciles the requirements of the 
two very widely applicable procedures known as 
regression and analysis of variance, Once the simple 
procedure of building up the covariance tables is 
recognised, there will be found no difficulty in applying 
the analysis to three or more variates and the complete 
set of their covariances, and so making allowance 
simultaneously for two or more measurable but un­
controlled concomitants of our observations, These 
observations are treated as the dependent variate, the 
variability of which may be partially accounted for in 
terms of concomitant observations, by the method of 
multiple regression, Thus, if we were concerned to 
study the effects of agricultural treatments upon the 
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purity index of the sugar extracted from sugar-beet, a 
variate which might be much affected by concomitant 
variations in (a) sugar-percentage, and (b) root weight, 
an analysis of covariance applied to the three variates, 
purity, sugar percentage and root weight, for the 
different plots of the experiment, would enable us to 
make a study of the effects of experimental treatments 
on purity alone; i.e., after allowance for any effect they 
may have on root weight or concentration, without 
our needing to have observed in fact any 'two plots 
agreeing exactly in both root weight and sugar 
percentage. 

In such a research it would again be open to the 
investigator to eliminate not merely th~ mean root 
weight of the plots, but, if he judged it profitable, also 
its square, so using a regression non-linear in root 
weight. Again, if he possessed not merely the mean 
root weight for the different plots, but the itrdividual 
values of which the mean is the average, he could 
eliminate simultaneously mean root weight and mean 
square'root weight, or, in other words, make his purity 
comparisons with corrections appropriate to equalising 
both the means and the variances of the roots from 
the different plots. 

In conside'ring, in respect to any given body of data, 
what patticular adjustments are worth making, it is 
sufficient for our immediate guidance to note their 
effect upon the residual error. If, in Example 46'1, 
we compare Tables 61'3 and 61 '7, it is apparent that 
we may divide the 9 degrees of freedom for error 
of unadjusted yields into tvyo parts, one of which 
comprises the 1 degree of freedom eliminated by the 
regression equation, and the other ,the 8 degrees of 
freedom remaining after this equation has been used 
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for adjusting the yields. This analysis of error is 
shown below in Table 61 ·8. 

TABLE 61·8 

ANALYSIS OF RESIDUAL ERROR 

Degrees of Sum of Mean 
Freedom. Squares. Square. 

Regression I 754' 3 754'3 

Error of adjusted yields . 8 120' 7 15'09 

Error of unadjpsted yields 9 875'0 .. , 
! 

The great advantage of making due allowance for 
the preliminary yields is evidently due to the very large 
share of the residual error which is contained in the 
I degree of freedom specified by our regression formula. 
We need not test the significance of a regression before 
using it, but any advantage it may confer will be slight 
unless it is in fact significant. 

The chief advantage of the analysis of covariance 
lies, however, not in its power of getting the most out 
of an existing body of data, but in the guidance it is 
capable of giving in the design of an observational 
programme, and in the choice of which of many 
possible concomitant observations shall in fact be 
recorded. 1'he example of the tea yields shows that 
in that case the value for experimental purposes of a 
plantation was increased six-fold by the comparatively 
trifling additional labour of recording separately the 
yields from different plots for a period prior to the 

,experiment, With annual agricultural crops, to crop 
the experimental area in the previous year is nearly 
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to double the labour of the experiment. What is 
often more serious, a year's delay is incurred before 
the result is made available. Analysis of covariance 
on successive yields on uniformly treated land shows 
that the value of the experiment is usually increased, 
but seldom by more than about 60 per cent., by a 
knowledge of the yields of the previous year. I t seems 
therefore to be always more profitable to lay down an 
adequatyly replicated experiment on untried land than 
to expend the time and labour available in exploring 
the irregularities of its fertility. 

In most kinds of experimentation, however, the 
possibilities of obtaining greatly increased precision 
from comparatively simple supplementary observations 
are almost entirely unexplored, and, indeed, in many 
fields the possibility of making a critically valid use 
of such observations is scarcely recognise~. The 
probability that methods of experimentatibn can be 
greatly improved, ejther by a great increase of pre­
cision, or by a proportionate decrease in the labour 
required, is naturally greatest in these fields. 

An analysis of covariance always involves the­
primary classification of the analysis, in addition to 
the relation between a dependent and an independent 
variate. Sometimes the classification may be complex, 
as is a hierarchical classification in three or more 
stages; also there may be more than one dependent 
variate, and possibly a number of independent variates 
may need to be eliminated. An example involving 
these complications, and with the working procedure 
exhibited in detail, is referred to in the bibliography 
(with B. Day, 1937). 



§ 49'2] THE ANALYSIS OF VARIANCE 

49'2. The Discrimination of Groups by Means of 
Multiple Measurements; Appropriate Scores 

A valuable application of the technique of calcula­
tion used in multiple regression consists in finding 
which of all possible linear compounds of a set of 
measurements will best discriminate between two 
different groups. ,For example, a human mandible or 
jaw bone may be found in circumstances in which, 
apart from the evidence provided by its form, the sex 
of its possessor is unknown. The anthropologist 
desires, so far as is possible, to assign the right sex 
to such finds. If he has a number of mandibles of 
known sex, measurements of these may provide a 
clue. Some measurements, in fact, show significant 
differences, but, as these are likely to be highly 
correlated, the evidence they provide cannot be treated 
as independent. F or the same reason other measure­
ments, which by them,selves provide no means of 
discrimination, may in conjunction with the rest aid 
considerably. Only when that particular linear 
function is determined which, better than any other, 
discriminates mandibles' of the two sexes, can we 
r~cognise that some measurements are useless, while 
others are of real evidential value. 

'.fo illustrate the formal equivalence with multiple 
regression let us suppose we have Nl male and N2 
female mandibles, on each of which measurements 
Xv ••• , xp can' be made. The mean differences (male 
-female) will be represented by dr, ... dp ; further, 
we represent the sums of squares and products of the 
measurements, ignoring sex, by 
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Then it has been shown that the solutions b1 , . 

bp of the equations 

SUbl +S12b2+ . . . +Sl~AI> = dl 
S1fJbl + S2fJb2 + . . . +SfJfJbfJ = dfJ 

will be proportional to the coefficients of that linear 
function, 

x = bIX1 +b2X2+ . . . +bfJxfJ , 

which, as judged from the data, will most successfully 
discriminate mandibles of unknown sex. 

If we had introduced a formal variate J', equal to 
N1/(NI + N2) for all males and to - Nd(Nl + N2) for 
all females, the equations for the coefficients of 
multiple regression of y on Xl' ••• , XfJ would in 
fact only differ from those written above by a factor 
N1 N2/(NI + N2) on the right. The value of th,e co­
efficient of multiple correlation of y with Xli .•• , XfJ 

is therefore given by I 

2 NIN2 b d ) R = N
1
+N

2 
(I 1+ ... +bfJdfJ' 

Hotelling (1931) has shown that, if the variates X 

are normally distributed within groups, the, signifi­
cance of the correlation can be tested, in an analysis of 
variance test, with p, and n - p + I degrees of freedom, 
where n is the number of degrees of freedom within 
groups. So that 

n-p+I R2 
e2.t - --- p . I-R2' 

This, of course, is the basic test as to whether any 
significant discrimination has been achieved: We 
may also wish to test whether any propos~d dis­
criminant function, 

X' = f31X1 + . . . +f3l)xfJ , 



THE ANALYSIS OF VARIANCE 

specifying the ratios of the coefficients, but not their 
absolute values, is compatible with the observational 
facts. It has been shown that this can be easily done, 
merely by finding the correlation coefficient, within 
groups, between X and X'. If this is '1', the value of 
R2 in Hotelling's test may be multiplied by (I -'1'2), 
and used as before with I less degree of freedom 
to test the special form of discriminant proposed. 

The value of z may now be obtained from 

e2.=n-p+I. ~ 
P-I I-R'2' 

when R'2 = R2(1 _'1'2) and the degrees of freedom are 
nl = p- I and n2 = n-p+ 1. The test thus rejects 
any proposed formula having 'I' so small that the value 
of z given above is significant. 

Instead of the differences between the means of 
the variates from two samples, the method may be 
applied equally to the regressions of the means of 
several samples on any variate characteristic of these 
samples. Thus Barnard has used the regressions of 
the means of certain measurements of Egyptian skulls 
on the approximate date of burial, to ascertain what 
linear function of th'e cranial measurements obtainable 
shows the most dist,inct change with time. An 
important application to plant selection has 'been 
made by Fairfield Smith to determine how the different 
observable characters of plant progenies should be 
combined in selecting for any particular end. 

If, in a replicated variety trial, observables Xli 

.. " x" are recorded from each plot, we may obtain 
sums of squares and products, first, for varieties, 
which we shall denote tij and next for errors e,y. 
Subtracting the second from the first we obtain 
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unbiased estimates of the varietal effects gil' = t" - e". 

If, now, the value of a variety, for which Xl' •.. , X" 

were exactly known, is judged to be correctly assessed 
by the formula 

alxl+a2X2+ ... a"x'IJ' 

where the coefficients a may be positive or negative~ 
we may at once calculate 

Ai = algli+a2g2i+ ... +a'IJgi" 

for each value of z'. The appropriate scores, bl , ••• , b'IJ 
for rating the selective value of any variety will then 
be found from the simultaneous equations 

and so on. 

bltn + . +b"tl'IJ = All 
b2t12+ ... +b'IJt2'IJ = A 2, 

On solving these we compare the values of the 
compound score 

X = blXl +b2X2+ +b"x" I 
for each variety, X being the function of the observ­
abIes most highly correlated with the true value of the 
variety. 

The foregoing examples all illustrate the general' 
principle that we may determine a set of adjustable 
coefficients in such a way as to maximise the ratio of 
the square of one chosen component to the sum of 
squares of a set of other components in an analysis of 
variance. The same principle may be applied to 
maximise the ratio which the sum of squares for n l 

degrees of freedom bears to that of a residue of n2 

degrees of freedom. After making the adjustment to 
obtain the maximal ratio, involving p adjustable 
constants, we shall, as the best available approxima­
tion, test the significance of nl -+-p compared with 
n 2 - P q.egrees of freedom. 
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When only a single component is to be maximised 
relative to the rest, the equations are linear, and the 
procedure of multiple regression may be used. Other 
cases may lead to equations of higher degree. Thus, 
given a two-way table of non-numerical observations 
we may a;:>k what values, or scores, shaH be assigned 
to them in order that the observations shall be as 
additive as possible. . 

Ex. 46'2. The derivation of an additz''lJe ,scoring 
system from serological readings.-Twelve samples of 
human blood tested with twelve different sera gave 
reactions represented by the five symbols -;-, ?, w, 
(+), and +, according to Table 61"9 on next page 
(G. L. Taylor, Galton Laboratory). 

[TABLE 

u 
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If we arbitratily assign the value 0 to the symbol 
-, and the value I to the symbol +, the vaiues 
corresponding to the symbols ?, W, and (+) may 
be given the algebraic values x, y and z. Then by 
counting the numbers of the different kinds of symbol 
in each row and column, we find the sum of squares 
corresponding to rows and columns to be :-

TABLE 61 '901 

MATRIX FOR Rows AND COLUMNS 

__ x _j y 

I 
z [ 

----

718 
I 

-672 -106 X I 2 

Y 2 

! 

1630 -1416 -218 
z -67 2 -1416 1944 216 
I -I06 -218 216 u8 

I I I -----
where it is convenient to write the quadratic expression 
as a symmetrical 4 X 4 matrix. Thus the coefficient 
of x 2 is 718, while those of xy and yx are both 2, 

making together the term 4xy. The whole has been 
multiplied by 144 to avoid fractions. Similarly, the 
total sum of squares for 143 degrees of freedom is 
found to be :-

x 
y 
z 
I 

TABLE 61'902 
MATRIX FOR TOTAL 

x y I 
I 

z 

-

1703 57 -468 
-lIS7 95 -3204 
-468 I 
-65 1 

04 3888 
45 I -180 

I 
I 

-65 
-445 
-180 

695 

To find the values of x, y and z which will make 
the ratio of the first of these expressions to the second 
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as large as possible, it is necessary to solve an equation 
of the 4th degree. I f from each element of the first 
matrix a multiple (8) of the corresponding element of 
the second matrix is subtracted, the determinant of the 
sixteen values so found when equated to zero gives 
the equation. What is wanted is this equation's 
largest solution. 

I t is not necessary to calculate the Goefficients 
of the equation. It is usually more convenient to 
evaluate the determinant exactly for chosen values of 
8, and to apply the method of divided differences to 
calculate the required solution. The following table 
shows the values obtained at six chosen values of f), 

simplified by dividing by 3456 : 

I 

TABLE 61'91 

TRIAL VALUES OF A DETERMINANT, AND THEIR 
DIVIDED DIFFERENCES 

1 

! First Divided I Sec<>nd Divided 
Third Fourth 

Determinant. Divided Divided Difference. Difference. Difference. Difference. 
______ 1 ______ 

429106 I 
49982'376 -1,895618 'J2 

-598370'560 1-3,241764'68 -3,365366'4 
-1,536668'°72 -4,691487'56 -3,624307'2 -431568 

4,123941 '552 1 28,303048'J2 82,486339'2 143,5 17744 179,936640 
30,181877 130,289677'24 254,966572,8 287,4670 56 179,936640 

I 

-

The second column is found by dividing the 
successive differences of the first column by 0'2, the 
interval between successive values of (); the third 
column is likewise found from the second, the divisor 
in this case being the difference between values of 
e separated by two steps, which in this table is 
constantly 0'4. Since, for any expression of the 4th 
degree, the fourth divided difference is constant, the 
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exactitude of the values is checked in the last column, 
if enough values of 8 are used. 

I t is apparent that the value required lies between 
0·6 and 0·8. Since the fourth difference is constant 
whether the intervals are equal or unequal, positive or 
negative, the equation may be solved by choosing 
successive values of B to continue the table so as to 
make the determinant approximate to zero. Thus in 
calculating the value for 0'7 a new line is added in 
which the third divided difference is increased by the 
fourth difference multiplied by 0'3, the multiplier being 
simply the. new value less the value in the table four 
steps back. The new third difference is then 
multiplied by O'I, the difference in B taken three steps 
back, and added to the second difference. The factor 
by which the new second difference is multiplied is 
-O'I, since the new value of B is' 'I/less than that 
used two steps back, Finally, the new first difference 
is multiplied by -0'3 and added to the value of the 
determinant at I '0 to find its value at 0'7. In the 
table on p. 294 (Table 6r '92) this line has been filled in 
with exact values, In the subsequent lines sufficient 
figures ha ve been retained for a very accurate 
determination. Notice that the value chosen for the 
third line is too high by 3 units in the fifth place of 
decimals, but that this circumstance does not interrupt 
the straightforward course of the work. For lower 
accuracy fewer figures would be needed in each 
column, and the process would be terminated in fewer 
steps. For machine calculation, however, the work 
shown is not heavy, and completely avoids the 
algebraic manipulation of the determinant. 
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TABLE 61'92 

STEPS IN THE SOLUTlON OF AN ALGEBRAIC EQUATION BY DIVIDED 
DIFFERENCES; ~OURTH DIFFERENCE 179,936640 THROUGHOUT 

e Detenninant. 1St. 2nd. 3rd• 

1'0 30,181877 130,289677'24 254,966572,8 287.467056 
0'7 -231684.844 101,378539'48 289,11 1377.6 341,448048 
0'7°8 - 18463'°°46 26,652729'92 255,91°3°.6'7 360,881205 
0'7°869 +860'1817 28,00461 7'84 155,56823°'5 344.4SII9° 
0'7°86593 -2'7600 28,108851'19 158,096991'4 292,028323 
0'7086593982 -'0002 28,104007'21 158,290581 ·8 293,586466 

The value of e so obtained is actually the fraction 
of the total sum of squares ascribable to rows and 
columns, when this fraction is maximised, To obtain 
the corresponding score values, x, y and z, the matrix 
for total sum of squares is multiplied by this value of 
8, and subtracted from that for rows and columns, 
to give the following equations :-

-488'8470x+ 821 '91 89Y-340'3474Z =1 59'9371 
82I'9189x-I838'8878y+854'5447z = -97'3534 

-340'3474x+ 854'5447y-8II' 2677z = -343'5587, 

of which the solution is 
x = '192959, 
Y ="584453, 
z = '958163, 

the values appropriate to the symbols ?, w, and (+) 
if zero is assigned to -, and unity to +, I t will be 
observed that the numerical values, of which only the 
first two figures need be used, lie between 0 and I in 
the proper order for increasing reaction, This is not 
a consequence of the procedure by which they have 
been obtained, but a property of the data examined, 

Without evaluating the scores we may test the 
sjgnificance of rows and columns directly from the 
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value of (), for only the ratio of the sums of squares 
is needed. An approximate test is supplied by adding 
3 degrees of freedom for the 3 unknown adjusted, to 
the 22 for rows and columns, and subtracting 3 
from the remainder. Thus we have:-

TABLE 61'93 
ANALYSIS OF VARIANCE OF A NON-NuMERICAL TABLE 

Degrees Sums of Mean of Square. Square. I Log. 
Freedom. 

Rows and columns 25 '7°866 ' 028346 I' 6723 

Remainder lIS '29134 ' 002469 '45 19 

Total 143 1'00000 Z = 1'2204 

The differences between different rows and columns 
are thus very highly significant. We may infer that 
large differences exist in :the strengths of the sera, or 
in the sensitivities of the different cells used. This is 
important, since it 'is only on this condition that the 
scores are worth anything. 

49' 3. The Precision of Estimated Scores 

The numerical values obtained for the scores are, 
of course, subject to sampling errors. The notion of 
a standard error is not, however, very simply applic­
able to such scores, which cannot be used except in 
conjunction with the other scores of the system, 
including the two which have been assigned arbitrary 
values. This difficulty may be overcome compre­
hensively by developing a test whether the data 
differ significantly from expectation based on any 
given system of scores. Thus, retaining the score zero 
for a negative reading, we might have given to the 
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readings ?, w, (+) and + the scores '25, 'So, '75 and 
1'00, or equally I, 2, 3 and 4, Then a test of signifi­
cance exactly analogous to that made above will show 
whether such a system is sufficient to explain the whole 
of the apparent differentiation of rows and columns, 

To perform the test, which is indeed of a kind for 
which extensive data, rather than a single table, 
should be used, we may denote the new variate by g. 
Then in Tables 61 '901 and 61 '902 (p. 287) we may 
make a new column by multiplying the four columns 
by I, 2, 3 and 4 and add~ng; this gives the two sets of 
values :-

Rows and Columns, Totals, 

--
-1:71:8 -2275 
-1858 -2759 

3192 4068 
578 1285 

i 

If we multiply the four rows by I, 2, 3 and 4 and 
add we shall obtain an analysis of variance for g; 
equally, if we multiply by the system of scores we 
have derived from the data, we shall have an analysis 
of covariance for X and g, where X stands for the 
system of scores previously derived. Similarly, we 
may find the analysis of variance for X, giving:-

TABLE 61'94 

ANALYSIS OF COVARIANCE FOR ARB,ITRARY AND EMPIRICAL SCORES 

S(t2) I S(tX) S(X2) 

Rows and columns 6454 221 9'039 770"496 

Remainder 3097 912'280 316' 762 

Total 9551 3131' 319 1087'258 
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If now we eliminate g according to the general 
procedure, by deducting from S(X2) the square of 
S(g X) divided by S(g2), using the lines for remainder 
and total, and obtaining that for rows and columns 
by subtraction, we find :-

TABLE 61·95 
ANALYSIS OF VARIANCE OF EMPIRICAL SCORES, ELIMINATING 

ARBITRARY SCORES 

Degrees of Sum of Mean fLog. Freedom. Squares. Square. 

Rows and columns 24 12.615 .5256 •8297 

Remainder II8 48.°33 .4°7 1 .6982 

Total 142 60.648 Z .1315 

The degrees of freedom have been reduced for 
rows and columns, since, after eliminating g, there 
are only two values adjustable; the value of z exceeds 
the 20 per cent. point, but falls far short of the 5 per 
cent. point. The table of data examined, with its 
very few - and + entries, is thus not sufficient to 
show that the linear series of scores is inadequate. 

In this, as in Table 6r ·93, the z test is only approxi­
mate, though in both cases it is sufficient to answer 
the question at issue. In Table 61 ·93 the dIstribution 
of the fraction of sums of squares ·70866 depends 
on the three parameters 22 and 121 for original 
degrees of freedom, ·and 4, the degree of the equation 
solved, which is one more than the number of adjust­
able scores. In Table 61 ·95 the corresponding ratio, 
·2080, likewise depends on the numbers 22, 120 and 3. 
The general solution of this problem of distribution 
has been found, but no exact tables are yet available. 
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The comprehensive method outlined in this section 
is applicable to a great variety of practical problems. 
It often happens that the statistician is provided with 
data on aggregates which it is required to allocate to 
different items. Thus, we may have data on the total 
consumption of different households, without knowing 
how this consumption is allocated between a man and 
his wife, or among children of different ages. I f the 
composition of each household is known, the relative 
importance of each class of consumer may be obtained 
by minimising the deviation between the consumption 
recorded, and that expected, on assigned scores, from 
the composition of the family. Where continuous 
v.ariables, such as age, are involved, it is preferable 
not to assign a separate unknown score to each age 
recorded, but to introduce the age, its square and 
possibly its cube, or higher powers, as independent 
variates, as in fitting curved regressions. Thus Day 
of the U.S. Forest Service has succeeded in allocating 
the cost of hauling ·logs of different diameters, from 
data giving only the composition by diameter of 
seventy different loads, each load involving the same 
haulage cost. An equation, quadratic in the diameter, 
was found sufficient to represent the curve of true 
cost. 



IX 

THE PRINCIPLES OF STATISTICAL 
ESTIMATION 

50. The practical importance of using satisfactory 
methods of statistical estimation, and the widespread 
use in statistical literature of inefficient statistics, in 
the sense explained in Section 3, makes it necessary for 
the research worker, in interpreting his own results, 
or studying those reported by others, to discriminate 
between those conclusions which flow from the nature 
of the observations themselves, and those which are 
due solely to faulty methods of estimation. 

Ex. 47.-As an example which brings out the 
main principles of the <theory, and which does not 
involve data so voluminous that we cannot easily try 
out a variety Qf methods, we shall choose the estima­
tion of linkage from the progeny of self-fertilised 
heterozygotes. Thus for two factors in maize, 
Starchy v. Sugary and Green v. White base leaf 
we may have \'N. A. Carver's data) such observa­
tions as the following seedling counts :-

TABLE 62 

Starchy. Sugary. 

Total. 
Green. White. Green. White. 

1997 906 904 32 3839 
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5I. The Significance of Evidence for Linkage 

I t is a useful preliminary before making a 
statistical estimate, such as one of the intensity of 
linkage, to test if there is anything to justify estimation 
at all. We therefore test the possibility that the two 
factors are inherited independently. If such were the 
case the two factors, each segregating in a 3 : I ratio, 
would give the four combinations in the ratio 9 : 3 : 3 : I, 

or with expectations, and corresponding contributions 
to x2 , shown in Table 63. 

TABLE 63 

Expectation (m) , 21 59'4 719'8 719'8 239'9 

Difference (d) -162'4 +186'2 +184'2 "'::" 2°7'9 

d 2/m 12'21 48'17 47'14 180'171 2 87'69 

Since for 3 degrees of freedom the I per cent. 
point is only I I '34, the observ,ed values are clearly in 
contradiction to the expectations, Suc!J. a result would, 
however, be produced either by linkage' or by a 
departur~ from the 3 : I ratios; the test may be made 
specific by analysing x2 into its components as in 
Section 22. For this purpose, designating the four 
observed frequencies by a, b, c, d, and their total by 
n, the deviations from expectation in the ratio of 
starchy and sugary will·be measured by 

x = (a+b)-3(c+d) = +95, 

that of the other factor by 

y = (a+c)-3(b+d) = +87. 
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while tb complete the analysis we need. 

z = a-3b-3c+9d = -3145. 

Then dividing the square of each discrepancy by 
its sampling varIance, namely 3n for z and y, and 
9n for z) we have the components 

X2-:-3 n '784 
y2-:-3n '657 
Z2-:-9n 286'273 

Total 287'7 14 

agreeing with the former total as nearly as its limited 
accuracy will allow. The conclusion is, evident that 
neither of the single factor ratios is abnormal, and that 
all but an insignificant fraction of the discrepancy is 
ascribable to linkage. The principles on which the 
deviations z, y, and z are constructed will be made 
more clear in Section 55. 

52. The Specification of the Progeny Population for 
Linked Factors 

When, as in the present case, the results are to be 
interpreted in terms of a definite theory, the specifica­
tion of the population consists merely in following out 
the logical consequences of that theory. The theory 
we have to consider is that in both male and female 
gametogenesis, while each gamete has an equal chance 
of bearing the starchy or the sugary gene, and again 
of bearing the gene for green or white base leaf, yet 
the parental combinations Starchy White and Sugary 
Green are produced more frequentl), than the recom­
bination classes Starchy Green and Sugary White. 
if the probability of the two latter classes is p in female 
gametogenesis and pf in male gametogenesis, the 
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probability of the four types of ovules and of pollen 
will be 

TABLE 64 

Starchy. . Sugary . 

Green. White. Green. White. 

Ovules !P i(I-P) i(I-P) tp 

I Pollen tP' i(I-P') i(I-P') iP' 

The- theory further asserts that each grain of 
pollen will with equal probability fertilise each ovule, 
and that the seeds and seedlings produced will be 
equally viable. Then the probability that a seedling 
will be the double recessive Sugary White, which can 
only happen if both pollen and Qvule carry these 
characters, will be ipp'. The probability of each of 
the other .three classes of seedlings may tie deduced 
at once, for the total probability of the tW9 Sugary 
classes is i irrespective of linkage, which leaves 
HI -pp') for the, Sugary Green class. Similarly, the 
probability of the Starchy White class is HI -PP'), 
leaving !(2+Pp') for Starchy Green. 

Since these probabilities in;volve only the quantity 
PP', it is only of this and not of the separate values of 
P and P' that the data can provide an estimate. We 
shall therefore illustrate the problem of estimating the 
unknown quantity pp', which we may designate by (). 
lf P and P' were equal, then v 8 would give the recom­
bination fraction in both sexes, and if these are unequal 
it will still give their geometric mean. The data 
before us, however, throw direct light only on the 
val ue of (). I t is to be observed that in the case of 
coupling, when both dominant genes are received from 



§ 53] STATISTICAL ESTIMATION 

the same grandparent, exactly the same specification 
is used, only it is I - VB instead of vO ~hich is to be 
interpreted as the recombination fraction. 

The statistical problem now takes the definite form: 
the probabilities of four events are 

i(2+B), HI-B), tel-B), to; 
estimate the value of the parameter 0 from the observed 
frequencies a, b, c, d. 

53. The Multiplicity of Consistent Statistics 

Nothing is easier than to invent methods of estima­
tion. I t is the chief purpose of this chapter to explain 
how satisfactory methods may be distinguished from 
unsatisfactory ones. The late development of this 
branch of the subject seems to be chiefly due to the 
lack of recognition of the number and variety of the 
plausible statistics which present themselves. We 
shall consider five of these. 

In our example we may observe that the probability 
of the first and fourth class increases, and that of the 
two other classes diminishes as B is increased. The 
expresslOn a-b-c+d 

will therefore afford a convenient estimate of B. To 
make a consistent estimate on these lines, we ~ubstitute 
the expected values 

n 
- (2+0, I-B, I-B, B), 
4 

for a, b, c, and d, and finding the result to be nO, we 
define our first estimate, T 1 , by the equation 

nT1 =a-b-c+d. 

Alternatively, we might take the expression for z 
m Section 5 I, which appears there as a measure of 



30 4 STATISTICAL METHODS [§ 53 

linkage for the purpose of testing its significance; sub­
stituting 'the expected values, as before, we obtain 
n(48-r), and may define a new estimate, T 2 , by the 

equation n(4T 2- I ) = a-3b-3c+9d, 

or 4nT2 = 2a-2b-2c+IOd. 

Obviously any number of similar estimates may be 
formed by the same method. 

Instead of consiq.ering the sum of the extreme 
frequencies a and d we might have considered their 
product. The ratio of the product ad to the product 
be clearly increases with 8; on substitution we have 
an equation for a third estimate in the form 

8(2+8) ad 
(1-8)2 = bc' 

a quadratic equation of which T 3 is taken to be the 
positive solution. \ I 

As a fourth statistic we shall choose that given by 
the method of maximum likelihood. This method 
consists in multiplying the logarithm of the number 
expected in each.class by the number observed, sum­
ming for all classes and finding the value of 8 for which 
the sum is a maximum. 

Now, 
a log (2 +8) +b log (1-8) +c log (1-8) +d log 8 

may be seen, by differentiating with respect to 8, to be 
a maximum if 

leading to the quadratic equation 

nB2_(a-2b-2c-d)B-2d = 0,. 

of which the positive solution, T 4, satisfies the condi­
tion of maximum likelihood. 
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Finally, for any value adopted for 0, we shall be 
able to make a comparison of observed with expected 
frequencies, and to calculate the discrepancy, X2, 
between them, In fact x2 can be expressed in the form 

4 ( a
2 

b
2 

c
2 

d
2

) x2 =;; 2+8+ 1-8+ 1-0+8 -n, 

and the value for which this is a minimum will be the 
positive solution of the equation of the 4th degree 

a2 d 2 b2+C2 

(2+8)2 + 82 = (I -8)2' 

a statistic which we shall designate by T 5' 

54, The Comparison of Statistics by means of the Test' 
of Goodness of Fit 

All the statistics mentioned, except the last, are 
easily calculated. The reader should calculate the 
first four, and verify that the value of the fifth given 
below approximately satisfies its equation. For each 
statistic we may calculate the numbers expected in 
the four classes of seedlings, and compare them w~th 
those observed, This is done in Table 65, where also 
the values of X2 derived from this comparison are 
gIven. TABLE 65 

COMPARISON OF FIVE STATISTICAL ESTIMATES OF LINKAGE 

Method. l. 2. 3· 4· 5· 

'057046 '°45 194 '°35645 '0357 12 '°35785 
Recombination 

per cent. 23'88 21 '26 18,880 18·898 18'917 Observed 

{ '974"5 
1962 ,875 1953'711 1953'775 1953'845 1997 

Numbers 905'00 916 '375 925'539 925'475 925 '405 906 
expected 905'00 916'375 925'539 925'475 92 5'405 904 

54'75 43'375 34'211 34'275 34'345 32 
x2 9'7 17 3,860 2'01 58 2'01 54 2'01 53 '" 

\ 

x 
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I n the actual values of th'e estimates the first three 
methods differ considerably, but the last three are 
closely alike; so closely that the expectations of 
methods (3) apd (5) differ from those of (4) by on1y 
about one-fifteenth of a seedling in each class. In the 
comparisons between the numbers expected and those 
observed, the most important discrepancies are in the 
fourth class, where method (2) gives a large and 
method (I) a very large discrepancy. The contrast 
between the first three methods in the values of x2 is 
very striking. For 2 degrees of freedom-not 3 
because on fitting a linkage value I degree should 
be eliminated-a value above 9'2 r should only occur 
once in a hundred trials. The value given by method 
(2) is not in itself significant, but since its value is 
nearly double that of methods (3), (4), and (5) we may 
be sure that the test of goodness of fit, if correct for 
the latter, must be highly erroneous for m~thod (2), 
as well as for method (I). The general theorem which 
this illustrates is that the test of goodness of fit is only 
valid when efficient statistics are used in fitting a 
hypothesIs to the data; in this case, as will be seen 
in the next section, methods (3), (4), and (5) are efficient, 
while methods (r) and (2) are not. 

55. The Sampling Variance of Statistics 

A more searching examination of the merits of 
various statistics may be made by calculating the 
sampling variance of each. Since the subject of 
sampling variance is usually treated by somewhat 
elaborate mathematical methods, it will be as well to 
give a number of simple formulce by which the majority 
of ordinary cases may be treated. 
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First, if X' is a linear function of the observed 
frequencies, such as 

k1a+k2b+kac+k4d, 

then, designating the .theoretical probability of any 
class .by p, the mean value of X' will be 

nS(pk). 

The random sampling variance of X' IS gIven by 
the formula 

~ Vex) = S(pk2)-S2(pk), 
n 

(A) 

and if the mean value of X' is zero, the variance of X' 

becomes simply 

Further, if a second linear function of the fre­
quencies, y, is specified by coefficients, k', then the 
covariance of X' and y is 

nS(pkk'). 

In view of this theorem the' choice of the linear 
functions used for analysing x2 in Section 5 I will no 
longer appear arbitrary, and the values taken for their 
sampling variance will be apparent. For the values 
of pare 

I 
16 (9, 3, 3, I), 

and for X' the values of kate 

glvmg 
S (pk) = 0, S(pk2) = 3, 

so that the va'riance is 3n, the value adopted. For y 
we evidently have the same values, with the additional 
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fact that the mean value of X)I is zero. For z again 
S(pk). = 0, S(pk2) = 9, 

while the mean values of xz and)lz are each zero. In 
analysing x2 into its components we always use linear 
functions of the frequencies, the mean value o~ each 
being zero, and such that all the covariances shall 
vanish. 

I t should be noted that the mean of X)I is only zero 
in the absence of linkage. When linkage is present the 

values of pare !C2+B, I-e, I -0, e), 

giving for the covariance of x and)l, 
nS(pkk') = n(41-I), 

and for the correlation between them, 

1(41- 1). 

A statistic used for estimation will not be a linear 
function of the frequencies, for it must tend to a finite 
value as the sample is increased indefinitely; it will, 
however, often be of the form 

1 
T =- (kIa+k2b+kac+k4d), 

n 

as in our example are TI and T 2 • 

For such cases a cOflvenient formula is 
n VeT) = S(pk2) _B2 . (B) 

the statlstlc being supposed to be consistent. Now 
for T I , k is always + I or - I, and we have at once 

VeT 1) = 1 -B2, 
n 

while for T 2, with k = i, -i, -i, 2i, and p = 
!C2+B, I-B, I-B, B) it is easy to find 

V(T
2
) = I+6B-4B2. 

4n 
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These two sampling variances are very different; 
if 8 is small (close linkage in repl!-lsion), the variance 
of T2 is only a quarter of that of T1, and we may say 
that T2 utilises four times as much of the available 
information as does T1 • This advantage diminishes, 
but persists over the whole range of repulsion linkages, 
for at e = !- the ratio of the variances is as five to 
three. The variances become equal at 8 =!, at 
which value the coupling recombination, 1 - vO, is 
about '29, and for closer linkage than this, in the 
coupling phase, Tl is the better statistic. 

The standard error to which either estimate, T, 
is subject is, of course, found by taking the square 
root of the variance; it will be of more practical 
interest to find the standard error of the recombination 
fraction, vB. F or this purpose the above variances 
are divided by 48, before taking the square root. 
Putting e = '0357, in the variances, we then have the 
two estimates of the recombination percentage, 

23'88±4'268 and 2I'26±2'348, 

from the first of which we might judg-e roughly that 
the recombination per cent. lay between 15'3 and 32 '4, 
while the second indicates the much closer limits 16,6 
to 26·Q. 

For any function of the frequencies, whether the 
sample number n appears explicitly or not, we can 
obtain the approximation to the sampling variance 
appropriate to the theory of large samples in the form 

I ~ VeT) = S{ p(~~r}- (~~r (C) 

a formula which involves the differential coefficients of 
the function in question with respect to each observed 
frequency, and to the total, n. After differentiation 
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the expectation pn is substituted for each frequencya. 
If we apply formula (C) to the function 

F = log (ad)-log (be) = log {Ta(2+Ta)}-2 log (1-Ta), 

the values of of loa are 
1 1 

a' -b' -~, d' 

while, since n does not appear explicitly, of/on = o. 
Hence, substituting pn for a, and the known values of 
p in terms of 0, we have 

n I 2 1 2(1+20) 
4 V(F) = 2+0 + 1 -0 + B = 0(1 -0) (2+0)· 

To obtain the variance of T a we must divide this 
by the square of dF /dT a, putting T a equal to 0 after 
differentiation; but 

hence 

dF __ I _ + __ 2 _ + _!__ 
dTa - 2+Ta 1-Ta Ta' 

nV(T) = 20(1-0)(2+0) 
a 1+20 

F or the variance of the statistic which satisfies the 
conditions of maximum likelihood a very simple and 
direct general method is available. The expression 
obtained by direct differentiation, and which, equated 
to zero, gave the equation for T 4 in Section 53, was 

a b+e d 
2+0 - 1-0 +8· 

If this is differentiated again with respect to 0, and 
the expected values substituted for a, b, c, and d, we 
obtain 
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and this is simply equated to - I/VeT,), giving 

nV(T) = 28(1-8) (2+8) 
4 1+28' 

the same expression as we have obtai~ed for the 
sampling variance of T 3' This expression is of great 
importance for our problem, for it has been proved 
that no statistic can have a smaller sampling variance, 
in the theory of large samples, than has the solution 
of the equation of maximum likelihood. This group 
of statistics (to which the minimum x2 solution also 
always belongs), which agree in their sampling variance 
with the maximum likelihood solution, are therefore of 
particular value, 'and are designated ejficz"ent statistics, 
on the ground that for large samples they may be 
said tO'make use of the whole of the relevant information 
available, whereas less efficient statistics such as Tl and 
T2 utilise only a portion of it. 

The expression for the minimum variance 

z8( I -(J) (z +(J) 
(1 +z(J)n 

represents, therefore, an intrinsic property of the data, 
irrespective of the methods of estimation actually used. 
For large samples we may interpret its reciprocal 

1= (I +z(J)n 
'2(J(I-(J) (2+(J) 

as a numerical measure of the total amount of informa­
tion, relevant to the value of (J, which the sample 
contains; and it is evident that each seedling observed 
contributes a definite amount of information, measured 
by 

1 +2(J 
Z(J(I -(J) (z+(J), 
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relevant to the estimation of the value of (J. This 
consideration affords a basis for the exact treatment 
of sampling problems even for small samples, for once 
we know how to calculate the amount of information 
in the data, the. amount extracted by any proposed 
method of analysis may be evaluated likewise, though 
this may be difficult, and a comparison of the' two 
quantities gives an objective measure of the efficiency 
of the method proposed in conserving the relevant 
information available. 

The actual fraction of the information utilised by 
inefficient statistics in large samples is obtained by 
expressing the random sampling variance of efficient 
statistics as a fJ,"action of that of the statistic in question. 
Thus for Tl and T2 we have the fractions, 

. 2(J(2+(J) 
E(T1) = V(T4)-:-V(T1) = (r +2(J) (r +(J)' 

which .rises to unity at (J = I, but is less 1t all other 
values; and 

• T S(J(r -(J) (2+(J) 
E(T2) = V(T4)-;--\ (T2) = (r +2(J) (r +6(J-4(J2)' 

which rises to unity at (J F :1, falling to zero if (J = 0, 

or (J = I. 

Fig. I I shows the course of these fractions 
expressed as a percen,tage, for all values of the recom­
bination percentage, vO for repulsion, and 1 - vO 
for coupling. It will be seen that for our actual value 
of about 19 per cent. in repulsion, the efficiency of Tl is 
-about 13 per cent., while that of T2 is about 44 
per cent. The use of Tl wastes about seven-eighths 
of the infor,mation utilised by T 3, T 4, and T 5, while 
the use of T2 wastes more than half of it. In other 
words, T 1 is only as good an estimate as should be 
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obtained from a count of 503 seedlings, while T2 is as 
good as should be obtained from 166r out of the 3839 
actually counted. 

The standard error of the efficient estimates of 
recombination value is I' 545 per cent., giving probable 
limits of 15.8 to 22'0 for the true value. The use of 
inefficient statistics is therefore liable to give ·not 
merely inferior estimates of the value sought, but 

REPULSION 

40 30 20 

COUPLING 

RECOMBINATION ,PER CENT. 

FIG. u.-Efficiency of Tl and T2 for all values of (). Ta, T4, and T6 
having 100 per cent. efficiency throughout the range, are 
represented by the upper line. 

estimates which are distinctly contradicted by the 
data from which they are derived. The value 23 ·88 
per cent. obtained for Tl differs from the better 
estimates by more than three times the standard error 
of the latter. I t is highly misleading to derive such 
an estimate from data which themselves prove it to 
be erroneous. 

The second respect in which the use of inefficient 
statistics is liable to be misleading is in the use of the 
x2 test of goodness of fit. Using Tv we should 
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naturally be led to conclude that the simple hypo­
thesis of linked factors was in ill accord with the 
observations and that the results must be complicated 
by some such additional factor as differential viability. 
Finding only 32 double recessives against an expecta­
tion of 55, it would be natural to draw the conclusion 
that this genotype suffered from a low viability; 
whereas the data rightly interpreted give no significant 
indication of this sort. In the second place, whether 
the discrepancy were ascribed to differential viability or 
not, its existence would provide a very good reason 
for distrusting the linkage value obtained from such 
data; if, on the contrary, satisfactory methods of 
estimation are used, the grounds for this distrust are 
seen to fall away. 

56. Comparison of Efficient Statistics 

I t has been seen that the three efficientl statistics 
tested give closely similar results. This is in accordance 
with a general theorem that the correlation between 
any two efficient statistics tends to + I, as the sample 
is indefinitely increased. The conclusions drawn from 
their use will therefore ordinarily be equivalent. It 
appears from Fig. II that, for special values of (), 
T 1 and T 2 also rank as efficient. 

T2 is efficient when () is 1, or in the absence of 
linkage. This accords with the use of z in Section 5 I 
for testing the significance of linkage, for we are then 
testing the hypothesis that the .factors are unlinked, 
and the test may be applied simply by seeing whether 
or not Z2 exceeds (say) 36n. Any test based upon an 
efficient estimate of linkage compared to its standard 
error must agree with this. I t is by no means 
uncommon to find statistics such as T 2 which provide 
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excellent tests of significance, yet which become 
highly inefficient in estimating the magnitude of a 
significant effect. An outstanding example of this is 
the use of the third and fourth moments to measure 
the departure from normality of a frequency curve. 
The third and fourth moments provide excellent ~ests 
of the significance of the departure from normality, 
but when the distribu"tion is one of the Pearsonian 
types differing considerably from the normal, the third 
and fourth moments are very inefficient statistics to 
use in estimating the form of the curve. This is 
the more noteworthy as the method of moments is 
ordinarily used for this purpose. The fact is that the 
efficiency of each of these statistics rises to 100 per cent. 
only for the normal fo~m, just as that of T2 reaches 
100 per cent. only for zero linkage; but that the 
efficiency depends on the form of the curve, just as 
that of Tz depends on the value of 0, and falls rapidly 
away as we leave the special region of high efficiency. 

The statistic, Tv is fully efficient when 0 = I, 

that is, for very high linkage in the coupling phase; 
and therefore, in the theory of large samples, should 
give an estimate equivalent to T 3 , T 4, and T 5• This 
extreme case, () = I, is interesting in bringing out a 
limitation of the theory of large samples, which it is 
sometimes important to bear in mind; for tne theory 
is valid only if none of the numbers counted, a, b, c, 
and d, is very small. Nq,w for high linkage in coup­
ling the recombination types, band c, may be very 
scarce. I t is true that for any proportion of crossing­
over, however small, it is possible theoretically to take 
a sample so big that band c will be large enough 
numbers; and in ~uch cases the theory of large 
samples is justified. But it is also true for a sample 
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of any given size, that linkage may be so high that 
seedlings of types band c will be few; then, it is easy 
to see that some of the efficient statistics will fail. If; 
for example, either b or c is zero, T 3 will necessarily 
be unity, indicating complete linkage, whereas two or 
three seedlings in the other recQmbination class will 
show that crossing-over has really taken place. In 
the same way Ts also fails, for it makes the recombina­
tion fraction proportional to v' b2 + c2

, while T 1 and T 4 

make it proportional to b+c. In general, the equatipn 
for minimising x2 is never satisfactory when some of 
the classes are thinly occupied, as one might expect 
from the nature of X2; the method therefore fails 
whenever the number of classes possible is infinite, as it 
usually is when we are concerned with the distributions 
of continuous variates. The_ two remaining efficient 
statistics Tl and T 4 give equivalent estimates 

b+c I 
n 

for the recombination fraction, when the linkage is 
very high. Of course, as shown by Fig. II, for any 
incomplete linkage the efficiency of Tl is slightly 
below 100 per cent., so that the exact value of T 4 is 
slightly preferable. Tv however, does provide a 
distinctly better estimate than T 3 or T s if band care 
small. 

57. The Interpretation of the Discrepancy X2 

The statistic ob~ained by the method of l)laximum 
likelihood stands in a peculiar relation to the measure 
of discrepancy, X2, and an examination of this relation 
will serve to illuminate the method, using degrees of 
freedom, which we have adopted in Chapter IV, and 
throughout the book. I t has been stated that although 
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in the distribution of a given number of individuals 
among four classes ~here are 3 degrees of freedom, 
yet if, as in the present problem, the expected numbers 
have been calculated from those observed by means of 
an adjustable parameter (8), then only 2 degrees of 
freedom remain in which observation can differ from 
hypothesis. Consequently the value of x2 calculated 
in such a case is to be compared with the values 
characteristic of its distribution for 2 degrees of 
freedom., This principle has been dispute~, but the 
common-sense considerations upon which it was based 
have since received complete theoretical verification. 
In the present instance we can in fact identify the 2 

degrees of freedom concerned. For the observed 
numbers in each class will be entirely specified if we 
know: ' 

(i) The n1,l.mber in the sample; 
(ii) The ratio of starchy to sugary plants; 

(iii) The ratio of green to white base leaf; 
(iv) The intensity of linkage. 

N ow if the expected series agrees in items (i) and 
(iv), it can only differ in items (ii) and (iii) and these 
will be completely given by the two quantities x and y 
defined by 

.x =a+b-3c-3d, 

y =a-3b+c-3d, 

specifying the ratios by linear functions of the 
frequencies. 

The mean values of x 'and yare zero, and the 
random sampling variance of each is 3n. In the 
absence of linkage their deviations will be independent, 
but if linkage is present .the mean value of xy has 
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been found to be 
1-41 

-3n -3-' 

and the correlation between x and y to be 
. 1-48 

P=--3-' 

t§ 57 

The simultaneous deviation of x and y from zero 
will therefore be measured (compare Section 30) by 

Q2 = _1_{X2-2PXY+ y2} 
I-p2 3n 

= 8n(1 -8~ (1 +28) {X2+y2+ ~ (1 -41)xy}-

This expression, which of course depends upon 8, 
is a quadratic function of the frequencies; in this it 
resembles X2, and on comparing term by term the two 
expressions it appears that I 

2 _ Q2 1 {a b+c d}2 
X - + X 2+8 - 1-8 + B ' 

where I is the quantity of information contained in the 
data as defined in Section 55. 

This identity has two important consequences: first, 
that X2 = Q2 for the particular value of 8 given by the 
equation of maximum likelihood, and for no other 
value. At this point, then, even for finite samples, 
the deviations between observation and expectation 
represent precisely the deviations in the t:vo single 
factor ratios. . 

The second point is, that for any value of 8, X2 
is the sum of two positive parts of which one is Q2, 
while the other measures the deviation of the value of 
o considered from the maximum likelihood solution; 
this latter part is the contribution to X2 of errors of 
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estimation, while the discrepancy of observation from 
hypothesis, allowing any v&lue of (), is measured by 
Q2 only. 

Fig. 12 snows the values of x2 and Q2 over the 
region covering the three efficient soiutions. 

The contact of the graphs at the maximum likeli­
hood solution makes it evident why the solution based 

2·0 I 59-,-----,--------r:::---------r-------, 

2·0 I 5a 

2·0 157 

Z 2·0 156 
~ 
001 

~ 2·0155 
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Q 
'" 2'0154 o 
VJ 

~ 2·0153 
..l 
..: 
:> 2·0152 

2·0151 

2·0 I 50-'-----____,_L_.,----,--.__j_--,--.-.-----r--,--l-~_,.~____,_----) 
'03564 66 68 70 72 74 76 7S 80 82 ·03584 

VALUES OF 6 

FIG. 12.-Graphs of X2 and Q2 for varying 6 in the neighbourhood of the 
efficient estimates. 

on minimum x2 should be of no special' interest, 
although x2 is a valid measure of discrepancy between 
observation and hypothesis. As the hypothetical 
value, (), is changed the value of Q2 changes, and, 
althou~h this change is very minute, it gives the line 
a sufficient' slope to make an appreciable shift in the 
point of contact. 

If we set aside the portion ascribable to errors of 
estimation, which satisfactory methods of estimation 
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will always reduce to a trifling amount, it is apparent 
that the measure 9f discrepancy, x2

, in our chosen 
problem, merely measures the deviation from expecta­
tion of the two single factor ratios, and its significance 
must therefore be judged by comparison with expecta­
tion for 2 degrees of freedom. Such a comparison 
will give an obj~ctive test dependent only on the data, 
and independent of our methods of treating it, if and 
only if the error of estimation measured from the 
maximum likelihood solution is sufficiently small. 
This, of course, where the theory of large samples is 
applicable, will be true if any efficient statistic is used; 
it will always be true for the method of maximum 
likelihood. 

57· I. Fragmentary Data 

I t very frequently l;lappens, in a statistical enumera­
tion, that only a portion of the whole \ sample is 
completely classified, the remaining members showing 
various degrees of incompleteness in their classification. 
Since the treatment of such data appears extremely 
troublesome, it is proper to lay great stress upon 
completeness of classification, whenever this is possible. 
In many cases, however, some degree of incompleteness 
is unavoidable, and the problem of framing an adequate 
statistical treatment, which shall utilise the whole of 
the information actually available, should be fairly 
faced. It will be shown that if approached in the 
right manner, and on the basis of a comprehensive 
theory of estimation, such problems offer no insuper­
able difficulties. We may again find a good example 
in the estimation of linkage, remembering that the 
type of difficulty to be discussed occurs in statistical 
work of all kinds. 
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Ex. 48. Tedin, working with two linked factors in 
Pz'sum, Ar and -Oh, obtained, by selpng the double 
heterozygote, a progeny of 216 plants which could be 
classified as 99 OhAr 71 ohAr and 46 ar. The 
factor Oh could not be discriminated in the last group 
of plants, and, as is inevitable with moderate numbers 
and high linkage in repulsion, the proportions of this 
progeny give little information as to linkage value. 
From 63 of the OhAr group progenies were raised by 
self-fertilisation, which enabled their parents to be 
classified; 3 were homozygous for Ar but not for Oh, 
8 for Oh and not for Ar, while 52 were heterozygous 
{Jr both factors. Further, all of these 52 showed 
repulsion. Finally, of 47 plants of the ohAr group 
the progenies raised showed only 3 to be heterozygous 
for Ar, the remaining 44 being homozygous. 

We may now set out the distribution of those IIO 

plants which in the end were completely classified 
alongside a table showing the relative frequencies with 
which plants completely classified should fall into the 
several classes, the' recom bination proportion being 
represented by p. 

o hOh 

o hoh 

-
o hoh 

-

TABLE 66 

Ar Ar 
Ar ar 

0 8 

3 0 

44 3 

I 

S2 

ar 
ar 

-

-

-

[TABLE 67 
y 
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TABLE 67 

Ar Ar ar 
Ar ar ar 

PhOh p2 2P(I'-P) (I-p)2 

Ohoh 2P(I-P) 2p2 2(I-P)2 2P(I-P) 

ohoh (I-p)2 2P(I-P) pI 

Next we have 60 plants, from which progenies 
were not grown, but which could be classified by their 
appearance as follows :-

TABLE 68 

Ar Ar ar 
Ar ar !lr 

OhOh} 
36 0 

Ohoh I 

ohoh 24 0 I 
I 

TABLE 69 

Ar Ar ar 
Ar ar ar 

OhOh} 
2+p2 r_p2 

Ohoh 

ohoh I-p2 p2 

and finally 46 plants, of which the, classification is still 
less complete :-
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TABLE 70 

Ar Ar ar 
Ar ar ar 

OhOh} 
Ohoh 0 46 

ohoh 

TABL~ 71 

Ar Ar ar 
Ar ar ar 

OhOh} 
Ohoh 3 I 

ohoh 
I 

If now it may be assumed that those plants, which, 
within any class, are incompletely specified, are a 
random sample of the members of that class, we may 
apply the method of maximum likelihood, as in Section 
53, by multiplying the logarithm of the expectation 
in any class by the number recorded in that class, 
and adding all classes together, z'rrespectz've of the 
completeness of classijicatz'on. When the expectations 
of any two classes are the same, the numbers in such 
classes may therefore be pooled, and we obtain 

(8+3+3) log {2p(I-P)}+52 log {2(I-p)2}+44lqg (I-p)2 
+36 log (2 +p2) +24 log (I-p2) 

+46 log (I) 
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as the logarithm of the likelihood, which is to be 
maximised. Any constant factor, such as 2, in the 
expectations makes a constant contribution to this 
quantity, independent of p, and may therefore be 
ignored. In particular the expectation in the arar 
class being entirely independent of p, the number in 
that class makes no contribution whatever to our 
knowledge of the linkage, and the whole class must be 
ignored. With these simplifications, and using the 
fact that the logarithm of a product is the sum of 
the logarithms of its factors, the expression to be 
maximised is reduced to' 

By differentiating this expression with respect to 
p, we obtain the equation of maxImum likelihood 
in the form 

the first two terms are due to plants completely 
classified, and may be expected to contain the bulk 
of the desired information, the latter pair including 
the supplementary information due to the 60 Ar 
plants less completely classified. From the former 
only we should judge that p was nearly 14-;-220, 

or between 6 and 7 per cent. The exact estimate 
of the method of maximum likelihood may be -most 
rapidly approached by substituting likely values for 
p and interpolating. Thus putting p equal to ·06 
and ·07 we obtain :-
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TABLE 72 

p = '06. P = '07· P = '0638. 

141P . 233' 33 200'00 219'436 
-206J(I-P) - 219'15 -221'51 -220'038 
72P/(2+p2) 2'16 2' 51 2'292 
-48P/(I-p2) -2'89 -3'38 -3'075 

aL 
Total op +13·45 -22'38 -1' 385 

The result of substituting '06 being I3 '45. while 
with '07 we obtain -22"38, the true value which 
gives zero must be near to '06+'01 (13"45";-35'83). 
or "0638. The effect of substituting this value is 
shown in the final column, which serves both as a 
check to the previous work, and as a basis, if such 
were needed, for a more accurate solution. The 
improved value is '06345, from which as an exercise 
in the method the student may rapidly obtain a still 
more accurate value. 

57'2. The Amount of Information: Design and Precision 

The standard error to be attached to such an 
estimate is derived direetly from the amount of 
information in the data. In cases in which the data 
are fragmentary, we proceed as usual in differentiating 
th~ left-hand side of the equation of maximum likeli­
hood, and in changing the sign of the terms, but 
in substituting the expected for the observed frequencies 
note should be taken of the basis on which these are 
expected, as well as of the expectation in the classes 
which do not appear in our sample. Thus 'in the 
classification of the first year the expectations from 
216 plants are -54(2+p2) OhAr and 54(1 _p2) ohAr; 
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these will make contributions to the information 
available of 

54(2+p2) (2~p2r +54(I-p2) C ~2r 
or 216P2{2~p2 + 1 Ip2} 

=216 3p2 (A) 
(2+p2) (l-p2) 

and this, a very trifling amount numerically, is the 
amount of information available from the first year's 
classification. 

If we now consider the 47 ohAr plants from 
which progenies were grown, we have expectations 
47(1 _p)2-7-(1 -p2)ArAr and 47 X 2p(1 -p)-7-(1-p2) 
Arar. The add£t£onat information which these will 
contribute 'will be 

1 -p ( - I ) 2 P (I ) 2 (1 \ ) 2 
47 I+P 1 p +94 I+P P -47 I+P 

the expected frequency in each portion being multiplied 
by the square of its logarithmic differential, and a like 
term deducted for the total; this gives 

{ I 2 I} 
47 1 p2 + p(1 +p) - (1 +p)2 

2 

= 47 p(1 -p) (1 +p)2' 

The additional information per plant of this group 
is therefore 

(B) 

Finally, the observed distribution of the 63 ArOh 
plants into 52 ohArjOhar, 11 OhOhjArar or Ohohl 
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ArAr, and 0 OhOh/ArAr or OhAr/ohar must be 
replaced by the expectations 

(2';P2){2(I-P)2, 4P(I-p), 3P2}. 

The additional information per plant in this group 
is therefore 

2~p2{2(I-P)2C ~r+4p(I-P)(~-I Ipr 

+3P2Gr} - Ctpzf' 
I {8 4(I-2P)2 } 4p2 

,or 2+p2 + p(I-p) +12 - (2+p2)2' 

which may be reduced to 

4(2+2p'-p2) 
p(I-P) (2+p2)2 

(C) 

At 6'345' per cent. recombination the numerical 
contribution per plant under (A), (B) and (C) are 
'006051, 29'76 and 35'58. The second year's 
classifications thus give nearly 5000 and 6000 times 
as much information per plant as the first year's 
classification. On the actual numbers available the 
total information is 3642. The reciprocal of this, 
'0002746 is the variance of the recombination fraction; 
whence 2 '746 is the variance of the recombination per­
centage, and I :657 per cent. is the ?tandard error, 

The advantage of examining the amount of 
information gained at each stqge of the experiment 
lies in the fact that the precision attainable in the 
majority of experiments is limited by the amount of 
land, labour and supervision available, and much 
guidance may be gained as to how these resources 
should best be allocated, by considering the quantity 
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of information to be anticipated. In the experiment 
in question, for example, it appears that progenies 
from OhAr plants are somewhat more profitable than 
those from ohAr plants. 

If, on the contrary, our object is merely to assign 
a standard error to a particular result, we may estimate 
the amount of information available directly by differ­
entiating the expression for oL/op in the equation of 
maximum likelihood, using the actual numbers 
recorded in the classes observed. We should then obtain, 

14 206 72(2-}2) 48(1+p2) 
p2 + (I -p)2 - (2+p2)2 + (1 _p2)2 ; 

this gives 3725 as the total amount of information 
upon. which our estimate has been bCj.sed, and r .638 
as the standard error of the estimate of the recombina­
tion percentage. I t should' be noted that an estimate 
obtained thus is in no way inferior to one obtained 
from the theoretical expectations; only that it gives 
no guidance as to the improvement of the conduct 
of the experiment. I t might be said that owing to 
chance the experiment has given a somewhat higher 
amount of information than should be expected from 
the numbers classified. 

The difference between the amount of information 
actually supplied by the data and the average value 
to be expected from an assigned set of observations 
is of theoretical interest, and being often small requires 
the rather exact calculations illustrated above. For 
the purpose of merely estimating the precision of the 
result attained a much briefer method may be indicated. 
The values obtained in Table 72 show that for a 
change of 'or in p, the value of oL/op falls by 35.83 ; 
from this the amount of information may be estimated 
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at once to be 3583 units, and the standard error to 
be I '67 per cent., a sufficiently good estimate for 
most purposes. 

In some cases this very crude approximation will 
not be good enough. It really estimates the amount 
of information, apPl:""opria'te to a value about 6·5 per 
cent., half-way between the two trial values. We 
want its value at 6·345 per cent. the actual value 
obtained from our estimate. An improved value 
may easily be obtained where three trial values have 
been used. From p = ·06 and p = .0638, we have 

13.45+1.385 
0.0038 = 3904 

at p = .0619. • 
From p = .0638 and p = ·07 

-1.385+22 .38 - 3386 
0'0062 -

atp = .0669. 
Whence for p = .06345 we should take 

.001 55 X 3386+.00345 X 3904 
.005 = 3743, 

corresponding to a standard error I ·635 per cent., 
a result of amply sufficient accuracy, obtained without 
the evaluation of the algebraical expresslO!ls for 
quantity of information. 

57'3. Test of Homogeneity' of Evidence used in Estimation 

When diverse data throw light on what is theoreti­
cally the same quantity, the evidence from different 
sources may be combined, as in the last Section, to 
{Xovide a single estimate based on the whole of the 
evidence. The need for such -methods can scarcely be 
overlooked. In practical research, however, it is 
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often of equal or greater importance to test whether 
the different sources of information fully concur in 
the estimate towards which they lead, or whether, on 
the contrary, this is a compromise between bodies of 
evidence which are significantly discrepant. We shall 
now show how a x2 test of homogeneity may be 
applied, making use of the same computational 
procedure as that employed in finding the combined 
estimate. 

In tetrasomic inheritance each chromosome is 
capable of pairing, not with a single mate, but with 
'any other of the set of four homologous chromosomes 
to which it belongs. If different parts of it pair with 
different partners it is possible for the two homologous 
genes carried by a single gamete t~ have been in 
qrigin identical. The proportion of such gametes 
will be designated by a, in respect of any Iparticular 
factor. It is thus possible for a plant containing one 
dominant gene, out of the four present, to transmit 
two such genes in the same gamete. The frequencies 
with which it transmits 0, I and :2 dominant genes 
being then 2 +a, 2 - 2a, and a out of 4. The corres­
ponding frequencies for a: duplex plant (carrying two 
domin~nt genes) will be I +2a, 4-4a, and I +2a, 
out of 6. 

F or a gene determining top-necrosis of potato 
plants grafted with a scion infected with viru.s X-, 
Cadman gives data from four sources: the backcross 
and intercross progenies of simplex plants, and the 
backcross and intercross progenies from duplex plants. 
These are as shown in Table 73. 

From these data we may estimate the magnitude 
of a, and test the homogeneity of the evidence. A 
standard form of calculation is shown in Table 14. 

I 
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Values of 0., '120 and '122, ar,e sufficiently closely 
approximate to give both an improved joint estimate 

TABLE 73 

Necrotic, N on·necroti c, Total, 

Simplex Plants{~a~kcross 762 842 1604 
ntercross 122 41 163 

Duplex plants{~ackcross 144 38 182 
ntercross 122 10 132 

T,ABLE 74 

a = 'Z20. a = 'Z22. I. D'/I. D'/I. 
--- ---

Simplex backcross 
397'I698 842/(2+a) 396'7955 

-762/(2-a) -405'3191 -405'7508 

D -8'1493 -8'9553 403'0 

'W} Simplex intercross-
82!(2+a) 38'6792 38'6428 

'5 131 
-244(2+a)!{16-(2+a)'} - 44'9590 -45'0346 

D -6'2798 -6'3918 56'0 '7296 
Duplex backcross--

76/(1+2a) . 61'290 3 61 '0932 
-288!(5- za) -60'5042 -60'5551 

D +'7861 +'5381 124'0 

'00") Duplex intercross-
40!(1+2a) 32'2581 32 'IS43 1'0984 -488(1 +2a){36-(1+2a)2} -17'5588 '-17'6206 

D +14'6993 +14'5337 82,8 2'S51I 

--- --- ---

Total +1'0563 -'2753 665'8 -'0001 -'0001 . 
X' 3'4819 1'6114 

n 3 I 
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of a, I2· I6 per cent., and the amount of information, 
I, provided by the several parts of the data. These 
are given sufficiently nearly by dividing the difference 
between the discrepancies found for these two estimates 
by '002. (Table 74.) 

The amount of information is estimated for 
a = I2' I per cent., near to the true value. At the 
true value x2 = D2/I, as shown in section 57; in 
this case we add the contributions from the separate 
parts of the data, subtracting that for the data as a 
whole, which is almost negligible. In the table the 
values of D used are for a = °I22; the reader may 
be interested to make the test using those for a = . I20. 

I t should be noted that the exact equivalence, 
demonstrated in Section 57, requires that I from each 
batch of data should be calculated as the amount of 
information expected from the total \ number of 
observations in each batch. E.g. for the simple 
backcross I would be I604/(4-a)2. This process 
gives amounts of information slightly different from 
those used in Table 74, namely, for the four sections, 
402'5, 56'7I, I23·0, and 6I'302, or 643'5 in all. The 
corresponding values of D2/I are then' 1992, <7204, 
.0023, and 3'4.457, with a total x2 of 4'3675., These 
last values check exactly with the contributions to x2 

found by calculating the expected numbers in each 
of the eight classes enumerated. The discrepancy 
between the two methods of calculating x2 is due 
to errors of random sampling, and tends to zero as 
the size of the sample is increased; both methods 
therefore tend to give the theoretical x2 distribution 
for large samples of homogeneous material, and 
there appears to be no good reason for preferring 
one to the other. The method of this Section is 
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available, however, when estimation is based on 
measurements and not on frequencies, so that no 
alternative value base9- on frequencies can be 
calculated. 

The test is applied both for all three degrees of 
freedom among the four kinds of da~a, and for the 
one degree of freedom contrasting simplex with 
duplex parents. On both tests the homogeneity is 
satisfactory, though we should perhaps wish to 
repeat the test with a larger amount of information 
in all than the 665.8 units here available. 

II 

58. Summary of Principles 

In any problem of estimation innumerable methods 
may be invented arbitrarily, all of which will tend to 
give the correct results as the available data are 
increased indefinitely. Each of these methods supplies 
a formula from which a statistic, intended as an 
estimate of the unknown, can be calculated from the 
observed frequencies. These statistics are of very 
different value. 

A test of five such statistics in a simple genetical 
problem has shown that a particular group of them 
give closely concordant results, while the estimates 
obtained by the remainder are discrepant. This dis­
crepancy is particularly marked in the misleading 
values found for :;(2. . 

An examination of the sampling errors shows that 
the concordant group have in large samples a variance 
equal to that of the maximum likelihood solution, and 
therefore as small as possible. These are efficient 
statistics; the variances of the inefficient statistics are 
larger, and may be so large that their values are quite 



334 STATISTICAL METHODS [§ 58 

inconsistent with the data from which they are 
derived. 

Efficient statistics give closely equivalent results if' 
the samples are sufficiently large, but when the theory 
of large samples no longer holds, such statistics, other 
than that obtained by the method of maximum 
likelihood, may fail. 

The measure of discrepancy, x2 , may be divided 
into two parts, one measuring the real discrepancy 
between observation and hypothesis, while the other 
measures merely the discrepancy between the value 
adopted and that given by the method of maximum 
likelihood. Using this fact, the homogeneity of data 
drawn from various sources may be tested in the 
process of obtaining the estimate. 

The amount of information supplied by the data 
is capable of exact measurement, and the\ fraction of 
the information available which is utilised by any 
inefficient statistic can thereby be calculated. The 
same method may, though more laboriously, be 
applied to compare efficient statistics when the sample 
of data is small. 

The method of maximum likelihood is directly 
applicable to fragrpentary data, of which part is less 
completely classified than the remainder. Each 
fraction then contributes to the total amount of 
information utilised, according to the completeness 
·with which it is classified. The knowledge of the 
amount of information supplied by the different 
fractions may be profitably utilised in planning the 
allocation of labour, and other resources, to observa­
tions of different kinds. 

I t will be readily underst.ood that the thorough 
investigation which we have given to three somewhat 
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slight genetical examples is not ali necessary to their 
practical treatment. Its purpose has been to elucidate 
principles which are applicable to all problems involv­
ing statistical estimation. In many cases one need 
do no more than solve, at least to a good approxima­
tion the equation of maximum likelihood, and calculate 
the sampling variance of the estimate so obtained. 
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