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Preface

The beauty of physics lies in its coherence in terms of a few fundamen-
tal concepts and principles. Even physicists have occasion to marvel at
the overarching reach of basic principles and their ability to account
for features stretching from the microscopic sub-atomic world to the
cosmological expanses of the Universe. A few fundamental laws, prin-
ciples, and ideas run throughout the subject. Even without their full
mathematical implementation and detailed study, an initial under-
standing of the basic features of many phenomena can be grasped
through qualitative applications of these fundamental principles.

Among these principles are not only the familiar laws such as those
of motion, Newton’s for classical physics or Schrédinger’s for quan-
tum physics, or laws of conservation, whether of energy, momentum
or charge, that hold rigorously throughout physics, but ‘themes’ and
‘metaphors’ that arise many times in many sub-areas of the field.

The lay view of science as rigorous (as against speculative), proceed-
ing step by step from observations and experiment to a theory in a strict,
systematic way is a caricature, as every working scientist knows. The
enormous roles of intuition, speculation, and guesswork in how we pro-
ceed, whether an ordinary scientist or the extraordinary Newtons and
Einsteins, are not emphasized enough.

Even in mathematics, conjectures and working hypotheses are cen-
tral, even if, in the spirit of rigour of the subject, the final product or
theorem may be put in axiomatic form, every step connected to an al-
ready sound and established previous step or result. In science, where
we are trying to understand the world around us, it is all the more
important to recognize the role that intuition plays. In forming that
intuition (the world around us plays a big role in this!) and how we use
it in turn to generate more knowledge and understanding, we have our
own ways of analogical thinking and metaphors.

Just as ordinary conversation is ‘peppered’ with metaphors, so too
is physics. The dictionary defines metaphor as the use of a word or
phrase to denote one kind of object for another by way of expressing
an analogy between them. I use metaphor to mean equivalently ana-
logy or, sometimes, a principle. The philosopher Jan Zwicky says that
‘those who think metaphorically are enabled to think truly because
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the shape of their thinking echoes the shape of the world’. The great
19th-century physicist James Clerk Maxwell, who unified electricity and
magnetism and showed how light/optics is also part of this union, con-
trasted metaphor or analogy with puns, another part of speech that we
are familiar with and often, if groaningly, love: ‘In a pun, two truths lie
hid under one expression. In an analogy, one truth is discovered under
two expressions’.

It is the discovery of one truth under two, or many, different realiza-
tions that underlies this book. One of the attractive features of physics
is that the same simple principle applies across many phenomena that
are seemingly very different. And a characteristic of physics is to see the
world from different points of view, quantum physics in particular em-
phasizing ‘complementary’ representations leading to the same result.

Charles Darwin, another great scientist and a contemporary of Max-
well, also used ‘selection’ as a metaphor, that one cannot do science
without being metaphorical, and said: ‘No one objects to chemists
speaking of “elective atfinity”, and certainly an acid has no more choice
in combining with a base, than the conditions of life have in deter-
mining whether or not a new form be selected or preserved’ [1]. Since
science, with physics my main focus, tries to connect phenomena that
at first sight appear widely different (falling apples and the Moon’s
orbit), by boiling them down to a small set of essential principles and
laws, metaphor and analogy pervade our subject. Some, in particular,
are so universal that we immediately jump to saying ‘that is just a pen-
dulum’, completely akin to saying ‘she is a rose’, or ‘Juliet is the Sun’, in
an everyday context.

Indeed, as familiar already in ordinary language as a powerful meta-
phor, consider the pendulum. Its swing from one extreme to the other
is often invoked in social or economic contexts. Another simple ex-
ample is the two-faced quality of a coin. But physics sees even further
elements in them. Often, when we encounter a physical situation or
a certain mathematical equation, we will see in it the pendulum even
though there may be no actual pendulum, no strings or bobs. That
identification invokes immediately all kinds of other implications and
consequences, both in the mathematical analysis and for the physics of
the subject under study.

In molecular vibrations, such as in the CO; molecule, the quantum
motions of electrons and nuclei are metaphorically the pendulums. In
electromagnetic radiation, including the visible light we observe, there
are not even any concrete material particles, only electric and magnetic
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fields executing simple harmonic motion. But, to a physicist, they are
all ‘just a pendulum’, adding further richness to these metaphors. It is
some of this flavour that this book tries to convey.

Perhaps because of the way our brains are constructed and have
evolved, there is often a tendency, in many religions or mythologies,
or even in science, to seek a single theory of everything. Another ten-
dency, whether in physics or today’s biology, is to seek the fundamental
at the lowest size, whether in genes and DNA/RNA in molecular biol-
ogy or quarks and leptons in particle physics (what had previously been
at the level of atoms or, next, of nuclei). Yet another is to see data, num-
bers, and statistics as the essence of science. While they are an important
part, it is the fundamental concepts and principles, including the laws
of motion and of conservation, that apply across the whole field, that
define our subject. And, as emphasized by Newton, there are at every
stage and every level of inquiry ‘initial conditions’, parameters, funda-
mental constants, and constructs that are also crucial for the relevant
physics but to be taken as given.

While every physicist recognizes many such themes and principles,
employing them as part of the very vocabulary of the subject, they
are not often spelled out or brought together, especially for students
during their courses of study. As with metaphors and themes more
generally, students are expected to imbibe them with increased expos-
ure and through their own encounters with them, sometimes applying
and extending them in new contexts. In time, every physicist thereby
develops a perspective on the subject that extends beyond the specific
books and papers read or authored.

This book presents some of the principles and perspectives that dom-
inate my view of the world of physics. The very use of the word
‘perspective’ signifies a subjective element and each physicist will have
his or her own set of favourite topics. Inevitably, some of them will
overlap and some not, reflecting one’s own history in the subject and
one’s taste. This is as it should be, the subject itself larger than the sum
of its parts. It should be no surprise that the themes I have chosen are
ones that have played important roles in my own research career. Every
chapter reflects this, the topics discussed having been of central interest
to me in my research and teaching.

To whom do I address this book? Any student of physics in the senior
undergraduate years, and certainly graduate students and researchers,
will be able to follow the entire discussion. But I am aiming at a broader
audience of the intellectually curious reader in other sciences and even
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outside the sciences and mathematics. In each chapter on a theme, later
sections will deal with illustrations that will require exposure to some
advanced physics for their full appreciation. But each chapter will pre-
sent very simple examples in the beginning to illustrate the theme.
These will be accessible to anyone willing to exercise his or her logic
and imagination, and not shy away from thinking in terms of symbols
and following simple algebraic relations between them.

Mathematical symbols, some simple algebra, and elements of calcu-
lus are inescapable, being an integral part of the language of physics. No
one needs avoid them. Their usage in this book is deliberate and, in part,
my contribution towards the debate initiated by C. P. Snow’s The Two
Cultures and a Second Look (1964). Educated and intellectually alive persons,
whatever their expertise, have an appreciation of literature, music, and
the arts. As one who appreciates music and the fine arts but without any
training in them, I have had occasions, when in the company of some-
one versed in them, to realize how much more there is to understand
and appreciate in a painting or a piece of classical music. Nevertheless,
I already derive some benefit and satisfaction even when I do not have
their aid.

It is in somewhat that spirit that [ wish to communicate to my non-
scientist reader some of the beauty and depth of the principles and
patterns of my subject, even if some of their sophisticated realizations
may be only for physicists. Just as in other subjects and fields of in-
quiry, physics and mathematics are also mostly about patterns and how
they are put together, sometimes in unexpected but pleasing combin-
ations and contexts. While most of the patterns and themes apply more
broadly outside of physics, physics sees even further facets of them. The
power and elegance of patterns and principles in exposing truths of the
way things are, and why they are as they are, are what make physics part
of the liberal arts as understood in the US college curriculum.

Equations are sparingly used in this book, especially at the begin-
ning of chapters, and they are very simple and spelled out so that
no prior acquaintance with them is necessary. A general reader is
encouraged to continue to read on into the more sophisticated illus-
trations later in the chapter. Some advanced material is set off against
a shaded background. Since the accent is on the theme and ideas, tech-
nical and mathematical details or equations are mostly avoided in the
later sections of the chapter when discussing more sophisticated occur-
rences of the ideas. If a reader skips these sections, or gets only an
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impressionistic feel for the range and power of explanation with only
physicists fully appreciating them, the theme itself will nevertheless
have been developed for everyone through the first simple illustra-
tive examples. At the same time, even physicists familiar with these
later topics may appreciate their unification with othersin a continuing
theme from simple beginnings.

My motivation for writing this book is of course to convey some of
the power, significance, and beauty of physics. Part of the inspiration
for writing came from the powerful effect three books had on me, even
on a first reading. While in no way in the same league as these au-
thors and their books, this book and I have been influenced by their
style and content. The book The First Three Minutes, by Steven Weinberg
[2] was addressed in part to his ‘intelligent lawyer friend’, conveying to
such a reader who is willing to follow a thread of logic and argument
a sophisticated understanding of the very first minutes of the Universe
as revealed by physics. Both that book, and Richard Feynman’s QED,
[3] while addressing a broad audience, make no concession in render-
ing the physics rigorously. While presenting accessibly and with little
mathematics, there should be no compromise on the physics itself and
portraying it accurately. The book by Rudolf Peierls, Surprises in Theor-
etical Physics, [4] is somewhat different, aimed at graduate students and
researchers, and is full of the kind of insight and perspective on even
well-known topics that students do not get normally in courses and
from textbooks. I bow in acknowledgement to these three works.

A book such as this is not one where every item is footnoted and ref-
erenced, and notes and citations have been kept to a minimum. Brief
biographical footnotes are given for every person mentioned. These
are mainly for the reader unaware of these noteworthy people, to give
them a minimum impression of who they were. Readers interested in
delving more into those lives and works can, in this day and age, turn
to Wikipedia, encyclopaedias, and further references therein. Regarding
references in this book, all the physics mentioned will be familiar to re-
search physicists. More junior students will also know of the standard
textbooks in classical mechanics, electromagnetism or quantum mech-
anics to turn to if they want to learn more details. Since this is about
my perspective, my own research work is naturally reflected through-
out, and a few references to it are given where the interested reader can
find further elaboration. Otherwise, references have been given only for
a handful of very specifically mentioned items.
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1

Adding a Dimension

1.1 Dimensions in Physics

The theme of this chapter, as indicated in its title, is adding a dimen-
sion. This is often useful in physics. But consider first what is meant by
dimensions in physics. Physics is the study of the world around us in
a disciplined way, with increasing precision and depth. But long before
physics, even our earliest proto-human ancestors must have recognized
the role that size, location, and distances between locations plays in the
world and for their life in it. Length or distance along a line, a lin-
ear ‘dimension’, is therefore among the most primitive concepts for
describing and understanding the world we live in. Also an early real-
ization was that there are three different distances or displacements —
forwards/backwards, sideways or left/right, and up/down — that we live
in a three-dimensional world. There are three independent degrees of
freedom in the motion of any object.

From this humble but important beginning, the concept of dimen-
sion has been extended in many ways, both in physics and in ordinary
language, so as to have gained rich metaphorical uses in both. Thus,
we talk of the many dimensions of an idea, construct or person, or of
someone having an extra dimension to him or her, or of a well-rounded
argument. Similarly in physics, all our quantities of interest are charac-
terized in terms of basic dimensions that extend far beyond the original
lengths, breadths, and heights we started with.

All separations and distances, no matter how small or large, from
nanometres to kilometres or astronomically large distances, share in
essence the common feature of being a linear dimension. They may all
be thought of for that purpose as an [L], a length, this being the essen-
tial dimensional element that unifies and characterizes them. Units for
measuring them may vary with context and country, from the initial
hands and feet or stride lengths that gave natural, human measures
for them, to the inches and cm (centimetres) and their multiples that
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different peoples instituted for precision dealings. In an equation in
physics, no matter how complicated, the dimensional aspect of such
elements is that the quantity is an [L].

The primitive beginnings of recognizing lengths, breadths, and
heights must have stretched immediately to ideas of putting them
together in multiplicative fashion, that areas are formed of two of
these, and volumes by combing three in the three independent direc-
tions of the world we live in. Certainly with the advent of agriculture
and settled civilization and the building construction that went with
it, all peoples developed an understanding of areas and volumes, and
the study of geometry (literally measurements on the Earth) predates
physics as a subject. Mound and pyramid builders, Greeks, Arabs, and
a myriad others developed sophisticated ideas in geometry, and instru-
ments based on them, as part of their civilization and culture. A rich
lexicon of terms — acres and hectares, gallons and litres — developed.
But for physics, their essence lies in that two or three lengths in in-
dependent (mutually perpendicular or ‘orthogonal’) directions are put
together multiplicatively so that all areas are dimensionally [L]* and all
volumes [L]3 , using the mathematical notation of exponents for squares,
cubes, etc. These dimensional aspects are shared by all areas or volumes,
whatever other distinctions may apply to them and whoever measures
them in their own distinct units. The volume of a cube of side a is just
@ itself, while that of a sphere of that radius has additional, dimension-
less factors (including the universal constant 7 = 3.14159...) in its
(47 [3)a’ but both are equally of dimension [L]°, a cubed length, such as
m?® or cm?® (sometimes abbreviated as cc, a thousandth of a litre).

One can already see benefits from this kind of discipline and precision
in thinking that characterize physics. Starting with little more than the
above observation, and with [L] the only dimension to play with, along
with its different powers, one can draw interesting conclusions about
the world around us. Two similar wading birds, a flamingo and a stilt
(Figure 1.1), have body masses, respectively, of about 2 kg and 120 g
for a mass or, equivalently, volume ratio of, approximately, 16 between
them. (There is here an implicit assumption, essentially correct, that
all birds have about the same density so that masses are proportional to
volumes.) Everything about the bigger flamingo will, of course, be com-
paratively larger than for the smaller stilt, but consider going further,
to more precise terms. Based on how volumes relate to [L]|, we might
expect that the lengths of their legs would be in the ratio 1613 =~ 2.5,
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Figure 1.1 Two birds, a stilt (left) and a flamingo (right), with similar wading
habits and habitats. Text relates their sizes according to dimensional scal-
ing. Tom Grey: <http://ic2.pbase.com/g6/44/316244/2/84224488.cb3EfssK.jpg>;
William Duke: <http://www.pbase.com/photosbyduke/image/95530287>

in conformity with the observed 20 and 8 in, respectively, of their legs
on average. Note that we took the 1/3 power (cube root) of 16, not 16
itself, in going from comparing volumes to lengths (of legs). With this
one small logical step, we made quantitative sense of a little element of
what we see around us, that these various numbers are not a mindless
collection in some catalogue, but the ratio of masses bears a simple rela-
tionship to the ratio of leg lengths, reflecting the dimensionality of our
world. Our example was deliberately from the biological world because
whatever the enormous biological differences between flamingoes and
stilts, and whatever the variations among individuals of either group,
the animate world is just as constrained as the inanimate by the laws of
physics, here of gravity.

That the surfaces and volumes of an object scale differently and, in
particular, that the ratio surface/volume, which scales as [L]—l, dimin-
ishes with increasing size permit non-trivial connections and under-
standings of the world around us, both physical and natural. (In sci-
entific notation, negative powers indicate terms in the denominator.)
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Note that both the surface and the volume of an object increase as the
objectis scaled up but the ratio decreases, as the volume increases faster.
Doubling lengths increases areas by a factor of four, and volumes by a
factor of eight, but the ratio of surface area to volume is halved. Indeed,
Galileo!, whom we might count as the first physicist, wrote eloquently
about this, as did the later and, perhaps, the best expositor of this kind of
‘dimensional analysis’, D’Arcy Thompsonz. Metabolism depends on the
whole body volume but heat is lost or absorbed from the surface so that
infants chill more rapidly than adults and, as every parent knows, need
to be wrapped up more. The folded and broken up structure of lungs
and intestines, organs that have to absorb through a surface, is Nature’s
solution to accommodating a large surface within the constraints of a
given volume (Figure 1.2). Thus, in D’Arcy Thompson’s eloquent words
5], ‘the form of a body is a diagram of the forces acting upon it’.
Moving beyond the single, static length dimension [L] to consider-
ing objects in motion, that is, changes of their position in time, we
have to introduce a new element, time. Time as an intrinsically new
dimension, [T}, enters as a natural extension of the concept of dimen-
sion. Today, in colloquial usage, even laymen associate the idea of time
with the ‘fourth dimension’, linking it especially with Einstein® and the

I Galileo Galilei, 15641642, Italian. May be considered the first physicist for his care-
ful observations of bodies in free fall and rolling down inclined planes, on the basis of
which he arrived at the principles of inertia. In particular, he realized that the state of
rest is not a special one, as had been thought previously, but that all uniform motion,
including the case of zero velocity, continues in the absence of impressed forces. This
was formalized later as Newton’s First Law of Motion. The first telescopes were just ap-
pearing and Galileo developed them further, turning them to observing the heavens
and discovering sunspots and the moons of Jupiter, both of philosophical import, in
showing that heavenly bodies are not made of some unblemished quintessence differ-
ent from on Earth and that there are other planetary systems analogous to our own
Solar System. He also saw in swinging objects such as pendulums time-keeping devices,
and recognized the role of dimensions and scaling to explain the world around us.

2 D’Arcy Wentworth Thompson, 1860—1948, Scottish. Mathematician, biologist, and
scholar of the classics. His book on the structure of plants and animals became a classic,
also as a piece of literature. He emphasized the role of physical and mechanical laws
in biology that was otherwise dominated by Darwinian selectionist thinking. The role
of mathematics such as Fibonacci sequences and of geometrical transformations, and
the way of thinking he introduced influenced many biologists and others who have
followed him.

3 Albert Einstein, 18791955, Swiss and American. Revolutionized physics and phil-
osophy through several papers in 1905 on Special Relativity, Brownian motion (which
demonstrates the underlying atomic structure of matter), and the photoelectric effect



Dimensions in Physics 5

Stomach

intestine
Appendix Rectum

Anus

Figure 1.2 Lungs and intestines. Organs for absorbing oxygen or nutrients
have folds and other broken-up structures to get a larger surface/volume
ratio than they would have otherwise. Patrick J. Lynch: <http://en.
wikipedia.org/wiki/File:Lungs_diagram_detailed.svg>. Indolences: <http://
en.wikipedia.org/wiki/File:Stomach_colon_rectum_diagram.svg>

Theory of Relativity. But, invoking it as another dimension, independ-
ent of space, goes all the way back to the beginnings of physics, again
to Galileo. Indeed, the recognition of the pendulum clock as the basic
apparatus for measuring time, and the pendulum equation for the time
period of one full swing (see Figure 1.3), generally attributed to Galileo,

¢
T=2m |-, (1.1)
g

led to the beginnings of our measuring and studying motion. The above
pendulum equation is one of the first equations a student of physics
learns in high school or college.

(a key step in the development of quantum physics), and a decade later with his General
Theory of Relativity and Gravitation. His scepticism of the interpretation of quantum
physics, and belief that it was incomplete, has drawn renewed attention in recent years
in the field of quantum information, and his development of Bose—Einstein statistics
and the prediction of a ‘condensate’ at very low temperatures has now been realized ex-
perimentally and is leading to many novel developments. An avowed pacifist, he spoke
out (as in the Bertrand Russell-Einstein Manifesto) in his late years against nuclear war
and weapons.
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\|_/

Figure 1.3 A simple pendulum. For small oscillations about the vertical equi-
librium position, a string has a time period that depends only on its length, &
and Earth’s gravity, as per Eq. (1.1). It is independent of the shape and mass of
the suspended bob.

The time period on the left-hand side of Eq. (1.1) depends only on the
length, £, of the pendulum divided by the acceleration due to gravity, g,
a measure of how all masses fall under the attraction of Earth’s gravity.
A key idea of physics, one first recognized by Galileo and later incorpor-
ated into Einstein’s General Theory of Relativity, is that the acceleration
is independent of the mass of the falling body. The rate of change of
position with time, which is a speed or velocity, has dimensions of
[L][T]_1 and the rate of change of velocity, an acceleration, involves
one more time element in the denominator, to give it dimensions of
[L][T] 2. It is clear by inspection that Eq. (1.1) is dimensionally consist-
ent, asindeed any equation must be. You cannot add apples and oranges,
nor terms that do not match dimensionally. Indeed, the practical use
of dimensional analysis as an aid to memory allows us to tell the stu-
dent that, should there be confusion in recalling whether it is £/g or g/£
inside the square root, thinking of dimensions will give the answer. The
pure number 277 in the formula, being dimensionless, has of course to
be memorized but the rest of Eq. (1.1) can be argued for strictly from
dimensional considerations, without any further knowledge of physics.
Identifying the length, and the constant g that characterizes the restor-
ing force due to gravity that makes the pendulum swing, as the only
relevant variables, the time period must perforce involve the combin-
ation /£/g to give something of dimension |T]. No other combination
will do.

Next, with just a few more steps of thought, we start making fur-
ther sense of the world around us. When we walk, our legs swing in
pendular fashion. Taking 1 m for that leg length (also, approximately,
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the length of our stride), and with g ~ 10 m/sz, from Eq. (1.1) follows
a typical walking speed of 1 m/s or 3.6 km/h (approximately 2 mph).
That is a good estimate for our average walking speed. Dimensional
analysis can also be used to argue that for objects moving through fluid
media, whether birds and airplanes through air, or fish and submar-
ines through water, their typical velocities, which are dimensionally

length/time, must involve JZ, that is, must scale with the square root
of their lengths. Indeed, stalling speeds of a large airplane relative to
that of a small one scale in this fashion, as do swimming speeds of fish.

Consider tsunamis, such as those in 2004 in the Indian Ocean and in
2011 in Japan. One of their awesome features is that they race across
oceans at speeds often of the order of 150 m/s or 350 mph (the speed of
a jet airplane). This can again be understood in simple terms, ignoring
all the complicated hydrodynamics of flow (still one of the most dif-
ficult of topics in physics), through dimensional considerations alone.
When a major disturbance on the sea floor displaces a huge volume
of water, the ocean surface will return to equilibrium by that piled-up
volume spreading out. The restoring agent is again gravity (in this con-
text of large volumes; for water waves in shallow bowls or ripple tanks,
it would be a different agent, surface tension) so that we expect g to
be involved. The tsunami speed, being dimensionally [L][T]“l, as is any
speed, needs a length dimension, [L], which upon multiplying with g,
which is in dimensions of [L][T]_z, and taking a square root will provide
a candidate expression for it. The natural choice for a length involved is
the ocean depth or the wavelength of the waves, both approximately a
few km. With these inputs, and a 2 km depth taken as a characteristic
average for our oceans, 4/2000 X 10is indeed, approximately, 150 m/s or
350 mph.

Moving on to the subject of mechanics, the study of the motion of
physical objects, the next elementis their mass, a new dimension. While
irrelevant for falling under gravity (a statement of great import about
the nature of gravity), other motions in mechanics do depend on the
mass of the moving object. Indeed, mass is the measure of how much
an object resists forces that try to change its state of motion. Being
intrinsically different from length and time, we introduce [M] for this,
the amount of stuff in the object. Again, whether we measure in kg
or tonnes, whether the microscopic mass of an electron or the mind-
boggling mass of a black hole, all are dimensionally [M]. The three
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dimensions, [L], [T], and [M], together suffice to describe all physics as
Galileo and Newton® knew it, all of mechanics then and since.

Only the extension into electromagnetism, which came in the mid-
19th century, required supplementing [L], [T], and [M] with one more
independent dimension, that of charge, which may be denoted [Q]. All
other electrical quantities such as current or voltage as well as magnetic
quantities can be expressed in terms of the dimension of charge com-
bined with the above three dimensions of mechanics. That only one
new dimension is needed is in part an expression of an important aspect
of the unified nature of all electricity and magnetism. There is freedom
in that choice of element, whether charge or current (of dimensions
charge/time) or voltage, the essential aspect being that, along with the
three for mechanics, a combination of four dimensions can describe all
of mechanics and electromagnetism. And this is as true of today’s quan-
tum physics as it was in the classical physics of Newton and Maxwell’.

Consideration of mass leads naturally to the concept of density of
material bodies, mass/volume, with dimension [M][L]_3 . All quantities
of mechanics — momentum, force, energy, pressure, etc. — are various
combinations of the same three dimensions, respectively, [M][L][T]—l,
M][L][T]T, [M]LP[T]2, and [M][L]'[T]?. Note in the second an ex-
pression of Newton’s famous (second) law of motion, F = ma, that
force is mass times acceleration or, alternatively, the rate of change

* Isaac Newton, 1642—1727, English. One of the greatest scientists of all time and the
founder of physics through his discovery of the laws of motion and of gravitation, and
of mathematical analysis as one of the developers of the infinitesimal calculus. He also
developed the subject of geometrical optics for light propagation, including the design
of telescopes. His concept of time as an absolute background flow against which to view
all phenomena, despite later modifications in Einstein’s Theory of Relativity, continues
to be problematical to laymen, physicists, and philosophers (see Chapter 7). His laws of
motion, despite the later revolutions of relativity and quantum physics, continue to be
relevant, from our mundane bicycles and automobiles to sophisticated space missions.

2 J. C. Maxwell, 1831—1879, Scottish. Formulated a unified theory of electric and
magnetic phenomena through the basic set of equations of classical electromagnet-
ism. In doing so, he concluded that waves of electric and magnetic fields, propagating
at the speed of light, ¢, must exist. Visible light and optics are a part of this electro-
magnetic ‘spectrum’ that also embraces other waves, such as ultraviolet, x-ray, gamma
ray, microwave, and radio waves. This formulation by him and his followers was cru-
cial for Einstein in his quest to make mechanics and electromagnetism compatible,
thereby leading to the Special Theory of Relativity, with ¢ a universal constant and
a fundamental re-interpretation of space and time. Maxwell also developed the kin-
etic theory of gases, another fundamental piece of physics, one relating microscopic
statistical mechanics to macroscopic thermodynamics.



Adding a Dimension 9

of momentum (which is mass times velocity or [M][L][T]—l) in time,
I = dp[dt as rendered in Newton’s differential calculus. The kinetic en-
crgy of motion, mv2/2, or the gravitational potential energy, mgh, of a
mass at a height h above the surface of the Earth, or any other form of
cnergy, including the famous Einsteinian relation, E = mc?, with ¢ the
speed of light, are always a [M][L]*[T] . Again, in any equation of phys-
ics, such as Newton’s law of motion or Einstein’s equivalence of energy
and mass, the left- and right-hand sides and all terms in them must be
dimensionally consistent.

As one more example of the power of dimensional analysis to give
non-trivial results, consider a problem unfamiliar to most, the question
of how the fireball from a large explosion, whether chemical or nuclear,
expands with time. When one views such an explosion on a TV screen,
it would seem the domain of a specialized physicist or engineer to make
(uantitative sense of it. But simple dimensional reasoning accessible to
any layman can tackle surprisingly sophisticated questions. With the
cnergy, E, of the explosion an obvious parameter of interest, and also
the density, p, of the air into which the fireball expands (a denser me-
dium such as water may be expected to offer more resistance), to obtain
the radius, R, of that fireball, which is a length, we have to form the di-
mension [L] from those of E, p, and time, t. With some juggling of their
dimensions expressed in [L], [T], and [M] to cancel out all but the dimen-
sion [L], we arrive at R = k(Et2 / ,0)1/5 . As in any dimensional argument, a
dimensionless constant, the pure number £, is of course not fixed. Gen-
crally, these multiplicative constants have some small numerical value
suchas 1, 2, or 7, and combinations thereof. As a result, all essential de-
pendences and non-trivial scalings with energy and time are obtained
without invoking any details of the complicated physics of an air ex-
plosion. An explosion with 10 times the energy released will expand to
10'° & 1.6 times the radius in the same time. And an explosion at high
altitude, where the density may be half of what is near the surface, will,
all other parameters being equal, expand not to twice the size but rather
only about 15% larger, the fifth root of 2 being about 1.15.

1.2 Adding a Dimension

With the above introduction to dimensions in physics, we turn now
to the title theme of this chapter. It refers not to the introduction of
new dimensions of time, mass, charge, etc., when needed, as in the pre-
vious section, but to the fact that, often in physics, it turns out to be
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useful to add a dimension to the problem under consideration as an
aid to solving or better understanding it. This is purely as a device to
calculate or understand better: no such extra dimension is physically
present in the problem. This seems curious at first sight. One might
think that introducing a new dimension (or a degree of freedom) to
ones already present can only complicate matters. But time and again
and in different areas of physics, we find instead that adding a dimen-
sion and, in particular, just one extra dimension simplifies the problem,
even allowing an otherwise intractable problem to be solved. Often this
is primarily a mathematical device (even that highlights its usefulness,
now in mathematics) but it also gives in many instances greater insight
into the physics involved.

Before turning to a simple example in physics, consider first a math-
ematical joke that illustrates this theme, with humour if not precision.
A shepherd dies, leaving behind 11 sheep and a will stipulating that the
eldest son is to inherit 1/2, the middle son 1/3, and the youngest boy
1/12 of the flock. As they puzzle over how to proceed, a wise shepherd
uncle brings one sheep of his own that he adds to the flock, then gives
six to the oldest son, four to the middle, and one to the youngest, and
his own sheep is left behind for him to take away at the end. This ad-
mittedly simple trick does illustrate, however, the main theme of this
chapter, of the merit in adding one element to solve an otherwise in-
tractable problem. (For someone still puzzled by the uncle’s sleight of
hand/sheep involved, a moment’s reflection on adding the fractions 1/2,
1/3, and 1/12 reveals the trick!)

1.2.1 Linear Vibration to Circular Rotation: A Pedagogical Example

One of the simplest motions in our physical world is that of simple
harmonic oscillations of a mass point along a line, a one-dimensional
motion in the direction x. The motion of the pendulum bob in the
previous section or of a mass at the end of a spring (Figure 1.4) are ex-
amples that are usually presented in the very first lessons of physics.
Two parameters characterize such simple harmonic motions, the fre-
quency, @, and the amplitude, A. The frequency is the inverse of the
time period and, for a pendulum, is given by Eq. (1.1), ® = 27 |T =
\/g/_Z . For a spring of elastic constant k, the frequency is @ = 4/k/m, and
so depends on the mass, m, stretching the spring. Ordinary language
uses cycles per second (cps) or revolutions per minute (rpm). Each full
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Y/

Figure 1.4 A simple spring.

cycle or revolution being 277 radians (360 in degrees), scientific usage is
in radians/s, with units Hz = s71,

For the simplest case of fixed @ of any simple harmonic motion in
one dimension, using the trigonometric function sin (or, alternatively,
cos), we have x(t) = A sin wt. It may seem surprising that this very sim-
ple motion with one parameter fixed and the instantaneous position
varying in a simple fashion can be further simplified. But, if we adjoin
another dimension, y, with a similar motion, y(t) = A cos wt, then the
combined two-dimensional motion is indeed simpler, with now both
frequency and radius, A, fixed in time. All the ‘complications’, that
the x and y positions vary with some mathematical (albeit simple trig-
onometric) dependences, are circumvented for the motion of the mass
point on a circle, which is now at a fixed radius with a fixed rotational
speed. Two fixed numbers, A and w, describe the motion fully. The
complications of the one-dimensional motion are then viewed as en-
tirely due to the projection down in one dimension from the simpler
uniform circular motion in a higher-dimensional space (Figure 1.5).

This is a very familiar example for many reasons and will recur in
other themes of later chapters. One is for its connecting oscillations or
vibrations with rotations. This also has an applied aspect for convert-
ing from one to the other, asin familiar examples of pistons in cars or
trains (Figure 1.6). Note also the interesting interplay: the translational
motion of the piston over a limited range (less than the size of a car or
locomotive) converts to a rotational motion (rotations are always con-
fined) and then to a translation of the whole car or train along the road
or rail of unlimited range.
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Figure 1.5 Simple harmonic motion on a line with amplitude A, and associ-
ated uniform motion in a circle of radius A. Shown on top are sine and cosine
curves of the x and y projections of a point on the circle to the two Cartesian
axes.

ia

Figure 1.6 Pistons in an old steam railway engine that convert from linear
to circular motion. 2007 Autocad drawing by Stavrosl of a Great West-
ern King locomotive. <http://en.wikipedia.org/wiki/File:AutoCAD_drawing__
of_a_Great_Western_King.png>

Yet another realization of the linear and rotational motions, shown
in Figure 1.7, goes back to basics from the time of Galileo and Newton
and is a classic problem in courses we teach in mechanics. A tunnel
drilled through a diameter of the Earth (assumed to be a uniform—
density sphere) leads to simple harmonic motion of a mass point
dropped into it. The time period of this motion is that of a pendulum of
length equal to the radius of the Earth, with a value as given by Eq. (1.1),

= 27,/6.4 X 10°/10 & 84 min. This coincides with the time it takes
a near-Earth satellite such as the International Space Station to go once
around in a circular orbit (Figure 1.7). (Such a satellite is a few hundred
miles above the surface but, with the relevant distance being from the
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Figure 1.7 A tunnel though a diameter of the Earth (represented in cross-
section by a circle) and a near-Earth satellite orbit. A mass point completes
one full oscillation with the same time period of, approximately, 84 min for
either motion, as given by the pendulum Eq. (1.1) with £ = R, the radius of
the Earth.

Earth’s centre, the length involved is dominantly the Earth’s radius of,
approximately, 4,000 miles or 6,400 km.) These arguments are again
illustrations of dimensional reasoning, the only relevant length being
the radius of the Earth, which when coupled with the gravitational ac-
celeration, g, provides a time through the pendulum equation Eq. (1.1).
Naturally, the same time applies to the period of a (Gulliverian) pendu-
lum the size of the Earth or to the time of free fall along a diameter or
time period of a near-surface orbit, all these motions governed by g and
the same distance, the radius of the Earth.

A closely related mathematical trick to the above addition of a di-
mension is familiar in ordinary integral calculus. (An integral is a
generalization of addition, used to sum quantities that are continuously
rather than discretely distributed.) One adjoins a second linear dimen-
sion to the first and goes to circular coordinates to simplify the integral
f_o; exp(—x*)dx. This ‘Gaussian® integral’ is converted by squaring it
(since x is integrated over, it may be replaced by y in the second factor)

6 Carl Friedrich Gauss, 1777-1855, German. One of the greatest mathematicians,
with important contributions to physics and astronomy as well. A prodigious calcu-
lator who could handle complicated problems, he developed methods for computing
celestial orbits, and wrote on electromagnetic phenomena.
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into the 31mpler 27 fo exp(—p?)pdp because changing the variable to
p with p* = «* + y* (together with the angle ¢ of circular coordinates;
see Sec. 2.1) makes this a simpler, ‘trivial’ exponential integral, whose
square root leads to the final desired result, 4/7.

As an example of a very sophisticated occurrence of the idea illus-
trated in Figure 1.5, the same figure appears (Figure 13.1 of [6]) in the
construction of so-called maximally symmetric spaces in differential
geometry, especially as used in Einstein’s General Theory of Relativ-
ity to describe gravitation. Again, the details are not important for the
point being made here but Einstein’s theory is one of geometry, the
geometry of space—time (Sec. 1.2.4). In analysing curved surfaces and
the steps of differential calculus involved in the differential geometry
of them, spaces satisfying certain specified symmetries (see Chapter 5)
are of interest. Using the horizontal line in Figure 1.5 as a stand-in for
a complicated non-Euclidean N-dimensional space, and embedding it
in a simpler, flat (N + 1)-dimensional space represented by the circle,
with an extra dimension as the vertical direction, permits the desired
construction. Even more than in the simple example presented in Fig-
ure 1.5, here one can truly appreciate the astonishing power of such
embeddings in an extra dimension, all the complicated curvature of
the N-dimensional space contained in that constraint of coming down
in one from the larger (but simpler) dimensional space.

But the simple example in Figure 1.5 already illustrates the under-
lying theme, that dynamics can be subsumed into kinematics in one
dimension higher and then all the complicated and non-trivial dy-
namics are realized in the kinematical constraint that reduces the
problem to the lower dimension. The following sub-sections will con-
sider increasingly sophisticated illustrations of the theme and are aimed
at physics students familiar with the basics of calculus and quantum
mechanics.

1.2.2 Green’s Theorems

In ordinary single-variable calculus, integration and differentiation as
inverses of each other lead to the simple result:

/ Y9 4 = 1)~ ). (12)



Adding a Dimension 15

The extension by George Green’ to two-variable functions, P(x,y) and

O(x.y);
/ (—(?-—Q- - §—I1> dxdy = /(Qdy— Pdx), (1.3)
de . Oy c

where the right-hand line integral is over the closed contour, C, around
the area of the left-hand integral, is perhaps one of the most important
theorems of mathematical physics. Many other theorems, carrying the
names of Gauss, Stokes®, divergence, etc., are special cases and occur
throughout physics. All share the feature that an integral over some
dimension is equivalent to another over the next larger dimension. Our
starting Eq. (1.2) already contains the essence in that the integral on the
left-hand side is a sum of the values of the integrand over a whole one-
dimensional line interval but, on the right-hand side, reduces just to the
difference in values at the two end points, amounting to a step down to
zero dimensions.

Physics deals throughout with ‘vectors’, quantities that require both
a magnitude and a direction to specify them, examples being position,
velocity, acceleration, electric and magnetic fields, etc. Since variations
in them also have a directional sense, a change in the x direction being
generally different from that in the y or z directions, the differen-
tial operation of calculus describing variations also acquires a vectorial
characteristic, differentials in the three orthogonal directions lumped
together into the vector differential operator V : (9/dx, 8/dy, 3/9z).
From any two vector quantities A and B, one can form products of two
kinds, depending on whether one ends with a magnitude alone, called
a ‘scalar’, this being the ‘scalar product’, denoted with a dot as A B

7 George Green, 1793—1841, English. A miller by day and self-taught mathematician
who wrote an astonishing essay in 1828, providing a mathematical analysis for electricity
and magnetism, in which he introduced the theorems and functions now named for
him and which find wide applications throughout physics and engineering. The essay
was finally recognised and he went to Cambridge University, obtained a degree, and
became a fellow but, unfortunately, became ill and died relatively young.

8 George Gabriel Stokes, 1819-1903, Irish. Professor of mathematics at Cambridge
University for over 50 years, who made important contributions to mathematical phys-
ics, optics, and fluid dynamics (including ‘Stokes law’ for the viscous friction on a sphere
in a fluid medium). The Stokes theorem is said to have originated with fellow professor
Kelvin, who suggested it in a letter, Stokes then using it in a prize examination and his
name becoming attached to it. Maxwell, among others, became aware of it from there.
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or another vector, called the ‘vector product’, denoted with a cross
as A x B. This lS also true when the vector dlfferentlal V.actsona
general vector V the scalar ‘divergence’, V - V and the vector ‘curl’,
V X V, being important concepts throughout physics. Various physical
significance can be associated with them, immediate ones, as suggested
by their names, being a spreading (or increase/decrease) or a twist (or
rotation), respectively. The theme of adding a dimension enters nat-
urally with these vector differentials and is familiar to every physics
student, even if it is not always recognized as such. ‘Gauss’s law’ or the
‘divergence theorem’ relates the volume integral (over d7) over the di-
vergence of a vector field, V - V to the surface integral (over dO‘) of that
field, V, over the surface bounding that volume:

/V-f/dzz/f?.da’r. (14)

Newton’s law of gravitation, expressed as the flux of the gravita-
tional field due to masses contained within the volume, or the similar
Coulomb’s law for an electric field due to electric charges, involves
this expression applicable to any vector quantity in physics. The sur-
face integral over the field is simply the total charge or mass contained
in the inside volume. The closed surface (two dimensional) bounding
the volume (three dimensional) is a higher-dimensional realization of
the two end-points (zero dimensional) bounding the line integral (one
dimensional) in Eq. (1.2).

Stokes’s law, relating the integral of the curl of a vector over an area
to the line integral (over dz) of the vector along the boundary of that
area, is another example:

/VX* /v de. (1.5)

And, as an illustration of a result well known in multi-dimensional
geometry, with the choice of Vo= 7. the radial vector in any
d-dimensional space, since V - +o=d Eq. (1.4) relates the volume of
a sphere in d dimensions to its surface area, again familiar already from
the 477 /3 and 47, respectively, of school geometry as the multiplicative
factors for the volume and surface area of a sphere of radius a in three
dimensions.
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Besides their ubiquitous appearance throughout all areas of physics,
such Green’s theorems have a profound philosophical depth. Infor-
mation contained in an entire volume, even perhaps of the whole
Universe, can be viewed equivalently from that available on the surface
at large distances. While much is made in recent times of so-called holo-
graphic principles in general relativity or string theories [7], this idea is
not new, as we saw in elementary mathematics or in physics. After all,
we study distant stars and galaxies all the way to the Big Bang of the
earliest moments of our Universe, all that content filling the time his-
tory of the Universe, through the information now available to us on
a small patch of the surface that we occupy where the Universe has
expanded to in our times.

In dealing with quantities that are neither created nor destroyed,
‘conserved’ in physics terminology, whether the mass of a fluid in flow
or the amount of charge in motion (a current), or the number of cows
in a stockade, if one keeps track of the amount entering or leaving, that
amount must be compensated by a corresponding equal change in the
amount or number contained within. This is a law of conservation (see
Sec. 5.1.2 for their connection to symmetries). The differential equation
expressing this statement, called an ‘equation of continuity’, and an as-
sociated Green’s theorem, are of great importance throughout all areas
of physics.

Quantum physics, in particular, has made use of this idea from its
earliest days. Unlike in classical physics with positions and velocities of
mass points, the physical state of a system is described in quantum phys-
ics by a complex (in the mathematical sense of involving the imaginary
uniti = \/:1_) ‘wave function’, Y. The probability interpretation, first
given by Max Born’, that the modulus squared, | |?, represents the
probability of finding the system in an interval about the correspond-
ing variable, whether position, momentum, or anything else, requires

9 Max Born, 1882—1970, German and British. A founder of quantum mechanics
and the originator of the probability interpretation of the wave function. Together
with his assistant Pascual Jordan, he rendered his student Heisenberg’s discovery into
matrix language and wrote the basic commutator between position and momentum
that underlies Heisenberg uncertainty principle. Born also developed, with Robert
Oppenheimer, an approximation technique for molecular structure that continues to
dominate that field. Another widely used method in scattering theory bears his name
as well. And he made important contributions to our understanding of crystal lattices
and optics.
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that |1ﬁ Iz be ‘normalized’ to unity (or, equivalently, to a Dirac'? delta
function for continuous distributions). This is the statement that | ¥ |2,
when integrated over the full space, must yield the unity expected of
the total probability that the system is somewhere. But throughout
microscopic physics, whether of atoms, nuclei, or elementary particles,
most of this space is inaccessible to our measuring apparatus. And this
is where Green’s theorems allow us to use just the knowledge of the
wave function and its first derivatives at the surface at infinity, which
are accessible to our laboratories, to accomplish this normalization (or
get any of the so-called scattering parameters when one particle scatters
off another, all of which are defined only at infinity; see Sec. 7.4). It also
fits into the philosophy, especially emphasized by Bohr'' and Heisen-
berglz, of using in physics only constructs that are at least in principle
accessible to our measuring apparatus (Sec. 7.4).

10 paul A, M. Dirac, 19021984, English. One of the three founders of quantum
mechanics, his transformation theory and bra-ket notation are now standard in physics.
Made quantum mechanics compatible with Special Relativity through the ‘Dirac equa-
tion’, which incorporated quantum-mechanical spin angular momentum and, further,
predicted the existence of anti-particles to electrons, protons, etc. He took the fun-
damental steps towards quantum field theory and to the variational or path integral
approach to quantum physics. Also, he introduced the distribution function that bears
his name and is used extensively in physics for continuous distributions.

1 Niels Bohr, 1885-1962, Danish. Principal founder of quantum physics when in 1913
he used Planck’s idea of the quantum and constant i to account for the structure of
the hydrogen atom based on Rutherford’s experiments and the empirical formula of
Balmer for the line spectra of the hydrogen atom. He extended these ideas to higher
atoms but, even more significantly, guided the development of quantum mechanics
through a unique school of physics he headed in Copenhagen, hosting most of the
prominent quantum physicists of the day. He also shaped the philosophy of the subject,
through his debates with Einstein and through his formulation of the Correspondence
Principle and complementarity. Following the discovery of nuclear fission, he devel-
oped the liquid drop model of nuclear structure that accounts for fission of nuclei
by neutrons. He served as a consultant to the Manhattan Project, which developed
nuclear weapons and fission energy.

12 Werner Heisenberg, 1901—1976, German. His papers in 1925 launched the subject
of quantum mechanics in the form called matrix mechanics. His uncertainty principle
distilled the role of complementary observables in quantum physics. He also made pi-
oneering and important contributions to dispersion relations and scattering theory,
nuclear physics, ferromagnetism, and elementary particle physics. During World War
II, he headed an unsuccessful German effort to develop nuclear reactors, and after that
war he played a role in rebuilding German physics institutions, notably the Max Planck
institutes.
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Indeed, normalization is an aspect of ‘unitarity’ or conservation. In
the preceding paragraph, itis the conservation of probability. In the pre-
vious one, it was the conservation of fluid mass, or charge, or number
of cows. Conservation laws in physics are expressed through equations
of continuity that go even further back and are important also in clas-
sical physics. They express this philosophy that allows us to keep track
of changes in time of some physical quantity over an entire volume
simply through observations of the flux through the bounding surface,
often at large distances from the centre. When that physical quantity is
conserved, the flux through the surface must be balanced by sources or
sinks within the volume.

1.2.3 Lagrange Multipliers for Extremum Problems

Locating maxima and minima of functions or physical quantities is
often of interest in mathematics, science, and engineering. The shortest
path or shortest time for covering it, the lowest energy, the maximum
efficiency, and many such extremum questions arise very commonly.
For a function of one variable, Newton’s differential calculus provides
the solution. The derivative of the function vanishes at such extreme
points and serves to locate them and determine the desired value there.
More complicated prescriptions are necessary for many-variable calcu-
lus, and one also refers to them more generally as stationary points
because, in addition to overall peaks and valleys, other situations now
arise, such as saddle points, a theme to be taken up in Chapter 3.
The problem becomes more complicated when constraints are specified
under which this determination is to be made. The method of Lagrange
undetermined multipliers for locating maxima or minima or, more
generally, stationary points, whether of one- or many-variable calcu-
lus when constraints are present, is another familiar example of adding
a dimension, even if it is not usually presented as such.

It works also in the calculus of variations, a subject that deals not
just with functions of algebraic variables but also with whole functions
themselves [8]. Such ‘functionals’ over functions are extremized subject
to constraining equations that are often part of the definition of the
problem. A classic problem of the ancients was to determine the max-
imum area enclosed for a given perimeter. (The answer is a circle.) An
especially simple and commonplace example is of finding the shortest
path between A and B, for instance on the surface of the Earth. It is
formulated by asking of all possible paths (functions), which one has
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(quantum constant ki, the stationary action principle Is in some ways the
most natural formulation of quantum physics. Feynman’s16 path in-
tegral formulation puts the action, §, along a path divided by fin the
exponent as exp(iS/h) and the quantum wave function ¥ (see Sec. 1.2.2)
is recovered as the sum over all possible paths (Sec. 7.2). The classical
limit of quantum physics also becomes natural in this language as the
situation when the classical path or orbit dominates that sum (see also
Sec. 8.5).

For our purposes here of adding a dimension as an illustration of the
use and role of Lagrange multipliers, consider a simple problem that
often occurs in undergraduate courses. Suppose the temperature in
three-dimensional space varies from one location to another accord-
ing to T(x,y,z) = xyz; that is, the temperature is given by the product
of the coordinate values of the point. If we wish to locate the points on
a sphere of radius R where T is a maximum and to find the value of
that maximum, we have here a typical problem of multi-dimensional
(here three-dimensional) calculus. A straightforward approach would
express one of the variables in terms of the other two through the de-
hining equation of the sphere, K+ yz + 22 = R?, and maximize the
remaining expression for temperature as a function of two variables.

gravitation. Planck was a founding member of the German Physical Society and shep-
herded it and physics institutions through the Nazi era, with the hope of preserving
them through it and rebuilding German physics after the war. Today, the string of
German physics research institutes bears his name.

16 Richard P. Feynman, 1918—1988, American. An extraordinary theoretical physi-
cist, one of the co-formulators of the first relativistic quantum field theory, called
quantum electrodynamics (QED). He invented a unique diagrammatic technique that
is universally used in the field theories of today. A master of variational techniques,
he followed early work by Dirac in formulating a path integral approach to quantum
mechanics and, with his teacher John Wheeler, to radiation. He also made fundamental
contributions to superfluidity and elementary particle physics. He was a member of the
theory division of the Manhattan Project, which developed the nuclear bomb, where
he used early computers for numerical calculations. A gifted teacher and expositor, he
achieved legendary status among contemporary physicists through a course of lectures
covering all physics that, in its three volumes, has educated and influenced physicists
around the world. A slim volume, QED [3], and scores of his writings and books, many
displaying his playful humour and style and some appearing posthumously, and his
prominent role in the national commission that investigated a space shuttle launch
disaster, made him a household name. An essay of his on the exploitation of micro-
scopic devices is seen as the inspiration of today’s field of quantum computing and
information.
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However, this would involve complicated equations with square roots
and differentials of them.

Instead, Lagrange’s method of ‘undetermined multipliers’ introduces
a functional,

%(x,y, Z,A) = Xyz ~k(x2 + yz + 22— RZ), (1.6)

where we introduce a new parameter (or dimension), A, that is at this
point undetermined and which multiplies the constraint ‘as a zero’.
Whatever the value of A, T coincides with the T we seek for the prob-
lem posed, the added term vanishing because of the zero multiplying A.
Again, while it may seem that one is complicating a three-dimensional
problem further by going to four dimensions with a new variable, the
important point is that we can now proceed to handle T as uncon-
strained, freely varying it with respect to all four variables (x, y, z, 1) to
seek the stationary point. It is clear from Eq. (1.6) that A has dimensions
of length. All four dimensions, including the introduced, *fictitious’, A,
are viewed on an equal footing and as independent. The four equations,
one being just the constraint equation itself, are then solved simultan-
eously. In problems such as this with an underlying symmetry (see
Sec. 5.1.1), even this step proves trivial and one is led to the point
x =y =2 = R/\/g, together with its three ‘symmetrical partners’,
with two of the coordinates involving the negative value of the square
root, as the points of maximum temperature with value T = R’ /34/3.

This illustrates the central theme of this chapter, that adding a di-
mension, here one for each constraint, can simplify the calculation and
our understanding of the physics involved. While the final value of A
is itself irrelevant (A = R/Zﬁ in this example), in that it multiplies a
zero in Eq. (1.6), it may be regarded as a ‘force’ enforcing the constraint.
Once again, there is a nice philosophical element, that what seem to
be forces governing dynamics in one space may be viewed equivalently
as kinematics in the space with one more dimension together with a
kinematical constraint (one more dimension and constraint with each
Lagrange multiplier), exactly as in the complicated example considered
at the end of Sec. 1.2.1.

The idea of adding a zero to incorporate the laws of physics or the
defining equations involved to calculate some other physical property
of the system allows a general construction of stationary or variational
principles for any such property [10]. The Lagrange multipliers may not
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always be numbers as in the present example but may be functions,
matrices, etc., as appropriate in constructing the extended functional
expression for the property of interest.

1.2.4 Space—Time

One canonical example of adding a dimension, now even familiar to the
man on the street, is the view of the world in space—time. Mechanics,
having to do with changes in time of three-dimensional location, has
always had these four dimensions, three of space and one of time, as its
natural stage. Following Einstein’s Special Theory of Relativity, physics
has recognized that they are indeed intertwined.

An important consideration in physics is of objects that remain
unchanged under some transformation of the coordinate axes. Such
transformation symmetries and their corresponding ‘invariants’ are the
topic of Chapter 5, but consider here the distance (x* + y> + 22)12 of
the point (x, y, z) from the origin as an invariant under translations and
rotations of the axes. The three coordinates assigned to the point and
to the origin may change under such translations or rotations of the
coordinate axes being used to describe them, but the distance of sep-
aration remains unchanged. In Special Relativity, it is replaced by the
invariant interval or, equivalently, its square (c2 e ——xz—yz ~z2). The space—
time interval involves all four dimensions of space and time. At the
same time, instead of the three-dimensional vector 7 with components
(x,y,2), space and time together as a four-component vector (often
simply called a four-vector) (ct,?), along with similar four-vectors of
energy-momentum (E/c, p ), provide the natural language for relativis-
tic mechanics. Note a change in sign of the space components relative
to the one of time in the space—time interval, which reflects the dif-
fering status of space and time even when combined into a set of four.
And, note of course, the dimensional aspect that uses ¢, the speed of
light, to put space and time, or energy and momentum, on an equal
dimensional footing in their four-vectors.

Quantities that do not change under rotation of the axes, such as
the distance of separation in the previous paragraph, are called ‘scalars’.
Indeed, unlike the looser description earlier as something with mag-
nitude alone and no directional sense, this is the proper definition of
what is meant by a scalar in physics: it is an object left unchanged by
rotations. Mass, charge, temperature, etc., are other examples, all tak-
ing some numerical value in whatever system of units is used to describe
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them, but remaining the same regardless of a particular set of orthog-
onal axes in consideration or a second set, usually called primed and so
designated by using primes on x, y, and z, obtained through a rotation
of the axes. On the other hand, a directed line segment that has both a
magnitude for the distance of separation and a direction of where the
second point lies with respect to the first, is a ‘vector’, with a definite
relation between the values of (¥, y',2") and (x, y,z) depending on the
rotation involved. Besides this basic vector quantity, any other set of
three components is called a vector if the same relation exists between
its primed and unprimed components. Velocity, acceleration, an elec-
tric and a magnetic field are all examples of such vector quantities. They
all transform in like manner and like the basic vector 7 : (x, y, z). (Note a
philosophical theme of central importance, to be developed further in
Chapter 2, of using behaviour under certain transformations to define
objects in physics.)

For notational convenience, an index notation is adopted, with r;
standing for x, y, and z when i equals 1, 2, and 3, respectively. Similarly
a; for acceleration and B; for magnetic field denote the components
of those objects along the three directions. The index notation allows
easy extension to descriptions of any number of dimensions, / running
over 1, 2, 3, and 4 for instance in a four-dimensional world. It also al-
lows an easy definition of other objects, called ‘tensors’, of higher rank,
again according to a well-defined connection between their primed and
unprimed components that is given once and for all for a specified rota-
tion, independent of the object under consideration. Just as any vector,
whether velocity or electric field, transforms in the same way, so does
any tensor of a particular rank with a well-defined relationship between
its primed and unprimed components, depending on the rank. That is
how the tensorial nature of a physical quantity is defined.

Scalars are said to be of rank zero, in that they do not change at all,
while vectors are said to be of rank one, and an example of a higher-
rank tensor is the moment of inertia, which has rank two. It expresses
the relation between the angular momentum of a rigid body, itself a
vector or tensor of rank one, and angular velocity, also a vector ob-
ject. For a complex object, the two vectors of angular momentum,

-

£, and angular velocity, @, are not always simply related through a
(scalar) multiplicative constant but a change in angular velocity in
one direction can cause a change in angular momentum in a different
direction. This is expressed through £; = Ljjw;, with I the moment of
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Figure 1.8 A 3 X 3 matrix representing the second-rank tensor of moment of
inertia. The elements I,j, with i,j = 1,2, 3, relate the angular velocity in any
of the three axes directions j to the angular momentum components i. With
Ijj = Ij;, this is a symmetric array, elements equal under reflection about the
diagonal so that there are only six independent numbers in the array.

inertia tensor, and an assumed convention that when an index is re-
peated, there is an implied summation over all values of that index.
Thus, £, = Iyw; + Ipw, + Ijzws, and there are two similar equa-
tions for £; and £3, so that in general any of the three components of
angular velocity can affect a particular component of angular momen-
tum. The coefficients of this proportionality constitute the moment of
inertia tensor.

With two indices (i, j), each taking three values in three dimensions,
there are nine components in general for a tensor of rank two that can
be conveniently represented as a 3 X 3 square matrix, although there
is often a reduction in number because of the symmetry properties of
the object in question (Figure 1.8). Thus, the moment of inertia ten-
sor is symmetric, interchange of i and j not changing the physics, and
there are only six independent components, three along the diagonal
and three off-diagonal elements of the matrix which are repeated across
the diagonal. Further reduction in the number of components signi-
fies further geometrical symmetries of the body. On the other hand,
an antisymmetric tensor of rank two, that is one that changes sign if i
and j are interchanged, will have only three non-zero components, the
diagonal elements being necessarily zero and the off-diagonal ones re-
lated by a minus sign to corresponding elements reflected through the
diagonal. In a d-dimensional world, clearly a vector has d components,
a symmetric rank two tensor has d(d + 1)/2, and an antisymmetric rank
two tensor d(d — 1)/2 components.

Electric (E) and magnetic (E) fields are three-dimensional vectors, each
with three components. These six components of electric and mag-
netic field vectors group together (Figure 1.9) naturally into a single
object, an antisymmetric tensor of rank two in four dimensions, with
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well-defined behaviour under the so-called Lorentz!” transformations
of Special Relativity. Also, the vector potential, A, and scalar potential,
@, from which the fields are derived,

E=—(1/c0)(8A[d))— Vd, B=V x A, (1.7)

transform as a four-vector (P, A).

Both mechanics and electromagnetism are unified in this four-
dimensional view with the important invariant being a speed, that of
light, ¢, speed of course combining both space and time. Lorentz trans-
formations include, besides rotations of spatial axes, velocity ‘boosts’
connecting two frames moving with uniform velocity with respect
to one another. Such frames are called ‘inertial frames’ and the cen-
tral tenet of Special Relativity is that physics remains invariant under
changes from one such inertial frame to another, that all such inertial
frames are on a par as regards the laws of physics. Absolute rest and
absolute velocity have no physical significance, only relative velocities,
and, for physics to have meaning, no inertial frame is on a special foot-
ing. This was already evident to Galileo and Newton for mechanics, and
Einstein’s Special Theory of Relativity extends it to all physics. In doing
so, it transformed our understanding of space and time.

Another crucial precursor for Einstein was the work of Max-
well, who himself built his equations of electric and magnetic
fields (Figure 1.10) based on the important concept of a field, which
was introduced into physics by Faradayls. Unlike Newton’s gravity,
which was a force or interaction that acted ‘at a distance’ between

17 Hendrik Antoon Lorentz, 1853—1928, Dutch. Theoretical physicist who studied
electricity, magnetism, and mechanics. He developed a theory of magnetic field effects
on atomic spectra to explain the Zeeman effect. In studying the motion of charged
particles (the force law carries his name), he formulated the ‘Lorentz transformations’
without a full understanding of them, which was provided by Einstein’s Special Rela-
tivity. He chaired the first Solvay Conference, which, together with later ones in that
series, brought together all the prominent physicists of the day and was very influential
in the development of early 20th-century physics.

18 Michael Faraday, 17911867, English. Physicist and chemist, mostly self-taught
and a laboratory assistant to Humphrey Davy, whom he succeeded in the Royal La-
boratory. His physical picture of magnetic fields and of the laws of induction inspired
Maxwell in formulating the laws of induction and the connections between electricity
and magnetism. The unit of electrical capacitance is named the farad.
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Figure 1.9 The second-rank electromagnetic tensor, Fyy, with w,v = 0,1,
2,3, arranged in an antisymmetric (with respect to reflection about the diag-
onal)4 X 4 matrix array of electric (E) and magnetic (B) field components.
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Figure 1.10 Maxwell’s equations relating electric and magnetic fields in vector
form, written as two sets of equation pairs, each themselves one scalar and one
vector equation.

two bodies, however far apart, the casting in terms of a field defined
everywhere, including at locations between the bodies, was crucial in
the development of physics. A mass or an electric charge sets up a
corresponding gravitational or electromagnetic field around it, and an-
other mass or charge reacts to it. With the fields themselves capable of
interacting between neighbouring points in space and time, and capable
of carrying energy, momentum, etc., the description of an interaction
can be made a local one.

The occurrence of ¢, the speed of light (a historically much earlier
concept), intrinsically in the equations governing electric and magnetic
fields, even in vacuum, gives significance to a natural speed (the same as
seen by any inertial frame) for even the establishment of a field around
a mass or charge. It is with this finite speed that the presence of such a
source can be felt in the region around it, a distant mass or charge sens-
ing it only after a finite time. Light itself, whether in the visible or other
ranges of the spectrum, is then seen by all inertial observers as such
propagating waves with speed ¢ (in vacuum) of electric and magnetic
fields. (Gravitational waves, yet to be directly observed, will also travel
with the same speed.) '
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The difference between rotations about the three spatial axes and
velocity boosts along each of the axes goes hand in hand with the dif-
ferent status of the time axis relative to the others that was noted in
the change in sign in the space—time interval. Time is not just a fourth
coordinate axis. Even in the mathematics of handling four dimensions
together, this distinction between space and time is worth keeping in
mind and is expressed by saying that the ‘metric’ for measuring lengths
has opposite signs between the two. Correspondingly, the square root
of (—1) being the imaginary unit i, trigonometric functions of sine and
cosine in rotation angles pass into hyperbolic functions sinh and cosh
for the velocity boosts of Lorentz transformations. This is the basis for
saying that time is a fourth coordinate but an imaginary one!

Just as three-dimensional rotations transform a vector’s components
(x,y,2) to (+, ¥, ') in the rotated frame, with the squared length an in-
variant, the larger set of Lorentz transformations that include velocity
boosts transform between four-vectors in inertial frames. The counter-
part of the Lorentz scalar space—time interval, \/ P =52~y — 22

,as an

invariant is the similar one for energy-momentum, 4/ E:—¢? @2, which
is identified as mc?, the rest mass energy of the particle. This equiva-
lence of mass and energy is one of the central results of Einstein’s Special
Theory of Relativity.

The tenets of Special Relativity, and the equivalence of inertial frames
under all Lorentz transformations that include not only rotations but
also Lorentz boosts, make the four-dimensional space—time the natural
framework for physics. Under rotations alone, electric and magnetic
fields are not mixed up (only their components are among themselves)
but they are by boosts (what may appear as a pure electric field in one
inertial frame may be both electric and magnetic fields in another, with
(E2 + Bz) and E - B invariant) so that they are indeed to be seen as the six
components, shown in Figure 1.9, of an antisymmetric tensor of rank
two. All four of Maxwell’s equations in three-vector language shown
in Figure 1.10 can then be rendered compactly in four-vector language
in Figure 1.11 along with the definition from Eq. (1.7) of the fields in
terms of the vector potential, 71 and scalar potential, @, or, together,
the four-potential A, : (P, ;{), the four-current is j, : (cp;) Because
of time and space not being entirely on a par, it is customary to use
in place of Latin indices i and j running over four values, the Greek p
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and v, taking the four values 0, 1, 2, and 3, for describing space—time in
physics, the first index 0 denoting time.

The first two Maxwell’s equations in Figure 1.10 are naturally sub-
sumed in the definition of the antisymmetric tensor of the fields from
the four-potential,

Fuv = aMAv_avAu, (1.8)

where 8 is now the four-dimensional differential operator in (ct,7).
This is another elegant simplification in recasting electromagnetism
from fields in terms of potentials, these forming a four-vector and also
incorporating the first two of Maxwell’s equations (actually four equa-
tions, one being a vector equation) into the rules of calculus obeyed by
the differential operator V.

The recasting of the larger and more complex set of Maxwell’s
equations in three-vector language in Figure 1.10 into the elegantly
compact four-vector form in Figure 1.11 is, in part, one of notation,
including implied summation of a repeated index and the properties of
the differential 3, : ((1/c)d/dt, V). The merit of this four-dimensional
view is that it also makes obvious not only the invariance under Lor-
entz transformations because of like transformations of vectors and
tensors on two sides of an equation, but, further, again as per the rules
of calculus, also the equation of continuity that follows upon further
differentiation: d,j, = 0 (obvious because of summation over all ©
and v with 9,0, symmetric and F,,, antisymmetric under interchange
of (u, v)), which is an expression of the conservation of electric charge
(see Sec. 5.2.2). This is a nice illustration, both of this chapter’s theme of
adding a dimension and of another theme that occurs elsewhere in this
book (Sec. 2.3) of the power of a notation that seems so natural a fit to
the physics of our world.

Einstein’s General Theory of Relativity goes further in considering
cven more general transformations of the coordinates than the Lorentz

4
OlFuy = ‘“;‘Ju.

Figure 1.11 Maxwell’s equations in four-vector form, incorporating all equa-
tions in Figure 1.10 into an equation for the electromagnetic tensor in
ligure 1.9 and the four-vector current, j.
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transformations of the Special Theory (see Sec. 5.2.6). It is based on the
symmetric ‘metric tensor’ gy, 4,V = 0,1, 2, 3, with its 10 independent
coefficients (antisymmetric tensors of the previous paragraph involve
4 x 3/2 = 6 and symmetric ones 4 X 5/2 = 10 elements). Interestingly,
adding one more dimension, a fifth, as Kaluza®and Klein?’did, did not
lead to something of value. Although at first sight attractive, the 5 X
6/2 = 15 components of a symmetric tensor of rank two now possibly
accommodating together Einstein’s General Relativity equations with
Maxwell’s in an attempt to unify gravitation and electromagnetism, did
not, however, prove fruitful as physics.

1.2.5 The Hydrogen Atom

The aspect of an added dimension also characterizes microscopic en-
tities such as atoms and, in particular, already the simplest of them, the
hydrogen atom. Before turning to the additional dimension, we con-
sider first some elements of atomic structure. Ever since the Greeks
and other ancients, the idea that there is an elementary or smallest
component of all matter, that matter’s divisibility has a limit in con-
stituent atoms, has been a powertul principle, one also in physics. It was
already clear over 100 years ago, from the gross properties of matter,
that the size of atoms is small on our everyday scale. The 1,000-fold dif-
ference in density of water vapour from that of water as liquid or water
as ice pointed to individual atoms or molecules being 10 times (again,
a dimensional element, the cube root of 1,000) further apart than their
size in the former gaseous phase while bumping against each other in
the two condensed phases. And, from the gas constant relating the gross
thermodynamic quantities of pressure, volume, and temperature, a size
of about 107 m or 0.1 nm could be ascribed to individual atoms.

Next, almost exactly 100 years ago, Rutherford®' discovered that
nearly all the mass of an atom is concentrated in a positively charged

9T Kaluza, 1885-1954, German. Mathematician and physicist, and learned in sev-
eral languages. He discovered that writing Einstein’s equations in five dimensions gave
a natural way to embrace Maxwell’s equations as well.

20 Ogskar Klein, 1894-1977, Swedish. Theoretical physicist who had the idea that extra
dimensions may be real. His name is also attached, along with that of Gordon, to a
relativistic quantum field theoretic equation for spinless particles (Sec. 7.3).

21 Ernest Rutherford, 18711937, British. Pioneer nuclear experimentalist who stud-
ied various forms of radioactivity and transformations between nuclei. Most known
for his planetary model of atoms, with electrons in orbit around a smaller, central,
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nucleus with much lighter negatively charged electrons around it, the
size of the nucleus being 100,000 times smaller than the atom as a whole.
This was the only explanation for his experimental observations that
tiny positively charged alpha particles, when fired at metal foils, were
sometimes reflected almost backwards. Only a very tightly confined
positive charge, confined to much less than 0.1 nm, could have repelled
them so.

The lightest and simplest atom, that of hydrogen, has just one
electron around a proton that is its nucleus, the electron being nearly
2,000 times less massive than the proton. They being equally and op-
positely charged electrically, the atom as a whole is neutral but bound
by their electrical attraction. The helium atom has two electrons and
its nucleus has two protons and two neutrons, the latter of almost the
same mass as the proton but electrically neutral. And so on, through
the Periodic Table of naturally occurring elements (higher elements
have also been created artificially) up to uranium, with 92 electrons
around a nucleus that has 92 protons and a much larger number of
neutrons, varying in number with the particular isotope of uranium
(hydrogen also has rarer isotopes with one and two neutrons in add-
ition to the proton, and helium too has a rarer isotope that has two
protons but only one neutron in its nucleus, and exotic, radioactive
species with several neutrons in a ‘halo’ are also created in some
laboratory experiments).

Understanding hydrogen’s structure is the key to understanding all
atoms and matter, and it was clear also that there was a major prob-
lem in doing so in terms of classical physics. If the electrons are orbiting
the nucleus (somewhat as in a Solar System, except that the motion is
not confined to a plane but ranges over all space), then because they
are undergoing the centripetal acceleration of that orbital motion, they
must radiate electromagnetic energy. A simple calculation showed that
they must very quickly collapse onto the nucleus and the Rutherford
model would not be stable. This led Bohr to invoke quantum principles
to account for the basic structure and stability, and to show that a new
quantum mechanics was required for such microscopic scales. Today,
we know that quantum mechanics is the governing mechanics of

positively charged nucleus. He, and assistants in his group, developed the first apparatus
for accelerating charged particles to high energy to cause nuclear reactions. He also
hypothesized the presence of neutral particles in the nucleus, such neutrons being
discovered later by his associate James Chadwick.
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our Universe, accounting in a manner for everything, whether atoms,
mountains, or stars [11], but its effects are especially evident for atoms
and nuclei. A planet bound to the Sun can be understood through
classical physics, but not the hydrogen atom.

Both physical systems of two bodies, planet—Sun or proton—electron,
held together through an attractive 1/r potential, gravitational or elec-
tromagnetic, respectively, have many things in common. Whether in
classical or quantum mechanics, both are well recognized as having
more symmetry than expected from the spherical symmetry of the
gravitational or Coulomb? field. This spherical symmetry is associated

with the conservation of angular momentum, £, either expressed as

-
df/dt = 0, or in quantum mechanics as the angular momentum op-

erator commuting with the energy operator called the Hamiltonian®,

[H,£] = 0. (A commutator of two operations A and B is defined as
|A,B] = AB — BA so that its vanishing, or the equivalent statement
that the two commute, means that the order in which they are taken
does not matter. In quantum physics, only such pairs can be sharply
defined simultaneously for any physigal system.) Therefore, classical or-

bits lie in the plane perpendicular to £, asis indeed observed in planetary
motion (Figure 1.12). Quantum mechanics does not have orbits and tra-
jectories (dependent in their very concept on both position and velocity,
something not allowed by the uncertainty principle because these two
quantities do not commute) and, as already noted, the electron’s mo-
tion should not be pictured in such terms but rather as a probability
distribution in all three-dimensional space around the nucleus.

22 Charles Augustin de Coulomb, 1736—1806, French. Retired from the mili-
tary as an engineer to pursue scientific research and discovered forces between
electrically charged objects.

23 william Rowan Hamilton, 1805-1865, Irish. Mathematician and physicist, and
versed in several languages. He made important contributions to optics and mech-
anics, most notably in reformulating Newtonian mechanics in terms of the energy,
or Hamiltonian as now named, and a variational principle. His work on analytical
mechanics was uncannily prescient of quantum mechanics, especially in the form it
emerged 100 years later in the hands of Dirac. Hamilton’s most notable contribution
in mathematics was his discovery of quaternions, ‘four-dimensional numbers’ gen-
eralizing two-dimensional complex numbers and based on three square roots of —1.
Quaternionic algebra is an alternative to vectors with some advantages in describing
rotations and is so used today in orbital mechanics and signal and control theory. Early
workers such as Maxwell and some present physicists advocate their use in mech-
anics and electromagnetism but the dominance of vector mathematics is likely to
persist in physics.
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Quantum physics, unlike classical physics, also restricts the possible
negative-energy bound states of a physical system. Thus, the electron—
proton system may have any positive energy upwards from zero and
these describe the situation when the electron can separate to infin-
ite distance from the proton, the so-called continuum or scattering (of
an electron from a proton) states of the hydrogen atom. Similar con-
tinuum states of the classical counterpart, the Solar System, are the
parabolic and hyperbolic orbits of a comet or other object that can be
flung to infinity from the star, in contrast to the elliptic orbits, wherein
the object remains bound.

But, for negative energies, the bound states of the hydrogen atom
cannot have arbitrary values as in a classical system. Instead, they are
quantized into discrete, allowed energies, whereas any elliptical bound
orbit with arbitrary negative energy is a possible state for a planet (of
course, quantum mechanics also applies here in principle but, because
of the weakness of gravitational interaction relative to the electromag-
netic, the spacing between allowed energies is so small as to be negligible
and for practical purposes can be treated as continuously distributed).
Bohr’s elucidation in 1913 of the possible bound-state energies,
that agreed with empirical observations made by Balmer?! based on
spectroscopic studies towards the end of the 19th century, was of course
one of the first triumphs of quantum physics as applied to matter.

The spherical symmetry of the interaction and that £ commutes
with the Hamiltonian are realized through the fact that quantum-
mechanical (Bohr) energy levels (also, of course, the continuum energy
states) are ‘degenerate’ in the ‘azimuthal’ quantum number, m; that is,
states of different m share the same energy. This quantung number, m, is

ameasure of the projection of the angular momentum, £, on the z-axis,
(,,and in a quantum system takes (in units of ) integer values between

£ and €. £ itself is also quantized, taking only values of 0 or positive
integers. All (2¢ + 1) levels of any £ but differing in m have the same
cnergy, which is indicative of the spherical symmetry of the underlying
Hamiltonian, that the z-axis is no more distinguished than any other
direction. In the language of group theory, which is the mathematics
of symmetries, the symmetry is of O(3), the orthogonal (or rotation)

- Johann Jakob Balmer, 1852—1898, Swiss. A mathematics teacher in a gymnasium,
he noticed a pattern in the energies of spectral lines of hydrogen and devised an em-
pirical formula that became a key to Bohr’s explanation of atomic structure a quarter
century later.
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group in three dimensions. Any three-dimensional rotation leaves the

1/r potential unchanged because it has no directional aspect, and so

is what is termed a scalar. This group is said to have one ‘Casimir’®

invariant, the squared angular momentum with value £(£ + 1)h’2. All
(2€ + 1) m-states have this same squared angular momentum.

For bound states, the allowed negative energies are given by the Bohr
expression, —1/n2, in units of the Rydberg26, 13.6 eV (1 eV is the energy
gained by an electron accelerated by an electric potential of 1 volt and
equals 1.6 X g ]). nis the ‘principal’ quantum number, taking val-
ues from 1 through the positive integers. But the fact that the Kepler27
orbits for bound states are closed ellipses, and in the quantum treatment
that levels of different £ but the same principal quantum number n are
degenerate (have the same energy), are not explained by the three-
dimensional spherical symmetry that only requires degeneracy of m
values. For each n, £ can range from 0 to n — 1. That they are also de-
generate points to something additional to rotational symmetry in the
Coulomb or gravitational force. A clgsed ellipse points to the existence

of another conserved vector besides £. This vector, A, points in the dir-
ection of the major axis and has magnitude equal to the eccentricity of
the ellipse (Figure 1.12). This was already recognized by Laplace®®.

25 Hendrik B. G. Casimir, 1909-2000, Dutch. Theoretical physicist with many contri-
butions to superconductivity, invariants of Lie groups, molecular and nuclear rotations,
and quantum zero-point energy forces between objects, both microscopic and macro-
scopic, some of the latter only recently amenable to experimental measurements. He
was a co-founder and director for many years of the Philips research laboratories in his
native Netherlands.

e Johannes Robert Rydberg, 1854-1919, Swedish. Discoverer of the formula that
bears his name for the spectral lines from an atom when it changes from one energy
level to another. The fundamental constant of spectroscopy is named the Rydberg.
Today, bound states at high energies are named Rydberg atoms.

27 Johannes Kepler, 1571-1630, German. Inherited Tycho Brahe’s observatory and
observations of orbital data on planets and found that he had to depart from the cir-
cular orbits of the Copernican system to elliptical ones, and formulated the three laws
of planetary motion which were the basis for Newton’s law of gravitation. He can be
credited with having brought mathematical physics into astronomy.

28 Pierre Simon de Laplace, 1749—1827, French. Mathematician, physicist, and astron-
omer, who extended Newton’s celestial mechanics to consider the stability of and the
nebular origin of the Solar System. He formulated Laplace’s equation and the differen-
tial operator called the Laplacian that occurs in wide areas of classical and quantum

thsics. He developed potential theory and the ‘spherical harmonics’ that are used
or describing angular dependences in physics and engineering. He invented the La-

place transform, a powerful mathematical technique, and made many contributions
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Figure 1.12 A planetary orbu s Kepler ellipse on a plane with a perpendlcular

angular momentum vector E and the Laplace-Runge—Lenz vector A which
points in the direction of the major axis of the ellipse and has magnitude
proportional to its eccentricity.

It is the existence of such a conserved vector in the plane that ac-
counts for the orbits closing and thereby the occurrence of a closed
clliptical orbit for a planet’s motion; otherwise, based only on spher-
ical symmetry and consequent conservation of angular momentum,
they could be any orbits so long as they lie in that plane. Indeed,
general relativistic corrections that lead to small departures from the
Newtonian 1/r potential, but still spherically symmetric, retain the pla-
nar nature but spoil the closing of the orbit so that the major axis
rotates (precesses), albeit very slowly. This was accounted for by Ein-
stein’s General Theory of Relativity (Sec. 5.1.2). Similarly, in quantum
mechanics, other atoms beyond hydrogen do not exhibit the degener-
acy in £, the presence of other electrons leading to small departures
from the pure 1/r Coulomb field of the nucleus.

To see the nature of this higher symmetry, larger than the obvious
isotropic one, of the 1/r fields, and that it reflects a symmetry under
rotations in one extra dimension as per the theme of this chapter, it is
casiest to do so from the Schrt')dingelr29 equation for the hydrogen atom

lo probability and statistics. He also had the first ideas on what were later called black
holes, when he argued for massive objects from which even light could not escape.

29 Erwin Schrodinger, 1887-1961, Austrian. In 1926, formulated the first wave equa-
tion of quantum mechanics that bears his name, and then established the equivalence
ol this wave mechanics to the matrix mechanics of Heisenberg. He went on to develop
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written in momentum space. Besides the three dimensions of the mo-
mentum vector, p, the energy as a fourth component can be used to cast
the equation as spherically symmetric in all four, that is, as symmetric
under rotations in four-dimensional space. The same conclusion fol-

lows in coordinate space by the recognition that with both E and A
commuting with the Hamiltonian, there are six such operators com-
patible with a conserved energy. Just as three of the former generate
rotations in three dimensions, the six together describe rotations in a
four-dimensional space, d(d — 1)/2 in d dimensions being the number of
planes and thereby the number of independent rotations in any dimen-
sional space. The symmetry group is O(4), larger than O(3), which forms
a sub-group of it. There are now two conserved Casimir invariants, one

expressed by @ A = 0, and evidenced by the two vectors lying perpen-
dicular to and in the plane of the orbits (Figure 1.12), and another the
extension of the squared angular momentum now to the sum of the

squares of both ¢ and A. This second invariant is simply related to the
energy (or to n for bound states of the atom).

The extra dimension can be geometrically visualized in terms of
Hamilton’s ‘hodograph’, the circle that results when the velocity vec-
tors of any Kepler orbit, bound ellipse or open parabola or hyperbola,
that is, of all possible positive or negative energies, are plotted together
from a common origin (see Figure 1.13). The radius of these circles for
the same energy depends on the angular momentum. Collecting these
circles provides the extra dimension to the three spatial ones. In quan-
tum physics, this is associated with the degeneracy of different £ values
at the same energy; note that for bound states, the degeneracy is finite
(2= 22 o1 = n*), while it is infinite for continuum states.

Smce ‘the components of the two vectors do not themselves mutu-
ally commute except for one pair of them, either (82,82) or (L Ay
one has only a set of three mutually commuting operators along with
the Hamiltonian providing the unique labelling of the states of the

techniques for handling perturbing potentials in quantum systems, applying to the ef-
fects of electric and magnetic fields on atoms. Widely versed in philosophy, he never
accepted the probability interpretation of the quantum wave function. His formulation
of ‘the Schrédinger cat’ (Sec. 4.2.1) as a hypothetical to pose the problems of quantum
interpretation continues to capture the imagination of physicist and layman alike. He
wrote on consciousness and on the philosophy of biology. His book What Is Life on self-
replicating systems and on a molecule as the basis of heredity has widely influenced
biologists, from the discoverers of DNA structure and the genetic code to today.
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Figure 1.13 The hodograph: circles for elliptical and parabolic orbits (shown
on top) when instantaneous velocity vectors along the orbit are gathered to-
gether from a common point. That common point lies inside, or on, the circle,
respectively, for the two motions with negative and zero energies (the particle
in parabolic orbit comes in and recedes to infinity where it has zero speed).
A similar construction for hyperbolic orbits of positive energy would have a
hodograph with the point outside the circle.

hydrogen atom. There are, however, two equally valid alternative ‘rep-
resentations’ (more on this in Chapter 2), depending on the choice
between the two sets, called spherical and parabolic, respectively. In ei-
ther way of counting, the degeneracy of any energy level is larger than
the (2€ + 1) of three-dimensional symmetry and is the well-known n
(for bound states) of the higher symmetry. In particular, for n = 2,
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the first excited state of the atom, the four degenerate states group
either as (s,p) (the latter embracing three m values) of the spherical
representation (£ = 0,1 are named s and p, respectively, by historical
convention) or the two spinors ( of the parabolic, these fractional
angular momenta bemg the quantum numbers of the two mutually

commuting operators (E = v A) Recall that E and A are mutually
orthogonal, one perpendlcular and one parallel to the plane of the or-
bit; as a result, these two linear combinations of them are mutually
commuting and have equal magnitudes.

For other discrete energy levels, n, the fractional angular momenta,

(K = A)/Z take values (n—1)/2, the palr agaln sharing the same value as

a consequence of the orthogonality of ﬁ and A. Adding the two angular
momenta gives all the values £ = 0,1,2,...n— 1 that occur at that n.
The n = 2 example illustrates another aspect of adding a dimension,
in that, for the three states 2p, it is upon adding another, the 2s, that
one has the space of four degenerate states that then also splits alterna-
tively into the four parabolic states. The next sub-section will provide
an analogous example in nuclear spectra.

In coordinate space as well, there is an interesting realization in that
the Coulomb problem of the 1/r potential in three dimensions can be
embedded in four dimensions (uy, 1y, 13, 14) as an isotropic harmonic os-
cillator (that is, the pendulum) in those four coordinates as per the
transformation [12],

2(141113 b u2u4)

x
I

o 2(112”3 *“ u.1u4)

1.9
z——u%-i—uﬁ—u%——u% ( )

) 2 2 2

Each coordinate has a ‘spinorial’ decomposition as products of two
of the u coordinates (which are, therefore, like ‘square-root coordin-
ates’). In such a rendition of the three-dimensional coordinates with
one additional dimension, there is of course redundancy and thereby
a constraint, myng + wuy = 0. For many discussions of the hydro-
gen atom, such as its quantum-mechanical path integral treatment
or for effects of external electric or magnetic fields on the atom, this
four-dimensional system with oscillator-like form proves much more
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suitable, the motion of a pendulum being much simpler than that in
a Coulomb field. This so-called ‘regularization’ of the Coulomb singu-
larity is already important in classical mechanics and, indeed, the above
transformation was actually first introduced by astronomer Kustaan-
heimo®and co-workers for gravitational orbits in celestial mechanics.

The symmetry group of rotations in four dimensions, 0(4), with
its six generating operators, is the larger (than O(3)) symmetry of the
discrete Bohr energy states of the hydrogen atom at negative ener-
gies —13.6 eV/[n*, with a large (again, larger than (2£ + 1)) but finite
number, 1%, of states sharing the same energy. (Electronic spin gives
an additional doubling and is responsible for the 2% value that deter-
mines the shell structure underlying the Mendeleev®! Periodic Table
of elements.) It is closely related to the symmetry group of Lorentz
transformations of space—time discussed in the previous sub-section but

with the important difference that the states in that case are infinite in
number (see Sec. 1.2.4).

1.2.6 The Interacting Boson Model

The role of an added dimension for a better understanding of atoms in
the previous section also has an application in nuclei. A nucleus is a col-
lection of protons and neutrons, fermionic particles. (Because their spin
angular momentum is 1/2, they obey Fermi®*—Dirac statistics, unlike

30 paul Kustaanheimo, 1924—1997, Finnish. Astronomer who introduced a method
of regularizing the gravitational potential.

3 Dmitri Ivanovich Mendeleev, 18341907, Russian. Chemist who arranged the
clements by their atomic weights and produced the Periodic Table, one of the greatest
organizing principles of science. He predicted the existence of several ‘missing’ elements
that were later added to their slots in the Table. He made many other contributions
to chemistry, investigated the composition of petroleum, although he argued for an
abiotic origin from carbon in the deep interior of the Earth, and is said to have helped
cstablish the first petroleum refinery in Russia. He also helped in establishing the metric
system in Russia.

32 Enrico Fermi, 1901—1954, Italian and American. An outstanding physicist, both
theoretical and experimental. He established the first theory of beta decay (naming
the additional particle emitted the neutrino, which was observed only decades later),
a precursor to later interacting field theories. Using neutron bombardment, he created
artificial isotopes and elucidated nuclear structure. While missing the first hints, he
went on to study fission of uranium, neutron multiplication, and the chain reaction,
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particles of integer spin, which obey Bose**—FEinstein statistics, this be-
ing one of the fundamental divisions of our Universe — into fermions
and bosons: see Sec. 2.2.1 and 7.3.3.) Instead of the electromagnetic
interaction that holds an atom together, ‘strong interactions’ bind
protons and neutrons. This is strong enough to overcome the Coulomb
repulsion between the protons in a nucleus.

Bound-state nuclear energy levels are also quantized in a discrete
spectrum but are now more complicated than the Bohr spectrum of a
simple Coulomb potential. In the low-lying spectral levels of a nucleus
and transitions between them, the quadrupole operator plays a major
role, just as the dipole operator of electromagnetism does in atoms.
The quadrupole corresponds to the angular momentum £ = 2 called d
(again for historical reasons, as with s and p) and is viewed as a ‘d-boson’.
The interacting boson model was advanced as a useful picture of a nu-
cleus, to see it as a collection of bosons rather than as a cluster of the
component fermions (combining two fermions gives a bosonic entity).
What gave immense power to the model was, however, the adjoining
of one more degree of freedom, an s-boson with £ = 0, an added di-
mension, and to see the low-energy spectral region in terms of such an
interacting collection of s and d bosons.

As per the (2¢ + 1) multiplicity, s and d denote one- and five-
dimensional objects, respectively. It is this starting picture of six

building the first critical nuclear reactor in the Manhattan Project and going on to
the building of the first fission bombs. But, he opposed the further development of
hydrogen fusion bombs on both moral and technical grounds. His work on quantum
statistical mechanics has led to the naming of all half-odd integer spin particles in the
Universe fermions and the statistics they obey as Fermi—Dirac. He also advanced the
first models of acceleration of cosmic rays through shocks and varying magnetic fields,
still the only viable scenario for the most energetic particles seen today. A gifted exposi-
tor, he is known for two influential schools of physicists under him, first in Rome and
then in Chicago. His ability to get to the essence of any physics problem, making a first
estimate of reasonable accuracy in minutes and on the ‘back of an envelope’, have led
to what physicists refer to as ‘Fermi problems’.

= Satyendra Nath Bose, 1894-1974, Indian. He re-derived Planck’s black-body ra-
diation law in a novel way, entirely within a quantum picture and based on a way of
counting identical particles. He sent the paper to Einstein, who recognized its import-
ance, himself translating it and having it published in a German physics journal, and
seeing in it a general way of describing identical particles in quantum physics. Applied
to photons as the quanta of light and later to all integer-spin particles, they are now
referred to as bosons and the statistics as Bose—Einstein.
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dimensions and the symmetries associated with them that constitutes
the interacting boson model. The group symmetry starts with the uni-
tary group U(6). Since rotations in ordinary three-dimensional space,
and the associated group O(3), are obviously involved in labelling the
energy states, one looks for ‘dynamical symmetry’, which means that
the energies can be accounted for through the invariant Casimir op-
erators of the relevant groups and sub-groups lying between U(6) and
O(3). This is also of great practical significance because calculations re-
duce to simple algebra upon such restriction to the invariants which do
not change in value under various operations.

Between the starting group, U(6), and the final O(3), there are three
possible chains of sub-groups and therefore three possible expressions
for the energy levels in terms of the Casimir eigenvalues; see Figure 1.14.
Remarkably, all three seem to be realized in nature upon examining
low-lying spectra of nuclei across the Periodic Table [13]. Thus all such
nuclear spectra can be ordered in these three groupings. Even some
nuclei that depart from one of the three nevertheless admit simplici-
ties in their description as lying close to one of the three limiting cases
and therefore reflecting perturbations about the basic three. This has
proved to be an immensely significant organizing principle. Again, for
the theme of this chapter, the addition of the s-boson and starting with
UJ(6) rather than U(5) proved crucial, illustrating the importance of the
theme of adding a dimension.

More details of this model or of further extensions in boson—fermion
models are outside the realm of our discussion but it is interesting to
look back at the previous sub-section from this perspective of the inter-
acting boson model. For atoms, the dipole is important, thatis, £ = 1
or p in place of nuclei’s d, a vector rather than a tensor of rank two.
Adding an s to it gives four dimensions, with O(4) symmetry, and the al-
ternative breakups of spherical and parabolic representations, as in the
previous sub-section. That same adjoining of a dimension and going to
four dimensions is crucial to get the bi-spinor or parabolic decompos-
ition, which would be inaccessible using just the p or three degrees of
freedom. The same idea of adding an s but now to a d applies in nuclei
with its three primary divisions in Figure 1.14.

Remarkably, the same theme has been extended in atoms in a dis-
cussion of the complicated spectra of lanthanides (elements around
lanthanum) and actinides (elements around uranium) as pertaining to
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U(6) D U(5) D 0(5) D 0(3)
U(6) D SU(3) D 0(3)
U(6) > 0(6) D 0(3) D 0(3)

Figure 1.14 Three alternative pathways of group U(6) and sub-group chains.
Low-lying energy levels of nuclei are well described by the invariant operators
of the groups in each chain.

large atoms such as uranium and plutonium. This high up in the Peri-
odic Table, such atoms involve f electrons, that is, £ = 3. Because of the
many levels involved with such large angular momenta, and additional
complications of fine-structure and other splittings, these spectra are
notoriously complicated. Somewhat in the same spirit as the interact-
ing boson model, the suggestion was made to add an s, again adding an
extra dimension, to see the (s + f) as an eight-dimensional object and
to examine alternative symmetries and simplifications provided by the
groups involved [14]. In a further twist, eight is also alternatively viewed
as the dimension of the space of three spin-1/2 ‘pseudo-quarks’, each
of dimension two, their product eight-dimensional. (This borrowed
from ‘quarks’, invoked as spin-1/2 fundamental constituents of protons
and neutrons, a triplet of them forming any nucleon.) Therefore, lan-
thanide and actinide spectra are described in terms of an underlying
three-quark structure, much as s+p was viewed in terms of two spin-1/2.
In the language of quantum information (see Sec. 4.2) rather than that
of elementary particle physics, wherein spin-1/2 constitutes a ‘qubit’,
we may regard these as three and two qubits respectively. And, in the
same vein, the interacting boson model of s + d would correspond to a
qubit—qutrit (spin-1) bipartite system with dimension2 X 3 = 6.

1.3 Extra Dimensions to Remove Singularities

Another remarkable use of varying the dimensions involved in a prob-
lem is to remove seeming infinities that occur in our mathematical
treatment of some problems when it is clear from the physics that
there are no such singularities. Quantum field theories that go beyond
quantum mechanics in being fully consistent with the Special Theory
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of Relativity (see Sec. 7.3.3) are notoriously plagued by these infinities
involving singular integrals. A simple illustration is provided by the
triplet of elementary particles called pi-mesons or pions, a set of three
clementary particles comprising a pair that is oppositely charged and
a neutral one. An immediate expectation is that the small difference
in mass of the neutral particle from that of the charged pair (which
have equal masses, an aspect of what is called CPT symmetry and re-
quired of all particle—anti-particle pairs; see Sec. 5.2.1) is due to the
electromagnetic interaction in which they differ. Indeed, the difference
in mass of about 1% connects plausibly with the expectation based on
the relative weakness of electromagnetism compared with strong inter-
actions, which are otherwise dominant and thereby contribute most to
the mass. However, a first calculation of the difference comes out infin-
ite. Various ‘renormalization’ methods are now familiar to overcome
such singularities.

One class of them is termed dimensional renormalization, wherein
the problem is treated with extra dimensions [15]. Generally, these
discussions are handled in momentum space but to convey the es-
sence in simpler terms, consider the integral of 1/rin ordinary calculus.
Although this function is singular at the origin, if r stands as usual
for distance, in three dimensions there is no infinity from the short-
distance behaviour because of the powers of r in the volume element
dr of integration over three dimensions. On the other hand, in one di-
mension, fo dx| 1 xl would indeed be infinite, a divergent integral. Most
divergences in field theories arise indeed from high-momentum or,
equivalently, short-distance behaviour (the link between small distance
and large momentum is an essential feature of quantum physics) so
that these simple observations are indeed relevant. With that, we turn
to a concrete problem in quantum mechanics based on the above 1/r
observation to illustrate the point of dimensional renormalization.

The hydrogen atom is a system with a Coulomb potential, —ez/r.
(Quantum mechanically, it is stable because the quantum kinetic energy
prevents the electron from getting arbitrarily close to the nucleus, that
is, r = 0. Instead, on average, the electron is held to a distance of about
the Bohr radius, gy = h’z/me2 ~ 5% 107" m, sees only that much of
the attraction of the nucleus, and ends up with a corresponding bind-
ing energy of —13.6 eV in the ground state. Consider, however, an atom
in very strong magnetic fields, such as have been found on neutron
stars and magnetars. These fields are not only larger than on any other
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objects in our Universe but they are overwhelmingly stronger than the
internal electric and magnetic fields in the atom. As a result, such a
field completely changes atomic structure. It confines the electron’s
motion in the two directions perpendicular to the magnetic field, that
field controlling those motions and dwarfing the Coulomb force from
the nucleus in those directions. On the other hand, because a magnetic
field, no matter how strong, exerts no force in the direction parallel to
itself, the Coulomb attraction by the nucleus operates in that direction
to bind the electron. Effectively, the Coulomb binding operates only in
that one dimension [16]. .

Because the electron by virtue of being confined in the other di-
mensions sees much more of the nuclear field, its binding is indeed
enhanced. If it were truly one dimensional, by our above argument of
the divergence of a one-dimensional integral, we would conclude that
there is infinite binding or collapse of the electron onto the nucleus.
However, the actual problem is in three dimensions and calculations
show enhanced but not infinite binding. Further, the enhancement
is logarithmic, the argument of the logarithm being the ratio of the
Bohr radius to the cyclotron radius. This can be understood in the lan-
guage of dimensional renormalization by arguing that, while appearing
mostly one dimensional, at very short distances (within the magnetic
cyclotron radius, which, while smaller than ay, is still of some non-zero
value) the 7 of the three-dimensional volume element prevents the
divergence. Here, dimensional renormalization of a ‘one-dimensional
hydrogen atom’ is not a mathematical device but in the very physics of
the structure of atoms on neutron stars.

Turning the above argument around, there are speculations in phys-
ics about whether our own world of three space dimensions may actu-
ally have extensions into extra dimensions, typically considered tiny, as
in the above example [7]. Thus, every point of our three-dimensional
world may actually be a very small rolled-up circle into another di-
mension (similar to the hodograph of the hydrogen atom in a previous
sub-section where they were not a real new space dimension). Such
speculations have been invoked for a variety of consequences, renor-
malization being just one. Another, for instance, is that the seeming
weakness of some interaction (such as gravitation compared with the
rest) may be only a reflection of the different amount by which some
may act in the three space dimensions we see while spilling over mostly
into unobserved dimensions.
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Yet another is to explain why some of the fundamental constants that
characterize our world have the values they do. Thus, the enhanced
binding, larger than 13.6 eV, of the hydrogen atom in a strong mag-
netic field may be interpreted in terms of a stronger effective ¢?, being a
combination of the usual charge of an electron and the strength of the
magnetic field that also enters into the expression for the binding en-
ergy. Conversely, what appear in our world as fundamental constants,
such as the charge or mass of the electron, may actually reflect some
fields in the larger dimensions that have ‘compactified” all but the three
we observe, much as the magnetic field confines from three into the one
dimension along its direction for atoms on neutron stars. The values
we observe may thus contain the particular value (of no special signifi-
cance) of those fields and there may, therefore, similarly be no special
significance to them [16].
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Physics as Transformations

2.1 Introduction to Transformations

Transformations, from one coordinate system to another, from one
observer’s frame of reference to another, from a description in one
basis to another, are all inherent to physics. Indeed, even outside of
physics, there are famous and basic roles for transformations, as in
Felix Klein’s! ‘Erlangen Programme’, which completely re-oriented the
study of geometry. Instead of the Euclidean approach, familiar from
high school, of specifying axioms, followed by theorems about points,
lines, triangles, circles, and other figures, Klein emphasized that one
defines a set of symmetries and transformations and for each such set
there exists a geometry. Euclidean® geometry that results from Eu-
clidean transformations in a plane is but one of many geometries.
A different set of symmetry transformations will define a different
geometry. The intimate connection between symmetries and trans-
formations is reflected also in the material on symmetries in Chapter 5,
and this chapter overlaps with that material and with that on maps in
Chapter 6.

Mechanics, the very first subject in physics, deals with the motion
of a physical system, through either translation or rotation, and all of
mechanics can itself be viewed in terms of transformations under such
operations, the system changing from an initial state to a final one. This

I Felix Klein, 1849-1925, German. Mathematician known for his work in group
theory, analysis, and geometry. His Erlangen Programme that he laid out in his inaug-
ural lecture at Erlangen revolutionized the study of geometry. He established one of
the great schools of mathematics at Gottingen and launched the Encyclopaedia of Math-
ematics. He wrote a well-known book on the icosahedron; and a topological object has
been named the ‘Klein bottle’.

2 Fuclid of Alexandria, circa 300 BC, Greek. A mathematician who built on works
before him to give a coherent presentation of plane geometry through a few axioms
and rigorous proofs. His principal work, Elements, also has results in number theory and
has had a central role in mathematics for centuries.
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point of view makes transformation theory already a central feature of
classical mechanics but it becomes even more of an immediate start-
ing point in quantum mechanics. Before considering various aspects
of transformations in quantum physics, it is worth noting an even
older philosophical recognition in every culture and civilization that
transformations dominate nature and human life.

Ovid’s® Metamorphoses, systems of yoga in India, ancient myths of many
religions and cultures, and Grimms™ Fairy Tales are all full of transform-
ations of man, beasts, and gods. A striking and charming expression is
Chuang Tzu’s’ butterfly: ‘Once I, Chuang Tzu, dreamed I was a butter-
fly and was happy as a butterfly. I was conscious that I was quite pleased
with myself, but I did not know that I was Tzu. Suddenly, I awoke, and
there was I, visibly Tzu. I do not know whether it was Tzu dreaming
that he was a butterfly or the butterfly dreaming that he was Tzu. Be-
tween Tzu and the butterfly there must be some distinction. This is
called the transformation of things.’ [17] Other cultures and their myth-
ology also play with transformations, exploring very pliable changes
in shape, size, time, gender, number, and other familiars, under some
astonishingly imaginative transformations.

The simple example (Figure 1.5) at the beginning of Chapter 1, of
cquivalence between simple harmonic motion in a line and circu-
lar motion on the circle with that line as diameter, provides a good
illustration of the advantage of transforming between different co-
ordinate systems. Instead of the coordinate x along the horizontal,
and its companion coordinate y along the vertical, these ‘Cartesian®
coordinates may be replaced by the ‘circular coordinates’ (p, @) of that

3 publius Ovidius Naso, 43 BC—18 AD, Italian. Great Latin poet, prolific writer on
Roman culture, politics, and religion. His love poems and text on transformations in
Greek and Roman myths are especially well known. One of his tragedies, Medea, has
inspired numerous stage and opera productions to this day.

4 Jacob Grimm, 1785-1863, and Wilhelm Grimm, 17861859, German. The brothers
were linguists and collectors of folklore, and started publishing German folk stories
(rom 1812. These have become among the best-known folk stories across much of the
world, mined also for their moral and psychological truths. They also started a major
(;erman dictionary project.

3 Chuang Tzu or Zhuang Zhou or Zhuangzi or Master Zhuang, circa 4th cen-
(tury BC, Chinese. A Daoist philosopher who wrote the book Zhuangzi, a philosophy of
.-.x'cpticism.

’ Rene Descartes, 15961650, French. Philosopher and mathematician, and
considered one of the fathers of philosophy. He is also considered the originator of
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two-dimensional world through

x = pcosp,y = psin ¢, (2.1)

and, equivalently, the inverse transformation,

p = +/x* +y2 ¢ = arctan(y/x). (2.2)

Instead of a (Cartesian) grid of horizontal and vertical lines parallel to
the x and y axes, the plane is covered by concentric circles of different
radius around the origin and radiating straight lines from that origin.
These two sets, circles and radial lines, are also mutually perpendicu-
lar, ‘orthogonal’, wherever they meet. Both rectangular and circular
coordinates cover the plane and are equally capable of describing it (see
Figure 2.1).

This is a simple instance of later examples in this chapter that al-
ternative representations can in their entirety cover the system under
consideration, here the two-dimensional space of the plane. D’Arcy
Thompson, who was mentioned in Chapter 1, gives more complicated
grid transformations that put skulls such as of a chimpanzee and a
human on an equivalent footing. In today’s age of computers, such
‘morphings’ with even more complexity appear quite commonly on
our TV screens. The first creature to crawl out on land morphs in a
few frames to cover intermediate steps towards a walking human in a
cartoonish stand-in for Darwin’s’ biological theory of evolution!

Simple harmonic motions in either x or y with amplitude A and fre-
quency @ are described by (an over-dot will denote differentiation with
respect to time)

¥ = —w's, (2.3)

with w = ,/g/€ for the pendulum in Figure 1.3. Substituting Eq. (2.1)

in Eq. (2.3) and equating terms in sin and cos on either side gives

analytical geometry, which combines algebra and geometry, and the system of coord-
inates for a point in two- or higher-dimensional space is named for him. He was a major
figurein 17th-century rationalism. He had many works in mathematics and philosophy.
His statement Cogito er-go sum, or ‘I think, therefore, I am’, is often quoted.

7 Charles Darwin, 1809-1882, English. Naturalist and biologist, discoverer of natural
selection as the mechanism for the evolution of different biological species. It is con-
sidered the unifying theory of the life sciences. His 1859 book On the Origin of Species and
other books and insights stand at the centre of modern biology.
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Figure 2.1 Cartesian and circular grids to cover the x—y plane. In the former,
parallel horizontal and vertical lines form a mutually perpendicular set to as-
sign coordinates to any point; in the latter, concentric circles and radial lines
do so, again intersecting at right angles. Also shown are 45-degree axes besides
the Cartesian (x, y) axes.

p=p@) =—wp. (2.4)
PP +2p¢ = 0.

While these equations may at first sight look more complicated than
the Cartesian Eq. (2.3), they prove especially convenient in many situ-
ations and not just in the example of Chapter 1 with fixed frequency
w = ¢ and amplitude A. In that case, with constant values for ¢ and p,
and all further dots (time derivatives) on them zero, Eq. (2.4) is trivially
satished, requiring no further solution.

But, quite generally, through simple steps of differential calculus,
the second of the equations in Eq. (2.4) reduces to vanishing of the
differential (single dot) of

P’ (2.5)
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This vanishing of the time derivative of the above quantity means
that the quantity is constant in time, or ‘conserved’. Such conserved
quantities or, equivalently, conservation laws, are among the most
fundamental of concepts in physics. The quantity in Eq. (2.5), when
multiplied by the mass of a particle that may be executing such motion,
is called its angular momentum; note its dimensions [M|[LP*[T]™. The
law of conservation of angular momentum is one of the absolutely valid
conservation laws of physics, together with the laws of conservation of
linear momentum and energy.

The conservation of angular momentum in the case of the example
considered in Chapter 1, when both ¢ = wand p = A are fixed, is of
course trivial, their combination in Eq. (2.5) also necessarily constant.
But the above derivation holds more generally. So long as the equations
in Eq. (2.4) do not involve ¢ so that, even in complicated situations of
other forces acting on the pendulum (or two-dimensional oscillator),
as long as they depend only on p, the conclusion holds that the angu-
lar momentum in Eq. (2.5) is conserved. Individually, p and ¢ may not
but their combination in Eq. (2.5) is constant in time during the motion.
This was one of the fundamental insights of Newton, that Kepler’s ellip-
tic orbits and, in particular, that equal areas are swept out in equal time
so that the planet speeds up when close and slows down when far from
the Sun in such a way as to keep Eq. (2.5) constant, revealed something
fundamental about the force law governing the motion, that it had to
be a ‘central force’, acting purely radially and independent of angular
position in orbit.

Such forces or potentials in physical systems are called isotropic, that
is, they are independent of angular direction, and depend only on the
radial variable. The association of the conservation of angular momen-
tum with such isotropy is among the most important theorems of
physics (see Sec. 5.1.2). It holds not just in the two-dimensional ex-
ample above but also in higher dimensions. In particular, in our world
of three space dimensions, such potentials are called spherically sym-
metric, a sphere being such an object with no direction singled out as
special. Forces and potentials of a spherically symmetric system are in-
dependent of directions in space, and depend only on the separation
distance involved. Under such forces, the angular momentum of a
system remains unchanged, is an invariant of the motion.

Even for time-dependent frequencies, when neither (]5 =  is con-
stant nor p, their combination in Eq. (2.5) is. Upon multiplying by mass
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and denoting it by its usual symbol for angular momentum, £, the first
of the equations in Eq. (2.4) can be written as an equation involving p
alone,

0 — 62/m2p3 = =@’ p. (2.6)

Again, for constant w and amplitude, this is trivial, the first term van-
ishing, but its importance lies in the more general situation of compli-
cated dependences on time of frequency and amplitude. Nevertheless,
the combined quantity £ is conserved.

Further interest lies in the fact that the passage from Eq. (2.3) to
Eq. (2.4) is valid for any linear second-order differential equation. In par-
ticular, itis so for the time-independent quantum Schrédinger equation
in place of Eq. (2.3). The derivatives are now with respect to coordinate
space, not time, and the dependent variable is not the position, x, but the
wave function, ¥. But upon the same re-writing of ¥ as now the amp-
litude and phase of the wave function, the subsequent derivation carries
through. These counterparts of Eq. (2.4), called the ‘phase-amplitude’
equations, have proved useful in quantum physics (Sec. 7.4). Part of
the reason for this is that, unlike the wave function, ¥, the amplitude
and phase are directly accessible to our measuring apparatus. This is an
instance of how even when equivalent, transforming from one descrip-
tion, in terms of (sometimes, even complex) wave functions, to another
with real quantities of amplitude and phase may have merit, sometimes
also philosophical, in being more directly connected to the observables
that physics deals with.

2.2 Alternative Representations in Quantum
Physics and Transformations Between Them

joth in geometry and other mathematics and in classical physics, alter-
native representations and transformations between them have been
studied from the very beginning. A principal aim of physics is to trace
the evolution of a system from its state at some initial instant to a later
one under the action of specified forces. The state of a physical system
in classical mechanics is specified by giving the positions and velocities
of all the masses constituting the system, whether in the Newtonian
description or in its later reformulation by Lagrange in terms of a sta-
tionary principle for the Lagrangian (Sec. 1.2.3). Instead of talking of
lorces, which are vector quantities, the reformulation deals only with
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scalar energies, the Lagrangian being usually the difference between
kinetic (mv?[2 or p*/2m) and potential (such as mgh for gravitation or kx?/2
for a spring) energies of the system. Instead of Newton’s equations, the
equations of motion called Euler®Lagrange equations are first-order
differential equations in time along with first-order partial differentials
of the Lagrangian with respect to coordinates and velocities. Regard-
less of the choice of coordinates, these equations always have the same
form, which is not so with Newton’s equations. For these various reas-
ons, the Lagrangian formulation is more powerful and useful than the
Newtonian, although they are equivalent.

Given this ‘form invariance’, the Euler—Lagrange equations permit
easier transformation than do Newton’s laws of motion from one
set of coordinates to another, such as from Cartesian to circular, or
their counterpart spherical in three dimensions. A second, slightly dif-
ferent but closely related formulation in terms of Hamiltonians and
Hamilton’s equations of motion replaces the Lagrangian velocities by
their equivalent momenta and the Lagrangian by the Hamiltonian,
which is defined as a function of coordinates, momenta, and time. In
most cases, the Hamiltonian is the sum of kinetic and potential ener-
gies. Again, transformations allow for a wide variety of coordinates and
momenta.

The further step into quantum mechanics makes transformation
theory a decisive element, even more than in classical mechanics. This is
because of a central characteristic of quantum physics: that both coord-
inates and velocities (or momenta) cannot be simultaneously specified.
This restriction, imposed by the Heisenberg uncertainty principle, arises
of course from the nature of our world, that it has a non-zero value
of Planck’s quantum constant, f, a quantity with dimensions of pos-
ition multiplying momentum. It forces the physicist to make a choice,
in even the simplest of physical systems considered, to use either posi-
tions or momenta (or some other quantity) in terms of which to view
the system. Indeed, quantum physics de-emphasizes which of these

8 Leonhard Euler, 17071783, Swiss and German. One of the greatest and most pro-
digious mathematicians of all time, with wide contributions in many areas. Laplace is
said to have expressed Euler’s influence on mathematics by saying that ‘he is the master
of us all’. He also invented much of the notation and terminology, two mathematical
constants, e and ¥, and the symbol i for the square root of —1, all of which, along with
many of his other results and theorems, occur widely throughout mathematics and

physics.
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(uantities is chosen, such ‘representations’ being matters of choice and
convenience but any one of them being equally valid to capture the
physics of the system and its dynamics. The question also arises natur-
ally of how to pass, transform, from one description or representation
to another.

The fundamental difference between classical and quantum physics
lies in what is meant by the physical system. The quantum system is not
specified by its coordinates and momenta, which are real measurable
(uantities, but by a wave function that is complex and itself, therefore,
inaccessible to our measuring apparatus. Actually, in an even further
step, states may be viewed as abstract vectors in what is called a Hilbert’
space, independent of any particular wave function description. It re-
mains true that this is a space of complex, not real and measurable,
entities. Only bilinear combinations of wave functions and their com-
plex conjugates provide the observed real quantities. The wave function
may be expressed in terms of one language or another, position or
momentum representations, or perhaps by even other choices such as
matrix and other representations.

Thus, considering the simplest example of a one-dimensional har-
monic oscillator, the pendulum of Sec. 1.1, its quantum-mechanical
wave function may be taken to be functions of x (products of Gauss-
ian functions and another standard set of functions called Hermite'?
polynomials), or functions of momentum, p (in this symmetric prob-
lem where both coordinates and momenta enter quadratically in the
harmonic oscillator’s energy or Hamiltonian, H = p2/2m + mw2x2/2,
they are also Gaussians and Hermite polynomials, but now in p), or as

Y David Hilbert, 1862—1943, German. Mathematician, one of the greatest and most
influential of the 19th and early 20th century. Contributed to many areas of mathem-
atics, including the theory of invariants, set theory, transfinite numbers, functional
analysis, and axiomatic geometry. Established a famous mathematical school at Got-
lingen, editing the major mathematical journal of the time, and collaborating with
[ellow physicists who were developing the new quantum physics. He developed rigor-
ous mathematical tools for physics, the then newly published text Courant-Hilbert readily
providing the needed mathematics as quantum mechanics was developed in the 1920s
and 1930s. Known as the founder of proof theory, he drew up a list of 23 outstanding
mathematical problems that has set the course of subsequent mathematical research,
many prominent mathematicians having tackled these ‘Hilbert problems’.

10" Charles Hermite, 1822-1901, French. Mathematician with contributions to num-
ber theory, orthogonal polynomials, and numerical analysis. Established the transcen-
dental nature of Euler’s number e.
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infinite-dimensional matrices, or, even more abstractly, to be discussed
below, in terms of Dirac’s ‘bras’ and ‘kets’. All physical observables,
whether position, momentum, energy, or any combinations of them,
act on these wave functions to provide other functions, and the Born
interpretation gives the probabilities of specific values that may be
observed upon any measurement (Sec. 1.2.2).

Given any one representation, all the physics of the system is con-
tained in it and one can choose to work within that representation
alone, as stated earlier about Cartesian or circular coordinates. But,
for convenience or other reason, if one wishes to pass to another
representation, a transformation can be specified. This is much like
different languages, with dictionaries allowing us to go from one to
another. The English ‘translation’ and German ‘libersetzung’ have pre-
cisely this meaning. The probability interpretation of the wave function
(Sec. 1.2.2) views its squared norm, ] V| - (product of ¥ and its com-
plex conjugate), as the probability of obtaining that value, whether of
position or momentum or some other quantity, depending on the rep-
resentation. The requirement of preserving normalization, that is, the
squared norm of the wave function integrated over all of the corres-
ponding space must equal unity, makes such transformations ‘unitary’.
Going from coordinate to momentum representation, or vice versa,
is thus given by one such unitary transformation that has long been
known in mathematics and physics, the Fourier'! transformation, x and
p being called canonical conjugates. This important transformation be-
tween a pair of conjugate variables associates for each function in one
variable a corresponding function in the other. The differential oper-
ation in one becomes a simpler algebraic multiplication by the variable
in the conjugate space. Together with other such useful properties,
the Fourier transformation is one of the most important mathematical
techniques in physics and engineering.

The conjugate pair of x and p, with commutator [x, p| = xp —px = ifi,
with frPlanck’s constant, expresses that each member of the pair acts as

1 Jean Baptiste Joseph Fourier, 1768—1830, French. Mathematician and physicist who

discovered one of the most important techniques for physics and engineering during
his work on heat transfer. He was part of Napoleon Bonaparte’s expeditions to Egypt
and made governor of Lower Egypt, and was influential in Champollion’s translation
of the Rosetta Stone. Fourier also contributed to dimensional analysis and was an early
discoverer of the greenhouse effect, recognizing that the Earth’s surface would be much
cooler were it not for its atmosphere.
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the derivative or gradient in the other representation. This is why the
order in which they act matters and the commutator, defined as the dif-
ference between xp and px, is non-vanishing. In the latter, the differential
acts also on the factor x that follows it, giving an additional contribu-
tion. The difference involves the imaginary unit and Planck’s quantum
constant, both signifiers of quantum physics. It is a matter of empirical
observation that our Universe has a non-zero value of f;, a quantity with
dimensions of position X momentum, that is, of angular momentum
l M][L]z[T]_l. This is what makes ours a quantum world. Had fibeen zero,
ours would have been a classical world. However, because of its small
value (on the scale of most angular momenta encountered in everyday
experience) quantum effects were not appreciated till just over 100 years
ago.

Indeed, had physicists encountered quantum physics first, pos-
ition and momentum might never have been defined as independent
entities! Rather, momentum may have simply been seen from the start
as the gradient (derivative) in position space, 1_5 = (Ki))V. The exist-
ence of the dimensional physical constant f is crucial for permitting
such an association between p and x, giving physical context and sig-
nificance to what were already recognized as a Fourier conjugate pair.
The uncertainty principle is, of course, another direct consequence of
the non-zero value of fand of the basic commutator between p and x be-
ing proportional to it. Actually, as well known with Fourier conjugates,
whether x and p, or time, t, and frequency, w, tight concentration in
one translates into a wide distribution in the conjugate variable/space.
Note that the dimensions of # may also be thought of as energy X time,
and this becomes relevant in Chapter 7’s discussion about the nature
of time.

This Fourier connection was a precursor in classical physics or math-
ematical analysis to the uncertainty principle, the ‘only’ extra (but, of
course, crucial) ingredient brought in by quantum physics being (be-
sides 7) the non-zero i that connects dimensionally the conjugate quan-
tities. Yet another pair of such conjugate entities are angle and angular
momentum, their product also having the dimensions of f. Again, tight
angular beaming, as from an antenna, is achieved only by superposing
many ‘multipoles’ of angular momentum, £, whereas a single value of
{ does not pick out unique directions. In particular, £ = 0 describes an
isotropic distribution with no directional dependence and no direction
singled out, being all on an equal footing.
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Quantum physics similarly views angular momentum as a gradient
in angles, again with multiplicative ifi. Itis an important point, born out
of such conjugate pairs, that to define any distribution sharply in an-
gles requires superposition of many and large values of £. A spectacular
realization of this in recent times is the so-called WMAP (Wilkinson'
Microwave Anisotropy Probe) observation of small-scale anisotropies in
the cosmic microwave background, at the level of 1 in 104, analysed in
terms of £ into the thousands, that reflect primordial fluctuations of
very small angular scales in the early Universe which later lead to the
large-scale structures, including clusters of galaxies, that we see today.

Actually, perhaps, it might have been more appropriate, given the
fundamental law of conservation of momentum and that there is no
such for position, to have seen momentum as the basic object. Pos-
ition could then have been viewed as simply the gradient with respect
to it, with a multiplicative if. In non-relativistic quantum physics, and
even in relativistic quantum mechanics as in the Dirac equation for an
electron or proton (Sec. 7.3.2), both position and momentum are op-
erators, as is energy, while time is not. In quantum field theories, both
position and time are seen as merely parameters, thus placing them on
an equivalent relativistic footing (relativistic quantum mechanics of a
particle is internally inconsistent). We will return to this in Chapter 7
(See, 7.5.3).

Since linear momentum and energy are operators in quantum phys-
ics, it might have been appropriate to view p and E as the basic elements,
and x and t then as derivatives with respect to them (with appropriate
factors of i for dimensional reasons and the imaginary element to pre-
serve the so-called Hermitian nature of these operators that is needed
to give real values for energy and other physically measurable quan-
tities). Indeed, in a time-independent approach to quantum scattering
theory with stationary states of energy, E, and invoking no complex
quantities but using only real, standing waves, the ‘Wigner' time delay’

12 David Todd Wilkinson, 1935-2002, American. Astronomer and cosmologist.

1 Eugene Paul Wigner, 1902-1995, Hungarian and American. Theoretical physicist
with decisive contributions to nuclear and elementary particle physics, especially to the
role of symmetry in quantum physics. He introduced and developed the use of group
theory, especially for angular momentum in quantum mechanics, and for spin and iso-
topic spin in nuclear structure. He was a member of the team that developed the first
chain reaction in uranium fission and went on to become the physics consultant for
the first commercial nuclear power reactors. He was also interested in philosophical
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is defined as 2fidd/dE, involving a derivative with respect to energy of 8,
the scattering phase shift. We will return to this for another theme in
Chapter 7 (see especially Sec. 7.3.1).

2.2.1 Forty-Five-Degree Rotation, Hyperspherical Coordinates, and
Correlations

Beginning students of physics learn a standard ‘trick’ in handling a har-
monic oscillator in two dimensions or two coupled one-dimensional
oscillators. When decoupled, the system Hamiltonian, H = (pi 4
pi)/Zm + (mw?*[2)(x* +y*), splits of course into two independent, identical
pieces, that is, motions in x and y, that are trivially solved separately and
then combined into the full solution. Adding a coupling term, kxy, no
longer permits such simple ‘separation’ of variables, but the trick lies
in recognizing that changing coordinates to (x + y) and (x — y) recasts
the Hamiltonian as two separate oscillators in these ‘45-degree’ coord-
inates. They are obtained by rotating the Cartesian pair (x, y) through
45 degrees in that plane (see Figure 2.1). A classical pendulum that can
swing in the two dimensions can also oscillate about these 45-degree
lines, with y = =, the two oscillations ‘in phase’ or exactly ‘out of
phase’. Even further, for other ‘phase angles’ between them, the bob
executes the motion of a ‘conical’ pendulum. This is the situation in
Chapter 1’s Figure 1.5 when the two motions in x and y are exactly out of
phase and that circle describes the motion of such a circular or conical
pendulum’s bob.

This simple 45-degree transtormation to rotated axes appears wide-
spread in mathematics and physics. Especially in quantum physics,
where special significance attaches to the identity of particles such
as electrons, protons, or photons, this transformation takes on fur-
ther importance. Consider two-electron physics in an atom or two-
nucleon phenomena in nuclei. Their mutual interaction renders the
system Hamiltonian non-separable in independent coordinates 71 and
1, or in the so-called independent-particle representation. Thereby, the
independent-particle operators such as the particles’ individual angu-
lar momenta do not commute with the Hamiltonian and cannot be

(uestions about quantum physics and consciousness, introducing ‘Wigner’s friend’ as a
variant to the ‘Schrédinger cat’ discussion (Sec. 4.2.1) of quantum interpretation. His es-
say “The unreasonable effectiveness of mathematics in the natural sciences’ has become
a classic among mathematicians and physicists.
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ascribed definite values or quantum numbers simultaneously with the
energy of the system. Only the overall spin, S and orbital angular mo-
mentum, L of the whole system commute with the isotropic H and
have meaning, states of the system labelled *** IL] When spin—orbit

coupling is strong, even § and L are not individually conserved, only
the total angular momentum, ] = S+1 and quantum numbers of J*
and |, label the states along with their energy.

For low-lying states in a many-electron atom, however, with the
inter-particle interaction perturbatively small relative to the central
field that each sees (in an atom, that of the positively charged nuclear
core), the independent-particle labels are a fairly good description and
one often uses their ‘configuration’ labels for the state, as in 152 180 or
1ss 19g  for the ground and first (singly) excited states of the helium
atom. The individual electron labels, in lower case, follow those of the
hydrogen atom (see Sec. 1.2.5), withn = 1,2,...,and £ = 0,1,2,...
referred to, respectively, 455, 0,4, .« « -

In this set of six coordinates, when viewed as two radial distances and
four angles, three of the angles are of less dynamical significance to the
physics of the two-particle system than the fourth, namely, the angle
between the two radial vectors, called 6y, which determines the separ-
ation between them and thereby their interaction. The set of the other
three angles, typically chosen as ‘Euler angles’, defines the orientation
of the triangle formed by the two particles and fixed centre of mass
of the system in some space-fixed set of three orthogonal axes. It is an
element common to all two-particle systems, regardless of their specific
dynamics.

The interaction between the two particles, and therefore the critical
part of the wave function, depends on ry, r;, and 6y, which may be
regarded, therefore, as the ‘dynamical’ variables of the system. They de-
fine the triangle regardless of its orientation in space. The wave function
is not generally separable as a product of wave functions of the individ-
ual particles, so that such a product does not describe a physical state.
However, such products in the independent-particle representation for
each configuration provide a complete basis set in terms of which to de-
scribe the physics of two electrons. Whereas a single configuration, or
superposition of a handful, may suffice for low-lying states, in general
it requires a superposition of many such basis functions to give a good
description for higher states. This is regarded as expressing correlations
between the particles.
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To handle correlations, we adapt the idea of circular coordinates used
above for two different space dimensions to the case of coordinates of
two particles. Consider instead of r; and r, the pair of coordinates,

K=+ r%)l/z, a = arctan(n/r), (2.7}
or, equivalently,
rr = Rcosa, n = Rsina. (2.8)

Clearly, as in Eq. (2.1) and Eq. (2.2), these are circular coordinates
instead of Cartesian in the plane (r;,r;). The one difference from
Figure 2.1 is that now the two coordinate distances, themselves three-
dimensional distances and not one-dimensional coordinates, do not
become negative and only the positive quadrant of Figure 2.1 applies.

For the two-electron system, the alternatives of independent-particle
or pair coordinates, and of complete sets of basis state functions in ei-
ther, are two alternative representations, just as are the coordinate and
momentum space representations of a single particle. In terms of the
pair coordinates in Eq. (2.7), the consequences of quantum physics for
identical particles can be handled easily. Among these consequences is
that, unlike in classical physics, mere labelling of the particles as 1 and 2
has no quantum meaning. Meaning is attached only when some phys-
ical observable can be associated with the labels we give to a physical
system, corresponding quantum numbers then identifying the state of
the system. Indeed, a complete set of quantum numbers arising from
a complete set of operators that mutually commute with each other,
when placed as labels inside a Dirac bra or ket denoting the system (see
Sec. 2.3), identifies fully a quantum-mechanical state.

A further elementis a powerful axiom of quantum physics, called the
Pauli' Principle, thatin a many identical-particle system, interchanging

" Wolfgang Pauli, 19001938, Austrian and Swiss. A crucial figure in the develop-
ment of quantum theory through especially his interactions with Bohr, Dirac, and
Heisenberg. Known for his strong views, and caustically expressed (a Pauli-ism is to dis-
miss something as ‘not even wrong’), he had a very critical sense (the ‘conscience of
physics’) and, already as a young student, wrote a book on Einstein’s General Theory
of Relativity. He introduced a crucial new quantum number in understanding atomic
spectra, later identified with quantum spin, and the associated ‘Exclusion Principle’. It
forms the basis of all atomic structure and chemistry, and the stability of matter. His
connection of spin and statistics is a fundamental element of all quantum field theor-
ics. He also developed the regularizations or renormalizations necessary to eliminate
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coordinate labels for any two identical particles in the wave function
must satisfy one of two possibilities. If the particles are fermions, the
name given to those with half-odd integer spin, as in the case of elec-
trons or nucleons, then the wave function must be antisymmetric
(change sign) under such interchange, whereas for bosons, the name
for particles with integer spin, the wave function must be symmetric.
It is this ‘spin-statistics theorem’ and consideration of interchange that
makes the coordinates (R, &) particularly suitable. The Pauli Principle is
an aspect of the physics of the world around us, as fundamental as any
of the laws of conservation, such as of charge, energy, momentum, etc.

For handling symmetry/antisymmetry, particle interchange leaves R
unchanged while o —> % — . In particular, the 45-degree line in
that plane serves as a symmetry line for radial interchange. Radial wave
functions may be either symmetric or antisymmetric under this inter-
change, which is expressed as reflection in the line (angular and spin
interchanges should then behave appropriately so as to ensure overall
symmetry or antisymmetry for the spin-statistics requirement), which
means the radial functions have either a node (vanish) or antinode (the
derivative vanishes) on that line. This means that the probability of ind-
ing the particles together is diminished or enhanced, respectively. This
has important consequences. If there is a repulsive interaction between
particles [ and 2, an antinode costs energy whereas a node reduces it; the
opposite applies for attractive interactions. Thus, the symmetry prin-
ciple for identical quantum particles can amount to an effective force
between them.

Such effects are manifest in both atoms and nuclei. In an atom such
as helium with two electrons, for states with both having orbital an-
gular momentum zero, we need only consider the radial and spin wave
functions. If the spin angular momenta of the two electrons are coupled

infinities in these theories. ‘Pauli spinors’ and ‘Pauli matrices’ provide the central nota-
tion and language of quantum-mechanical spin. To explain beta radioactivity and the
seeming non-conservation of energy and angular momentum, he postulated a third
particle emitted in that beta-decay, later named the neutrino. Neutrino physics is a
major part of elementary particle physics to this day. Besides his contributions to philo-
sophical elements of quantum physics, he was seriously interested in psychoanalysis and
had a close association with his neighbour, Carl Jung, and their extensive letters have

been published.
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into a ‘singlet’ (total spin zero, there being only one such state), the spin
wave function is antisymmetric under interchange (see Sec. 4.2.4 and
Figure 4.9). Therefore, the radial part has to be symmetric with an anti-
node along the 45-degree line which means a higher probability of the
two electrons being on top of each other. This raises the energy relative
to similar triplet states (total spin one with three possible states) that
have a node and thereby a decreased electron—electron repulsion. This
‘exchange’ splitting puts triplets about 1 eV lower in energy than sing-
lets among the low-lying singly excited states of helium (contrast with
the first electronic excitation in helium of about 20 eV). See Figure 2.2.

Note that the exchange interaction arises actually from the electro-
static repulsion among electrons but is ‘catalysed’ by the spin-statistics
link. This exchange interaction, in its role of favouring aligned spins so
as to lower energy, is the basic mechanism of ferromagnetism, a macro-
scopic magnetic moment arising from the individual moments of the
electrons. Similar but opposite effects occur in nuclei where attractive
interactions occur between identical nucleons so that an antinode along
the 45-degree line now lowers the energy and the singlet coupling of the
pair is favoured.

7277777
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Figure 2.2 The spectrum of the helium atom, He, showing singlet—triplet
splittings. The ground singlet, and excited state pairs of singlet and triplet 1§
symmetry are shown.
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With increasing excitation, especially double excitation of both elec-
trons in the helium atom (or in any other atom similarly), the 45-
degree line plays even more of a significant role. States in which both
electrons share the excitation equally have wave functions that concen-
trate along that line, called a ‘ridge’ because of the tendency for the
two-electron system to fall off it, and towards the two axes, that is, for
one or the other electron to become closer to the nucleus. Physically,
this reflects the mutual screening between the electrons of the positive
nuclear Coulomb field. Any particular division of energy between the
two and thereby some ratio of r;/r; is only enhanced as the overall size
of R increases. The slower of the electrons hangs back closer to the nu-
cleus, screening its field for the faster, which only makes it faster still, at
the expense of the inner electron.

In either a time-dependent picture in terms of t or a stationary-
state time-independent picture in terms of R, this ‘dynamical screening’
makes the ridge a position of unstable equilibrium. Especially for double
ionization of an atom (say, for instance, by absorbing sufficient energy
either from a photon or some other collision) just above threshold,
when the two electrons have just enough energy to escape to infin-
ity, the escape depends on maintaining roughly equal division of the
small amount of available energy and staying on the ridge for most of
the double-escape process. The same considerations apply to very high
doubly excited states with equal energy sharing between the electrons
that lie just below the double-ionization threshold. In such states, the
electrons have small kinetic energies, albeit with overall negative energy
for the state. What these features of dynamical screening imply is a very
strong radial correlation between the electrons that preservesry ~ r, in
such states in the vicinity of that threshold.

In terms of the coordinate ¢ in Eq. (2.7), whereas states of single exci-
tation have one or the other electron closer to the nucleus, thatis, ¢ ~
0,7 /2, high doubly excited states of the sort discussed in the previous
paragraph and the states of threshold double escape have wave function
concentration near & ~ 7/4 along the ridge line. This coordinate o,
which depends on both electrons and is a ‘pair’ coordinate rather than
the independent-particle r; and r,, together with the other coordinate
mentioned earlier, 0y, the angle between 7, and 1, are natural coord-
inates for describing the states of a two-electron system in which the
electrons are on par. They prove convenient for describing the radial
and angular correlations, respectively, between the electrons so that
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transformation to these so-called ‘hyperspherical’ coordinates (or rep-
resentation) proves useful. The set (R, &, 0),, Euler angles) describes the
two-particle system as a single entity in that six-dimensional space with
R the radius of the hypersphere in that space.

Just as in single-particle physics, where an uncertainty link exists be-
tween angle and angular momentum as conjugate entities, the more
the concentration in one, the broader is the distribution in the other,
so also for the pair of electrons. The more concentrated the wave func-
tion around the ridge line, @ & /4, the larger is the superposition of
harmonics in that angle. Physically, the fact that the angle is a meas-
ure of the ratio of the radial distances means that there is a radial
correlation between the two electrons. Similarly, the more the con-
centration is about 6y, ~ 7, that is, with the two electrons lying on
opposite sides of the nucleus, the larger is the required superposition
of basis states, called Legendre15 polynomials, in 6},, and the larger is
the angular correlation between the electrons. The region around the
double-ionization threshold, whether of high doubly excited states or
of double escape, when the two electrons are very slow (low kinetic en-
crgy), is dominated by 61, ~ 7, a natural consequence of the repulsion
between the electrons driving them to opposite sides. Even when total
angular momentum, L, is zero, a large superposition in the individual
angular momenta, £, is involved.

The two-electron atom’s potential is a sum of the three pair-wise
Coulomb interactions, the two attractive ones between electron and
nucleus (with charge +Ze), and the repulsion between the electrons.
Together, we have the potential energy

L 4L 1
V=~ (—+—~—>, (2.9)

I p) 2

with rjp = l?l =Py | the distance between the electrons. Written in hy-
perspherical coordinates, it is again a function of three variables, the
three dynamical variables. It scales inversely with R and is a function of
(a, 82). This function, C(«, 6y,), is sketched in Figure 2.3 for another
theme that will occur in Chapter 3 and it shows a saddle point at this

15 Adrien-Marie Legendre, 1752—1833, French. Mathematician with numerous con-
tributions, known for polynomials and transformations named for him, the latter an
clement of Lagrangian—Hamiltonian mechanics. He also made major contributions to
numerical analysis, elliptic functions, and number theory.



64 Physics as Transformations

a

+1 75° 60° 45°30° 15° 0°

cost,, A 40
30
;1 0
50
40 0 C
30 -10
20 -20
10 -30
C 0 -40
-10 +1
230
:40 cosb,,
-50 1

a

Figure 2.3 Potential surface of a two-electron atom, showing a saddle point
in the middle. Contour plot of the potential in Eq. (2.9) at fixed hyperspherical
radius R as a function of the angles & and 8} on the left and three-dimensional
rendering of half of the potential on the right, the other half symmetrically
reflected about the saddle. Adapted from C. D. Lin, Phys. Rev. A 10, 1986 (1974),
copyright 1974 by the American Physical Society.

special value of (o = 7 /4, 6, = 7). Double escape just above threshold
and their associated high doubly excited states immediately below that
threshold have their wave functions concentrated in the vicinity of that
saddle for most of the range of R as R increases to infinity. This saddle
structure becomes a deciding factor in their properties.

Here again is the theme of alternative representations and basis states
for describing alternative physics. We may use either the hyperspher-
ical coordinates (R, &, 61y) (plus the three Euler angles) as the radius
and five angles of a six-dimensional sphere describing the two-electron
system as a whole, or the independent-particle coordinates of two vec-
tor directions in three-dimensional space of the two electrons. The
two-electron system Hamiltonian, because of the electron—electron
interaction, —¢° [t12, is separable neither in independent-electron coord-
inates, (?1,?2) nor in the pair coordinates, nor for that matter, in any
coordinate system. (This is what is meant by saying that the three-body
problem is not exactly solvable, already even in classical physics, and
remains so in quantum physics.) Therefore, quantum numbers corres-
ponding to these coordinates, or basis states in terms of them, have no
physical significance.
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Meaning is attached only to the quantum numbers corresponding to
the operators that commute with the total Hamiltonian, again those
of the total spin and orbital angular momentum. All others are ap-
proximate quantum numbers and descriptions, any choice between
them being a matter of convenience or taste and being different ways
of talking about an underlying reality which itself does not depend
on those descriptions. States closer to the single-particle description,
that is, when the two electrons are on an unequal footing, are best de-
scribed on the independent-particle basis, requiring a superposition of
only a few such basis states. Other states that are more pair-like con-
form closer to the pair basis and pair quantum numbers, requiring only
a few of those basis states. Any state of one basis is a superposition of
many states of the other, just as is true of Fourier conjugate pairs such
as position—momentum.

The ground state of helium should be seen simply as the lowest 3
state of the helium Hamiltonian. We might utilize either basis and, in
principle, it requires an infinite superposition either way. But the 16
configuration is the dominant component. Similarly, the first excited
state of the same overall quantum numbers 1§5is simply the next higher
one with such quantum numbers, L = § = 0, and orthogonal to
the ground state. Again, while in principle an infinite superposition,
this state is dominantly 1s2s. Independent-particle states of this form as
products of single-electron wave functions with individual hydrogenic
labels of nand £ provide already a good description. For this reason, they
are indeed so labelled with these configuration labels (see Figure 2.2). A
high doubly excited state, on the other hand, even one with the same
overall 'S character, mixes many independent-particle configurations
of 15%,28%, 3%, . . ., 2%, 3%, . . ., 3%, etc. The very highest states, just be-
low the double-ionization threshold and the state of threshold double
escape, may more nearly be pure pair states, labelled by the quantum
numbers for & and 6y, which may be called n, and n,., respectively, for
strong radial and angular correlations. Because they are associated with
angle variables, they are again discrete quantum numbers.

2.2.2 Frame Transformations

The preceding section discussed alternative coordinates, of pos-
ition or momentum, or of Cartesian versus spherical, as alternative
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representations of a physical system. There is an even wider context
to transformations, again already in classical physics but taking on
even wider importance in quantum physics. Consider first the classical
context that already arose in Chapter 1. A triad of orthogonal axes
constitutes a frame of reference for any observer. Besides translations
and rotations relating different frames, Galilean or Newtonian relativ-
ity made physicists familiar with ‘inertial’ frames that are related to each
other through a uniform velocity (vector velocity, not just scalar speed)
relative to each other. All of mechanics is invariant with respect to such
inertial frames, expressing the fact that Newton’s equations involve the
second derivative or acceleration, not the first derivative or velocity.
Thus all inertial frames are on a par, their descriptions equally valid,
as far as mechanics is concerned.

The equivalence of inertial frames took on even more significance
with the advent of electromagnetism and Maxwell’s equations. Indeed,
Einsteinian relativity, which extended the equivalence of inertial frames
beyond mechanics to all physics, is one of the glorious chapters of our
subject and we are familiar with the Special Theory of Relativity’s ‘Lor-
entz transformations’ (Sec. 7.2) between inertial frames that link the
description of space, time, and other physical quantities, including elec-
tric and magnetic fields in different frames moving uniformly relative
to each other. More general transformations between the coordinates
of space and time became the basis of Einstein’s General Theory of Rela-
tivity, embracing also accelerated frames and simultaneously giving a
new view of gravitation in physics.

Lorentz transformations between two frames with relative velocity
v can themselves be viewed as a kind of rotation but involving a
spatial coordinate and time. All rotations have their settings in (two-
dimensional) planes and should be viewed as such rather than in terms
of an axis of rotation, the examples in Sec. 2.1 being either in the x—y or
ri—r, planes. The number of rotations in d dimensions is d(d — 1)/2, so
that in two dimensions there is only one but in three there are three
independent rotations (accidentally the same number as the number
of axes). In enlarging to four-dimensional space—time, three more ‘ro-
tations’ are added for a total of six, involving planes containing one of
the spatial coordinates along with time. As already noted in Sec. 1.2.4,
because time enters somewhat differently in the invariant space—time
interval with opposite sign for squared distances, (czt2 = y2 — zz),
these are not real rotations but rather ‘Lorentz boosts’ connecting
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(inertial) frames with uniform velocities with respect to each other.
In place of the trigonometric sines and cosines, the corresponding
hyperbolic functions of sinh and cosh express the equations of Lorentz
transformations.

Note the role of ¢, the speed of light in a vacuum, as the dimensional
element to place space and time coordinates together in the invariant
interval. In current physics, the numerical value of citself has been ‘de-
fined’ as fixed (to nine significant figures), and since time measurement
(actually its inverse, frequency) is much more accurate than that of spa-
tial distance, which involves comparing with a standard metre kept at
the Paris Bureau of Standards, the latter has been removed as one of the
fundamental standards. Time standards based on atomic clocks and the
defined value of ¢ replace the historical standard of length.

There is a close correspondence to the discussion in Sec. 1.2.5 of six ro-
tations and O(4) symmetry in the hydrogen atom’s spectrum. As noted
also there, the difference in sign between time and space coordinates, so
that three are not rotations but Lorentz boosts, makes this a symmetry
of the Lorentz group O(3, 1), the non-compact counterpart of the com-
pact orthogonal group 0(4) that describes four-dimensional rotations.
A major implication of non-compactness is of infinite-dimensional
representations (an infinity of boosts) unlike the finite-dimensional
representations of O(4). Indeed, as observed in Sec. 1.2.5 in the hydro-
gen spectrum, when one considers not bound but continuum states of
positive energy, states of electron plus proton with a kinetic energy at
infinite separation that may range from 0 to 00, they also are infinite
in number at any energy (£ taking all integer values from zero to in-
finity) so that they too involve the non-compact extension from 0(4)
to O(3, 1). Such pairs of groups, one with an index set off by a comma,
share many algebraic aspects, such as their dimension (four for both),
number of generators (six for both), and the structure of commuta-
tors between them, except for a relative minus sign in these ‘structure
coefficients’, and the nature, finite or infinite, of their representations.
Frame transtormations take on even wider significance in quantum
physics and represent even further extension of the meaning of rotation
118]. Consider, for instance, a many-electron atom or molecule. Each
electron has orbital and spin angular momentum but, because of inter-
actions between electrons, they are not individually conserved, only the
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total for the atom. It is only these total quantities, § of spin and L of
orbital angular momentum, that commute with the full Hamiltonian
and so lend their labels for designating the states (this is when we neg-
lect spin—orbit interactions, otherwise only the label | of the combined
total angular momentum_-f =5+ Zenters).

Even in the simplest many-electron example of the helium atom,
with just two electrons, there arises immediately the question of al-
ternative ways of combining the individual spins and orbital momenta.
Sometimes one pathway, wherein all spins are combined first into an §
and all orbital ones into an L, and then the two combined into ], may
be relevant for the physics (called LS-coupling), while at other times
each electron’s s and £, first coupled into its j and then the j values ad-
ded to give the total | (called ji-coupling), may be more appropriate.
These provide again alternative representations with different inter-
mediate angular momenta involved and not all quantities mutually
commuting.

And, with alternative representations or descriptions, the question
arises immediately of a transformation between them, a so-called LS —
jj transformation now. Like all transformations between different rep-
resentations, it is unitary and, given that all the quantities involved are
real and finite in number, it is now indeed a rotation, but in an ab-
stract finite-dimensional space of angular momentum coupling rather
than in the three-dimensional space around us. With more than two
particles, there arise even more possibilities for combining angular mo-
menta, even more representations, and even further transformations.
Quantum physics, therefore, expands even further the gamut of frame
transformations in physics.

Indeed, it is natural to use such frame transformations even in de-
scribing a single physical phenomenon. Thus, consider an event such
as photoionization of an atom (or molecule, or their ions) with only a
single electron released to infinity, leaving behind the rest of the many-
electron system as a positive ion. The photon is absorbed by an electron
when it is close to a heavy nucleus in order to conserve energy and
momentum. Subsequently, it escapes to infinity. (This is clearly a de-
scription sequential in time, although a time-independent description
is also possible, a theme of Chapter 7.) It is natural to consider differ-
ent coupling schemes between it and the other electrons at different
stages of this process. When it ‘starts’ on this escape process and is still
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close to the other electrons and strongly coupled to them, it is appro-
priate to adopt the LS-coupling scheme, treating all electrons on a par
and combining all their spin and all their orbital momenta first, before
adding those totals to get the full angular momentum, J. But when the
ejected electron reaches asymptotic distances and is far from the other
electrons, it is more naturally described by coupling its orbital and spin
momenta together and the resulting j to the total angular momentum
of the residual system in jj-coupling. Thereby, the escape process in-
volves in its description of the evolution of the electronic wave function
an LS — jj frame transformation [18].

2.3 States and Transformations

We deal with states of a physical system and transformations between
them. Whether in classical or quantum physics, the two go hand in
hand. Indeed, they are so inseparable that it makes little sense to draw
sharp distinctions between them, let alone argue for the primacy of one
over the other. As in Sec. 1.2.3, even what might appear to be a static
constraint can be incorporated instead through a Lagrange multiplier
and treated as a dynamical variable. Again, these remarks apply even
more in quantum physics. Before considering them, let us also note
similar appearances outside of physics.

It is said that the philosopher Whitehead'® was once asked by stu-
dents, ‘Professor, which are more important, ideas or things?’ He replied
immediately, “Why, I would think it is ideas about things’. The same
duality between foreground and background appears in art and music.
The Richard Strauss'” opera Capriccio is a debate between what is more
important, words (or poetry) or music, the composer again seeing the
resolution in ‘words set to music’, appropriately in an operatic form
that combines both.

16" Alfred North Whitehead, 1861—1947, English. Philosopher, logician, and math-
ematician, with major contributions to the foundations of mathematics and the
philosophy of science. Emphasized the central role of process in philosophy. Co-author
with his pupil Bertrand Russell of Principia Mathematica and a major influence on several
well-known philosophers.

17 Richard Strauss, 1864—1949, German. A major music composer of the Roman-
tic and early Modern era, perhaps the greatest composer of the first half of the 20th
century. Known for his tone poems, Four Last Songs, and several operas.
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In quantum physics, the intimate connection between states and op-
erators that act on and transform them is exemplified down to the very
notation we use for Dirac kets |) (and their adjoint bras (|) for states
and a ket-bra, |} | (|, for an operator. To emphasize this, let us first look
at just the patterns inherent in this notation itself without any refer-
ence to what they stand for in physics. Besides bras and kets, quantum
physics employs another entity, a multiplication of them, a bra-ket, de-
noted, naturally, (|}, this product a number, generally complex. It is
these numbers that are ultimately what we observe or measure in our
laboratories. This ‘bracket” and splitting it into the two entities from
which it results as a product is so compelling in itself that, ever since
its introduction by Dirac, it has been adopted by physicists as the nat-
ural language for quantum physics, along with the coinage of two new
words, bra and ket, for the states involved.

With a bra-ket (| ) representing a number, note from the very struc-
ture itself that a ket-bra-ket, |)(|), is a complex number times a ket
and thus itself another ket (multiplication by a number is the same
whether from left or right), representing the state resulting from the
action of the ket-bra, an operator (or transformation), on the original
ket. Thereby, in just the notational structure of the basic elements of
ket, bra, ket-bra, and bra-ket (state, adjoint state, operator, and number,
respectively), we can see the common footing and inter-connectedness
of states and operators (see Figure 2.4). This is another illustration of the
power of a notation that seems natural to the physics, as was observed
in Sec. 1.2.4 with four-vectors for relativistic kinematics.

One element involved in adjointness is complex conjugation, so that
when a ket is represented by a wave function, the bra involves the
complex conjugate of that function. The bra-ket implicitly involves
integration over the product of the two functions to give finally a
number. When a ket is represented by a column vector, adjointness
involves an interchange of rows and columns so that the bra is a row

)
{l
X
)

Figure 2.4 Elements of quantum mechanics in Dirac bra and ket language.
Shown from top to bottom are ket and bra states, operators (ket and bra in
that order), and numbers (bra and ket multiplied in that order).
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vector. Thus, a bra-ket is the matrix product of a row and a column
and, therefore, a number. On the other hand, a ket-bra is a square ma-
trix, an operator that can act through matrix multiplication rules on
ket-vectors from the left or bra-vectors from the right to give other
kets or bras, respectively.

States, along with their bras and kets, and operators are abstract en-
tities and we do not have apparatus that directly access them. There
are no ‘wave function metres’. All our apparatus yield numbers, real
numbers, and this is what we measure. (This is but a tautology, tied
to our usage of the words real and reality!) Since a bracket, sometimes
also referred to as a ‘matrix element’, is in general a complex num-
ber, a further crucial step is that experimentally measured quantities
are expressed in terms of the squared modulus of the bra-ket. The Born
probability interpretation (Sec. 1.2.2) is part of it, wherein the bra is the
adjoint of the ket with the unit operator in between.

The ket-bra is thus quite naturally an operator or transformation
taking one state to another. Operators and states are intimately tied
in the physics of our quantum world. As stated at the beginning of
Sec. 2.2, quantum and classical physics differ in the meaning of a phys-
ical state. In the latter, the state of a physical system is specified by
providing coordinate positions and velocities, themselves observable
real numbers, of all the particles involved. This is ruled out by quantum
principles, notably the prohibition against specifying simultaneously
both the position and the momentum of a particle.

There is, however, a well-defined state of a physical system in quan-
tum physics as well, only that it is specified in one of many ways or
representations. Using the coordinate representation, it is a complex
wave function, W®, whereas in the momentum representation it is a
different complex function, cﬁ@) In a matrix representation, it is either
a row or column vector. More abstractly, we need only designate it as a
state | ), leaving open any particular representation we may choose to
work with.

It remains true, however, that a principal aim of physics, or more
accurately dynamics, is to give definite predictions of how the state will
cvolve in time. Just as Newton’s equations of motion permit us to follow
the evolution in time of the positions and velocities, that is, the state of
the system as understood in classical mechanics, so too the fundamen-
tal equations of motion in quantum physics. Knowing the potentials
involved allows us to follow the time evolution of the state, |), or the
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wave function, ¥ or ¢. In this, quantum physics is as deterministic as is
classical physics. We will return in Sec. 8.5 to further aspects of classical
and quantum descriptions.

It is just that quantum states are not directly accessible to our meas-
urement. Instead, transformations between different representations,
together with all the observables of interest such as position, momen-
tum, energy, etc., are operators |)(| that act on states, and what we
observe are the numbers resulting from sandwiching such an oper-
ator (or products of them, with a final form |)(|). The final object of
interest, and the one connected to our observational or experimental
results through perhaps a modulus square of those complex numbers,
is always of the form of a bra -. . .-ket.

It is a matter of indifference to physics whether one physicist chooses
primarily to work with and use the language of states and another with
operators. Sometimes these are called, respectively, the Schrédinger or
Heisenberg approaches. States are always involved at the left and right
end of the final complex number from which the physics is extracted.
In quantum mechanics, since, given a state, others are immediately
generated by the action of the myriad operators, there is naturally a
whole set of states, or a Hilbert space of states. With the same state labels
standing in both, a ket-bra is a projection operator, since acting on any
state it produces the ket of that particular state multiplied by a num-
ber. Clearly, repetition of a projection operator leads back to the same
operator. If the projection operators of all states are summed, that is
equivalent to multiplying or transforming by the unit operator, so that
the sum is the unit operator. This is referred to as ‘closure’ and the set
of states is said to be ‘complete’.

Quantum field theory, which views all physics in terms of interact-
ing fields, deals mostly with operator products but also needs a state
called the vacuum state whose bra and ket stand at the two ends of the
operator product, the resulting ‘vacuum expectation value’ containing
all the physics. Particles, or more accurately states of many particles,
are seen as the result of the field operators acting on the vacuum and
exciting these entities that are seen as particles (Sec. 7.3.3).

With this intimately intertwined aspect of fields and particles, the
so-called wave-particle nature of all physical systems is also better de-
scribed as associated with the representation one chooses. The two
aspects, particle and wave, are conjugates in terms of the space in which
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they are localized, coordinate and momentum space, respectively. As
conventionally understood in classical physics, a particle is located at a
point in space, while a wave has a definite wave vector (or, equivalently,
momentum) but is spread out over all space. Instead of ‘wave-particle
duality’, it might have been better to have seen any quantum system
as a ‘wavicle’ characterized only by a wave function, ¥, the underlying
reality of a quantum system being in neither coordinate nor momen-
tum space but viewed by either as ¥ (x) or ¢(p). Each is sufficient and
complete to determine all the physics with neither having any claim to
a special footing. It is the ‘locators’ or the physical apparatus involved
that realize one or other representation. These apparatus being classical
in nature, on the one hand we may detect charges or other identify-
ing features of an electron, proton, or even neutrino (as a zero mass
object) or, on the other hand, electric field amplitudes and phases of
clectromagnetism. See also Sec. 8.5.

Indeed, as nicely described in [4], given conserved quantities such as
charge or non-zero spin angular momentum, electrons or neutrinos
have the particle as their classical limit while only for zero mass, un-
charged bosons (there are but two examples, the photon and gravitbn)
do we have a wave as their classical limit. It is not surprising, there-
fore, that physics first made the acquaintance of electrons, protons,
neutrinos, charged pions, etc., as particles, and only electromagnetism
and gravitation as wave fields (although in the latter, only the mono-
pole or static field has so far been seen directly in experiment, and the
detection of gravitational waves is not yet in hand — there is only in-
direct evidence for them, in the slowing down of the orbits of binary
neutron stars).

As further remarks on the use of alternative representations, it is
worth noting that there is much to be gained by these different pictures
or approaches. While even more widespread in quantum physics, it has
also been true in classical physics that different pictures illuminate dif-
ferent aspects and are therefore valuable. The underlying reality that we
are trying to grasp always lies beyond our models and understanding,
and we can only hope to get closer without actually ‘reaching’ it. Thus,
in what we understand of the state of a physical system, there has been
a very big change of ground from classical to quantum descriptions.
Butin both, different descriptions and approaches to the same problem
provide a better approximation to that underlying reality, even when
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any single representation may be intrinsically capable of a complete
description. Therein lies the virtue of seeing the world from different
points of view (see also Sec. 8.5).

In this, physics sits in the wider context of intellectual inquiry.
Whether in the movie Rashomon, or a novel, each description may cap-
ture some essence, together getting closer to a full comprehension,
closer but not capturing or identical to that reality itself of the complex
whole. Reality is . . . whatitis. Itis said that when Tolstoy18 was asked to
describe what his War and Peace is, a novel or history or a historical novel,
he said that it is ‘not a novel, still less a historical chronicle but what
the author wanted and was able to express in the form in which it is ex-
pressed’. This could well serve as a paraphrase of how a physicist views
physics, that it is the way nature is expressing its underlying reality.

18 1e0 Tolstoy, 1828-1910, Russian. Writer of novels that are household names
around the world, and whose pacifist and social reform views make him one of the
world’s great moral thinkers. He had a deep influence on Mahatma Gandhi and Martin
Luther King.
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Localization at Saddles

3.1 Saddles in Terrains and Physics

From the unfortunate Otzi the Iceman, whose mummified remains
were discovered 5,000 years after his death on a high mountain pass in
Italy, to hikers of today, saddles in mountainous regions have played
an important role in traversing such terrains. We are familiar with the
fact that to get from one valley to another, one hikes over an interven-
ing saddle. Unlike at a peak, where the land falls off in all directions,
or its opposite of a valley, with climbs in all directions, a saddle point
of a surface is one where the ground drops off in some directions while
it climbs in other directions. Like peaks and valleys, it is also a station-
ary point of the surface. That is, the first derivative, the slope, vanishes
in every direction, making for local flatness, but the second derivatives
do not satisfy the conditions for an extremum, whether maximum or
minimum. It is remarkable that saddle points also play crucial roles
in physics, both classical and quantum, and that will be the theme
explored in this chapter.

3.1.1 Stability at Mechanical or Electromagnetic Saddles

A pendulum, or one-dimensional oscillator, is again a good place to
begin, just as we did in Chapter 1. This parabolic potential, ki [2, with
k> 0, has a stable minimum (Figure 3.1) with associated small os-
cillations around it, as discussed for the pendulum. However, a real
pendulum’s gravitational potential, mg€(1—cos 8), has a sinusoidal form
(Figure 3.2), and reduces to the parabolic form only for small values of
0. That is, only for small displacements from the normal hanging pos-
ition, vertically down, are there the simple harmonic motions with the
time period given in Eq. (1.1).

This potential also has another equilibrium point, at 8 = 72,
termed the ‘inverted pendulum’, with the pendulum string (a thin stick
serves to represent this situation better) and bob vertically up rather
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0 X

Figure 3.1 A one-dimensional harmonic oscillator’s parabolic potential. The
spring constant, k, determines the strength of the potential.
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Figure 3.2 The gravitational potential of a pendulum of length £ as shown in
Figure 1.3. For small oscillations in the vicinity of @ & 0, the potential reduces
to the parabolic form of a simple harmonic oscillator in Figure 3.1. But at the
points @ = == /2, which describe positions of the inverted pendulum, there is
unstable equilibrium.

than down. While also an equilibrium point in having vanishing slope
(zero force), this is now an unstable equilibrium. Even the slightest per-
turbation will lead the bob to fall away from that position. In terms of
the potential, it is an inverted parabola with k < 0, and the bob will fall
under gravity.

In one dimension, that is all there is to the story. There are only max-
ima or minima in realistic physical situations even though there are
mathematical functions other than quadratic where the second deriva-
tive is also zero and only some higher derivative is non-vanishing. But,
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Figure 3.3 Saddlesin mountain terrains. Paulba Legend <http://en.wikipedia.
org/wiki/File:Washington-clay_saddle.JPG>.

as soon as one goes into more than one dimension, even just a two-
dimensional surface, saddles can arise besides peaks and valleys, just
as they do in the topography of the Earth’s (two-dimensional) surface
(Figure 3.3). New forms of dynamics now become possible.

A striking example is provided by Figure 3.4, which shows the sim-
plest such situation of a surface with just one saddle. There is one
direction of stable motion and one of unstable motion away from the
saddle. This is as simple as one can get, with just one motion of each
kind. A marble placed at the exact centre of the saddle upon experi-
encing the slightest disturbance along the unstable direction will fall
off the surface. In that direction, this situation is exactly analogous to
the inverted pendulum. But now imagine introducing a time element
by placing the saddle surface on a turntable, as indicated in Figure 3.4,
that is spinning around the vertical axis. Upon spinning with sufficient
angular speed, the marble can be stabilized. The dynamical problem ex-
hibits a stability that is not there in the static potential. Indeed, there is
also a one-dimensional counterpart, an inverted pendulum’s instability
compensated when the point of suspension is jiggled up and down or
by some alternative feedback mechanism, as one knows by balancing
a long umbrella with its tip on one’s finger (your eyes have to focus
on the umbrella handle and the eye—brain feedback work to keep the
umbrella vertical).
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Figure 3.4 Mechanical saddle potential on a turntable as an analogue of the
Paul trap for electrical charged particles. A quadrupolar electric field, the ana-
logue of the saddle shown, will not itself hold a charged particle, the analogue
of the marble. But, in combination with time-varying radio frequency electric
fields, the analogue of the rotation of the turntable, the particle can be stabil-
ized. From W. Paul’s Nobel Prize Lecture, Rev. Mod. Phys. 62, 531 (1990), copyright
1990 by the American Physical Society.

The reason for this stability is the Coriolis' force, which acts on
moving objects perpendicular to their velocity and to the angular vel-
ocity. (There are many manifestations of this force in atmospheric and
oceanic swirls and storms because of the Earth’s rotation.) Thus, as the
marble falls in the unstable direction in Figure 3.4, this Coriolis force
points parallel to the stable direction and, in turn, leads to a restoring
force in the unstable direction driving back to the equilibrium point.
The net result is a rotating force that keeps the marble around the
equilibrium point. A time-dependent field analogous to the one here

1 Gaspard-Gustave Coriolis, 1792—1843, French. Mathematician and mechanical en-
gineer who was interested in applied aspects of work and energy in machines and
especially in water wheels, and thus rotational energy.
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from spinning also can stabilize a one-dimensional inverted pendulum,
as noted. In that case, jiggling the point of suspension up and down
with a high enough frequency can keep the pendulum vertical.

Celestial mechanics has long recognized so-called ‘Lagrange points’,
which are precisely such quasi-stable positions in the Sun—Earth (or
Earth—Moon) system. Points roughly 1,000,000 km on either side on
a line perpendicular to the one joining the Sun to the Earth are
saddles in the gravitational potential of the two bodies. While these
would be unstable points were all the bodies static, because of the
rotation in the system, the Coriolis forces give quasi-stability and, in-
deed, man-made satellites have been parked there. Nature itself has
done the same with the so-called ‘Trojan asteroids’ at similar Lagrange
points of the Sun—Jupiter system. Similar examples are known for other
planets.

There is also an electromagnetic analogue of the saddle, the so-called
Paul? trap’ for trapping positive ions. Indeed, Figure 3.4 and the mech-
anical analogue were presented in the Nobel Prize lecture of Wolfgang
Paul as a mechanical model of his invention for trapping charged par-
ticles. It is well known that a charge cannot be stably held with purely
electrostatic fields (except trivially on top of an opposite charge). Such
fields have to satisty Laplace’s equation, which stipulates that at a point
where there is no charge, the sum of the three second derivatives of
the electric potential with respect to (x, y,2z) has to vanish. Therefore,
at least one has to be of negative sign, that is, an inverted parabolic po-
tential, which corresponds to unstable motion in that direction for any
charge placed there. Paul’s discovery was to place in addition a time-
dependent radio frequency field besides the quadrupole fields that gave
trapping in two directions to get overall dynamical trapping in all three
dimensions. Such traps have been enormously influential. Another so-
lution, and thereby another class of traps, is to combine electric and
magnetic fields; these are Dehmelt traps. Paul and Dehmelt® shared the
Nobel Prize in Physics.

4 Wolfgang Paul, 1913-93, German. Physicist who invented a way of trapping posi-
tively charged ions. He opposed the deployment or use of tactical nuclear weapons by
the West German Army.

3 Hans Georg Dehmelt, 1922, German and American. Developed methods for trap-
ping charged particles and made precision measurements of magnetic moments and
g-factors of electrons and positrons.
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3.2 Saddles in Quantum Systems

As in classical mechanics or electromagnetism, since quantum physics
also deals with motion in potentials, not surprisingly saddle points that
arise when there are two or more degrees of freedom are also important
for quantum systems. Indeed, in all these problems of classical or quan-
tum systems, clearly saddles proliferate with increasing dimensions. It is
less likely that all directions will have the same sign of k, whether posi-
tive or negative, but more often a mix, so that some directions away
from equilibrium will be stable and others unstable. Therefore, the
understanding of physics in saddles rather than at a global maximum
(peak) or minimum (valley) takes on added importance with more
degrees of freedom. This understanding is best gained by considering
the simplest example, in which there is only a single saddle in a two-
dimensional problem, and we consider two such systems (Sec. 3.2.2 and
Sec. 3.2.3). But first we consider localization more generally in quantum
systems.

3.2.1 Localization in Quantum Systems

In classical physics, the concept of localization of a particle is simple,
when it occupies a particular position in space. Thus, in one dimension,
say in a potential well, as shown in Figure 3.1, the minimum energy
of a particle of mass m is when it sits at the bottom of the potential,
at x = 0, where both kinetic and potential energy, and thereby total
energy, equal zero. States of higher energy, when the particle can rattle
around in the well, will, in realistic situations, with dissipative forces
such as friction, gradually settle down to the minimum energy, with
the particle coming to rest at the bottom.

In quantum physics, such a configuration is forbidden, because sim-
ultaneous position and momentum at definite values, as in the particu-
lar case when both are zero, is not allowed by the uncertainty principle.
Thus, a quantum particle in the parabolic potential well will not reach
zero energy and x = 0 as its lowest state but rather have a ‘zero-point
energy’, fiw/2, with frequency w = W Its wave function, shown in
Figure 3.5, is a Gaussian function that exists over the entire space so that
the probability of its location, given by the square of the wave function
(Secs 1.2.2 and 2.2), is non-zero everywhere but is peaked around x = 0.
Note, in particular, that there is a non-zero probability of finding the
particle in the so-called ‘classically forbidden zone’ beyond the potential
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Figure 3.5 Energy positions and wave functions of the ground (n = 0) and two
excited (n = 3, 6) states of the one-dimensional quantum harmonic oscillator’s
potential well of Figure 3.1. Note the Gaussian tails of the wave functions at
+00, number of nodes n, and parity symmetry/antisymmetry for n even/odd.
With increasing n, the peak value of the wave function occurs closer to the
classical turning points where the energy, E, equals the potential energy.

walls at that energy, that is, with the potential energy higher than the
total, seeming to imply a negative kinetic energy. Of course, such clas-
sical thinking does not apply, it being incompatible to talk of energies in
regions of space. What remains true is that the spatially averaged kinetic
energy is never negative, even in quantum systems.

Although not localized at a single point, nevertheless the wave func-
tion may be so peaked as to have appreciable probability confined to
a small region around x = 0, depending on the value of k. The same
holds true for other forms of potential besides the parabolic one for a
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harmonic oscillator shown in Figures 3.1 and 3.5. The deeper the poten-
tial well, the more localized the ground state. Also shown in Figure 3.5
is the wave function of a higher energy state. Again, in a quantum
oscillator, unlike in a classical one of the same frequency, not all pos-
sible energies are allowed, only the discrete values (n + 1/2)hw, with
n = 0,1,.... The wave function for such a higher energy state now
has many oscillations, given by the quantum number #, indicating the
number of zeroes, called ‘nodes’, which are positional values with zero
probability of finding the particle when it is in such an energy state.

At large quantum numbers, the probability peaks further away from
x = 0 and, indeed, close to what is termed the classical turning point,
where the total energy equals the instantaneous potential energy. This
is plausible because classically it is at these points that the velocity van-
ishes and the particle turns around in its motion (the end points of
the swing of a pendulum) and one expects the probability of finding
a particle to be inversely related to its speed. This is an illustration of
what is termed the Correspondence Principle, which states that the
classical limit of quantum physics is often reached at large quantum
numbers. This is obvious in the case of angular momentum, which is
always quantized as £/, and any classical value, however small, neces-
sarily involves very large values of £ given the smallness of . But for
other physical properties as well, generally at large quantum numbers,
the system is quasi-classical.

Strict localization, while different from the above for wave func-
tion concentration, is also possible in quantum physics (at least in
non-relativistic quantum mechanics, relativistic field theories being a
different story: Sec. 7.3.3). A particle strictly localized at x = 0 would
be described by what is called a Dirac delta-function, §(x), a function
defined to have vanishing value at all x other than x = 0. With pos-
ition and energy being incompatible quantum operators, in a reverse
of what was said earlier of energy states existing at all values of x, now
such a localized particle cannot have any definite energy but must be
a superposition of all the energy states of the system. This is true for
any physical system, an oscillator or pendulum included. A quantum
pendulum can be localized at x = 0 or, for that matter, at any specific
value of x but at the expense of superposing a large number of states,
including of large energies.

For three-dimensional counterparts such as the hydrogen or any
other atom, almost classical states, such as the electron in a particular
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Bohr orbit, can be made today in our laboratories by exciting with
broad-bandwidth lasers many so-called Rydberg states, states with large
quantum numbers.

Another form of localization, termed ‘Anderson® localization’, may
be pictured as a one-dimensional example. A random potential, V(x),
with many minima of random location and depth, can lead to trap-
ping of a particle at the deepest of these wells. Such phenomena have
been seen in a variety of situations. But we turn next to a different type
of localization in quantum systems, with nothing random about the
potentials involved, but rather simple, well-defined ones, such as the
Coulomb potential. Nonetheless, a dynamical localization takes place
around saddle points of the potential surface, two or more dimensions
of course being necessary to produce such saddles and localization. It is
this form of dynamical localization that relates to the classical and elec-
tromagnetic counterparts discussed in the previous section and shares
with them the theme of saddles.

3.2.2 Two-Electron Atoms, States of High Excitation

A quantum system with a saddle in its potential surface has already
been introduced in Chapter 2. As illustrated in Figure 2.3, the total
potential of a two-electron atom, which depends on an overall scale
variable 1/R and two angles, as in Eq. (2.7) and Eq. (2.8), can be rep-
resented as a two-dimensional potential surface in those angles. This
surface has deep valleys at @ = 0,77 /2 that correspond to either one of
the electron—nucleus distances vanishing and thus the attractive Cou-
lomb potential reaching —00. On the other hand, the surface has steep
peaks at (¢ = /4,61, = 0,27), when the two electrons are equidis-
tant from the nucleus and lie on top of each other, a configuration of
infinite repulsion.

Besides these minima and maxima, the other singular point of this
surface is the saddle at (o = 7 /4,0,, = 7). This corresponds again to
equal distances, r; = r,, but now with the electrons on opposite sides
of the nucleus. In physical terms, the saddle can be seen as follows. For
departures of the electrons from being exactly on opposite sides, that
is, for the angle 6, away from 77, the repulsion between the electrons

* Philip Warren Anderson, 1923, American. Noted contemporary condensed-matter
physicist, known especially for his work on superconductivity and magnetism, and for
his writings on the philosophy of science and emergent phenomena.
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drives them back to that value. Hence, this is a stable direction, with
the potential surface rising away from that point of 61, = . But, for
departures from exact equality of the two distances, that is, for & away
from 7 /4, the opposite happens, with the potential surface dropping
away, making it an unstable direction.

This is a reflection of ‘dynamical screening’, one electron screening
part of the (positive) nuclear charge for the other. As a result, any de-
parture from exact equality means that the electron that is closer to the
nucleus screens it more for the other, which, as a result, moves further
away from the nucleus. Departures of r;/r, from unity thus get accen-
tuated by the very nature of the Coulomb interactions [18]. Thereby,
the two-electron atom or quantum three-body system of a positively
charged nucleus and two electrons provides the simplest quantum ex-
ample of a potential with just one saddle point, one motion stable and
the other unstable.

Most discussions of a two-electron atom such as helium that deal
with the ground or low-lying states of excitation of one electron con-
cern states lying in the valleys of the potential in Figure 2.3. With the
electron—electron interaction energy generally smaller (approximately
15%) than the energy of attraction to the nucleus, these states are
amenable to a variety of ‘perturbative’ techniques that have been ex-
tensively developed since the early days of quantum mechanics or to
‘variational calculations’, which work well for low-lying states in the
spectrum. However, an interesting class of excitations called ‘doubly
excited’ states, wherein both electrons are excited, and which lie much
higher in energy, require a different understanding.

In the helium atom, all singly excited states lie below 24.6 eV from
the ground state 152 1S, the lowest of them at 20.2 eV. Beyond the 24.6 eV
‘ionization’ energy, one electron is ejected into the continuum and the
atom is ionized, that is, left behind as a positively charged ion. The
doubly excited states, on the other hand, lie between 60 eV above the
ground state and 79 eV, which is the energy when both electrons are
ejected, marking the beginning of the double-ionization continuum
(Figure 3.6). With both electrons escaping to infinity, the doubly
charged bare helium nucleus, called an alpha particle, is left behind.

Since even the lowest doubly excited states, with both electrons lifted
from the ground principal quantum number n = 1 to the next,n = 2,
lie above the single-ionization threshold of 24.6 eV, all these doubly ex-
cited states are unstable with respect to one electron dropping back to a
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Figure 3.6 Doubly excited states of He. The figure shows the energy levels of
the He' ion at values —54.4/n* eV. These are the Bohr values for a single electron
bound to a nucleus of charge +2e, and they converge to the double-ionization
threshold (chosen as the zero energy value) with two electrons separated to
infinity from the bare nucleus of He'™™ . Below the He™ (n = 1) lie the singly
excited states of He, as in Figure 2.2, whereas below He™ (n > 1) are the doubly
excited states, both electrons excited away from the ground n = 1 configur-
ation. These doubly excited states are degenerate in energy with continuum
states built on lower n states of the He" ion, decaying into them by the process
of autoionization. They may be excited, as shown, either by absorption of one
or more photons from lower states of He, or by electron impact on the Het
ion, or through other mechanisms.

lower value of n, as the energy released is sufficient to allow the other to
escape to infinity. This process wherein one electron is ejected is called
autoionization and is inherent to the Coulomb potentials inside the
atom, and can happen on its own even in the absence of any coupling
to an electromagnetic radiation field (as needed for the decay of singly
excited states). Some of the low doubly excited states have autoioniza-
tion lifetimes of 1072 s, much shorter than the typical radiative decay
lifetime of 107® s of a singly excited state to a lower energy state. (The
four orders of magnitude represents the square of the fine-structure
constant, an index of the strength of the electromagnetic interaction,
intensities and lifetimes scaling quadratically with the strength.)
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Doubly excited states and those in the double continuum display
new physics not seen in the singly excited/ionized domain. One such
new feature is that, even though energetically allowed to decay, some
states have long lifetimes before autoionization, indeed so much so that
they descend to lower states by radiative decay, emitting a photon, ra-
ther than by ejecting an electron. Interestingly, it is these states that
are associated with the saddle in Figure 2.3. Their wave functions, while
of course spread over all space, are dominantly confined to the region
around the saddle. This saddle lies high above the low-lying singly ex-
cited states in the valleys whose wave functions are of course mostly
confined there. The overlap between the two classes of states is small
and thereby also any transition between them that is governed by the
matrix element of the interaction operator 1/rj; between the bra of one
and the ket of the other.

Such a dynamical localization of quantum states into saddles is an
interesting theme of many-particle systems. While lying high in energy
above other states (sometimes multiply infinite in number), that lo-
calization permits a quasi-stability and long lifetimes. Since the saddle
corresponds to the two electrons being on a par in their radial dis-
tance from the nucleus, a particular subset of doubly excited states with
approximately equal excitation of both electrons can be distinguished.
Such states lying just below 79 eV above the ground state of helium are
also closely related in their physics to the states of the double-ionization
continuum on the other side of that threshold.

Indeed, when the helium atom absorbs energy just above that
threshold, while it is energetically possible for both electrons to be
ejected, the dynamical screening described at the start of this sec-
tion makes it imperative that, for most of the escape process, the two
share the small excess energy available equally in their kinetic energies.
Otherwise, should one get more, it will only get faster relative to the
other that is hanging back and, in turn, will screen further the nuclear
attraction for the outer electron. Finally, only one electron will escape,
the other falling back into a bound, singly excited state. That is, the
configuration will end up in one of the valleys rather than staying at
the saddle out to large R and all the way to infinity which is necessary
for both electrons to be ejected. Thereby, double ionization just above
threshold requires staying near the saddle in Figure 2.3.

The unstable direction, &, thus plays a crucial role in high doubly
excited states and threshold double ionization [18]. This & coordinate
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being a measure of the ratio of the radial distances, instability in it is
an aspect of radial correlation between the electrons. As in any quan-
tum pair of conjugate variables, confinement in one, here in the angle
o to a small region around 7 /4, means a superposition of a large
number of the conjugate harmonics (Sec. 2.2). Likewise, the stable
direction 63, confined to around 7, translates into a large super-
position of the corresponding spherical harmonics in the conjugate
variable £ in describing such localized states of double excitation or
ionization.

The total angular momentum commutes with the total Hamilton-
ian of the three-body system, and is, therefore, conserved. Its value,
thereby being a ‘good’ quantum number with a definite value, may be
small, even zero. These remarks apply even for such states of kg (total
orbital and spin angular momentum zero) around 79 eV. They also do,
of course, to states with higher orbital and spin angular momentum of
the pair.) It is the £ of the individual electrons that can and must em-
brace large values even when the sum remains small (of course, for §
states with zero total orbital angular momentum, the two £ have to be
equal). This represents a high angular correlation alongside the radial
one. Today, many experimental measurements are available of these
strong correlations in doubly excited states and threshold double ion-
ization, even in the simplest case of two-electron systems. Of course,
multiply excited states also display such correlations and, as noted,
saddles proliferate with increasing numbers of particles.

An earlier theme from Chapter 2, of alternative representations,
also applies to this picture. Independent coordinates of the two elec-
trons (see Sec. 1.2.5), (?1,?2), or their associated quantum labels (1, m)
and (£, £,), serve well to represent low-lying states in the valleys of
the potential but become a poor choice, requiring large and unwieldy
superpositions of them, to describe the highly correlated saddle states
around the double-ionization threshold. They are more appropriately
viewed in an alternative representation of ‘pair’ coordinates (R, o, 012)
and corresponding pair quantum numbers. Of course, the reverse is also
true, that it would take a large superposition of pair states to describe a
singly excited state in which the electrons are far apart with little cor-
relation between them. The two are alternative representations and, as
with all such, both are complete sets and therefore each is capable of
describing the physical system of the two-electron atom. The question
as described in Sec. 2.2, as always in quantum physics, is the suitability
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of one or the other alternative representation, depending on the class
of states or phenomena being studied.

3.2.3 Transition States in Chemical Transformations

Chemistry involves the motion of electrons and nuclei in an assem-
blage of atoms. The previous sub-section has considered saddles in the
motion of two or more electrons. For chemical transformations, this
may be supplemented by considering the motion of the heavier nuclei.
Again, as a paradigmatic example, three bodies/atoms in a rearrange-
ment AB + C — A + BC can be a stand-in for the general chemical
transformation so crucial throughout chemistry and much of biology.

It has become increasingly clear [20] that a transformation such as
this is often mediated by a so-called ‘transition state’ of the combined
entity (ABC) that acts as an intermediate, AB + C — ABC — A + BC,
Further, one can view the initial and final configurations as states in val-
leys of a full potential surface of the system (with many more degrees of
freedom than with the two-electrons considered previously) with the
transition state residing in the saddle separating them. The three-body
intermediate in the saddle may have wildly different lifetimes, some
very transient, others metastable enough to show up as resonances at
definite energies, but the idea itself of an intermediate playing a cata-
lytic role in the transformation is well established. The calculation of
the full potential surface and of transition states, at least for small mol-
ecules, has now reached a fair level of sophistication in computational
quantum chemistry [20].

3.2.4 Coupling to Another Dimension for Stability

Finally, consider the connection between the quasi-stability of the
quantum systems in the previous sections, and the stabilization at sad-
dles of mechanical and electromagnetic classical systems of the earlier
Sec. 3.1.1. Those were phenomena with explicit time dependence. The
static potential alone with a saddle does not give stability. It is the add-
ition of a time-dependent element, whether a jiggling of the point of
suspension or a rotation or a radio-frequency field, that provided the
crucial element for understanding stability in terms of the resulting
Coriolis-like forces. But the two-electron problem’s doubly excited or
threshold continuum states are stationary states of a time-independent
Hamiltonian. Although in some of the words used of dynamical screen-
ing, a time sequence of a series of successive snapshots of the two
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cscaping electrons may have crept in, the analysis itself considers only
the time-independent Schrédinger equation (this relates to another
theme about time that will be considered in Chapter 7).

Where then is the connection between these problems, some time
dependent and others time independent? The answer lies in recogniz-
ing that the crucial element is a coupling to another variable, whether
it be time, t, or size, R, in the two cases. Time as such is not of the es-
sence; rather, it is the presence of another variable or coordinate that
is the important element [19]. Indeed, in the detailed analysis of wave
function localization around the saddle, besides the (c, 8},) involved in
that potential, a crucial term comes from a piece of the kinetic energy
operator in R that is linear in the first derivative in R. This is analogous
to the Coriolis force in the mechanical and electromagnetic problems,
also stemming from kinetic energy, that involves the angular velocity,
similarly a first derivative but there in t.
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Coins, Classical and Quantum

4.1 Coins in Classical Language and Physics

The coin has many metaphorical uses in our ordinary languages: coin
of the realm, false coin, bad coin, etc. Its main feature of two valued-
ness, heads or tails, is something we become familiar with from early
childhood (Figure 4.1). Together with the (electric) switch (Figure 4.2),
another term ubiquitous in the language, it then becomes a stand-in for
any two-valued property: up/down, on/off, in/out, yes/no, male/female,
etc. Thus, it can be said that ‘virtue on one side may appear as vice on
the other’! The tossing of a coin has become the ultimate in unbiased
choice between two alternatives, and repeated tosses seen as generating
randomness.

In our age of computers, the mathematical rendering of a coin in
binary terms as 0/1, along with the logical true/false, the two values of
a ‘bit’, has become the basis of all the computers and ancillary devices

Figure 4.1 An early coin, heads/tails representing classical two valuedness.
This is a coin from the 1Ist century BC, from a Celtic people called the
Veneti, who lived on the Brittany peninsula. <http://en.wikipedia.org/wiki/
File:Veneti_coin_5th_Ist_century_BCE.jpg>.
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Figure 4.2 An electrical switch, a stand-in for two-valuedness: on/off = 0/1.
Jason Zack <http:/[en.wikipedia.org/wiki/File:On-Off_Switch.jpg>.

that run our world. Electrical or electronic switches are the millions
and billions of bits in any of these devices or instruments.

The coin runs as a metaphor throughout physics as well. An apt ex-
ample occurs in a feature of our physical world, that it seems to have
clectric charges of either sign that can occur independently of each
other; but this is not so with magnetic poles, all magnets being a N/S
pole tied together, a ‘dipole’. ‘Magnetic monopoles’, although easily
accommodated in our physics (as, for instance, into Maxwell’s equa-
tions in Figure 1.10), seem not to occur in nature, and we have placed
stringent experimental and observational limits on their existence. A
ready explanation is to see magnetism as always derived from charges
in motion, electric currents. The basic current loop acts like a magnet
in generating (or reacting to) a magnetic field but, as with any loop or
coin, the two faces, north and south poles in this instance, are inextric-
ably tied together. Just as every coin has two sides, so does every magnet
have two poles.
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4.2 The Quantum Coin

Quantum physics also deals with two-valued entities or two-level sys-
tems, the physical system being realized in terms of a basis of just two
states. An excited and a ground state, whether in an atom, nucleus
or any physical system, affords an example. The intrinsic spin angular
momentum of elementary particles such as electrons and nucleons is
yet another, and important, example. It was the advent of quantum
physics, first with the realization that all angular momenta occur as
multiples of the Planck constant, fi, and next that these multiples are in
either half-odd integer or integer values, that pointed to the importance
of the lowest such value of 1/2 as the basic or ‘fundamental’ representa-
tion of a non-zero angular momentum in our Universe. That there are
many elementary particles, such as electrons, protons, and neutrons,
with a spin of 1/2 is a feature of our Universe. Each such spin can have
two states, with spin projection +1/2, commonly called up/down, on
any axis (Figure 4.3).

The spin metaphor itself extends to the observation that for nuclear
interactions the neutron and proton behave as if they were two sides

S N
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Figure 4.3 A quantum spin shown schematically as a clockwise/
counterclockwise spinning sphere, and oppositely oriented magnetic
moments. Also shown is Dirac ket notation of an up/down arrow for the

two states. <http://chemistry.tutorcircle.com/inorganic-chemistry/quantum-
numbers.html>.
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of a coin. Borrowing a prefix from the word ‘isotope’, used for nuclei
with the same number of protons but different numbers of neutrons,
this leads to invoking a concept called ‘iso-spin’. One object, the ‘nu-
cleon’, with iso-spin 1/2, has two states, the proton and neutron as %12,
respectively. As with all angular momenta in quantum physics, any
angular momentum j (in units of f) contains (2j + 1) states, with its
projection on any axis itself quantized to take values in unit steps from
—j to j (see Sec. 1.2.5).

It is important to distinguish the spin of angular momentum from
iso-spin; both reside in abstract spaces but they have different abstract
spaces. The helium nucleus comes in two isotopes, one SHe, with two
protons and a single neutron, and the other, the more common iso-
tope, *He, called the alpha particle, with two protons and two neutrons.
Their spin angular momentum is 1/2 and 0, respectively, but the two
isotopes together may be seen as an iso-spin 1/2 doublet, as two faces of
such an isotopic coin. Other particle sets, such as three kinds of pions
that can be regarded as three states of iso-spin 1 (while their angular
momentum spin is zero), and further connections that this picture pro-
vided between processes and decays of elementary particles, made this
concept of iso-spin a very fruitful one.

Such two-level systems with two basis states can be said to be quan-
tum coins. While measured always as spin either up or down, or state
either excited or de-excited, the quantum coin is intrinsically different
from and richer than a classical coin. The basic reason is the linearity of
quantum physics and thereby the existence of a superposition principle
with, further, the feature that complex elements characterize quantum
physics. Any linear superposition of the base states, |0) and 1) in Dirac
notation, with arbitrary complex coefficients, that is, the state,

c1]0) +ca| 1), (4.1)

with complex numbers ¢; normalized to unity, | c; |[*+ | |? = 1,is also
a legitimate state of the system. There is, therefore, a three-parameter
(two complex numbers with a real constraint) family of states, far lar-
ger than the two states of a classical coin. This is a primary reason why
a quantum bit, ‘qubit’ for short, has more potential than does a classical
bit, either for speeding up calculations or for more memory storage. In
this, we have the basis of today’s fields of quantum computation, crypt-
ography, and teleportation, collectively called the sub-field of quantum
information in physics [21].
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Necker Cube

Figure 4.4 A Necker cube, often presented as an optical illusion but rep-
resentative of neural image processing, the brain seeing it in two forms,
‘infout’ shown on the right. <http://www.optical-illusion-pictures.com/
ambig.html>.

An analogy to thinking of superposition is the optical ‘illusion’
(neural phenomenon, really) called the Necker! cube (Figure 4.4). The
cube always appears in one of two alternative appearances, as shown
in Figure 4.4. Once observed as either, persistent staring freezes in that
position but when one takes the eye off and returns, it is possible to see
it suddenly ‘flipped out’ into the second version. In a sense, in between,
the cube isin neither definite position, and the act of observation freezes
it into one or the other, just those two possibilities and none other. As
with any analogy, this should not be pushed too far but serves to illus-
trate some aspects of a quantum coin and its two observed states, but
quantum physics has the added aspect of a very large superposition in
the sense of Eq. (4.1).

4.2.1 The Quantum Coin as the Square Root of a Switch

A very fine pedagogical illustration of both the power of the superpos-
ition principle and its constraints, and which illuminates fundamental
aspects of quantum systems as well as their difference from classical
ones, is the random toss of a quantum coin. Consider first a classical
coin and a switch, the latter also described as the logical NOT gate. That
is, a switch changes between the 0 and the 1 value. In the language of

I Touis Albert Necker, 1786—1861, Swiss. Crystallographer, geographer and moun-
taineer.
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game theory and a payoff matrix, this simplest of operations may be de-
scribed as at the top of Figure 4.5. A classical coin, on the other hand,
has the next depiction in Figure 4.5, the output of a toss either 0 or 1,
with probability 1/2 regardless of the input.

Consider instead a quantum coin. It too, after a toss, reveals either of
the two states with equal probability, but in terms of amplitudes. The
payoftf differs from that in Figure 4.5 in carrying square roots, and a cru-
cial minus sign or phase for one entry as shown in Figure 4.6. Also, in
accordance with the Dirac notation (Sec. 2.3), we have used kets to rep-
resent this quantum system. In quantum physics, all results are realized
as probabilities based on squared moduli of complex amplitudes. For a
single quantum coin toss, the result which depends on such a (modu-
lus) square of the amplitude is just the same as a classical coin’s, the
square roots and minus sign disappearing under squaring.

Imagine now a sequence of two of these elementary operations. With
a switch, repeating it simply reduces to the unit operation, that is, no
operation at all, as is obvious from two successive operations in Fig-
ure 4.5. With a classical coin, two tosses still lead to the final random

output
0 1
00 1
NOT: o
1.0
0 1
0lr »
COIN FLIP: Ty 1
, O
NOT* — UNITY
CF? ? RANDOM

Figure 4.5 Payoff matrix for a switch or NOT operation and a classical coin
flip (CF) or randomizing operation, along with the result of two successive ap-
plications. Note that a squared switch is equivalent to multiplication by unity
(no change of input) but two successive coin flips remain a random outcome.
I'rom B. Hayes, Am. Sci. 83, 304 (1995).
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Figure 4.6 Payoft matrix for a quantum coin flip (QCF), showing the ampli-
tude for output ket for a given input ket. Observed quantum coins will have
probabilities of outcomes that are the squares of these amplitudes, coinciding
with results for a classical coin (Figure 4.5). The operation of a squared quan-
tum coin flip is, however, different. With no observation in between the flips,
tracing through either input shows that the squared operation is equivalent to
the NOT operation, making a quantum coin flip the square root of NOT. From
B. Hayes, Am. Sci. 83, 304 (1995).

result in Figure 4.5, again regardless of the input. But the quantum
result is interestingly different. Two successive tosses with no observa-
tion in between, this being a crucial element of quantum physics — that
observations can change the state — means tracing through two succes-
sive applications of the payoff matrix in Figure 4.6. If the input is |0),
at the intermediate time between the tosses, the state is in the linear
superposition

(10) + [ 1)V2, (4.2)

aspecial case of Eq. (4.1). Any observation at this stage will yield the two
base states with equal probability, the state in Eq. (4.2) ‘collapsing’ into
either |0) or [1).

But, without any such intervention, repeating as a successive quan-
tum coin toss, we can trace this state again according to the matrix in
Figure 4.6, each of its components itself now becoming a superposition
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of both. With a little algebra, the net result of the successive tosses is, as
shown, the state —| 1). An observation will now of course give uniquely
the state | 1), the minus sign irrelevant upon squaring, so that input
|0) results uniquely in output | 1). It is a simple matter to show a simi-
lar result if one were to start with | 1), that uniquely one ends with | 0).
In summary, the two successive tosses, or the squared operation of a
quantum coin flip, is just the same as a switch!

Thus, while the square of a classical coin is the same object, a classical
coin, the square of a quantum coin is the operation of a switch (again, at
the level of amplitudes, a crucial minus sign must be noted if other op-
erations follow) (Figure 4.6). Inverting this statement, the square root of
aswitch is a quantum coin flip! Within the realm of classical operations,
it is non-trivial and difhcult to construct such a square root operation
but clearly not so in quantum physics. A single quantum coin provides
it. Note the critical role of superposition for the argument in the previ-
ous paragraph, the linearity of quantum mechanics being essential.

Caveats are also worth noting. The same linearity that allows an op-
eration that is difficult for classical physics can, in other places, give an
advantage in the reverse direction. A familiar example in quantum in-
formation is the so-called no-cloning theorem [21] that the very linear-
ity of quantum physics prohibits the construction of a general-purpose
apparatus that will reproduce an arbitrary (that is, a superposition)
quantum state. By contrast, photocopiers are ubiquitous in the classical
world!

Also important in this analysis is that no disturbance takes place be-
tween the two tosses. The exact cancellation of one to leave behind
only the other base state would be disturbed were the two parts in
Eq. (4.2) to encounter different multiplying factors, even pure phases
of unit modulus square. In that case, an input base state will be realized
in the output as a combination of both base states, with some multi-
plicative coefficients. Either of the two statesis then observed as output,
albeit with different probabilities, and we would not have a switch or
NOT gate.

The importance of phase is no surprise, given that quantum physics is
built on complex elements. It was important in the discussion about the
squared quantum coin flip in Figure 4.6 that phases, which are delicate,
are not disturbed between the two flips, or, for that matter, at that sec-
ond flip, to ensure the exact cancellations that lead to an unambiguous
pure state of |0) or | 1) at the end and not a superposition. This analysis
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also is instructive on the nature of a two-level system and of measure-
ment in quantum physics. The very premise of a system with only two
base states is that every observation of it has only one of those two out-
comes. One never measures a superposition as in Eq. (4.1), and all the
phase information in the complex coetficients, c;, is lost.

Whatever the system, whether a coin, or an excited—ground-state
pair, or a decaying nucleus, the initial preparation and final detection
are of only two possibilities. Either one see the initial nucleus or its de-
cayed products. There is no question of observing it in some limbo state
in between. Through quantum interactions in between, such as that at
the quantum coin flip, one can create superpositions and transform be-
tween them but an observation at the end, with an apparatus, always
means a scrambling and loss of information of phases, realizing one
or the other base states. The |¢;|* appear as the probability of which
one appears. (In any future quantum computer built of many qubits,
it will be true that the initial preparation sets each qubit of a register
into one of the base states and the final observation is again when all
are in a definite set of base states, although in between and during the
process of computation they will explore the large parameter space of
superpositions.)

There is a famous formulation called the ‘Schrodinger cat’, famil-
iar even outside the realm of physics, that was advanced by one of the
founders of quantum mechanics seemingly to show the difficulties of
the probability interpretation. Schrédinger posed a thought experiment
where the radioactive decay of a nucleus is amplified to affect a cat that
is enclosed in a box together with the radioactive material. At heart,
the physics question is the one at the level of the decaying nucleus as a
two-level system but made more dramatic by regarding the two states
of the cat as dead or alive, depending on whether the decay happened
or not, and whether, before the box is opened to verify which of the
two, the cat is in some strange superposed limbo state between dead
and alive. This is what has captured the imagination of many although,
unfortunately, much nonsense has been said about the matter.

Insofar as the catis regarded as having only two base states, that ques-
tion never arises, dead and alive being the only two possible states a cat
can be observed in. That is what it means to say a two-level system and
we must gloss over the obvious fact that any cat is a many-particle ob-
ject with an enormous number of states and with no realistic chance
of maintaining all the phases and phase relations between them. But,
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going back to the nucleus itself, or, equivalently, to an excited state
of an atom, a quantum system like this can be in a superposition but
the decay can only be said to have happened, be complete, when the
emitted photon or the products of the decay separate to infinity, with
no possibility of re-absorption. The photon has to escape the box and
would be so observed even without opening the box, that signalling
the decay and the cat’s death. With an enclosed box of perfectly re-
flecting walls, the photon would be reflected back to be re-absorbed by
the ground state to return to the excited state, the whole repeated so
that there is no decay but oscillations between the two situations, atom
excited and no photon or atom de-excited with a photon.

Finally, as regards taking square roots, as in QCF = (NOT)'2, it is worth
noting how this operation enlarges the domain of interest. In math-
ematics, starting with the real line that includes positive and negative
numbers, the square root for the latter necessitates an enlargement into
the complex plane. In physics, there is similarly an expansion into other
dimensions, for instance in the famous example of Dirac’s construction
of relativistic quantum physics. In aiming to take the square root of
the energy—momentum relationship of Special Relativity (Sec. 1.2.4),

E = J/&p + m?c, so as to have linear operators for energy and mo-

mentum and thus introduce corresponding first-order derivatives in
time and space, respectively, for them, Dirac was led to enlarge the
system into an internal spinor space, in his case of four dimensions
(Sec. 7.3.2). Indeed, for the case of massless particles with m = 0, the
Pauli—Dirac equation needs an enlargement only into two dimensions,
the 2 X 2 space of Pauli matrices and intrinsic spin. (The more gen-
eral result of Dirac introduces both spin and anti-particle extensions,
a subject we will return to in Chapter 7.) Interestingly, it is that same
spin or two-valued aspect of a quantum coin that allows the (NOT)I/2
construction.

4.2.2 The Bloch Sphere

A very useful picture of a two-level quantum system or quantum coin
or qubit is provided by the ‘Bloch? sphere’[21]. Any arbitrary pure state is

2 Felix Bloch, 1905-83, Swiss and American. A pioneer in the quantum description of
solids, ‘Bloch waves’ describe electron propagation and electrical and heat conduction.
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depicted as a point on a two-sphere, $* (an ordinary unit globe in three
dimensions), or, more accurately, in terms of the unit vector from the
centre of the sphere to that point. Although we noted previously that
there is a three-parameter family of states (two complex coefficients
with a normalization constraint), one of them is an overall phase, inter-
est often attaching more to the other two, which can be thought of
as the two spherical angles (0, ¢), corresponding to latitude and lon-
gitude on the Earth. (The ‘special unitary’ group SU(2) that describes
the symmetries of a two-level system is thus viewed as a ‘bundle’ of a
base manifold, §2, and a fibre, U(1), the latter representing the arbitrary
phase that can take any value from 0 to 00.)

Quantum evolution can then be viewed alternatively in terms of
changes of this unit vector. Thus, for example, under Hermitian Ham-
iltonians, pure states evolve into other pure states with a unitary
transformation given by the Schrodinger equation. This can be viewed
instead as a classical vector rotating (which does not alter the length
of the vector) through some angles as described by a corresponding
‘Bloch equation’. In nuclear magnetic resonance (nmr) and its various
applications, such as magnetic resonance imaging (mri), this geomet-
rical picture of a vector rotated through some angle, realized by some
appropriate magnetic field applied for some time duration, has proved
very convenient.

Non-unitary evolution, when dissipation and decoherence may be
present, shrink the vector into the sphere. Instead of pure quantum
states, we now talk in terms of what are called mixed states, described
through a density matrix rather than a ket vector. But the Bloch sphere
picture continues to be useful.

Figure 4.7 illustrates the Bloch sphere with fibres at each point (6, @).
While a classical coin or bit has the two states that may be identified
with the two poles of the sphere, the quantum coin or qubit’s states
range over the whole surface of the sphere and along the fibres. This
is a vastly (multiply infinitely!) larger and richer space, so a qubit has
vastly more potential, even if any observation on it collapses to just two
antipodal points. Thus, with 100 such qubits in a quantum computer,

He was an independent co-discoverer of nuclear magnetic resonance, and he derived
the ‘Bloch equation’ for describing the time evolution of the magnetic moment of a
charged particle with spin, such as an electron or proton.
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Figure 4.7 The Bloch sphere. States of a quantum spin or other two-level sys-
tem can be geometrically viewed as points on a two-sphere, §2, that is, an
ordinary globe, together with points on spikes at each point on the sphere.
The poles represent the base states |0) and | 1); any other point on the surface
is a superposition state. Values along the spike from zero to infinity represent a
phase that, together with the latitude and longitude location of the spike, pro-
vide the three parameters characterizing an arbitrary unitary transformation
for a quantum spin or qubit [22].

while the input and output of any calculation are with each qubit in
one of its two basis states, during the process of computation, when no
observations are being made, many more possibilities can be explored.

As one example, these possibilities allow for an enormous number
of primes to be tested to divide into a large composite number, which
would be impossible with a classical computer even of many millions
of bits. Herein one sees the potential for processes such as factoring a
large composite number into two big prime factors that so excited the
physics community starting about 15 years ago. Such a factorization be-
ing one of the basic principles behind classical cryptography, a quantum
computer could have drastic implications for secure transactions in our
everyday world [21].

While it is customary to view the two states of a quantum coin as the
usually represented north and south poles on the sphere in Figure 4.7,
that is but one representation, referred to as the choice of quantiza-
tion axis along the vertical z-axis. But, as with any quantum system,
alternative representations or orientations of the quantization axis are
equally valid (Sec. 2.2), so that the base states | 0) and

[) can be any two
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antipodal points on the Bloch sphere. The very spherical symmetry of
the sphere puts them all on a par, and an arbitrary superposition state
of a quantum spin can be seen as the combination, through Eq. (4.1),
of any such pair. The unitary transformations that transform from one
representation to another (Sec. 2.2) are rotations from one diameter to
another of the Bloch sphere.

Experimental observation of a charged particle with spin is also
viewed in this manner in terms of what is called a Stern’~Gerlach?
apparatus, which consists of an inhomogeneous magnetic field. The
magnetic moment of such a particle couples to the magnetic field, lead-
ing to deflection in opposite directions for the two base states along
the axis of the Stern—Gerlach set-up. For any setting of that apparatus,
along the z-axis or some other, an entering beam of spin-1/2 particles is
always split into just two beams. Both preparation and detection of the
two base states are done in this manner.

4.2.3 Pairs of Qubits and Entanglement

In Sec. 4.2.1, we saw that a single quantum coin flip in Figure 4.6 is es-
sentially equivalent to a classical coin in Figure 4.5 but two successive
quantum coin flips amount to something different, a switch or logical
NOT operation. We consider next pairs of qubits simultaneously. Such
systems are the basis of other logic gates, such as exclusive-OR (XOR)
or controlled-NOT (CNOT) and, indeed, all logic gates required for
computing can be built out of such a pair.

Using the language of quantum-mechanical spin, of two states,
up/down (| 1) and | {)), for each qubit (Figure 4.3), states of the pair
can be viewed by placing two of them in a Dirac ket (or corresponding
bra). Thus, there are four states in all for the pair, which may be de-
noted (| 1), | ). | I1). | 1)), as shown in Figure 4.8. Each ket
represents a product of the states of the two qubits and thus this basis
set for the pair is said to be ‘separable’, the wave function factorizing

into a product of functions of each qubit.
As in all quantum systems, however, this is but one representation
for the pair. Any other linearly independent set of four states can also

3 Otto Stern, 1888—1969, German and American. Experimental physicist, one of the
fathers of molecular beam techniques and a co-discoverer of the proton’s magnetic
moment.

4 Walter Gerlach, 1889-1979, German. Co-discoverer of spin magnetic moment.
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Figure 4.8 The four states of two qubits in a separable representation, each ket
describing the product of the up and down states of the two spins.

be a valid representation of the pair system. Indeed, invoking again the
general principle of linearity and thus the superposition principle but
now of two-qubit states, the four linear combinations of the set that are
shown in Figure 4.9 are just as good a basis for describing all the physics
of the pair. These states differ, however, in a fundamental respect in not
being separable. None of them can be factorized into a product of states
of single qubits. They are said to be ‘entangled’, another concept central
to quantum physics when one goes beyond a single particle or degree of
freedom.

From its very first definition by the founding fathers of the field,
this property has been seen as central to quantum physics and one re-
sponsible for much of its non-intuitiveness from a classical perspective.
The particular set in Figure 4.9 is distinguished among all other (infin-
itely many) possible representations for a pair of qubits by being at the
other extreme of separability from the one in Figure 4.8, being ‘max-
imally entangled’. They are named the ‘Bell® states’ or ‘Bell basis’, for

|PEYy = (| 1) 2| LI)WV2
sy = (| MY £ | IM)V2

Figure 4.9 The four Bell states of two qubits. In contrast to Figure 4.8, these
are now no longer separable but entangled in not being decomposable as prod-
ucts of the individual spins. Indeed, they are maximally entangled and provide
an alternative basis to the set in Figure 4.8 for describing a general two-qubit
state.

3 John Stewart Bell, 1928-90, Northern Irish. Theoretical physicist who worked on
accelerator design and on the foundations of quantum physics. He is credited with hav-
ing brought the question of quantum interpretation and items such as non-locality
and realism from merely philosophical and semantic discussion into the realm of test-
able experimental physics. He is viewed as a founding father of the field of quantum
information.
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another pioneer in our understanding of this basic concept of quantum
physics [21].

The two states, named S*, have definite values of total spin angular
momentum, § = 1,0, and definite projection §, = 0 on the z-axis (the
other two states do not have definite values for these quantities). How-
ever, there are no definite values for the spin projection of either spin;
the only definite feature is that when one is up, the other is necessarily
down. This kind of correlation brings out an important aspect of quan-
tum physics, that the combined system may have definite properties of
some physical quantity even when the individual sub-systems do not.
The operators of total spin and individual spins do not commute and
cannot be simultaneously defined (Sec. 1.2.5). In this, they are analo-
gous to classical concepts such as the ‘saltiness’ of NaCl, which does not
reside in either of the component elements (are both indeed poison-
ous!), the concept being relevant only to the compound. While saltiness
is at least a property that lies outside physics and chemistry, entangle-
ment in quantum physics strikes one as even more unusual because the
property of spin projection is an attribute applicable to either the full
system or a sub-system. Yet the combined system may have a defin-
ite value while the individual sub-systems do not. This is the essence of
quantum entanglement.

Just as a qubit represents any two-level system in physics, a pair of
qubits can be a stand-in for a four-level system in any branch of physics.
In a matrix representation, states would now be described by a column
vector of four entries (this for a ket, the corresponding conjugate row
vector for the bra) and operators by 4 X 4 matrices. Besides the unit
matrix, there are 15 linearly independent matrices (again with many
alternative representations), the counterpart of the three 2 X 2 Pauli
matrices for a single qubit. The symmetry group is now called SU(4), a
higher-dimensional analogue of SU(2) for a qubit.

Using the separable basis to describe the four vectors, with one non-
zero unit entry in each of the four possible positions, an operation such
as CNOT can be described by the matrix shown in Figure 4.10. Its action
on the four basis vectors is to leave the first two unchanged but inter-
change the second two; that is, depending on whether the first spin is
up or down, the other (second) spin is either left unchanged or flipped,
respectively. The state of the first qubit is said to ‘control’ the action
that takes place on the second, ‘target’ qubit while itself being left undis-
turbed. Similarly, any 4 X 4 unitary matrix can be interpreted in physical
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Figure 4.10 The 4x4 matrix for the CNOT, or controlled-NOT operation.
When the second, ‘control’, spin is up, the first remains unchanged, but when
the control is down, the state of the first is flipped between up and down.

terms in its action on the pair, as seen in any representation. This CNOT
operation is also sometimes called XOR (exclusive-OR).

4.2.4 Quantum Teleportation

[t was noted in Sec. 4.2.1 that quantum physics forbids certain oper-
ations such as cloning or duplicating an arbitrary state. Special-purpose
machines that duplicate specific states are possible but what is not is the
duplication of a general superposition of orthogonal states, a general-
purpose cloning of quantum states. But the same linearity that forbids
such cloning allows a procedure for transporting an arbitrary state
from one location to another without physically moving the system.
Such ‘quantum teleportation’is again a nice illustration of basic features
of quantum physics.

Consider, for instance, two parties, A and B, that hold two ends of
an entangled state of two qubits, also denoted A and B, say the fourth
Bell state in Figure 4.9, which is called the ‘singlet state’. This name
originates from use in atomic and nuclear physics when two spin-1/2
particles combine into a total angular momentum of zero, § = 0, for
instance in the ground 'S state of the two-electron atom helium (see
Sec. 2.2.1). There is only one such combination and state. Such a zero
angular momentum has, of course, also zero projection on any axis and,
in particular, §; = 0. When one spin is up with respect to that axis, the
other perforce is down. But which one is up or down does not mat-
ter for two identical particles and, therefore, the physical eigenstate is
the linear combination that is the fourth Bell state. Its companion, the
third Bell state in Figure 4.9, also has §, = O butitisa ‘triplet’ with § = 1,
while the other two Bell states do not have a definite value of §, but are
linear superpositions of 1.
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Given such an entangled singlet state (AB) whose two parties and
two sub-system qubits, A and B, have separated, perhaps even to large
distances, we wish to teleport from A to B the state of a third qubit,
C, that is in the general superposition described by Eq. (4.1). A cannot
measure C and determine the values ¢;, any measurement giving either
of the two base states with probabilities | Ci ! 2 the complex amplitudes
themselves out of reach. But what A can do is to couple (in a quan-
tum way that preserves phases) its end of the entangled state to C, and
form a three-qubit state, ACB; it is then possible to perform a Bell meas-
urement on (AC) at that end. That is, a joint measurement of the pair
is made in terms of the base states of Figure 4.9. The four Bell states
of (AC) forming a complete set, the product (AB)C can always be re-
written as an expansion in terms of them, with coefficients representing
the other qubit of B (the simple algebra involved is not shown here).
These coefficients will involve ¢;, whose values still are unknown but
with A able to see what combinations of the two are involved in each
coefficient. Thus, not surprisingly, for the singlet Bell state (AC), B’s
qubit will be seen to be in the same superposition as in Eq. (4.1). For the
other three Bell states, there will be differences in the signs of ¢; or of
the spin arrows. A can then tell B through a classical channel (perhaps
a telephone) what operation needs to be performed at that end, typic-
ally flipping the spin or multiplying by a minus sign, to put B’s qubit
into the same form as in Eq. (4.1). Of course, if A measures a singlet in
the Bell measurement, the message will be for B to do nothing. The net
result is that the qubit C’s state in Eq. (4.1) appears at B’s end as the state
of that qubit, B. The ‘state’ has been teleported from A to B.

It is worth emphasizing what exactly is involved in the above proced-
ure. It is only the state that is teleported, not any physical entity such
as qubit C. B and C may even be entirely different two-level systems;
for example, one may be an electron, the other a proton or a macro-
scopic object such as a Josephson® junction (or even a cat!) which can
be in one of two configurations. It is only the state of C that appears

6 Brian David Josephson, 1940, Welsh. Theoretical physicist known for contribu-
tions already as a student and especially for discovering a fundamental phenomenon
of superconductivity, that quantum-mechanical tunnelling leads to current flow and
oscillations between superconductors separated by a barrier of normal matter. This ef-
fect has become the basis for precision measurements of magnetic fields and of the
fundamental constant effi. He later turned his attention to biology, transcendental
meditation, and mind—body problems.
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as the state that B is put into. Next, the entangled state between A and
B is not enough: some classical information also has to be transferred
from A to B to achieve the teleportation. Thus, there is no violation
of Einstein’s Special Theory of Relativity, as the classical information
transfer involved ensures that the transfer is restricted to being below
light speed.

Strikingly, A manages to teleport C and the information content in
Eq. (4.1) without knowing the values of ¢;; indeed, it is imperative that
A is ignorant of those coefficients, all that information being lost at the
moment when A makes the Bell measurement (A knows only which of
the four Bell states of (AC) is realized without knowing anything about
C’s state - or A’s!), the same moment the information appears in B’s
hand. There is thus no violation of the no-cloning theorem, even across
a remote separation. There is only one copy of the state in Eq. (4.1),
first as qubit C’s state at A’s end and later as qubit B’s state. A ends
up, of course, entangled with C while disentangled from B. All these
are necessary consequences of the linearity of quantum physics, while
illustrating its internal consistency.

A very similar discussion applies to another important application in
quantum information, namely secure key distribution between A and
B to establish quantum cryptography. Again, A and B share both a clas-
sical and a quantum-entangled channel. That any disturbance of the
latter by a third party eavesdropper will be manifest to A and B underlies
the security of their exchange. All instances when they detect such dis-
turbance upon comparing notes later through a classical channel can
be simply discarded and they can proceed with confidence using the
undisturbed exchanges to establish the desired key distribution.

4.3 Qubitcoins

We live in times when the bitcoin has just started ‘circulating’. Curren-
cies and coins evolved for keeping track of transactions between persons
of commodities or services. From antecedents in uniform cowrie shells,
certain plant seeds, and stone wheels, we finally settled on precious
metals and coinage, as in Figure 4.1. It is only 50 years ago that this ‘gold
standard’ was jettisoned and the currency’s worth became based on the
strength of the economy of a nation-state. Side by side, keeping track
of transactions has evolved from markings on clay tablets to numbers
on transaction sheets and bank statements. But, today, the hundreds
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of billions of dollars traded in a day exist only in electronic cyberspace.
A completely online cyber currency, decoupled from any nation, such
as the bitcoin, is part of this trend. As in the physics of motion from
bat to fielder (Sec. 8.5), what counts is the transaction between A and B,
the pathsin between (Figure 7.1) being inessential, however convoluted
they may be through multiple banks. The discussion in this chapter of
quantum coins may leave us speculating on the even more, literally,
mind-boggling future of a ‘qubitcoin’ world ahead.
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Symmetry

5.1 Symmetries Around Us

The concept (or principle or metaphor) of symmetry pervades our lan-
guage and our physics. As one of the animal kingdom’s bilaterally sym-
metric creatures, it is an inescapable observation from an early age that
the left and right half of our bodies are similar. (This is from the outside,
the inside being very unsymmetrical.) Indeed, they are mirror symmet-
ric in terms of a mirror plane down the middle that reflects one side to
the other. Such a mirror or reflection symmetry, or ‘parity symmetry’
in physics usage, is one of the simplest examples of symmetries.

Elsewhere, we see in both the animate and inanimate world around
us other types of symmetries, such as 3-, 4-, or n-fold symmetries. Petals
of many flowers, or sea stars display this, a rotation through 27 /s (a
full rotation through 360 degrees is named 27) restoring the object’s
appearance (Figure 5.1). Indeed, thisis the proper way to describe a sym-
metry, in terms of some transformation such as reflection or rotation
that takes the object into itself, that is, leaves the object unchanged.
Note that reflection is different from rotation through 7 (through 180
degrees), which is also a two-fold symmetry, two such transformations
returning to the original configuration. Such a rotation, however, does
not take a right hand into the left hand, so that reflection is a distinctly
different symmetry.

The inanimate world also has symmetries, as seen in many crystals.
The standard example is of snowflakes, which all have a six-fold or hex-
agonal symmetry (Figure 5.2). Both salt and sugar crystallize in cubic
symmetry, while many minerals form hexagonal or octagonal shapes,
again symmetrical objects that under various transformations go back
into themselves. Some viruses exhibit great visual beauty in their sym-
metries with very large n (Figure 5.3). There is, finally, the ‘perfect’
symmetry of a circle or sphere that may be seen as the n — 00 limit
of such rotations, these objects looking the same with respect to any
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Figure 5.1 Flowers with 13-fold and many-fold symmetry, and a starfish with
five-fold symmetry. Sarah Cowell <http://www.beeginnerbeekeeper.com/

single-and-double-flowers>; Alain Feulvarch <https://en.wikipedia.org/wiki/
Starfish>. :

Figure 5.2 Six-fold symmetry of snowflakes. Kenneth Libbrecht <http://
www.its.caltech.edu/ atomic/snowcrystals/photos/photos.htm>.

diameter, thatis, under rotation through an infinitesimally small angle.
Note how ordinary language uses this as a metaphor when it describes
‘a well rounded argument’.

The immediate visual symmetries of rotation and reflection extend
to more sophisticated ones but again with the feature of some trans-
formation and an associated symmetry of interest. (Transformations
and symmetries are inseparable so that there is considerable over-
lap between this chapter and Chapter 2.) Thus, palindromes have a
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Figure 5.3 Electron micrograph of a virus showing high-order symmetry.
Phoebus87 <http://en.wikipedia.org/wiki/File:Symian_virus.png>.

fascination from early childhood; whether in numbers or phrases, they
read the same forwards and backwards. (A familiar example is ‘Madam,
’m Adam’.) This is with respect to a transformation reversing the dir-
ection of flow. Music plays on such ascending and descending scales
that come together as aesthetically pleasing to our ears. A musical
palindrome by Bach' is shown in Figure 5.4.

In physics, it was natural from the very beginning to consider such
‘time reversal’ symmetry, Galilean and Newtonian mechanics having a
symmetry under this transformation. Those laws of motion, ‘the laws
of physics’, are symmetric under such time reflection, and this has pro-
found consequences throughout physics. A major philosophical ques-
tion is how to reconcile such a symmetry of the laws that are symmetric
under a change of sign of time down at the microscopic level with what

1 Johann Sebastian Bach, 1685-1750, German. Organist, harpsichordist, and com-
poser, one of the fathers of Western classical music. He is revered by all musicians and
composers, great and small, who followed him over the centuries, and his musical ex-
ercises are still taught in the first lessons to music students. He is as central a figure in
Western classical music as Newton or Einstein is in physics.
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Figure 5.4 A musical palindrome, by Johann Sebastian Bach. <http://
www.gfsmaths.com [crab-common.html]>.

appears to be a unidirectional flow of time in our macroscopic everyday
world. The same question of time reversal symmetry, or ‘invariance’
with respect to the transformation t — —t, also dominates quantum
physics. Indeed, except for a few limited decays of unstable elementary
particles, recently demonstrated [23] directly and unambiguously for ‘B
mesons’, all other interactions ‘respect’ this symmetry.

5.1.1 Symmetries in Mathematics

Symmetry is also important in mathematics, from the very elementary
to the most advanced, and use of symmetry considerations is a power-
ful tool in a mathematician’s or physicist’s toolkit. As a first example
related to the parity symmetry mentioned at the start of the chapter,
even or odd distribution around some mean provides a simple illustra-
tion. In summing (or integrating if a continuously distributed function
f(x)) such numbers, for an even distribution one can simplify the work
by a factor of two by considering the sum of just one side and doubling
it. For an odd distribution, even further simplification attaches, in that
the sum is clearly (‘by symmetry’) zero without having to do any fur-
ther computation, values on one side cancelling with the symmetrically
equal but opposite contributions from the other side.

- Extending further, say to a function of two variables f(x, y), it is im-
mediately apparent that there is a difference between a function such as
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Figure 5.5 Symmetry contours of f(x,y) = x* + xy + y* as concentric ellipses
on 45-degree axes.

(x* + y) and (x* + xy + y*). Under a transformation that interchanges x
and y, the latter is unchanged while the former is not. The second func-
tion is distinguished in having this interchange symmetry, a little less
obvious perhaps than previous examples but nevertheless also a trans-
formation and an associated symmetry. Geometrically, contours of the
two functions display this symmetry, the latter’s being ellipses around
the axes (x & y) tilted at 45 degrees with respect to the horizontal and
vertical (Figure 5.5).

The example considered in Sec. 1.2.1, of simplitying the definite integral
fbo; exp(—«*)dx, was similar. In that section, this integral was viewed un-
der the theme of adjoining an extra dimension but it also illustrated a
symmetry aspect that lay behind the simplification. By adjoining (——yz)
in the exponent, the resulting function, (x2 + yz), Was even more sym-
metrical than the second of the functions in the previous paragraph,
describing now a circle rather than an ellipse. Thus the product of two
somewhat more difficult Gaussian integrals in x and y, when viewed
with the circular symmetry of two dimensions, reduced the integral

over angle ¢ to the trivial 27r, while the other, radial, integral also
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simplified into an exponential integral. The two-dimensional integral
with circular symmetry is simpler than the one-dimensional linear one
with parity symmetry.

The above is a simple but characteristic example of exploiting sym-
metry to simplify calculations. This problem also brings out another
feature, that in the presence of symmetry, the same problem can be
viewed from different perspectives, coordinate systems in this case. The
double integral separates into a product of two in either Cartesian or
circular coordinates. The former view gives the Gaussian integral (ra-
ther, a square of it), while the latter is 277 times the exponential integral.
This feature becomes even more prominent in quantum physics, as we
will see.

Another example appeared in Sec. 1.2.3, where Lagrange multipliers
were used to estimate the maxima of a function xyz subjected to the
constraint x> + y2 + 22 = R?; this similarly affords an illustration of the
power of symmetry arguments. With both the function and constraint
completely symmetric under interchanges of the three variables, sym-
metry would demand that any solution we are seeking will also have
that property and thus «* = y* = 7%, leading immediately to the result
in Sec. 1.2.3, that the maxima occur at coordinate value R/«/g, with no
other detailed considerations necessary!

Turning to geometry, yet another example of transformations is pro-
vided by projective geometry, wherein points and lines of ordinary
Euclidean geometry are viewed instead on a common footing, with a
complete duality in interchanging them. The Euclidean geometry stud-
ied in secondary schools does not have such duality, but in projective
geometry any theorem involving points and lines remains true under
such an interchange. There is thus a symmetry between points and
lines. A famous diagram of projective geometry, attributed to Desar-
guesz, is presented in Figure 5.6. It displays 10 points laid out on 10 lines,
satisfying the rule that each point lies on three lines and, dually, each
line runs through three points. As per its name, projective geometry
plays a central role in perspective in art and architecture. Figure 5.6
may be viewed in two ways. From point P, lines are drawn to connect

? Gerard Desargues, 15911661, French. Architect and engineer, one of the founders
of projective geometry.



Symmetries Around Us 115

Figure 5.6 The Desargues diagram of projective geometry. Ten points lie on
10 lines, with the incidence relation that every line contains three points and
every point lies on three lines. The two triangles, abc and ABC, have like verti-
ces connected by rays from point P, while like sides, when extended, intersect
on a common line, 123. The triangles are said to be ‘in perspective’ with re-
spect to point P and line 123. Note the duality between points and lines that is
characteristic of projective geometry. The triangles abc and ABC may lie either
in the same plane or not, so that the diagram works equally well as a planar
two-dimensional diagram or in three-dimensional space [24].

like vertices of the two triangles abc and ABC. On the other hand, like
edges of those triangles intersect, when extended, at three points that,
remarkably, lie on a common line. Therefore, it can be said that the two
triangles are ‘in perspective’ with respect to point P and line 123.

A further remarkable aspect is that Figure 5.6 works equally well as a
planar diagram or in three dimensions, each of the two planes abc and
ABC then oriented generally in space. When the planes are parallel, the
three points 1, 2, and 3 recede to infinity, as does their line, to become
the line at infinity. An important distinction between Euclidean and
projective geometry, again a central feature in perspective, 1s the
removal of any distinction between points at infinity and those at finite
locations.

Also important is the idea of more or increasing symmetries shown
by the functions x* + y,x* + xy + y*,and x> + y*. The second has higher
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Figure 5.7 The Fano plane. Similar to Figure 5.6 but now for seven points and
seven lines (the inscribed circle is counted as on a par with the others, no
distinction being made in projective geometry), with the added feature that
any pair of points lies on a unique line, making this a projective plane called
PG(2,2). This same diagram with added arrows, as shown, represents the multi-
plication table for octonions, the e; being the seven independent square roots
of (—1), the product of any two giving the third on that line, with a &1 factor
when along/against the arrow direction [24].

symmetry under x and y interchange than the first (no symmetry at all)
and the third even higher (actually perfect symmetry as of a circle over
an ellipse). Similarly, Figure 5.6 has a counterpart in projective geom-
etry shown in Figure 5.7, in which seven points and seven lines display
the same feature that each point lies on (is said to be incident to) three
lines and each line is incident to three points but can be said to have
an even higher symmetry. This focus on incidence relations of just the
points shown makes these diagrams work also in finite geometries with
just those 7 or 10 points, the rest of the points being shown to display the
lines as continuous, though not really relevant to the discussion. This is
a geometry of just a few finite number of points. For this reason, the in-
scribed circle in Figure 5.7 that connects three points, albeit at infinity,
is just as legitimate a line as any of the edges or medians of the triangle.
Figure 5.7 has even more symmetry than Figure 5.6 in having yet an-
other feature, that every pair of points lies on a distinct line, which is
not true for Figure 5.6, where, for instance, point P has no lines joining
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it to points 1,2, and 3. Indeed, Figure 5.7, called the ‘Fano’ plane’, is
also important in projective geometry and is the simplest ‘projective
plane’ [25].

The Fano plane in Figure 5.7 plays a role also in a branch of math-
ematics called Design Theory and is related to so-called symmetric
designs where two sets of quantities are placed into incidence classes
with respect to each other. These may be anything — say, varieties of
some agricultural product such as potatoes and varieties of fertilizers
applied to them. In choosing to measure the effectiveness of the lat-
ter to improve yields of the former, and therefore designing fields so
that each potato variety sees each of the fertilizers, such symmetric de-
signs are used, pointing to the usefulness of this mathematics in many
applications of experimental design [24, 25].

Curiously, the same diagram also appears in an entirely different
mathematical context, namely in describing the only two consistent
arithmetics (more technically, division algebras) beyond real and com-
plex numbers. Most people know of real and complex numbers (based
on i, ‘the’ square root of —1), that they can be multiplied and divided.
Mathematicians and physicists also deal with two other number sys-
tems, called quaternions, which employ three independent square roots
of =1, designated (i, j, k), with i & j2 = ¥ = —1, and octonions, which
similarly use seven independent square roots. There are no other con-
sistent systems, these four exhausting the possible division algebras. A
set of rules has to be prescribed for the multiplication of any two differ-
ent square roots in terms of a third to close the algebra, and these rules
can be most conveniently kept track of through Figure 5.7. Together
with arrows drawn on each of the seven lines, any of the seven triplet
lines of the diagram can designate these rules for quaternions, although
it is most common to use the circle. With the quaternions’ (4, j, k) as the
three points on this circle in cyclic (clockwise) order with a clockwise
arrow on that line, we set ij = k, jk = i, ki = j, whereas in the reverse
order against the direction of the arrow a minus sign is attached, and
we set ji = —k. A similar but slightly more complicated prescription [26]
works for the seven square roots of —1 of octonions placed at the seven
points of the diagram in Figure 5.7 and using all seven lines shown.

3 Gino Fano, 1871-1952, Italian. Mathematician with contributions to geometry and
group theory.
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5.1.2 Symmetries in Physics and Conservation Laws

An important consequence of symmetry in the equations of motion
in physics is that they imply a corresponding constant of the motion
or a conservation law, that a corresponding quantity does not change
during the motion. The famous laws of conservation of energy, linear,
and angular momentum are associated with such symmetries. These
absolute conservation laws being some of the most fundamental en-
tities of physics, the consideration of symmetry is therefore central to
the subject. Emmy Noether’s* discovery of the link between symmet-
ries and conservation laws is among the most important theorems of
mathematical physics.

There is already in Newton’s third law of motion a symmetry, that
the force exerted by a particle (1) on another particle (2) is equal and
opposite to that exerted by 2 on 1. This holds true for any force, what-
ever its origin, including forces of electricity and magnetism that were
not known in Newton’s day, or the forces of strong and weak inter-
actions between elementary particles and nuclei that were discovered
even later. Colloquially rendered as ‘every action has an equal and
opposite reaction’ and applied widely (if not always accurately!) even
outside of physics, this is one of the powerful and familiar metaphors
of our language, one with its origins in physics. With all forces between
pairs cancelling out, the total system has no net force on it from the
mutual interactions contained within, and thereby the total linear mo-
mentum, denoted ]—5, is conserved. If all the torques due to these internal
Eairwise forces also add to zero, the total angular momentum, denoted

£, is also conserved.

Later, in the Lagrangian and Hamiltonian formulation of Newtonian
mechanics, this result takes a slightly different form, that the Lagran-
gian depends only on internal separations between the particles in a
N-body system, not on the centre of mass coordinate, with the result
that the derivative of the Lagrangian with respect to the corresponding

% Emmy Noether, 1882—1935, German. Mathematician with contributions to ab-
stract algebra and physics, where she is best known for establishing the connection
between symmetry principles and conservation laws. This ‘Noether’s theorem’ has
been described as ‘the most important mathematical theorem ever proved’. Notwith-
standing prejudices against women in academia, she joined the mathematics school at
Gottingen under the invitation of Hilbert and Klein. Many major physicists described
her as the most important woman in the history of mathematics.
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velocity is conserved (this derivative is termed the conjugate mo-
mentum). This is the centre of mass momentum or, for an angular
coordinate, the angular momentum, these quantities then not chan-
ging during the motion. An elegant expression of this is that if the
Lagrangian does not depend on such a coordinate, it is invariant with
respect to additive changes, so that when such additions due to trans-
lations in space or rotational orientation do not affect the Lagrangian,
the corresponding conjugate momenta are conserved.

Most often, the Lagrangian and Hamiltonian are, respectively, the
difference and sum of the kinetic and potential energy of the system.
Instead of vector forces and torques, it proves much more convenient
to handle these scalar energies. The further feature that when a coord-
inate does not enter into the Lagrangian, that is, there is a symmetry
with respect to it, the equations lead to a conserved quantity makes
this formulation especially appealing and convenient. Not surprisingly,
most of physics, whether classical or quantum physics or quantum field
theories, uses Lagrangians and Hamiltonians.

These considerations apply not just to a spatial coordinate, whether
linear or circular, but equally to time. If the Lagrangian does not involve
explicitly the time variable, t, that is, is invariant with respect to trans-
lations in time, another conservation law applies, the conservation of
energy, the quantity conjugate to time, just as momentum, linear or
angular, is conjugate to spatial coordinates. A system as a whole, with
no external forces that may be turned on and off for some finite time
period, hasits total energy fixed, whatever internal exchanges may take
place between the sub-systems of which it is composed.

The Kepler problem of two masses bound together by gravitational
attraction, or a Coulomb pair of oppositely charged electrical particles
similarly bound, are both systems with a spherically symmetric poten-
tial that varies as 1/r (correspondingly, the force is ‘inverse square’), that
is, depends only on the separation between the particles and not on
how that separation is oriented in space. The Lagrangian in spherical
polar coordinates not depending on any angles, angular momentum
is conserved. Whatever initial value of £ they start with, that value is
conserved. This being a vector quantity fixed, therefore, in magnitude
and direction, the motion is necessarily confined to a plane orthogonal
to that direction. Indeed, any potential, V(r), that is, one that depends
only on r and not 7, shares this property. (With no t involvement either,
energy is also a constant of the motion, only swapping between kinetic
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and potential energy during the orbit but the total fixed at whatever
initial value was set.) The Kepler—Coulomb problem is special among
these, in that there is something additional, namely the orbits closing
in ellipses (Sec. 1.2.5).

That a closed orbit means there are even more conserved quantities
has been recognized from Newton’s times. The eccentricity of the orbit
and the direction of, say, the major axis (the minor or any other could
also have been chosen) together define a so-called Laplace—Runge —

Lenz® vector, A (Figure 1.12), which is also conserved, along with E
The pointer to a ‘higher’ symmetry of the Kepler—Coulomb problem
(and one other, the harmonic potential r*) than just the one under
three-dimensional rotations that is shared by all spherically symmet-
ric potentials found more complete explanation in quantum physics,
as discussed for the hydrogen atom in Sec. 1.2.5. Whenever there is an
additional symmetry, it is a pointer to degeneracies in the spectrum
(that different physical states share the same energy) and to alternative
coordinate systems or groups of commuting operators that can de-
scribe the system. The connection between symmetries and conserved
or invariant quantities (and degeneracies of spectral levels in quantum
systems) is true throughout physics.

The theme of ‘broken’, especially slightly broken, symmetries again
takes full significance in quantum physics, but also can be seen in clas-
sical physics with the Kepler—Coulomb problem. Any admixture of
some other dependence into 1/r, however slight and even if itself also
spherically symmetric, changes the situation fundamentally. While an-
gular momentum is still conserved and the orbits still lie in the plane
orthogonal to it, no additional A will exist, as manifest in the fact that
the orbits will not close. The famous example is that of the preces-
sion of the perihelion of planetary orbits. Since the planet—Sun system
also experiences other forces or potentials, for example from the pres-
ence of other planets, orbits are not closed, fixed ellipses. Instead, the
axes precess. Since these other forces are very weak compared with the
dominant attraction of the Sun, the symmetry is broken only slightly

5 Carl David Tolme Runge, 1856—1927, German. Mathematician and physicist, with
contributions in numerical analysis and spectroscopy.

% Wilhelm Lenz, 1888—1957, German. Physicist known for his work on the hydrogen
atom, the ‘Ising model’ in statistical physics, and for the training of many prominent
physicists at his institute of nuclear physics.
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and the precession is small, so that the notion of the ellipse retains
meaning and the additional effect is seen as only a slight change in the
position of the axes after each orbit. Not surprisingly, the largest planet,
Jupiter, has the largest effect on other planetary perihelion precessions.

While all this has been known since Newton’s time and was worked
out centuries ago, there remained a tiny displacement of 43" of arc
per century in the precession of Mercury’s axes, which stubbornly per-
sisted until it yielded to Einstein’s General Theory of Relativity, which
gives a gravitational potential that departs slightly from Newtonian
V(r) = —GMm/r. Einstein accounted for the discrepancy, a triumph-
ant prediction of his theory of gravity. The atomic counterpart displays
something similar, weak forces such as the one coupling electronic

spin, 5, and orbital angular momenta, £, being scalar product poten-

tials,s - £ / r°. While still spherically symmetric, this changes the strict 1/r
nature of the potential, with resulting effects on degeneracies and other
features of the spectral levels. We will return to this in Sec. 5.2.4.

5.2 Symmetries in Quantum Physics

While the consideration of symmetry has been important in physics
from Newtonian times, it took on even more significance from the start
in quantum physics. The founding fathers recognized well its import-
ance as a guiding principle in formulating the new mechanics. \X/eyl7,
Wigner, and Dirac, in particular, have written eloquently about it. Sym-
metry (in the mathematical sense) in the basic equations has been
cquated with beauty, just asin the natural world flowers and snowflakes
are admired for the symmetry of their beauty (Figures 5.1 and 5.2). We
will return to this in Sec. 5.2.5.

With a Lagrangian formulation also natural for quantum mech-
anics or quantum field theories, the connection between symmetries
under translation or rotation in space or translations in time, and

7 Hermann Weyl, 1885-1955, German. Mathematician, philosopher, and physicist,
one of the most influential mathematical physicists, who had close associations with
linstein, Schrédinger, Felix Klein, Hilbert, and others. He studied the distribution of
cigenvalues of the Laplacian operator, introduced the concept of gauge, the “Weyl ten-
sor’in Riemannian geometry, the ‘vierbein’ in General Relativity, and, through many
other contributions to group theory and representations, is one of the most important
figures in the mathematical formulation of quantum physics and General Relativity.
He is also a key figure in mathematical philosophy.
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corresponding conservation laws of momentum, angular momentum,
and energy remain equally valid in quantum physics. These are among
the most fundamental features of physics and are intimately linked to
symmetries in space and time. But, in addition, it also became nat-
ural to consider other space—time symmetries, such as reflections under
space and time, and Lorentz transformations between different inertial
frames, given that quantum physics developed soon after physics had
imbibed the Special Theory of Relativity, which gives greater emphasis
to this larger set of symmetries than does classical physics.

5.2.1 Discrete Symmetries

Consider first the simplest discrete transtormation, reflection in space,
7 — —7, called the parity transformation, or just parity for short, P. In
Cartesian coordinates, all three coordinates are reversed, (x — —x,y —
—y,z —> —2), while in spherical polar coordinates a point on a sphere is
taken to its antipodal one, (r = 0 = 7w -0, = 7w + @P) (see
Figure 5.8). Any quantum system whose potential is invariant under
this symmetry transformation (the non-relativistic kinetic energy, in-
volving as it does the squared momentum, is so invariant) will have
a spectrum that can be divided into two parity classes, even and odd
under this parity transformation. Thus, the free particle in one or
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Figure 5.8 Spherical polar coordinates in three dimensions. For any point, the
vector ris decomposed in terms of its length, r, tilt angle, 8, from the z-axis, and
angle ¢, as shown, measured from the x-axis in the x—y plane to the foot of the
perpendicular dropped from the point onto that plane. Reflection of a point
through the origin,? — —7, is achieved by 0 >m—0,0p > 1+ ¢,ascanbe
seen by the corresponding projections shown.
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any number of dimensions, the harmonic oscillator, and the hydrogen
atom are all examples where energy eigenstates states can be labelled
simultaneously with the =1 of parity, the Hamiltonian commuting
with parity, [H, P] = HP — PH = 0, the order in which the two oper-
ators are applied being immaterial if H — H under P. In the spherical
representation of the states of the hydrogen atom (Sec. 1.2.5), states
are characterized by the quantum numbers (n, £, m) of the operators
( 2. £,), and also have the parity label (—1)5.

It is a feature of quantum physics that there is a representation de-
pendence, because simultaneous labelling is only for the set of operators
all of which mutually commute, and P does with the other three of this
spherical set. But eigenstates in an alternative representation, such as
the parabolic for the hydrogen atom (Sec. 1.2.5), whose labels stem from
the operator set (H, £,, A,), are not simultaneous eigenstates of parity,
because P, while commuting with H, does not with the ‘polar’ vector
quantity E, an_gi thus with its component A, (it does, however, with the

‘axial’ vector £). The same is true of the one-dimensional free particle,
which among alternative representations, has the ‘travelling wave’ or
‘standing wave’ pictures with wave functions exp(=zipx/F) or sines and
cosines, respectively. (Note also another dual aspect, of complex or real
descriptions, respectively.) The former are simultaneous eigenstates of
H and p, while the latter are of H and P.

Since p of momentum and P of parity do not commute, one has
to choose between the alternative representations, both complete sets,
according to use and context (Sec. 1.2.5). Travelling waves, by defin-
ition, move from left to right or vice versa and are, therefore, not
invariant under reflection, but rather one wave goes into the other
under P. Likewise, the parabolic states of the hydrogen atom, which
are superpositions of parity eigenstates (as the exponentials are of sines
and cosines), transform under parity into each other, a parabola facing
z going into an identical one facing —z. With an electric field having
a similar transformation under parity, it is natural that the parabolic
states are suitable for discussing the hydrogen atom in an external elec-
tric field. The field-free atom or an atom in a magnetic field, on the
other hand, is more conveniently treated in terms of spherical states.
Thisillustrates the use of symmetry considerations in choosing between
alternative representations to work with, a practical aspect of symmetry
in the toolkit of a physicist.
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A further feature of the hydrogen atom in an electric field is that
while all atoms have their internal spherical symmetry reduced to the
cylindrical symmetry with respect to the electric field direction, excited
states of the hydrogen atom, and they alone (not of any other atom or
the ground state of hydrogen), exhibit a further feature that connects
to other themes. No other atom has a pure 1/r field and its additional
symmetry that is linked to the additional degeneracy in the spectrum
of states of different £. In particular, this means states of opposite parity
are degenerate. An electric field, also being odd (reverses) under this
parity transformation, therefore, can mix these states.

With initially degenerate states, even the slightest interaction that
mixes them can lead to maximal mixing. Indeed, when there are two
degenerate states such as the (in spherical description) 2s and 2p (with
m = 0), the mixing is 50:50, and the linear combinations (2s & 2p)/ \/i
with such equal mixing are precisely the parabolic states. Although it is
straightforward enough for a physics student to see the equal mixing in
terms of diagonalizing a 2 X 2 matrix with equal entries along the di-
agonal and equal ones along the off-diagonal, it is nice to see symmetry
itself as leading to this conclusion without invoking any mathematics.
The logic is simple. If the two states are on an equal footing and are
mixed, there being nothing to favour one over the other, they are
equally probable in the mixture. It is also nice to note another aspect,
that this is like going to 45-degree axes in state space, an illustration
of the theme in Sec. 2.2.1. The hydrogen atom’s Schrédinger equation,
which separates in both spherical and parabolic representations for zero
field, still does so for the latter in the presence of an electric field.

Consider next reflection of the time coordinate, called time rever-
sal, T:t — —t. Classical physics, whether expressed through Newton’s
equations, which are second-order differentials in time or Lagrangi-
ans and Hamiltonians, is invariant. The microscopic world is entirely
symmetric with respect to reversing the direction of time. A ma-
jor challenge has always been to reconcile this with the macroscopic
world of everyday experience, which clearly is not, but these aspects
of time in physics are not of concern here. Here, we consider time
reversal in quantum physics. The non-relativistic Schrédinger or rela-
tivistic Dirac equation involve only a first derivative in ¢, but always
accompanied by i. Since that also changes sign under time reversal,
that operation incorporating complex conjugation, quantum equations
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of motion are also invariant under this symmetry. Dirac’s extension of
quantum mechanics to the relativistic domain brought naturally into
physics anti-particles, such as the positron, and with it a third discrete
transtormation called charge conjugation, C, which changes the sign of
the charge.

While all interactions known to physics conform to the laws of con-
servation of momentum, angular momentum, and energy, not all do
under the discrete transtormations of (P, C, T). Parity, for instance, is a
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Figure 5.9 Diagram illustrating parity violation in the weak-interaction decay
of a cobalt nucleus. The asymmetry in the direction of emission of electrons
with respect to the spin of the nucleus violates parity symmetry because the
mirror-reflected arrangement would argue for the opposite result. Had weak
interactions respected parity symmetry, the two arrangements would have
shown the same physics, but parity is indeed maximally violated, as shown
firstin 1957 in this cobalt decay and other systems. From <http://www.aps.org/
publications/apsnews/200112/history.cfm>.
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good symmetry of electromagnetic and strong interactions but not of
weak nuclear interactions (which cause decays of elementary particles).
Indeed, some weak interactions have a maximal violation of parity sym-
metry. This is expressed by saying that the mirror reflection of such a
decay is not observed as a possible physical phenomenon in the labora-
tory (Figure 5.9). Interestingly, under the combined operations of parity
and charge conjugation, that is, under combined CP, the symmetry is
restored, the mirror image in Figure 5.9 being indeed a description of
the decay of the anti-Co nucleus into the corresponding anti-particles.

On the other hand, T seems to be a good symmetry of all known
physics, including weak decays, as in the Co example, except for just
a couple of weak interaction decays where a slight, but unambiguous,
violation has been experimentally measured [23]. Most interestingly,
all quantum field theories have as a good symmetry the combined
reversal of all three. That is, for any reaction or decay that we observe,
when all particles are reflected in space, replaced by their anti-particles
and time reversed, the resultant is also a possible reaction or decay,
and identical in all its measured physical values. (The CP operation is,
therefore, equivalent to T reversal, and it is indeed CP violation that
has been observed in a few weak decays.) So far as we know of current
physics, CPT invariance is as absolute a conservation law as those of
energy and momentum.

802 Gauge Symmetries

Quantum physics introduces types of symmetries that had not been
considered in classical physics. This is because of the use of complex
quantities such as wave functions in quantum mechanics or fields in
quantum field theories. The simplest new symmetry is that a complex
function can have a change in its phase and if that does not change
the Lagrangian and thereby the physics, there will again be a conserved
quantity, the corresponding conjugate expressed as the derivative of the
Lagrangian with respect to that phase (Sec. 5.1.2). An explanation for
the observed law of conservation of (electric) charge was seen as a result
of this ‘gauge invariance’ of the Lagrangian.

Indeed, this went much further, in that, together with a change in
the phase of a field such as that of an electron, coupling terms repre-
senting its interactions with a vector field must also undergo a trans-
formation to keep the total Lagrangian invariant. This transformation
was an already known gauge transformation of the potentials of a
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classical electromagnetic vector field (Sec. 1.2.4). That the two gauge
transformations went hand in hand and that, together with a conserved
charge its coupling to an electromagnetic field marked a self-consistent
whole, brought a pleasing unity to the subject of charged particles and
their interaction with electric and magnetic fields. In a way, starting just
with a description of the electron field, its gauge invariance points to the
existence of another field, the electromagnetic. A conserved charge of
the electron and its coupling to that second field are natural accom-
paniments, all dictated by the requirements of symmetry. It is one of
the beautiful stories of symmetry and its paradigmatic role in physics.

This gauge transtormation involving a phase, a single number that
can vary continuously from zero to arbitrarily large value, is the sim-
plest and is described as the unitary group, U(1), of just one element, the
phase, a scalar number. It can describe electric but also other charges,
depending on the structure of the additional field invoked and the
coupling to it. Gauge symmetries with higher-dimensional and more
complicated groups have also been employed by quantum field theories
and it is through such gauge symmetries that modern particle physics
handles elementary particles, fields, and their interactions.

5.2.3 Supersymmetry

Operators in quantum mechanics satisfy various commutation rela-
tionships. Likewise, in quantum field theory, operators of a bosonic
system (spin integer) obey commutation, and those of a fermionic sys-
tem (spin half-odd integer) anti-commutation relations (Sec. 7.3.3). An
even wider symmetry, called supersymmetry, has been invoked with a
mix of both aspects. Supersymmetry puts into degenerate multiplets
of elementary particles not only bosons and fermions separately but
also together. The full set of operators in the system close under a mix
of commutators and anti-commutators. Originally invoked for solving
some technical problems of field theories, supersymmetry (SUSY) has
become widespread, although there is as yet no experimental data in
support.

We will consider here an aspect of supersymmetry in quantum mech-
anics that pertains to many simple systems, both non-relativistic and
relativistic. A characteristic of SUSY in field theories is a spectrum, as
shown in Figure 5.10, namely a non-degenerate ground state of zero
energy identified with the vacuum (with zero value for all quantum
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numbers, necessarily a boson) and every other state doubly degenerate
as a boson—fermion pair. Operators that transform among these states
commute with the Hamiltonian (which is why they are degenerate)
while their anti-commutator gives H itself, making for a closed alge-
bra. There is no evidence that every (or even any) elementary particle
we observe comes with such a degenerate partner of the same mass but
spin differing by 1/2 (of course, particles such as electrons and protons
have partner anti-particles but they share the same mass and spin, and
are also fermions). Even if the SUSY is broken, and the masses are dif-
ferent, there is no evidence for that, or of a duplication in number of all
elementary particles seen, although searches continue.

In quantum mechanics, however, spectra with the feature in
Figure 5.10 that may be dubbed SUSYQM occur quite commonly
[27]. The free particle in one dimension is already an example. In
either of the two descriptions of travelling or standing waves, there is
one ground state of zero energy. It has necessarily zero momentum
and even parity. All other states, now continuously distributed in
energy, E (Figure 5.11), and not discretely as in Figure 5.10, are doubly
degenerate, either travelling waves in both directions or even and odd
parity partners. The counterpart free rotor in two dimensions, with
Hamiltonian H = ¢£*/2 of angular momentum £ and moment of

0

Figure 5.10 A supersymmetric quantum-mechanical (SUSYQM) spectrum. A
non-degenerate ground state at zero energy and all other states doubly degen-
erate characterize such a spectrum, with operator Q and its adjoint carrying
those pairs into each other [27].
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DN

even odd

Figure 5.11 The one-dimensional free-particle spectrum as an example of
SUSYQM. This continuous spectrum with energy from zero to infinity has a
single state exactly at zero energy, all others with non-zero E being pairs in
either parity or direction of travel. The absence of E = 0 for the odd-parity
ladder is indicated by the dashed line at the bottom [27].
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Figure 5.12 The spectrum of a rotor as another example of SUSYQM, now
with a discrete spectrum in contrast to the one in Figure 5.11. The operator,
O, which carries a state into its pair partner, is a product of time reversal and
angular momentum [27].

inertia I, has a discrete spectrum with eigenvalues mh, m= 0, 1, £2, . ..
for angular momentum and for energy E = e [2I (Figure 5.12), re-
turning to the pattern in Figure 5.10.

A relativistic example is of the Dirac electron in a uniform magnetic
field. There is now a doubling of that figure, in that for both electron
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and positron, themselves degenerate, such a spectral distribution ap-
plies. Spatial quantization in the magnetic field gives ‘Landau® levels’
that are equally spaced with the cyclotron energy separation and a
ground state at a zero-point value of half that energy. But the spin of
the electron (positron) also couples to the magnetic field and, with the
g-factor of 2 in Dirac theory, this is exactly sufficient to cancel that
zero-point value to give a net value of zero for the ground state with
Landau quantum number zero and the spin anti-parallel to the mag-
netic field. Since flipping the spin costs exactly the same energy as the
Landau spacing, again because g = 2, we have a SUSYQM spectrum of
equally spaced eigenvalues starting from a non-degenerate zero-energy
state to pairs for all other integer multiples of the cyclotron energy

(Figure 5.13) [28].
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Figure 5.13 The spectrum of an electron in a magnetic field, B, as evidence of
SUSYQM in this system. Equally spaced Landau levels along with the coupling
of the electron spin to B (with the g-factor exactly equal to 2) lie as shown,
with the lowest state at zero energy having Landau quantum number 0 and
spin anti-parallel to the field direction. Each increasing n and spin flip costs the
same energy, iw, making all excited levels doubly degenerate. The operator, Q,
of Figure 5.10, which transforms between them is a product of the operator, a,
that steps down in the ladder of levels, and o'+, which flips the spin from down
to up.

8 Lev Davidovich Landau, 1908—68, Russian. An outstanding theoretical physicist
with many contributions in quantum physics: the density matrix method, superfluidity
and superconductivity, phase transitions, plasma physics, quantum electrodynamics,
and neutrino physics. He was greatly influenced by Bohr. He developed a great school
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5.2.4 Broken Symmetry

The concept of a symmetry that is broken, often only slightly, has
already been mentioned in a classical example when the adding of any
small perturbation with a different r dependence to the 1/r potential
leads to orbits that do not close into ellipses (Sec. 1.2.5 and 5.1.2). This is
also widely true in quantum systems. Thus, the coupling between the
magnetic fields of spin and orbital angular momentum of an electron
in the hydrogen (or any other) atom gives rise to an additive potential
F Z/r3 . This lifts the degeneracy in £ of hydrogenic states with the
potential now no longer 1/r, expectation values of 1/r3 depending on
both n and £, unlike that of 1/r, which depends only on n (Sec. 5.1.2).
However, this contribution being small on the scale of the Bohr energy,
the splittings are small so that it still makes sense to view the system
as starting from the degenerate limit; indeed, calculations proceeding
in this way show the practical importance of symmetry considerations
even when the symmetry is not exact.

The SUSYQM example of electrons in a magnetic field in Dirac the-
ory provides another nice illustration. The field theoretic description of
electrons and photons, called quantum electrodynamics (QED), leads
to corrections to Dirac theory; in particular, the g-factor is slightly dif-
ferent (about 1%) from 2 because of these QED corrections, so that the
spectrum in Figure 5.13 is modified, the ground state not exactly at zero
(the spin energy not compensating perfectly for the zero-point energy)
and the pairs differing also by about 1%.

5.2.5 Spontaneous Breaking of Symmetry

Examples considered so far in classical or quantum systems of broken
symmetry are due to some additional, external field that does not have
the underlying symmetry of the zero-field Hamiltonian. Thus the hy-
drogen atom’s spherical symmetry stemming from the Coulomb po-
tential may be broken by an applied electric field in some direction
which singles out that direction as special. A lower symmetry then

of physics in the Soviet Union, and many prominent physicists were trained by him, in
his style of a broad-ranging mathematics and physics training in all fields. The ‘Landau—
Lifshitz” series of texts in theoretical physics has influenced and educated physicists
around the world. He was severely injured in a traffic accident from which he never
fully recovered for the last six years of his life.
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holds, namely azimuthal (cylindrical) symmetry with respect to that
direction, with full spherical symmetry lost. Or, the spin—orbit inter-
action considered in Sec. 5.2.4 may maintain spherical symmetry but it
lowers the four-dimensional rotation, O(4), symmetry of the pure 1/r
potential to that of three-dimensional rotations, O(3). As a result, the
degeneracy between s and p states no longer applies, is ‘lifted’.

One of the most interesting developments, however, in quantum
field theories was the realization that, with interacting fields, symmet-
ries may be broken internally without having to be introduced from
the outside, spontaneously within the system Lagrangian itself. This has
proved crucial in formulating the current theory of elementary par-
ticles. A main advantage of having a symmetry broken spontaneously
is that the theory remains ‘renormalizable’, and calculations are not
plagued by infinities as they are when the breaking is inserted by hand.

A canonical example is the standard model that unified electromag-
netic and nuclear weak interactions in a single ‘electroweak’ inter-
action. The two were known from the earliest days to be different in
character, the former long range (it and Newton’s gravitational inter-
action the two famous infinite-range ones) and the latter short range.
In physics, there is an inverse relation between the range of interaction
and the mass of the quantum carrier: the heavier that mass, the shorter
the range (as if the force falls oft exponentially, exp(—mcr/k)). The pho-
ton being massless (as is also the graviton), electromagnetic forces are
of infinite range. On the other hand, weak interactions being confined
to about 1 fermi, it was clear that the carrier mass had to be large, ap-
proximately 100 times the mass of the proton, so that fi/mc &~ 1 fermi
(107 m).

But introducing such a mass term through a quadratic potential
in the Lagrangian makes the theory unrenormalizable. The standard
model’s solution to this is that through interactions of vector and sca-
lar fields, introduced initially as massless, spontaneous breaking can
give one of the vector fields mass. Through such a construction, the
vector field responsible for both charge-changing and neutral weak
interactions gets massive, the corresponding quanta being the wt (ne-
cessarily equal in mass because of CPT invariance) and the 7", while
one other linear combination of the neutral fields remains the massless
vector particle that is the photon.

This famous step of unification of forces in physics, the first after Max-
well’s unification of electric and magnetic forces, rests crucially on the
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phenomenon of spontaneous symmetry breaking. An even further step
is the introduction of the Higg59 boson in the theory of elementary par-
ticles, which also embraces the strong interactions of quarks and gluons.
Again, all particle masses can be attributed to coupling to this Higgs
field and, for this purpose, it perforce has to be a scalar (zero spin), so
that it couples to all, universally. A recently discovered heavy particle
of mass 125 GeV seems to be the quantum of such a Higgs field, which
would represent one more step in spontaneous symmetry breaking’s
key role in the unification of physical forces.

5.2.6 The ‘Why’ of Symmetry and Its Breaking

Physics, and science more generally, does not usually deal with ‘why’
questions, only ‘what’ and ‘how’. But it is interesting to ask, given the
central role of symmetry in physics, why this should be so. One answer
lies in the connection noted between the fundamental laws of conser-
vation and independence from specific frames of reference. Such an
independence is of course necessary for the whole enterprise of phys-
ics to make sense and for there to be universal laws. If what happened
in one laboratory was different from what happened in one down the
hall or in another country or, for that matter, on another planet or
galaxy, there would hardly be any common physics to discuss. Thus, a
translation in space must be asymmetry of the subject. So too, if a meas-
urement today was different from one tomorrow or yesterday, that is,
was not invariant under time translations, there would be no validity
to the science. Therefore, at least global symmetries such as these are so
necessary that it would be hard to imagine physics without them. The
corresponding conservation laws of energy and momentum are also,
along with some others, such as of electric charge, the ones we see as
absolute, with no violations observed.

Indeed, throughout the history of physics, when even some of the
formulators seemed to think it necessary to allow violations in building
a new mechanics, faith in the absolute validity of these conservation
laws was vindicated and often pointed to the correct formulation. This
was notably so in the early days of quantum physics, with its seem-
ing statistical aspects that led people to entertain the idea that the

9 Peter Ware Higgs, 1929, British. Theoretical physicist, known for his work on
broken symmetry in particle physics. His name has been attached to the quantum of
excitation of the associated quantum field.
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conservation laws held only in the statistical aggregate but not for
each individual event or experiment. However, later and more care-
ful analysis and experiment verified that energy and momentum are
conserved in each individual case as well. Our faith in these conserva-
tion laws is, therefore, strong; when they seem to be violated, closer
examination has always shown either a mistake in theory or experi-
ment or a subtlety not initially appreciated, which upon recognition
added further insight into the physics involved.

Other symmetries and related conservation laws, however, are some-
times broken. Parity is a notable example. Also historically interesting
because a bias had developed of seeing all space—time symmetries as
absolute, as firmly valid as those in the previous paragraph, so that
violation of parity invariance, that the total parity on either side of a
decay process can differ for weak interactions, came to many physicists
as a shock. As an analogy, human (and other animal) faces and bod-
ies in their outward appearance have bilateral symmetry between the
left and right halves. Although this is usually slightly violated, many
cultures and ideas of aesthetics even seeing beauty in these slight asym-
metries, it is nevertheless striking to come across a sculpture such as
that shown in Figure 5.14, which has a complete reversal between the
two halves of the male/female element. In an interesting analogy to the
combination (CP) of parity and charge conjugation, simultaneous re-
flection about the mid-line, along with interchange of male and female
elements, restores the symmetry of the sculpted figure!

Of course, it was soon realized that there was no reason for inter-
actions to display certain symmetries. This is no more than recognizing
that while the symmetry of an electron bound to the Coulomb field
of a proton is spherical, introducing an electric field in some direction
and thus breaking that symmetry will leave the system with lower sym-
metry, cylindrical with respect to that field direction in this example. In
the case of parity invariance, it is intrinsic to the nature of weak inter-
actions that the symmetry does not hold, whereas it does for strong and
electromagnetic interactions.

In many cases, the external field being weak relative to internal ones
(an atom has internal fields of 10° V/cm), the breaking of symmetry
is slight, although, as noted in Sec. 5.2.1, there can also be maximal
mixing, a maximal breaking of symmetry, when there is degeneracy of
the zero-field states. Such examples are legion in all branches of phys-
ics. In a classical example, planetary orbits that would otherwise close
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Figure 5.14 A statue of Hinduism’s Ardhanarishvara, a representation/unity
of the male god Shiva with his female principle Parvati, as an illustration of
broken symmetry. A chola bronze statue from the 11th century AD. Saline
Hansen <http://en.wikipedia.org/wiki/Ardhanarishvara>.

if the Sun were the only other object in the Universe (Sec. 1.2.5) do
not do so because of the presence of other planets or corrections from
Einstein’s General Theory of Relativity. Even for Jupiter, the largest
planet, though still small in mass compared with the Sun, all these
symmetry breakings are small in this classical example.

Spontaneous symmetry breaking is also easy to comprehend. Even
though the equations of motion or Lagrangians and Hamiltonians may
possess some symmetries, solutions of those equations describing some
system may not display those symmetries. A familiar example is any ob-
ject that is not spherically symmetric, a pencil say, that points in a pre-
ferred direction. This is seen to be just a consequence of choosing one
among an infinity of solutions by holding the pencil in one particular
direction. The Hamiltonian of all the individual atoms and molecules
in the pencil may be spherically symmetric but the global solution does
not have to exhibit it. Note that in all such cases there is an infinite
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degeneracy among the possibilities, the pencil held in any direction
having the same energy and other properties. There is no energy cost
in replacing one of these degenerate states by another. Grander ex-
amples occur throughout physics, and are referred to as zero-energy
or zero-mass excitations, called Nambu!’—Goldstone!! modes.

Broken symmetry, when slight and with no obvious weak external
agent to account for it, poses more significant questions. The departure
of the g-factor of an electron from its Dirac value of 2 is small and of the
order of the fine-structure constant, which is a measure of the strength
of electromagnetism. Thus, QED corrections would be expected to be of
this order of smallness. Similarly, in the triplet of elementary particles
called pions, the two charged ones (whose masses have to be identical
from CPT invariance) have a mass that is of this same order of small-
ness different from the mass of the neutral pion, again as could be
expected from the fact that this difference stems from electromagnetic
interactions in which they differ, all else being common to the triplet.

One of the more curious instances of an intrinsic and fundamen-
tal symmetry that is slightly broken is that of time reversal invariance.
Only a few weak interactions, and even they only slightly, break this in-
variance |23}, which is otherwise valid throughout microscopic physics
(the question of the one-way direction of time in our macroscopic ex-
perience is different and will be considered in Chapter 7). Why should
this be so of a fundamental symmetry of nature, that it is broken
but then only very slightly? At least for now, physics reverts to the
poetic metaphor of the famous physics master of symmetries, Richard
Feynman, the following from his Lectures in Physics [9]:

Why is nature so nearly symmetrical? No one has any idea why. The only
thing we might suggest is something like this. There is a gate in Japan,
a gate in Neiko, which is sometimes called by the Japanese the most
beautiful gate in all Japan; it was built in a time when there was great
influence from Chinese art. The gate is very elaborate, with lots of gables
and beautiful carving and lots of columns and dragon heads and princes
carved into the pillars, and so on. But when one looks closely he sees that

10 yoichiro Nambu, 1921, Japanese and American. Theoretical physicist with many
contributions to elementary particle physics and to broken symmetry in superconduct-
ivity and particle field theories such as chromodynamics.

. Jeffrey Goldstone, 1933, British. Theoretical physicist, known for his discovery of
zero-mass excitations as a result of spontaneous symmetry breaking.



Symmetries in Quantum Physics 157

in the elaborate and complex design along one of the pillars, one of the
small design elements is carved upside down; otherwise the thing is com-
pletely symmetrical. If one asks why this is, the story is that it was carved
upside down so that the gods will not be jealous of the perfection of man.
So they purposely put an error in there, so that the gods would not be
jealous and get angry with human beings. We might like to turn the idea
around and think that the true explanation of the near symmetry of na-
ture is this: that God made the laws only nearly symmetrical so that we
should not be jealous of His perfection!

It is also important never to forget that physics is ultimately an ex-
perimental subject. Whatever the bias and urge we may have to see
symmetry as aesthetically beautiful, while it is a guiding principle in ap-
proaching the subject, we have to be prepared to accept that the world
or Universe is what it is as finally measured by our observations and
experimental apparatus. Thus, for many centuries it was held, even by
Galileo himself, that circles must describe the orbits of planets, the less
symmetric ellipse being ‘uglier’. This finally had to give way to Kepler’s
actual observation, later vindicated by Newton’s theory, that a 1/r po-
tential leads to ellipses in general, with a varying ellipticity parameter,
the zero ellipticity limit being a circular orbit but having no special sta-
tus. Here again is an element of physics, as in Galileo’s own realization,
with zero and any non-zero but constant velocity being on the same
footing, that the zero value is but one among all possible values and has
no special distinction.

So, too, with our modern quantum instances, whether of slight vio-
lation of time reversal invariance or a maximal one of parity invariance.
Further, whatever our bias in seeing integers as specially distinguished,
the g-value of an electron is not exactly 2, and the inverse of the fine-
structure constant, &, is not exactly 137, diftering by less than 1%. These
are facts of our Universe, to be accepted. In the first case, our the-
ory (quantum electrodynamics) gives an account of the many decimal
places to which g has been measured; in the second, o is one of the
dimensionless constants characterizing the Universe as it is. Perhaps a
later theory will account for it but there will then be some other initial
inputs to be regarded as given within the physics of that later day.

It seems merely silly of arguments such as the anthropic principle to
attribute any value to the fact that we are here (or, more generally, to
lite being here), and able to pose questions about the Universe. Even
granting the premise that except for a narrow band of values, any other
a would mean a Universe with no stars or the stars all burnt out very
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rapidly, and thus in either case not looking anything like the Universe
we live in, the argument fails on its own terms to ‘explain’ the particu-
lar value, down to many decimal places, that our experiments measure.
Indeed, in even the smallest interval of what is seen as an allowed or
permissible band of values lie an infinity of numbers and one has not
‘accounted’ for the particular one among them that is measured. In
invoking an extraneous (to science) appeal to our being here, the an-
thropic principle prematurely shuts off the quest within science itself
to account for the value of o, even should this lie far in the future.

Dirac maintained that it is more important to have ‘beauty in one’s
equations’ than anything else. The idea was spectacularly successful for
him in his derivation of the equation for the electron, that compact and
elegant equation not only reconciling quantum mechanics with Spe-
cial Relativity but containing so much more within it, including the
electron’s intrinsic spin angular momentum and its correct coupling
to the orbital magnetic field, and the description of the anti-particle,
the positron. Symmetry and such aesthetic readings into it are guiding
principles in how we work, but we also have to be wary, even in the light
of successes when it has indeed led to progress. Einstein, in formulat-
ing his General Theory of Relativity, with just two terms, one on each
side of the equation, both tensors of second rank, on the one side from
space—time curvature and on the other the energy-momentum tensor,
dropped another term that could also be admitted into the equation.
That matter and geometry could be related down to the most econom-
ical and spare capsuling of them in just two terms had a compelling
logic and attraction.

The third term involves the so-called ‘cosmological constant’, A:
Ruv = guvRi2 = Aguo = ~(87GJc") Ty, (5.1)

where g,y is the metric tensor (Sec. 1.2.4), Ry, the Ricci'” tensor, a con-
tracted form of the Riemann' tensor, itself formed out of derivatives

12 Gregorio Ricci, 1853—1925, Italian. Mathematician with contributions to algebra
and analysis, and inventor of tensor calculus.

13 Bernhard Riemann, 1826—66, German. Famous mathematician, known for geo-
metrical investigations of curved surfaces, later to become a key part of Einstein’s
General Theory of Relativity. He made fundamental contributions to number theory
as well; his famous ‘Riemann hypothesis’ is still unproved. It is seen as central to a host
of results, including the distribution of prime numbers.
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of the metric tensor, R is the trace of the Ricci tensor (that is, the sum
of the diagonal entries), while T, is the energy-momentum tensor.
All quantities on the left-hand side have to do with space—time geom-
etry, whereas that on the right describes the matter that determines
that geometry and is in turn influenced by it.

The A cosmological term had a curious gyration in its history.
Einstein saw correctly that it could accommodate a repulsive gravity,
for which there was no evidence in his time, and a Universe that would
be expanding under its influence, again with no extant evidence. He
dropped it to obtain a static Universe. Yet, it was not too long afterwards
that the expansion of the Universe was indeed discovered and the real-
ization that even with just the two terms alone such solutions to the
equation existed. The expansion could thus have been seen as a predic-
tion of the theory, leading to the oft-quoted ‘greatest blunder’ of his
to have thought only in terms of a static Universe. And, very recently,
the observational discovery that the expansion is itself accelerating has
resurrected the cosmological constant as one natural way of accommo-
dating this acceleration. All other considerations of beauty, elegance,
and aesthetics must ultimately give way to unambiguous observation
and experiment. That is the nature of physics, initially termed ‘experi-
mental philosophy’. Just as with Newton’s gravitational constant, G, or
the speed of light, ¢, A is simply a given constant of our Universe. It is
what it is, and for us to measure and incorporate into our physics.
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Maps in Various Forms

6.1 Mapsin Human History

As with most of the themes discussed in this book, maps and map-
making go back to early human history, perhaps even further. Along
with the idea of a linear dimension for distances, early hominids may
well have used primitive forms of maps to keep track of where they
were, and recognized landmarks and orientations with respect to the
Sun and Moon for returning from the hunt. Even animals and insects
use some form of maps. We know that bees use a representational map
on the walls of their hives to communicate to their hive mates the lo-
cation of a source of nectar or pollen, and homing pigeons, monarch
butterflies, and long-distance migratory birds are expert navigators.
Seafarers such as the Chinese, or Indians and Arabs whose dhows
plied between their lands, must also have had map knowledge of their
shores, and they helped the first European sailors to make the crossing
from Africa to Asia (an Arab pilot, Ahmad Ibn—Madjidl, is said to have
taken Vasco da Gama® in 1498 on the crossing to India). Captain Cook®,

I Ahmad Ibn-Madjid, 1421-1500, Arab. Poet and navigator, said to have operated
around Oman and the waters of the Arabian Sea.

2 Vasco da Gama, 1469—-1524, Portuguese. Explorer and navigator, and the first Euro-
pean to complete an ocean voyage to India. This and a second voyage opened the spice
trade from Asia to Europe. He was appointed Viceroy of Portuguese territories but on
his next trip he died of illness in Indjia.

3 James Cook, 1728—79, English. Explorer, navigator, and cartographer of the British
Navy, who first mapped the St Lawrence River before making voyages to the Pacific
Ocean, and the first circumnavigation of New Zealand. The first of the Pacific voyages
had the scientific objective of observing the transit of Venus, and carried the botanists
Joseph Banks and Daniel Solander, whose illustrations and collections of the unique
flora of Australia achieved renown. On the second voyage, he carried the chronometers
of watchmaker Harrison that decisively settled the problem of locating the longitude
at any location, a problem that had been considered the central scientific question for
over a century. During the third expedition, he went on to map the north-west coast
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when he sailed with a Polynesian priest, Tupaia", who directed him be-
tween islands not known to Cook, marvelled that he seemed to have
all the maps in memory, as did the Polynesian sailors who had traversed
the South Pacific for over 2,000 years. With the advent of European navi-
gators from the 15th century on, maps of the continents they travelled
to gained major importance and became prized commodities, treasured
and fought over by nations and kings.

Maps, and old maps in particular, still hold our fascination (Fig-
ure 6.1). They decorate our walls at homes and businesses. These old
maps themselves become a story of the development in time of our
knowledge of our world. Today, simple geographical maps have evolved
into all kinds of representational maps displaying, in an effective visual
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Figure 6.1 1522 world map of Laurent Fries, based on the Waldseemdiller
map of 1513, one of the earliest maps. <http://commons.wikimedia.org/wiki/
File:Fries_worldmap_1522.jpg>.

of North America and Alaska. Later, in an altercation with the King of Hawaii and his
men, he was speared to death on a beach.

1 Tupaia, 1725-70, Polynesian. Navigator and tribal priest, whose astonishing know-
ledge of hundreds of Pacific islands and the surrounding waters, which he had learnt
from his father and grandfather, led to his being taken on by Joseph Banks on Captain
Cook’s first Pacific voyage. He died of illness on board the ship in Indonesia.
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manner sometimes more efficient than words, some aspect of our lands
and our lives, whether the distribution of wealth or of disease [29]. Fig-
ure 6.2 gives an example of what is now available for each disease. And,
with global positioning systems (GPS) and hand-held devices, we can
carry a wealth of information in the palms of our hands, and know
our precise location even in the deepest jungles of the Amazon or
out in some vast expanse of an ocean. All this is a ‘world away’ from
the experiences of a Columbus’, Drake®, Magellan7 or Cook and their

Figure 6.2 A map of musculoskeletal disease, with increased shading (or col-
our coding from yellow through orange to red) indicating increasing burden
as measured by disability-adjusted life years. <http://commons.wikimedia.org/
wiki/File:Musculoskeletal _diseases_world_map_-_DALY_-_WHO2004.svg>.

5 Christopher Columbus, also Colon (Spanish), and Colombo (Italian and Por-
tugese), 1451-1506, Italian. Navigator and explorer, often described as the European
discoverer of the Americas through his four expeditions across the Atlantic Ocean
under the banner of the Spanish kings. While others, including Europeans, had pre-
ceded him, his voyages had a profound impact through Spanish colonization, and
through the commerce and interchanges between Europe and the Americas. While his
original intent was to discover a route to the spices and silks of Asia by sailing west from
Europe, he underestimated the size of the Earth and was unaware of the New World
in between, but his voyages had dramatic consequences in the travel in both directions
of people, animals, diseases, and food products (corn/maize, cocoa, vanilla, potato, and
tomato all originated in South America).

6 Francis Drake, 154096, English. Sea captain, navigator, pirate, and explorer, the
second person to head a voyage to circumnavigate the globe. He played a decisive role
in the battles between the English and Spanish armadas.

7 Ferdinand Magellan, also Fernando (Spanish) and Fernao (Portuguese),1480—1521,
Portuguese. Navigator and explorer, who got the Spanish Crown to support his
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crews, and of countless and unnamed sailors before, who discovered
so much of this in the past five centuries. Many, of course, died, and
shipwrecks still litter distant shores.

A map, in its simplest and original form, represents the positional
layout of objects in a geographic landscape. It has, however, expanded
to become a major metaphor of our languages, as a representation of
much else [30]. This includes the use of representations in the sense of
physics, as will be considered in this chapter. In that usage, there are
many dimensions to the word ‘representation’. A first parameter about
any geographical map is the scale, for instance 1:10,000. This means
every unit distance on the map is a faithful rendering (representation)
of 10,000 units on the surface of the Earth. Clearly, the smaller that
number, the more detail that the map is capable of describing (Fig-
ure 6.3). Of course, it would be unrealistic to bring the scale down to 1:1,
the map then being essentially the full surface itself or whatever piece
of it is being described. Thus maps may approach the underlying reality
being described but are not identical to it. So too in physics, which, as a
subject, is itself a model for an underlying reality, and we should always
be aware that we may hope to get closer and closer but not mistake our
descriptions for that reality itself.

The next parameter of a map, again because it is a representation and
not the underlying geography itself, is that a map renders on a two-
dimensional flat piece of paper or parchment a curved two-dimensional
surface of our globe that is embedded in three dimensions. This ne-
cessarily introduces certain incompatibilities or distortions, and early
history threw up alternative representations, each emphasizing or be-
ing accurate for one purpose or another. Among these ‘projections’,
some preserve direction, useful in navigation for setting the compass
for travel to a specific destination, but at the price of distorting areas, or
vice versa. Indeed, these are incompatible choices, so that it is necessar-
ily so that compass direction and area-preserving maps will violate each
other. Of course, a sphere itself, the globe of our childhood possessions,
in being geometrically similar to the Earth (although even there our

discovery of the passage between the Atlantic and Pacific Oceans, those Straits now
named for him. He observed the Magellanic Clouds, which are dwarf galaxies. While
one ship of his fleet completed the expedition, becoming the first to circumnavigate
the Earth, and returning with spices from the East Indies, he himself was killed on an
island of the Philippines.
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Figure 6.3 Different scales for a map. Modified by John Krygier from John
Krygier & Denis Wood, Making Maps 2nd ed., Guilford Publications, 2011.
<http://krygier.owu.edu/krygier_html/geog_222/geog 222 _lo/geog 222_lo04.
html>.

Earth is not a perfect sphere but has the shape of what can only be de-
scribed in its own terms as a ‘geoid’), does not have these distortions but
then is often unwieldy for use as a map. Among the major projections
that most are familiar with is the ‘Mercator’®, named for its inventor

8 Gerardus Mercator, 1512-94, Belgian. Mathematician and cartographer. He was
the first to use the term ‘atlas’ for a collection of maps. He produced maps of Europe
and the world, becoming the leading mapmaker of his age, his son continuing his work
after him.
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Figure 6.4 The Mercator projection for a map. While preserving compass
direction, and thus being invaluable for navigation, areas are distorted, es-
pecially at large latitudes. <http://upload.wikimedia.org/wikipedia/commons/
thumb/6/62/Usgs_map_mercator.svg/2000px-Usgs_map_mercator.svg.png>.

Figure 6.5 A world map. Strebe: http://en.wikipedia.org/wiki/File:Winkel_
triple_projection_SW.jpg.

(Figure 6.4). A modern map of the world is shown in Figure 6.5,
and the ultimate in maps, of our entire Universe, is now available
(Figure 6.6), including three-dimensional renderings of it <http://
blogs.discovermagazine.com/outthere/2013/06/16/the-most- amazing-
map-youll-see-today-no-matter-what-day-it-is/#.UdOhmhYldzZ >.
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Figure 6.6 Map of the Universe, displaying all observed galaxies, from H. M.
Courtois et al, Astronomical J. 146, 69 (2013).

6.2 Maps in Mathematics

We begin with the use of maps in mathematics. A map is an association
of one number or entity with another. A mathematical function, f(x),
familiar from school algebra or calculus, is thus a map, yielding for each
value of x a value (or more than one, for multiply valued functions)
taken by that function at that point; thus, M : x = f(x). xand f(x) need
not be restricted to real numbers but may be more complicated objects
themselves. Indeed, a familiar example today on TV or movie screen is
a globe ‘morphing’ into a flat opened map, or equivalents with other
physical or biological objects; this is an instance of a map, albeit more
complicated.

As an example, the operation of replacing an equilateral triangle, as
in Figure 6.7, by the next object in the figure with a triangular pro-
jection built on the mid-third of each side, is also a map. Iterating
such a map gives the next object in the figure after two iterations, or
the last one in Figure 6.7 after several, and generates what is called a
‘Koch? snowflake’ in the limit of infinite iterations. This is an example of
what is called a ‘fractal’, its mathematical dimension lying somewhere
between the 1 of the perimeter in any of the finite iterations, and the 2 of
the area enclosed. Other fractals, which have fired both mathematical

9 Niels Fabian Helge von Koch, 1870—1924, Swedish. Mathematician known for con-
tributions to number theory and the Riemann hypothesis, the most famous open
problem in mathematics (see footnote 13 in Chapter 5).
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Figure 6.7 Koch snowflake, showing three steps of iteration. In each, a line
segment is split into three, with the middle piece projecting out triangularly.
In the limit of infinite iterations, a fractal object is generated. David Price
<http://upload.wikimedia.org/wikipedia/commons/d/d9/KochFlake.svg>.

and popular imagination, can also be approached most simply through
such iterated maps (Figure 6.8).

Although fractals were understood by its mathematical pioneers,
Fatou'” and Julia'!, already a century ago without any such explicit
geometrical renderings, it is the advent of modern computers, which
make such iterations extremely easy, that has led to the spectacular
images that are now so familiar around us. Benoit Mandelbrot!?, in par-
ticular, has made ‘fractal’ an everyday word. Nature, of course, again

0 pierre Joseph Louis Fatou, 1878-1929, French. Mathematician and astronomer,
known for his work in celestial mechanics and on analysis, especially on bounded
anallytic functions. One of the first to study what today are called fractals.

T Gaston Maurice Julia, 18931978, French. Mathematician whose work on the
iteration of rational functions is recognized today as carly work on fractals.

12 penoit Mandelbrot, 1924-2010, French and American. Mathematician who
developed the concept of fractional dimensions and studied invariants under
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Figure 6.8 Examples of fractals: Mandelbrot and Julia sets. <http://
commons.wikimedia.org/wikifFile:Julia_set_(indigo).pngtuselang=en-gb,
http://commons.wikimedia.org/wiki/File:Mandelbrot_set_1250px.png?
uselang=en-gb>.

Figure 6.9 Fractal-like objects in nature: a cauliflower and a fern, along
with a fractally generated cauliflower. AVM <http://commons.wikimedia.org/
wiki/File:Cauliflower_Fractal AVM.JPG>.

because iterations are natural for cell division or growth, has near-
fractal shapes (Figure 6.9), even though not strictly so in mathematical
terms, as physics (ultimately atoms represent a finite end to unlimited
division of matter) and biology do not permit that infinite limit to be
reached.

transformations in the complex plane, coining the name fractals and populariz-
ing it through incredibly intricate self-similar patterns generated through computer
iterations.
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Figure 6.10 (a) A one-variable function as a map. (b) A two-dimensional
curved surface as a map.

But we will confine our discussion to functions as simply understood.
The one-variable map we started with, M : x — f(x), may be rep-
resented as in Figure 6.10a. It maps points along the straight line of
the horizontal axis onto an arbitrarily curved line that is the collec-
tion of the values f(x). A (real) function of two (real) variables, f(x, y),
such as the many examples considered in earlier chapters, whether
f(x,y) = K+ y2 or another, similarly maps any point (x,y) in the
horizontal plane onto a number on the surface ‘hovering’ above it that
represents the function z = f(x, y) as illustrated in Figure 6.10b.

Another possible map, or projection, in Figure 6.11 associates each
point on a circle with a point on the real line obtained when con-
necting it to the North Pole, N, and extending it backwards to inter-
sect the x-axis. The North Pole itself becomes the point at infinity in
such a projection (note positive and negative infinity become indistin-
guishable) and is sometimes dropped from consideration, for technical
reasons.
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Figure 6.11 Projection of a circle from the North Pole, N, to the horizontal
axis, associating an x; value with each point, P;, on the circle.

Figure 6.12, which extends Figure 6.11 into an additional dimension,
with the circle replaced by a sphere (say the Earth) and the real line by
the plane through the Equator, is familiar as a ‘stereographic projec-
tion’ and plays an important role in map-making and in physics. The
two-sphere called §? is mapped onto the plane called R? (a product of
two real lines). The problem posed by the North Pole or points near it in
the previous paragraph becomes even more acute, and it is clear imme-
diately that areas in that polar vicinity are grossly distorted and spread
over large areas in the plane. This is seen in standard geographic maps
that have northern portions of Greenland or Siberia spread out so as to
look much larger in proportion to other areas on the Earth’s surface.

Figure 6.12 Stereographic projection of a sphere onto a plane. This is a higher-
dimensional version of Figure 6.11.
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Although Greenland is only as large as Brazil, it looks much bigger on
such a map (Figure 6.4).

6.3 Maps in Physics

As already seen in other chapters, since transformations play a role
throughout physics and a map is a transformation, much of physics can
also be viewed as mapping one state of the system to another. This is
true of classical dynamics, which, through Newton’s laws or Lagran-
gian equivalent, predicts the state at a later time from knowledge of the
state at an initial instant. All classical mechanics is, therefore, a map,
initial states mapped onto final states. So too in quantum physics, with
again an essential element of all physics being to predict a subsequent
state of a system from its state at t = 0, this time through quantum
equations, which are as deterministic in this regard as are their clas-
sical counterparts. The Schrédinger or Dirac equations determine (1)
unambiguously from 1(0) given the potentials governing the motion.
The unitary evolution operator, a solution of the equation of motion,
performs this map.

It was noted in Chapter 2 that quantum physics brought even more
to the fore alternative representations than was already true in classical
physics because of the additional feature, from the start, of incompatible
choices among conjugate entities, such as the coordinate or momen-
tum representations. This is accommodated naturally in the language
of maps, where, for instance, an incompatibility between the preserva-
tion of area and direction is already inherent in projecting a two-sphere
onto a plane. This goes even further because the very non-locality of
quantum physics fits into a similar non-locality in any map of the Earth,
this time because a finite curved surface of a sphere is being projected
onto an open-ended plane, requiring left and right edges to the map
that are artificial. These edges can be placed anywhere and as conveni-
ent, but placed they must be and the two edges then identified in the
mind so as to wrap around in a continuous traversal from east to west
(or vice versa), as done by a circumnavigator.

In a map as in Figure 6.4 or Figure 6.5, two points on the Earth’s sur-
face on either side of that edge, are seemingly far apart and not ‘local’;
this so-called ‘adjacency’ problem is familiar in cartography [30]. There
is an interesting metaphor here for the inherent non-locality of quan-
tum physics because the state of any system with more than one particle
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resides in a large—dimensional space, not the three-dimensional one of
our experience. Even a simple two-electron system such as the helium
atom that was discussed in Chapters 2 and 3 has its spatial wave func-
tion, ¢(71,72), of the two electrons in six-dimensional space, so that we
have non-locality in terms of the one-electron spatial probability dens-
ity and, therefore, any one-electron properties that we measure in our
three-dimensional world. With more particles, the situation gets only
more complicated, but the non-locality of ordinary mapping of §* em-
bedded in a higher (third) dimension onto a two-dimensional plane is
an apt metaphor for these larger non-localities of quantum physics.

Among other examples of non-locality, a very illustrative one is called
the Bohm13 —Aharanov!®effect. An electron passing by a region of mag-
netic field, B has its wave funLtlon p1ck up a phase proportional to the
integrated vector potential, f A - dl seen along its path. The path may
not pass through the magnetic field itself but it is the vector potential,
with B = V x A that enters in the expression for the phase, and it is A
that may be present along the path. Given the gauge degree of freedom
with different A having the same curl describing the same magnetic
field, this poses the question of whether to believe in its ‘reality’ or that
the wave functlon can still sense non-locally the ‘real’ magnetic field
behind that A.

The question becomes one of experimental physics in an arrange-
ment such as that shown in Figure 6.13, when the electron between
source and detector has two alternative paths around a region of con-
fined B (see also Figure 8.2). While paths have no meaning in quantum
physics, the relative phase dlffereme between the two alternatives does.
It is given by the integrated A -dl in the area enclosed by the loop. This
has, however, an unambiguous meamn_g, being, through Stokes’s the-
orem (Sec. 1.2.2), the surface integral of B over that area. That non-zero

B David Bohm, 1917-92, American and British. Theoretical physicist who contrib-
uted to quantum philosophy and neuropsychology. His alternative interpretation of
quantum mechanics through so-called hidden variables and reformulation of Einstein—
Podolsky—Rosen’s critique of the standard interpretation inspired the work of John Bell.
Because of his political views and affiliations, he had to leave the United States in the
1950s for Brazil and England.

1 Yakir Aharanov, 1932, Israeli. Theoretical physicist, known for his work on topo-
logical aspects of quantum mechanics and field theories, and quantum measurements.
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Figure 6.13 The Bohm—Aharanov set-up, showing the two-slit diffraction
pattern of an electron beam in the presence of a solenoid holding a con-
fined magnetic field between the slits. <http:/[www.encyclopediaofmath.org/
index.php/Bohm-Aharonov_effect>.

values of such a magnetic field and its flux enclosed within the loop
cause interference effects for the electron pattern detected has been ex-
perimentally demonstrated. That the electron nowhere encountered
the shielded field poses the question of interpretation, that indeed
non-local effects of B are inherent to quantum physics.

This is also immediate in Feynman’s path-integral formulation,
where, between source and detector, all possible paths, not just the
two or few we think of as natural from classical intuition, are involved
and, in this case, these include paths through so-called shielded re-
gions as well. When there is a non-zero magnetic field there, it does
have observable effects. Counterparts of the Bohm—Aharanov effect in-
volving magnetic moments moving around a line distribution of charge
have also been experimentally demonstrated, all of which reinforce the
inherent non-locality of quantum physics.

The Bloch sphere noted in Sec. 4.2.2 for a quantum coin is an §* two-
sphere and provides an interesting example of one more aspect noted
in this chapter, namely, the stereographic projection, or, rather, its in-
verse, the inverse stereographic projection from the plane, regarded
now as the complex plane, onto a two-sphere. The unitary evolution
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of the state of the quantum spin according to the linear Schrédinger
equation can be handled through the standard Pauli matrices, three in
number, that describe the su(2) Lie® algebra of a spin-1/2. One writes the
evolution operator as a product of three exponentials, each having in
its exponent a product of one of the Pauli matrices (0+,0_, 0;) with
the unit imaginary 7 and a function of time. The choice of this triplet
rather than the Cartesian set (0y, 0y, 0,) gives less non-linearity (quad-
ratic rather than infinite series in sines and cosines) and a more ready
interpretation.

The function multiplying the diagonal 0, is a phase that can take any
value from zero to 00 and is said to have the symmetry algebra u(1) or
of the Lie group U(1). A single complex function, z(t), and its adjoint
appear as the functions in the exponents with o4. This z(t) obeys a so-
called ‘Riccatilﬁequation’ that has second-order non-linearity, which is
not surprising because writing the wave function as an exponential is
a non-linear operation. This first-order differential, but second order
in non-linearity, equation is equivalent to the second-order differential
but linear Schrodinger equation. Invoking now the inverse stereo-
graphic projection of Figure 6.12, the function z(f) can be mapped onto
the §2 Bloch sphere. Together, this 5 sphere, called the base manifold,
and the U(1) phase at every point on it, referred to as the fibre, repre-
sent the SU(2) group of spin-1/2 as a ‘fibre bundle’. This is a simple way of
understanding the role of the Bloch sphere in casting the quantum evo-
lution of a spin into that of a classical unit vector’s rotation on a sphere.

The inverse stereographic mapping for spin-1/2 or a two-level system
or qubit finds more general mappings when extended to higher spins
or N-level systems or qudits of dimension d = N. In a very similar
construction as in the previous paragraph for N = 2, with a product
of three operators, the last diagonal, and the others involving sets of
complex numbers, z(t) can be mapped onto higher-dimensional and

15 Marius Sophus Lie, 1842-99, Norwegian. Mathematician whose extraordinary
studies of continuous symmetries and their role in geometry and differential equations
permeate those subjects and theoretical physics. An associate of Felix Klein, they to-
gether established most of the subject of group transformations. ‘Lie groups” and ‘Lie
algebras’ are used throughout quantum physics.

16 Francesco Riccati, 1676—1754, Italian. Mathematician and engineer who designed
canals and dikes in Venice, but known today especially for his studies of differential
equations with quadratic non-linearity.
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more complicated base manifolds and fibres described by larger groups
than U(1). Thus, applied to a pair of qubits and their group SU(4) (see
Sec. 4.2.3), analogous but more complicated manifolds to the single
qubit Bloch sphere in Figure 4.7 can be described [22]. Also, some of
the sub-groups of SU(4), and the corresponding physical systems and
Hamiltonians of two qubits can be mapped onto projective geometric
designs. Notably, sub-groups involving 7 and 10 out of the full set of
15 operators that occur in many logic gates and 4-level systems can be
identified with the diagrams in Figures 5.7 and 5.6, respectively [22].
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The Problem of Time

7.1 Time in Our Lives

As with the concept of space and our location in it, time has always had
a central hold on humans and human history. The inexorable passage
of time from the moment of our births so dominates our thinking and
language that it is difficult to construct a couple of sentences without
words that are related to it (moment, days, before, after, . . .). But, from
the beginning, the concept of time has posed questions and problems to
lay people, philosophers, and physicists alike. What is time apart from
what our watches and clocks display? Is it universal, a characteristic of
our Universe, or is our experience of time individual to each one of us?

Einstein’s Special Theory of Relativity, in fundamentally changing
Newtonian ideas of space and time, which had time as a background
against which we observe motion, showed how even concepts such as
simultaneity of events depend on the observer’s frame. Different inertial
frames in relative uniform velocity with respect to one another will dif-
fer on such notions (Sec. 1.2.4), making scientific a theme that jokes and
myths have long played with. Thus, the one about a turtle that walks
into a bar and calls for a stiff drink because it has just been mugged
by two snails. To the bartender’s solicitous “What happened?’ it says, ‘1
don’t know, it all happened so fast’. Or a story from Indian mythology
of a king and companion coming to a lake, the king going in for a dip
to emerge minutes later as the companion sees it but the king himself
going through several life cycles and covering the full gamut of human
experience as he sees and experiences it in that ‘same’ period.

And then there is the old saw about time being a way of keep-
ing everything from happening all at once. Several ancient cultures
regarded time as an illusion. All these hind assonances in physics.
For a light beam, as follows from the Special Theory of Relativity,
time stands still. Classical physics already, and even more quantum
physics, admits alternative formulations, one time dependent and the
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other independent, raising the question of whether time is a necessary
concept or, perhaps, should be done away with all together. This idea
has occurred to many and, most notably, has been advocated in physics
by Julian Barbour’.

There are two aspects to time that are conceptually and operationally
very different. One is the Newtonian concept of time as a background,
uniform flow in one direction from past into present and on to the fu-
ture. The other is of periodic phenomena where something repeats.
This latter, especially when it is regular, provides the way of measur-
ing time intervals. Days and years follow from the motion of our Earth:
rotation about its own axis, and revolution in orbit around the Sun, re-
spectively. The human heartbeat is another, this time on our own scale,
and approximately the second that results when a day is divided by def-
inition into hours, minutes, and seconds, the conversion numbers of 24
and 60 being historically set.

As in the example presented in Sec. 1.1, a pendulum of 1 m oscil-
lates from one end of its swing to the other in something very close to
a second because of the particular value of Earth’s gravity, g (note that
this depends mainly on the mass and radius of the Earth, not its mo-
tion, although the effective gravity at any location is slightly affected by
the rotation and its attendant centrifugal acceleration, thus depending
on latitude, but the deviation is never more than 0.3%). Indeed, Gali-
leo is supposed to have arrived at this realization by timing against his
own heartbeat a censer that he observed swinging in church. With the
effects of tides and other variations making the astronomical clock of
the Earth’s motion not accurate enough for modern science and tech-
nology, the second is now defined in terms of something much more
accurately periodic, the transitions in an atom as it passes from one en-
ergy state into another. Today’s time standard is given by such ‘atomic
clocks’ maintained at the National Bureaus of Standards of various
countries.

7.2 Time in Classical Physics

Time as an absolute background, the same for all observers, was part
of Newton’s formulation of classical mechanics. With absolute velocity

1 Julian Barbour, 1937, British. Physicist, interested in quantum gravity and the
nature of time.
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meaningless, only relative velocities having significance, frames of ref-
erence would differ in their ascribing of position, depending on the
relative velocity between the frames, but all would share the same 1.
This is Galilean or Newtonian relativity. A primed and unprimed co-
ordinate system of two such frames with relative velocity v have their
spatial coordinates related by

=T+ (7.1)

with the same time for both frames, Y/ = t. The laws of mechan-
ics seemed consistent, especially since they involved only accelerations,
and both frames would agree on them, and on the forces and torques
present. It was, however, with the advent of electromagnetism, Max-
well’s equations not being consistent with Galilean/Newtonian relativ-
ity, that a major re-examination was called for, as realized by Lorentz,
Poincare?, and others, and finally and most decisively by Einstein.

Einstein’s Special Theory of Relativity modifies these equations to a
slightly more complicated mixing up of space and time,

T =y +w, (7.2)
{ =@+ wld),

with y = 1/4/1—(¥*/c?), called the Lorentzfactor and responsible for
the length contractions and time dilations observed in one frame as
viewed from the other. The speed of light, c, being large on the scale of
most phenomena encountered at the macroscopic level (an especially
fast meteorite that crashed in California in April 2012 was travelling at
30 kmy/s, still small on the scale of light velocity’s 10,000 times larger
value, vz/c2 effects therefore being only one part in 108), relativistic ef-
fects did not become evident until the exploration of the microscopic
level of atoms. But, with today’s accuracy of GPS (global positioning

2 Jules Henri Poincare, 1854-1912, French. Mathematician, physicist, and philoso-
pher, with many contributions to celestial mechanics (especially the three-body prob-
lem), applied mathematics, and mathematical physics. He was one of the founders of
topology and chaos theory in classical dynamics, and introduced group theory into
physics. He also independently discovered what are called Lorentz transformations and
some of the ideas of Special Relativity. A popularizer of mathematics and science, he
wrote several books for the layman. He differed from Kantian philosophy, and from
Bertrand Russell and Gottlob Frege, in arguing for the supremacy of intuition over
logic in mathematics.
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system) and other technologies, they, along with general relativistic
effects of similar order, are crucial for something as mundane as the
location maps on the dashboards of our cars.

The Einstein—Lorentz transformations of Eq. (7.2) give the correct
description of all classical mechanics and electromagnetism, includ-
ing translations, rotations, and velocity boosts between inertial frames.
The invariant that follows (Sec. 1.2.4) from these equations is the
space—time interval i — 7 = A% — /2. Classical mechanics and clas-
sical electrodynamics are perfectly internally consistent and coherent
theories.

Lagrange and Hamilton reformulated Newton’s equations in a more
general and convenient form. Energies, potential or kinetic, scalar
quantities and not vectors such as forces and torques, became the basic
ingredient, and the equations were form invariant, the same in any
coordinate system (Sec. 1.2.3). Both were great simplifications for the
handling of the equations and for fiinding solutions. Their immediate
connection to conservation laws when a symmetry means the absence
of a coordinate in the Lagrangian has been discussed in Sec. 5.1.2. But,
even more significantly, for the theme in this chapter, they allowed for
a ‘global’ rather than ‘local’ picture of motion.

Instead of a specification at every instant between the motion’s initial
A and final B of the particles’ positions and velocities, any next instant’s
values following from the forces prevailing at the previous instant, this
global formulation is very different. It considers the entire motion in
terms of an ‘action’, defined by an integration over t of the Lagrangian
between A and B, thus involving all times in between. An associated
variational principle, that the actual motion is the path that makes this
action integral stationary, is a fundamental change of ground philo-
sophically. The local description from one time step to the next is
replaced by a global statement about the full motion. That the local and
global formulations lead to the same physics is because of the statement
of stationarity under all possible variations. These would include a path
only slightly deviating around some local position from the actual one,
so that, without holding locally as well, the global stationarity would
fail (Figure 7.1). But it also raises the question of doing away with con-
sideration of time because tis integrated over, and so those intermediate
values between t, and tp are irrelevant to the physics of the motion.

Next, there is the question of initial conditions. Newton’s emphasis
on initial conditions is almost as important a contribution of his to
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Figure 7.1 Lagrangian paths connecting events A and B, with the classical
path shown in the middle, along with a close one that differs only in one tiny
segment.

physics as are his laws of motion. He held that these laws were not
enough but also necessary are the initial conditions for any physical sys-
tem. Thus, to those who questioned his theory accounting for elliptical
orbits in the Solar System but not the specific ones seen or why they
are all in a plane, he said that there are always initial conditions, and
a future theory that goes further and explains some of them will have
its own conditions that lie outside the purview of the laws themselves.
Indeed, Laplace’s nebular hypothesis and the flattening of a gas cloud
into a disc does account for orbits ending up in a plane, but the ini-
tial swirls in the nebula accounting for the angular momentum in the
system then become the new initial conditions.

As a simple question of mathematics as well, a differential equation
by itself is not enough but initial or boundary conditions are needed
to specify any particular solution. For a second-order ditferential equa-
tion such as Newton’s, these are often taken as the coordinates and
velocities specified at the initial instant, and this is what is meant by
a physical system in Newtonian mechanics. The Lagrangian formula-
tion through the stationarity of the action instead holds A and B fixed,
the coordinates and times at those boundary points being fixed. We
will consider in Sec. 7.4 another formulation through first-order but
non-linear equations with again only an initial condition.
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Newton, Lagrange, and Hamilton treat time differently from space,
which carried over into quantum physics as well, initially in non-
relativistic quantum mechanics. The problems this created for quan-
tum physics will be discussed in Sec. 7.3 but it is worth noting how
Hamilton in particular was almost prescient in anticipating quantum
mechanics, including in formulating the action integral, the dimension
of action being that of Planck’s quantum constant. With the discov-
ery of that fundamental constant, Feynman’s path integral formulation
follows almost naturally, by placing the action divided by f for all pos-
sible paths in a sum over them, exp(i§/h), to lead to the quantum wave
function. The relativistic generalization, where space and time must be
treated on an equivalent footing, as achieved finally in quantum field
theory (but not mechanics), was also almost anticipated by introdu-
cing an integration over space through a Lagrangian (space) density,
both 7 and ¢ thus being integrated over, and thereby dethroned from
any central role in physics.

7.3 Time in Quantum Physics

Heisenberg and Schrodinger developed non-relativistic quantum
mechanics, with again time treated differently from space. The spa-
tial coordinates were treated as operators along with their conjugate
momenta, with which they do not commute. The Born—Heisenberg
commutator, [x,p] = ik, or the equivalent regarding of lini:ar mo-
mentum as a gradient in space, p = (f}i)d/dx or p = (H/i)V, along
with E = H = ihd[dt, leads to the Schrédinger equation of mo-
tion that replaces Newton’s. This conversion of the expression of the
Hamiltonian of a system as a sum of kinetic and potential energies,

= (p*2m) + V(7), into the first-order differential in t and second-
order differential in space Schrodinger equation satisfied the physical
requirement of an equation of motion, that it predict the state of a
system at t from knowledge of that state at t = 0. But it conflicts
with the Special Theory of Relativity in treating space and time differ-
ently. Indeed, the Heisenberg uncertainty relationship between x and
p that also follows from the above commutator does not have an ex-
act counterpart for energy and time. Although there is an uncertainty
link between energy and time, its interpretation is quite different, there
being no operator associated with time, ¢ remaining just a parameter
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in quantum mechanics, as it did in Newtonian mechanics. Attempts to
make t an operator have always failed, which is another pointer to the
theme of this chapter about doing away with it for physics.

It is a curious fact that Schrodinger initially wrote down a relativis-
tically correct equation, which is not a surprise, as he would have been
well aware of Special Relativity’s role in physics, but he discarded the
resulting equation. Starting with (Sec. 1.2.4) the relativistically correct
relationship, B = szj’z + m*c*, rather than the non-relativistic expres-
sion in the previous paragraph, and making the same replacements of
E and ﬁ by differentials in time and space, led him to an equation but it
was also second-order differential in time (just as it was in space). This
seemed incompatible with a proper equation of motion which, in pre-
dicting the state at a later t from knowledge at t = 0, should be of
first order. He then formulated the equation that goes by his name,
his discarded equation being later recognized as also a correct one,
indeed relativistically correct, but describing a relativistic scalar field,
not the mechanics of a particle. It is today called the Klein—Gordon®
equation.

7.3.1 Time in Non-Relativistic Quantum Mechanics

As is its counterpart in classical mechanics, the non-relativistic quan-
tum mechanics of a particle is also internally consistent. Given the
wave function, ¥(0), at time zero, it correctly describes the evolution
to the state’s wave function at a later time, ¥(t), unambiguously, just as
Newton’s equations describe the evolution of the classical state from the
values of its coordinates and velocities at an initial instant. Only what is
meant by the state of a system differs between classical and quantum
physics. As in the Lagrangian formulation, there is also a variational
formulation of the Schrédinger equation.

There are, however, in non-relativistic quantum mechanics, even
more sharply than in classical mechanics, two different formulations
describing the same (and all) physics, one time-dependent and an-
other time-independent, this latter in terms of the stationary states
of the system. This can be illustrated already by one of the simplest
applications, namely encounters of a one-dimensional particle with

3 Walter Gordon, 18931939, German. Theoretical physicist who worked on the
relativistic treatment of quantum particles.
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potential steps and barriers, which is taught in the very first lectures to
an undergraduate student and also historically important as one of the
first successes of quantum physics as applied by Gamow? and others to
what is known as ‘quantum tunnelling’. This is one of the most ubiqui-
tous and important of quantum phenomena. Nuclear fusion in stars,
covalent binding of two atoms in a molecule, and the various tunnel-
ling microscopes of today are but some examples besides radioactivity
in which tunnelling through a barrier is involved.

Most textbook and other discussions of a particle on a one-dimen-
sional step or barrier (Figure 7.2) are phrased in terms of time, that the
particle is incident, say, from the left with some energy E= p2/2m and
is thus described by a travelling wave, exp(ipx/h). Along with the (of-
ten implicit, and not always shown) time dependence, exp(—iEt/F), this

| I i

Ny Fava 2

\E/\

X

Figure 7.2 A step potential barrier that reflects and transmits waves and par-
ticles incident on it from the left. That incident and reflected waves exist in
region I and only transmitted waves in region III, also for energy E below bar-
rier height V (quantum tunnelling), is illustrated, as is also the wave function
over all x. The wavelength is the same in regions I and III, but the amplitude
is lower in the latter, indicating a transmission probability smaller than unity
(but not zero) for E < V.

1 George Gamow, 1904-68, Russian and American. Theoretical physicist and cos-
mologist. He was one of the first to recognize the effect known as tunnelling in
quantum mechanics, using it to account for alpha-decay radioactivity. He is known for
advocating the Big Bang Theory of the origin of the Universe, worked on nucleosyn-
thesis in the early Universe, and predicted the relic cosmological radiation that was
later observationally discovered as pervading the Universe in all directions and con-
firming the Big Bang origins. After the discovery of the structure of DNA, he played a
part in advancing the ideas that led to the discovery of the DNA code for amino acids.
Known for his playful pranks and puns, he was a popularizer of science with a series
of books in which a character called Mr Tompkins encounters relativistic and quantum
phenomena in terms accessible to the layman.
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represents a particle travelling from left to right, whereas exp(—ipx/h)
would represent the opposite of a particle moving from right to left.
Along with the reflected wave in region I in Figure 7.2, both inde-
pendent solutions in region II, and only a wave travelling from left
to right in region III because no particle came at the barrier from
the right, continuity at the borders between the regions to get a
single continuous solution from —00 to 00 gives the desired solu-
tion, as shown, from which are extracted reflection and transmission
coetficients of the barrier at any energy E. This is a time-dependent de-
scription with states | E, p) of energy and linear momentum, and using
complex wave functions from the start as solutions of the Schrédinger
equation.

As already observed, however, alternative representations are on an
equal footing in quantum physics. For a free particle, instead of the
eigenstates of the previous paragraph, another such is where the pair
of commuting operators is chosen to be the Hamiltonian and parity,
as was discussed in Chapter 5. These are standing waves in place of
travelling waves, with real sines and cosines instead of the complex
exponentials. Any solution for a one-dimensional free particle can be
written in terms of them and is equally acceptable. Thus, superposi-
tions of sines and cosines can be written for each of the regions I and
11, and either real exponentials (rising and falling) or hyperbolic func-
tions for region II, with continuity again established at the boundaries.
The entire discussion can proceed with real functions without introdu-
cing any complex elements, which is consistent also with dealing with a
real stationary-state Schrodinger equation with real potentials, nothing
complex needing to be invoked.

This is also at the same time (!) a time-independent description. It is
only the boundary condition at +=00, that a particle went in from left,
not right, that can introduce complex elements. It is also here that the
parity symmetry is broken, at this level of the boundary condition that
distinguishes left from right, not in Figure 7.2 or the Schrédinger equa-
tion, which are parity invariant. For this reason, the two parity solutions
are superposed. But simple analysis [18] shows that the same reflec-
tion and transmission coefficients/probabilities follow as in the previous
paragraph. Since a superposition in regions I and III of a sine and a cosine
can be written as a phase-shifted sine (for odd parity) or cosine (for even
parity) due to the presence of the potential barrier, the final expressions
for reflection and transmission coefficients can be written as sin2(8+—5_)
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and c052(8+ —4_), in terms of ‘phase shifts’ for even and odd parity. It is
the difference in the two phase shifts that matters for the observed phys-
ics. In the final physics of measurable quantities, the two formalisms are
equally valid, equally good.

This extends immediately to the case where the barrier is replaced
by a well. Now there arises also the possibility of bound states in that
one-dimensional well. With the boundary condition (that wave func-
tions must fall exponentially at ioo) also real, it is natural to use the
standing waves and real functions of parity eigenstates and get the con-
ditions for the special values of energy where bound states of either
parity occur. The condition appears as tan § = —i and thereby as a tran-
scendental equation involving E. Typically, only a few discrete values of
E support bound states, whether of even or odd parity. Travelling waves
can also be used to set up the condition for bound states, with an im-
aginary wave vector, k = ik, and requiring only falling exponentials at
+00, and will give the same result [18].

Thus, as far as physics is concerned, a time-independent representa-
tion with standing waves is entirely equivalent to a time-dependent one
with talk of waves that travel in time. For the purposes of this chapter,
this contrast between two seemingly different treatments of the same
physics points to how an analysis with no reference to time works in
the quantum world. The key parameters instead are phase shifts that
depend on the energy, E, and are measurable quantities experimentally.
Not just bound states but even scattering, usually thought of in terms
of time and motion, are amenable to a time-independent description.
Three-dimensional scattering theory in more complicated situations
can also be analysed in the time-independent formalism. Interestingly,
time as a conjugate to energy, a key feature of quantum physics with f
playing the translating role, can be brought back into the discussion as a
‘Wigner time delay’ in terms of measurable (experimentally accessible)
quantities such as 2/id$/dE.

7.3.2 Time in Relativistic Quantum Mechanics

The previous section noted that the connection between energy and
momentum in the relativistic expression did not lead to a differential
equation that is first order in time and was initially discarded. To place
space and time on an equal footing and have both energy and momen-
tum enter linearly to get a first-order differential in the equation of
motion, Dirac factorized E* = ?p* + n?c* by ‘taking a square root’ of it.
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This led him to invoke an internal four-dimensional space so that
besides the space—time dependence, the wave function also had these
internal four dimensions, represented as a four-column vector. Along-
side appeared four-dimensional square matrix operators, the ‘Dirac
gamma matrices’, and the resulting E = )7 -1_5+ )/4mc2, with replacement
of energy and momentum operators by first derivatives in time and
space, respectively, gave the Dirac equation, [y, d/dx, + (mc/B)|yyr = 0,
which is manifestly relativistically covariant. The space—time index, 1,
runs over four values and the gamma matrices themselves are 4 X 4
in an internal four-dimensional space, this coincidence in that number
with the four of space-time being accidental.

This was a great triumph, and the transformation properties could be
studied of the ¥ matrices under space—time translations and rotations,
Lorentz boosts from one inertial frame to another, and under parity
(P), charge conjugation (C), and time reversal (T). The internal four di-
mensions were interpreted as a combination of two aspects, although it
took some time (1) for full appreciation of them. First, one factor of two
describes the intrinsic spin angular momentum of 1/2 (in units of f),
quantum spin thus appearing naturally and not inserted by hand as
previously had to be done to accommodate observed atomic spectra.

Further, the g-factor of 2 in coupling spin to a magnetic field, that
spin angular momentum couples twice as strongly as an orbitally de-
rived angular momentum, which had been experimentally observed,
also came out naturally through the Dirac construction. Spin, there-
fore, is a relativistic quantum phenomenon. The other two dimensions
of the intrinsic space were interpreted as the anti-matter counterpart,
whether of electron, muon, or proton, that the Dirac equation also de-
scribes and, indeed, for consistency is required to do so. This amounted
to a ‘prediction’ of such anti-particles as positron or anti-proton, the
charge conjugates of the previously known particles (the muon comes
as a positively and negatively charged pair). The Dirac equation does
not describe only an electron but perforce has to include the positron,
its anti-particle!

While all this represented a major advance made by Dirac’s placing
of space and time on an equal footing, it also pointed to an inevitable
failing of the quest for a consistent relativistic quantum mechanics of
one particle. The very fact that such a mechanics had to include the
anti-particle and that the marriage of relativity and quantum physics
permits the conversion of energy into pairs of particle and anti-particle
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means that there is no relativistic mechanics of a single particle. The
description of one electron inevitably includes a cloud of such pairs so
that the number of particles is not a conserved quantity or an invariant
in a relativistic quantum world. This means that one has to turn to a
field theory in seeking such a consistent theory. Besides empirical ob-
servations such as the ‘Lamb® shift’ and the small departure of g from
the value of 2 that also pointed to this, it is clear that while the Dirac
equation involves both space and time linearly, it nevertheless still has
(‘suffers from”) the same feature, ever since Newton, of treating time
as a parameter and not an operator, whereas space is so treated as an
operator conjugate to linear momentum.

7.3.3 Space and Time in Quantum Field Theory

Finally, with the realization that there is no consistent mechanics of
a particle when relativity and quantum physics are combined, physi-
cists came to the conclusion that a consistent picture of reality requires
field theories. The Dirac equation, or the Klein—Gordon equation, in
this view are not equations of a spin-1/2 or spin-0 particle, respectively,
but describe corresponding fields, and their solutions are field functions,
not wave functions of a particle. Both space and time on which these
field functions depend are parameters and not operators. This places
space and time on an equal footing, as required by Special Relativity.
Both non-relativistic quantum mechanics and Dirac’s initial formu-
lation of relativistic quantum mechanics violated this equivalence in
regarding only space as an operator, not time. Quantum field theor-
ies treat both space and time as parameters, the fields themselves being
the operators.

In giving up on making t an operator, spatial coordinates too are
no longer seen as operators but just background parameters or mark-
ers. It is the field functions themselves that are operators, and they are
defined at all points of the background grid of space and time. Upon
writing a Fourier decomposition of the field functions in terms of plane
waves in space and time, the coefficients are operators and are referred
to as creation and destruction operators of corresponding field quanta.

S Willis Eugene Lamb, 1913—2008, American. Physicist whose precision experimental
spectroscopy led to the detection of a small energy shift of atomic levels that triggered
the development of quantum electrodynamics as the first quantum field theory.
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It is they and, therefore, correspondingly, the field functions that obey
commutation (for spin integer) or anti-commutation (for spin half-odd
integer) rules. A basic feature of quantum field theories is that a con-
sistent quantization procedure requires the use of commutators and
anti-commutators, respectively, for fields that describe integer or half-
odd integer spins. Correspondingly, the associated particle excitations,
which also have the same spins as their fields, are termed ‘bosons’ and
‘fermions’, respectively, and obey the corresponding Bose—Einstein and
Fermi—Dirac statistics.

Particles themselves are seen as the quanta of excitation of these
fields. One need consider only one basic state, the vacuum state with
energy, momentum, angular momentum, and all quantum numbers
zero, and all physics can be described as expectation values in this vac-
uum state of operator products of field functions. A field function is an
infinite expansion over creation and destruction operators, with multi-
plicative plane wave factors. A creation operator, denoted as aT, acting
on the vacuum ket |0) represents one quantum of excitation. Sand-
wiching a field function between the vacuum bra, (0|, and this ket,
al |0, results in the quantum-mechanical wave function of the cor-
responding particle. More complicated products of creation operators
acting on the vacuum create multiple excitations. In the case of a non-
zero spin, the field function has creation (and destruction) operators of
both particle and anti-particle, and pairs of them can also be described in
such a formalism. It also becomes natural that even for a single particle,
the resulting wave function exists over all space—time, thus accounting
for one of the first non-intuitive (that is, on the basis of classical intu-
ition) features of quantum physics of a particle not being localized at a
single point in space and time.

With quantum field theory, and the picture of interacting quan-
tum fields, a consistent physics was finally in hand once again after the
consistent world view that had been provided by the non-relativistic
classical mechanics of particles. The step from the Dirac equation to
its interpretation as a relativistic Dirac field and the resulting quan-
tum electrodynamics (QED) also predicted small effects beyond the
quantum mechanics of an electron. Thus, in the latter’s treatment of
the hydrogen atom, the degeneracy between the 2s and 2p states that
goes all the way back to the non-relativistic Bohr—Schrodinger treat-
ment and that persisted through application of the Dirac equation for
states with the same total angular momentum, j = 1/2, was seen to
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be lifted. This is the Lamb shift, measurement of it having triggered
the formulation of QED by Feynman, Schwinger®, Tomonaga’, and
others. It is a small but crucial field-theoretic correction, being only
4.5x% 107 eV, to be contrasted with a typical non-relativistic energy such
as the 10.2 eV Bohr energy difference between this pair of states and the
ground state, or even the spin-orbit relativistic correction, the energy
difference between j = 1/2 and j = 3/2, which is 10 times larger.

Since that first successful quantum field theory of QED, many more
field theories have been elaborated, such as the electroweak or quantum
chromodynamics or the standard model, all having the same struc-
ture in terms of their treatment of space and time. For the theme in
this chapter, of doing away with time in physics, they introduce now
the natural accompanying element that space, too, is but a marker and
not a fundamental element of physics. The fundamental elements are
energy, and linear and angular momentum, all observables associated
with symmetries and laws of conservation. Time and space are to be
viewed as derivatives with respect to energy and linear momentum, re-
spectively, together with factors involving the twin elements of i and /i
of quantum physics (see Sec. 2.2).

7.4 The Invariant Imbedding Approach

Newton formulated the first equations of motion in physics as second-
order differential equations with initial conditions on position and vel-
ocity. A completely different set of equations follows for a variety of
problems, including those of mechanics, in a formulation that views
any given problem as part of, ‘imbedded in’, a family of problems.
Thus, consider the question of elementary physics of how high a par-
ticle rises when thrown from the surface of the Earth with some initial
velocity, v. The conventional Newtonian approach to projectile motion
under Earth’s gravity, g, is to integrate Newton’s equation, x = —g, with

6 Julian Schwinger, 1918-94, American. Versatile theoretical physicist and one of the
co-developers of quantum electrodynamics. He worked on the development of radar.
His masterful use of variational principles and Green’s functions originated from such
work in electromagnetism but extended to quantum field theories. He was influential
through his various books and reports and the many theoretical physicists who were
his students.

7 Sin-Itiro Tomonaga, 190679, Japanese. Theoretical physicist and one of the inde-
pendent co-discoverers of renormalization and quantum electrodynamics.
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x(0) = 0,x(0) = v, to get x(t) = vt — gt2/2 and x(t) = v — gt, familiar
kinematic equations, and determine the maximum height reached as
the point where the velocity vanishes, namely, at time T = v/g as given
by that second equation. ‘Eliminating’ T by substituting into the first
equation then gives the desired answer, H = x(T) = v? [2g.

The invariant imbedding approach, developed initially by Am-
bartsumian® and Chandrasekhar’ for astrophysical applications of ra-
diation flow through stellar atmospheric layers, and then as a general
technique by Bellman'?, Kalaba!!, and their collaborators, proceeds
completely differently. The question of height reached for velocity v,
H(v), is seen as a part of a family of such questions for varying v. Among
these is certainly the ‘trivial’ one, H(0), the height reached when
thrown with zero velocity whose solution is immediate: H(0) = 0. Next,
in the particle’s rise, when the particle has risen slightly and its velocity
dropped to v— Av, the height reached from there is part of the family of
questions: H(v — Av). The amount risen is easily written as a matter of
definition of acceleration, that it is the distance covered at velocity v for
the infinitesimal instant Av/g, namely vAv/g. Thus, clearly (Figure 7.3),

H(v) = H(v— Av) + vAv/y. (7.3)

The rest is simple calculus to get the first-order differential (note in v,
not in time) equation,

dH/[dv = /g, (7.4)

8 Viktor Ambartsumian, 1908-96, Armenian. A major figure in theoretical astro-
physics with many contributions to the study of stars and galaxies. In studying light
diffusion through media for astrophysical applications, he developed the mathematics
of invariance principles that later became the general method of invariant imbedding.

9 Subrahmanyan Chandrasekhar, 1910-95, Indian and American. Astrophysicist and
mathematical physicist, with wide-ranging contributions to our understanding of stel-
lar atmospheres and stellar structure. Using quantum mechanics for the electron gas in
a collapsed stellar core, he established an upper limit that bears his name for the size of
such ‘white dwarfs’. Also, he was one of the first to study the quantum mechanics of the
negative ion of hydrogen, both for its structure and for its role in stellar opacities. He
was the author of many texts on rotating figures of equilibrium, hydrodynamics, black
holes and gravitational waves, and a study of Newton’s Principia, and an influential editor
for two decades of the Astrophysical Journal. The NASA x-ray telescope is named after him.

10" Richard Ernest Bellm an, 1920—84, American. Applied mathematician, inventor of
the method of dynamic programming with practical applications in control theory.

1 Robert E. Kalaba, 1926-2004, American. Applied mathematician, with contribu-
tions to dynamic programming, and communication and control theory.
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Figure 7.3 The invariant imbedding analysis of H(v), the height reached by an
object thrown vertically with speed v against Earth’s gravity.

which can be immediately integrated with the initial condition already
set for H(0) to give the result H = v*/2g.

This illustration of invariant imbedding is instructive in its com-
parison with the conventional approach that invokes time explicitly,
determines T, and then eliminates it. All this is avoided in the invari-
ant imbedding approach. Even the invoking of the infinitesimal instant,
which would seem to introduce the concept of time, is actually for our
ease of use of language, Av/gfollowing as a simple consequence of accel-
eration being a rate of change of velocity, so that the distance covered
at speed v while changing by an amount Av at a rate g is given by vAv/g
without reference to time. ‘Rate of change’ also seems to involve the
concept of time, which just goes to show how inescapable it is for us to
use words denoting time. But, the important pointis that there is no ex-
plicitintroduction of time thatis later eliminated as in the conventional
approach.

What is striking about this approach is its economy in focusing on
just the quantities of interest, height and velocity, which are at the
same time measurable or experimentally accessible quantities at the
end points of the motion. While true that with our stop-watches the
time, T, is also accessible to measurement, even so it is redundant and
not what was being sought in the framing of the problem, namely, the
height reached for a given velocity of throw. No time element is ne-
cessary for this physics. The very formulation of imbedding in a family
of problems and then the use of calculus leads to first-order differen-
tial equations and initial value problems rather than the conventional
treatment’s second-order equations with two boundary conditions.

A quantum-mechanical example is in scattering theory, even a sim-
ple one such as scattering by a potential, V(). The time-independent



172 The Problem of Time

Schrédinger approach is to construct wave function solutions of that
linear second-order differential equation and fit them asymptotically
to a superposition of a standard pair of regular and irregular solutions,
typically a sine and a cosine, and thus extract a phase shift relative to
the regular solution in the absence of the potential. These phase shifts
make contact with experimental data on cross-sections, total or differ-
ential in energy or angular distribution, that are expressed in terms of
such phase shifts.

The imbedding approach is to think of a family of potentials, V(r),
in particular the given potential, as being built up of a series of such,
starting at r = 0 and truncated at different r all the way to c0. The
phase shift for any one of these is now a function of r, §(r). Clearly, with
the potential truncated at the origin itself, that is, no potential at all,
there is no phase shift, so that 6(0) = 0. On the other hand, given the
solution sin[kr + §(r)] at some r, the infinitesimal extra potential (Fig-
ure 7.4) between V(r) and V(r + &r) will add to it an infinitesimal extra
phase shift that can be written simply from the Born approximation

V(r)

Ar r

N

Figure 7.4 The invariant imbedding approach to quantum-mechanical po-
tential scattering from a potential, V(r). The full potential is viewed as being
built up of tiny segments, such as the one shown shaded.
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(k = p/kis the wave vector). Once again, using next the steps of the
calculus, a first-order differential (note in r, not in time) equation fol-
lows for tan 6(r). The Born expression, being a perturbation result, is
quadratic in the wave function sin[kr + 8(r)] so that the first-order equa-
tion is non-linear in 8(r). Together with the initial condition, 6(0) = 0,
the problem is well defined and can be integrated to give the desired
d(00) [31].

The connection between the two approaches is also clear. The wave
function at any value of r of the conventional treatment can be writ-
ten as a phase and an amplitude, both r dependent, and in a so-called
phase-amplitude method (PAM), the Schrédinger equation decom-
posed into a pair of equations for the phase and amplitude functions, as
in Sec. 2.1. The first-order, quadratically non-linear equation for tan 8(r)
that follows is precisely the one given by the imbedding approach.
Once 8(r) is obtained from it, the first-order differential equation for
the amplitude function is easily evaluated by quadrature. Again, as in
the projectile example, it is inherent to the imbedding method to lead
to first-order differential equations, albeit non-linear and often quad-
ratically non-linear. This connects to similar Riccati equations noted
in Sec. 6.3 or to the Hamilton—Jacobi'? equation of classical Lagrangian
physics. The commonality is also obvious that in writing a function in
terms of a phase in an exponent, such a non-linear operation trans-
forms a linear but second-order differential equation into a first-order
but (quadratically) non-linear one for that phase.

Viewing either of the two examples above directly in the imbedding
philosophy, this calculus in terms of a family of problems leads natur-
ally to first-order differential (in some relevant physical observable such
as v or r of the examples, not in f) equations and initial value problems.
There is also an economy in this approach, especially in not invoking
elements, whether time or wave functions, that are not accessible or
done away with anyway at the end. The definition of acceleration or the
perturbative Born result that involves only the square of the wave func-
tion (a quantity accessible to measurement) are enough asinput to give
the full solution. Quantum physics, in particular, brought this accent,

12 Carl Gustav Jacob Jacobi, 1804-51, German. Mathematician with fundamental
contributions to dynamics, elliptic functions, and number theory. One of the founders
around 1830 of the ‘physics seminar’ at Konigsberg, which combined rigorous training
in both theory and experiment, and which shaped curricula in physics first in Germany
and then elsewhere.
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especially emphasized by Bohr and Heisenberg, of physics dealing only
with what is in principle measurable with our experimental apparatus.
The imbedding approach fully conforms to this philosophy, develop-
ing equations for H(v) or &(r) rather than time or wave function. It
raises, therefore, the question of physics doing away altogether with
‘irrelevancies’ such as time (or wave functions).

7.5 Should Time Be Abolished?

Julian Barbour is perhaps the contemporary physicist who has thought
most deeply and for long about the nature of time. He, too, favours
a time-independent formulation of physics, with time itself regarded
in terms of a change in something else: ‘Physics must be recast on a
new formulation in which change is the measure of time, not time
the measure of change’[32]. And, instead of time flow, he would re-
place by instantaneous snapshots of the Universe as a whole, instants of
time that he calls NOWS. Time for him is a stringing together of these
NOWS. This suffers, however, from the same profligacy as does the
Many Worlds Interpretation advocated for quantum physics (Sec. 8.5).
Further, quantum physics makes At — 0 problematic because it im-
plies an infinite amount of energy, the conjugate quantity to time.
Indeed, even in the two theories of relativity, the same holds true. Any
non-zero mass particle can, according to the Special Theory of Rela-
tivity, travel at speed ¢, which is when time stands still, only at infinite
energy cost. And, in the General Theory of Relativity as well, where
gravitational fields are seen to slow down clocks, the limit of slowing a
clock down to zero requires an infinite gravitational potential.

The 17th-century artist Maria Sibylla Merian® of Frankfurt and
Nirnberg developed a unique, especially for its time, style of painting
with intricate renderings of insects and plants, as in a much later sci-
entific illustration tradition. Besides being a revolutionary as a woman
artist, her choice of subjects for her paintings were unconventional, in-
sects generally being regarded as ugly (the prevailing belief was that
they were spontaneously generated from mud) and not a subject for
serious art. Even more striking was her rendering different stages of an

3 Maria Sibylla Merian, 16471717, German. Artist and painter of natural history.
She is known especially for her paintings of insects, first in her native land and later
on a two-year trip to Surinam in South America. In addition to drawing and painting
them, she also studied carefully insects, plants, frogs, snakes, and spiders.
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insect’s life, the caterpillar, pupa, and adult butterfly all on the same
canvas. The entire life cycle of the creature was shown at once, to be
grasped in an instant (Figure 7.5). The technology of time lapse pho-
tography of later centuries would make possible the complementary
depiction of a single insect followed through all the stages from egg to
its adult shape in chronological sequence.

e

Figure 7.5 A painting of caterpillar and butterfly by Maria Sybilla Merian
(1705, illuminated copper engraving from a book in Senckenberg Naturmu-
seum, Frankfurt, Germany, Hannes Grobe). <http://upload.wikimedia.org/
wikipedia/commons/thumb/c/c9/Merian-grafic-senkenberg_hg.jpg/728px-
Merian-grafic-senkenberg _hg.jpg>.
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Astronomy provides an analogous example. The time scale of our
own lives being incompatible with that of stars, we study instead a
whole sample of stars in our own lifetime, all of the same type but at
different stages of their evolution, to provide the entire life history of
a single star of that type. Such complementary descriptions using ei-
ther a flow in time or a static, ‘frozen’, time-independent one, and the
various discussions in this chapter all raise the question of how essen-
tial time is to understanding physics. Already in classical electricity and
antenna theory, the complementarity between time and frequency was
well recognized. Indeed, in a very definite way, these Fourier conjugates
are related so that a distribution sharply peaked at an instant is spread
broadly over the entire frequency spectrum, and vice versa. Quantum
physics, through the entry of 1, the proportionality between energy and
frequency, extended this to energy and time providing complementary
pictures. Standing and travelling waves are both equally valid routes to
understanding the same phenomena (Sec. 7.3.1).

Atomic spectroscopy provides a similar picture. The stationary states
of an atom, solutions of the time-independent Schrédinger equation
with the Hamiltonian H of the atom (Sec. 1.2.5), provide a complete
picture of all possible phenomena associated with that atom. They are a
complete set and, through superpositions of them, time variations, in-
cluding scattering dynamics, can also be described. Indeed, for the first
many decades of quantum physics and the study of atomic structure
and dynamics, more and more precise spectroscopy with higher and
higher energy resolution and accuracy was developed. It is only within
the past decade that the advent of shorter and shorter laser pulses, now
down to a few hundred attoseconds, has led to the alternative emphasis
on direct integration of the time-dependent Schrédinger equation.
Such a short pulse of course excites an atom into a superposition of
a large number of energy eigenstates.

It comes down, therefore, to a question of alternative representations
or points of view that has always characterized the subject of physics, es-
pecially quantum physics (Sec. 2.2). The same is true when it comes to
time. Instead of arguing for the primacy of a time-independent (Julian
Barbour) or time-dependent (Lee Smolin”) analysis, which are but
limiting cases at two ends of a continuum, the picture and philosophy of

4 1ee Smolin, 1955, American. Theoretical physicist, in quantum gravity and cos-
mology. ;
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alternative representations and views says that both are equally capable
of capturing the full or total world view, and neither is more or less.
It is a matter of taste, and sometimes one of practicality, depending on
the observer’s location in space and time (as in whether a 17th-century
artist working with paints on canvas one afternoon or a modern pho-
tographer with high-speed time-lapse techniques to follow the entire
life cycle of a monarch butterfly), which is more convenient for the pur-
pose at hand. Does a butterfly philosopher (Chapter 2’s Chuang Tzu
or contemporary Thomas Nagel]5 ), with its constant flitting and swift
flight in three dimensions, carry a faint trace of memory to wonder
what it feels like to be a caterpillar, with its stillness or slow crawl in
two dimensions?

Indeed, as in the discussion of frame transformations in Sec. 2.2.2,
one can choose a judicious mix of representations to understand (riding
alongside a photoelectron from an LS-coupling region at the small r of
its birth to the jj-coupling at asymptotic distance when it is detected)
the phenomena under investigation. Indeed, a useful mathematical
technique of our times called ‘wavelet analysis’ uses as its basis finite
intervals in both time and frequency rather than working in either of
the Fourier conjugates of time alone or frequency alone. Musical no-
tation long ago adopted such a hybrid picture. And, in the visual arts,
cubism depicted simultaneously different profiles, front and rear views
of an object, including a human figure, as a way of capturing the whole.

Physics deals with establishing correlations between phenomena and
events, and can proceed without explicit invocation of time. The phil-
osopher Soren Kierkegaard16 made a profound observation: ‘You can
only understand life backwards but we must live it forwards’. This
might be extended to say that physics itself can do away with time,
but physicists, as time-bound creatures from birth to death, are con-
demned to view the physical world in terms of time. And, it might
be added, in terms of classical concepts such as position, velocity, etc.,

which are not the ones that the underlying reality is constructed out of
(see also Sec. 8.9).

5 Thomas Nagel, 1937, American. Philosopher, known for his philosophy of the
mind and his criticism of reductionist accounts. His essay “What is it like to be a bat?
is widely known, as well as his recent criticisms of the neo-Darwinian view of natural
selection as inadequate. ‘

16 Soren Aabye Kierkegaard, 1813—55, Danish. Philosopher, theologian and social
critic, regarded as the premier existentialist philosopher.
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Complexity and Emergence

8.1 Complexity

The world around us is varied and complex, perhaps even in reality, but
certainly at least seemingly so. But our brains seem capable of under-
standing only in simple terms. Therefore, whether it is early man with
mythical explanations or scientists giving natural explanations of that
physical and biological world, a vast amount of knowledge and experi-
ence is condensed into simpler forms that we can comprehend. The
whole quest of science is to take what looks complicated but reduce it
to a few basic principles and inputs, to ‘divine the rules of the game’,
much as one would watch several games of chess and see through all
their complexity the basic underlying rules, moves, and strategies.
Thus, Newton explained much about motion in the Solar System
through two principles, that of inertia and the 1/r2 force of gravity.
These natural explanations may seem counter-intuitive, that instead of
angels beating their wings incessantly along the orbit to keep the planet
moving, the force acts perpendicularly to the realized motion at no
energy cost (Figure 1.12). The myriad of slightly different snowflakes,
seemingly the result of a God or Santa’s army of elves stamping them
out in a snowflake foundry, is seen instead as natural six-fold symmetry
of aggregation in the crystal growth of water, with inevitable fluctu-
ations making for small differences in the individual flakes (Figure 5.2).
Both examples also show a fundamental feature that, in addition to
basic principles, initial conditions or fluctuations not reducible to them
are an ingredient of scientific explanation. They may be reducible to
other principles in a later, more embracing theory, but there will then
be new initial conditions. Seeking to eliminate them altogether in some
Theory of Everything, or to take recourse to an ‘anthropic principle’
that makes our asking these questions intrinsic to the way things are,
seems antithetical to science (Sec. 5.2.6). Even if we never quite reach
it, and can expect only to get closer to it, there is an underlying reality
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independent of us. After all, there was a Universe and an Earth, with
laws and principles governing them, long before the emergence of us
or our ancestral hominids, mammals, or life itself.

Each area of physics has its small set of variables and parameters in
terms of which observed phenomena are inter-related or explained in
simple terms. Thus, in studying an ideal gas in a container, it is the
volume, or the temperature when a finger or thermometer is stuck
into it, and such so-called ‘extensive’ quantities that are of interest,
not following the motion of each of the enormous number of mol-
ecules constituting the gas. Even if it were possible to follow all of
them in detail, it would be irrelevant if one is interested in just one
number, the temperature of the gas. After Maxwell and the kinetic the-
ory of gases, the connection between the microscopic and macroscopic
is available through the subject of statistical mechanics but thermo-
dynamics is a self-contained subject in itself and in terms of its own
concepts.

The same is true at the microscopic level. For studying atomic and
molecular properties, covering an energy range from meV to a few tens
of eV, the quark and gluon constituents of nucleons in the nuclei do
not need to be considered. Indeed, it would be silly to do so even if it
is true that all matter ultimately is a mix of quarks, gluons, and lep-
tons, and their interacting quantum fields. This is also true of much
of nuclear physics, where it is sufficient and appropriate to consider a
nucleus as a collection of nucleons, protons, and neutrons, without in-
voking sub-constituents of them. Many of those degrees of freedom are
frozen at the energies of interest so that they are irrelevant and thus
ignorable.

And, even within atoms themselves, in today’s field of cold colli-
sions, a few parameters, the scattering lengths, are all that are necessary,
whether it be lithium or rubidium that is under study. For decades,
much effort has been devoted in precision spectroscopy or theoretical
atomic structure calculations to understand each atom and differences
between atoms, especially dithcult the more the number of electrons
that are involved. But none of these is relevant to studies at nanokelvin'

I William Thomson, Lord Kelvin, 1824—1907, British. Physicist and engineer, who
made key contributions to electricity and to the understanding of heat energy and the
Second Law of Thermodynamics. He established the absolute temperature scale used in
the sciences, now named after him. He also contributed to telegraphy, especially in the
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energies, a single parameter being sufficient to describe these alkali
atoms.

In all this, an important consideration is the scale of energies involved
and the corresponding inverse relation to lengths, an aspect of the un-
certainty link between lengths and momenta. This gives rise to natural
hierarchical levels of phenomena and explanations thereof, new col-
lective coordinates and collective quantum numbers, and even new
concepts becoming relevant at each level. This seems to characterize
physics, and science as a whole. Identifying the few relevant variables at
each level is essential for progress in physics.

8.2 Temperature

An especially nice illustration of such ‘emergent’ concepts in physics is
temperature, T. It is necessarily a collective concept, not applicable to a
single atom or molecule, but a measure of the random kinetic energies
in a large collection of them. On the one hand, save for the Boltzmann®
constant, k, which mediates the conversion from thermal energies to
mechanical, there is no other input but the mechanical energies, mv? 12,
averaged over the random motions of the molecules in an assembly.
But, on the other hand, any one of those molecules, upon isolation,
cannot be said to have a temperature, and the concept itself does not
even apply to it. A particle or a well-collimated beam of them, all with
some definite velocity, may have very high kinetic energy but it would
be inappropriate to say it has a temperature mv*/2k. Only the random
energies, and a collective average of them, is relevant to T Indeed, there
are current attempts through precision measurements to fix the value

laying of the first trans-Atlantic telegraph cable when he solved many of the problems
as they arose, and to improving the nautical compass. He was the first UK scientist to be
made a baron.

2 Ludwig Boltzmann, 1844-1906, Austrian. Philosopher and theoretical physicist
with major contributions to the kinetic theory of gases, thermodynamics, and statis-
tical mechanics. Disorder and the concept of entropy and the counting of microscopic
states for understanding the Second Law of Thermodynamics, so that it is a statistical
law, are among his greatest contributions, as is his seeing the underlying atomistic struc-
ture of matter behind it. In this, he was opposed by much of the prevailing philosophy
of physics around him that stressed energy and continuous distributions rather than
a discrete particulate one. The Boltzmann equation and the fundamental constant, k
(introduced actually by Planck), relating energy and temperature carry his name. He is
also seen as a pioneer in understanding free energy, a concept of great import to biology.
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of kand thus reduce T to an energy, much as fixing the speed of light, c,
renders measurements of length to those of time.

As with other instances of concepts that are relevant at one hierarchy
not being simply reducible to those at a lower level, there is often a
suppression of a large number of degrees of freedom in this reduction.
While present, they are irrelevant, and are frozen out. At the level of
atomic interactions in the energy range of a few eV or less, quark de-
grees of freedom are simply not excited, being at a much higher energy
scale and thus ignorable. Similarly, while there is an Avogadro3 number
of degrees of freedom of each molecule, only the one of tempera-
ture is relevant in the thermal averaging, which makes sense of course
only under the so-called ergodicity that pertains to thermodynamic
equilibrium.

8.3 Phases and Phasé Transitions

Everyone is familiar with phases of matter. Thus, water exists either as
gaseous water vapour, or as liquid water, or as solid water-ice (actually
ice itself exists in many phases, one, Ice IX, made famous in a literary
work! [33]). At the level of the individual molecule, H,O, there is no dis-
tinction and no phase information resides in it. But, in the aggregate,
and depending on external conditions of temperature and pressure, en-
tirely different phases emerge. And, at certain transition values of these
external parameters, different phases can co-exist in equilibrium. Again,
it is a fact familiar to everyone that at normal atmospheric pressure,
water and ice co-exist at 0°C, and water and steam at 100°C, these even
defining the temperature scale. Less familiar to the layman, but well
recognized in physics, is a ‘triple point’, when all three phases co-exist at
a specific temperature and pressure! (This triple point of water at 0.01°C
or 273.16 Kis used to fix the temperature scale.) Such phases and phase
transitions between them are another good illustration within physics
itself of emergent concepts and phenomena.

3 Lorenzo Romano Amedeo Avogadro, 1776—1856, Italian. Mathematician and scien-
tist who contributed to understanding the molecular structure of gases, and to clearly
distinguishing between atoms and molecules. The number of molecules in a ‘mole’ of
any gas, defined as the mass in grams equal to the molecular weight, a large number,
approximately 6 X 10?3, is named after him.
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8.4 Even More Profound Emergences

Temperature might serve as a good model for other emergent con-
cepts that play a role in our lives. The meaning of a text is not in any
of the words constituting it and certainly not in the letters, all texts
being made of the same letters of the alphabet and a few other sym-
bols. Our scientific papers today and a book such as this are often set in
lines of some TeX compiler, the letters of the alphabet and a few other
strokes capable of rendering astonishingly varied fonts and symbols. In
today’s digital displays, arrangements of seven line strokes can repro-
duce any letter or number. But the text itself and its meaning are not
to be reduced to such.

Or, as another example, the use of coins, currency, and other finan-
cial paper, now disembodied in electronic space (see Sec. 4.3), has as its
essence a transaction between two parties for goods and services. When
you buy something and pay at the store counter, say with a cheque,
when and how are you actually paying for it? Is it at the moment you
sign the cheque and hand it over to the store clerk? Is it when, at the
end of the day, the store bundles up and presents the cheques to a
local bank branch? Is it when, through a series of intervening banks
and financial institutions in between, the funds are deducted from your
own account, where, perhaps, an earlier direct deposit from your em-
ployer for services you rendered over the past week or month credited
you with your salary? We recognize that much of this is not essen-
tial, although diffusively spread out and not easily traced or accounted
for, for the essence of the transaction itself, the trade in goods or
services.

Life and consciousness, whether or not reducible to certain neural
circuits and cells in some yet-to-develop understanding (and, surely,
only in some distant future, notwithstanding the enthusiasm of some
current-day neuroscientists!) may well be like temperature and phase in
that even when there is nothing more to be invoked, nevertheless they
are emergent concepts not present in or even relevant for those indi-
vidual constituents. Temperature may be an example of physics lending
an appropriate metaphor to these other disciplines. Populations are col-
lections of individuals, and an individual organism a collection of cells,
molecules, and genes, but whether in sociology or biology, properties
and characteristics of the aggregate, while notinvolving any new laws of
science, are nevertheless not simply contained at these smallest levels.
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This may be the important lesson that the admittedly simpler examples
of physics, such as temperature and phase, have to offer to the more
complex emergences of biology or sociology.

The fundamental rules themselves may even be trivial, and it is in
their collective realization that richness may lie, just as in the game of
chess. The game of ‘Life’ provides another nice example. Invented by the
mathematician John Conway®, a few simple rules for cells on a two-
dimensional grid are the axioms of the game. They govern whether a
cell is occupied or not for the next iteration, given the configuration at
the previous iteration. Yet, starting from different initial patterns, an as-
tonishing range of patterns, some even dynamic with a pattern sliding
across the grid, are generated [34]. Some of these had not been antici-
pated even by the ‘creator’ of the game, and new patterns continue to
be investigated. Similarly, my painter friend who does large canvases of
abstract compositions of colours said that he was surprised when some-
one saw an alligator in one; once pointed out, he himself could see ‘a
full alligator, from tail to snout’ [35].

Biological life and the distinction between a living and a dead organ-
ism are orders of magnitude more complicated than the examples from
physics. It is usually easy to distinguish a dead body from a living ani-
mal, sometimes just moments before and after a specific moment of
transition, all the physical elements unchanged. That moment of tran-
sition may not be marked by any change in the physics but clearly is
profound. For long in science’s history, organic and inorganic chem-
istry were viewed as qualitatively distinct, with a vis viva or life force
essential in the former. But that barrier was finally broken when it was
shown that organic compounds can be synthesized from the inorganic
components of carbon, hydrogen, oxygen, etc. without any other in-
put invoked. This provides a lesson that, similarly, those who favour a
sharp distinction for life, including the invocation of something beyond
science in some religious belief, may be prematurely giving up on an
explanation within science itself.

On the other hand, scientists need to display the humility required
by the fact that current science is certainly far from identifying what

¢ John Horton Conway, 1937, British and American. Mathematician who has con-
tributed to finite groups, knot theory, game theory, and number theory. Known also
for his invention of ‘surreal numbers’ and an arrow notation for handling extremely
large numbers, and for the game of ‘Life’
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characterizes life, the temperature or phase analogies being baby steps
in comparison. But there is no need to preclude such a search. Indeed,
for both sides, it is but hubris to think that, in our own times, will be
found a Theory of Everything. Both such a claim by scientists, or by
philosophers or religions to say some supernatural, extra-scientific in-
put is necessary, are unjustified if not untenable. Just as Copernicus5
dethroned our Earth from any special place in space, so also in terms of
time our own 100-year life span must be recognized as nothing special.
The quest for scientific understanding is ongoing and endless; ‘the end
of science’ is but an oxymoron. So long as scientists exist to ask ques-
tions, science will continue. The essence of the Copernican principle of
there being nothing special about us or about our lives and times should
give an acceptance that in some distant future we will understand more
the emergence of life and consciousness from physics, chemistry, and
biology. But for today, some of the ideas behind emergent concepts
such as temperature and phase are pointers to even more sophisticated
understanding of emergences.

8.5 Classical Physics Itself an Emergence

What does physics deal with? The subject started with Galileo and
Newton as describing the motion of material bodies, thought of as point
masses, particle mechanics. Knowing the state of the particle at some
instant meant knowing its position and velocity. The laws of physics
(motion) would then describe the subsequent time evolution by provid-
ing position and velocity at later instants once the forces were specified.
But, even already in that, physics was clearly not restricted to just that
particle but applied equally to any other particle subjected to the same
or similar conditions. Science itself would have little meaning with-
out such universality in its application. Indeed, the very repeatability
of experiments is an essential ingredient of any science, especially an ex-
perimental one! And the requirement that the same experiment done
at a different place, translated from the original, or at a different time,
must lead to the same physics, again essential to have any meaning or

3 Nicolaus Copernicus, 1473-1543, Polish. Astronomer, renowned for his heliocen-
tric system of planets orbiting the Sun, and for the larger philosophical idea, built on
his dethroning of our planet’s central position, that there is no privileged position in
the Universe.



Classical Physics Itself an Emergence 185

validity to the subject, leads to the most profound laws of conservation
of energy and momentum (Sec. 5.1.2).

Later, the study of particle masses was supplemented by that of
waves, whether mechanical or electromagnetic, also carriers of energy
and momentum. Again, a wave equation describes the evolution of
not just one particular wave but any other identical one under iden-
tical conditions. But it is true in classical physics, whether of particles
or waves, that each can be tagged as with runners along race tracks
and thus the motion of an individual particle or wave kept track of or
predicted.

Next, it is also easily recognized that among many characteristics,
some are of no significance to the physics. Thus, in describing the mo-
tion of a ball from the instant at which it is hit by a bat to the later time
when it is caught in a fielder’s hand, what physics accounts for is the
connection between the two events. The specific positions attributed to
the two will vary from one observer to another in the stadium. Those
sitting on one side may describe the motion as a parabolic arc from left
to right, the spectators on the other side as just the opposite, from right
to left. There is no significance in this for physics. With the advent of
Special Relativity, we also recognized that different inertial observers
viewing the ball’s motion may even ascribe different spatial separations
and time intervals between the two events, only the space—time interval
being an invariant among all such observers (Sec. 7.2).

Every viewer in the stands, or on blimps moving with uniform vel-
ocities over the stadium, will also ascribe some trajectory to the ball’s
motion. These will be parabolas but of varying tightness, with the limit-
ing case of straight up and down motion as seen by an inertial frame
moving with the same horizontal velocity as the ball. Therefore, the
actual shape of the trajectory is not an element that physics has to or
does explain, and we recognize this readily. We would see any ‘Many
Trajectories’ interpretation of the motion of the ball, any claim that
the ball actually executes all these multitude of trajectories as a some-
what strange and extravagant rendering of what is actually the ball’s
motion as observed by different observers. Every observer describes the
motion from beginning to end in terms of a trajectory but the trajec-
tories may all be different. There is no trajectory by itself; it is not a
concept solely of the ball but of ball plus observer. The question of what
the ball ‘really’ did has no meaning without asking ‘as seen by whom?
Indeed, in the frame of reference of the ball, it is motionless and it is all
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the observers in the stadium and on blimps that execute a multitude of
parabolic trajectories.

There is here an underlying reality of motion, but that motion is of
ball relative to an observer and it is no surprise that there are differ-
ent descriptions by different observers (among them, the ball itself).
And the underlying reality of the entire motion, from bat to fielder’s
hand, does not rest on a time-dependent Newtonian description or a
time-independent one such as Hamilton’s in terms of an action inte-
gral, although it is equally amenable to either description. There is no
time sequence or path, all possible ones (Figure 7.1), among which is the
one that makes the action integral stationary, being distinguished.

The further step into quantum mechanics denies any meaning to
trajectories or paths, concepts that require specification of both pos-
ition and velocity but whose simultaneous specification is ruled out by
the uncertainty principle. Even more, the concepts of position and mo-
mentum themselves do not apply, these too being valid only in ‘the
classical limit’. Even without going into quantum field theory, within
quantum mechanics itself of even just a single particle, the state of a
system is a complex valued wave function or ket. All other observables
for it, position, momentum, etc., are derived from the wave function
through certain expectation values. The notion of a wave or particle is
also relevant only in the classical limit, as discussed in Sec. 2.3.

Further, mere labels have no meaning, a physical system being char-
acterized only by physically measurable invariants, a ket labelled by the
quantum numbers of the operators that commute with the Hamilton-
ian. A free electron is an object of a certain mass, charge, spin, energy,
and linear momentum as defined by our classical measuring apparat-
uses capable of making or detecting it. Identical particles cannot be
differentiated by merely labelling them with numbers on their backs
as with runners or particles or waves in classical physics (Sec. 2.2.1),
where race tracks or paths and passage through them, even when
intersecting, have meaning. Indeed, under interchange of any pair of
otherwise identical quantum entities, that is, interchange of those la-
bels, the wave function must satisty the Pauli principle of being either
symmetric or antisymmetric, depending on whether the entities are
bosons or fermions, respectively (Sec. 7.3.3).

With the physical system described by a wave function or ket, the
Schrodinger equation, the counterpart of Newton’s, gives a complete
deterministic evolution of that state once the potentials are specified. It
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describes not any single particle or situation but a whole ensemble of
them. Thus, for any single radioactive nucleus such as of radium, Ra,
its decay with emission, say, of an alpha particle or an electron (beta de-
cay)is entirely unpredictable. Starting with identical samples of such Ra
nuclei, one may go off the very next instant, whereas another may not
decay over the entire length of the Universe’s lifetime. What is meant
by the half-life of Ra is the time within which there is a 50% chance
of seeing it decay. Or, in a large collection of such Ra nuclei, in that
time roughly half will have decayed. There will always be some spread
around that value, fluctuations around that average.

Similarly, turning to a motion in space, if one has a source at S, say of
electrons, perhaps created by a radioactive decay, and a screen covered
with detectors some distance away, and an intervening slit, then each
observation when the source emits and at a later instant a detector re-
ceives is entirely unpredictable in terms of which detector on the screen
fires. Because of how electrons are registered as a lump of charge, e, for
a source emitting only one at a time, it is only one detector that fires,
never more simultaneously, the electron being received at some one
point on the screen. An electron, defined as a lump of charge, mass, and
spin, is never detected simultaneously at two detectors, only at one ata
time. But it could be any one of the detectors anywhere on that infinite
screen. What the wave function of this one-slit arrangement provides is
the probability for receipt of the electron on the screen, and it will be
peaked at the spot on the screen that is in line with the one connecting
the source to the slit, that is, the path that a classical description would
have predicted as the unique one. The probability drops off away from
that central spot but is non-zero everywhere, tailing off to zero only
at =£00. Again, if a large number of such observations is compiled, the
intensity on the screen, where the charge is detected (but, again, the
charge is never smeared out), will appear as in Figure 8.1.

For a different arrangement, say with two slits instead of one, again
each individual electron from the source will be detected unpredict-
ably by some detector on the screen as an electron. The wave function
for this arrangement of source—double slit—screen will be different from
the previous one. Again, it will determine the probability for receipt on
the screen in any individual experiment or the total intensity for a large
collection of electrons, emitted one by one. This pattern in Figure 8.2 is
different from the one in Figure 8.1. One striking difference is that it is
not just the sum of two intensity patterns for each slit with two peaks
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Figure 8.1 Schematic arrangement for a single-slit diffraction pattern, with a
source, S, of photons or electrons, and a screen, with an intervening slit.

at two different spots corresponding to the path from source to each
slit when extended to the screen. Instead, the peak intensity is at the
middle of those two positions.

Another striking difterence is that there are now spots on the screen
with zero probability or intensity, the detectors at such spots never fir-
ing. The contribution to the wave function from the different slits mu-
tually interfere destructively so that there is a zero of the wave function
at these spots. These ‘nodes’ in the pattern and the patterns themselves
in Figures 8.1 and 8.2 were familiar already in optics from Newton’s
time but they manifest equally for electrons or protons or even heavier
carbon fullerenes (‘buckyballs’®), as has been experimentally demon-
strated. Experiments have also verified the random appearance of each
electron on the screen but, together, that many such repetitions con-
struct the diffraction or double-slit pattern (Figure 8.2). And there is no
reason to doubt that this would also work with Mack trucks, that this is
of universal applicability, reflecting the wave nature of all things, even
those which have a particle as their classical limit.

The question of paths or the nature of detection falls into the fol-
lowing picture. With a strict focus only on what is actually measured,
it is not meaningful to ask about things that are not. The electron is

% Named after Buckminster Fuller, 1895-1983, American. Architect and inventor,
and ‘futurist’. He is known for his building and popularizing the geodesic dome. A new
form of carbon with 60 carbon atoms in a three-dimensional structure like a soccer ball
was named ‘buckyball’ and, together with other carbon structures, classed as a group
under the name ‘fullerenes’.
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Figure 8.2 Double-slit arrangement. The set-up is otherwise as in Figure 8.1
but with two slits between source and screen. The left panel shows the ex-
perimental arrangement of electron source and detector with intervening
bi-prisms that act as slits. The right panel shows the gradual build-up of the
two-slit diffraction pattern from individual detection of the electrons. Cour-
tesy of the Central Research Laboratory, Hitachi, Ltd., Japan, from the work of
A. Tonomura et al, Am. J. Phys. 57, 117 (1989).

observed either at the source or at a detector some time later, for any
particular experimental set-up or apparatus. There is no meaning to
unobserved entities such as the path followed in between. If indeed de-
tectors were set up intermediately for this purpose, that would be a
different set-up with a different wave function and a different pattern.
Words such as ‘paths’ or ‘trajectories’, or questions about which slit the
electron went through are just that, words, but with no place in physics.

The wave function for a particular arrangement of apparatus de-
scribes all the physics. Had we wave-function-measuring apparatus,
there would be no ambiguity in keeping track of what it is at any lo-
cation and at any instant (every location and every instant!). Quantum
physics would give a complete description of it. But instead, we observe,
measure, or even describe in terms that are classical. It may be counter
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to our classical intuition that an electron went through both slits or
that having two slits open makes for some nodal points with the elec-
tron never seen at them while not so for a single slit. But all these words
and ways of speaking are not relevant to the physics of one set-up or the
other.

The wave function can be said to be a sum over all possible paths
joining source to detector, including some (many!) outlandish ones
that roam over the Universe in between. As noted in Sec. 7.2, Feyn-
man’s path-integral formulation of quantum mechanics does indeed
construct the wave function as the sum over all paths. Each path con-
tributes with some weight to the wave function and to the probability
of receipt on the screen, while some of the outlandish ones or paths
that hit the barrier on either side of a slit contribute negligibly or not
at all. Paths close to the one we expect based on classical geometrical
intuition contribute more, especially for objects that behave essentially
classically, thus truer for Mack trucks than for electrons. Finally, that
particular path in Figure 8.1 of a straight line from source to slit and
extended to screen emerges as ‘the’ classical limit, Newtonian physics
emerging as the limiting case of the quantum description. Indeed, al-
ready in the Lagrangian and Hamiltonian formulation within classical
physics and before the advent of quantum physics, Hamilton’s vari-
ational principle had so replaced globally in the action integral the local
Newtonian view of step-by-step motion along that line, while being
compatible with it, as discussed in Sec. 7.2.

The classical picture, whether for the entire motion or for an elec-
tron at source and at detector, is itself an emergent one, as is whether
an entity is a wave or a particle. These are all concepts that are not
part of the underlying reality of a quantum world. Just as we had al-
ready grown to accept in classical physics that concepts such as paths
and trajectories do not have intrinsic meaning in Galilean or Einstein-
ian Relativity, but are dependent on the specifics of an observer or of a
description, and that we need to be alert to this and not identify them
with reality itself, now we have to extend that to even the concepts of
position, momentum, etc.

Or to whether we have a wave or a particle, these being mean-
ingful only in the classical limit (Sec. 2.3). The underlying reality is
not in terms of them but in complex wave functions and states, and
of wavicles (Sec. 2.3). But, as classical beings, and our concepts and
words themselves having evolved from those classical experiences and
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intuitions, we cannot escape having to use them in our thinking and
communication, just as everyone in the stadium or a blimp ascribes
a trajectory to the ball in talking about it. But we have to be alert to
the fact that underlying reality is not written in that language. It is,
therefore, like being condemned to read a text in a language no longer
directly accessible but now only in translation.

Alternatively, it is as if we always view the world with distorting spec-
tacles. Interestingly, Newton himself, as the developer of geometrical
optics, knew that our eyes image the world as inverted on the retina.
It is our neural processing that converts this inverted two-dimensional
image of our twin eyes to the upright three-dimensional appearance of
the objects around us. Much of the discomfort or difficulty in grasp-
ing quantum physics and some of what are posed as paradoxes lies in
not keeping clear these matters and extrapolating from our models to
reality itself.

What, then, is involved in the emergence of the classical world from
an underlying, inherently quantum reality? As in other examples of
emergence, certainly there is a tracing over a large number of degrees
of freedom. The quantum wave function, even of a single point par-
ticle, is a function of a complex variable. A quantum spin-1/2, as we saw
in Chapter 4, already has a three-variable space of an enormous num-
ber of states, even though observations see it as just one of two things,
up or down. With more particles, the dimension of the space involved
explodes and in any interaction with an observing apparatus, most of
them are traced over.

In particular, phases of complex functions vary continuously from
0 to 277, and are very delicate (Sec. 4.2.1), subject to disturbances from
interactions with the external world, itself of an enormous number of
degrees of freedom. So, scrambling of these phases s certainly one elem-
ent of the emergence, as is the fact that, generally speaking, getting
to the classical limit involves larger aggregates of particles, although
special cases such as superconductivity can retain meaning in a macro-
scopic phase. And, even for a single electron, when it is realised as a
bundle of a certain amount of electric charge, mass, and spin angular
momentum when emitted or absorbed by an apparatus, coherences of
its wave function have been scrambled for it to so appear as a particle.

Again, using an earlier example as an analogy, temperature emerges
as a single number upon averaging over the random kinetic energies of
an Avogadro number of particles. Although no new element of physics
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needs to be invoked in the passage from the statistical mechanics de-
scription of those particles’ motion to the thermodynamic limit’s T,
the passage back is, of course, impossible. In a way, questions such as the
emergence of classical wave and particle, position, or other observable
from the underlying quantum world and using them to understand
that world is like having only thermometers through which to grasp
the individual molecules’ motions. The quantum wave function con-
tains an enormously larger amount of information than whatis realized
in our observations with our slits or other apparatus.

The essence lies in what is meant by the state of a physical system. In
quantum physics, it is described by a complex wave function or, as in
Sec. 2.3, a Dirac ket, the ket labelled by the values of the quantities that
commute with the Hamiltonian. No other labels have meaning, not
mere number tags that correspond to nothing in physics nor a position
in space, x usually not commuting with H. For an electron in its pattern
on a screen of a slit assembly, single or double, or for it in a particular
state of the hydrogen atom, no single position applies. When its location
is sought, it may be found, but that may be at any point on the screen
or in space (except exactly at one of the nodes).

If an apparatus is churning out identical copies of hydrogen, say from
a chemical reaction at the molecular level resulting in atomic hydrogen
in the ground state, definite values can be ascribed only to measure-
ments of energy and angular momentum, that each copy will have only
-13.6 €V and zero, respectively. But, if it is position that is measured,
the electron in each copy may be found at any location randomly, and
only a probability distribution can be prescribed for it. On the other
hand, one can talk of an electron in any of these systems as being at
a precise location, for instance when it is located at the tiny detector,
in principle arbitrarily small (within non-relativistic quantum mechan-
ics), that fired, but then itis not in a definite state of energy and angular
momentum butin a very large superposition of such states. An electron
as a particle at its emergence from a source or at a detector, defined as a
lump of charge, mass, and spin angular momentum, is an object in the
classical limit that has averaged over a large number of quantum states.

The step into quantum field theory, currently the closest model to
the underlying reality, compounds but also illuminates these matters
further. There are interacting quantum fields and it is excitations in
them that we observe as electrons or other entities (Sec. 7.3.3). Thus,
in a radioactive decay of even a single nucleus or neutron, we have the
fields of electron, neutrino, and nucleon (or quark) to consider. The
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initial state is of one excitation from the vacuum of the nucleon field,
say, as a neutron. The final state is a combined one of one excitation of
that nucleon field in the form of a proton, one excitation of the elec-
tron field, and one of the anti-neutrino. There is no specific location or
instant (of decay) for going from initial to final state. The fields them-
selves exist over all space, space and time being only grid parameters
over which the field functions are defined. Each individual observation
of a single-slit set-up corresponds to an electron appearing at a location
(the source’s exit slit) at some unpredictable instant and an electron
being absorbed at a detector, again which one unpredictable, possibly
by an inverse beta process again involving the three fields.

Quantum physics describes this and it embraces not a single event
but all the myriad of them when an electron leaves the source and a de-
tector on the screen receives it. With each repetition of the experiment,
sometimes one, sometimes another detector fires. It is from an under-
lying quantum field (or interacting fields) that, first, a non-relativistic
wave function emerges as the result of field operators acting on the vac-
uum state and, next, the electron is seen as a particle in the classical
limit that scrambles phases and coherences. This happens at source and
detector for each repetition of the experiment. Each instance is unpre-
dictable, the statistical nature as in the build-up of a pattern in Figure 8.2
residing in the wave function (and probability interpretation: Sec. 1.2.2)
that encompasses all possibilities but only one being realized in each
repetition.

The wave function of quantum physics does not describe a single ex-
periment but the two-slit pattern, just as it is not the decay of a single
radioactive nucleus but beta decay as a process that is described. To the
charge that the theory then is incomplete in not applying to individual
elements, and that a future theory will also provide that, the prob-
lem is that all such attempts at extensions, which go under the name
of hidden-variable theories, lead to predictions in conflict with experi-
ment. Hidden variables in each nucleus whose knowledge would allow
us to say the precise time at which each decays, or an underlying point
particle that is guided by the wave function across slits, lead to predic-
tions in conflict with what we know of radioactive decay or interference
patterns on a screen. To date, all experiments and observations suggest
that there is no such extension, that quantum physics is indeed today’s
complete model of the underlying reality. Rather, we must accept that
what we refer to as an individual experiment or a particular nucleus
decaying is meaningful only as a classical limiting case, averaged over
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the underlying quantum reality. The very feature of merely tagging an
individual with a number label slapped on the back as on runners in a
race, nucleus 1, nucleus 2, etc., and attributing significance to it, is not
an element of that quantum world.

Sources and sinks (detectors) are large aggregates and while them-
selves part of the quantum world, have a large scrambling of the phases
involved of the emitted or absorbed entity, and it is here that the elec-
tron is manifest as a classical entity of some mass, charge, etc., not at
points or times in between. Identical particles, when more than one are
present, are, in a field theoretic picture, simultaneous double or triple
excitations of the field, and Pauli principle requirements (Sec. 7.3.3) are
natural given the intrinsic properties of the operators involved in such
excitations out of the vacuum. There are no exact locations in space
or time for the electrons created and the non-locality of the subject of
quantum physics is inherent to it. As noted in Sec. 6.3, the rendering
with just a few parameters of an underlying element that itself resides
in a huge-dimensional space necessarily leads to non-locality.

The picture we have today is that deep, deep down, the underlying
‘real’ world is closest to our current understanding as a mess of inter-
acting relativistic quantum fields. (Even that is not reality itself, but
our current best model.) But, we observe and experience that world
at various levels and hierarchies, and do so in terms of emergent con-
cepts and measures that are appropriate for those purposes and levels.
It would be foolish to do otherwise. Field theories may be appropriate
at times, non-relativistic quantum mechanics at others, and the older,
non-relativistic classical mechanics may be, and is, the appropriate one
for many purposes. The very concepts of position, momentum, space,
and time are equally derived or emergent, much of that because of our
own existence as lumbering, macroscopic objects shaped by the phys-
ical, chemical, and biological evolution of the Universe that has led to
us. And, of course, we can tag runners on their backs as a meaningful
classical feature!

Time and time again, the history of physics has sounded cautionary
notes on our possibly being misled by those various elements that have
shaped us. For centuries, it had seemed that being at rest was a nat-
ural state to which all objects in motion around us tended, but this was
only because of the unseen frictional forces ubiquitously around us. It
was only after Galileo and Newton that it became clear that the proper
association was between forces and accelerations, not velocities. And
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then for another long period, their concepts of space and time seemed
obvious till the Special Theory of Relativity disabused us of that. The
slicing of a combined space—time into space and time is itself dependent
on the inertial frame or observer, and all these frames are equivalent in
physics. The very concepts of spatial separations and time intervals are
not universals, however intuitively so they may seem (as they had in all
the experience with non-relativistic speeds), but depend on the inertial
frame of the observer.

Quantum physics went further in.femoving the very primitives of
our constructs such as position and momentum, wave and particle,
from being the ones of the underlying reality. But, on the other hand,
the feature of emergence of concepts and measures at each level of hier-
archy show also how they continue to be relevant for descriptions at
that level. Therefore, even today, for most motion, classical Newton-
ian non-relativistic physics continues to apply, whether in everyday lay
experience or even for the rocket engineer. With v/c small, inertial ob-
servers can agree on the time interval as a Newtonian absolute common
to all. And, even in relativistic quantum contexts in laboratory settings,
we are compelled to use the only language and concepts we have, such
as position, momentum, etc. There is not only no harm in this but we
must recognize it as essential at that level of hierarchy, while also not
mistaking the model itself for the reality.

All of this is a part of the tension that is intrinsic to our subject,
revolutionary upheavals co-existing with a conservative persistence of
the old. Every extension to new regimes far from everyday experience,
into the very small and very energetic, has opened a new perspective
that also fundamentally changed our understanding of the primitives
of our subject. These changes in the fundamentals apply, of course,
to everything, including the large and unmoving, immovable moun-
tains. They, too, are made of atoms, with electrons inside moving at
relativistic speeds under quantum principles. Yet, effective theories and
concepts that emerge at successive hierarchical levels account for the
continuing validity of much that had lasted for centuries without that
recognition of deeper levels. This had to be so, given the extensive inter-
locking pieces of evidence that had built the scientific edifice over those
centuries. Together, a coherence of the subject has, and continues to be,
maintained across the past five centuries. Different representations of an
underlying reality are the essence of physics and of our understanding
of the world around us through them.
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¢, Euler number, 52, 53
eccentricity, 120
Einstein, 4, 8, 26, 28, 35, 40, 138, 139
—Podolsky—Rosen, 152
relation, E = mcz, 9
Theory of Relativity, see Theory of
Relativity

Index
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electrodynamics, 159, 167
electromagnetic
field, 127
invariant, 28
tensor, 27, 29
spectrum, 8
electromagnetism, 8, 26, 29, 30, 32, 40, 43, 66,
73, 158, 169
strength, 136
electron, 18, 60
classical limit, 191, 192, 194
Dirac, 129
free
label, 186
g-factor, 79
gas, 170
spin, 39
Volt, see eV
electroweak, 132, 169
elementary particle, 18, 21, 42, 56, 60, 118
ellipse, 113, 116
major axis, 35
precession, 121
elliptic function, 63, 173
ellipticity, 35, 137
emergence, 83, 178, 180, 194, 195
classical picture, 190
energy, 8, 23
—mass relation, 9
—momentum, 23
invariant, 28
square root, 99
tensor, 138, 139
—time uncertainty, 161
bound state, 33
continuum state, 33
discrete, 38
fission, 18
free, 180
kinetic, 20, 43, 52, 119
random, 180, 191
potential, 20, 52, 63, 119
rest mass, 28
rotational, 78
rotor, 129
thermal, 180
zero-point, 34, 80
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entanglement, 102
maximal, 103
entropy, 180
equation of continuity, 17, 19, 29
equilibrium
point, 78
thermodynamic, 181
unstable, 76
Erlangen Programme, 46
Euclid, 46
Euclidean
geometry, see geometry
transformation, see transformation
Euler, 52
—Lagrange equation, 52
angle, 58, 63, 64
number e, 52, 53
eV, electron volt, 34
evolution
non-unitary, 100
operator, see operator
exchange
interaction, 61
splitting, 61
Exclusion Principle, 59
exclusive-OR, 102, 105
expectation value, 168, 186
extensive, 179
extremum, 19, 20

F
Fano, 117
plane, 116, 117
farad, 26
Faraday, 26
Fatou, 147
Fermat, 20
last theorem, 20
principle of least time, 20
Fermi, 39
—Dirac statistics, see statistics
problem, 40
fermion, 39, 40, 60, 127, 168, 186
ferromagnetism, 18, 61
Feynman, 21
diagram, 21
path integral, 21, 38, 153, 161, 190
Fibonacci sequence, 4

Index

fibre, 100, 155
bundle, 154
field, 26
central, 58
Coulomb, 32, 35, 39
Dirac, see Dirac
electric, 8, 15, 24, 25, 27, 36, 66
electromagnetic, 27
electron, 127
function, 167, 193
gravitational, 27
magnetic, 8, 15, 24, 25, 27, 40, 43, 66
Dirac electron, 129
operator, 168
on vacuum, 193
quadrupole, 79
quantum, 167, 193
radiofrequency, 78, 79
scalar
relativistic, 162
theory, 18, 39, 43, 56
relativistic, 82
supersymmetry, 127, see SUSY
time-dependent, 78
vector
divergence, 16
fine structure, 42
constant, 83, 136, 137
fission, 39, 56
flamingo, 2, 3
fluctuation, 178, 187
force, 8
central, 50
constraint, 22
Coriolis, 78, 79
friction, 194
inverse square, 119
pairwise, 118
form invariance, 52
four-
dimensional
number, 32
oscillator, see oscillator
space, 23
potential, 28, 29
vector, 23,29
differential, 29



Fourier, 54, 167
conjugate, 35
fractal, 146—148
in nature, 148
frame
accelerated, 66
inertial, 26, 156, 166, 185, 195
free particle
one-dimensional, 128, 129, 164
Frege, 158
frequency, 10, 51, 55, 67
pendulum, see pendulum
spring, 10
friction, 194
Fuller, 188
fullerene, 188
function, 112, 146
derivative, 19
Gaussian, see Gaussian
Green’s, 169
hyperbolic, 28, 67
maximuim, 114
multiply valued, 146
one-variable, 149
trigonometric, 11, 67
two-variable, 15, 112, 149
functional, 19, 22, 23
fundamental constant, 45, 106
fusion, 40

G
g» acceleration due to gravity, 6, 13
g-factor, 79, 130, 136, 166
QED correction, 131
galaxy, 170
Magellanic Cloud, 143
map, 146
Milky Way, 143
Galilean relativity, 158, 190
Galileo, 4, 3, 8, 12, 26, 157
game theory, 95
gamma matrix, see Dirac
v, Euler’s constant, 52
Gamow, 163
Gandhi, 74
gas constant, 30

gate
CNOT, 102105

205

exclusive-OR, 102, 105
NOT, 94, 97

gauge, 121
degree of freedom, 152
invariance, 126
symmetry, 126, 127
transformation, 126

Gauss, 13, 15
law, 16

Gaussian, 53
function, 53, 80
integral, 13, 113, 114
tail, 81

genetic code, 36

geodesic, 20
dome, 188

geoid, 144

geometry, 46, 114
analytical, 48
axiomatic, 53
differential, 14
Euclidean, 46, 114, 115
finite, 116
multi-dimensional, 16
non-Fuclidean, 14
plane, 46
projective, 114—117
Riemannian, 121
space—time, 14, 139

Gerlach, 102

global positioning system, see GPS

gluon, 133, 179

Goldstone, 136

Gordon, 30, 162

GPS, 142, 158

gradient, 55

gravitation, 5, 21, 30, 44, 52, 66

gravitational
attraction, 119
constant, 139
potential, 121
wave, 170

graviton, 73, 132

gravity, see also g
quantum, 157
repulsive, 139

Green, 14, 15
function, 169
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Green (continued)
theorem, 14, 17, 18
greenhouse effect, 54
Grimm, 47
Fairy Tales, 47
group
compact, 67
generator, 67
Lie, 34, 154
non-compact, 67
orthogonal, 33
rotation, 33
symmetry, 39, 41
theory, 33, 46, 56, 117, 121, 158
transformation, 154
unitary, 41, 100, 127

H

half-life, 187
Hamilton, 32
—Jacobi equation, 173
equation of motion, 52
hodograph, 36
variational principle, 190
Hamiltonian, 32, 33, 36, 52, 68, 119, 135
equation of motion, 118
harmonic oscillator, see harmonic
helium, 65
Hermitian, 100
isotropic, 58
separable, 57
three-body, 87
time-independent, 83
two-electron, 64
harmonic
oscillator, 38, 53, 57, 123, see also pendulum
Hamiltonian, 53, 57
one-dimensional, 75, 76
state, 81
potential, 120
spherical, see spherical
Harrison, 140
I, 18, 20, 21, 52, 55, 56, 82, 161, 165, 169, 176
heat conduction, 99
heat transfer, 54
Heisenberg, 17, 18, 35, 52, 59
uncertainty principle, see uncertainty
principle

Index

helium, 60, 84, 152
doubly excited, 62, 63, 84, 85
excited state, 65
ground state, 65, 105
singly excited, 84
spectrum, 61

helium nucleus, 84, 85, 93

Hermite, 53
polynomial, 53

Hermitian, 56

hidden variable, 152, 193

Higgs, 133
boson, 133
field, 133

Hilbert, 53, 118
problem, 53
space, 72

hodograph, 36, 37, 44

holographic, 17

hydrodynamics, 170

hydrogen atom, 3033, 43, 58, 120
bound state, 39
ground state, 192
in electric field, 123
in magnetic field, 45
label, 65
negative ion, 170
one-dimensional, 44
quantum number, 123, see also quantum

number
Schrédinger equation, 124
spectrum, 33, 67
state
degeneracy, 37
label, 37
parabolic, 123
parity, 123
spherical, 123
symmetry, 67
spherical, 131
hyperbolic orbit, 36, 37
hyperspherical, 63

I
i, imaginary unit, 17, 28, 52, 117
Ibn-Madjid, 140
icosahedron, 46
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identical particle, 40, 57, 5961, 105, 194
interchange, see symmetry
incidence, 115-117
index notation, 24, 29
induction, 26
inertial frame, 26, 28, 66, 195
initial condition, 171, 178
integral
calculus, 13
definite, 113
divergent, 43
double, 114
exponential, 14, 114
Gaussian, 13, 113
line, 15, 16
path, 18, see also Feynman
surface, 16, 152
volume, 16
interacting boson model, 3942
interaction
Coulomb, 63
electromagnetic, 33, 40, 43
strength, 85
electroweak, 132
gravitational, 33
operator, 86
spin—orbit, 132
strong, 40, 43, 118, 133
weak, 118, 125
interference, 153
interval
space—time, 66
intrinsic spin, see spin
invariance
CP, see CP
CPT, 132, see CPT
gauge, see gauge
parity, see parity
principle, 170
time reversal
broken, 136
invariant, 23, 26, 28, 29, 34, 50, 53, 66, 112, 119,
120, 147, 164
Casimir, 34, 36, 41
imbedding, 169, 171
phase shift, 172
projectile, 170, 171
interval, 23, 67, 159, 185
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operator, 42
ion, 68, 79
negative, see hydrogen atom
ionization
double, see double ionization
energy
helium, 84
hydrogen, 43
Ising model, 120
iso-spin, 93
isotope, 31, 39, 93
helium, 93
isotropic, 50, 55
isotropy, 33, 38

J

Jacobi, 173
jj-coupling, 68, 69, 177
Jordan, 17
Josephson, 106
junction, 106
Julia, 147
set, 148
Jung, 60

K

k, Boltzmann constant, 20, 180
Kalaba, 170
Kaluza, 30
Kantian philosophy, 158
Kelvin, 15, 179
Kepler, 34

—Coulomb, 119, 120

ellipse, 35

orbit, see orbit
ket, 18, 54, 59, 70, 86, 92, 100, 104, 192

-bra, 70

vacuum, 168
key distribution, 107
Kierkegaard, 177
kinematics, 14, 22

relativistic, 70
kinetic theory of gases, 8, 179, 180
King, Martin Luther, 74
Klein

Felix, 46, 118, 154

bottle, 46
Erlangen Programme, 46
Oskar, 30
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Klein (contited)
—Gordon equation, 162, 167
Koch, 146
snowflake, 147
Kustaanheimo, 39

i

£, angular momentum, 32, 34, 55, 38, 65, 87,

128
Lagrange, 19, 20, 31
multiplier, 19, 21, 22, 69, 114
point, 20, 79

Lagrangian, 20, 51, 52, 119, 121, 126, 135

density, 161
equation of motion, 118
gauge invariance, 126
path, 160
Lamb, 167
shift, 167, 169
A cosmological constant, 139
Landau, 130
—Lifshitz, 131
level, 130
spectrum, 130
lanthanide, 41
Laplace, 34
—Runge—Lenz vector, 35, 120
equation, 34,79
nebula, 160
transform, 34
Laplacian, 34
latitude, 145
law of conservation, see conservation
law of gravitation, see Newton
Legendre, 63
polynomial, 63
transformation, 63
Leibnitz, 20
length
standard, 67
Lenz, 120
vector, see Laplace
lepton, 179
Lie, 34, 154
algebra, 154
group, 154
Life, 183

Index

life, 182, 183
force, 183
lifetime
autoionization, 85
radiative, 85
light quantum, see photon
linear, 105
superposition, see superposition
vibration, 10
linearity, 93
liquid drop model, 18
local, 151
localization, 80, 82, 168
Anderson, 83
dynamical, 83, 86
quantum, see quantum
longitude, 140
Lorentz, 26, 158
boost, 28, 66, 67, 166
factor, 158
group, 67

transformation, see transformation

LS-coupling, 68, 69, 177
LS-jj transtormation, 68

M

m, azimuthal quantum number, 33
Magellan, 142
Cloud, 143
Straits, 143
magnetar, 43
magnetic
dipole, 91
field, 91
moment, 61, 92, 100, 102, 153
monopole, 91
resonance, 100
imaging, 100
Mandelbrot, 147
set, 148
Manbhattan Project, 18, 21, 40
Many Worlds, 174
map, 140, 141, 143
as transformation, 151
early, 141
in mathematics, 146
in physics, 151
initial to final state, 151



iterated, 147
of the Universe, 145, 146
of the world, 141, 145
one-variable, 149
projection, 143, 149
Mercator, 144, 145
scale, 144
stereographic
inverse, 154
two-dimensional, 149
mass, 7
matrix, 23
density, 100
element, 71
gamma, 166
infinite-dimensional, 54
mechanics, 18
Pauli, see Pauli
payoft, 95, 96
representation, 104
unitary, 104
maximal
entanglement, 103
mixing, 124
Maxwell, 8, 15, 26, 32, 179
equations, 2729, 66, 91, 158
mechanics, 7, 12, 23, 26, 32, 46
celestial, 34, 39, 79, 147
classical, 39, 47
as map, 151
Lagrangian—Hamiltonian, 63
matrix, 18, 35
Newtonian, 32, 111, 118
orbital, 32
particle, 184
quantum, 31, 42, 47, see also quantum
supersymmetry; SUSYQM
relativistic, 23
statistical, 179, 180
quantum, 40
Mendeleev, 39
Periodic Table, 31, 39, 42
Mercator, 144
projection, 145
Merian, 174
meson, 112
Metamorphoses, see Ovid
metastable, 88
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metre, 67
metric, 20, 28, 39
tensor, 30, 138
microwave, 56
background, 56
Milky Way, 143
mixed state, 100
mixing
maximal, 134
mole, 181
molecular beam, 102
moment of inertia, 24, 25, 128
momentum, 8§, 23
angular, see angular
as gradient, 55
space, 36
vector, 36
monopole, 73, 91
morphing, 48, 146
motion
reality of, 186
mri, see magnetic resonance
multipole, 55
muon, 166

N
N-body, 118
N-level, 154
Nagel, 177
Nambu, 136
—Goldstone mode, 136
nanokelvin, 179
near-Earth satellite, 12, 13
Necker, 94
cube, 94
Neiko, 136
neutrino, 39, 60, 73, 130
neutron, 18, 31, 39, 40
halo, 31
star, 4345
Newton, 8, 12, 20, 26, 50
calculus, 19, 20
initial condition, 159
law of gravitation, 8, 16, 34
law of motion, 8, 9, 52, 66, 71, 162, 169
first, 4
second, 8
third, 118
Principia, 170
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Newtonian

mechanics, see mechanics

relativity, 158

time, 156
nmr, 100, see magnetic resonance
no cloning, 97, 105, 107
node, 60, 81, 82, 188, 192
Noether, 118

theorem, 118
non-Euclidean, 14
non-linear, 154
non-local, 103, 151—153, 194
norm

squared, 54
normalization, 18, 19, 54, 100
NOT, 94, 95, 102

square-root, 96
NOWS, 174
nuclear

fission, 18

magnetic resonance, see magnetic

resonance

power, 56

reactor, 40

spectrum, 40

structure, 18, 39, 56
nucleon, 60, 61, 93, 179, 192
nucleosynthesis, 163
nucleus, 31

cobalt, 125

halo, 31

helium, 31

uranium, 31
number

Euler, 53

four-dimensional, see quaternions

prime, 101

quantum, see quantum

surreal, 183

system, 117

theory, 20, 46, 63, 138, 173

transcendental, 53

transfinite, 53

O
0(3), 33, 36, 39, 41, 132
O(3,1), 67
0(4), 36, 39, 41, 67, 132

Index

octonions, 116, 117
opacity, 170
operator, 70
angular momentum, 32, 129
boson—fermion, 128
Casimir, 41
commuting, 38, 59, 120, 164
creation, 167, 168
destruction, 167
differential, 34
four-dimensional, 29
vector, 15
dipole, 40
energy, 32, 56, see also Hamiltonian
evolution, 154
unitary, 151
incompatible, 82
ket-bra, 70-72
kinetic energy, 89
Laplacian, 121
momentum, 56
projection, 72
quadrupole, 40
spin
individual, 104
total, 104
step-down/up, 130
time reversal, 129
unitary, see transformation
Oppenheimer, 17
optics, 8, 20, 32, 191
orbit, 30
Bohr, 83, see hydrogen atom
circular, 12
classical, 21, 32
closed, 35, 120, 131
eccentricity, 120
elliptic, 33, 34, 37, 50, 120, 160
hyperbolic, 33, 36, 37
Kepler, 34, 36, 50
parabolic, 33, 36, 37
planetary, 20, 35, 134
precession, 120

orbital angular momentum, see angular

momentum
orthogonal, 2, 15, 38, 48, 103, 120
group, see group
polynomial, 53



oscillator
four-dimensional, 38
harmonic, 10, see also harmonic
two-dimensional, 50

Otzi, 75

Ovid, 47
Metamorphoses, 47

4
P, parity, see parity
pair
boson—fermion, 128
coordinate, 62, 87
quantum number, 87
state, 63, 87
palindrome, 110
musical, 111, 112
PAM, phase-amplitude method, 173
parity, 81, 112, 114, 164—166
even, 165
invariance, 164
label, 123
maximal violation, 126
odd, 165
symmetry, 109
transformation, 124
violation, 125, 134
particle
classical limit, 73, 186, 190
Pascal, 20
path integral, 18, see Feynman
Paul, 79
trap, 78,79
Pauli, 59
—Dirac equation, 99
-ism, 59
matrix, 60, 99, 104, 154
Principle, 59, 186, 194
spinor, 60

Index

pendulum, 4-6, 10, 38, 48, 53, 57, 75, 76, 157,

see also harmonic oscillator
amplitude, 10, 48
conical, 57
equation, 5
frequency, 10, 48
inverted, 7577
quantum, 82
time period, 5, 6, 10

perihelion
precession, 120
Periodic Table, 31, 39, 41, 42
perspective, 115
perturbation, 38, 76, 84, 131, 173
PG(2,2), 116
phase, 57, 97, 126, 127, 154
-amplitude method, 173
angle, 57
arbitrary, 100
condensed, 30
equation
non-linear, 173
macroscopic, 191
of wave function, 51, 171
overall, 100
scrambling, 98, 191, 193
shift, 57, 164, 165, 172
invariant imbedding, 172
transition, 130, 181
water-ice, 30
phase-amplitude equations, 51, 173
photoelectric effect, 4
photoionization, 68
photon, 40, 68, 73, 85, 99, 132
mass, 132
w,2
pi meson, 43
pion, 43, 93, 136
Planck, 18, 20, 40
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constant, 18, 20, 52, 54, 92, 161, see also it

Institute, 18
law, 40
length, 20
mass, 20
time, 20
plane
complex
transformation, 148
Fano, 116
orthogonal, 120
projective, 117
plutonium, 42
Poincare, 158
positron, 79, 130, 138, 166
potential, 50
barrier, 163
Coulomb, 38, 40, 43, 83, 85, 131
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potential (continued)
electric field, 78
electromagnetic, 32
energy, see energy
gauge transformation, 126
gravitational, 32, 39, 75, 76
Einstein, 121
Newton, 121
harmonic, 120
invariant imbedding, 172
Newtonian, 35
parabolic, 75, 76, 79
perturbation, 36
quadratic, 132
random, 83
saddle, 78
scattering, 172
step, 163
surface, 64, 88
two-dimensional, 83
well, 165
precession, 35, 121
pressure, 8, 30
principal quantum number, see quantum
number and hydrogen atom
Principia, 168
Principia Mathematica, 69
probability, 20, 32, 35, 60, 81, 98, 106, 187, 188,
192
transmission, 163
probability interpretation, 17, 18, 71, 95, 193
projectile
invariant imbedding, 170
Newtonian method, 169
projection
angular momentum, 33
Mercator, see map
operator, see operator
stereographic, 150
inverse, 154
projective
geometry, 114-116
plane, 116, 117
proof theory, 53
proton, 18, 40
magnetic moment, 102
pseudo-quark, 42
e 17,21, 51,54, 71, 151
psychoanalysis, 60

Index

Q
QED, 21, 131, 168, 169
correction, 131, 136
quadrupole, 78, 79
quantization axis, 101
quantum, 40
bit, 93, see qubit
chromodynamics, 167
cloning, 105
coin, 90, 92, 94, 100, 133, see also qubit
flip, 96-98, 102
computing, 21, 98, 100
constant, 21, 52, 55, see fi
cryptography, 107
electrodynamics, 21, 130, 131, 137,
167—169
entanglement, 104
evolution, 100
field
interacting, 194
theory, 18, 20, 21, 30, 42, 56, 59, 72, 119,
121, 126, 167, 168, 192
underlying, 193
gravity, 157
hydrogen atom, see hydrogen atom
information, 5, 21, 42, 93, 97, 103, 107
interpretation, 5, 36, 57
label, 87
localization, 80
Many Worlds, 174
measurement, 98, 152
mechanics, 42
linearity, 97
non-relativistic, 82
path integral, 190
relativistic, 56, 99
non-locality, 151, 194
number, 58, 59, 64, 65
angular momentum, 33
azimuthal, 33
collective, 180
good, 87
Landau, 130
large, 82, 83
pair, 65, 87
principal, 34
zero, 127, 168
pendulum, see pendulum



reality, 190—194
underlying, 190-194
scattering
invariant imbedding, 172
time-independent, 56
spin, 59, 60, 92, 101, 166
evolution, 154
state, 17, 70, see state
statistical mechanics, 40
teleportation, 105, 106
three-body, 84
tunnelling, 106, 163
reflection, 164
transmission, 164
wave
function, 21, see also wave function
zero-point energy, 34
quark, 42, 133, 179, 192
quasi-classical, 82
quasi-stability, 86, 88
quaternions, 32, 117
qubit, 42, 93, 98, 99, 101, 104, 154
control, 104, 105
pair, 102
basis, 102
entangled, 103, 106
separable, 103
state, 103
state, 93, 100
target, 104
qubitcoin, 108
qudit, 154
quintessence, 4
qutrit, 42

R
radial
correlation, see correlation
function, 60
interchange, 60
radiation
black-body, 40
flow, 170
radio frequency, 88
radioactivity, 30, 163
alpha decay, 163
lifetime, 187
beta, 60
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randomness, 90, 94, 95

rank, 24, 25

Rashomon, 74

realism, 103

reality, 152
underlying, 73, 143, 186, 190—195

reflection, 27

refractive index, 20

regularization, 39, 59

relativistic
field theory, see field theory
kinematics, see kinematics
mechanics, see mechanics

relativity, see also Theory of Relativity
Einsteinian, 66, 190
Newtonian, 66

renormalization, 43, 44, 59, 132, 169
dimensional, 43, 44

representation, 37, 53, 143
alternative, 48, 51, 68, 87, 101, 151, 176
coordinate, 59, 71
finite-dimensional, 67
fundamental, 92
hyperspherical, see coordinate
independent-particle, 57, 58
infinite-dimensional, 67
matrix, 53, 71
momentum, 53, 54, 59, 71
parabolic, 37, 41, 123, 124
position, 53, 54
separable, 103
spherical, 37, 41, 124
time-dependent, 165
time-independent, 165

resonance, 88
magnetic, see magnetic

rest mass, 28

Riccati, 154
equation, 154, 173

Ricci, 138

ridge, 62

Riemann
geometry, see geometry
hypothesis, 138, 146
tensor, 138

Rosetta Stone, 54

rotation, 10, 11, 16, 23, 26, 28, 46, 66, 102
four-dimensional, 36, 39, 67
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rotation (continued) simple harmonic motion, 10—12, 47, 48,
symmetry, 132 see also pendulum and harmonic
three-dimensional, 36 oscillator
rotor, 128 simultaneity, 156
Hamiltonian, 128 sine, 12
spectrum, 129 singlet
Runge, 120 state, 61, 105
Russell, see Bertrand Russell —triplet splitting, 61
Rutherford, 18, 30 singularity, 42, 43
model, 31 slit
Rydberg, 34 double, 189
atom, 34 single, 188
constant, 34 Smolin, 176
state, 83 snowflake, 178
. Koch, 146, 147
S Solander, 140
§?, two-sphere, 100, 152-154 Solar System, 4, 31, 33, 34, 120, 160, 178
saddle, 64, 75, 77, 83, 87 solenoid, 153

localization, 86, 89
point, 19, 63, 64, 83, 84

Solvay conference, 26
space

potential, 83 four-dimensional, 36
electromagnetic, 79 Hilbert, see Hilbert
gravitational, 79 momentum, 43
mechanical, 78 reflection, 122, see also parity

quantum six-dimensional, 63
state, 86 spin

scalar, 15, 23:.34,52, 119, 127 three-varjable, 191
potential, 26, 28 space—time, 14, 23, 28, 29
product, 15 four-dimensional, 66
scaling, 4 geometry, 139
dimensional, 3 index, 166
scattering, 18, 171 interval, 23, 28, 66, 159, 185
length, 179 slicing, 195
theory, 17, 18 symmetry group, 39
Schrédinger, 35 Special Relativity, 4, 99, see Theory of
cat, 36, 57, 98 Relativity
equation, 51, 100, 151, 161, 162 spectroscopy, 33, 34, 120, 167, 176, 179
Schwinger, 169 spectrum
screening atomic, 59
dynamical, 62, 84, 86, 83 Bohr, 40
Second Law of Thermodynamics, 179, 180 continuous, see state
self-replication, 36 degeneracy, see degeneracy
self-similarity, 148 discrete, 40
separation of variables, 57 electromagnetic, 8
set electron
basis, 58 magnetic field, 130
set theory, 53 hydrogen atom, 33, 67

shell structure, 39 line, 18
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nuclear, 38, 40, 41
rotor, 129
supersymmetry, 128, see SUSY and
SUSYQM
speed of light, 8, 23, 26, 67, 139, 138, see also ¢
speed of tsunami, 7
spherical
harmonics, 34, 87
polar coordinate, 119
symmetry, see Symmetry
spin, 18, 39, 56, 59, 92, see also quantum
—orbit, 58, 68, 121, 131, 132, 169
-statistics, 59—61
flip, 105, 130
half-odd, 40, 60, 127, 168
integer, 40, 60, 127, 168
interchange, 60
isotopic, 56
magnetic moment, see magnetic moment
projection, 92, 104
space
three-variable, 191
spinor, 38, 99
spring, 10, 11, 52
constant, 10, 76, 80
square root
coordinate, 38
independent, 117
of (-1),28, 52, 116, 117
of energy—momentum, 99, 165
of NOT, 96, 99
of switch, 94, 97
stalling speed, 7
standard model, 132, 169
standing wave, see wave
star
neutron, 43
opacity, 170
starfish, 110
state, 69
adjoint, 70
base, see base state
basis, 59, 93
bound, 33, 34, 36
energy, 33
one-dimensional well, 165
parity, 165
collapse, 96

continuum, 33, 36, 67, 85
double-ionization, 84, 86
degeneracy
sand p, 132
discrete, 33
doubly excited, 62—64, 84, 86
correlation, 87
entangled, 105, see also qubit
evolution of, 51
excited, 38
ground, 43, 65
non-degenerate, 127, 128
zero energy, 128
harmonic oscillator, 81, see harmonic
oscillator
highly excited, 83
label, 58, 192
localized
two-electron, 87
map
initial to final, 151
microscopic, 180
mixed, 100
multiply excited, 87
pair, 65
parabolic, 38, 124
pure, 97,99, 100
quantum, 17, 58, 59
qubit, 93, 95, see also qubit
separable, 102
Rydberg, see Rydberg
scattering, 33, 165
singlet, 105, 106
singly excited, 86
helium, 58, 61
stationary, 56, 62
superposition, 101
teleportation, 106
three-qubit, 106
transition, 88
triplet, 61, 105
two-bit, see qubit pair
vacuum, 168
zero-energy, 127

stationary, 159

integral, 186
point, 75
principle, 20-22, 51



216

stationary (continued)
state, see state
statistical mechanics, 8, 120, 180
statistics, 35, 133
Bose—Finstein, 5, 40, 168
Fermi—Dirac, 40, 168
stereographic, see projection
Stern, 102
—Gerlach, 102
stilt, 2, 3
Stokes, 15
law, 15, 16
theorem, 15, 152
Strauss, 69
string theory, 17
strong interaction, see interaction
structure
atomic, 59, see also atom
structure coefficient, 67
SU(2), 100, 104, 154
su(2), 154
SU(4), 104
sub-group, 36, 41, 42
superconductivity, 34, 83, 106, 130, 191
superfluidity, 21, 130
superposition, 56, 63, 82
configuration, 58
general, 106
large, 94, 192
linear, 93, 96
Necker cube, 94
principle, 93, 94, 103
spherical harmonics, 87
state, 101
supersymmetry, 127, see also SUSY and
SUSYQM
surface tension, 7
surface/volume ratio, 3, 5
SUSY, 127
broken, 128
spectrum, 127
SUSYQM, 128, 130
spectrum, 128
free-particle, 129
Landau, 130
rotor, 129
switch, 90, 91, 95

Index

square root, 94
squared, 95
symmetry, 23, 56, 109, 118
13-fold, 110
additional, 120
and conservation, see conservation
and invariance, 120, see also conservation
azimuthal, 132
bilateral, 109, 134
broken, 120, 128, 131, 133, 135
internal, 132
intrinsic, 134
maximal, 134
slightly, 120, 131, 134, 136
spontaneous, 131-133, 135
circular, 113
continuous, 154
contour, 113
CP, see CP
CPT, 43
cubic, 109
cylindrical, 124, 132
discrete, 122
dynamical, 41
four-dimensional, 3841, 132
gauge, see gauge
geometrical, 25
global, 133
group, 36
hexagonal, 109
higher, 35, 37, 116
hydrogen atom, 120
in mathematics, 112
increasing, 115
interchange, 60, 113, 116, 186
mirror, 109
n-fold, 109
0(4), 41
parity, 81, see also parity
perfect, 109, 116
point-line, 114
reflection, 109
six-fold, 110, 178
snowflake, 110
space—time, 122, 134
spherical, 32-35, 50, 119
three-dimensional, 37
time reversal, 111, 124
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transformation, 46 single-ionization

translation helium, 84
space, 133 time, 53, 56, 66, 88, 119, 156, 169, 171, 174, 195
time, 133 absolute, 157

two-fold, 109 as dimension, 4

two-level, 100 decay

underlying, 22 half-life, 187

why?, 133 delay, 56

system Wigner, 165

N-level, 154 derivative, 50

four-level, 104 dilation, 158

quantum, 53, 99, 102, 192 doing away with, 159, 171, 174

two-level, 9093, see two-level system cmergy

complementarity, 176

i evolution, 71, 100
T, time reversal, 124, 166 in quantum field theory, 167
teleportation, see quantum in quantum mechanics
temperature, 21, 30, 179, 180, 182, 191 non-relativistic, 162
absolute, 179 relativistic, 165
tensor, 24, 41 interval, 157, 195
antisymmetric, 25,27, 29, 30 light beam, 156

calculus, 138 measurement, 67

nature of, 174

Newtonian, 8, 156

of decay, 193

period, 10
near-Earth satellite, 13
pendulum, 6

periodic, 157

reversal, 111, 124, 129, 166
broken, 136
invariance, 137

sequence, 88, 186

standard, 67, 157

translation, 119

electromagnetic, 27, 29
energy-momentum, 138, 139
index, 25
metric, 30, 138
moment of inertia, 25
rank, 24
Ricei, 138
Riemann, see Riemann
second-rank, 25
symmetric, 25, 30
Weyl, see Weyl

Theory of Everything, 178, 184

Theory of Relativity uniform flow, 157
General, 5, 6, 14, 17, 29, 35, 59, 66, 121, 135, Tolstoy, 74
138, 174 Tomonaga, 169
Special, 4, 5, 8, 18, 23, 26, 28, 43, 66, 107, topology, 46, 152, 158
122, 156, 158, 161, 167, 174, 185, 195 torque, 118
thermodynamics, 8, 20, 30, 179, 180 trace, 139
equilibrium, 181 trajectory, 32, 185
limit, 192 parabolic, 186
Second Law, 179, 180 transcendental, 165
three-body, 20, 64, 84, 158 transformation, 23, 24, 30, 46, 69, 71, 109
threshold, 62 45-degree, 57
double escape, 62 boson—fermion, 128

double-ionization, 63, 65, 8587 chemical, 88
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transformation (continued)
discrete, 122, 125
Euclidean, 46
Fourier, 54
frame, 65, 67, 68, 177
gauge, see gauge
general, 29
Kustaanheimo, 38, 39
Legendre, 63
Lorentz, 26, 28-30, 39, 66, 67, 122, 158, 159
LS—jj, 68, 69
Ovid, 47
parity, 122, see also parity
projective, 114
reflection, 109, see also parity
theory, 18, 47, 52
unitary, 54, 68, 100, 101
transit of Venus, 140
transition
state, 88
translation, 23, 46
—rotation conversion, 11, 12
transmission, 164
trap, see Dehmelt and Paul
travelling wave, see wave
triple point, 181
triplet, 61
Trojan asteroid, 79
tsunami, 7
tunnel through Earth, 12, 13
tunnelling, 163
microscope, 163
Tupaia, 141
two-level system, 92, 93, 98, 101, 104, 106, 154
two-slit, 153
two-sphere, 100, 101, 153
two-valued, see two-level system
switch, 91

U

U(1), 100, 127, 154

u(1), 154

U(s), 41

U(6), 41, 42

uncertainty principle, 17, 18, 32, 52, 55, 80,
161

underlying reality, 73

undetermined multiplier, see Lagrange

Index

unitarity, 19
uranium, 41
fission, 39

Vv

vacuum, 127
excitation from, 193
expectation, 72
variational
formulation, 18
principle, 22, 32, 84, 159, 162, 169, 190
Vasco da Gama, 140
vector, 15, 23-25, 32, 41, 51
axial, 123
bra, see bra
column, 70, 104
conserved, 35
field
divergence, 16
mass, 132
force, 119
four-, 23
electromagnetic potential, 26
energy-momentum, 23
space—time, 23
four-column, 166
index notation, 24, 28
ket, 100, see also ket
Laplace—Runge—Lenz, 34
momentum, 36
operator
differential, 15
particle
massless, 132
polar, 123
potential, 26, 28
phase, 152
product, 16
radial
d-dimensional, 16
row, 104
torque, 119
wave, 165
velocity
uniform, 156
vibration, 10, 11
vierbein, 121
virus, 109, 111
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vis viva, 183
voltage, 8
volume element, 43

W

War and Peace, 74
water
phases, 181
triple point, 181
wave, 8
—particle duality, 73
classical limit, 73, 186, 190
function, 17, 18, 21, 33, 54, 161, 168, 192
amplitude, 51, 173
coherence, 191
complex, 71
double slit, 187
double-escape, 62
evolution, 162
guided, 193
harmonic oscillator, 81
identical particle, 60
localization, 82
measurement, 189
metre, 71
non-relativistic, 193
normalization, 18
oscillator, 53, see harmonic oscillator
phase, 51, 173
probability interpretation, see
probability interpretation
radial, 60
reality, 152
saddle, 86
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separable, 58
single slit, 187
six-dimensional, 152
squared norm, 54
symmetry, 60
two qubits, 102
two-particle, 58
gravitational, 27, 73, 170
plane, 167
reflected, 164
standing, 56, 123, 128, 176
travelling, 123, 128, 163, 165, 176
vector, 73, 165, 173
wavelet, 177
wavicle, 73, 190
weak interaction, see interaction
Weyl, 121
tensor, 121
Wheeler, 21
white dwarf, 170
Whitehead, 69
Wigner, 56
friend, 57
time delay, 56, 165
Wilkinson, 56
WMAP, 56

X
XOR, 102, 105

Z

zero-energy

excitation, 136
zero-point energy, 80, 130
Zhuang Zhu, 47



This book is about ideas and themes in physics. A small set of
them apply over broad areas of physics, and in that wide reach lies
some of the power, beauty, and attraction of the subject. Many metaphors
from ordinary language or other disciplines have been adopted by
physics, albeit with its own specific and distinct flavour.

The selection of topics reflects the author’s own four-decade career in
research physics and his resultant perspective on the subject. While aimed
primarily at physicists, including junior students, this book also addresses
other readers who are willing to think with symbols and simple algebra in
understanding the physical world around us. Each chapter, on themes
such as dimensions, transformations, symmetries, or maps, begins with
simple examples accessible to all while connecting them later to more
sophisticated realizations in more advanced topics of physics.
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