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Preface 

The beaut y of physics lies in its coherence in terms of a few fundamen

tal concept s and principl es. Even physicists have occasion to mar vel at 

the overarching reach of basic principl es and their ability to account 

for features stretching from the microscopic sub-atomic world to the 

cosmological expanses of the Universe. A few fundamental laws, prin

ciples, and ideas run through out the subject. Even without their full 

m athem atical impl ement ation and detailed stud y, an initial under 

standing of th e basic featu res of m any phenomena can be grasped 

through qualitati ve appli cations of these fundamental principles. 

Am ong these prin ciples are not onl y th e familiar laws such as those 

of m otion, Newton 's for classical physics or Schroding er 's for quan

tum ph ysics, or laws of conservati on, whether of ener gy, n1omentum 

or charge, that hold rigorously thr ough out physics, but 'th eme s' and 

'metaph ors' that arise man y tim es in man y sub-areas of the field. 

The lay view of science as rigorous ( as against speculative), pr oceed

ing step by step from observations and experiment to a th eory in a strict, 

systemati c way is a caricature, as every work ing scienti st knows. The 

enor mou s roles of intuition, specul ation , and guesswork in how we pro

ceed, wheth er an ordinary scientist or th e ext raordinar y New tons and 

Einsteins, are n ot emphasi zed en ough. 

Even in mathe1natics, con ject ur es and working hypot heses are cen

tral, even if, in the spirit of rigour of the subject, the final pr oduct or 

theorem may be put in axiomatic form, every step conn ecte d to an al

rea dy sound and established previous step or result. In science, where 

we are tr ying to und erstan d th e world around us, it is all the m ore 

in1portant to recognize th e role that intuiti on plays. In farming that 

intuition ( th e world around us plays a big role in this!) and how we use 

it in turn to genera te m ore knowledge and und erstanding, we have our 

own ways of analogical thinking and met aphors . 

Just as ord inar y conversat ion is 'peppered' with metaph ors, so too 

is physics. The dictionar y defines metaph or as the use of a word or 

phrase to deno te one kind of object for another by way of expressing 

an an alogy between them. I use metap hor to mean equivalentl y ana

logy or, sometim es, a prin ciple. The phil osop her Jan Zwicky says that 

't hose who think m etaphor ically are enab led to think truly because 
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the shape of their thinking echoes the shape of th e world'. The great 

19th-century physicist James Clerk Maxwell, who unifi ed electricity and 

magnetism and showed how light /optics is also part of this uni on, con

trasted metaphor or analog y with puns, another part of speech that we 

are familiar with and often, if groaning ly, love: 'In a pun, two truth s lie 

hid under one expression. In an analogy, one truth is discovered under 

two expressions'. 

It is the discovery of one truth under two, or many, different realiza 

tions that underlies this book. One of the attractive features of physics 

is that the sam e simple principl e applies across man y phenomena that 

are seemingly very different. And a characteristic of physics is to see the 

,vorld fron1 different points of view, quantum phy sics in particular em 

phasizing 'complementary' representations leading to the same result. 

Charles Darwin, another great scientist and a contempora ry of Max

well, also used 'selection' as a metaphor , that one cannot do science 

wit hout being metaphorical, and said: 'No one objects to chemists 

speaking of "elective affinity", and certainly an acid has no more choice 

in combining with a base, than the conditions of life have in deter

mining whether or not a new form be selected or preserved' [1]. Since 

science, with physics my main focus, tries to connect phenomena that 

at first sight appear widely different (fallin g apples and the Mo on 's 

orbit), by boiling th em down to a small set of essential prin ciples and 

laws , metaphor and ana logy pervade our subject. Some, in particular, 

are so uni versal that we in1mediat ely jump to saying 'that is just a pen

dulum', complete ly akin to saying 'she is a rose', or 'Juliet is the Sun', in 

an everyday context. 

Indeed, as familiar alread y in ordinar y lan guage as a powerful m eta

phor, consid er the pendulum. Its swing from one extreme to th e other 

is often invoked in social or economic contexts. Another sim ple ex

ample is the two -faced quality of a coin. But ph ysics sees even further 

elemen ts in them. Often, when we enco unt er a ph ysical situation or 

a certa in math ematical equation, we will see in it the pendulum even 

though th ere m ay be no actual pendulum, no strings or bobs. That 

identificati on invokes immediat ely all kinds of other impli cations and 

consequences, both in the mathematical analysis and for the ph ysics of 

the subject und er stud y. 

In mol ecular vibrati ons , such as in the C02 molecule, the quaI}tum 

motion s of electrons and nucl ei are metaphoricall y the pendulums. In 

elect rmnagnet ic radiati on , includ ing the visible light we observe, th ere 

are not even any con crete material particle s, on ly electric and magn etic 
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fields executin g simple harn1onic 1notio n. But , to a physicist, the y are 

all 'just a pendulum' , adding furth er richness to these m etaphors. It is 

some of this flavour that thi s book tri es to convey. 

Perhaps becau se of th e way our brains are cons tructed and have 

evolved, ther e is often a-tendency, in many religions or 1nythol ogies, 

or even in science, to seek a single theory of everything. Another ten 

denc y, whether in physics or toda y's biology, is to seek the fundam ental 

at the lowest size, whether in genes and DNA/RNA in mol ecular biol

ogy or quarks and lept ons in particl e ph ysics (what had pr eviousl y been 

at the level of atoms or, next , of nucl ei). Yet another is to see data, num 

bers, and statistics as th e essence of science. While the y are an important 

part, it is the fundamental con cepts and principles, including the laws 

of m otion and of conservation, that apply across th e whol e field, that 

define our subje ct. And, as emphasi zed by Newton, ther e are at every 

stage and every level of inquir y 'initial conditions', parameters, funda

mental constants, and constructs that are also crucial for th e relevant 

physics but to be tak en as given. 

While every ph ysicist recognizes man y such themes and principl es, 

emp loying th em as part of the very voc abula ry of the subject, they 

are not often spelled out or brought together, especially for student s 

during their cour ses of stud y. As with m etaphors and theme s m ore 

gener ally, students are expected to imbibe them with increased expos

ure and thr ough their own encount ers with them , sometime s appl ying 

and exte nding th em in n ew con texts. In time, every physicist th ereby 

develops a perspective on th e subject that extend s beyond th e specific 

books and papers read or authored. 

This book pr esen ts some of the principles and perspectives that d01n

inate my view of th e world of physics. The very use of th e word 

'perspec tive' signifies a subjective element and each ph ysicist will have 

his or her own set of favourite topics . In evitably, som e of them will 

overlap and some not , reflecting one's own histor y in the subject and 

one's taste. This is as it should be, th e subj ect itself larger than the sum 

of its parts. It should be no surpri se that the theme s I have chosen are 

ones that have played import ant rol es in my own research career. Every 

chap ter reflects this, th e topi cs discussed h aving been of centra l interest 

to me in my research and teachin g. 

To whom do I address this book? Any stud ent of physics in th e senior 

undergraduate years, and certainl y graduate st ud en ts and researchers, 

will be able to follow the entire discussion . But I am aiming at a broader 

audience of the int ellectuall y curious read er in othe r sciences and even 
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outside the sciences and mathem atics. In each chapt er on a th eme, lat er 

section s will deal with illu stration s that will require exposur e to s01ne 

advanced ph ysics for th eir full apprec iation . But each chapt er will pr e

sent very simp le exampl es in th e beginning to illu strate th e them e. 

These will be accessible to anyone willin g to exercise his or her logic 

and im aginati on, and not shy away from thinking in term s of symb ols 

and following simpl e algebraic relations between th em. 

Math e1natical symbol s, some simp le algebra, and elements of calcu

lus are inescapabl e, bein g an int egral part of th e lan guage of physics. No 

one needs avoid th em. Their usage in this book is deliberat e and, in part , 

my con tributi on towards the debate initiat ed by C. P. Snow's The Two 

Cultures and a Second Look (1964). Educated and intellectually alive persons , 

what ever their exper tise, have an appreciation of literature , mu sic, and 

the arts. As one who appreciates music and th e fine arts but withou t any 

trainin g in th em , I have had occasions, when in th e company of som e

one versed in th em, to realize how much m ore th ere is to understand 

and appreciat e in a painting or a piece of classical music. Never thel ess, 

I already derive som e bene fit and satisfact ion even when I do not ha ve 

their aid. 

It is in som ewhat th at spirit th at I wish to communicat e to my non

scientist reader some of the beauty and depth of the prin ciples and 

patterns of my subje ct , even if some of th eir sophi sticated rea lizations 

may be only for physicists. Just as in ot her subj ects and fields of in

quiry, physics and n1ath ema tics are also m ostly about patterns and how 

the y are put together , sometimes in un expec ted but pleasin g combin

ation s and contexts . While mo st of th e patterns and the1nes app ly m ore 

broad ly outsid e of physics, physics sees even further facets of th em. The 

pow er and elegance of patt erns and prin ciples in expos ing truth s of th e 

way things are, and why th ey are as th ey are, are what make physics part 

of the liberal arts as und erstood in th e US college curriculum. 

Equations are sparin gly used in thi s book, especially at th e begin

ning of cha pters , and they are very simple and spelled out so th at 

no prior acqu aintan ce with then 1 is n ecessary. A general reader is 

encourage d to continu e to read on into th e mor e sophisticated illus

trati ons later in the chapter . Some advan ced 1nateria l is set off against 

a shad ed background. Since the accent is on the th em e and ideas, tech

nical and math ema tical details or equati ons are rn.ostly avoided in th e 

later sections of th e chapt er when discussing mor e sophisti cated occur

rences of th e ideas. If a reader skips th ese sections, or gets only an 
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impressionistic feel for th e range and power of explanati on with on ly 

physicists fully appreciating th em, th e the1ne itself will nevertheless 

have been develop ed for everyone thr ough th e first simp le illu stra 

tive exampl es. At the same tin1e, even physicists familiar with these 

lat er topics may appreciate their unifi cation with ot her s in a continuin g 

th eme from simple beginnings. 

My motivation for writing this book is of cour se to convey some of 

th e power, significance, and beaut y of physics. Part of th e in spirati on 

for wri ting came from the powerful effect thr ee books had on me, even 

on a first reading. While in no way in th e same league as these au

thors and their books, this book and I have been influenced by their 

style and content . The book The First Three 1\1inutes, by Steven Weinberg 

(2] was addressed in part to his 'int elligent lawyer friend', conveyi ng to 

such a reader who is willing to follow a thread of logic and argument 

a sophist icated und erstandin g of th e very first minutes of the Universe 

as revealed by physics. Both that book, and Richard Feynn1an's QED, 

(3] while addressing a broad audience, n1ake no concession in ren der

ing th e physics rigorously. While presenting accessibly and with lit tle 

mathematics, there should be no compromise on th e physics itself and 

portray ing it accurately. The book by Rudolf Peierls, Surprises in Theor

etical Physics, [4] is somew h at different, aim ed at grad uate st ud en ts and 

researchers, and is full of the kind of insight and perspective on even 

well-kn own topics that students do not get normally in courses and 

from textbooks. I bow in acknowledgement to these three works. 

A book such as this is not one whe re every item is footnoted and ref

erenced, and notes and citat ions have been kept to a nlinimum. Brief 

biographical footno tes are given for every person mentioned . These 

are mainly for th e read er un aware of these notewort hy people, to give 

the m a minimum in1pression of who they were. Readers interested in 

delving more into tho se lives and works can, in this day and age, turn 

to Wikipedia, encyclopae dias, and further references therein. Regarding 

references in thi s book, all the physics m ent ioned will be fam iliar to re

search physicists. More juni or students will also know of the standard 

textbooks in classical m echanics, electromagnet ism or quantum m ech

anics to turn to if they \Vant to learn more details. Since this is about 

my perspective, my own research work is n atura lly reflected through 

out, and a few references to it are given where the interested reader can 

find further elaborat ion. Ot herwise, references have been given on ly for 

a handful of very specifically mentioned items . 
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1 

Adding a Dimension 

1.1 Dim ension s in Physics 

Th e th em e of thi s ch apt er, as indi cated in its titl e, is addin g a dim en 

sion. Thi s is often useful in physics. But consider first what is m eant by 

dim ensions in physics. Physics is th e stud y of the world around us in 

a disciplin ed way, with increasing precision and depth . But long before 

physics, even our earliest pr oto-hum an ancestors mu st have recogniz ed 

th e role th at size, location , and distances betwee n locations plays in th e 

world and for thei r life in it. Length or distance alon g a lin e, a lin

ear 'dim ension ', is th erefore am ong th e m ost primiti ve concept s for 

describing and und erstandin g th e world we live in. Also an early real

ization was th at th ere are thr ee different distances or displacements -

forward s/backwards, sideways or left/right , and up /down - that we live 

in a thr ee-dim ension al world . Th ere are thr ee independ ent degrees of 

freedom in th e m otion of any object . 

From thi s hun1ble but imp ort ant beginnin g, th e concept of dim en

sion h as been extended in m any ways, bot h in physics and in ordin ary 

language, so as to h ave gained rich metaphori cal uses in both. Thu s, 

we talk of th e m any dim ensions of an idea, constru ct or per son , or of 

som eone havin g an extra dim ension to him or her , or of a well-round ed 

argum ent . Simil arly in ph ysics, all our quanti ties of int erest are ch arac

terized in term s of basic dim ensions that extend far beyond th e original 

len gth s, breadth s, and height s we star ted with. 

All separations and distances, no rnatter how sm all or large, from 

n an om etr es to kilom etr es or astr onomi cally large distances, share in 

essence th e comm on featur e of being a linear dim ension. They m ay all 

be th ought of for th at purp ose as an [L), a len gth , thi s being th e essen

tial dim ensional element th at unifies and chara cterizes them . Unit s for 

m easurin g th em may vary with cont ext and countr y, from th e initi al 

hand s and feet or strid e length s that gave natur al, hum an 1neasur es 

for th em , to the inches and cn1 ( centim.etr es) and th eir multi ples th at 
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different peoples institut ed for precision dealings. In an equati on in 

physics, no matter how complicat ed, the dime nsional aspect of su ch 

elements is that the quantit y is an [L]. 

The primitive beginnings of recognizing lengt hs, breadth s, and 

heights mu st have stretched immediately to ideas of putting th em 

together in multiplicative fashion, that areas are formed of two of 

thes e, and volum es by combing th ree in th e thr ee independ ent direc

tion s of th e world we live in. Certainl y with the advent of agriculture 

and settled civilization and the buildin g constructi on that went with 

it, all peoples developed an und erstandin g of areas and volum es, and 

th e stud y of geom etr y (literall y m easur eme nts on the Earth) predates 

physics as a subj ect. Mound and pyramid build ers, Greeks , Arabs, and 

a myriad oth ers developed sophisticated ideas in geometry, and instru 

ments based on them, as part of their civilization and culture. A rich 

lexicon of terms - acres and he ctares, gallons and litre s - developed . 

But for physics, their essence lies in th at two or thr ee length s in in

depend ent (mutually perpendi cular or 'o rth ogonal') directions are put 

togeth er multiplicatively so that all areas are dimensionall y [L]2 and all 

volumes [1)3 , using the math emati cal n otati on of exponents for squa res, 

cubes, etc. These din1ensional aspects are shar ed by all areas or volum es, 

whatever oth er distinctions may apply to them and whoever m easur es 

th em in th eir own distinct units. The volume of a cub e of side a is just 

a3 itself, while that of a sphere of that radius has additional, dim ension

less factors (including the uni versal constant n = 3.141S9 . .. ) in its 

( 4n /3)a3 but both are equally of dim ension [L]3 , a cubed length, such as 

m 3 or cm 3 (som.etime s abbreviated as cc, a thousandth of a litr e). 

One can already see ben efits from thi s kind of disciplin e and precision 

in thinkin g that charact erize physics. Startin g with littl e mor e th an the 

above observa tion , and with [L] th e only dimension to play with, along 

with its different powers, one can draw int eresting conclu sions about 

the world around us. Two simil ar wading birds, a flaming o and a stilt 

(Figure 1.1), have body masses , respectively, of about 2 kg and 120 g 

for a ma ss or, equivalentl y, volum e rati o of, approximately, 16 between 

them. (There is here an impli cit assumption, essentiall y corr ect , that 

all birds have about the sam e density so th at m asses are proportional to 

volumes.) Everythin g about th e bigger flamin go ·will, of course, be com 

parativ ely larger than for th e sma ller stilt , but cons ider going further, 

to mor e pr ecise terms. Based on how volum es relate to [L), we might 

expect that th e len gths of their legs would be in th e ratio 16113 ~ 2.5, 
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Figu re 1.1 Two birds, a stilt (left) and a flamingo (right ), with similar wading 

habit s and habit ats. Text relates their sizes according to dimensional scal

ing . Torn Grey : < h ttp ://ic2.pbase.com/g6/44/316244/2/84224488.cb3EfssK.jpg>; 

William Duke: < htt p ://www .pbase.com /ph otosbyduk e/irnage/95530287> 

in confonnity with th e observed 20 and 8 in , respectively, of th eir legs 

on average. No te that we took th e 1/3 pow er ( cube root) of 16, not 16 

itself , in going from comparing volmn es to length s ( of legs). With this 

one sma ll logical step, we made quantitativ e sense of a little eleme nt of 

what we see around us, that th ese various numb ers are not a mindle ss 

collection in some catalogu e, but th e ratio of m asses bear s a simpl e rela

tionship to th e rati o ofleg lengths , reflecting th e dimen sionalit y of our 

world. Our exarn.ple was deliberat ely from the biological world because 

whatever the enorm ous biological differen ces betw een flaming oes and 

stilt s, and wh atever th e variations among indi viduals of either group , 

the anim ate world is just as const rained as the inanimat e by the laws of 

physics, here of gravit y. 

That th e surfa ces and volum es of an object scale differe ntl y and , in 

part icular, th at th e rati o surfa ce/volum e, which scales as [1]-1, dimin

ishes with incr easing size permit non -trivial connections and und er

standings of th e wor ld aro und us, both ph ysical and n atural. (In sci

entific notati on , negative powers indi cate term s in the denomi nator.) 
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Note that both th e surfa ce and th e volume of an object increase as the 

object is scaled up but the rati o decreases, as the volum e increases faster . 

Do ubling lengths increase s areas by a factor of four, and volum es by a 

factor of eight, but the ratio of surfac e area to volume is halved. Ind eed, 

Galileo 1
, whom we might coun t as th e first physicist, wrote eloquentl y 

about this, as did the lat er and , perhaps, th e best expositor of thi s kind of 

'dimensional ana lysis', D' Arey Thompson 2
. Meta bolism depends on the 

who le body volume but heat is lost or absorb ed from th e surfac e so that 

infants chill m ore rapidly than adults and, as every parent knows, need 

to be wrapped up more . The folded and brok en up stru cture of lung s 

and inte stines, organs that have to absorb through a surfa ce, is Nat ur e's 

soluti on to accommodating a large surfa ce within th e constraints of a 

given volume (Figure 1.2). Thu s, in D' Arey Tho mps on's eloquent words 

[5], 't he form of a body is a diagram of th e forces acting upon it' . 

Moving beyond th e singl e, static lengt h dimension [L] to consider

ing objec ts in m otion, that is, changes of th eir positi on in tim e, we 

h ave to intr oduce a new element , tim e. Tim e as an int rins ically new 

dimension, [T], enters as a natural extension of the concept of dim en

sion . Today, in colloq uial usage, even laymen associate th e idea of time 

with the 'fourth dimension ', linking it especially with Einstein 3 and th e 

1 Galileo Galilei, 1564-16 42, Italian. May be considered the first physicist for his care

ful observation s of bodies in free fall and rolling down inclined plan es, on the basis of 

wh ich he arrived at th e prin ciples of in ertia. In parti cular, he realized that th e state of 

rest is n ot a special one, as h ad been th ought previous ly, but that all uni form motion , 

inclu ding th e case of zero velocity, continu es in th e absence of impressed forces. Th is 

was formali zed lat er as Newton 's First Law of Motion. The first telescopes were just ap

pearing and Galileo developed th em furth er, turnin g th em to observin g the heavens 

and discoverin g sun spots and th e m oons of Jupiter, both of phil osophical imp or t, in 

showing that heaven ly bodies are not mad e of some unbl emished quin tessence differ

ent from on Earth and that ther e are oth er plan eta ry systems analogous to our own 

Solar System . He also saw in swingin g objects such as pendu lum s tim e-keeping devices, 

and recogn ized th e role of dimen sions and scalin g to explain th e world around us. 
2 D'Arcy Wentw orth Thomps on, 1860-1948, Scottish. Mathematician, biologist, and 

scholar of th e classics. His book on the stru ctur e of p lants and anim als became a classic, 

also as a piece of literat ur e. He empha sized th e role of physical and mechani cal laws 

in biology that was oth erwise domin ated by Darwinian selection ist think ing. The role 

of mat hemati cs such as Fibonacci sequences and of geome trical tran sformati ons, and 

the way of thinkin g he introduc ed influenced m any biologists and oth ers who have 

followed him. 
3 Albert Einstein, 1879-1955 , Swiss and American. Revoluti onized ph ysics and phil

osophy throu gh several papers in 1905 on Special Relativity, Brownian mot ion (which 

demo nstrate s the un derlying ato mic stru ctur e of matter), and th e photoelect ric effect 
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Figure 1.2 Lungs and int estines . Organs for absorbing oxygen or nu tr ien ts 

have folds and oth er broken- up stru ctu res to get a larger sur face/volume 

ratio than th ey wo uld have oth erwise. Patrick J. Lynch: <h ttp: //en. 

wikipedia.org/wiki/File:Lungs_d iagram_d etailed .svg> . Indolences : < ht tp:// 

en .wikipedia.org/wiki/File:Stoma ch_ colon_ rectum _d iagram .svg> 

Theory of Relativity. But , invokin g it as an oth er dim ension, ind epend

ent of space, goes all the way back to the beginnin gs of ph ysics, again 

to Galileo. Ind eed, th e recognition of the pendulum clock as th e basic 

apparatu s for measurin g tim e, and th e pendulum equation for th e tim e 

period of one full swing (see Figur e 1.3), generally at tribut ed to Galileo, 

T = 2rrl, 
led to th e beginnin gs of our m easur in g and stu dying m otion. Th e above 

pendulu m equati on is on e of th e first equations a student of ph ysics 

learn s in high schoo l or college. 

(a key step in th e developm ent of quantum physics), and a decade later with his General 

Theory of Relativity and Gravitation. His scepti cism of th e int erpr eta tion of quantum 

physics, and belief that it was incomplete, has draw n renewed attention in recen t years 

in th e field of quantum informati on , and his developm ent of Bose-E in stein statistics 

and the prediction of a 'con densate' at very low temperat ures has now been realized ex

per im entally and is leadin g to m any nove l developme nt s. An avowed pac ifist, he spoke 

ou t ( as in th e Ber trand Russell-E in stein Manifesto) in his late years agains t nu clear war 

and weapons. 
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Figure 1.3 A simple pendulum. For small oscillati ons about the vertical equ i

librium position, a string has a time period that depends only on its lengt h , l, 

and Earth's gravity, as per Eq. (1.1 ). It is independent of the shape and mass of 

the suspended bob. 

The time period on the left-hand side ofEq . (1.1) depends only on the 

length ,£, of the pendulum divided by the acceleration due to gravity, 8, 

a measure of how all masses fall under the attraction of Earth 's gravity. 

A key idea of physics, one first recognized by Galileo and later incorpor

ated into Einstein's General Theory of Relativity, is that the acceleration 

is independent of the mass of the falling body. The rate of change of 

position with time, which is a speed or velocity, has dimensions of 

[L][Tr1 and the rate of change of velocity, an acceleration, involves 

one more time element in the denominator, to give it dimensions of 

[L][Tr2
. It is clear by inspection that Eq. (1.1) is dimensionally cons ist

ent, as indeed any equation nmst be. You cannot add apples and oranges, 

nor terms that do not match dimensionally. Indeed, the practical use 

of dimensional analysis as an aid to memory allows us to tell the stu

dent that, should there be confusion in recalling whether it is £/3 or 3/£ 

inside the square root, thinking of dimensions will give the answer. The 

pure number 2n in the formula, being dimensionless, has of course to 

be memorized but the rest of Eq. (1.1) can be argued for strictly from 

dimensional considerations, ,vithout any further knowledge of physics. 

Ident ifying the length, and the constant 8 that character izes the restor

ing force due to gravity that makes the pendulum swing, as the only 

relevant variables, the tirn.e period must perforce invol ve the combin

ation .ft{g to give something of din1ension [T]. No other combination 

will do. 

Next, with just a few n-iore steps of thought, we start n-iaking fur 

ther sense of the world around us. When we walk, our legs swing in 

pendular fashion. Taking 1 n-i for that leg length ( also, approximate ly, 
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the len gth of our stride), and with 8 ~ 10 m /s2, from Eq. (1.1) follows 

a typical walking speed of 1 m/s or 3.6 km /h (approximatel y 2 mph ). 

That is a good estim ate for our average walking speed. Dimensional 

ana lysis can also be used to argu e that for objects mo ving thr ough fluid 

n1edia, whether birds and airpl anes thr ough air, or fish and submar

ines through water, their typical velociti es, which are dim ensionall y 

leng th /tim e, mu st involve ,Jl,, that is, mu st scale with th e square root 

of their lengths. Indeed, stalling speeds of a large airplan e rel ative to 

that of a small one scale in thi s fashion, as do swimmin g speeds of fish. 

Consider tsunamis , such as tho se in 2004 in the Indian Ocean and in 

2011 in Japan. One of their awesome featur es is that they race across 

oceans at speeds often of th e order of 150 m /s or 350 mph ( th e speed of 

a jet airplane) . This can again be und erstoo d in simple terms, ign oring 

all the complicated hydrodynami cs of flow ( still one of the mo st dif

li cult of topi cs in physics), through dimen sional considerati ons alone. 

When a major dist urbanc e on th e sea floor displaces a huge volume 

of wate r , th e ocean sur face will return to equilibrium by th at piled-up 

volume spreading out. The restoring agent is again gravity (in thi s con

t ext oflarge volumes; for water waves in shallow bowls or rippl e tanks, 

it would be a different agent, surface tension) so that we expe ct B to 

hl' invo lved. The tsunami speed, being dimensionally [L][Tr 1
, as is any 

speed, needs a length dimension, [L], which upon multiplying with 8, 

which is in dimensions of [L][Tr 2
, and takin g a squar e root will pr ovide 

,t candida te expression for it. Th e natur al choice for a len gth involved is 

the ocean depth or the wavelength of th e waves, both approximately a 

few km . With the se input s, and a 2 km depth tak en as a characteristic 

.tverage for our oceans, ✓ 2000 x 10 is ind eed, approximately, 150 m/s or 

1' )() mp h. 

Moving on to th e subj ect of m echani cs, the study of th e n1otion of 

11bysical objects, th e next elem ent is th eir mass, a ne w dimension . While 

i rrclevan t for falling und er gravit y (a statement of grea t imp ort about 

the na tur e of gravity), other moti ons in m echanics do depend on th e 

mass of the m oving object. Inde ed, mass is the m easur e of how much 

;1 n object resists forces that tr y to ch ange its sta te of motion. Being 

intrinsically different from len gth and tim e, we intr oduce [M] for this, 

the a1nount of stuff in th e object . Again , whether we measur e in kg 

()r tonnes, wheth er th e micro scopic mass of an elect ron or th e mind 

hoggling ma ss of a black h ole, all are din1ension ally [M]. The thr ee 
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dimensions, [L], [T], and [M], together suffice to describe all physics as 

Galileo and Newton 4 knew it , all of mechanics then and since. 

Only the extension into electromagnetism, which came in the mid-

19th cent ur y, required supp leme nting [L], [T], and [M] with one more 

independent dimension, that of charge, which may be denoted [Q]. All 

ot her electrical quantities such as current or voltage as well as magnetic 

quantities can be expressed in terms of the dimension of charge com

bined with the above three din~ensions of mechanics. That only one 

new dimension is needed is in part an expres sion of an import ant aspect 

of the unified nature of all electricity and magnetism. There is freedom 

in that choi ce of element , whether charge or current ( of dimensions 

charge/time) or voltage, the essential aspect being that, along with the 

three for me chan ics, a combina tion of four dimensions can describe all 

of m echanics and electromagnetism. And this is as true of toda y's quan

tum physics as it was in the classical physics of Newton and Maxwell 5
. 

Consideration of mass leads naturally to the concept of densit y of 

material bodies, mass /volum e, with dimension [M][L]-3. All quantities 

of mechanics - mom entum , force, energy, pressure , etc. - are various 

combinat ion s of the same three dimensions, resp ectively, [M][L][Tr 1
, 

[M][L][Tr2, [M][L]2[Tr 2
, and [M][L]-1 [Tr 2

. Note in the second an ex

pression of Newton's famous (second) law of motion, F = ma, that 

forc e is ma ss times acceleration or, alternative ly, the rate of change 

4 Isaac Newton, 1642- 1727, English. On e of the greatest scientists of all tim e and the 

found er of physics through his discovery of th e laws of motion and of gravitat ion, and 

of math emati cal anal ysis as one of the developers of th e infinitesima l calculus. He also 

developed the subject of geometri cal opti cs for light propagation , includi ng the design 

of tel escopes. His concept of time as an absolute back ground flow against which to view 

all ph enomena , despite later m odifications in Einstein's Theory of Relativity, continues 

to be problemati cal to laym en , physicists, and philosoph ers (see Chapt er 7). His laws of 

motion, despit e th e lat er revoluti ons of relativity and quantum physics, continu e to be 

relevant , from our mundan e bicycles and aut omobil es to sophi sticated space missions. 
5 J. C. Maxw ell, 1831- 1879, Scottish. Formulated a unified the ory of electri c and 

magn etic ph enomena thr ough th e basic set of equati ons of classical electrom agnet

ism. In doing so, he concluded that waves of elect ric and magn etic fields, propagating 

at th e speed of light , c, mu st exist. Visible light and opti cs are a part of thi s electro 

magn etic 'spectrum' th at also embra ces other waves, such as ultraviol et, x-ray, gamma 

ray, mi crow ave, and radi o waves. This formulation by him and his followers was crn

cial for Einstein in his quest to make m echanics and electroma gnetism compatibl e, 

ther eby leading to the Special Theory of Relativit y, with c a universal constant and 

a fund ame ntal re-int erpr etation of space and time. Maxwell also developed the kin

etic th eory of gases, another fund ame ntal piece of physics, on e relatin g microscopic 

stati stical m echani cs to ma cro scopic th erm odynamic s. 
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of momentum (which is m ass tim es velocity or [M][L)[Tr 1
) in time, 

F = dp/dt as rend ere d in Newton's differenti al calculu s. The kinetic en

ergy of m otion, mv2 /2, or th e gravitational potential energy, mgh, of a 

mass at a height h above the surfa ce of th e Earth, or any other form of 

energy, including th e famous Einsteinian relation , E = mc
2

, with c th e 

speed of light, are always a [M)[L}2[Tr 2
. Again, in any equation of ph ys

ics, suc h as Newton's law of m otion or Einstein's equivalence of en ergy 

and mass, the left- and right -hand sides and all term s in them mu st be 

dimensio nall y consistent . 

As one more example of th e power of dim ensional an alysis to give 

non-trivial results, con sider a probl em unfamiliar to mo st, the qu estion 

of how the fireball from a large explosion, whethe r chemi cal or nucl ear, 

expands with time. When one views such an explo sion on a TV scree n , 

it wou ld seen1 the domain of a specialized ph ysicist or engin eer to m ake 

4uantita tive sense of it. But simple dimensional reason ing accessible to 

any layn1an can tackle surprisingly sophisticated questions. \Vith th e 

energy, E, of the explosion an obvious para1neter of int erest, and also 

th e dens ity, p, of th e air int o which th e fireball expand s (a denser me

dium suc h as water ma y be expected to offer more resistance), to obt ain 

the radius, R, of that fireball , which is a length , we have to form th e di

mension [L) from th ose of E, p , and tim e, t. With some ju ggling of their 

di1nensions expressed in [L), [T), and [M] to cance l out all but the dimen

sion [L), we arrive at R = k(Et2/p) 115. As in any dimensional argum ent , a 

di1nensionless consta nt , th e pur e numb er k, is of cour se n ot fixed . Gen

erally, these multiplicative cons tan ts have som e sma ll num erical value 

such as 1, 2, or n , and combin ations th ereof. As a result, all essential de

pendences and non -trivial scalings with energy and time are obtained 

without invoking any detai ls of th e comp licated physics of an air ex

plosion. An explosion wit h 10 times th e en ergy released will expand to 

101
/
5 ~ 1.6 tim es the radius in the same tim e. And an explosion at high 

altitude, where the densit y m ay be half of what is near the surface , will , 

all other parameters being equal , expand n ot to twice the size but rath er 

only about 15% larger , th e fifth root of2 being about 1.15. 

1.2 Adding a Dimension 

With the above introduction to dimensions in physics, we turn now 

t o the titl e th eme of this ch apte r . It refers not to the introdu ction of 

new dimensions of time, ma ss, charg e, etc., when needed, as in th e pre 

vious section, but to th e fact that , often in physics, it turns ou t to be 
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useful to add a dimension to the problem under consideration as an 

aid to solving or better understanding it. This is purely as a device to 

calculate or understand better: no such extra dimension is physically 

present in the problem. This seems curious at first sight. One might 

think that introducing a new dimension ( or a degree of freedom) to 

ones already present can only complicate matters. But tin1e and again 

and in different areas of physics , we find instead that adding a dimen

sion and, in particular, just one extra dimension simplifies the problem, 

even allowing an otherwise intractable problem to be solved. Often this 

is primarily a mathematical device ( even that highlights its usefulness, 

now in mathematics) but it also gives in many instances greater insight 

into the physics involved. 

Before turning to a simple example in physics, consider first a math

ematical joke that illustrates this theme, with hun1our if not precision. 

A shepherd dies, leaving behind 11 sheep and a will stipulating that the 

eldest son is to inherit 1/2, the middle son 1/3, and the youngest boy 

1/12 of the flock. As they puzzle over how to proceed, a wise shepherd 

uncle brings one sheep of his own that he adds to the flock, then gives 

six to the oldest son, four to th e middle, and one to the youngest, and 

his own sheep is left behind for him to take away at the end. This ad

mittedly simple trick does illustrate, however, the n1ain theme of this 

chapter, of the merit in adding one element to solve an otherwise in

tractable problem. (For someone still puzzled by the uncle's sleight of 

hand/sh eep involved, a 1noment's reflection on adding th e fractions 1/2, 

1/3, and 1/12 reveals the trick!) 

1.2.1 Linear Vibration to Circular Rotation: A Pedagogical Example 

One of the simplest motions in our ph ysical world is that of simple 

harmonic oscillations of a mass point along a line, .a one-dimensional 

1notion in the direction x. The motion of the pendulu1n bob in the 

previous section or of a mass at the end of a spring (Figure 1.4) are ex

amples that are usuall y presented in the very first lessons of physics. 

Two parameters characterize such simple harmonic motions, the fre

quenc y, w, and the amplitude, A. The frequency is th e inverse of the 

time period and, for a pendulum, is given by Eq. (1.1), w = 2n /T = 
./ifl. For a spring of elastic constant k, the frequenc y is w = ,jk{m, and 

so depends on the mass , m, stretching the spring. Ordinary language 

uses cycles per second (cps) or revolutions per minute (rpm). Each full 
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Figure 1.4 A simple spring. 

cycle or revoluti on being 2n radian s (360 in degre es), scientific usage is 

in radians /s, with units Hz = s- 1
. 

For the sim plest case of fixed w of any simpl e hann onic moti on in 

one dim ension, using th e trigonometric fun ction sin ( or, alternativel y, 

cos), we have x(t) = A sin wt. It may seem surpri sing that thi s very sim

ple motion with one paramet er fixed and th e instantan eous position 

varying in a simple fashion can be further simplified. But , if we adjoin 

another di1nension , y, with a similar motion, y(t) = A cos wt, then the 

con1bined two-dimensional m otion is ind eed simpl er, with now both 

frequency and radiu s, A , fixed in tim e. All the 'co mpli cations', th at 

the x and y positi ons vary with some mathematic al ( albeit simple trig

ono metri c) dependenc es, are circumvented for th e motion of the ma ss 

point on a circle, which is n ow at a fixed radiu s with a fixed rotational 

speed . Two fixed numb ers, A and w, describe th e motion fully. The 

complications of th e one-dimensional m otion are th en viewed as en

tire ly du e to the projection down in one dimension from the simpl er 

un iform circular m otion in a high er-d in1ensiona l space (Figure 1.5). 

This is a very familiar exampl e for man y reasons and will recur in 

oth er th em es of later chapt ers. One is for its conn ecting oscillation s or 

vibrations with rotations. Thi s also has an applied aspect for convert

ing from one to th e oth er, as'in familiar examples of pistons in cars or 

tr ains (Figure 1.6). No te also the int eres ting int erpla y: th e tran slational 

n1otion of th e pistoh over a limit ed rang e (less th an th e size of a car or 

locomot ive) converts to a rotational m otion (rotati ons are always con

fined) and then to a tran slati on of th e whole car or tr ain along the road 

or rail of unlimit ed range. 
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Figure 1.5 Simpl e harm oni c m otion on a line with amplitud e A, and associ

ated uni form m otion in a circl e of radiu s A. Shown on top are sine and cosin e 

cur ves of th e x and y projections of a point on the circle to the two Cart esian 

axes. 
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Figure 1.6 Pistons in an old steam railway eng ine that convert from lin ear 

to circul ar m ot ion. 2007 Aut ocad drawing by Stavros l of a Great West

ern King locomo tive. < http: //en. wikipedia.org/wiki/Fi le:Aut oCAD_ dra wing_ 

of_a_ Great_ Western _ King .png> 

Yet another realization of the linear and rotational m otions , shown 

in Figur e 1.7, goes back to basics from th e tin1e of Galileo and Newton 

and is a classic probl em in cours es we teach in mechanics. A tunn el 

drill ed thr ough a diam eter of th e Earth ( assumed to be a unif orm 

densit y sph ere) leads to simple harm onic motion of a ma ss point 

dropp ed int o it. Th e time period of this m otion is that of a pendulum of 

len gth equal to th e radiu s of th e Earth , with a value as given by Eq. (1.1), 

T = 2n J 6.4 x 106 /10 ~ 84 min . This coincides with th e tim e it tak es 

a ne ar-Earth satellit e su ch as th e International Space Station to go once 

around in a circul ar orbit (Figure 1.7). (Such a satellit e is a few hundr ed 

mil es above the surface but, with th e relevant distan ce bein g from th e 
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Figure 1.7 A tunnel though a diameter of the Earth (represented in cross

sec tion by a circle) and a near -Earth satellite or bit . A mass point com plet es 

one full oscillation with the same tim e period of, approximately, 84 min for 

either moti on, as given by the pendulum Eq. (1.1) with f = R, th e radius of 

the Earth. 

Earth's centre, th e length involv ed is don1inantly the Earth's radius of, 

approximately, 4,000 miles or 6,400 km.) These arguments are again 

illustrations of dimensional reasoning, th e only relevant length being 

the radius of the Earth, which when coupled with the gravitational ac

celeration, 8, provid es a time through the pendulum equation Eq. (1.1). 
Naturally, the same time applies to the period of a (Gulliverian) pendu 

lum th e size of th e Earth or to the time of free fall along a diam eter or 

time period of a near-surface orbit, all thes e 1notions governed by 8 and 

the same distance, th e radius of the Earth. 

A closely related mathemati cal trick to th e above additi on of a di

mensi on is familiar in ordinary integral calculu s. (An int egral is a 

generalization of addition, used to sum quantiti es that are continuou sly 

rather than discretely distributed.) One adjoins a second linear dim en

sion to the first and goes to circular coordinates to simplify the int egral 

f_% exp(-x2)dx. This 'Gaussian 6 integral ' is convert ed by squaring it 

(since x is integrat ed over, it ma y be replaced by y in the second factor) 

6 Carl Friedrich Gauss, 1777- 1855, German. One of th e greates t mathematicians , 

with important contributi ons to physics and astronomy as well. A prodigious calcu

lator who could handl e compli cated problems, he developed m ethods for com puting 

celestial orbits, and wro te on electro magnetic phenomena. 
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into the simpler 2Jr fo00 
exp(-p 2)pdp because changing the variable to 

p with p 2 = x2 + y2 
( together with the angle</> of circular coordinates; 

see Sec. 2.1) makes this a simpler, 'trivial' exponential integral, whose 

square root leads to the final desired result, ,Jn'. 
As an example of a very sophisticated occurrence of the idea illus

trated in Figure 1.5, the same figure appears (Figure 13.1 of [6]) in the 

construction of so-called maximally symmetric spaces in differential 

geo1netry, especially as used in Einstein's General Theory of Relativ

ity to describe gravitation. Again, the details are not important for the 

point being made here but Einstein's theor y is one of geometry, the 

geometry of space-time (Sec. 1.2.4). In analysing curved surfaces and 

the steps of differential calculus involved in the differential geometry 

of them, spaces satisfying certain specified symmetries ( see Chapter 5) 

are of interest. Using the horizontal line in Figure 1.5 as a stand-in for 

a complicated non -Euclidean N-dimensional space, and embedding it 

in a simpler, flat (N + I)-dimensional space represented by the circle, 

with an extra dimension as the vertical direction, permits the desired 

construction. Even more than in the simple example presented in Fig

ure 1.5, here one can truly appreciate the astonishing power of such 

embeddings in an extra dimension , all the complicated curvature of 

the N-dimensional space contained in that constraint of coming down 

in one from the larger (but simpler) din1ensional space. 

But the simple example in Figure 1.5 already illustrates the under

lying theme, that dynamics can be subsumed into kinematics in one 

dimension higher and then all the complicated and non-trivial dy

namics are realized in the kinematical constraint that redu ces the 

problem to the lower dimension. The following sub-sections will con

sider increasingl y sophisticated illustrations of the theme and are aimed 

at physics students familiar with the basics of calculus and quantum 

mechanics. 

1. 2. 2 Green's Theorems 

In ordinary single-variable calculus, integration and differentiation as 

inverses of each other lead to the sin1ple result: 

l
b df(x) 

-dx = f(b)-J(a). 
a dx 

(1.2) 
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The extension by George Green7 to two-variable fun ction s, P(x,y) and 

Q(x,y), 

J (oQ - aP)· dxdy = f .(Qdy- Pdx), 
ax ay le 

(1.3) 

wher e the right -hand line int egral is over the closed contour, C, around 

the area of th e left-hand int egral, is perhaps on e of th e m ost imp ort ant 

theor em s of math ematical ph ysics. Many other the oren1s, carrying th e 

nam es of Gauss, Stokes8
, divergence, etc., are special cases and occur 

throughout physics. All share the feature that an integral over some 

dim ension is equivalent to an other over th e next larger dim ension. Our 

starting Eq. (1.2) already contain s th e essence in that the int egral on th e 

left-hand side is a sum of th e values of th e integrand over a whole one~ 

dim ensional line int erval but , on the right-h and side, redu ces ju st to th e 

difference in values at th e two end points , amounting to a step down to 

zero dim ension s. 

Physics deals throughout with 'vectors ', quantiti es that requir e both 

a magnitude and a directi on to specify th em, exampl es being position , 

velocity, accelerati on , electri c and magnetic fields, etc. Since variation s 

in th em also have a directi onal sense, a chan ge in the x direction being 

generally different from that in th e y or z directions, th e differen

tial operation of calculus describing variation s also acquir es a vectorial 

charact eristic, differential s in the thr ee orthog onal direction s lump ed 

togeth er into th e vector differe~tial 01;erator v' : (o /ox, o /oy, a /oz). 
From any two vector quantiti es A and B, one can form produ cts of two 

kind s, dependin g on wheth er one ends with a ma gnitude alone, called 
➔ ➔ 

a 'scalar' , this being the 'scalar produ ct ', denot ed with a dot as A , B, 

7 George Green , 1793- 1841, English. A miller by day and self-taught m ath emati cian 

wh o wro te an astonishin g essay in 1828, pro vidin g a math ematical analysis for electri city 

and m agnetism , in which he int rodu ced th e th eorems and fun ctions now n am ed for 

him and which find wide applications th roughout physics and engineering. The essay 

was finally r ecognised and he went to Cambrid ge University, obtained a degree, and 

becam e a fellow but , un fortun ately, became ill and died relatively youn g. 
8 George Gabriel Stokes, 1819- 1903, Irish. Professor of ma th emati cs at Cambrid ge 

University for over 50 years, who m ade im portant cont ributi ons to m ath em atical ph ys

ics, optics, and fluid dynamics (includin g 'Stokes law' for th e viscous friction on a sph ere 

in a fluid m edium ). The Stokes th eorem is said to have originated with fellow professor 

Kelvin , who suggested it in a lett er, Stokes th en using it in a prize examin ation and his 

nam e becomin g atta ched to it. Maxwell, among oth ers, becam e aware of it from there. 
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or another vector, called the 'vector product', denoted with a cross 
➔ ➔ 

as A x B. This is also true when the vector differential, \/, acts on a 
➔ ➔ 

general vector V, the scalar 'divergence', \/ · V, and the vector 'curl', 
➔ 

\/ · x V, being iinportant concepts throughout physics: Various physical 

significance can be associated with them, immediate ones, as suggested 

by their names, being a spreading ( or increase/dec:rease) or a twist ( or 

rotation), respectively. The theme of adding a dimension enters nat

urally with these vector differentials and is familiar to every physics 

student, even if it is not always recognized as such. 1Gauss's law' or the 

'divergence theorem' relates the volume integral ( over dr) over the di-
- ➔ ➔ 

vergence of a vector field, \/ · V, to the surface integral ( over da) of that 
➔ 

field, V, over the surface bounding that volume: 

f V • Vdr f V • di5. (1.4) 

Newton's law of gravitation, expressed as the flux of the gravita

tional field due to masses contained within the volume, or the similar 

Coulomb's law for an · electric field due to electric charges, involves 

this expression applicable to any vector quantity in physics. The sur

face integral over the field is simply the total charge or mass contained 

in the inside volume. The closed surface ( two dimensional) bounding 

the volume (three dimensional) is a higher-dimensional realization of 

the two end-points ( zero dimensional) bounding the line integral ( one 

dimensional) in Eq. (1.2). 
Stokes's law, relating the integral of the curl of a vector over an area 

➔ 

to the line integral ( over dl) of the vector along the boundary of that 

area, is another example: 

f ➔ ➔ f ➔ ➔ 
\/ x V · da = , V · dl. (1.5) 

' ' 

And, as an illustration of a result well known · in multi-dimensional 
' ' ➔ ➔ ' 

geo1netry, with the choice of . V = r, the radial vector in any 

d-dimensional space, since \/ · r = d, Eq. (1.4) relates the volume of 

a sphere in d dimensions to its surface area, again familiar already from 

'the 4n /3 and 4n, respectively, of school geometry as the multiplicative 

factors for the volume and surface area of a sphere of radius a in three 

dim~nsions. 
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Besides their ubiquitous appearan ce thr oughout all areas of physics, 

such Gree n's theorems have a pr ofound phil osophical depth. Inf or

mation contained in an entir e volume, even perhap s of th e whole 

Univers e, can be viewed equivalentl y from that available on th e surfac e 

at large distances. While mu ch is made in recent times of so-ca lled h olo

grap hic principle s in general relati vity or string th eories [7], thi s idea is 

not n ew, as we saw in elem entar y mathematics or in physics. After all, 

we study distant star s and galaxies all th e way to the Big Bang of th e 

earliest mom ents of our Universe, all th at content filling th e time his

tory of the Uni verse, through th e inform ation now available to us on 

a small patch of th e surface that we occupy where th e Universe has 

expand ed to in our time s. 

In dealing with quantities that are neither created nor destroy ed, 

'conserved' in physics terminology , whether th e mass of a fluid in flow 

or the amount of char ge in motion (a current), or th e numb er of cows 

in a stockade, if one keeps track of th e amount entering or leaving , that 

amount must be compensated by a corr espondin g equal chan ge in th e 

amo unt or nurn .ber con tained within. This is a law of conser vat ion (see 

Sec. 5.1.2 for th eir connecti on to symmetries). The differential equati on 

expre ssing thi s statem ent, called an 'equation of continuit y', and an as

sociated Green' s th eore m , are of great imp ortan ce thr oughout all areas 

of physics. 

Quantum physics , in particular, ha s made use of thi s idea from its 

earliest days. Unlik e in classical physics with position s and velocities of 

mass points , the physical state of a system is described in quantum ph ys

ics by a compl ex (in th e math emati cal sense of invo lving th e imagin ary 

unit i = A ) 'wave function', 1/;. The probabilit y int erpre tation , first 

given by Max Born 9
, that the modulus squar ed, 11/J 12

, represents th e 

probabi lity of finding th e system in an int erval about th e corr espond

ing variable, whether position , m omentum , or anything else, requir es 

9 Max Born, 1882- 1970, German and British . A founder of quantum mechani cs 

and th e or iginato r of th e probabilit y interpreta tion of th e wave function. Together 

with his assistant Pascual Jordan , he rendered his stud ent Heisenberg's discovery into 

matrix lang uage and wrot e the basic comm utat or betv,,een position and m orpent um 

that und erlies Heisenberg un certaint y prin ciple. Born also developed, with Robert 

Oppenh eimer, an appro xima tion techniqu e for mol ecular stru ctur e that continu es to 

dominat e that field. Anoth er widely used method in scatter ing th eory bears his name 

as well. And he mad e impo rt ant contributi ons to our und erstandi ng of crystal latt ices 

and op tics. 
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that I VJ I 2 be 'normalized' to unity ( or, equivalently, to a Dirac 10 delta 

function for continuous distributions). This is the statement that I 'ljJ I 2, 

when integrated over the full space, must yield the unity expected of 

the total probability that the system is somewhere. But throughout 

microscopic physics, whether of atoms, nuclei, or elementary particles, 

most of this space is inaccessible to our measuring apparatus. And this 

is where Green's theorems allow us to use just the knowledge of the 

wave function and its first derivatives at the surface at infinity, which 

are accessible to our laboratories, to accomplish this normalization ( or 

get any of the so-called scattering parameters when one particle scatters 

off another, all of which are defined only at infinity; see Sec. 7.4). It also 

fits into the philosophy, especially emphasized by Bohr 11 and Heisen

berg12, of using in physics only constructs that are at least in principle 

accessible to our measuring apparatus (Sec. 7.4). 

lO Paul A. M. Dirac, 1902- 1984, English. One of the thr ee founders of quan tum 

mechanics, his transformation theory and bra-ket notation are now standard in physics. 

Made quantum m echanics compatible with Special Relativity through th e 'Dirac equa

tion', which incorporated quantum-mechanical spin angular momentum and, furth er, 

predicted the existence of anti-particles to electrons, protons, etc . He too k th e fun 

damental steps towards quantum field th eory and to the variational or path integral 

approach to quantum physics. Also, he introduced the distribution function that bears 

his name and is used extensively in physics for continuous distributions. 
11 Niels Bohr, 1885-1962, Danish. Principal founder of quantum physics when in 1913 

he used Planck's idea of the quantum and constant ff to account for the structure of 

th e hydrog en atom based on Ruth erford's experiments and th e empirical formula of 

Balmer for the lin e spectra of th e hydrogen atom. He extended th ese ideas to high er 

atoms but, even more significantly, guided the development of quantum mechani cs 

through a unique school of physics he headed in Copenhagen, hosting most of th e 

prominent quantum physicists of the day. He also shaped the philosophy of the subject, 

through his debates with Einstein and through his formulation of the Correspondence 

Principl e and complementarity. Following the discovery of nucl ear fission, he devel

oped the liquid drop model of nuclear structure that accounts for fission of nuclei 

by neutrons. He served as a consultant to the Manhattan Project, which developed 

nuclear weapons and fission energy . 
12 Werner Heisenberg, 1901-1976, German. His papers in 1925 laun ched the subject 

of quantum mechanics in the form called matrix mechani cs. His uncertaint y principle 

distilled the role of complementary observables in quantum physics. He also made pi

oneering and important contributions to dispersion relations and scattering theor y, 

nuclear physics, ferromagn etism, and elementary particle physics. During World War 

II, he headed an unsucc essful German effort to develop nuclear reactors, and after that 

war he played a role in rebuilding German physics institutions, notably the Max Planck 

institutes. 
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Indeed, normalization is an aspect of 'unitarity' or conservation. In 

the preceding paragraph, it is the conservation of probability. In the pre 

vious one, it was the conservation of fluid mass, or charge, or number 

of cows. Conservation laws in physics are expressed through equations 

of continuity that go even further back and are important also in clas

sical physics. They express this philosophy that allows us to keep track 

of changes in time of some physical quantity over an entire volume 

simply through observations of the flux through the bounding surface, 

often at large distances from the centre. When that physical quantity is 

conserved, the flux through the surface must be balanced by sources or 

sinks within the volume. 

1.2.3 Lawan3e Multipliers for Extremum Problems 

Locating maxima and mini1na of functions or physical quantities is 

often of interest in mathematics, science, and engineering. The shortest 

path or shortest time for covering it, the lowest energy, the maximum 

efficiency, and many such extremum questions arise very commonly. 

For a function of one variable, Newton's differential calculus provides 

the solution. The derivative of the function vanishes at such extreme 

points and serves to locate them and determine the desired value there. 

More complicated prescriptions are necessary for many-variable calcu

lus, and one also refers to them more generally as stationary points 

because, in addition to overall peaks and valleys , other situations now 

arise, such as saddle points, a theme to be taken up in Chapter 3. 

The problem becomes more complicated when constraints are specified 

under which this determination is to be made. The method of Lagrange 

undetermined multipliers for locating maxima or minima or, more 

generally, stationary points, whether of one- or many-variable calcu

lus when constraints are present, is another familiar example of adding 

a dimension, even if it is not usually presented as such. 

It works also in the calculus of variations, a subject that deals not 

just with functions of algebraic variables but also with whole functions 

themselves [8]. Such 'functionals' over functions are extremized subject 

to constraining equations that are often part of the definition of the 

problem. A classic problem of the ancients was to determine the max

imum area enclosed for a given perimeter. (The answer is a circle.) An 

especially simple and commonplace example is of finding the shortest 

path between A and B, for instance on the surface of the Earth. It is 

formulated by asking of all possible paths (functions), which one has 
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quantum constant n, the stationary action principle is in some ways the 

1nost natural formulation of quantum physics. Feynman's 16 path in

tegral formulation puts the action, S, along a path divided by 1i in the 

exponent as exp(iS/n) and the quantum wave function 'tfr (see Sec. 1.2.2) 

is recovered as the sum over all possible paths (Sec. 7.2). The classical 

limit of quantu1n physics also becomes natural in this language as the 

situation wh en th e classical path or orbit dominates that sum (see also 

Sec. 8.5). 

For our purpose s here of adding a dim ension as an illustration of the 

use and role of Lagrange multipliers , consider a simple problem that 

often occurs in undergraduate courses. Suppose th e temp erature in 

three-dimensional space varies from one location to another accord

ing to T(x,y, z) = xyz; that is, the temperature is given by the product 

of the coordinate values of the point. If we wish to locate the points on 

a sphere of radius R where T is a maximum and to find the value of 

that maximum, we have here a typical problem of multi -dimensional 

(here three -dimensional) calculus. A straightforward appr oach would 

expre ss one of the variables in terms of the other two through the de

fining equation of the sphere , x2 + y2 + z2 = R2
, and maximi ze the 

remaining expression for temperature as a function of two variables . 

gravitation. Planck was a founding member of th e German Physical Society and shep

herded it and physics institutions through th e Nazi era, with th e hop e of pr eserving 

them through it and rebuilding German physics after the war. Today, th e stri ng of 

German physics research institutes bears his nam e. 
16 Richard P. Feynman, 1918-1988, American. An extraordinary th eoret ical physi

cist, one of th e co-formu lators of the first relativistic quantum field th eory, called 

quantum electrodynamics (QED). He invented a uniqu e diagrammatic techniqu e that 

is uni versally used in the field th eories of today . A mast er of variational techniqu es, 

he followed early work by Dirac in formulating a path int egral approach to quantum 

mechanics and, with his teacher John Wheeler, to radiation. He also made fundam ental 

contribution s to superfluidity and elem ent ary particl e physics. He was a member of the 

theory division of th e Manh attan Project, which developed the nucle ar bomb , wher e 

he used early comput ers for numer ical calculations. A gifted teacher and expositor, he 

achieved legendary status among contemp orary physicists through a course oflectures 

coverin g all physics th at, in its thr ee volum es, has educated and influenced physicists 

around the world. A slim volume, QED [3], and scores of his writings and books, man y 

displaying his playful hum our and style and some appearing posthumousl y, and his 

prominent role in th e nati onal commission that investigated a space shuttl e laun ch 

disaster, mad e him a hou sehold nam e. An essay of his on th e exploitation of micro

scopic devices is seen as th e inspiration of today's field of quantum computin g and 

information . 
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However, this would involve complicated equations with square roots 

and differentials of then1. 

Instead, Lagrange's method of 'undetermined multipliers' introduces 

a functional, 

(1.6) 

where we introduce a new pararn.eter ( or din1ension), A, 'that is at this 

point undetermined and which multiplies the constraint 'as a zero'. 
A 

\Vhatever the value of A, T coincides with the T we seek for the prob-

lem posed, the added term vanishing because of the zero multiplying A. 

Again, while it may seem that one is complicating a three-dimensional 

problen1 further by going to four dimensions with a new variable, the 

important point is that we can now proceed to handle T as uncon

strained, freely varying it with respect to all four variables (x,y, z, >-.) to 

seek the stationary point. It is clear from Eq. (1.6) that A has dimensions 

oflength. All four dimensions, including the introduced, 'fictitious', A, 

are viewed on an equal footing and as independent. The four equations, 

one being just the constraint equation itself, are then solved simultan

eously. In problems such as this with an underlying symmetry (see 

Sec. 5.1.l), even this step proves trivial and one is led to the point 

x = y = z = R/,/3, together with its three 'symmetrical partners', 

with two of the coordinates involving the negative value of the square 

root, as the points of maximum temperature with value T = R3 /3,/3. 
This illustrates the central the1ne of this chapter, that adding a di

mension, here one for each constraint, can simplify the calculation and 

our understanding of the physics involved. While the final value of A 

is itself irrelevant(>-. = R/20 in this example), in that it multiplies a 

zero in Eq. (1.6), it may be regarded as a 'force' enforcing the constraint. 

Once again , there is a nice philosophical element, that what seem to 

be forces governing dynamics in one space may be viewed equivalently 

as kinematics in the space with one more dimension together with a 

kinematical constraint ( one n1ore din1ension and constraint with each 

Lagrange multiplier), exactly as in the con1plicated example considered 

at the end of Sec. 1.2.1. 

The idea of adding a zero to incorporate the laws of physics or the 

defining equations involved to calculate some other physical property 

of the system allows a general construction of stationary or variational 

principles for any such property [10]. The Lagrange multipliers n1ay not 
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,dways be numbers as in th e pr esent example but may be functions, 

matrices, etc ., as appr opriat e in constructing the extended functi onal 

v. pression for the property of inter est. 

1.2.4 Space-Time 

( )nc canonic al example of adding a dimension, now even familiar to th e 

1nan on th e str eet, is the view of the world in space- tim e. Mechanics, 

having to do with chang es in tim e of three -dimen siona l location , has 

,dways h ad these four dim ensions, three of space and one of tim e, as its 

natura l stage. Following Einstein's Special The ory of Relat ivity, physics 

has recog nized that th ey are indeed intertwin ed. 

An important consideration in physics is of objects that remain 

t111 hanged und er som e tran sform ation of th e coordinate axes. Such 

t nmsformation symm etries and th eir corresp onding 'invariant s' are th e 

topic of Chapt er 5, but consider here th e distanc e (x2 + y2 + z2)1l2 of 

I he point (x,y, z) from th e origin as an invariant under tran slati ons and 

rotations of th e axes. The three coordinate s assigned to the point and 

I o the origin may ch ange und er such translations or rota tion s of th e 

l oordinate axes being used to describe them , but the distanc e of sep

n rntion remains unchan ged. In Special Relativity, it is replaced by the 

invariant int erval or, equival entl y, its square (c2
t
2-x2-y2-z2). The space

I ime interval involves all four dim ensions of spa ce and time. At th e 

same time, inst ead of the thr ee-dim ensiona l vector 7 with components 

( '\,y, z), space and time together as a four-component vec tor ( often 

slmply called a four-vector) (et, 7), along with similar four -vectors of 

vnergy-momentum (E/c,p), pr ovide the natur al lan guage for relativis

tic 1nechanics. Note a change in sign of the space components relativ e 

to the one of tim e in th e space-time interval, which reflects th e dif

fering status of space and time even when combin ed int o a set of four. 

And, note of course, th e dimensi onal aspect that uses c, th e speed of 

light, to put space and tim e, or ene rgy and mom entum, on an equal 

dimens ional footing in their four -vector s. 

Qu antities that do not chang e under rotati on of th e axes, such as 

the distanc e of separati on in th e pr evious para graph, are called 'scalar s' . 

Indeed, unlik e th e looser description earlier as som ethin g with mag

nitude alon e and no directional sense, thi s is th e proper definiti on of 

what is meant by a scalar in physics: it is an object left un chang ed by 

rnta tions. Mass, charge, temp era tur e, etc., are oth er examples , all tak

ing som e num erical value in what ever system of unit s is used to describe 



24 Adding a Dimension 

them, but remaining the same regardless of a particular set of orthog

onal axes in consideration or a second set, usually called primed and so 

designated by using primes on x, y, and z, obtained through a rotation 

of the axes. On the other hand, a directed line segment that has both a 

magnitude for the distance of separation and a direction of where the 

second point lies with respect to the first, is a 'vector', with a definite 

relation between the values of (x',y', z') and (x,y, z) depending on the 

rotation involved. Besides this basic vector quantity, any other set of 

three components is called a vector if the same relation exists between 

its primed and unprimed components. Velocity, acceleration , an elec

tric and a magnetic field are all examples of such vector quantities. They 

all transform in like manner and like the basic vector r: (x,y, z). (Note a 

philosophical theme of central importance, to be developed further in 

Chapter 2, of using behaviour under certain transformations to define 

objects in physics.) 

For notational convenience, an index notation is adopted, with ri 

standing for x, y, and z when i equals 1, 2, and 3, respectively. Similarly 

ai for acceleration and Bi for magnetic field denote the components 

of those objects along the three directions. The index notation allows 

easy extension to descriptions of any number of dimensions, i running 

over 1, 2, 3, and 4 for instance in a four-dimensional world. It also al

lows an easy definition of other objects, called 'tensors', of higher rank, 

again according to a well-de.fined connection between their primed and 

unprimed components that is given once and for all for a specified rota

tion, independent of the object under consideration. Just as any vector, 

whether velocity or electric field, transforms in the same way, so does 

any tensor of a particular rank with a well -de.fined relationship between 

its primed and unprimed components, depending on the rank. That is 

how the tensorial nature of a physical quantity is defined. 

Scalars are said to be of rank zero, in that they do not change at all, 

while vectors are said to be of rank one , and an example of a higher

rank tensor is the moment of inertia, which has rank two. It expresses 

the relation between the angular momentum of a rigid body , itself a 

vector or tensor of rank one, and angular velocity, also a vector ob

ject. For a complex object, the two vectors of angular momentum, 
➔ ➔ 

,f,, and angular velocity, w, are not always simply related through a 

(scalar) multiplicative constant but a change in angular velocity in 

one direction can cause a change in angular momentum in a different 

direction. This is expressed through ,f,i = Iijwj, with J the moment of 
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Figure 1.8 A 3 x 3 matrix representing the second -rank tens or of rn oment of 

inertia. The elements Iij, with i,j = 1, 2, 3, relate the angu lar velocity in any 

of the three axes directions j to the angular momentum components i. With 

I!i = Iji, this is a symmetric array, elements equal under reflection about the 

diagonal so that there are only six independent numbers in the array. 

inertia tensor, and an assumed convention that when an index is re

peated, there is an implied summation over all values of that index. 

Thus, l 1 = l11CV1 + l12cv2 + l13CV3, and there are two similar equa

tions for l 2 and l3, so that in general any of the three components of 

angular velocity can affect a particular component of angular momen

tum. The coefficients of this proporti onality constitute the moment of 

inertia tensor. 

With two indices (i,j), each taking three values in three dimensions , 

there are nine components in general for a tensor of rank two that can 

be conveniently represented as a 3 x 3 square matrix , although there 

is often a reduction in number because of the symmetry properties of 

the object in question (Figure 1.8). Thus, the moment of inertia ten

sor is symmetric, interchange of i and j not changing the physics, and 

there are only six independent components, three along the diagonal 

and three off-diagona l elements of the matrix which are repeated across 

the diagonal. Further reduction in the number of components signi

fies further geometrical symmetries of the bod y. On the other hand , 

an antisymmetric tensor of rank two, that is one that changes sign if i 

and j are inter changed , will have only three n on-zero components, the 

diagona l elements being necessarily zero and the off-diagona l ones re

lated by a minus sign to correspond ing elements reflected through the 

diagona l. In a d-dimensiona l wor ld , clearly a vector has d components, 

a symmetric rank two tensor has d( d + l )/2, and an antisymmetric rank 

two tensor d( d - 1 )/2 components . 

➔ ➔ . 

Electric ( E) and magnetic ( B) fields are three-di1n ensional vectors, each 

with thr ee components. These six components of electric and mag 

netic field vectors group together (Figure 1.9) naturall y into a single 

object, an antisymmetric tensor of rank two in four dimensions, with 
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well-defined behaviour under the so-called Lorentz 17 transformations 
➔ 

of Special Relativity. Also, the vector potential 1 A, and scalar potential, 

<I>, from which the fields are derived, 
➔ ➔ ➔ ➔ 

E = -( 1/c)(oA/ot)- v' <I>, B = v' x A, (1.7) 
➔ 

transform as a four-vector (<I>, A). 

Both mechanics and electrorn.agnetism are unified in this four

dimen sional view with the important invarian t being a speed, that of 

light, c, speed of course combining both space and time. Lorentz trans 

formations include , besides rotations of spatial axes, velocit y 'boosts' 

connecting two fram es moving with uniform velocity with respect 

to one another. Such frames are called 'in ertial frames' and the cen

tral tenet of Special Relativity is that physics remains invariant under 

changes from one such iner tial frame to another, that all such inertial 

frames are on a par as regards the laws of physics. Absolute rest and 

absolute velocity have no ph ysical significance, only relati ve velocities, 

and , for physics to have meaning, no inertial frame is on a special foot

ing. This was already evident to Galileo and Newton for mechanics, and 

Einstein's Special Theor y of Relativity extends it to all physics. In doing 

so, it transformed our understanding of space and time. 

Another crucial precurs or for Einstein was the work of Max

well, who himself built his equations of electric and magnetic 

fields (Figure 1.10) based on the important concept of a field, which 

was introduced into physics by Faraday 18
. Unlike Newton's gravity, 

which was a force or interaction that acted 'at a distance' between 

17 Hendrik Antoon Lorentz, 1853-1928, Dutch. Theoretica l physicist who studi ed 

electricit y, magnetism, and mechanics. He developed a th eory of magn etic field effects 

on atomic spectra to explain the Zeeman effect. In studying the motion of charged 

particles (the force law carries his name) , he formulated the 'Lorentz tran sforma tions' 

without a full understandin g of th em, which was provided by Einstein's Special Rela

tivity. He chaired th e first Solvay Conference, which, together with later ones in that 

series, brought together all the prominent physicists of th e day and was very influential 

in th e development of early 20th-century physics. 
18 Michael Faraday, 1791- 1867, English. Physicist and chemist, m ostly self-taug ht 

and a labora tor y assistant to Humphrey Davy, whom he succeeded in th e Royal La

borat ory. His physical picture of magnetic fields and of the laws of indu ction inspir ed 

Maxwell in formulating th e laws of indu ction and th e conne ctions between electricity 

and magnetism. The unit of elect rical capacitance is named th e farad. 
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0 Ex Ey Ez 
-E X 0 Bz -B y 

- E y -B z 0 Bx 
-E z By -Bx 0 

Figure 1.9 The second -rank electromagnetic tensor, Fµ,v, with µ,, v = 0, 1, 

2, 3, arranged in an antisymmetri c (with respect to reflection about the diag

onal) 4 x 4 matrix array of electric (E) and magnetic (B) field components. 

➔ 

➔ 1 BB 
VxE=--

c Bt 
➔ 

V · B = 0 
➔ 

➔ 1 BE 4n ➔ 
V X B = -- +-j 

C Bt C 
➔ 

V-E=4np 

Figure 1.10 Maxwell's equations relating electric and magnetic fields in vector 

form, written as two sets of equation pairs , each themselves one scalar and one 

vector equation. 

two bodies, however far apart, the casting in terms of a field de.fined 

everywhere, including at locations between the bodies, was crucial in 

the development of physics. A mass or an electric charge sets up a 

corresponding gravitational or electromagnetic field around it, and an

other mass or charge reacts to it. With the fields themselves capable of 

interacting between neighbouring points in space and time, and capable 

of carrying energy, momentum, etc., the description of an interaction 

can be made a local one. 

The occurrence of c, the speed of light ( a historically much earlier 

concept), intrinsically in the equations governing electric and magnetic 

fields, even in vacuum, gives significance to a natural speed ( the same as 

seen by any inertial frame) for even the establishment of a field around 

a mass or charge . It is with this finite speed that the presence of such a 

source can be felt in the region around it, a distant mass or charge sens

ing it only after a finite time. Light itself, whether in the visible or other 

ranges of the spectrum, is then seen by all inertial observers as such 

propagating waves with speed c (in vacuum) of electric and magnetic 

fields. (Gravitational waves, yet to be directly observed, will also tra vel 

with the same speed.) · 
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The difference between rotations about the three spatial axes and 

velocity boosts along each of the axes goes hand in hand with the dif

ferent status of the time axis relative to the others that was noted in 

the change in sign in the space-time interval. Tin1e is not just a fourth 

coordinate axis. Even in the mathematics of handling four din1ensions 

together, this distinction between space and time is worth keeping in 

mind and is expressed by saying that the 'metric' for measuring lengths 

has opposite signs between the two. Correspondingly, the square root 

of (-1) being the imaginary unit i, trigonometric functions of sine and 

cosine in rotation angles pass into hyperbolic functions sinh and cosh 

for the velocity boosts of Lorentz transformations. This is the basis for 

saying that time is a fourth coordinate but an imaginary one! 

Just as three -dimensional rotations transform a vector's components 

(x,y, z) to (x',y', z') in the rotated frame, with the squared length an in

variant, the larger set of Lorentz transformations that include velocity 

boosts transform between four-vectors in inertial frames. The counter

part of the Lorentz scalar space-time interval, J c2 t2 
- x2 

- y2 
- z2

, as an 

invariant is the similar one for energy-momentum, J E2 
- c2(i)2, which 

is identified as mc
2

, the rest mass energy of the particle. This equiva

lence of mass and energy is one of the central results of Einstein's Special 

Theory of Relativity. 

The tenets of Special Relativity) and the equivalence of inertial fran1es 

under all Lorentz transformations that include not only rotations but 

also Lorentz boosts, make the four-dimensional space-time the natural 

framework for physics. Under rotations alone, electric and magnetic 

fields are not mixed up ( only their components are among themselves) 

but they are by boosts (what may appear as a pure electric field in one 

inertial frame ➔ m~ be both electric and magnetic fields in another, with 

(E2 + B2
) and E · B invariant) so that they are indeed to be seen as the six 

components, shownin Figure 1,9, of an antisymmetric tensor of rank 

two. All four of Maxwell's equations in three-vect-0r language shown 

in Figure 1. 10 can then be rendered c01npactly in four-vector language 

in Figure 1.11 along with the definition from Eq. (1.7) of the fields in 
➔ 

tern1s of the vector potential, A, and scalar potential, <I>, or, together, 
➔ ➔ 

the four-potential Aµ, : (<I>, A); the four-current is}µ, : (cp,j). Because 

of time and space not being entirely on a par, it is customary to use 

in place of Latin indices i and j running over four values, the Greekµ 
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and v, taking the four values 0, 1, 2, and 3, for describing space~time in 

physics, the first index O denoting time. 

The first two Maxwell's equations in Figure 1.10 are naturally sub

sumed in the definition of the antisymmetric tensor of the fields from 

the four-potential, 

(1.8) 

where 3 is now the four -dilnensional differential operator in (et,?). 
This is another elegant simplification in recasting electromagnetism 

from fields in terms of potentials, these forming a four-vector and also 

incorporating the first two of Maxwell's equations ( actually four equa

tions , one being a vector equation) into the rules of calculus obeyed by 

the differential operator V. 

The recasting of the larger and more complex set of Maxwell's 

equations in three -vector language in Figure 1.10 into the elegantly 

compact four -vector form in Figure L 11 is, in part) one of notation, 

including implied summation of a repeated index and the properties of 

the differential aµ, : ((1/c)a/ot, V). The merit of this four-dimensional 

view is that it also makes obvious not only the invariance under Lor

entz transformations because of like transformations of vectors and 

tensors on two sides of an equation, but, further, again as per the rules 

of calculus, also the equation of continuity that follows upon further 

differentiation: Oµ,jµ, = 0 ( obvious because of summation over all µ 

and v with Oµ,O\) symmetric and Fµ,v antisymmetric under interchange 

of(µ, v)), which is an expression of the conservation of electric charge 

(see Sec. 5.2.2). This is a nice illustration , both of this chapter's theme of 

adding a dimension and of another theme that occurs elsewhere it1 this 

book (Sec. 2.3) of the power of a notation that seems so natural a fit to 

the physics of our world. 

Einstein's General Theory of Relativity goes further in considering 

even more general transformations of the coordinates than the Lorentz 

Figure 1.11 Maxwell 's equations in four-vector form , incorporating all equa

tions in Figure 1.10 into an equation for the electromagnetic tensor in 

Figure 1.9 and the four-vector current, j. 
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transformations of the Special Theory (see Sec. 5.2.6). It is based on the 

symmetric 'metric tensor' 8µv, µ, v = 0, 1, 2; 3, with its 10 independent 

coefficients ( antisymmetric tensors of the previous paragraph involve 

4 x 3/2 = 6 and symmetric ones 4 x 5/2 = 10 elements). Interestingly, 

adding one more dimension, a fifth, as Kaluza19and Klein20did, did not 

lead io something of value. Although at first sight attractive, the 5 x 
6/2 :::: 15 components of a symmetric tensor of rank two now possibly 

. accommodating together Einstein's General Relativity equations with 

Maxwell's in an attempt to unify gravitation and electromagnetism, did 

not , however, prove fruitful as physics. · 

1.2.5 The Hydro3en Atom 

The aspect of an added dimension also characterizes microscopic en

tities such as atoms and, in particular, already the simplest of them, the 

hydrogen atom. Before turning to the additional dimension, we con

sider first some elements of atomic structure. Ever since the Greeks 

and other ancients, the idea that there is an elementary or smallest 

component of all matter, that matter's divisibility has a limit in con 

stituent atoms, has been a powerful principle, one also in physics. It was 

already clear over 100 years ago, from the gross properties of matter, 

that the size of atoms is small on our everyday scale. The 1,000-fold dif

ference in density of water vapour from that of water as liquid or water 

as ice pointed to individual atoms or molecules being 10 times ( again, 

a dimensional element, the cube root of 1,000) further apart than their 

size in the former gaseous phase while bumping against each other in 

the two condensed phases. And, from the gas constant relating the gross 

thermodynamic quantities of pressure, volume, and temperature, a size 

of about 10- 10 m or 0.1 nm could be ascribed to individual atoms. 

Next, almost exactly 100 years ago, Rutherford 21 discovered that 

nearly all the mass of an atom is concentrated in a positively charged 

19 T. Kaluza, 1885-1954, German. Mathematician and phy sicist, and learn ed in sev

eral languages. He discover ed that writing Einstein's equations in five dimensions gave 

a natural way to embrace Maxwell's equations as well. 
20 Oskar Klein, 1894-1977, Swedish. Theoretical physicist who had th e idea that extra 

dimensions may be real. His name is also attached, along with that of Gordon, to a 

relativistic quantum field theoretic equation for spinless particles (Sec. 7.3). 
21 Ernest Rutherford, 1871- 1937, British. Pioneer nucl ear experimentalist who stud

ied various forms of radioactivity and transformations between nuclei . Most known 

for his planetary model of atoms, with electrons in orbit around a small er, cen tral, 
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nucl eus with 1nuch light er negatively charged electron s around it, th e 

size of the nucl eus bein g 100,000 tim es sm aller than the atom as a wh ole. 

This was th e only explanati on for his experim ent al observations that 

tiny positively charg ed alph a particl es, when fired at metal foils, were 

som etime s reflected almost backward s. Only a very tightl y con fined 

positive char ge, confin ed to mu ch less than 0.1 nm , could have repelled 

th em so . 

The light est and simple st atom , th at of hydrogen , h as just on e 

electr on around a pr oton th at is its nucl eus, th e electron being n early 

2,000 time s less massive than th e proton. Th ey being equally and op

positely ch arged electr ically, th e atom as a wh ole is neutr al but bound 

by th eir electri cal attr action. Th e helium atom h as two electr ons and 

its nucl eus has two pr otons and two n eutron s, th e latt er of alm ost th e 

sam e mass as th e pr oton but electri cally n eutr al. And so on , thr ough 

th e Periodic Table of n atu rally occurrin g elem ent s (higher elem ent s 

have also been created artificially) up to ur anium , with 92 electr ons 

around a nucl eus th at has 92 pr otons and a mu ch larger numb er of 

ne utr on s, varying in numb er with th e parti cular isotope of ur anium 

(hydrogen also ha s rarer isotopes with on e and two neutr ons in add

ition to th e prot on, and helium too has a rarer isotope th at h as two 

pro ton s but only on e n eutr on in its nucl eus, and exot ic, radioact ive 

species with several neutr ons in a 'h alo' are also created in som e 

labor atory experim ent s). 

Und erstanding hydrogen 's structur e is th e key to und erstandin g all 

atom s and m att er, and it was clear also that th ere was a major pr ob

lem in doing so in term s of classical physics. If the electrons are orbitin g 

the nucl eus (som ewhat as in a Solar System , except that th e m otion is 

no t confin ed to a plane but ranges over all space) , th en because th ey 

are un dergoing th e centrip etal acceleration of th at orbit al m otion , th ey 

n1ust radi ate electr om agn etic energy. A simpl e calcul ation showe d that 

they mu st very qui ckly collapse ont o th e nucl eus and th e Ruth erford 

n10del would not be stable. Thi s led Bohr to invoke quantum prin ciples 

to accoun t for th e basic stru ctu re and stability, and to show that a n ew 

quantum m echanics was requir ed for such microscopic scales. Today, 

we know th at quantum m ech anics is th e governin g mec h ani cs of 

positively charged nucl eus. He, and assistants in his group , developed the first apparatu s 

for accelerating charged par ticles to high energy to cause n uclear reactions. He also 

hypoth esized th e pr esence of neutra l part icles in th e nu cleus, such neut rons being 

discovered later by his associate Jam es Chadwick. 
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our Universe, accounting in a manner for everything, whether atoms, 

mountains, or stars [11 ], but its effects are especially evident for atoms 

and nuclei. A planet bound to the Sun can be under stood through 

classical physics , but not the hydrogen atom. 

Both physical systems of two bodies, planet -S un or proton-electron, 

held together through an attractive 1/r potential, gravitationa l or elec

tron1agnetic, respectively, have many things in common . Whether in 

classical or quantum mechanics, both are well recogniz ed as having 

more symmetry than expected from the spherical symmetry of the 

gravitational or Coulomb 22 field. This spherical symmetry is associated 
➔ 

with the conservation of angular momentum, .e, eith er expressed as 
➔ 

dl /dt = 0, or in quantum mechanics as the angular m omentum op-

erator commuting with the energy operator called the Hamiltonian 23
, 

➔ 

[H, .€] = 0. (A commutator of two operations A and B is defined as 

[A, B] = AB - BA so that its vanishing, or the equivalent statement 

that the two commute, mean s that th e order in which th ey are taken 

does not matter. In quantum physics , only such pairs can be sharply 

defined simultaneously for any physical system.) Therefore, classical or-
➔ 

bits lie in th e plane perpendicular to .e, as is indeed observed in planetary 

m otion (Figure 1.12). Quantum mechani cs does not have orbits and tra

jectories ( dependent in their very concept on both position and velocity, 

something not allowed by the uncertaint y principle because thes e two 

quantities do not corn.mute) and, as already noted , the electron's mo

tion should not be pictured in such terms but rather as a probability 

distribution in all three-dimensional space around the nucleus. 

22 Charl es Augustin de Coulomb, 1736-1806, French. Retir ed from th e mili

tary as an engineer to pursue scientific research and discovered forces between 

elect rically charged objects. 
23 William Rowan Hamilton, 1805-1865, Irish. Mathematician and physicist, and 

versed in severa l languages. He mad e important contributi ons to optics and mech

anics, most notably in reformulating Newtonian mechanics in terms of th e energy, 

or Hamiltonian as now named, and a variational principl e. His work on analytical 

mecha nics was un cannily prescient of quantum m echani cs, especially in th e form it 

emerged 100 years later in th e hand s of Dirac . Hamilton's most notabl e contribution 

in mathematics was his discovery of quaterni ons, 'four -dim ensional numbers' gen

eralizing two -dim ensional compl ex numb ers and based on thre e square roots of - 1. 

Quaternionic algebra is an alt ernati ve to vectors with som e advantages in describing 

rotations and is so used today in orbital mechani cs and signal and control theory. Early 

workers such as Maxwell and some present ph ysicists advocate their use in mech

anics and electromagnetism but th e dominance of vector mathemati cs is likely to 

persist in physics. 
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Quantum physi cs, unlike classical ph ysics, also rest ricts the possible 

negative-energy bound states of a physical systen1.. Thu s, the electron 

proton system may have any positive en ergy upward s fro1n zero and 

these describe the situation when the electron can separate to infin 

ite distance from the proton, the so-called continuum or scatt ering ( of 

an electron from a proton) states of the hydrogen atom. Similar con

tinuum states of the classical counterpart, the Solar System, are th e 

parabolic and hyperbolic orbits of a corn.et or other object that can be 

flung to infinity from the star, in contrast to the elliptic orbits, wherein 

the object remains bound. 

But , for negative energies, the bound states of the hydrogen atom 

cannot have arbitrary values as in a classical system. Instead, the y are 

quantiz ed into discrete, allowed energies, whereas any elliptical bound 

orbit with arbitrary negative energy is a possible state for a plan et ( of 

course, quantum mechanics also applies here in principle but , because 

of the weakness of gravitational interacti on relati ve to the electromag 

netic, th e spacing between allowed energies is so small as to be negligibl e 

and for practical purpose s can be treated as continuously distributed). 

Bohr 's elucidation in 1913 of the possible bound-stat e energies, 

tha t agreed with empirical observations made by Balmer 24 based on 

spectroscopic studies towards th e end of the 19th century, was of cours e 

one of the first triumphs of quantum physics as applied to matte r. 
➔ 

The spherical symmetry of the interaction and that £, comn1utes 

with th e Hamiltonian are r ealized through the fact that quantum

mechanical (Bohr) energy levels ( also, of course, the continuum energy 

states) are 'degenerat e' in th e 'azimuthal ' quantum numb er, m; that is, 

states of different m share the same energ y. This quantum number , m, is 
➔ 

a measure of the proje ction of the angular momentum,£, on the z-axis, 

ez, and in a quantum system takes (in units of li) int eger value s between 

- £, and .e . .e itself is also quantized, taking onl y values of 0 or positive 

integers. All (2.f + 1) levels of any .e but differing in m have the same 

c:nergy, which is indicativ e of the spherical symmetry of the underl ying 

1 lamilt onian, that the z-axis is no more distinguished than any other 

direc tion. In the language of group theor y, which is the mathematics 

of symmetries , th e symmetry is of 0(3), the orthogonal ( or rotation) 

24 Johann Jakob Balmer, 1852- 1898, Swiss. A math em atics teacher in a gymna sium , 

he noticed a patt ern in th e energies of spectral lines of hydrogen and devised an em 

pirical formul a that becam e a key to Bohr' s explanati on of atomic stru ctur e a quart er 

centur y lat er. 
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group in three dimen sions. Any three-dimensional rotation leaves the 

1/r potential unchanged because it has no directional aspect, and so 

is what is termed a scalar. This group is said to have one 'Casirnir' 25 

invariant, the squared angular momentum with value ,f,(£ + 1)1i°2. All 

(2,f, + 1) m-states have this same squared angular mom entum. 

For bound states, the allowed n egative energies are given by the Bohr 

expression, - 1/n2
, in units of the Rydberg26

, 13.6 eV (1 eV is the energy 

gained by an electron accelerated by an electric potential of 1 volt and 

equals 1.6 x 10- 19 J). n is th e 'principal' quantum number, taking val

ues fr01n 1 through the positive int egers. But th e fact that th e Kepler27 

orbits for bound states are closed ellipses, and in the quantum treatm ent 

that levels of different£ but the same principal quantum number n are 

degenerate (have the same energy), are not explained by the three

dimensional spherical symmetry that only require s degeneracy of m 

values. For each n, £ can range from O to n - 1. That they are also de

generate point s to something additional to rotati onal symmetry in the 

Coulomb or gravitational force. A closed ellipse points to the existence 
➔ ➔ 

of another conserved vector besides£ . This vector, A, points in the dir-

ection of the major axis and has magnitude equal to th e eccentricity of 

the ellipse (Figure 1.12). This was already recognized by Laplace28
. 

25 Hendrik B. G. Casimir, 1909- 2000, Dutch. Theoretical physicist with many contri 

bution s to supercondu ctivity, invariant s ofLie groups, m olecular and nucl ear rotations, 

and quantum zero-point energy forces between objects, bot h microscopic and m acro

scopic, some of th e latt er only recentl y amenable to experiment al measurements . He 

was a co-found er and director for many years of the Philips research laborat ories in his 

native Net herland s. 
26 Johann es Robert Rydberg, 1854-1919, Swedish. Discoverer of th e formula that 

bears his name for the spectral lines from an atom when it changes from one energy 

level to another. The fundam ental constant of spectroscopy is named th e Rydberg. 

Today, bound states at high energies are named Rydberg atoms. 
27 Johannes Kepler, 1571- 1630, German. Inh erit ed Tycho Brahe's observatory and 

observations of orbital data on planets and found th at he had to depart from th e cir

cular orbits of th e Copern ican system to elliptical ones, and formulat ed th e thre e laws 

of planetary moti on which were th e basis for Newton's law of gravitation. He can be 

credited with having brought m athem atical physics into astronom y. 
28 Pierre Simon de Laplace, 1749-1827, French. Math emat ician, physicist, and astron

omer , who extended Newton 's celestial mechanics to consider th e stability of and th e 

nebular origin of the Solar System. He formulat ed Laplace's equation and the differen

tial operator called th e Laplacian that occurs in wide areas of classical and quantum 

physics. He developed pot ential theor y and the 'spherical harm onics' th at are used 
for describing angular clependences in physics and engineering. He invent ed the La-

place transform , a pow erful mathematical technique, and mad e man y contributi ons 
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➔ 

A 

Figure 1.12 A planetary orbit 's Kepler ellipse on a pl ane with a perp endi cular 
➔ ➔ 

ang ular m om entum vec tor f,, and th e Laplace- Run ge- Lenz vec tor A , wh ich 

poin ts in th e direct ion of the m ajor axis of th e ellipse and h as m agnit ud e 

propo rti onal to its eccentri city. 

It is the existence of such a conserve d vector in th e plan e th at ac

count s for th e orbit s closing and th ereby the occurren ce of a closed 

ellipti cal orbit for a plan et 's m otion; oth erw ise, based onl y on sph er

ical symm etry and consequent conservation of angular m om entum , 

they could be any orbit s so long as the y lie in th at plan e. Ind eed, 

gene ral relati vistic corr ections th at lead to sm all departur es from th e 

Newtoni an 1/r potential , but still spheri cally symm etric, retain th e pla

nar n atur e but spoil th e closing of th e orbit so th at th e m ajor axis 

rota tes (pr ecesses), albeit very slowly. This was account ed for by Ein

stein 's General The ory of Relativity (Sec . 5.1.2). Simil arly, in quantum 

mech anics, oth er atoms beyond hydrogen do not exhibit th e degen er

acy in .e, th e pr esence of oth er electr ons leading to sm all depar tur es 

from th e pur e 1/r Coulomb field of th e nucl eus. 

To see th e n atur e of thi s higher sy1nmetr y, larger th an th e obvious 

isotropic one, of th e 1 /r fields, and th at it re flects a symm etry un der 

rotat ion s in one extra dim ension as per th e th em e of thi s ch apt er, it is 

easiest to do so from the Schr odinger29 equation for th e hydr ogen atom 

10 probability and statistics. He also had the first ideas on what were later called black 

ho les, when he argued for ma ssive objects from which even light could not escape. 
29 Erwin Schr odinger, 1887- 1961, Austrian . In 1926, formul ated the first wave equa

tion of quant um mec hanics th at bears his name, and th en established the equivalence 

<,rt his wave mechanics to th e matri x m echanics of Heisenberg. He wen t on to develop 
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written in momentum space. Besides the three dimensions of the mo

mentum vector,p, the energy as a fourth component can be used to cast 

the equation as spherically symmetric in all four, that is, as symmetric 

under rotations in four-dimensional space. The same conclusion fol-
➔ ➔ 

lows in coordinate space by the recognition that with both £ and A 

commuting with the Hamiltonian, there are six such operators com

patible with a conserved energy. Just as three of the former generate 

rotations in three dimensions, the six together describe rotations in a 

four-dimensional space, d(d - 1 )/2 in d dimensions being the numb er of 

planes and thereby the number of independent rotations in any dimen

sional space. The symmetry group is 0( 4), larger than 0(3), which forms 

a sub-group of it. There are now two conserved Casimir invariants, one 
➔ ➔ 

expressed by£ · A = 0, and evidenced by the two vectors lying perpen-

dicular to and in the plane of the orbits (Figure 1.12), and another the 

extension of the squared angular momentum now to the sum of the 
➔ ➔ 

squares of both £ and A. This second invariant is simply related to the 

energy ( or ton for bound states of the atom). 

The extra dimension can be geometrically visualized in terms of 

Hamilton's 'hodograph', the circle that results when the velocity vec

tors of any Kepler orbit, bound ellipse or open parabola or hyperbo la, 

that is, of all possible positive or negative energies, are plotted together 

from a common origin (see Figure 1.13). The radius of these circles for 

the same energy depends on the angular momentum. Collecting these 

circles provides the extra dimension to the three spatial ones. In quan

tum physics, this is associated with the degeneracy of different ,f, values 

at the same energy; note that for bound states, the degeneracy is finite 

(be=\ b!=-e 1 = n
2

), while it is infinite for continuum states. 

Since the components of the two vectors do not themselves mutu

ally commute except for one pair of them, either ( £2
, ,f,2 ) or ( ez, A2), 

one has only a set of three mutually commuting operators along with 

the Hamiltonian providing the unique labelling of the states of the 

techniques for handling perturbing potentials in quantum systems, applying to the ef

fects of electric and magne tic fields on atoms. Widely versed in philosophy, he never 

accepted th e probability interpretation of the quantum wave fun ction . His formulation 

of 'the Schrodinger cat' (Sec. 4.2.1) as a hypoth etical to pose th e problems of quantum 

interpretation continues to captur e th e imagination of physicist and layman alike. He 

wrote on conscio usn ess and on th e philosophy of biology. His book What Is Life on self

replicating systems and on a mole cule as the basis of heredity has widely influ enced 

biologists, from the discoverers of DNA structure and the genetic code to today. 
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Figure 1.13 The hodograph: circles for elliptical and parabolic orbits (shown 

on top) when instantaneous velocity vectors along the orbit are gathered to

gether from a common point. That common point lies inside, or on, the circle, 

respectively, for the two motions with negative and zero energies ( the particle 

in parabolic orbit comes in and recedes to infinity where it has zero speed). 

A similar construction for hyperbolic orbits of positive energy would have a 

hodograph with the point outside the circle. 

hydrogen atom. There are, however, two equally valid alternative 'rep

resentations' (more on this in Chapter 2), depending on the choice 

between the two sets, called spherical and parabolic, respectively. In ei

ther way of counting, the degeneracy of any energy level is larger than 

the (U + 1) of three-dimensional symmetry and is the well-known n
2 

(for bound states) of the higher symmetry. In particular, for n = 2, 
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the first excited state of the atom, the four degenerate states group 

either as ( s, p) ( the latter embracing three m values) of the spherical 

representation ( .e = 0, 1 are named s and p, respectively, by historical 

convention) or the two spinors (!, D of the parabolic, these fractional 

angular momenta being the quantum numbers of the two mutually 
1 ➔ ➔ ➔ ➔ 

commuting operators 2(.€ ± A). Recall that .e and A are mutually 

orthogonal, one perpendicular and one parallel to the plane of the or

bit; as a result, these two linear con1binations of them are mutually 

commuting and have equal magnitudes. 

For other discrete energy levels, n, the fractional angular momenta, 
➔ ➔ 

( £ ± A)/2, take values ( n - 1 )/2, the pair again sharing the same value as 
➔ ➔ 

a consequence of the orthogonality of .e and A. Adding the two angular 

momenta gives all the values .e = 0, 1, 2, ... n - 1 that occur at that n. 

The n = 2 example illustrates another aspect of adding a dimension, 

in that, for the three states 2p, it is upon adding another, the 2s, that 

one has the space of four degenerate states that then also splits alterna

tively into the four parabolic states. The next sub-section will provide 

an analogous example in nuclear spectra. 

In coordinate space as well , there is an interesting realization in that 

the Coulomb problem of the 1/r potential in three dimensions can be 

embedded in foµr dimensions (u1 > u21 u3, u4) as an isotropic harmonic os

cillator (that is, the pendulum) in those four coordinates as per the 

transformation [12), · · 

x == 2( u1 u3 + u2u4) 

y == 2(u2u3-: U:1u1) · 

2+ · 2 2 2 
Z -: u3 u4. - u1 - U2 

. (1.9) 

- 2+2+ ·· 2+ 2 r - U3 . U4 . U1 . , Uz. 

Each coordinate has a 'spinorial' decomposition as products of two 

of the u coordinates (which are, therefore, like (square-root coordin~ 

ates'). In such a rendition of th~ three-dime~sional coordinates with 

one additional dimension, th ere is of course redundancy and thereb y 

a constraint; u1u4 + u2u3 ...,.. 0. For many discussions of the hydro~ 

gell atom, such as its quantum-mechanical path integral treatment 

or for effects of external electric or magnetic fielcis on the atom, this 

four-dimensional system with oscillator-like form proves much more . 
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suitable, the motion of a pendulun1 being 1nuch simpler than that in 

a Coulombfield. This so-called 'regularization' of the Coulomb singu

larity is already important in classical mechanics and, indeed, the above 

transformation was actually first introduced by astronomer Kustaan~ 

heimo 30and co-workers for gravitational orbits in celestial mechanics. 

The symmetry group of rotations in four din-iensions, 0( 4), with 

its six generating operators, is the larger ( than 0(3)) symmetry of the 

discrete Bohr energy states of the hydrogen atom at negative ener

gies -13.6 eV/n2
, with a large (again, larger than (2£ + 1)) but finite 

number, n2, of states sharing the same energy . (Electronic spin gives 

an additional doubling and is responsible for the 2n2 value that deter

mines the shell structure underlying the Mendeleev 31 Periodic Table 

of elements.) It is closely related to the symmetry group of Lorentz 

transformations of space-time discussed in the previous sub-section but 

with the important difference that the states in that case are infinite in 

number (see Sec. 1.2.4). 

1.2.6 The Interacting Boson Model 

The role of an added dimension for a better understanding of atoms in 

the previous section also has an application in nuclei. A nucleus is a col.:. 

lection of protons and neutrons, fermionic particles. (Becaµse their spin 

angular momentum is 1/2, they obey Fermi 32-Dirac statistics, unlike 

30 Paul Kustaanheimo, 1924-1997, Finnish . Astronomer who introduced a m ethod 

of regulari zing th e gravitationa l potential. 
31 Dmitri Ivanovich Mendel eev, 1834-1907, Russian. Chemist who arranged the 

dcments by th eir atomic weights and produced the Periodic Table, one of th e greatest 

organizing principles of science. He predict ed the existence of several 'missing' elem ents 

that were later added to th eir slots in the Table. He mad e many oth er contributions 

to chemistry, investigat ed th e composition of petroleum, although he argued for an 

a biotic origin from carbon in th e deep interior of the Earth, and is said to have helped 

l'Stablish the first petrol eum refinery in Russia. He also help ed in establishing the m etric 

system in Russia. 
32 Enrico Fermi, 1901-1954, Italian and American. An outstanding physicist, both 

theoretical and experimental. He established the first th eory of beta decay (naming 

the additional particle emitted the neutrino, which was observed only decades later), 

a precursor to lat er int eracting field theories . Using neutr on bombardment , he created 

art ificial isotopes and elucidat ed nuclear structure. While missing th e first hints , he 

went on to study fission of uranium, neutron multipli cation, and th e chain reaction, 
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particles of integer spin, which obey Bose33-Einstein statistics, this be

ing one of the funda1nental divisions of our Universe - into fermions 

and bosons: se~ Sec. 2.2J and 7.3.3.) Instead c>f the electromagnetic 

interaction that holds an atOm ·together, .• 's.tr9ng interactions' · bind 

protons and neutrons. This is stro:p:genough to overcome the Coulomb 

repulsion between the protons in a nucleus. . 

· Bound-state nuclear energy levels. are also quantized in a discrete 

.spectrum but cLre now ·more complicated than the Bohr spectrum of a 

simple Coulomb potential. In the low-lying spectral levels of a nucleus 

and transitions .between them, the quadrupole operator plays a major 

role, -just as the dipole operator of electromagnetism does in atoms. 

The quadrupole corresponds to the angular :momentum .e = 2 called d 

( again for historical reasons, as with sand p) and is viewed as a 'd-hoson'. 

The interacting boson model was advanced as a useful picture of a nu

cleus,. to see it as a collection of bosons rather tha,n as a cluster of the 

component fermions (combining two fermions gives a bosonic entity). 

What gave immense power to the model was) however, the adjoining 

of one more degree of freedom, an s-boson with l · .. · · 0, an added di

mension , and to see the low-energy spectral regioh}n terms of such an 

interacting collection of s and d bosons. 

As per the (2£ + l) multiplicity) s and d denot e one- and , five

dimensional objects, respectively. It is this starting picture of six 

building the first critical nuclear reactor in th e Manhattan Project and going on to 

the building of the first fission bomb s. But, h e opposed the furth er developm ent of 

hydrogen fusion bombs on both moral and technical grounds. His work on quantum 

statistical mechanics has led to the naming of all half-odd int eger spin particl es in the 

Universe fermions and th e statistics they obey as Fermi-Dirac. He also advanced the 

first models of acceleration of cosmic rays through shocks and varying magnetic fields, 

still the only viable scenario for the most energetic particl es seen toda y. A gifted exposi

tor, h e is known for two influ ential schools of physicists under him, first in Rome and 

then in Chicago. His ability to get to the essence of any physics probl em, making a first 

estimat e of reasonable accuracy in minutes and on the 'back of an envelope', have led 

to what ph ysicists refer to as 'Fermi probl ems'. 
33 Satyendra Nath Bose, 1894- 1974, Indian. He re-derived Planck's black-bod y ra

diation law in a no vel way, entirely within a quantum pictur e and based on a way of 

counting identi cal particles. He sent th e paper to Einstein, who recognized its import 

ance, hims elf translating it and having it publi sh ed in a German ph ysics journal, and 

seeing in it a general way of describing identical particles in quantum ph ysics. Applied 

to photons as the quanta of light and later to all int eger-s pin particles, they are now 

referr ed to as bosons and th e statistics as Bose-Einstein. 
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dimensions and the symmetries associated with them that constitutes 

the interacting boson .model. The group symmetry starts with the uni- . 

tary group U(6). Since rotations in ordinary three-dimensional space, 

and the associated group 0(3), are obviously involved inlabeUing the 

energy states, one looks for 'dynamical symmetry', which means that . 

the energies can be accounted for through the invariant Casimir op

erators of the relevant groups and sub-groups lying between U(6) and 

0(3). This is also of great practical significance because calculations re

duce to simple algebra upon such restriction to the invariants which do · 

not change in value under various operations. 

Between the starting group, U(6), and the final 0(3), there are three 

possible chains of sub-groups and there£ ore three possible expressions 

for the energy levels. in terms of the Casimir eigenvalues; see Figure L 14. 

Remarkably, all three seem to be realized in nature upon examining 

low-lying spectra of nuclei across the Periodic Table [13]. Thus all such 

nuclear spectra can be ordered in these three groupings: Even some 

nuclei that depart from one of the three nevertheless admit simplici

ties in their description as lying close to one of the three limiting cases 

and therefore reflecting perturbations about the basic three. This has 

proved to be an immensely significant organizing principle. Again, for . 

the theme of this chapter , the addition of the s-boson and starting with 

U(6) rather than U(5) proved crucial, illustrating the importance of the . 

theme of adding a dimension. 

More details of this model or of further extensions in boson-fermion 

models are outside the realm of our discussion but it is interesting to 

look back at the previous sub-section from this perspective of the inter

acting boson model. For atoms; the dipole is important, that is, t · = 1 

or p in place of nuclei's d, a vector rather than a tensor of rank two. 

Adding ans to it gives four dimensions, with 0( 4) symmetry, and the al

ternat ive breakups of spherical and parabohc representation s, as in the 

previous sub-section, That same adjoining of a dimension and going to 

four dimensions is crucial to get the bi-spinor or parabolic decompos

ition, which would be inaccessible using just th e p or three deg~ees of 

freedom . The same idea of adding ans but now toad applies in nuclei 

with its three primary divisions in Figure 1.14. 

Remarkably, the same theme has been extended in atoms in a dis

cussion of the complicated spectra of lanthanides ( elements around 

lanthanum) and actinides ( elements around uranium) as pertaining to 
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U(6) :) U(S) :) 0(5) :) 0(3) 

U(6) :) SU(3) :) 0(3) 

U(6) :) 0(6) :) 0(5) :) 0(3) 

Figure 1.14 Three alternative pathways of group U(6) and sub-group chains. 

Low-lying energy levels of nuclei are well described by the invariant operators 

of the groups in each chain. 

large atoms such as uraniun1 and plutonium. This high up in the Peri

odic Table, such atoms involve f electrons, that is, ,f, ..:_ 3. Because of the 

many levels involved with such large angular momenta, and additional 

complications of fine-structure and other splittings, these spectra are 

notoriously complicated. Son1ewhat in the same spirit as the interact

ing boson model, the suggestion was made to add an s, again adding an 

extra dimension, to see the (s + f) as an eight-dimensional object and 

to examine alternative symmetries and simplifications provided by the 

groups involved (14]. In a further twist, eight is also alternatively viewed 

as the dimension of the space of three spin-1/2 'pseudo-quarks', each 

of dimension two, their product eight-dimensional. (This borrowed 

from 'quarks', invoked as spin-1/2 fundamental constituents of protons 

and neutrons, a triplet of them forming any nucleon.) Therefore, lan 

thanide and actinide spectra are described in terms of an underlying 

three-quark structure, much as s+pwas viewed in terms of two spin-1/2. 

In the language of quantum information (see Sec. 4.2) rather than that 

of elementary particle physics, wherein spin-1/2 constitutes a 'qubit', 

we may regard these as three and two qubits respectively. And, in the 

same vein, the interacting boson model of s + d would correspond to a 

qubit-qutrit (spin-1) bipartite system with dimension 2 x 3 = 6. 

1.3 Extra Dimensions to Remove Singularities 

Another remarkable use of varying the dimensions involved in a prob

lem is to remove seeming infinities that occur in our mathematical 

treatment of some problems when it is clear from the physics that 

there are no such singularities. Quantum field theories that go beyond 

quantum mechanics in being fully consistent with the Special Theory 
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of Relativity (see Sec. 7.3.3) are notoriously plagued by these infiniti es 

involving singular integrals. A simple illustration is provided by the 

triplet of elementary particles called pi-mesons or pions, a set of three 

elementary particles comprising a pair that is oppositely charged and 

a neutral one. An immediate expectation is that the small difference 

in mass of the neutral particle from that of the charged pair ( which 

have equal masses, an aspect of what is called CPT symmetry and re

quired of all particle - anti-particle pairs; see Sec. 5.2.1) is due to the 

electromagnetic interaction in which they differ. Indeed, the differenc e 

in mass of about 1% connects plausibly with the expectation based on 

the relative weakness of electromagnetism compared with strong inter

actions , which are otherwise dominant and thereby contribute most to 

the mass. However, a first calculati on of the difference comes out infin

ite. Various 'renormalization' methods are now familiar to overcome 

such singularities. 

One class of them is termed dimensional renorn1ali zation, wherein 

the prob lem is treated with extra dimensions (15]. Generally, these 

discussions are handled in momentum space but to convey the es

sence in simpler terms, consider the integral of 1/r in ordinary calculus. 

Although this function is singular at the origin, if r stands as usual 

for distance, in three dimensions there is no infinit y from the short 

distance behaviour because of the powers of r in the volume element 

r2dr of integration over three dimen sions. On the other hand , in one di-

1nension, f
0 

dx/ Ix I would indeed be infinite , a divergent integral. Most 

divergences in field theories arise indeed from high-momentum or, 

equivalently, short-distance behaviour ( the link between small distance 

and large mom entum is an essential feature of quantum physics) so 

that these simple observations are indeed relevant. With that, we turn 

to a concrete problem in quantum mechanics based on the above 1/r 

observation to illustrate the point of dimensional renormalization. 

The hydrogen atom is a systen1 with a Coulomb potential, - e2 /r. 
Quantum mechanically, it is stable because the quantum kinetic energy 

prevents the electron from getting arbitrarily close to the nucleus, that 

js, r = 0. Instead, on average, the electron is held to a distance of about 

the Bohr radius, a0 = 1i2 /me2 ~ 5 x 10-11 m, sees only that much of 

the attraction of the nucleus , and ends up with a corresponding bind

ing energy of - 13.6 e V in the ground state. Consider, however, an atom 

in very strong magnetic fields, such as have been found on neutron 

stars and magnetars. These fields are not only larger than on any other 
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objects in our Universe but they are overwhelmingly stronger than the 

internal electric and magnetic fields in the atom. As a result , such a 

field complete ly changes atomic structure. It confines the electron's 

motion in the two directions perpendicular to the magnetic field, that 

field controlling tho se motions and dwarfing the Coulomb force from 

the nucleus in those directions. On the other hand, because a magnetic 

field, no matter how strong, exerts no force in the direction parallel to 

itself, the Coulomb attraction by the nucl eus operates in that direction 

to bind the electron. Effectively, the Coulomb binding operates only in 

that one dimension [16]. 

Because the electron by virtue of being confined in the other di

mension s sees much mor e of the nuclear field, its binding is indeed 

enhan ced. If it wer e truly one dimensional , by our above argument of 

the divergence of a one -dim ension al integral, we would conclude that 

there is infinite binding or collapse of the electron onto the nucleus. 

However, th e actual problem is in three dimensions and calculations 

show enhanced but not infinite binding. Further, the enhancement 

is logarithmic, the argument of th e logarithm being the ratio of the 

Bohr radius to the cyclotron radius. This can be understo od in th e lan

guage of dim ensional renormalization by arguing that, while appearing 

mostly one dimensional, at very short distances (within th e magn etic 

cyclotron radius, which, while small er than ao, is still of some non-zero 

value) the ? of the three-dimen sional volume element prevent s the 

divergence. Here, dimensional renormalizati on of a 'one-dimensional 

hydrogen atom' is n ot a mathemati cal device but in the very physics of 

the structure of atoms on neutron stars . 

Turning the above argument around, th ere are speculations in phys

ics about whether our own world of three space dimensions may actu

ally have extensions into extra dim ensions , typicall y considered tiny, as 

in th e above example [7]. Thus, every point of our three -dimensional 

world may actually be a very small roll ed-up circle into another di

mension ( similar to th e hod ograph of the hydrogen atom in a previ ous 

sub -section where they were not a real new space dimension). Such 

speculati ons have been invoke d for a variety of consequ ences, renor

mali zation being just one. Another, for instan ce, is that the seeming 

weakness of some interaction (such as gravitation compar ed with the 

rest) ma y be only a reflection of the different amount by which some 

may act in the thre e space dim ensions we see wh ile spilling over m ostly 

into unobser ved dimensions. 
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Yet another is to explain why some of the fundamental constants that 

characterize our world have the values they do. Thus, the enhanced 

binding, larger than 13.6 e V, of the hydrogen atom in a strong mag

netic field may be interpreted in terms of a stronger effective e2
, being a 

combination of the usual charge of an electron and the strength of the 

magnetic field that also enters into the expression for the binding en

ergy. Conversely, what appear in our world as fundamental constants, 

such as the charge or mass of the electron, may actually reflect some 

fields in the larger dimensions that have 'compactified' all but the three 

we observe, much as the magnetic field confines from three into the one 

dimension along its direction for atoms on neutron stars. The values 

we observe may thus contain the particular value ( of no special signifi

cance) of those fields and th ere may, therefore, similarly be no special 

significance to them [16]. 



2 

Physics as Transformations 

2.1 Introduction to Transformations 

Transf ormations , from one coo rdinate system to another, from one 

observe r 's frame of reference to another, from a description in one 

basis to another, are all inherent to physics. Inde ed, even outside of 

physics, there are fam ous and basic roles for tran sformati ons, as in 

Felix Klein's 1 'Erlangen Programm e', which compl etely re-oriented the 

study of geometry. Instead of th e Euclidean approa ch , familiar from 

high school, of specifying axioms, followed by th eorems about points, 

lin es, triangle_s, circles, and other figures, Klein emphasized that one 

defines a set of symmetries and transformations and for each such set 

th ere exists a geometry. Euclidean 2 geometry that result s from Eu

clidean tran sformati ons in a plane is but one of man y geometries. 

A different set of symm etr y tran sformation s will define a different 

geometry. The intimate connection between symm etri es and trans

formations is reflected also in th e material on symmetries in Chapter 5, 

and this chapter overlaps with that mat erial and with that on maps in 

Chapt er 6. 

Mechanics, the very first subj ect in physics , deals with th e motion 

of a physical system, thr ough either translati on or rotation , and all of 

mechanics can itself be viewed in terms of transformations und er such 

operations, the system chan ging from an initial state to a final one. This 

1 Felix Klein, 1849- 1925, Germ an. Math ematician know n for his work in group 

th eory, ana lysis, and geom etry. His Erlangen Programme that he laid out in his inaug

ural lectur e at Erlangen revolutionized th e study of geometry. He established one of 

th e great scho ols of math emati cs at Gott ingen and launch ed the Encyclopaedia of Math

ematics. He wro te a well-known book on th e icosahedron , and a topo logical object has 

been named th e 'Klein bot tle'. 
2 Euclid of Alexandria, circa 300 BC, Greek . A math em atician who built on wor ks 

before him to give a coheren t presenta tion of plane geomet ry through a few axioms 

and rigorous proofs . His prin cipal work, Elements, also has results in number theor y and 

has had a central role in mathem atics for centuri es. 
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point of view makes transformation theory alread y a central feature of 

classical mechanics but it becmnes even more of an immediate start

ing point in quantum mechanics. Before considering various aspects 

of transformations in quantum physics, it is worth noting an even 

older philosophical recognition in every culture and civilization that 

transformations dominate nature and human life. 

Ovid's3 Metamorphoses, systems of yoga in India, ancient myths of many 

religions and cultures, and Grimn1s' 4 Fairy Tales are all full of transform

ations of man, beasts, and gods. A striking and charming expression is 

Chuang Tzu's 5 butterfly: 'Once I, Chuang Tzu, dreamed I was a butter 

fly and was happy as a butterfly. I was conscious that I was quite pleased 

with myself, but I did not know that I was Tzu. Suddenly, I awoke, and 

the re was I, visibly Tzu. I do not know whether it was Tzu dreaming 

tha t he was a butterfly or the butterfly dreaming that he was Tzu. Be

tween Tzu and the butterfly there must be some distinction. This is 

called the transformation of thing s.' (17) Other cultures and their myth

ology also play with transformations , exploring very pliable changes 

in shape, size, time, gender, number, and other familiars, under some 

astonishingly imaginative transformations. 

The simple example (Figure 1.5) at the beginning of Chapter 1, of 

equivalence betw een simple harmonic motion in a line and circu

lar motion on the circle with that line as diameter, pro vides a good 

illustration of the advantage of transforming between different co

ordinate systems. Instead of the coordinate x along the horizontal, 

and its companion coordinate y along the vertical, these 'Cartesian' 6 

coordinates may be replaced by the 'circular coordinates' (P, q>) of that 

3 Publius Ovidius Naso, 43 BC- 18 AD, ltalian. Great Latin poet, prolific writer on 

Roman culture, politics, and religion. His love poems and text on transformati ons in 

( ; reek and Roman myths are especially well known . One of his tragedies, Medea, has 

inspired numerous stage and opera productions to this day. 
4 Jacob Grimm, 1785-1863, and Wilhelm Grimm, 1786-1859, German. The brothers 

were linguist s and collectors of folklore, and started publishing German folk stories 

from 1812. These have become among the best-known folk stories across much of th e 

world, mined also for their moral and psychological truths. They also started a major 

( ;crman dictionar y project. 
5 Chuang Tzu or Zhuang Zhou or Zhuangzi or Master Zhuan g, circa 4th cen

tury BC, Chinese. A Daoist philosoph er who wrote the book Zhuan3zi, a philosophy of 

sccrticism. 
Rene Descartes, 1596- 1650, French. Philosopher and math ematician, and 

rn nsidered one of th e fathers of phil osophy. He is also cons idered th e originat or of 
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two-dimensional world through 

x = p cos </>,y = p sin</>, 

and, equivalently, the invers e transformation, 

p = J x2 + y2
, </> = arctan(y/x). 

(2.1) 

(2.2) 

Instead of a (Cartesian) grid of horizontal and vertical lines parallel to 

the x and y axes, the plane is covered by concentric circles of different 

radius around the origin and radiating straight lines from that origin. 

These two sets, circles and radial lines, are also mutually perpendicu

lar, 'orthogonal', wherever they meet. Both rectangular and circular 

coordinates cover the plane and are equally capable of describing it (see 

Figure 2.1 ). 

This is a simple instance of later examples in this chapter that al

ternative representations can in th eir entirety cover the system under 

consideration, here the two-dimensional space of the plane. D' Arey 

Thompson, who was mentioned in Chapter 1, gives more complicated 

grid transformations that put skulls such as of a chimpanzee and a 

human on an equivalent footing. In today's age of computers, such 

'morphings' with even more complexity appear quite commonly on 

our TV screens. The first creature to crawl out on land morphs in a 

few frames to cover intermediate steps towards a walking human in a 

cartoonish stand-in for J?arwin's 7 biological theory of evolution! 

Simple harmonic motions in either x or y with amplitude A and fre

quency cu are described by ( an over-dot will denote differentiation with 

respect to time) 

• • 2 
X = -(J) X, (2.3) 

with cu = /i{l for the pendulum in Figure 1.3. Substituting Eq. (2.1) 

in Eq. (2.3) and equating terms in sin and cos on either side gives 

analytical geometry, which combines algebra and geometry, and the system of coord

inates for a point in two - or higher-dimensi onal space is named for him. He was a major 

figure in 17th-centur y rationalism. He had man y works in mathematics and philo sophy. 

His statement Co&ito er-go sum, or 'I think , th erefore, I am', is often quot ed. 
7 Charles Darwin, 1809- 1882, English. Naturalist and biologist, discoverer of natural 

selection as the mechani sm for th e evoluti on of different biological species. It is con

sidered the unifying th eory of th e life sciences. His 1859 book On the Ori&in of Species and 

other books and insights stand at the centre of modern biology. 
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Figure 2.1 Cartesian and circular grids to cover the x- y plane. In the former, 

parallel horizontal and vertical lines form a mutually perpendicular set to as

sign coor dinates to any point; in the latter, concentric circles and radial lines 

do so, again interse cting at right angles. Also shown are 45-degree axes besides 

the Cartesian ( x, y) axes. 

p - P( c/) )2 = -u} P, 

P1 + 2p(j) = 0. 

(2.4) 

While th ese equations may at first sight look m ore complicated than 

the Cartesian Eq. (2.3), they prove especially convenient in man y situ

ations. and not just in the example of Chapter 1 with fixed fr~quency 

u> = q> and amplitude A. In that case, with constant values for q> and p , 

and all further dots ( time derivatives) on them zero, Eq. (2.4) is triviall y 

satisfied, requiring no further solution . 

But, quite generally, through simple steps of differential calculus, 

the second of th e equations in Eq. (2.4) reduce s to vanishing of the 

differential (single dot) of 

(2.5) 
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This vanishing of the tirn.e derivative of the above quantity means 

that the quantity is constant in time, or 'conserved'. Such conserved 

quantities or, equivalently, conservation laws, are among the most 

fundamental of concepts in physics. The quantity in Eq. (2.5), when 

multiplied by the mass of a particle that may be executing such motion, 

is called its angular momentum; note its dimensions [M][L]2[Tr 1
. The 

law of conservation of angular momentum is one of the absolutely valid 

conservation laws of physics, together with the laws of conservation of 

linear momentum and energy. 

The conservation of angular mom~ntum in the case of the example 

considered in Chapter 1, when both </> = w and p = A are fixed, is of 

course trivial, their combination in Eq. (2.5) also necessarily constant. 

But the above derivation holds more generally. So long as the equations 

in Eq. (2.4) do not involve </> so that, even in complicated situations of 

other forces acting on the pendulum ( or two-dimensional oscillator), 

as long as they depend only on p, the conclusion holds that the angu

lar momentum in Eq. (2.5) is conserved . Individually, p and</> may not 

but their combination in Eq. (2.5) is constant in time during the motion. 

This was one of the fundamental insights of Newton, that Kepler's ellip

tic orbits and, in particular, that equal areas are swept out in equal time 

so that the planet speeds up when close and slows down when far from 

the Sun in such a way as to keep Eq. (2.5) constant, revealed something 

fundamental about the force law governing the motion, that it had to 

be a 'central force', acting purely radially and independent of angular 

position in orbit. 

Such forces or potentials in physical systems are called isotropic, that 

is, they are independent of angular direction, and depend only on the 

radial variable. The association of the conservation of angular momen

tum with such isotropy is among the most important theorems of 

physics (see Sec. 5.1.2). It holds not just in the two-dimensional ex

ample above but also in higher dimensions. In particular, in our world 

of three space dimensions, such potentials are called spherically sym

metric, a sphere being such an object with no direction singled out as 

special. Forces and potentials of a spherically symmetric system are in

dependent of directions in space, and depend only on the separation 

distance involved. Under such forces, the angular momentum of a 

system remains unchanged, is an invariant of the motioi:. 

Even for time-dependent frequencies, when neither </> = w is con

stant nor p, their combination in Eq. (2.5) is. Upon multiplying by mass 
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and den oting it by its usual symb ol for angular m omentum, l , the first 

of th e equation s in Eq. (2.4) can be writt en as an equation involving p 

alone, 

(2.6) 

Again, for const ant w and amplitude , thi s is trivial, the first term van

ishing, but its importance lies in the m ore gener al situ ation of compli 

cated depend ences on tim e of frequen cy and amplitude. Nevertheles s, 

th e combined quantit y l is conserved. 

Furth er interest lies in the fact th at th e passage from Eq. (2.3) to 

Eq. (2.4) is valid for any linear second- order differential equati on. In par

ticular, it is so for th e tim e-independent quantum Schr odin ger equati on 

in pla ce of Eq. (2.3). The derivatives are now with respect to coo rdinat e 

space) not time, and the depend ent variabl e is not th e positi on , x, but th e 

wave function , 1/1. But up on th e sam e re-writin g of 1/1 as n ow th e amp

litude and pha se of th e wave fun ction , th e subsequ ent derivation carri es 

throu gh. The se count erp art s of Eq. (2.4), called th e 'pha se-amplitude ' 

equati ons, have pr oved useful in quantum physics (Sec. 7.4) . Part of 

the reason for thi s is that , unlik e the wave functi on , 1/1, th e amplitud e 

and pha se are directly accessible to our m easurin g apparatu s. This is an 

instan ce of how even wh en equivalent , transformin g from on e descrip 

tion , in term s of (som etim es, even compl ex) wave fun ction s) to anoth er 

with real quantiti es of amplitud e and pha se m ay h ave merit , som etim es 

also phil osophi cal, in being m ore directly conn ected to th e observables 

that ph ysics deals with. 

2.2 Alternative Representations in Quantum 

Physics and Transforn1ations Between Them 

Both in geom etry and oth er m ath emati cs and in classical physics, alter

native repr esentati ons and tran sform ations betwee n th em have been 

st udied from th e very beginnin g. A prin cipal aim of physics is to tra ce 

the evoluti on of a system from its stat e at som e ini tial instant to a lat er 

one und er th e action of specified forces. Th e state of a ph ysical system 

in classical m echanics is specified by giving the positions and velocities 

of all th e masses constitutin g the system , wheth er in th e New tonian 

descripti on or in its later reformulati on by Lagran ge in terms of a sta

tiona ry principl e for th e Lagrangian (Sec. 1.2.3). Instead of talking of 

l"orces, which are vector quantitie s, th e reformul ation deals only with 
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scalar energies, the Lagrangian being usually the difference between 

kinetic (mv2 /2 or p2 /2m) and potential (such as m3h for gravitation or kx2 /2 
for a spring) energies of the system. Instead of Newton's equations, the 

equations of motion called Euler 8-Lagrange equations are first-order 

differential equations in time along with first-order partial differentials 

of the Lagrangian with respect to coordinates and velocities. Regard

less of the choice of coordinates, these equations always have the same 

form, which is not so with Newton's equations. For these various reas

ons, the Lagrangian formulation is more powerful and useful than the 

Newtonian, although they are equivalent. 

Given this 'form invariance', the Euler-Lagrange equations permit 

easier transformation than do Newton's laws of motion from one 

set of coordinates to another, such as from Cartesian to circular , or 

their counterpart spherical in three dimensions. A second, slightly dif

ferent but closely related formulation in terms of Hamiltonians and 

Hamilton's equations of motion replaces the Lagrangian velocities by 

their equivalent momenta and the Lagrangian by the Ha1niltonian, 

which is defined as a function of coordinates, momenta, and time. In 

n~ost cases, the Hamiltonian is the sum of kinetic and potential ener

gies. Again, transformations allow for a wide variety of coordinates and 

momenta. 

The further step into quantum mechanics makes transformation 

theory a decisive element, even more than in classical mechanics. This is 

because of a central characteristic of quantum physics: that both coord

inates and velocities ( or momenta) cannot be simultaneously specified. 

This restriction , imposed by the Heisenberg uncertainty principle, arises 

of course from the nature of our world, that it has a non -zero value 

of Planck's quantum constant, n, a quantity with dimensions of pos

ition multiplying momentum. It forces the physicist to make a choice, 

in even the simp lest of physical systems considered, to use either posi

tions or momenta ( or some other quantity) in terms of which to view 

the system. Indeed, quantum physics de-emphasizes which of these 

8 Leonhard Euler, 1707-1783, Swiss and German . One of the greatest and most pro 

digious mathematicians of all time, with wide contributions in man y areas. Laplace is 

said to have expressed Euler's influence on mathematics by saying that 'he is th e ma ste r 

of us all ' . He also invent ed much of th e notation and terminology, two mathematical 

constants, e and y, and the symbol i for the square root of-1, all of which, along with 

many of his other results and th eorems, occur wide ly throughout math em atics and 

physics. 
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quant ities is chosen, such 'representations' being matt ers of choice and 

conven ience but any one of them being equally valid to capture the 

physics of the system and its dynamics . The questi on also arises natur 

ally of how to pass, transform, from one description or repres enta tion 

to anoth er. 

The fundamental differen ce between classical and quantum physics 

I ies in what is meant by the physical system. The quantum system is not 

specified by its coordinates and momenta, which are real mea surable 

quantities , but by a wave functi on that is complex and itself, therefore, 

inaccessible to our measuring apparatus. Actually, in an even further 

step, states may be viewed as abstract vecto rs in what is called a Hilbert 9 

space, independent of any parti cular wave functi on descripti on. It re

mains true that this is a spa ce of compl ex, not real and m easurable, 

enti ties. Only bilinear combinations of wave functions and their com 

plex conju gates provide th e observed real quantities. The wave function 

rnay be expressed in terms of one lan guage or another, position or 

momentum repr esentations , or perhap s by even ot her choices such as 

matrix and oth er repr esentati ons. 

Th us, considering the simpl est example of a one-dimensional har 

monic oscillator , th e pendulum of Sec. 1.1, its quantum-m echani cal 

wave function may be taken to be fun ctions of x (products of Gauss

ian functions and another standard set of functions called Hermite 10 

polynom ials), or functions of momentum, p (in this symmetric prob

lem wh ere both coord inat es and m om enta ent er quadrati cally in th e 

harmo nic oscillat or's en ergy or Hamilt onian , H = p2 /2m + mw2x2 /2, 

they are also Gaussians and Hermite pol ynomial s, but now in p), or as 

9 David Hilbert, 1862- 1943, Germ an. Mathematician, one of th e greatest and m ost 

influentia l of the 19th and early 20th centur y. Contri but ed to many areas of mathem

alics, including the theory of invariants, set th eory, tran sfinit e number s, functional 

analysis, and axiom atic geom etry. Established a famous m athema tical school at Got

tingen , editin g th e major math em atical journal of th e tim e, and collaborati ng with 

lcllow physicists who were developing the new quantum physics. He developed rigor 

ous mat hema tical tools for physics, th e then newly published text Courant-Hilbert readily 

providing the need ed mathematic s as quantum m echanics was developed in the 1920s 

and 1930s. Known as th e found er of proof th eory, he drew up a list of 23 outsta ndin g 

rnathem atical probl ems th at has set th e course of subsequent mathematical research, 

many prominent math ema tician s having tackled th ese 'Hilbert pro blems ' . 

LO Charles Hermite, 1822-1901, French. Mathematician with con tributi ons to num

ber th eory, orth ogonal pol ynom ials, and numerical anal ysis. Established the tran scen

dental natur e of Euler's number e. 
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infinite-dimensional matrices , or, even more abstractly, to be discussed 

below, in terms of Dirac's 'bras' and 'kets'. All physical observables, 

whether position, momentum, energy, or any combinations of them, 

act on these wave functions to provide other functions, and the Born 

interpretation gives the probabilities of specific values that may be 

observed upon any measurement (Sec. 1.2.2). 

Given any one representation, all the physics of the system is con

tained in it and one can choose to work within that representation 

alone, as stated earlier about Cartesian or circular coordinates. But, 

for convenience or other reason , if one wishes to pass to another 

representation , a transformation can be specified. This is much like 

different languages, with dictionaries allowing us to go from one to 

anoth er. The English 'translation' and German 'tibersetzung' have pre

cisely this meaning. The probability interpretation of the wave function 

(Sec. 1.2.2) views its squared norm , I VJ I 2 (product of 1jJ and its com

plex conjugate), as the probability of obtaining that value, whether of 

position or momentum or some other quantity, depending on the rep

resentation . The requirement of preserving normalization, that is, the 

squared norm of the wave function integrated over all of the corres

ponding space must equal unity, makes such transformations 'unitary'. 

Going from coordinate to momentum representation, or vice versa, 

is thus given by one such unitary transformation that has long been 

known in mathematics and physics, the Fourier 11 transformation, x and 

p being called canonical conjugates. This important transformation be

tween a pair of conjugate variables associates for each function in one 

variable a corresponding function in the other. The differential oper

ation in one becomes a simpler algebraic multiplication by the variable 

in the conjugate space. Together with other such useful properties, 

the Fourier transformation is one of the most important mathematical 

techniques in physics and engineering. 

The conjugate pair of x and p, with commutator [x,p] = xp- px = in, 

with 1i Planck's constant, expresses that each member of the pair acts as 

11 Jean Baptiste Joseph Fourier, 1768- 1830, French. Mathematician and physicist who 

discovered one of the most important techn iqu es for physics and engineering during 

his ,vork on heat transfer. He was part of Napoleon Bonaparte's expedit ions to Egypt 

and made governor of Lower Egypt, and was influential in Champollion's translation 

of th e Rosetta Stone. Fourier also contributed to dimensional analysis and was an early 

discoverer of th e greenhou se effect, recognizing that th e Eart h 's surface would be much 

cooler were it not for its atmosphere. 
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the derivative or gradient in the other representation . This is why the 

order in which they act matters and the commutator, defined as the dif

ference between xp and px, is non-vanishing. In the latter, the differential 

acts also on the factor x that follows it, giving an additional contribu

tion. The difference involves the imaginary unit and Planck's quantum 

constant, both signifiers of quantum physics. It is a matter of empirical 

observation that our Universe has a non-zero value of n, a quantity with 

dimensions of positionx n1omentum, that is, of angular momentum 

[M][L]2[Tr 1
. This is what makes ours a quantum world. Had If been zero, 

ours would have been a classical world. However, because of its small 

value ( on the scale of most angular momenta encountered in everyday 

experience) quantum effects were not appreciated till just over 100 years 

ago. 

Indeed, had physicists encountered quantum physics first, pos

ition and momentum might never have been defined as independent 

entities! Rather, momentum may have simply been seen from the start 

as the gradient (derivative) in position space, p = (Fi/ i) V. The exist

ence of the dimensional physical constant Fi is crucial for permitting 

such an association between p and x, giving physical context and sig

nificance to what were already recognized as a Fourier conjugate pair. 

The uncertainty principle is, of course, another direct consequence of 

the non -zero value of Fi and of the basic commutator between p and x be

ing proportional to it. Actually, as well known with Fourier conjugates, 

whether x and p, or time, t, and frequency, w, tight concentration in 

one translates into a wide distribution in the conjugate variable /space. 

Note that the dimensions of 1i may also be thought of as energy x time, 

and this becomes relevant in Chapter 7's discussion about the nature 

of ti1ne. 

This Fourier connection was a precursor in cla5sical physics or math

ematical analysis to the uncertainty principle, the 'only' extra (but, of 

course , crucial) ingredient brought in by quantum physics being (be

sides i) the non-zero nthat connects dimensionally the conjugate quan 

tities. Yet another pair of such conjugate entities are angle and angular 

1nomentum, their product also having the dimensions of n. Again, tight 

angular beaming, as from an antenna, is achieved only by superposing 

n1any 'multipoles' of angular momentum, f., wh ereas a single value of 

f. does not pick out unique directions . In particular, .e. = 0 describes an 

isotropic distribution with no directional dependence and no direction 

singled out, being all on an equal footing. 
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Quantum physics similarly views angular momentum as a gradient 

in angles, again with multiplicative ti/i. It is an important point, born out 

of such conjugate pairs, that to define any distribution sharply in an

gles re<..1uires superposition of many and large values of .e. A spectacular 

realization of this in recent times is the so-called WMAP (Wilkinson 12 

Microwave Anisotropy Probe) observation of small-scale anisotropies in 

the cosmic microwave background, at the level of 1 in 104
, analysed in 

terms of .e into the thousands, that reflect primordial fluctuations of 

very small angular scales in the early Universe which later lead to the 

large-scale structures, including clusters of galaxies, that we see today. 

Actually, perhaps, it might have been more appropriate, given the 

fundamental law of conservation of momentum and that there is no 

such for position, to have seen momentum as the basic object. Pos

ition could then have been viewed as simply the gradient with respect 

to it, with a multiplicative in. In non-relativistic quantum physics, and 

even in relativistic quantum mechanics as in the Dirac equation for an 

electron or proton (Sec. 7.3.2), both position and momentum are op

erators, as is energy, while time is not. In quantum field theories, both 

position and time are seen as merely parameters, thus placing them on 

an equivalent relativistic footing ( relativistic quantum mechanics of a 

particle is internally inconsistent). We will return to this in Chapter 7 

(Sec. 7.3.3). 

Since linear mom entum and energy are operators in quantum phys 

ics, it might have been appropriate to view p and E as the basic elements, 

and x and t then as derivatives with respect to them (with appropriate 

factors of Ii for dimensional reasons and the imaginary element to pre

serve the so-called Hermitian nature of these operators that is needed 

to give real values for energy and other physically measurable quan 

tities). Indeed, in a time-independent approach to quantum scattering 

theory with stationary states of energy, E, and invoking no complex 

quantities but using only real, standing waves, the 'Wigner 13 time delay' 

12 David Todd Wilkinson, 1935- 2002, American. Astronomer and cosmologist. 
13 Eugene Paul Wigner, 1902- 1995, Hungarian and American. Th eoretical physicist 

with decisive contributi ons to nuclear and elementary particle physics, especially to the 

role of symmetr y in quantum ph ysics. He intr odu ced and developed th e use of group 

th eory, especiall y for angular mom entum in quantum m echani cs, and for spin and iso

topic spin in nuclear structur e. He was a memb er of th e team that developed the first 

chain reacti on in uranium fission and went on to becom e th e physics consultant for 

th e first comm ercial nuclear pow er reactors. He was also interested in philosophical 
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is defined as 21id8 /dE, involving a derivative with respect to energy of 8, 

the scattering phase shift. We will return to this for another theme in 

Chapter 7 (see especially Sec. 7.3.1). 

2.2.1 Forty-Five-Desree Rotation, Hyperspherical Coordinates, and 

Correlations 

Beginning students of physics learn a standard 'trick' in handling a har

monic oscillator in two dimensions or two coupled one-dimensional 

oscillators. When decoupled, the system Hamiltonian , H = (p~ + 
p~)/2m + ( mu} /2)(x2 + y2), splits of course into two independent, identical 

pieces , that is, motions in x and y, that are trivially solved separately and 

then combined into the full solution . Adding a coupling term, kxy, no 

longer permits such simple 'separation' of variables , but the trick lies 

in recognizing that changing coordinates to (x + y) and ( x - y) recasts 

the Hamiltonian as two separate oscillators in these '45-degree' coord

inates. They are obtained by rotating the Cartesian pair ( x, y) through 

4S degrees in that plane (see Figure 2.1). A classical pendulum that can 

swing in the two dimensions can also oscillate about these 45-degree 

lines, with y = ± x, the two oscillations 'in phase' or exactly 'out of 

phase'. Even further, for other 'phase angles' between them, the bob 

executes the motion of a 'conical' pendulum. This is the situation in 

Chapter l's Figure 1.S when the two motions in x and y are exactly out of 

phase and that circle describes the motion of such a circular or conical 

pendulum 's bob. 

This simple 45-degree transformation to rotated axes appears wide

spread in mathematics and physics. Especially in quantum physics, 

where special significance attaches to the identity of particles such 

as electrons, protons, or photons, this transformation takes on fur

ther importance. Con sider two-electron physics in an atom or two

n ucleon phenomena in nuclei. Their mutual interaction renders the 

system Hamiltonian non-separable in independent coordinates 71 and 

72, or in the so-called independent-particle representation. Thereby, the 

independent-particle operators such as the particles' individual angu

lar momenta do not commute with the Hamiltonian and cannot be 

c.1uestions about quantum physics and consciousnes s, introdu cing 'Wigner 's friend ' as a 

variant to th e 'Schrodinger cat' discu ssion (Sec. 4.2.1) of quantum int erpretation. His es

say 'The unr easonabl e effectiveness of math ematics in th e natural sciences' has become 

a classic among math ematicians and physicists. 
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ascribed definite values or quantum numbers simultaneously with the 
➔ 

energy of the system. Only the overall spin, S, and orbital angular mo-
➔ 

mentum , L, of the whole system commute with th e isotropic H and 

have meaning, states of the system labelled 2
S+l Lr When spin-orbit 

➔ ➔ . 

coupling is strong, even S and l are not individually conserved, only 
➔ ➔ ➔ 2 

the total angular momentum, J = S + L, and quantum numbers of J 
and } 2 label the states along with their energy. 

For low-lying states in a many-electron atom, however, with the 

inter-particle interaction perturbatively sn1all relative to the central 

field that each sees (in an atom, that of the positively charged nuclear 

core), the independent-particle labels are a fairly good description and 

one often uses their 'configuration' labels for the state, as in 1s2 1 S0 or 

1s2s 1•
3 s1 for the ground and first (singly) excited states of the heliu1n 

atom. The individual electron labels, in lower case, follow those of the 

hydrogen atom (see Sec. 1.2.5), with n = 1, 2, .. . , and f = 0, 1, 2, ... 

referred to, resp ectively, as s, p, d, .... 

In this set of six coordinates, when viewed as two radial distances and 

four angles, three of the angles are of less dynamical significance to the 

physics of the two-particle system than the fourth, namely, the angle 

between the two radial vectors, called 012, which determines the separ

ation between them and thereby their interaction. The set of the other 

three angles, typic ally chosen as 'Euler angles', defines the orientation 

of the triangle formed by the two particles and fixed centre of mass 

of the system in some space-fixed set of three orthogonal axes. It is an 

element common to all two -particl e systen1s, regardl ess of th eir specific 

dynamics. 

The interaction between the two particles, and therefore the critical 

part of th e wave function, depend s on r1, r2, and 012, which may be 

regarded , therefor e, as the 'dynamical' variables of the system. They de

fine the triangle regardl ess of its orientation in space. The wave function 

is not generally separable as a product of wave functions of the individ

ual particles, so that such a product does not describe a phy sical state. 

However, such products in the independent-particle representation for 

each configuration provide a complete basis set in terms of which to de

scribe the ph ysics of two electrons. Whereas a single configuration, or 

superposition of a handful, may suffice for low-lying states, in general 

it requires a superposition of many such basis functions to give a good 

description for high er states. This is regarded as expressing correlations 

between the particles. 
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To handle correlations, we adapt the idea of circular coordinates used 

above for two different space dimensions to the case of coordinates of 

two particles. Consider instead of r1 and r2 the pair of coordinates, 

(2.7) 

or, equivalently, 

r1 = R cos a, r2 = R sin a . (2.8) 

Clearly, as in Eq. (2.1) and Eq. (2.2), these are circular coordinates 

instead of Cartesian in the plane (r1, ri). The one difference from 

Figure 2.1 is that now the two coordinate distances, themselves three 

dimensional distances and not one-dimensional coordinates, do not 

become negative and only the positive quadrant of Figure 2.1 applies. 

For the two-electron system, the alternatives of independent-particle 

or pair coordinates, and of complete sets of basis state functions in ei

ther, are two alternative representations , just as are the coordinate and 

momentum space representations of a single particle. In terms of the 

pair coordinate s in Eq. (2.7), the consequences of quantum physics for 

identical particles can be handled easily. Among these consequences is 

tha t, unlike in classical physics, mere labelling of the particles as 1 and 2 

has no quantum meaning. Meaning is attached only when some ph ys

ical observable can be associated with the labels we give to a physical 

system , corresponding quantum numbers then identifying the state of 

the system. Indeed, a complete set of quantum numbers arising from 

a complete set of operators that mutually commute with each other, 

when placed as labels inside a Dirac bra or ket denoting the system (see 

Sec. 2.3), identifies fully a quantum-mechanical state. 

A further element is a powerful axiom of quantum physics, called the 

Pauli 14 Principle, that in a many identical-particle system, interchanging 

14 Wolfgang Pauli, 1900-1958, Austrian and Swiss. A cruc ial figur e in the develop

ment of quantum theory through especially his interactions with Bohr, Dirac, and 

1 lcisenberg. Known for his strong views, and caustically expressed ( a Pauli-ism is to dis

miss something as 'not even wrong'), he had a very critical sense (t he 'conscience of 

physics') and, already as a young student, wrote a book on Einstein's General Theory 

of Relativity. He introduced a crucial new quantum number in understandin g atomic 

spectra, later identified with quantum spin, and the associated 'Exclusion Principle'. It 

forms the basis of all atomic structure and chemistry, and th e stability of matter. His 

conn ect ion of spin and statistics is a fundamental elem ent of all quantum field theor

ies. He also developed th e regularizations or ren ormalizations necessary to eliminate 
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coordinate labels for any two identical particl es in the wave function 

must satisfy one of two possibilities. If the particles are fermions, the 

name given to those with half-odd integer spin, as in the case of elec

trons or nucleons, then the wave function must be antisymmetric 

( change sign) under such interchange, whereas for bosons, the name 

for particles with integer spin, the wave function must be symmetric. 

It is this 'spin-statistics theorem ' and consideration of interchange that 

makes the coordinates ( R, a) particularly suitable. The Pauli Principle is 

an aspect of the physics of the world around us, as fundamental as any 

of the laws of conservation, such as of charge, energy, momentum, etc. 

For handling symmetry/antisyn1metry, particle interchange leaves R 

unchanged while a ~ ~ - a. In particular, the 45-degree line in 

that plane serves as a symmetry line for radial interchange. Radial wave 

functions may be either symmetric or antisymmetric under this inter

change, which is expressed as reflection in the line ( angular and spin 

interchanges should then behave appropriately so as to ensure overall 

symmetry or antisymmetry for the spin-statistics requirement), which 

means the radial functions have either a node (vanish) or antinode ( the 

derivati ve vanishes) on that line. This means that the probabilit y of find

ing th e particles tog eth er is diminished or enhanced, respectivel y. This 

has important consequences. If there is a repulsive interaction between 

particles 1 and 2, an antinode costs energy whereas a node reduces it; the 

opposite applies for attractive interactions. Thus, the symmetry prin

ciple for identical quantum particles can amount to an effective force 

between them. · 

Such effects are manife st in both atoms and nuclei. In an atom such 

as helium with two electrons, for states with both having orbital an

gular momentum zero, we need only consider the radial and spin wave 

functions. If the spin angular mom enta of th e two electrons are coupled 

infiniti es in these theories. 'Pauli spinors' and 'Pauli matri ces' pro vide the centra l nota

tion and lan guage of quantum-mechanical spin. To explain beta radioactivity and the 

seeming non-conservation of energy and angular momentum, he postulated a third 

particle emitt ed in that beta-decay, later named the neutrino. Neutrino physics is a 

major part of eleme ntar y particle physics to this day. Besides his contributions to philo

sophical elements of quantum physics, he was seriously inter ested in psychoanal ysis and 

had a close association with his neighbour, Carl Jung, and their extensive lett ers have 

been publi shed. 
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into a 'singlet' ( total spin zero, there being only one such state), the spin 

wave function is antisymmetric under interchange (see Sec. 4.2.4 and 

Figure 4.9). Therefore, the radial part has to be symmetric with an anti

node along the 45-degree line which means a higher probability of the 

two electrons being on top of each other. This raises the energy relative 

to similar triplet states (total spin one with three possible states) that 

have a node and thereby a decreased electron-electron repulsion. This 

'exchange' splitting puts triplets about 1 e V lower in energy than sing~ 

lets among the low-lying singly excited states of helium ( contrast with 

the first electronic excitation in helium of about 20 eV). See Figure 2.2. 

Note that the exchange interaction arises actually from the electro

static repulsion among electrons but is 'catalysed' by the spin-statistics 

link. This exchange interaction, in its role of favouring aligned spins so 

as to lower energy, is the basic mechanisn1 of ferro magnetism, a macro

scopic magnetic moment arising from the individual moments of the 

electrons. Similar but opposite effects occur in nuclei where attractive 

interactions occur between identical nucleons so that an antinode along 

the 45-degree line now lowers the energy and the singlet coupling of the 

pair is favoured. 

-

1 s2 15 

Figure 2.2 The spectrum of the helium atom, He, showing singlet - triplet 

splittings. The ground singlet, and excited state pairs of singlet and triplet l ,
3 S 

symmetry are shown. 
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With increasing excitation, especially double excitation of both elec

trons in the helium atom ( or in any other atom similarly), the 45-

degree line plays even more of a significant role. States in which both 

electrons share the excitation equally have wave functions that concen

trate along that line, called a 'ridge' because of the tendency for the 

two-electron system to fall off it, and towards the two axes, that is, for 

one or the other electron to become closer to the nucleus . Physically, 

this reflects the mutual screening between the electrons of the positive 

nuclear Coulomb field. Any particular division of energy between the 

two and thereby some ratio of r1 /r2 is only enhanced as the overall size 

of R increases. The slower of the electrons hangs back closer to the nu

cleus, screening its field for the faster, which only makes it faster still, at 

the expense of the inner electron. 

In either a time-dependent picture in terms of t or a stationary 

state time-independent picture in terms of R, this 'dynamical screening' 

makes the ridge a position of unstable equilibrium. Especially for double 

ionization of an atom (say, for instance, by absorbing sufficient energy 

either from a photon or some other collision) just above threshold, 

when the two electrons have just enough energy to escape to infin

ity, the escape depends on maintaining roughly equal division of the 

small amount of available energy and staying on the ridge for most of 

the double-escape process. The same considerations apply to very high 

doubly excited states with equal energy sharing between the electrons 

that lie just below the double-ionization threshold. In such states, the 

electrons have small kinetic energies, albeit with overall negative energy 

for the state. What these features of dynamical screening imply is a very 

strong radial correlation between the electrons that preserves r1 ~ r2 in 

such states in the vicinity of that threshold. 

In terms of the coordinate a in Eq. (2.7), whereas states of single exci

tation have one or the other electron closer to the nucleus, that is, a ~ 
0, n /2, high doubly excited states of the sort discussed in the previous 

paragraph and the states of threshold double escape have wave function 

concentration near a ~ n /4 along the ridge line. This coordinate a, 

which depends on both electrons and is a 'pair' coordinate rather than 

the independent-particle r1 and r2, together with the other coordinate 

mentioned earlier, 012, the angle between 71 and 72, are natural coord

inates for describing the states of a two-electron system in which the 

electrons are on par. They prove convenient for describing the radial 

and angular correlations, respectively, between the electrons so that 
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transformation to these so-called 'hyperspherical' coordinates ( or rep

resentation) prov es useful. The set (R, a, 012, Eul er angles) describes the 

two-particle system as a single entity in that six-dimensional space with 

R the radius of the hypersphere in that space. 

Just as in single-particle physics , where an uncertaint y link exists be

tween angle and angular momentum as conjugate entities, the more 

the concentration in one, the broader is the distribution in the other, 

so also for the pair of electrons. The more concentrated the wave func

tion around the ridge line, a ~ n /4, the larger is the superposition of 

harmonics in that angle. Physically, the fact that the angle is a meas

ure of the ratio of the radial distances means that there is a radial 

correlation between the two electrons. Similarly, the more the con

centration is about 012 ~ n, that is, with the tw o electrons lying on 

opposite sides of the nucleus, the larger is the required superposition 

of basis states, called Legendre 15 polynomials, in 012, and the larger is 

the angular correlation between the electrons. The region around the 

double-ionization threshold, whether of high doubly excited states or 

of double escape, when the two electrons are very slow (low kinetic en

ergy), is dominated by 012 ~ n, a natural consequence of the repulsion 

between the electrons driving them to opposite sides. Even when total 

angular momentum, L, is zero, a large superposition in the individual 

angular momenta , ,f,, is involved. 

The two-electron atom's potential is a sum of the three pair-wise 

Coulomb interactions, the two attractive ones between electron and 

nucleus (with charge +Ze), and the repulsion between the electrons. 

Together, we have the potential energy 

V = -e2 (z + Z __ 1) , 
r1 r2 r12 

(2.9) 

with r12 = 171 - 72 I the distance between the electrons. Written in hy

perspherical coordinates, it is again a function of three variables, the 

three dynamical variables. It scales inversely with Rand is a function of 

(a, 012). This function, C(a, 012), is sketched in Figure 2.3 for another 

the me that will occur in Chapt er 3 and it shows a saddle point at this 

15 Adrien-Marie Legendre, 1752-1833, French. Mathematician with num erous con

tributions, known for polynomials and transformations named for him, the latter an 

l 'I cment of Lagrangian - Hamiltonian mechanics. He also mad e major contributi ons to 

numerical analysis, elliptic fun ctions, and number th eory. 
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Figure 2.3 Potential surface of a two-electron atom, showing a saddle point 

in the middle. Contour plot of the potential in Eq. (2.9) at fixed hyperspherical 

radius R as a function of the angles a and 012 on the left and three -dimensiona l 

rendering of half of the potential on the right, the other half symmetrically 

reflected about the sadd le. Adapted from C. D. Lin, Phys. Rev. A 10, 1986 (1974), 

copyright 1974 by the American Physical Society. 

special value of (a = n /4, 012 = n). Double escape just above threshold 

and their associated high doubly excited states immediately below that 

threshold have their wave functions concentrated in the vicinity of that 

saddle for most of the range of R as R increases to infinity. This saddle 

structure becomes a deciding factor in their properties. 

Here again is the theme of alternative representations and basis states 

for describing alternative physics. We may use either the hyperspher 

ical coordinates (R, a, 012) (plus the three Euler angles) as the radius 

and five angles of a six-dimensional sphere describing the two-electron 

system as a whole, or the independent-particle coordinates of two vec

tor directions in three-dimensional space of the two electrons . The 

two-electron system Hamiltonian, because of the electron-electron 

interaction, - e2 /r12, is separable neither in independent-electron coord

inates, (r1, 72) nor in the pair coordinates, nor for that matter , in any 

coordinate system. (This is what is meant by saying that the three -body 

problem is not exactly solvable, already even in classical physics, and 

remains so in quantum physics.) Therefore, quantum numbers corres 

ponding to these coordinates, or basis states in terms of them, have no 

physical significanc e. 
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Meaning is attached only to the quantum numbers corresponding to 

the operators that commute with the total Hamiltonian, again those 

of the total spin and orbital angular momentum. All others are ap

proximate quantum numbers and descriptions, any choice between 

them being a matter of convenience or taste and being different ways 

of talking about an underlying reality which itself does not depend 

on those descriptions. States closer to the single-particle description, 

that is, when the two electrons are on an unequal footing, are best de

scribed on the independent -particle basis, requiring a superposition of 

only a few such basis states. Other states that are more pair-like con

forn1 closer to the pair basis and pair quantum numbers, requiring onl y 

a few of those basis states. Any state of one basis is a superposition of 

many states of the other, just as is true of Fourier conjugate pairs such 

as position -1nom entum. 

The ground · state of helium should be seen simply as the lowest 1 S 

state of the helium Hamiltonian. We might utilize either basis and , in 

principle, it requires an infinite superposition either way. But the 1?' 

con figuration is the don1inant component. Similarly, the first excited 

state of the same overall quantum numbers 1S is simply the next higher 

one withsuch quantum numbers, L . .,... S = 0, and orthogonal to 

the ground state. Agait1;, while in principle an infinite superposition, 

this state is dominantly ls2s, Independent-particle states of this form as 

pro ducts of single-electron wave functions with individual hydrogenic 

labels of n and£ provide already a good description. For this reason, the y 

are indeed so labelled with these co:rifiguration labels (see Figure 2.2). A 

high doubly excited state, on the other hand, even one with the same 

overall 1 S character, mixes many independent-particle configurations 

f 1 2 2 2 3· 2 2 2 3 2 3·d·2 . Th h' h . , ·. ·· . b 0 S , S , S , ••• , p , ']J , •.• , , etc. ·.. e Very 1g est States, JUSt · e"'." 

low the d·ouble-ionization threshold and th e state of threshold doubl e• 

escape, may more nearly be pure pair states, la~elled by the quantum 

nu mbers for a and 012, which may be called ntc and na,, respectively, for 

strong radial and angular correlations. Because they are associated with 

angle variables, they are again discr.ete quantum numbers. 

2.2.2 Frame Transformations 

The preceding section discussed alternative coordinates, of pos

ition or momentum, or of Carte sian versus spherica l, as alternative 
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representations of a physical system. There is an even wider context 

to transformations, again already in classical physics but taking on 

even wider importance in quantum physics. Consider first the classical 

context that already arose in Chapter 1. A triad of orthogonal axes 

constitutes a frame of reference for any observer. Besides translations 

and rotation s relating different frames, Galilean or Newtonian relativ

ity made physicists familiar with 'inertial' frames that are related to each 

other through a uniform velocity (vector velocity, not just scalar speed) 

relative to each other. All of mechanics is invariant with respect to such 

inertial frames, expressing the fact that Newton's equations involve the 

second derivative or acceleration, not the first derivative or velocity. 

Thus all inertial frames are on a par, their descriptions equally valid, 

as far as mechanics is concerned. 

The equivalence of inertial frames took on even m ore significance 

with the advent of electromagnetism and Maxwell's equations. Indeed , 

Einsteinian relativity, which extended the equivalence of inertial frames 

beyond mechanics to all physics, is one of the glorious chapters of our 

subject and we are familiar with the Special Theory of Relativity's 'Lor

entz transformations' (Sec. 7.2) between inertial frames that link the 

description of space, time, and other physical quantities, including elec

tric and magnetic fields in different frames moving uniformly relative 

to each other. More general transformations betwe en the coordinates 

of space and time became the basis of Einstein's General Theory of Rela

tivity, embracing also accelerated frames and simultaneously giving a 

new view of gravitation in physic s. 

Lorentz transformations between two frames with relative velocity 

; can themselves be viewed as a kind of rotation but involving a 

spatial coordinate and time. All rotations have their settings in ( two

dimensional) planes and should be viewed as such rather than in terms 

of an axis of rotation, the examples in Sec. 2.1 being either in the x-y or 

r1- r2 planes. The number of rotations in d dimensions is d(d - 1)/2, so 

that in two dimensions there is only one but in three there are three 

independent rotations ( accidentally the same number as the number 

of axes). In enlarging to four-dimensional space-time, three more 'ro

tations' are added for a total of six, involving planes containing one of 

the spatial coordinates along with time. As already noted in Sec. 1.2.4, 

because time enters somewhat differently in the invariant space-time 

interval with opposite sign for squared distances , (c2i2 - x2 - y2 - z2), 
these are not real rotations but rather 'Lorentz boosts' connecting 
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(inertial) frames with uniform velocities with respect to each other. 

In place of the trigonometric sines and cosines, the corresponding 

hyperbolic functions of sinh and cosh express the equations of Lorentz 

transformations. 

Note the role of c, the speed oflight in a vacuum, as the dimensional 

element to place space and time coordinates together in the invariant 

interval. In current physics, the numerical value of c itself ha<; heen 'de

fined' as fixed ( to nine significant figures), and since time measurement 

( actually its inverse, frequency) is much more accurate than that of spa

tial distance, which involves comparing with a standard metre kept at 

the Paris Bureau of Standards, the latter has been removed as one of the 

fundamental standards . Ti1ne standards based on atomic clocks and the 

defined value of c replace the historical standard of length. 

There is a close co!respondence to the discussion in Sec. 1.2.5 of six ro

tations a.nd 0(4) symmetry in the hydrogen atom)s spectrum. As noted . 

also there, the difference in sign between time and space coordinat~s, so 

that three are not rotations but Lorentz boosts, makes this a symmetry 

of the Lorentz group 0(3, 1 ), the non-compact counterpart ofthe com~ 

pact orthogonal group 0(4) that ciescribes four-dimensional rotations. 

A major implication of non -compactness is of infinite-dimensional 

representations ( an infinity of boos_ts) unlike the finite-dimensional 

representations of 0(4). Indeed, as observed in Sec. 1.2.5 in the hydro

gen spectrum, when one considers not bound but continuum states of 

positive energy, states of electron plus proton with a kinetic energy at 

infinite separation that 1nay range from 0 t~ oo, the y also are infinite 

in nun1ber at any energy ( .e. taking all integer values from zero to in"' 

finity) so that they too involve the non-compact extension from 0(4) 

to 0(3, 1). Such pairs of groups, one with an index set off by a con1ma, 

share many algebraic aspects, such as their dimension (four for both), 

number of g enerators (six for both), and the structure of commuta

tors between them, except for a relative minus sign in these 'structure 

coefficients', and the nature, ·finite or infinite, of their representations . 

Frame transformations take on even wider significance in quantum 

physics and represent even further exte_nsion of the meaning of rotatiori 

[18). Co11sider, for instance , a many-electron atom or · molecule. Each 

electron has orbital and spin angular momentum but, becaµse of inter..: 

actions between electrons, they are not individually conserved, only the 
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total for the atom . It is only these total quantities, S of spin and L of 

orbital angular momentum, that commute with the full Hamiltonian 

and so lend their labels for designating the states ( this is when we neg

lect spin-orbit interactions, otherwise only the label J of the combined 
➔ ➔ ➔ 

total angular momentum J = S + Lenters) . . 

Even in the simplest many- electron example of the helium atom, 

with just two electrons, there arises immediately the question of al

ternative ways of combining the individual spins and orbital 1no1nenta. 

Sometimes ohe pathsvay, wherein all spins are combined first into ans 

and all orbital ones into an L, and then the two combined into], may 

be relevant for the physics ( called LS-coupling), while at other times 

each electron's s and .e, first coupled into its j and then the j values ad

ded to give the total J ( called jj-coupling) , may be more appropriate. 

These provide again alternative representations with different inter 

mediate angular momenta involved and not all quantities mutually 

commuting. 

And , with alternative repr esentations or ' descriptions , the question 

arises immediately of a transformation between them, a so-called LS ➔ 

jj transformation now. Like all transformations between different rep

resentations, it is unitary and, given that all the quantities involved are 

real and finite in number , it is now indeed a rotation, but in an ab

stract finite-dimensional space of angular momentum coupling rather 

than in the three-dimensional space around us._ With more than two 

particles, there arise even more possibilities for combining angular mo

me1,1ta, even more representations, , and even further · transformatior1:5. 

Quantum physics, therefore, expands even furth er the gamut of frame 

transformations in physics. · · 

Indeed, it is natural to use such frame transformations even in de

scribing a single physical phenomenon. Thus, consider an event such 

as photoionization of an atom ( or molecule, or their ions) with only a 

single electron released to infinity, leaving behind the rest of the man y

electron system as a positive ion . The photon is absorbed by an electron 

when it is close to a heavy nucleus in order to conserve energy and 

momentum . 'subsequently, it escapes to infinitY: (This is clearly a de ... 

scription sequential in tim e, although a time -independent description 

is also possible, a theme of Chapter 7.) It is natural to consider differ

ent coupling schemes between it and the oth er electrons at different · 

stages of this process. When it 'starts' on this escape process and is still 
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close to the other electrons and strongly coupled to them, it is appro

priate to adopt the LS-coupling scheme, treating all electrons on a par 

and co1:nbining all their spin and all their orbital momenta first, before 

adding those totals to get the full angular momentum,]. But when the 

ejected electron reaches asymptotic distances and is far from the other 

electrons, it is n1ore naturally described by coupling its orbital and spin 

momenta together and the resulting} to the total angular .momentum 

of the residual,system in )}-coupling. Thereby, the escape process in

volves in its description of the evolution of the electronic wave function 

an LS -+ jj fra1ne transformation (18). 

2.3 States and Transformations 

We deal with states of a physical system and transformations between 

them. Whether in classical or quantum physics, the two go hand in 

hand. Indeed, they are so inseparable that it makes littl e sense to draw 

sharp distinctions between them, let alone argue for the primacy of one 

over the other. As in Sec. 1.2.3, even what might appear to be a sta tic 

constraint can be incorporated instead through a Lagrange multiplier 

and treated as a dynamical variable. Again, these remarks apply even 

more in quantum physics. Before considering them, let us also note 

similar appearances outside of physics. 

It is said that the philosopher Whitehead 16 was once asked by stu

dents, 'Professor, which are more important, ideas or things?' He replied 

immediately, 'Why, I would think it is ideas about things'. The same 

duality between foreground and background appears in art and music . 

The Richard Strauss 17 opera Capriccio is a debate between what is more 

important, words ( or poetry) or music, the composer again seeing the 

resolution in 'words set to music ', appropriately in an operatic form 

that combines both. 

16 Alfred Nort h Whitehead, 1861- 1947, English. Philosopher, logician , and math

ematician, with major contributions to the foundat ions of math ematics and the 

philo sophy of science. Emphasized th e central role of proc ess in philosophy. Co-author 

with his pupil Bertrand Russell of Principia Mathematica and a major influence on several 

well-known philosophers. 
17 Richard Strauss, 1864-1949, German. A major mu sic com poser of th e Roman

tic and early Modern era, perhaps the greatest composer of the first half of th e 20th 

century. Known for his tone poems, Four Last Songs, and several operas. 
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In quantum physics, the intimate connection between states and op

erators that act on and transform them is exemplified down to the very 

notation we use for Dirac kets j ) ( and their ad joint bras ( I) for states 

and a ket-bra, I) I (I, for an operator. To emphasize this, let us first look 

at just the patterns inherent in this notation itself without any refer

ence to what they stand for in physics. Besides bras and kets, quantum 

physics employs another entity, a multiplication of them, a bra-ket, de

noted, naturally, (I), this product a number, generally complex. It is 

these numbers that are ultimately what we observe or measure in our 

laboratories. This 'bracket' and splitting it into the two entities from 

which it results as a product is so compelling in itself that , ever since 

its introduction by Dirac, it has been adopted by physicists as the nat

ural language for quantum physics, along with the coinage of two new 

words, bra and ket, for the states involved. 

With a bra-ket (I) representing a number, note from the very struc

ture itself that a ket-bra-ket, I ) ( I ) , is a complex number times a ket 

and thus itself another ket (multiplication by a number is the same 

whether from left or right), representing the state resulting from the 

action of the ket-bra , an operator ( or transformation), on the original 

ket . Thereby, in just the notational structure of the basic elements of 

ket, bra, ket-bra, and bra-ket (state, ad joint state, operator, and number, 

respectively), we can see the common footing and inter-connectedness 

of states and operators ( see Figure 2.4). This is another illustration of the 

power of a notation that seems natural to the physics, as was observed 

in Sec. 1.2.4 with four-vectors for relativistic kinematics . 

One element involved in adjointness is complex conjugation, so that 

when a ket is represented by a wave function, the bra involves the 

complex conjugate of that function. The bra-ket implicitly involves 

integration over the product of the two functions to give finally a 

number. When a ket is represented by a column vector, adjointness 

involves an interchange of rows and columns so that the bra is a row 

I) 
(I 
1)(1 
(I) 

Figure 2.4 Elements of quantum mechanics in Dirac bra and ket language. 

Shown from top to bottom are ket and bra states, operators (ket and bra in 

that order), and numbers (bra and ket multiplied in that order). 
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vector. Thus, a bra-ket is the": matrix product of a row and a column 

and, therefore, a number. On the other hand, a ket-bra is a square ma

trix, an operator that can act through matrix multiplication rules on 

ket-vectors from the left or bra-vectors from the right to give other 

kets or bras, respectively. 

States, along with their bras and kets, and operators are abstract en

tities and we do not have apparatus that directly access them. There 

are no 'wave function metres'. All our apparatus yield numbers, real 

numbers, and this is what we measure. (This is but a tautology, tied 

to our usage of the words real and reality!) Since a bracket, sometimes 

also referred to as a 'matrix element', is in general a complex num

ber, a further crucial step is that experimenta lly measur ed quantities 

are expressed in terms of the squared modulus of the bra-ket. The Born 

probability interpretation (Sec. 1.2.2) is part of it, wherein the bra is the 

ad joint of the ket with the unit operator in between. 

The ket -bra is thus quite naturally an operator or transformation 

taking one state to another. Operators and states are intimately tied 

in the physics of our quantum world. As stated at the beginning of 

Sec. 2.2, quantum and classical physics differ in the meaning of a phys

ical state. In the latter, the state of a physical system is specified by 

providing coordinate position s and velocities, themselves observable 

real numbers, of all the particles involved. This is ruled out by quantum 

principles, notably the prohibition against specifying simultaneously 

both the position and the momentum of a particle. 

There is, however, a well-defined state of a physical system in quan

tum physics as well, only that it is specified in one of many ways or 

representations . Using the coordinate repr esentation, it is a complex 

wave function, 1/f (r), whereas in the momentum representation it is a 

different complex function, cp(p). In a matrix representation, it is either 

a row or column vector. More abstractly, we need only designate it as a 

state I ) , leaving open any particular representation we may choose to 

work with . 

It remains true, however, that a principal aim of physics, or more 

accurately dynamics, is to give definite predictions of how the state will 

evolve in time . Just as Newton's equations of motion permit us to follow 

the evolution in time of the positions and velocities , that is, the state of 

the system as understood in classical mechanics, so too the fundamen 

tal equations of motion in quantum physics. Knowing the potentials 

involved allows us to follow the time evolution of the state, I), or the 
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wave function, y; or cj). In this, quantum physics is as deterministic as is 

classical physics. We will return in Sec. 8.5 to further aspects of classical 

and quantum descriptions. 

It is just that quantum states are not directly accessible to our meas

ure1nent. Instead, transformations between different representations, 

together with all the observables of int erest such as position , momen

tum , energy, etc. , are operators I) ( I that act on states, and what we 

observe are the numbers resulting from sandwiching such an oper

ator ( or products of them, with a final form I) (I). The final object of 

interest, and the one connected to our observational or experimental 

results through perhaps a modulus square of those complex numb ers, 

is always of the form of a bra- .. . -ket. 

It is a matter of indifference to physics whether one physicist chooses 

primarily to work with and use the lan guage of states and another with 

operators. Sometimes th ese are called, respectively, the Schrodinger or 

Heisenberg approaches. States are always involved at the left and right 

end of the final complex number from which the physics is extracted . 

In quantum mechanics, since, given a state, others are immediately 

generated by the action of the myriad operators, there is naturally a 

whole set of states, or a Hilbert space of states. With the same state labels 

standing in both, a ket-bra is a proj ection operator, since acting on any 

state it produces the ket of that particular state multiplied by a num

ber. Clearly, repetition of a projection operator leads back to the same 

operator. If the projection operators of all states are summed, that is 

equivalent to multiplying or transforming by the unit operator, so that 

the sum is the unit operator. This is referred to as 'closure' and the set 

of states is said to be 'complete'. 

Quantum field theory, which views all physics in terms of interact 

ing fields, deals mostly with operator products but also needs a state 

called the vacuum state whose bra and ket stand at the two ends of the 

operator product , the resulting 'vacuum expectation value' containing 

all the physics. Particles, or more accurately states of many particles, 

are seen as the result of the field operators acting on the vacuum and 

exciting these entities that are seen as particles (Sec. 7.3.3). 

With this intimately intertwined aspect of fields and particles , th e 

so-called wave-particle nature of all physical systems is also better de

scribed as associated with the representation one chooses. The two 

aspects, particle and wave, are conjugates in terms of the space in which 
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they are localized, coordinate and momentum space, respectively. As 

conventionally understood in classical physics, a particle is located at a 

point in space , while a wave has a definite wave vector ( or, equivalently, 

momentum) but is spread out over all space . Instead of 'wave-particle 

duality', it might have been better to have seen any quantum system 

as a 'wavicle' characterized only by a wave function, 1/J, the underlying 

reality of a quantum system being in neither coordinate nor momen

tum space but viewed by either as 1/J(x) or cp(p). Each is sufficient and 

complete to determine all the physics with neither having any claim to 

a special footing. It is the 'locators ' or the physical apparatus involved 

that realize one or other representation. These apparatus being classical 

in nature, on the one hand we may detect charges or other identify

ing features of an electron, proton, or even neutrino ( as a zero mass 

object) or, on the other hand, electric field amplitudes and phases of 

electromagnetism. See also Sec. 8.5. 

Indeed , as nicely described in [4], given conserved quantities such as 

charge or non-zero spin angular momentum, electrons or neutrinos 

have the particle as their classical limit while only for zero mass, un

charged bosons (there are but two examples, the photon and graviton) 

do we have a wave as their classical limit. It is not surprising, there

fore, that physics first made the acquaint ance of electrons, protons, 

neutrinos, charged pions, etc., as particles, and only electromagnetism 

and gravitation as wave fields (although in the latter, only the mono 

pole or static field has so far been seen directly in experiment, and the 

detection of gravitational waves is not yet in hand - there is only in

direct evidence for them, in the slowing down of the orbits of binary 

neutron stars). 

As further remarks on the use of alternative representations, it is 

worth noting that there is much to be gained by these different pictures 

or approaches. While even more widespread in quantum physics, it has 

also been true in classical physics that different pictures illuminate dif

ferent aspects and are therefore valuable. The underlying reality that we 

are trying to grasp always lies beyond our models and understanding, 

and we can only hope to get closer without actually 'reaching' it. Thus , 

in what we und erstand of the state of a physical system, there has been 

a very big change of ground from classical to quantum descriptions. 

But in both, different descriptions and approaches to the same problem 

provide a better approximation to that underl ying reality, even when 
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any sin gle repr esen tation may be intrin sically capable of a complete 

descripti on. Th erein lies th e virtue of seeing the world from different 

point s of view (see also Sec. 8.5). 

In thi s, ph ysics sits in th e wider cont ext of intell ectu al inquir y. 

Wheth er in the mo vie Rashomon, or a novel, each descripti on m ay cap

tur e som e essence , toge th er getting closer to a full compr ehension, 

closer but not capturin g or identical to th at reality itself of th e compl ex 

wh ole. Reality is .. . what it is. It is said that wh en Tolsto y18 was asked to 

describe what his War and Peace is, a novel or hist ory or a historical novel, 

he said th at it is 'n ot a novel, still less a historical chronicl e but what 

th e auth or wanted and was able to express in th e form in which it is ex

pr essed'. This could well serve as a paraphr ase of how a physicist views 

physics, that it is th e way n atur e is expr essing its underl ying reality. 

18 Leo Tolstoy, 1828- 1910, Russian . Writer of novels th at are household nam es 

around th e world , and whose pacifist and social reform views make him one of the 

world 's great m oral think ers. He had a deep influence on Mahatma Gandhi and Martin 

Luth er King. 
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Localization at Saddles 

3.1 Saddles in Terrains and Physics 

From th e unfortun ate Otzi th e Icem an , whose mummifi ed rem ains 

were discovered 5,000 years after his death on a high m ount ain pass in 

ftaly, to hiker s of today, saddl es in m ountainou s regions h ave pl ayed 

an imp ort ant role in traversing such terrain s. We are familiar with the 

fact th at to get from on e valley to anoth er , one hikes over an int erven

ing saddle. Unlike at a peak, wher e th e land falls off in all directions, 

or its opposite of a valley, with climbs in all directi ons, a saddl e point 

of a surfac e is one wh ere th e ground drops off in som e directions while 

it climbs in other directions. Like peaks and valleys, it is also a stati on

ary po int of th e surfa ce. Th at is, th e first deriv ative, th e slope, vanishes 

in every direction , makin g for local flatn ess, but the second derivatives 

do not satisfy the conditi ons for an extr emum , whether maximum or 

min imum . It is remarkabl e th at saddle point s also play cru cial ro les 

in physics, both classical and quantum, and that will be th e th em e 

explored in thi s chapt er . 

3.1.1 Stability at M echanical or Electromagnetic Saddles 

A pendulum, or one -dim ensional oscillat or , is again a good place to 

begin , just as we did in Ch apt er 1. This parabolic potenti al, kx2 /2, with 

k > 0, has a stable minimum (Figur e 3.1) with associated sm all os

cillations around it , as discussed for th e pendulum . Howeve r, a real 

pendulum' s gravitati on al potential , mge( l- cos 0), has a sinu soidal form 

(Figur e 3.2), and redu ces to the par abolic form only for sm all values of 

0. Th at is, only for sm all displ acement s from th e norm al hangin g pos

ition, verti cally down , are th ere th e simpl e h arm onic mo tions with th e 

tim.e period given in Eq. (1. 1 ). 

This potenti al also h as an oth er equilibriun 1 p oint , at 0 = :re /2, 

term ed th e 'invert ed pendulum ', with th e pendulum string ( a thin stick 

serves to repr esent thi s situ ation bett er) and bob vertica lly up ra th er 
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Figure 3.1 A one-dimensional harm onic oscillator' s parabolic pote ntial. The 

spring consta nt , k, determine s the strength of th e potent .ial. 

mg/ 

-,r/2 0 7(/2 

Figure 3.2 The gravitational pote ntial of a pendulum of lengt h .f, as shown in 

Figure 1.3. For small oscillati ons in the vicinity of 0 ~ 0, the p otent ial reduces 

to th e parabolic form of a simple harmoni c oscillator in Figur e 3.1. But at th e 

poin ts 0 = ±n /2, which describe positi ons of the inverted pendulum, there is 

un stab le equilibrium. 

than down. While also an equilibrium point in having vanishing slope 

(zero force), this is now an unstable equilibrium. Even the slightest per

turbation will lead th e bob to fall away from that position. In terms of 

the potential, it is an invert ed parabola with k < 0, and the bob will fall 

und er gravity. 

In on e dimen sion, that is all there is to th e story. Ther e are only max 

ima or minima in realistic physical situati ons even th ough th ere are 

math ematical functions other than quadrati c where the second deriva

tive is also zero and only som e high er derivative is non-v anishing. But, 
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Figure 3.3 Saddles in mountain terrains. Paulba Legend <http://en.wikipedia. 

org/wiki/File:Washington-clay _saddle.J PG >. 

as soon as one goes into more than one dimension, even just a two

dimensional surface, saddles can arise besides peaks and valleys, just 

as they do in the topography of the Earth's ( two -dimensional) surface 

(Figure 3.3). New forms of dynamic s now become possible. 

A striking example is provided by Figure 3. 4, which shows the sim

plest such situation of a surface with just one saddle. There is one 

direction of stable motion and one of unstable motion away from the 

saddle . This is as simple as one can get, with just one motion of each 

kind. A marble placed at the exact centre of the saddle upon experi

encing the slightest disturbance along th e unstable direction will fall 

off the surface. In that direction, this situation is exactly analogous to 

the inverted pendulum. But now imagine introducing a time element 

by placing the saddle surface on a turntable , as indicated in Figure 3.4, 

that is spinning around the vertical axis. Upon spinning with sufficient 

angular speed, the marble can be stabilized. The dynamical problem ex

hibits a stability that is not there in the static potential. Indeed , there is 

also a one -dim ensional counterpart, an inverte d pendulum's instabilit y 

ron1pensated when the point of suspension is jiggled up and down or 

by some alternative feedback mechanism , as one knows by balancing 

a long umbrella with its tip on one's finger (your eyes have to focus 

on the umbrella handle and th e eye-brain feedback work to keep th e 

un1brella vertical). 
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Figure 3.4 Mechanical saddle potential on a turntable as an ana logue of the 

Paul trap for electrical charged particles. A quadrupolar electric field, the ana

logue of the saddle shown, will not itself hold a charged particle, the analogue 

of the marble. But, in combination with time-varying radio frequency electric 

fields, the analogue of the rota tion of th e turntable, the particle can be stabil

ized. From W. Paul 's Nobel Prize Lecture, Rev. Mod. Phys. 62,531 (1990), copyright 

1990 by the American Physical Society. 

The reason for this stability is the Coriolis 1 force, which acts on 

moving objects perpendicular to their velocity and to the angu lar vel

ocity. (The re are many manifestations of this force in atmospheric and 

oceanic swirls and storms because of the Earth's rotation.) Thus, as the 

marble falls in the unstable direction in Figure 3.4, this Coriolis force 

points parallel to the stable direction and, in turn, leads to a restoring 

force in the unstable direction driving back to the equilibrium. point. 

The net result is a rotating force that keeps the marble around the 

equilibrium point. A time-dependent field analogous to the one here 

1 Gaspard-Gustave Coriolis, 1792- 1843, Fren ch. Mathematic ian and mechanical en

gineer who was interested in applied aspects of work and energy in machines and 

especially in water wheels, and thus rotational ener gy. 



Saddles in Terrains and Physics 79 

from spinning also can stabilize a one-dimensional inverted pendulum, 

as noted. In that case, jiggling the point of suspension up and down 

with a high enough frequency can keep the pendulum vertical. 

Celestial mechanics has long recognized so-called 'Lagrange points', 

which are precisely such quasi-stable positions in the Sun-Earth ( or 

Earth-Moon) system. Points roughly 1,000,000 km on either side on 

a line perpendicular to the one joining the Sun to the Earth are 

saddles in the gravitational potential of the two bodies. While these 

would be unstable points were all the bodies static, because of the 

rotation in the system, the Coriolis forces give quasi-stability and, in 

deed, man-made satellites have been parked there. Nature itself has 

done the same with the so-called 'Trojan asteroids' at similar Lagrange 

points of the Sun-Jupiter system. Similar examples are known for other 

planets. 

There is also an electrom.agnetic analogue of the saddle, the so-called 

'Paul2 trap' for trapping positive ions. Indeed, Figure 3.4 and the mech

anical analogue were presented in the Nobel Prize lecture of Wolfgang 

Paul as a mechanical model of his invention for trapping charged par

ticles. It is well known that a charge cannot be stably held with purely 

electrostatic fields ( except trivially on top of an opposite charge). Such 

fields have to satisfy Laplace's equation, which stipulates that at a point 

where there is no charge, the sum of the three second derivatives of 

the electric potential with respect to (x,y, z) has to vanish. Therefore, 

at least one has to be of negative sign, that is, an inverted parabolic po

tential, which corresponds to unstable motion in that direction for any 

charge placed there. Paul's discovery was to place in addition a tim e

dependent radio frequency field besides th e quadrupole fields that gave 

trapping in two directions to get overall dynamical trapping in all three 

dime nsions. Such traps have been enormously influential. Another so

lution, and thereby another class of traps, is to combine electric and 

magnetic fields; these are Dehm elt traps. Paul and Dehmelt 3 shared the 

Nobel Prize in Physics. 

2 Wolfgang Paul, 1913-93, German . Physicist who inven ted a way of trapping posi

tively charg ed ions. He opposed th e deployment or use of tactical nucl ear weapons by 

the West German Army. 
3 Hans Georg Dehm elt, 1922, German and Ameri can. Developed m et hods for trap

ping charge d particles and made preci sion measur em ent s of ma gn etic moments and 

[I-factors of electrons and positron s. 
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3.2 Saddles in Quantum Systems 

As in classical mechanics or electromagnetism, since quantum physics 

also deals with motion in potentials, not surprisingly saddle points that 

arise when there are two or more degrees of freedom are also important 

for quantum systems. Indeed, in all these problems of classical or quan

tum systems, clearly saddles proliferate with increasing dimensions. It is 

less likely that all directions will have the same sign of k, whether posi

tive or negative, but more often a mix, so that son1e directions away 

from equilibrium will be stable and others unstable. Therefore, the 

understanding of physics in saddles rather than at a global maximum 

(peak) or minimum (valley) takes on added importance with more 

degrees of freedom. This understanding is best gained by considering 

the simplest example, in which there is only a single saddle in a two

dimensional problem, and we consider two such systems (Sec. 3.2.2 and 

Sec. 3.2.3). But first we consider localization more generally in quantum 

systems. 

3.2.1 Localization in Quantum Systems 

In classical physics, the concept of localization of a particle is simple, 

when it occupies a particular position in space. Thus, in one dimension, 

say in a potential well, as shown in Figure 3.1, the minimum energy 

of a particle of mass m is when it sits at the bottom of the potential, 

at x = 0, where both kinetic and potential energy, and thereby total 

energy, equal zero. States of higher energy, when the particle can rattle 

around in the well, will, in realistic situations, with dissipative forces 

such as friction, gradually settle down to the minimum energy, with 

the particle coming to rest at the bottom . 

In quantum physics, such a configuration is forbidden, because sim

ultaneous position and momentum at definite values, as in the particu

lar case when both are zero , is not allowed by the uncertainty principle. 

Thus, a quantum particle in the parabolic potential well will not reach 

zero energy and x = 0 as its lowest state but rather have a 'zero-point 

energy', nc.u/2, with frequency w = ,Jk{m. Its wave function, shown in 

Figure 3.5, is a Gaussian function that exists over the entire space so that 

the probability of its location, given by the square of the wave function 

(Sees 1.2.2 and 2.2), is non-zero everywhere but is peaked around x = 0. 

Note, in particular, that there is a non -zero probability of finding the 

particle in the so-called 'classically forbidden zone' beyond the potential 
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n=3 

n=O 

X 

Figure 3.5 Energy positions and wave fun ctions of the ground ( n = 0) and tw o 

excited (n = 3, 6) states of the one-dimensi on al quantum harm onic oscillator 's 

potential well of Figure 3.1. Note the Gaussian tails of th e wave functions at 

±oo, number of nod es n, and parity symmetry/antisymmetry for n even/odd. 

With increasing n, the peak value of the wave function occur s closer to the 

classical turning point s where the ener gy, E, eq uals the po tential ene rgy. 

walls at that energy, that is, with the pot ential energy higher than the 

total, seeming to impl y a negative kinetic energy . Of course, such clas

sical thinking does not apply, it being incompatibl e to talk of energies in 

regions of space. What remains true is that th e spatially averaged kineti c 

energy is never negati ve, even in quantum systems. 

Although not localized at a single point , nevertheless th e wave func

tion may be so peaked as to have appreciabl e pro bability confin ed to 

a small region around x = 0, dependin g on th e value of k. The sam e 

holds tru e for other forms of pot ential besides th e parabo lic one for a 
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harmonic oscillator shown in Figures 3.1 and 3.5. The deeper the poten

tial well, the more localized the ground state. Also shown in Figure 3.5 

is the wave function of a higher energy state. Again, in a quantum 

oscillator, unlike in a classical one of the same frequency, not all pos

sible energies are allowed, only the discrete values (n + 1/2)/iw, with 

n = 0, 1, .... The wave function for such a higher energy state now 

has many oscillations, given by the quantum number n, indicating the 

number of zeroes, called 'nodes', which are positional values with zero 

probability of finding the particle when it is in such an energy state. 

At large quantum numbers, the probability peaks further away from 

x = 0 and, indeed, close to what is termed the classical turning point, 

where the total energy equals the instantaneous potential energy . This 

is plausible because classically it is at these points that the velocity van

ishes and the particle turns around in its motion ( the end points of 

the swing of a pendulum) and one expects the probability of finding 

a particle to be inversely related to its speed. This is an illustration of 

what is termed the Correspondence Principle, which states that the 

classical limit of quantum physics is often reached at large quantum 

numbers. This is obvious in the case of angular momentum, which is 

always quantized as iii, and any classical value, however s1nall, neces

sarily involves very large values of l given the smallness of Ii. But for 

other physical properties as well, generally at large quantum numbers, 

the system is quasi-classical. 

Strict localization, while different from the above for wave func

tion concentration, is also possible in quantum physics ( at least in 

non-relativistic quantum mechanics, relativistic field theories being a 

different story: Sec. 7.3.3). A particle strictly localized at x = 0 would 

be described by what is called a Dirac delta-function, 8(x ), a function 

defined to have vanishing value at all x other than x = 0. With pos

ition and energy being incompatible quantum operators, in a reverse 

of what was said earlier of energy states existing at all values of x, now 

such a localized particle cannot have any definite energy but must be 

a superposition of all the energy states of the system. This is true for 

any physical system, an oscillator or pendu lum included. A quantum 

pendulum can be localized at x = 0 or, for that matter, at any specific 

value of x but at the expense of superposing a large number of states, 

including of large energies. 

For three-dimensional counterparts such as the hydrogen or any 

other atom, almost classical states, such as the electron in a particular 
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Bohr orbit, can be made today in our laboratories by exciting with 

broad-bandwidth lasers many so-called Rydberg states, states with large 

quantum numbers . 

Another form of localization, termed 'Anderson 4 localization', may 

be pictured as a one-dimensional example. A random pot ential , V(x), 

with many minima of random location and depth , can lead to trap

ping of a particle at the deepest of these wells. Such phenomena have 

been seen in a variety of situations. But we turn next to a different type 

of localization in quantum systems, with nothing random about the 

potentials involved, but rather simple, well-defined ones, such as the 

Coulomb potential. Nonetheless, a dynamical localization takes place 

around saddle points of the potential surface, two or more dimensions 

of course being necessary to produce such saddles and localization. It is 

this form of dynamical localization that relates to the classical and elec

tromagnetic counterparts discussed in the previous section and shares 

with th em the theme of saddles. 

3.2.2 Two-Electron Atoms, States of High Excitation 

A quantum system with a saddle in its potential surface has already 

been introduced in Chapter 2. As illustrated in Figure 2.3, the total 

potential of a two-el ectron atom, which depends on an overall scale 

var iable 1/ R and two angles, as in Eq. (2.7) and Eq. (2.8), can be rep

resented as a two-dimensional pot ential surface in those angles. This 

surface has deep valleys at a = 0, n /2 that correspond to either one of 

the electron-nucleus distances vanishing and thus the attractive Cou

lomb potential reaching - oo. On the other hand, the surface has steep 

peaks at (a = n /4, 012 = 0, 2n), when the two electrons are equidis

tant from the nucleus and lie on top of each other, a configuration of 

infinite repulsion. 

Besides these minima and maxima, the other singular point of this 

surface is the saddle at ( a = n /4, 812 = n ). This corresponds again to 

equal distances, r1 = r2, but now with the electrons on opposite sides 

of the nucleus. In physical terms, the saddle can be seen as follows. For 

departures of the electrons from being exactly on opposite sides, that 

is, for the angle 012 away from n, th e repulsion between the electron s 

4 Philip Warren Anderson, 1923, American. Note d con temporary condensed-matt er 

physicist, known especially for his work on supercondu ctivity and magnetism, and for 

his writings on the phil osophy of science and em ergent phenomena. 
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drives them back to that value. Hence, this is a stable direction, with 

the potential surface rising away from that point of 012 = 7r. But, for 

departures from exact equality of the two distances, that is, for a away 

from 7r /4, the opposite happens, with the potential surface dropping 

away, making it an unstable direction. 

This is a reflection of 'dynamical screening', one electron screening 

part of the (positive) nuclear charge for the other. As a result, any de

parture from exact equality means that the electron that is closer to the 

nucleus screens it more for the other, which, as a result, moves further 

away from the nucleus. Departures of rif r2 from unity thus get accen

tuated by the very nature of the Coulomb interactions (18]. Thereby, 

the two-electron atom or quantum three-body system of a positively 

charged nucleus and two electrons provides the simplest quantum ex

ample of a potential with just one saddle point, one motion stable and 

the other unstable. 

Most discussions of a two-electron atom such as helium that deal 

with the ground or low-lying states of excitation of one electron con

cern states lying in the valleys of the potential in Figure 2.3. With the 

electron-electron interaction energy generally smaller ( approximately 

15%) than the energy of attraction to the nucleus, these states are 

amenable to a variety of 'perturbative' techniques that have been ex

tensively developed since the early days of quantum mechanics or to 

'variational calculations', which work well for low-lying states in the 

spectrum. However, an interesting class of excitations called 'doubly 

excited' states, wherein both electrons are excited, and which lie much 

higher in energy, require a different understanding. 

In the helium atom, all singly excited states lie below 24.6 e V from 

the ground state 1s2 1 S, the lowest of them at 20.2 e V. Beyond the 24.6 e V 

'ionization' energy, one electron is ejected into the continuum and the 

atom is ionized, that is, left behind as a positively charged ion. The 

doubly excited states, on the other hand, lie between 60 e V above the 

ground state and 79 e V, wh ich is the energy when both electrons are 

ejected, marking the beginning of the double-ionization continuum 

(Figure 3.6). With both electrons escaping to infinity, the doubly 

charged bare helium nucleus, called an alpha particle, is left behind. 

Since even the lowest doubly excited states, with both electrons lifted 

from the ground principal quantum number n = I to the next, n = 2, 

lie above the single-ionization threshold of 24.6 e V, all these doubly ex

cited states are unstable with respect to one electron dropping back to a 
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Figure 3.6 Doubly excited stat es of He. The figure shows the energy levels of 

the He+ ion atvalues - 54.4/n2 eV These are the Bohr valu es for a single electron 

bound to a nucleus of charge +2e, and they conve rge to the double-ionization 

threshold ( chosen as the zero energy value) with two electrons separated to 

infinity from the bare nucleus of He++. Below the He+ ( n = 1) lie the singly 

excited states of He, as in Figur e 2.2, whereas below He+ (n > 1) are the doubly 

excited states, both electrons excited away from the ground n = 1 configur 

ation. These doubly excited states are degenerate in energy with continuum 

states built on lower n states of the He+ ion , decaying into them by the process 

of autoionization. They may be excited, as show n, either by absorption of one 

or more photons from lower states of He, or by electron impact on the He+ 

ion, or throug h other mechanisms. 

lower value of n, as the energy released is sufficient to allow the ot her to 

escape to infinity. This process wher ein one electron is ejected is called 

autoioniza tion and is inh erent to th e Coulomb potentials inside the 

atom, and can happen on its own even in the absence of any coup ling 

to an electrom agnetic radiation field ( as needed for the decay of singly 

excited states) . Some of th e low doubly excited states have autoion iza

tion lifetimes of 10- 12 s, much short er th an th e typical radiative decay 

lifetim e of 10-s s of a singly excited state to a lower energy state. (The 

four orders of magnitude represents the square of the fine-struct ur e 

constant, an ind ex of th e strength of the electromagnetic interaction , 

intensities and lifetimes scaling quadrati cally with th e strength.) 
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Doubly excited states and those in the double continuum display 

new physics not seen in the singly excited/ionized domain. One such 

new feature is that, even though energetically allowed to decay, some 

states have long lifetimes before autoionization, indeed so much so that 

they descend to lower states by radiative decay, en1itting a photon, ra

ther than by ejecting an electron. Interestingly, it is these states that 

are associated with the saddle in Figure 2.3. Their wave functions, while 

of course spread over all space, are dominantly confined to the region 

around the saddle. This saddle lies high above the low-lying singly ex

cited states in the valleys whose wave functions are of course mostly 

confined there. The overlap between the two classes of states is small 

and thereby also any transition between them that is governed by the 

matrix element of the interaction operator l/r12 between the bra of one 

and the ket of the other. 

Such a dynamical localization of quantum states into saddles is an 

interesting theme of many-particle systems. While lying high in energy 

above other states (sometimes multiply infinite in number), that lo

calization permits a quasi-stability and long lifetimes. Since the saddle 

corresponds to the two electrons being on a par in their radial dis

tance from the nucleus, a particular subset of doubly excited states with 

approximately equal excitation of both electrons can be distinguished. 

Such states lying just below 79 eV above the ground state of helium are 

also closely related in their physics to the states of the double-ionization 

continuum on the other side of that threshold. 

Indeed, when the helium atom absorbs energy just above that 

threshold, while it is energetically possible for both electrons to be 

ejected, the dynamical screening described at the start of this sec

tion makes it imperative that, for most of the escape process, the two 

share the small excess energy available equally in their kinetic energies. 

Otherwise, should one get more, it will only get faster relative to the 

other that is hanging back and, in turn, will screen further the nuclear 

attraction for the outer electron. Finally, only one electron will escape, 

the other falling back into a bound, singly excited state. That is, the 

configuration will end up in one of the valleys rather than staying at 

the saddle out to large Rand all the way to infinity which is necessary 

for both electrons to be ejected. Thereby, double ionization just above 

threshold requires staying near the saddle in Figure 2.3. 

The unstable direction, a, thus plays a crucial role in high doubly 

excited states and threshold double ionization [18]. This a coordinate 
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being a measure of the ratio of the radial distances, instabilit y in it is 

an aspect of radial correlation between the electrons. As in any quan

tum pair of conjugate variables, confinement in one, here in the angle 

a to a small region around TC /4, means a superposition of a large 

number of the conjugate harmonics (Sec. 2.2). Likewise, the stable 

direction 012, confined to around rr, translates into a large super

position of the corresponding spherical harmonics in the conjugate 

variable £ in describing such localized states of double excitation or 

ionization. 

The total angular momentum commutes with the total Hamilton

ian of the three-body system, and is, therefore, conserved. Its value, 

the reby being a 'good' quantum number with a definite value, may be 

small, even zero. These remarks apply even for such states of 1 S ( total 

orbital and spin angular momentum. zero) around 79 e V. They also do, 

of course, to states with higher orbital and spin angular momentum of 

the pair.) It is the f., of the individual electrons that can and must em

brace large values even when the sum remains small ( of course, for S 

states with zero total orbital angular momentum, the two ,f, have to be 

equal). This represents a high angular correlation alongside the radial 

one. Today, many experimental measurements are available of these 

strong correlations in doubly excited states and threshold double ion 

ization, even in the simplest case of two-electron systems. Of course, 

n1ultiply excited states also display such correlations and, as noted, 

saddles proliferate with increasing numbers of particles. 

An earlier theme from Chapter 2, of alternative representations , 

also applies to this picture. Independent coordinates of the two elec

trons (see Sec. 1.2.5), (71, 72), or their associated quantum labels (n1, n2) 

and (£1, £2), serve well to represent low-l ying states in the valleys of 

the potential but become a poor choice, requiring large and unwield y 

supe rpositions of them , to describe the highly correlated saddle states 

around the double -ionization threshold. They are more appropriately 

viewed in an alternative representation of 'pair' coordinates ( R, a, 012) 

and corresponding pair quantum numbers . Of course, the reverse is also 

true, that it would take a large superposition of pair states to describe a 

singly excited state in which the electrons are far apart with little cor

relation between them . The two are alternative repre sentations and, as 

with all such, both are complete sets and ther efore each is capable of 

describing the physical system of the two-electron atom . The question 

as described in Sec. 2.2, as always in quantum physics, is the suitability 
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of one or the other alternative representation , depending on the class 

of states or phenomena being studied. 

3.2.3 Transition States in Chemical Transformations 

Chemistry involves the 1notion of electrons and nuclei in an assem

blage of atoms. The previous sub-section has considered saddles in the 

motion of two or more electrons. For chemical transformation s, this 

ma y be supplemented by considering the motion of the heavier nucl ei. 

Again, as a paradigmatic example , three bodies/atoms in a rearrange

ment AB + C ➔ A + BC can be a stand-in for the general chemical 

tran sformation so crucial throughout chemistry and much of biology. 

It has beco1ne increasingly clear [20] that a transformation such as 

this is often mediated by a so-called 'transition state' of the combined 

entity (ABC) that acts as an intermediate, AB + C ➔ ABC ➔ A + BC. 

Further, one can view the initial and final configurations as states in val

leys of a full potential surface of the system (with many more degre es of 

freedon1 than with the two-el ect ron s considered previ ously) with the 

transition state residing in the saddle separating them . The thr ee-bo dy 

intermediat e in the saddle ma y have wildly different lifetime s, some 

very transient, others metastabl e eno ugh to show up as resonances at 

definite energies, but the idea itself of an intern~ediate playing a cata 

lytic role in the transformation is well established. The calculation of 

the full potential surface and of transition states, at least for small mol

ecules, has now reached a fair level of sophistication in computati onal 

quantum chemistr y (20]. 

3.2. 4 Couplin3 to Another Dimension for Stability 

Finally, consid er th e connection between th e quasi-stability of the 

quantum systems in the previous sections, and the stabilization at sad

dles of m echanical and electr omagn etic classical systems of th e earlier 

Sec. 3.1.1. Those were phenomena with explicit time dependen ce. The 

static potential alone with a saddle does not give stability . It is th e add

ition of a time-dependent element, whether a jiggling of th e point of 

suspension or a rotation or a radio -frequenc y field, that provided the 

crucial element for understanding stability in terms of th e resulting 

Coriolis-like forces. But the two- electron problem 's doubl y excited or 

thr eshold continuum states are stationar y states of a time-independent 

Hamiltonian. Although in some of th e words used of dynamical screen 

ing , a tim e sequence of a series of successive snapshots of the two 
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escaping electrons may have crept in, the analy sis itself considers only 

the time-independent Schrodinger equation (this relat es to another 

th eme about time that will be considered in Chapter 7). 

Where then is the connection between these problems, some time 

dependent and others time independent ? The answer lies in recogniz

ing that the crucial element is a coupling to another variable, whether 

it be time , t, or size, R, in the two cases. Time as such is not of the es

sence; rather, it is the presence of another variable or coordinate that 

is the important element [19]. Indeed, in the detailed analysis of wave 

func tion localization around the saddle, besides the (a, 012) invol ved in 

that potential, a crucial term comes from a piece of the kinetic energy 

operator in R that is linear in the first derivative in R. This is anal ogous 

to the Coriolis force in the mechanical and electromagnetic probl ems, 

also stemming fron1 kinetic energy, that involves the angular velocity, 

si1nilarly a first derivative but there in t. 



4 

Coins, Classical and Quantum 

4.1 Coins in Classical Language and Physics 

The coin has many metaphorical uses i_? our ordinary languages: coin 

of the realm, false coin, bad coin, etc. Its main feature of two valued

ness, heads or tails , is something we become familiar with from early 

childhood (Figure 4.1 ). Together with the (electric) switch (Figure 4.2), 

another term ubiquitous in the languag e, it then becomes a stand -in for 

any two-valued property : up /down, on/off, in/out, yes/no, male /female, 

etc. Thus, it can be said that 'virtue on one side may appear as vice on 

the other'! The tossing of a coin has become the ultimate in unbiased 

choi ce between two alternatives, and repeated tosses seen as generating 

randomness. 

In our age of computers, the mathematical rendering of a coin in 

binary terms as 0/1, along with the logical true /false, the two values of 

a 'bit', has become the basis of all th e computers and ancillar y devices 

Figure 4.1 An early coin, heads/tail s representing classical two valuedness. 

This is a coin from the 1st cent ury BC, from a Celtic people called the 

Veneti, who lived on the Brittany peninsula. <h ttp: //en.wikipedia.org /wiki/ 

File: Veneti_coin_Sth_lst_century _BCE. jpg>. 
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Figure 4.2 An electrical switch, a stand-in for two-valuedness: on/off = 0/1. 

Jason Zack <http: //en.wikipedia.org /wiki/File:On-Off_Switch.jpg>. 

that run our world. Electrical or electronic switches are the millions 

and billions of bits in any of these devices or instruments. 

The coin runs as a metaphor thr oughout physics as well. An apt ex

amp le occurs in a feature of our physical world, that it seems to have 

electric charges of either sign that can occur independentl y of each 

other; but this is not so with magnetic poles, all magnets being a N/S 

pole tied togeth er, a 'dipole' . 'Magnetic monopoles', although easily 

accom modated in our physics (as, for instance, into Maxwell's equa

tions in Figure 1. 10), seem not to occur in nature, and we have placed 

stringent experimental and observational limits on their existence. A 

ready explanation is to see magnetism as always derived from charges 

in motion , electric currents. The basic current loop acts like a magn et 

in generating ( or reacting to) a magnetic field but , as with any loop or 

coin, the two faces, north and south poles in this instance, are inextric

ably tied together. Just as every coin has two sides, so does every magnet 

have two poles. 
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4.2 The Quantum Coin 

Quantum physics also deals with two-valued entities or two-level sys

tems, the physical system being realized in terms of a basis of just two 

states. An excited and a ground state, whether in an atom, nucleus 

or any physical system, affords an example. The intrinsic spin angular 

momentum of elementary particles such as electrons and nucleons is 

yet another, and important , example. It was the advent of quantum 

physics, first with the realization that all angular momenta occur as 

multiples of the Planck constant, fi, and next that these multiples are in 

either half-odd integer or integer values, that pointed to the importance 

of the lowest such value of 1/2 as the basic or 'fundamental' representa

tion of a non-zero angular n1omentun1 in our Universe. That there are 

many elementary particles, such as electrons, protons, and neutrons, 

with a spin of 1/2 is a feature of our Universe. Each such spin can have 

two states, with spin projection ±1/2, commonly called up /down, on 

any axis (Figure 4.3). 

The spin metaphor itself extends to the observation that for nuclear 

interactions the neutron and proton behave as if they were two sides 

N s 

s N 

It) It) 
Figure 4.3 A quantum spin shown schematically as a clockwise / 

counterclo ckwise spinning sphere, and oppositely oriented magnetic 

moments. Also shown is Dira c ket notation of an up /down arr ow for the 

tw o states. < http: //chemistry.tutorcircl e.com /inorganic -chemistry /quantum

numbers.html>. 



The Quantun1 Coin 93 

of a coin. Borr owing a prefix from the word 'isotope', used for nuclei 

with the same nun1b er of pr oton s but different numb ers of neutr ons, 

this leads to invoking a concept called 'iso-spin ' . One object, th e 'nu

cleon', with iso-spin 1/2, has two states, the proton and neutron as ±1 /2, 

respectively. As with all angular momenta in quantum physics, any 

angular momentum j (in unit s of n) contains (2j + 1) stat es, with its 

projection on any axis itself quanti zed to tak e valu es in unit steps from 

-j to j (see Sec. 1.2.5). 

It is important to distinguish the spin of angular momentum from 

iso-spin; both reside in abstract spaces but th ey have different abstract 

spaces. Th e helium nucl eus com es in two isotop es, one 3He, with two 

pro ton s and a singl e neutr on, and the oth er, th e m ore common iso

tope, 4He, called th e alpha particl e, with two prot ons and two neutr ons. 

Their spin angular momentum is 1/2 and 0, respectively, but the two 

isotopes tog et her ma y be seen as an iso-spin 1/2 doublet, as two faces of 

such an isotopic coin. Other particl e sets, such as three kind s of pions 

that can be regarded as thr ee sta tes of iso-spin 1 (while th eir angul ar 

mo mentum spin is zero) , and further conn ections that thi s pictur e pro

vided betw een processes and decays of elementar y particles, mad e thi s 

concept of iso-spin a very fruitful one . 

Such two- level systems with two basis stat es can be said to be quan

tum coins. While m easur ed always as spin eith er up or down , or sta te 

eith er excited or de-excited, the quantu m coin is intrin sically different 

from and richer than a classical coin. The basic reason is the linearit y of 

quantum ph ysics and th ereby th e existence of a sup erposi tion principl e 

with, further, th e feature that compl ex elem ents chara cterize quantum 

physics. Any linear sup erpositi on of the base states, I 0) and 1) in Dirac 

notation, with arbitrary compl ex coefficients , that is, the sta te, 

(4.1) 

with compl ex numb ers ci normali zed to unity, I c1 I 2 + I c2 j 2 = 1, is also 

a legitimat e stat e of the system. There is, ther efore, a thr ee-para m eter 

(two compl ex numb ers with a real constr aint) family of state s, far lar

ger th an the two stat es of a classical coin. Thi s is a primary reason why 

a quantum bit , 'qubit' for short , h as m ore pote nti al than does a classical 

bit, eith er for speeding up calcul ations or for m ore n1emory storage. In 

this, we have the basis of today's fields of quantum comp ut ation , crypt 

ography, and tel eportation, collectively called th e sub-field of quantum 

informa tion in physics [21 ]. 
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Necker Cube 

Figure 4.4 A Necker cube, often presented as an optical illusion but rep

resentative of neural image processing, the brain seeing it in two forms, 

'in/out' shown on the right. <http://www.optical-illusion -pictures.com/ 

ambig.html>. 

An analogy to thinking of superposition is the optical 'illusion' 

(neural phenomenon, really) called the Necker 1 cube (Figure 4.4). The 

cube always appears in one of two alternative appearances, as shown 

in Figure 4.4. Once observed as either, persistent staring freezes in that 

position but when one takes the eye off and returns, it is possible to see 

it suddenly 'flipped out' into the second version . In a sense, in between , 

the cube is in neither definite position, and the act of observation freezes 

it into one or the other, just those two possibilities and none other . As 

with any analogy, this should not be pushed too far but serves to illus

trate some aspects of a quantum coin and its two observed states, but 

quantum physics has the added aspect of a very large superposition in 

the sense of Eq. ( 4.1 ). 

4.2.1 The Quantum Coin as the Square Root of a Switch 

A very fine pedagogical illustration of both the power of the superpos

ition principle and its constraints, and which illuminates fundamental 

aspects of quantum systems as well as their difference from classical 

ones, is the random toss of a quantum coin. Consider first a classical 

coin and a switch, the latter also described as the logical NOT gate. That 

is, a switch changes between the O and the 1 value. In the language of 

1 Louis Albert Necker, 1786-1861, Swiss. Crysta llograp her, geograph er and moun

taineer. 
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gam e theory and a payoff matri x, this simplest of operations ma y be de

scribed as at th e top of Figure 4.5. A classical coin , on the other hand , 

has the next depiction in Figure 4.5, the output of a toss either O or 1., 

with pr obability 1/2 regardl ess of the input . 

Consider inst ead a quantum coin. It too, after a toss , reveals either of 

the two states with equal pr obability , but in term s of amplitud es. Th e 

payoff differs from that in Figure 4.5 in carrying square roots , and a cru

cial minu s sign or ph ase for one entr y as shown in Figure 4.6. Also, in 

accor danc e with the Dirac notati on (Sec. 2.3), we have used kets to rep 

resen t this quantum system. In quantum ph ysics, all results are realized 

as probabilities based on squared moduli of compl ex amplitudes. For a 

single quantum coin toss, the result which depends on such a (m odu 

lus) squar e of the amplitud e is just th e same as a classical coin' s, th e 

square roots and minu s sign disappearing under squaring . 

Imagin e now a sequ ence of two of th ese elementar y operati ons. With 

a switch , rep eating it simply redu ces to th e unit opera tion, that is, no 

operation at all, as is obvious fron1 two successive operati ons in Fig

ure 4.5. With a classical coin, two tosses still lead to the final rand om 

output 

0 1 

NOT: 
0 0 1 

input 0 1 
1 1 0 1 0 

0 

0 ½ ½ 

1 ?- n 1 
COIN FLIP: ½ ½ 0 

NOT
2 

~ ---~---~-UNITY 

1 
RANDOM 

0 

Figure 4.5 Payoff matrix for a switch or NOT opera tion and a classical coin 

flip (CF) or randomi zin g oper at ion , alon g with the result of two su ccessive ap

plications. No te that a squar ed switch is equivalent to multiplication by unit y 

(no ch an ge of input) bu t two successive coin flips remain a random out come. 

From B. Hayes, Am. Sci. 83, 304 ( 1995). 
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/Nor 

Quantum Coin Flip: 

QCF---«)-

QCF2 

lo> 11{2 -11{2 

11> 1/{2 1/{2 

No observation/ 

disturbance in 

between, phases 

must be preserved 

QCF2 = NOT 

Figure 4.6 Payoff matrix for a quantum coin flip (QCF), showing the ampli

tude for output ket for a given input ket. Observed quantum coins will have 

probabilities of outcomes that are the squares of these amplitudes, coinciding 

with results for a classical coin (Figure 4.5). The operation of a squared quan 

tum coin flip is, howev er, different. With no observat ion in between the flips, 

tracing through either input shows th at the squared operation is equivalent to 

the NOT operation, making a quantum coin £lip the square root of NOT. From 

B. Hayes, Am. Sci. 83, 304 (1995). 

result in Figure 4.5, again regardless of the input . But the quantum 

result is interestingly different. Two successive tosses with no observa

tion in between, thi s being a crucial element of quantum physics - that 

observations can change the state - means tracing through two succes

sive applications of the payoff matrix in Figure 4.6. If the input is I 0), 

at the intermediate time betw een the tosses , the state is in th e linear 

superposition 

(IO) + 11)) / ✓ 2 , (4.2) 

a special case of Eq. ( 4.1 ). Any observation at this stage will yield the two 

base states with equal probabilit y, th e state in Eq. ( 4.2) 'collapsing' into 

eith er IO)or 1n. 
But, without any such int ervention, repeating as a successive qu an

tum coin toss, we can tra ce this state again according to the matrix in 

Figure 4.6, each of its components itself no w becoming a superp osition 
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of both . With a littl e algebra , th e net result of th e su ccessive tosses is, as 

shown , th e stat e -11). An observation will now of cour se give uniqu ely 

th e st ate 11), the minu s sign irr elevant upon squaring , so that input 

I O) result s uniquel y in output 11). It is a simpl e m atter to show a simi 

lar result if on e were to start with 11), that uniqu ely on e ends with I 0). 

In summar y, the two succ essive tosses, or th e squared operati on of a 

quantum coin flip, is just th e sam e as a switch! 

Thus , whil e the squar e of a classical coin is th e sam e object , a classical 

coin , the squar e of a quantum coin is the operati on of a switch ( again , at 

th e level of amplitude s, a crucial minu s sign mu st be noted if oth er op

erations follow ) (Figure 4.6). Invertin g thi s stat ement, th e square root of 

a switch is a quantum coin flip! Within th e realm of classical oper ations, 

it is n on-trivial and difficult to construct such a squar e roo t operation 

but clearly not so in quantum physics. A single quantum coin pr ovides 

it . No te th e criti cal role of superp osition for th e argum ent in th e pre vi

ous paragraph , the linearit y of quantum m ech anics being essenti al. 

Caveats are also wo rth noting. The sam e linearity that allows an op

erati on th at is difficult for classical physics can , in oth er pla ces, give an 

advantag e in th e reverse direction . A familiar example in quantum in 

form ation is th e so-called no -clonin g the orem [21] that th e very linea r

ity of quantum physics pr ohibits th e constru ction of a general -purp ose 

appar atus that will repr odu ce an arbit rary ( th at is, a sup erp osition ) 

quantum state. By contr ast , ph otocopiers are ubiquit ous in th e classical 

world! 

Also imp ortant in thi s an alysis is th at no disturb ance tak es pl ace be

tween th e two tosses. The exact cancellati on of one to leave behind 

only th e oth er base stat e wo uld be disturb ed were th e two part s in 

Eq. ( 4.2) to encount er different multipl ying factor s, even pur e ph ases 

of unit m odulu s squar e. In th at case, an input base stat e will be realized 

in th e output as a combinati on of both base states, with som e multi 

plicative coefficient s. Eith er of th e two states is th en observed as output , 

albeit with different pr obabilities, and we would n ot have a switch or 

NOT gate. 

The imp ort ance of ph ase is no surpri se, given th at quantum physics is 

built on compl ex elem ent s. It was imp ort ant in th e discussion about th e 

squar ed quantum coin flip in Figur e 4.6 th at ph ases, which are delicate, 

are not disturb ed between th e two flips, or , for th at m att er, at th at sec

ond flip, to ensur e the exact cancellat ions th at lead to an un ambi guou s 

pur e state of I O) or 11) at th e end and not a superpos ition . Thi s anal ysis 
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also is instructive on the nature of a two-level system and of measure

ment in quantum physics. The very premise of a system with only two 

base states is that every observation of it has only one of those two out

comes. One never measures a superposition as in Eq. ( 4.1), and all the 

phase information in the complex coefficients, ci, is lost. 

Whatever the system, whether a coin, or an excited-ground-state 

pair, or a decaying nucleus, the initial preparation and final detection 

are of only two possibilities. Either one see the initial nucleus or its de

cayed products. There is no question of observing it in some limbo state 

in between . Through quantum interactions in between, such as that at 

the quantum coin flip, one can create superpositions and transform be

tween them but an observation at the end, with an apparatus, always 

means a scrambling and loss of information of phases, realizing one 

or the other base states. The I ci I 2 appear as the probability of which 

one appears. (In any future quantum computer built of many qubits, 

it will be true that the initial preparation sets each qubit of a register 

into one of the base states and the final observation is again when all 

are in a de.finite set of base states, although in between and during the 

process of computation they will explore the large parameter space of 

superpositions.) 

There is a famous formulation called the 'Schrodinger cat', famil

iar even outside the realm of physics, that was advanced by one of the 

founders of quantum mechanics seemingly to show the difficulties of 

the probability interpretation. Schrodinger posed a thought experiment 

where the radioactive decay of a nucleus is amplified to affect a cat that 

is enclosed in a box together with the radioactive material. At heart, 

the physics question is the one at the level of the decaying nucleus as a 

two-level system but made more dramatic by regarding the two states 

of the cat as dead or alive, depending on whether the decay happened 

or not, and whether, before the box is opened to verify which of the 

two, the cat is in some strange superposed limbo state between dead 

and alive. This is what has captured the imagination of many although, 

unfortunately, much nonsense has been said about the matter. 

Insofar as the cat is regarded as having only two base states, that ques

tion never arises, dead and alive being the only two possible states a cat 

can be observed in. That is what it means to say a two -level system and 

we must gloss over the obvious fact that any cat is a many-particle ob

ject with an enormous number of states and with no realistic chance 

of maintaining all the phases and phase relations between them. But, 
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going back to the nucleus itself, or, equivalently, to an excited sta te 

of an atom, a quantum system. like this can be in a superposition but 

the decay can only be said to have happened, be complete, when the 

emitted photon or the products of the decay separate to infinity, with 

no possibility of re-absorption. The photon has to escape the box and 

would be so observed even without opening the box, that signalling 

the decay and the cat's death. With an enclosed box of perfectl y re

flecting walls, the photon would be reflected back to be re-absorbed by 

the ground state to return to the excited state, the whole repeated so 

that there is no decay but oscillations between the two situations, atom 

excited and no photon or atom de-excited with a photon. 

Finally, as regards taking square roots, as in QCF = (NOT) 1/2, it is worth 

noting how this operation enlarges the domain of interest. In math

ematics, starting with the real line that includ es positive and negative 

numbers, the square root for the latter necessitates an enlargement into 

the complex plane. In physics, there is similarly an expansion into other 

dimensions, for instance in the famous example ofDirac's construction 

of relativistic quantum physics. In aiming to take the square root of 

the energ y- momentum relationship of Special Relativity (Sec. 1.2.4), 

E = ✓ c2p2 + m2c4, so as to have linear operators for energy and mo

mentum and thus introduce corresponding first-ord er derivatives in 

time and space, respectively, for them, Dirac was led to enlarge the 

system into an internal spinor space, in his case of four dimensions 

(Sec. 7.3.2). Indeed, for the case of massless particles with m = 0, the 

Pauli-Dirac equati on needs an enlargement only into two dimensi ons, 

the 2 X 2 space of Pauli matri ces and intrinsic spin. (The more gen

eral result of Dirac introduc es both spin and anti -particle extensions, 

a subject we will return to in Chapter 7 .) Interestingl y, it is that same 

spin or two -valued aspect of a quantum coin that allows the (NOT) 1l2 

construction. 

4.2.2 The Bloch Sphere 

A very useful picture of a two -level quantum system or quantum coin 

or qubit is pr ovided by the 'Bloch2 sphere'[21]. Any arbitrary pure sta te is 

2 Felix Bloch, 1905---83, Swiss and Am erican. A pioneer in th e quantum description of 

solids, 'Bloch waves ' describe electron propagati on and electrical and heat condu ction. 
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depicted as a point on a two-sphere, 52 
( an ordinary unit globe in three 

dimensions) , or, m ore accurat ely, in term s of th e unit vector from th e 

centre of th e sphere to th at point. Although we not ed previously that 

there is a thre e-par ameter family of states ( two complex coefficients 

with a normalization constraint), one of them is an overall phase, inter 

est often attaching mor e to the other two, which can be thought of 

as the two spherical angles (0, </> ), corresponding to latitude and lon

gitude on the Earth. (The 'special unitary' group 5U(2) that describes 

the symmetrie s of a two-level system is thus viewed as a 'bundle' of a 

base manifold, 52
, and a fibre, U(l), the latter representing the arbitrary 

phase that can take any value from Oto oo.) 

Quantun1 evolution can then be viewed alternatively in terms of 

changes of this unit vector. Thus , for exampl e, under .Hermitian Ham

iltonians , pure states evolve into other pure states with a unitary 

transformation given by the Schrodinger equation. This can be viewed 

instead as a classical vector rotating (which does not alter th e length 

of the vector) through some angles as described by a corresponding 

'Bloch equation'. In nuclear magnetic resonance (nm:t) and its various 

applications, such as magnetic resonance imaging (mri) , this geomet

rical picture of a vector rotated · through some angle, realized by some 

appropriate magneti c field applied for some time duration ; has pr oved 

very convenient . 

. Non-unitary evolution, when dissipation and decoherence may be 

present, shrink the vector into the sphere . Instead of pure quantum 

states , we now· talk in terms of what are called mixed states, described 

through a density matrix rather than a ket vector. But the Bloch sphere 

picture continues to be useful. 

Figure 4 .. 7 illustrates the Bloch sphere with fibres at .each point (0, </> ). 

While a classical coin or bit has the two states that may be identifie_d 

with the two poles of the sphere, th e quantum coin or qubit's states 

range over the whole surface of the sphere and along the fibres. This 

is a vastly (multiply infinitely!) larger arid rich er space, so a qubit has 

vastly more potentia:l, even if any observation on it collapses to just two 

antipodal points. Thus, with 100 such qubits in a quantum computer , 

He was an ind ep enden t co-discoverer of nucl ear magn etic resonanc e, and h e derived 

the 'Blo ch equati on ' for describing the tim e evolution of th e mag n etic moment of a 

cha rged particle with spin , such as an electron or proton. 
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Figure 4.7 The Bloch sphere. States of a quantum spin or other two-level sys

tem can be geometrically viewed as point s on a two-sphere , S2
, that is, an 

ordinary globe, together with points on spikes at each point on the sphere. 

The poles represent the base states I O) and 11); any other point on the surf~ce 
is a superposition state. Values along the spike from zero to infinity represent a 

phase that, together with the latitude and longitude location of the spike, pro 

vide the three param eters characterizing an arbitrary unitary transformation 

for a quantum spin or qubit (22). 

while the input and output of any calculation are with each qubit in 

one of its two basis states, q.uring the process of computation, when no 

observations are being made, many more possibilities can be explored. 

As one example, these possibilities allow for an enormous number 

of primes to be tested to divide into a large composite number, which 

would be impossible with a classical computer even of many millions 

of bits. Herein one sees the potential for processes such as factoring a 

large composite numb er into two big prime factors that so excited the 

physics community starting about 15 years ago. Such a factorization be

ing one of the basic principles behind classical cryptography, a quantum 

computer could have drastic implications for secure transactions in our 

everyday world [21 ]. 

While it is customary to view the two states of a quantum coin as the 

usually represented north and south pol es on the spher e in Figure 4.7, 

that is but one representation, referred to as th e choice of quantiza 

tion axis along the vertical z-axis. But, as with any quantum system, 

alternative representations or orientations of th e quantization axis are 

equally valid (Sec. 2.2), so that the base stat es I 0) and 11) can be any two 
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antipodal points on th e Bloch sphere. The very spherical symmetry of 

the sphere puts th em all on a par, and an arbitrary superposition state 

of a quantum spin can be seen as the combination, through Eq. ( 4.1 ), 

of any such pair. The unitary transformations that transform from one 

representation to another (Sec. 2.2) are rotations from one diameter to 

another of the Bloch sphere . 

Experimental observation of a charged particle with spin is also 

viewed in this manner in terms of what is called a Stern 3-Gerlach 4 

apparatus, which consists of an inhomogeneous magnetic field. The 

magnetic moment of such a particle couples to the magnetic field, lead

ing to deflection in opposite directions for the two base states along 

the axis of the Stern-Gerlach set-up. For any setting of that apparatus, 

along the z-axis or some other, an entering beam of spin-1/2 particles is 

always split into just two beams. Both preparation and detection of the 

two base states are done in this manner. 

4.2.3 Pairs of Qubits and Entanglement 

In Sec. 4.2.1, we saw that a single quantum coin flip in Figure 4.6 is es

sentially equivalent to a classical coin in Figure 4.5 but two successive 

quantum coin flips amount to something different, a switch or logical 

NOT operation . We consider next pairs of qubits simultaneously . Such 

systems are the basis of other logic gates, such as exclusive-OR (XOR) 

or controlled-NOT (CNOT) and, indeed, all logic gates required for 

computing can be built out of such a pair. 

Using the language of quantum-mechanical spin, of two states , 

up/down ( I t) and I +)),for each qubit (Figure 4.3), states of the pair 

can be viewed by placing two of them in a Dirac ket ( or corresponding 

bra). Thus, there are four states in all for the pair, which may be de

noted ( I tt), I t +), I + t), I --!,-!,)), as shown in Figure 4.8. Each ket 

represents a product of the states of the two qubits and thus this basis 

set for the pair is said to be 'separable' , the wave function factorizing 

into a product of functions of each qubit. 

As in all quantum systems, however, this is but on e representation 

for the pair. Any other linearly independent set of four states can also 

3 Otto Stern , 1888- 1969, German and Am erican. Experimental ph ysicist, on e of th e 

fath ers of mol ecular beam techniqu es and a co-discoverer of th e prot on 's magn etic 

moment. 
4 Walter Gerlach, 1889- 1979, Germ an. Co-discoverer of spin magn etic m om ent . 
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Figure 4.8 The four states of two qubits in a separable representation, each ket 

describing the product of the up and down states of the two spins. 

be a valid representation of the pair system. Indeed, invoking again the 

general principle of linearity and thus the superposition principle but 

now of two-qubit states, the four linear combinations of the set that are 

show n in Figure 4.9 are just as good a basis for describing all the physics 

of the pair. These states differ, however, in a fundamental respect in not 

being separable. None of them can be factorized into a product of states 

of single qubits. They are said to be 'entangled', another concept central 

to quantum physics when one goes beyond a single particle or degree of 

freedom .. 

From its very first definition by the founding fathers of the field, 

this property has been seen as central to quantum physics and one re

sponsible for much of its non-intuitiveness from a classical perspective. 

The particular set in Figure 4.9 is distinguished among all other (infin

itely many) possible representations for a pair of qubits by being at the 

other extreme of separability from the one in Figure 4.8, being 'max

imally entangled'. They are named the 'Bell5 states' or 'Bell basis', for 

I r±) = C I tt) ± I ++)) / ✓ 2 

1s±) = Cl t+) ± I tt))/ ✓ 2 

Figure 4.9 The four Bell states of two qubits. In contrast to Figure 4.8, these 

are now no longer separable but entangled in not being decomposable as prod

ucts of the individual spins. Indeed, they are maximally entangled and provide 

an alternative basis to the set in Figure 4.8 for describing a general two-qubit 

state. 

5 John Stewart Bell, 1928-9 0, Northern Irish. Theoretical physicist who worked on 

accelerator design and on the foundations of quantum physics. He is credited with hav

ing brought th e question of quantum interpr etation and items such as non-lo cality 

and realism from merel y phil osophical and semantic discussion into the realm of test

able experimental physics. He is viewed as a founding father of the field of quantum 

information. 
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another pioneer in our understanding of this basic concept of quantum 

physics [21]. 
The two states, named s±, have definite values of total spin angular 

momentum, S = 1, 0, and definite projection Si = 0 on the z-axis ( the 

other two states do not have definite values for these quantities). How

ever, there are no definite values for the spin projection of either spin; 

the only de.finite feature is that when one is up, the other is necessarily 

down. This kind of correlation brings out an important aspect of quan

tum physics , that the combined system may have definite properties of 

some physical quantity even when the individual sub-systems do not . 

The operators of total spin and individual spins do not commute and 

cannot be simultaneously defined (Sec. 1.2.5). In this, they are analo

gous to classical concepts such as the 'saltiness' of NaCl, which does not 

reside in either of the component elements ( are both indeed poison

ous!), the concept being relevant only to the compound. While saltiness 

is at least a property that lies outside physics and chemistry, entangle

ment in quantum physics strikes one as even more unusual because the 

propert y of spin projection is an attribute applicable to either the full 

system or a sub-system. Yet the combined system may have a de.fin

ite value while the individual sub-syste1ns do not. This is the essence of 

quantum entanglement. 

Just as a qubit represents any two-level system in physics, a pair of 

qubits can be a stand-in for a four -level system in any branch of physics. 

In a matrix representation, states would now be described by a column 

vector of four entries ( this for a ket , the corresponding conjugate row 

vector for the bra) and operators by 4 x 4 matrices. Besides the unit 

matrix, there are 15 linearly independent matrices ( again with man y 

alternative representations), the counterpart of the three 2 x 2 Pauli 

matrices for a single qubit. The symmetry group is now called SU( 4), a 

higher-dimensional analogue of SU(2) for a qubit. 

Using the separable basis to describe the four vectors, with one non

zero unit entry in each of the four possible positions, an operation such 

as CNOT can be described by the matrix shown in Figure 4.10. Its action 

on the four basis vectors is to leave the first two unchanged but inter 

change the second two; that is, depending on whether the first spin is 

up or down, the other (second) spin is either left unchanged or flipped, 

respectively. The state of the first qubit is said to 'control' the action 

that takes place on the second, 'target' qubit while itself being left undis 

turbed. Similarly, any 4 x 4 unitary matrix can be interpreted in physical 
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1 0 0 0 

0001 
0 0 1 0 

0100 

I tt) 
I tt) 
I tt) 
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Figure 4.10 The 4x4 matrix for the CNOT, or controlled-NOT operation. 

When the second, 'control', spin is up , the first remains unchanged , but when 

the control is down, the state of the first is flipped between up and down. 

terms in its action on the pair, as seen in any representation. This CNOT 

operation is also sometimes called XOR ( exclusive-OR). 

4.2. 4 Quantum Teleportation 

[t was noted in Sec. 4.2.1 that quantum physic s forbids certain oper

ations such as cloning or duplicating an arbitrary state . Special-purpose 

1nachines that duplicate specific states are possible but what is not is th e 

dup lication of a general superposition of orthogonal states, a general

purpose cloning of quantum states. But the same linearity that forbids 

such cloning allows a procedure for transporting an arbitrary state 

from one location to another without physically moving the system. 

Such 'quantum teleportation' is again a nice illustration of basic features 

of quantum physics. 

Consider, for instance, two parties , A and B, that hold two ends of 

an entangled state of two qubits , also denoted A and B, say the fourth 

Bell state in Figure 4.9, which is called the 'singlet state'. This name 

originates from use in atomic and nuclear physics when tw o spin-1/2 

par ticles combine into a total angular momentum of zero, S = 0, for 

insta nce in the ground 1 S state of the two-electron atom helium (see 

Sec. 2.2.1 ). There is only one such combination and state. Such a zero 

angu lar momentum has, of course, also zero projection on any axis and, 

in particular, Sz = 0. When one spin is up with respect to that axis, th e 

other perforce is down. But which one is up or down does not mat

ter for two identical particles and, therefore, th e physical eigenstate is 

the linear combination that is the fourth Bell state. Its con1.panion, the 

thir d Bell state in Figure 4.9, also has Sz = 0 but it is a 'triplet' with S = 1, 

while th e other two Bell states do not ha ve a definite value of Sz but are 

Jinear superpositions of ±1. 
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Given suc h an entang led singlet state (AB) whose two parties and 

two sub-system qubits, A and B, have separated, perhaps even to large 

distances, we wish to teleport from A to B the state of a third qubit, 

C, that is in the general superposition described by Eq. (4.1). A cannot 

measure C and determine the values ci, any measurement giving either 

of the two base states with probabilities I ci I 2, the complex amplitudes 

themselves out of reach. But what A can do is to couple (in a quan

tum way that preserves phases) its end of the entangled state to C, and 

form a three-qubit state, ACB; it is then possible to perform a Bell meas

urement on (AC) at that end. That is, a joint measuren1ent of the pair 

is made in terms of the base sta tes of Figure 4.9. The four Bell states 

of (AC) forming a comp lete set, the product (AB)C can always be re

wri tten as an expans ion in terms of them, with coefficients representing 

the other qubit of B ( the simple algebra involved is not shown here). 

These coefficients will involve ci, whose values still are unknown but 

with A able to see what combinations of the two are involved in each 

coefficient. Thus, not surprising ly, for th e singlet Bell state (AC), B's 

qubit will be seen to be in the same superposit ion as in Eq. ( 4.1 ). For the 

other three Bell states, there will be differences in the signs of ci or of 

the spin arrows. A can then tell B through a classical channe l (perhaps 

a telephone) what operation needs to be performed at that end, typic

ally flipping the spin or multiplying by a minus sign, to put B's qubit 

into the same form as in Eq. (4.1). Of course, if A measures a singlet in 

the Bell measurement, the message will be for B to do nothing. The net 

result is that the qubit C's state in Eq. ( 4.1) appears at B's end as the sta te 

of that qubit, B. The 'sta te' has been teleported from A to B. 

It is wort h emphasizing what exactly is involved in the above proced

ure. It is on ly the state that is teleported, not any physical ent ity such 

as qubit C. B and C may even be entir ely different two-level systems; 

for example, one may be an electron, the other a proton or a macro

scopic object such as a Josephson 6 junct ion ( or even a cat!) whic h can 

be in one of two configurations. It is on ly the state of C that appears 

6 Brian David Josephson, 1940, Welsh. Theoretica l physicist k.nown for con tribu

tions already as a student and especially for discovering a fundam ental phenomenon 

of superconductivi ty, that quantum -mechani cal tunnelling leads to current flow and 

oscillations between super condu ctors separated by a barrier of normal matter. This ef

fect has becom e the basis for pr ecision measur em ents of magnetic fields and of the 

fundamental constant e/li. He later turn ed his att ention to biology, transc end ental 

meditation , and mind - body problems. 
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as the state that Bis put into. Next, the entangled state between A and 

B is not enough: some classical information also has to be transferred 

from A to B to achieve the teleportation. Thus, there is no violation 

of Einstein's Special Theory of Relativity, as the classical information 

transfer involved ensures that the transfer is restricted to being below 

light speed. 

Strikingly, A manages to teleport C and the information content in 

Eq. ( 4.1) without knowing the values of ci; indeed, it is imperative that 

A is ignorant of those coefficients, all that information being lost at the 

moment when A makes the Bell measurern.ent (A knows only which of 

the four Bell states of (AC) is realized without knowing anything about 

C's state - or A's!), the same moment the information appears in B's 

hand. There is thus no violation of the no-cloning theorem, even across 

a remote separation . There is only one copy of the state in Eq. ( 4.1 ), 

first as qubit C's state at A's end and later as qubit B's state. A ends 

up, of course, entangled with C while disentangled from B. All these 

are necessary consequences of the linearity of quantum physics, whil e 

illustrating its internal consistency. 

A very similar discussion applies to another important application in 

quantum information, namely secure key distribution between A and 

B to establish quantum cryptography. Again, A and B share both a clas

sical and a quantum-entangled channel. That any disturbance of the 

latter by a third party eavesdropper will be manifest to A and B underlies 

the security of their exchange. All instances when they detect such dis

turbance upon comparing notes later through a classical channel can 

be simply discarded and they can proceed with confidence using the 

undisturbed exchanges to establish the desired key distribution . 

4.3 Qubitcoins 

We live in times when the bitcoin has just started 'circulating'. Curren 

cies and coins evolved for keeping tra ck of transactions between per son s 

of commodities or services. From antecedents in un iform cowrie shell s, 

certain plant seeds, and stone wheels, we finally settled on precious 

metals and coinage, as in Figur e 4.1. It is only SO years ago that this 'gold 

standard' was jettisoned and the currency's worth became based on the 

strength of the economy of a nation -stat e. Side by side, keeping track 

of tran saction s has evolved fron1 markings on clay tablets to numbers 

on tran saction sheets and bank statem ent s. But , today, the hundreds 
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of billions of dollars traded in a day exist only in electronic cyberspace. 

A completely online cyber currency, decoupled from any nation, such 

as the bitcoin , is part of this trend. As in the physics of motion from 

bat to fielder (Sec. 8.5), what counts is the transaction between A and B, 

the paths in between (Figure 7.1) being inessential, however convoluted 

the y may be through multiple banks. The discussion in this chapter of 

quantum coins n1.ay leave us speculating on the even more, literally, 

mind-boggling future of a 'qubitcoin' world ahead. 



5 

Symmetry 

5.1 Symmetries Around Us 

The concept ( or principle or metaphor) of symmetry pervades our lan

guage and our physics. As one of the animal kingdom's bilaterally sym

metric creatures, it is an inescapable observation from an early age that 

the left and right half of our bodies are similar. (This is from the outside, 

the inside being very unsymmetrical.) Indeed, they are mirror symmet

ric in terms of a mirror plane down the middle that reflects one side to 

the other. Such a mirror or reflection symmetry, or 'parity symmetry' 

in physics usage, is one of the simplest examples of symmetries. 

Elsewhere, we see in both the animate and inanimate world around 

us other types of symmetries, such as 3-, 4-, or n-fold symmetries. Petals 

of many flowers, or sea stars display this, a rotation through 2n /n ( a 

full rotation through 360 degrees is named 2n) restoring the object's 

appearance (Figure 5.1 ). Indeed, this is the proper way to describe a sym

metry, in terms of some transformation such as reflection or rotation 

that takes the object into itself, that is, leaves the object unchanged. 

Note that reflection is different from rotation through Jr ( through 180 

degrees), which is also a two-fold symmetry, two such transforn1ations 

returning to the original configuration. Such a rotation, however, does 

not take a right hand into the left hand, so that reflection is a distinctly 

different symmetry. 

The inanimate world also has symmetries, as seen in many crystals. 

The standard exarnple is of snowflakes, which all have a six-fold or hex

agonal symmetry (Figure 5.2). Both salt and sugar crystallize in cubic 

symmetry, while many minerals form hexagonal or octagonal shapes, 

again symmetrical objects that under various transformations go back 

into themselves. Some viruses exhibit great visual beauty in their sym

metries with very large n (Figure 5.3). Th ere is, finally, the 'perfect' 

symn1etry of a circle or sphere that may be seen as th e n --+ 00 limit 

of such rotations, these objects looking th e sam.e with respect to any 
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Figure 5.1 Flowers with 13-fold and many-fo ld symmetry, and a starfish with 

five-fold symmetry. Sarah Cowell <http: //www.beeginnerbeekeeper.com/ 

single-and-double -flowers>; Alain Feulvarch <https://en.wikipedia.org /wiki/ 

Starfish>. 

Figure 5.2 Six-fold symmetry of snowflakes. Kenneth Libbrecht <http: // 

www.its.caltech.edu/ atomic/snowcrystals /phot os/phot os.htm> . 

diameter, th at is, under rotation through an infinitesimally small angle. 

Note how ordinary language uses this as a metaph or when it describes 

'a well rounded argument'. 

The immediate visual symmetries of rotation and reflection extend 

to mor e sophisticated ones but again with the feature of some trans 

formation and an associated symmetry of inter est . (Transformations 

and symmetries are inseparabl e so that there is considerable over

lap between this chapter and Chapter 2.) Thus , palindromes have a 
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Figure 5.3 Electron micrograph of a virus showing high-order symmetr y. 

Phoebus87 <http://en.w ikipedia.org/wiki/File:Symian_virus.png>. 

fascination from early childhood; whether in numbers or phrases, they 

read the _ same forwards and backwards. ( A familiar example is 'Madam, 

I'm Ada1n' .) This is with respect to a transformation reversing the dir

ection of flow. Music plays on such ascending and descending scales 

that come together as aesthetically pleasing to our ears. A musical 

palindrome by Bach 1 is shown in Figure 5.4. 

In physics, it was natural from th e very beginning to consider such 

'time reversal' symmetry, Galilean and Newtonian mechanics having a 

symm et ry under this transf ormation . Thos e laws of motion , 'the laws 

of physics', are symmetric under such time reflection , and this has pro

found consequences throughout physics. A major philosophical ques 

tion is how to reconcile such a symmetry of the laws that are symmetric 

under a change of sign of time down at the mi croscopic level with what 

1 Johann Sebastian Bach, 1685-1750, German. Organist, harp sichord ist, and com 

poser, one of th e fathers of Western classical music. He is revered by all musicians and 

composers, great and small, who followed him over th e centuries, and his mu sical ex

ercises are still taught in the first lessons to musi c stude nt s. He is as centra l a figure in 

Western classical mu sic as Newton or Einstein is in physics. 
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Figure 5.4 A musical palindrome, by Johann Sebastian Bach. <http: // 

www.gfsmaths.com /crab-common.h tml>. 

appears to be a unidirectional flow of time in our macroscopic everyday 

world. The same question of time reversal symmetry, or 'invariance' 

with respect to the transformation t ➔ - t, also dominates quantum 

physics. Indeed, except for a few limited decays of unstable elementary 

particles, recently demonstrated (23) directly and unambiguously for 'B 

mesons', all other interactions 'respect' this symmetry. 

5.1. 1 Symmetries in Mathematics 

Symmetry is also important in mathem.atics, from the very elementary 

to the most advanced , and use of syn1metry considerations is a power

ful tool in a mathematician's or physicist's toolkit. As a first example 

related to the parity symmetry mentioned at the start of the chapter, 

even or odd distribution around some mean provides a simple illustra

tion. In summing ( or integrating if a continuously distributed function 

f(x)) such numbers, for an even distribution one can simplify the work 

by a factor of two by considering the sum of just one side and doubling 

it. For an odd distribution, even further simplification attaches, in that 

the sum is clearly ('by symmetry') zero without having to do any fur

ther computation, values on one side cancelling with the symmetricall y 

equal but opposite contributions from the other side. 

· Extending further, say to a function of two variables f (x,y), it is im

mediately apparent that there is a difference between a function such as 
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Figure 5.5 Symmetry contours of f(x,y) = x2 + xy + y2 as concentric ellipses 

on 45-degree axes. 

(x2 + y) and (x2 + xy + y2). Under a transformation that interchanges x 

and y, the latter is unchanged while the former is not. The second func 

tion is distinguished in having this interchange symmetry, a little less 

obvious perhaps than previous examples but nevertheless also a trans 

formation and an associated symmetry. Geometrically, contours of the 

two functions display this symmetry, the latter's being ellipses around 

the axes (x ± y) tilted at 45 degrees with respect to the horizontal and 

vertical (Figure 5.5). 

The example considered in Sec. 1.2.1, of simplifying the definite integral 

f:.:0 exp(-x2)dx, was similar. In that section, this integral was viewed un

der the theme of adjoining an extra dimension but it also illustrated a 

symmetry aspect that lay behind the simplification . By adjoining (-y2) 
in the exponent, the resulting function, (x2 + y2

), was even more sym

metrical than the second of the functions in the previous paragraph , 

describing now a circle rather than an ellipse. Thus the product of two 

somewhat more difficult Gaussian integrals in x and y, when viewed 

with the circular symn1~try of two dimensi ons , reduced th e integral 

over angle c/> to the trivial 2rc, while th e other , radial, integral also 
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simplified into an exponential integral. The two-dimensional integral 

with circular ,symmetry is simpler than the one-dimensional linear one 

with parity symmetry. 

• The above is a simple but characteristic example of exploiting sym

metry to simplify calculations. This problem also brings out another 

feature, that in the presence of symmetry > the san1.e problem can be 

viewed from different perspectives, coordinate systems in this case. The 

double integral separates into a product of two in either Cartesian or 

circular coordinates. The former view gives the Gaussian integral (ra

ther, a square of it), while the latter is 2Jt times the exponential integral. 

This feature becomes even more prominent in quantum physics, as we 

wHlsee. 

Another example appeared in Sec. 1.2.3, where Lagrange multipliers 

were used to estimate the maxima of a function xyz subjected to the 

constraint x
2 + y2 + z2 = R

2
; this si1nilarly affords an illustration of the 

power of symmetry arguments . With both the function and constraint 

completely symmetric under interchanges of the three variables, sym

metry would demand that any solution we are seeking will also have 

that property and thus x
2 = y2 = z2, leading immediately to the result 

in Sec. 1.2.3, that the maxima occur at coordinate value R/,/3, with no 

other detailed considerations necessary! 

Turning to geometry, yet another example of transformations is pro

vided by projective geometry, wherein points and lines of ordinary 

Euclidean geometry are viewed instead on a common footing, with a 

complete duality in interchanging them . The Euclidean geometry stud

ied in secondary schools does not have such duality, but in projective 

geometry any theorem involving points and lines remains true under 

such an interchange . There is thus a symmetry between points and 

lines. A famous diagram. of projective geometry, attributed to Desar

gues2, is presented in Figure 5.6. It displays 10 points laid out on 10 lines, 

satisfying the rule that each point lies on three lines and, dually, each 

line runs through three points. As per its name, projective geometry 

plays a central ro le in perspective in art and architecture . Figure S.6 

may be viewed in two ways. From point P, lines are drawn to connect 

2 Gerard Desargues, 1591- 1661, French. Architect and engine er, one of th e founders 

of projective geometry. 
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Figure 5.6 The Desargues diagram of projective geometry. Ten points lie on 

10 lines, with the incidence relation that every line contains three points and 

every point lies on three lines. The two triangles, abc and ABC, have like verti

ces connected by rays from point P, while like sides, when extended, intersect 

on a common line, 123. The triangles are said to be 'in perspective' with re

spect to point P and line 123. Note the duality between points and lines that is 

characteristic of projective geometry. The triangles abc and ABC may lie either 

in the same plane or not, so that the diagram works equally well as a planar 

two-dimensional diagram or in three-dimensional space (24]. 

like vertices of the two triangles abc and ABC. On the other hand, like 

edges of those triangles intersect, when extended, at three points that, 

remarkably, lie on a common line. Therefore, it can be said that the two 

triangles are 'in perspective' with respect to point P and line 123. 

A further remarkable aspect is that Figure S.6 works equally well as a 

planar diagram or in three dimensions, each of the two planes abc and 

ABC then oriented generally in space. When the planes are parallel, the 

three points 1, 2, and 3 recede to infinity, as does their line, to become 

the line at infinity. An important distinction between Euclidean and 

projective geometry, again a central feature in perspective, is the 

removal of any distinction between points at infinity and those at finite 

locations. 

Also important is the idea of more or increasing symm etries shown 

by the functions x2 + y, x2 + xy + y2, and x2 + y2. The second has higher 
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Figure 5.7 The Fano plane. Similar to Figure 5.6 but now for seven points and 

seven lines ( the inscribed circle is counted as on a par with the others, no 

distinction being made in projective geometry), with the added feature that 

any pair of points lies on a unique line, making this a projective plane called 

PG(2,2). This same diagram with added arrows, as shown, represents the multi

plication table for octonions, the e; being the seven independent square roots 

of (- 1 ), the product of any two giving the third on that line , with a± 1 factor 

when along /against the arrow direction (24]. 

symmetry under x and y interchange than the first (no symmetry at all) 

and the third even higher (actually perfect symmetry as of a circle over 

an ellipse). Similarly, Figure 5.6 has a counterpart in projective geom

etry shown in Figure 5.7, in which seven points and seven lines display 

the same feature that each point lies on (is said to be incident to) three 

lines and each line is incident to three points but can be said to have 

an even higher symmetry. This focus on incidence relations of just the 

points shown makes these diagrams work also in finite geometries with 

just those 7 or 10 points, the rest of the points being shown to display the 

lines as continuous, though not really relevant to the discussion . This is 

a geometry of just a few finite number of points. For this reason, the in

scribed circle in Figure 5.7 that connects three points, albeit at infinity, 

is just as legitimate a line as any of the edges or medians of the triangle . 

Figure 5.7 has even more symmetry than Figure 5.6 in having yet an

other feature, that every pair of points lies on a distinct line, which is 

not true for Figure 5.6, where, for instance, point P has no lines joining 
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it to points 1, 2, and 3. Indeed, Figure S.7, called the 'Fano 3 plane' , is 

also important in projective geometry and is the simplest 'projective 

plane' [2S]. 

The Fano plane in Figure S.7 plays a role also in a branch of math

ematics called Design Theory and is related to so-called symmetric 

designs where two sets of quantities are placed into incidence classes 

with respect to each other. These may be anything - say, varieties of 

some agricultural product such as potatoes and varieties of fertilizers 

applied to them. In choosing to measure the effectiveness of the lat

ter to improve yields of the former, and therefore designing fields so 

that each potato variety sees each of the fertilizers, such symmetric de

signs are used, pointing to the usefulness of this mathematics in many 

applications of experimental design [24, 2S]. 

Curiously, the same diagram also appears in an entirely different 

1nathematical context, namely in describing the only two consistent 

arithmetics ( more technically, division algebras) beyond real and com

plex numbers. Most people know of real and complex numbers (based 

on i, 'the' square root of - 1), that they can be multiplied and divided . 

Mathematicians and physicists also deal with two other number sys

tems, called quaternions, which employ three independent square roots 

of -1, designated (i,j, k), with i
2 = j2 = k2 = -1 , and octonions, which 

similarly use seven independent square roots. There are no other con

sistent systems, these four exhausting the possible division algebras . A 

set of rules has to be prescribed for the n1ultiplication of any two differ

ent square roots in terms of a third to close the algebra, and these rules 

can be most conveniently kept track of through Figure S.7. Together 

with arrows drawn on each of the seven lines, any of the seven triplet 

lines of the diagram can designate these rules for quaternions, although 

it is most common to use the circle. With the quaternions' (i,j, k) as the 

three points on this circle in cyclic (clockwise) order with a clockwise 

arrow on that line, we set ij = k,jk = i, ki = }, whereas in the reverse 

order against the direction of the arrow a minus sign is attached, and 

we set ji = - k. A similar but slightly more complicated prescription [26] 

works for the seven square roots of - 1 of octonions placed at the seven 

points of the diagram in Figure S.7 and using all seven lines shown. 

3 Gino Pano, 1871- 1952, Italian . Math ematician with contributions to geometry and 

group theory . 
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5.1.2 Symmetries in Physics and Conservation Laws 

An imp or tant consequ ence of symmetry in the equations of moti on 

in phy sics is that the y impl y a correspondin g constant of the m otion 

or a conservation law, th at a corre spondin g quantit y does not ch ange 

durin g th e m otion. The fam ous laws of conservation of energy, linear , 

and angular mom entum are associated with su ch symm etries. These 

absolute conservation laws being some of th e m ost fundan1ental en

tities of physics, the consideration of symmetry is therefor e central to 

the subj ect. Emm y Noether's 4 discovery of th e link betwe en symmet

ries and conservation laws is amo ng the m ost ilnp ortant theorems of 

math em atical physics. 

There is already in New ton' s third law of m ot ion a symmetry, that 

the forc e exerted by a particle (1) on another particle (2) is equal and 

opposit e to that exerted by 2 on 1. This hold s tru e for any force, what

ever its origin , including forces of electricit y and magneti sm th at were 

not known in Newton' s day, or th e forces of str ong and weak inter

actions between elementary particles and nucl ei that were discovere d 

even lat er. Colloquiall y rend ered as 'every action has an equal and 

opp osite reaction' and applied widely (if n ot always accurat ely!) even 

outside of physics, this is on e of th e powerful and familiar metaph ors 

of our lan guage, one with its origins in physics. With all forces between 

pairs cancellin g out, the total system has no net force on it from the 

mutual int erac tions contained within , and th ereby the total linear m o

m entum, denoted p, is conserved. If all the torqu es due to th ese int ernal 

pairwi se forces also add to zero, th e total angular mom entum , denoted 
➔ 

£, is also conserved . 

Later, in the Lagrangian and Hamiltonian forn1ulation of Newtonian 

mech anics, this result takes a slightl y differe nt form, that th e Lagran

gian depends only on int ern al separati ons between the parti cles in a 

N-body system , not on the centr e of mass coordinat e, with th e result 

that the derivative of th e Lagrangian with respect to the corresponding 

4 Emm y Noe th er, 1882- 1935, German. Mathemat ician with contri but ions to ab

stra ct algebra and physics, where she is best known for establishing th e conn ection 

between symmet ry principles and conservation laws. Th is 'Noe ther 's theorem ' has 

been described as 'th e m ost imp ortan t mathematical th eorem ever pro ved'. Notwith

standing prejudices against wom en in academia, she join ed the mathemati cs school at 

Gott ingen und er th e invitati on of Hilbert and Klein. Many major physicists described 

her as the most important woman in th e history of math ematics. 
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velocity is conserved (this derivative is termed the conjugate mo

mentum). This is the centre of mass m01nentum or, for an angular 

coordinate, the angular momentum, these quantities then not chan

ging during the motion. An elegant expression of this is that if the 

Lagrangian does not depend on such a coordinate, it is invariant with 

respect to additive changes, so that when such additions due to trans

lations in space or rotational orientation do not affect the Lagrangian, 

the corresponding conjugate momenta are conserved. 

Most often, the Lagrangian and Hamiltonian are , respectively, the 

difference and sum of the kinetic and potential energy of the system. 

Instead of vector forces and torques, it proves much more convenient 

to handle these scalar energies. The further feature that when a coord

inate does not enter into the Lagrangian, that is, th ere is a symmetry 

with respect to it, the equations lead to a conserved quantity makes 

this formulation especially appealing and convenient. Not surprisingly, 

most of physics, whether classical or quantum physics or quantum field 

theories, uses Lagrangians and Hamiltonians. 

These considerations apply not just to a spatial coordinate, whether 

linear or circular, but equally to time. If the Lagrangian does not involve 

explicitly the time variable, t, that is, is invariant with respect to trans 

lations in time, another conservation law applies, the conservation of 

energy, the quantity conjugate to time, just as momentum , linear or 

angular, is conjugate to spatial coordinates. A system as a whole, with 

no external forces that may be turned on and off for some finite time 

period, has its total energy fixed, whatever internal exchanges may take 

place between the sub-systems of which it is composed. 

The Kepler problem of two masses bound together by gravitational 

attraction, or a Coulomb pair of oppositely charged electrical particles 

similarly bound, are both systems with a spherically symmetric poten

tial that varies as 1/r ( correspondingly, the force is 'inverse square'), that 

is, depends only on the separation between the particles and not on 

how that separation is oriented in space. The Lagrangian in spherical 

polar coordinates not depending on any angles, angular momentum 
➔ 

is conserved. Whatever initial value of£, they start with, that value is 

conserved. This being a vector quantity fixed, therefore , in magnitud e 

and direction, the motion is necessarily con.fined to a plane orthogonal 

to that direction. Indeed, any potential , V(r), that is, one that depends 

only on rand not 7, shares this property . (With no t involvement either, 

energy is also a constant of the motion, only swapping between kinetic 
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and potential energy during the orbit but the total fixed at whatever 

initial value was set.) The Kepler-Coulon-ib problem is special among 

these, in that there is something additional, namely the orbits closing 

in ellipses (Sec. 1.2.5). 

That a closed orbit means there are even more conserved quantities 

has been recognized from Newton's times. The eccentricity of the orbit 

and the direction of, say, the major axis (the minor or any other could 

also have been chosen) together define a so-called 'Laplace-Runge 5
-

Lenz6' vector, A (Figure 1.12), which is also conserved, along with l. 
The pointer to a 'higher' symmetry of the Kepler-Coulomb problem 

( and one other, the harmonic potential r2) than just the one under 

three-dimensional rotations that is shared by all spherically symmet

ric potentials found more complete explanation in quantum physics, 

as discussed for the hydrogen atom in Sec. 1.2.5. Whenever there is an 

additional symrn.etry, it is a pointer to degeneracies in the spectrum 

( that different physical states share the same energy) and to alternative 

coordinate systems or groups of commuting operators that can de

scribe the system. The connection between sy1nn-ietries and conserved 

or invariant quantities ( and degeneracies of spectral levels in quantum 

systems) is true throughout physic s. 

The theme of 'broken' , especially slightly broken, symmetries again 

takes full significance in quantum physics, but also can be seen in clas

sical physics with the Kepler-Coulomb problem. Any admixture of 

some other dependence into 1/r, however slight and even if itself also 

spherically symmetric, changes the situation fundamentally. While an

gular momentum is still conserved and the orbits still lie in the plane 
➔ 

orthogonal to it, no additional A will exist, as manifest in th e fact that 

the orbits will not close. The famous example is that of the preces 

sion of the perihelion of planetary orbits. Since the planet-Sun system 

also experiences other forces or potentials, for example from th e pres

ence of other planets, orbits are not closed, fixed ellipses. Instead, the 

axes precess . Since these other forces are very weak compared with the 

dominant attraction of the Sun, the symmetry is broken only slightly 

5 Carl David Tolme Runge, 18S6-1927, German. Mathematician and physicist, with 

con tribution s in numerical analysis and spectro scopy. 
6 Wilhelm Lenz, 1888-19S7, German. Physicist known for his work on the hyd rogen 

atom, th e 'Ising mod el' in statistical physics, and for the training of man y prom inent 

physicists at his institut e of nucl ear physics. 
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and the precession is small, so that the notion of the ellipse retains 

meaning and the additional effect is seen as only a slight change in the 

position of the axes after each orbit. Not surprisingly, the largest planet, 

Jupiter, has the largest effect on oth er planetary perihelion precessions. 

While all this has been known since Newton's time and was worked 

out centuries ago, there remained a tiny displacement of 43" of arc 

per century in the precession of Mercury's axes, which stubbornly per

sisted until it yielded to Einstein's General Theory of Relativity, which 

gives a gravitational potential that departs slightly from Newtonian 

V(r) = - GMm/r. Einstein accounted for the discrepancy, a triumph

ant prediction of his theory of gravity. The atomic counterpart displays 

something similar, weak forces such as the one coupling electronic 
➔ ➔ 

spin, s, and orbital angular momenta, ,f,, being scalar product poten-
➔ ➔ 3 

tials, s · l/r . While still spherically symmetric, this changes the strict 1/r 

nature of the potential , with resulting effects on degeneracies and other 

features of the spectral levels. We will return to this in Sec. 5.2.4. 

5.2 Symmetries in Quantum Physics 

While the consideration of symmetry has been important in physics 

from Newtonian times , it took on even more significance from the start 

in quantum physics. The founding fathers recognized well its import

ance as a guiding principle in formulating the new mechanics. Weyl7, 

Wigner, and Dirac, in particular, have written eloquently about it. Sym

metry (in the mathematical sense) in the basic equations has been 

equated with beauty, just as in the natural world flowers and snowflakes 

are admired for the symmetry of their beauty (Figures 5.1 and 5.2). We 

will return to this in Sec. 5.2.5. 

\Vith a Lagrangian formulation also natural for quantum mech

anics or quantum field theories, the connection between symmetries 

under translation or rotation in space or translations in time, and 

7 Hermann Weyl, 1885-1955, German. Mathematician, philo sopher, and physicist, 

nne of the most influential mathematical physicists, who had close associations with 

Einstein, Schroding er, Felix Klein, Hilbert, and oth ers. He studi ed th e distribution of 

<:igenvalues of the Laplacian operator, introduc ed th e concept of gaug e, th e 'Weyl ten

sor' in Riemannian geom etry , the 'vierbein' in Gen eral Relativity, and, through man y 

oth er contributions to group theory and representati ons, is one of the most important 

ligur es in the math emati cal formulation of quantum physics and General Relativity. 

I le is also a key figure in mathematical philo soph y. 
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corre spondin g conservation laws of m omentum , angu lar m om entum , 

and energy remain equally valid in quantum ph ysics. These are among 

the mo st fundamental features of ph ysics and are intimatel y link ed to 

symmetries in space and time. But, in addition, it also becam e nat

ural to consider other spa ce- time symme tries, such as reflections under 

space and tim e, and Lorentz tran sform ations between different in ertial 

frames, given that quantum ph ysics developed soon after ph ysics had 

imbibed th e Special Theory of Relativity , which gives greater empha sis 

to this larger set of symmetries than does classical physics. 

5.2.1 Discrete Symmetries 

Consid er first the simplest discrete transformation, reflection in space, 

7 --+ -7, called th e parit y transform ation , or ju st parit y for short , P. In 

Carte sian coo rdinat es, all thr ee coo rdinate s are reversed, (x --+ - x,y --+ 

- y, z --+ -z), while in spherical polar coor dinat es a point on a sph ere is 

taken to its antipodal one, (r --+ r, 0 --+ n - 0, cp --+ n + cp) (see 

Figure 5.8). Any quantum system whose pot enti al is invari ant under 

this symme tr y tran sformati on ( th e non -relativistic kin etic en ergy, in

volving as it does the squar ed mom entum , is so invariant ) will have 

a spectrum that can be divided int o tw o parit y classes, even and odd 

under thi s parit y tran sform ation. Thus, the free particle in one or 

I 
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Figure 5.8 Spherical polar coord inat es in thr ee dimensions. For any point, the 

vec tor 1 is decom posed in terms of its lengt h, r, tilt angle , 0, from the z-axis, and 

ang le </J, as shown , m easur ed from th e x-axis in th e x-y plane to the foo t of th e 

perpendicular dropped from the poin t onto that plan e. Reflection of a poin t 

throu gh the or igin , 1 ➔ -1, is achieved by 0 ➔ n - 0, <P ➔ n + <j), as can be 

seen by the corres pondin g projections shown. 
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any number of dimension s, the harm onic oscillator, and the hydrogen 

atom are all examples where energy eigenstates states can be labelled 

simultaneously with the ±1 of parity, the Hamiltonian commuting 

with parity, [H, P] = HP - PH = 0, the order in which the two oper

ators are applied being immaterial if H ➔ H under P. In the spherical 

representation of the states of the hydrogen atom (Sec. 1.2.5), states 

are characterized by the quantum numbers (n, .e, m) of the operators 

(H, £2
, lz), and also have the parity label (-1 f'. 

It is a feature of quantum physics that there is a representation de

pendence, because simultaneous labelling is only for the set of operators 

all of which mutually commute, and P does with the other three of this 

spherical set. But eigenstates in an alternative representation, such as 

the parabolic for the hydrogen atom (Sec. 1.2.5), whose labels stem from 

the operator set (H, f z, Az), are not simultaneous eigenstates of parity, 

because P, while commuting with H, does not with the 'polar' vector ... 
quantity A , and thus with its component A z (it does, however, with the ... 
'axial' vector .€). The same is true of the one-dimensional free particle , 

which among alternative representations, has the 'travelling wave' or 

'standing wave' pictures with wave functions exp( ±ipx/li) or sines and 

cosines, respectively. (Note also another dual aspect, of complex or real 

descriptions, respectively.) The former are simultaneous eigenstates of 

H and p, while the latter are of H and P. 

Since p of momentum and P of parity do not commute, one has 

to choose between the alternative representations, both complete sets, 

according to use and context (Sec. 1.2.5). Travelling waves, by defin

ition, move from left to right or vice versa and are, therefore , not 

invariant under reflection , but rather one wave goes into the other 

under P. Likewise, the parabolic states of the hydrogen atom, which 

are superpositions of parity eigenstate s ( as the exponentials are of sines 

and cosines), transform under parity into each other, a parabola facing 

z going into an identical one facing -z. With an electric field having 

a similar transformation under parity, it is natural that the parabolic 

states are suitable for discussing the hydrogen atom in an external elec

tr ic field. The field-free atom or an atom in a magnetic field, on the 

other hand, is more conveniently treated in terms of spherical states. 

This illustrates the use of symmetry considerations in choosing between 

alternative representations to work with, a practical aspect of symmetry 

in the toolkit of a physicist. 
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A further feature of the hydrogen aton1 in an electric field is that 

while all atoms have their internal spherical symmetry reduced to the 

cylindrical symmetry with respect to the electric field direction, excited 

states of the hydrogen atom, and they alone (not of any other atom or 

the ground state of hydrogen), exhibit a further feature that connects 

to other themes. No other atom has a pure 1/r field and its additional 

sy1nmetry that is linked to the additional degeneracy in the spectrum 

of states of different l. In particular, this means states of opposite parity 

are degenerate . An electric field, also being odd (reverses) under this 

parity transformation, therefore, can mix these states. 

With initially degenerate states, even the slightest interaction that 

mixes them can lead to maximal mixing. Indeed, when there are two 

degenerate states such as the (in spherical description) 2s and 2p (with 

m = 0), the mixing is S0:50, and the linear combinations (2s ± 2p)/,v'2 

with such equal mixing are precisely the parabolic states. Although it is 

straightforward enough for a physics student to see the equal mixing in 

terms of diagonalizing a 2 x 2 matrix with equal entries along the di

agonal and equal ones along the off-diagonal, it is nice to see symmetry 

itself as leading to this conclusion without invoking any 1nathematics. 

The logic is simple. If the two states are on an equal footing and are 

mixed, there being nothing to favour one over the other, they are 

equally probable in the mixture. It is also nice to note another aspect, 

that this is like going to 45-degree axes in state space, an illustration 

of the theme in Sec. 2.2.1. The hydrogen atom's Schrodinger equation, 

which separates in both spherical and parabolic representations for zero 

field, still does so for the latter in the presence of an electric field. 

Consider next reflection of the time coordinate, called time rever

sal, T: t ~ - t. Classical physics, whether expressed through Newton's 

equations, which are second-order differentials in time or Lagrangi

ans and Hamiltonians, is invariant. The microscopic world is entirely 

symmetric with respect to reversing the direction of time. A ma 

jor challenge has always been to reconcile this with the macroscopic 

world of everyday experience, which clearly is not, but these aspects 

of time in physics are not of concern here. Here, we consider time 

reversal in quantum physics. The non-relativistic Schrodinger or rela 

tivistic Dirac equation involve only a first derivative in t, but always 

accompanied by i. Since that also changes sign under time reversal, 

that operation incorporating con1plex conjugation, quantum equations 
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of motion are also invariant und er thi s sym metr y. Dirac 's extension of 

quant um mechanics to the relati vistic domain brought naturally into 

physics anti -particles, such as the positron, and with it a third discrete 

transforma tion called charg e con jugation , C, which changes the sign of 

the charge . 

Whil e all int era ctions known to physics conform to the laws of con

serva tion of momentum , angul ar momentum, and energy, not all do 

under the discrete tran sformations of (P, C, T). Parity, for instance, is a 
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Figure 5.9 Diagr am illustrating parity violation in the weak -inter action decay 

of a cobalt nucleu s. The asymm etr y in th e direction of emission of electro ns 

with respect to th e spin of the nucleus violate s parity symm etr y beca use th e 

mirr or-reflec ted arran gement wou ld argue for th e opp osite result. Had weak 

int eractions respected parit y symmetr y, the two arrangements would have 

shown th e same ph ysics, but parit y is indeed maximall y violated, as shown 

first in 1957 in this cobalt decay and ot her system s. From < http: //www .aps.org / 

pu blications/aps news/200112/history .cfm > . 
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good symmetry of electromagnetic and strong interactions but not of 

weak nuclear interactions (which cause decays of elementary particles). 

Indeed, some weak interactions have a maximal violation of parity sym

metry. This is expressed by saying that the mirror reflection of such a 

decay is not observed as a possible physical phenomenon in the labora

tory (Figure 5.9). Interestingly, under the combined operations of parity 

and charge conjugation, that is, under combined CP, the symmetry is 

restored, the mirror image in Figure 5.9 being indeed a description of 

the decay of the anti-Co nucleus into the corresponding anti-particles. 

On the other hand, T seems to be a good syn1metry of all known 

physics, including weak decays, as in the Co example, except for just 

a couple of weak interaction decays where a slight, but unambiguous, 

violation has been experimentally measured [23]. Most interestingly, 

all quantum field theories have as a good symmetry the combined 

reversal of all three. That is, for any reaction or decay that we observe, 

when all particles are reflected in space, replaced by their anti-particles 

and time reversed, the resultant is also a possible reaction or decay, 

and identical in all its measured physical values. (The CP operation is, 

therefore, equivalent to T reversal, and it is indeed CP violation that 

has been observed in a few weak decays.) So far as we know of current 

physics, CPT invariance is as absolute a conservation law as those of 

energy and momentum. 

5.2.2 Gau3e Symmetries 

Quantum physics introduces types of symmetries that had not been 

considered in classical physics. This is because of the use of complex 

quantities such as wave functions in quantum mechanics or fields in 

quantun1. field theories. The simplest new symmetry is that a complex 

function can have a change in its phase and if that does not change 

the Lagrangian and thereby the physics, there will again be a conserved 

quantity, the corresponding conjugate expressedas the d.erivative of the 

Lagrangian with respect to that phase (Sec. 5.1.2). An explanation for 

the observed law of conservation of (electric) charge was seen as a result 

of this 'gauge invariance' of the Lagrangian. 

Indeed, this went much further, in that, together with a change in 

the phase of a field such as that of an electron, coupling terms repre

senting its interactions with a vector field must also undergo a trans

formation to keep the total Lagrangian invariant. This transfonnation 

was an already known gauge transformation of the potentials of a 
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classical electromagnetic vector field (Sec. 1.2.4). That the two gauge 

transformations went hand in hand and that, together with a conserved 

charge its coupling to an electromagnetic field marked a self-consistent 

whole, brought a pleasing unity to the subject of charged particles and 

their interaction with electric and magnetic fields. In a way, starting just 

with a description of the electron field, its gauge invariance points to the 

existence of another field, the electromagnetic. A conserved charge of 

the electron and its coupling to that second field are natural accom-:

paniments, all dictated by the requirements of symmetry. It is one of 

the beautiful stories of symmetry and its paradigmatic role in physics. 

This gauge transformation involving a phase, a single number that 

can vary continuously from zero to arbitrarily large value, is the sim

plest and is described as the unitary group, U(l ), of just one elen1ent, the 

phase, a scalar number. It can describe electric but also other charges 5 

depending on the structure of the additional field invoked and the 

coupling to it. Gauge symmetries with higher -dimensional and more 

complicated groups have also been employed by quantum field theories 

and it is through such gauge symmetries that modern particle physics 

handles elementary particles , fields, and their interactions. 

5.2.3 Supersymmetry 

Operators in quantum mechanics satisfy various commutation rela

tionships. Likewise, in quantum field theory , operators of a bosonic 

system (spin integer) obey commutation, and those of a fermionic sys

tem (spin half-odd integer) anti-comn1utation relations (Sec. 7.3.3). An 

even wider symmetry, called supersymmetry, has been invoked with a 

mix of both aspects. Supersymmetry puts into degenerate multiplets 

of elementary particles not only bosons and fermions separately but 

also together. The full set of operators in the system close under a mix 

of commutators and anti-commutators. Originally invoked for solving 

some technical problems of field theories) supersymmetry (SUSY) has 

become widespread, although there is as yet no experimental data in 

support. 

We will consider here an aspect of supersymmetry in quantum mech

anics that pertains to many simple systems, both non -relativistic and 

relativistic. A characteristic of SUSY in field theories is a spectrum, as 

shown in Figure 5.10, namely a non-degen erate ground state of zero 

energy identified with the vacuum (with zero value for all quantum 
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numbers, necessarily a boson) and every other state doubly degenerate 

as a boson-f ermion pair. Operators that transform among these states 

commute with the Hamiltonian (which is why they are degenerate) 

while their anti-commutator gives H itself, making for a closed alge

bra . There is no evidence that every ( or even any) elementary particle 

·we observe comes with such a degenerate partner of the sa1ne mass but 

spin differi~g by 1/2 ( of course, particles such .as electrons and . protons 

have partner anti.,.particles but they share the ~atlle mass_ and spin, and 

.are also fermions). Even if the SUSY is broken, and the masses are dif

ferent, there is no evidence for that, or ofa duplication in number of all 
elementary particles seen, although searches continue. 

In quantum mechanics , however, spectra with the feature in 

Figure 5.10 that may be dubbed SUSYQM occur quite commonly 

[27]. The free particle in one dimension is already an example. In 

either of the two descriptions of travelling or standing waves, there is 

one ground state -of zero energy. It has necessarily ·zero momentum 

and even parity. ,All other states, now continuously distributed in 

energy, E (Figure 5.11), and not discretely as in Figure 5.10, are doubly 

degenerate, either travelling waves in both directions or even and odd 

parity partners. The counterpart free rotor in two dimensions, with 

Hamiltonian H = f} /2I of angular momentum £ and moment of 

0 .....,..,..--,---
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Figure 5. 10· A supersymmetric quantum-mechanical (SUSYQM) spectrum. A 

non- degen erate ground state at zero energy and all other states doub ly degen

erate characterize such a spectrum, with operator Q and its adjoint carrying 

those pair s into each other (27]. 
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- E-

0 
even odd 

Figure 5.11 The one -dim ensional free-particle spectrum as an exam ple of 

SUSYQM. This continuous spectrum with ener gy from zero to infinity has a 

single state exactly at zero energy, all oth ers with non-zero E being pairs in 

either parity or direc tion of travel. The absence of E = 0 for th e odd-parit y 

ladder is indicated by th e dashed line at the bottom [27]. 
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Figure 5.12 The spectrum of a rotor as anot her exam ple of SUSYQM, now 

with a discrete spectr um in con trast to the one in Figure 5.11. The operator, 

Q, which carries a state into its pair partner, is a product of time reversal and 

angular mome ntum [27]. 

inertia J, has a discrete spectrum with eigenvalues mli, m;::; 0, ±1 , ±2 , . . . 

for angular mom entum and for energy E = m
21i2/2I (Figur e 5.12), re

turning to th e pattern in Figure 5.10. 

A relativistic examp le is of th e Dirac electron in a uniform m agne tic 

field. There is now a doublin g of that figure, in that for both electron 
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. . . 

and positron, thems elves degenerate, su ch a spectral distributi on ap-

plies. Spatial quantization in the magnetic field gives 'Landau8 levels' 

that are equally spaced with the cyclotron energy separation and a 

ground state at a zero-point value of half that energy. But the spin of 

the electron (positron) also couples to the magn etic field and, with the 

B""factor of 2 in Dirac theory, this is exactly sufficient to cancel that 

zero-point value to give a net value of zero for the ground state with 

Landau quantum number zero and the spin anti-parallel to th e mag .... 

netic field. Since flipping th e spin costs exactly the same energy as the 

Landau spacing, again because E = 2, we have a SUSYQM spectrum of 

equally spaced eigenvalues starting from a non-degenerat e zero-energy 

state to pairs for all other integer multiples of the cyclotron energy 

(Figure 5.13) [28]. 
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Figure 5.13 The spectrum of an electron in a magnetic field, B, as evidence of 

SUSYQM in this system. Equally spaced Landau levels along with the couplin g 

of the electron spin to B (with the g-factor exactly equal to 2) lie as shown, 

with the lowest state at zei-o energy having Landau quantum number O and 

spin anti-parallel to the field directi on . Each increasing n and spin flip costs the 

same energy, liw, making all excited levels doubly degenerate. The operator, Q, 
of Figure 5.10, which transforms between them is a product of the operator, a, 

that steps down in the ladder of levels, .md a+~ which flips the spin from down 

to up. 

8 Lev Davidovich Landau, 1908-68, Russian. An outstanding th eoretica l physicist 

with many contributi ons in quantum ph ysics: th e density matrix meth od, sup erfluidity 

and superconductivity, phase transition s, plasma physics, quantum electrod yna mics, 

and neutrin o physics. He was greatly influ enced by Bohr . He developed a great school 
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5.2. 4 Broken Symmetry 

The concept of a symmetry that is broken, often only slightly, has 

already been mentioned in a classical example when the adding of any 

small perturbation with a different r dependence to the 1/r potential 

leads to orbits that do not close into ellipses (Sec. 1.2.5 and 5.1.2). This is 

also widely true in quantum systems. Thus, the coupling between the 

magnetic fields of spin and orbital angular momentum of an electron 

in the hydrogen ( or any other) atom gives rise to an additive potential 

s · i/r3. This lifts the degeneracy in ,e of hydrogenic states with the 

potential now no longer 1/r, expectation values of 1/r3 depending on 

both n and i, unlike that of 1/r, which depends only on n (Sec. 5.1.2). 

However, this contribution being small on the scale of the Bohr energy, 

the splittings are small so that it still makes sense to view the system 

as starting from the degenerate limit; indeed , calculations proceeding 

in this way show the practical importance of symmetry considerations 

even when the symmetry is not exact. 

The SUSYQM example of electrons in a magnetic field in Dirac the

ory provides another nice illustration. The field theoretic description of 

electrons and photons, called quantun1 electrodynamics (QED), leads 

to corrections to Dirac theory; in particular , the g-factor is slightly dif

ferent (about 1%) from 2 because of these QED corrections, so that the 

spectrum in Figure 5.13 is modified , the ground state not exactly at zero 

(the spin energy not compensating perfectly for the zero-point energy) 

and the pairs differing also by about 1%. 

5.2.5 Spontaneous Breaking of Symmetry 

Examples considered so far in classical or quantum systems of broken 

symmetry are due to some additional, external field that does not have 

the underl ying symmetry of the zero-field Hamiltonian. Thus the hy

drogen atom's spherical symmetry stemming from the Coulomb po

tential may be broken by an applied electric field in some direction 

which singles out that direction as special. A lower symmetry then 

of physics in the Soviet Union, and many prominent ph ysicists were train ed by him, in 

his style of a broad-ranging mathematics and ph ysics training in all fields. The 'Landau 

Lifshitz' series of texts in theoretical physics has influ enced and educated physicists 

around th e world. He was severely injur ed in a tr affic accident from which he never 

fully recovered for th e last six years of his life. 
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holds, namely azimuthal ( cylindrical) symmetry with respect to that 

direction, with full spherical symmetry lost. Or, the spin-orbit inter

action considered in Sec. 5.2.4 may maintain spherica l symmetry but it 

lowers the four-dimensional rotation, 0( 4), symmetry of the pure 1/r 

potential to that of three-dimensional rotations, 0(3). As a result, the 

degeneracy between s and p states no longer applies, is 'lifted'. 

One of the most interesting developments, however, in quantum 

field theories was the realization that, with interacting fields, symmet

ries may be broken internally without having to be intr oduced from 

the outside, spontaneous ly within the system Lagrangian itself. This has 

proved crucial in fonnulating the current theory of elementary par

ticles. A main advantage of having a symrn.etry broken spontaneously 

is that the theory remains 'renormalizable', and calculations are not 

plagued by infinities as they are when the breaking is inserted by hand. 

A canonical example is the standard model that unified electromag

netic and nucle ar weak interactions in a single 'electroweak' inter

action. The two were known from the earliest days to be different in 

character, the former long range (it and Newton's gravitational int er

action the two famous infinite-range ones) and the latter short range. 

In physics, there is an inverse relation between the range of interaction 

and the mass of the quantum carrier: the heavier that mass, the shorter 

the range ( as if the force falls off exponent ially, exp(-mcr/li)). The pho

ton being massless ( as is also the graviton), electromagnetic forces are 

of infinite range. On the other hand, weak interactions being confined 

to about 1 fermi , it was clear that the carr ier mass had to be large, ap

proximately 100 times the mass of the proton, so that li/mc ~ 1 fermi 
(10-15 m). 

But introducing such a mass term through a quadratic potential 

in the Lagrangian makes the theory unrenormalizable. The standard 

model's soluti on to this is that through interactions of vector and sca

lar fields, introduced initiall y as massless, spontaneous breaking can 

give one of the vector fields mass. Through such a construction, the 

vector field responsible for both charge-changing and neutral weak 

inter actions gets massive, the corresponding quanta being the w± (ne 

cessarily equal in mass because of CPT invariance) and the z0
, while 

one ot her linear comb in ation of the neutral fields remains the massless 

vector particle that is the photon. 

This famous step of unification of forces in physics, the first after Max

well's unification of electric and magnetic forces, rests crucially on the 



Symmetri es in Quantu1n Physics 133 

phenomenon of spontaneous sym1netry breaking. An even further step 

is the introduction of the Higgs9 boson in the theory of elementary par

ticles, which also embraces the strong interactions of quarks and gluons. 

Again, all particle masses can be attributed to coupling to this Higgs 

field and, for this purpose, it perforce has to be a scalar (zero spin), so 

that it couples to all, universally. A recently discovered heavy particle 

of mass 125 Ge V seems to be the quantum of such a Higgs field, which 

would represent one more step in spontaneous symmetry breaking's 

key role in the unification of physical forces. 

5.2. 6 The 'Why' of Symmetry and Its Breakin3 

Physics, and science more generally, does not usually deal with 'why' 

questions, only 'what' and 'how'. But it is interesting to ask, given the 

central role of symmetry in physics , why this should be so. One answer 

lies in the connection noted between the fundamental laws of conser

vation and independence from specific frames of reference. Such an 

independence is of course necessary for the whole enterprise of phys

ics to make sense and for there to be universal laws. If what happened 

in one laboratory was different from what happened in one down the 

hall or in another country or , for that matter, on another planet or 

galaxy, there would hardly be any common physics to discuss. Thus, a 

translation in space must be a symmetry of the subject. So too, if a meas

urement today was different from one tomorrow or yesterday, that is, 

was not invariant under time translations, there would be no validity 

to the science. Therefore, at least global symmetries such as these are so 

necessary that it would be hard to imagine physics without them. The 

corresponding conservation laws of energy and m omentum are also, 

along with some others, such as of electric charge, the ones we see as 

absolute, with no violations observed. 

Indeed , throughout the history of physics, when even some of the 

formulators seemed to think it necessary to allow violations in building 

a new mechanics, faith in the absolute validity of these conservation 

laws was vindicated and often pointed to the correct formulation. This 

was notably so in the early days of quantum physics, with its seem

ing statistical aspects that led people to entertain the idea that the 

9 Peter Ware Higgs, 1929, British. Theor etical physicist, known for his work on 

broken symm etry in particl e physics. His name has been attach ed to the quantum of 

excitation of th e associated quantum field. 
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conservat ion laws held only in the stati stical aggregate but n ot for 

each individual event or experim ent . However, later and m ore care

ful an alysis and experiment verified that en ergy and m om entum are 

conserved in each indi vidual case as well. Our faith in th ese conserva

tion laws is, th erefore, strong; when th ey seem to be violated, closer 

examination has always shown eith er a mistake in the ory or experi

m ent or a subtl ety not initiall y appreciated, which up on recogn ition 

added further insight into the ph ysics involved. 

Other sym metrie s and relat ed conservati on laws, how ever , are som e

tim es broken . Parity is a notabl e exampl e. Also histori cally interesti n g 

because a bias had devel oped of seein g all spa ce- time symm etri es as 

absolute, as firml y valid as th ose in th e previous paragraph , so that 

violation of parity invariance , that the total parit y on either side of a 

decay process can differ for weak interaction s, came to man y physicists 

as a shock. As an analogy, human ( and oth er animal) faces and bod

ies in th eir outward app earance have bilateral symmetry between th e 

left and right halv es. Although thi s is usually slightly violated , m any 

cultur es and ideas of aesthetics even seeing beaut y in th ese slight asym 

metrie s, it is never th eless striking to come across a sculptur e such as 

that shown in Figur e 5.14, which has a compl ete reversal between the 

two halves of th e mal e/femal e element. In an intere sting analogy to th e 

combination (CP) of parit y and charge conjugation , simultan eous re

flection about th e mid-line , along with inter change of mal e and female 

elements, restores the symmetr y of th e sculpt ed figure! 

Of cour se, it was soon realized th at th ere was no reason for int er

actions to display certain symm etr ies. This is n o m ore th an recognizing 

that while th e symmetr y of an electron bound to the Coul omb field 

of a proton is spherical, introducin g an electri c field in some direction 

and thu s breakin g that symmetry will leave the system with lower sym

metry, cylindri cal with respect to that field direction in thi s exampl e. In 

th e case of parity invariance, it is intrin sic to the nature of weak int er

actions th at th e symmetry does not hold, whereas it does for strong and 

electr omagn etic interactions. 

In m any cases, the external field being weak relati ve to int ernal ones 

(an atom ha s int ernal fields of 109 V/cm), th e breaking of sym m etry 

is slight , alth ough , as noted in Sec. 5.2.1, there can also be ma xim al 

mixin g, a maxim al breaking of symm etry, when there is degeneracy of 

the zero-field states. Such examples are legion in all branches of phys

ics. In a classical example , planetar y orbit s that would otherwise close 
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Figure 5.14 A statue of Hinduism's Ardhanaris hvara, a representation /u nity 

of the male god Shiva with his female principle Parvati, as an illustration of 

broken symm etry. A chola bronze statue from the 11th century AD. Saline 

Hansen <h ttp:/ /en.wikipedia.org/wiki /Ardhanarishvara>. 

if the Sun were the on ly other object in the Universe (Sec. 1.2.5) do 

not do so because of the pr esence of other planets or corrections from 

Einstein's General Theory of Relativity . Even for Jupiter, the largest 

planet, though still small in mass compared with the Sun, all these 

symmetry breakings are small in this classical example . 

Spontaneous symmetry breaking is also easy to comprehend. Even 

though the equations of motion or Lagrangians and Hamiltonians may 

possess some symmetries, solutions of those equations describing some 

system may not displ ay those symmetries. A familiar example is any ob

ject that is not spherically symmetric, a pencil say, that points in a pre

ferred direction. This is seen to be just a consequence of choosing one 

among an infinity of solut ions by holding the penc il in one particular 

direction. The Hamiltonian of all the individual atoms and molecules 

in the pencil may be spherically symmetric but the global solution does 

not have to exhibit it. Note that in all such cases th ere is an infinite 



136 Symmetry 

degeneracy among the possibilities, the pencil held in any direction 

having the same energy and other properties. There is no energy cost 

in replacing one of these degenerate states by another. Grander ex

amples occur throughout physics, and are referred to as zero-energy 

or zero-mass excitations, called Nambu 10-Go ldstone 11 modes. 

Broken symmetry, when slight and with no obvious weak external 

agent to account for it, poses more significant questions. The departure 

of the 3-factor of an electron from its Dirac value of2 is small and of the 

order of the fine-structure constant, which is a measure of the strength 

of electromagnetism. Thus, QED corrections wou ld be expected to be of 

this order of smallness. Similarly, in the triplet of elementary particles 

called pions, the two charged ones (whose masses have to be identica l 

from CPT invariance) have a mass that is of this sa1ne order of small

ness different from the mass of the neutral pion, again as could be 

expected from the fact that this difference stems from electron1agnetic 

interactions in which they differ, all else being com1non to the tripl et. 

One of the more curious instances of an intrinsic and fundamen 

tal symmetry that is slightly broken is that of time reversal invariance. 

Only a few weak interactions, and even they only slightly, break this in

variance [23], which is otherwise valid throughout microscopic physics 

( the question of the one-way direction of time in our macroscopic ex

perience is different and will be considered in Chapter 7). Why shou ld 

this be so of a fundamental symmetry of nature, that it is broken 

but then only very slightly? At least for now , physics reverts to the 

poetic metaphor of the famous physics n1aster of symmetries, Richard 

Feynman, the following from his Lectures in Physics [9]: 

Why is nature so nearly symmetr ical? No one has any idea why . The on ly 

thing we might suggest is something like this. There is a gate in Japan , 

a gate in Neiko, which is sometimes called by the Japanese the most 

beautiful gate in all Japan; it was built in a time when there was great 

influence from Chinese art. The gate is very elaborate, with lots of gables 

and beautiful carving and lots of columns and dragon h eads and pr inces 

carved into the pillars, and so on . But when one looks closely he sees that 

lO Yoichiro Nambu, 1921, Japanese and American. Theoretical physicist with man y 

contributions to elementary particle physics and to broken symmetry in superconduct

ivit(i and particle field theories such as chromodynamics. 
1 Jeffrey Goldstone, 1933, British. Theor etical physicist, known for his discovery of 

zero -m ass excitations as a result of spontaneous symmetry breaking. 
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in the elaborate and complex design along one of the pillars, one of the 

small design elements is carved upside down; otherwise the thing is com

pletely symmetrical. If one asks why this is, the story is that it was carved 

upside down so that the gods will not be jealous of the perfection of man. 

So they purposely put an error in there, so that the gods would not be 

jealous and get angry with human beings. We might like to turn the idea 

around and think that the true explanation of the near symmetry of na

ture is this: that God made the laws only nearly symmetrical so that we 

should not be jealous of His perfection! 

It is also important never to forget that physics is ultimately an ex

perimental subject. Whatever the bias and urge we may have to see 

symmetry as aesthetically beautiful, while it is a guiding principle in ap

proaching the subject, we have to be prepared to accept that the world 

or Universe is what it is as finally measured by our observations and 

experimental apparatus. Thus, for many centuries it was held, even by 

Galileo himself, that circles must describe the orbits of planets, the less 

symmetric ellipse being 'uglier'. This finally had to give way to Kepler's 

actual observation, later vindicated by Newton's theory, that a 1/r po

tential leads to ellipses in general, with a varying ellipticity parameter, 

the zero ellipticity limit being a circular orbit but having no special sta

tus. Here again is an element of physics, as in Galileo 's own realization, 

with zero and any non-zero but constant velocity being on the same 

footing, that the zero value is but one among all possible values and has 

no special distinction. 

So, too, with our modern quantum instances, whether of slight vio

lation of time reversal invariance or a maximal one of parity invariance. 

Further, whatever our bias in seeing integers as specially distinguished, 

the a-value of an electron is not exactly 2, and the inverse of the fine

structure constant, a, is not exactly 137, differing by less than 1%. These 

are facts of our Universe, to be accepted. In the first case, our the

ory ( quantum electrodynamics) gives an account of the many decimal 

places to which 8 has been measured; in the second, a is one of the 

dimensionless constants characterizing the Universe as it is. Perhaps a 

later theory will account for it but there will then be some other initial 

inputs to be regarded as given within the physics of that later day. 

It seems merely silly of arguments such as the anthropic principle to 

attribute any value to the fact that we are here ( or, more generally, to 

life being here), and able to pose questions about the Universe. Even 

granting the premise that except for a narrow band of values, any other 

a would mean a Universe with no stars or the stars all burnt out very 
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rapidl y, and thu s in either case not looking anything like the Universe 

we live in, the argument fails on its own terms to 'explain' th e parti cu

lar valu e, down to many decimal places, that our experiments measur e. 

Indeed, in even the smallest int erval of what is seen as an allowed or 

permissible band of values lie an infinit y of numb ers and one has n ot 

'accounted' for the particular one among them that is measured. In 

invoking an extraneous (to science) appeal to our being her e, the an

thropic principle prematurel y shuts off the qu est within science itself 

to account for the value of a , even should thi s lie far in the future. 

Dira c maintained that it is m ore important to hav e 'beauty in one 's 

et1uations' than anything else. The idea was spectacularly successful for 

him in his derivation of the equation for the electron , that compact and 

elegant equati on not only reconciling quantum m echanics with Spe

cial Relativity but containing so mu ch more within it, including th e 

electron's intrin sic spin angul ar mom entum and its correct coupling 

to the orbital magneti c field, and the description of th e anti-particle, 

the positron. Symmetry and such aesthetic readings int o it are guiding 

principl es in how we work, but we also have to be wary, even in the light 

of succ esses when it has ind eed led to progr ess. Einstein, in formulat

ing his General Theory of Relati vity, with ju st two term s, one on each 

side of the equation , both tensors of second rank, on the one side from 

space- tim e curvature and on th e other the energy-momentum tensor , 

dropp ed another term that could also be admitt ed into th e equation. 

That matter and geometry could be related down to the most econom 

ical and spare capsuling of th em in just tw o terms had a compelling 

logic and attra ction. 

The third term involves the so-called 'cosmological constant' , A : 

Rµ,v - 8µ,vR/2- Agµ,v = -(8nG/c2)T µ,v, (5.1) 

where 8µ,v is th e metric tensor (Sec. 1.2.4), Rµ,v the Ricci12 tensor, a con

tract ed form of the Riemann 13 tens or, itself formed out of derivatives 

12 Gregorio Ricci, 1853-1925, Italian. Math emati cian with contributions to algebra 

and analysis, and inventor of tensor calculus. 
13 Bern hard Riem ann , 1826--66, German. Famous m ath ematician , kn own for geo

metrical investigat ions of cur ved surfa ces, later to become a key part of Einstein's 

Genera l Theory of Relativity. He mad e fund am ental contributi ons to numb er th eory 

as well; his fam ous 'Riemann hypothesis' is still unpro ved . It is seen as central to a host 

of result s, includin g th e distr ibuti on of prim e numb ers. 
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of the metric tensor, R is the trace of the Ricci tensor (that is, the sum 

of the diagonal entries), while T µ,v is the energy-momentum tensor . 

All quantities on the left-hand side have to do with $pace-time geom

etry, whereas that on the right describes the matter that determines 

that geometry and is in turn influenced by it. · 

The A cosmological term had a curious gyration in its history. 

Einstein saw correctly that it could accommodate a repulsive gravity, 

for which there was no evidence in his time, and a Universe that would 

be expanding under its influence , again with no extant evidence. He 

dropped it to obtain a static Univers e. Yet, it was not too long afterwards 

that the expansion of the Universe was indeed discovered and the real

ization that even with just the two terms alone such solutions to the 

equation existed. The expansion could thus have been seen as a predic

tion of the theory, leading to the oft-quoted 'greatest blunder' of his 

to have thought only in terms of a static Universe. And, very recently, 

the observational discover y that the expansion is itself accelerating has 

resurrected the cosmological constant as one natural way of accom mo

dating this acceleration. All other considerations of beauty, elegance, 

and aesthetics must ultimately give way to unambiguous observation 

and experiment. That is the nature of physics, initiall y termed 'experi

mental philosophy'. Just as with Newton's gravitational constant, G, or 

the speed of light, c, A is simply a given constant of our Universe. It is 

what it is, and for us to measure and incorporate into our physics. 
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Maps in Various Forms 

6.1 Maps in Human Histor y 

As with most of th e th emes discussed in thi s book , map s and map 

m aking go back to early hum an history, perh aps even furth er. Along 

with th e idea of a line ar dim ension for distan ces, early hominid s m ay 

well have used primiti ve fonns of m aps to keep tra ck of wh ere th ey 

were , and recognized landm arks and orient ations with respect to th e 

Sun and Moon for returnin g from th e hunt. Even anim.als and insects 

use som e form of map s. We kn ow that bees use a repr esent ation al m ap 

on th e walls of their hives to communi cate to their hive m ates the lo

cation of a sour ce of nectar or poll en, and homing pigeons, monar ch 

butt erflies, and long-di stan ce mi grat ory birds are expert navigators. 

Seafarers su ch as the Chin ese, or Indian s and Arabs wh ose dh ows 

plied between th eir lands, mu st also have had map kn owledge of th eir 

shore s, and th ey help ed th e first European sailors to make th e crossing 

from Africa to Asia (an Arab pilot, Ahn1ad Ibn-Madjid 1
, is said to have 

tak en Vasco da Gam a2 in 1498 on the crossing to Indi a). Captain Coo k3
, 

1 Ahm ad Ibn-Madjid, 1421-1500, Arab. Poet and navigator, said to have operat ed 

around Oman and th e waters of th e Arabian Sea. 
2 Vasco da Gam a, 1469- 1524, Portu guese. Explorer and navigator, and th e first Euro

pean to compl ete an ocean voyage to India . This and a second voyage opened the spice 

tr ade from Asia to Europ e. He was app ointed Viceroy of Portu guese territ ories but on 

his next trip he died of illn ess in Indi a. 
3 Jam es Cook, 1728- 79, English . Explorer, navigator , and cart ograph er of th e British 

1 avy, who first mapped th e St Lawrence River before m aking voyages to th e Pacific 

Ocean , and th e first circumna vigat ion of New Zealand. Th e first of the Pacific voyages 

h ad th e scientific objective of observing th e tran sit of Venus, and carri ed th e botani sts 

Joseph Bank s and Daniel Seland er , whose illustr ations and collections of th e uniqu e 

flora of Australia achieved renown . On th e second voyage, he carried th e chronom eters 

of watchmaker Harrison th at decisively settl ed th e p roblem of locatin g the longitud e 

at any location, a pro blem that had been considered th e central scientific qu estion for 

over a centur y. Durin g th e third expedition, he went on to map th e north -west coast 
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when he sailed with a Polynesian priest, Tupaia4, who directed him be

tween island s not kn own to Cook, m arvelled th at he seemed to have 

all the map s in mem ory, as did th e Polynes ian sailors who had tra versed 

th e South Pacific for over 2,000 years. With the advent of European navi

gators fro1n th e 15th century on, maps of the contin ent s they travelled 

to gained maj or importance and becam e prized commodities, tr easur ed 

and fought over by nati ons and kings. 

Maps, and old map s in particu lar, still hold our fascination (Fig

ure 6.1 ) . Th ey decorat e our walls at home s and businesses. Th ese old 

maps th emse lves becom e a sto ry of th e developm ent in time of our 

knowledge of our world . Today, simpl e geographical m aps have evolved 

into all kind s of repr esenta tional map s displaying, in an effective visual 

Figure 6.1 1522 wo rld map of Laurent Fries, based on the Waldseemtiller 

map of 1513, one of th e earliest maps. < http: //comm ons.w ikimedia. org/wiki/ 

File:Fries_ worldmap_1522. jpg> . 

of North Amer ica and Alaska. Later, in an altercat ion with th e King of Hawaii and his 

men , he was speared to death on a beach. 
4 Tupaia, 1725-70, Polynesian. Navigator and tribal priest, whose astonishin g know 

ledge of hundr eds of Pacific islands and the surr oundin g waters, which he had learnt 

from his father and grandfath er, led to his being taken on by Joseph Banks on Captain 

Cook's first Pacific voyage. He died of illness on board the ship in Indonesia. 
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manner sometimes more efficient than words, some aspect of our lands 

and our lives, whether the distribution of wealth or of disease (29]. Fig

ure 6.2 gives an example of what is now available for each disease. And, 

with global positioning systems (GPS) and hand-held devices, we can 

carry a wealth of information in the palms of our hands, and know 

our precise location even in the deepest jungles of the Amazon or 

out in some vast expanse of an ocean. All this is a 'world away' fron1 

the experiences of a Columbus 5
, Drake 6

, Magellan 7 or Cook and their 

Figure 6.2 A map of musculoskeletal disease, with increased shading ( or col

our coding from yellow through orange to red) indicating increasing burden 

as measured by disability -adjusted life years. <http://commons.wikimedia .org/ 

wiki/File:M usc uloskeletal_dis eases_ world_map _ -_DALY_ -_ WH O2004.svg >. 

5 Christoph er Columbus, also Colon (Spanish), and Colombo (Italian and Por

tug ese), 1451-1506, Italian. Navigator and explorer, often described as the European 

discoverer of the Americas through his four expeditions across the Atlantic Ocean 

und er th e banner of the Spanish kings. While others, including Europ eans, had pre

ceded him, his voyages had a profound impact through Spanish colonization, and 

through the commerce and int erchang es between Europe and the Americas. While his 

original intent was to discover a route to th e spices and silks of Asia by sailing west from 

Europe, he underestimated the size of the Earth and \Vas unaware of the New World 

in between, but his voyages had dramatic consequences in the trav el in both directions 

of people , animals, diseases, and food produ cts ( corn/maize, cocoa, vanilla, potat o, and 

tomato all originated in South America) . 
6 Francis Drake, 1540-96, English. Sea captain, navigator, pirate, and explorer, the 

second person to head a voyage to circumnavig ate the globe. He played a decisive role 

in the battles between the English and Spanish armadas . 
7 Ferdinand Magellan, also Fernando (Spanish) and Fernao (Portuguese),1480-1521, 

Portuguese . Navigator and explorer , who got th e Spanish Crown to support hi s 
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crews, and of countless and unnam ed sailors before, who discovered 

so much of this in the past five centurie s. Many, of course, died, and 

shipwrecks still litter distant shores. 

A map, in its simplest and original form, represents the positional 

layout of objects in a geographic landscape. It has, however, expanded 

to become a major metaphor of our languages , as a representation of 

much else [30]. This includes the use of representations in the sense of 

physics, as will be considered in this chapter. In that usage, th ere are 

many dimensions to the word 'representation'. A first parameter about 

any geographical map is the scale, for instance 1:10,000. This means 

every unit distance on the map is a faithful rendering (representation) 

of 10,000 units on the surface of the Earth. Clearly, the smaller that 

number, the more detail that the map is capable of describing (Fig

ure 6.3). Of course, it would be unrealistic to bring the scale down to 1:1, 

the map then being essentially the full surface itself or whatever piece 

of it is being described. Thus maps may approach the underlying reality 

being described but are not identical to it. So too in physics, which, as a 

subject, is itself a model for an underlying reality, and we should always 

be aware that we may hope to get closer and closer but not mistake our 

descriptions for that reality itself. 

The next parameter of a map, again because it is a representation and 

not the underlying geography itself, is that a map renders on a two 

din1ensional flat piece of paper or parchn1ent a curved two-dimensional 

surface of our globe that is embedded in three dimensions. This ne

cessarily introduces certain incompatibilities or distortions, and early 

history thr ew up alternative representations, each emphas izing or be

ing accurate for one purpose or another. Among these 'projections', 

some preserve direction, useful in navigation for setting the compass 

for travel to a specific destination, but at the price of distorting areas, or 

vice versa. Indeed, these are incompatible choices, so that it is nece ssar

ily so that compass direction and area-preserving maps will violate each 

other. Of course, a sphere itself, the globe of our childhood possessions, 

in being geometrica lly similar to the Earth ( although even there our 

discovery of th e passage between the Atlantic and Pacific Oceans, those Straits now 

named for him. He observed the Magellanic Clouds, which are dwarf galaxies. While 

one ship of his fleet completed th e expedition, becoming th e first to circumnav igate 

the Earth, and returning with spices from the East Indies, he him self was killed on an 

island of th e Philippines. 
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Figure 6.3 Differen t scales for a map. Modified by John Krygier from John 

Krygier & Denis Wood, Making Maps 2nd ed., Guilford Publications, 2011. 

< http: //krygier.owu.edu /k rygier_html /geog_222/geog_222_lo/geog_222_l o04. 

html >. 

Earth is not a perfect sphere but has th e shape of what can only be de

scribed in it s own term s as a 'geoid ') , does not have these distortions but 

th en is often unwield y for use as a map. Am ong the maj or proj ection s 

that mo st are familiar with is the 'Mercator' 8
, named for its inventor 

8 Gerardus Mercator, 1512- 94, Belgian. Mathematician and cart ographer. He was 

the first to use the term 'atlas' for a collection of m aps. He produced maps of Europe 

and the world, becom ing th e leading mapmak er of his age, his son continuin g his work 

after him. 
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Figure 6.4 The Mercator projection for a map. While preserving compass 

direction, and thu s being invaluable for navigati on, areas are distorted, es

pecially at large latitudes. <http://upload.wikimedia .org/wikipedia/commons/ 

thumb /6/62/Usgs_map_mercat or.svg/2000px-Usgs_map_m ercator. svg.png>. 

Figure 6.5 A world map. Strebe: http: //en .wikipedia.org/wiki/File:Winkel_ 

triple_projection_SW.jpg . 

(Figure 6.4). A modern map of the world is shown in Figur e 6.5, 

and the ultimate in maps, of our entire Universe, is now available 

(Figure 6.6), including thre e-dimensional rendering s of it <http:// 

blogs.discovermagazin e.com/outth ere/2013/06/16/th e-most- arnazing

map -youll-see -today-no -matt er-what-da y-it-is/# .UdOhmh YldzZ>. 
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Figure 6.6 Map of the Universe, displaying all observed galaxies, from H. M. 

Courtois et al, Astronomical]. 146, 69 (2013). 

6.2 Maps in Mathematics 

We begin with the use of maps in mathematics. A map is an association 

of one number or entity with another. A mathematical function,J(x), 

familiar from school algebra or calculus, is thus a map, yielding for each 

value of x a value ( or more than one, for multiply valued functions) 

taken by that function at that point; thus, M : x ➔ f(x). x and f(x) need 

not be restricted to real numbers but may be more complicated objects 

themselves. Indeed, a familiar example today on TV or movie screen is 

a globe 'morphing' into a flat opened map, or equivalents with other 

physical or biological objects; this is an instance of a map, albeit more 

complicated. 

As an example, the operation of replacing an equilateral triangle, as 

in Figure 6.7, by the next object in the figure with a triangular pro

jection built on the mid-third of each side, is also a map. Iterating 

such a n1ap gives the next object in the figure after two iterations, or 

the last one in Figure 6.7 after several, and generates what is called a 

'Koch 9 snowflake' in the limit of infinite iterations. This is an example of 

what is called a 'fractal', its mathematical dimension lying somewhere 

between the 1 of the perimeter in any of the finite iterations, and the 2 of 

the area enclosed. Other fractals , which have fired both mathematical 

9 Niels Fabian Helge von Koch , 1870-1924, Swedish. Mathematician known for con

tributions to number th eory and the Riemann hypothesis, the mo st famous open 

problem in mathematics (see footnot e 13 in Chapt er 5). 
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Figure 6.7 Koch snowflake, showing thr ee steps of iterati on. In each, a line 

segment is split into three , with the middle piece projecting out triangularl y. 

In the limit of infinit e iterati ons, a fractal object is generated. David Price 

<http://upload.w ikimedia .org/wikipedia/ commons/d/d9 /KochFlake.svg> . 

and popular ima gination, can also be approached most simp ly through 

such iterated ma ps (Figure 6.8). 

Alth ough fractals were understood by its mathematical pioneers, 

Fatou 10 and Julia11
, alr eady a century ago without any such explic it 

geometrical renderings, it is the advent of modern computers, which 

make such iterations extremely easy, that has led to the spectacular 

images that are now so familiar around us. Benoit Mande lbrot 12
, in par

ticular, has made 'fracta l' an everyday word. Nature, of course, again 

lO Pierre Joseph Louis Fatou, 1878- 1929, French. Mathematician and astronomer, 

known for his work in celestial m echanic s and on ana lysis, especially on bounded 

ana l(tic fun ct ions. On e of the first to study what today are called fractals. 
1 Gasto n Maur ice Julia, 1893- 1978, French. Math emati cian whose work on th e 

iteration of rational fun ctions is recogni zed today as early wo rk on fractals. 
12 Benoit Mande lbrot, 1924-2010, French and American. Mathematician who 

developed the concep t of fracti onal dim ensions and studi ed invariant s und er 
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Figure 6.8 Examples of fractals: Mandelbrot and Julia sets. <http:// 

commons.wikimedia.org/wiki/File:Julia_set_(indigo ) .png~uselang=en-gb, 

http: //co mmons.wikimedia.org /wik i/File:Mandelbrot_set _1250px.png? 

uselang=en-gb>. 

Figure 6.9 Fractal-like objects in nature: a cau liflower and a fern, along 

with a fractally generated cauliflower. AVM <http://commons.wikimedia.org / 

wiki/File:Cauliflower_Fractal_AVM.JPG > . 

because iterations are natural for cell division or growth, has near

fractal shapes (Figure 6.9), even though not strictly so in mathematical 

terms, as physics ( ultimately atoms represent a finite end to unlimited 

division of matter) and biology do not permit that infinite limit to be 

reached. 

transform at ion s in the complex plane, coining the name fractals and populariz

ing it through incredibly intri cate self-similar patterns generated through computer 

iterations. 
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X 

Figure 6.10 (a) A one-variable function as a map. (b) A two -dimen sional 

curved surface as a map. 

But we will confine our discussion to functions as simply understood. 

The one-variable map we started with, M : x ➔ f(x), may be rep

resented as in Figure 6.10a. It maps points along the straight line of 

the horizontal axis onto an arbitrarily curved line that is the collec

tion of the values f(x). A (rea l) function of two (real) variables , f(x,y), 

such as the many examples considered in earlier chapters, whether 

f(x,y) = x2 + y2 or another, similarly maps any point (x,y) in the 

horizontal plane onto a number on the surface 'hoverint above it that 

represents the function z = f(x,y) as illustrated in Figure 6.10b. 

Another possible map, or projection, in Figure 6.11 associates each 

point on a circle with a point on the real line obtained when con

necting it to the North Pole, N, and extending it backwar ds to inter 

sect the x-axis. The North Pole itself becomes the point at infinit y in 

such a projection (note positive and negative infinit y become indistin 

guishable) and is sometimes dropp ed fron1 consideration, for technical 

reasons. 
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N 

X 

Figure 6.11 Proje ction of a circle from the North Pole, N, to the horizontal 

axis, associating an Xi value with each point, h on the circle. 

Figure 6.12, which extends Figure 6.11 into an additional dimension, 

with the circle replaced by a sphere ( say the Earth) and the real line by 

the plane through the Equator, is familiar as a 'stereographic proje c

tion ' and plays an important role in map -making and in physics . The 

two-sphere called S2 is mapped onto the plane called R2 
( a product of 

two real lines). The problem posed by the North Pole or points near it in 

the previous paragraph becomes even more acute, and it is clear imme

diately that areas in that polar vicinity are grossly distorted and spread 

over large areas in the plane. This is seen in standard geographic maps 

that have northern portions of Greenland or Siberia spread out so as to 

look much larger in proportion to other areas on the Earth's surface. 

Figure 6.12 Stereographic projection of a sphere onto a plane. Thi s is a higher

dim ensional version of Figure 6.11. 
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Although Greenland is only as large as Brazil, it looks much bigger on 

such a map (Figure 6.4). 

6.3 Maps in Physics 

As already seen in other chapters, since transformations play a role 

throughout physics and a map is a transformation, much of physics can 

also be viewed as mapping one state of the system to another. This is 

true of classical dynamics, which, through Newton's laws or Lagran

gian equivalent, predicts the state at a later time from knowledge of the 

state at an initial instant. All classical mechanics is, therefore, a map, 

initial states mapped onto final states. So too in quantum physics, with 

again an essential element of all physics being to predict a subsequent 

state of a system from its state at t = 0, this time through quantum 

equations , which are as deterministic in this regard as are their clas

sical counterparts. The Schrodinger or Dirac equations determine 1/r(t) 

unambiguously from 1/r(0) given the potentials governing the motion. 

The unitary evolution operator, a solution of the equation of motion, 

performs this map. 

It was noted in Chapter 2 that quantum physics brought even more 

to the fore alternative representations than was already true in classical 

physics because of the additional feature, from the start, of incompatible 

choices among conjugate entities, such as the coordinate or momen

tum representations. This is accommodated naturally in the language 

of maps, where, for instance , an incompatibility between the preserva

tion of area and direction is already inherent in projecting a two-sphere 

onto a plane. This goes even further because the very non-locality of 

quantum physics fits into a similar non-locality in any map of the Earth, 

this time because a finite curved surface of a sphere is being projected 

onto an open -ended plane, requiring left and right edges to the map 

that are artificial. These edges can be placed anywhere and as conveni

ent, but placed they must be and the two edges then identified in the 

mind so as to wrap around in a continuous traversal from east to west 

( or vice versa), as done by a circumnavigator. 

In a map as in Figure 6.4 or Figure 6.5, two points on the Earth's sur

face on either side of that edge, are seemingly far apart and not 'local'; 

this so-called 'adjacency' problem is familiar in cartography (30]. There 

is an interesting metaphor here for the inh erent non-locality of quan

tum physics because the state of any system with more than one particle 
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resides in a large-dimensiona l space, not the three -dimensional one of 

our experience. Even a simple two-electron system such as the helium 

atom that was discussed in Chapters 2 and 3 has its spatial wave func

tion, 1/f(11, 12), of the two electrons in six-dimensional space, so that we 

have non -locality in terms of the one-electron spatial probability dens

ity and, therefore, any one-electron properties that we m.easure in our 

three -dimensional world. With 1nore particles, the situation gets only 

more complicated, but the non-l ocality of ordinary mapping of S2 em

bedded in a higher ( third) dimension onto a two-dimensional plane is 

an apt metaphor for these larger non-localities of quantum physics. 

Among other examples of non -locality, a very illustr ative one is t alled 

the Bohm 13-Aharanov 14effect. An electron passing by a region ofmag ~ 
➔ . . . 

netic field, B, has its wave function pick up a phase proportional to the 

integrated vecto.r potential, f A · dl, seen along its path. The path may 

not pass through the magnetic field itself but it is the vector potential, 
➔ . . ➔ . . . ➔ 

with B - · 'v x .A, that enters in the expression for the phase, and it is A 

that may be present along the path. Given th e gauge degree of freedom 
➔ . • 

with differei:u A having th e same curl describing the same magnetic 

field, this poses the question of whether to believe in its 'reality' or that 

the wave function can still sense non-locall y the 'real' magnetic .field 
➔ 

behind that A . . . 

The question becomes one of experimental physics in an arrange

ment such as that shown in Figure 6.13, when the electron between 

source and detector has two alternative paths around a region of con-
➔ 

fined B (see also Figure 8.2). While paths have no meaning in quantum 

physics, the relative phase difference between the two alternatives does. 
. ➔ ➔ 

It is given by the integrated A · dl in the area enclosed by th e loop. This 

has, however, an unambiguous meanin$, being , through Stokes's the..; 

orem (Sec. 1.2.2), the surface integral of B over that area. That non -zero 

13 David Bohm, 1917- 92, Am erican and British. Theoretical physicist who contrib 

ut ed to quantum phil osophy and neuropsychology. His alternative int erpr etati on of 

quantum mechanics through so-called hidd en variables and reformulati on ofEin stein 

Podolsky-Rosen 's critiqu e of the standard interpr etation inspired th e wo rk of John Bell. 

Because of his political views and affiliations, he had to leave th e Unit ed Stat es in the 

1950s for Brazil and England. 
14 Yakir Aharanov, 1932, Israeli. Th eor etical physicist, kn own for his work on topo

logical aspects of quantum m echani cs and field theories, and quantum measurements. 
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Bohm-Aharonov experiment 

Source 

· Slits 
Sere.en · 

Figure 6.13 The Bohm-Aharanov set-up, showing the two-slit diffracti6n 

pattern of an electron beam in the presence of a solenoid holding a con

fined magnetic field between the slits. <http: //www.encyclopediaofmath.org / 

index.php/Bohm-Aharonov _effect>. 

values of such a magnetic field and its flux enclosed within the loop 

cause interference effects for the electron pattern detected has been ex

perimentally de:m.onstrated. That the electron · nowhere encountered 

the shielded field eoses . the question of i_nterpretation, .· that irideed 

non-local effects of Bare inherent to quantum physics. 

This is also immediate in Feynman's path-integral formulation , 

where, between source and detector, all possible paths, not just the 

two or few we think of as natural from classical intuition, are involved 

and, in this case, these include paths through so-called shielded re

gions as well . When there is a 3:-on-zero magnetic field there, it does 

have observable effects. Counterparts of the Bohm - Aharanov effect in-· 

volvingmagnetic moments moving around a line distribution of charge 

have also been experimentally demonstrated, all of which reinforce the 

inherent non-locality of quantum physics. 

The Bloch sphere noted in Sec. 4.2.2 for a quantum coin is an S2 two

sphere and provides an interesting example of one n1ore aspect noted 

in this chapter, namely, the stereographic proj ection, or, rather , its in

verse, the inverse stereographic projection from the plane, regarded 

now as the complex plane, onto a two-sphere. The unitary evolution 
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of the state of th e quantum spin according to the linear Schrodinger 

equation can he handled through the standard Pauli matrices, thr ee in 

number, that describe the su(2) Lie15algebra of aspin-1/2. One writes the 

evolution operator as a product of three exponentials, each having in 

its exponent a product of one of the Pauli matrices ( a +, a_, az) with 

the unit imaginary i and a fun ction of time . Th e choice of this triplet 

rather than the Cartesian set ( <rx, ay, az) gives less non-linearity ( quad

ratic rather than infinite series in sines and cosines) and a more ready 

interpretation. 

The function multiplying the diagonal az is a phase that can take any 

value from zero to 00 and is said to have the symmetry algebra u(l) or 

of the Lie group U(l). A single complex function , z(t), and its adjoint 

appear as the functions in the exponents with <1±, This z(t) obeys a so

called 'Riccati 16equation' that has second-order non-linearity, which is 

not surprising because writing the wave function as an exponential is 

a non-linear operation. This first-order different ial, but second order 

in non -linearit y, equation is equivalent to the second-order differential 

but linear Schrodinger equation. Invoking now the inverse stereo

graphic projection of Figure 6.12, the function z(t) can be mapped onto 

the S2 Bloch sphere. Together, this S2 sphere, called the base manifold, 

and the U(l) phase at every point on it, referred to as the fibre, repre 

sent the SU(2) group of spin-1/2 as a 'fibre bundle'. This is a simple way of 

understanding the role of the Bloch sphere in casting the quantum evo

lution of a spin into that of a classical unit vector's rotation on a sphere. 

The inverse stereographic mapping for spin-1/2 or a two-level system 

or qubit finds n1.ore general mappings when extended to higher spins 

or N-level systems or qudits of dimension d - N. In a very similar 

construction as in the previous paragraph for N = 2, with a product 

of three operators, the last diagonal , and th e others involving sets of 

complex number s, z;(t) can be mapp ed onto higher -dimensional and 

15 Mariu s Soph us Lie, 1842- 99, Norwegian. Mathematician whose extraordinary 

st udies of conti nu ous symmetries and their role in geom etry and differential equations 

permeate th ose subjects and th eore tical physics. An associate of Felix Klein, they to

gether established most of the subject of group transform ations . 'Lie groups' and 'Lie 

algebras' are used throughout quantum physics. 
16 Francesco R.iccati, 1676-17S4, Italian. Mathematician and engine er who designed 

canals and dikes in Venice, but known today especially for his studi es of differential 

equations with quadrati c non-lin earity. 
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more complicated base manifolds and fibres described by larger groups 

than U(l). Thus, appµed to a pair of qubits and their group SU(4) (see 

Sec. 4.2.3), analogous but more complicated manifolds to the single 

qubit Bloch sphere in Figure 4.7 can be described (22]. A.lso, some of 

the sub-groups of SU( 4), and the corresponding physical systems and 

Hamiltonians of two qubits can be mapped onto projective geometric 

designs. Notably, sub-groups involving 7 and 10 out of the full set of 

15 operators that occur in man y logic gates and 4-level systems can be 

identified with the diagrams in Figures 5.7 and 5.6, respectively [22]. 



7 

The Problem of Time 

7.1 Time in Our Lives 

As with the concept of space and our location in it, tim e has always had 

a central hold on human s and human hist ory. The inexorable passage 

of time from the m om ent of our births so dominates our thinking and 

languag e that it is difficult to construct a couple of sentences without 

words that are related to it (moment, days, before, after , ... ). But, from 

the beginning , the concept of time has posed que stions and problem s to 

lay people, philosophers, and physicists alike. \Vhat is time apart from 

what our watches and clocks display? Is it universal, a characteristic of 

our Universe, or is our experience of time individual to each one of us? 

Einstein's Special Theory of Relativity, in fundamentally changing 

Newtonian ideas of space and time , which had time as a background 

against which we observ e motion, showed how even concepts such as 

simultaneity of events depend on the observer's frame . Different inertial 

frames in relative uniform velocity with respect to one another will dif

fer on such notions (Sec. 1.2.4), making scientific a theme that jokes and 

myth s have long played with. Thus, the one about a turtle that walks 

into a bar and calls for a stiff drink because it has ju st been mugg ed 

by two snails. To the bartend er's solicitous 'What happened? ' it says, 'I 

don't know, it all happ ened so fast'. Or a story from Indian myth ology 

of a king and companion coming to a lake, the king going in for a dip 

to emerge minute s later as th e companion sees it but th e king himself 

going through several life cycles and covering the full gamut of human 

expe rience as he sees and experiences it in that 'same' period. 

And then ther e is the old saw about time being a way of keep 

ing everything from happening all at once. Several ancient cultures 

regarded time as an illusion. All these find assonances in phy sics. 

For a light beam, as follows from the Special Theory of Relativity, 

time stands still . Classical physics already, and even more quantu1n 

physics, admits alternative formulations, one time depend ent and the 
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other independent, raising the question of whether time is a necessary 

concept or, perhaps, should be done away with all together. This idea 

has occurred to many and, most notably, has been advocated in physics 

by Julian Barbour 1
. 

There are two aspects to time that are conceptually and operationally 

very different. One is the Newtonian concept of time as a background, 

uniform flow in one direction from past into present and on to the fu

ture. The other is of periodic phenomena where something repeats. 

This latter, especially when it is regular, provides the way of measur

ing time intervals. Days and years follow from the motion of our Earth: 

rotation about its own axis, and revolution in orbit around the Sun , re

spectively. The human heartbeat is another, this time on our own scale, 

and approximately the second that results when a day is divided by def

inition into hours, minutes, and seconds, the conversion numbers of 24 

and 60 being historically set. 

As in the example presented in Sec. 1.1, a pendulum of 1 m oscil

lates from one end of its swing to the other in something very close to 

a second because of the particular value of Earth' s gravity, B (note that 

this depends mainly on the mass and radius of the Earth, not its mo

tion, although the effective gravity at any location is slightly affected by 

the rotation and its attendant centrifugal acceleration, thus depending 

on latitude, but the deviation is never more than 0.3%). Indeed, Gali

leo is supposed to have arrived at this realization by timing against his 

own heartbeat a censer that he observed swinging in church. With the 

effects of tides and other variations making the astronomical clock of 

the Earth's motion not accurate enough for modern science and tech

nology, the second is now defined in terms of something 1nuch more 

accurately periodic, the transitions in an atom as it passes from one en

ergy state into another. Today's time standard is given by such 'atomic 

clocks' maintained at the National Bureaus of Standards of various 

countries. 

7 .2 Time in Classical Physics 

Time as an absolute background , th e same for all observers, was part 

of Newton 's formulation of classical mechanics. With absolute velocity 

1 Julian Barbour, 1937, British. Physicist, intere sted in quantum gravi ty and the 

nature of time. 
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meaningless , only relati ve velocities having significance, frames of ref

erence would differ in their ascribing of position, depending on the 

relative velocity between the frames, but all would share the same t. 

This is Galilean or Newtonian relativity. A primed and unprimed co

ordinate system of two such frames with relative velocity; have their 

spatial coordinates related by 

➔/ ... ➔ 

r = r + vt (7.1) 

with the same time for both frames, t' t. The laws of mechan-

ics seemed consistent, especially since they involved only accelerations, 

and both frames would agree on them, and on the forces and torques 

present. It was, however, with the advent of electromagnetism, Max

well's equations not being consistent with Galilean/Newtonian relativ

ity, that a major re-examination was called for, as realized by Lorentz, 

Poincare 2
, and others, and finally and most decisively by Einstein. 

Einstein's Special Theory of Relativity modifies these equations to a 

slightly more complicated mixing up of space and time, 

7' = y(r + ~t), (7.2) 

t
1 

= y(t + vt/c2), 

with y = 1 / ✓ 1 -(v 2/c2
), called the Lorentzfactor and responsible for 

the length contractions and time dilations observed in one frame as 

viewed from the other. The speed of light, c, being large on the scale of 

most phenomena encountered at the macro scopic level (an especially 

fast m eteorite that crashed in California in April 2012 was travelling at 

30 km /s, still small on the scale of light velocity's 10,000 times larger 

value, v
2 

/ c2 effects therefore being only one part in 108
), relativistic ef

fects did not become evident until the exploration of the microscopic 

level of atoms. But, with today's accuracy of GPS (global positioning 

2 Jules Henri Poincare, 1854-1912, French. Mathematician, physicist, and philoso 

ph er, with many contribution s to celestial mechani cs (especially th e three-body prob

lem) , applied mathematics, and mathematical physics. He was one of the founders of 

top ology and chaos the ory in classical dynam ics, and introduced group th eory into 

physics. He also independently discovered what are called Lorentz transformation s and 

some of the ideas of Special Relativity. A populari zer of mathemati cs and science, he 

wrote several books for the layma n. He differed from Kantian philosophy, and from 

Bertrand Russell and Gottlob Frege, in arguing for the supremacy of intuiti on over 

logic in mathematics. 
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system) and other technologies, they, along with general relativistic 

effects of similar order, are crucial for something as mundane as the 

location maps on the dashboards of our cars. 

The Einstein-Lorentz transformations of Eq. (7.2) give the correct 

description of all classical mechanics and electromagnetism, includ

ing translations, rotations, and velocity boosts between inertial frames. 

The invariant that follows (Sec. 1.2.4) from these equations is the 

space-time interval c2
t
2 

- r2 = c2t12 
- r

12
. Classical mechanics and clas

sical electrodynan1ics are perfectly internally consistent and coherent 

theories. 

Lagrange and Hamilton reformulated Newton's equations in a more 

genera l and convenient form. Energies, potential or kinetic, scalar 

quantities and not vectors such as forces and torques, became the basic 

ingredient, and the equations were form invariant, the same in any 

coordinate system (Sec. 1.2.3). Both were great simp lifications for the 

handling of the equations and for finding solutions. Their immediate 

connection to conservation laws when a symmetry means the absence 

of a coordinate in the Lagrangian has been discussed in Sec. 5.1.2. But, 

even more significantly, for the theme in this chapter, they allowed for 

a 'global' rather than 'local' picture of motion. 

Instead of a specification at every instant between the motion's initial 

A and final B of the particles ' positions and velocities, any next instant's 

values following from the forces pr evailing at the previous instant, this 

global formulation is very different. It considers the ent ire motion in 

terms of an 'action', defined by an integration overt of the Lagrangian 

between A and B, thus involving all times in between. An associated 

variationa l principle , that the actual motion is the path that makes this 

action integral stationary, is a fundamental change of ground philo 

sophica lly. The local description fro1n one time step to the next is 

replaced by a global statement about the full motion. That the local and 

global formulations lead to the same physi cs is because of the statement 

of stationarity under all possible variations . These would include a path 

only slightly deviating around some local position from th e actual one, 

so that, without holding locally as well, the global stationarity would 

fail (Figure 7.1). But it also raises the question of doing away with con 

sideration of time because t is integrated over, and so those intermediate 

values between tA and ts are irrelevant to the physics of the motion. 

Next, there is the question of initial conditions. Newton's emphasis 

on initial conditions is almost as important a contribution of his to 
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Figure 7 .1 Lagrangian paths connecting events A and B, with the classical 

path shown in the middle, along with a close one that differs only in one tiny 

segment. 

physics as are his laws of motion. He held that these laws were not 

enough but also necessary are the initial conditions for any physical sys

tem. Thus, to those who questioned his theory accounting for elliptical 

orbits in the Solar System but not the specific ones seen or why they 

are all in a plane, he said that there are always initial conditions, and 

a future theory that goes further and explains some of them will have 

its own conditions that lie outside the purview of the laws themselves. 

Indeed, Laplace's nebular hypothesis and the flattening of a gas cloud 

into a disc does account for orbits ending up in a plane, but the ini

tial swirls in the nebula accounting for the angular momentum in the 

system then become the new initial conditions. 

As a simple question of mathematics as well, a differential equation 

by itself is not enough but initial or boundary conditions are needed 

to specify any particular solution. For a second-order differential equa

tion such as Newton's, these are often taken as the coordinates and 

velocities specified at the initial instant, and this is what is meant by 

a physical system in Newtonian mechanics. The Lagrangian formula

tion through the stationarity of the action instead holds A and B fixed, 

the coordinates and times at those boundary points being fixed. We 

will consider in Sec. 7.4 another formulation through first-order but 

non-linear equations with again only an initial condition. 
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Newton, Lagrange, and Hamilton treat time differently from space, 

which carried over into quantum physics as well, initially in non

relativistic quantum mechanics. The problems this created for quan

tum physics will be discussed in Sec. 7.3 but it is worth noting how 

Hamilton in particular was almost prescient in anticipating quantum 

mechanics , including in formulating the action integral, the dimension 

of action being that of Planck's quantum constant. With th e discov

ery of that fundamental constant, Feynman's path integral formulation 

follows almost naturally , by placing the action divided by n for all pos

sible paths in a sum over them , exp(iS/n), to lead to the quantum wave 

function. The relativistic generalization, where space and time must be 

treated on an equivalent footing, as achieved finally in quantum field 

theory (but not mechani cs), was also alm ost anticipated by introdu

cing an integration over space through a Lagrangian (space) density, 

both 7 and t thus being integrated over, and thereby dethroned from 

any central role in physics . 

7.3 Time in Quantum Physics 

Heisenberg and Schrodinger developed non-relativistic quantu1n 

mechanics, with again tim e treated differentl y from space. The spa

tial coordinates were treated as operators along with their conjugate 

momenta, with which the y do not commut e. The Born-Heisenberg 

commutator, [x,p] = in, or the equivalent regarding of linear mo -
➔ ➔ 

n1entum as a gradient in space, p = (n/i)3 /3x or p = (n/i) V, along 

with E = H = in3/3t, leads to the Schrodinger equation of mo 

tion that replaces Newton's. This conversion of the expression of th e 

Hamiltonian of a system as a sum of kinetic and potential energies , 

H = C? /2m) + V(r), into the first-ord er differential in t and second

order differential in space Schrodinger equation satisfied the physical 

requirement of an equation of motion, that it predict the state of a 

system at t from knowledge of that state at t = 0. But it conflicts 

with the Special Th eory of Relativit y in treating space and time differ

ently. Indeed , the Heisenberg uncertaint y relationship betwe en x and 

p that also follows from th e above commutator does not have an ex

act counterpart for energy and time. Although there is an un cer tainty 

link betw een energy and tim e, its interpret ation is quite differen t, there 

being no operator associated with tim e, t renia ining just a parameter 
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in quantum mechanics , as it did in Newtonian mechanics. Attempts to 

make t an operator have always failed, which is another pointer to the 

theme of this chapter about doing away with it for physics. 

It is a curious fact that Schrodinger initiall y wrote down a relativis

tically correct equation, which is not a surprise, as he would have been 

well aware of Special Relativity's role in physics, but he discarded the 

resulting equation. Starting with (Sec. 1.2.4) the relativistically correct 

relationship, E2 = c2 p2 + m2
c
4

, rather than the non-relativistic expres

sion in the previous paragraph, and rn.aking the same replacements of 

E and p by differentials in time and space, led him to an equation but it 

was also second-order differential in time (just as it was in space). This 

seemed incompatible with a proper equation of m otion which, in pre

dicting the state at a later t from knowledge at t = 0, should be of 

first order. He then formulated the equation that goes by his name, 

his discarded equation being later recognized as also a correct one, 

indeed relativistically correct, but describing a relativistic scalar field, 

not the mechanics of a particle. It is today called the Klein-G ordon 3 

equation. 

7.3.1 Time in Non-Relativistic Quantum Mechanics 

As is its counterpart in classical mechanics, the non-relativistic quan

tum mechanics of a particle is also internally consistent. Given the 

wave function, 1/1(0), at time zero, it correctly describes the evolution 

to the state's wave function at a later time, 1/J(t), unambiguously, just as 

Newton's equations describe th e evolution of the classical state from the 

values of its coordinates and velocities at an initial instant. Only what is 

meant by th e state of a system differs between classical and quantum 

physics. As in the Lagrangian formulation, there is also a variational 

formulation of the Schrodinger equation. 

There are, how ever, in non-r elativistic quantun~ 1nechanics, even 

more sharply than in classical mechanics, two different formulations 

describing the same ( and all) physics, one time -dependent and an

other time-independ ent , this latt er in terms of the stationary states 

of the system. This can be illustrated already by one of the simplest 

applications, namely encounters of a one-dimensional particle with 

3 Walter Gordon, 1893- 1939, German. Th eore tical phy sicist who worked on th e 

relativistic treatm ent of quantum particl es. 
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potential steps and barriers, which is taught in the very first lectur es to 

an undergraduate student and also historically important as one of the 

first successes of quantum physics as applied by Gamow 4 and others to 

what is known as 'quantum tunnelling'. This is one of the most ubiqui 

tous and important of quantum phenom ena. Nuclear fusion in stars, 

covalent binding of two atoms in a molecule, and the various tunne l

ling microscopes of toda y are but some examples besides radioactivity 

in which tunnelling through a barrier is involved . 

Most textbook and other discussions of a particle on a one-dimen

sional step or barrier (Figure 7.2) are phrased in tern1s of time, that the 

particle is incident , say, from the left with some energy E = p2 /2m and 

is thus described by a travelling wave, exp(ipx/Fi). Along with th e ( of

ten implicit, and not always shown) time depend ence , exp(-iEt/Fi), this 

I 
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--------- ~ 0 
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X 

Figure 7.2 A step potential barri er that reflects and transmits waves and par 

ticles incid ent on it from the left. Th at incid ent and reflected waves exist in 

region I and only transmitt ed waves in region III, also for energy E below bar

rier height V ( quantum tunnellin g), is illustrated, as is also the wave fun ction 

over all x. Th e wavelength is th e same in regions I and III, but the amplitude 

is lower in the latter , indi cating a tran smis sion· prob ability sma ller than unit y 

(but n ot zero) for E < V. 

4 George Garnow , 1904----{58, Russian and American. Th eoretic al physicist and cos

mologist. He was on e of th e first to recognize th e effect known as tunn elling in 

quantum mechani cs, using it to account for alpha-decay radi oactivity. He is known for 

advocating th e Big Bang The ory of th e origin of th e Universe, worke d on nucl eosyn

th esis in th e early Universe, and predicted th e relic cosm ological radiation that was 

later observationall y discovered as pervading th e Universe in all directions and con

firming th e Big Bang origins. After the discovery of the structure of DNA, he played a 

part in advancing th e ideas that led to the discovery of th e D1 A code for amino acids. 

Known for his playful prank s and pun s, he was a popul arizer of science with a series 

of books in which a charact er called Mr Tompkins encount ers relat ivistic and quantum 

phenomena in terms accessible to th e layman. 
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represents a particle travelling from left to right, whereas exp(-ipx/li) 

would represent the opposite of a particle moving from right to left. 

Along with the reflected wave in region I in Figure 7.2, both inde

pendent solutions in region II, and only a wave travelling from left 

to right in region III because no particle came at the barrier from 

the right, continuity at the borders between the regions to get a 

single continuous solution from -oo to 00 gives the desired solu

tion, as shown, from which are extracted reflection and transmission 

coefficients of the barrier at any energy E. This is a time-dependent de

scription with states I E, p) of energy and linear momentum, and using 

complex wave functions from the start as solutions of the Schrodinger 

equation. 

As already observed, however, alternative representations are on an 

equal footing in quantum physics. For a free particle, instead of the 

eigenstates of the previous paragraph, another such is where the pair 

of commuting operators is chosen to be the Hamiltonian and parity, 

as was discussed in Chapter 5. These are standing waves in place of 

travelling waves, with real sines and cosines instead of the complex 

exponentials . Any solution for a one-dimensional free particle can be 

written in terms of them and is equally acceptable. Thus, superposi

tions of sines and cosines can be written for each of the regions I and 

III, and either real exponentials (rising and falling) or hyperbolic func

tions for region II, with continuity again established at the boundaries. 

The entire discussion can proceed with real functions without introdu

cing any complex elements, which is consistent also with dealing with a 

real stationary-state Schrodinger equation with real potentials, nothing 

complex needing to be invoked. 

This is also at the same time (!) a time-independent description. It is 

only the boundary condition at ±oo, that a particle went in from left, 

not right, that can introduce complex elements. It is also here that the 

parity symmetry is broken, at this level of the boundary condition that 

distinguishes left from right, not in Figure 7.2 or the Schrodinger equa

tion, which are parity invariant. For this reason, the two parity solutions 

are superposed. But simple analysis [18] shows that the same reflec

tion and transmission coefficients/probabilities follow as in the previous 

paragraph. Since a superposition in regions I and III of a sine and a cosine 

can be written as a phase-shifted sine (for odd parity) or cosine (for even 

parity) due to the presence of the potential barrier, the final expressions 

for reflection and transmission coefficients can be written as sin2
( 8+-8-) 
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and cos2(8+ - 8_), in terms of 'phase shifts' for even and odd parity. It is 

the difference in the two phase shifts that matters for the observed phys

ics. In the final physics of measurable quantities , the two formalisms are 

equally valid, equally good. 

This extends immediately to the case where the barrier is replaced 

by a well. Now there arises also the possibility of bound states in that 

one-dimensional well. With the boundary condition ( that wave func

tions must fall exponentially at ±oo) also real, it is natural to use the 

standing waves and real functions of parity eigenstates and get the con

ditions for the special values of energy where bound states of either 

parity occur. The condition appears as tan 8 = -i and thereby as a tran 

scendental equation involving E. Typically, only a few discrete values of 

E support bound states, whether of even or odd parity. Travelling waves 

can also be used to set up the condition for bound states , with an im

aginary wave vector, k = iK, and requiring only falling exponentials at 

±oo, and will give the same result [18]. 

Thus, as far as physics is concerned, a time -independent representa

tion with standing waves is entirely equivalent to a time-dependent one 

with talk of waves that travel in time. For the purposes of this chapter, 

this contrast between two seemingly different treatments of the same 

physics points to how an analysis with no reference to time works in 

the quantum world. The key parameters instead are phase shifts that 

depend on the energy, E, and are measurable quantities experimentally. 

Not just bound states but even scattering, usually thought of in terms 

of time and motion, are amenable to a time-independent description. 

Three-dimensional scattering theory in more complicated situations 

can also be analysed in the time-independent formalism. Interestingly, 

time as a conjugate to energy, a key feature of quantum physics with Fi 

playing the translating role, can be brought back into the discussion as a 

'Wigner time delay' in terms of measurable ( experimentally accessible) 

quantities such as 2Fid8/dE. 

7.3.2 Time in Relativistic Quantum Mechanics 

The previous section noted that the connection between energy and 

momentum in the relativistic expression did not lead to a differential 

equation that is first order in time and was initially discarded. To place 

space and time on an equal footing and have both energy and momen 

tum enter linearly to get a first-order differential in the equation of 

motion, Dirac factorized E2 = c2'f + m2c4 by 'taking a square root' of it. 
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This led him to invoke an internal four-dimensional space so that 

besides the space-time dependence, the wave function also had these 

internal four dimensions, represented as a four-column vector. Along

side appeared four-dimensional square matrix operators, the 'Dirac 

gamma matrices', and the resulting E = y · p + y4mc2, with replacement 

of energy and momentum operators by first derivatives in time and 

space, respectively , gave the Dirac equation, [yµ,o/oxµ, + (mc/li)]1/t = 0, 

which is manifestly relativistically covariant. The space-time index , µ, 

runs over four values and the gamma matrices them.selves are 4 x 4 

in an internal four-dimensional space, this coincidence in that number 

with the four of space-time being accidental. 

This was a great triumph, and the transformation properties could be 

studied of the y matrices under space-time translations and rotations, 

Lorentz boosts from one inertial frame to another, and under parity 

(P), charge conjugation (C), and time reversal (T). The internal four di

mensions were interpreted as a combination of two aspects, although it 

took some time(!) for full appreciation of them. First, one factor of two 

describes the intrinsic spin angular momentum of 1/2 (in units of Ii), 
quantum spin thus appearing naturally and not inserted by hand as 

previously had to be done to accommodate observed atomic spectra. 

Further, the 3-factor of 2 in coupling spin to a magn etic field, that 

spin angular momentum couples twice as strongly as an orbitally de

rived angular mon1entum, which had been experimentally observed, 

also came out naturally through the Dirac construction . Spin, there

fore , is a relativistic quantum phenomenon. The other two dimensions 

of the intrinsic space were interpreted as the anti-matter counterpart, 

whether of electron, muon, or proton, that the Dirac equation also de

scribes and, indeed , for consistency is required to do so. This amounted 

to a 'prediction' of such anti-particles as positron or anti-proton, the 

charge conjugates of the previously known particles (the muon comes 

as a positively and negatively charged pair) . The Dirac equation does 

not describe only an electron but perforce has to include the positron, 

its anti-particle! 

While all this represented a major advance made by Dirac's placing 

of space and time on an equal footing, it also pointed to an inevitable 

failing of the quest for a consistent relativistic quantum mechanics of 

one particle. The very fact that such a mechanics had to include the 

anti-particle and that the marriage of relativity and quantum physics 

permits the conversion of energy into pairs of particle and anti-particle 
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means that there is no relativistic mechanics of a single particle. The 

description of one electron inevitably includes a cloud of such pairs so 

that the number of particles is not a conserved quantity or an invariant 

in a relativistic quantum world. This means that one has to turn to a 

field theory in seeking such a consistent theory. Besides empirical ob

servations such as the 'Lamb5 shift' and the small departure of B from 

the value of 2 that also pointed to this, it is clear that while the Dirac 

equation involves both space and time linearly, it nevertheless still has 

('suffers from') the same feature, ever since Newton, of treating time 

as a parameter and not an operator, whereas space is so treated as an 

operator conjugate to linear momentum. 

7.3.3 Space and Time in Quantum Field Theory 

Finally, with the realization that there is no consistent mechanics of 

a particle when relativity and quantum physics are combined, physi

cists came to the conclusion that a consistent picture of reality requires 

field theories. The Dirac equation, or the Klein-Gordon equation, in 

this view are not equations of a spin-1/2 or spin-0 particle, respectively, 

but describe corresponding fields, and their solutions are field functions, 

not wave functions of a particle. Both space and time on which these 

field functions depend are parameters and not operators. This places 

space and time on an equal footing, as required by Special Relativity. 

Both non-relativistic quantum mechanics and Dirac's initial formu 

lation of relativistic quantum mechanics violated this equivalence in 

regarding only space as an operator, not time. Quantum field theor

ies treat both space and time as parameters, the fields themselves being 

the operators. 

In giving up on making t an operator, spatial coordinates too are 

no longer seen as operators but just background parameters or n1.ark

ers . It is the field functions themselves that are operators, and the y are 

defined at all points of the background grid of space and time . Upon 

writing a Fourier decomposition of the field functions in terms of plane 

waves in space and time, the coefficients are operators and are referred 

to as creation and destruction operators of corresponding field quanta. 

5 Willis Eugene Lamb, 1913-2008, Am erican. Physicist whose pr ecision experim ental 

spectroscopy led to th e detection of a small energy shift of atomic levels that triggered 

the developm ent of quantum electrodynami cs as th e first quantum field theor y. 
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It is they and, therefore, correspondingly, the field functions that obey 

commutation (for spin integer) or anti-commutation (for spin half-odd 

integer) rules. A basic feature of quantum field theories is that a con

sistent quantization procedure requires the use of commutators and 

anti -co mmutators, respectivel y, for fields that describe integer or half

odd integer spins. Correspondingly, the associated particle excitations, 

which also have the same spins as their fields, are termed 'bosons' and 

'fermions', respectively, and obey the corresponding Bose-Einstein and 

Fermi-Dirac statistics. 

Particles themselves are seen as the quanta of excitation of these 

fields. One need consider only one basic state, the vacuum state with 

energy, momentum, angular momentum , and all quantum number s 

zero, and all physics can be described as expectation values in this vac

uum state of operator products of field functions. A field function is an 

infinite expansion over creation and destruction operators, with multi

plicative plane wave factors. A creation operator, denoted as at, acting 

on the vacuum ket I O) represents one quantum of excitation. Sand

wiching a field function between the vacuum bra , (0 I, and this ket, 

at I O), results in the quantum-mechanical wave function of the cor

responding particle. More complicated products of creation operators 

acting on the vacuum create multiple excitations. In the case of a non

zero spin, the field function has creation ( and destruction) operators of 

both particle and anti-particle , and pairs of them can also be described in 

such a formalism. It also becomes natural that even for a single particle, 

the resulting wave function exists over all space-time, thus accounting 

for one of the first non-intuitive ( that is, on the basis of classical intu

ition) features of quantum physics of a particle not being localized at a 

single point in space and time. 

With quantum field theory, and the picture of interacting quan

tum fields, a consistent physics was finally in hand once again after the 

consistent world view that had been provided by the non-relativistic 

classical mechanics of particles. The step from the Dirac equation to 

its interpretation as a relativistic Dirac field and the resulting quan 

tum electrodynamics (QED) also predicted small effects beyond the 

quantum mechanics of an electron. Thus, in the latter's treatment of 

the hydrogen atom, the degeneracy between the 2s and 2p states that 

goes all the way back to the non -relativistic Bohr -Sc hrodinger treat

m ent and that persisted through application of the Dirac equation for 

states with the same total angular momentum, j = 1/2, was seen to 
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be lifted. This is the Lamb shift, measurement of it having triggered 

the formulation of QED by Feynman, Schwinger 6
, Tomonaga 7

, and 

others. It is a small but crucial field-theoretic correction, being only 

4.5 x 10-6 e V, to be contrasted with a typical non-relativistic energy such 

as the 10.2 e V Bohr energy difference between this pair of states and the 

ground state, or even the spin-orbit relativistic correction, the energy 

difference between j = 1/2 and j = 3/2, which is 10 times larger. 

Since that first successful quantum field theory of QED, many more 

field theories have been elaborated, such as the electroweak or quantum 

chromodynamics or th e standard model, all having the same struc

ture in terms of their treatment of space and time. For the theme in 

this chapter, of doing away with time in physics, they introduc e now 

the natural accompanying element that space, too, is but a marker and 

not a fundamental element of physics. The fundamental elements are 

ene rgy, and linear and angular n1omentum, all observables associated 

with symmetries and laws of conservation. Time and space are to be 

viewed as derivatives with respect to energy and linear momentum, re

spectively, together with factors involving the twin elements of i and n 
of quantum physics (see Sec. 2.2). 

7.4 The Invariant Imbedding Approach 

Newton formulated th e first equati ons of motion in physics as second

order differential equations with initial conditions on position and vel

ocity. A completely different set of equations follows for a variety of 

problen1s, including those of mechanics, in a formulation that views 

any given problem as part of, 'imbedded in', a family of problen1s. 

Thus, consider the question of elementary physics of how high a par

ticle rises when thrown from the surface of the Earth with some initial 

velocity, v. The conventional New tonian approach to proj ectile motion 

under Earth's gravity, 8, is to int egrate Newton's equation, x = - 8, with 

6 Julian Schwing er, 1918- 94, American. Versatile theoretical physicist and one of the 

co-deve lopers of quantum electrod ynamics . He worked on th e development of radar . 

His masterful use of variational principl es and Green's functions originat ed from such 

work in electromagn etism but extended to quantum field th eories. He was influential 

th rough his various books and reports and the many th eoretical ph ysicists who were 

his stud ents. 
7 Sin-Itiro Tomonaga, 1906- 79, Japanese. Th eoretical physicist and one of the inde 

pendent co-discoverers of renorma lization and quantum electrod ynamics. 
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x(0) = 0, x(0) = v, to get x(t) = vt - Bt2 /2 and x(t) = v - Bt, familiar 

kinematic equations, and determine the maximum height reached as 

the point where the velocity vanishes, namely, at time T = v/g as given 

by that second equation . 'Eliminating' T by substitut ing into the first 

equat ion then gives the desired answer, H = x(T) = v2 /28. 

The invariant imbedding approach, developed initially by Am

bartsumian8 and Chandrasekhar 9 for astrophysical applications of ra

diation flow through stellar atmospheric layers, and then as a general 

technique by Bellman to, Kalaba 11, and their collaborators, proceed s 

completely differently. The question of height reached for velocity v, 

H(v), is seen as a part of afan1ily of such questions for varying v. Among 

these is certainly the 'trivial' one, H(0), the height reached when 

thrown with zero velocity whose solution is immediate: H(0) = 0. Next, 

in the particle' s rise , when the particle has risen slightly and its velocity 

dropped to v- b. v, the height reached from there is part of the fa1nily of 

questions: H(v - b.v). The amount risen is easily written as a matter of 

definition of acceleration, that it is the distance covered at velocity v for 

the infinitesimal instant b.v/g, namely vl::..v/B-Thus , clearly (Figure 7.3), 

H(v) = H(v- b.v) + vb.v/3. (7.3) 

The rest is simple calculus to get th e first-order differential (note in v, 

not in time) equation, 

dH/dv = v/B, (7.4) 

8 Viktor Ambartsumian, 1908-96, Arm enian . A major figure in theoretical astro

physics with man y contribution s to the study of stars and galaxies. In stud ying light 

diffusion through media for astrophysical applications, he developed the math emati cs 

of invariance prin ciples that later became the general meth od of invariant imb edding . 
9 Subrahman yan Chandrasekhar, 1910-95, Indian and American. Astrophysicist and 

mathematical physicist, with wide-ranging contributions to our understandin g of stel

lar atmospheres and stellar structure. Using quantum mechanics for the electron gas in 

a collapsed stellar core, he establish ed an upp er limit that bears his nam e for the size of 

such 'whit e dwarfs'. Also, he was one of th e first to study th e quantum m echanics of the 

negative ion of hydroge n, both for its structure and for its role in stellar opacities. He 

was the author of many texts on rotating figures of equilibrium, hydrod ynami cs, black 

holes and gravitationa l waves, and a study of Newton's Principia, and an influential editor 

for two decades of th e Astrophysical Journal. The NASA x-ray telescope is named after him. 

IO Richard Ernest Bellman, 1920- 84, American. Applied mathematician, invento r of 

th e method of dynam ic programming with practical app lications in control th eory. 
11 Robert E. Kalaba, 1926-2 004, American. Applied math emat ician, with con tribu

tions to dynamic programming, and communication and control theory . 
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Figure 7.3 The invariant irnbeddin g analysis of H(v), th e height reached by an 

object th row n verticall y with speed v against Earth 's gravity. 

which can be immediatel y int egrat ed with the initial conditi on already 

set for H(O) to give th e result H = v2 /2g. 
Thi s illustration of invari ant imb edding is instru ctive in its com

parison with the conv enti onal approa ch that invokes tim e explicitly, 

determines T, and th en eliminat es it. All this is avoided in th e invari

ant imb edding appr oach. Even th e invoking of the infinit esinial in stant , 

which would seem to intr odu ce th e concept of tim e, is actu ally for our 

ease of use ofl angua ge, ~ v/ B following as a simple con sequ ence of accel

erati on being a rat e of chan ge of velocity, so that th e distance covered 

at speed v while chan ging by an am ount ~ vat a rat e Bis given by v~ v/3 

with out reference to tim e. 'Rate of ch ange' also seem s to involve th e 

concept of time, whi ch ju st goes to show how in escapable it is for us to 

use words denotin g tim e. But , th e i1nportant point is that th ere is no ex

plicit intr oduction of tim e th at is later eliminat ed as in th e conventional 

appr oach. 

What is striking about thi s appr oach is its econ omy in focusing on 

ju st th e qu antiti es of int erest, height and velocity, which are at th e 

same tim e m easur able or experim ent ally accessible quantiti es at th e 

end point s of th e m otion . Whil e tru e th at with our stop-wa tches th e 

tim e, T, is also accessible to m easurem ent , even so it is redund ant and 

n ot what was being sought in th e framin g of the pr oblem , n am ely, th e 

height reached for a given velocity of thr ow. No tim e elem ent is ne

cessary for this ph ysics. Th e very forn1ul ation of imb eddin g in a famil y 

of problems and th en th e use of calculu s leads to first-or der differen

tial equati ons and initial valu e pr oblem s rath er th an th e conventi on al 

tr eatm ent 's second -or der equations with two bound ary conditi ons. 

A qu antum -m echani cal example is in scatt erin g th eory, even a sim 

ple on e such as scatt erin g by a po tenti al, V(r). Th e tim e-ind epend ent 
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Schrodinger approach is to construct wave function solutions of that 

linear second-order differential equation and fit them asymptotically 

to a superposition of a standard pair of regular and irregular solutions, 

typically a sine and a cosine, and thus extract a phase shift relative to 

the regular solution in the absence of the potential. These phase shifts 

make contact with experimental data on cross-sections, total or differ

ential in energy or angular distribution, that are expressed in terms of 

such phase shifts. 

The imbedding approach is to think of a family of potentials, V(r), 

in particular the given potential, as being built up of a series of such, 

starting at r = 0 and truncated at different r all the way to oo. The 

phase shift for any one of these is now a function of r, 8(r). Clearly, with 

the potential truncated at the origin itself, that is, no potential at all, 

there is no phase shift, so that 8(0) = 0. On the other hand, given the 

solution sin[kr + 8(r)] at some r, the infinitesimal extra potential (Fig

ure 7.4) between V(r) and V(r + or) will add to it an infinitesimal extra 

phase shift that can be written simply from the Born approximation 

V(r) 

r 
01------~~-----~----

Figure 7.4 The invariant imbedding approach to quantum-mechanical po

tential scattering from a potential, V(r). The full potential is viewed as being 

built up of tiny segments, such as the one shown shaded. 
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(k = p/Fi is the wave vector). Once again, using ne xt the steps of the 

calculus , a first-order differential (note in r, not in time) equation fol

lows for tan 8(r). The Born expression, being a perturbation result, is 

quadratic in the wave function sin[kr + 8(r)] so that the first-order equa 

tion is non-linear in 8(r). Together with the initial condition, 8(0) = 0, 

the problem is well defined and can be integrated to give the desired 

8(00) (31]. 

The connection between the two approaches is also clear. The wave 

function at any value of r of the conventional treatment can be writ

ten as a phase and an amplitude, both r dependent, and in a so-called 

phase-amplitude m ethod (PAM), the Schrodinger equation decom 

posed into a pair of equations for th e phase and amplitude functions , as 

in Sec. 2.1. The first-order, quadratically non-linear equation for tan o(r) 
that follows is precisely the one given by the imbedding approach. 

Once 8(r) is obtained from it, the first-order differential equation for 

the amplitude fun ction is easily evaluated by quadrature. Again, as in 

the projectile example, it is inherent to the imb edding m ethod to lead 

to first-order differential equations, albeit non -linear and often quad

ratically non -linear. This connects to similar Riccati equations noted 

in Sec. 6.3 or to the Hamilton-Jacobi 12 equation of classical Lagrangian 

physics. The commonality is also obvious that in writing a function in 

terms of a phase in an exponent, such a non -linear operation trans

forms a linear but second-order differential equation into a first-order 

but ( quadratically) non-linear one for that phase. 

Viewing either of the two examples above directly in the imbedding 

philosophy, this calculus in terms of a family of problems leads natur

ally to first-order differential (in some relevant physical observable such 

as v or r of the examples, not in t) equations and initial valu e problems. 

There is also an economy in this approach, especially in not invoking 

elements, whether tim e or wave functions, that are not accessible or 

done away with anyway at the end. The definition of acceleration or the 

perturbative Born result that involves only th e square of the wave func

tion ( a quantity accessible to measurement) are enough as input to give 

the full solution. Quantum physics , in particular , brought thi s accent , 

12 Carl Gusta v Jacob Jacobi, 1804- Sl, German. Math emati cian wit h fundamental 

contributi ons to dynami cs, ellipti c fun ctions, and numb er th eory. One of th e found ers 

arou nd 1830 of th e 'ph ysics semi nar ' at Konigsberg, whi ch combin ed rigorou s trainin g 

in both theor y and experim ent, and whi ch shap ed curri cul a in ph ysics first in German y 

and th en elsewh ere. 
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especially emphasized by Bohr and Heisenberg, of physics dealing only 

with what is in principle measurable with our experimental apparatus. 

The imbedding approach fully conforms to this philosophy, develop

ing equations for H(v) or c5(r) rather than time or wave -function. It 

raises, therefore, the question of physics doing away altogether with 

'irrelevancies' such as time ( or wave functions). 

7.5 Should Time Be Abolished? 

Julian Barbour is perhaps the contemporary physicist who has thought 

most deeply and for long about the nature of time. He, too, favours 

a time-independent formulation of physics, with time itself regarded 

in terms of a change in something else: 'Physics must be recast on a 

new formulation in which change is the measure of time , not time 

the measure of change'[32]. And, instead of time flow, he would re

place by instantaneous snapshots of the Universe as a whole, instants of 

time that he calls NOWS. Time for him is a stringing together of these 

NOWS. This suffers, however, from the same profligacy as does the 

Many Worlds Interpretation advocated for quantum physics (Sec. 8.5). 

Further, quantum physics makes fit ~ 0 problematic because it im

plies an infinite amount of energy, the conjugate quantity to time. 

Indeed, even in the two theories of relativity, the same holds true . Any 

non-zero mass particle can, according to the Special Theory of Rela

tivity, travel at speed c, which is when time stands still, only at infinite 

energy cost. And, in the General Theory of Relativity as well, where 

gravitational fields are seen to slow down clocks, the limit of slowing a 

clock down to zero requires an infinite gravitational potential. 

The 17th-century artist Maria Sibylla Merian 13 of Frankfurt and 

Nlirnberg developed a unique, especially for its time, style of painting 

with intricate renderings of insects and plants, as in a much later sci

entific illustration tradition. Besides being a revolutionary as a woman 

artist, her choice of subjects for her paintings were unconventional, in

sects generally being regarded as ugly ( the prevailing belief was that 

they were spontaneously generated from mud) and not a subject for 

serious art . Even more striking was her rendering different stages of an 

13 Maria Sibylla Merian, 1647-1717, German. Artist and painter of natural histor y. 

She is known especially for her paintings of insects, first in her native land and later 

on a two-year trip to Surinam in South America. In addition to drawing and painting 

them, she also studied carefully insects, plants, frogs, snakes, and spiders. 
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insect's life, the caterpillar, pupa , and adult butterfl y all on th e sam e 

canvas. The entire life cycle of the creature was shown at once, to be 

grasped in an instant (Figure 7.5). The technology of time lapse pho

tography of later centuries would make possible the complementary 

depiction of a single insect followed through all the stages from egg to 

its adult shape in chronological sequence. 

Figure 7.5 A painting of caterpillar and butterfly by Maria Sybilla Merian 

(1705, illuminat ed copper engraving from a book in Senckenberg Naturmu

seum , Frankfurt, German y, Hannes Grobe). <http:// upl oad.wikim edia.org / 

wikipedia/commons/thumb /c/c9/Merian-grafic -senkenberg_hg.jpg /728px

Merian -grafic-senkenberg_hg. jpg> . 
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Astronomy provides an analogous example. The time scale of our 

own lives being incompatible with that of stars, we study instead a 

whole sample of stars in our own lifetime, all of the same type but at 

different stages of their evolution, to provide the entire life history of 

a single star of that type. Such complementary descriptions using ei

ther a flow in time or a static, 'froz en', time-independent one, and the 

various discussions in this chapter all raise the question of how essen

tial time is to understanding physics . Already in classical electricity and 

antenna theory, the complementarity between time and frequency was 

well recognized. Indeed, in a very definite way, these Fourier conjugates 

are related so that a distribution sharply peaked at an instant is spread 

broadly over the entire frequency spectrum, and vice versa. Quantum 

physics, through the entry of Fi, the proportionality between energy and 

frequency, extended this to energy and time providing complementary 

pictures. Standing and travelling waves are both equally valid routes to 

understanding the same phenomena (Sec. 7.3.1). 

Atomic spectroscopy provides a similar picture. The stationar y states 

of an atom, solutions of the time-independent Schrodinger equation 

with the Hamiltonian H of the atom (Sec. 1.2.5), provide a complete 

picture of all possible phenomena associated with that atom. They are a 

complete set and , through superpo sitions of them, time variations, in

cluding scattering dynamics, can also be described. Indeed, for the first 

many decades of quantum physics and the study of atomic structure 

and dynamics , more and more precise spectroscopy with higher and 

higher energy resolution and accuracy was developed. It is only within 

the past decade that the advent of shorter and shorter laser pulses, now 

down to a few hundred attoseconds , has led to the alternative emphasis 

on direct integration of the time -dependent Schrodinger equation. 

Such a short pulse of course excites an atom into a superposition of 

a large number of energy eigenstates. 

It comes down , therefore, to a question of alternative representations 

or points of view that has always characterized the subject of physics, es

pecially quantum physics (Sec. 2.2). The same is true when it comes to 

time. Instead of arguing for the primacy of a time-independent Qulian 

Barbour) or time-dependent (Lee Smolin 14
) analysis, which are but 

limiting cases at two ends of a continuum, the picture and philosophy of 

14 Lee Smolin , 1955, American. Theoreti cal physicist, in quantum gravity and cos

mology. 
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alternative representations and views says that both are equally capab le 

of capturing the fu ll or total world view, and neither is more or less. 

It is a matter of taste, and sometimes one of practicality, depending on 

the observer's locati on in space and time ( as in whether a 17th-century 

artist working with paints on canvas one afternoon or a modern pho

tographer with high-speed tim e-lapse techniques to follow the entire 

life cycle of a monarch butterfly), which is more convenient for the pur

pose at hand. Does a butterfly philosopher (Chapter 2's Chuang Tzu 

or contemporary Thomas Nagel 15
), with its constant flitting and swift 

flight in three dimensions, carry a faint trace of memory to wonder 

what it feels like to be a caterpillar, with its stilln ess or slow crawl in 

two dimensions? 

Indeed, as in the discussion of frame transformations in Sec. 2.2.2, 

one can choose a judici ous mix of representations to understand (riding 

alongside a photoelectron from an LS-coupling region at the small r of 

its birth to the jj-coupling at asymptotic distance when it is detected) 

the pheno1nena under investigation. Indeed , a useful mathematical 

technique of our times called 'wavelet analysis' uses as its basis finite 

intervals in both time and frequency rath er than working in either of 

the Fourier conj ugates of time alone or frequency alone. Musical no 

tation long ago adopted such a hybrid picture. And, in the visual arts, 

cubism depicted simultaneous ly different profiles, front and rear views 

of an object, includin g a human figure, as a way of capturing the whole . 

Physics deals with establishing corre lations between phenomena and 

events, and can proceed without explicit invocation of time. The phil

osopher Soren Kierkegaard 16 made a profound observation: 'You can 

on ly und erstand life backwards but we must live it forwards'. This 

might be extended to say that physics itself can do away with time, 

but physicists, as time-bound creatures from birth to death, are con

demned to view the physical world in terms of time. And, it might 

be added, in terms of classical concepts such as position, velocity, etc., 

which are not the ones that the und erlying reality is constructed out of 

(see also Sec. 8.5). 

15 Thomas Nagel, 1937, American. Philosopher, known for his philosophy of the 

mind and his criticism of reductionist accounts. His essay 'What is it like to be a bat?' 

is widely kno wn, as well as his recent criticisms of the neo-Darw inian view of natural 

selection as inadequat e. . 
16 Soren Aabye Kierkegaard, 1813- 55, Danish. Philosopher, theolog ian and social 

critic, regard ed as the pr emier existentialist philo sopher. 
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Complexity and Emergence 

8.1 Complexity 

The world around us is varied and complex, perhaps even in reality, but 

certainly at least seemingly so. But our brains seem capable of under

standing only in simple terms. Therefore, whether it is early man with 

mythical explanations or scientists giving natural explanations of that 

physical and biological world, a vast amount of knowledge and experi

ence is condensed into simpler forms that we can comprehend. The 

whole quest of science is to take what looks complicated but reduce it 

to a few basic principles and inputs, to 'divine the rules of the game', 

much as one would watch several games of chess and see through all 

their complexity the basic underlying rules, moves, and strategies. 

Thus, Newton explained much about motion in the Solar System 

through two principles, that of inertia and the 1/r
2 force of gravity. 

These natural explanations may seem counter-intuitive, that instead of 

angels beating their wings incessantly along the orbit to keep the planet 

moving, the force acts perpendicularly to the realized motion at no 

energy cost (Figure 1.12). The myriad of slightly different snowflakes, 

seemingly the result of a God or Santa's army of elves stamping them 

out in a snowflake foundry, is seen instead as natural six-fold symmetry 

of aggregation in the crystal growth of water, with inevitable fluctu

ations making for small differences in the individual flakes (Figure 5.2). 

Both examples also show a fundamental feature that, in addition to 

basic principles, initial conditions or fluctuations not reducible to the1n 

are an ingredient of scientific explanation. They may be reducible to 

other principles in a later, more embracing theory, but there will then 

be new initial conditions . Seeking to eliminate them altogether in son~e 

Theory of Everything, or to take recourse to an 'anthropic principle' 

that makes our asking these questions intrinsic to the way things are, 

seems antithetical to science (Sec. 5.2.6). Even if we never quite reach 

it, and can expect only to get closer to it, there is an underlying reality 
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independent of us. After all, there was a Universe and an Earth, with 

laws and principles governing them, long before the em.ergence of us 

or our ancestral hominids, mammals, or life itself. 

Each area of physics has its small set of variables and parameters in 

terms of which observed phenomena are inter-related or explained in 

simple terms. Thus, in studying an ideal gas in a container, it is the 

volume, or the temperature when a finger or thermometer is stuck 

into it, and such so-called 'extensive' quantities that are of interest, 

not following the motion of each of the enorn1ous number of m ol

ecules constituting the gas. Even if it were possible to follow all of 

them in detail , it would be irrelevant if one is interested in just one 

number, the temperature of the gas. After Maxwell and the kinetic the

ory of gases, the connection between the microscopic and macroscopic 

is available through the subject of statistical mechanics but thermo 

dynamics is a self-contained subject in itself and in terms of its own 

concepts. 

The same is true at the microscopic level. For studying atomic and 

molecular properties, covering an energy range from me V to a few tens 

of e V, the quark and gluon constituents of nucleons in the nuclei do 

not need to be considered. Indeed, it would be silly to do so even if it 

is true that all matter ultimately is a mix of quark s, gluons, and lep 

tons, and their interacting quantum fields. This is also true of much 

of nuclear physics, where it is sufficient and appropriate to consider a 

nucleus as a collection of nucleons, protons, and neutrons, without in

voking sub-constituents of them. Many of those degrees of freedom are 

frozen at the energies of interest so that they are irrelevant and thus 

ignorable . 

And, even within atoms themselves, in toda y's field of cold colli

sions, a few parameters, the scattering lengths, are all that are necessary , 

whether it be lithium or rubidium that is und er study. For decades, 

much effort has been devoted in precision spectroscopy or theoretical 

atomic structure calculations to understand each atom and differences 

between atoms, especially difficult the more the number of electrons 

that are involved. But none of these is relevant to studies at nan okelvin 1 

1 William Thomson, Lord Kelvin, 1824- 1907, British. Physicist and engineer, who 

mad e key contributions to electricity and to th e und erstandin g of heat energy and the 

Second Law of Thermodynamics. He established th e absolut e temp eratur e scale used in 

the sciences, now named after him. He also contribut ed to telegraphy, especially in th e 
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ene rgies, a single parameter being sufficient to describe these alkali 

atoms. 

In all this, an important consideration is the scale of energies involved 

and the corresponding inverse relation to lengths, an aspect of the un

certainty link between lengths and momenta. This gives rise to natural 

hierarchical levels of phenomena and explanation s thereof, new col

lective coordinates and collective quantum numbers , and even new 

concepts becoming relevant at each level. This seems to characterize 

physics , and science as a whole. Identifying the few relevant variables at 

each level is essential for progres s in ph ysics. 

8.2 Temperature 

An especially nice illustrati on of such 'emergent ' concepts in ph ysics is 

temperature, T. It is necessaril y a collective concept, not applicable to a 

single atom or m olecule, but a measur e of the random kinetic energies 

in a large collection of them. On the one hand , save for the Boltzmann 2 

constant, k, which mediates the conversion from thermal energies to 

mechanical, there is no oth er input but the mechanic al energies, mv2 /2, 

averaged over the random m otions of th e molecules in an assembly. 

But, on the other hand, any one of th ose molecules, upon isolation, 

cannot be said to have a temperature, and the concept itself does not 

even apply to it. A particle or a well-collimated bea1n of them , all with 

some definite velocity, ma y have very high kinetic energ y but it would 

be inappropriate to say it has a temperature mv2 /2k. Only th e random 

energi~s, and a collective average of them, is relevant to T. Ind eed, there 

are current attempts through precision m easurem ents to fix the value 

laying of the first trans -Atlantic telegraph cable when he solved man y of th e probl em s 

as th ey arose, and to imp roving th e nautical compass . He was th e first UK scienti st to be 

mad e a baron. 
2 Ludwig Boltzmann, 1844-1906, Austrian. Philosopher and theoretical physicist 

with maj or contribution s to th e kinetic theory of gases, th erm odynami cs, and statis

tical mechanics. Disorder and th e concept of entrop y and the counting of microscopic 

states for und erstandin g th e Second Law of Therm odynami cs, so that it is a sta tistical 

law, are among his greatest contribut ions, as is his seeing the und erlying atomistic stru c

tur e of matt er behind it. In this, he was opposed by much of th e prevailing philosophy 

of physics around him that stressed energy and continuou s distributions rather than 

a discrete particu late one. The Boltzmann equation and th e fundamenta l constan t, k 

(in troduced actually by Planck), relating energy and temp eratur e carry his name. He is 

also seen as a pioneer in und erstanding free energy, a concept of great import to biology. 
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of k and thus reduce T to an energy, n1uch as fixing the speed of light, c, 

renders measurements of length to those of time. 

As with other instances of concepts that are relevant at one hierarchy 

not being simply reducible to those at a lower level, there is often a 

suppression of a large number of degrees of freedom in this reduction. 

While present, they are irrelevant, and are frozen out. At the level of 

atomic interactions in the energy range of a few e V or less, quark de

grees of freedom are simply not excited, being at a much higher energy 

scale and thus ignorable. Similarly, while there is an Avogadro 3 numb er 

of degrees of freedom of each molecule, only the one of tempera

ture is relevant in the thermal averaging, which makes sense of course 

only under the so-called ergodicity that pertains to thermodynamic 

equilibrium. 

8.3 Phases and Phase Transitions 

Everyone is familiar with phases of matter. Thus, water exists either as 

gaseous water vapour, or as liquid water, or as solid water-ice ( actually 

ice itself exists in many phases, one, Ice IX, made famous in a literar y 

work! [33]). At the level of the individual molecule, H2O, there is no dis

tinction and no phase information resides in it. But, in the aggregate, 

and depending on external conditions of temperature and pressure, en

tirely different phases emerge. And, at certain transition values of these 

external parameters, different phases can co-exist in equilibrium. Again, 

it is a fact familiar to everyone that at normal atmospheric pressure, 

water and ice co-exist at 0°C, and water and steam at 100°C, these even 

defining the temperature scale. Less familiar to the layman, but well 

recognized in physics, is a 'triple point', when all three phases co-exist at 

a specific temperature and pressure! (This triple point of water at 0.01 °C 

or 273.16 K is used to fix the temperature scale.) Such phases and phase 

transitions between them are another good illustration within physics 

itself of emergent concepts and phenomena. 

3 Lorenzo Romano Amedeo Avogadro, 1776-1856, Italian. Math ematici an and scien

tist who contribut ed to understanding the molecular stru ctur e of gases, and to clearly 

distinguishing between atoms and mol ecu les. Th e numb er of mole cules in a 'mole ' of 

any gas, defined as the mass in grams equal to the molecular weight, a large numb er, 

approximatel y 6 x 1023
, is named after him. 
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8.4 Even More Profound Emergences 

Temperature might serve as a goo d model for oth er emer gent con

cepts that play a role in our lives. The meanin g of a text is not in any 

of the words constituting it and certainl y not in th e let ters, all texts 

being mad e of th e same lett ers of th e alphabet and a few other sym

bols. Our scientific papers toda y and a book such as this are often set in 

lines of some TeX compiler , th e lett ers of the alphabet and a few other 

strokes capable of rendering astonishingly varied fonts and symbols. In 

today's digital displays, arrang eme nts of seven line str okes can repro

duce any lett er or number. But th e text itself and its m eaning are not 

to be reduced to su ch. 

Or, as another example , th e use of coins, currency, and oth er finan

cial paper, n ow disembodied in electron ic space (see Sec. 4.3), has as its 

essence a transa ction betwe en two parties for goods and services. When 

you buy som ethin g and pay at the store counter, say with a cheque, 

when and how are you actually paying for it? Is it at the mom ent you 

sign th e cheque and hand it over to the store clerk? Is it when, at the 

end of th e day, th e stor e bundl es up and pr esent s the chequ es to a 

local bank bran ch? Is it when, thr ough a series of int ervening banks 

and financial instituti ons in betw een, the funds are ded ucted from your 

own account, where, perhaps, an earlier direct deposit from your em 

ployer for services you rendered over th e past week or month credited 

you with your salary? We recogn ize that much of this is not essen

tial, although diffusively spread out and not easily traced or accounted 

for, for th e essence of the tran saction itself, th e trad e in goods or 

services . 

Life and consciousness, wheth er or not reduc ible to cer tain neura l 

circuits and cells in som e yet-to-develop und ersta ndin g (and , sur ely, 

on ly in som e distant future, n otwith standin g th e enthu siasm of some 

curr ent-d ay neuroscientists!) m ay well be like temperature and pha se in 

that even when th ere is nothing m ore to be invoke d, never theless th ey 

are emerg ent concepts not present in or even relevant for th ose indi

vidual constituents. Temperature 1nay be an exarn.ple of physics lendin g 

an appropriate metaphor to th ese other disciplin es. Populations are col

lections of individu als, and an individual organism a collect ion of cells, 

molecules, and genes, but whet her in sociology or biology, pr opert ies 

and characteristics of th e aggregat e, while not involv ing any ne w laws of 

science, are n evert heless not simp ly con tain ed at th ese small est levels. 
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This may be the important lesson that the admittedly simpler examples 

of physics, such as temperature and phase, have to offer to the more 

complex emergences of biology or sociology. 

The fundamental rules themselves may even be trivial , and it is in 

their collective realization that richness may lie, just as in the game of 

chess. The game of 'Life' provides another nice example. Invented by the 

mathematician John Conway 4, a few simple rules for cells on a two

dimensional grid are the axioms of the game. They govern whether a 

cell is occupied or not for the next iteration, given the configuration at 

the previous iteration. Yet, starting from different initial patterns, an as

tonishing range of patterns, some even dynamic with a pattern sliding 

across the grid, are generated (34]. Some of these had not been antici

pated even by the 'creator ' of the game, and new patterns continue to 

be investigated. Similarly, my painter friend who does large canvases of 

abstract compositions of colours said that he was surprised when some

one saw an alligator in one; once pointed out, he himself could see 'a 

full alligator, from tail to snout' (35]. 

Biological life and the distinction between a living and a dead organ

ism are orders of magnitude more complicated than the examples from 

physics. It is usually easy to distinguish a dead body from a living ani

mal, sometimes just moments before and after a specific moment of 

transition, all the physical elements unchanged. That moment of tran

sition may not be marked by any change in the physics but clearly is 

profound. For long in science's history, organic and inorganic chem

istry were viewed as qualitatively distinct, with a vis viva or life force 

essential in the former. But that barrier was finally broken when it was 

shown that organiccompounds can be synthesized from the inorganic 

components of carbon, hydrogen , oxygen, etc. without any other in

put invoked. This provides a lesson that, similarly, those who favour a 

sharp distinction for life, including the invocation of something beyond 

science in some religious belief, may be prematurely giving up on an 

explanation within science itself. 

On the other hand, scientists ne ed to display the humility required 

by the fact that current science is certainly far from identifying what 

4 John Horton Conway, 1937, British and American. Mathematician who has con

tributed to finite groups, knot theory, game theory, and number theory. Known also 

for his invention of 'surreal numbers' and an arrow notation for handling extremel y 

large numbers, and for the game of 'Life.' 
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characterizes life, the temperature or phase analogies being baby steps 

in comparison. But there is no need to preclude such a search. Indeed, 

for both sides, it is but hubris to think that, in our own tin1es, will be 

found a Theory of Everything. Both such a claim by scientists, or by 

philosophers or religions to say some supernatural, extra-scientific in

put is necessary, are unju stified if not untenable. Just as Copernicus 5 

dethroned our Earth from any special place in space, so also in terms of 

time our own 100-year life span must be recognized as nothing special. 

The quest for scientific understanding is ongoing and endless; 'the end 

of science' is but an oxymoron. So long as scientists exist to ask ques

tions , science will continue. The essence of th e Copernican principle of 

there being nothing special about us or about our lives and times should 

give an acceptance that in some distant future we will understand more 

the emergence of life and consciousness from physics, chemistry, and 

biology. But for today, some of the ideas behind emergent concepts 

such as temperature and phase are pointers to even more sophisticated 

understanding of emergences. 

8.5 Classical Physics Itself an Emergence 

What does physics deal with( The subject started with _ Galileo and 

Newton as describing the motion of material bodies, thought of as point 

masses, particle mechani cs. Knowing the state of the particle at some 

instant meant knowing its position and velocit y. The laws of physics 

(motion) would then describe the subsequent time evolution by provid 

ing position and velocity at lat er instants once the forces were specified. 

But, even already in that, physics was clearly not restricted to just that 

particl e but applied equally to any other particle subjected to the same 

or similar conditions. Science itself would have little meaning with

out such universality in its application. Indeed, the very repeatability 

of experiments is an essential ingredient of any science, especially an ex

perim ental one! And the require1nent that th e same experiment done 

at a different place, translated from the original, or at a different time , 

must lead to the same physics, again essential to have any meaning or 

5 Nicolau s Cope rnicus , 1473-1543, Polish. Astronomer, renowned for his h eliocen

tric system of planets orbiting th e Sun, and for the larger philosophical idea, built on 

his dethroning of our planet's central position , that there is no privileged position in 

th e Universe. 
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validity to the subject, leads to the most profound laws of conservation 

of energy and momentum (Sec. 5.1.2). 

Later, the study of particle masses was supplemented by that of 

waves, whether mechanical or electron1agnetic, also carriers of energy 

and momentum. Again, a wave equation describes the evolution of 

not just one particular wave but any other identical one under iden

tical conditions. But it is true in classical physics, whether of particles 

or waves, that each can be tagged as with runners along race tracks 

and thus the motion of an individual particle or wave kept track of or 

predicted. 

Next, it is also easily recognized that among many characteristics, 

some are of no significance to the physics. Thus, in describing the mo

tion of a ball from the instant at which it is hit by a bat to the later time 

when it is caught in a fielder's hand, what physics accounts for is the 

connection between the two events. The specific positions attributed to 

the two will vary from one observer to another in the stadium . Those 

sitting on one side may describe the motion as a parabolic arc from left 

to right, the spectators on the other side as just the opposite, from right 

to left. There is no significance in this for physics. With the advent of 

Special Relativity, we also recognized that different inertial observers 

viewing the ball's n1otion may even ascribe different spatial separations 

and time intervals between the two events, only the space-time interval 

being an invariant among all such observers (Sec. 7.2). 

Every viewer in the stands, or on blimps moving with uniform vel

ocities over the stadium, will also ascribe some trajectory to the ball's 

motion. These will be parabolas but of varying tightness, with the limit

ing case of straight up and down motion as seen by an inertial frame 

moving with the same horizontal velocity as the ball. Therefore, the 

actual shape of the trajectory is not an elen1ent that physics has to or 

does explain, and we recognize this readily. We would see any 'Many 

Trajectories' interpretation of the motion of the ball, any claim that 

the ball actually executes all these multitude of trajectories as a some

what strange and extravagant rendering of what is actually the ball's 

motion as observed by different observers . Every observer describes the 

motion fron1 beginning to end in terms of a trajectory but the trajec

tories may all be different. There is no trajectory by itself; it is not a 

concept solely of the ball but of ball plus observer. The question of what 

the ball 'really' did has no meaning without asking 'as seen by whom?' 

Indeed, in the frame of reference of the ball, it is motionless and it is all 
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the observers in the stadium and on blimps that execute a multitude of 

parabolic trajectories. 

There is here an underl ying reality of motion, but that motion is of 

ball relative to an observer and it is no surpr ise that there are differ

ent descriptions by different observers ( among them, the ball itself). 

And the underlying reality of the entire motion, from bat to fielder's 

hand, does not rest on a time-dependent New tonian description or a 

time-independent one such as Hamilton's in terms of an action inte

gral , although it is equa lly amenable to either description. There is no 

time sequence or path, all possible ones (Figure 7.1 ), among which is the 

one that makes the action integral stationary, being distinguished. 

The further step into quantum mechanics denies any meaning to 

trajectories or paths, concepts that require specification of both pos

ition and velocity but whose simultan eous specification is ruled out by 

the uncertainty principle. Even more, the concepts of position and mo

mentum themselves do not apply, these too being valid only in 'the 

classical limit'. Even without going into quantum field theory, with in 

quantum mechanics itself of even just a single particle, the state of a 

system is a complex valued wave function or ket. All other observables 

for it, position, momentum, etc ., are derived from the wave function 

through certain expectat ion values . The notion of a wave or particl e is 

also relevant only in the classical limit, as discussed in Sec. 2.3. 

Further, mere labels have no 1neaning, a physical system being char

acterized on ly by physically measurable invariants, a ket labelled by the 

quantum numbers of the operators that commute with the Hamilton

ian. A free electron is an object of a certai n mass, charge, spin, energy, 

and linear momentum as defined by our classical measuring apparat

uses capable of making or detecting it. Identical particles cannot be 

differentiat ed by merely labelling them with numbers on their backs 

as with runners or particles or waves in classical physics (Sec. 2.2.1 ), 

where race tracks or paths and passage through them, even when 

int ersec tin g, have meaning. Indeed , under interchange of any pair of 

otherwise identical quantum entities, that is, int erchange of those la

bels, the wave function must satisfy the Pauli principle of being either 

symmetric or antisymmetric, depending on whether the entities are 

bosons or fermions, respectivel y (Sec. 7.3.3). 

With the physical system described by a wave function or ket, the 

Schrodinger equation, the count erpart of Newton's, gives a complete 

deterministic evolution of that state once the potentials are specified. It 
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describes not any singl e particl e or situati on but a whole ensemble of 

them. Thus, for any single radi oactive nucl eus such as of radium , Ra, 

its decay with emission, say, of an alpha particle or an electron (beta de

cay) is entirely unpr edictable. Starting with identical samples of such Ra 

nuclei , on e may go off the very n ext inst ant , whereas another ma y not 

decay over the entire length of th e Universe's lifetime. What is meant 

by the half-life of Ra is the tim e within which ther e is a 50% chance 

of seeing it decay. Or , in a large collection of such Ra nuclei , in that 

time roughly half will have decayed. There will always be some spread 

around that value, fluctuations around that average. 

Similarly, turning to a moti on in space, if one has a source at S, say of 

electrons , perhaps created by a radioactive decay, and a screen covere d 

with detec tors some distance away, and an intervening slit, th en each 

observation when the sourc e emits and at a later instant a detector re

ceives is entirely unpr edictabl e in terms of which det ector on the scree n 

fires. Because of how electr ons are registered as a lump of charge, e, for 

a sourc e emi tting only one at a time, it is only one detector that fires, 

never more simultaneously, the electron being rec eived at some one 

point on th e screen. An electron , defined as a lump of charge, ma ss, and 

spin, is never detected simultan eously at two detectors, onl y at one at a 

tim e. But it could be any one of the detectors anywhere on that infinite 

screen. What the wave function of this one -slit arrangement pr ovides is 

th e probabilit y for receipt of th e electron on the screen, and it will be 

peaked at the spot on th e screen that is in line with th e one conn ecting 

the sourc e to the slit, that is, the path that a classical description wo uld 

have predict ed as th e uniqu e one. The pr obability drops off away from 

that central spot but is non-zero everyw here, tailin g off to zero only 

at ±oo. Again, if a large number of such observations is compil ed, the 

int ensity on the screen, where the charg e is detected (but , again, the 

charge is never sm eared out) , will appear as in Figure 8.1. 

For a different arrangement, say with two slits inst ead of one, again 

each individual electron from the source will be detected unpredict

ably by som e dete ctor on th e screen as an electron. The wave function 

for this arrangement of source-double slit-screen will be differen t from 

the pr evious one. Again, it will determine the pr obability for receipt on 

the screen in any individual experiment or the total intensity for a large 

collection of electr ons , emitt ed one by one. This pattern in Figure 8.2 is 

different from th e on e in Figure 8.1. One str iking difference is that it is 

not just th e sum of two intensit y patterns for each slit with two peaks 
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s 

SLIT 
SCREEN 

Figure 8.1 Schematic arrangement for a single-slit diffraction pattern, with a 

source, S, of ph otons or electrons, and a screen, with an intervening slit. 

at two different spots corresponding to the path from source to each 

slit when extended to the screen. Instead, the peak intensity is at the 

middle of those two positions. 

Another striking difference is that there are now spots on th e screen 

with zero probability or intensity, the detectors at such spots never fir

ing. The contribution to the wave function from the different slits mu

tually interfere destructively so that there is a zero of the wave function 

at these spots. These 'nodes' in the pattern and the patterns themselv es 

in Figures 8.1 and 8.2 were familiar already in optics from Newton's 

time but they manifest equally for electrons or protons or even heavier 

carbon fullerenes ('buckyballs' 6
), as has been experimentally demon

strated. Experiments have also verified the random appearance of each 

electron on the screen but, together, that man y su ch repetitions con

struct th e diffraction or double-slit pattern (Figure 8.2). And there is no 

reason to doubt that thi s would also work with Mack trucks, that this is 

of universal applicabil ity, reflecting the wave nature of all things, even 

those which have a particle as their classical limit. 

The question of paths or the nature of detection falls into the fol

lowing picture. With a strict focus only on what is actually measur ed, 

it is not meaningful to ask about thing s that are not. The electron is 

6 Nam ed after Buckmin ster Fuller, 1895- 1983, American. Architect and inventor, 

and 'futurist'. He is kn own for his buildin g and populari zing th e geodesic dom e. A new 

form of carbon with 60 carbon atoms in a three-dimensional stru ctur e like a soccer hall 

was nam ed 'buck yball ' and, togeth er with other carbon stru ctur es, classed as a group 

und er th e nam e 'fuller enes'. 
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Figure 8.2 Double -slit arrangement . The set-up is otherwise as in Figure 8.1 

but with two slits between source and screen. Th e left panel shows the ex

per imental arrangement of electron sour ce and detector wit h intervening 

bi-prisms that act as slits. The right panel shows th e gradual build -up of the 

two -slit diffraction pattern from individual detection of the elec tron s. Cour 

tesy of th e Central Research Laboratory, Hitachi, Ltd. , Japan , from th e wo rk of 

A. Tonomura et al, Am.]. Phys. 57, 117 (1989). 

observed either at the source or at a detector some tim e later , for any 

particular experim ental set-up or apparatus. There is no meanin g to 

unobserv ed entities such as th e path followed in between. If indeed de

tectors were set up int ermediatel y for this purp ose, that would be a 

different set-up with a different wave function and a different pattern. 

Words such as 'paths' or 'traj ectories' , or questions about which slit th e 

electron went through are just that, words, but with no place in ph ysics. 

The wave function for a particular arrangement of apparatus de

scribes all th e ph ysics. Had we wave-function-measuring appara tu s, 

there would be no ambiguity in keepin g track of what it is at any lo

cation and at any inst ant ( every location and every instant!). Quantum 

physics would give a complete descripti on of it. But instea d, we observe, 

measur e, or even describe in terms that are classical. It ma y be count er 
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to our classical intuition that an electron went through both slits or 

that having two slits open makes for some nodal points with the elec

tron never seen at them while not so for a single slit. But all these words 

and ways of speaking are not relevant to the physics of one set-up or the 

other. 

The wave function can be said to be a sum over all possible paths 

joining source to detector, including some (many!) outlandish ones 

that roam over the Universe in between. As noted in Sec. 7.2, Feyn

man's path-integral formulation of quantum mechanics does indeed 

construct the wave function as the sum over all paths. Each path con

tributes with some weight to the wave function and to the probability 

of receipt on the screen, while some of the outlandish ones or paths 

that hit the barrier on either side of a slit contribute negligibly or not 

at all. Paths close to the one we expect based on classical geometrical 

intuition contribute more, especially for objects that behave essentially 

classically, thus truer for Mack trucks than for electrons. Finally, that 

particular path in Figure 8.1 of a straight line from source to slit and 

extended to screen emerges as 'the' classical limit, Newtonian physics 

emerging as the limiting case of the quantum description. Indeed, al

ready in the Lagrangian and Hamiltonian formulation within classical 

physics and before the advent of quantum physics, Hamilton's vari

ational principle had so replaced globally in the action integral the local 

Newtonian view of step -by-step motion along that line, while being 

compatible with it, as discussed in Sec. 7 .2. 

The classical picture, whether for the entire motion or for an elec

tron at sourc e and at detector, is itself an emergent one, as is whether 

an entity is a wave or a particle. These are all concepts that are not 

part of the underlying reality of a quantum world . Just as we had al

ready grown to accept in classical physics that concepts such as paths 

and trajectories do not have intrinsic meaning in Galilean or Einstein 

ian Relativity, but are dependent on the specifics of an observer or of a 

description, and that we need to be alert to this and not identify them 

with reality itself, now we have to extend that to even the concepts of 

position, momentum, etc . 

Or to whether we have a wave or a particl e, th ese being mean

ingful only in the classical limit (Sec. 2.3). The underlying reality is 

not in terms of them but in complex wave functions and states, and 

of wavicles (Sec. 2.3). But, as classical beings, and our concepts and 

words themselves having evolved from those classical experiences and 
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intuitions, we cannot escape having to use them in our thinking and 

communication, just as everyone in the stadium or a blimp ascribes 

a trajectory to the ball in talking about it. But we have to be alert to 

the fact that underlying reality is not written in that language. It is, 

therefore, like being condemned to read a text in a language no longer 

directly accessible but now only in translation. 

Alternatively, it is as if we always view the world with distorting spec

tacles. Interestingly, Newton himself, as the developer of geometrical 

optics, knew that our eyes image the world as inverted on the retina. 

It is our neural processing that converts this inverted two-dimensional 

image of our twin eyes to the upright three-din1ensional appearance of 

the objects around us. Much of the discomfort or difficulty in grasp

ing quantum physics and some of what are posed as paradoxes lies in 

not keeping clear these matters and extrapolating from our models to 

reality itself. 

What, then, is involved in the en1ergence of the classical world from 

an underlying, inherently quantum reality? As in other examples of 

emergence, certainly there is a tracing over a large number of degrees 

of freedom. The quantum wave function, even of a single point par

ticle, is a function of a complex variable. A quantum spin-1 /2, as we saw 

in Chapter 4, already has a three-variable space of an enormous num

ber of states, even though observations see it as just one of two things, 

up or down. \Vith more particles, the din1ension of the space involved 

explodes and in any interaction with an observing apparatus, most of 

them are traced over. 

In particular, phases of complex functions vary continuou sly from 

0 to 2n , and are very delicate (Sec. 4.2.1), subject to disturbances from 

interactions with the external world, itself of an enormous number of 

degrees of freedom. So, scrambling of these phases is certainly one elem

ent of the emergence, as is the fact that, generally speaking, getting 

to the classical limit involves larger aggregates of particles, although 

special cases such as superconductivity can retain meaning in a macro

scopic phase. And, even for a single electron, when it is realised as a 

bundle of a certain amount of electric charge, mass, and spin angular 

momentum when emitted or absorbed by an apparatus, coherences of 

its wave function have been scrambled for it to so appear as a particle. 

Again, using an earlier example as an analogy, temperature emerges 

as a single number upon averaging over the random kinetic energies of 

an Avogadro number of particles. Although no new element of physics 
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needs to be invoked in the passage from the statistical mechanics de

scription of those particles' motion to the thermodynamic limit's T, 

the passage back is, of course, impossible. In a way, questions such as the 

emergence of classical wave and particle, position, or other observable 

from the underlying quantum world and using them to understand 

that world is like having only thermometers through which to grasp 

the individual molecules' motions. The quantum wave function con

tains an enormously larger amount of information than what is realized 

in our observations with our slits or other apparatus. 

The essence lies in what is meant by the state of a physical system. In 

quantum physics, it is described by a complex wave function or, as in 

Sec. 2.3, a Dirac ket, the ket labelled by the values of the quantities that 

commute with the Hamiltonian. No other labels have meaning, not 

mere number tags that correspond to nothing in physics nor a position 

in space, x usually not commuting with H. For an electron in its pattern 

on a screen of a slit assembly, single or double, or for it in a particular 

state of the hydrogen atom, no single position applies. When its location 

is sought, it may be found, but that may be at any point on the screen 

or in space ( except exactly at one of the nodes). 

If an apparatus is churning out identical copies of hydrogen, say from 

a chemical reaction at the molecular level resulting in atomic hydrogen 

in the ground state, definite values can be ascribed only to measure

ments of energy and angular 1nomentum, that each copy will have only 

-13.6 eV and zero, respectively. But, if it is position that is measured, 

the electron in each copy may be found at any location randomly, and 

only a probability distribution can be prescribed for it. On the other 

hand, one can talk of an electron in any of these systems as being at 

a precise location, for instance when it is located at the tiny detector, 

in principle arbitrarily small (within non-relativistic quantum mechan

ics), that fired, but then it is not in a definite state of energy and angular 

momentum but in a very large superposition of such states. An electron 

as a particle at its emergence from a source or at a detector, defined as a 

lump of charge, mass, and spin angular momentum, is an object in the 

classical limit that has averaged over a large number of quantum states. 

The step into quantum field theory, currently the closest model to 

the underlying reality, compounds but also illuminates these matters 

further. There are interacting quantum fields and it is excitations in 

them that we observe as electrons or other entities (Sec. 7.3.3). Thus, 

in a radioactive decay of even a single nucleus or neutron, we have the 

fields of electron, neutrino, and nucleon ( or quark) to consider. The 
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initial state is of one excitation from the vacuum of the nucleon field, 

say, as a neutron. The final state is a combined one of one excitation of 

that nucleon field in the form of a pr oton, one excitation of the elec

tron field, and one of the anti-ne utrin o. There is no specific location or 

instant ( of decay) for going from initial to final state. The fields them

selves exist over all space, space and time being only grid parameters 

over which the field functions are defined. Each individual observat ion 

of a sin gle-slit set-up corresponds to an electron appearing at a location 

(the source's exit slit) at some unpredictable instant and an electron 

being absorbed at a detector, again which one unpredictable, possibly 

by an inverse beta process again involving the three fields. 

Quantum physics describes thi s and it embraces not a single event 

but all the myriad of them when an electron leaves the source and a de

tector on the screen receives it. With each repetition of the experiment, 

sometimes one, somet im es another detector fires. It is from an under

lying quantum field ( or interacting fields) that, first, a non-relativistic 

wave function emerges as the result of field operators acting on the vac

uum sta te and, next, the electron is seen as a particle in the classical 

limit that scramb les phases and coherences . This happ ens at source and 

detector for each repetition of the experime nt . Each instance is unpre

dictable, the statistical nature as in the build-up of a pattern in Figure 8.2 

residing in the wave function ( and probability interpretation : Sec. 1.2.2) 

that encompasses all possibilities but only on e being realized in each 

repetition. 

The wave function of quantum physics does not describe a single ex

periment but the two-slit pattern , just as it is not the decay of a single 

radioactive nucleus but beta decay as a process that is described. To the 

charge that the theory then is incomplete in not applying to individual 

elements, and that a future theory will also provide that, the prob

lem is that all such attempts at extensions, which go under the name 

of hidden-variable theories, lead to predictions in conflict with experi

ment. Hidden variables in each nucleu s whose knowledge would allow 

us to say the precise time at wh ich each decays, or an underlying point 

particle that is guided by th e wave function across slits, lead to predic

tions in conflict with what we know of radioactive decay or int erference 

patterns on a screen. To date , all experiments and observat ions suggest 

that th ere is no such extension, that quantum physics is indeed today's 

complete model of the und erlying reality. Rather, we must accept that 

wh at we refer to as an indi vidua l exper im ent or a particular nucleus 

decaying is meaningful onl y as a classical limitin g case, averaged over 
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the underlying quantum reality. The very feature of merely tagging an 

individual with a number label slapped on the back as on runners in a 

race, nucleus 1, nucleus 2, etc ., and attributing significance to it, is not 

an element of that quantum world. 

Sources and sinks (detectors) are large aggregates and while them

selves part of the quantum world , have a large scran1bling of the phases 

involved of the emitted or absorbed entity, and it is here that the elec

tron is manifest as a classical entity of some mass, charge, etc., not at 

points or times in between. Iden6s :al particles, when more than one are 

present, are, in a field theoretic picture, simultaneous double or triple 

excitations of the field, and Pauli principle requirements (Sec. 7.3.3) are 

natural given the intrinsic properties of the operators involved in such 

excitations out of the vacuum. There are no exact locations in space 

or time for the electrons created and the non-locality of the subject of 

quantum physics is inherent to it. As noted in Sec. 6.3, the rendering 

with just a few parameters of an underlying element that itself resides 

in a hug e-dimensional space necessarily leads to non-locality. 

The picture we have today is that deep, deep down, the underlying 

'real' world is closest to our current und erstanding as a mess of inter

acting relativistic quantum fields. (Even that is not reality itself, but 

our current best model.) But, we observe and experience that world 

at various levels and hierarchies, and do so in terms of emergent con

cepts and measures that are appropriate for those purposes and levels. 

It would be foolish to do otherwise. Field theories may be appropriate 

at times, non-relativistic quantum mechanics at others, and the older, 

non-relativistic classical mechanics may be, and is, the appropriate one 

for many purposes. The very concepts of position, momentum , space, 

and time are equally derived or emergent, much of that because of our 

own existence as lumbering, macroscopic objects shaped by the phys

ical, chemical, and biological evolution of the Universe that has led to 

us. And, of course, we can tag runners on their backs as a meaningful 

classical feature! 

Time and time again, the history of physics has sounded cautionary 

notes on our possibly being misled by those various elements that have 

shaped us. For centuries, it had seemed that being at rest was a nat 

ural state to which all objects in m otion around us tended, but this was 

only because of the unseen frictional forces ubiquitously around us. It 

was only after Galileo and Newton that it became clear that the prop er 

association was between forces and accelerations, not velocities. And 
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then for another long period, their concepts of space and time seemed 

obvious till the Special Theory of Relativity disabused us of that. The 

slicing of a combined space-time into space and time is itself dependent 

on the inertial frame or observer, and all these frames are equivalent in 

physics. The very concepts of spatial separations .and time intervals are 

not universals, however intuitively so they may seem (as they had in all 

the experience with non-relativistic speeds), but depend on the inertial 

frame of the observer. 

Quantum physics went further in.J emoving the very primitives of 

our constructs such as position and momentum, wave and particle, 

from being the ones of the underlying reality. But, on the other hand, 

the feature of emergence of concepts and measures at each level of hier

archy show also how they continue to be relevant for descriptions at 

that level. Therefore, even today , for most motion, classical Newton

ian non -relativistic physics continues to apply, whether in everyday lay 

experience or even for the rocket engineer. With v/c small, inertial ob

servers can agree on the time interval as a Newtonian absolute common 

to all. And , even in relativistic quantum contexts in laboratory settings, 

we are compelled to use the only language and concepts we have , such 

as position, momentu1n, etc. There is not only no hann in this but we 

must recognize it as essential at that level of hierarchy, while also not 

mistaking the model itself for the reality. 

All of this is a part of the tension that is intrinsic to our subject, 

revolutionary upheavals co-existing with a conservative persistence of 

the old. Every extension to new regimes far from everyday experienc e, 

into the very small and very energetic, has opened a new perspective 

that also fundamentally changed our understanding of the primitive s 

of our subject. These changes in the fundamentals apply, of course, 

to everything, including the large and unmoving, immovable moun

tains. They, too, are made of atoms, with electrons inside moving at 

relativistic speeds under quantum principles. Yet, effective theories and 

concepts that em.erge at successive hierarchical levels account for the 

continuing validity of much that had lasted for centuries without that 

recognition of deeper levels. This had to be so, given the extensive int er

locking pieces of evidence that had built the scientific edifice over thos e 

centuries. Together, a coherence of the subject has, and continues to be, 

maintained across the past five centuries. Different representations of an 

underlying reality are the essence of physics and of our understanding 

of the world around us through them. 
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degeneracy,33,34,85, 120,13 4, 168 

(U + 1), 40 

angu lar m oment um , 36, 37 

dou ble, 128, 130 

finite, 36 

hydrogen atom , 39 

in .e, 35 

infinite, 36, 136 

lifted, 131 

s and p, 132 

parit y, 124 

spectr um, 120, 121 

degr ee of freedom, 1,41, 179,181 

gauge , see gauge 

trac ing over, 181, 191 

Dehmelt , 79 

tra p , 79 

delt a function, see Dirac 

den sity, 8, 9 

Lagrangian, see Lagrangian 

m atrix, 100, 130 

derivative, 49, 55 

Desargues, 114 

diagram , 115 

Descart es, 47, see Cartesian 

design 

experimental , 117 

symmetr ic, 117 

th eory, 117 

diagram mati c technique , see Feynm an 

differen tial 

geometr y, 14 

ope rator V, 15, 29 

diffraction 

double slit , 188, 189, 193 

single slit , 188 

dimens ion, 1, 5, 8 

adding, see adding a dimens ion 

compac tified, 45 

extra,30,36,38, 42- 44, 113, 150 

fract ional, 147 

mathemati cal, 146 

dim ens ional 

ana lysis, 4, 6, 7, 54 

fireball , 9 

flami ngo-st ilt , 3 



renormalization, see renormalization 

scaling, 3 

dipole, 41, 91 

Dirac, 18, 21, 32, 59 

bra-ket, 54, 59 

delta function, 18, 82 

electron 

magn etic field, 129 

equation, 18, 56, 124, 151, 166-168 

field, 168 

gamma matrix, 166 

ket, 92, see ket 

notation, 70, 93 

tran sforma tion theory, see 

transformation 

discrete 

spectrum, see spectrum 

symmetry, see symmetry 

transformation, see transformation 

disorder, 180 

dispersion relation, 18 

dissipation, 100 

divergence, 16,43,44 

theorem, 15, 16 

vector field, 16 

division algebra, 117 

DNA, 36, 163 

double 

escape, 62, 65 

excitation, 62 

ionization, 62, 84, 86 

threshold, 87 

slit, 189 

Drake , 142 

duality, 114, 115 

point-line, 115 

wave-particle, 73 

dynamic programming, 170 

dynamical symmetry, see symmetry 

E 

e, Euler number, 52, 53 

eccen tricity, 120 

Einstein,4,8,26,28,35,40, 138,139 

- Podolsky - Rosen, 152 

relation, E = mc2, 9 

Theory of Relativit y, see Theory of 

Relativity 
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electrodynamics, 159, 167 

electro1nagnetic 

field, 127 

invariant , 28 

tensor, 27, 29 

spectrum, 8 
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electromagnetism, 8, 26, 29, 30, 32, 40, 43, 66, 

73,158,169 

strength, 136 

electron, 18, 60 

classical limit, 191, 192, 194 

Dirac, 129 

free 

label, 186 

g-factor, 79 

gas, 170 

spin, 39 

Volt, see eV 

electroweak, 132, 169 

elementary particle, 18, 21, 42, 56, 60, 118 

ellipse, 113, 116 

major axis, 35 

precession, 121 

elliptic function, 63, 173 

ellipticity, 35, 137 

emergence,83, 178,180,194,195 

classical picture, 190 

energy, 8, 23 

-mass relation, 9 

-n,oment um, 23 

invariant , 28 

square root, 99 

tensor, 138, 139 

- tim e uncertainty, 161 

bound state, 33 

continuum state, 33 

discrete, 38 

fission, 18 

free, 180 

kinetic, 20, 43, 52, 119 

rand om, 180, 191 

potential, 20, 52, 63, 119 

rest mass, 28 

rotational, 78 

rotor, 129 

th ermal , 180 

zero -point , 34, 80 
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entanglement, 102 

ma ximal , 103 

entropy, 180 

equation of continuity, 17, 19, 29 

equilibrium 

point, 78 

thermodynamic, 181 

unstable, 76 

Erlangen Programm e, 46 

Euclid, 46 

Euclidean 

geometry, see geometry 

transformation, see tr ansforma tion 

Euler, 52 

-Lagrange equation, 52 

angle, 58, 63, 64 

number e, 52, 53 

e V, electron volt, 34 

evoluti on 

non-unitary, 100 

operator, see operator 

exchange 

interaction, 61 

splitting, 61 

Exclusion Principle, 59 

exclusive-OR, 102, 105 

expectation value, 168, 186 

exte nsive, 179 

extremum, 19, 20 

F 

Fano, 117 

plane, 116, 117 

farad, 26 

Faraday, 26 

Fatou, 147 

Fermat, 20 

last theorem, 20 

princip le of least time, 20 

Fermi, 39 

-D irac sta tisti cs, see stati stics 

problem, 40 

fermion, 39, 40, 60, 127, 168, 186 

ferromagnetism, 18, 61 

Feynman, 21 

diagram, 21 

path integral, 21, 38, 153, 161, 190 

Fibonacci sequence, 4 
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fibre, 100, 155 

bundle , 154 

field, 26 

central, 58 

Coulomb, 32, 35, 39 

Dirac, see Dirac 

electric, 8, 15, 24, 25, 27, 36, 66 

electromag net ic, 27 

electron, 127 

function , 167, 193 

gravitational, 27 

magnetic, 8, 15, 24, 25, 27, 40, 43, 66 

Dirac electron, 129 

operator, 168 

on vacuum, 193 

quadrupole, 79 

quantum, 167, 193 

radiofreq uency, 78, 79 

scalar 

relativistic, 162 

theory, 18,39,43,56 

relativistic, 82 

supe rsym metr y, 127, see SUSY 

tim e-depende nt , 78 

vector 

divergence, 16 

fine structure, 42 

constant, 85, 136, 137 

fission, 39, 56 

flamingo , 2, 3 

fluctuati on, 178, 187 

force, 8 

centra l, 50 

constraint, 22 

Co riolis, 78, 79 

friction, 194 

inverse square, 119 

pairwise, 118 

form invar iance , 52 

four-

dimensional 

numb er, 32 

oscillator, see oscillat or 

space, 23 

p oten tial, 28, 29 

vector, 23,29 

differential, 29 



Fouri er, 54, 167 

conjugate, 55 

fractal, 146-148 

in nature, 148 

frame 

accelerated, 66 

inertial, 26, 156, 166, 185, 195 

free particle 

one -dim ensional, 128, 129, 164. 

Frege, 158 

frequency, 10,51,55,67 

pendulum, see pendulum 

sprin g, 10 

friction, 194 

Fuller, 188 

fullerene, 188 

function, 112, 146 

derivative, 19 

Gaussian , see Gaussian 

Green's, 169 

hyperboli c, 28, 67 

ma ximum, 114 

multiply valued, 146 

one-variable, 149 

trigonometric, 11, 67 

two-variable, 15, 112, 149 

functional, 19, 22, 23 

fundamental constant, 45, 106 

fusion, 40 

G 

8, acceleration due to gravity, 6, 13 

g-factor , 79, 130, 136, 166 

QED correction, 131 

galaxy, 170 

Magellanic Cloud, 143 

map, 146 

Milky Way, 143 

Galilean relativity, 158, 190 

Galileo, 4, 5, 8, 12, 26, 157 

gam e theory, 95 

gamma matri x, see Dirac 

y, Euler's constant, 52 

Garnow, 163 

Gandhi, 74 

gas constant, 30 

gate 

CNOT, 102- 105 
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exclusive-OR, 102, 105 

NOT, 94, 97 

gauge, 121 

degr ee of freedom , 152 

invariance, 126 

symmetry , 126, 127 

transformation, 126 

Gauss, 13, 15 

law, 16 

Gaussian, 53 

function, 53, 80 

integral, 13, 113, 114 

tail, 81 

genetic code, 36 

geodesic, 20 

dome, 188 

geoid, 144 

geometry, 46, 114 

analytical, 48 

axiomatic, 53 

differential, 14 

Euclidean, 46, 114, 115 

finite, 116 

multi-dimensional, 16 

non-Euclidean , 14 

plane, 46 

projective, 114- 117 

Riemannian, 121 

space-time, 14, 139 

Gerlach, 102 

global positioning system, see GPS 

gluon, 133, 179 

Goldstone, 136 

Gordon, 30, 162 

GPS, 142, 158 

gradient, 55 

gravitation, 5, 21, 30, 44, 52, 66 

gravitational 

attraction, 119 

constant, 139 

potential, 121 

wave, 170 

graviton , 73, 132 

gravity, see also 8 

quantum, 157 

repulsive, 139 

Green, 14, 15 

function, 169 
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Green (continued) 

the orem, 14, 17, 18 

greenhous e effect, 54 

Grimm, 47 

Fairy Tales, 47 

group 

compa ct , 67 

generator, 67 

Lie, 34, 154 

non -compact, 67 

orthogonal, 33 

rotati on , 33 

symmetry,39,4 1 

theory,33,46,56, 117,121,158 

transformation, 154 

unitar y, 41, 100, 127 

H 

half-life , 187 

Hamilt on, 32 

- Jacobi equation, 173 

equation of motion , 52 

hodograph, 36 

variationa l principle , 190 

Hamilt onian , 32, 33, 36, 52, 68, 119, 135 

equation of motion, 118 

harm onic oscillat or, see harmonic 

helium , 65 

Hermitian , 100 

isotropic, 58 

separable, 57 

thre e-body, 87 

time -indep endent, 88 

two- electron, 64 

harm on ic 

oscillator, 38, 53, 57, 123, see also pendulum 

Hamiltonian, 53, 57 

one-dimensional, 75, 76 

state , 81 

potential , 120 

sph erical , see spherical 

Harrison , 140 

Ii, 18, 20, 21, 52, 55, 56, 82, 161, 165, 169, 176 

heat conduction, 99 

heat tran sfer , 54 

Heisenberg, 17, 18, 35, 52, 59 

uncertainty principle, see uncertainty 

principle 
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helium, 60, 84, 152 

doubly excited, 62, 65, 84, 85 

excited state, 65 

ground state, 65, 105 

singly excited , 84 

spectrum , 61 

helium nucl eus, 84, 85, 93 

Hermite , 53 

polynomial , 53 

Hermitian, 56 

hidden variable, 152, 193 

Higgs, 133 

boson, 133 

field, 133 

Hilbert, 53, 118 

problem, 53 

space, 72 

hodogr aph , 36, 37, 44 

holographic, 17 

hydrodynamics, 170 

hydrogen atom, 30-33, 43, 58, 120 

bound state, 39 

ground stat e, 192 

in electric field, 123 

in magn etic field, 45 

label, 65 

negati ve ion , 170 

one-dimensional, 44 

quantum number, 123, see also quantum 

number 

Schrodinger equation, 124 

spectrum, 33, 67 

state 

degenera cy, 37 

label, 37 

parab olic, 123 

parity, 123 

spherical, 123 

symmetry, 67 

spherical, 131 

hyperb olic orbit, 36, 37 

hypers pheri cal, 63 

I 

i, imagin ary unit , 17, 28, 52, 117 

Ibn-Madjid, 140 

icosahedron, 46 



identical par ticle, 40, 57, 59-61 , 105, 194 

interchange, see symmetry 

incidence, 115-117 

index notation, 24, 29 

indu ction, 26 

inertial frame, 26, 28, 66, 195 

initial condition, 171, 178 

int egra l 

calculus, 13 

definite, 113 

divergent, 43 

double , 114 

exponentia l, 14, 114 

Gaussian, 13, 113 

lin e, 15, 16 

path, 18, see also Feynman 

surfa ce, 16, 152 

volum e, 16 

int eracting boson model , 39--42 

int eraction 

Cou lomb, 63 

electro magnetic, 33, 40, 43 

strength , 85 

elec troweak , 132 

gravitationa l, 33 

operator , 86 

spin-o rbit, 132 

strong, 40, 43, 118, 133 

weak, 118, 125 

interference , 153 
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space-time, 66 

intrinsic spin , see spin 

invarian ce 

CP, see CP 

CPT, 132, see CPT 

gauge, see gauge 

parity , see parity 

principle, 170 

tim e reversal 
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broken , 136 

invariant ,23, 26,28 , 29,3 4,5 0,53, 66, 112,1 19, 

120, 147, 164 

Casimir , 34, 36, 41 

imb eddin g, 169, 171 

phase shift, 172 

projectile, 170, 171 

interval, 23, 67, 159, 185 

operator, 42 

ion , 68, 79 

negative , see hydrogen atom 

ionization 

double, see double ioni zation 

energy 

helium, 84 

hydro gen , 43 

Ising model, 120 

iso-spin , 93 

isotope , 31, 39, 93 

helium , 93 

isotropic, 50, 55 

isotrop y, 35, 38 

J 
Jacobi, 173 

))-coupling , 68, 69, 177 

Jordan , 17 

Josephson , 106 

junction , 106 

Julia, 147 

set, 148 

Jung, 60 

K 

k, Boltzmann constant , 20, 180 

Kalaba, 170 

Kaluza , 30 

Kantian phil osoph y, 158 

Kelvin, 15, 179 

Kepler, 34 

- Coul omb , 119, 120 

ellipse, 35 

orb it , see orbit 

ket, 18,54,59, 70, 86,92 , 100, 104, 192 

-bra , 70 

vacuum , 168 

key distribution , 107 

Kierkegaard , 177 

kinematic s, 14, 22 

relati vistic , 70 

kinetic the ory of gases, 8, 179, 180 

King, Martin Luther, 74 

Klein 

Felix, 46, 118, 154 

bottl e, 46 

Erlangen Programm e, 46 

Oskar, 30 
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Klein ( continued') 

-Gordon equation, 162, 167 

Koch, 146 

snowflake, 147 

Kustaanheimo, 39 

L 

e, angular momentum, 32, 34, 55, 58, 65, 87, 

128 

Lagrange, 19,20, 51 

multiplier , 19, 21, 22, 69, 114 

point, 20, 79 

Lagrangian , 20, 51, 52, 119, 121, 126, 135 

density , 161 

equation of m otion, 118 

gauge invariance, 126 

path, 160 

Lamb, 167 

shift, 167, 169 

A, cosmological constant, 139 

Landau, 130 

- Lifshitz, 131 

level, 130 

spectrum, 130 

lanthanide, 41 

Laplace, 34 

- Runge-Lenz vector , 35, 120 

equation, 34, 79 

nebula, 160 

transform , 34 

Laplacian, 34 

latitude, 145 

law of conservation, see conservation 

law of gravitation, see Newton 

Legendre, 63 

polynomial, 63 

transformation, 63 

Leibnitz, 20 

length 

standard, 67 

Lenz, 120 

vector, see Laplace 

lepton , 179 

Lie, 34, 154 

algebra, 154 

group, 154 

Life, 183 

Index 

life, 182, 183 

force, 183 

lifetime 

au toionization, 85 

radiative, 85 

light quantum, see photon 

linear , 105 

superposition, see superposition 

vibration, 10 

linearit y, 93 

liquid drop model, 18 

local, 151 

localization, 80, 82, 168 

Anderson, 83 

dynamical, 83, 86 

quantum , see quantum 

longitude , 140 

Lorentz, 26, 158 

boost, 28, 66, 67, 166 

factor, 158 

group, 67 

tran sformation, see transformati on 

LS-coupling , 68, 69, 177 

LS-jj transformation, 68 

M 

m, azimuthal quantum number, 33 

Magellan , 142 

Cloud, 143 

Straits, 143 

magnetar, 43 

magnetic 

dipole, 91 

field, 91 

moment,61,92, 100,102,153 

monopole, 91 

resonance, 100 

imaging , 100 

Mandelbrot , 147 

set, 148 

Manhattan Project, 18, 21, 40 

Many Worlds, 174 

map , 140, 141, 143 

as transformation , 151 

early, 141 

in mathemati cs, 146 

in physics, 151 

initial to final state, 151 



iterated , 147 

of the Universe, 145, 146 

of the world, 141, 145 

one-var iable, 149 

projection, 143, 149 

Mercator, 144,1 45 

scale, 144 

stereographic 

inverse, 154 

two-dim ensional , 149 

mass, 7 

matrix, 23 

density, 100 

element, 71 

gamma , 166 

infinit e-dimensional, 54 

mech anics , 18 

Pauli , see Pauli 

payoff, 95, 96 

representation , 104 

unitary, 104 

maximal 

entan glement, 103 

mixing , 124 

Maxwell, 8, 15, 26, 32, 179 

equa tions , 27-2 9, 66, 91, 158 

mechani cs, 7, 12, 23, 26, 32, 4.6 

celest ial, 34, 39, 79, 147 

classical , 39, 47 

as map, 151 

Lagrang ian-Hamiltonian , 63 

matrix , 18, 35 

Newt onian, 32, 111, 118 

orbital , 32 

particle , 184 

Index 

quantum, 31, 42, 47, see also quantum 

supersymmetry ; SUSYQM 

relativistic, 23 

stat istical, 179, 180 

quantum, 40 

Mendeleev, 39 

Periodi c Table, 31, 39, 42 

Mercat or , 144 

projecti on, 145 

Merian , 174 

m eson , 112 

Metam orphoses, see Ovid 

metastable , 88 

metre , 67 

metric, 20, 28, 39 

tensor, 30, 138 

microwave, 56 

background , 56 

Milky Way, 143 

mixed sta te, 100 

mixin g 

maximal , 134 

mole , 181 

molecular beam, 102 

mom ent of inertia, 24, 25, 128 

mom entum ,8 ,23 

angular, see angular 

as gradient, 55 

space, 36 

vect or, 36 

monopole , 73, 91 

morphing, 48, 146 

moti on 

reality of, 186 

mri, see magnetic resonance 

multip ole, 55 

mu on, 166 

N 

N-body, 118 

N- level, 154 

Nagel, 177 

Nambu, 136 

-Go ldston e mode, 136 

nanokelvin, 179 

near -Earth satellite, 12, 13 

Necker , 94 

cube , 94 

Neiko, 136 

neutrino , 39, 60, 73, 130 

neut ron , 18,31,39,40 

halo, 31 

star, 43--45 

Newton, 8, 12, 20, 26, 50 

calculus, 19, 20 

initial condition , 159 

law of gravit ation , 8, 16, 34 
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law of moti on , 8, 9, 52, 66, 71, 162, 169 

first, 4 

second , 8 

third , 118 

Principia, 170 
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Newto nian 

mechan ics, see mechanics 

relativity, 158 

time, 156 

nmr, 100, see magnetic resonance 

no cloning, 97, 105, 107 

node,60,81,82, 188, 192 

Noether, 118 

theorem, 118 

non-Euclidean, 14 

non-linear, 154 

non-local, 103, 151- 153, 194 

norm 

squared, 54 

normalization, 18, 19, 54, 100 

NOT, 94, 95, 102 

square-root, 96 

NOWS, 174 

nuclear 

fission, 18 

magn etic resonance, see magnetic 

resonance 

power, 56 

reactor, 40 

spectrum , 40 

structure, 18, 39, 56 

nucleon, 60, 61, 93, 179, 192 

nucleosynthesis, 163 

nucleus, 31 

cobalt, 125 

h alo, 31 

helium , 31 

uranium, 31 

number 

Euler, 53 

four-dimensional, see quatern ions 

prime, 101 

quantum, see quantum 

surreal, 183 

system, 117 

theory,20,46,63, 138,173 

tr anscenden tal, 53 

tran sfinite , 53 

0 

0(3),33,36 , 39,41 , 132 

0(3,1), 67 

0(4),36,39,41,67, 132 

Index 

octo nions, 116, 117 

opacity, 170 

ope rat or, 70 

angular momentum, 32, 129 

boson-fermio n , 128 

Casimir, 41 

commuting, 38, 59, 120, 164 

creation, 167, 168 

destru ction , 167 

differential, 34 

four -dim ensional , 29 

vector, 15 

dipole, 40 

energy, 32, 56, see also Hamilt onian 

evolution, 154 

unit ary, 151 

incompatible, 82 

ket-bra, 70-72 

kin etic energy, 89 

Laplacian, 121 

m omentum, 56 

projection, 72 

quadrupole, 40 

spin 

individual , 104 

total, 104 

step-dow n/up , 130 

time reversal, 129 

unitar y, see transforma tion 

Oppenheimer, 17 

optics, 8, 20, 32, 191 

orbit, 30 

Bohr, 83, see hydrogen atom 

circular, 12 

classical, 21, 32 

closed, 35, 120, 131 

eccentricity, 120 

elliptic, 33, 34, 37, 50, 120, 160 

hype r bolic, 33, 36, 37 

Kepler , 34, 36, 50 

parabolic, 33, 36, 37 

planetary,20,35, 134 

precession, 120 

orbit al angular momentum, see angular 

momentum 

ort h ogonal, 2, 15, 38, 48, 105, 120 

group , see gro up 

polynomial, 53 



oscillat or 

four -dim en sional , 38 

harm onic, 10, see also h armoni c 

two-dim ension al, 50 

Otzi, 75 

Ovid, 47 

Metamorphoses, 47 

p 

P, parit y, see p arity 

pair 

boson-fe rm ion, 128 

coo rdinate, 62, 87 

quantum numb er, 87 

stat e, 65, 87 

palind ro me , 110 

mu sical, 111, 112 

PAM, phas e-amplitud e m eth od, 173 

parit y, 81, 112, 114, 164- 166 

even , 165 

invarian ce, 164 

label, 123 

maxim al violation , 126 

odd , 165 

sym me try, 109 

tra nsfo rma tion , 124 

violation , 125, 134 

particl e 

classical limit , 73, 186, 190 

Pascal , 20 

pat h int egral, 18, see Feynm an 

Paul, 79 

trap , 78, 79 

Pauli, 59 

- Dira c equation , 99 

-ism, 59 

m atrix, 60, 99, 104, 154 

Principle , 59, 186, 194 

spinor, 60 

Index 

pendulum , 4-6 , 10,38, 48,5 3, 57, 75, 76, 157, 

see also harm onic oscillato r 

amplitud e, 10, 48 

conical, 57 

equation, 5 

frequency, 10, 48 

inver ted, 75-77 

quantum , 82 

tim e period , 5, 6, 10 

perih elion 

precession , 120 

Periodic Table, 31, 39, 41, 42 

perspec tive, 115 

perturbati on, 58, 76, 84, 131, 173 

PG(2,2), 116 

pha se, 57, 97, 126, 127, 154 

-amplitud e m eth od, 173 

an gle, 57 

arbitrar y, 100 

condens ed, 30 

equation 

non-linear, 173 

macros copic, 191 

of wave func tion , 51, 171 

ove rall , 100 

scramblin g, 98, 191, 193 

shift , 57, 164, 165, 172 

invariant imb eddin g, 172 

tran sition, 130, 181 

water-ice, 30 

phase- amplitude equ ations , 51, 173 

ph otoe lect ric effect, 4 

ph otoionizat ion , 68 

ph oton,40 , 68,7 3,85 ,9 9, 132 

m ass, 132 

T( ' 2 

pi m eson , 43 

pion , 43, 93, 136 

Planck, 18, 20, 40 
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constan t, 18, 20, 52, 54, 92, 161, see also Fi 

Institut e, 18 

law, 40 

len gth , 20 

m ass, 20 

time, 20 

plan e 

compl ex 

tran sform ation , 148 

Fano, 116 

orth ogon al, 120 

p rojective, 117 

plut onium , 42 

Poincar e, 158 

posit ron , 79, 130, 138, 166 

potent ial, 50 

barri er , 163 

Co ulomb , 38, 40, 43, 83, 85, 131 
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potential ( continued) 

electric field, 78 

electromagnetic, 32 

energy, see energy 

gauge transformation, 126 

gravitational, 32, 39, 75, 76 

Einstein , 121 

Newton, 121 

harmonic, 120 

invari ant imbedding , 172 

Newtonian, 35 

parabolic, 75, 76, 79 

perturbation, 36 

quadrati c, 132 

random , 83 

saddle, 78 

scattering, 172 

step, 163 

surface, 64, 88 

two-dim ensional, 83 

well , 165 

precession , 35, 121 

pressure, 8, 30 

principa l quantum number, see quantum 

n umber and hydroge n atom 

Principia, 168 

Principia Mathematica, 69 

probability, 20, 32, 35, 60, 81, 98, 106, 187, 188, 

192 

transmi ssion, 163 

probability interpretation, 17, 18, 71, 95, 193 

projectile 

invariant imb edding , 170 

Newtonian method , 169 

projection 

angular momentum , 33 

Mercat or , see map 

operator, see operator 

stereographic, 150 

inver se, 154 

projective 

geomet ry, 114--116 

plan e, 116, 117 

proof theor y, 53 

proton, 18, 40 

magnetic moment , 102 

pseudo -quark, 42 

VJ", 17, 21, 51, 54, 71, 151 

psychoanalysis, 60 

Index 

Q 
QED, 21, 131, 168, 169 

correction, 131, 136 

quadrupole, 78, 79 

quantization axis, 101 

quantum , 40 

bit, 93, see qubit 

chromodyna mi cs, 167 

cloning , 105 

coin, 90, 92, 94, 100, 153, see also qubit 

flip, 96--98, 102 

comput ing , 21, 98, 100 

constant, 21, 52, 55, seen 

cryptography, 107 

electrodynam ics, 21, 130, 131, 137, 

167- 169 

entanglement, 104 

evolution , 100 

field 

interacting, 194 

the ory, 18, 20,21,30,42,56 , 59,72, 119, 

121, 126, 167, 168, 192 

underlying, 193 

gravity , 157 

hydro gen atom , see hydr ogen atom 

informati on, 5, 21, 42, 93, 97, 103, 107 

interpr eta tion, 5, 36, 57 

label , 87 

localization , 80 

Many Worlds, 174 

measur ement, 98, 152 

mech anics, 42 

linearit y, 97 

non -relativistic , 82 

path integral, 190 

relativistic , 56, 99 

non-lo cality, 151, 194 

number, 58, 59, 64, 65 

angular mom entum , 33 

azimuthal, 33 

collect ive, 180 

good, 87 

Landau, 130 

large, 82, 83 

pair , 65, 87 

prin cipal, 34 

zero, 127, 168 

pendulum, see pendulum 
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underlying, 190-194 

scattering 

invariant imbedding, 172 

time-independent, 56 

spin,59,60,92, 101,166 

evolution, 154 

state, 17, 70, see state 

statistical mechanics, 40 

teleportation, 105, 106 
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