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The Medical Science Series is the official book series of the International Federation 
for Medical and Biological Engineering (IFMBE) and the International Organization for 
Medical Physics (IOMP). 

IFMBE 

The IFMBE was established in 1959 to provide medical and biological engineering with 
an international presence. The Federation has a long history of encouraging and promoting 
international cooperation and collaboration in the use of technology for improving the health 
and life quality of man. 

The IFMBE is an organization that is mostly an affiliation of national societies. Transnational 
organizations can also obtain membership. At present there are 42 national members, and one 
transnational member with a total membership in excess of 15 000. An observer category is 
provided to give personal status to groups or organizations considering formal affiliation. 

Objectives 

To reflect the interests and initiatives of the affiliated organizations. 

To generate and disseminate information of interest to the medical and biological engineering 
community and international organizations. 

To provide an international forum for the exchange of ideas and concepts. 

To encourage and foster research and application of medical and biological engineering 
knowledge and techniques in support of life quality and cost-effective health care. 

To stimulate international cooperation and collaboration on medical and biological engineering 
matters. 

To encourage educational programmes which develop scientific and technical expertise in 
medical and biological engineering. 

Activities 

The IFMBE has published the journal Medical and Biological Engineering and Computing 
for over 34 years. A new journal Cellular Engineering was established in 1996 in order to 
stimulate this emerging field in biomedical engineering. In IFMBE News members are kept 
informed of the developments in the Federation. Clinical Engineering Update is a publication 
of our division of Clinical Engineering. The Federation also has a division for Technology 
Assessment in  Health Care. 

Every three years, the IFMBE holds a World Congress on Medical Physics and Biomedical 
Engineering, organized in cooperation with the IOMP and the IUPESM. In addition, annual, 
milestone, regional conferences are organized in different regions of the world, such as the Asia 
Pacific, Baltic, Mediterranean, African and South American regions. 

The administrative council of the IFMBE meets once or twice a year and is the steering body 
for the IFMBE. The council is subject to the rulings of the General Assembly which meets 
every three years. 

Copyright © 1998 IOP Publishing Ltd



For further information on the activities of the IFMBE, please contact Jos A E Spaan, Professor 
of Medical Physics, Academic Medical Centre, University of Amsterdam, PO Box 22660, 
Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. Tel: 31 (0) 20 566 5200. Fax: 31 
(0) 20 6917233. E-mail: IFMBE@amc.uva.nl. WWW: http://vub.vub.ac.be/ ifmbe. 

IOMP 

The IOMP was founded in 1963. The membership includes 64 national societies, two 
intemational organizations and 12 000 individuals. Membership of IOMP consists of individual 
members of the Adhering National Organizations. Two other forms of membership are available, 
namely Affiliated Regional Organization and Corporate Members. The IOMP is administered 
by a council, which consists of delegates from each of the Adhering National Organizations; 
regular meetings of Council are held every three years at the Intemational Conference on 
Medical Physics (ICMP). The Officers of the Council are the President, the Vice-president 
and the Secretary-General. IOMP committees include: developing countries; education and 
training; nominating; and publications. 

Objectives 

To organize intemational cooperation in medical physics in all its aspects, especially in 
developing countries. 

To encourage and advise on the formation of national organizations of medical physics in 
those countries which lack such organizations. 

Activities 

Official publications of the IOMP are Physiological Measurement, Physics in Medicine and 
Biology and the Medical Science Series, all published by Institute of Physics Publishing. The 
IOMP publishes a bulletin Medical Physics World twice a year. 

TWO Council meetings and one General Assembly are held every three years at the ICMP. 
The most recent ICMPs were held in Kyoto, Japan (1991), Rio de Janeiro, Brazil (1994) and 
Nice, France (1997). A future conference is scheduled for Chicago, USA (2000). These 
conferences are normally held in collaboration with the IFMBE to form the World Congress on 
Medical Physics and Biomedical Engineering. The IOMP also sponsors occasional intemational 
conferences, workshops and courses. 

For further information contact: Gary D Fullerton, Professor, University of Texas HSC-San 
Antonio, Department of Radiology, 7703 Floyd Curl Drive, San Antonio, TX 78284-7800, 
USA, e-mail: fullerton@uthscsa.edu, telephone: (210) 567-5550, and fax: (210) 567-5549. 
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With love to Imogen, who kept her Grandad entertained 
while this book was being written 
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Preface 

The first edition of Introductory Medical Statistics was published in 1976 and 
was based on a course given to medical students at the Westminster Hospital, 
University of London. The second edition, which incorporated additional 
examples and some new material on life table/actuarial survival rate calculations, 
was published in 1989. In the 22 years between the first edition and this greatly 
expanded third edition, much has changed in the world of medical statistics. 
For example, desktop personal computers are now the standard and several 
commercial statistical software packages are available (at great expense!). 

This improved access to computing power has meant that some statistical 
techniques which were previously seldom applied because they were too labour 
intensive are now in common use, for example, modelling techniques. This 
advance in computers has also meant that users of commercial statistical software 
do not have to think too deeply before they number crunch and problems 
can arise as there is no built-in software guarantee that the correct statistical 
significance test has been used. Basic training in statistics is essential for 
software package users without any real previous statistical experience. 

Not only has medical statistics changed direction but also the work of the 
author. With the closure of the Westminster Hospital early retirement beckoned 
from my former life as a Director of Medical Physics and a Hospital Cancer 
Registry in the British National Health Service, and since 1990 I have been 
giving Basic Medical Statistics Courses with Special Referetice to Caticer in 
hospitals worldwide: Austria, Australia, Belgium, Canada, France, Germany, 
Japan, the Netherlands, Saudi Arabia, Switzerland, the UK and the USA. 

The planning of this third edition has been helped enormously by comments 
and material for examples from those (radiation oncologists, radiologists, 
gynaecologists, physiologists, physicians, surgeons, biochemists, physicists, 
opthalmologists, dermatologists, anaesthesiologists, to mention some of the 
specialties) who have attended these courses. 

I am also pleased to learn that my cartoons and anecdotes (see also Mould’s 
Medical Anecdotes: Omnibus Edirioti published in 1996 by Institute of Physics 
Publishing) have stood the test of time in that they continue to keep course 
participants awake in the 1990s. In the 1970s the British Medical Jourtial in 
the review of the first edition stated ‘The book is enlivened by the author’s 

xvii  
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xviii Pre fuc e 

engaging sense of humour. He is to be congratulated on his highly original 
and elegant contribution to professional education in  a subject which would be 
much more widely understood and applied if his book achieves the circulation 
it deserves’. The first edition was translated into Spanish and the second edition 
into Japanese. 

This is still an introductory textbook although by popular demand I have 
also included a chapter on multivariate analysis and the Cox proportional hazards 
model but this should be considered as optional (advanced) reading. New 
chapters which are in  this edition are chapters 17-23 and include much expanded 
material on clinical trials, t-tests, epidemiology and analysis of variance. In 
addition, new topics are included such as risk specification (using Hiroshima, 
Nagasaki and Chernobyl as examples), sensitivity and specificity, McNemar’s 
test, Bayesian statistics, decision theory, meta-analysis, and a full discussion on 
treatment success, cure from cancer and quality of life assessment. 

The volume is intended to have widespread appeal, not only for radiation 
oncologists, diagnostic radiologists and medical physicists, but also for those 
medical specialties mentioned above, since it is no longer practical for any 
doctor to ignore statistics as they form part of the syllabus of many professional 
examinations and journal editors often insist on the inclusion of statistics (usually 
at least the famous P value!) in papers. 

Finally I would like to express my thanks to all the participants over 
almost a quarter of a century who have attended my Statistics courses and 
given me much constructive advice. I am also most grateful to my Institute of 
Physics Publishing editor, Kathryn Cantley, for her support and her allowance 
of elastic deadlines for the manuscript, to Sharon Toop of IOPP production and 
Adrian Corrigan for his production expertise, and to Pamela Whichard of IOPP 
marketing for ensuring that this third edition reached the bookshops in Olympic 
record time! 

Dick Mould 
January 1998 
Croydon 
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Chapter 1 

Data Presentation 

1.1 INTRODUCTION 

Data presentation is an essential but sometimes neglected topic for any 
introduction to statistics. Lack of a proper understanding of the various 
possibilities of data presentation can lead to confusion for those who are expected 
to interpret statistical results. Even if the results are correct, they will not be of 
much use if nobody can understand them. A useful adage is that simplicity of 
presentation should be a priority. 

The following diagrams, charts and graphs are only a few examples but 
they clearly show the range of possible presentations. Real data has been used, 
including some examples referring to the problems of cancer of the cervix in 
developing countries]. 

With the graphics capabilities of computer software. three-dimensional data 
presentations, such as isometric charts, are also readily available. These are 
charts or graphs that portray three dimensions on a plane surface. 

1.2 BARCHART 

A bar chart, bar diagram or bar graph, is a series of horizontal or vertical bars 
of equal width for a two-dimensional chart, or equal cross-section for a three- 
dimensional chart as in Figures 1.1 and 1.2. The width or cross-section does 
not have any significance for a bar chart; only the height presents the data of 
interest. 

1.3 PIE CHART 

Figure 1.3 is a pie chart or pie diagram and is a circle which is divided into 
segmental areas representing proportions. Since a circle consists of 360", the 
segments are calculated by dividing these 360" in the relevant proportions. Thus 
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2 Data Presentation 

Figure 1.1. Bar chart of the world population*. Three-dimensional vertical blocks are 
used in this chart and they are an example of how to present data for two populations 
(less and more developed regions of the world) in a single diagram. The world’s largest 
countries in 1996, ranked in order 1-10, are as follows. (Courtesy: United Nations.) 

Rank Country Population 
(millions) 

Percentage of 
world population 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

China 
India 
USA 
Indonesia 
Brazil 
Russia 
Pakistan 
Japan 
Bangladesh 
Nigeria 

1232 
945 
269 
200 
161 
148 
140 
125 
120 
115 

21.4 
16.4 
4.1 
3.5 
2.8 
2.6 
2.4 
2.2 
2.1 
2.0 
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Histogram 3 

Figure 1.2. Bar chart of the average annual changes in the world population*. This is an 
example where the vertical scale can be negative to show a decrease. (Courtesy: United 
Nations.) 

for three segments of 10, 30 and 60%, the segmental angles are 36", 108" and 
216", respectively. 

1.4 HISTOGRAM 

In a histogram, the height of each vertical block does not always represent the 
value of the variable of interest (unless the width of the block is unity), as is 
the case of a bar in a bar chart. Also, in a histogram, the horizontal scale is 
continuous and not, like the bar charts, discrete. Also, unlike a bar chart width, 
a histogram block width dues have a meaning. Histogram blocks are usually of 
a constant width, indicating equal intervals on the horizontal scale, although this 
is not absolutely necessary, since it is the area ofeach histogram block which is 
important, in that it is this which represents the value of the variable of interest. 
Figure 1.4(a) is a histogram of the distribution of ages of 667 cancer of the 
cervix patients treated in Algeria, and the constant intervals on the horizontal 
scale are 5 year age ranges. The vertical scale indicates the observed frequency, 
which is the number of patients in a given 5 year age group. The dimensions 
of these particular histogram blocks are 'patient numbers x5 years of age' and 
thus the first two blocks have values of 3 x 5 and 10 x 5 in these dimensions, 
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4 Data Presentation 

1197 patients 
(21.5%) 

2310 patient8 
(41 * 5 %  

Figure 1.3. Pie chart showing the parity (number of children born) of a population of 
5567 cancer of the cervix patients treated at Chittaranjan Hospital, Calcutta'. Also, the 
association between early marriage and the incidence of cancer of the cervix has been 
well documented. For this cancer patient population it was found that the age at marriage 
for 7% was below the age of 12 years, 27% in the range 12-15 years, 50% in the range 
15-20 years, and only 16% with an age above 20 years. 

totalling 65. If, alternatively, the first histogram block is to be made with a width 
of 10 years, from 20-29 years, then the height to signify 13 patients must be 

x 13 = 6.5 since the area of this single histogram block must equal that of the 
previous two. The remaining blocks in the histogram, for 30-34, 35-39 years 
etc, can then remain the same. This is a trivial example, but the importance 
of the area of a histogram block must be remembered. The vertical scale of a 
histogram or bar chart may either be in absolute numbers or in percentages. 

Figure 1.4(b) looks at first glance like a histogram, but in reality it is 
a vertical bar chart. The horizontal scale which represents the number of 
pregnancies is not continuous and it can only take on integer values, including 
zero. However, for zero pregnancies no histogram block can be drawn because 
its area would always be zero no matter how high the number of patients. The 
height of each histogram block can be indicated on the top of the block, as well 
as on a vertical scale, as in Figure 1.4(a), but this is optional. 

1.5 PICTOGRAM 

Pictograms can be very useful means of presenting some types of data and may 
be maps, as in Figure 1.5, or a series of symbols arranged in an appropriate 
manner as in Figure 1.6. In particular, pictograms are valuable for medical 
education programs for the general public. 
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Pictogram 
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Figure 1.4. (U) Histogram of the ages of 667 cancer patients in Algeria. ( b )  Bar chart 
showing the number of pregnancies of 667 Algerian cancer of the cervix patients. The 
association between the number of pregnancies and the incidence of cancer of the cervix 
has been well documented; see also Figures 1.3 and 1.6. 
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h Data Presentation 

SICHUAN 
PROVINCE 

PROVINCES 

Significantly higher than the national average 

Not significantly different from the national average 

Significantly lower than the national average 

Very significantly higher than the national average 

0 

Figure 1.5. Geographical distribution of cancer of the nasopharynx in China, 1973-79. 
The pictogram shows that this particular form of cancer is concentrated in the Kwantung 
and Kwanxi provinces. There is an interesting small area of high incidence in Sichuan 
province and an unexpected explanation for this is a civil war which occurred some 400 
years ago and caused emigration to this area of Sichuan from Kwantung and Kwanxi. 
This cancer, which is relatively rare except in China and in Hong Kong, is also known 
as the Kwantung tumour. 

1.6 SCATTER DIAGRAM 

A scatter diagram is a form of pictogram and Figure 1.7(a) is an example 
in which the annual lung cancer incidence rate per 100,000 population is 
shown for selected countries. The horizontal axis does not have a scale 
since it is not appropriate, but some scatter diagrams will have numerical 
scales for both vertical and horizontal axes. In this case, the observed 
patterns can then be studied by the statistical techniques of correlation and 
regression. Such an example is given in Figure 1.7(b) which indicates a 
complicated relationship between chromosome aberrations and radiation dose 
for the Hiroshima population who survived the atomic bomb in 1945. 
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Figure 1.6. Each symbol represents 10 cancer of the cervix patients out of a total of 
578 treated in Bangkok, as a function of parity. 

1.7 TABLE 

It should be recognised that some forms of data defy most methods of illustration 
and there is no better alternative than a table. An example of such data is 
given in  Table 1.1 and is a list of the reasons why patients with cancer of the 
cervix in rural Thailand do not attend for treatment. These are the results of a 
questionnaire in which the patient was allowed to give more than one answer. A 
pie chart would thus be inappropriate and, although a bar chart would technically 
be possible, a table is better. 

1.8 GRAPHS: LINEAR AND LOGARITHMIC AXES 

In graphs on rectangular coordinate graph paper, the magnitude of one variable is 
plotted along the horizontal axis, called the X-axis, and all the values along this 
axis are known as abscissae. The magnitude of the other variable is plotted along 
the vertical axis, called the Y-axis, and the values along this axis are known 
as ordinates. The position of a point on a graph is defined by its abscissa and 
ordinate, which together form its coordinates. The point of intersection of the 
two axes at X = 0, Y = 0 is called the origin but is not automatically included 
in all graph plots and for a logarithmic axis the value 0 can never be included. 
The mathematical equation for a straight line, such as in Figure 1.8, is 

Y = n + D X  

Copyright © 1998 IOP Publishing Ltd



8 Data Presentation 

England and Wak* Scandinavia 
120 I: 'United Stater of America I 
1001 

Sweden 
- %Norway 

0 A 
Utah Japan 

0 

- 

0 J 

'Or e 

e c -- 
I I 

'200 300 400 500 

a 

., 
600 

Total radiatlon dose (centlGray) 

Figure 1.7. ( a )  Male lung cancer in selected populations. England and Wales has the 
highest incidence, and the state of Utah in the USA which has a 70% Mormon population. 
has a much lower lung cancer incidence than other American states. This is to be expected 
because smoking is against the Mormon religion. A variety of symbols may be used 
in scatter diagrams or in pictograms. ( b )  Raw data on chromosome aberrations and 
radiation dose. The points are so widely scattered that you can deduce from i t  almost 
any relationship. 

where X and Y are the variables and a and b are constants. The points (XI. Y , )  
and (X2, Y,) are shown and the constant b defines the slope of the straight line. 
This is the ratio of the increase in Y corresponding to an increase in X:  

b = (Y2 - Y , ) / ( X 2  - X I ) .  

The constant a is known as the intercept, and is the distance between the 
origin (X = 0, Y = 0) and the point on the Y-axis which intersects the straight 
line. Straight-line equations will be met again later in the book when correlation 
and regression are  discussed. 

There are many different types of graph paper but the simplest and the one 
most often used is linear graph paper in which equal numerical intervals are 
equally spaced on a linear graph axis. Figure 1.9 is an example of a graph (not 
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Table 1.1. Reasons for failure to complete treatment for cancer of the cervix in rural 
Thailand. Data for 167 patients. 

Patient’s problem Percentage of 
responders 

No money for transport 
No accommodation near hospital 
Too weak, poor general condition 
Too advanced disease-given up 
Influenced by relatives to quit 
Reluctance to attend 
Seeks herb and magic treatment 
Did not understand doctor’s advice 
Delay due to ignorance of cancer 
Delay due to old fashioned beliefs 
No motivation for early detection of cancer 

61 . I  
57.5 
25.2 
10.2 
47.9 
14.4 
51.5 
50.3 
35.9 
55.1 

100 

(XZO, 

Y-AXIS 

1 

I 7 j “ i  I I 

Figure 1.8. The straight line. Three points are shown: 0 ,  the origin at X = 0, Y = 0 and 
the two points ( X I ,  Y , )  and ( X 2 ,  Y2). Graph points are usually written in this manner, 
inside brackets with the X value preceding the Y value. 

a straight line in this instance) on linear graph paper. There are equal intervals 
between each 10% spread of values on the Y-axis and equal intervals between 
each 10 year age spread of values on the X-axis. The data refer to the age of 
cancer of the cervix patients in Bombay, see Table 1.2. The meaning of the 
adjective cumulative, as in cumulative number or cumulative percentage, can 
clearly be seen from the table. The age corresponding to the 50% cumulative 
percentage value is the median age (see Chapter 2 for median) of the patients 
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and is 45 years for these data. The cumulative curve in Figure 1.9 is S-shaped 
and this is sometimes referred to as a sigmoid curve. 

Age A years 

Figure 1.9. Cumulative age graph for 416 cancer of the cervix patients in Bombay, 
drawn on linear graph format. 

Table 1.2. Data illustrated in Figure 1.9. 

Age range Number of Cumulative Cumulative 
in years patients in number of percentage 

a given age patients of patients 
range 

Less than 30 30 30 7.2 
31-40 102 132 31.7 
41-50 162 294 70.7 
5 1-60 96 390 93.8 
61-70 22 41 2 99.0 
71-80 4 416 100 

Total number of patients = 416 

Figure 1.10 is an illustration of logarithmic-linear graph paper, sometimes 
known as semi-log graph paper, in which the X-axis is a linear scale, such as 
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in Figure 1.9, but the Y-axis has a scale with unequal intervals. These intervals 
are i n  proportion to the values of log, X which are termed natural logarithms 
(as distinct from log,,X which are logarithms to the base 10). Table 1.3 lists 
the values of log,X and, in the last column, differences between successive 
log,X values. These differences reduce as X increases from 2 to 10, just as 
the intervals on the Y-axis reduce in Figure 1.10. The logarithmic scale 1-10 
is repeated for each power of 10, such as 10-100, 100-1000 and 1000-10 000. 
Each power of 10 is called a cycle and, for example, a logarithmic scale from 
1-1000 is called a 3-cycle scale. An advantage of using a log scale is that a 
wider range of values can be plotted than when using linear graph paper. For 
example, if the Y values extended from, say, 1.5 to 800, linear graph paper 
would either have to make the Y-scale very compressed or the graph paper very 
tall. On the other hand, log 3-cycles could extend from 1 to 10 for the first 
cycle, and then through 20, 30, ..., to 100 for the second cycle, and finally 
through 200, 300, ..., to lo00 for the third cycle. 

Figure 1.1 1 is an example of a log-linear graph plot using four cycles 
and illustrates the typical shape of age-specific lung cancer incidence. That for 
males is higher than for females because there is a much greater lung cancer 

j3 

2 
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Table 1.3. Variation of log, Xi with Xi where i extends from 1 to 10 

X, log, X, Difference 
between 

and log, X,+, 
log, x, 

1 0 
2 0.693 
3 1.098 
4 1.386 
5 1.609 
6 1.792 
7 1 946 
8 2.079 
9 2.197 

10 2.303 

0.693 
0.405 
0.288 
0.223 
0.183 
0 154 
0.133 
0.118 
0.106 

incidence in males. The curves show a fall-off at the older ages and where this 
fall-off begins is an indication of the general health of the population. Thus for 
example, data for Russia fall-off at an earlier age than for the USA. In 1996 the 
average lifespan for US men had risen to 72.4 years while more heart disease 
and other risks had cut the average Russian man’s life expectancy to about 57 
years in 1995 from 62 years in 1984. 

In Figure 1.11 the figures 100 and 1000 could equally well have been 
written as 10’ and lo3 which are termed ‘10 to the power 2’ and ‘10 to the 
power 3’ where the power value is also called the exponent. This shorthand 
terminology can be very useful when, for example, one wishes to talk about 
millions (lo6) or millionths One example is given in Table 1.4 for the 
electromagnetic spectrum where it is much easier to write IO6 (i.e. 1 x lo6) 
rather than 1 000 000 or (i.e. 1 x rather than 0.OOO 001. Table 1.5 
lists the standard prefixes for inultiples of 10. 

1.9 EXPONENTIALS 

The symbol e in log, Y refers to an irrational number (i.e. a number which 
cannot be expressed as an integer, a finite fraction or as a decimal with a finite 
number of figures after the decimal point) which to seven decimal places is 
2.7182818. Another example of an irrational number is T T ,  the ratio of the 
circumference of a circle to its diameter, which to seven decimal places is 
3.1415927. A German mathematician in  the 19th century, in the age before 
computers, spent his entire working life calculating 71 and its value was inscribed 
on his gravestone! 
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1 millimetre 10-1 - 
lo-* - 
10-1 - 

lo-’ - 
10“ 

1 micron 

10’’ - 
1 Angstrom 10” - 

lo+ - 

Table 1.4. The electromagnetic spectrum. In external beam radiation therapy using 
X-ray beams from linear accelerators there are three classifications. Superficial therapy 
is 10-150 kilovolts (kV), i.e. 10-150 x103 volts. Deep (or orthovoltage) therapy is 
200-300 kV,  i.e. 200-300 x lo3 volts. Megavoltage (or SupervoltageJ therapy is above 
I million volts, i.e. > lo6 volts. 

1 o-: 
INFRARED ,- 10“ 

1 

-,Dl 
- 10’ 

- los 

-< VISIBLE LIGHT >’ 
ULTRAVIOLET 

- 10‘ X-RAYS 
AND 

Wave1 en g t h Voltage 
cm eV 

GAMMA RAYS 
lo -”-  
lo-’>- 
lo-”’ 

1 kilometre 10’ 

- l o 6  
- 10’ 
- 108 

10’ 

Table 1.5. Prefixes and symbols for multiples of 10 

Multiple Prefix Symbol Multiple Prefix Symbol 

lo2 hecto h centi C 
1 O3 kilo k miIIi m 
IO6 mega M IO-‘ micro cc 
loy giga G IO-’ nano n 

tera T I O - 1 2  pic0 P 
peta P femto f 

lo1* exa E atto a 
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Figure 1.11. Example of log-linear graph plots. Data for lung cancer incidence in 
Canada. 

Logarithms to base e are known as natural logarithms, but logs exist to 
bases other than e and if two bases are a and b, then 

Thus 

also 

log, N log N log, N 
log, 10 e 2.3026 

log,, N = - = 2 = - 

eb* is called an exponential series and is given by the formula 
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where the symbol ! means factorial. and 

2 ! = 1 x 2  
3 ! = 1 X 2 X 3  
4 ! = I x 2 x 3 x 4  
n !  = 1 x 2 x 3 x 4 x . , . x n 

The constant b may be positive or negative and thus ehx are known as 
positive exponentials and e-h.‘ as negative exponentials. An example of a 
phenomenon which can be described by a negative exponential law is radioactive 
decay. Figure 1.12 illustrates the decay of three different radioactive isotopes, 
iodine-131 with a half-life of 8 days, gold-198 with a half-life of 2.7 days and 
technetium-99m with a half-life of 6 hours. The decay data are plotted on semi- 
logarithmic graph paper, with a 3-cycle logarithmic axis. The decay data are 
shown as straight lines, and this always occurs for an exponential law when the 
data are plotted on semi-logarithmic paper. The data would appear as curves if 
plotted on linear graph paper. Hence by changing the type of graph paper, we 
have ‘transformed’ a curve into a straight line. 

131 

-1 98 

0 . 4  
0.3 
0 . 2  

Technetium-99 m \ 
0.1- 
0 2 4 6 8 1 0  

Time T days 

Figure 1.12. Exponential decay of three different radioactive isotopes. Iodine-13 1 
concentrates in the thyroid gland and is used to treat and diagnose thyroid disorders. 
It  is also one of the radioactive isotopes which was a constituent of the Chemobyl 
radioactive fallout and caused much concern about contaminated milk in the early days 
following the accident. Gold-198 is used in the form of small ‘seeds’ for implantation 
into tumours as a method of radiotherapy. Technetium-99m, when bound to certain 
pharmaceuticals is used in nuclear medicine organ imaging. 
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1.10 VENN AND EULER DIAGRAMS 
An example of a Venn diagram is given i n  Figure 1.13 and as seen it consists of 
three overlapping circles: Venn circles. In  theory, there could be any number of 
overlapping circles but with more than three or four circles the diagram becomes 
rather cluttered. 

Figure 1.13. Most patients with cancer fail for three reasons: inability to control the 
primary tumour (T failure), nodal involvement (N failure), dissemination to distant 
sites (M failure). Thus failure may occur from any one of these categories of from 
a combination TN, TM, NM, TNM, as shown in this Venn diagram. The number of 
failures in each category can be equated to the areas in the diagram or, alternatively the 
actual number of failures in each category can be stated in the appropriate part of the 
Venn diagram. 

A form of diagram which is similar to the Venn diagram is the Euler 
diagram in which circles or other geometrically shaped areas are within a square 
or rectangular boundary, Figure 1.14. 

Figure 1.14. Euler diagrams. The mathematical symbol U is called a union and is the 
shaded area (centre) El U E2 in that this is the combination of El and Ez. The symbol n 
is called an intersection and (right) is the shaded area which represents the parts common 
to both E, and El, When a horizontal bar is placed over, say, E1 U E2 it signifies that 
the area in the square excluding El  U E2 represents what is not El U E2. 
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1.11 BOX AND WHISKERS PLOT 

A box and whiskers plot, sometimes referred to only as a box plot, is a graphical 
method of presenting the distribution of a variable measured on a numerical 
scale. An example is seen later in Figure 21.5. The midpoint of the distribution 
is represented by a horizontal line and the values above and below the midpoint 
line are divided into quartiles by horizontal lines. The hinges (or ends) of the 
box are at the two quartiles nearest to the midpoint and the quartiles extending 
to the extreme values are represented by vertical lines (the whiskers) which end 
in a horizontal line. 

REDRAWING THE DOW 

This is an example from the New York Times of 2 March. 1997 
of when it is not appropriate to use a logarithmic scale. Under 
the title of The Bulls and Bears and the Little Pigs: Redrawing 
the DOW, it  was stated that 'This chart, plotted on a logarithmic 

scale, gives the same visual weight to comparable percentage 
changes in the Dow Jones industrial average. A 100 point rise 
when the Dow is at 1000 looks the same here as a 700 point 

rise at 7000. Seen this way, it's easy to see why investors have 
ignored recent declines'. 

l0,WO , 
W cn 
E 

n 
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Chapter 2 

Describing Curves and Distributions 

2.1 INTRODUCTION 

To describe a curve so that it can be reproduced, a quantitative description is 
needed. The terms curve and disrribution used in  this book are synonymous, in  
the sense that a particular curve depicts the distribution of a quantity such as 
age, death due to a particular cause, blood pressure, drug response, etc. It is 
also quite common to see a series of histogram blocks representing an observed 
distribution of a quantity, with a good fit curve superimposed. This curve can 
be termed a disrribution curve. Any curve must be drawn relative to two axes, 
and the description of the curve must include information about both its position 
and its shape. Measures of central tendancy of location (i.e. of position) are 
arithmetic mean, median and mode. Measures of dispersion (i.e. shape) are 
variance, standard deviation, covariance and skewness. 

The final section in this chapter defines what is meant by probabili5 densiq 
function since we shall be working in terms of probability from the next chapter 
onwards. Thus, for example, with the normal curve drawn as a function of x 
(that is, y equals a function of x), if the total area beneath the curve equals 1 
the entire area beneath this particular normal curve (which is the the standard 
normal) can be equated to total probability. Areas beneath the curve between 
given values of x, such as xl  and x2, therefore represent the probability of 
values of y lying between y/ and y2 always assuming (for this example) that y 
is normally distributed. 

2.2 MEAN, MODE AND MEDIAN 

The three most important and commonly used measures of position are the 
arithmetic mean, mode and median. For the following ten numbers 

7 , 6 , 3 , 1 1 , 5 , 7 , 7 , 9 , 6 , 5  

which we will assume are observed values of a quantity, the arithmetic mean or 
average is the sum of all the observations divided by their total number. Thus 

18 
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the mean is 

= 66/10 = 6.6. ( 7 + 6 + 3 +  I 1  + 5 + 7 + 7 + 8 + 6 + 5 )  
10 

The mode of a distribution is the observation that occurs most frequently and 
in the above group of ten observations the mode is 7, which occurs three times. 
In figure 1.4(b), which is data for number of pregnancies, the mode is 8. 

Symmetrical curve 
Y I  

Mean 
Mode 
Median 

Asymmetrical (skewed)curves 

Mode I Mean Mean I Mode 
Median Median 

Figure 2.1. Curve shapes. 

The median is the middle-valued observation when all the observations are 
ranked in order of value; 

3 , 5 , 5 , 6 , 6 , 7 , 7 , 7 , 9 , 1 1 .  

If the total number of observations is even, as above, the median is the value 
between the two middle observations, that is between 6 and 7. For grouped 
distribution data as in table 1.2, the median can be found from the cumulative 
curve in figure 1.9, as already noted in Chapter 1. 

For the special case when the distribution curve is symmetrical, 

mean = mode = median 

as in  the normal curve of Chapter 3. However, most distributions are at least 
slightly asymmetrical and in this instance 

mean - mode = 3 x (mean - median). 
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Figure 2.2. (a)  Scatter diagram of the ages of 41 Russian czars. ( b )  Histogram of the 
bedtimes of the 36 girls in class IK at Old Palace School, Croydon. 25% of the class 
went to bed at 8 pm, 25% also went to bed at 9 pm, which accounts for the bimodal 
shape of the distribution. (Courtesy of Fiona Mould (Imogen's mother!), ex-member of 
class IK.) 

Not all observed data can be  fitted by a curve but a mean, mode and median 
of the observations can still be computed. Such an example is the ages of 41 
Russian czars who lived between the years 1341 and 1696 and are now buried in 
one of the cathedrals inside the Kremlin walls in Moscow. Figure 2.2(a) shows 
the distribution of ages in a scatter diagram. This particular distribution has two 
modes§, but it is a good example of when a mode is not really useful. A better 

\ Figure 2.2(b) is also a distribution of observed data with two modes, in this case presented in the 
form of a histogram. When one observation is far removed from the remainder, such as the 6 pm 
bedtime of one child, this observation is known as an outlier. 
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description of these data would be to state only that the mean is 16.1 years, the 
median 14 years, and the range 28 years, extending from 3 to 31 years. More 
data than the 41 observations in  this example would be necessary before any 
recognisable distribution shape might appear. However, only 41 observations 
are available. 

To look at another example, consider the ages of male doctors given an 
obituary in The Lancet for the first six months of 1985. Of the 30 obituaries, 
three were female and 27 male and two of the males did not have their ages 
stated. Of the 25 males for analysis, the ranked ages are 

49 
56 
57 
60 
67 
70 
72 
73, 73, 73 (Mode = 73) 
74 
75, 75 (Median = 75) 
76, 76 
77 
80, 80 
81, 81 
82 
84 
87 
88 
90 

with a mean age of 1856/25 = 74.2 years. 
As with the data of figure 2.2, a statement of the modal value is not 

very informative. However, fortunately with this Lancet obituary data more 
observations are available and when the 3-year period 1983-1985 is reviewed 
the number of observations increases to 194 for male doctors. The range is 
large, from 27 to 99 years and although there are 11 deaths at age 82 (the modal 
value), there are 10 deaths at age 76, and 9 deaths each at ages 67, 78 and 
81 years. The best method of illustrating these data is as grouped data (see 
table 2.1) using a histogram, figure 2.3, rather than a ranking list as for the 
25 observations in 1985, since this is visually more informative. The data are 
negatively skewed, see figure 2.1, with a mode between 76 and 84 and a median 
between 75 and 76: since the 97th ranked observation is 75 and the 98th ranked 
observation is 76 (the total number of observations is an even number and equal 
to 194). From table 2.1 it is seen that the mean is 73.4. This is a more accurate 
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estimate of the mean age than the previous value of 74.2 years since more data 
are available. 

Table 2.1. Grouped data for the ages of 194 male doctors whose obituaries appeared in 
The Lancer during the years 1983-1985. The mean calculated using the 194 ungrouped 
data values is 14, 219/194 = 73.4 and therefore very little accuracy is lost in this example 
in estimating the mean from the grouped data. 

Age interval 
in years 

Frequency Mid-interval F x A 
F year A 

26-30 

3 6 4 0  
4 1 4 5  
46-50 
51-55 
56-60 
61-65 
66-70 

76-80 

31-35 

71-75 

81-85 
86-90 
91-95 
96- 1 00 

1 
0 
0 
2 
5 
9 

14 
14 
23 
29 
37 
37 
16 
5 
2 

28 
33 
38 
43 
48 
53 
58 
63 
68 
73 
78 
83 
88 
93 
98 

28 
0 
0 

86 
240 
477 
812 
882 

1564 
21 17 
2886 
3071 
I408 
465 
196 

Totals 194 
Mean = 14.2321 194 = 13.4 years 

14.232 

Figure 2.3 is an example of a unimodal distribution and a bimodal 
distribution for population numbers far larger than those in figure 2.2. Age 
distributions for most cancer sites are unimodal, such as that for newly diagnosed 
corpus uteri (endometrium) cancer and lung cancer. In such a case, specification 
of a mean age is appropriate. However, for cancer of the cervix when the 
population includes both in situ cancer and invasive cancer the distribution is 
bimodal and the age distributions should be demonstrated using two separate 
distributions to maximise the available information in the diagram. 

2.3 SKEWNESS 

The terminology for asymmetry in a distribution curve is skewness. When the 
mode of the curve is 'pushed to the right' the curve is called negatively skewed 
and when 'pushed to the left' is called positively skewed, see figure 2.1. A 
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Figure 2.3. Age distribution in England and Wales for registered new cases of cancer 
of the cervix uteri and corpus uteri, demonstrating both a unimodal and a bimodal 
distribution. 

symmetrical curve has no skewness. Two measures of skewness which are 
useful for some grouped frequency distributions when the mode cannot easily 
be found are the first coeficient of skewness which is defined as 

(Mean - Mode)/Standard deviation 

and the second coeficient of skewness which is defined as 

3 x (Mean - Median)/Standard deviation 

An example of a negatively skewed distribution is shown in figure 2.4 and 
a second example could be constructed from data for mortality in England and 
Wales in 1984 from chronic renal failure, where for the 882 male deaths, the 
mode is in the 5 year age group 80-84. An example of a positively skewed 
distribution is mortality in  England and Wales in 1984 from motor vehicle 
traffic accidents, where for 3547 male deaths, the mode is in  the 5 year age 
group 15-19. 

A further example of a positively skewed distribution is seen in figure 9.2 
which is a lognormal distribution curve for the distribution of survival times 
of patients with cancer of the cervix who died with their cancer present. This 
distribution is the basis of the lognormal model, which with properly chosen 
values for its mean and standard deviation can be used to predict the proportion 
of long-term survivors following treatment for cancer. It has, however, only 
been verified for certain specific cancer sites. 
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Madhn 

Maml I I Mode 

Mld-value of 5-year aga group 

Figure 2.4. Histogram of the ages of 194 male doctors whose obituaries appeared in 
The Lancet during the years 1983-1985. 

2.4 STANDARD DEVIATION AND VARIANCE 

Mean, mode and median are measures of location of a curve or series of 
observations, but in addition to measures of location, measures of shape are 
also necessary for a full description of a curve or distribution of observations. 
Skewness is a measure of symmetry or asymmetry but it will not completely 
describe the shape in terms of dispersion. Range is a measure of dispersion, for 
example, two groups of eight values of xi 

N = 8  
xi values are 12, 6 , 7 , 3 ,  15, 10, 18,5 
range is 3-18 and mean = X = 9.5 

N = 8  
x i  values are 9,  3, 8, 8,9, 8,9, 18 
range is 3-18 and mean = X = 9.0 

may have the same range and not very different means but, even so, their shape 
if ranked from 3-18 and presented in the form of a vertical bar chart is very 
different. Range is therefore not the best measure of dispersion of a distribution 
of observations. An improvement on range is the semi-interquartile range, which 
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for the first group is 6-12 and for the second is 8-9 

*v = 8 
ranked .v ,  values are 3. 5 ,  6. 7, 10, 12, 15. 18 

N = 8  
ranked .v8 values are 3. 8. 8. 8. 9. 9, 9, 18. 

This i licates that for the second group, the extreme ends of th 
widely different from the central 50% of the values. 

rang are 

However. the best measure of dispersion is the standard deviation, which 
is the square root of the wriance: 

(Standard deviation)’ = Variance. 

To illustrate the calculation of standard deviation a series of four observations 
is used 

N = 4  
x ,  values are 4. 5 ,  6, 9 
mean = X = 6 

and two methods which may be termed the direct method and the quick method 
are illustrated. Both give a value for the standard deviation of 2.2. 

Using the notation X = mean of all xi values and the total number of x i  
values = N. the formula for standard deviation is 

/Sum of all (x i  - values 
i N - 1  

Standard deviation = 

However, a quicker method than using the direct formula above is to use the 
following formula: 

Sum of all (x,2) values - [(Sum of all ( x , )  va1ues2 ) /~ ]  J N - 1  
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Calculation of  a standard deviation (direct method). 

4 -2 4 
5 - 1  1 
6 0 0 
9 +3 9 

Sum = 24 Sum = 14 

N = 4  

X = (2414) = 6 
SD = = 2.2 

Calculation of a standard deviation (quick method). 

16 
25 
36 
81 

Sum = 24 Sum = 158 

N = 4  

SD = 158 - (2412/4 

SD = 2.2 
4 -  1 

For the two groups of eight observations with identical ranges 3-18 and 
means of 9.5 and 9.0, the standard deviations are 4.9 and 3.9. This indicates, 
as it should, that the xi values 3, 8, 8, 8, 9, 9, 9, 18 are more closely grouped 
together than are 3, 5,  6, 7 ,  10, 12, 15, 18. 

The N = 4 and N = 8 groups are trivial and used only to illustrate 
computational methods. In practice, the number of observations will be larger. 
For the data in figure 2.2(a), the computation is given in table 2.2, using the quick 
method. Some observations will have the same value: there are 41 observations 
but only 21 age values, termed data group i .  This is why the frequency column 
of Fi-values is required. 
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Table 2.2. Computation of the standard deviation of the data in figure 2.2(a). 

Data group Age in years Frequency Fixi (xi)2 Fi (xi)2 
i Xi Fi 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
16 
17 
18 
19 
21 
25 
26 
27 
28 
29 
31 

1 
1 
2 
3 
2 
4 
1 
4 
2 
2 
1 
1 
1 
3 
1 
2 
2 
2 
2 
3 
1 

3 
4 

10 
18 
14 
40 
11 
48 
26 
28 
16 
17 
18 
57 
21 
50 
52 
54 
56 
87 
31 

9 
16 
25 
36 
49 

100 
121 
144 
169 
196 
256 
289 
324 
36 1 
441 
525 
676 
729 
784 
84 I 
96 1 

9 
16 
50 

108 
98 

400 
121 
576 
338 
392 
256 
289 
324 

1083 
441 

1050 
1352 
1458 
1568 
2523 
96 1 

N = Sum(F;) = 41 

Sum(F;x;) = 661 

S U ~ [ F ; ( X ~ ) ~ ]  = 13,413 

[ S u m ( F ; ~ i ) ] ~  = 436,920 

2.5 COEFFICIENT OF VARIATION 

The coefficient of variation compares the spread of the observations with their 
magnitude and is 

100 x Standard deviationMean. 

As with standard deviation, a low value of the coefficient of variation 
corresponds to high precision, while a high value corresponds to low precision. 
From the data in figure 2.2, with mean= 16.1, standard deviation = 8.3, range 
= 28 years, the coefficient of variation is 51.6 whereas for the 25 age values 
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on page 21 the mean = 74.2, standard deviation = 10.2, range = 41 and 
the coefficient of variation is 13.7. Coefficients of variation are particularly 
useful when observations with different dimensions are being compared, such 
as Esterling and US $. A dimensionless measure of dispersion is then very 
convenient. 

2.6 PROBABILITY DENSITY FUNCTION 

The probability density function of x which is also sometimes called the 
distribution function of x or, loosely, the distribution of x .  is shown 
schematically as a graph of J = f ( x )  versus x in figure 2.5. The probability 
that a random observation x (for which f ( x )  is its probability density function) 
will fall in any interval XI to x2 is the area under the curve of f ( x )  from X I  to 
x2. Expressed as an integral this probability is 

Prob(x1 < x 6 x2) = L;'' f (x)dx  

and since a random observation x is certain to have some value, the total area 
under the curve f ( x )  is equal to unity, i.e. 

cc 
f (x)dx  = 1 

In the next chapter we shall be discussing various features of the normal 
probability density function, which we will abbreviate to normal distribution, 
and we will again encounter ureas under the curve which can be equated to 
probabilities. 

s_, 

Figure 2.5. Schematic diagram of a probability density function. If this were the normal, 
then it would be symmetrical and bell shaped with mean=mode=median, see figure 2.1,  
and x would be called a normal variable. 
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MEAN, MODE AND MEDIAN I 
This rather novel diagram to describe the mean, 
median and mode is taken from the book How to Lie 
with Statistics by Darrell Huff (1 954) when the author 
is discussing salary announcements by a corporation 
executive or a business proprietor about the average 
wage of the workers. ‘The boss might like to express 
the situation as ‘average wage $5700’ to be deceptive. 
The mode is more revealing: the most common rate 
of pay is $2000. The median tells even more about 
the situation: half the people get more than $3000 
and half get less’. 

ST 
$45,000 

$ls,ooo 

tlo,ooo 

~+ARJTHMUICAL AVERAGE 
$5,700 

$3,700 
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Chapter 3 

The Normal Distribution Curve 

3.1 INTRODUCTION 

The normal distribution curve is very important in statistics and was discovered 
in 1733 by Abraham de Moivre (1667-1754), a refugee French mathematician 
living in  London. He was solving problems for wealthy gamblers! However, 
the curve was apparently forgotten until later in the 18th century when it was 
rediscovered by those investigating the theory of probability and the theory of 
errors. They included the German mathematician Carl Friedrich Gauss (1777- 
1855) whose name is now often associated with the distribution curve, so much 
so that it is also known as Gaussian. When illustrated, it is recognisable by its 
distinctive bell shape, Figure 3.1. Thus, when a distribution curve is described 
as normal the term is not being used in the sense that it is the distribution curve 
which represents more observational data than any other known distribution 
curve. It is being used in the sense that it is a special type of symmetrical curve. 
Examples of frequency distributions which may sometimes be approximated by 
a normal curve are those of height, blood pressure, mean red blood cell volume 
and certain age distributions. 

3.2 MATHEMATICAL FORMULA 

Any well defined distribution curve such as the normal, will always have an 
associated mathematical formula to enable it to be drawn graphically and the 
area beneath the curve calculated between defined limits. 

is the formula for the standard normal curve which has a mean of 0 and a 
standard deviation of 1. Y is the ordinate of the curve and X is the abscissa 
and is called the unit normal deviate, Figure 3.1. 

30 
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Figure 3.1. Two examples of normal curves. The standard normal curve is the curve 
with a mean of 0 and a standard deviation of I .  The values of the X-axis are in unit 
normal deviates, which can take positive or negative values. The value of Y is tending 
to 0 as X approaches +3 or -3 unit normal deviates. 

3.3 MATHEMATICAL TABLES 

Most books of log tables also contain tables of exponentials and therefore Y ,  in 
the formula just quoted can be calculated. For example, for the normal curve 
with M = 0 and S = 0.8 (Figure 3.1) we have 

( X / S )  = 1.25 and ( X / S ) 2  = 1.563 

Sd2r = 2.00 

and from tables of exponentials 

and thus 
Y = 0.458/2.00 = 0.288. 

The point X = 1.0, Y = 0.228 is on the dotted normal curve in Figure 3.1 
and since the normal curve is symmetrical it also contains the point X = -1.0, 
Y = 0.288. Although X may be positive or negative, Y is always positive. 

Use of the formula to calculate Y-values for constructing a normal curve 
will be laborious if the above procedure has to be repeated many times. 
However, this is not necessary in practice because there are available tables 
of ordinate ( Y )  values of the standard normal distribution for various values of 
the unit normal deviate ( X ) .  For example, 
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X Y 

1.20 0.1942 
1.21 0.1919 
1.22 0.1895 
1.23 0.1872 
1.24 0.1849 
1.25 0.1826 
1.26 0.1804 
1.27 0.1781 

and these may be used not only for the standard normal distribution with M = 0 
and S = 1 .O. but also for the general normal distribution in which the unit normal 
deviate which is 

X - M  
S 

can be calculated for any value of M or S. The formula for the general normal 
curve is 

1 - ( X  - M)2 y = -  
s f i e x p [  2s2 I 

This formula is also to be found on the current German 10 deutschmark 
bank note (see below) together with a picture of Carl Freidrich Gauss. On 
this 10 DM note the mean is symbolised by p rather than by M, the standard 
deviation by cr rather than by S and Y by f ( x ) .  There are no internationally 
recommended symbols for the mean and standard deviation and different authors 
make their own choices. This is also the case for the presentation of tables (see 
Figure 3.2) giving areas beneath the standard normal curve as a function of 
the unit normal deviate ( X  in Figure 3.1) as will be seen later. This spectrum 
of tabular presentations (although in the end they can all be used to find a 
given areas which is to be equated to a probability, see Figure 2.5) can be most 
confusing to those encountering such tables for the first time. 
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The unit normal deviate (X) axis for the standard normal curve with M = 0 
and S = 1, Figure 3.1, is often symbolised by z rather than by X and in  effect this 
horizontal (X or z )  axis gives multiples of standard deviations of the standard 
normal curve. When the z-test is used (see later) i t  is multiples of standard 
deviations which are described by z .  

Using, as an example, the curve in Figure 3.1 with M = 0 and S = 0.8 

(X - M ) / S  = 1.0/0.8 = 1.25 

Y = 0.1826 when X = 1.25 for the standard normal curve. However, for the 
general normal curve 1 / S 6  is the first factor in the formula and this has 
an additional 1/S when compared with the first factor in  the formula for the 
standard normal curve. The Y-value from the table must therefore be divided 
by the S-value. Thus 

Y(for curve M = 0, S = 0.8) = Y(for curve M = 0. S = 1)/S 
= 0.1826/0.8 = 0.228 

When an event is guaranteed to occur the probability equals 1, when there 
is a 50% possibility of the event occurring the probability equals 0.5 and when 
there is no possibility of the event occurring the probability equals 0. Thus for 
a probability distribution, in  this case the normal distribution, when the area 
beneath the curve equals 1 this represents total probability. If it is required to 
calculate the probability of occurrence of an event between defined limits of A 
and B then this probability can be obtained from the integral of the standard 
normal curve from X = A to X = B .  

X= B s,=* Ydx 

L 7z 

The total probability of 1 is the integral from minus infinity to plus infinity and 
if the area beneath the standard normal curve is denoted by P between the limits 
minus infinity and < then this refers to the shaded area in Figure 3.2(a). The 
unshaded area in this figure will be 1 - P .  

exp(-iX2)dx 
1 

I - P =  

The white area in Figure 3.2(a), symbolised by P will therefore be the integral 
between the lower limit of X = { and the upper limit of X = +m and it is this 
probability, P ,  which is given in Table 3.l(a). 

Figure 3.3 is a repetition of the standard normal curve, M = 0, S = 1, 
of Figure 3.1, but in  this instance the X-values are stated in terms of standard 
deviations in order to demonstrate the meaning of standard deviation for  a 
normal curve in terms of areas beneath the curve between defined limits. I t  
also introduces the term tail area which refers to the small areas under the 
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Table 3.1. ( a )  Area P beneath the standard normal curve, between the limits X = I and 
X = +CQ, shown as the white area in the schematic diagram Figure 3,2(u): the ,.laded 
area is therefore 1 - P. The areas P are read from the table by the following method. For 
{ = 0.54 first look down the first column of the table to 0.5 and then look along the line 
of figures level with 0.5 until you reach the number below the column heading 4. This 
gives P = 0.29460. The notation 0.02 means that there are two zeros before the 5-digit 
number in the table. Thus for 5 = 2.54, the required area is P = 0.0055426. (From 
Fisher and Yates, Statistical Tables for  Biological, Agricultural and Medical Research 
(6th edn, 1974, table lli, p 45). Courtesy Longman Group UK Limited.) 

5 1  0 1 2 3 4 5  6 7 8 9 - 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .O 

1 . 1  
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.5 
3.c - 

0. 50000 49601 49202 48803 48405 48006 47608 47210 46812 46414 
46017 45620 45224 44828 44433 44038 43644 43251 42858 42465 
42074 41683 41294 40905 40517 40129 39743 39358 38974 38591 
38209 37828 37448 37070 36693 36317 35942 35569 35197 34827 
34458 34090 33724 33360 32997 32636 32276 31918 31561 31207 
30854 30503 30153 29806 29460 29116 28774 28434 28096 27760 
27425 27093 26763 26435 26109 25785 25463 25143 24825 24510 
24196 23885 23576 23270 22965 22663 22363 22065 21770 21476 
21186 20897 20611 20327 20045 19766 19489 19215 18943 18673 
18406 18141 17879 17619 17361 17106 16853 16602 16354 16109 
15866 15625 15386 15151 14917 14686 14457 14231 14007 13786 
13567 13350 13136 12924 12714 12507 12302 12100 11900 11702 
11507 11314 11123 10935 10749 10565 10383 10204 10027 98525 

3.0 96800 95098 93418 91759 90123 88508 86915 85343 83793 82264 
80757 79270 77804 76359 74934 73529 72145 70781 69437 68112 
66807 65522 64255 63008 61780 60571 59380 58208 57053 55917 
54799 53699 52616 51551 50503 49471 48457 47460 46479 45514 
44565 43633 42716 41815 40930 40059 39204 38364 37538 36727 
35930 35148 34380 33625 32884 32157 31443 30742 30054 29379 
28717 28067 27429 26803 26190 25588 24998 24419 23852 23295 
22750 22216 21692 21178 20675 20182 19699 19226 18763 18309 
17864 17429 17003 16586 16177 15778 15386 15003 14629 14262 
13903 13553 13209 12874 12545 12224 11911 11604 11304 11011 
10724 10444 10170 99031 96419 93867 91375 88940 86563 84242 

0.02 81975 79763 77603 75494 73436 71428 69469 67557 65691 63872 
62097 60366 58677 57031 55426 53861 52336 50849 49400 47988 
46612 45271 43965 42692 41453 40246 39070 37926 36811 35726 
34670 33642 32641 31667 30720 29798 28901 28028 27179 26354 
25551 24771 24012 23274 22557 21860 21182 20524 19884 19262 
18658 18071 17502 16948 16411 15889 15382 14890 14412 13949 
13499 13062 12639 12228 11829 11442 11067 10703 10350 10008 
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Table 3.1. ( a )  (continued). 

7 c l  0 1 L 3 4 5 6 7 8 9 - 
3. I 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 

0.0.‘ 96760 93544 90426 87403 84474 81635 78885 76219 73638 71136 
68714 66367 64095 61895 59765 57703 55706 53774 51904 50094 
48342 46648 45009 43423 41889 40406 38971 37584 36243 34946 
33693 32481 31311 30179 29086 28029 27009 26023 25071 24151 
23263 22405 21577 20778 20006 19262 18543 17849 17180 16534 
15911 15310 14730 14171 13632 13112 12611 12128 11662 11213 
10780 10363 99611 95740 92010 88417 84957 81624 78414 75324 

0.0‘ 72348 69483 66726 64072 61517 59059 56694 54418 52228 50122 
48096 46148 44274 42473 40741 39076 37475 35936 34458 33037 
31671 30359 29099 27888 26726 25609 24536 23507 22518 21569 

extremities of the curve. The total tail area defined in Figure 3.3 is 5%, but 
there can equally well be a defined tail area of 1% in which each tail is 0.5%. 

In Figure 3.3 the standard deviation is S = 1 and therefore once again we 
have the unit normal deviate X (which we can also call z )  and Table 3.l(c) 
relates probability to multiples of standard deviations (or standard errors which 
we will meet in the next chapter) for a normal distribution. 

The probabilities in Table 3.l(c) can be calculated from the areas given in 
Table 3.l(a). Thus considering k 2 S  first look up the area (i.e. probability) in 
this table which corresponds to { = 2.0. This is seen to be 0.022750. Taking 
into account the symmetry of the normal distribution, the probability that an 
observation showing at least as large a deviation from the population mean as 
f 2 S  is 2 x 0.022750 which equals 0.046. 

As another easy example of the use of Table 3.l(a), in this case where for 
the basic data we do not have M = 0 and S = 1, we therefore have to first 
calculate the unit normal deviate (X - M ) / S  before we can use Table 3.l(a). 
Let us assume that the height of males is normally distributed with M = 67.5” 
and S = 2.5” and we wish to know the probability of men having a height 
above 70.5”. 

The unit normal deviate for X = 70.5” is I(70.5 - 67.5)/2.5)= +1.2. 
The probability we are interested in corresponds to area P in Figure 3.2(a) 
and from Table 3.l(a) this is 0.1 1507. If, alternatively, we were interested 
in  the probability of men having a height in the range 65.0”-68.0”, the two 
unit  normal deviates we would require are I65.0 - 67.5)/2.5)= -1.0 and 

We now use the fact that the normal distribution is symmetrical because 
we have a negative value of X. From Table 3.l(a) we find that area P for 
X = f1.0 is 0.15866 and therefore the probability of a height in the range 

((68.0 - 67.5)/2.5)= +0.20. 
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Table 3.1. (b )  Ordinate (which IS the value of Y i n  the equation, but which can also be 
called f ’ ( X )  meaning aiuncfion of X) of the standard normal curve which has a mean of 
0 and a standard deviation of I and thus X in this table is the unit normal deviate. For a 
general normal curve the unit normal deviate is calculated by (X - M ) / S ,  referring to the 
earlier notation. (From Fisher and Yates, Statistical Tables for Biofogicnf, Agricultural 
and Medical Research (6th edn, 1974, table 1 1 ,  p 44). Courtesy Longman Group U K  
Limited. ) 

X Y X Y X Y X Y 

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 
0.14 
0.16 
0.18 
0.20 
0.22 
0.24 
0.26 
0.28 
0.30 
0.32 
0.34 

0.39894 
0.39886 
0.39862 
0.39822 
0.39766 
0.39695 
0.39608 
0.39505 
0.39386 
0.39253 
0.39104 
0.38940 
0.38761 
0.38568 
0.38360 
0.38138 
0.37903 
0.37653 

0.36 
0.38 
0.40 
0.42 
0.44 
0.46 
0.48 
0.50 
0.52 
0.54 
0.56 
0.58 
0.60 
0.62 
0.64 
0.66 
0.68 
0.70 

0.37391 
0.371 15 
0.36827 
0.36526 
0.36213 
0.35889 
0.35553 
0.35206 
0.34849 
0.34481 
0.34104 
0.33717 
0.33322 
0.32918 
0.32506 
0.32086 
0.31659 
0.31225 

0.72 
0.74 
0.76 
0.78 
0.80 
0.82 
0.84 
0.86 
0.88 
0.90 
0.92 
0.94 
0.96 
0.98 
1 .oo 
1.10 
1.20 
1.30 

0.30785 
0.30338 
0.29887 
0.29430 
0.28969 
0.28503 
0.28034 
0.27561 
0.27086 
0.26608 
0.26128 
0.25647 
0.25 164 
0.24680 
0.24197 
0.21785 
0.1941 8 
0.17136 

I .40 
1 S O  
1.60 
1.70 
1.80 
1.90 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.50 
4.00 
4.50 

0.14972 
0.12952 
0.1 1092 
0.09405 
0.07895 
0.06562 
0.05399 
0.03547 
0.02239 
0.01358 
0.00792 
0.00443 
0.000 8 7 
0.0001 3 
0.00002 

Table 3.1. (c) Probability related to multiples of standard deviations (S) or standard 
errors for a normal distribution. 

Number of SDs Probability of an observation 
showing at least as large 
a deviation from the 
normal population mean 

0.674s 
1s 
1.6458 
1.96s 
2 s  
2.5768 
3 s  

(1 - 0.5) = 0.5 
(1 - 0.683) = 0.317 
(1 - 0.90) = 0.10 
(1 - 0.95) = 0.05 
(1 - 0.954) = 0.046 
(1 - 0.99) = 0.01 
(1 - 0.9973) = 0.0027 
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Y 

t 

Figure 3.2. Schematic diagrams for the normal distribution curve. The unit normal 
deviate can be referred to as either 5 or as z in these diagrams. Note that in ( U )  the 
shaded area equals 1 - P and the white area P, which is given in Table 3.l(u). In (b), 
because the normal distribution is symmetrical, the area to the left of z = 0 to -CO is 
equal to 0.5 and is also equal to the area to the right of z = 0 to +CO, the shaded area 
in (h)  is (0.5 - P) where P is given in Table 3.l(u).  

X = -1 to X = 0 is (0.5 - 0.15866) = 0.34134. 
For X = +0.20 the area P is 0.42074 and therefore the area for the range 

X = 0 to X = +0.2 is (0.5 - 0.42074) = 0.07926. We can now calculate, 
by addition, the probability that a height is in the range given by X = -1 to 
X = +0.2. This is (0.34134 + 0.07926) = 0.4206. 

3.4 NORMAL PROBABILITY GRAPH PAPER 

Special graph paper called arithmetic probability or normal probability graph 
paper exists for the purpose of testing data to see if it is normally distributed. 
However, a more rigorous statistical test, the chi-squared test of statistical 
significance should be used to demonstrate normality, but the graphical test 
is the quickest to apply for an approximate data check and a first estimate of the 
parameters M and S of the normal curve which can provide a fit to the data. 

To illustrate the use of normal probability graph paper the observations in 
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I 1  I I  

Figure 3.3. The standard normal distributio2 curve and values of the area beneath the 
curve in terms of multiples of standard deviations or standard errors. 

histogram format in Figure 3.4 will be studied. These data refer to 96 monthly 
patient workload statistics for an eight-year period for a radiotherapy linear 
accelerator. 

The total annual patient workload was 349, 527, 455, 464, 501, 618, 656 
and 629, the range of monthly patient workloads was from 18 to 69 and, from 
Figure 3.4, the modal monthly workload is between 40 and 45 patients. Visually. 
Figure 3.4 looks approximately symmetrical and therefore might be normally 
distributed. 

Figure 3.5 is the normal probability graph plot for the data, see Table 3.2, 
where the Y-raxis is a linear scale for patient workload from 20 to 70. The 
X-axis is the probability scale corresponding to the cumulative percentage of 
monthly workloads less than or equal to Y patients. If the observations are 
normally distributed, all the points will lie on a straight line. or at least most of 
them will, and the others will not be too far distant+xcept perhaps at the very 
far ends where X is less than 2% or greater than 98%. The mean of the normal, 
M ,  is the monthly workload which corresponds to the X = 50% cumulative 
value. This is because for the symmetrical normal curve, the mean and median 
coincide. M = 43.5 patients (the 0.5 patient is statistically acceptable although 
not practically possible!) in Figure 3.5. 

Another property of the normal distribution curve is that 10% of the 
observations always lie at a distance from the mean which is greater than 1.645 
standard deviations, see Figure 3.3, and half ot these observations are smaller 
than M and half are greater than M .  The standard deviation, S. can thus be 
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18r 

Mid-value of patlent number workload grwp 
(Group Interval = 5 patients) 

Figure 3.4. Patient workload statistics for a linear accelerator. This type of information 
is of interest to hospital planners who try and determine how many linear accelerators 
are required when building a new radiotherapy department. The lower workloads will 
in  part be due to accelerator breakdowns and servicing when no patients can be treated, 
and the higher workloads will in part be due to the accelerator having to cope with an 
influx of patients when another treatment machine in the department cannot be used. 

calculated from the formula 

S x 1.645 = [ ( Y  value corresponding to 95% cumulation) 
-( Y value corresponding to 50% cumulation)] 

Hence S = ( Y 9 5 ~  - M)/1.645 

S = 11.6 for the data in Figure 3.5. To draw the shape of the normal distribution 
curve with M = 43.5 and S = 11.6 (Table 3.l(b)) can be used, computing Y -  
values for X-values of 43.5, 48, 53, 58, 63, 68, 73 and 78. This is illustrated 
in Table 3.3 and the curve is drawn in Figure 3.6. 

It is nor correct merely to superimpose this curve in Figure 3.6 on the 
histogram of Figure 3.4. The curve in Figure 3.6 has the ordinate Y in the 
formula for the general normal curve but the histogram blocks in Figure 3.4 
refer to areas beneath the normal curve between defined limits. Thus in order 
to compare the observed data in Figure 3.4 directly with data expected from a 
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' O r  

Probabllity uai.  

0' i 2 5 ;o 20 30 40 50 do 70 Bb do 9s &I do 
XmPercentaga of months with workload 10.8 thanor q u a l  toy  

Figure 3.5. Graphical demonstration of normality using the data in  Table 3.2 

normal curve with M = 43.5 and S = 11.6, data such as those in Table 3.1 
must be used. This is shown in Table 3.4. Summation of the observations is 96 
but summation of the expectations is 94.3. This is because there is still a small 
tail of the normal curve beyond the X-values of 15 and 70. 

3.5 TESTING FOR NORMALITY USING THE CHI-SQUARED TEST 

In  the first paragraph of this section it was stated that a more rigorous test than 
visual assessment of a normal probability graph plot should be used. Table 
3.4 illustrates the use of the chi-squared test to determine if observation and 
expectation are significantly different. 

The information we have from Table 3.4 on page 43 to test the hypothesis 
that there is no difference between observation and expectation (this is called 
the null hypothesis) is 

No of degrees of freedom DF = (7 - 3) = 4 
Sum x,! = 1.79 

The critical value of x 2  from statistical tables (see Table 9.1) for DF = 4 
and P = 0.05, is 9.49. We conclude from this information that since 1.79 
is less than 9.49, there is no significant difference, at the P = 0.05 level of 
significance, between observation of patient workload statistics and expectation 
from a normal distribution. 
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Table 3.2. Data requirements prior to a graphical demonstration of normality, see Figure 
3.5. 

Workload Frequency Cumulative Percentage 
range frequency cumulative 
(patient frequency 
numbers) 

16-20 
2 1-25 
26-30 
31-35 
36-40 
4 1 4 5  
46-50 
51-55 
56-60 
61-65 
66-70 

1 
4 
9 
8 
15 
17 
15 
1 1  
8 
5 
3 

1 
1 

5 
14 
22 
37 
54 
69 
80 
88 
93 
96 

I .o 
5.2 
14.6 
22.9 
38.5 
56.3 
71.9 
83.3 
91.7 
96.9 
100 

Total = 96 

Estimation of M from Figure 3.5 
Y = 43.5 when X = 50% therefore M = 43.5. 
Estimation of S from Figure 3.5 
Y = 62.5 when X = 95% 
therefore S x 1.645 = 62.5 - 43.5 = 11.6 

Table 3.3. Calculations required to be able to draw the normal curve with M = 43.5 
and S = 11.6. 

Workload (X -43.5) Unit normal deviate Y-value for given Y/11.6 
X (X - 43.5)/11.6 unit normal deviate 

43.5 0 0 0.399 0.0344 
48 4.5 0.39 0.369 0.03 18 
53 9.5 0.82 0.285 0.0246 
58 14.5 1.25 0.183 0.0158 
63 19.5 1.68 0.097 0.0084 
68 24.5 2.1 1 0.043 0.0037 
73 29.5 2.54 0.016 0.0014 
78 34.5 2.97 0.005 0.0004 
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Figure 3.6. The normal curve with M = 43.5 and S = 11.6 

The area { 1 - P ( & ) )  in the last column of the top part of Table 3.4 denotes 
the area beneath the normal curve from -cc to +(i where the P in  Figure 
3.2(a) and Table 3.l(a) is the same as P ( l i ) .  

Thus for < = -2.46 the value of 1 - P is given by P ( t  = +2.46) which 
from Table 3.l(a) is 0.007 and for ( = +1.42 the value of 1 - P is given by 
1 - ( P ( 5  = +1.42)} which from Table 3.l(a) is 1 - 0.077804 which equals 
0.922. 

3.6 THE LOGNORMAL CURVE 

The lognormal curve is the logarithmic transformation of the normal curve when 
X becomes log, X and i t  is of interest since it has many applications. For 
instance, the following can be represented by lognormal distributions: relation 
between time and the death rate of bacteria; survival times subsequent to 
treatment of certain groups of cancer patients who die with their disease present 
(e.g. cancer of the cervix, cancers of the head and neck); cancer symptom 
duration times; distribution of sensitivities to drugs among individual animals 
of the same species, as measured by the dose required to cause some definite 
e t'fect . 

In addition, some investigators with more time than sense have also found 
that the following are lognormally distributed: size of foreheads of crabs; ages 
at  second marriage; number of buttercup petals; number of words in a sentence 
by George Bernard Shaw. 
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Table 3.4. Calculations required to derive normal distribution expectations for a curve 
with M = 43.5 and S = 11.6. 

i XI (XI - M )  Unit normal Area beneath normal 
curve from --x to C, deviate 

( X I  - M ) / S  = cl = - P(Cl)J = 

1 15 
2 20 
3 25 
4 30 
5 35 
6 40 
7 45 
8 50 
9 55 

10 60 
I 1  65 
12 70 

-28.5 
-23.5 
-18.5 
-13.5 

-8.5 
-3.5 

1.5 
6.5 

11.5 
16.5 
21.5 
26.5 

-2.46 
-2.03 
-1.59 
-1.16 
-0.73 
-0.30 

0.13 
0.56 
0.99 
1.42 
1.85 
2.28 

0.007 
0.022 
0.056 
0.123 
0.233 
0.382 
0.551 
0.7 12 
0.839 
0.922 
0.968 
0.989 

j Interval Observed Expected frequency ( O j  - E,) CO, - E,)’ (0, - E,)*/E,  
X J + I  - xjt frequency N{Q(Cj+l)  - Q ( C j ) l  ,x,2 

Oj = E, 

1 15-30t 14 11.1 2.9 8.41 0.76 
2 30-35 8 10.6 -2.6 6.76 0.64 
3 3 5 4 0  15 14.3 0.7 0.49 0.03 
4 40-45 17 16.2 0.8 0.64 0.04 
5 45-50 15 15.5 -0.5 0.25 0.02 
6 50-55 1 1  12.2 -1.2 1.44 0.12 
7 55-70t 16 14.4 1.6 2.56 0.18 

Sum = N = 96 Sum = 94.3 

t The intervals for the chi-squared ( x 2 )  test are chosen so that the individual 0, 
values are not too small. For this reason the observations for 15-30 and 55-70 
have been grouped together. 

Interval Expected 
frequency 

15-20 1.4 
20-25 3.3 
25-30 6.4 
55-60 8.0 
60-65 4.4 
65-70 2.0 
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To illustrate the properties of the lognormal distribution curve, data for 
cancer patient symptom durations, that is the delay time between patients first 
noticing symptoms and receiving treatment, will be used. If the symptom time 
is denoted by T .  then the general lognormal curve can be stated mathematically 
as 

where the symbol f(T) is used to denote that the expression on the right-hand 
side of the formula is a function of T .  For the lognormal: 

M = exp( T )  and is the median of the lognormal distribution (T  = log, M ) ,  
S is the standard deviation; 

and 
1 "  

T = - C l o g T ,  
f = I  

the generalised variable Tf being the individual symptom times In our example. 
The properties of the lognormal distribution are such that: 
the value of T at which the mean occurs is M x exp(lS2) 

the value of T at which the median occurs is M .  
the value of T at which the mode occurs is M/exp(S i ) 

Using, as an example, data for 783 cancer of the stomach cases, a lognormal 
curve which will fit these data is one with M = 4.1 months and S = 0.6. Since 
eo 36 = 1.433 and eo l 8  = 1.197, 

the value of T at which the mean occurs is 4.1 x 1.197 = 4.91 months 
the value of T at which the mode occurs is 4.1/1.433 = 2.86 months 
the value of T at which the median occurs is 4.1 months. 

T = log, M and is the mean log survival time and the logarithm on the right- 
hand side of the formula for f(T) can be written alternatively as log,(T/M) 
or [log, T - log, MI or [(log, T )  - TI. For the stomach cancer symptom time 
example, T = log,(4.1) = 1.41 1 and the values of T at which the mean, mode 
and median occur can alternatively be stated in terms of T rather than in terms 
of M .  Thus the relative positions of mean, median and mode are at 

Tmean = exp(T + :S2), Tmedian = exp(T) and Tmode = exp(T - S2) 

which for this example gives the values exp[l.411 + :(0.36)] = exp(1.591) = 
4.91 months, exp(l.411) = 4.10months, andexp(l.411-0.36) = exp(1.051) = 
2.86 months. The answers are the same as before but the two presentations are 
included to emphasise that there is a possibility of making mistakes if absolute 
values of times and logarithms of times are mixed up. 
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Table 3.5. Calculations required to be able to draw the lognormal curve with M = 4.1 
and S = 0.6. The constants are: 2S2 = 0.72 and 1 IS& = 0.665. The mode, median 
and mean are indicated in the footnote. 

T T/4.1 l og , (T /M)  l0g,(T/M)~/O.72 ecA 0.665/T 0.665e-A/ T 
= A  = , f (T)  

1.0 0.244 -1.411 2.765 0.063 0.665 0.042 
2.0 0.488 -0.718 0.716 0.489 0.332 0.163 

2.861 0.698 -0.360 0.180 0.835 0.233 0.194 
4.10t 1.000 0 0 1.000 0.162 0.162 
4.91s 1.198 0.180 0.045 0.956 0.135 0.129 

5.5 1.342 0.294 0.120 0.887 0.121 0.107 
6.0 1.463 0.381 0.20 1 0.818 0.111 0.091 
8.0 1.951 0.668 0.62 1 0.538 0.083 0.045 
12.0 2.927 1.074 1.602 0.202 0.055 0.01 1 
16.0 3.902 1.362 2.575 0.076 0.042 0.003 

t Mode. 
$ Median. 
5 Mean. 

Table 3.5 illustrates the arithmetical calculation steps required to compute 
f ( T )  for the stomach cancer symptom time data curve with M = 4.1 and 
S = 0.6. and the curve is drawn in Figure 3.7 with the positions of the mode, 
median and mean shown for this positively skewed (see also Figure 2.1) curve. 

As well as normal probabilitj graph paper for demonstrating normality, 
Figure 3.5, logarithmic probabilitj graph paper is available to demonstrate 
lognormality. Figure 3.8 illustrates the method, see also Table 3.6. In a similar 
manner to that described on page 40, we have for the lognormal distribution 
data in a log-probability plot where M corresponds to the 50% cumulation 

S x 1.645 = (log,, 7' value corresponding to 95% cumulation) 
- (loglo T value corresponding to 50% cumulation) 

hence 

The lognormal curve with M = 4.1 and S = 0.6 is shown in Figure 3.7, 
represented as a negatively skewed curve drawn on a horizontal linear time axis. 
If the horizontal time axis is transformed to a logarithmic scale, say to base 2,  
with areas beneath the lognormal curve between defined limits on a logarithmic 
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Figure 3.7. 
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Lognormal curve with M = 4.1 and S = 0.6. 

Figure 3.8. Graphical demonstration of lognormality using the data in Table 3.6. 
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Figure 3.9. Lognormal distribution with M = 4.1 and S = 0.6 illustrated with a 
logarithmic scale for the horizontal axis (logarithms to base 2). 

scale (e.g. 0.5, 1, 2, 4, 8, 16, 32, 64 ,...,) illustrated as histogram blocks, then 
the symmetrical bell-shaped pattern of the normal distribution is demonstrated, 
Figure 3.9 (see also Table 3.7). This transformation property gives the lognormal 
distribution curve its name. 

The area ( 1  - P ( ( i ) }  in the fourth column of Table 3.7 denotes the area 
beneath the normal curve from -cc to Ti  where the P in Figure 3.2(a) and Table 
3.l(a) is the same as P ( ( i ) .  A similar notation is used in Table 3.4. 
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Table 3.6. Data requirements prior to a graphical demonstration of lognormality, see 
Figure 3.8. 

Symptom Frequency Cumulative Percentage 
time range frequency cumulative 
(months) frequency 

0- 1 
1.1-2 
2.1-3 
3.1-4 
4.1-5 
5.1-6 
6.1-9 
9.1-12 

12.1-18 
18.1-24 
24.1-36 
36.1-48 

60.1 and above 
48.1-60 

138 
I 1 1  
85 
63 
42 
51 
61 
66 
56 
36 
23 

I 
1 1  
27 

17.6 
14.2 
10.9 
8.0 
5.4 
6.5 
8.6 
8.4 
7.2 
4.6 
2.9 
0.9 
1.4 
3.4 

17.6 
31.8 
42.7 
50.7 
56.1 
62.6 
71.2 
79.6 
86.8 
91.4 
94 3 
95.2 
96.6 
100 

Total = 783 Total = 100% 

Estimation of M from Figure 3.8 
Y = 4.1 when X = 50% 

Therefore M = 4.1. 
Estimation of S from Figure 3.8 

Y = 39 when X = 95% 
10g,~~(4.1) = 0.6128 and log,,,(39) = 1.5911. 

Therefore S = (1.5911 - 0.6128)/1.645 = 0.595 
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Table 3.7. Data requirements for Figure 3.9. 

! T i  Unit normal Area beneath { Q (ti+ I ) - Q (ti 1) 
deviate normal curve from 

Uog,(T/4.1)1/S = --OO to 4 = - P ( L ) )  = Q(t,) 
1 0.5 -3.507 0.0002 0.009 
2 1  -2.352 0.009 0 106 
3 2  -1.196 0.115 0.369 
4 4  -0.041 0.484 0.382 
5 8  1.1 14 0.886 0.122 
6 16 2.269 0.988 0.01 2 
7 32 3.425 0.9997 0.0003 

Sum= I.OOOt 

t The total area beneath the normal curve is 1 and this summation provides a 
check on the arithmetic so long as the limits of the unit normal deviate are 

approximately f3. 
The above has been computed manually from tables of areas beneath the 
normal curve. However, in practice, if many of these calculations were 

required then a computer program would be most appropriate. In such a 
program, instead of storing a look-up table of values, the area P ( (  = x)  can 
be computed directly from one of several available polynomial expressions 

which give good approximations, e.g. 

6 -16 P ( x )  = 1 - ;(I + d lx  + d2x2 + d3x3 + d4x4 + d5x5 + d6X ) 

dl = 0.04986 73470 
dz = 0.021 14 10061 
d3 = 0.00327 76263 

dd = 0.00003 80036 
d~ = 0.00004 88906 
ds = 0.00000 53830 
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Chapter 4 

Introduction to Sampling, Errors, 
Accuracy and Precision 

4.1 INTRODUCTION 

In statistical parlance the term population refers to the group of objects, events, 
results of procedures or observations (rather than the geographical connotation 
of population relating only to persons in  a country or state etc) which is so 
large a group that usually it cannot be given exact numerical values for statstics 
such as the population mean p or the population standard deviation u .  These 
statistics therefore can only be estimated. 

To obtain for example, an estimate of the population mean p of a certain 
characteristic x of the population, sampling must first take place because all the 
values of x for the entire population cannot be measured. Only a small part of 
the population can be surveyed and that part is called a sample. 

There are various methods of sampling, including random sampling, which 
for clinical trials is discussed in  a later chapter as simple randomisation, stratified 
randomisation and balanced randomisation. A type of sampling which is not 
appropriate is the so-called judgement sampling, in which the investigator makes 
his choice by personal whim, which can thus lead to biased results. 

From a knowledge of this sample the sample mean xm can be found and 
a statistical inference (i.e. drawing a conclusion about a population from a 
sample) can be drawn about ‘how good’ is this value xm as an estimate of 
the true population mean p.  The phrase ‘how good’ can be stated in terms of 
confidence limits. 

The standard deviation sm of the sample mean xm tells you about the spread 
of the measured sample values x1, x2,  . . . xi . . . ,. The method of calculation of 
a standard deviation such as sm is described in section 2.4. If the sampling 
experiment to measure xm is then repeated N times, with the sample size n 
always remaining the same, a total of N values of xm will be obtained. If 
these are then averaged, then M ,  which is the mean of means or grand mean is 
obtained. 

51 
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The standard deviation of the mean of means M is given a special name: 
standard error of the mean, where 

S E  = Sample standard deviation/fi. 

This value SE tells how accurately we know the mean of means M. 
Accuracy and precision (which are also sometimes termed validity and 

reliability) should not be confused. Accuracy can be described as how closely 
the result of an experiment or trial agrees with the true or most probable value, 
whereas precision can be described as how closely different measurements of 
the same quantity agree with each other. Standard deviation and coefficient of 
variation are measures of precision. Figure 4.1 illustrates this difference between 
accuracy and precision. 

The word error has been used above in standard error of the mean, but 
there are also other types of error which will be discussed in this chapter: gross 
accidental errors, systematic errors, errors of interpretation and random errors. 

In Chapter 8 when introducing statistical significance we will also encounter 
type I and type I1 errors which are associated respectively with a risks (which 
can be chosen in a clinical trial to be P = 0.05) and B risks which in clinical 
trial design (as well as for other topics) are related to statistical power (1 - #I). 

High 

Precision 

Low 

Accuracy 

High Low 

True value True value 

Figure 4.1. A high accuracy (i.e. high validity) means that in repeated measurements 
the results fall very close to each other; conversely, a low precision (i.e. low reliability) 
means that they are scattered. Accuracy determines how close the mean of repeated 
results is to the true value. A low accuracy will produce more problems when interpreting 
results than a low reliability. (Courtesy: World Health Organisation.) 
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4.2 SAMPLE DISTRIBUTION AND SAMPLING DISTRIBUTION OF 
THE SAMPLE MEAN 

The title of this section is a real mouthful of words with sample/sampling 
mentioned three times! To help understand what is meant by these two 
distributions we have Figures 4.2 and 4.3 but first to make matters as easy 
as possible let us define the general notation which is used. 

Sample mean from a random sample = x, 
Sample standard deviation = s, 
Mean of means = M 
Standard deviation of the mean of means (i.e. the standard error of the 

Population mean = p 
Population standard deviation = (T 

Size of a random sample = n 

mean) = SE 

Specifically for the example in Figures 4.2 and 4.3 let us assume that ,U = 2 
and the size of the total population is 20 000 and the size of a random sample 
is n = 100 (i.e. 0.5% of the population) and also assume that 4000 of the 
population have a value of x between 1.5 and 2.0. In this case we would expect 
some 20% of 100, i.e. 20 of the x values in the random sample lying between 
these limits of 1.5 and 2.0. We would indeed, expect the sample frequency 
curve (the lower curve in Figure 4.2) to have a similar frequency curve to that 
of the population (the upper curve in Figure 4.2). 

The sample distribution is the lower curve in Figure 4.2 but a sampling 
distribution is different, and is a distribution of values from a mass of samples, 
one value per sample. This is seen as the lower curve in Figure 4.3 which is 
symmetrical and bell-shaped. 

In general this sampling distribution can be imagined as being obtained 
after taking thousands of samples (not samples of thousands) and selecting one 
item of information from each sample, which in this example is x,. 

4.3 CENTRAL LIMIT THEOREM 

Following on from the end of the previous section, the frequency curve of 
the sampling distribution of the sample mean x,  is very different from the 
population frequency curve but it clusters about the population mean ,U and is, 
as mentioned above, both symmetrical and bell-shaped. These properties are 
recognised in what is known as the central limit theorem which can be stated 
as follows. 
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I I I I 

2.0 1.5 3.0 3.5 4.0 4.5 5.0 0.5 1.0 1.5 

Figure 4.2. Frequency distributions of an item x (described on the horizontal axis) for 
a population and a sample drawn from that population. The population mean is p and 
the sample mean is xm. Note that the sample mean and dispersion will be approximately 
the same as the mean and dispersion of the population. 

Mean of means 

Figure 4.3. Frequency distributions of the population with mean p and the sampling 
distribution of the sample mean (x,) of all the samples taken from the population. The 
mean of means is M .  

Copyright © 1998 IOP Publishing Ltd



Formulae for Standard Errors 55 

If x is a random variable with mean p and standard deviation (T then if M 
is the mean of a random sample of size n chosen from the distribution of x, 
values, then the distribution of 

tends towards the standard normal distribution as n tends towards infinity. 
As an example consider values of x, for N random samples (where N 

is very large) of size n = 64 (thus obtaining N mean values of x,  equal to 
x l ,  x 2 ,  . . .x,, . . . x ~ )  from a much larger population which is known to have 
a mean CL = 100 and a standard deviation (T = 16. The question we wish 
to answer is: 'What is the probability of an observation x, as high as 104 
occurring when we draw N samples of size n = 64?'. 

Assuming a mean of means M = 100 and a sample standard deviation (i.e. 
a standard error of the mean) of S E  = { 16/&} = 2, then since (104-100) = 4 
an observation of xm = 104 differs from M by two standard errors. 

From Table 3.1 (c) it is seen that the area under the normal curve above the 
limit of two standard deviations is 0.023 which is the probability of obtaining 
an observation of 104 or greater. This is an example of a one-tail test situation. 
A two-tail test situation would be if we were interested in having an observation 
of either 104 or greater, or 96 or less. From Table 3.l(c) we this time obtain 
the probability of 0.046. 

Referring again to Figure 4.3. the sampling distribution of the sample 
mean is only drawn schematically whereas Figure 4.4 shows actual data for 
a distribution of means xm from 2000 samples of 5 random digits generated 
on a computer with the approximate normal distributions superimposed on the 
frequency distribution of x, values. The mean ,U = (0 + 1 + 2 + 3 + . . . + 
9)/10 = 4.5 and the standard deviation can be calculated as in Chapter 2 as 
CJ = J([{12 + 22 + 32 + . . . + 92) - {4.5)2]/9) = ,I"- = 3.03. The 
standard error of the mean is thus S E  = 3.03/& = 1.30. The approximating 
normal distribution therefore has a mean of 4.5 and a standard deviation of 1.30. 

Some authors make no distinction between a divisor of n and a divisor of (n - 1 )  
when computing standard deviations for probability distributions. If in this example we 
used n rather than the (n - 1) of the examples in Chapter 2 the value for S would have 
been S = 2.87/& = 1.28.1 

4.4 FORMULAE FOR STANDARD ERRORS 

[l] Standard error of the mean 

S E  = Standard deviation of the s a m p l e / J w  

This formula S E  = sm/& has already been quoted in section 4.1. 

[2] Standard error of the difference between two means M I  and M2 of 
populations 1 and 2 where the sample sizes are nl and n2 and the standard 
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Figure 4.4. Distribution of means from 2000 samples of 5 random number digits with 
an approximating normal distribution. 

deviations are SI and Sp 

S E  = j { [ S : / n l l +  [S;/nzll 

[3] Standard error of a percentage P% 

S E  = J{[P( lOo  - P ) ] / n ]  

[4] Standard error of the difference between two percentages PI% and P2% 

S E  = Jt[P1(100 - P l ) / n ~ l +  [P2(100 - h ) / n z l }  

4.5 GROSS ACCIDENTAL ERRORS 

These are irregular errors, which could have been avoided and were caused by 
incorrect technique. Examples include transcription errors, errors in calculation 
and mismatching units of measurement. 

4.6 SYSTEMATIC ERRORS 

These consistently give a result which is wrong by a fixed amount and may be 
due to instrument errors such as zero adjustment or to calibration errors, faulty 
primary standards and personal errors in reading instrument measurements. 

4.7 ERRORS OF INTERPRETATION 

Many examples could be given of these types of errors, but that described by 
Altman] is a particularly good example. The story is as follows. In 1949 
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a divorce case was heard in which the sole evidence of adultery was that a 
baby was born almost 50 weeks after the husband had gone abroad on military 
service. A divorce was not granted. On appeal the judges agreed that the limit 
of credibility had to be drawn somewhere, but on medical evidence 349 days, 
whilst improbable, was scientifically possible. The appeal failed. The judges 
apparently did not look at the distribution of length of gestation, Figure 4.5, 
which shows that, although scientifically possible, a pregnancy lasting 349 days 
is an extremely unlikely occurrence. 

30r 

Weekr of gcrtatlon 

Figure 4.5. Distribution (shown in the form of a frequency polygon) of length of 
gestation measured using the standard convention of counting in completed weeks from 
the first day of the last menstrual period with conception assumed to have occurred 14 
days later. 

4.8 RANDOM ERRORS 

If the same observer repeatedly makes the same measurements under apparently 
identical conditions, slight variations, called random errors, will occur. If a 
sufficiently large number of measurements are taken, the mean value will be 
close to the true value since positive and negative values are equally likely. 
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Also, the distribution of random errors will be approximately normal. Thus 
68.3% of the errors lie within f l  standard deviation, 95.4% within f2 standard 
deviations, and 99.7% within &3 standard deviations. 

4.9 COMBINATION OF ERRORS 

If there are two terms A and B which are used to calculate a final result and the 
error of the A-readings is 2eA and of the the B-readings is 2 e ~  then the values 
of A and B can be quoted as A f eA and B f eB. The final result in terms of 
whether A and B are added, subtracted, multiplied or divided, determines the 
way in which the errors eA and e B  are combined. 

When A and B are added together, 

( A  B )  * (eA + e B )  

is the result and the combined error when B is subtracted from A is also as 
above: 

(A - B )  i (eA + e g )  
However, when A is multiplied by B we have 

A B 5 ( A  ' e B  + B . e ~ )  

f?A and e B  are absolute errors, but the relative errors E A  = l eA/Al  and 
E B  = /eB/Al can also be used in an alternative formula to calculate the absolute 
errors. A . B f ( A  . eB + B . eA) can be expressed as 

A .  B & A .  B ( E A  + E L I ) .  

When A is divided by B ,  the formula is 

A / B  i A .  ( E  - A + E B ) / B .  

4.10 ROOT MEAN SQUARE ERROR 

A percentage root mean square (RMS) error can be used to compare, for 
example, two sets of experimental data for which there are N values for each set. 
One set can be used as a reference set, R I ,  Rz.  R33 . . . R, . . . R N .  The second 
set is X f ,  X2. X3,.  . . X ,  . . . XN.  The formula for the percentage RMS is given 
below 

One example of the use of a percentage RMS error is when four different 
measurement systems are used to determine the source strength of an '"Ir high 
dose rate brachytherapy source. The term [(Xi - Ri ) /R i ]  is sometimes termed 
the fractional error. A full description of the 1921r source measurement errors 
would be the percentage RMS together with the range of fractional errors. 
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4.11 CONFIDENCE LIMITS 

As a first illustration of the use of confidence limits (others will follow in 
later chapters) consider the example given by Swinscow2. If the mean diastolic 
blood pressure of 72 people in a defined population is 88 mm Hg with a standard 
deviation of 4.5, then the standard error of the mean is 4 . 5 / ~ %  = 0.53 mm 

Confidence limits are related to standard errors. Since the distribution of 
means is normal, using the mean of 88 mm Hg and standard error of 0.53 mm 
Hg it can be stated that the sample mean h1.96 times its standard error gives 
the following: 

88 + (1.96 x 0.53) = 89.04 mm Hg 
88 - (1.96 x 0.53) = 86.96 mm Hg. 

Hg. 

These are called the 95% confidence limits and they are interpreted by saying 
that there is only a 5% probability that the range from 85.96 to 89.04 mm Hg 
excludes the population mean. With small samples (say 30) larger multiples of 
the standard error are required to compute the confidence limits and these are 
obtained from tables of the t-distribution rather than from tables of the normal 
distribution. Confidence limits are useful in deriving a range within which the 
true result is 95% likely to fall. 

AUTHOR ERRORS 
MAKING TOO MANY CHANGES 

A pictogram, with apologies to Clint Eastwood, which is 
suitable for editors to send to authors when the latter make 
too many changes at final page proof stage! 
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Chapter 5 

Introduction to Probability 

5.1 DESCRIPTIONS OF PROBABILITY 

The French mathematician Pierre Simon Laplace (1749-1 827) described the 
theory of probability as only common sense reduced to calculation, in that it 
exhibits with accuracy what reasonable minds feel by a kind of instinct, without 
being able to describe it for themselves. 

Another description could be the numerical expression of uncertainty which 
can take any value between 0 and 1 where 0 equates to definitely improbable 
(never happens) and 1 equates to definitely probable (always happens). The 
numerical values between 0 and 1 express degrees of belief for an eventuality. 
Probability is often introduced in terms of the likelihood of events when throwing 
one or more dice (dice is the plural for die) since probability is a study of random 
or non-deterministic experiments. Thus if a single die is thrown into the air, it 
is certain that it will come down, but not certain that a 6 will appear. However, 
if this die-throwing experiment is repeated n times and the number of times 
a 6 appears (call this a success) is s, then it has been empirically observed 
that the ratio f = s / n  will approach a limiting value as n + 00, That is, 
it will become stable. f is called a relative frequency. In probability theory, 
the probabilities associated with experimental events are the limiting values of 
the relative frequencies. It is also necessary in probability theory to distinguish 
between two types of event, Figure 5.1. 

An example of two independent events is the die throwing of a 6 followed 
by a 5, since the outcome of the first throw (the 6) does not affect the outcome 
of the second throw (the 5). An example of two dependent events would be with 
a pack of cards, drawing first a 6 of any suit (hearts, spades, clubs, diamonds) 
and then a 5 of any suit, without replacement of drawn cards. After the 6 has 
been drawn from the full pack of 52 cards, there will only be 51 cards left from 
which the 5 is then drawn. The probability in this situation of drawing the 6 is 
4/52 and of the 5 is 415 1 .  The probability of drawing at the third opportunity 
a second 6, would be 3/50. If, though, the card experiment was modified such 
that after each draw, the drawn card was replaced in the pack, then each draw, 
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Figure 5.1. Types of event. 

first, second, third, etc, would be independent and the probabilities previously 
quoted as 4/52, 4/51 and 3/50 would all be 4/52 (= 0.077). The probabilities 
are a priori probabilities in that they are calculated from a knowledge of 
the experimental conditions before the experiment is actually performed. An 
empirical probability, using the deck of cards, with card replacement after each 
draw, would be 0.070 if, in 1000 draws, 70 outcomes were cards with a 6 of any 
suit. Returning to the example of card drawing without replacement of drawn 
cards, the probabilities would be 

Pr(6 on the first draw) = 4/52 
Pr(6 on the second draw) = 3/51. 

In this instance, 3/51 is a conditional probability since the probability of 
drawing the second 6 is conditional on the first draw having also been a 6 and 
there being no replacement of drawn cards. 

A simple demonstration of a priori and empirical probabilities can be made 
with the throw of a die. The experimental outcomes of 50 throws were 

5 5 3 1 4 6 6 1 4 5  
2 6 5 1 2 1 1 1 6 5  
5 5 4 3 6 5 5 4 1 3  
2 4 5 3 2 2 5 2 4 3  
1 3 5 4 2 3 3 1 4 6  

which, for 1, 2, 3, 4, 5 and 6 give empirical probabilities of 9/50, 7/50, 8/50, 
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8/50, 12/50 and 6/50. which in decimals are 0.18, 0.14, 0.16, 0.16, 0.24 and 
0.12. The a priori probability is 116 = 0.167. 

The empirical probabilities are in  fact relative frequencies and these will 
stabilise as the number of throws, n,  increases. 50 is a relatively small value of 
n for an experiment with 6 possible outcomes but, even so, it can be seen that 
they are more stable for n = 50 than for n = 30 (0.23. 0.07, 0.10, 0.13, 0.30 
and 0.17). 

5.2 THE TWO LAWS OF PROBABILITY 

The two fundamental laws of probability are the multiplication law and the 
addition law, Figure 5.2. An example of an application of the multiplication 
law is that when throwing two dice there are 36 equally likely possibilities, but 
only one of these possibilities is a double 6. The probability of a double 6 is 
1 /6 x 1 /6 = 1/36 = 0.028. 

As a second example, for a pack of cards with replacement of drawn cards, 
the probability of a 6 card in the first draw and a 6 card (each of any suit) in 
the second draw is 4/52 x 4/52 = 1612704 = 0.006. 

An example of an application of the addition law is when using a single 
die: a 5 and a 6 cannot turn up together in  a single throw but each number has 
an equally likely probability of 116. The probability of either a 5 or a 6 turning 
up is 116 + 116 = 113 = 0.33. As a second example of the application of this 
law: the probability of drawing from a pack of cards either a 6 or a 5, which 
are mutually exclusive outcomes since both cannot occur together in  a single 
1-card draw, is 4/52 + 4/52 = 8/52 = 0.154. 

5.3 BAYESIAN PROBABILITY 

The probability we have been speaking of in the previous two sections is 
classical probability and its notion is based historically on the well known ratio 

Number of favourable eventsmumber of possible events 

which is a definition of probability credited to Jakob Bernoulli (1654-1705), and 
to Laplace who was mentioned in the first sentence of this chapter. All possible 
events can occur and every probability P is assigned a number between zero 
and one, 0 < P < 1, and an impossible outcome has a probability of zero. 

Bayesian statistics are named after an 18th century mathematician, the 
Reverend Thomas Bayes (1702-1761) who was interested in conditional 
probability, i.e. the probability that an event would occur under a given 
condition. An example of their use is given in section 21.12.2 for treatment 
optimisation, where it is seen that a Bayesian probability is a statement of a 
personal probability (i.e. expressing a degree of belief) and as such focuses as 
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Figure 5.2. The two fundamental laws of classical probability. 

much attention on the decision maker as on the process of phenomenon under 
study. 

Bayes’ theorem is given below, where the vertical line between D and Tt  
is read as ‘given’ or ‘conditional on’. In an example relating to diagnostic 
tests, D is the disease and T +  signifies a positive test result. The conditional 
probability Prob(DIT+) is the probability of having the disease D given that 
the result of the diagnostic test is positive. 

Bayes’ theorem applied to diagnostic tests is given below as a formula. 
Prob(D) is the probability of having the disease D, Prob(T+) is the probability 
of having a positive test result, and Prob(T+ID) is the conditional probability 
of a positive test result given that the person has the disease. 

These probabilities for a diagnostic test will dealt with in more detail 
in Chapter 15 where it is seen that they have special names. For example. 
Prob(DIT+) is called the positive predictive value and Prob(T+lD) is a true 
positive rate where the sensitivity of the test is the proportion of truly diseased 
persons in the screened population who are identified as diseased by the 
screening test. Specificity and negative predictive values are also given in 
Chapter 19. 

Prob(DIT+) = {Prob(T+ID) 1 Prob(D)]/{Prob(T+)} 

Stating this formula in words, Bayes’ theorem says that the probability of 
disease, given a positive test, is the product of the probability of a positive test 
result given disease, multiplied by the probability of disease, with the product 
of these two probabilities divided by the probability of a positive test. 
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The probability Prob(D) is a prior probability because it is the probability 
that a test subject has the disease before (a priori) the test result is known. 
Prob(T+) can also be expressed as the sum of two conditional probabilities 
since any subject must either be diseased (D) or disease-free (DF): 

Prob(T+) = {Prob(T+(D) . Prob(D) + Prob(T+IDF) . Prob(DF)) 

AN UNLIKELY PROBABILITY 

Computers are useful, especially to take the labour out of 
lengthy calculations. However, care must be taken in writing 

computer programmes and in keying in data. In 1984 in Boraas 
county, Sweden, the county's computer was being used to 

update population statistics by taking into account recent deaths. 
Personal registration numbers in Sweden are based on a 6-digit 
number linked by a hyphen to a 4-digit number. The computer 
operator keyed in various data but unfortunately the programme 
was such that the hyphen was interpreted as a minus sign. The 

computer subtracted the second number from the first and 
interpreted the resultant number as obsolete. It then erased the 

records of several thousands of Boraas citizens from its 
memory: death by computer! Several million pounds and 

hundreds of hours were required to resurrect the dead Swedes. 

Copyright © 1998 IOP Publishing Ltd



Chapter 6 

Binomial Probabilities 

6.1 PERMUTATIONS AND COMBINATIONS 

A knowledge of permutations and combinations is necessary before the binomial 
distribution is discussed, since they are needed for the calculations involved 
with binomial problems. The difference between the two terms is that for 
combinations the order of objects is not important, whereas for permutations 
the order is important. 

To illustrate this, consider three objects A ,  B and C.  The group of three 
will be called a set, and a permutation is an arrangement of a set or part of a 
set. Thus, permutations of two from three are 

I A B  B A  AC C A  BC C B  I 
which are written as P2, that is, P2 = 6. 

of three from four are 
If we now consider a set of four objects A ,  B ,  C and D ,  then permutations 

ABC A C B  BAC B C A  C A B  C B A  
A B D  A D B  B A D  B D A  D A B  D B A  
ACD ADC C A D  C D A  DAC D C A  
BCD BDC C B D  C D B  DBC D C B  

which are written as 4P3. 
A general formula for obtaining permutations of r from n is 

n!  “ p  -- 
(n  - r ) !  

where n !  is called n factorial. (l!) = 1; (2!) = 1 x 2 = 2; (3!) = 1 x 2 x 3 = 6;  
(4!) = 1 x 2 x 3 x 424; ( n ! )  = (1 x 2 x 3 x 4 x 5 x . . .  x n) .  

r -  
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This formula can be used for 3P2 where n = 3 and r = 2: 

3! =6 P2 = ~ 

(3 - 2)! 
3 

For 4P3 where n = 4 and r = 3, 

4! 3p3 = ___ - - 24 
(4 - 3) ! 

The answers 6 and 24 can be checked by counting the permutations in the boxes. 
For combinations, the order is not important, and thus, in our first example, 

although AB and BA count as two permutations, they only count as one 
combination; similarly, in the second example, ABC, BCA and CAB count 
as three permutations, but only as one combination. Thus, the combinations of 
three from four are 

which are written as 4C3 = 4. 
The general formula for obtaining combinations of r from n is 

n !  
r ! ( n  - r ) !  

"C, = 

There is an extra term (r !) in the denominator of the above formula compared 
with the formula for "P,, since there are always fewer combinations than 
permutations for the same r from n. An alternative symbolism for " C r ,  is 

In practice, the formulae for Pr and " C, are useful, since it is often too laborious 
to tabulate all the possible combinations or permutations. 

For example, the number of ways in which two cards can be dealt from 
a pack of 52, when order does not matter, is 52Cz or using the formula 
52!/(2! x 50!).  Many terms cancel out in the numerator and denominator, 
leaving 

= 1326. 
(52 x 51) 52c2 = 
(2 x 1) 

If we are interested in drawing the ace of hearts and king of hearts, either ace 
first or king first, then we have one chance of success in 1326 attempts. A more 
complicated example is the chance that the first two cards dealt are a pontoon 
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(an ace and a face card) and this is calculated as follows. There are twelve face 
cards and four aces in the pack, thus there are 48 different combinations which 
give a pontoon. The chance of drawing a pontoon is, therefore, 48 in 1326, i.e. 
4811326, or one in 27.6, or aprobability of 0.036. 

6.2 THE BINOMIAL DISTRIBUTION 

The binomial distribution refers to simple yes or no, black or white, 0 or 1, 
dead or alive situations where there are only two alternatives, and it can be used 
to determine whether the results observed in a trial-experiment situation could 
have occurred randomly. This. is important because if the results could quite 
easily have occurred by chance, no signijicant conclusions can be drawn. 

Suppose that we have a trial in which the outcome can only be one of 
two events, A or B ,  and let the probability of event A be ( p ) .  Since the total 
probability is 1, the probability of event B is (1 - p ) ,  and could be denoted 
(4). We could, for example, say that event A was success and event B failure, 
and so the binomial probability for success is p and the binomial probability of 
failure is q ,  where p + q = 1. Now suppose that the identical trial is conducted 
n times. This can be referred to as a sample of n trials. The problem which can 
be solved by binomial theory is: 

What is the probability distribution 
of the numbers of successes (As )  

in the sample of n trials? 

If the number of As (successes) is equal to r ,  then the number of Bs  
(failures) will be equal to (n  -r) .  The binomial distribution gives the probability 
that the sample of n contains ( r )  As and (n  - r )  Bs. 

The binomial distribution is written below where the first factor 'C,, can 
be recognised as a combination with formula "C,. 

Binomial probability of r successes in n trials 
= "C,  . pr . (1 - p)"-' 

This combination "C, is called the binomial coeflcient. and can be obtained 
using a diagram called Pascal's triangle. Figure 6.1, without having to use any 
formula. In the triangle, the numbers can be extended downwards. Each entry 
is obtained as the sum of the two adjacent numbers of the line above. Thus, in 
the row for n = 2 ,  the middle number 2 in  the row 1 2 1 is obtained by (1 + 1) 
from row n = 1. Similarly, the 5 in  the row for n = 5 is obtained by (1 + 4) 
from the row with n = 4. Each row contains the binomial coefficients "C, for 
that particular value of n. Thus, for the row n = 3, there are four entries 1 3 3 
I which correspond to 'CO,  'CI,  3C2, 3C3, respectively. 
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Before any examples of the use of the binomial distribution are given, Table 
6.1 summarises the three conditions under which a trial can be considered to be 
a binomial situation. 

n 
1 

2 

3 1 3  

4 1 

5 

6 15 20 1s 

Figure 6.1. Pascal's triangle. 

Table 6.1. Conditions for a binomial trial. 

1 
2 
3 

The experiment consists of a fixed number of trials, n 
Each trial has only two possible outcomes, usually called success and failure. 
The outcome of any trial is independent of the outcome of any other trial, 

Condition 3 in Table 6.1 for a trial with a pack of cards where success 
was signified by drawing an ace, would be satisfied if, after each draw, the card 
chosen was replaced in the deck of cards before the next draw. Otherwise the 
trials would not be independent, since the second trial would be related to the 
first because of the removal of the first card. If on the first draw the card was 
an ace, the initial probability of success, p ,  would be 4/52 and if there was no 
replacement, the probability of an ace for a second draw would be p = 3/5 1. 
This would not be a trial when the binomial distribution could be used since p 
must be the same throughout all the n binomial trials. 

6.3 EXAMPLES OF BINOMIAL PROBLEMS 

To illustrate the use of the binomial probability formula and of Pascal's triangle, 
Figure 6.1, consider the simple experiment of Table 6.2. From Pascal's triangle 
for n = 3, the binomial coefficients "C, are 1, 3, 3 and 1 for r = 0, 1, 2 and 3, 
respectively. The method of solution and answers to the problem are given in 
Table 6.3 and Figure 6.2. 
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A binomial situation of historical importance is the work of Sir Edward 
Jenner on smallpox vaccination (an enquiry into the causes and effects of the 
variolae vaccinae, 1798). A sample of 23 people was infected with cowpox 
(n  = 23). The probability of contracting smallpox when inoculated with the 
virus was some 90% ( p  = 0.9), but none of the previously vaccinated 23 people 
did in fact contract smallpox ( r  = 0). The binomial probability of such an event 
occurring is exceedingly small, and the observations are therefore definitely not 
random. 

Table 6.2. Description of a binomial problem. 

Experiment 5 balls in an opaque box, 3 are red and 2 are 
black. Three balls are drawn successively, 
and after each has been drawn and recorded, 
it is replaced prior to the next draw. 

What is the probability that 0,1, 2 or 3 red balls 
will be drawn? 

Problem? 

Number of n = 3 
trials, n 

Probability 
of success, p 

Pr(of a red outcome) = p = 
Thus, 1 - p = $ 

Number of successcs,r 

Figure 6.2. Binomial probabilities for the problem stated in Table 6.2 .  
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Table 6.3. Calculation of binomial probabilities. 

Value of r ,  "C, p' (1  - p)"-' Binomial 
the number where where probability 
of successes p = i  n = 3  

S 

0 1 1  8/  125 81125 = 0.06 
1 3 315 4/25 361125 = 0.29 
2 3 9/25 215 541125 = 0.43 
3 1 271125 1 271125 = 0.22 

NOTE = (1 - p ) O  = 1 

A binomial problem, relevant to clinical trials, is stated in Table 6.4. The 
method of solution and answer to the problem are given in Table 6.5. The 
binomial probability for 5 or more successes is 0.11 or 11%. that is, 11 chances 
per 100 experiments that the results are random-ach experiment consisting of 
six matched pairs. 

Table 6.4. Description of a binomial problem 

E.rperimenl Testing whether one of two drugs, A or B is more effective. 
Pairs of patients matched for sex and age are placed in the trial and 
one of each pair is randomly assigned to drug A or B .  

There are 6 matched pairs and in 5 cases drug A was found to be 
more effective than drug B .  Is this result likely to have occurred 
quite randomly?+r can it be assumed that there is a real 
difference between A and B? 

n = 6. In this problem n will equal the number of matched 
pairs. each pair being regarded as a single trial. 

What do we choose for p ,  the probability that A is more 
effective than B? Since we have no concrete evidence beforehand, 
choose in the first instance p = 0.5, 1 - p = 0.5. That is, it is 
equally likely either that A is more effective than 
B or that B is more effective than A .  

Problem? 

No of 
trials. n 

ProbabiliQ 
of success, p 

We now pass to the subject of statistical signijicance, which will be covered 
in Chapter 8. It is the investigator who must jk the value of the critical 
probabili9 level. This is the level below which he will accept that the results 
were not obtained by chance, that is were not random. For this example, Tables 
6.4 and 6.5 assume that the level fixed was 0.10. Since 0.1 1 is greater than 0.10, 
he would not accept that A is a more effective treatment than B and would have 
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to accept that no difference had been demonstrated between A and B at the 0.10 
level. The investigator's follow-up step would then be to repeat the experiment 
with a greater number of matched pairs, that is, n greater than 6, in the hope of 
a clear answer. 

Table 6.5. Calculation of binomial probabilities. In this example, we only need to 
calculate the probabilities for r = 5 and r = 6. 

Value of r ,  the "C, p' where ( I  - p)"-' Binomial 
number of successes p = 0.5 where probabi 1 i ty 
(i.e. A more n = 6  
effective than B 

When we assess the significance of a result we require under the 
null hypothesis the probability of obtaining the observed data or  
more extreme results. In the above example, for drug A better than 
drug B ,  we need a 1-tailed test finding the probability of obtaining 
5 or 6 successes, i f  our action level is to be r = 5 .  The probability 
of 5 or more successes will be 0.094 + 0.016 = 0.11. For a 2- 
tailed test, which would be relevant if  we were interested in A 
being better than B ,  or in B being better than A ,  this probability 
will need to be doubled. 

As a further example consider the disease Huntington's chorea, a fatal 
degenerative brain disorder in which the inheritance pattern is autosomal 
dominant and therefore the probability of any one child in the family developing 
the disease is 0.5. The answer to the binomial question in Table 6.6 is therefore 
that of all such 10 children families, the probability that there will be three 
affected children is 0.117. Figure 6.3 is the complete binomial distribution for 
this problem giving the probabilities of numbers of affected children in families 
of 10 with one parent having Huntington's chorea. 

6.4 THE NORMAL APPROXIMATION TO THE BINOMIAL 

Figure 6.2 is a binomial probability distribution with n = 3 and p = 0.6 and 
thus np = 1.8. As the value of n increases, so does the range of values 
of r ,  and the distribution takes on a bell-shaped pattern, as can be seen in 

Copyright © 1998 IOP Publishing Ltd



72 Binomial Probabilities 

Table 6.6. Description of a binomial problem. 

Basic informarion 

Problem? 

The pattem of inheritance of Huntington’s chorea 

What is the probability of having 3 affected 
children in a family of lo? 

The value of n will be the number of children 
in the family, n = 10 

p = 0.5 

No. oftrials, n 

Probability of any 
child eventually 
developing the 
disease 

0 1 2  3 4 5 6 7 8 9 10 

Number of affected children 

Figure 6.3. Probabilities of affected children in families of 10 children with one parent 
having Huntington’s chorea. 

Figure 6.3. This can be approximated to  a nornzaf probability distribution under 
certain circumstances which are usually taken to be: large ri and p not close 
to zero, where the product t ip is greater than 5. The advantage of this normal 
approximation to the binomial is that the standard tables available for the normal 
distribution curve may be used for binomial problems when n p  is greater than 5 .  

Comparisons of binomial and normal distributions are given in Figures 6.4 
and 6.5. In the former the mean is 4 and the standard deviation is v‘? = 1.4 I ,  
whereas in the latter the mean is 6 and the standard deviation is = 1.73. 
The mean of the binomial is given by the product t ip  and the standard deviation 

As a tinal example of binomial probabilities, suppose that a die is thrown 
of J t y (  I - p ) .  
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Table 6.7. Calculation of binomial probabilities. 

Value of r 'CC, p' where (1 - p)'-' Binomial 
the number p = 0.5 where probability 
of affected n = l O  
children 

3 120 0.125 0.0078 125 0.1 17 

Pascal's triangle in Figure 6.1 does not extend to n = 10 
but it can easily be calculated by obtaining each new 
entry as the sum of the two adjacent numbers in the 
row above. For the row n = 10 the numbers !OCtr, !"Ci, 
. . . l°CI,, are: 

1 10 45 120 210 252 210 120 45 10 1 

Number of successes,r 

Figure 6.4. Comparison of the binomial and normal distributions for n = 8 and 
p = (1  - p )  = 0.5. The histogram is the binomial and the curve is the normal. For the 
binomial the mean is 4 and the standard deviation is f i  = 1.41, 

180 times (n = 180) and that a gambler is betting that the 6 (probability of 
success, p = a )  will appear between 29 and 32 times. What is the probability 
that he will win his bet? 

Mean M = np = 180/6 = 30 

Standard deviation S = ,/= = 4180 x x 2 = 5 .  

If r is the number of successes, the gambler will want to know the probability 
of r in the range 29-32, including both limits. The normal approximation to 
the binomial can be used to solve this problem. However, the normal is a 
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Number of successes, r 

Figure 6.5. Comparison of the binomial and normal distributions for n = 12 and 
p = ( I  - p )  = 0.5. A probability of p = 0.5 could be for an experiment with the 
tossing of a coin when a head is a success and a tail is a failure. The histogram is the 
binomial and the curve is the normal. For the binomial the mean is 6 and the standard 
deviation is = 1.73. 

continuous distribution and thus 

Pr(28.5 < r < 32.5) 

has to be found. The unit  normal deviate formula is 
r - M  

S 
and for 28.5 and 32.5 is therefore (28.5-30.0)/5 = -0.3 and (32.5 -30.5)/5 = 
+ O S  respectively. 

Using the notation in Figure 3.2(a) and Table 3. l (a)  which gives the area 
P under the normal curve from +< to fm we must use these data to determine 
the area beneath the standard normal curve between the limits ( = -0.3 to 

From < = + O S  to +cc the area is 0.30854, therefore from < = 0 to + O S  
the area is (0.5 - 0.30854) = 0.19146. Because of the symmetrical properties 
of the normal curve the area from < = $0.3 to f c c  is the same as the area 
from --CO to < = -0.3 which is 0.38209 from Table 3.l(a). Therefore from 
( = -0.3 to 0 the area is (0.5 - 0.38209) = 0.11791. Therefore the area 
between < = -0.3 and + O S  is (0.19146 + 0.11791) = 0.30937. 

We can therefore say the the probability Pr(28.5 < r < 32.5) = 0.309 
which implies that the gambler will only have a 30.9% chance of winning the 
bet. 

= $0.5. 

6.5 GAMBLING WITH DICE 

As a historical anecdote, it it noted that it was in fact gambling problems which 
first led to classical probability theory in the 17th century. The Chevalier de 
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Mere acquired a substantial amount of money by betting that he would get at 
least one six in  a sequence of 4 tosses of a die: and then lost it all by betting 
that he would get at least one double-six in a sequence of 24 tosses with two 
dice. 

When the Chevalier won, we can talk about getting a six at least once or 
getting no sixes. The probability of getting no sixes with a single toss is 5/6 
and with four tosses it is (5/6)4 and thus the probability of getting at least one 
six with four tosses is 1 - (5/6)4 = 0.518 which is calculated using the formula 

Probability of at least one successful result = 1 - (1 - p)" 

where ( 1  - p )  is the probability of failure. This Chevalier de MCrt example 
can also be computed using binomial probabilities, arriving at the same answer 
of 0.518 quoted above. Table 6.8. 

Table 6.8. Calculation of the probability of the Chevalier de Mer6 obtainining a six 
at least once with four tosses of a die. The probability is the sum of the individual 
probabilities of obtaining either I .  2 ,  3 or 4 sixes (but not no sixes) in the four tosses. 

No. of 'C, p' where (1 - p )  Binomial 
sixes p = (1/6) since probability 
r n = 4  

1 4 0.1667 0.5786 0.3858 
2 6 0.0278 0.6944 0.1158 
3 4 0.0046 0.8333 0.0 154 
4 1 0.0008 1 . 0000 0.0008 

= 0.5178 

If the bet had been obtaining only one six and not 
at least one six, then the probability would have 
been 0.386. 

The result of a probability of 0.518 can be said to predict a profitable 
outcome for anyone who has patience, money and an honest die and bets on 
the appearance of at least one six in four tosses, since the probability 0.518 
is greater than 0.5. However, if the bet had been for getting four sixes 
simultaneously when four unbiased dice were tossed, this probability would 
be only (1/6)4 = 0.00132 and consequently would be a very poor betting 
proposition. When the Chevalier lost, the probability of getting at least one 
double-six in 24 sequences with two dice is 1 - (35/36)24 = 0.491, which is 
less than 0.5. 

The exchange of letters between Pierre de Fermat (1601-1665) and Blaise 
Pascal (1623-1662), which had been requested by the Chevalier de MCrC in 
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order to solve the problem described above, established in  1654 a foundation 
for probability theory which was later developed by Jakob Bernoulli into 
a mathematical theory of probability. For this reason, binomial trials are 
sometimes referred to as Bernoulli trials. 

The most famous irrational number is x and is a number 
which can never be expressed as a fraction and whose 

series of numbers after the decimal point is infinite. 
However, a knowledge of 15 to 39 decimal places is 

sufficient to calculate the circumference of the universe to 
give an answer which is accurate to the radius of a 

hydrogen atom. Nevertheless, the current (1996) record is 
held by Yasumasa Kanada of the University of Tokyo who 

has calculated x to six billion decimal places. 

Copyright © 1998 IOP Publishing Ltd



Gambling with Dice 77 

THE VALUE OF n TO OVER 1500 DECIMAL PLACES 

3.14159265358979323846264338327950288419716939937510582 
0974944592307816406286208998628034825342117067982148086 
5132823066470938446095505822317253594081284811174502841 
0270193852110555964462294895493038196442881097566593344 
612847564823378678316527120190914564856692346034861~54 
32664821339360726024914127372458700660631558817488152~ 
2096282925409171536436789259036001133053054882046652138 
4146951941511609433057270365759591953092186117381932611 
793105 1 1854807446237996274956735 1885752724891227938 1830 
1194912983367336244065664308602139494639522473719070217 
9860943702770539217176293176752384674818467669405132000 
5681271452635608277857713427577896091736371787214684409 
0122495343014654958537105079227968925892354201995611212 
9021960864034418159813629774771309960518707211349999998 
3729780499510597317328160963185950244594553469083026425 
2230825334468503526193118817101000313783875288658753320 
8381420617177669147303598253490428755468731159562863882 
3537875937519577818577805321712268066130019278766111959 
0921642019893809525720106548586327886593615338182796823 
0301952035301852968995773622599413891249721775283479131 
5155748572424541506959508295331168617278558890750983817 
5463746493931925506040092770167113900984882401285836160 
3563707660104710181942955596198946767837449448255379774 
726847104047534646208046684259069491293313677028989l52l 
0475216205696602405803815019351125338243003558764024749 
6473263914199272604269922796782354781636009341721641219 
9245863150302861829745557067498385054945885869269956909 
2721079750930295532116534498720275596023648066549119881 
8347977535663698074265425278625518184175746728909777727 
938000816470200161452491921732172147723501414419735 .... 
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Poisson Probabilities 

7.1 THE POISSON DISTRIBUTION 

In the binomial distribution situation there is a calculable probability of the 
occurrence or non-occurrence of the event in question. This is not possible 
in a Poisson distribution situation and the Poisson is therefore very useful for 
calculating the probabilities of rare events for which no a priori estimate can 
be made of the probability that they will occur. 

Simeon Denis Poisson (1781-1840) was a French mathematical genius who 
originally intended to be a doctor but who gave up his studies at the age of 17 
because of an upset about a patient who died. His law of the probability of 
occurrence of rare events states that the probability of occurrence of n such 
events, Pr(n) in calculated from the formula 

e+"n 
Pr(n) = - 

n! 

where m is the mean number of events and n!  is factorial n .  That is, 
II! = 1 x 2 x 3 x 4 x . . . x n. For the Poisson distribution both the mean and the 
variance are equal to m. The standard deviation thus equals A. This probability 
distribution is, however, only applicable if the following four conditions are met. 

1 Discontinuous (i.e. discrete) data. 
2 When the chance of a result is small. 
3 When the chance of a result is independent of previous results. 
4 When a large number of tests can be performed. 

The distribution for selected values of m is shown in Figure 7.1 and it is 
seen that for small values of m the distribution is positively skewed. A table of 
Poisson probabilities for the three Poisson means m = 0.5, 1 and 5 ,  and for a 
number of occurrences n = 0, 1 , 2 , 3 . 4  and 5 is given in Table 7.1. 

It should also be noted that although the Poisson is a distribution in  its own 
right, the binomial equates to it under certain conditions. A binomial distribution 
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may be imagined in which the probability of success, p ,  is very nearly equal to 
1, and the probability of failure 1 - p is hence very nearly equal to 0, so that the 
product n(1 - p )  is small. If we also have a large number, n, of experiments, 
then n - r ,  where r refers to the probability of r successes in n experiments, 
can be assumed to be equal to n since r will be negligible compared with n. 
Under these conditions the formula for binomial probabilities becomes 

Number of occurrences, n 
s 

Number of oecurrence8,n 

Figure 7.1. Poisson distributions for mean values m = 1 ,  2, 5 and 10. 

Table 7.1. Poisson probabilities. 

Number of Formula for Poisson probabilities for 
occurrences Poisson different values of m 
n probability 

m = O S  m = l  m = 5  

0 e-m 0.607 0.368 0.007 
I me-m 0.303 0.368 0.034 
2 0.5m2e3-m 0.076 0.184 0.084 
3 0. I 7m3e-" 0.013 0.061 0.140 
4 0.042m4e-" 0.002 0.015 0.174 
5 0.0083mse-" 0.000 0.003 0.174 
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7.2 EXAMPLES OF POISSON PROBLEMS 

The classic example of the Poisson distribution is that of the number of 
cavalrymen kicked to death in 10 Prussian army corps over a period of 20 
years. There are 200 observation units (10 corps x20  years) and the total 
number of deaths observed was 122. The mean of the Poisson distribution is 
thus m = 122/200 = 0.61 and Table 7.2 gives the number of expected deaths 
in  the corps assuming a Poisson distribution with m = 0.61 and the number 
of deaths actually observed. There is very good agreement. The closeness of 
agreement between observed and expected values can be tested for statistical 
significance using the chi-squared test. 

Table 7.2. Poisson distribution data showing the chance of a 19th century Prussian 
cavalryman being killed by a horse kick in the course of a year. 

Number of years for which data are 
available for a cavalry corps = 200 

Total number of deaths = 122 
c{nf} = 165 + 44 + 9 + 4} = 122 
Poisson mean m = 122/200 = 0.61 

Frequencies are number of years in which 
a given number of deaths occurred 

No. of deaths (f) Expected 
by horse kick Observed frequency, 

per year ( n )  m = 0.61 
per corps frequency Poisson mean 

0 109 108.7 
1 65 66.3 
2 22 20.2 
3 3 4.1 
4 1 0.6 
5 0 0.1 

Totals 200 200 

Two other examples of Poisson distributions are those of drownings and 
of suicides in Malta, as reported in the St. Luke's Hospital Gazette. The data 
for drownings were from a consecutive 355-month period when 167 drowning 
deaths were reported, giving a mean of 0.47 deaths per month. The data for 
suicides were for a consecutive 216-month period when there were 141 suicides, 
giving a mean of 0.65. Table 7.3 gives the observed and Poisson-expected 
deaths. There is an impressive agreement between observation and expectation, 
although some argue that it is invalid to apply Poisson to the number of suicides 
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per year in  a given community because the temptation to commit suicide varies 
with the stress of the times, such as the Wall Street crash of 1929 which 
preceded the American slump of the 1930s. However, it can be applied to 
an adequate period of observation where no such undue extraneous factors may 
have occurred. Indeed, no departure from Poisson may be a valuable indication 
that no such factors did exist during the period of observation. 

Table 7.3. Poisson distribution data for Malta. 

Number of consecutive months observed = 216 
Total number of deaths by drowning = 167 

~ ( n f ) = ( 1 0 2 + 4 6 + 1 5 + 4 ) =  167 
Poisson mean m = 167/355 = 0.65 

Frequencies are the number of months in which 
a given number of deaths occurred 

No. of deaths (f) Expected 
by drowning Observed frequency, 

per month (n) frequency Poisson m = 0.47 

0 224 221.9 
1 102 104.4 
2 23 24.5 
3 5 3.9 
4 1 0.4 

Totals 355 355.1 

Number of consecutive months observed = 216 
Total number of suicides = 141 c ( n f }  = (76 + 50 + 15) = 141 

Poisson mean m = 141/216 = 0.65 
Frequencies are the number of months in which 

a given number of suicides occurred 

No. of deaths (f) Expected 
by suicide Observed frequency, 

per month (n) frequency Poisson m = 0.65 

0 110 112.3 
1 76 73.3 
2 25 24.0 
3 5 5.2 

Totals 216 214.8 

Examples of other rare events which have been shown to be represented 
by a Poisson distribution include the number of patients admitted with acute 
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poisoning to Patna Medical College Hospital on days of full moon; the number 
of goals in a football match (see section 9.4); the number of printer's errors 
per page in a book; the number of faulty electrical components in a batch; and 
radioactive decay. 

7.3 THE POISSON APPROXIMATION TO THE BINOMIAL 

The printer's error problem has been described in the following manner' and 
illustrates a situation when the Poisson approximation to the binomial can be 
used. 

Suppose 300 misprints are distributed randomly throughout a book of 500 
pages. Find the probability P that a given page contains [l] exactly 2 misprints, 
[2] 2 or more misprints. 

We view the number of misprints on one page as the number of successes 
in a sequence of Bernoulli trials. Here n = 300 since there are 300 misprints, 
and p = 1/500, the probability that a misprint appears on the given page. Since 
p is small, we use the Poisson approximation to the binomial distribution with 
np = 0.6. 
[l] P = p(2: 0.6) = - = (0.36)(0.549)/2 = 0.0988 

[2] P(0 misprints) = 7 = e-o.6 = 0.549 

0.1. 
(0.6)0e-0.6 

P (  1 misprint) = 1! '0.6)e-0'* - - (0.6)(0.549) = 0.329 
Then P = 1 - P ( 0  or 1 misprint) = 1 - (0.549 + 0.329) = 0.122. 

7.4 THE NORMAL APPROXIMATION TO THE POISSON 

The Poisson distribution is not simply more symmetrical as its mean m increases 
(see Figure 7.1). It also approaches a normal distribution with mean m and 
standard deviation f i . This is shown in Figure 7.2 for a Poisson distribution 
with m = 10. There still remains a slight asymmetry and a rather better fit 
around the peak is obtained if the normal distribution is displaced with a slightly 
lower mean value, 9.5 rather than 10. For mean values in excess of 30, the 
asymmetry is negligible. The advantage of this normal approximation to the 
Poisson is that standard tables for the normal curve may be used for Poisson 
problems with large values of m. 

7.5 RADIOACTIVE DECAY 

A practical use of the normal distribution as an approximation to the Poisson 
is in the measurement of radioactive disintegrations. For example, when this is 
performed during nuclear medicine diagnostic tests by counting with radiation 
detection equipment such as scintillation counters or Geiger counters. If it is 
assumed that the radioactive sample is counted a number of times for 1 minute 
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0 2 4 6 8 10 12 14 16 18 20  
Number of occumncesn 

Figure 7.2. Comparison of the Poisson distribution with m = 10 and two normal curves. 

and a mean value of 1000 counts is found, the probability of observing a count, 
N ,  will be given by a normal distribution of mean M = 1000 and standard 
deviation S = 32. This is the normal approximation to the 
Poisson distribution 

= 31.62 

e-1ooo( 1 
N !  

Recalling Figure 3.3 and the interpretation of an area beneath the normal 
curve between limits expressed in terms of standard deviation, S, we can state 
the following for the radioactive sample counting problem with a mean count 
rate of 1000 counts per minute. 
There is a 68% probability of finding a measurement in  the range 968-1032, 
i.e. M f S. 
There is a 90% probability of finding a measurement in  the range 947-1053, 
i.e. M i 1.645s. 
There is a 95% probability of finding a measurement in the range 937-1063, 
i.e. M f 1.96s. 

The term probable error is also sometimes used and this is equal to 0.67 x 
standard deviation. For the counting problem 0.67s = 21 and hence there is a 
50% probability of finding a measurement in the range 979-1021, i.e. Mzk0.67S. 

Some historical data on radioactivity counting are given in Table 7.4 which 
reproduces’ the counts of alpha particles by Sir Ernest Rutherford and Hans 
Geiger which were published in their 1910 paper in the Philosophical Magazine. 

Figure 7.3 plots { E }  in the last column of Table 7.4, using a similar 
vertical bar format to Figure 7.1. Of the two scales on the vertical axis the 
Poisson probability scale can be calculated using the formulae in Table 7.1. 
Thus for example, for m = 3.87 and II = 2, the Poisson probability for two (Y 

particles to be observed in an interval equals 0.5.(3.87)2e-3.s7 = 0.15619. Since 
C{E} = 2608, this particular expected Poisson frequency for the Rutherford 
and Geiger experiment is 2608 x 0.15619 = 407.3. 
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Table 7.4. Counting of alpha particles by Rutherford and Geiger. The time interval 
for the measurements was 7.5 seconds. Total number of CY particles = 2608 and 
z { n f )  = I O ,  094. Poisson mean = 10,094/2608 = 3.87. 

No. of LY Observed no. of Expected no. of 
particles time intervals time intervals 

(n )  with n with n 
CY particles CY particles 

per interval ( , f )  per interval ( E }  
(rounded down) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
2 13 

57 
203 
383 
525 
532 
408 
273 
139 
45 
27 
10 
4 
2 
0 

54 
210 
407 
5 26 
509 
394 
254 
140 
68 
29 
11 
4 
1 
1 

C[f} = 2608 C{E) = 2608 

0.192 

f 0.153 

h 

i 
c 0.115 
0 

r" 
f 

0.077 

e :: 
2 o.oa8 

0 

m I 3.07 

L 
0 1 2  3 4 5 6 7 8 9 1 0 1 1  12 

Numlwr 01 p.Rk1.8 ( 0 )  

Figure 7.3. Poisson probabilities for the Rutherford and Geiger LY particle counting 
experiment. 
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Introduction to Statistical Significance 

8.1 THE NULL HYPOTHESIS 

One of the problems encountered by those involved with statistics is how, and 
with what accuracy, inferences can be drawn about the nature of a population 
when the only evidence which exists is that from samples of the population. 
In order to solve this problem an understanding of statistical significance is 
essential and i t  should be immediately recognised that this is not necessarily 
the same as clinical significance when the statistics refer to medicine. It should 
also be noted that editors of journals containing results using statistical tests 
always insist on a statement of a P-value, and that this is regarded by some 
readers and authors as having mystical properties more commonly associated 
with those of a fortune teller’s crystal ball. Statistical inference is not such a 
simple matter that if P is less than 0.05 then results are worth publishing as 
they demonstrate statistical significance. It is an absolute priority for those using 
tests for statistical significance that they understand the conditions which must 
apply for a particular test to be valid and that they have a clear understanding 
of the hypotheses which are being tested. 

The starting point of any practical use of a test for statistical significance 
is the null hyporhesis, often denoted by Ho, to distinguish it from alternative 
hypotheses such as HI and H2. This will in effect state that ‘there is no difference 
between ... and ...’ and one example is that ‘there is no difference between the 
effect of treatment A and the effect of treatment B’. In a clinical trial where the 
investigator is hoping that a new treatment is better than an old one, the starting 
point is still the null hypothesis: an alternative hypothesis is that ‘the effect of 
treatment A is better than the effect of treatment B’. 

The null hypothesis is therefore usually set up to be rejected when testing 
for statistical significance in medical research, since it is usually not the one 
the researcher hopes to be true, one exception being curve fitting in section 9.5. 
The logic of this is that if the hypothesis of no relationship, Ho, can be rejected, 
the rational conclusion is that there is a relationship between the phenomena or 
the attributes stated in  the null hypothesis. This logic would be compelling if 
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there were a nul l  hypothesis, Ho, and a single alternative hypothesis, Hi, which 
were mutually exclusive. However, in  most medical situations there will be a 
series of possible alternative hypotheses, H I ,  H2, ..., and the outcome of a single 
test of statistical significance seldom totally solves a research project. Examples 
of nul l  hypotheses are: 
Ho: The observations come from a Poisson distribution. 
Ho: The mean age of a population of patients with cancer of the ... is 60 years. 

Examples of alternative hypotheses for the above are: 
HI  : The observations do not come from a Poisson distribution. 
HI  : The mean age of a population of patients with cancer of the ... is 50 years. 
H2: The mean age of a population of patients with cancer of the ... is 70 years. 

It should also be noted that statistical significance tests can be classed as 
I-tailed or 2-tailed depending on the form of the alternative hypothesis. Taking 
an opinion poll Ho as an example, if we are interested in testing to see if the 
proportion is different from 0.7 either on the high side or on the low side, then 
this is a 2-tailed test, since we are interested in values both higher than 0.7 and 
lower than 0.7. If, though, the alternative hypothesis we are interested in  is only 
for values higher than 0.7 then this is a 1-tailed test since we are not, in  this 
instance, interested in values lower than 0.7. This is a trivial example, but it 
demonstrates the meaning of 1- and 2-tailed tests. 

8.2 NULL, POSITIVE AND NEGATIVE RESULTS OF STUDIES 

In practice, one should sometimes guard against introducing bias by choosing 
only a 1-tailed test in, for example, a drug trial. If drug A is a placebo and drug 
B the new drug of interest, then it might be thought that only 
Ho: There is no difference in the effects of drugs A and B 

and 
HI: Drug B is better than drug A 

should be considered, as a result of a pilot study involving only a small number 
of patients and the hunch of the medical researcher. (Better must of course be 
clearly defined.) However, a full-scale trial might show that there is a second 
alternative hypothesis, albeit one the researcher would prefer to ignore: 
Hz: Drug A is better than drug B. 

This is particularly true if drug A is aplacebo. In this case if HO is accepted 
(statistical acceptance is now defined) this is a null result. If Ho has not been 
rejected at a given level of probability then we must assume that it has been 
accepted. However, this really implies not proven-because we are working 
in terms of probability. What acceptance means is that if the hypothesis is in 
fact false, then the experiment was not able to detect it at the established level 
of signijkance. 
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However, if HI is accepted then this is a positive result but if H2 is accepted 
this is a negative result. In the literature on clinical trials there are seldom any 
negative results reported, although two chemotherapy examples are a sequential 
analysis clinical trial for head and neck cancer’ and a Medical Research Council 
clinical trial on advanced carcinoma of the cervix2. 

A review3 entitled When is a negative study not negative? emphasises that 
the jargon used should be consistent throughout the literature (null, positive, 
negative). This is very important when in many instances a null result is 
interpreted as negative. 

8.3 PROBABILITY LEVELS AND SIGNIFICANCE 

8.3.1 P <  0.05 

Returning to the expression ‘P is less than 0.05’ mentioned in the first paragraph 
of section 8.1, it must be emphasised that it is most important to distinguish 
between a probabilitj level derived from using a statistical test and a signifrcance 
level chosen by the investigator. The P-value derived from a test is the chance 
of observing the result in the present trial or a more extreme result (i.e. more 
contradictory to the null hypothesis), given that the null hypothesis is true. 

Using the clinical trial as an example, the explanation of ‘P is less 
than 0.05’ is well described by Peto et al‘ as follows: ‘The patients in one 
treatment group have fared better than the patients in the other. If there is no 
difference between the medical effects of the two treatments and the only cause 
of difference between the treatment groups is the chance allocation of more 
good-prognosis patients to one group than to the other, then the chance of one 
treatment group faring at least this much better than the other group would be 
less than 0.05, i.e. less than a 1 in 20 chance’. 

Hence when we are talking of ‘P is less than 0.05’, the chance that we 
would have obtained the same set of results (or a more extreme set) purely 
randomly is less than 1 in 20, but if we are talking of ‘P is less rhan 0.01’, this 
chance would be less than 1 in 100. For ‘P is less rhan 0.10 this chance would 
be less than I in I O .  

A chosen significance level such as 0.05 is one chosen by the investigator 
after due thought (it is not always automatically 0.05), and is the level with 
which the P-value derived from the statistical test is compared. 

8.3.2 Clinical and Statistical Significance 

Srntisricnl sigtiijkatice does not necessarily equate to clinical sigrri)?cance and 
when looking for trends, and when using tests of statistical significance to help 
towards decision making. i t  is not necessarily true that if the P-value is 0.06 
‘you can forget all about it’. 

When P < 0.05 the chance we would have obtained our results (or a 
more extreme set) purely randomly is, as stated above, less than I in 20 or. 
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turning this around, the chance that we would not have obtained our results 
purely randomly is greater than 19 in  20. If P < 0.06 then the chance that 
we would not have obtained our results purely randomly is still greater than 17 
in 18. Commonsense should therefore tell us that this is not all that different 
from P < 0.05 and therefore the results do not warrant ‘forgetting’; rather, they 
warrant further investigation. 

We have to set boundaries at some point, such as P < 0.05, but although 
theoretically this leads to an acceptancehejection boundary, clinically if the 
results fall only just over the boundary into the region of rejection, we cannot, 
as it were, give a conclusion set in stone for ever after, since medicine is not 
such a precise science. Certainly we reject at P < 0.05, as this is what we have 
decided a priori, but commonsense must then be used to answer the question 
‘What now?’. 

8.4 TYPE-I AND TYPE-I1 ERRORS AND ALPHA AND BETA RISKS 

There are two types of error which can be made in arriving at a decision about 
the null hypothesis, Ho. A type-I error is to reject Ho when in fact it is true 
and a type-I1 error is to accept Ho when in fac t  it is false. By convention the 
probability of a type-I error is usually denoted by CY and the probability of a 
type-I1 error by j3 

Table 8.1. Error types and associated risks 

Error Definition of Associated risk 
error type 

~~~ 

Type I Wrongly rejecting Probability of a 

Type I1 Wrongly accepting Probability of a 
H(] when Ho is true 

Ho when Ho is false 

Type-I error = (Y 

Type-ll error = f i  

The j3-risk is a function of an alternative hypothesis, and since Ho is false. 
HI or H2 must be true. The probability (1 - j3) is defined as the power of the 
test of the hypothesis Ho against an alternative hypothesis. 

The a-risk is the chance of wrongly rejecting Ho and acting upon the 
premise that at the a-level there is a difference. The consequence of this 
in treatment evaluation, for example, is the discontinuation of one particular 
treatment in preference to another. 

The p-risk is the chance of wrongly accepting the null hypothesis when 
it is false. We then accept that there is no difSerence. The consequence which 
follows could be either that we attempt further investigations or discontinue the 
trial without reaching any conclusion as to whether one treatment is better than 
the other. 
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a- and p-risks are related; they are not independent of each other. If the 
a-risk is increased, then the ,%risk is decreased, and vice versa. 

(Y and /3 are also related to the size of the sample, N ,  which for a clinical 
trial would be the number of patients. Ideally, the values of (Y and /I would 
be specified by the researcher before the trial or experiment, and these values 
would then determine the size, N ,  of the sample to be drawn for computation 
of the test chosen for statistical significance. To reduce the possibility of both 
types of error, I and 11, the value of N must be increased. 

Different types of catastrophe will follow type-I and -11 errors. As an 
example, consider a clinical trial of an existing drug A and a new drug B 
where the null  hypothesis, Ho, is that there is no difference and the alternative 
hypothesis, Ho, is that the drug B is better than drug A (ignore Ho: drug A 
better than drug B for this example). If a type-I error occurs then Ho is wrongly 
rejected and following the inference that Ho should thus be accepted, drug A will 
be abandoned and drug B now given to patients. What are the consequences? 
Since Ho is really true and there is no difference between A and B then the 
patients will not have suffered since they have only been placed on another 
drug of similar efficacy. 

Now consider a type-I1 error when Ho is wrongly accepted. In this instance, 
the truth is that Ho is correct and the consequences to the patient are that a drug 
with a better efficacy is denied to them, since the acceptance of Ho would mean 
that the current drug A should remain in  use and research be abandoned on 
the new drug B (or perhaps continued more stringently, if the value of N is 
relatively small). Of the two types of error in this situation, a type-I1 error 
would seem to be worse than a type-I error since it could mean rejection of a 
new and useful drug-if the trial is not carefully planned. 

In conclusion, the information in table 8.1 is presented in a slightly different 
way to that in table 8.2. 

Table 8.2. Error types and (Y and /I risks in terms of clinical trial result and actual truth. 
{ I  - /I) is termed power but there is no terminology for ( 1  - a} .  P-values relate to (Y 

risks. 

Clinical trial result 
Actual truth 

Treatment No treatment 
benefit benefit 

Treatment Correct result Qpe-I1 error (/I) 
benefit 11 - PI False -ve result 

No treatment 'Qpe-I error (a) Correct result 
benefit False +ve result (1 - a) 
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8.5 A GENERALISED SCHEDULE FOR SIGNIFICANCE TESTING 

T h e  following flow pattern of actions represents a generalised schedule which 
is applicable for many test situations. 

Zlear conception of the problem to be studied, of the possible outcomes of planned 
:xperiments or trials. and of future possible actions which can be taken should the 
iull hypothesis be rejected or accepted at the chosen level of significance. 

j. 

Statement of the null hypothesis, Ho. 

J- 

Ensure that the test of statistical significance to be used is valid for testing HI,. 

.1 
Choose a significance level, e.g.. 0.05. 

.L 

Calculate the test statistic (e.g., chi-squared, x 2 )  using the appropriate formulae 
into which observations expressed as numbers can be inserted. These observations 
will already have been obtained from the appropriate sampling distribution. 

4 
Consult a table of values of the test statistic stated in terms of probability (P  levels 
and degrees of freedom (see section 8.6). As an example for chl-squared: 

4 
Chi-squared values for P = 0.05,0.01 and DF = 

Probability levels Degrees of 
freedom (DF) P = 0.05 P = 0.01 

1 3.84 6.64 
2 5.99 9.21 
3 7.82 11.34 
4 9.49 13.28 

. 2 ,  3.4. 

.1 
Assume for this example that the test statistic was calculated to be 10.5 and that 
the degrees of freedom are DF = 2. The derived probability level from the test is 
less than 0.05 because 10.5 is greater than 5.99. 

j. 

From a comparison of the probability level derived from the test and the 
significance level chosen, accept or reject Ho. 
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For the example in the schedule on page 90: degrees of freedom = 2, 
critical value of the test statistic ( x 2 )  from standard tables for P = 0.05 is 5.99, 
derived value of the statistic x 2  = 10.5. 10.5 is greater than 5.99, therefore 
P < 0.05 and therefore we conclude that there is a significant difference at the 
P = 0.05 level, and therefore we reject the null hypothesis Ho. 

If, however, the derived value of the statistic had been 3.1, which is less 
than 5.99, the null hypothesis would not have been rejected at the P = 0.05 
level. Alternatively, though, if the derived value of the statistic had been 8.1, 
which is greater than 5.99 but less than 9.21, the null hypothesis would be 
rejected at the P = 0.05 level but not rejected at the P = 0.01 level. 

PARROT FASHION STATISTICAL TESTING I 

I was once asked the following question. ‘On my statistical 
computer software I have 10 tests of statistical significance. 
I fed my data through all 10 and obtained a significant result 
P < 0.05, in one test and no significant results in nine tests. 
Can I use the one test which gave me P < 0.05 for my 
publication?’ 

8.6 DEGREES OF FREEDOM 

Teaching experience has shown that the concept of degrees of freedom is 
rather difficult to explain in understandable simple English and therefore three 
explanations have been chosen. However, when examples of tests of statistical 
significance (e.g. x 2  and t-tests) are illustrated in the later chapters, the concept 
of degrees of freedom (often termed DF or sometimes U) may become clearer. 
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[l] The size of the degrees of freedom reflects the number of observations 
that are free to vary after certain restrictions have been placed on the data. 
These restrictions are not arbitary, but rather are inherent in the organisation 
of the data. Examples in the following chapter on the chi-squared test, x 2  = 
{(Observed-Expected)*/Expected}, include table 9.2 where there are 10 pairs 
of 0 and E values (often referred to as cells) for which there are no assumptions 
made with regard to E .  

There will always be in a situation like table 9.2, the -1 term subtracted from 
the total number of cells. However, in table 9.5 the expected values E are 
calculated from the Poisson formula for which an assumption has to be made 
about the Poisson mean, m, and this has to be taken into account such that the 
total number of cells, nine in this example, are reduced by -2 and not only by 

DF = (10 - 1) = 9. 

-1. Thus: 
DF = ( 9 - 2 ) = 7  

Then in table 9.6 where the expected values E are calculated from the lognormal 
formula for which an assumption has to be made about the lognormal mean M 
and the lognormal standard deviation S, the total number of cells. 11 in this 
example, are reduced by -3 and not by - 1. Thus: 

DF = ( l l - 3 ) = 8  

For a generalised contingency table with n rows and m columns, see section 
9.6 for the 2 x 2 contingency table, there is a general formula which should be 
remembered, although there is no need to know how it is derived, which gives: 

DF = (Number of rows - 1)  x (Number of columns - 1) 

which for a 2 x 2 table, as in table 9.7, is: 

DF = (n - 1) x ( m  - 1) = 1 

[2] DF is linked with coizstruirtts (i.e. restrictions) on the expectations E .  
such as the Poisson mean and the lognormal mean and standard deviation, as 
mentioned above in  [l]. In the language of physics, a point that can move freely 
in  three-dimensional space has DF= 3 and three variable coordinates X ,  Y and 
Z which can take on different values independently. If we constrain the point 
to move only in a plane (i.e. two-dimensional space) the point then has DF= 3. 

[3] Imagine trying to decide which chocolate to choose from a box of N 
chocolates. Every time we choose a chocolate we have a choice, until we come 
to the last chocolate and then we have no choice. We thus have N - 1 choices: 
in other words DF= N - I .  This contains the same - I  term as commented 
upon above in [l]. 
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Chapter 9 

The Chi-Squared Test 

9.1 INTRODUCTION 

The chi-squared test (the Greek symbol for chi is x )  is probably the most 
commonly used test of statistical significance. It is a non-parametric test, unlike 
the t-test in Chapter 11 which is a parametric test, since for the chi-squared 
test there are no underlying assumptions that must be made about a normally 
distributed population before the test can be considered to be appropriate. 

The x*-statistic is 

(Observation - Expectation)2 
Expectation 

where Observation is the observed frequency and Expectation is the expected 
frequency of the quantity being studied. Two important applications of the chi- 
squared test are goodness of fit (sections 9.2-9.5 and Table 3.4) and contingency 
tables (sections 9.6-9.8). The basic form of the test determines whether the 
observed frequencies of a particular parameter value or range of values differ 
significantly from the frequencies which would be expected under some theory 
or hypothesis. When the test is applied there will be a number n of observed 
and expected values and each of these cells will give a corresponding value for 

X: = (oi - E , ) ~ / E ,  

where i = 1 ,  2 ,  3,4 ,  . . . , n. The x*-statistic is the summation of all the 
(Q - E ~ ) ~ / E ,  values. 

Table 9.1 is a table of x2-values in terms of degrees of freedom (DF) and 
probability levels P. Some of these data are presented graphically in Figure 9.1. 
The derived probability level from the derived summation E x 2  of all the xf 
values for each cell i can be obtained from Table 9.1. This derived probability 
level can then be compared with the chosen level of significance, as described 
in section 8.5, and a decision on acceptance or rejection of the null hypothesis, 
Ho, can then be made. 

93 
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1 2 3 4 5 6 7 0 9 1 0  

60 - 
50 - 

40- 

30 - 

- 4  

-3 

- 2  

I I I I I I I I I  

2 3 4 5 6 7 8 9 1 0  20 30 
Degrees of freedom 

1 I 11 1 
1 

Figure 9.1. x 2  as a function of degrees of freedom and probability levels, P ,  Some 
statistical tables give P as a percentage (i.e. 5% as distinct from 0.05) and the term P 
as percentage points of the x *-distribution; others tabulate a probability in percent which 
is 100 - P %  in the notation and term this fractiles of the X*-distribution (i.e. a fractile 
of 95% corresponds to P = 0.5 or 5%).  Thus when consulting tables or graphs of x 2  
ensure first that the notation is understood. 
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Table 9.1. Values of x 2  for selected probabilities and degrees of freedom. The rows in 
the table indicate the degrees of freedom (DF) and the columns indicate probability levels 
( P ) .  The values in the body of the table are the values of x 2  and the probabilities given 
are for values of x 2  with the larger values being less probable. For example, the value 
corresponding to P = 0.05 for DF = 6 is 12.592. Values larger than 12.592 thus have 
a probability of less than 5%. (From Fisher and Yates, Stafistical Tables for Biological, 
Agricitltural arid Medical Research (6th edn, 1974. table IV. p 47). Courtesy Longman 
Group UK Limited.) 

DF P = 0.99 0.95 0.10 0.05 0.01 0.001 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
50 
60 

0.000157 0.00393 
0.0201 
0.115 
0.297 
0.554 
0.872 
1.239 
1.646 
2.088 
2.558 
3.053 
3.571 
4.107 
4.660 
5.229 
5.812 
6.408 
7.015 
7.633 
8.260 
8.897 
9.542 

10.196 
10.856 
11.524 
12.198 
12.879 
13.565 
14.256 
14.953 
22.164 
29.707 
37.485 

0.103 
0.352 
0.71 1 
1.145 
1.635 
2.167 
2.733 
3.325 
3.940 
4.575 
5.226 
5.892 
6.571 
7.261 
7.962 
8.672 
9.390 

10.1 17 
10.851 
11.591 
12.338 
13.091 
13.848 
14.61 1 
15.379 
16.151 
16.928 
17.708 
18.493 
26.509 
34.764 
43.188 

2.706 
4.605 
6.25 1 
7.779 
9.236 

10.645 
12.017 
13.362 
14.684 
15.987 
17.275 
18.549 
19.812 
21.064 
22.307 
23.542 
24.769 
25.989 
27.204 
28.412 
29.615 
30.813 
32.007 
33.196 
34.382 
35.563 
36.741 
37.916 
39.087 
40.256 
5 1.805 
63.167 
74.397 

3.841 
5.991 
7.815 
9.488 

11.070 
12.592 
14.067 
15.507 
16.919 
18.307 
19.675 
21.026 
22.362 
23.685 
24.996 
26.296 
27.587 
28.869 
30.144 
31.410 
32.671 
33.924 
35.172 
36.41 5 
37.652 
38.885 
40.1 13 
41.337 
42.557 
43.773 
55.759 
67.505 
79.082 

6.635 
9.210 

11.345 
13.277 
15.086 
16.812 
18.475 
20.090 
21.666 
23.209 
24.725 
26.2 17 
27.688 
29,141 
30.578 
32.000 
33.409 
34.805 
36.191 
37.566 
38.932 
40.289 
41.638 
42.980 
44.314 
45.642 
46.963 
48.278 
49.588 
50.892 
63.691 
76.154 
88.379 

10.827 
13.815 
16.266 
18.467 
20.515 
22.457 
24.322 
26.125 
27.877 
29.588 
31.264 
32.909 
34.528 
36.123 
37.697 
39.252 
40.790 
42.312 
43.820 
45.315 
46.797 
48.268 
49.728 
51.179 
56.620 
54.052 
55.476 
56.893 
58.302 
59.703 
73.402 
86.661 
99.607 
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9.2 GOODNESS OF FIT: PRECISION OF NUCLEAR MEDICINE 
COUNTING INSTRUMENTS 

Measuring instruments must be precise and with nuclear medicine instrumen- 
tation, which has to record radioactive isotope count rates for diagnostic or 
therapeutic purposes, precision is most important. The International Atomic 
Energy Agency' recommends that the chi-squared test be used for the following 
test of precision. 

( a )  A standard caesium-137 source is positioned in the counter. 
(b )  A radiation counting time is fixed to give counts of at least 10 000. 
( e )  Ten replicate counts are recorded. 
( d )  A table is constructed as in Table 9.2 and the data are analysed using 

For a chi-squared goodness of fit test, the number of degrees of freedom is 
the number of cells, n ,  minus 1 for the total (since the total number n is a fixed 
constraint), minus 1 for the mean if it is fixed a priori (and is therefore a second 
constraint), and minus 1 for the variance if this has also been fixed a priori 
when the expected frequencies are calculated. For the radioactivity counter no 
a priori assumptions are made concerning mean or variance and therefore 

the chi-squared test. 

DF = n - 1. 

In Table 9.2, 0, is an individual count, i = 1, 2, 3 , .  . . , 10, n = 10 and the 
expected number of counts, E ,  is taken to be the mean of the ten U, values, 
7632 in this example. DF= n - 1 = 9 and therefore from Table 9.1, for 
P = 0.05, x 2  = 16.92; and for P = 0.95, x 2  = 3.32. 

A value of the derived Ex2 statistic greater than 16.92 would indicate that 
the variation in  counts, at the chosen level of significance of 0.05, is greater than 
can be plausibly attributed to chance alone. A value of less than 3.32 for the 
derived Ex2  statistic will similarly indicate that the results cannot be expected 
to occur by chance alone-in this case they are too good to be true! Thus, if the 
derived Ex2 statistic is greater than 16.92 or less than 3.32, the test should be 
repeated according to the IAEA protocol and if the second test also gives E x 2  
statistic outside the range of acceptance, this may be taken to indicate faulty 
performance. 

In practice, it has been found in some laboratories that the technician has 
switched the counting instrument controls to the electronic test position for 
10 000 counts rather than for a sample count. In this case, the E x 2  statistic is 
always less than 3.32. If the Ex2  statistic is greater than 16.92, this may be 
due to spurious counts from random electrical noise, from an unstable power 
supply, from temperature changes or from electronic faults. In Table 9.2 the 
derived E x 2  statistic is 6.34 which is taken from real data for a counting system 
in a Bogota hospital during an M E A  Training Workshop on Nuclear Medicine 
Instrumentation. 
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For this example, where the counting equipment was an activity meter, the 
null hypothesis is 

Ho: There is no difference in the expected number of counts and those measured, 
and any observed differences are merely chance variations to be expected from 
the random nature of radioactive decay. 

Table 9.2. 
measurements. 

Test of precision of a counting system for radioactive diagnostic test 

Measurement O =  E =  0 - E  ( 0 - E ) *  
number counts in a expected 

given time counts 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

7589 
7687 
7660 
7658 
7592 
7728 
7551 
7534 
7744 
7581 

7632 
7632 
7632 
7632 
7632 
7632 
7632 
7632 
7632 
7632 

-43 
55 
28 
26 

- 40 
96 

-81 
-98 
112 

-5 1 

1849 
3025 
784 
676 

1600 
9216 
6561 
9604 

12544 
260 1 

Sum of all 0-values = 76324. 
Expected number of counts, E = 76324/ 10 = 7632. 
Since E is a constant. the simplest method of calculating 
the sum of all (0 - E)’/E values is to calculate the sum of all 
(0 - E)’ values and divide this by 7632. 
Number of cells = n = 10. 
Number of degrees of freedom = n - I = 9. 
The derived E x 2  statistic is the summation of all the 
(0 - E)’ values divided by 7632. 
EX’ = 48460/7632 = 6.34. 

9.3 GOODNESS OF FIT: A RACING PROBLEM 

Another example of the chi-squared test is quoted by Siegel’ for the benefit 
of horse racing fans, from data published in the N e w  York Times of 30 August 
1955. This pave results by track number position where Track 1 was the inside 
track and Track 8 the outside track of a circular course. The total number of 
races was 144. The null hypothesis is 
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H,,: There is no difference in the expected number of winners starting from each 
of the tracks, and any observed differences are merely chance variations to be 
expected in a random sample from a population of horse races. 

Table 9.3. The chi-squared test for the horse racing problem 

Track O =  E =  O - E  ( 0 - E ; ‘  I O - E ) ~ I E  
position observed expected 

number of number of 
wins wins 

29 
19 
18 
25 
17 
10 
15 
11 

18 
18 
18 
18 
18 
18 
18 
18 

c11 121 
+ I  1 

0 0 
+I 49 
-1 1 
-8 64 
-3 9 
-7 49 

6.12 
0.06 
0.00 
2.72 
0.06 
3.56 
0.50 
2.72 

Total number of races = 144. 
Number of track positions = 8. 
Expected number of wins per track if  Ho is true = 144/8 = 18. 
C x 2  = sum of all (0 - E ) 2 / E  values = 16.3. 
Number of degrees of freedom = 8 - 1 = 7 .  
(In a similar manner to Table 9.1, some computation time can be saved 
in practice since E is a constant: C x 2  = sum of all ( 0  - E)’ 
values/18 = 294/18 = 16.3.) 

Table 9.3 gives the calculation procedure and the derived E x 2  statistic is 
16.3. From Table 9.1, for 7 degrees of freedom (DF = number of tracks - 1 )  
and P = 0.05, the x 2  statistic is 14.07. The derived E x 2  of 16.3 is greater 
than 14.07 and therefore Ho is rejected at the P = 0.05 level of significance. 
If, however, the gambler is cautious and does not want to bet all his money on 
a particular track, such as the inside track. he will further consider 

H I  : Alternurive hypothesis: Significantly more winners occur from the inside track 
position. 

So as to be as certain as possible not to be on a losing streak, he will take 
the P = 0.01 level as his chosen level of significance. In this case, for DF = 7 
and P = 0.01, the x 2  statistic is 18.48 and the derived E x 2  of 16.3 is less 4 
than 18.48 and therefore the gambler cannot now reject the null  hypothesis, Ho, 
at this chosen 0.01 level of significance. 
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Since the myth of the inside track is bound to persist in the minds of some, 
I have repeated the problem illustrated for horses in New York, by considering 
data for greyhound racing in London. The raw information is that for the annual 
Greyhound Derby finals, 1927-1985. In these finals there are 6 and not 8 traps, 
no Greyhound Derby was held during the war years 1941-1944, and thus 55 
results are available for analysis. The expected number of wins per trap is 
55/6 = 9.17 and the observed numbers of wins per trap are 

Trap Number 
of wins 

1 13 
2 7 
3 9 
4 11 
5 7 
6 8 

These data give a derived Ex2 statistic of 3.1. From Eble  9.1 for DF = 5 
and P = 0.05 the x 2  statistic is 11.07. Since 3.1 is less than 11.07, the null 
hypothesis, Ho, cannot be rejected at the 0.05 level of significance. 

For the 1986 Greyhound Derby races (total of 58) it was also interesting 
to note that the favourites were not drawn significantly more often (0.05 level 
of significance) in any one trap position. For the 58 races, the expected number 
of favourites in any trap position is 5816 = 9.67 and the observed number of 
times a favourite was drawn in any trap position was 

Number of 
Trap favourites 

1 10 

3 6  
2 11; 

4 74 

6 " 7  117 

Note: denotes 
a joint favourite. 

The derived value of Ex2 is 2.9 which is less than 11.07 and therefore it 
cannot be said, at the 0.05 level of significance, that the favourite greyhound is 
drawn more often in any particular trap position. 
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9.4 GOODNESS OF FIT: A POISSON PROBLEM 

In Chapter 7 i t  was stated that the Poisson distribution can be shown to represent 
the distribution of rare events, such as goals in football matches. Whether this 
is true or not can be tested using the chi-squared test. The basic data chosen 
were the 636 football matches played in the English Football Association Cup of 
1985-1986 with Liverpool eventually beating Everton in the final at Wembley. 
These 636 matches included replays after initially drawn games and all the 
matches of the preliminary rounds of the FA Cup. A total of 1959 goals were 
scored and therefore the null hypothesis is 

H,): The probability of occurrence of goals in the 1985-1986 FA Cup is the same 
as that given by a Poisson distribution with a mean, ni = 3.1. 

The mean m is calculated as 1959/636. Table 9.4 shows the computations 
for deriving the distribution of the expected number of goals using the Poisson 
formula, and Table 9.5 shows the chi-squared test calculations. The derived 
C x 2  statistic is 5.6. From Table 9.1 for DF = 9 - 2 = 7 and P = 0.01, the x 2  
statistic is 18.48. Since 5.6 is less than 18.48 the null hypothesis, Ho, cannot 
be rejected at the 0.01 level of significance. 

Table 9.4. Expected number of goals derived from the Poisson distribution with m = 3.1. 
Poisson probabilities are given by Pr(n) = e-'"m"/n! (see section 7.1) where m is the 
mean of the distribution and Pr(n) is the probability of n goals in a football match-in 
this problem. m = 3.1 and ec3 ' = 0.0450. 

n n !  (3.1)" (3.l)"/n Pr(n) Expected 
goals 
=636x Pr(n) 

0 1 
I 1 
2 2 
3 6 
4 24 
5 120 
6 720 
7 5040 
8 40320 
9 362880 

10 3628800 

I 
3.1 

9.61 
29.79 
92.35 

286.29 
887.50 

2751.26 
8529.91 

26439.62 
81962.83 

1 
3.1 
4.805 
4.965 
3.848 
2.386 
1.233 
0.546 
0.2 12 
0.073 
0.023 

0.0450 
0.1395 
0.2162 
0.2234 
0.1732 
0.1074 
0.0555 
0.0246 
0.0095 
0.0033 
0.0010 

28.62 
88.72 

137.52 
142.10 
110.13 
68.28 
35.28 
15.62 
6.05 
2.09 
0.65 
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Table 9.5. Chi-squared test for the football match problem 

Number of 0 = E =  0 - E  ( O - E j 2  ( O - E j 2 / E  
goals i n  observed expected 
an FA Cup number of number of 
match goals goals from 

Poisson, 
m = 3.1 

0 
1 
2 
3 
4 
5 
6 
7 
8-10 

32 
92 

141 
132 
1 1 1  
70 
32 
12 
14 

28.6 3.4 
88.7 3.3 

137.5 3.5 
142.1 -10.1 
110.1 0.9 
68.3 1.7 
35.3 -3.3 
15.6 -3.6 
8.8 5.2 

11.56 
10.89 
12.25 

101.00 
0.81 
2.89 

10.89 
12.96 
27.04 

0.40 
0.12 
0.09 
0.7 I 
0.01 
0.04 
0.3 1 
0.83 
3.07 

Total number of football matches = 636. 
Total number of goals = 1959. 
Mean of the Poisson distribution, m = 3.1. 
C,y2 = sum of all (0  - E ) 2 / E  values = 5.6. 
Number of degrees of freedom = 9 - 2 = 7. 

9.5 GOODNESS OF FIT: A LOGNORMAL CURVE FITTING 
PROBLEM 

In Table 3.4 the chi-squared test is used as a goodness of fit test of observational 
data to the normal distribution curve. There were 7 data cells and the number 
of degrees of freedom was therefore 7 - 3 = 4. In this section a similar problem 
will be described, the difference being that it is the lognormal distribution curve 
which is being tested for goodness of fit. Table 3.7 shows the method by 
which the area beneath the lognormal curve can be computed between defined 
limits. The initial stage of this computation involves specifying the unit normal 
deviate for the lognormal curve, [ log , (T /M)] /S ,  so that standard data tables for 
the normal curve can be used. This method is used to calculate the expected 
number of deaths, E ,  in Table 9.6. The null hypothesis for the current lognormal 
problem is 

HI,: There is no difference between the distribution of observed values and the 
distribution of the expected values calculated from a lognormal distribution with 
a specified mean M and standard deviation S. 
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The observations used for this example are the survival times of 583 stage 
2 cancer of the cervix patients who died with their disease present3 and Figure 
9.2 presents the data in histogram format. The areas of the histogram blocks 
represent the number of deaths in a given interval and this is taken into account 
when some blocks, such as for 0-6 and 6-12 months, have block widths half 
the value of the remaining histogram blocks. Also incorporated into Figure 9.2 
is the logarithmic probability graph plot, which demonstrates visually that the 
data are reasonably lognormal. Lognormality is also demonstrated graphically 
in Figure 3.8 with the associated data requirements given in Table 3.6. From 
the straight line in Figure 9.2, 

Estimation of M 
T = 23 when X = 50% 
therefore M = 23 

Estimation of S 
T = 160 when X = 95% 
log10(23) = 1.3617 and loglo(160) = 2.2041 
therefore S = (2.2041 - 1.3617)/1.645 = 0.51. 

The problem we have is to decide whether at the chosen 0.05 level of 
significance we can accept Ho and therefore show that the lognormal curve 
is a good approximation to the observed distribution of cancer of the cervix 
survival times. Table 9.6 gives the computation method, with the expected 
number of deaths, E ,  being calculated for a lognormal distribution with M = 23 
and S = 0.51. The derived E x 2  statistic is 12.3. From Table 9.1, for DF 
= (1 1 - 3) = 8 and P = 0.05, the x 2  statistic is 15.51. Since 12.3 is less than 
15.5 1 the null hypothesis, Ho, cannot be rejected at the 0.05 level of significance. 

9.6 THE 2 x 2 CONTINGENCY TABLE 

The application of the chi-squared test in a 2 x 2 contingency table format (also 
sometimes termed a 2-way table or a fourfold table) is a test of association 
between mutually exclusive categories of one variable (given in  the rows of 
the table) and mutually exclusive categories of another variable (given in  the 
columns of the table). It is a table of frequencies showing how the total 
frequency is distributed among the four cells in the table. The null hypothesis 
which is tested is 

Ho: No relationship (i.e. association) exists between the two variable classifications. 

It is a test for a comparison of two proportions, but it is actual numbers, 
that is, the actual frequencies, which are in the cells of the 2 x 2 table, and not 
percentage values. The degrees of freedom for the chi-squared test are 

D F  = (Number of rows - 1) x (Number of columns - 1) 
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Table 9.6. Calculations required for the chi-squared test for the lognormal curve fitting 
problem. 

J Survival Observed Expected 0, - E, 0 - E , ?  (0, - E , ) 2 / E ,  
time number number = x,2 

interval of deaths, of deaths, 
(years), 0, E, 

? + I  - r, 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  

0-0.5 
0.5-1 
1-2 
2-3 
3-4 
4-6 
6-8 
8-10 
10-12 
12-14 
14-16 

56 
107 
155 
78 
62 
50 
30 
27 
10 
5 
3 

57.1 
98.1 

146.7 
87.9 
54.6 
60.1 
29.8 
16.5 
9.9 
6.3 
4.2 

-1.1 
8.9 
8.3 

-9.9 
7.4 

-9.9 
0.2 

10.5 
0.1 

-1.3 
-1.2 

1.21 
79.2 I 
68.89 
98.01 
54.76 
98.01 
0.04 

110.25 
0.01 
1.69 
1.44 

0.02 
0.8 I 
0.47 
1.1 I 
1 .oo 
1.63 
0.00 
6.68 
0.00 
0.27 
0.34 

Sum = 583 Sum = 571.2t Sum = 12.3 

t l l . 8  deaths are expected beyond 16 years. Derived C x 2  statistic = 12.3 

which for a 2 x 2 table gives DF = 1. If the observed frequencies in the table 
are a ,  b. c and d 

Column 1 Column 2 Marginal 
totals 

Row I a h u + h  
Row2 c d c + d  

Marginal Grand total 
totals U + C  h + d  N = a + h + c + d  

then the expected frequencies are calculated from the row and column marginal 
totals and the grand total, N ,  as follows: 

Column 1 Column 2 

Row 1 
Row 2 

(a  + h)  x (a  + c ) / N  
(c + d )  x (a  + c ) / N  

(U + h )  x ( h  + d ) / N  
(c + d )  x (h + d ) / N  

The Ex2  statistic is then computed by the summation of the four 
(0 - E ) 2 / E  values. This yields a formula for E x 2  which sometimes enables 
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Figure 9.2. Distribution of survival times of 583 stage 2 cancer of the cervix patients 
who died with their disease present. Graphical demonstration of lognormality for these 
data. 

a quicker computation to be made: 

9.7 A 2 x 2  CONTINGENCY TABLE: A CHOLERA EPIDEMIC 
PROBLEM 

Data from de Lorenzo et a f  in the Lancet of 1974 are used to illustrate a practical 
application of the 2 x 2 contingency table. From August to October 1983 there 
was an outbreak of cholera in Naples and the scattered geographical distribution 
of cases initially indicated that water was not the cause of the outbreak. This 
was later confirmed by laboratory tests. 

Histories were taken from 91 1 patients admitted to one particular hospital 
during the epidemic and the following points were found. 3 1.5% of 130 patients 
who had eaten raw mussels in the 5 days before hospital admission were affected 
by cholera, but only 10.9% of the 781 patients who had not eaten raw mussels 
were found to suffer from cholera. A 2 x 2 contingency table can be used to 
test the null hypothesis 
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Ho: There is no association between the cholera infection and a diet including raw 
mussels in the 5-day period preceding the cholera outbreak. 

The two variables in the contingency table are cholera infection and diet (see 
Table 9.7). 

Table 9.7. Basic data for the cholera problem. 

Variable Variable = cholera infection 
= Diet 

Column 1 Column 2 Marginal 
Infected Not infected totals 

Row 1 
Mussel eaters 41 89 130 
Row 2 
Not mussel 85 696 78 1 
eaters 

Marginal totals 126 785 Grand total 
= 911 

Table 9.8 shows the procedure to calculate the E x 2  statistic from the data 
in  the 2 x 2 contingency table. The derived Ex2 statistic is 39.8. From Table 
9.1 for DF = 1 and P = 0.05, the x 2  statistic is 3.84. 39.8 is very much larger 
than 3.84 and therefore the null hypothesis, Ho, is rejected at the 0.05 level of 
significance. Indeed, it would even be rejected at the 0.001 level of significance 
since from Table 9.1 the x 2  statistic is 10.83. This result points to the very 
probable role of mussels in this epidemic. This was confirmed by the striking 
reduction in cholera cases once the sale of mussels was forbidden. 

9.8 THE GENERALISED P x c CONTINGENCY TABLE 

The general form of an r x c contingency table is given in Table 9.9. 
The expected frequency for the cell in the ith row and jth column is 

(RiC,) /N.  The x 2  statistic is the sum of all (0 - E ) 2 / E  values for all the Oi,, 
Ei, cells. 

An example of an application of a contingency table larger than a 2 x 2 
would be for three different treatments A, B and C, where the patients are 
assessed for treatment success as either complete success, partial success, or 
no change. In this case, the table would be a 3 x 3 contingency table and the 
number of degrees of freedom is 4. The null hypothesis is 

Ho: There is no difference in the pattern of outcome (i.e. in terms of response) 
between the treatments A, B and C. 
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Table Y.8. Calculation of the Z;x2 statistic from a 2 x 2 contingency table. 

Cell position 0 = E =  0 - E  ( 0 - E ) ’  f O - E ) ’ / E  
observed expected 
frequency frequency 

RlCl  41 18 23 529 29 39 
R1C2 89 112 -23 529 4 72 
R2C 1 85 108 -23 529 4 90 
R2C2 696 673 23 529 0.79 

R = row, C = column. 
Total number of cases = 91 1,  
E x 2  = sum of all (0  - E)’/,!? values = 39.8. 
Number of degrees of freedom = 1. 

Table 9.9. Form of a generalised r x c contingency table with the number of degrees of 
freedom DF = ( r  - 1) x (c - 1). 

Variable y 
ROW marginal 

Y1 Y2 . . . Y, . . , y( totals 

XI RI 
x2 RZ 

Variable x xi . . . . .  Oij . . . . R, 

Column marginal CI c2 1 . .  c, . . . cc N 
totals 

0,, is the frequency for the ith row and j t h  column. 
R,  = Cf=, 0,, is the row marginal frequency for the ith row. 
C, = C:=,O,, is the column marginal frequency for the j t h  column. 
N = C:=, 0,, is the total frequency. 
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9.9 YATES CORRECTION FOR SMALL SAMPLES 

It should be noted that contingency tables and the chi-squared test are not always 
appropriate if the numbers involved are too small. However, opinion differs on 
what is too small but the recommendations below are a good guideline. 

Table 9.10. Recommendations for small samples. 

Use Yates correction: 
2 x 2 contingency table 

When sample size is less than 100 
or with any cell less than 10 

2 x 2 contingency table 
not to be used 

If the smallest expected value is 
less than 5 and the sample size 20-40 
If the sample size is less than 20 

r x c contingency table 
with DF> 1 not to be used 

If more than 1/5th of expected 
values are less than 5 
If any expected value is less than 1 

~~ 

When 2 x 2 contingency 
table cannot be used 

Use the Fisher exact probability 
test. (This was specifically designed 
for use with small samples when 
a 2 x 2 table cannot be used, 
see Chapter 10) 

When a Yates correction (sometimes termed a continuiry correction) is used 
all 10 - E I values for the four cells of the 2x2 table are reduced by 0.5 before 
calculating Ex’, thus 

E x 2  = C ( l 0  - E - 0 . 5 1 } 2 / E  

The mathematical symbol I I is termed modulus and means that the numerical 
value of 0 - E is reduced by 0.5 regardless of whether 0 - E is negative or 
positive. Thus + 1 1.6 would reduce to 1 I .  1 and - 1 1.6 would reduce to - 1 1.1. 

The formula in section 9.6 when the Yates correction is applied should be 
modified to become: 

One example of when the 2 x 2 contingency table was not appropriate is in  
the trial by Chain and colleagues of penicillin for stuphyloccus ailreus infection 
in the mouse, for which the trial results are shown in Table 9.11. Indeed, 
statistics are hardly required at all with such results 
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Table 9.11. Basic data for the pencillin trial. 

No. of mice No.of mice 
dying surviving 

Treated 3 21 
Not treated 24 0 

9.10 DID MENDEL CHEAT? 

The experimental .data for Mendel’s experiment with peas, intended to verify 
his theory of inheritance, is a good example for a workshop ‘seminar on the 
chi-squared test since teaching experience has shown that many approach the 
setting up of the chi-squared test from the wrong point of view: by drawing up 
a 2 x 2 contingency table. 

According to Mendel’s theory the numbers for the different (shape and 
colour) classes of pea should be in the proportions 9:3:3: 1 for the experimental 
results (given in brackets) with 556 peas. 

{315} Round and Yellow 
{ 108) Round and Green 
{ 101) Wrinkled and Yellow 

(32j Wrinkled and Green 

The following 2 x 2 table (DF = 1) is incorrect because it implies testing 
for an association between shape (round/wrinkled) and colour (yellow/green) 
when in fact the testing should be for experimental results versus theoretical 
expectation. 

Round Wrinkled 

Yellow 315 101 
Green 108 32 

A goodness of fit chi-squared should be used in a manner similar to the 
problems in sections 9.4 and 9.5. 

The critical value of x 2  for DF= 3 and P = 0.05 from Table 9.1 is 7.815. 
This therefore looks like a very good fit. Indeed from Table 9.1 and Figure 9.1 
the value of P corresponding to x 2  = 0.47 and DF= 3 is between P = 0.90 
(for which x 2  = 0.584) and P = 0.95 (for which x 2  = 0.352). Mendel’s results 
are too good to be true and the famous statistician Sir Ronald Fisher said that 
the experimental results were so close to the expected that it would have taken 
‘an absolute miracle of chance’ to produce them. 
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Table 9.12. Chi-squared test of Mendel’s experimental results and his theory. 
DF = (4 - 1) = 3. Derived Ex2 = 0.470. 

i Observed Expected (0; - E , )  (0; -E,)’ (0; - E , ) * / E  
0, E, 

1 315 (9/16) x 556 = 312.75 +2.25 5.0625 0.0162 

3 101 (3/16) x 556 = 104.25 -3.25 10.5625 0.1013 
4 32 (1/16) x 556 = 34.75 -2.75 7.5625 0.2 176 

2 108 (3/16) x 556 = 104.25 +3.75 14.0625 0.1349 

He uses statistics as a 
drunken man uses 

lamp-posts, for support 
rather than for illumination. 
Andrew Lang ( 1 844- 19 12) 
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Chapter 10 

The Fisher Exact Probability Test 

10.1 INTRODUCTION 

The Fisher exact probability test for 2 x 2 tables is very useful when samples 
are small. The test consists of finding the exact probability of the observed 
occurrences by taking the ratio of the product of the factorials of the four 
marginal totals to the product of the cell frequencies multiplied by N !  (using 
the same notation for a 2 x 2 table as in section 9.6, that is a, b , c ,  d ,  N ) .  
P is the probability of the observed distribution of frequencies under the null 
hypothesis, Ho, where 

(a + b) ! ( c  + d) ! (a  + c) ! (b  + d ) !  
N !a !b!c!d!  

P =  

Table 10.1 is a table of N !  values which, if known, make the computations 
quicker. They can also be simpler when one of the cell frequencies, a ,  b, c or 
d ,  is 0; but generally the factorials can be cancelled down to make the arithmetic 
easier. 

For any 2x 2 table of observed frequencies, the probabilities of all tables 
with the same marginal totals can be calculated and a derived probability level 
for the test can be calculated by summation. 

This is because the basic assumption underlying the Fisher's exact test 
is that the row and column totals (i.e. the marginal totals) can be treated as 
fixed quantities. The individual cells within the table, however, are free to vary 
subject to the constraint that these marginal totals remain constant. 

10.2 ONE-TAILED EXAMPLE 

Figure 10.1 illustrates the post-Chernobyl iodine- 13 1 thyroid uptake measure- 
ments of 31 people living in embassies in Warsaw who were sent to the West- 
minster Hospital for thyroid monitoring'. Potassium iodide tablets were only 
given to the children, not to the adults, and whereas in the United Kingdom, 

110 
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Table 10.1. Table of N !  for 1 < N < 20. 

N N !  

0 1 
1 1 
2 2 
3 6 
4 24 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

120 
720 

5040 
40320 

362880 
3628800 

399 16800 
47900 1600 

6227020800 
87178291200 

1307674368000 
20922789888000 

355687428096000 
6402373705728000 

121645100408832000 
2432902008176640000 

when a thyroid needs to be blocked, 100 mg of potassium iodate (more stable 
than the iodide) would be given, the Warsaw group of children only received 
10 mg of the iodide. Nevertheless, for the Malaysian group who remained in 
Warsaw for 28 days after the iodine dispensation, it would appear from Fig- 
ure 10.1 that, even though the iodine was given 3 days after the radioactive 
cloud passed over Warsaw, it was still effective to a certain extent. Is there a 
significant difference between the Malaysian adults and children for this small 
population of 15 persons? The sample size is too small for a chi-squared test 
to be appropriate, but the Fisher exact probability test can be used. The null 
hypothesis is 

Ho: There is no difference in iodine uptake in the thyroid between Malaysian 
adults and children. 

a b l a f b  
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The basic data for this problem is given in Table 10.2. There are 5 possible 
tables with the same marginal totals as those observed (i.e. 9, 6, 4, 11) since 
neither a nor c can fall below 0 or exceed 4, which is the smallest marginal 
total. 

Table 10.2. Basic data for the one-tailed Fisher exact probability test. 

Variable 
= Age group 

Variable = 1-131 thyroid uptake level 

Column 1 Column 2 Marginal 
Activity > 2 KBq Activity < 2 Kl3q totals 

Row 1 Children 0 
Row 2 Adults 4 

9 9 
2 6 

Marginal totals 4 11 15 

These 5 tables are each labelled as a set, numbered according to the 
frequency a = 0, 1 , 2 , 3 , 4  

0 9 9  1 8 9  2 7 9  3 6 9  4 5 9  
2 4 1 6  4 2 1 6  3 3 1 6  1 5 1 6  0 6 1 6  

4 11 15 4 11 15 4 11 15 4 11 15 4 11 15 
Set 0 Set 1 Set 2 Set 3 Set 4 

Sets 0 and 4 are the extreme frequency distributions. 
Using the formula in section 10.1, the probability of set 0 is 

9! x 6! x 4! x l l !  
15! x O! x 9! x 4! x 2! 

Po = = 0.0110 

and of set 1 is 
9! x 6! x 4! x l l !  

15! x l !  x 8! x 3! x 3! 
P, = = 0.1319 

and, similarly, P2, P3 and P4 can be calculated. The total probability is of course 
1, since the 5 sets represent all the possible alternatives (PO+ PI + P2 + P3 + P4 = 
1 ). 

In the Fisher exact probability test, the investigator must calculate the 
probability of the observed table of frequencies or of one (table) which is more 
extreme. In this example, set 0 which is the observed set is in fact one of the 
two most extreme tables. The other is set 4. Therefore, for a 1-tailed tests 

5 In this example there is only interest in a 1-tailed test and not in a 2-tailed test. We are only 
interested in the adults having significantly higher activities than the children, as the Malaysian 
adults received no iodine. From Figure 10.1 it would obviously be a nonsense to consider a 2-tailed 
test since the children did not have higher thyroid activities than the adults. 
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w z a 
0 

c" 
0 

the derived probability level is 0.011, which is less than the chosen level of 
significance of 0.05. The null hypothesis, Ho, is therefore rejected. 

The implication of this rejection of Ho is that even though the iodine was 
given after the radioactive cloud had passed over Warsaw and consequently after 
the maximum hazard had occurred, the exercise was still worthwhile for these 
children. 

000 
0 

oe e m  
DATE OF LEAVINQ WARSAW 

APR,IL MAY NE 

8AUSTRALIANS 
MAY 2 

LD (D 

YAY 1 YAY6 

3 BRITISH e 

15 MALAYSIANS 
MAY 2 8  

e a .  

Figure 10.1. Post-Chemobyl accident iodine-] 3 1 uptake measurements on 3 1 people 
living in embassies in Warsaw. The apparent difference for Malaysian and Australian 
children in the effectiveness of the potassium iodine may be due to the biological loss of 
some of the iodine-I31 in the Malaysian children after the Australians had left Warsaw 
Further uptake of iodine-131 in the period 2-28 May might then have taken place in the 
Malaysian adults, but would have been blocked in the children'. 

10.3 TWO-TAILED EXAMPLE 

There is some argument as to whether, and also as to how, the derived probability 
level should be calculated for both tails of the distribution curve. Armitage2 
suggests doubling the derived level of probability for a 1-tailed test on the 
grounds that a significant result (i.e. rejection of the null hypothesis, Ho), is 
interpreted as strong evidence for a difference in the observed direction. He 
illustrates the use of the test with data on malocclusion of the teeth of infants, 
Table 10.3. Using the previous notation there will be 6 possible sets: 0, 1, 2, 
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3, 4 (the observed set) and 5. The probabilities are Po = 0.0310, PI = 0.1720, 
P2 = 0.3440, P3 = 0.3096, P4 = 0.1253, Ps = 0.0182; total = 1.0001. 
For a I-tailed test the probability of set 4 or a more extreme set (i.e. set 5) 
is 0.1253 + 0.0182 = 0.1435, which is not significant at the 0.05 level of 
significance. The 2-tailed test would give 0.2870. 

The Fisher Exact Probability Test 

Table 10.3. Basic data on breast feeding and malocclusion of teeth. 

Variable Variable = Teeth assessment 
= Feeding technique 

Column 1 Column 2 Marginal 
Normal Malocclusion totals 

Row 1 4 16 20 
Breast fed 
Row 2 1 21 22 
Bottle fed 

Marginal totals 5 37 42 
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Chapter 11 

The t-test 

11.1 INTRODUCTION 

There are two types of significance test and they are described as parametric and 
non-parametric. For the parametric tests, certain conditions should exist for the 
population being tested. For non-parametric tests, no such conditions are laid 
down. The chi-squared test is non-parametric, but the t-test and the F-test are 
parametric. One condition which must hold before a t-test or F-test can be used 
is that the population from which the sample under observation is drawn must 
be normally distributed. That is, the population distribution can be fitted by a 
normal curve. In practice, however, for some tests the investigator is allowed 
a certain latitude and, as long as the population is approximately normal, the 
test may be applied. In statistical terminology, it is said that the test is robust 
when we can accept approximate normality. The t-test is a robust test and the 
t-statistic is 

Difference in means 
Standard error of the difference in means 

Formulae for standard errors of a mean or of a percentage and of the 
difference in means or the difference in percentages have already been given in 
section 4.4. 

The conditions, including normality, which must be satisfied in order for the 
t-test to be used, are given in Table 11.1. The term interval scale is referred to 
in this table and Figure 1 1.1 illustrates the three possible types of measurement: 
interval, nominal and ordinal. 

The t-distribution was first published by W S Gosset in 1908, who was 
a brewer working for the Guinness Company and who used the pseudonym 
Student. Hence, the distribution is often called Student’s t-distribution. It 
describes the variability of the mean and standard deviation of small samples 
taken from a normal population and the distribution curve is similar in shape 
to the normal curve. However, it has fewer observations in  the mode and 
more in the tails of the distribution, see Figure 11.2. The t-distribution solves 

t =  

115 
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'Pahle 11.1.  Conditions which must be satisfied in order for a t-test to be appropriate. 

1 
2 
3 

4 

The observations must be independent in order to avoid bias. 
The observations must be drawn from normal populations. ' 

These normal populations must have the same variance (or 
i n  special circumstances, a known ratio of variances). 
The variables involved must have been measured in an intervul 
scale, so that i t  is possible to use arithmetical operations 
(e.g. add, divide, obtain means) on the values of the variables. 

NOMINAL 

3 LARGE 

n I 

!nd 3rd 4th 5th 6th 

ORDINAL 

Figure 11.1. Illustration of three types of measurement. 

the problem of working with small sample numbers of 30 or less, which are 
impossible to deal with using the normal distribution itself. Gosset tested his 
t-distribution in an interesting manner by obtaining data on the heights of 3000 
criminals, writing each on a separate card, and sampling four cards 750 times 
so that each sample represented the heights of four criminals. He calculated the 
mean and standard deviation of each sample (x ,  and sm using the same notation 
as in section 4.2) and derived a value of t for each sample. t was calculated 
by taking the difference of the sample mean x,  and the population mean p and 
dividing this by the standard error of the mean, SE, where 

S E  = sm/f i  
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and n is the number in the sample: 

Standard normal distribution 

t 

Figure 11.2. Comparison of the standard normal distribution curve (mean = 0, standard 
deviation = 1, infinite number of degrees of freedom) which is shown as a broken curve, 
and the t-distribution (n = 4 observations, degrees of freedom = 3) which is shown 
as a full curve. With a decreasing number of degrees of freedom the maximum of the 
t-distribution decreases and the shaded area between the two distribution curves increases. 

Table 11.2 is a table of t-statistic values in terms of degrees of freedom 
(DF) and probability levels ( P ) .  Some of these data are presented graphically 
in Figure 11.3. 

11.2 ESTIMATE OF THE POPULATION MEAN p FROM THE 
SAMPLE MEAN zm AND CALCULATION OF CONFIDENCE 
LIMITS 

The solution is to first construct t using the formula given at the top of this 
page and then solve it to obtain the value of p. Section 4.10 also describes the 
calculation of confidence limits but in that instance there is a defined population 
of 72 people and the population mean CL and standard deviation U are known. 
In the example in this section the value of p and 0 are not known and moreover 
the sample size of n = 10 is too small for the normal distribution to be used 
instead of the t-distribution: that can only occur with large sample sizes as will 
be explained in section 11.6. 

It must be remembered with t-tests that t can be either positive or negative, 
depending on whether xm > p or p > xm and that tables of the critical values 
of t, see Table 11.2, list only the positive values of t. 
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Table 11.2. Values of the t-statistic for selected probabilities and degrees of freedom 
The rows i n  the table indicate the degrees of freedom (DF) and the columns indicate 
probability levels ( P ) .  The values in the body of the table are the values of t and the 
probabilities given are for given values of +t (and of - t )  with numerically larger values 
being less probable. The t-statistic corresponding to a probability of 0.05 for DF= 5 is 
2.571. Values larger than +2.57 thus have a less than 5% probability and values less 
than -2.57 thus have a less than 5% probability. (From Fisher and Yates. Staristical 
Tables for  Biological, Agricultural and Medical Research (6th edn, 1974, Table 1 1 1 ,  
p 46). Courtesy Longman Group UK Limited.) 

DF P = 0.90 0.50 0.20 0.10 0.05 0.02 0.01 0.001 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
12 
15 
20 
25 
30 
40 
60 

120 
CO 

0.158 
0.142 
0.137 
0.134 
0.132 
0.131 
0.130 
0,130 
0.129 
0.129 
0.128 
0.128 
0.127 
0.127 
0.127 
0.126 
0.126 
0.126 
0.126 

1.000 
0.8 16 
0.765 
0.741 
0.727 
0.718 
0.71 1 
0.706 
0.703 
0.700 
0.695 
0.691 
0.687 
0.684 
0.683 
0.681 
0.679 
0.677 
0.674 

3.078 
1.886 
1.638 
1.533 
1.416 
1.440 
1.415 
1.397 
1.383 
1.372 
1.356 
1.341 
1.325 
1.316 
1.310 
1.303 
1.296 
1.289 
1.282 

6.314 
2.920 
2.353 
2.132 
2.015 
1.943 
1.895 
1.860 
1.833 
1.812 
1.782 
1.753 
1.725 
1.708 
1.697 
1.684 
1.671 
1.658 
1.645 

12.706 
4.303 
3.182 
2.776 
2.57 1 
2.447 
2.365 
2.306 
2.262 
2.228 
2.179 
2.131 
2.086 
2.060 
2,042 
2.02 1 
2.000 
1.980 
1.960 

31.821 
6.965 
4.541 
3.747 
3.365 
3.143 
2.998 
2.896 
2.821 
2.764 
2.68 1 
2.602 
2.528 
2.485 
2.457 
2.423 
2.390 
2.358 
2.326 

63.657 636.619 
9.925 31.598 
5.841 12.924 
4.604 8.610 
4.032 6.869 
3.707 5.959 
3.499 5.408 
3.355 5.041 
3.250 4.781 
3.169 4.587 
3.055 4.318 
2.947 3.073 
2.845 3.850 
2.181 3.125 
2.750 3.646 
2.704 3.551 
2.660 3.460 
2.617 3.373 
2.576 3.291 

To illustrate this problem of estimating p from a knowledge of xm suppose 
we have a random sample of 10 males with the following diastolic blood pressure 
measurements 

94 94 
94 92 
98 98 
74 95 
84 86 

for which x ,  = 91. The sample standard deviation sm can be calculated as 
shown in section 2.4 on page 26 (using the notation X for xm). 
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Pro babll It y Pmbmblllh 
1.0 2.0 3.0 4.0 5.0 6.0 7.0 ,., P 1.0 

1.0 2.0 3.0 4.0 5 0  6.0 7.0 
Value of t 

'I 
Figure 11.3. The t-statistic as a function of degrees of freedom and probability level. 

Since E(Xi -Xm)2 = 514 we have Sm = d m  = 7.56. By rearranging 
the formula for t we have 

CL = xm - t ( s m / f i >  

but since t can be either positive or negative this expression giving the 95% 
confidence limits (in a similar manner to section 4.10) becomes 

I-L = x m  f t(sm/-J;f) 

Using Table 11.2 for P = 0.05 and DF= (10 - 1) = 9 we have t = 2.262 and 
therefore 

p = (91 f 2.262(7.56/&@} = I91 f 5.41) = 85.59 to 96.41 
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and we can say that we are 95% confident that the population mean p lies in the 
range 85.59 to 96.41 and that there is only a 5% probability that p lies outside 
this range. 

11.3 THE ONE-SAMPLE t-TEST: INFERENCE BASED ON A SINGLE 
SAMPLE MEAN xm WHEN THE REFERENCE POPULATION 
FROM WHICH THE SAMPLE IS DRAWN IS KNOWN TO HAVE 
A MEAN OF p 

In this application of the t-test suppose that we know the mean po of some 
reference population of interest from which a random sample is drawn with 
a mean x, and standard deviation s,. The problem is to decide whether the 
difference between x, and po is statistically significant. That is, whether there 
is only a small probability that a difference at least as large as the one observed, 
(x, - PO), could have arisen by chance. 

The null hypothesis Ho states that Ho : p = po where the mean of the 
population from which the random sample was drawn is p. The formula for 
the t-statistic is 

t = t ( x m  - L L O ) / ( S ~ / & ) J  

To illustrate this consider again data for diastolic blood pressures and 
assume that for the reference population po = 93 and suppose that a random 
sample of 20 males has a mean of x, = 98 and standard deviation s, = 6.20. 
Our problem is to estimate if the mean x, = 98 is significantly higher than the 
mean po = 93: 

t = [(98 - 93)/(6.20/*)} = [5/1.386} = 3.61 

Using Table 11.2 for DF= (20 - 1) = 19 we see that the one-sided P-value 
lies between 0.001 and 0.01. We therefore reject & that our study sample of 
20 males is a random sample of the reference population (with po = 93) and 
conclude that it derives from a different population having a higher diastolic 
blood pressure, i.e p > PO. 

11.4 PAIRED &TEST: DIFFERENCE BETWEEN MEANS 

In this and succeeding sections in this chapter, the arithmetic becomes more 
complicated and to make understanding as easy as possible the t-test applications 
are illustrated for hypothetical data, for a quantity x measured for four patients 
before and after treatment where the means before and after treatment are given 
the notation XI, and ~2~ to be consistent with previous notation. 
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Patient Before After 
treatment treatment 

A 2 3 
B 4 3 
C 3 1 
D 5 2 

The two sets of measurements, before and after treatment, are paired for 
each patient and the null hypothesis Ho is 

HI,: There is no difference in quantity x before (xi)  and after (x2) treatment, and 
that consequently both xI and x2 are drawn from the same normal population and 
that (xlm - XZ,,,) is normally distributed about a mean equal to 0. 

The t-statistic in  this situation is given by 

t = - ~ 2 m ) / ( ~ l m - 2 m / h ) )  

From the data we have (XI,,, - xzm) = (3.5 - 2.25) = 1.25 and the sample 
standard deviation of the difference ( ~ l m - ~ m )  of ( X I  -x2) is given by the formula 
in  section 2.4 on page 25 where the term ( x i )  is replaced by (XI - x2) and the 
term X by (XI,,, - ~ 2 ~ ) .  The standard error of the difference in means is then 
given by SE= ( ~ ] , , , - 2 ~ / f i )  where n = 2 since there is only a pair of data 
groups: 

From the data for these four patients we find that C(xl - ~ 2 ) ~  = 15 and 
J- = 5 .  Therefore ~ l ~ - 2 ~  = J(15 - [ 2 5 / 4 ] } / 8  = 1.71. The derived 
t-statistic is therefore given by t = 1.25/[1.71/fi] = 1.03. 

The degrees of freedom equal the number of pairs minus 1, i.e. DF= 
(4 - 1) = 3 and from Table 11.2 for DF= 3 and P = 0.05 the t-statistic is 
3.1 8. Since 1.03 is less than 3.18 we cannot reject the null hypothesis Ho at the 
0.05 level of significance. We must therefore assume that there is no detectable 
change in the value of x before and after treatment. 

11.5 UNPAIRED TWO-SAMPLE t-TEST 

When the data are unpaired the formulae for the standard error of the difference 
in means is more complicated. To illustrate the calculation procedure we use the 
same two small numerical sets of data for x1 and x2 as in section 11 -4, but we 
now assume that they are not matched pairs but two separate groups of patients 
with nl in one group and n2 in the second group. It should be remembered that 
to perform the t-test it is not necessary that nl and n2 are always equal. 

Copyright © 1998 IOP Publishing Ltd



122 The t-test 

Group 1 Group 2 
XI x2 

2 3 
4 3 
3 1 
5 2 

We cannot now work directly with the differences (XI - x 2 )  because the 
data are not matched pairs but we can of course still calculate the means x l m  and 
~2~ and determine the difference in means (xlm - ~ 2 ~ )  which is the denominator 
for the t-statistic. 

The formula for the standard error of the difference in means SE,  is 
calculated using a pooled estimate s, of the standard deviations, of the two 
groups of observations, such that 

S E ,  = s p  ( J ( ( l / n d  + ( l / n 2 ) ) )  

and the t-statistic is then calculated as 

t = (Xlm - x 2 m ) / S E p  

In order to calculate SE,  which is given by the formula 

S E ,  = (((EX: - ( C ~ l ) ~ / n l )  + (EX: - ( C ~ 2 ) ~ / n 2 ) )  

* ( ( l / n 1 )  + (I/nz>)/((r11 - 1) + ( I t 2  - 1))) 

[ 

This looks complicated but from Chapter 2 it is seen that the formula for the 
standard deviation of XI (and similarly for x2) is given by 

S D I  = J ( ( ~ ( x 1  -xIm)2) / (?11  - 1)) 

where x l m  is the mean value of all the 111 observations X I .  Alternatively S D I  
may be written as 

SDI = ,ic(E(X:, - ( ( E X l ) * ) / n I ) ) / ( n l  - 1)) 

and therefore the above formula for SE,, may also be written as 
r 
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using the notation [ 1’’’ for 
In order to perform the calculations it is recommended that a list of the 

various individual terms required be written down since this will make it easier 
to insert them into the formula: 

and * to symbolise multiplication. 

C(xf)  = 54 C(X,2) = 23 
= 196 ( C X ~ ) ~  = 81 

( ( C X , ) ~ / ~ I )  = 49 ( ( C x 2 j 2 / n 2 )  = 20.25 
S D I  = 4- = 1.291 SD2 = J(23 - 20.25)/3 = 0.957 

SE,  = J((3 * 1.667) + (3 * 0.917))/(3 + 3)) * ((1/4) + ( 1 / 4 ) )  

= J7.751/6) * (0.5) = 0.803 

t = (ml - m z ) I S E ,  = 1.25/0.803 = 1.56 

The formula for the degrees of freedom for an unpaired two sample t-test 
is given by 

DF = (ni - I )  + (n2 - 1 )  

which for our example gives DF= 6. 
From Table 11.2 for DF= 6 and P = 0.05 the t-statistic is 2.447 and since 

1.56 is less than 2.447 we cannot reject the null hypothesis Ho at the 0.05 level 
of significance. We must therefore assume that there is no detectable difference 
between the means XI,,, and ~ 2 , ,  of our observations. 

The sample sizes of 4 in the above example are too small in practice for 
a well planned study but it is emphasised that the t-test is for small samples 
although opinion varies as to how small is small with most recommendations 
taking 30 as the guideline for the upper limit. Above 30 the normal distribution 
can be used to determine if there is a significant difference between the means 
of two large samples, see section 11.6. 

As a further example of the calculation of the t-statistic, assuming that the 
standard deviations of the two samples have been calculated already and also 
the means, we have the necessary terms for the calculation below, e.g. for a 
clinical trial that has taken place and for which there was no randomisation 
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with respect to age. The t-test will test the null hypothesis Ho that there is no 
difference in  the true mean ages (i.e. the population means) of the two patient 
groups. 

n1 = 2 0  n2 = 18 
XI, = 58 years ~ 2 ,  = 55 years 

(XI, - 12,) = 3.0 years 
SDI = 6.71 years SD2 = 8.06 years 

SE, = ((20 - 1) * (6.71)2) + ((18 - 1) * (8.06)2) [ 
] I i 2  

* ((1/20) + (1/18))/((20 - 1) + (18 - 1)) 

SE, = J(19 * 45.02) + (17 * 64.96) * (0.1055)/(36) = &% = 2.40 

t = (xim - x2,)/SEP = 3.0/2.40 = 1.25 

The derived value of the t-statistic using the formulae above is 1.25 and 
from Table 11.2 it is seen that for DF= 36 and P = 0.05 the critical value of 
the t-statistic is 2.03. Thus since 1.25 is less than 2.03 ( P  > 0.05) we cannot 
reject the null hypothesis. 

From Table 11.2 for DF= 36 and P = 0.10 the t-statistic is 1.7 and 
therefore we do not obtain a significant result even at this level ( P  > 0.10) 
since 1.25 less than 1.7. 

In other words, the probability of obtaining a t-statistic of +1.25 or greater, 
or of -1.25 or less, is more than 0.20, that is, more than a 1 in 5 chance, and 
the data provide no evidence that the true mean ages differ between the two 
patient subgroups. 

11.6 NORMAL TEST FOR THE DIFFERENCE BETWEEN MEANS OF 
LARGE SAMPLES 

When a random sample is large and is from a normally distributed population 
with mean p and a known standard deviation U ,  (or if U is not known, because 
it is a large sample (n > 30: see Figure 11.2) it can be estimated by using the 
sample standard deviation s,) the t-test can be replaced by what is sometimes 
called the normal test or z-test, where 

z = (xm - p ) / t s m / f i )  
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The distribution of z is normal with a standard deviation equal to 1 because 
(sm/J;;} is the estimate of the standard error of the mean. 

As an example. the mean range of a rocket is 2000 metres and the range 
standard deviation is 120 metres. A total of 40 rounds are fired after a year’s 
storage and give a mean range of 1863 metres. The problem is to determine at 
the P = 0.05 level of significance whether storage has changed the mean range. 

Substituting x, = 1863, p = 2000, sm = 120 and n = 40 into the formula 
for z we find that z = -7.22. We now need to refer to Table 3.l(c) which 
is reproduced here in  expanded form as Table 11.3. see also Figure 11.4 and 
Figure 3.3. 

Table 11.3. 
distribution; see also Figure 11.3. 

Probability related to multiples of standard errors (SE) for a normal 

Number of SEs Probability of an observation 
showing at least as large 

a deviation from the 
normal population mean 

0.25 
0.50 
0.67 
1 .oo 
1 S O  
1.645 
1.96 
2.00 
2.58 
3.00 
3.29 

0.80 
0.62 
0.50 
0.32 
0.133 
0.10 
0.05 
0.046 
0.01 
0.0027 
0.001 

Figure 11.4. The probability that the observation falls in the shaded area, at a deviation 
(D) from p which is greater than 2 s  is (0.046/2). 
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For a P = 0.05 level of significance, the two-tailed rejection region is 
I z I  > 1.96. Since -7.22 is less than -1.96, it falls into this region of rejection 
and therefore we reject the null hypothesis that the mean after storage is 2000 
metres. We conclude that the year's storage does change the mean range of this 
type of rocket. 

A two-tailed test (two 0.025 tails) was used under the assumption that before 
the experiment was performed we were interested in a change in the range of this 
rocket in either direction. If we had been interested only in whether the range 
decreased, we would have used a one-tailed test (one 0.05 tail) for z < - 1.645. 

As another example, consider the mean ages of' two large samples ( n A  = 
4090 and n~ = 2214) of cancer of the cervix patients, one group (A) with 
invasive cancer and one group ( B )  with in situ cancer' for which the means and 
standard deviations are X A m  = 55.3 years, XBm = 38.4 years, $Am = 13.7 and 

The formula (see section 4.4) for the standard error of the difference in 
S B ~  = 10.6. 

means is 
S E  = J ( ( s ; m / n A )  -I- (SZ,/nB)J 

which for this example gives S E  = 0.03. The difference in means is 16.9 years 
and the number of multiples of its SE that this difference in means represents 
is (16.9/0.03) = 563, which is far larger than 3.29 in Table 11.3. The result is 
therefore very highly significant and, indeed, we can assume that it is impossible 
to occur by chance. We can therefore assume that there are two different patient 
populations for newly registered cases of in situ and invasive cancers of the 
cervix. 

t-TEST CONVICTS 

The basic data used for the derivation of the t-test 
was obtained from Dublin gaol in Ireland, using the 

heights and weights of the prisoners. 
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~ 

Difference Between Proportions for 
Independent and for Non-Independent 
(McNemar’s Test for Paired Proportions) 
Samples 

12.1 INDEPENDENT SAMPLES FROM NORMAL POPULATIONS 

We have already encountered the standard error of the difference between two 
proportions (when PI and P2 are percentages then the factors (1 - P, )  become 
(100- Pi) but the remainder of the formula remains unchanged) in section 4.4 on 
page 56. This is reproduced below and is for two independent samples of size 
n I  and n2 and the populations from which the samples are drawn are assumed 
to be normally distributed 

S E  = J { [ P I ( l  - P l > / n l l +  [P2(1 - P2)/n21) 

The 95% confidence interval for the difference in proportions for the two 
independent samples from normal populations is ( P I  - P2) - 1.96 x S E  to 
( P I  - P2) + 1.96 x S E  (see also section 4. IO). 

For the significance test for the difference ( P I  - P2) a slightly different 
formula (SE, , )  is used for the S E  compared to that given above. It is based on 
the nul l  hypothesis Ho that both samples nl and U? have the same proportion 
for which P is the estimate 

To obtain P the two samples are combined and the proportion P is therefore 
that of ( n I  + 1 1 2 ) .  As an example suppose we have 76 women and 46 men in  
one sample, 1 1 1  = 122, and 362 women and 280 men in the second sample, 
ti? = 642. Let the proportions P be the proportions of women in the samples. 
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Thus PI = 76/122 = 0.623 and P2 = 362/642 = 0.564; thus (PI - P2) = 0.059, 
and for the combined sample P = 438/764 = 0.573: 

SE,, = J(([0.573 x 0.427]/122) + ([0.573 x 0.427]/642)) 

= J((0.2447/122) + (0.2447/642)} 

= J{0.002006 + 0.000381) = Jm = 0.0489 

Since the difference (PI - P2) = 0.059 this difference is now found to 
be 0.059/0.0489 = 1.21 multiples of the standard error SE,,. Table 11.3 gives 
probability related to multiples of standard errors for a normal distribution and 
we find from this table that 1.21 standard errors gives a probability within the 
range 0.133-0.32 (since Table 1 1.3 only gives data for 1 .OO and 1 SO multiples) 
of an observation showing at least as large a deviation. This P-value is larger 
than P = 0.05 ( P  now is the notation for the level of significance and not for 
a proportion) and so the difference between the percentages in the two samples 
could have been due to chance alone. The associated 95% confidence interval 
is obtained using the formula for S E  described above: 

S E  = J(([0.623 x 0.377]/122) + ([0.564 x 0.436]/642)} 

= J((0.2349/122) + (0.2459/642)) 

= J(0.001925 + 0.000383)) = 4- = 0.0480 

The 95% confidence intervals are therefore (0.059 - 1.96 x 0.0480) to (0.059 + 
1.96 x 0.0480) = -0.035 to 0.153. 

12.2 McNEMAR’S TEST FOR DIFFERENCE BETWEEN PAIRED 
PROPORTIONS 

Studies are often performed where the patient acts as their own control and for 
example assesses the effect of a medication before and after treatment where 
the measurements are of the strength of either a nominal or interval (see Figure 
11.1) scale. For example results might be assessed as: 

Responded or did not respond 
Improved or did not improve 
Positive or negative 

The populations from which the paired samples are drawn are therefore not 
independent of each other, as for example they are in section 9.7 for the 2 x 2 
contingency table example of a cholera epidemic problem. It is also noted that 
the paired alternatives might not only be for the same patients acting as their 
control, but could also be for matched pairs of individuals. 
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The data for the McNemar test of paired proportions (sometimes called a 
test for the significance of changes) can be set out as in Table 12.1. 

Table 12.1. Variables required for the McNemar test for two altemative scenarios: before 
and after treatment, and treatment A versus treatment B. 

Pair result before Pair result after No. of paired 
treatment (or for treatment (or for results 

treatment A )  treatment B )  

+ 
+ 
- 

The rows for which there is no change, i.e. the results nu and nd, are 
ignored because the null hypothesis we are testing is: 

HI,: The same proportion of patients changed result in in one direction (+ + -) 
as in the other direction (- + +) 

In practice the numbers involved in the type of study for which the 
McNemar test is appropriate are small, and therefore a continuiry correction 
is included (in much the same way as Yates correction is used for the chi- 
squared test, section 9.9) and the test statistic (z) is calculated as follows using 
nb and n,, which we will now call nl and n2 with nl defining the larger number 
of pairs and n2 the smaller number of pairs: 

z = {[In1 - 1221 - ll/d-} 

This z statistic is normally distributed and its probability of Occurrence 
can be obtained from Table 11.4 once the standard error of the difference 
SEMCN has been calculated using the formula below, which is seen to be slightly 
different from the previous standard error formulae. This is because the groups 
of observations are not independent and SEMCN cannot therefore be based simply 
on the variances of each proportion, but must take into account in some mannner 
the paired results. N is the total number of pairs where N = (nu f n b  +n, + n d )  

SEMCN = I l / N l J I ( n i  + n2) - ([ni - n2I2/N>) 

The statistic z2  may be regarded as a x 2  statistic with DF= 1 and therefore 
critical values of z2  can be found from the first row of figures in Table 9.1. 

z2 = {[In1 - n2l - l l / W  
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To illustrate the arithmetical procedure for the McNemar test we will 
use real data] from a double-blind study of aspartame and the incidence of 
headaches. 40 patients were given aspartame and a placebo at different times 
and previously all of the patients had reported headaches after taking products 
containing aspartame. Table 12.2 is set out in the same manner as Table 12.1 
and it is seen that nl = n,  = 12 and 122 = nh = 8. N = 40. 

The null hypothesis Ho is that there is the same proportion of headaches 
present with aspartame as with placebo. Thus Ho: there is no difference between 
PI = 18/40 = 0.45 (placebo) and P2 = 14/40 = 0.35 (aspartame). The 
difference ( P I  - P2) IS therefore 0.10. This difference in proportions can also 
be calculated by { (nl/40) - (n2/40)} = { (12/40) - (8/40)) = 0.10. 

Table 12.2. Variables for the McNemar test. H = Headache. 

Pair result Pair result No. of 
after after paired 

aspartame placebo results 

H H 6 

No H H 12 = n, 
No H No H 14 

H N O H  8 = n b  

The z statistic and its associated standard error S E M C N  are calculated using 
the formulae already described: 

z = {[12 - 8 - l]/J"J = {3/&6} = {3/4.472} = 0.671 

From Table 11.4 it  is seen that the probability value associated with z = 0.671 
is about 0.50 and therefore we cannot reject the null hypothesis. 

From the value of S E M ~ N  we can calculate the 95% confidence interval 
which is found to be {O.lOi 1.96 xO.111) which is -0.118 to +0.318, which is 
seen to include zero and therefore not show a significant result at the P = 0.05 
level of significance: 

s E h . 1 ~ ~  = {1/40}J{(12 + 8) - ([12 - 8]*/140)} = (0.025)J(20 - (16/40)} 
= {O.O25}J196 = (0.025) x (4.427) = 0.111 

Looking at this problem from a different point of view, z2 = 0.450 and 
from Table 9.1 it is seen that for DF = 1 and P = 0.05 (two-tailed test) the 
critical value of x 2  is 3.841 and since 0.45 is less than 3.84 we do not have a 
significant result. Although not shown in Table 9.1, the critical value of the x 2  
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L 

MICE AND A PHD 

statistic for DF= 1 and P = 0.50 is x 2  = 0.455 which is approximately equal 
to the derived z 2 .  Thus again we end with a probability value of 0.50, showing 
that both approaches are consistent with each other. 

The mouse is an animal which, if killed in sufficient numbers 
under carefully controlled conditions, will produce a PhD thesis. I Journal of Irreproducible Results 
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Wilcoxon, Mann-Whitney and Sign Tests 

13.1 NON-PARAMETRIC RANK TESTS 

Not all data are normally distributed and special tests have been devised to study 
situations where the data are non-normal, or indeed do not follow any other type 
of distribution. Such tests are called non-parametric tests and two examples 
already encountered are the chi-squared test in Chapter 9 and McNemar’s test 
in Chapter 12. 

Some non-parametric tests require a ranking procedure (Figure 1 1.1 
illustrates the ordinal method of measurement in which ranks are used) as part 
of the computation schedule and these include the Wilcoxon rank sum tests (for 
paired and for unpaired data), the sign test and the Munn-Whitney U test which 
uses a similar approach to the Wilcoxon two-sample (unpaired data) test: as 
well as the logrunk test of Chapter 15. 

The sign test is unlike the Wilcoxon tests in that the sign test does not 
use information about the magnitude and the direction of the difference but 
only informatioii in terms of + or - signs. This is a very useful test when a 
quantitative measurement is impossible but a qualitative ranking is practical for 
two members of each pair. 

13.2 WILCOXON SIGNED RANKS TEST FOR MATCHED PAIRS 

In this test for matched pairs a 6-column table is constructed for: 

Pairs of patients, total number = N 
Measurement of parameter X for group 1 
Measurement of parameter X for group 2 
Difference (some will be - and some will be +) 
Rank in terms of numerical value where the smallest difference is rank 1 and 

Signed rank (the + or - from the difference column is inserted before the rank). 

. 

the largest difference is rank N for a series of N patients 
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The procedure is then to total the + ranks and the - ranks. Only the 
smaller of the two totals is used (regardless of whether i t  is t or - ) and this is 
the derived Wilcoxon rank sum total statistic for this matched-pairs signed-ranks 
test. Table 13.1 gives the rank sum totals for selected numbers of patient-pairs 
and for 0.05 and 0.01 levels of significance. The relevant (in terms of patient- 
pairs) sum total from Table 13.1 for a chosen level of significance is compared 
with the derived statistic. If the value of the derived rank sum total is the larger, 
then no significant difference has been demonstrated at this level of chosen 
significance. 

An example of a trial situation in which the Wilcoxon matched-pairs signed- 
ranks test was used' is for an assessment of conventional radiographic films 
(large films: 24 x 30 cm2) and 100 mm2 films (small films) for intravenous 
urogram imaging. Figure 13.1 summarises the results of 10 different radiologists 
reading 50 film pairs and assessing the images on a scoring scale of 0-5 for 5 
particular radiographic features (0, all features invisible; 5, all features visible). 
The trial therefore consisted of 500 assessments of film pairs. Ten Wilcoxon 
tests were applied, one for each of the ten radiologists A-K. It was found 
that two radiologists (J and K) considered there was no significant difference 
between small and large films at the 0.05 level of significance: seven radiologists 
considered the differences to be significant in favour of the large film at the 0.01 
level of significance; and one (F) considered that the difference in favour of the 
large film was at a level between 0.01 and 0.02. 

As an example of the test procedure the data on 14 patients from a 
sequential analysis double blind clinical trial2 for cancer of the head and neck 
will be used. The two treatment groups were radiotherapy + drug (B) and 
radiotherapy + placebo (A) and the tumour response within three months of 
completion of treatment was assessed for each patient in terms of complete 
regression (CR), partial regression (PR), no change (NC) and progression of the 
disease (P). For the purposes of this test example the data have been scored 
from 1 to 5 as follows: 

Score 5 = CR with no recurrence subsequently up to 6 months 
Score 4 = CR initially but with a subsequent recurrence within 6 months 
Score 3 = PR 
Score 2 = NC 
Score 1 = P. 

Table 13.2 summarises the test data in the format required for this Wilcoxon 
matched-pairs signed-rank test. 

If two scores are tied, as for patients 11-14, then the pairs are omitted 
from the analysis. If the differences are the same for more than one pair, as 
for patients 2, 3, 6, 7, 8 and 10, then the same rank is given to each patient. 
These six patients all have differences of 1 and therefore the rank numbers 1, 
2, 3, 4, 5 and 6 must be divided amongst them. That is, they all have a rank of 
(1 + 2 + 3 + 4 + 5 + 6 ) / 6  = 3;. A similar method is used for patients 4 and 9 

Copyright © 1998 IOP Publishing Ltd



134 Wilcoxon, Mann- Whitney and Sign Tests 

Large film preferred Small fllm preferred 
40 r 401- 

A B C D E F G H J K  
Film reader Film reader 

No preference 

Film reader 

Figure 13.1. Radiologist reader performance for 50 film pairs and 10 readers, classified 
in terms of individual preferences for each reader. Frequency on the vertical axis is the 
frequency of assessment preference for a film pair. 

where the difference is 3. Their ranks are (8 + 9)/2 = 85. 
The smaller of the two rank totals in Table 13.2 is used (this always occurs 

regardless of sign + or -) and this is 7, which is smaller than 8 in Table 13.1 for 
N = 10. The result is therefore significant at the 0.05 level of significance. It 
is not, though, significant at the 0.01 Ievel of significance, since the appropriate 
sum in Table 13.1 is 3. The null hypothesis is 

Ho: There is no difference between treatment A and treatment B at the 0.05 level 
of significance 

and it is therefore rejected. It is emphasised that the data in Table 13.2 arose 
from a planned prospective sequential analysis clinical trial2 and are only used 
to demonstrate the computations of this Wilcoxon text because they are good 
examples for tied scores. In a planned prospective trial using the Wilcoxon test 
it would be expected that the possible scores would have a wider range than 
1-5 and that there would not be so many tied and similar scores. 
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Table 13.1. Wilcoxon matched-pairs signed-ranks test rank sum total statistic. Material 
from Sotne Rapid Approxiinate Statistical Procedures, Copyright @ 1949, 1964, Lederle 
Laboratories Division of American Cyanamid Company, all rights reserved and reprinted 
with permission. 

~~ 

Number 
of pairs 
= N  0.025 0.01 0.005 

Level of significance for 1-tailed test 

Level of significance for 2-tailed test 

0.05 0.02 0.01 

6 
7 
8 
9 
10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0 
2 
4 
6 
8 

11 
14 
17 
21 
25 
30 
35 
40 
46 
52 
59 
66 
73 
81 
89 

- 
0 
2 
3 
5 
I 

10 
13 
16 
20 
2 4  
28 
33 
38 
43 
49 
56 
62 
69 
77 

- 
0 
2 
3 
5 
7 

10 
13 
16 
20 
23 
28 
32 
38 
43 
49 
55 
61 
68 

13.3 WILCOXON RANK SUM TEST FOR UNPAIRED DATA 

For this test the two sample groups need not be of the same size. The 
observations from both samples are combined into a single series and ranked in 
order, using some symbol to distinguish one group from the other. The totals of 
the ranks are computed for both groups and, as a check for the arithmetic, the 
sum of ranks is N ( N  + 1)/2 where the total number of ranks is N .  The smaller 
total of ranks is then taken and compared with the Wilcoxon test statistic in Table 
13.3 for the relevant numbers in each group, N I  + N z  = N and for a chosen level 
of significance, usually either 0.05 or 0.01. This will determine if the two groups 
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Table 13.2. Test example data used in section 13.2. 

Patient Post-treatment Difference Rank Signed 
pair follow-up score in score rank 

Treatment Treatment 
A B 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 

3 
3 
2 
5 
5 
5 
2 
5 
5 
5 
1 
5 
5 
5 

5 
2 
1 
2 
1 
4 
1 
4 
2 
4 
1 
5 
5 
5 

2 
1 
1 
3 
4 
1 
1 
1 
3 
1 
0 
0 
0 
0 

7 -7 
3 t  +3f  
3?  +3? 

3 ;  +3$ 

8 5  +85 
10 + I O  

3? 3 T  +3i +3f 

S T  3 5  + S T  +35 

No. of patient pairs for analysis = 14 - 4 = 10. 
Total + ranks = 48. 
Total - ranks = 7 .  

are significantly different. The test is illustrated below using data on funding 
for cancer diagnosis and treatment in different regions of the world3. The data 
were obtained from an international survey which, among other questions, posed 
one on budgets for separate fields of activity, including: cancer research; cancer 
diagnosis and treatment; public education in cancer; rehabilitation and facilities 
for the seriously ill and dying. Suppose that for those centres which have some 
diagnostic and treatment services, the null hypothesis is 

Ho: There is no difference in the level of funding for cancer diagnosis and 
treatment, as a percentage of the total funding, for centres in Westem and Eastem 
Europe. 

The percentage fundings for Eastern Europe are 64, 75, 91, 93, 98 and for 
Western Europe are 30, 61, 68, 80, 82, 88, 93, 99.8. The numbers in these 
groups are N I  = 5 and N2 = 8. The data are ranked in Table 13.3. 

For a chosen level of significance of 0.05 and for N I  = 5 and N2 = 8 
in Table 13.4, the Wilcoxon statistic is 21. The derived Wilcoxon statistic is 
39.5 (the smallest total rank [which is usually for the smallest group] is always 
taken) and since 39.5 is higher than 21 the result is not significant. Thus from 
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Table 13.3. Sample ranking for the Wilcoxon rank sum test for unpaired data. Group I ,  
Eastem Europe; N I  = 5 (denoted by *). Group 2, Westem Europe; N2 = 8. 

Funding (%) Rank 

40 
61 
64' 
68 
15* 
80 
82 
88 
91 * 
93* 
93 
98* 
99.8 

1 
2 
3' 
4 
5* 
6 
7 
8 
9' 

lOL*t 
10: T 
12; 
13 

Total rank (group 1) = 39.5 
Total rank (group 2) = 51.5 

t I f  two values are the same, e.g., 93, then 
they are given equal ranks, e.g., 10; 

the questionnaire data it would appear that for those centres which took the 
trouble to reply (presumably the most active centres) there is no significant 
difference at the 0.05 level of probability between the percentage funding for 
cancer treatment and diagnosis in Eastern and Western Europe. 

If group I is now changed to American centres, of whom 7 (= N I )  
responding to the questionnaire with percentage data of 30, 42, 57, 82, 84, 
89 and 96, the total ranks for the USA are 53 and for Western Europe are 67. 
Again choosing a 0.05 level of significance, we see that the Wilcoxon statistic 
in Table 13.4 is 38. Since 53 is higher than 38 there is again no significant 
difference: this time between the USA and Western Europe. 

These data are used only to illustrate the computation schedule, and if, 
for example, a funding survey is required for Eastern Europe, Western Europe 
and the USA, a larger sample size than 5, 8 and 7 would be required by the 
survey organisers. The international survey3 included 57 questions and covered 
several topics other than funding. Replies were received from 619 centres in 119 
countries, including 16 from Eastern Europe, 151 from Western Europe and 90 
from the USA. This shows, without any need for a test of statistical significance, 
how reluctant or unable are those completing questionnaires to include financial 
data. 
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Table 13.4. Wilcoxon rank sum test statistic for unpaired data. The numbers of samples 
in each to two groups are NI and N1. (a) For a level of significance of 0.05. ( b )  For a 
level of significance of 0.01. Reproduced from C White, ‘The use of ranks in a test of 
significance for comparing two treatments,’ Biometrics 8 3341. 1952 With permission 
from The Biometric Society. 

(a )  P = 0.05 

N l = 2  3 4 5 6 7 8 9 10 11  12 13 14 15 
N2 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

10 
6 1 1  17 
7 12 18 26 
7 13 20 27 36 

3 8 14 21 29 38 49 
3 8 15 22 31 40 51 63 
3 9 15 23 32 42 53 65 78 
4 9 16 24 34 44 55 68 81 96 
4 I O  17 26 35 46 58 71 85 99 115 
4 10 18 27 37 48 60 73 88 103 119 137 
4 1 1  19 28 38 50 63 76 91 106 123 141 160 
4 11  20 29 40 52 65 79 94 110 127 145 164 185 
4 12 21 31 42 54 67 82 97 114 131 150 169 
5 12 21 32 43 56 70 84 100 117 135 154 
5 13 22 33 45 58 72 87 103 121 139 
5 13 23 34 46 60 74 90 107 124 
5 14 24 35 48 62 77 93 110 
6 14 25 37 50 64 19 95 
6 15 26 38 51 66 82 
6 15 27 39 53 68 
6 16 28 40 55 
6 16 28 42 
7 17 29 
7 17 
7 

For another illustration of this test, data are used on whether rats would 
generalise learned initiation under a new drive and in a new situation4. Five 
rats were trained to imitate leader rats in a T-maze, following the leader when 
hungry to reach a food incentive. Then the five rats were transferred to a shock 
avoidance situation where imitation of the leader rats would involve avoiding 
an electric shock. Their behaviour in the shock avoidance test was compared 
with that of four control rats who had no previous follow your leader training. 
The numerical comparison is in terms of how many trials each rat took to reach 
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( b )  P = 0.01 

N , = 2  3 4 5 6 7 8 9 1 0  1 1  12 13 14 15 
N2 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

15 
10 16 23 
10 17 24 32 
1 1  17 25 34 43 

6 1 1  18 26 35 45 56 
6 12 19 27 37 47 58 71 
6 12 20 28 38 49 61 74 87 
7 13 21 30 40 51 63 76 90 106 
7 14 22 31 41 53 65 79 93 109 125 
7 14 22 32 43 54 67 81 96 112 129 147 
8 15 23 33 44 56 70 84 99 115 133 151 171 
8 15 24 34 46 58 72 86 102 119 137 155 
8 16 25 36 47 60 74 89 105 122 140 
8 16 26 37 49 62 76 92 108 125 

3 9 17 27 38 50 64 78 94 111 
3 9 18 28 39 52 66 81 97 
3 9 18 29 40 53 68 83 
3 10 19 29 42 55 70 
3 10 19 30 43 57 
3 10 20 31 44 
3 11 20 32 
3 11 21 
4 11 
4 

a criterion of 10 correct responses in 10 trials. 
The two hypotheses of interest are: 

Ho: The number of trials to the criterion in the shock-avoidance situation is the 
same for rats previously trained to follow a leader to a food incentive as for rats 
not previously trained 
H I :  Rats previously trained to follow a leader to food incentive will reach 
the criterion in the shock-avoidance situation in fewer trials than will rats not 
previously trained 

For a chosen level of significance of 0.05 and for N2 = 5 and N I  = 4, 
the Wilcoxon statistic in  Table 13.4 is 11. The required total rank derived from 
the data in Table 13.5 is 19 (because this is the sum of ranks) and since that is 
higher than 11, the null hypothesis, Ho, cannot be rejected at this 0.05 level of 
significance. The follow your leader training has not led to this group reaching 
the criterion in the shock avoidance trial quicker than the control group. 
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Table 13.5. Ranking procedure for the Wilcoxon rank sum test for unpaired data. Group 
2, trained rats; N2 = 5 (denoted by *). Group 1, untrained rats (control group), NI = 4. 

Test score Rank 

4 s  
51 
53 
64' 
70 
75' 
78' 
82' 

110 

~~ 

1' 
2 
3 
4' 
5 
6* 
7' 
8* 
9 

Total rank (Group 2) = 26 
Total rank (Group 1 )  = 19 

In some data there will be ties in which there are for example, two or more 
identical scores in a table such as Table 13.5, which will give identical ranks. In 
this situation averaging is required for the tied scores. Thus for example, if there 
were no ties and the data are . . -24 (3rd rank), 25 (4th), 26. . . there is no need 
for averaging. However, if the data are . . .24 ,24 ,26 .  . ., then the averaging of 
the ranks will give . . .24 (score = 3.5), 24 (score = 3.5), 26 (score = 5) and 
the ranks (i.e. scores) are then summed in the manner previously described. 

To recapitulate, suppose we have samples from two populations A and B. 
in  which an observation from A is a ,  and an observation from B is b;  then the 
null and alternative hypotheses can be stated as follows. 

Ho: A and B have the same distribution 
H I  (Which is a directional hyporhesis): Probability that a score from A is larger 
than a score from B is greater than 0.5 
H2 (Which is a directional hypothesis): Probability that a score from B is larger 
than a score from A is greater than 0.5 

HI and H2 are tested by one-tailed tests to determine respectively if  

Prob(a > b)  > 0.5 

or 
Prob(a > b)  < 0.5 

If the evidence supports HI ,  then this implies that the bulk of population A is 
higher than the bulk of population B. A two-tailed test is for a prediction of 
differences which does not state direction. 

Copyright © 1998 IOP Publishing Ltd



Mann-Whitney U Test 141 

13.4 MANN-WHITNEY U TEST 

There is a certain amount of confusion which can arise for the rank sum test for 
unpaired data which in section 13.3 we have called Wilcoxon. The problem is 
that sometimes it is called Wilcoxon, sometimes Mann-Whitney and sometimes 
Mann-Whitney-Wilcoxon, with tables such as Table 13.4 entitled accordingly! 
This is because variants of the test were developed by Wilcoxon and also by 
Mann and Whitney. 

The best advice is to keep to one formulation, such as in section 13.3, 
and do not use a variety as this policy is a recipe for mistakes. This section 
is therefore included only for general information and to illustrate the problems 
and pitfalls which might occur if formulae are mixed up. 

If we call the Wilcoxon statistic (section 13.3) T then the sum of ranks will 
be, using the data in Table 13.5, TI  = 19 and T2 = 26. Convention is usually 
to denote the group with the smallest sample size N ,  and whichever T-statistics 
is the smaller, TI or T2, is used for the test with Table 13.4. 

The Mann-Whitney U-statistic can take two values: 

U = [{20} + {lo} - 191 = 11 

and 
U’ = [(20) + { 15) - 261 = 9 

where they &e related by: 

The rule for the Mann-Whitney test is that one takes the smallest value 
of U which in this case is 9. The original publication by Mann and Whitney5 
contained for a series of values of N2 (the larger sample size), tables of the 
probabilities associated with values as small as the observed values of U for 
values of N2 in the range 3-8. The relevant table for N2 = 5 is reproduced as 
Table 13.6. 

For U’ = 9 for the data in Table 13.5 we see from Table 13.6 that U 5 9 
when N2 = 5 and N I  = 4 has a probability of occurrence of P = 0.452 (the 
’ is dropped from U’ for Table 13.6) and since 0.452 is less than 0.5 the null 
hypothesis Ho is not rejected. The same conclusion was also reached in section 
13.3 using the Wilcoxon rank sum test for unpaired data. 
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Table 13.6. Table for N2 = 5 of exact probabilities associated with values as small as 
the observed value of U.  (For N2 in the range 9-20 different format tables are available6 
which give critical values of U for various signficance levels P = 0.001, 0.01, 0.025 
and 0.05 for a one-tailed test (and double these values of P for a two-tailed test) and do 
not give exact probabilities. These tables have later been extended in Geigy Scientijic 
Tables). 

N I  = 1 2 3 4 5 
U 

0 0.167 0.047 0.018 0.008 0.004 
1 0.333 0.095 0.036 0.016 0.008 
2 0.500 0.190 0.071 0.032 0.016 
3 0.667 0.286 0.125 0.056 0.028 
4 0.429 0.196 0.095 0.048 
5 0.571 0.286 0.143 0.075 
6 0.393 0.206 0.111 
7 0.500 0.278 0.155 
8 0.607 0.365 0.210 
9 0.452 0.274 
10 0.548 0.345 
1 1  0.42 1 
12 0.500 
13 0.579 

13.5 KRUSKAL-WALLIS TEST 

The Kruskal-Wallis test is a more general form of the Mann-Whitney test and 
the simplest version of the formula8 for the Kruskal-Wallis statistic H is given 

H = [ ( I Z / [ N ( N  + 1111 . { x ( R ’ l / t t l  I ]  - 3 ( N  - 1) 

When the null hypothesis is true, H follows a x’ distribution. Thus if there 
are k groups of observations (the Mann-Whitney test is a two-sample test) the 
statistic H is compared with a x’ distribution with ( k  - 1)  degrees of freedom. 
For a full description of the Kruskal-Wallis test see Altman’. 

by 

Copyright © 1998 IOP Publishing Ltd



Sign Test 143 

13.6 SIGN TEST 

The Wilcoxon matched pairs signed ranks test (section 13.2) uses information 
about the magnitude and the direction of the differences of the paired samples. 
The sign test uses only + or - signs, rather than magnitudes and is therefore 
very useful when a quantitative measurement is impossible but a qualitative 
ranking is practical for the two members of each pair. Table 13.7 is a table of 
probabilities required for the sign test. 

The same data2 which were used in Table 13.2 will also be used to 
demonstrate the method of significance testing using the sign test. The data 
must be presented as in Table 13.8 

From Table 13.8 for N = 10 it is seen that an x-value of 1 or less has 
a 1-tailed probability of occurrence under the null hypothesis of 0.01 1 .  If the 
chosen level of significance is 0.05 the null hypothesis is rejected in favour 
of the alternative hypothesis HI: that treatment A is better than treatment B. 
If, however, the number of fewer signs, x, has been 3 then from Table 13.7 
for N = 10 it would have been found that an x-value of 3 or less has a 
1-tailed probability of occurrence of 0.172, and that hence at a chosen level of 
significance of 0.05, the null hypothesis would not be rejected. 

What has been described are 1-tailed tests when only one alternative 
hypothesis, HI, is considered. A 2-tailed test would consider not only HI but 
also H2: that treatment B is better than treatment A. For this 2-tailed situation 
the probability values in Table 13.7 must be doubled and thus for the row for 
N = 10, the probabilities would become: 

~ ~ ~~ 

x Probability 

0 0.002 
1 0.022 
2 0.110 
3 0.344 
4 0.154 
5 1 
6 1 

If the 1-tailed probability in Table 13.7 is equal to or greater than 0.5 then 
the corresponding 2-tailed probability is 1. 
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Table 13.7. For the sign test a table of probabilities associated with values as small as 
the observed values of x in the binomial test situation is required. In the body of the 
table are I-tailed probabilities for the binomial test, when p = q = f. To save printing 
space, decimal points have been omitted for the P values. Adapted from Table IV, B, 
of Walker, Helen and Lev 1953 Stdsrical Inference (New York: Holt) p 458, with kind 
permission of the authors and publisher. 

X 

N O  1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

5 031 I88 500 812 969 t 
6 016 109 344 656 891 984 t 
7 008 062 227 500 773 938 992 t 
8 004 035 145 363 637 855 965 996 t 
9 002 020 090 254 500 746 910 980 998 t 

10 001 011 055 172 377 623 828 945 989 999 t 
11 006 033 113 274 500 726 887 967 994 t t 
12 003 019 073 194 387 613 806 927 981 997 t t 
13 002 011 046 133 291 500 709 867 954 989 998 t t 
14 001 006 029 090 212 395 605 788 910 971 994 999 t t 
15 004 018 059 151 304 500 696 849 941 982 996 t t t 
16 002 011 038 105 227 402 598 773 895 962 989 998 t t 
17 001 006 025 072 166 315 500 685 834 928 975 994 999 t 
18 001 004 015 048 119 240 407 593 760 881 952 985 996 999 
19 002 010 032 084 180 324 500 676 820 916 968 990 998 
20 001 006 021 058 132 252 412 588 748 868 942 979 994 
21 001 004 013 039 095 192 332 500 668 808 905 961 987 
22 002 008 026 067 143 262 416 584 738 857 933 974 
23 001 005 017 047 105 202 339 500 661 798 895 953 
24 001 003 011 032 076 154 271 419 581 729 846 924 
25 002 007 022 054 115 212 345 500 655 788 885 

t l  .O or approximately 1 .O. 
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Table 13.8. Test example data, x = number of fewer signs = 1 ;  N = number of 
matched pairs which showed a difference = (14 - 4) = 10; CR, complete regression; 
PR. partial regression; NC, no change: P. disease progression. 

Patient Post-treatment follow-up Sign 
pair 

Treatment Treatment 
A B 

1 PR 
2 PR 
3 NC 
4 CR 
5 CR:NRI 
6 CR 
I NC 
8 CR:NR$ 
9 CR 

10 CR:Rt 
11 P 
12 CR 
13 CR 
14 CR 

CR - 
NC + 
P + 
NC + 
CR:R§ + 
P + 
P + 
CR:R§ + 
NC + 
CR:RI + 
P 0 
CR 0 
CR 0 
CR 0 

tAfter 9 months. 
$After 7 months. 
3 After 5 months. 
g After 3 months. 
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SNAKE-HIPS LULU 

This is Snake-Hips Lulu, a popular attraction in the Klondike 
gold rush in Dawson city. She only finds her way into a book 
of statistics to accompany the quotation by John Shaw Billings 
(1838-1913) which appeared in the Medical Record of 1889. 

‘Statistics are somewhat like old medical journals, or like 
revolvers in newly opened mining districts. Most men rarely 
use them, and find it troublesome so as to have them easy of 
access; but when they do want them, they want them badly’. 
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Survival Rate Calculations 

14.1 INTRODUCTION 

Survival rate calculations make use of life tables and hence are termed a life table 
method, or alternatively an actuarial method. This is because it was actuaries 
who developed life tables early in the 19th century. The actuaries required such 
computations when working for life insurance companies, in order to estimate 
life expectancy of populations defined by birth year (usually the tables were 
constructed for a five-year period, i.e. five-year cohort), sex and age attained. 
This enabled the life insurance companies to set insurance premiums-and try 
and ensure that they made a profit! 

The final step in the survival rate calculation is to multiply several 
probabilities. Thus for example to determine the survival probability to the 
end of the third year following initial treatment: 

Pr{Surviving to the end of the 3rd year} 
= PrISurviving in the 1st year) 
xPr{Surviving in the 2nd year} 
xPr{Surviving in the 3rd year} 

The percentage three-year survival rate is then 100xPr{Surviving to the end 
of the 3rd year}. Such a survival probability is a product of separate probabilities 
which is limited by the time Ti at which we wish to compute the Ti-year survival 
probability, in this case for T, = 3 years. Hence the term product limit method. 
In medicine, however, the description used for this method is usually Kaplan- 
Meier method. This is because Kaplan and Meier in 1958 were among the first 
to publish this method' applied to medicine, although they did not invent it. 
The terms in Table 14.1 are synonomous. 

The predecessors of Kaplan and Meier included Greenwood2 in 1926 who, 
for the Ministry of Health in London, published what was the first extensive 
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Table 14.1. Equivalent terminology 

Kaplan-Meier method 
Product limit method 
Life table method 
Actuarial method 

report on the natural duration of cancer, and included commentary on errors 
of sampling. This work was extended in  1961 by Ederer3 for the calculation 
of standard errors. However, earlier in  1955 Merrell and Shulman4 in  the 
first volume of the Journal of Chronic Diseases, published a comprehensive 
description of the arithmetical calculation procedure. 

Following the work of Greenwood a formerly widely quoted explanation 
of the actuarialAife table method for the medical profession was in 1950 by 
Berkson and Gage’ and for some time, until overtaken by Kaplan and Meier, 
actuarial estimates of survival rates were termed as being calculated by the 
Berkson-Gage method. In the same year. 1950, the method of Greenwood was 
explained and used by Wood and Boag6 and it can probably be said that the 
early 1950s first saw the real start of the now worldwide use of the actuarial/life 
table method in the field of estimation of cancer survival rates. 

Prior to this, many papers assumed either that 4-I patients lost to follow- 
up were dead from their disease or that all patients lost to follow-up were 
alive. Neither is a valid assumption and they lead respectively to either 
an underestimate or an overestimate of the survival rate. The actuarial/life 
table assumption for grouped data where wi patients are lost to follow-up 
in  a time interval is that on average the wi patients were alive for half 
the interval. However, in the Kaplan-Meier method for non-grouped data, 
individual survival times are used without any grouping and there is no lost 
to follow-up classification, only patients dead or alive at last follow-up. 

The graphical method of showing survival rate curves was not, as in the 
1990s, a plot of the actuariaMife table rates (with perhaps standard error bars 
showing f 1 SE or f 2 SE) but sometimes a method which gave rise to strange 
presentations’ such as in figure 14.1. Here at a cursory glance there are more 
patients alive at five years than at four years: a most successful treatment in 
terms of bringing patients back from the dead! In point of fact only the fraction 
of patients alive at a given time Ti have been plotted and 3/23 is larger than 
3/45. 

The Kaplan-Meier method is for non-grouped data, section 14.3, in which 
the survival time and status (i.e. deadalive, withlwithout disease) is recorded 
for each patient and the survival times are calculated, as will be shown, at the 
times Ti when a death has occurred at T i .  For disease-spec$c survival rates 
the death at Ti will be due to the specific disease being considered, but for an 
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Figure 14.1. Survival rates of patients treated by two different regimes’. An example 
of how not to graph survival curves. 

overall survival rate the death at Ti will be due to any cause, e.g. cancer or 
an intercurrent cause. For disease-specific rates when a patient has died of an 
intercurrent cause (i.e. not the disease in question, such as cancer) at Ti this 
patient survival is regarded as censored. 

The term censored datu means that the endpoint (death from a specific 
disease in this example) has not been reached. This is true if the patient is still 
alive at last follow-up and is also true for an intercurrent cause of death, because 
the patient i r  lost ro the risk of dying from the specific diseuse, e.g. cancer. 

A life table/actuarial method is also available for grouped datu, section 
14.4, where for a large series of patient data the survival times can be grouped 
and the arithmetic procedure made much easier. A comparison of the results of 
Kaplan-Meier and the grouped data method for the same series of patients is 
given in section 14.4. 

It should also be noted that although the examples in this chapter are for 
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cancer patient series, the life table/actuarial method is just as appropriate for 
other patients with a chronic disease such as kidney transplant patients and 
heart transplant patients. 

In addition, the endpoint does not always have to be death and figure 14.2 
is an example of four Kaplan-Meier graphs for a study where the endpoint 
is the time taken for a patient to request additional analgesics following an 
initial administration of clonidine. Four graphs are shown because there are 
four patient groups, each with a different initial level (0, 37.5, 75,  150 pg) of 
clonidine. 
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Figure 14.2. Kaplan-Meier graphs for four patient groups who receive different initial 
levels of intrathecal administration of clonidine. The variable on the horizontal axis is 
the time to request for additional pain medication. (Courtesy: Dr. Christoph H. Kindler, 
Department of AnPsthesie, Kantonsspital, Basel). 

Recently there has been an interesting argument in the International 
Journal of Radiation Oncology, Biology & Physics between Bentzen et aL8 who 
recommend that actuarial estimates be used in reporting late normal tissue effects 
following cancer treatment, and Caplan et up who prefer to record crude rates 
such as cumulative incidence and hazard. However, Chappelllo has pointed out 
that both can be correct but for different purposes. 

For the biological factor of therapeutic gain and finding how bad the late 
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complications could be, unbiased by whether the patients actually live long 
enough to get the complications, we need an actuarial analysis. However, from 
the point of view of a hospital manager, allocating resources to treatment or to 
re-treatment by some method which might be a different modality to that initially 
given, the crude figure is a better guide because the patients are automatically 
censored when they die. 

14.2 BASIC DATA FOR THE WORKED EXAMPLES 

Table 14.2 gives the basic data which will be used for the worked examples of 
the Kaplan-Meier method and also for the grouped data method. There are a 
total of 88 cases of cancer of the paranasal sinuses. 

When a patient is alive at last follow-up there is obviously no further 
information beyond the follow-up date and therefore after that follow-up date 
the patient has to be removed from the analysis. This removal process is termed 
censoring, as mentioned in section 14.1. 

Such censored patients may be lost to follow-up (e.g. emigrated) at some 
time prior to the date at which the analysis is being made, or at this analysis 
date they may be known to be alive, in which case the censoring is withdrawal 
of the patients from the analysis when still alive because obviously one cannot 
predict the future course of such a patient. These two classifications, lost to 
follow-up and withdrawn alive are combined for the life table/actuarial methods 
and generally denoted by wi for withdrawals, when the grouped data method is 
used. 

It is also worth pointing out that if there are many losses to follow-up then 
the quality of the data for analysis is poor and if there are too many withdrawn 
alive patients then the analysis could be being made too early before adequate 
information is available. 

Copyright © 1998 IOP Publishing Ltd



152 Survival Rate Calculations 

Table 14.2. Basic data for the worked examples. Of overall survival rates. Notation: A 
signifies that the patient was alive at the last known follow-up and D that the patient has 
died (cause not stated). The survival times are as they would appear in practice when a 
series of case notes are obtained for review: i.e. the survival times are in no particular 
order. 

A 9  D 9  A 54 A 31 
D 43 D 24 A 99 D 45 
A 49 D 13 D 51 A 19 
D 20 D 21 A 38 D 20 
D 32 A 31 A 15 A 68 
D 34 D 1  D 35 A 65 

A 62 D 12 D 15 A 56 
A 61 A 11 A 35 A 36 
A 16 A 21 D 4  D 1  
A 24 A 51 A 126 D 23 
A 63 D 12 D 15 A 48 
A 25 A 37 A 113 D 25 

A 18 A 48 A 106 D 4  
A 100 A 70 A 21 D 9  
A 62 D 16 A 19 A 31 
D 8  A 18 D 45 A 8  
A 26 D 20 A 69 A 26 
D 15 A 13 A 79 A 19 

A 25 A 85 D 38 D 5  
A 43 A 90 D 30 A 3  
A 36 D 59 D 72 D 22 
A 70 D 30 D 73 A 13 

14.3 KAPLAN-MEIER LIFE TABLE METHOD FOR NON-GROUPED 
DATA 

14.3.1 

Blank forms with appropriate column headings (see section 14.3.6) are essential 
if one is to manually perform the Kaplan-Meier calculations with a pocket 
calculator, and this is the best way to understand the method! Such a form is 
shown in Table 14.3 where it has already been completed and where the first 
procedure is to rank the survival times from the lowest to the highest. 

TI is the individual survival time of each of the 88 patients, a generalised 
patient is termed the ith patient, Ti in this example data of Table 14.2 is in the 
range 1-126 months. In Table 14.3 and Table 14.4 it is seen that there are, in 

Ranking procedure for survival times 
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certain instances, patients with the same survival time (although some are dead 
and some are alive). If the data had been presented with the survival times 
quoted to one decimal place then it would be unlikely that any patient had the 
same survival time as any other. In this case, the entries in the columns headed 
Total deaths at [di] and Alive ut T, would be either 0 or 1. 

The example in Table 14.3 therefore caters for the eventuality of multiple 
patients with the same survival times. It should also be noted that, in practice, 
the time scale for the Kaplan-Meier calculations is often in dimensions of days 
or weeks. 

In the first column of Table 14.3 it is seen that there are 53 ranks from 
1-126 months and not 88. This is because of the patients with identical survival 
times. If there were none with identical survival times then there would have 
been a total of 88 ranks for 88 patients. 

14.3.2 Probability of dying at time T, 

In the third column of Table 14.3 the patients at risk at Ti are specified using 
the notation rl and this of course commmences with ri = 88 and when the 
final rank is reached (rank= 53) when there are no more patients left, one has 
P; = 1. If ri does not equal 1 then this indicates that an arithmetical error has 
been made. 

The probability of dying from all causes at T (we are now going to calculate 
the overall survival rate as distinct from the cancer-specific survival rate for 
which the cause of death must be specified in columns four and five for either 
a cancer deathCA or a death from an intercurrent diseaseID, see section 14.3.4 
and Table 14.4) is annotated as q; where q; = ( d i / r ; ) .  

The probability of surviving through F is therefore (1 - 4;)  which we will 
call p ; .  The ninth column in Table 14.3 lists all the pi probabilities for each 
and their product (multiplied by 100 to obtain a percentage value) is given in 
the tenth column. 

A patient who is alive at T does not contribute to the probability calculation 
(except in being required to compute the patients at risk in the third column). 
Since if a patient is alive at then the probability of dying at T, is 0 and 
hence the probability of surviving through 8 is 1 and when 1 is entered into a 
product calculation it does not, obviously, have any effect. 

I GRAVESTONE INSCRIPTION 
FROM THE DEEP SOUTH OF THE USA 

I told you I was sick 
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14.3.3 Calculation of overall survival rates 

The arithmetic for the first few calculations of Table 14.3, in order to obtain the 
overall survival rate figures (OSR) in the tenth column are as follows for the 
first five percentage survival rates listed in the tenth column of this table. 

OSR at 1 month = 100 x (0.977) = 97.7% 

OSR at 3 months = 97.7% since the case with E = 3 was alive and 
not dead at follow-up and thus the computation 
is 100 x (0.977 x 1) 

OSR at 4 months = 100 x (0.977 x 0.976) = 95.4% since there 
were 2 patients dead at T, = 4 months and thus for 
the 4th rank = 5 months the number of patients 
at risk ri = (85 - 2) = 83 

OSR at 5 months = 100 x (0.977 x 0.976 x 0.988) = 94.3% 

OSR at 8 months = 100 x (0.977 x 0.976 x 0.988 x 0.988) = 93.1% 

Figure 14.3 graphs the results of Table 14.3 and the familiar pattern of 
stairs with uneven 'steps for a Kaplan-Meier calculation is demonstrated. 

14.3.4 Calculation of cancer-specific survival rates 

Generally this will be disease-specific for a defined disease, but our example is 
for cancer and hence in this instance it is cancer-specific. Table 14.4 illustrates 
the procedure for calculating this cancer-specific survival rate, but it is necessary 
that all causes of death are classified either as cancer deaths d f A  in the third 
column or as intercurrent deaths d;D in the fourth column. 

This can cause problems in that it is often very difficult to distinguish 
whether an intercurrent cause of death has occurred (i.e. when no cancer is 
present). Death certification is notoriously inaccurate. The accuracy of the 
original data (i.e. data quality) with respect to cause of death should therefore 
be taken into account before deciding if it is possible to compute a cancer- 
specific survival rate. 

The data in Table 14.2 for cancer of the paranasal sinuses is known only in 
terms of dead or alive and no subdivision in terms of cancer deaths or intercurrent 
deaths was available. The subdivision into dCA and d;D in Table 14.4 is therefore 
manufactured for the sole purpose of showing the computational procedure, the 
results of which are given in the last three columns of Table 14.4. 

The computational method for determining the qi and pi probabilities for 
the cancer-specific rates are similar to that for the overall rate as can be seen 
from the column headings for the two sets of qi and pi values. 
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Survival time (months) 

Figure 14.3. Overall survival rates for the data in Table 14.2 for 88 patients with cancer 
of the paranasal sinuses. 

14.3.5 Standard errors 

It is always important to calculate the standard errors associated with the survival 
rates since without the standard error there is no means of assessing the accuracy 
of the estimated rate. Many years ago, medical journals were actually found 
to quote for example a 67% five-year survival rate when in point of fact this 
related only to two cases out of three! In such an instance, since the standard 
error of a percentage P for a total sample size of N is given by 

the associated S E  with this 67% survival rate would be ,/([66.67 x 33.33]/3) = 
,/- = 27.2% and therefore the the survival rate f 2  standard errors is 
66.7% & 54.4%-figures which speak for themselves! 

Using the same notation as in Table 14.3 for Ti and ri and di and qi with 
additionally Zi = (ri - di )  and Yi = C[qi/Zi] the formula for the standard 
error in the overall survival rate at Ti (see column 10 in Table 14.5) is 

SE = [Overall survival rate at ~ i l  

Copyright © 1998 IOP Publishing Ltd



160 Sicrvival Rare Calculatioris 

The arithmetic calculations necessary are shown in Table 14.4 for the first 
10 values of the survival rate at Ti which are quoted in Table 14.2, namely T, = 
1. 4. 5 .  8. 9, 12, 12. 15. 16 and 20 months. 

Table 14.5. Calculation of the standard errors SI [%] associated with the overall survival 
rates. PT is the overall survival rate [%] at T,. 

1 1 88 2 86 0.023 0.000267 0.000267 
3 4 85 2 83 0.024 0.000289 0.000556 
4 5 83 1 82 0.012 0.000146 0.000702 
5 8 82 1 81 0.012 0.000148 0.000850 
6 9 80 2 78 0.025 0.000321 0.001171 
8 12 76 2 74 0.025 0.000338 0.001509 
9 13 74 1 73 0.014 0.000192 0.001701 

10 15 71 3 68 0.042 0.000618 0.002319 
11 16 67 1 66 0.015 0.000227 0.002546 
14 20 60 3 57 0.050 0.000877 0.003423 

0.0164 97.7 1.6 
0.0236 95.4 2.2  
0.0265 94.3 2.5 
0.0292 93.1 2.7 
0.0342 90.8 3.1 
0.0390 88.4 3.4 
0.0412 87.2 3.6 
0.0482 83.5 4.0 
0.0505 82.3 4.2 
0.0585 78.2 4.6 

14.3.6 Standard forms 

A well designed form is essential and that shown in Tables 14.3 and 14.4 
has been found to be useful in practice, particularly for teaching purposes in 
workshop seminars. There are a total of 13 column headings and these are 
sufficient for a calculation of the overall survival rate, as in Table 14.3, or of 
both overall and cancer-specific (Table 14.4) survival rates. The value of such 
forms should not be underestimated. 

14.4 LIFE TABLE METHOD FOR GROUPED DATA 

14.4.1 

I am often asked in seminars when should one decide to use grouped data in 
terms of the total number of patients in the series being analysed rather than use 
the non-grouped data Kaplan-Meier method of section 14.3. 

The answer is not all that simple, because it depends in part on the length 
of follow-up available, on how many patients have already died and also on 
the pattern of deaths which are perhaps mainly grouped together in the early 
months post-treatment or alternatively spread out over several years with only a 

When to group data and when not to group data 
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few deaths in  any 12-month period. These are all factors which will vary from 
series to series. 

Commonsense should be used in making an assessment. For instance when 
only 30 cases are being analysed then Kaplan-Meier is appropriate but when 
300 are being analysed then grouping can take place. In the current example 
of 88 cases it will be seen later from figure 14.5 that there is indeed very 
little difference i n  the results between the two methods of computation in this 
particular series. 

14.4.2 Censored: lost to follow-up or withdrawn alive 

The basic ungrouped data used for this worked example is given in Table 14.2 
where all 88 individual survival times are listed together with the patient status 
of either D for dead or A for alive. 

The term lost to foflow-up or withdrawn alive at the time of the last follow- 
up, during a given time interval [T i - ,  - T,], is given in Table 14.6 in the the 
fourth column which is headed w i .  This wi includes those patients truly lost 
to follow-up, i.e. cannot be located for any follow-up assessment because, for 
example, they might have emigrated, and also those patients who at the time 
of the follow-up assessment are known to be alive in interval [I;:- l  - I;:] and 
therefore cannot contribute any information to probability calculations for the 
next interval since it cannot be known at this stage whether they will survive 
through the next interval, or die in the next interval. They therefore have to 
be censored, i.e. withdrawn from the analysis. In the Kaplan-Meier method 
for non-grouped data there are no wi terms in the calculations because each 
patient’s survival time is treated individually. 

14.4.3 

Six-month intervals have been chosen for the worked example, and the grouped 
data is given in Table 14.6. In practice, when manually processing the basic 
data into grouped intervals, the form design in Table 14.7 has been found over 
many years to be very useful. 

If a patient’s survival time falls on an interval boundary, such as 12 months 
in this example, then the rule is that 0.5 patient is put in the 6-12 month interval 
and 0.5 patient in the 12-18 month interval. The data in Table 14.2 are given 
in integer months, but in practice the survival times will be available to one 
decimal place and therefore very few will fall on an interval boundary. 

Grouping procedure for the survival times 
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Table 14.6. Grouped data for six-month intervals for the purpose of calculating overall 
survival rates. If a cancer-specific survival rate is required then d, must be split into dFA 
and dfD in a similar manner to the Kaplan-Meier calculations. The addition of the total 
number dead and the total number alive is a useful intemal consistency check to ensure 
that no patients have been omitted, thus 36 + 52 = 88 in this example. 

Interval Time Number of Number of cases 
number interval deaths in lost to follow-up 

i T,-j - interval or withdrawn 
(months) i [di] alive [ w , ]  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 
16 
17 
18 
19 
20 

0-6 
6-12 
12-18 
18-24 
24-30 
30-36 
36-42 
4 2 4 8  

54-60 
60-66 
66-72 

48-54 

72-78 
78-84 
84-90 
90-96 
96102 
102-108 
108-1 14 
114-120 
> 120 

5 
4 
6 

6.5 
2.5 
4 
1 
3 
1 
1 
0 

0.5 
1.5 
0 
0 
0 
0 
0 
0 
0 
0 

1 
3 
5 

6.5 
4.5 
5 
3 
2 

3.5 
1.5 
5 
4 
0 
1 

1.5 
0.5 
2 
1 
1 
0 
1 

Totals 36 52 

14.4.4 Probability of dying at time T 

Table 14.8 shows the calculation procedure for the overall survival rate using 
a series of I O  columns. wi has already been defined and of the remaining 
symbols, d; are the number of deaths in an interval and r; is the number of 
patients entering an interval. 

The patients at risk in an interval must take into account the withdrawals 
U J ,  and the actuarial assumption is that a patient withdrawn in  ari i i i tennl /ins 
O H  m'erage survilled for ha(ftlze i n t e n d .  The number of patients at risk I I ,  in 
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Form for Survival Rate Calculation 
Grouped Data 

Table 14.7 Form design for processing basic data into grouped data by time 
interval and patient status at last follow-up 
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an interval is thus given by 

ni = ( Q  - 0 .5wi )  

which is the seventh column in Table 14.8. The probability of dying (all causes 
of death) in an interval i is given in the eighth column as qi = (di /ni) .  The 
probability of surviving through interval i is therefore pi = (1 - qi).  

14.4.5 Calculation of overall survival rates 

The arithmetic for the first four calculations in Table 14.8 in order to obtain the 
overall survival rate (OSR) figures in the tenth column, are given below. The 
results are shown in the graph in figure 14.4 which also contains f l  standard 
error bars. The individual survival rates are joined by straight lines in figure 
14.4 although in practice, a smooth curve would be drawn. 

OSR at 6 months = 100 x (0.943) = 94.3% 

OSR at 12 months = 100 x (0.943 x 0.950) = 89.6% 

OSR at 18 months = 100 x (0.943 x 0.950 x 0.917) = 82.1% 

OSR at 24 months = 100 x (0.943 x 0.950 x 0.917 x 0.893) = 73.4% 

14.4.6 Overall survival rate comparisons for grouped data and Kaplan- 
Meier methods 

Figure 14.5 shows the comparison between the two methods for this series of 
88 cases and it is quite clearly seen that they agree well to within f l  standard 
error. 

14.4.7 Standard errors 

The standard errors are calculated in a similar manner to those for the Kaplan- 
Meier method which are shown in Table 14.5. For the grouped data method, 
the first 10 calculations, for = 6 months to = 60 months are shown to 
indicate the method of calculation of the standard error Si [%I, Table 14.9. 
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Figure 14.4. Overall survival rates for the data in Table 14.2 for 88 patients with cancer 
of the paranasal sinuses. 

Table 14.9. Calculation of the standard errors Si [%I associated with the overall survival 
rates PTi[%] at Ti. Note that qi = di/ni  in this table for grouped data but in Table 
14.5 for the Kaplan-Meier calculations qi = d i / r i .  In the grouped data calculation 
ni = (ri  - 0 . 5 ~ ~ )  and therefore if there are no withdrawals for an i" interval, i.e. 
W, = 0, ni = ri and thus for that i* interval qi = d i / r i .  

1 6 87.5 88 5 
2 12 80.5 82 4 
3 18 72.5 75 6 
4 24 60.75 64 6.5 
5 30 48.75 51 2.5 
6 36 41.5 44 4 
7 42 33.5 35 1 
8 48 30.0 31 3 
9 54 24.25 26 1 

10 60 20.75 21.5 1 

83 
78 
69 

57.5 
48.5 
40 
34 
28 
25 

20.5 

0.057 0.000688 0.000688 0.0262 94.3 2.5 
0.050 0.000637 0.000133 0.0364 89.6 3.3 
0.083 0.001199 0.002525 0.0503 82.1 4.1 
0.107 0.001861 0.004386 0.0662 73.4 4.9 
0.051 0.001057 0.005443 0.0738 69.7 5.1 
0.096 0.002410 0.007853 0.0886 63.0 5.6 
0.030 0.000878 0.008731 0.0934 61.1 5.7 
0.100 0.003571 0.012302 0.1109 55.0 6.1 
0.041 0.001650 0.013952 0.1181 52.7 6.2 
0.048 0.002351 0.016302 0.1277 50.2 6.4 
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Kaplan Meier Calculation 
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Figure 14.5. Comparison of overall survival rates calculated by two different life 
tabldactuarial methods: Kaplan-Meier and the method for grouped data. 

SURVIVAL RATES IN ANIMAL EXPERIMENTS 

The investigator reported that one third of the rats were 
improved on the experimental medication, one third remained 

the same, and the other one third could not be reported on 
because that rat got away. Edwiri Bidwell Wilson (1879-1964) 

Copyright © 1998 IOP Publishing Ltd



Chapter 15 

The Logrank and Mantel-Haenszel Tests 

15.1 INTRODUCTION 

The logrank and Mantel-Haenszel tests are used for comparison of survival 
curves, two or more in the case of the logrank, but only two in the case of 
Mantel-Haenszel and the test statistic for both these tests is approximated by 
the chi-squared statistic. 

The tests are related in that the logrank is an approximate form of the 
Mantel-Haenszel and it has been shown' that a difference which is significant 
by the logrank test will always be significant by the more exact Mantel-Haenszel 
method. It is therefore unnecessary to use the more arithmetically complicated 
Mantel-Haenszel except when the result of the logrank test is on the borderline 
of significance'. 

There are several other tests for comparisons between survival rates and 
curves which might be encountered and it is noted that the name for a particular 
test is not always consistent in the journal and software package user manual 
literature. Names associated with these tests include Gehan, Prentice, Peto, 
Kruskal, Wallis, Wilcoxon and of course Mantel and Haenszel. However, in 
this introductory text we limit discussion to logrank and Mantel-Haenszel; for 
details of other tests see Buyse et a12. 

For further reading on the logrank test, one of the best reviews is by Pet0 
et a13 who refer to the name of the test in the following quote: The name 
logrank derives from obscure mathematical considerations which are not worth 
understanding: it's just a name. The test is also sometimes called, usually 
by American workers who quote Mantel4 as the reference for it, the Mantel- 
HaenszelS test for survivorship data. 

168 
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15.2 THE LOGRANK TEST 

15.2.1 Methodology 

The methodology of the logrank test is to calculate a score for each patient which 
represents the exposure to the risk of dying if the true survival experience of 
all groups were identical. From the patient scores in the groups a test statistic 
is calculated which, when there is no difference between the survival curves, 
has a sampling distribution which is approximated by the x 2  distribution. The 
observed value of the test statistic is then compared with the table of x 2  values 
for the appropriate number of degrees of freedom, to assess whether the data 
are consistent with the null hypothesis of no difference in survival experience 
between the groups. 

For any given day post-treatment when deaths occur, we argue as follows. 
Suppose that there are d deaths with nA patients in group A and nB patients in 
group B at risk, then if there is no real difference in survival experience between 
groups A and B. the expected number of deaths in group A is d[nA/(nA + nB)] 
and the expected number of deaths in  group B is d[nB/(nA + nB)]. The test 
uses the Kaplan-Meier method to estimate survival probabilities and the time 
intervals (e.g. days, weeks) are chosen, if possible, such that the event of more 
than one death pet interval is a rare occasion. Deaths precede censoring times 
in the ranking. 

15.2.2 Worked example 

To illustrate the calculation procedure, data for cancer of the tongue have been 
used where the two groups differ by anatomical subsite. Group A consists of 
20 cases of cancer of the anterior two-thirds tongue and group B of 28 cases of 
cancer of the posterior one-third tongue. 

The initial procedure when using the logrank test is to rank the survival 
times of the combined groups of patients in order from smallest to greatest: see 
column (2), Table 15.1. The 48 survival times have been ranked from 13 weeks 
to 1105 weeks and an indication has also been given when the data are censored. 
In the table wA denotes a patient alive at last follow-up and the symbol I D  that 
the patient died from another disease with cancer absent. 

The latter patients can be considered censored, in as much as time to death 
with cancer present exceeds the recorded follow-up time, if the endpoint under 
review is certified death from cancer. If the endpoint is taken as death from 
whatever the cause, the patients annotated I D  will be regarded as having exact 
or uncensored survival times. 

Column (3), Table 15.1, tabulates the number of patients at risk prior to the 
corresponding death time T, in column ( 2 ) .  Columns (2)-(5), Table 15.1, are 
similar to the second to fifth columns in Table 15.2 which shows the method of 
calculation for determining the T-year survival rate by the product limit method. 
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Columns (6) and (71, Table 15.1, are the numbers of patients at risk of 
dying in  the two groups at time Ti and the values are calculated in a similar 
manner to the number of patients at risk stated in column (3). Columns (8) and 
(9) are for calculation of what Pet0 et a1 term the extent of exposure to risk of 
dearh for the two groups. Cumulated, these extents of exposure to the risk of 
dying give the scores. 

The summation of all the ( n ~ ,  x qi )  values and all the ( n ~ ,  x qi )  values in 
columns (8) and (9) give scores in this example of 14.44 and 23.60. These are 
regarded as the expected number of cancer deaths in each group, and knowing 
the observed number of (cancer) deaths in both groups, 13 and 25, the logrank 
test statistic x 2  can be calculated with, for this example of only two groups (A 
and B), one degree of freedom. 

The null hypothesis, that there is no difference between the survival 
experience of the two groups, can be tested by comparing the observed value 
of the test statistic ( ( E A  - O A ) * / E A } +  ( ( E 9  - O B ) 2 / E ~ )  with a table of x 2  for 
one degree of freedom, part of which is reproduced below: 

P-value 0.005 0.01 0.05 0.10 0.20 
x 2  for one 
degree of freedom 7.88 6.63 3.84 2.71 1.64 

I . . . l . ' ' I . . .  

Kaplan-Meier Calculations 

- Anterior 2/3rds: 20 Cases 
.......... Posterior 1/3rd: 28 Cases 

.......... 
... 10 

0 
................................ 

. . . . . . . . . . . . . . . . . . . . . . .  
0 200 400 600 800 lo00 1200 

Survival time (weeks) 

Figure 15.1. Kaplan-Meier survival curves for the two series of patients in the logrank 
test worked example: 20 cases of cancer of the anterior two-thirds of tongue and 28 
cases of cancer of the posterior one-third of tongue. 
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From Table 15.1 the observed value of the logrank test statistic is 0.21, 
and thus the data are entirely consistent with no difference in survival between 
anatomical subsites anterior two-thirds and posterior one-third of tongue, P > 
0.20. Figure 15.1 shows the Kaplan-Meier survival curves for the two patients 
groups A and B. 

15.3 THE MANTEL-HAENSZEL TEST 

15.3.1 Methodology 

The null hypothesis, as in  the logrank test, is Ho: there is no difference between 
the survival curve, with H I :  one survival curve is consistently different from 
the other. A word of caution, though, because if the two survival curves cross 
over the results of the method should be interpreted cautiously6. 

The methodology combines a series of 2 x 2 tables (see section 9.6) with 
a table formed each time T, a death occurs in group A or group B, which could 
represent two treatments A and B, or an interventional treatment A and a control 
group B. Table 15.2 gives the format of a generalised 2 x 2 table for time 
with the number of patients at risk prior to stated in the last column of the 
table. 

The expected number of deaths at T, for group A can be shown to be as 
follows6: 

E [ d ~ , l  = I [ (~A,  + dai )  x ( d ~ ,  + s ~ , ) I / r i J  
and the variance of the observed number of deaths in group A the product 
of the four maginal totals in Table 15.2 divided by a product term containing 
numbers of patients at risk, that is, r:(ri - 1) 

vA, = I[(dAi + ~ B , ) ( J A ,  + s B , ) ( d A ,  + s A , ) ( d B ,  + ~B,)l/[r;(ri - 

If K is the number of distinct events (e.g. deaths) times in the combined 
A+B group, then the Mantel-Haenszel statistic, MH, which has approximately 
a chi-squared distribution with one degree of freedom, is given by the formula: 

15.3.2 Worked example 

The data in Table 15.1 for the two groups of patients A and B is rearranged as 
in Table 15.3 for the Mantel-Haenszel method. 

The Mantel-Haenszel test statistic MH can be calculated directly from 
Table 15.3 for those rows which have a value greater than 0 for either dA, or 
dg,. There was therefore really no need to record the rows with only a IwA or 

(text continued on p 174) 
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Table 15.2. Format of a 2 x 2 table for deaths and survivors for when at least one death 
occurs at time T ,  that is, at least dA, or dB, must be non-zero. 

Treatment Deaths Survivors No. of patients 
group at at Ti at risk prior to T, 

a lID and no deaths, in order to calculate the MH-statistic. However, by 
including them it is a good internal consistency check on the arithmetic, as 
the ranks are seen to total 48 as there are no ties in this example for any Ti 
value. 

In the MH-statistic formula the term c:i,(d~,) = 13 because there are 
only 13 deaths in treatment group A. K = 38 because the total cancer deaths, 
C ( d i )  in Table 15.1, in this example are 38, whereas there are 48 patients. It 
is also reiterated that group B would always be the controls. 

Evaluation of the term ~ ~ ~ l { E [ d ~ , ] }  is for this example the sum of 38 
(= K )  terms because there are 38 deaths at different survival times T, in the 
combined group A+B. Each term is obtained from the numbers in the following 
columns of Table 15.3; compare with the formula for E [ ~ A , ]  given earlier: 

E [ ~ A ~ ]  = {[9th column] x [3rd column]/[9th + 10th columns]] 

and in this example [9th column] = 1 for each Tj. Thus 

38 

i = l  
E [ ~ A , ]  = {20/48} + (20/47) + {20/46} + {19/45} + (19/44) 

+ {18/43} + {18/42) + (18/41} + {17/40) + (17/39} 
+ {16/38) + {15/36} + {14/351 + (13/34} + {12/331 
+ (12/32} + {11/31} + {11/30} + (11/29) + {11/281 
+ {10/27} + {10/26} + {9/23) + 18/21} + 17/19} 
+ {7/181 + {6/161 + {6/15} + {5/13) + 15/12) + {4/11) 
+ 13/81 + 13/71+ {1/5} + 11/41 + {1/31 + 11/21+ {O/ll 

= 14.445 
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Table 15.3. Data for the Mantel-Haenszel test worked example. 

Rank Time of Treatment A Treatment B Totals (ASB) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

13 
17 
18 
22 
25 
26 
27 
30 
31 
34 
35 
36 
37 
38 
39 
30 
43 
44 
47 
48 
60 
61 
65 
68 
69 
71 
77 
78 
82 
83 
86 
88 
95 

108 
121 
123 
130 
186 
213 
324 
48 1 
520 
546 
568 
685 
711 
819 

48 1105 

20 
20 
20 
19 
19 
18 
18 
18 
17 
17 
16 
15 
14 
14 
13 
12 
12 
I 1  
1 1  
1 1  
1 1  
10 
10 
10 
9 
9 
9 
8 
8 
7 
I 
6 
6 
6 
6 
5 
5 
4 
4 
4 
3 
3 
2 
1 
1 
1 
1 
0 

0 0  
0 0  
1 0  
0 0  
1 0  
0 0  
0 0  
1 0  
0 0  
I O  
1 0  
1 0  
0 0  
I O  
1 0  
0 0  
1 0  
0 0  
0 0  
0 0  
I O  
0 0  
0 0  
0 IWA 
0 0  
0 0  
0 IWA 
0 0  
0 IWA 
0 0  
1 0  
0 0  
0 0  
0 0  
0 1’D 
0 0  
1 0  
0 0  
0 0  
0 1WA 
0 0  
1 0  
0 IWA 
0 0  
0 0  
0 0  
1 0  
0 0  

28 
27 
26 
26 
25 
25 
24 
23 
23 
22 
21 
21 
21 
20 
20 
20 
19 
19 
18 
17 
16 
16 
15 
14 
14 
13 
12 
12 
11  
1 1  
I O  
10 
9 
8 
7 
7 
6 
6 
5 
4 
4 
3 
3 
3 
2 
1 
1 
1 

I O  
1 0  
0 0  
I O  
0 0  
I O  
1 0  
0 0  
I O  
I O  
0 0  
0 0  
0 IWA 
0 0  
0 0  
I O  
0 0  
I O  
1 0  
I O  
0 0  
I O  
I O  
0 0  
0 IWA 
1 0  
0 0  
I O  
0 0  
I O  
0 0  

I O  
1 0  
0 0  
1 0  
0 0  
I O  

0 0  
1 0  
0 0  
0 0  
1 0  
1 0  
1 0  
0 0  
1 0  

0 I’D 

0 1WA 

I 
I 
I 
1 
1 
1 
1 
I 
1 
1 
I 
1 
0 
1 
I 
1 
1 
I 
1 
1 
1 
1 
I 
1 
0 
1 
0 
1 
0 
1 
1 
0 
I 
1 
0 
1 
1 
1 
0 
0 
1 
1 
0 
1 
1 
1 
1 
1 

47 
46 
45 
44 
43 
42 
41 
40 
39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
I O  
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

175 

* Generally this will be termed evenr time because the date of death will not be the endpoint 
for all analyses. 

W A ,  = no. of patients lost to follow-up or withdrawn alive between Ti and c+l in group A 
d~ + SA, = no. of patients at risk prior to time 7;. in group A 
d ~ :  = no. of deaths at time 
SA,  = no. of survivors at time 
8 These are the four marginal totals in the 2 x 2 table in Table 15.2 
NOTE: No. of cancer deaths in group A = 13 and in group B = 25. Intercurrent deathsID 
are regarded as censored in this example as well as those withdrawn aliveWA from the 
analvsis; see also footnotes at bottom of Table 15.1. 

in group A 
in group A 
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To calculate the final denominator in the formula for the MH-statistic we 
VA, which again is a summation of 38 values of VA,; where, require 

referring to Table 15.3, 

VA, = 
{Product of the 4 marginal totals labelled 5 in  column headings of Table 15.3) 

[9th + 10th c o l ~ m n s ] ~  x [9th + 10th columns - I ]  

Without making reference to Table 15.3, one can calculate the 38 VA, 
values from the 38 (2 x 2) tables corresponding to the event times as VA, 
is computed from the marginal totals in these 2 x 2 tables. Nevertheless, 
whatever computational method is used, even for a relatively small A+B group 
of 48 patients, the arithmetic involved is very lengthy and Mantel-Haenszel 
tests should be made using a statistical software package: there are too many 
opportunities for arithmetical errors if one attempts the test using only a pocket 
calculator. 

The calculation of EVA, from the data in the marginal total columns9 in 
Table 15.3 will therefore be as follows, with the last term always being 0. This 
38th term corresponds to the last row in Table 15.3: 

38 
VA, = [20 x 28 x 1 x 47]/{[4812 x 47) 

+ 20 x 27 x 1 x 46/{[4712 x 46} 
+ 20 x 26 x 1 x 45/([4612 x 45) 
+ 19 x 26 x 1 x 44/{[4512 x 44) 

i = l  

+ . . . + 1 x 1 x 1 x 1/{[2]2 x I }  
+ o  x 1 x 1 x 0/([1]2/0} 

= 8.017 

The value of the MH-statistic for this example is therefore 0.26 and as 
with the logrank test worked example, P > 0.20, and the data are thus entirely 
consistent with no difference in survival between anatomical subsites anterior 
two-thirds and posterior one-third of cancer of the tongue: 

MH = (13 - 14.445)2/8.017 = 0.260 

Examples of some of the 2 x 2 tables are given in Table 15.4 and the 
marginal totals can be seen to correspond to those in Table 15.3 but, on balance, 
the quickest method for the computations is to set up a table like 15.3 rather 
than draw up all the 2 x 2 tables, a total of 38 tables in this example. 

Finally, a reminder from the second paragraph of section 15.1 where it was 
stated difference by the logrank test will always be signi$cant by the more exact 
Mantel-Haenszel method and therefore we would expect the MH-statistic to be 
larger than the logrank statistic, which it is, because 0.26 > 0.21. 
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Table 15.4. Examples of two 2 x 2 tables for the worked example: see rows ranked 
i = 1 and i = 15 in Table 15.3. A and B are the two patient groups. d is the number 
of patients who died at T and s is the number of patients who are alive between Ti and 
T + ]  and r = [d + s] is the number of patients who were at risk before death at time T .  

2 x 2 table for T = 13 2 x 2 table for = 15 

d s  d S 

A 0 20 20 A 1 12 13 
B 1 27 28 B 0 20 20 

1 47 48 1 32 33 

~~~ 

I THE ‘DECEASED’ LEFT THE FUNERAL SWEARING 

An event with an extremely small probability of occurrence was 
reported under the above heading by the Daily Telegraph in the 
early 1970s, from Caracas. ‘When grave diggers shovelled the 

first spadefuls of earth into a grave in the village at Pecaya, 
Venezuela, the ‘dead’ man, Roberto Rodriguez, who had 

collapsed after a heart attack, burst open the lid of the coffin, 
scrambled out of the grave and ran home shouting and 
swearing. His mother-in-law, who was standing at the 

graveside, dropped dead from shock. She will be buried in the 
grave prepared for her son-in-law, after doctors have made 

absolutely certain there is no mistake this time’. 
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Chapter 16 

Regression and Correlation 

16.1 INTRODUCTION 

A common weather prediction saying is red sky at night, shepherd’s delight. In 
effect this is a statement concerning an association between two events, namely 
the colour of the sky and the weather. A less trivial example could be the 
consideration of the possible relationship between two variables X and Y ,  each 
of which can be measured numerically. For example: 

Dose and response. 
Habit and disease incidence. 

In the former, the study could be of a drug treatment and tumour response 
and in the latter, study of the correlation between smoking and lung cancer. 

If an association is suspected, then a useful initial step would be to draw a 
scatter diagram to give an indication of any possible correlation between X and 
Y .  An example is in Figure 16.1 where even without the straight line in this 
figure you can see that there is a linear trend between Y = relative risk of lung 
cancer and X = asbestos exposure. The straight line is called the regression 
line and its equation is: 

Y = a + b X  

where a = -908 (with a standard error of h171) and b = +861 (with a standard 
error of f75) .  The parameter b is given the special name regression coeficient, 
which should not be mixed up with correlation coeficient, usually denoted by 
r ,  which is different. In Figure 16.1 r = $0.98. 

This regression line could be used to estimate the value of Y for any X 
in the range 1000-3000 or by extrapolation the value of Y for say X = 3500, 
just beyond the last measured value of ( X ,  Y )  which is for X almost 3000. 
This is the use of a regression line, that is, for prediction, whereas the use of a 
correlation coeficient r is to measure the strength of the association between X 
and Y .  The value of r can range between +I  and -1 and the nearer the value 

178 
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I I 1 
1000 2000 3000 

Exposure (lo6 particles per cubic foot x years) 

Figure 16.1. Relationship between asbestos exposure (particle-years) and the relative 
risk of lung cancer. The correlation coefficient is r = +0.98 and the regression line is 
Y = -908 + 861X. 

0 
0 0  

130 T 
120 + 

50 

m 40 

O 0 0  
r = 0.09 

oo 0 8oo 

0 0 0 oog Po 

0; O O  

O0 0 0  O 

0 0  
0 

20 

10 { 

0 

0 

10 20 30 40 50 60 70 80 90 100 110 120 130 

Dose rate at point A (cGylhr) 

Figure 16.2. An example of when a regression line should not be drawn on a scatter 
plot. 
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Figure 16.3. A further example of when a regression line should not be drawn on a 
scatter plot. This indicates that a value of r = 0.4 is not close enough to 1 to indicate 
that a regression line would be useful for purposes of prediction. 

of r to 1 the better the association. Figure 16.1 can therefore be said to indicate 
a good correlation as r = +0.98. 

In the treatment of cancer of the cervix using radioactive sources a reference 
dose point, point A, has often been used, although this is now somewhat out 
of date with the availability of computer dose distributions in three dimensions. 
Figure 16.2 relates the point A dose rate to the mean bladder dose rate and 
Figure 16.3 to the mean rectal dose rate’. These are good examples of when 
not to construct a regression line. 

In Figure 16.2 the value of the correlation coefficient r = +0.09 indicates 
quite clearly that there is no association between X and Y and therefore drawing 
a regression line, which is only useful for prediction, is totally useless. 

In Figure 16.3 the points are hardly less scattered even though the value 
of the correlation coefficient is higher at r = +0.4. but again, for the same 
reasons, the drawing of a regression line is again useless. 

However, even worse is to come. There are also regression curves, using 
polynomial expressions such as Y = a+bX+cX2 and Y = a + b X + c X 2 + d X 3  
as well as regression lines Y = a + b X ,  but not regression curves as in Figure 
16.4. 
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Figure 16.4. These scatter diagram data were published by D W Roubik in 1978 issue 
of Science, with the following abstract. 

‘The Africanized honey bee, a hybrid of European and African honey bees, 
is thought to displace native pollinators. After experimental introduction of 
Africanized honey bee hives near flowers, stingless bees became less abundant 
or harvested less resource as visitations by Africanized bees increased. Shifts 
in resource use caused by colonising Africanised honey bees may lead to 
population decline of Neotropical pollinators.’ 
The full, almost semi-circular, curve is a polynomial 

Y = -0.516 + 1.08X - 0.023X2 

and was seriously drawn by Roubik to demonstrate non-linear regression. A 
response in Science, 1978 volume 202, page 823, by R M Hazen drew attention 
to the rather fanciful curvejtting of Roubik and with tongue in cheek drew a 
path through virtually all the points on the scatter diagram in a series of whirls 
and loops suggesting that a better regression would be the flight of the bumble 
bee! Roubik’s reply included the comment: 

‘It seems to me that biologists are often obliged to take a different view of 
quantitative data from that of physical scientists. They have more or less set 
rules, while we must often try to discover nature’s meanings. And there is a 
lot of slop in nature.’ 
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Another word of warning, because the subject of regression and correlation 
is one in  which there are many mistakes in the literature. Even if there is good 
correlation between X and Y it must also make sense and not be like the story 
of Figure 16.5. 

Many other examples of the misuse of correlation and regression can be 
found in the literature and it is possibly the topic in statistics which is most 
frequently incorrectly applied. 

The objective of proving a correlation between X and Y is to show that a 
relationship exists between these two variables, so that having demonstrated the 
existence of this relationship, it can be used within some theoretical framework. 
Blind use of regression formulae, just because they exist, can be very misleading. 
If Y = a cause and X = an effect, one must be careful not to draw too many 
conclusions if there may be several other possible causes. Cause and effect in 
medicine are seldom so simple as to be explained by a single straight line. It 
should also be remembered that it is the size of the correlation coefficient, r ,  
which is important in deciding if a relationship is linear. 

h 

60 
(D 

2 50 
100 200 300 

Number of storks 

Figure 16.5. A regression line for real' data for the population of Oldenburg in Germany 
at the end of each year versus the number of storks observed in that year: 1930-1936. 
Confusing correlation, just because i t  exists. can lead to peculiar implications. Thus one 
should not conclude3 from this data that Arivone who draws the incorrect conclusion tliar 
srorks bririg babies arid proceeds f o  slioot storks i r i  the hopes of reducirig the populariori 
will be disappoirited.' 
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16.2 METHOD OF LEAST SQUARES FOR ESTIMATION OF THE 
SLOPE AND INTERCEPT OF A STRAIGHT LINE 

A method is required to determine the slope, a ,  and intercept, b, of a straight line 
(see Figure 1.8) but if, for example, six different people draw the line through 
a scatter diagram of points by eye, then there will probably be six different best 
fit lines to the data. To avoid this, several methods of calculation are available, 
of which the most commonly used is the method of least squares. To illustrate 
the method see the first two columns of Table 16.1 (on page 185) which are 
headed X and Y and Figure 16.6 which plots all 10 ( X ,  Y )  points. The formulae 
required for the calculations are 

where N is the number of points on the scatter diagram, N = 10 for Figure 
16.6 and the straight line is 

Y = (0.93)X + 0.60 

The additional notation in  this figure is relevant to the next section, section 16.3. 
As an example of a real data situation in  which a straight line is of interest 

for prediction purposes, consider that4 in the British Medical Journal, entitled 
The victims of Chernobyl in Greece: induced abortions after the accident. To 
calculate the slope and intercept of the straight line let 

X = (Birth year) = 1980 

(No of live births in Greece during the month of January) 
1000 

Y =  

then a table (similar to Table 16.1) is prepared (Table 16.2 on page 186) and 
the values of a and b compute to 

a = -0.23 
b = +10.6 

The values of X from 1-6 correspond to the birth years 1981-1986 and 
therefore to predict the number of live births in Greece in January 1987. If the 
1981-1986 trend continues, we calculate 

y1987 = (-0.23 X 7 )  -4- 10.6 = 9.0 
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"I 8 
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X 

Figure 16.6. Regression line of Y on X, showing the deviation AY of the points from 
the line. 

and therefore.the live birth statistic for January 1987 is predicted to be 9000. 
The number of births that month was actually only some 7000, showing a most 
unexpected reduction of more than 20% of the expected figure, see Figure 16.7 
(page 186). This was considered by the authors to be due to the Chernobyl 
accident in that: 

'The Chemobyl accident took place on 26 April 1986, but the extent of the 
catastrophe became apparent in Greece a few days later. During May there was panic 
because of conflicting data and false rumours. By June more reliable information became 
available.' 

and 
'Many obstetricians initially thought it prudent to interrupt otherwise wanted 

pregnancies or were unable to resist requests from worried pregnant women and their 
husbands. Within a few weeks misconceptions in the medical profession were largely 
cleared.' 

The striking reductions which occurred in the January 1987 figures were 
not repeated in February and March 1987. 
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Table 16.1. Calculation of the slope and intercept of a straight line by the method of 
least squares. 

X Y X 2  X Y  

1 
3 
2 
4 
6 
5 
8 
7 
8 

10 

1 
2 
4 
4 
5 
7 
7 
7.5 
9 

10 

1 
9 
4 

16 
36 
25 
64 
49 
64 

100 

1 
6 
8 

16 
30 
35 
56 
52.5 
72 

100 

X = 54 Y = 56.5 X 2  = 368 X Y  = 376.5 

- (54 x 56.5) - (10 x 376.5) - 
(54)2 - (10 x 368) 

= 0.93 714 
764 

=-  

(54 x 376.5) - (368 x 56.5) 
(54)2 - (10 x 368) 

- - 

= 0.60 
461 
764 

- - -  
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Figure 16.7. Data for live births in Greece in the month of January for 1981-1987. 

Table 16.2. Calculation of the slope and intercept of a straight line by the method of 
least squares: see Figure 16.54. 

X Y X* XY 

1 10.5 1 10.5 
2 10.3 4 20.6 
3 9.5 9 28.5 
4 9.4 16 37.6 
5 9.6 25 48.0 
6 9.3 36 55.8 
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16.3 REGRESSION LINES 

From the formulae in section 16.2 it is seen that the following four summations 
are required: X, Y,  XY, C ( X 2 ) ,  where means sum of all the . . . 
values. From Table 16.1 the least squares bestfit straight line was calculated as 

Y = (0.93)X + 0.60 

and this is drawn on the scatter diagram, in Figure 16.6. This straight line is 
called the regression line of Y on X and may be used for predicting values of 
Y for given values of X. 

This assumes that Y is dependent upon X! and an example would be when 
Y = tumour growth and X = time. Tumour growth can obviously be dependent 
on time: however, the reverse cannot be true, since time is not dependent upon 
tumour growth. Situations arise when it is not clear whether X depends on Y 
or Y depends on X. In that case, two regression lines are calculated Y on X as 
in Figure 16.6, and also X on Y. 

The choice of independent variable is then usually the one that will be used 
to predict values of the other. The regression equation can then be regarded 
as a prediction formula and if the correlation is good, then the two regression 
lines will be close together. The point at which they cross is (X, r) the sample 
mean, and this provides a good check on the arithmetic. 

The method of least squares used to calculate the best fit straight line 
minimises the squares of the deviations, AY, from the line. This is shown in 
Figure 16.6 where the vertical bars drawn from points to the line represent AY. 
The best fit straight line has been chosen such that the sum of all AY2 values 
is a minimum. 

In Table 16.1 the slope a and the intercept b were calculated and the 
formulae for the standard errors in a and b are 

where C A Y ’  is the sum of the squares of the deviations of each point from 
the line. 

Y-value of the 
A Y = [  point graph: on the 1 -  

observation 

1 Y-value of the ) 
point on the 

= graph: - 
observation 

(ax + b)  which is 
the Y-value of the 
point on the line 
calculated using 
the straight line 

formula 
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Using the formulae for oo and U),, and when quoting two standard errors, we 
have a = 0.93 & 0.28 and b = 0.60 f. 1.64. 

16.4 PEARSON’S CORRELATION COEFFICIENT 

The distribution of points scattered on Figure 16.6 makes it easy to visualise 
a linear relationship between Y and X ,  with the straight line passing through 
the central section of the band of points. In statistical terminology. it can be 
said that there is good correlation between Y and X and this can be shown 
numerically by calculating a correlation coeficient to describe the position of 
the straight line Y = a X  + b relative to the observations. The formula for the 
Pearson correlation coefficient, r (named after its originator), is 

An alternative formula does not contain X and Y, but although it looks more 
complicated, many of the summation (1) terms have already been calculated 
to determine a and b and it is therefore more convenient to use in practice (see 
Table 16.3). 

For straight lines such as those in Figure 16.1 and Figure 16.6 we say 
that there is positive correlation and this is indicated by the positive sign for r 
whereas in Figures 16.7 and 16.8 there is negative correlation and in  Figures 
16.2 and 16.3 there is no correlation. 

16.5 TESTING FOR A SIGNIFICANT CORRELATION: AN 
APPLICATION OF THE t-TEST 

In Table 16.3 it is seen that r = +0.92. A perfect positive correlation would 
be r = + 1 and a perfect negative correlation would be r = - 1 .  No correlation 
would be r = 0. A correlation coefficient of r = 1 0 . 9 2  is therefore good 
correlation. 

r can be calculated for any scatter diagram but whether the results show 
a sign$cant correlation between X and Y should then be tested before values 
of Y are predicted using the straight-line relationship. The significance test is 
made using the t-test, where 

r d 7 i F 2  
V J F 7  t =  
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Table 16.3. Calculation schedule to determine the Pearson correlation coefficient, r .  

E X  = 54, 2 = 54/10 = 5.4 
C Y  = 56.5, r = 56.5110 = 5.65 

x Y Y2 x - 2  Y - r  ( X - 2 ) ’  ( Y - P ) Z  ( X - X ) ( Y - P )  
(used in 
method 2) 

1 1  1 -4.4 -4.65 19.36 21.62 20.46 
3 2  4 -2.4 -3.65 5.76 13.32 8.76 
2 4 16 -3.4 -1.65 11.56 2.72 5.61 
4 4 16 -1.4 -1.65 1.96 2.72 2.3 1 
6 5 25 0.6 -0.65 0.36 0.42 -0.39 
5 7 49 -0.4 1.35 0.16 1.82 -0.54 
8 7 49 2.6 1.35 6.76 1.82 3.51 
7 7.5 56.25 1.6 1.85 2.56 3.42 2.96 
8 9 81 2.6 3.35 6.76 11.22 8.71 

10 10 100 4.6 4.35 21.16 18.92 20.01 

CY’ C ( X  - 2)2 C ( Y  - Y ) 2  C ( X  - X ) ( Y  - r) 
= 397.25 = 76.4 = 78.0 = 71.4 

Method 1 

C [ ( X  - X ) ( Y  - Y ) ]  
J [ C ( X  - X)’ ] [C(Y  - Y)’] 

r =  

71.4 

J(76.4 x 78) 
U =  = 0.92 

Method 2 

C X  = 54 C Y  = 56.5 

C X Y  = 376.5 from Table 16.1 

(EX)’  = (54)’ = 2916 

(CY)’ = (56.5)’ = 3192.25 

C X 2  = 368 from Table 16.1 

C Y’ = 397.25 
N [ C X Y ]  - [ C X C Y ]  

(10 x 376.5) - (54 x 56.5) 
J [ l O  x 368 - 2916][10 x 397.25 - 3192.251 

r =  
J [ N [ C X ’ ]  - [ C X ] * ] [ N [ C Y 2 ]  - [CY]‘]  

r =  

714 
J(764 x 780.25) 

- - 

= 0.92 
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Figure 16.8. Correlation of deaths due to tuberculosis with time from 1900 to 1960. 
The regression line is Y = 130 - 2 X  and the correlation coefficient is r = -0.99. 

which is derived from t = r/(Standard deviation of I - ) .  The number of degrees 
of freedom is given by 

D F = N - 2  

where N is the number of points on the scatter diagram. 
The null hypothesis is 

HI,: there is no linear association between Y and X 

Since r = +0.92 and N = 10, the derived t-statistic is 

t = (0.92 x 2.83)/4-6 = 6.6. 

From Table 11.2 for DF = N - 2 = 8, P = 0.05, the !-statistic is 2.31. 
Since 6.6 is greater than 2.31 the null hypothesis, Ho, is rejected at the 0.05 
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level of significance and we can say that a significant correlation ( P  < 0.05)  
exists between X and Y .  This test is a two-tailed test example, since we have 
tested for a critical value of t greater than +2.31 or less than -2.31. If there 
is no linear association and Ho is true, then the derived ?-statistic would have 
been greater than +2.31 or less than -2.31 in only 5% of any series of identical 
trials with N = 10. 

16.6 SPEARMAN’S RANK CORRELATION COEFFICIENT 

The Spearman correlation coefficient, usually given the symbol p or r ,  is, as 
its name suggests, used when the calculations are made on the ranks of the 
observations, rather than, as with Pearson’s correlation coefficient, r ,  on the 
observations themselves. p is interpreted in the same way as r but i t  should be 
realised that since one has less information when only the rankings are given, 
then p is not as informative as it would be if calculated from the measured 
variables, as with r .  

Considering the formula for r in  Method 2 within Table 16.3, the Spearman 
rank correlation coefficient is obtained using the same formula but inserting the 
ranks rather than the measured values. However, because the difference between 
the adjacent ranks is always 1 this formula can be simplified to become 

where d is the difference between the rankings of the same item in each series. 
Since the difference term in the formula is d 2  (summed over all N pairs of 
ranks) it does not matter whether d is positive or negative. Table 16.4 gives an 
example of the calculation schedule to determine p using the above formula. 

If two items in one or other of the series of measurements tie, that is, have 
the same rank, such as third equal, then the ranks are added and the sum divided 
by the number of items sharing the same rank. Thus for example with two tied 
ranks which would for different measurement values be equal to 3 and 4, for 
tied (equal) measurement values, each will be given a rank of (3 + 4)/2 = 3.5. 

Table 16.5 gives the significance levels of p for small samples. For 11 or 
more samples Table 16.6 (page 193) should be used with the following formula 
for the number of degrees of freedom DF 

DF = [Number of pairs - 21 

In the example in Table 16.4 p = 0.714 and the sample size = 7. The correlation 
is therefore (just) not significant at the 5% level since the critical value in Table 
16.5 is p = 0.750. 
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Table 16.4. Calculation schedule to determine a Spearman rank correlation coefficient 
p.  Rank rx  is the rank in the series of measurements X and rank r y  is the rank in the 
series of measurements Y .  In this example there are seven pairs of measurements which 
have been ranked and thus N = 7. 

Rank rx Rank r y  d d 2  

3 1 2 4 
2 4 2 4 
1 2 1 1 
4 3 1 1 
6 5 1 1 
5 7 2 4 
7 6 1 1 

C(d2) = 16 

p = 1 - [(6 x 16)]/[7 x {7* - I ) ]  
p = 0.714 

Table 16.5. Significance levels of p for small samples6. The sample size equals the 
number of pairs. 

~ 

Sample size 5% level 1% level 
~ 

4 or less 
5 
6 
7 
8 
9 
10 

None None 
1 .ooo None 
0.886 1.000 
0.750 0.893 
0.714 0.857 
0.683 0.833 
0.648 0.794 

16.7 KENDALL’S t RANK CORRELATION COEFFICIENT 

Kendall’s (tau) t is also a rank correlation coefficient and is closely related to 
Spearman’s p .  It takes longer to calculate than p but t can be extended to 
study partial correlation5. However, the power of the test for the same level of 
significance7 is smaller for t than for p .  Table 16.7 gives an example of the 
calculation schedule to determine t. 

For further reading on rank correlation ( p  and t) see the textbooks by 
Snedecor and Cochran6 and by Sachs7. 
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Table 16.7. Calculation schedule to determine a Kendall t rank correlation coefficient. 
The same observations are used in this table as in Table 16.4. 

Step 1 
Rearrange the two rankings in Table 16.4 so 
that one of them rx is in the order 1 , 2 , 3 ,  . . . , N 

Rankrx  1 2 3 4 5 6 7 
Rank r y  2 4 1 3 7 5 6 

Step 2 
Take each rank ry in turn, count how many 

of the ranks to the right of it  are smaller 
than it, and add these counts 

Thus for r y  = 2 the count is 1 since 
there is only one value of r y  smaller than 2 
(i.e. r y  = 1) to the right of r y  = 2. 

The six counts are I ,  2, 0, 0. 2,  0, there 
being no need to count the extreme right rank 

The total Q = 5 

Step 3 
Calculate s using the formula 

5 = 1 - [4Q/(N{N - l ) ) ]  

Thus s = 1 - [ 2 0 / ( 7  x 6)] = 0.524 
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LES RELIQUES AUTHENTIQUES 

Always check your arithmetic and if for example the total 
number of observations is N ,  make sure that when you add up 

the values of all observations in the individual cells they 
actually total N :  otherwise you might end up like St. Blaise 

and have to repeat all your arithmetic. 
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Chapter 17 

Analysis of Variance 

17.1 INTRODUCTION 

Analysis of variance, generally termed ANOVA, is an extension of the t-test. 
Suppose that the objective of a study is is to discover whether there are 
differences in the means of several independent groups. The problem is therefore 
how to measure the extent of the differences among the means. If we had only 
two groups then we would measure the difference between the sample means 
and use the two-sample t-test for unpaired data: see sections 11.5 and 11.6. 
With more than two means it is of course technically possible to make multiple 
t-tests on all possible pairs of means, but making multiple tests increases the 
probability of making a type I error. In section 8.4 this is defined as the error 
of rejecting the null hypothesis Ho when Ho is true. The risk associated with 
this error is the alpha risk which is specified by using a P-value. 

What is required in this situation when a single t-test is not appropriate, 
is a single measure that summarises the differences between several means and 
a method of simultaneously comparing these means in one step. This problem 
is solved by the use of ANOVA and the statistical significance test used is the 
F-test. Table 17.1 lists some simple examples of null hypotheses Ho which can 
be tested using ANOVA, a statistical technique which has applications in many 
fields of interest, not only in medicine. 

One-way (sometimes called one-factor) ANOVA is a generalisation of the 
unpaired t-test and is appropriate for any number of groups. A table for a one- 
way ANOVA could be as in Table 17.2 where there are two treatment levels 
and two measurements of the response are made for each treatment level. 

Two-way (or two-factor) ANOVA is an extension of the paired t-test and 
is ANOVA in which there is a more complicated structure than the one-way 
classification because the data is classified in two ways and not in one way. 
An example is data on birth weights' in which the null hypothesis Ho is that 
differences in birth weights are independent of birth rank (i.e. whether the child 
is first, second, third .... in the family) or of maternal age. 

196 
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Table 17.1. Null hypotheses Ho which can be studied by one-way ANOVA. 

Description of n Parameter measured Null 
sample groups and by a numerical hypothesis 
the factor value 
of interest Means: X I ,  2 2 ,  23,. , . , 2, 

Teaching methods 
A, B. C, D 

Petrol costs in 
cities, towns and 
country areas 

3 groups of newborn 
infants with similar 
population parameters 
for birth weight, 
sex, race and any 
other factor which 
might influence 
weight gain, are 
given diets A, B and C 

On an industrial 
assembly line there are 
5 groups each of 8 
experienced operators 
who assemble a par- 
ticular computer part: 
groups A, B. C, D, E 

Score assessment Ho: no difference in 
results from the 4 teaching 
methods, as measured 
by Xi, 22, X 3 .  Xq 

Costflitre Ho: no difference in 
cost of petrol in the 3 
geographical locations, as 
measured by 21, 82, 2, 
Ho: no difference in 
the effectiveness of the 3 
diets as measured by 

Weight at end of 
3 months 

XI, % , x 3  

Time taken for 
assembly 

Ho: no difference in 
the efficiency of the 5 
groups as measured by 
2 , .  22, x,. 24. x, 

Table 17.2. Table for one-way ANOVA for two groups (U and c, and h and d )  of 
measurement. 

b 1 d 
Response 
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Ho is tested by estimating the share of the total variation in  birth weight 
which is attributable to differences in birth rank, and the share which is 
attributable to maternal age, leaving a residual variation which is not attributable 
to either factor. 

Explanations are given below of a few of the more frequently used terms 
in Chapters 17 and 18. Some have been modified and extended from entries in  
the dictionary’ sponsored by the International Epidemiological Association. 

Covariate. A variable that is possibly predictive of the outcome under 
study. A covariate may be of direct interest to the study or may be 
a confounding variable or effect modifier2. The terms variate and 
variable are synonymous. 

Dependent and Independent Variables. A dependent variable has a 
value which is dependent on the effect of other independent variable(s) 
in  the relationship under study. In an outcome of a study with 
dependent variable variation, we seek to explain such variation by the 
influence of independent variables’. In the example of Figure 16.1 
the dependent variable is the risk of lung cancer and the independent 
variable, only one in this case, is exposure to asbestos. The dependenr 
variable ( Y )  is the one predicted by a regression equation, e.g. 
Y = a + b X .  

Confounding Variable. Confounding is a situation in which a 
measure of the effect of an exposure on risk is distorted because 
of the association of exposure with other factor(s) that influence the 
outcome under study2. If confounding is present then it can completely 
destroy the entire study. A variable that appears to be protective 
may, after control of confounding, be found to be harmful3. Age 
and social class are often confounding variables in epidemiological 
studies. Confounding may be the explanation3 for the relationship 
between coffee consumption and the risk of coronary heart disease, 
since it is known that coffee consumption is associated with cigarette 
smoking: people who drink coffee are more likely to smoke than 
people who do not drink coffee. It is also well known that cigarette 
smoking is a cause of coronary heart disease. It is thus possible 
that the relationship between coffee consumption and coronary heart 
disease merely reflects the known causal association of smoking with 
the disease. In this situation, smoking counfounds the apparent 
relationship between coffee consumption and coronary heart disease. 

Multivariate Analysis. A set of techniques used when the variation in 
several variables has to be studied simultaneously. It is an analytical 
method that allows the simultaneous study of two or more dependent 
variables’. It differs from univariate or bivariate analysis (one-way or 
two-way ANOVA) in  that it directs attention away from the analysis 
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of the mean and variance of a single variable, or from the pair-wise 
relationship between two variables. Attention is therefore directed 
towards the analysis of covariances or correlations which reflect the 
extent of the relationship among three or more variables. 

Sum of Squares and Mean Square. One problem often encountered 
with ANOVA is that there are two equivalent terminologies for sum of 
squares S S ,  and mean square MS (which is in fact a variance). These 
are: 

SSRESIDUAL is the same as S S W ~ H I N  

~SREGRESSION is the same as ~SBETWEEN 
The within and between refer to groups of measurement, and 
SSW~TH~N relates to variability arising from the sampling technique and 
SSBETWEEN to the variability between the groups of measurements. 

17.2 THE F-TEST 

The F-test is an integral part of analysis of variance. It is used for testing for a 
significant difference between two variances S: and S l  where the F-statistic is 

F = S:/S,’ 

and where S: must always be the larger variance. Values of the F-statistic are 
given in Tables 17.3(a, b )  where DFI is the number of degrees of freedom for 
the larger variance and DF2 the number for the smaller variance. Some of these 
data are presented graphically in Figure 17.1. 

It must be remembered that the F-test is a test for the comparison of two 
independent estimates of variance, and this condition fails if the observations 
in the two samples are paired. Also, there is the underlying assumption for 
the F-test that the populations from which the samples are drawn are normally 
distributed. 

As a simple example to illustrate the use of Tables 17.3(a, b ) ,  consider 10 
patients placed in two different hospital wards, whose systolic blood pressures 
are: 

Ward A patients: 170, 180, 160, 200, 180 mm Hg 
Ward B patients: 210, 140, 160, 230, 150 mm Hg. 

The mean blood pressure of both groups is the same, equal to 178 mm 
Hg and the problem is to study whether the variability of the blood pressures is 
also the same for both groups, so that they can be assumed to be from the same 
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P : 0 0 5  

population. If they do all come from the same population, then they may be 
paired with each other to assess, for example, the effect of an anti-hypertensive 
drug. The derived F-statistic is 1570/220 = 7.16 and from Table 17.3 for 
DF1 = DF2 = 4 degrees of freedom and a chosen level of significance of 0.05, 
F is 6.4. Since 7.16 is greater than 6.4 we reject the null hypothesis at the 0.05 
level of significance, which is 

Hi,: Both groups of patients are from the same population. 

F 

Figure 17.1. The F-statistic as a function of degrees of freedom and probability levels, 
see data in Tables 17.3(n, b). 
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Table 17.3. (a)  Values of the F-statistic for selected degrees of freedom and a probability 
level of P =  0.05. DF, must always correspond to the greater variance. From Fisher 
and Yates, Statistical Tables For Biological, Agricultural and Medical Research (6th edn, 
1974, table V, p 53). Courtesy Longman Group UK Limited. 

12 24 x 

1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 243.9 249.0 254.3 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67 
7 5.59 4,74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71 
10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54 
1 1  4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40 
12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30 
13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13 
I5 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73 
25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71 
26 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67 
28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65 
29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51 
60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39 
120 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25 
60 3.84 2.99 2.60 2.37 2.21 2.10 1.94 1.75 1.52 1.00 
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Table 17.3. (6 )  Values of the F-statistic for selected degrees of freedom and a probability 
level of P= 0.01. DFI must always correspond to the greater variance. From Fisher 
and Yates, Statistical Tables For Biological, Agricultural and Medical Research (6th edn. 
1974, table V, p 55). Courtesy Longman Group UK Limited. 

3 4 5  6 8  12 24 Q? 

1 4052 4999 5403 5625 5764 5859 5982 6106 6234 6366 
2 98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.46 99.50 
3 34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12 
4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46 
5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.02 
6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88 
7 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65 
8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31 
10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91 
11 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60 
12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36 
13 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16 
14 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00 
15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87 
16 8.53 6.23 5.29 4.17 4.44 4.20 3.89 3.55 3.18 2.75 
17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65 
18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57 
19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49 
20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42 
21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36 
22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31 
23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26 
24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21 
25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17 
26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13 
27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10 
28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06 
29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01 
40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80 
60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60 
120 6.85 4.79 3 95 3.48 3.17 2.96 2.66 2.34 1.95 1.38 
x7 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00 
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17.3 ONE-WAY ANOVA: WORKED EXAMPLE 

To illustrate the construction of a one-way analysis of variance table for a one- 
factor hypothetical experiment, the effects of 3 drugs A, B and C ,  the results of 
which are measured by the parameter X are shown in Table 17.4. In practice, 
sample sizes of only n = 4 would imply a very poorly designed experiment. 
Nevertheless, when an experiment involves small animals such as rats or mice. 
the investigator will often ask the statistician at the start of the experiment ‘Can 
I use only a very few animals because they are so expensive?’. Expense has 
nothing to do with statistical significance! 

In analysis of variance the variability of the observations is split up into 
two components. 

e A component that depends on the differences between the means of the 3 
treatment group populations. Note that the word between is synonomous with 
the word regression: see section 17.1. 
0 A component that measures the variability within the 3 groups of 4 
measurements each, which arises from the sampling technique used. Note that 
the word within is synonomous with the word residual: see section 17.1. 

To examine the data in more detail the responses in  Table 17.4 can be 
re-written, including the values of the means X, as shown in Table 17.5, and 
by doing so, provide the within group variations. 

The grand mean (i.e. mean of means) X of all the 12 X j i  responses IS 

calculated from the row X i ‘  in Table 17.4 and is X = (140+ 160+ 144)/12 = 
37. Using this grand mean X the responses in Table 17.5 can be re-written as 
shown in Table 17.6, and by doing so, provide the between group variations. 

From Table 17.6 it is seen that each response X i ;  consists of three 
components which can be written as: 

X j i  = Grand mean 2 + Between (regression) + Within (residual) 
groups groups 
variations variations 

A treatment group 

X,i = grand + which is a + variability of 

the grand mean . observations 

The component A residual 

mean deviation from individual 

Thus: 
( X j i  - X, = ( X j  - X) + ( X j i  - X j )  

Copyright © 1998 IOP Publishing Ltd



204 Analysis of Variance 

Table 17.4. One-way ANOVA table. The 12 values (of X )  in the body of the table are 
the experimental results (i.e. responses): 4 measurements for each of the 3 treatments. 
The table layout is similar to that of Table 17.2. Note that in practice the number of 
results per treatment do not have to be equal. They have only been made equal with 
n = 4 in this hypothetical example to make the arithmetic easier. If there are j treatment 
groups and i measurements per group then the individual responses are termed X , ,  where 
in this example j = 1. 2, 3 and i = 1,2,  3,4. Each value of the response X , ,  is thus 
classified in terms of a column number and a row number in the table. Thus for example 
x*,  = 39. 

Treatment group j 
DrugA DrugB DrugC 
[ j  = 11 [ j  =2]  [ j  = 31 

Response X j i  
[i = 1, 2, 3,4] 
[ j  = 1,2 ,3]  

c X,l 

36 44 35  ROW^ = 1 

37 37 40 Row i = 2  

34 39 33 R o w i  = 3  

33 40 36 Row i = 4  

1 40 160 144 

Mean j j  1 35 40 36 

Table 17.5. Rearrangement of the response data in Table 17.4 with the X ,  values 
tabulated as the value of the mean j j  and the variation from this mean. The variations 
are the within (residual) group variations. 

Treatment group j 

[ j  = 13 [ j  = 21 [ j  = 31 
DrugA DrugB DWgC 

3 5 f l  4 0 + 4  36-1  
3 5 + 2  40-3  3 6 + 4  
35-1  40-1  36 -3  
35 -2  4 0 + 0  36+O 

Copyright © 1998 IOP Publishing Ltd



One-way ANOVA: worked example 205 

Table 17.6. Rearrangement of the response data in Table 17.5 with the variation from 
the grand mean x tabulated. This table shows both the wirhiri (residual) group variations 
and the benveer! (regression) group variations. 

Treatment group J 

DrugA DrugB DrugC 
[ j  = I ]  [ j  = 21 [ j  = 31 

3 7 - 2 + 1  3 7 + 3 + 4  3 7 - 1 - 1  
3 7 - 2 + 2  3 7 + 3 - 3  3 7 - 1 + 4  
3 7 - 2 - 1  3 7 + 3 - 1  3 7 - 1 - 3  
3 7 - 2 - 2  3 7 + 3 + 0  3 7 - 1 + 0  

Table 17.7. ANOVA table for sum of squares, where n ,  is the number of measurements 
per treatment group. For the data of Tables 17.4-17.6 we have ni = 4 for i = 1, 2, 3. 
SSTOTAL = S ~ B E W E E N +  ~ S W I T H I N .  

Source of variation 

Between treatment 
group variation 

Sum of squares of deviations (SS) 

SSBETWEEN(SSREGRE~~ION) = nl C,C~, - 2)’ 

Total sum of squares SSTOTAL = E, E , ( X j i  - 2)’ 

An appropriate overall measure of variation which can be split up into 
useful parts is the sum of squares of deviations and a table can be constructed 
for this type of decomposition: see Table 17.7. 

The one-way ANOVA table format as in Table 17.7 is constructed for the 
response data of Tables 17.4-17.6 in Table 17.9. However, since this is an 
introductory text the various steps in the arithmetical procedure are given first 
in  Table 17.8 to aid understanding. 

The F-statistic is defined as: 

F = [MSBETWEEN /MSWITHIN 1 
and if there is no difference between the means of all the 3 treatment 
groups the value of the F-statistic should be close to 1. As the differences 
between the sample means become larger, the numerator of the F-statistic also 
becomes larger (i.e. MSBETWEEN becomes larger) whereas the variation within 
the measurements S S W ~ H I N  remains unchanged. 
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Table 17.8. Arithmetic for the construction of the one-way ANOVA Table 17.9 which 
is for the response data of Tables 17.4-17.6. The formulae i n  Table 17.7 are used for 
the calculations. 

SSBETWEEN = 4(4 + 9 + 1 )  = 56 

Looking at the 12 sets of numbers in Table 17.6 i t  is seen that the second number 
in each of the three [ j  = 1, 2, 31 columns is 2 [for j = 11, 3 [for . j  = 21 and I 
[for , j  = 31 and corresponds to (2, - 2). 
Thus S S ~ E ~ E E N  = 4(22 + 32 + 1 2 )  = 56 

These numbers are also obtained from Table 17.6 and are the third number in  each 
of the three [ j  = 1,2,  31 columns before they are squared. 

Thus S S W ~ ~ ~ N  = ( 1  * + 2’ + 1 * + 22 
+42 + 32 + 1 2  + 02 
+ 1 2  + 4 2  + 3’ +02) = 62 

It is also noted that these above numbers which are squared also appear in Table 
17.5. 
SSTOTAL = 56 + 62 = 118 

and this can be checked using the formula in Table 17.7. S S ~ T A L  is the sum 
of the squares of the combined second and third numbers in each of the three 
[ j  = 1,2 ,3]  columns 
= ( - 2  + I ) *  + (-2 + 2)2 + (-2 - 1 ) 2  + (-2 - 2)2 

+(+3 + 412 + (+3 - 312 + ( 1 3  - 1 1 2  + (+3 + 0l2 
+(-I - 1 ) 2  + (-1 + 4)2 + (-1 - 3)2 + (-1 +0)2 

= ( 1 + 0 + 9 + 1 6 + 4 9 + 0 + 4 + 9 + 4 + 9 + 4 + 9 + 1 6 + 1 ) = 1 1 8  

Thus for large F-values we reject the null hypothesis Ho of equal means, 
whereas for values of the F-statistic close to 1 we do not reject & and must 
conclude that we cannot show a difference in the treatments studied. The 
alternative hypothesis H1 is that at least one of the pairs of means is not equal. 
However, it does not specify which pairs are not equal: only that one or more 
pairs are unequal. 

For the example in Table 17.9, F = 28.00/6.89 = 4.06 and for DF1 = 2 
and DF2 = 9 the critical value of the F-statistic from Tables 17.3(a, b)  for 
P = 0.05 is F = 4.26. The derived F-statistic is 4.06 and this is less than 
4.26. Thus the null hypothesis Ho would not be rejected at the 0.05 level of 

Copyright © 1998 IOP Publishing Ltd



One-way ANOVA: worked example 207 

Table 17.9. One-way ANOVA table for the treatment response data in Tables 17.417.6.  
Mean square (MS) = SS/DF. DFTOTAL = (No. of responses - l ) ,  DFBEWEEN = (No. of 
treatment groups - 1 )  and DFWKHIN = (DFTOTAL- DFBEWEEN) but note that MSTO~AL # 
M~BEWEEN+ MSW~THIN. 

Source of Sum of Degrees of Mean square 
variation squares freedom (DF) 

significance (just!). 
The example just described has been worked out from first principles, but 

there is also a quicker method to calculate SSBEWEEN and SSTOTAL and then 
from the equality 

SSTOTAL = ~SBETWEEN + SSWITHIN 
to calculate S S W ~ H I N  and then proceed as before to derive the F-statistic. The 
formulae used are given below where from Table 17.4 we have the following 
for W ,  Z and Y ,  where the total number of responses is 3 x [n, = 41 = N = 12 

2 

W = X,, / N  = (140+ 160+ 144}2/12 = 197136/12 = 16428 (1 IALL 11 1 
= (1296 + 1369 + 1156 + 1089 

+ I936 + 1369 + 1521 + 1600 
+ 1225 + 1600 + 1089 + 1296) = 16546 

= { 140'/4 + 160'/4 + 144'/4} 

= (4900 + 6400 + 5 184) = 16484 IALL 11 

SSTOTAL = [Z - W ]  = 118 
which agrees with the value we calculated from first principles, 

SSBETWEEN = [Y  - W ]  = 56 
which also agrees with what we calculated from first principles. 
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17.4 TWO-WAY ANOVA 

Two-way (or two-factor) ANOVA has already been referred to in  section 17.1 
and Table 17.10 continues the example previously mentioned' and is the two- 
way extension of a one-way ANOVA table such as given in Table 17.9. 

17.4.1 Example 1 

Table 17.10. Two-way ANOVA table for a study of birth weight analysed by birth rank 
and maternal age',4. In this instance there are two sources of variation between groups: 
birth rank and matemal age. 

Source of Sum of Degrees of Mean square 
variation squares freedom (DF) 

~~ ~~~ ~ ~ 

Birth rank SSBIRTH RANK = 56.81 3 MSBIRTH R A N K  = 18 94 
Age SS*GE = 7 43 4 MSAGE = 1 86 
Birth rank x Age S S I N ~  = 22.12 12 MS~NT = 1 89 
Within groups S S ~ I ~ ~ N  = 6022.68 4690 M S W ~ H I N  = 1.28 

Table 17.10 gives the share of the total variation in  birth weight which 
is attributable to differences in birth rank, and the share which is attributable 
to differences in maternal age, leaving a residual (within groups) which is not 
attributable to either factor but as mentioned earlier, is due to variations arising 
from the sampling technique. SSBIRTH RANK and SSAGE are therefore in effect 
~SBETWEENI and ~SBETWEENZ. 

In addition to the independent direct effects of birth rank and maternal age. 
there may also be an interaction effect, which is why the terms SS~NT and MSINT 
are required. The derived F-statistics are given below. 

F = 18.94/1.28 = 14.80 

This is significant, P < 0.001. showing that if Ho were true, then such a 
difference in mean squares would occur due to chance in  less than 1 in 1000 
times. Ho is rejected and it is therefore concluded that birth weights are not 
independent of birth rank. 

F = 1.8611.28 = 1.45 and F = 1.89/1.28 = 1.48 

This result is not significant since P > 0.05 and it is therefore concluded 
that birth weight is not independent of maternal age and of the joint effect of 
maternal age and birth rank. Hence if birth weights are classified by maternal 
age, we should not expect significant differences in mean birth weights between 
age groups, once the effects of birth rank have been taken into account'. 

Copyright © 1998 IOP Publishing Ltd



Two-way ANOVA 209 

Education B1 
B1 

Mean 
B2 
B2 
B2 

Mean 

The hypotheses which can be tested by two-way ANOVA techniques are 
the null hypothesis 

Ho: There is no interaction between factor-A and factor-B 
the alternative hypothesis being 

H I :  There is an interaction present. 
The null hypothesis 

Ho: All of the factor-A means are equal 
the alternative hypothesis being 

H2: At least one factor-A population mean does not equal 
another factor-A population mean. 

The null hypothesis 
Ho: All of the factor-B means are equal 

the alternative hypothesis being 
H3: At least one factor-B population mean does not equal 

another factor-B population mean. 

5 7 
4 5 

4 6 
4 6 
3 6 

I4.50) (6.00) 5.25 

(3.67) (6.00) 4.83 

17.4.2 Example 2 

Table 17.11. Hypothetical data for two-way ANOVA. Suppose that the measurements 
are subjective competence scores and that factor-A is country (countries AI  and A2) and 
that factor-B is education (high level B1 and low level B2). 

Country 
A2 Mean 

Mean I 4.00 6.00 5.00 
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The sum of squares for the combined Country+Education variable is obtained 
using the means in  the ( ) brackets as follows: 

SSCOLINTRY+EDUC,A,T~ON = 2(4.50 - 5 .00 )2  + 2(6.00 - 5.00)2 
+ 3(3.667 - 5.00)2 + 3(6.00 - 5.00)2 

= 0.50 + 2.00 + 5.33 + 3.00 = 10.83 

The sum of squares for the interaction IS obtained using the formula 

~SINTERACTION = ~SCOUNTRY+EDUCATION - ~SEDUCATION - ~SCOUNTRY 

SSINTERACT~ON = (10.83 - 0.42 - 10.00) = 0.41 
and where r = no. of education types and c = no. of countries the associated 
degrees of freedom are DFINTERACT~ON = ( rc  - 1) - ( r  - 1) - ( c  - 1) = 
[ r  - 1][c - 11 = 1 .  

SSTOTAL is found by subtracting the grand mean (5.00) from each 
observation (there are lo), squaring these differences and adding them up: 

SSTOTAL = (0 + 1 + 1 + 1 + 4 + 4 + 0 + 1 + 1 + 1) = 14.00 

SSWITHIN = SSTOTAL ~SCOUNTRY+EDUCATION = (14.00 - 10.83) = 3.17 
The two-way ANOVA table analogous to the one-way Table 17.9 is Table 

17.12. 

Table 17.12. Two-way ANOVA table for the data and calculations in Table 17.1 1 .  

Source of Sum of Degrees of Mean square (MS) 
variation squares ( S S )  freedom (DF) 

Country 10.00 1 10.00 
Education 0.42 1 0.42 
Interaction 0.41 1 0.41 
Within groups 3.17 6 0.53 

Total 14.00 9 

The derived F-statistics for education level (F = 0.42/0.53 = 0.79) and for 
the interaction between level of education and country ( F  = 0.42/0.53 = 0.79) 
are less than 1 and are not significant, whereas for the country factor F = 
10.00/0.53 = 18.87 with from Table 17.3(a, b )  DF1 = 1 and DF2 = 6, giving a 
critical value of the F-statistic of F = 5.99 for P = 0.05 and of F = 13.74 for 
P = 0.01. This is a significant result, P < 0.01, since 18.87 > 13.74, and we 
conclude that the null hypothesis Ho can be rejected and the competence scores 
are not independent of country. 
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17.5 RELATIONSHIP BETWEEN CORRELATION COEFFICIENT 
AND A ONE-WAY ANOVA TABLE 

Using as an example’ one-way ANOVA for birth weight and mother’s height 
we have the information in  Table 17.13. 

Table 17.13. ANOVA table for measurements of birth weight (Y) as a function of height 
of mother (X): regression line is Y = U + h X .  

Source of Sum of Degrees of Mean square (MS) 
variation squares ( S S )  freedom (DF) 

Between 
groups SSBETWEEN(SSREGRESSION) = 1.48 1 M S B E ~ E E N  = 1.4800 

If there were no real association between Y and X then MSBEWEEN and 
M S W ~ H I N  would be about the same size, and therefore the derived F-statistic 
should be about 1. Whereas if Y and X are associated then M S B E ~ E E N  is 
larger than MSW~THIN and F is greater than 1. For the data in Table 17.12 the 
derived F-statistic is F = (1.4800/0.2081) = 7.11. From Table 17.3(a, b )  the 
critical values of the F-statistic for P = 0.01 are F = 7.08 for DF1.m and 
F = 6.85 for DF1,120. No values are tabulated for a DF1,gE but we can say 
that the critical value of the F-statistic for DF1,98 is between 7.08 and 6.85 and 
therefore F = 7.11 is significant, P < 0.01. 

The correlation coefficient, r ,  was discussed in the previous chapter in 
section 16.4 and we can use the ANOVA table to calculate r in a different way 
since 

r = SSBETWEEN/SSTOTAL 

which for the data in Table 17.13 gives r 2  = (1.48/21.87) = 0.0676 and 
therefore r = 0.26. Such a value of r ,  which is much less than 1, will not 
indicate a good correlation, as can be seen from the scatter diagrams in Figures 
16.2 and 16.3 for r = 0.09 and r = 0.40. 
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PLACE THE DECIMAL POINT CORRECTLY 

Popeye's superhuman strength for deeds of derring-do comes 
from consuming a can of spinach. The discovery that spinach 
was as valuable a source of iron as red meat was made in the 

1890s, and it proved a useful propaganda weapon for the 
meatless days of the second world war. A statue of Popeye in 

Crystal City, Texas, commemorates the fact that single-handedly 
he raised the consumption of spinach by 33%. America was 

strong tofinish 'cos they ate their spinach and duly defeated the 
Hun. Unfortunately, the propaganda was fraudulent; German 

chemists reinvestigating the iron content of spinach had shown 
in  the 1930s that the orginal workers had put the decimal point 

in the wrong place and made a tenfold overestimate of its value. 
Spinach is no better for you than cabbage, Brussels sprouts or 
broccoli. For a source of iron Popeye would have been better 

off chewing cans. 
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Chapter 18 

Multivariate Analysis: The Cox 
Proportional Hazards Model 

18.1 INTRODUCTION 

A simple regression model assumes that an outcome or response variable (e.g. 
survival from cancer following treatment) can be explained mainly in terms of 
one explanatory or predictor variable. On the basis on this assumption it is 
accepted that the many other factors which may influence the response variable 
are individually only of minor importance and their collective effect is zero. This 
will rarely be a valid assumption for the various prognostic variables which may 
affect cancer survival and therefore a multiple regression model is neccessary. 

Cox] developed such a model for life tables (see also the paper by 
Bredow*) which enables an assessment to be made of the extent to which 
prognostic variables are associated with survival. He illustrated the use of 
the model for leukaemia but it has also been used for other forms of survival 
data such as those for cardiac studies, including studies of heart transplant 
survivals. Another cardiac example is the analysis by the Norwegian Multicentre 
Study Group3 who applied the model to study the reduction in mortality and 
reinfarction in patients surviving acute myocardial infarction. 

Multivariate analysis gives a series of coefficients or hazard ratios, each 
one of which indicates the magnitude of the effect on outcome of that particular 
variable, if all the other variables are assumed to be held constant. 

The Cox model is now very frequently used in radiation oncology and, 
for example, from 1996 onwards there is seldom an issue of the International 
Journal of Radiation Oncology Biology & Physics which includes any discussion 
of survival and prognostic factors which does not use the Cox model. 

It must, however, be emphasised that the Cox model is not the only model 
for multivariate analysis, although it is the commonest in radiation oncology, 
and several alternative models exist such as the log-logistic mode14s5 and the 
linear logistic model6. The latter has been used for analyses of case-control 
studies’. 

213 
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The statistical formulation of such models, including that of Cox, is 
extremely complicated and not totally appropriate for an introductory text. Thus 
much of what is included in this chapter should be regarded as advanced, 
not introductory material, and be considered as optional reading for those 
commencing a study of medical statistics 

Also, the use of the Cox model will always require a computer programme, 
and will never be used manually with a pocket calculator. The computations are 
far too extensive for this to take place. However, care must be taken in reading 
computer software user manuals for instructions on data entry. 

Finally, it is noted that a regression model provides a means of utilising the 
available information, but when the number of possible prognostic covariates is 
large, the number of iterations before convergence is reached may be high or the 
method may fail because the covariates are closely related to one another. It is 
therefore advisable to undertake an exploratory univariate analysis data analysis 
(see Chapter 17) to avoid including too many prognostic factors. 

18.2 HAZARD FUNCTION, CUMULATIVE DISTRIBUTION 
FUNCTION AND SURVIVOR FUNCTION 

The Cox regression model is often referred to as a proportional hazards model 
and since the term hazard is relatively unknown in the medical literature it is now 
discussed briefly before explaining the assumptions underlying the proportional 
hazards model. 

The hazard function is also known as the force of mortality or the 
instantaneous death rate or the age-specific (or time-specific) failure rate. This 
latter term relates to renewal theory' when failure time data in industry, such 
as failure times of generator field windings, are studied. Expressed in terms of 
probability functions, the hazard function, denoted by h(t) ,  is the ratio of the 
probability density function f ( t )  to the survivor function ( 1  - F ( t ) )  at time r,  
where F ( t )  is the distribution function. 

U t )  = f ( t ) / ( l  - F @ ) )  
The distribution function or cumulative distribution function, F ( r ) ,  

increases with t and equals 1 at the maximum value of t .  It is the probability that 
the time variable takes a value less than or equal to t .  The survivor function, 
1 - F ( t ) ,  is the probability that the time variable takes a value greater than 
t .  The probability density function, f ( t ) ,  is a function whose integral over the 
range t1 to t 2 ,  for a continuous variable t ,  is equal to the probability that the 
time variable T takes a value in that range. 

Figure 18.l(a,b,c) illustrates f ( t ) ,  F ( t )  and 1 - F ( t )  schematically for 
the exponential distribution. It is seen that for this particular distribution the 
hazard function is constant, equal to k. An exponential model for the survival 
experience of patients treated for cancer therefore would imply an instantaneous 
death rate which is constant irrespective of elapsed time since diagnosis. 
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Figure 18.1. Since the hazard function h( t )  is the ratio of the probability density 
function to the survivor function, h( t )  = h for the exponential distribution. There is a 
one-to-one correspondence between hazard function and the probability density function. 
Thus the hazard function is not a constant for any other distribution. For example, for the 
two parameter (c. h )  Weibull distribution which has a positively skewed density function 
f ( t )  equal to ( c t " ' / b ' )  exp -(t/b)' and a survivor function equal to exp - ( t /b ) ' ,  the 
hazard function is c t c - ' / h r  which decreases with t if c < 1 and increases with t if c z 1 .  

( a )  Probability density function. Probability that t is in the range 1/h to 2 / h  
equals the area beneath the curve between these limits (the shaded area). Expressed as 
an integral this area is Jp ,f(t)dt where 11 = 1/h and t2 = 2 / h .  Total probability equals 
unity and thus the total area beneath the curve is Ay f(t)dt = 1. 

( h )  Distribution function. 
derivative of the distribution function, 

The probability density function F ( t )  is the first 

d d 
dt dt 

f ( t )  = - [ F ( t ) ]  and - [ I  -e-*'] = he-Ar 

The probability that t lies between 0 and t, is 0.75. 

(c) Survivor function. The probability that t exceeds t* is 0.25. If the survivor 
function is expressed as a percentage survival rate, the above survival curve indicates a 
25% t.-year survival rate if t is in yearly units. 
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The density, distribution, survivor and hazard functions for many families 
of distributions including the binomial, lognormal, Poisson and Weibull are 
given by Hastings and Peacock’ and graphical methods for inspecting the hazard 
function have been discussed by Nelson”. Survival distributions and methods 
of estimating distribution parameters are described by Gross and Clark’’ and by 
Kalbfleisch and Prentice4. 

18.3 ASSUMPTIONS OF THE COX PROPORTIONAL HAZARDS 
MODEL 

The underlying assumption is that the ratio of the risks of dying in  two subgroups 
is constant over time (proportional hazards). The monotonic weight (or the risk 
ratio) associated with one parameter is assumed to be constant whatever the 
values of the other parameters, except if interactions are introduced into the 
model. (This is a common problem for all regression models, not only for the 
Cox model.) Another basic assumption is that the effect of covariates on the 
hazard function is log-linear. 

proposed the proportional hazards model as follows: 

U t ,  2) = A d f )  exp(Z . P )  
where A(t,  Z )  denotes the hazard at time t for a patient with a vector of 
covariates Z. 

That is, 

U t ,  2) = A&) exp(B1 ZI + B 2 . G  + . . . + B p Z p )  

where P is a p x 1 vector of unknown parameters (weights) and i .o ( t )  is the 
unknown hazard function for a reference patient with covariates 2 identically 
equal to zero. It is the underlying form of the hazard, and is not specified in 
terms of a distribution such as the Weibull, and is determined by the form of 
the data under study. 

For a given 2, exp(BIZ1 + , 9 2 2 2  + . . . + &ZP) is a constant so that the 
hazard function A ( t ,  Z )  is a constant multiple of the underlying hazard Ao(t). 
Consequently, Cox introduced the term proportional hazards model. 

18.4 HAZARD EQUATION FOR THREE PROGNOSTIC FACTORS 

To illustrate this hypothetically, suppose that there are three prognostic factors, 
Z1 4 (patient’s age-50) in years, Zz = sex and 23 = disease stage at 
presentation, 22 may take a value 1(= male) or 0(= female) and 2 3  entails equal 
spaced ordering of stages. Then A o ( t )  gives the hazard for a reference patient 
who is aged 50 years (Zl  = 0), female (Z, = 0) and stage code 0 (Z3 = 0). 
ho(t)  describes the force of mortality for a patient all of whose covariates are 
zero. 
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OSTRICH SYNDROME 

It must be remembered that a limitation of the Cox 
model is the requirement to have each covariate 
measured for each patient. Although techniques 

exist to estimate missing data values, these 
approaches involve additional assumptions that often 

cannot be substantiated. m-FHT1 
“p*- proqmm i- 

If, however, the patient had been 55 years old instead of 50, male instead 
of female, and stage code 1 instead of 0; and if the weights p given to the 
individual covariates had been estimated as P I  = 0.1, 82 = 0.3 and 83 = 0.3, 
the hazard would be 

ho(t)exp(O.l x 5 + 0.3 x 1 + 0.3 x I )  = ho(t)exp(l.l) = 3.0 ho(r) 

That is, the corresponding hazard would always be 3.0 times greater than that 
for the reference patient, and this ratio of risks would remain constant with time. 

18.5 RELAXATION OF THE ASSUMPTION OF PROPORTIONALITY 
OF HAZARDS 

The prognosis for leukaemia (used by Cox’ as an illustration) and, for example, 
inoperable stage I11 breast cancer13 are not particularly good but the assumption 
of the proportional hazards model that the ratio of hazards is constant with time 
is acceptable. However. in cancer series with a significant number of long-term 
survivors it may not be reasonable to assume that the hazard ratio is independent 
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of time. This was observed by Gore and PeacockI4 for breast cancer data from 
Edinburgh, 1954-64, for which long-term survival results have been published 
by Langlands et a1 15. They found that the proportional hazards model was 
unsuitable for use with this data and Gore has also commented that for breast 
cancer, a covariate such as stage which is initially of prognostic importance. 
fades into relative unimportance at later follow-up, with the annual mortality 
rate independent of stage after 10 years. 

The assumption of proportionality can be relaxed in  various ways, for 
example prognostic variables Z may also change with time in  which case 

i ( r ;  Z(t))  = k:oexp(Z(t) . D’ )  

The multiple exp(Z(t) .p’)  being a function of time is no longer constant and so 
the proportionality factor changes. This will lead to a less elegant, but perhaps 
more realistic view of the natural history of the disease as the influence of the 
covariates modifies as the follow-up progresses. 

18.6 EXAMPLE: LOCOREGIONAL RECURRENCE OF 
BREAST CANCER 

This section presents an exampleI6 from the literature of the results of a 
multivariate analysis using the Cox model. It relates to locoregional recurrence 
of breast cancer and is a typical presentation of those found in oncological 
journals in that the only references quoted are the original 1972 Cox reference] 
(which is entitled Regression models and life tables) from the Journal of the 
Royal Statistical SocieQ and perhaps also mention of the software programme 
used to calculate the P values for this model. The actual methodology of the 
Cox model is seldom, if ever, discussed in  oncological journals and one has to 
look elsewhere to rather esoteric statistical papers. 

In this example, as with all such multivariate analyses, a univariate analysis 
is first performed and then the data relating to those prognostic factors found 
to be statistically significant (at a chosen probability level P .  which does not 
necessarily have to be P = 0.05) are entered into the multivariate analysis 
programme. Exceptions do exist, however, when even if there is a non- 
significant univariate result the data for the factor are still entered into the 
multivariate analysis: but this is not standard procedure. 

Many examples of the use of the Cox model are to be found in the literature. 
but studies of prognostic factors for the subsequent outcome after treatment 
of locoregional recurrence of breast cancer are of major interest because of 
the high incidence worldwide of breast cancer. Also, because the outcome of 
patients with locoregional recurrence after mastectomy has often been described 
as fatal, the identification of even a small subgroup of patients with a favourable 
prognosis is very important. 

Table 18.1 from Willner et all6 clearly shows that some prognostic factors 
which are considered significant when using only univariate analysis are not 
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significant when using multivariate analysis: this is a typical situation and clearly 
shows when multiple prognostic factors are being studied, a series of univariate 
analyses is not adequate. 

If significance which was apparent in univariate analysis disappears in the 
multivariate stage it means (1) it should be considered non-significant and (2) 
this is probably because it is a surrogate for (i.e. highly correlated with) one of 
the other variables. 

It can also be true that a factor which is not significant in univariate analysis 
can be significant in multivariate analysis, such as age at RD (< / > 50 years) 
in Table 18.1, although most studies would have discarded those prognostic 
factors not found to be significant at the univariate stage, This situation is not 
ideal, and it could be proposed that factors associated with a P c 0.20 in the 
univariate stage be entered into the multivariate model. 

Two major papers previously published on locoregional recurrent of breast 
cancer, before the 1997 analysis of Willner et all6 of the University of Wurzburg 
patient data, are those of Halverson et ai” in 1992 from the Mallinckrody 
Institute of Radiology, St. Louis, and of Schwaibold et all8 in  1991 from 
the Fox Chase Cancer Center, Philadelphia. All give examples of multivariate 
analysis but that of Willner is the most exhaustive. 

It is noted that all authors: Willner et al, Halverson et a1 and Schwaibold et 
al. although finding several factors significant in univariate analysis, excluded 
them from multivariate analysis owing to the small number of patients with 
all data available for multivariate analysis (the Ostrich syndrome of page 217). 
This is a very important point to note when undertaking multivariate analysis: 
exclude poor quality data. 

Finally, I end this section with the following quotation from Willner et all6, 
which places in perspective the justification for the use of multivariate analyses 
in oncology. 

‘The complex inter-relationships of prognostic factors underlines the 
importance of multivariate survival analysis of all available prognostic 
factors and treatments’. 

It is stressed that multivariate analysis should, with care (because of any 
situation with small numbers), take precedence over any of the univariate 
analyses. However, differences between univariate and multivariate analyses 
do give some information about correlations (confounding) between different 
variables and also sometimes unexpected correlations. 
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Table 18.1. Results of Willner er a/" following univariate and multivariate analyses 
for prognostic factors influencing post-recurrence survival rate. NS = not significant; 
pT = primary tumour status; PD = primary diagnosis; RD = recurrence diagnosis 
and * indicates that data for these factors were excluded from the multivariate analysis 
because of a large number of missing values. The conclusions of Willner et a1 were 'A 
highly favourable subgroup is those with a solitary chest wall or axillary recurrent nodule 
(in a patient aged > 50 years) with a disease-free interval 1 year, with a pT1-2pNO 
primary tumour. without tumour necrosis. and whose recurrence is locally controlled'. 

Prognostic factors Univariate Multivariate 
analysis analysis 

pT status (T1,2/3.4) 
Grading (G 1,2/3,4) 
Lymphatic vessel invasion 
Blood vessel invasion 
Tumor necrosis 
Hormonal receptor status 
Age at PD (< / > 50 years) 
Axillary node status at PD 
Postmastectomy irradiation 
Postmastectomy chemotherapy 
Postmastectomy hormonal therapy 
Site of recurrence (chest, axilla, 

Time to recurrence (< / > 1 year) 
Scar recurrence 
Size of largest recurr. nodes 
No. of recurr. nodes 
Age at RD (< / > 50 years) 
Surgical removal of recurrence 
Irradiation of recurrence 
Irradiation dose (< / > 50 Gy) 
Target volume of irradiation 

Irradiation planning procedure 
Hormonal therapy for recurrence 
Chemotherapy for recurrence 
Local control in recum. site 

supra, combined) 

(small/total site/total locoregional) 

P < 0.001 
P < 0.01 
P < 0.001 
P < 0.01 
P < 0.001 
P < 0.01 
NS 
P < 0.001 
NS 
P < 0.01 
P < 0.05 

P < 0.01 
P < 0.001 
P < 0.001 
P i 0.05 
P < 0.001 
NS 
P < 0.001 
NS 
NS 

P < 0.05 
NS 
NS 
P c 0.01 
P < 0.001 

P < 0.01 

NS 
NS 
P < 0.01 

NS 
P < 0.05 
NS 
NS 
NS 

P < 0.001 
P < 0.01 
NS 
NS 
P < 0.001 
P < 0.05 
NS 
NS 
NS 

P = 0.05 
NS 
NS 
NS 
P < 0.05 

* 

* 
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18.7 METHODOLOGY 

The paper by Christensent” in  the journal Hepatology has to date one 
of the fullest descriptions of Cox model methodology and for this reason 
is recommended reading. The Christensen patient group is theoretically 
constructed using three variables and totals 30 with: 

death (categorised as 1) the endpoint in 18/30 
and with 12/30 censored (categorised as 0). 

Serum albumin (gm/litre) is on a continuous scale of measurement (21-36), 
as is bilirubin (micromoles/litre) also on a continuous scale of 

measurement (19-332): and is entered into the model as loglobilirubin. 
Alcoholism is categorised as either present (1) or absent (0). 

18.7.1 

Figure 18.2 shows a Kaplan-Meier survival graph for what Christensen terms 
the cumulative survival probability (the adjective cumulative is not standard 
terminology for life table survival graphs) and it is seen how this survival curve 
is related to the cumulative hazard. 

Relationship Between Survival Probability and Hazard 

18.7.2 Likelihood Ratio Test 

To fit the Cox model to Christensen’s data, which has three variables (i.e. 
covariates) albumin, loglobilirubin and alcoholism, which in the equation for 
the hazard in section 18.3, will be Z1, 22 and Z3, a total of seven Cox analyses 
can be studied, Table 18.2. There will be three models involving only one 
covariate, three including two covariates and one including all three covariates. 

Estimation and significance testing of a given model involves the concept 
of likelihood which means the probability of the observed data being explained 
by a certain model. The overall significance of a model is based on the 
ratio between the likelihood L(0)  of a model in which the covariates show 
no covariation with the survival time (the regression coefficients b (termed ,d in 
the equation in section 18.3) all being zero: in this example bl = b2 = 63 = 0 
because there are only three covariates) and the likelihood L(b)  of the model 
with the b coefficient(s). The b coefficients are estimated in such a way that 
L(b)  is maximised. Thus the estimated parameters (such as the b coefficients) 
of a Cox model are called maximum likelihood estimates. The underlying hazard 
is not estimated. 
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Figure 18.2. If the survival probability as a function of time ( t )  is denoted by S ( t )  and the 
estimated cumulative hazard by A the one can be estimated from the other by using the 
relationship A ( t )  = - log, S(r )  and S ( f )  = e-*(’) The survivor function in Figure 18.1, 
(1 - F(r ) ) ,  is the same as S(r )  in this figure. One of the problems in understanding the 
Cox model is the multiplicity of symbols, not all of which are consistent in the different 
publications. However, for this section I have retained the Christensen” notation. 

The greater the value of L(b)  or the less the value of the likelihood ratio 
L(O) /L (b ) ,  the better the model actually explains or fits the observed data4. 
The significance of each model can be tested statistically using the relationship 

x 2  = - 2 x log,(L(O)/L(b)) 
= - 2 x (log, L(0)  - log, L(b))  
= 2 x (log, L ( b )  - log, L(0))  

where the degrees of freedom equals the number of coefficients estimated in 
the model4. Christensen’s results” of seven Cox regression analyses are given 
in  Table 18.2 which is typical of the spectrum of data obtained in computer 
printouts for the Cox model, although it will not necessarily be in the same 
layout as in  Table 18.2. 
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18.7.3 Table of Results 

Table 18.2. Results of seven Cox regression analyses, after Christensen”. 
x2 values are computed from the formulae given above This should really be called 
a x 2  model but for simplicity the word model has been omitted. 
log, L(0) is the same for all the models, i.e. -52.319 DF = degrees of freedom. 
L(6) and hence x 2  depend on the variable(s) included. For example for model 1, 
log, L ( h )  is -36.825 and thus x 2  = 2(-36.825 - (-52.319)) = 30.99 as seen in the 
second column of the table. 
P is the level of statistical significance for x 2  and P”’ the level of statistical significance 
of the regression coefficient b. 
Variables are: ALB for albumin, LGB for log,,,bilirubin and ALC for alcoholism. 
6 is the regression coefficient. SE(6) is the standard error of b 
2 is the normal deviate which equals b / S E ( b ) .  The significance of each regression 
coefficient ( h )  can be estimated by comparing Z 2  with the x 2  squared distribution 
with DF= 1. This is sometimes termed the Wald test”. If Z > 1.96, (see Chapter 
3 for discussion of the normal distribution and the standard normal deviate) then h is 
significantly different from zero at the P = 0.05 level of significance: two-tailed test. 
However, if 2 < 1.96 for certain coefficients, b, this should not be taken to mean that 
these variables have no effect on prognosis, but only that the effect is too small to be 
shown up at the P = 0.05 level of significance with the number of patients in the study. 
The relative importance of the variables is given by the numerical value of Z. The 
greater the value of 2 the more significant it is in the model. It is seen in the table for 
model 7, for example, that the variables decrease in the following order: ALB, LGB. 
ALC with ALC being insignificant. 

Model x 2  DF P Variables b SE@) Z p*=* 
number included 

1 30.99 1 < 0.0001 ALB -0.42 0.089 -4.71 < 0.0001 

2 21.24 1 < 0.0001 LGB 4.44 1.06 4.17 i 0.0001 

3 8.79 1 0.003 ALC 1.55 0.55 2.82 0.005 

4 35.89 2 < 0.0001 ALB -0.35 0.10 -3.43 0.0006 
LGB 2.36 1.11 2.12 0.03 

5 32.50 2 < 0.0001 ALB -0.39 0.094 -4.16 < 0.0001 
ALC 0.79 0.64 1.23 0.22 

6 25.13 2 < 0.0001 LGB 3.88 1.06 3.66 0.0002 
ALC 1.14 0.59 1.93 0.056 

7 37.04 3 < 0.0001 ALB -0.32 0.11 -3.07 0,002 
LGB 2 .251 .11  2.03 0.04 
ALC 0.71 0.66 1.08 0.28 
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18.7.4 Relative Risk: Ratio Between Hazards 

Using the values of the regression coefficients, b, it IS possible to estimate 
relative risk (defined in  section 22.2 for cancer with reference to irradiated 
populations such as the atomic bomb survivors in  Hiroshima and Nagasaki, as 
the number of cancer cases in the irradiated population to the number of cases 
expected in the unexposed population. A relative risk of 1.1 indicates a 10% 
increase in cancer due to radiation, compared with the normal incidence of the 
baselineheference group). 

In the Cox model analyses the relative risks are the ratios between hazards 
attributable to various levels of a particular variable, when all other variables 
are unchanged. In Table 18.2 considering model 3 and the variable ALC, this 
model predicts the relative risk of ALC to non-ALC by the equation 

since for this single variable (ALC only) model 3, b = 1.55. 
In model 4, considering ALB, a 1 gm lower concentration of serum albumin 

(ALB), e.g. 29 gd l i t r e  compared to 30 gdl i t re ,  is associated with an increase 
in  relative risk of  

since b = -0.35 in Table 18.2. The relative risk associated with a 1 gdl i t re  
lowering in ALB is independent of the absolute level of ALB. 

An example of relative risks for actual clinical data (as distinct from 
Christensen’s constructed data” is given in Figure 18.3 for the Oslo and 
Stockholm post-mastectomy megavoltage radiotherapy trials2’ where the results 
were analyses using the Cox model. 

One of the conclusions was that the effect of the radiation was significantly 
related to the size of the primary tumour. The test for a trend indicated that the 
relative risk of distant metastasis was significantly lower for irradiated patients 
with small than with large tumours: x 2  = 6.74, P < 0.01. A similar trend was 
observed for the relative risk of death: x 2  = 5.66, P < 0.02. 

A second clinical example2’, in this instance for osteogenic sarcoma, is 
given in Table 18.3 where three factors were found to have individual significant 
prognostic value for improved survival, namely the accomplishment of complete 
metastasectomy, the presence of a solitary metastasis, and the administration of 
adequate salvage chemotherapy. The relative risk of death in the absence of 
these factors is respectively 5.2, 3.5 and 2.2. 
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Figure 18.3. (Left) Relative risk of death for irradiated node-positive patients 
versus non-irradiated node-positive patients by tumour size and by treatment centre. 
(Right) Relative risk of distant metastasis for irradiated node-positive patients versus 
non-irradiated node-positive patients by tumour size and treatment centre'". 

18.7.5 Stepwise Selection of Variables 

Stepwise selection of variables can be either by forward or backward selection". 
With the forward stepwise method the model is built up stepwise by including 
at each step the variable giving the largest reduction in the likelihood ratio or 
equivalently the largest increase in the x 2  model (see legend to Table 18.2) Thus 
in the first step, ALB (see model 1) would be included because this variable 
gives the highest significant x 2  of all possible models with one variable (i.e. 
models 1-3). 

In the next step, LGB would be added (model 4) because this variable 
increases x 2  significantly 

(35.89 - 30.99 = 4.90 with DF = 1 and thus P < 0.05) 

in contrast to ALC (model 5) which only gives an insignificant increase in x 2  
(32.50 - 30.99 = 1.51 with DF = 1 and thus P > 0.20). 

The values of DF are calculated as the difference between the number of 
estimated coefficients in the models being compared. Inclusion of ALC in 
a model comprising ALB and LGB (model 7) does not lead to a significant 
increase in x 2  

(37.05 - 35.89 1.15 with DF = 1 and thus P > 0.20). 
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Table 18.3. Analysis of potential prognostic factors for survival from the first metastatic 
event of osteogenic sarcoma2'. Univariate analysis was made using Kaplan-Meier 
survival calculations and the logrank test to determine the level of significance P of 
the difference between two survival curves. Stepwise multivariate analysis was by the 
Cox model using the BMDP statistical software package. The significance level, P, for 
the multivariate analysis was obtained by the likelihood ratio test (sometime called the 
fog likelihood ratio test, see section 18.7.2). The final column in the table gives the 
relative risk of death i n  the absence of a given factor. CI=confidence interval. 

Factor Univariate analysis Multivariate analysis 

Median survival P value P value Relative risk 
time (months) (Logrank) (Likelihood of death 

Factor Factor 
present absent 

ratio test) (95% CI) 

Complete metastasectomy 40 10 < 0.001 < 0.001 5.2 (2.4-1 1.6) 

Adequate salvage chemo. 24 10 0.026 0.022 2.2 (1 ,142 )  
Primary site other than 

Relapse free interval 

Primary protocol 

Responder to adequate 

Solitary metastasis 150 12 0.001 0.005 3.5 (1.5-8.5) 

femur & humerus 35 12 0.073 0.097 

> 21 months 25 12 0.030 0,152 

T10 or SSG8 22 12 0.150 0.269 

salvage chemotherapy 68 12 0.024 0.462 

Therefore model 4 would be the final model if the forward stepwise selection 
method was used. 

When using the backward stepwise method one starts with a model which 
includes all the variables, and then non-significant variables are removed 
stepwise from the model by excluding the most non-significant variable at each 
step until each remaining variable contributes significantly to the model. 

Thus one would start with model 7 and then remove ALC because this 
variable is non-significant. This would lead to model 4 which would be the 
fmal model because both variables, ALB and LGB are statistically significant. 

When the analyses are not too complicated, such as the Chr i~ tensen '~  data 
for 30 patients and three covariates, forward selection and backward selection 
lead to the same final model. However, with more complex analyses which 
include many variables, the two different methods of selection may lead to 
slightly different models. 
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An interesting use of the Cox model has been with the Nottingham Breast Cancer 
Study" in which a prognostic index was obtained: 

Index I = (0.17 x Tumour Size) 
+ (0.76 x Lymph Node Stage) 
+ (0.82 x Tumour Grade) 

A group of 387 patients were available for analysis and values of the 
regression coefficients b and of the normal variate Z are listed in  Table 18.4 for 
each possible prognostic factor. 

Summarising previous commentary, the Cox model allows each variable to 
be evaluated independently, taking into account the effects of all other variables 
and the regression coefficients, b, show how much each factor contributes to the 
hazard which is inversely related to survival. A positive value of b therefore 
indicates a poorer survival time as the given variable increases. 

Table 18.4. Notation for statistical 
significance is * for P < 0.01 and *** for P < 0.001. The coding for these significant 
variables is as follows. Size (in cm): Lymph node stage: (A= 1: tumour absent from 
all 3 nodes sampled, B= 2: tumour in low axillary node only, C= 3: tumour in apical 
and/or intemal mammary gland). Tumour grade: I, I1 and Ill.  

Values of h and Z from the Cox analysis22. 

Variable h Z 

Age -0.0162 1.02 
Menopausal state 0.524 1.50 
Size 0.172 2.92* 
Lymph node stage 0.763 5.29*" 
Tumour grade 0.822 4.56"' 
Cell reaction 0.091 0.62 

Oestrogen receptor content -0.340 1.72 
Sinus histiocytosis -0.204 1.26 

Adjuvant therapy -0.332 0.83 

The larger the value of index I the worse the prognosis for the patient and 
Figure 18.4 shows survival curveszz according to lymph node biopsy stage and 
according to index I .  

This index I = ( 0 . 2 ~  Size + Stage + Grade) has also been used for more 
extensive dataz3 with a 15-year survival and clearly separated patient groups 
prognoses using the recommended 3.4 and 5.4 values of I .  The 15-year survival 
rates for the three groups were 80%, 42% and 13% for a population of 1629 
cases of operable breast cancer. 
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Figure 18.4. Survival curves of primary breast cancer patients according to lymph node 
stage (A, B, C) and index I (> 2.8 (64 cases), 2.8-4.4 (169 cases) and > 4.4 (65 cases)) 
The solid lines are those for the values of I .  The top dotted line is for the survival of an  
age-matched population free of breast cancer and the lower dashed line is for 25 patients 
identified as having a poor prognosis by a previous index. These authors” also proposed 
for simpler practical use rounding the coefficients so that I = [0.2x Size + Stage + 
Grade]. They noted that the results in this figure were reproduced almost exactly if the 
index values I are changed to 3.4 and 5.4 from 2.8 and 4.4. 

Univariate analysis of clinical and histological data is undertaken using a 
x z  test using contingency tables whereas testing for a significant difference in 
survival between two patient groups is undertaken using the logrank test. What 
is not done is to use a x Z  test and a 2 x 2 contingency table for, say five-year 
survivals, where the classes are Survival =- 5 years and Survival < 5 years for 
the two patient groups. 

This would use only a part of the available information, discarding much 
which can be useful. The logrank test involves a life table calculation: for 
a single survival curve a Kaplan-Meier life table calculation would be used 
whereas with the logrank test one is in effect comparing two Kaplan-Meier 
curves. 

As an example, in a French multicentre study of the prognostic value of 
steroid receptors after long-term follow-up of 2257 operable breast cancersz4, 
population characteristics such as hormonal status (pre-menopausal and post- 
menopausal) and TNM stage were studied in univariate analysis using the x 2  
test. 
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Kaplan-Meier survival rates were determined for oestrogen receptors (ER) 
and progesterone receptors (PR) with the ER and PR characteristics classified 
as negative, positive or not determined. Univariate analysis was performed for 
disease-free intervals and overall survivals. At five years the overall survival 
was 90.1% for ER+ tumours, 91.5% for PR+ tumours and 91.4% when both 
receptors were positive. All differences were significant, P < 0.01 between 
positive and negative results. 

the following 
covariates were used: age (with a cut-off chosen to be 35 years), menopausal 
status, clinical stage, tumour size, histological type and grade of tumour, and 
steroid receptors. It was found that PR status had no statistical significance 
regarding either the disease-free interval or mortality risk through breast cancer. 
Also no significant differences were found in the relative risks associated with 
either ER or PR status among premenopausal versus post-menopausal patients. 
Some of the resuks are given in Table 18.5 as an example of relative risks 
obtained using Cox modelling. 

For multivariate analysis using the Cox model in this 

DON’T JUMP TO CONCLUSIONS 
R 

From a 1996 issue of the International Journal of Radiation Oncolgy 
Biology & Physics (34 745-747, Dr M.S. Anscher writing an Editorial 
on adjuvant theory for stage C prostate cancer and PSA) the following 
experiment was recorded of ‘the scientist who obtained a grant to study 

how much each leg contributed to a frog’s ability to jump. After 
telling his frog to jump he noted that a frog with 4 legs jumped 4 feet, 

one with 3 legs jumped 3 feet, one with 2 legs jumped 2 feet and a 
frog with 1 leg jumped 1 foot. Finally, he removed the frog’s last leg. 

No matter how loudly he yelled at the frog it did not move. From 
these data, the scientist concluded that a frog with no legs cannot hear.’ 
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Chapter 19 

Sensitivity and Specificity 

19.1 DEFINITIONS 

In epidemiology (which can be defined as the study of the distribution and 
determinants of health related states of events in defined populations), the terms 
sensitivity and specificity and the related positive predictive value and negative 
predictive value are used in the assessment of the predictive values of a set of 
symptoms or procedures as they relate to a certain disease. 

These terms are defined below, as they would relate to a screening test in 
a population of individuals some of whom have the disease and some of whom 
do not, Table 19.1. 

Table 19.1. Notation: a = true positives; b = false positives; c = false negatives; 
d = true negatives. 

~ 

Test Disease status Total 
result 

Present Absent 

Positive U b (a  + b)  
Negative c d ( C + d )  

Total (a  + c )  ( b + d )  

Sensitivity is the probability of a positive test in people with the disease. Using 
Table 19.1, Sensitivity = a / (a  + c ) .  

Specificity is the probability of a negative test in people without the disease. 
Using Table 19.1, Specificity = d / ( b + d ) .  Thus (1 -Specificity) is the probability 
of a positive test in people without the disease: this is the value of X for a 
receiver operating characteristic (ROC) curve which graphs Y = Sensitivity 
versus X = (1 - Specificity). 

232 
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Positive predictive value (PPV) is the probability of the person having the 
disease when the test is positive. Using Table 19.1, PPV = a / (a  + b) .  

Negative predictive value (NPV) is the probability of the person not having 
the disease when the test is negative. Using Table 19.1, NPV = d / ( c  + d ) .  

19.2 PROBLEMS OF DEFINING NORMALITY AND ABNORMALITY 

The meaning of the words normality and abnormality in the English language 
preceded by many years the Gaussian or normal distribution which was only 
discovered in 1733, see Chapter 3. Statistical normality and common usage 
normality do not always have the same meaning (just as statistical significance 
and clinical significance are not always the same) unless the distribution of test 
results for the normal and abnormal populations follow two different Gaussian 
probability distributions. 

Thus one inappropriate model for normality/abnormality is a single 
Gaussian curve in which 5% of the population are taken to be abnormal 
just because of test results lying in one of two 2.5% tails, Figure 19.1 
(top left). Kramer' has pointed out that such statistogenic abnormality often 
results in further testing and occasionally in unnecessary therapy, terming this 
phenomenon the Ulysses syndrome!2. The analogy is with Ulysses' two-year 
odyssey between the end of the Trojan war and his return home, during which 
time he experienced a number of needless and dangerous adventures. 

Figure 19.1 (top right) shows a model with two non-overlapping 
independent probability distributions, not necessarily Gaussian. However, in 
practice, the division between normality and abnormalitcis not so clearly defined 
and is more like the situation in Figure 19.1 (bottom left) or Figure 19.1 (bottom 
right). Defining abnormality for Figure 19.1 (bottom left) is obviously extremely 
difficult and for Figure 19.1 (bottom right) can also be problematical as a cut-off 
point has to be defined between a and b which will inevitably result in some 
misclassifications. 

19.3 RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE 

The type of graph most often encountered for assessing the ability of a screening 
test to discriminate between healthy and diseased persons is a receiver operating 
characteristic (ROC) curve, which plots Sensitivity versus (1 -Specificity), and 
for which an example is shown in Figure 19.2 for PSA (prostate specific 
 antigen^^. 
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Test I ~ I I I  To11 rosult 

Figure 19.1. Normality/abnormality modelling. (Top left) A single Gaussian distribution. 
This innapropriate statistical model of normality/abnormality is sometimes referred to 
as the ghost of Gauss’.3. (Top right) Model using two non-overlapping independent 
probability distributions. (Bottom left) Model using two distributions which are merged 
within the overall observed distribution. (Bottom right) A bimodal distribution model. 
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Figure 19.2. ROC curve of prostate-specific antigen (PSA): modified from Brawer4. 
Different points on this ROC curve represent different choices for a cut-off point. That 
for PSA= 10.0 ng/ml represents a point on the curve that results in a specificity of 
0.9 but only 0.2 sensitivity, whereas for PSA= 2.0 ng/ml the point on the ROC curve 
represents a specificity of 0.3 and a 0.95 sensitivity. 
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19.4 EXAMPLE: PROSTATE CANCER EARLY DETECTION 

The importance of early diagnosis of prostate cancer can be seen from the cancer 
incidence and mortality figures5 in the USA for 1996 where prostatic cancer is 
the leading cancer in males with 317,100 cases: greater than lung cancer with 
98.900 cases. That effective treatment can be given is seen in the fact that 
prostatic cancer is the second leading cancer cause of death with 4 1,400 cases 
compared to 94,400 lung cancer deaths in males. 

The diagnostic value of PSA is in the immunohistochemical identification 
of prostate carcinomas. The American Cancer Society6 recommends that for 
over 50 years of age, annual digital rectal examination and PSA should be 
performed for the early detection of prostate cancer in asymptomatic males: 
and if either is abnormal then further evaluation should be considered. 

The PSA test is an example of a test for which higher values of the test result 
reflect greater degrees of abnormality (i.e. a greater probability of the existence 
of prostatic cancer). To use such a test the choice of a cut-off value must be 
made. A low cut-off will result in greater sensitivity (i.e. of the probability of a 
positive test in people with the disease) whereas a high cut-off value will result 
in greater specificity (i.e. of the probability of a negative test in people without 
the disease). 

This inverse relationship always exists when the test result is measured on 
a continuous scale as in Figure 19.2 and the relationship between specificity 
and sensitivity with PSA cut-off is demonstrated in Figure 19.3. The choice of 
cut-off point depends on the particular situation being considered and for the 
example under consideration, early diagnosis of prostatic cancer, Brawer4 states 
the following. 

‘For prostate cancer most efforts are directed towards increasing specificity 
(probability of a negative test in  males without prostatic cancer). This stems 
from the likelihood that men are not going to be tested only once in their lifetime, 
but will undergo serial tests, perhaps annually as suggested by the ACS. Thus 
a false negative test is likely to be of less significance. The test result may 
become positive while the malignancy is still curable. 

‘In contrast, false positive tests result in a large burden in terms of increased 
expenditures for subsequent uneccessary medical procedures and increased 
anxiety for misdiagnosed patients . . . A strategy to reduce false positives 
necessitates tests that have increased specificity.’ 

Figure 19.4 is an example4 of the variation of positive predictive value 
(PPV: probability of the person having the disease when the test is positive) as 
a function of PSA cut-off and age group. It is seen that there is an age-specific 
pattern indicating that a single PSA cut-off may be innappropriate. 
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Figure 19.3. Inverse relationship of PSA sensitivity and specificity for males undergoing 
ultrasound guided prostate needle biopsy4. 
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Figure 19.4. Positive predictive value for PSA cut-offs of 2.5,  3.5,4.0,4.5, and 6.5 ng/ml 
and different age groups in men undergoing ultrasound guided prostate needle biopsy4. 
Note that PPV tends to increase with advancing age and with higher PSA cut-off levels. 
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19.5 EXAMPLE: NUCLEAR MEDICINE IMAGING 
INTERLABORATORY COMPARISON STUDIES 

In the example in section 19.4 the aim was to increase specificity, which brings 
with it a reduction in sensitivity. This example is chosen to illustrate a situation 
where sensitivity is more important than specificity. 

The WHO and IAEA have organised7 blind studies for nuclear medicine 
gamma camera imaging devices for a wide spectrum of manufacturer’s 
equipment and for some 16 countries. The test object, Figure 19.5, was a 
liver phantom (i.e. an object which when imaged mimics the image of a human 
liver) containing 10 targets simulating liver tumours, with the same diameter of 
2 cm but with different target-to-background radioactivity ratios. 

The laboratories in the survey did not know the position or number of 
targets (i.e. it was a blind study) and were requested to report how many, and in 
which positions (grid reference axes, x =A, H and y =1, 7 are seen in Figure 
19.5) the target images were seen. The analysis was made by country and by 
gamma camera type using sensitivity, specificity and ROC curves. 

Table 19.2. Interlaboratory comparison study. 

Laboratory Actual phantom 
report 

Tumour Tumour 
present absent 

Tumour No. of No. of 
present true +s False +s 

Tumour No. of No. of 
absent False -s True -s 

The results were initially assessed using the data classification (analogous 
to that in Table 19.1) in the format of Table 19.2 and typical group (gamma 
camera group, laboratory country group) ROC curves7 are shown in Figure 19.6. 
What is termed the Guess line in Figure 19.6 is the line for which (Sensitivity 
+ Specificity)= 1 and represents the results which would be obtained purely by 
chance. Any diagnostic test with such an ROC, where Sensitivity always equals 
(1 -Specificity) would provide totally equivocal diagnostic information. 

The area beneath the ROC curve is always greater than 0.5 and the accuracy 
of the evaluation increases as the area under the ROC increases. This area 
was calculated for the WHO-IAEA survey using an algorithms developed by 
the College of American Pathologists and, for example, for the participating 
countries, the ROC areas were in the range 0.77-0.95: the worst performance 
country being indicated by the area 0.77. 
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Figure 19.5. (Left) Schematic diagram of the IAEA-WHO liver phantom indicating the 
position of the 10 targets. (Right) Gamma camera image of the liver phantom showing 
the grid points outside the liver to assist in identifying the location of the targets. 

Figure 19.6. Typical ROC curves for the interlaboratory comparison survey. 
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19.6 KAPPA TEST 

Altman’ describes well how to measure inter-observer agreement, using as data 
the assessments of 85 xeromammograms by two radiologists (A and B) where 
the xeromammogram reports are given as one of four results: Normal; Benign 
disease; Suspected cancer; Cancer. 

A measure of agreement is required (this is not a case of hypothesis testing 
as in the example in Figure 13.1 when 10 radiologists assessed whether a 
large film or small film was preferable for intravenous urogram imaging and 
a Wilcoxon test was used) between radiologist A and radiologist B rather than 
a test of association such as might be undertaken using the x 2  test. 

Table 19.3. Inter-observer basic data for assessment of 85 xeromammograms by two 
radiologists, after Altman’ and taken from a larger study by Boyd et allo. 

Radiologist B 

Radiologist A Normal Benign Suspected ca. Cancer Total 
~ ~~ ~~ ~ ~~ ~ ~ 

Normal 21 12 0 0 33 
Benign 4 17 1 0 22 
Suspected cancer 3 9 15 2 29 
Cancer 0 0 0 1 1 

Total 28 38 16 2 85 

As Altman points out, the simplest approach is to count how many 
exact agreements were observed between A and B, which from Table 19.3 is 
54/85 = 0.64. However, the disadvantages with this method of merely quoting 
a 64% measure of agreement that it does not take into account of where the 
agreements occurred and also the fact that one would expect a certain amount 
of agreement between radiologist A and radiologist B purely by chance, even 
if they were guessing their assessments. 

The complete theory underpinning the kappa ( K )  test, including the 
calculation of confidence intervals and including a weighted kappa test where 
all disagreements are not treated equally, has been given by Altman’. 

The expected frequencies along the diagonal of Table 19.3 are given in 
Table 19.4 from which it is seen for these data that the number of agreements 
expected by chance is 26.2 which is 31% of the total, i.e. 26.2185. What the 
kappa test gives is the answer to the question of how much better the radiologists 
were than 0.3 1. 

The maximum agreement is 1.00 and the kappa statistic gives the 
radiologists’ agreement as a proportion of the possible scope for performing 
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better than chance, which is 1 .OO - 0.3 1 

K = (0.64 - 0.31)/(1.00 - 0.31) = 0.47 

There are no absolute definitions for interpreting K but it has been suggested911' 
that the guidelines in Table 19.5 can be followed, which in the example 
considered here means that there was moderate agreement between radiologist 
A and radiologist B. 

Table 19.4. Calculation of the expected frequencies for the kappa test, after Altman' 

Assessment Expected frequency 

Normal 
Benign 

Cancer 

33 x (28/85) = 10.87 
22 x (38/85) = 9.84 

1 x (3/85) = 0.04 
Suspected cancer 29 x (16/85) = 5.46 

Table 19.5. Guidelines for the interpretation of the K statistic'." 

K values Strength of agreement 

4 20 Poor 
0.21-0.40 Fair 
0.41-0.60 Moderate 

0.81-1.00 Very Good 
0.61-0.80 Good 

Another example of the use of the kappa test has been in the interpretation 
of contrast enhanced magnetic resonance imaging (MRI) of the breastI2. In this 
case there were three observers. A series of K values were calculated so that all 
observers were tested against each other for three different imaging sequences: 
TI weighted pre-contrast; T2 weighted pre-contrast; TI weighted post-contrast. 
For each imaging sequence three lesion features were assessed: conspicuity; 
signal intensity; contour. In addition, for observer A, a first reading was tested 
against a second reading. 

The resultant series of 40 values of K led the authorsI2 to conclude that 
'there is a significant observer variability and a substantial learning curve in the 
interpretation of breast MRI, as well as variability in the analysis of dynamic 
data'. Figure 19.7 is a frequency diagram of the total number of lesions reported 
by each radiologist per examination. 
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Figure 19.7. Frequency histogram of the total number of lesions reported by each 
radiologist per examination'*. There was significant disagreement between radiologists in 
the number of reported lesions per examination with radiologist C (the least experienced 
observer) reporting the highest number of lesions. 

~ ~~ 

MEASLES 

Did you ever have the measles, and if so, how many? 
Charles Farrar Browne (1834-1867) in The Census, using I the pseudonym Artemus Ward. 
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Clinical Trials 

20.1 INTRODUCTION 

Entire books can and have been written on various aspects of clinical trial 
design'-6, journals have published  guideline^^-^ and in the encyclopaedic multi- 
author textbooks on oncology, chapters are usually included on clinical trials 
de~ign"- '~ .  

This chapter can only therefore review the major topics relating to clinical 
trials but it will emphasise the possible problems and pitfalls which can arise, 
both in design and analysis stages, since it is extremely useful in practice to be 
aware of what not ro do in order to avoid making the clinical trial results so 
biased that they would be useless. 

20.2 TRIAL AIMS AND OBJECTIVES 

One fault which sometimes occurs is that an attempt is made to answer too many 
questions at the same time in a single trial. At best there should be one major 
question asked of the trial and a maximum of two subsidiary questions and it is 
essential that these aims and objectives are clearly specified in the protocol. 

The five main questions to be considered in  the design stage are as follows. 

1. The clinical question, i.e. what treatment methods are being investigated. 
2. The clinical material. i.e. what population is being studied. 
3. The design of the study, e.g. phase I, I1 or 111; randomised or non- 

randomized. 
4. Statistical analyses and quality assurance considerations. 
5.  Endpoints. i.e. what measure(s) of patient welfare. 

With regard to I the two main pitfalls when considering the clinical 
questions are as follows. 

1. A choice of a clinically inappropriate question within the current clinical 
en v iron m e n t . 
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2. A choice of an unacceptable question in terms of patient and/or physician 
acceptance. 

Question 4 will have many parts to consider, not least the following, and 
some will be inter-related with question 5 .  

1. How is the criterion of success to be defined and measured and for what 
improvement in  success is i t  considered worthwhile organising a clinical 
trial? 
What level of statistical significance are we prepared to accept when 
analysing the results? 
Given the number of patients available for entry into the trial, what is likely 
to be the duration of the trial? 
Can historical controls be used? 

2. 

3. 

4. 

20.3 TRIAL DESCRIPTION BY PHASES 1-111 

Trials are in general described as phase I, 11, I11 or IV, where phase IV studies 
are post-marketing surveillance instituted by the pharmaceutical industry. It is 
the earlier phases 1-111 which concern us in this chapter and Table 20.1 defines 
these phases. However, it must be noted that alternative terminology is also 
sometimes used and one can encounter for example. phase IIA and IIB trials. 
The adjectives early, pilot and prel iminav are less clearly defined and can refer 
to phase I or I1 trials depending on the physician undertaking the trial. 

There is no internationally agreed wording for definitions of phases 1-111 
but the essence of these phases is encapsulated in Table 20.1 and the summary of 
typical parameter values is given in  Table 20.2 after Buyse”. As an example of 
the use of the term IIA and IIB, Table 20.3 is taken from Burdette and Gehan’ . 

Table 20.1. Descriptions of phase 1-111 terminology 

Phase I 
Dose escalation with a toxicity endpoint to determine the tolerance dose 
schedule 

Efficacy studies at defined dose levels where the trial screens for clinical 
activity and the endpoint is response. These are trials for a patient group 
for which treatment appears promising 

Randomised studies of new treatment versus current standard therapy. 
Endpoint is survival or time to disease progression 

Phase I1 

Phase 111 
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Table 20.2. Typical phase 1-111 parameter values: after Buyse13. 

Parameter Phase I Phase I1 Phase 111 

No. of patients 5-15+ 15-50+ 50-5000+ 
Duration of trial Weeks Months Years 
Randomised ? Never Sometimes Always 
Multicentre ? Never Sometimes Often 
Site-specific ? Sometimes Often Always 

Table 20.3. Terminology of Burdette and Gehan’ . 

Early trial: (Phase I) 
Several regimes of management are applied in order to choose the most 
suitable for further study 

Preliminary trial: (Phase IIA) 
I f  regime is not effective in early trial, this trial is planned to determine 
whether agent and/or operation deserves additional study. 

This trial should provide estimate of effectiveness of a regime passing 
the preliminary trial. 

Comparative trial: (Phase 111) 
Comparison of effectiveness of new regime with standard regime or with 
another new method of management. 

Follow-up trial: (Phase IIB) 

20.4 PHASE I TRIALS 

Phase I trials are usually conducted with previously treated patients and the 
statement by Burdette and Gehan’ some 30 years ago is still valid. ‘No single 
formal design for a phase I study can be recommended. Proposals for such 
plans have been made, but the knowledge and intuition of the investigator is 
much more important than a specific experimental design’. 

However, as an example of treatment allocation for phase I studies, Simon12 
describes a starting dose of one-tenth the LDlo mg.m-2 of body surface in the 
most sensitive patients and that the dose is increased for subsequent patients in a 
series of preplanned steps. Cohorts of 3-6 patients are treated at each dose level 
after the observation time for acute toxicity effects has ended for the patients 
treated at the lower dose level: see Table 20.414 for definitions of toxic levels 
in man. 

Then if no dose limiting toxicity (DLT) is found, Table 20.414, the dose 
is escalated for the next cohort. However, it can be that if the incidence of 
DLT is one-third then three more patients are treated at the same dose level: 
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but if no further observation of DLT is noted then the dose level escalates to 
the next level. The stopping rule for the closure of the phase I study and the 
passage to a phase I1 investigation is when the incidence of DLT is greater than 
one-third in the initial cohort of patients treated at a dose level. The phase I1 
recommended dose is often taken as the highest dose for which the incidence 
of DLT is less than one-third and usually more than six patients are treated at 
the recommended doseI2. A commonly used dose level scheme is a modified 
Fibonacci s e r i e ~ ~ , ’ ~ .  

2nd. level = Double the 1st. level 
3rd. level = 67% greater than the 2nd. level 
4th. level = 50% greater than the 3rd. level 
5th. level = 40% greater than the 4th. level 
6th. level = 33% greater than the 5th. level and this 33% figure is used 

for all subsequent levels. 

Table 20.4. Definitions of toxic levels in man, after Carter et a1 1 4 .  

Term Definition 

Subtoxic dose 

Minimal toxic 
dose 

Recommended 
dose for a 
phase I1 trial 

Maximum 
tolerated dose 

A dose that causes consistent changes in 
haematological or biochemical parameters and 
might thus herald toxicity at the next higher 
dose level or with prolonged administration. 

The smallest dose at which one or more of three patients 
show consistent, readily reversible drug toxicity. 

The dose that causes moderate, reversible toxicity in 
most patients. 

The highest safely tolerable dose. 

Phase I trials reported in oncological journals are relatively few compared 
with phase I1 and I11 trials and they are mainly drug trials and not a combination 
of drug and radiotherapy. 

This is illustrated in 1996 in Radiotherapy & Oncology where there was 
only one phase I trial r e p ~ r t e d ’ ~  although there were also two termed piloi 
studies. In this phase I study of a hypoxic cell sensitiser in combination with 
conventional radiotherapy, as an example of a recent phase I investigation, 14 
patients were entered, side effects were vomiting (2/14), arthralgia (1/14) and 
cramping (1/14): with none in 10/14. There was a range of tumour sites, 
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of number of doses (1-35) and of total doses (1-43.5 g). The authors also 
statedI5 that this was ‘an abbreviated phase I study and it was realised in the 
beginning that a formal phase I study should be repeated in the future’. In 1995 
in Radiotherapy C? Oncology there were no papers on phase I trials. 

Nevertheless, many phase I trials are in fact sponsored, by for example the 
National Cancer InstituteI6 and these include the following. 

1. 
2. Those with abnormal function. 
3. Young children. 
4. The elderly. 

Evaluation of adults with relatively normal organ function 

20.5 RANDOMISATION 

Phase I11 trials are always randomised and phase I1 trials are sometimes 
randomised, Table 20.2. The objective of randomisation is to ensure that there 
is no bias which will make the results invalid. Thus for example the allocation 
of patients into two treatment groups A and B must be by a method which 
eliminates any preconceived opinions that a particular patient might be more 
suitable for A than for B. There are three types of randomisation, single, stratified 
and balanced: sections 20.5.2-20.5.4. 

20.5.1 Methods of Randomisation 

Methods of randomisation usually involve a series of random numbers, Table 
20.5, where the method is to allocate treatment to one arm (A) of the trial when 
a patient receives an odd number and to the other treatment arm of the trial 
(B) when the patient receives an even number: or vice-versa. In a double- 
blind trial where only the trial medical coordinator, pharmacist and statistician 
have a knowledge of which patient is treated by A or B. and where neither the 
patient’s physician nor the patient has this knowledge, allocation to A or B can 
be organised by handing to the patient at trial registration the information in  a 
sealed envelope which is then passed to the pharmacist so that either the drug 
or the placebo can be dispensed. 

Another method of randomisation, no longer so often used, is to depend 
on birth dates: but this is an approximation since the number of odd dates in a 
year does not equal the number of even dates. 
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20.5.2 Single Randomisation 

Single randomisation is the allocation of the patient intake into the two arms of 
the the trial A and B without any subdivision by any patient characteristic such 
as age, sex or histology, Figure 20.1. If 20 random numbers are as follows: 

20, 17,42,28,23, 17,59,66, 38,61,02, 10,86, 10,51,55,92,52,44,25. 

There are 20 pairs of 2-digit numbers. If treatment A = odd number and 
treatment B = even number and we have 20 patients entering the trial, then the 
patient allocation for treatment would be as given below: 

n 

Patient Treatment Patient Treatment 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

B 

B 
B 

A 

A 
A 
A 

B 
B 

A 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

B 
B 
B 
B 

A 
A 

B 
B 
B 

A 

1 A  
2 B  
3 8  
4 A  
5 8  
6 A  

14 A A B  
15 A 

Figure 20.1. Single (sometimes called simple) randomisation where the allocation of 
patients amongst subgroups (i.e. class) is left to chance. 
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RANDOM NUMBER MACHINE 
The cartoon was first published’ under the legend ‘Random numbers 

can be produced by elotronic devices or by simple machines‘. 
However, nothing to do with randomisation can be quite as strange as 

the report in the early 1970s in the London Evening Standard under the 
title ‘A Bucket of Pills-und it’s Help Yourself. 

‘The doctor who piled all the drugs in his surgery into a bucket in the 
waiting room, attaching a label telling his patients to help themselves 

and not to bother him.’ 
and 

‘Even when the General Medical Council did act, it could get the 
oddest answers-the doctor with the pills in the plastic bucket simply 

retorted that his treatment was no more random than that of other 
doctors.’ 

FIBONACCI SERIES OF NUMBERS 

Fibonacci from the Latin means son of Bonacci, his family’s surname, 
but he was more often known during his lifetime in the Middle Ages as 
Leonard0 of Pisa. In 1202 he published ‘A  Book on Counting’ which 
included such topics as fractions, square roots and algebra. He was 
also the discoverer of an interesting number relationship. You build a 
Fibonacci series by starting with 1 and then adding the last two numbers 
to build the next. 

1 ,  I , 2 , 3 , 5 ,  8,  13.21.34, 55 and so on 

The same sort of relationship often appears in nature. The bumps on 
the outside of a pineapple are arranged in spirals, some going clockwise 
and some anticlockwise. and the ratio is 8:13, i.e. 8 in one direction and 
13 in the other. Similarly, the ratio of spirals you see in a pine cone is 
5:s and in the heart of a sunflower is 34:55. 
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Table 20.5. Random numbers. These can be obtained from standard books of tables (as 
below) or can be generated by computer software as and when necessary. From Fisher 
and Yates, Statistical tables for Biological, Agricultural and Medical Research (6th edn, 
1974, table XXXIII, p 134). Courtesy Longman Group UK Limited. 

03 47 43 73 86 36 96 47 36 61 
97 74 24 67 62 42 81 14 57 20 
16 76 62 27 66 56 50 26 71 07 
12 56 85 99 26 96 96 68 27 31 
55 59 56 35 64 38 54 82 46 22 

16 22 77 94 39 49 54 43 54 82 
84 42 17 53 31 57 24 55 06 88 
63 01 63 78 59 16 95 55 67 19 
33 21 12 34 29 78 64 56 07 82 
57 60 86 32 44 09 47 27 96 54 

18 18 07 92 46 44 17 16 58 09 
26 62 38 97 75 84 16 07 44 99 
23 42 40 64 74 82 97 77 77 81 
52 36 28 19 95 50 92 26 11  97 
37 85 94 35 12 83 39 50 08 30 

70 29 17 12 13 40 33 20 38 26 
56 62 18 37 35 96 83 50 87 75 
99 49 57 22 77 88 42 95 45 72 
16 08 15 04 72 33 27 14 34 09 
31 16 93 32 43 50 27 89 87 19 

68 34 30 13 70 55 74 30 77 40 
74 57 25 65 76 59 29 97 68 60 
27 42 37 86 53 48 55 90 65 72 
00 39 68 29 61 66 37 32 20 30 
29 94 98 94 24 68 49 69 10 82 

16 90 82 66 59 83 62 64 11 12 
11 27 94 75 06 06 09 19 74 66 
35 24 10 16 20 33 32 51 26 38 
38 23 16 86 38 42 38 97 01 50 
31 96 25 91 47 96 44 33 49 13 

56 67 40 67 14 64 05 71 95 86 
14 90 84 45 11 75 73 88 05 90 
68 05 51 18 00 33 96 02 75 19 
20 46 78 73 90 97 51 40 14 02 
64 19 58 97 79 15 06 15 93 20 

46 98 63 71 62 
42 53 32 37 32 
32 90 79 78 53 
05 03 72 93 15 
31 62 43 09 90 

17 37 93 23 78 
77 04 74 47 67 
98 10 50 71 75 
52 42 07 44 38 
49 17 46 09 62 

79 83 86 19 62 
83 11  46 32 24 
07 45 32 14 08 
00 56 76 31 38 
42 34 07 96 88 

13 89 51 03 74 
97 12 25 93 47 
16 64 36 16 00 
45 59 34 68 49 
20 15 37 00 49 

44 22 78 84 26 
71 91 38 67 54 
96 57 69 36 10 
77 84 57 03 29 
53 75 91 93 30 

67 19 00 71 74 
02 94 37 34 02 
79 78 45 04 91 
87 75 66 81 41 
34 86 82 53 91 

11 05 65 09 68 
52 27 41 14 86 
07 60 62 93 55 
04 02 33 31 08 
01 90 10 75 06 
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20.5.3 Stratified Randomisation 

Another type of randomisation is stratified randomisation when the patient intake 
consists of two distinct classes (the black and white symbols in Figures 20.1 and 
20.2), for example, X and Y ,  which may for instance be male and female. The 
aim is to ensure that no matter how many of the intake are in class X or class Y ,  
one half of each class receive treatment A and the other half receive treatment 
B. Figure 20.2 shows this schematically. However, a balancing process should 
also be incorporated into any stratified randomisation. 

Figure 20.2, Stratified randomisation in which treatment arms are allocated equally 
(though randomly) to each subgroup (i.e. class) within the population. 

20.5.4 Balanced Randomisation 

From the patient allocation by single randomisation it is seen that there is an 
unequal final division between the two treatment groups. If the approximate 
number of patients who will enter the trial is known, then it is possible to have 
balanced randomisation, in  which a certain block of patients will be balanced; 
e.g. 25 for treatment A and 25 for treatment B. 

The balancing will be made for the last two or three patients, thus if after 
47 patients have been allocated there are 25 assigned to A and 22 to B. then 
the final intake of three patients will be allocated to B to make up the total to 
25, rather than continue with the randomisation process, Figure 20.3. 
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1 I 6 I A b A 

Figure 20.3. Balanced (sometimes termed factorial) randomisation ensures that specific 
numbers of patients of each characteristic are allocated equally within each subgroup 
(i.e. class) of arms A and B. 

20.6 HISTORICAL CONTROLS 

The use of historical controls is not to be recommended as it can obviously be 
misleading and bias the results because, for instance, of even minor changes in  
treatment and in recording of data. Randomised studies are always the better 
option. 

demonstrates rather well the problem of 
using historical controls, Table 20.6, where in this example their use would 
have provided an incorrect conclusion since there is no significant difference 
between oestrogen therapy and placebo for equivalent time periods (i.e. the last 
2.5 years of the seven year trial) but if the placebo data is obtained from the 
first 2.5 years (and thus by definition are historical controls when compared with 
oestrogen therapy results for the final 2.5 year time period of the trial) there is 
a significant result P < 0.01. 

An illustration by Byar et ul 

20.7 PHASE I1 TRIALS 

Phase I1 trials have already been referred to in Tables 20.1-20.3 where their 
purpose and trial endpoints have been defined and typical parameters stated. 
These are recapitulated in Table 20.7. 

The most serious error in a phase I1 trial is to reject an effective drug from 
further study since a false negative error may mean that a drug of potential 
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Table 20.6. An example of a situation when historical controls did not work''. The trial 
extended over seven years and accrued a total of 23 13 prostatic carcinoma patients. 

Oestrogen trial arm Placebo trial arm Result of an analysis 
~ ~~~~~~~ 

Patients entered in Patients entered in No significant 
last 2.5 years last 2.5 years difference 

Patients entered in Patients entered in Significant 
last 2.5 years first 2.5 years difference 

(Historical controls) P < 0.01 

interest is  lost forever. Hence most  phase I1 trial designs try to  minimise this 
errori8. One example is the design of GehanI9 which is a frequently used design 
and has  therefore been used in this section as a representative design example.  

However ,  it should b e  noted that there are also designs by Fleming6 and 
by Simon'* and that the Fleming design with t w o  or three stages is  now widely 
used. 

Table 20.7. Summary of commentary on phase I1 trials in Tables 20.1-20.3. 

Efficacy studies at defined dose levels where the trial screens for clinical activity 
and the endpoint is response. These are trials for a patient group for which 
treatment appears promising. 

or 

If the regime is not effective i n  a phase I study, a phase 11 trial is planned to 
determine whether the agent and/or operation deserves additional study. (Phase 
HA) 

or 

I t  should provide an estimate of the effectiveness of a regime passing a phase I 
study. (Phase IIB) 

and 

Number of patients: 15-50+ 
Duration of phase I I  trial: 
Randomised: somet I mes 
Multicentrc: sometimes 
Sitc-spcci tic: often 

months 
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20.7.1 Gehan’s Design 

Gehan’s design of a phase I1 study” has had its methodology described in 
several publications on trial d e ~ i g n l ~ ~ ~ ’ ~ - ’ ~  with the most exhaustive reference 
on patient numbers required being given by Machin and Campbell’6. 

The plan controls the probability of a false negative result (i.e. a type I1 
error with an associated risk of this type of error given by the probability ,3, see 
Tables 8.1 and 8.4, and therefore looks to optimise the power (1 - /3), which is 
the probability of obtaining a correct result, i.e. of a treatment benefit when a 
treatment benefit actually exists. 

risk, by calculating the probability that the first r patients do not respond to the 
treatment for a pre-specified response n to the drug. The initial sample size is 
determined as the smallest value of r such that the probability of r consecutive 
failures is less than a given error rate /3: 

Pr(r successive patients failing on the drug)= /3 = (1 - n)‘ 

where Pr(of an individual patient responding to a particular treatment)= x and 
where n is constant for all patients and can be termed the minimum efJicacy. 

If ,3 is specified together with n then the above equation ,3 = (1 - T ) ~  can 
be solved6 to give 

where nl is the number of patients to be recruited to the first stage of the phase 
I1 trial (i.e. phase IIA’), assuming that rl responses will be observed in these 
nl patients. If none of the nl patients respond, then the drug is rejected for any 
further study (i.e. for a phase IIB trial). 

However, if at least one patient responds, i.e. rI > 0, then an additional 
n2 patients are treated in order to attain a given precision ( E ,  see Table 20.10 
legend) of the response rate n. Table 20.8 gives values of r for given values of 
x and Table 20.9 the number of patients (nl) required for a phase IIA trial for 
a given efficacy (i.e. therapeutic effectiveness) n and a given power (1 - B ) .  
Table 20.10 gives the additional number of patients (n2) required for the phase 
IIB trial. 

The Gehan plan controls the probability of a false negative result, i.e. the 

nl = ~ o g ( ~ ~ / ~ o g ( ~  - n) 
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Table 20.8. Probability of a given number of successive failures ( r )  for given 
probabilities (n) of patient response (i.e. treatment efficacy = n)‘. 

Number of 
consecutive 
patients 
0-1 n = 0.10 0.20 0.30 0.40 0.50 0.60 0.90 

Pr(of an individual patient responding to treatment) = n 

1 0.9000 
2 0.8100 
3 0.7290 
4 0.6561 
5 0.5905 
6 0.5314 
7 0.4783 
8 0.4305 
9 0.3874 

10 0.3487 
20 0.1216 
30 0.0424 

0.8000 
0.6400 
0.5120 
0.4096 
0.3277 
0.2621 
0.2097 
0.1678 
0.1342 
0.1074 
0.01 I5 

0.7000 0.6000 0.5000 0.4000 0.1000 
0.4900 0.3600 0.2500 0.1600 0.0100 
0.3430 0.2160 0.1250 0.0640 
0.2401 0.1296 0.0625 0.0256 
0.1681 0.0503 0.0313 0.0102 
0.1176 0.0467 0.0156 0.0041 
0.0824 0.0280 0.0078 
0.0576 0.0168 
0.0404 0.0101 
0.0282 0.0060 

20.7.1.1 Number of Patients Required for a Phase IIA Trial 

Table 20.9. Number of patients (nl required for a phase IIA trial for a given treatment 
efficacy (n) and given power (1 - ( I  - p )  can be thought of as ‘the chance of a 
conclusive result’ and p as ‘the rejection rate permitted by the investigator’. 

Therapeutic Power (1 - 
effectiveness 

(JI 1 (1 - p )  = 0.80 0.90 0.95 0.99 

0.05 32 45 59 90 
0.10 16 22 29 44 
0.15 10 15 19 29 
0.20 8 1 1  14 21 
0.30 5 7 9 13 
0.50 3 4 5 7  
0.60 2 3 4 6  
0.90 1 1 2 2  
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20.7.1.2 Number of Patients Required for a Phase IIB Trial 

Table 20.10. Part I. Power (1  - b,  = 0.90. 

Additional number of patients (nz )  required for the phase IIB trial following completion 
of the phase IIA trial for which n l  patients were accrued],'. The value of n2  depends on 
the therapeutic effectiveness (n), on n l  and on the power (1  - p )  and on the specified 
precision ( E ) .  Precision is defined as follows. An estimate of the true effectiveness is the 
proportion of patients in the sample who are treated successfully (I;) and the precision 
of this estimate is measured by its standard error SE(I;) where 

S E l i )  = dM1 - p)l/nI 

and n is the number of patients and p is the true proportion (which is unknown) of 
successes following treatment. then p can be substituted by fi to obtain an estimate of 
the SE. The largest possible SE@) is obtained when p = 0.5 and thus SE(F) is less than 
or equal to 0 . 5 l f i .  

Therapeutic No. of 
effective- patients in Power (1 - p )  = 0.90 
ness (71) phase IIA r ]  = 1 rl = 2 rl = 3 rl = 4 rl = 5 rl = 6 

No. of treatment successes ( r l )  in phase IIA trial 

trial ( n l )  for E = 0.05 and [E= 0.101 

0.10 22 20 [O] 35 [O] 47 [O] 57 [O] 65 [O] 71 [O] 
0.15 15 42 [O] 59 [4] 72 [7] 80 [9] 85 [lo] 85 [lo] 
0.20 1 1  60 [7] 77 [ll] 87 [14] 89 [14] 89 [14] 89 [14] 
0.30 7 83 [16] 93 [18] 93 [18] 93 [18] 93 [18] 93 [18] 

Note that the 2nd column in this table is the same as part of the 3rd column in Table 
20.9 

Table 20.10. Part 11. Power (1 - /?) = 0.95. 

Therapeutic No. of 
effective- patients in Power (1 - /?) = 0.95 
ness ( n )  phase IIA rl = 1 r1 = 2 TI = 3 rl = 4 rI = 5 rt = 6 

No. of treatment successes ( r l )  in phase IIA trial 

trial ( n l )  for E = 0.05 and [ E =  0.10] 

0.10 29 4 [O] 17 [O] 28 [O] 38 [0] 46 [O] 53 [0] 
0.15 19 29 [O] 45 [O] 58 [ O ]  67 [3] 75 [SI 79 [6] 
0.20 14 46 [l] 64 [6] 76 [9] 84 Ill] 86 [ll] 86 [ l l ]  
0.30 9 71 [ll] 87 [15] 91 1161 91 [16] 91 I161 91 [16] 

Note that the 2nd column in this table is the same as part of the 4th column in Table 
20.9 
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Figure 20.4 shows for a power of (1 - p )  = 0.95 the variation in the total 
number (nl + n2 as in Tables 20.9 and 20.10) of patients required for a Gehan 
design of phase I1 trial as a function of therapeutic effectiveness (n) for two 
different specified precisions ( E  = 0.05 and 0.10) and for one (rl = 1)  and six 
(rl = 6) treatment successes in  the phase IIA trial. It is seen that each of the 
four curves rises eventually to a plateau, (nl + n2) = 100 for c = 0.05 and 
(nl + 122) = 25 for E = 0.10. The values of (nl + n2) for rl = 2 , 3 , 4 , 5  lie 
between those for r1 = 1 and r1 = 6. The minimum value of (nl + n2) = 15 
for any combination of parameters: see also Table 20.7. 

Finally, a word of warning: the information in  this chapter on patient 
numbers required for clinical trials are examples only to give the reader an idea 
of the order of magnitude of the numbers required, and also the complexity of 
the process of deciding on the numbers required. For instance for the phase 
I1 Gehan-design trials one has to consider n ]  , n, rl , ( 1  - B )  and the precision 
E before reaching a conclusion on the patient number n2 as seen from Table 
20.10. 

In practice, therefore, when planning a clinical trial, the reference with 
the complete set of tabledgraphs should be consulted, e.g. those of Machin and 
Campbell6, and interpolations/extrapolations should not be made from data such 
as in Tables 20.9 and 20.10. 

20.8 PHASE I11 TRIALS 

Phase I11 trials have already been referred to in  tables 20.1-20.3 where their 
purpose and trial endpoints have been defined and typical parameters stated. 
These are recapitulated in Table 20.1 1. 

Table 20.11. Summary of commentary on phase 111 trials in Tables 20.1-20.3. 

Randomised studies of new treatment versus current standard therapy. Endpoint 
is survival or time to disease progression. 

or 

Comparison of effectiveness of new regime with standard regime or with another 
new method of management. 

and 

Number of patients: 50-5000+ 
Duration of phase 111 trial: years 
Randomised: always 
Multicentre: often 
Site-specific: always 
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Figure 20.4. Total number of patients ( n l  + nz) required for a Gehan design of phase 
I 1  trial, as a function of therapeutic effectiveness ( T I )  which can also be described as 
the probability of an individual patient responding to a particular treatment. The power 
(1  - b )  = 0.95 and the curves are drawn for two values of specified precision ( E  = 0.05 
and E = 0. IO)  and two values of the number of treatment successes in the phase IIA 
trial, r l  = 1 and r l  = 6. Curves constructed from data tables of Machin and Campbell6. 
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Unequivocal answers must be available to all the following questions before 
the start of the phase 111 trial 

What population is being studied? 
What treatment methods are being investigated? 
What randomisation methods are required? 
How is the criterion of success to be defined and measured, and for what 
improvement in success is it considered worthwhile organising a clinical 
trial? 
What level of statistical signifcance are we prepared to accept when 
analysing the results? 
Given the number of patients available each year what is likely to be the 
duration of the trial? 

It is also helpful to have a list of headings, Table 20.12, which can be 
described as the main features of a clinical trial, and which can be used as a 
check list in trial planning discussions to ensure that nothing of major importance 
has been forgotten. 

0 

0 

Table 20.12. Main features of a clinical trial, after Pocock' 

A written protocol 
Controlled trials Statistical analysis 
Randomisation Protocol violations 
Size of trial 
Double blind trials Ethical considerations 
Definition of patients Multicentre trials 
Definition of treatments 
Endpoint evaluation Publication 
Prognostic factors Truth and relevance 

Forms and data management 

Monitoring of trial progress 

Staff, responsibilities and funding 

In discussing statistical significance. we have already considered (see Table 
8.2) type I errors and cr risks (e.g. P < 0.05) and type I1 errors and p risks and 
the concept of power of a test being (1 - p ) .  

cy and /3 are also related to the size of the sample, N .  which for a clinical 
trial would be the number of patients. Ideally, the values of (Y and B would 
be specified by the researcher before the trial, and these values would then 
determine the size, N ,  of the sample he would have to draw for computation of 
the test chosen for statistical significance. However, in practice it is usual for cr 
and N to be specified a priori and this determines B .  To reduce the possibility 
of both types of error, I and 11, the value of N must be increased. 

Different types of catastrophe will follow type-I and type-I1 errors. As 
an example, consider a clinical trial of an existing drug A and a new drug B 
where the null hypothesis, Ho, is that there is no difference and the alternative 
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hypothesis, H I ,  is the drug B is better than drug A (ignore H2: drug A better than 
drug B for this example). If a type-I error occurs then Ho is wrongly rejected 
and following the inference that HI should thus be accepted, drug A will be 
abandoned and drug B now given to patients. What are the consequences? 

Since Ho is really true and there is no difference between A and B then 
the patients will not have suffered since they have only been placed on another 
drug of similar efficacy. 

Now consider a type-I1 error when Ho is wrongly accepted. In this instance, 
the truth is that HI  is correct and the consequences to the patient are that a drug 
with a better efficacy is denied to them, since the acceptance of Ho would mean 
that the current drug A should remain in  use and research be abandoned on 
the new drug B (or perhaps continued more stringently, if the value of N is 
relatively small). 

Of the two types of error in this situation, a type-I1 error would seem to 
be worse than a type-I error since it could mean rejection of a new and useful 
drug-if the trial is not carefully planned. 

Careful planning of phase I11 trials is, however, not limited only to decisions 
taken on the patient numbers and the problems most frequently encountered are 
listed in  Table 20.13 after BuyseI3 and although the definition of clinical trial 
illnesses which follows this table is a joke, it nevertheless contains a warning 
to planners of clinical trials. 

In the EORTC guidelines’ for writing radiotherapy phase I11 trial protocols, 
the endpoints are given as overall survival, disease-free survival, acute and late 
side effects, local control and quality of life. In addition, EORTC state that 
in the near future cost-benefit aspects in public health may also be part of the 
study assessment. The 29 major headings given by EORTC for consideration of 
any radiotherapy protocol are listed in Table 20.14; for subheadings the reader 
is referred to the original publication’. 

Multicentre trials are not mentioned explicitly in Table 20.14 but this 
section closes with a word of warning, because the more centres involved in 
a trial the greater the possibilities for errors and miscommunication. Indeed, 
problems of multicentre trials most often arise from inadequate and unclear 
communications between participating investigators, all of whom must agree to 
follow a common protocol. Figure 20.5 gives examples of how not to set up 
clinical trial organisations! 

20.8.1 

The number of patients required for a trial depends on the CY risk, the @ risk 
(which is incorporated into the decision making as the power 1 - j3), and the 
difference in  treatment responses between the two arms (denoted by subscripts 1 
and 2) of the trial. This for example, may be a difference in T-year survival rate 
of IO%, 20%, . . . etc, and Table 20.15 gives an example2’ where the T-year 
rate is a long-term survival rate which can be equated to a cured proportion 

Number of Patients Required for a Phase I11 Trial 
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Table 20.13. Problems most frequently encountered with phase I11 triaIsl3. 

Frequent source of bias Frequent source of problems 

Design 
Post-randomisation exclusions Optimistic treatment benefit 

Optimistic patient accrual 
Stringent selection criteria 

Conduct 
Losses to follow-up Administrative burden 
Signifcarit interim results Diminishing interest 

Analysis 
Exclusion of patients 
Analysis by actual treatment 

Inadequate statistical tests 
Multiple comparisons 

Interpretation 
Data derived results 
Overemphasis of subgroups 

P > 0.05 does not imply no benefit 
P < 0.05 does not imply large benefit 

CLINICAL TRIAL ILLNESSES 

Senility 

Trials taking so long that when completed the 
information provided is o f  little use. 

Sclerosis 
I 

Trials with extensive and complicated documentation 
which eventually will defy analysis. 

Death 
Trials never completed 
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Table 20.14. EORTC recommended major topics to be considered for a phase 111 clinical 
trial of radiotherapy9. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Background and rationale 
Objectives of the trial 
Patient selection 
Trial design 
Pretreatment evaluation 
Surgery (where applicable) 
Radiation treatment 
Drug therapy (including sensitisers) 
Other therapies (if applicable) 
Required clinical evaluation, laboratory tests and follow-up 
Endpoints 
Criteria for (disease) progression 
Guidelines for second line treatment at relapse, if any 
Patient registration and randomisation procedure 
Forms and procedures for collection of data 
Reporting adverse effects 
Statistical considerations 
Quality of life assessment 
Cost evaluation assessment 
Ethical considerations 
Investigator commitment statement 
Administrative responsibilities 
Trial sponsorshiplFinancing 
Trial insurance 
Publication policy 
Administrative signatures 
List of participants with expected yearly accrual 
References 
Appendices 

(C, and C,), the a risk is specified by P = 0.05, there are two different values 
for the power (1 - B )  of 0.50 and 0.75, and four different computations of 
(C2 - Cl). 

The notion of difference in treatment responses between two arms of a trial 
is the most important determinant in making a decision on sample size. In many 
trials, unrealistic differences are presented, in order to minimise the number of 
patients in a trial. The result, of course, is that the trial results are negative 
because of lack of power; see section 20.11 on meta-analysis. 

Figure 20.6 includes the data in Table 20.15 and for P = 0.05 presents 
data for three different values of the power (1 - B )  of 0.50 (left), 0.75 (centre) 
and 0.90 (right). It is quite clear that for small differences in (C2 - Cl) of only 
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Figure 20.5. Organisation diagrams. From top left to bottom right: Traditional; 
South American; Socialistic; Arabian; Emancipated; Vatican; Albanian; French. (This 
organogram was originally given to me in German, which no doubt accounts for no 
German organogram being drawn!) 

5% extremely large numbers of patients are required for a trial. 

and three examples are listed' below. 
Tables of -patient number requirements are given in various publications 

Sample sizes for logrank testI2. Number of patients (number of deaths) to 
detect an improvement (P2 - P I )  in survival rate over a baseline rate ( P I  
when 
(I} ct = 0.05 and (1 - p )  = 0.80 
{11} CY = 0.05 and (1 - p )  = 0.90 
{III} ct = 0.01 and (1 - p )  = 0.95 
when the logrank is a two-tailed test. These data are reproduced from the 
publication of Freedman22 and is for five values of (P2 - P I )  of 0.05, 0.10, 
0.15, 0.20 and 0.35 with values of PI in the range 0.05-0.90 in intervals 
of 0.05. 
Number of patients in each of two treatment groups, one-tailed and two- 
tailed tests" when 
(I} (Y = 0.05 and (1 - p )  = 0.80 
{11} ct = 0.05 and (1 - B )  = 0.90 
with (P2 - P I )  in the range 0.05-0.50 in intervals of 0.5 and the smaller 
success rate ( P I )  in the range 0.05-0.50 in intervals of 0.05. 
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Table 20.15. Number of patients required for a clinical trial, as a function of the a-risk 
( P  = 0.05), the B-risk (1 - = 0.5 or 0.75), and the observed difference in C-values. 
C is a long-term survival rate2". 

Observed difference, C2 - CI, 
which should be statistically 
significant at the P = 0.05 
(a-risk) level of significance 

Total number of cases required 
for the clinical trial = 2 N  IN in  group A 

and N in group B) 

1 - B = 0.5 1 - = 0.75 

A I in 2 chance of 
getting a conclusive 
result in a single 
trial trial 

A 3 rn 4 chance of 
getting a conclusive 
result in  a single 

Cz - CI = 5% with 
CI = 20% and C2 = 25% 2 N  = 1000 2,v = 1000 

Cz - Ci  = 10% with 
CI = 40% and C2 = 50% 2N = 400 2 N  = 700 

C2 - CI = 15% with 
CI = 10% and C2 = 25% 2 N  = 100 2 N  = 170 

C2 - CI = 20% with 
CI = 20% and C2 = 40% 2 N  = 7 5  2 N  = 130 

0 Total number of patients required to compare the response rate (comparison 
of proportions) in a treatment group with that of a control groupI3 and total 
number of patients required to compare the survival rates of a treatment 
group with that in a control groupI3. Both tables are for two-tailed tests 
and for 
{I} (Y = 0.05 and (1 - B )  = 0.80 
for P I  in the range 0.10-0.80 in intervals of 0.10 and P2 in the range 
0.15-0.95 in intervals of 0.05. 

20.8.2 Power Curves 

The power of a test is defined as the probability of rejecting the null hypothesis 
Ho when it is in fact false. That is, 

Power = (1 - Probability of a type I1 error) = (1 - B )  
The curves23 in Figure 20.7 show that the probability of committing a type 

I1 error ( B )  decreases as the sample size ( N )  increases and hence that power 
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2ow 10 0 10 40 eo 0 100 

5 %  
Lowr Roportlon 

5% 
Lower Pmportlon 

2ow 10 0 20 40 60 8 0 1  

.C,% 

Lorer proportl~n 

Figure 20.6. Charts2" to determine the number of patients required in a clinical trial 
for different combinations of variables: a risk (i.e. P = 0.05), power (1 - B )  and the 
difference (Cz - Cl). (Left) Number of cases required in a clinical comparison of two 
treatments in order that the observed difference, C2 - C,,  in  the proportions cured should 
be statistically significant at the P = 0.05 level ( N  = number of cases, in each treatment 
group.) CI, C2 = the proportion cured in the first and sccond groups respectively. 
( 1  - @) = 0.50. (Centre) Number of cases required in a clinical comparison of two 
treatments in order to stand a three in four chance of detecting (at the P = 0.05 level) a 
difference of Cz - C, in the proportions curable in the whole population. ( 1  - B )  = 0.75. 
(Right) Number of cases required in a clinical comparison of two treatments in order to 
stand a nine in ten chance of detecting (at the P = 0.05 level) a difference of C2 - CI 
in  the proportions curable in the whole population. ( 1  - B )  = 0.90. 

increases with N .  Figure 20.7 also shows that when Ha is true, i.e. when the 
true mean is po the probability of rejecting Ho is 0.05. Which is as it should 
be since a = 0.05 and a gives the probability of rejecting Ho when it is in fact 
true. 

20.8.3 Interim Analyses 

The analysis of the results of a trial is usually undertaken at the end of the 
trial. Nevertheless, interim analyses can take place, but it is often forgotten that 
every time one looks at the results the statistical significance level being taken 
as meaningful (e.g. originally P = 0.05) needs to  be made stricter. 

This is because by definition at the P = 0.05 level of significance there 
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Figure 20.7. Power curves23 of a two-tailed test with ct = 0.05 and samplc sizcs 
N = 4. 10.20. 50, 100. The samples are taken from normal populations with variance 
o 2  and a mean under Ho of po,  The vertical axis of the diagram is power (1 - B )  and 
the horizontal axis is the size of the difference between the two treatments under study. 
Power is a function of N ,  ci and the size of the difference between the success rates of 
the two treatments. 

are five false positive results in every 100. Thus there are five chances in 100 
of finding a so-called difference when no such difference really exists and the 
more often one looks at the results the greater is the chance of picking out one 
of these false positives by accident. 

Zelenl’ has published the data in Table 20.16 which shows, for example, 
that if a clinical trial is planned to have a false positive rate of 5% then this 
would be changed to 14% if there were five interim analyses, because of the 
reasoning stated above. 

Table 20.16 can also be used to determine an overall false positive rate of 
a trial when the analysis looks at several subgroups separately. For example, 
if there are five subgroups in a study, where each is analysed separately with a 
5% false positive rate (P = 0.05), then the overall false positive rate is 14%. 

To overcome this problem, it has been s u g g e ~ t e d ’ * > ~ ~ * ~ ~  that interim analyses 
be discounted unless the difference is statistically significant at the two-tailed 
P < 0.0025 level. If the interim differences are not significant at this level the 
trial continues to its originally intended size. The final analysis is performed 
without referring to the interim analyses and the type I error, a risk, is almost 
unaffected by having performed interim analyses. 

There have been many proposals on how to spend a during the trial, and 
how to keep the final a close to 0.05 for the last and therefore definitive analysis. 
a full discussion is to be found in the textbook of Friedman et a13 in which they 
discuss alpha-spending functions and group sequential methods. 
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Table 20.16. Multiple looks at the data versus false positive rates’’ 

No. of looks False positive rate 

1 0.05 
2 0.08 
3 0.11 
4 0.13 
5 0.14 

10 0.19 

20.8.4 Multiple Comparisons Between Subgroups: 
Bonferroni Method 

The problem of multiple comparisons has already been referred to in the previous 
section. In Gelman’s review26 of this problem it is stated that for k non- 
overlapping (i.e. independent) subgroups, with each test having a 5% false 
positive rate, there is a probability of (1 - 0.95k) of finding at least one test to 
be statistically significant at P < 0.05, just by chance. 

One of the methods of dealing with this problem of multiple comparisons 
is the Bonferroni methodz7 to undertake each of the k tests with a cutoff 
corresponding to 

where ct is the required overall false positive rate. As an example, with 
ct = 0.05 and k = 8 only tests with P < 0.0064 would be declared 
significant. Equivalently one could multiply all significance levels by 7.8 (since 
0.05/0.0064 = 7.8) and use a cutoff of 0.05. It is also noted that since 
1 - {kth root of [ 1 - a ] }  is approximately equal to a/  k the Bonferroni method 
is sometimes approximated by multiplying all significance levels by k .  

c t ’ = l - v m  

20.8.5 Inflation Factor Due to Patient Refusals 

The situation can arise in  comparative trials of two treatments that some patients 
are not given the randomised allocated treatment. This can be the situation in 
pre-randomisation when patients are randomised after being found eligible for 
the trial but before the patient’s consent to participate in the trial is sought2*. 
Such patients must be followed-up and analysed by intention to treat, rather than 
by actual treatment. 

If such deviations occur frequently they can cause a reduction in power 
and the number of patients must then be multiplied by an infition factor, Table 
20.17, to preserve the nominal power of the testl2,l3. 

It is never particularly easy to accrue large numbers of patients and if such 
a pre-randomised is designed and there are a large number of patient 
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refusals after the process of informed consent has been completed, such a trial 
is unlikely to accrue sufficient numbers for the required power. 

Table 20.17. Factor by which the number of patients must be increased to maintain the 
statistical power of a two-arm clinical trial if some proportion of the patients refuse the 
treatment assigned by randomisation and choose the other treatment instead. This enables 
the avoidance of bias in analysis of results: patients must be compared as randomised 
rather than as treated. That is, a patient randomised to treatment A who refused and then 
received treatment B must be considered in group A for analysis. (This is from a proposal 
from ZelenZ8). However, if 50% of the patients were to cross over, any treatment effect 
is entirely diluted and can no longer be detected, regardless of the number of patientsi2.l3. 

Refusal rate Inflation factor 

0.02 1.09 
0.05 1.23 
0.10 1.56 
0.15 2.04 
0.20 2.78 
0.25 4 00 
0.30 6.25 
0.35 1 1 . 1 1  
0.40 25 
0.45 100 

20.9 SEQUENTIAL TRIALS 

Sequential trials have the advantage of a built-in stopping rule and the analysis 
continues throughout the duration of the trial, using a specially designed chart 
of which an example is given in Figure 20.8. To describe the use of the chart, 
assume first that (a)  the patient intake has been paired; (b)  each member of the 
pair has been randomised into either a treatment A or treatment B group such 
that sometimes the first member of a pair will have A and sometimes the second 
member of a pair will have A; (c) a criterion of success has been defined and 
the treatment result of a pair is given one of the three ratings: (1) Treatment A 
better, ( 2 )  Treatment B better, (3) No difference. 

Now consider theflrst patient pair. If A is better, a cross is made in the 
square immediately above the black square in the charts; but if B is better, a 
cross is made in the square immediately to the right of the black square; and if 
there is no difference, no entry is made in the charts. The results for the second 
and subsequent pairs are entered on the chart in a similar way using the square 
above or to the right of that marked for the preceding pair. 
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Number of pairs showing a preference for treztment B 

Figure 20.8. Sequential analysis chart with an a-risk of 2a = 0.20. Courtesy of 
Ciba-Geigy Ltd., Basle, Switzerland29. See also Bross3". 

Once a level of significance has been chosen, such as 2a = 0.20 in Figure 
20.8, this means an a-risk of 0.10 for A better than B and an a-risk of 0.10 
for B better than A. The total patient intake for the trial does not require prior 
specification and a built-in stopping rule is a feature of any sequential analysis 
trial. 

The stopping rule is related to the boundaries of the square pattern of the 
chart, such that when the upper boundary is crossed the conclusion is that A 
is better than B, when the lower boundary is crossed, the conclusion is that B 
is better than A and when the middle region is entered, the conclusion is that 
there is no difference between A and B. 

In section 8.2 when null, positive and negative results of studies were 
discussed it was noted that negative results hardly ever appear in the literature; 
only two could be quoted. One of these was a sequential analysis trial for 
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head and neck cancer31 and Figure 20.9 shows the results, which were rather 
surprising to the clinicians who set up the trial. Statistically the plan is 
interpreted3' as follows. 

If placebo plus radiation is the superior treatment, the chance of this trial 
result occurring is 9 in 10. 

If there is no difference between treatments, the chance of this trial result 
occurring is 1 in 10 (i.e. P = 0.10). 

If Razoxane plus radiation is the superior treatment, the chance of this trial 
result occurring is 1 in 1000. 

s; 

a' 
1 2 5  L L  

..I' - 
4 20 

Preferences lor  Radiotherapy + Placebo 

Figure 20.9. Sequential analysis of preferences for treatment type. A preferance for 
radiation plus Razoxane (I.C.R.F. 159) is marked in a vertical direction and for radiation 
plus placebo in a horizontal direction. The a risk in this plan was given by 2a = 0.2. 
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20.10 CROSSOVER TRIALS 

A crossover trial is one in  which the same group of patients are given 
both treatments. The two groups of patients may have different physical 
characteristics causing them to react differently even though the drugs are having 
similar effects. This may be avoided, after a certain period of time, by changing 
over the drugs under test to the alternative patient group. Each patient is thus 
their own control. (The alternative design, which has been the one discussed in  
the previous sections is a parallel group design). By using the crossover design, 
one advantage is that fewer patients are required. 

However, such trials are of limited value because the condition of the 
patient changes with time, patients may drop out after the first treatment, 
there may be a carry over treatment effect from one period to another and 
crossover trials cannot be used for conditions which can be cured. Their 
use is controversial” and has been discouraged by the US Food and Drug 
Administration. 

20.1 1 META-ANALYSIS 

The technique of meta-analysis is the pooling of results from a number of 
small trials, none in itself (or at least very few) large enough to demonstrate 
statistically significant differences, but in aggregate capable of doing so. An 
example is shown in Figure 20.10 for trials of beta-blockers in the prevention 
of deaths following a myocardial infarction. 

It is known that there is a tendency for the relative risk of death from 
myocardial infarction to be reduced by beta-blockers but the confidence intervals 
in most studies include a relative risk of 1, which means that a significant 
reduction in  mortality was not shown. However, when the 11 randomised trial 
results are combined using meta-analysis, Figure 20.10, the mean relative risk 
is 0.65 and the confidence interval reach a maximum of 0.8 and do not contain 
a relative risk of 1. A clear conclusion can then be made about the preventative 
effect of beta-blockers3’. 

The technique does, though, have its problems and for instance there are the 
two questions to be answered, bearing in mind that bias should be minimised. 
Should meta-analysis be restricted only to randomised studies? Should meta- 
analysis be restricted only to published studies? 

These questions must be answered individually for each meta-analysis study 
by considering the qualitative component (application of predetermined criteria 
of quality) which takes into account such items as completeness of data and 
absence of bias; and the the quantitative component which takes into account 
the integration of numerical data. 

The possibility of competing risk bias should also be considered. Thus 
for example, the effects of breast cancer treatment may differ in populations at 
different risk of non-cancer deaths, whether effects are evaluated for all causes 
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I 

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,O 
Relative risk of death (means & confidence intervals) 

Figure 20.10. Randomised trials of  beta-blocker^^^ to study the prevention of deaths 
following a myocardial infarction. By meta-analysis it is found that the mean relative 
risk is 0.65 and the confidence interval maximum is 0.80. 

(i.e. overall survival rate) or only breast cancer related deaths (i.e. cause-specific 
survival rate). 

Nevertheless there are justifications for meta-analysis, including the 
problem of accruing adequate numbers of patients for a single randomised trial 
with for example a power (1 - ,8) = 0.80 and an ct risk of P = 0.05. 

It is also impossible to undertake combined group analysis where all the 
data on treatment A cases and all on treatment B cases are combined and 
an analysis is made on the two large groups, because there is not complete 
homogeneity for all studies. 

A further justification is that in a common disease such as breast cancer, 
treatments of only small to moderate benefit could prolong many lives, since 
for example, breast cancer mortality in the USA is some 50,000 women per 
year. Very large numbers are required to detect small to moderate differences 
and most trials cannot accrue sufficient numbers. 

A breast cancer meta-analysis study has been undertaken by the Early 
Breast Cancer Trialists’ Collaborative The numbers which have been 
used for meta-analysis (from 133 randomised trials involving 3 1,000 recurrences 
and 24,000 deaths among 75,000 women) could obviously never have been 
accrued for a single randomised trial. Figure 20.1 1 illustrates the format of the 
meta-analysis results. 
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Figure 20.11. Example of the format of results of a meta-analysis study for breast 
cancer33, see text for an explanation of the columns 0 - E and Odds Ratio. 

The columns are self-explanatory except for the last two". The differences 
have been calculated between the observed number of deaths (0) and the 
expected number of deaths ( E )  for the treatment, assuming that there is no 
difference between treatment and control. This difference is written as 0 - E 
and the results given for each trial. A negative value reflects that the treatment 
group had fewer deaths than expected, 
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The horizontal bar chart part of Figure 20.1 1 plots the ratio of treatment 
to control mortality rates (an odds ratio) with a 99% confidence interval 
(symbolised by 4) for each trial. A value for the odds ratio of less than 1 
indicates that mortality is less for the treatment than control. The odds reduction 
is the percentage improvement. The hollow diamond symbol is centred on 
the average ratio of mortality rates and its length represents a 95% confidence 
interval. 

In conclusion, two summarised viewpoints of the benefits of meta-analysis 
are as follows. For such a disease as breast cancer, the large number of subsets 
of interest make meta-analysis mandatory because no trial has a large enough 
acocrual to evaluate treatment differences in each of these subsets. Meta-analysis 
is useful for hypothesis generation (but not as a hypothesis test) in that evaluation 
of the meta-analysis study differences can lead to the formation of important 
hypotheses deserving of further study. 

20.12 REPORTING CLINICAL TRIAL RESULTS 

The good reporting of clinical trial (sometimes now termed clinical uutcume 
studies) results has been considered to be an implicit requirement throughout 
this Chapter, although it has seldom been explicitly mentioned, except in Table 
20.14, EORTC9 recommendations for reporting adverse effects and publication 
policy. It is a much neglected topic, as noted by Overgaard and B e n t ~ e n ~ ~  and 
B e n t ~ e n ~ ~  in 1988. 

A major improvement in this field of reporting results is the publication 
of the Consolidationof Standards of Reporting Trials (CONSORT)  guideline^^^. 
Table 20.18 is reproduced from these guidelines, as published by B e n t ~ e n ~ ~  with 
added radiotherapy items. 

Also reproduced (Table 20.19) from B e n t ~ e n ~ ~  is a useful summary of the 
most commonly used endpoints in radiotherapy trials, the topic listed in section 
20.2 on the first page of this Chapter, in Table 20.12 after Pocock4, in Table 
20.14 after EORTCI4 and also discussed in Chapter 21, It was noted by Bentzen 
that a review3’ of 132 journal papers published between October and December 
1992 found that in 62% of the 132 at least one endpoint was not clearly defined 
and in 39/64 papers it was unclear as to how death was included in the analysis 
of time to progression. This clearly shows up a problem in endpoint definition 
and reporting. 
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A BIBLICAL, CLINICAL TRIAL 
._ -- - _. - - _ -  

I 

In the Bible in the book of Daniel, Chapter 1, it is related that 
King Nebuchadnezzar 11, having invested Jerusalem and 

defeated Israel in  600 BC, took several youths back to his own 
country for indoctrination and training. They were carefully 

selected. All were of royal or princely blood and were 
physically fit and of high intelligence. They were put on a rigid 
diet of meat and wine for three years with one of the eunuchs 

acting as the trial monitor. Daniel persuaded the monitor to 
give him and three others a diet of pulse and water for 10 days, 
when it is recorded they were fairer in countenance and fatter in 

body than the other subjects who were given meat and wine. 
Daniel had ruined the trial, the eunuch had defied the king, and 

Nebuchadnezzar did to the eunuch but he may well have been 
thrown to the lions! 

the trial had become uncontrolled. It is not recorded what 
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Chapter 21 

Cancer Treatment Success, Cure and 
Quality of Life 

21.1 INTRODUCTION 

For many years, until well into the 1960s. the term cure was used to signify the 
results of successful cancer treatment with the five-year survival rate often being 
equated to cure. However, for the earliest cancer treatment results following the 
discoveries of X-rays and radium, the textbooks and journals typically wrote of 
one-month to six-month cures. Figures 21.1-21.2 show early treatment results 
with X-rays and radium. In addition, there were also many spurious claims for 
curing cancer using quack remedies; that below is taken from the April 1896 
issue of the Windsor Magazine which also carried the world’s first illustrated 
journal paper on Rontgen’s discovery of X-rays in Wiirzburg in  the previous 
December 

l t o r  Bodr. PZlO.  one millfag. 

ITS HATIIRE AND SUCCESSFUL TIIEATMENT, 
Poct Free One Shillin& fm the Author, 

E. KELWAY BAHBEII, F.LC., Westminsbr 
Chambenr, 9, VI&ria St., London, S.W. 

(3JLMOElR: 

E. W. ALLEN. 4 AV. MAIM LAWE, E.C 

The disadvantage of equating cure with five-year survival is that although 
it might be acceptable for poor prognosis cancers such as lung cancer, for those 
with a much longer term prognosis, such as breast cancer or cancer of the cervix, 
a five-year survival is not appropriate. 

The term cured from cancer also implies that no malignancy can be 
detected, yet it is known that some some breast cancer patients, for example, 
can for many years live a satisfactory life with virtually quiescent metastatic 
nodes present and eventually die from a cause such as heart attack or stroke. 
This can occur some 20 years after the initial treatment but technically they 
are not cured, and therefore by implication are a failed treatment case. This is 
philosophically unsound and the term treatment success should replace cure in  
many instances. 

278 
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Figure 21.1. ( a )  One of the first two (the other was reported at the same meeting) 
histologically proven cancer cures using X-ray therapy'. This was in Stockholm for 
a basal cell carcinoma of-the face in 1899. The photographs show the patient before 
treatment and 30 months after treatment. 

Table 21.1. Kamofsky status: IO-point scale4. 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

Normal, no complaints, no evidence of disease 
Able to carry on normal activity, minor signs or symptoms of disease 
Normal activity with effort, some signs or symptoms of disease 
Cares for self, unable to carry on normal activity, or do active work 
Requires occasional assistance, but is able to care for most needs 
Requires considerable assistance and frequent medical care 
Disabled, requires special care and assistance 
Severely disabled, hospitalisation necessary, although death is not imminent 
Very sick, hospitalisation necessary, active supportive treatment necessary 
Moribund, fatal processes progressing rapidly 
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The introduction in 1949 by Karnofsky4 of his concept of quality of life 
devised with chemotherapy in  mind, went some way towards providing a method 
for specifying treatment success, Table 2 1.1 (i.e. Karnofsky status before and 
after treatment), and the quality of life concept has since been extended by many 
authors both specifically for individual cancers as well as for cancer in general. 
Quality of life as a measure of the wellbeing of a population is also relevant in  
other fields, using social indicators such as housing, employment and income, 
but this chapter is limited mainly to a discussion of those scales which can be 
used for cancer patients. 

Treatment success, and whether it is worthwhile, can be viewed differently 
depending upon who is making the assessment, Table 21.2. The doctor’s and 
patient’s viewpoint may not always coincide and for example a patient might 
refuse a mutilating facial operation, even if plastic surgery can later ameliorate 
the cosmetic appearance and even if the primary tumour and nodes can viralally 
be guaranteed to be removed. In such a case a non-optimal treatment procedure 
might have to be accepted by the physiciadsurgeon. 

Table 21.2. From whose point of view is treatment success defined? 

Patient 
Doctor 
Statistician 
Hospital ManagedAccountant 

The statistician’ s viewpoint might depend on a mathematical model which 
after the input of various parameters gives an estimate, with standard errors, of a 
cured fraction ofpatients in the population under study or a predicted long-term 
survival rate. Such a model might be appropriate for series of large numbers of 
patients, but could not be applied for small numbers. 

With the world’s population having a longer life expectancy; cancer 
treatment costs increasing significantly for more and more complex equipment 
(e.g. computer controlled (to a certain extent) radiotherapy linear accelerators 
with multileaf collimators for conformal treatments, 3D optimisation and virtual 
reality treatment planning computer software) and for new drugs; with cancer 
predominantly a disease of the elderly; and the worldwide trend in healthcare 
being towards managed care (managers and accountants in financial control) both 
in Europe and in North America, with a limited budget available; decisions must 
now be made as to whether certain sophisticated and expensive cancer treatments 
can be afforded. This leads to the use of Bayesian statistics and decision theory. 
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Figure 21.1. (h)  Complete regression of a sarcoma of the face. Patient of Dr Haret, 
Paris, 1905: reported by Niewenglowski* in 1924. (Courtesy of Professor Jean-Marc 
Cosset, Institut Curie, Paris) 
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Figure 21.2. ( U )  Successful treatment of a haemangioma by Drs Wickham and Degrais' 
in 1906, Hospital St. Louis, Pans. 

Figure 21.2. ( h )  Successful treatment of an epithelioma of the parotid by Drs Wickham 
and Depmis-' in 1908. Hospital St.Louis. Paris. 
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21.2 QUALITATIVE ASSESSMENT 

The ideal assessment is quantitative and it is seldom that qualitative or semi- 
quantitative assessments are satisfactory. Table 21.3 gives two examples of 
qualitative scales and Figure 21.3 a rare examples of where such scales are 
effective. In this particular exaniple of Figure 21.3, the same radiation oncologist 
made all the assessments for the entire series of 76 patients. 

An obvious conclusion can be drawn in favour of brachytherapy versus 
external beam radiotherapy for inoperable lung cancer and for the particular 
treatment protocols. The last four words in the previous sentence have been 
italicised since this emphasises that such results cannot be extrapolated to other 
treatment regimes. 

Table 213. Two examples of qualitative scales. 

Excellent Better 
Good Same 
Poor Worse 
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Figure 213. Histograms of the results from a trial of 76 patients with unilateral 
inoperable lung tumours who were treated using either high dose rate (HDR) 
endobronchial brachytherapy or by external beam radiotherapy. (Left) shows the 
percentage of patients who at two months follow-up had their symptoms assessed as 
Better on a scale of Better, Same, Worse. (Right) shows the percentage of patients who 
at two months follow-up had their symptoms assessed as Worse on a scale of Better, 
Same, Worse. These results indicate the superiority of HDR brachytherapy. 

21.3 SEMI-QUANTITATIVE ASSESSMENT: COMPLETE, PARTIAL 
AND NO REGRESSION 

The semi-quantitatiye scale of Complete Regression (CR), Partial Regression 
(PR) and No Regression (NR) is widely used and can be semi-quantitative in 
that the assessments can be made in some studies by a measurement of tumour 
size, (as distinct from a purely clinical assessment without any measurements 
taken). However, although an improvement on the purely qualitative method 
it still suffers from the disadvantage that there will be overlaps between CR & 
PR and PR & NR when the assessments are made by different physicians for 
patient subgroups. This can to a certain extent be overcome by having a panel 
of physicians to make the assessment rather than a single physician. 

There is also the problem that CR may not last indefinitely and is therefore 
in effect an incomplete remisssion and cannot be used as a true measure of 
treatment success unless this assessment is made time dependent, e.g. at three 
months for all patients, see last line in Table 21.4. 

21.4 QUALITY OF LIFE: 10-POINT OR FOUR-POINT SCALE? 

The Karnofsky status scale4, Table 21.1, is a 10-point scale and as such it 
is difficult, if not impossible, to guarantee similar assessments by different 
physicians/surgeons for an identical patient. Simpler scales have been devised 
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Table 21.4. Factors relevant to quality of life and treatment success assessment. 

Which parameters should be measured 
Self reporting versus extemal evaluation 
Response alternatives (Yes/No or a scale) 
Number of items to be assessed 
Time frame of the questions 

such as the ECOG performance scale, Table 21.5, which is also known as the 
Host, Zubrod or WHO scale6 and is related to the Karnofsky scale as indicated 
in Table 21.6. 

Table 21.5. ECOG performance status four-point scale. 

0 Normal activity 
1 
2 
3 
4 Bedridden, may need hospitalisation 

Symptomatic and ambulatory, cares for self 
Ambulatory more than 50% of time, occasionally needs assistance 
Ambulatory 50% or less of time, nursing care needed 

Table 21.6. Equivalence between ECOG (Eastem Cooperative Oncology Group) and 
Kamofsky scales. The first two columns give the equivalence between the two scales. 
The third and fourth columns present clinical data7 on the influence of performance status 
on patients with inoperable lung cancer. These median survival statistics are based on 
data for 5022 males, lung cancer of all histologies, entered onto Veterans Administration 
Lung Cancer Study Group (VALG) protocols from 1968-1978. The ECOG scale was 
first reported in 1960 by Zubrod6. 

ECOG Kamofsky Median Patients 
(Zubrod) survival in group 

(Host) (weeks) (%) 
(WHO) 

0 100 34 2 
1 80-90 24-27 32 
2 60-70 14-21 40 
3 40-50 7-9 22 
4 20-30 3-5 5 
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Table 21.7 is an example' of the use of the ECOG scale before and 
after treatment using HDR endobronchial brachytherapy. Treatment delivery 
is similar to the method for Figure 21.3 results but is using a different treatment 
protocol for Table 21.7 results. Figure 21.4 illustrates the technique of HDR 
endobronchial brachytherapy. These results in Table 21.7 clearly demonstrate 
improved quality of life when comparing the status immediately post-treatment 
and at six week follow-up for these lung cancer patients. 

Table 21.7. ECOG performance status: 100 patients treated using HDR endobronchial 
brachytherapy (HDREB)8. 

ECOG status No. of patients with a given ECOG status 

After 1st. HDREB At 6 weeks follow-up 

0 3 
1 39 
2 15 
3 18 
4 25 

40 
44 
11 
0 
5 

21.5 FURTHER EXAMPLES OF QUALITY OF LIFE STATUS 
§CORING 

The Karnofsky and ECOG scales allocate a single number to define patient 
status. Other quality of life status proposals have extended this concept so that 
several functions can be individually scored giving multidimensional aspects to 
quality of life assessment, and in some cases the summation of the separate 
scores for the major aspects (e.g. symptoms and side effects, psychological 
functioning, social functioning, physical functioning, as in the proposal by 
Tchekmedyian et a19 for treatment of cancer anorexia) can be made to provide 
a global score. 

However, it must be realised that problems can arise in using only a global 
score computed from for example four components, because the same global 
score can arise if in one case components 1 and 2 have a low score and 3 and 
4 a high score, and if components 1 and 2 have a high score and 3 and 4 a low 
score. 

A recent example mentioned in the literature is for the LENT SOMA 
scoring system published in 1995 both in the International Journal of Radiation 
Oncology Biology & Physics" and in Radiotherapy & Oncology" (LENT = 
Late Effects Normal Tissues; SOMA = Subjective, Objective, Management & 
Analytic). 
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Figure 21.4. The technique of HDR endobronchial brachytherapy involves the use of a 
remote controlled afterloading machine in which the radioactive source is a miniaturised 
IY2Ir pellet on the end of a flexible cable which can be inserted within a catheter into 
a bronchus. This figure shows a microSelectron-HDR afterloading machine with the 
catheter inserted via the nose into a bronchus. A drawing of the bronchial tree is 
superimposed on the patient's shirt. 

A corrrection in 199612 stated 'It was originally recommended that the 
scores should be summed and divided by the number of elements scored. This 
is not advocated'. This correction was made because it was realised that a 
situation could arise where the patient scores could be 0 or 1 for most elements 
in the SOMA scale but there could be a grade 4 for just one or two components 
of injury. These high scores would be diluted out by the low scores and give a 
misleading average score. 

A statistical method of producing a valid global score for the LENT SOMA 
scales has as the time of writing (1998) not yet been recommended by RTOG 
and EORTC. Nevertheless, these tables are extremely useful with the following 
10 major sections (each subdivided into several site groups): central nervous 
system, head and neck, breast, heart, lung, gastrointestinal, major digestive 
glands, genitourinary, gynecologic and, finally, bone, muscle and skin. 

Three examples are now given for different cancer treatment sites: lung8 
(Table 21.8), limbsi3 (Table 21.9) and head and n e ~ k ' ~ . ' ~  (Table 21.10). 

In addition the ASA (American Society of Anesthesiologists) classification 
of physical statusi6 is given in Table 21.1 1. One example of when this has 
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been used is for a preoperative study of two patient groups, one of which were 
to undergo a single knee replacement and the second group to  undergo both 
knee replacements at  the same operating session. To ensure no bias in patient 
status between the two groups both were analysed preoperatively (using the chi- 
squared test and a 2 x 4 contingency table) for ASA status I-IV. Some of the 
results from this study are shown in the box plot of Figure 21.5. 

100' 

90 - 
80. 

S 70' 
E 

Nac hkontrolle 

0 praopertiv 

12 hbnate 

l q  1 1 : 36 hbnate 

-1 0 &#! 54 - 118 hbnate 
Knie einseitig Knie Nveiseitig (re) 

Figure 21.5. Knee status score (0-100) using the scoring scale of Insall et al" which 
awards positive points for pain (max= +50), motion (max= +25),  anteroposterior 
stability (max= +IO) and mediolateral stability (max= +15) and negative points for 
flexure contraction (max= -15), extension contraction (max= - 15) and deviation 
(max= -20). This is an example of a scoring system which includes both positive 
and negative scores and for which i t  is theoretically possible for a global score to be 
negative. Although by convention when this ASA scale is used, all negative values are 
equated to zero. The results are shown for the right knee (Left): when only the right 
kneee was replaced; (Right): for the right knee when both right and left knees were 
replaced). The box plots show the 95% percentiles, the 25% and 75% quartiles and the 
median: preoperatively and at various follow-up times: 3, 12, 36 and during 54-118 
months. (Courtesy: Dr.med. Christoph H. Kindler of the Department of Anasthesie, 
Kantonsspital, Basel.) 
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21.5.1 Lung 

Table 21.8. Symptom scoring index, after Speiser and Spratling*. Four symptoms are 
scored and although an overall score can then be computed the results can be more 
effectively expressed for each symptom as in Figure 21.6. 

Dyspnea 

0 None 
1 Dyspnea on moderate exertion 
2 
3 Dyspnea at rest 
4 Requires supplementary oxygen 

Dyspnea with normal activity, walking on level ground 

Cough 

0 None 
1 Intermittent, no medication necessary 
2 Intermittent, non-narcotic medication 
3 
4 

Constant or requiring narcotic medication 
Constant, requiring narcotic medication but without relief 

Haemoptysis 

0 None 
1 
2 
3 
4 

Less than two episodes per week 
Less than daily but greater than two per week 
Daily, bright red blood or clots 
Decrease of Hb/Hct more than 108, greater than 150 cc, 
requiring hospitalisation leading to respiratory distress, 
or requiring more than 2 units transfusion 

Pneumonimlevated temperature 
~~~ 

0 
1 
2 
3 Lobar consolidation on radiograph 
4 

Normal temperature, no infiltrates, WBC less than 10,000 
Temperature greater than 38.5 and infiltrates, WBC less than 10,OOO 
Temperature greater than 38.5 and infiltrates and/or WBC greater than 10,000 

Pneumonia or elevated temperature requiring hospitalisation 
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Figure 21.6. Symptom index response expressed as a percentage of a weighted index 
at each brachytherapy treatment (of which there were three) and at first follow-up 
bronchoscopy. The scores are weighted and normalised to 100% for the first score. 
These results from Speiser and Spratling in 19948 are more informative than their earlier 
ones from 1990 which used only ECOG status, see Table 21.7. 

21.5.2 Limbs 

The scale in Table 21.9 was developed by the Musculoskeletal Tumor Society 
and is taken from the paper by Bolek et a1 l 3  for radiotherapy of Ewing’s 
sarcoma of the extremeties. These authors quoted mean scores of 26.0 for 
radiotherapy given once daily (number of patients= 6) and 29.4 for radiotherapy 
given twice daily (number of patients= 9) and using a t-test obtained a P-value 
of 0.15. This is not surprising since the scores are close together and there were 
only a few patients in the study. Table 21.9 is also an example of a quality of 
life scale which (unlike Karnofsky or ECOG for example) can be used by the 
patient, i.e. for self assessment, see Table 21.4, or by the physiciadsurgeon. 
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Table 21.9. Functional limb evaluation scale with a total maximum score of 30. This is 
an example of a scale where the highest score represents the best outcome, whereas for 
some scales such as ECOG, Table 21.5, the highest score represents the worst outcome. 

Lower limb 

Pain 

Function 

0 =Severe, 1 =Moderate, 2 =Intermediate, 
3 =Modest, 4 =Mild, 5 =None 
0 =Total disability, 1 =Partial disability, 
2 =Intermediate, 3 =Recreational restriction, 
4 =Mild restriction, 5 =No restriction 
0 =Dislikes, 1 =Accepts, 2 =Intermediate, 
3 =Satisfied, 4 =Likes, 5 =Enthused 
0 =Two canes/crutches, 1 =One cane/crutch, 
2 =Intermediate, 3 =Brace, 
4 =Occasional minor support, 5 =None 
0 =Unable unaided, 1 =Inside only, 
2 =Intermediate, 3 =Moderate limitation, 
4 =Mild limitation, 5 =Unlimited 
0 =Major HCAP, 1 =Major cosmeticMnor HCAP, 
2 =Intermediate, 3 =Minor cosmetic, 
4 =Barely detectable, 5 =Normal 

Emotional 

Supports 
acceptance 

Walking 

Gait 

Upper limb 

Pain 

Function 

Emotional 

Hand 
acceptance 

positioning 

Dexterity 

Lifting 
ability 

0 =Severe, 1 =Moderate, 2 =Intermediate, 
3 =Modest, 4 =Mild, 5 =None 
0 =Total disability, 1 =Partial disability, 
2 =Intermediate, 3 =Recreational restriction, 
4 =Mild restriction, 5 =No restriction 
0 =Dislikes, 1 =Accepts, 2 =Intermediate, 
3 =Satisfied, 4 =Likes, 5 =Enthused 
0 =Flail, 1 =Not above waist, 2 =Intermediate, 
3 =Not above shoulder or no Pro/Sup, 
4 =Mild deficit only, 5 =Unlimited 
0 =Cannot grasp, 1 =Cannot pinch, 
2 =Intermediate, 3 =Loss of fine movement, 
4 =Mild deficit only, 5 =Normal 
0 =Cannot, 1 =Helping only, 
2 =Intermediate, 3 =Moderate limitation, 
4 =Mild limitation, 5 =Normal 
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21.5.3 Head and Neck 

Table 21.10 gives the performance status scale for head and neck cancer patients 
modified from List et all4. This scale was used by Moore et aE1’ to assess 
outcome after primary radiotherapy for squamous cell carcinoma of base of 
tongue and the mean scores were reported by T-stage and were in the following 
ranges: eating in public (75-91), understandability of speech (83-100) and 
normalcy of diet (60-94). 

Table 21.10. Performance status scale to assess post-treatment functional results for head 
and neck cancer patients. 

Eating in public 

100 
75 
50 
25 

No restriction of place, food or companion 
No restriction of place, but restricts diet when in public 
Eats only in presence of selected persons in public 
Eats only at home in presence of selected persons 

0 Always eats alone 
~~~~~~ ~~ 

Understandability of speech 
~~~~~~~ ~ 

100 Always understandable 
75 
50 
25 Difficult to understand 
0 

Understandable most of the time, occasional repitition necessary 
Usually understandable, face-to-face contact necessary 

Never understandable, may use written communication 

Normalcy of diet 

100 Full diet: no restrictions 
90 Peanuts 
80 All meats 
70 Carrots, celery 
60 Dry bread and crackers 
50 
40 
30 Pureed foods 
20 Warm liquids 
I O  Cold liquids 

Soft, chewable foods (macaroni, small pieces of meat) 
Soft foods requiring no chewing (mashed potatoes, apple sauce) 
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21.5.4 American Society of Anesthiologists Scale 

Table 21.11. ASA classification of physical status16. 

Class Physical status 

I 

I1 
A healthy patient with no systemic disease processes 

A patient with a mild to moderate systemic disease process caused either 
by the condition to be treated surgically or other pathological process 
and which does not limit the patient’s activities in any way, e.g. mild 
diabetic, treated hypertensive, or heavy smoker 

A patient with a severe systemic disturbance from any cause, and which 
imposes on him or her e.g. ischaemic heart disease with a limited exercise 
tolerance, severe chronic obstructive airways disease with dyspnoea 
on exertion 

A patient with severe systemic disease which is a constant threat to life, 
e.g. the chronic bronchitic who is dyspnoeic at rest, advanced chronic 
liver failure 

A moribund patient who is unlikely to survive 24 hours with or without 
surgery 

Emergency operation. Any patient in any of the above classes who is 
operated on as an emergency is regarded as being in poorer physical 
condition, and the letter E is prefixed 

111 

1V 

V 

E 

21.6 SELF ASSESSMENT VERSUS EXTERNAL EVALUATION 

Whether or not self assessment by the patient is appropriate (see Table 21.4) 
will depend on the particular study and the choice and complexity of the quality 
of life scale. One example where self assessment is compared to assessment by 
the healthcare provider is given in Table 21.12 which in this instance is seen 
to be well correlated for 300 evaluable patients, (a Spearman rank correlation 
coefficient of 0.55 and P c 0.OOOl). Although 36% of the time patients judged 
their dermatitis to be more severe than did their health care provider, whereas 
only 7% of the time patients judged their dermatitis as less severe than did the 
physician (McNemar test P c 0.OOOl). 
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Table 21.12. Comparison of self assessment by the patient and external evaluation (by the 
healthcare provider) of the maximum dermatitis severity on a four-point scale (0 =None, 
1 =Mild, 2 =Moderate, 3 =Severe) for studies of an aloe vera gel versus placebo for 
radiation induced skin toxicity, data from Williams et alls. 

No of cases in which No. of cases in which 
there was an external the patient reported 
evaluation report of a a given severity score 
given seventy score 0 1 2 3 

0 4 8 9 2  
1 3 57 51 10 
2 3 6 77 28 
3 0 1 10 31 

21.7 DEMONSTRATION OF THE EXISTENCE OF A CURED GROUP 
OF PATIENTS 

In these two examples, subsections 21.7.1 and 21.7.2, the term cure is uniquely 
defined in each case and if the concept is acceptable then cure can be 
demonstrated. However, these methods do have certain problems in obtaining 
sufficient data in order to be able to use the methods. For this reason, they have 
not been widely used. 

21.7.1 Relative Survival Rate and Cohort Interpolated Life Tables 

The relative survival rate (sometimes termed the age corrected survival rate) is 
defined below where the normal population is that of the countyhegiodcountry 
from which the cancer patient series has been drawn: 

lOOx ((Crude T-year survival rate)/(Expected T-year survival rate in 
the normal population for a group of people with the same age and 
sex distribution as the treated group)) = Relative T-year survival rate 

The problem with this equation is that in many instances the data to 
determine the denominator is not available. In England and Wales it is fortunate 
that such data do exist, in the form of tables by sex for birth year cohorts every 
five years (e.g. 1896, 1901, 1906 etc) which give the yearly expected survival 
probabilities for one, two, three, four and five years, conditional on having 
attained a certain age. Such tables are called cohort interpolated life tables and 
Table 21.13 is an example of a part of such a table. 

Table 21.14 illustrates how values of n p x  can be calculated from the 
probabilities given in Table 21.13 using as an example the computation of the 
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Table 21.13. Example of part of a cohort interpolated life table quoting survival 
probabilities for 1 ,  2, 3, 4 or 5 years for each year from age 50 to 59, conditional 
on having attained that age. These tables were published by the Chester Beatty Research 
Institute, London, in 1974 for a series of birth cohorts every 5 years, e.g. 1881, 1886, 
1891, 1896. These years were chosen since the second year in every decade since the 
1840s (i.e. 1841, 1851 . . .) is the year chosen for the census returns of England and 
Wales which take place every 10 years. The survival probabilities are given the notation 
" p x  where x is the attained age (50. 51, 52, 59) and n is the number of years survived 
(n = 1,2 ,  3 ,4 ,  5) corresponding to the particular probability. 

From 
agex  n = l  n = 2  n = 3  n = 4  n = 5  

Survival probability for n years ( = p X )  

50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

0.98962 
0.98894 
0.98821 
0.98727 
0.98626 

0.985 17 
0.9 8400 
0.98273 
0.98097 
0.97903 

0.97868 
0.97728 
0.97563 
0.9737 1 
0.97164 

0.96941 
0.96700 
0.96402 
0.96039 
0.95641 

0.96714 
0.96484 
0.96223 
0.95927 
0.95609 

0.95266 
0.94859 
0.9438 1 
0.93820 
0.93206 

0.95483 
0.95159 
0.94796 
0.94392 
0.93957 

0.93453 
0.92870 
0.92200 
0.91432 
0.90593 

0.94171 
0.93748 
0.93279 
0.92762 
0.92169 

0.9 1493 
0.90724 
0.89853 
0.88869 
0.87831 

probability of surviving from age 50 to 53,  i.e. 3p50, having been born in 1891 
(or indeed during the five year period of which 1891 is the central value, i.e. 
1889-1893: the 1896 birth cohort is for the period 1894-1898). 

Table 21.14. Computation of 3p50 using the n p x  values in Table 21.13. 

Probability of survival from age 50 to 5 1 = I p50 = 0.98962 
Probability of survival from age 51 to 52 = lp5l = 0.98894 
Probability of survival from age 52 to 53 = 1p52 = 0.98821 

Thus probability of survival from age 50 to age 53 is the product 
0.98962 x 0.98894 x 0.98821 = 0.96714 

Now note that in Table 21.13, 3p50 = 0.96714 
which agrees with the above computation. 
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21.7.2 Method of Easson and Russell 

Easson and Ru~se l l ’~  of the Christie Hospital, Manchester reviewed in 1968 
cases treated during the period 193249 and defined the term cure in the 
following manner: ‘We may speak of cure of a disease when there remains a 
group of disease-free survivors, probably a decade or two after treatment, whose 
annual death rate from all causes is similar to that of a normal population group 
of the same sex and age distribution’. 

Their method of presentation, see Figure 21.7, was to use semi-logarithmic 
graph paper to plot survival curves of the treated group of patients (the observed) 
and of the normal population group (the expected) with the same age and sex 
structure. If a time T exists where the two curves become parallel then it has 
been demonstrated at time T that there exists a group of patients who are cured. 

Figure 21.7. Graphical demonstration that cure has been demonstrated at T = 7 years. 
Data for 262 stage I cancer of the cervix patients”. 

Easson and Russell also commented that if parallelism was clearly not 
observed then one of two conclusions may be drawn. ‘Either the treatment 
is not successful, or the expected survival of the normal population is not the 
appropriate yardstick for comparison with the observed survival rate. This would 
be true if those patients who have cancer in a specific site also have a higher 
risk of dying from some other cause. For example with laryngeal cancer there 
is some evidence to suggest that the incidence of deaths from cancer of the 
alimentary canal may be higher in these patients’. 
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21.7.3 Parametric Statistical Modelling: Statistical Cure 

The use of parametric statistical models (where values of parameters for a 
given frequency distribution are required before the model can be used) for 
predicting long-term cancer survival rates and the proportion of patients cured 
were proposed in the late 1940s but have only been used occasionally. This 
might originally have been due to the lack of computing facilities in the 1950s 
and 1960s as the method requires intensive calculations, but a more serious 
problem is that such a method has to be validated first for a given cancer site 
before it can be put into general use. 

Such a validation requires knowledge of cancer patient case histories over 
a long period of time, e.g. 1944-1962 (some 5000 were available for cancer 
of the cervix by stage in the late 1960s from hospitals in London, Manchester, 
Houston and 0 ~ 1 0 ) ~ ~ .  The validation procedure is then to take a cohort of case 
histories for an early period, e.g. 1944-1949, and use a series of parameter 
values to predict the medium to long-term survival rates, e.g. at 5 ,  10, 15 and 
20 years. Then, because the follow-up on the patients is known (in many cases 
to death with the cause determined as cancer or an intercurrent disease) the 
predictions can be checked against the known actual experience at medium to 
long-term. The optimum statistical model with optimum parameter values can 
then be found. 

Figure 21.8 shows schematically one type of mode120. The basis of this 
particular model is a known formula for the distribution curve of the unsuccessful 
fraction of patients (1 - C). For cancer of the cervix this was found to be a 
lognormal distribution, which has two parameters, mean and standard deviation, 
and for which the formula is given in section 3.6. The statistically cured 
proportion of patients, C, was determined for the various hospital series and 
was found to be in the range 0.51-0.71 for stage I, 0.36-0.43 for stage I1 and 
0.14-0.27 for stage 111. 

21.8 ENDPOINTS: DISEASE-FREE SURVIVAL VERSUS OVERALL 
SURVIVAL 

Probabably the first improvement on overall survival (OS) at five yeaxs as 
an indicator of curehreatment success was the specification of a disease-free 
survival (DFS). One of the obvious advantages of DFS is that it can be assessed 
sooner than duration of response or OS but as stated by Buyse et a122, ‘Whatever 
endpoints are finally chosen to assess treatment efficacy, one should not forget 
to also include a measure of the patient’s quality of life as one of the parameters 
studied’. 

The relevant dates required to calculate DFS are generally available in 
a patient’s case history notes but one must be careful when using such 
information if the time lapse between the last recorded no sign of recurrence 
(NSR) and the first recorded recurrence (REC) is large. For cancer treatment 
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Figure 21.8. Schematic diagram of a statistical model which can be used to estimate 
a cured fraction (C) of patients treated for cancer. The model has been validated for 
cancer of the cervix using a lognormal distribution for the (1 - C) fraction. Also, several 
other cancers, e.g. many in the head and neck2', have been shown to have a lognormal 
distribution for the fraction of cases which were unsuccessfully treated in that they died 
with cancer present, but a complete validation procedure as for the cervix has never 
been made. The long-term T-year survival rate, using the notation in the diagram, is 
100 x (C + (1 - C) x Q) where the total area under the lognormal survival distribution 
curve is 1. 
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Data collection 

Years during which patients 
received treatment. 

Year when follow-up details 
were transcribed for analysis. 

t Fate of all patients treated between years 
TI and TZ is known up to year T3. t 

TI I T2 
-~ 

T3 . \ 
. / / - - - -  . 

/ 

/ 0 Prediction 
I v Analysis-Part 1 

T 4  T5 

survival rate. 
Patient data available Predicted Ts-year 
in year T4 used in the 
mathematical model to Validation 
predict the Ts-year 
survival rate. 

Analysis-Part 2 
Since year TS is earlier than year T3 the 
actual Ts-year rate can be calculated by a T5 T3 
life table method using the patient data 
available in year T3. 

R 
Actual Ts-year 
survival rate. 

Analysis-Part 3 Comparison of predicted and actual Ts-year survival rates. 

t t  t t T3 t Time scale 

TI T2 T4 TS 
TS = 10, 15, 20, 25 years. 

(T4 - Tz) = 2, 3,  4 years. 

Figure 21.8. (Continued) Schematic diagram of the validation schedule for a long-term 
survival rate prediction model, assuming a specified analytical form (e.g. lognormal) for 
the distribution of survival times for those patients who die with cancer present. 

Copyright © 1998 IOP Publishing Ltd



300 Cancer Treatment Success 
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Date 'No sign of recurrence' 

sites/stages/histologies which have a good long-term prognosis, patient follow- 
up after 1-2 years post-treatment is often as long as 12 months and therefore 
any estimated date of recurrence as the mid-time between the NSR and REC 
dates may be accurate only to within six months or greater. This may not be 
sufficient for some studies. 

However, if an estimated date of recurrence can be obtained for a treatment 
series, then an apparent disease free time (ADFT), possibly even two ADFTs 
depending on whether a recurrence has been successfully treated, and a terminal 
disease time (TDT) can be calculated, Figure 21.9, and the ratio ADFT/ST or the 
percentage difference (ST-ADFT)% might be useful for computing an index 
of treatment success. 

t t 
Flrd Recorded Date of deal h 
'Rcurrrnce' with cancer 

In the pallent's prcanl 
case history 

TDT 
Amrent disease Termlnd disease 

Figure 21.9. Schematic diagram defining the terms ADFT and TDT for a patient who 
experiences a remission before recurrence of the cancer and eventual death. D5 is the 
mid-date between D2 and D3. For the patient who dies with cancer present without 
experiencing any period free from the disease, ADFT = 0. It is also possible to 
experience a second ADFT after successful treatment of a first recurrence of the cancer. 
In this case, the second ADlT is calculated using the mid-date of the second follow-up 
time lapse, the last recorded no sign ofsecond recurrence and the first recorded second 
recurrence. 

It is, however, important to calculate survival time and ADFT from the 
start of initial planned treatment and not from the date of diagnosis or from 
the end of the initial planned treatment. In the case of the date of diagnosis 
this could be defined as the date when the patient was initially diagnosed by a 
general practitioner, or the date a clinical diagnosis was made in a hospital, or 
the date when the diagnosis of cancer was confirmed histologically. 
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Although the time lapse between date of diagnosis and date of initial 
planned treatment is a measure of the efficiency of a particular hospital 
organisation and a measure of the length of patient waiting lists 

If survival time is calculated from the end of the initial planned treatment 
this can vary widely with the treatment regime. Possibilities include a single 
day if the treatment is only surgical, maybe 6-7 weeks if it is radiotherapy 
or even six months if initially planned courses of chemotherapy are included. 
Thus if it is not the start date of the treatment which is used then for a given 
cancer site/stage/histology there can be a bias introduced when trying to compare 
like-with-like for results from different oncology centres. 

Returning to DFS, two advantages of its use are as follows. If recurrence 
of the disease invariably leads to the patient's death after some period of time 
then DFS can be appropriate. When DFS is a good surrogate for OS then 
differences in DFS will eventually translate into OS: although there are not 
many instances clinically when this is positively known a priori. An example 
of good correlation between DFS and OS is lung cancer, and an example of a 
weak correlation is early stage colon cancer such as Duke's A or B 1. 

A disadvantage of the use of DFS as an appropriate endpoint is if a highly 
toxic treatment produces a lot of treatment related mortality. Another is when a 
good salvage treatment is available, since a relapse may be completely reversed 
(e.g. malignant melanomas and low grade lymphomas) thus making DFS an 
inappropriate endpoint. However, it must be emphasised that OS requires the 
least personal judgement and is therefore least vulnerable to bias. 

21.9 SURVIVAL OF UNTREATED CANCER 

Very little data have been published on this subject because of course most 
patients receive some form of treatment unless they adamanetly refuse or the 
disease has progressed to such an extent that treatment would be inappropriate. 
Theoretically, a comparison between treated and untreated cancer series could 
provide an indication of treatment success, but because of the lack of data this 
is only possible for one cancer site: lung, Figure 21.10. 

21.10 SCORING OF COMPLICATIONS 

There are many cancer site-specific proposals for complication scoring systems 
some of which are defined relatively simply: 1 = Complete recovery, 2 = 
Incomplete recovery, 3 = Surgery required, 4 = Intensive treatment required; 
and as a second example, 1 = Requires symptomatic treatment or advice 
only, 2 = Symptoms interfere with the quality of life but require conservative 
treatment only. 3 = Requires operative correction or otherwise causes death. 

However, there are also far more detailed systems for reporting 
complications of which one of the most detailed is the French-Italian glossary" 
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Figure 21.10. Comparison between untreated (data compiled from the literature from 
the 1920s-1950s) and treated (1975-79 in the N.W. Thames region of England: all 
histologically proven cases) lung cancer: 667 versus 3039 cases23. One-year survival 
rates for 2094 treated males are 30.8% (solid circles), for 463 untreated males are 
9.9% (hollow triangles), for 945 treated females are 25.1% (solid triangles) and for 
204 untreated females are 6.1% (hollow squares). Thus for both sexes the improvement 
in one-year survival when treated, compared to untreated, is some 20%. 

for gynaecological cancers. This allows an accurate identification of the grade 
of early and late normal tissue damage using five grades of increasing seventy, 
GO-G4, and describing each grade of complications per tissue or organ at risk. 
For example, rectal complications G1 include five definitions of signs and 
symptoms, G 1 a-G 1 e, corresponding to different types of morbidity of about 
the same inconvenience for the patient. 

This glossary was also designed to register and analyse signs and symptoms 
induced by different types of treatment: radiotherapy, surgery, chemotherapy. 
This, as stated by Chassagne et then enables a comparison of the 
incidence and severity of the sequelae and complications, and moreover identify 
unambiguously each type of complication that otherwise would remain hidden 
behind the scoring of complications. This should at least lead to objective 
comparisons between series treated with different strategies when authors 
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comply with the rules and definitions of the glossary. An example from the 
glossary is given in Table 21.15 for rectal complications by grade and type. 

Table 21.15. Rectal complications by grade and type: French-Italian glossaryz4 

Gla  

G l b  Minor rectorragia 
G 1 c Rectocele 
Gld  

Acute proctitis during radiotherapy with 10% increases 
of treatment time or lasting more than two months 

Preoperative injury with immediate repair 

G2a Rectorragia. Transfusion 
G2b Rectal ulcerations. Pain 

G3a Recto-vaginal fistula 
G3b Severe rectorragia. Surgery needed 
G3c Rectal stenosis. Surgery needed 

G4 Death from complications 

21.11 QUALITY OF LIFE OF CANCER PATIENTS IN DEVELOPING 
COUNTRIES 

Pain as a complication of treatment is given as grade G2b in Table 21.15, but 
it should be remembered that cancer pain is a problem not only after treatment, 
but also before treatment and is sometimes stated to be the most frequently 
occurring cancer symptom. 

This is particularly true in developing countries where the cancer problem 
is somewhat different from that in developed countries, Table 21.16. In the 
publication’’ on Perspectives on quality of life by Stjernswiird and Teoh the 
WHO global estimates for cancer were given as: 7 x lo6 new cancer patients 
diagnosed annually. Slightly less than 50% are in the developing countries. 
About 5 x lo6 will die of their disease. In developed countries 67% of male 
and 60% of female cancer patients will die of their disease but in developing 
countries the figure is much higher. 

These WHO authors25 also state that for cancer patients in developing 
countries no curative cancer treatment exists and that the quality of life of these 
patients would be better if they had access to palliative care and pain relief 
(termed the waste paper basket alternative to anti-cancer treatment) from the 
start. 
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Table 21.16. Availability of effective strategies in developing countries for the control of 
the eight most common cancers worldwide. Curative therapy is classified as curative for 
the majority of cases with a realistic opportunity of finding these cases in the early stage 
of the disease. (3.88 x IOh  cases). EFFV=Effective. PE=Partially effective. NE=Not 
effective. 

Tumour No. of cases Primary Early Curative Palliative 
site per year prevention diagnosis therapy care 

Stomach 670,000 PE NE NE EFFV 
Lung 660,000 EFFV NE NE EFFV 
Breast 572,000 NE EFFV EFFV EFFV 
Colorectal 572,000 PE PE PE EFFV 
Cervix 466,000 PE EFFV EFFV EFFV 
Mouthipharynx 379,000 EFFV EFFV EFFV EFFV 
Oesophagus 3 10.000 NE NE NE EFFV 
Liver 25 1,000 EFFV NE NE EFFV 

21.12 CONCEPT OF COMPLICATED CURE & FAILURE AND 
UNCOMPLICATED CURE & FAILURE 

21.12.1 Introduction 

This concept was discussed by Bush26 of the Princess Margaret Hospital, 
Toronto, as long ago as 1979 when he applied decision tree analysis to determine 
optimum treatment for cancer of the ovary, Table 21.17. 

Table 21.17. Cure and failure possibilities, after Bush2h. 

Cured without complications: A I  
Cured with complications: A2 
D i d n o  cure with complications: A3 
Diedno cure without complications: A4 

More recently Brahme, Agren and colleagues27 in Sweden have applied this 
concept when discussing the optimisation of radiotherapy treatment plans for 
maximising tumour control in head and neck tumours. These authors illustrated 
this concept in the schematic diagram in Figure 21.1 1. 
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D = 71.2 G y  D = 79.4 Gy 

T T 

a b 

D - 78.6 Cy D - 79.9 Cy 

T 

C d 

Figure 21.11. Schematic diagrams after Agren et aLz7 are for four different treatment 
dose levels, where ( B )  is the probability of treatment control, ( R )  is the probability of 
treatment recurrence and (I) is the probability of radiation injury for the entire clinical 
material (T). The small cross-hatched areas correspond to patients suffering both injuries 
and a recurrent tumour, i.e. complicated failure. 

21.12.2 Bayesian Statistics Application: ’keatment Optimisation 

Bayesian probabilities are used in statistical decision theory and differ from 
classical probabilities. A classical probability can be described by a statement 
such as ‘Probabilities are relative frequencies, e.g. number of heads or tails when 
a coin is tossed. This takes into account the state of the coin’. 

On the other hand, a Bayesian probability is a quantitative measure of the 
strength of one’s knowledge or one’s beliefs. It is a statement of a personal 
probability and as such, focusses as much attention on the decision maker as 
on the process or phenomenon under study. A recommended review is that by 
RaesideZ8 entitled Bayesian statistics: a guided tour. 

Bayesian statistics incorporates prior probability laws into decision 
strategies and the procedures take into account the consequences of incorrect 
decisions; classical probability procedures do not. As an example consider 
optimisation in treatment planning and the four possible outcomes given in 
Table 21.17 which have been symbolised Ai (i = 1,4). 
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The optimisation problem is to compute the probability of outcome 
A, (i = 1,4) for two treatment levels D, (j = 1,2). Assuming that cure and 
complication are independent and that the probability of cure is symbolised 
p ,  ( j  = 1,2)  and the probability of complications q, ( j  = 1,2) for the two 
dose levels. The probability of outcome A, ( i  = 1,4)  at treatment dose level 
DJ (j = 1,2) is given by the following four Pi, ( i  = 1.4; j = 1, 2) probabilities: 

Next consider an assignment of weights wi ( i  = 1,4)  for the treatment outcomes 
Ai (i = 1,4). One assigns w1 which is the largest weight, to the most desirable 
outcome which in this example is A1 and assigns w4 which is the smallest 
weight, to the least desirable outcome which in this example is A4. 

Bayesian statistics are now used for minimum risk (also called average 
loss) analysis to determine the optimum treatment dose level: either D1 or D2. 
Assuming a risk Ri (i = 1, 2) is associated with treatment level Di (i = 1, 2), 
the risk Ri ( i  = 1 ,2 )  is the summation of the product (w, . Pji) for j = 1 , 2 , 3 , 4 ,  
for each of the two values of Ri which are defined in Table 21.18. 

Treatment dose schedule 0 2  is chosen over schedule DI if R I  > R2 since 
0 2  will thus have the least risk, or D1 is chosen over 02 if R2 > RI since D1 
will then have the least risk. 

21.13 ECONOMIC THEORY APPLICATION AND QUALITY OF LIFE 

In the 1990s and into the next century in the field of oncology it will rapidly 
become more and more necessary to numerically quantify applications for 
funding for example for new equipment or an expensive chemotherapy regime 
by some form of cost assessment linked to patient benefit. 

Copyright © 1998 IOP Publishing Ltd



Economic theory application 307 

21.13.1 Quality Adjusted Life Years 

One measure which has already been used is QUALYs: quality adjusted life 
years. These are a measure of the reduction or increase in health-centred utility, 
due respectively to disease and treatment. The value of future years benefit has 
to be discounted when QUALYs are used. 

This has been explained by the Office of Health Economics29 in the 
following manner. 'The reason for discounting future benefits is that even 
if money keeps its constant value (without inflation), a gain in future is worth 
less in real terms than a gain today. For example a gift of E l 0 0  now is worth 
much more than the same gift of E100 some 10 years hence. This is because if 
it is received now, it can be invested (or used in other ways) so that its value is 
increased as the years go by. If the E100 were invested, for instance to obtain 
a compound interest rate of 10% per annum, it would be worth about E260 in 
10 years time. Conversely a gift of 2100 some 10 years hence would be worth 
only E38 today. Hence discounting is getting at the present value of a future 
gain'. 

21.13.2 Cost Benefit, Cost Effective and Cost Utility Analyses 

There are three classes of cost analysis which are now used in healthcare and 
these are defined as follows. Cost benejit analysis: does the treatment pay 
off? Cost effective analysis: what is the most effective treatment using given 
resources? Cost utility analysis: how does treatment affect the length and quality 
of life? 

21.13.3 Net Benefit and Net Detriment 

Figure 21.12, after Bush26, shows schematically the net benefit for a treatment 
A compared with a treatment B when survival outcome is the same for both 
treatments. The area between the two curves when the health index is better for 
B than A (in a short period of time after the initial treatment) is subtracted from 
the area between the two curves when the health index is better for A than for 
B (a much longer period of time, ending at death) to represent the net benefit 
for treatment A over treatment B. 

The current problem, as discussed earlier in  this chapter, is that a single 
global value for a health indedquality of life score has several disadvantages 
and can obscure important aspects of quality of life assessment. However, it 
would certainly be practical to construct graphs such as Figure 21.12 for the 
most important symptoms/complications and for example, present six graphs, 
some of which might give A better than B and some give B better than A. 

The survival times do not necessarily have to be the same and in Figure 
2 1.13 there are two treatments C and D for which the survival times are different. 
This is also an example where the health index can be negative, e.g. patient on 
a life support machine and with a deteriorating and terminal prognosis. 
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However, one must remember that statistics is only a tool (and statistical 
significance is not neccessarily the same as clinical significance) and the 
viewpoints of patient and doctor may differ (Table 21.2). Also, i t  can easily be 
imagined (using diagrams such as Figures 21.12 and 21.13) that a situation can 
exist of a treatment with a better quality of life but a shorter survival prognosis 
versus a treatment with a worse quality of life but a longer survival prognosis, 
and the patient preferring the former. Nevertheless, such analyses as in Figures 
2 1.12 and 2 1.13 can be helpful and they are more easily understood by hospital 
managers than qualitative assesments. 

The units of area beneath the curves in  Figures 21.12-21.13 are 'Health 
Index-Time' which represents a measure of quality of life and treatment success. 
However, similar curves can also be drawn for complications and Maciejewski30 
has pointed out that the vertical axis of such a curve can be a scale of severity of 
complications, which can vary with time, and the areas beneath the curves are 
then 'Severity-Time' units for complications. This is a useful approach since it 
can quantify the importance of late complications, but of course the follow-up 
must be available. 

In i t ia l  treatment 

f 

0 2 5  

1 Treatment A 

' ! --\  

1 1  
- 
I 

Birth In i t ia l  Initial Death i f  
symploms treatment treated by 

methods A or B 
l i m e  + 

Figure 21.12. 
treatment A versus treatment B when both have the same survival prognosis. 

Schematic representation, after Bush26, of the benefiudetriment of 
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No treatment 

TREATMENT SUCCESS IN THE ORTHOPAEDIC DEPARTMENT 

(Courtesy of Budapest University Medical Students' Magazine, 
Hungary and Dr Gyorgy KovAcs) 
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Figure 21.13. Schematic representation illustrating that a health indedquality of 
score can be negative and that this type of net benefivdetriment analysis can be used 
treatments with different survival prognoses. 

life 
for 
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Chapter 22 

Risk Specification with Emphasis on 
Ionising Radiation 

22.1 INTRODUCTION 

Risk can be specified in many different ways, but not all are as informative 
as each other. For example, the simple qualitative statement that the risk of a 
fatal acccident when crossing the road in busy traffic in a city is greater than 
when crossing the road in the countryside, is stating the obvious, but it gives 
no comparison betwen the two situations in terms of how much greater is the 
actual risk in the city. 

Some possible methods of specifying mortality risks are by stating the risk 
per population sample per year, Table 22.1, or a fatal accident frequency rate, 
Table 22.2, which is useful for risk comparisons in different industries. For 
industrial risk comparisons, what is termed as an average reduction in lifespan 
is also sometimes used, Table 22.3. 

Table 22.1. Mortality risks per population per year: from the 1970 Statistical Abstract 
of the United States’. The probabability of dying from a particular cause of death is 
calculated as the number of cause-specific deaths divided by the population number. 

Cause of death RisWyear Probability 
/100,000 

population 

Heart disease 364/100,000 0.00364 
Cancer 157/100,000 0.00157 

Comparative risks are of interest, not just for industrial workers, but also 
for everyday activity hazards such as smoking and air travel. Tables 22.4 and 
22.5 give two examples of methods of quantifying such risks. 

3 10 
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Table 22.2. Fatal accident frequency rate (FAFR): defined as the number of fatal 
accidents in  a group of 1000 men in a working lifetime, assumed to be 100 million 
hours. for various United Kingdom industries' 

FAFR Industry 

67 Construction 
36 Fishing 
14 Coal mining 
10 Agriculture 
5 Chemical 
1.3 Vehicles 
0.15 Clothing and footwear 

Table 22.3. Average reduction in lifespan in days, of one year working life of a person 
age 40 years'. 

Lifespan Industry 
reduction 

(days) 

3 1.9 Deep-sea fishing 
3.6 Coal mining 
2.6 Oil refinery 
2.2 Railways 
2.1 Construction 

Table 22.4. Activities which incur one in a million risk of death' 

600 km air travel 
100 km car travel 
Smoking 75% of a cigarette 
1.5 minutes of mountaineering 
20 minutes of life at age 60 
Drinking half a bottle of wine 
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Table 22.5. Risk of death per person per year for a given activity'. These numerical 
values of risk can be compared with the probabilities given in Table 22.1 where that for 
heart disease can be written as 364 x and for cancer as 157 x 

RisWperson 
/year (x  

Activity 

500 
200 
120 
75 
17 
4 
2 

Smoking 20 cigarettedday 
Motor cycling 
Car racing 
Drinking 1 bottle of wine/day 
Car driving 
Rock climbing 
Taking contraceptive pills 

For the atomic bomb survivors of Hiroshima and Nagasaki, and since 1986 
for the survivors of the Chernobyl accident, much work has been undertaken in 
mathematical modelling of risk estimates in irradiated populations (not only high 
dose-high risk but also low dose-lower risk) for leukaemia and for solid tumours 
including thyroid cancer. These results are generally expressed as relative risk, 
excess relative risk and absolute risk. 

22.2 DEFINITIONS OF ABSOLUTE RISK AND RELATIVE RISK 

Absolute risk can be defined2 as the excess risk attributed to irradiation and 
is usually expressed as the numerical difference between irradiated and non- 
irradiated populations: e.g. 1 excess case of cancer per 1 million people 
irradiated annually for each Gy (or rad). Absolute risk may be given on an 
annual basis or a lifetime (70 year) basis. 

It is the magnitude of risk in a group of people with a certain exposure, 
but it does not take into account the risk of disease in unexposed individuals. It 
cannot therefore help to discover if the exposure is associated with an increased 
risk of the disease. 

Relative risk (RR) is2 the ratio between the number of cancer cases in 
the irradiated population to the number of cases expected in the unexposed 
population. A relative risk of 1.1 indicates a 10% increase in cancer due to 
radiation, compared with the normal incidence of the baselineheference group. 

Excess relative risk (ERR) is thus relative risk minus 1.0. Relative risk is 
more appropriate to use when considering selected population groups. 

The NCRP report' on Induction of thyroid cancer by ionizing radiation 
defines an absolute risk coejjkient R as the number of cases attributable to 
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radiation exposure per million person-rad-years at risk, in  the formula 

R = ( C / n ) .  (106/[D 9 y ] )  

where C is the number of cases attributable to radation exposure, n is the number 
of subjects at risk in the irradiated population, D is the average radiation dose 
(rad) to the thyroid gland, and y is the average number of observed years at risk 
per subject. 

Relative risk, unlike absolute risk, therefore gives an estimate of how strong 
an association exists between exposure to a factor and the development of a 
disease. There are of course many different factors that may be associated with 
increased risk of disease and for example, Table 22.6 lists the factors considered 
as being of importance in  the UICC publication4 Cancer risks by site, although 
not all factors are of significance for every cancer site. For each cancer site 
listed, this publication summarises the high risk areas, factors and conditions. 
providing a very useful overview, Table 22.7, 

Table 22.6. Possible risk factors for various cancers4. 

Host factors 
Sex 
Age 
Genetic predisposition 
Precancerous lesions 
Predisposing morbid conditions 
Multiple primary lesions 

Socioeconomic status 
Tobacco 
Drugs 
Alcohol 
Diet 
Radiation 
Occupation 
Air pollution 
Sex life and pregnancy 
Biological agents 

Environmental factors 
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Table 22.7. High risk factors [fl and conditions [C] for selected cancers4. 

Oesophagus 

Stomach 
Alcohol & tobacco [F]. Dysplasia of the epithelium [C]. 

Familial clustering, diet of salted pickles & fish, tobacco [Fl. 
Intestinal metaplasia, pernicious anaemia [C]. 

High meat & fat diet, familial polyposis [F]. 
Adenomatous polyps, villous adenoma, ulcerative colitis [C]. 

High meat diet, multiple polyposis [F]. 
Villous adenoma, ulcerative colitis [C]. 

Tobacco, high fat diet [W. Diabetes [C]. 

Tobacco, familial history, arsenic, asbestos, steel, nickel, chrome, 
radiation [F]. Metaplasia of bronchial epithelium [C]. 

Paget’s disease of bone, radiation [v. 
Familial history, early menarche, first parity late, high fat diet, 
obesity [F]. Hyperplastic lesions with cellular atypia [C]. 

Low socio-economic class, sexual promiscuity [F]. Severe dysplasia [C]. 

Higher socio-economic class, obesity, nulliparity, late onset of fertility [a. 

Higher socio-economic class, radiation [F]. 

Familial history, cadmium oxide, prostatic enlargement [F]. 

Dye stuffs, tobacco, rubber, abnormality of tryptophane metabolism [F]. 
Papillomas [C]. 

Genetic predisposition [F] 

Radiation [F]. Papillary adenoma, autoimmune thyroiditis, 
Hashimoto’s disease [C]. 

Infectious mononucleosis [C]. 

Radiation, Down’s syndrome, Fanconi’s anaemia, Bloom’s syndrome, 
ataxia telangiectasia [F]. 

Colon 

Rectum 

Pancreas 

Lung 

Bone 

Breast 

Cervix uteri 

Corpus uteri 

Ovary 

Prostate 

Bladder 

Brain & spinal cord 

Thyroid 

Hodgkin’s disease 

Leukaemia 
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22.3 ODDS RATIO 

Odds is the ratio of the probability of occcurrence of an event to that of the 
non-occurrence of the event, i.e. the ratio of the probability of something that 
is true to the probability that it is not true. 

This has been explained’ in the following manner. If 60 smokers develop 
a chronic cough and 40 do not, the odds among these 100 smokers in favour 
of developing a cough are 60:40, or 1.5. This may be contrasted with the 
probability that these smokers will develop a cough, which is 60/100 or 0.6. 

An odds ratio which is also sometimes termed a relative odds or a cross- 
product ratio, is the ratio of two odds where the odds are defined depending on 
the situation being studied. Hence there can be an exposure-odds ratio (odds in 
favour of exposure among cases and among non-cases), and a disease-odds ratio 
(odds in favour of disease among the exposed and among the non-exposed). 

One example of the use of odds is in the review6 of 19 randomised trials of 
post-mastectomy radiotherapy for the treatment of early breast cancer, in which 
was calculated the typical reduction in the odds of treatment failure. In this 
instance, the odds ratio is the ratio of the odds of an unfavourable outcome 
among the treatment allocated patients, to the corresponding odds among the 
controls. 

Thus an odds ratio of 0.8 would correspond to a reduction of about 20% 
(about because the odds ratio will have an associated standard deviation) in 
the odds of an unfavourable outcome. In practice6 the odds ratio was found 
to be 0.99 with 95% confidence limits of 0.92 to 1.06. This indicates that the 
result is not conventionally significant since the odds ratio of 1.00 is within the 
confidence interval. 

22.4 HIROSHIMA AND NAGASAKI 

Absolute and relative risks for atomic bomb (ATB) survivors are published 
at regular intervals by the Radiation Effects Research Foundation (RERF)7 to 
show, for example, for leukaemia and other cancers, the effects of age, sex and 
time since ATB exposure. Figure 22.1 is from RERF data8,’ and is a summary 
of the excess relative risk (ERR) for various cancers, and also a summary of 
relative risks. 

Figure 22.1 shows statistically significant risks not only for leukaemia and 
multiple myeloma, but also for the following solid tumours: cancers of the 
stomach, colon, lung, breast, ovary, urinary bladder and thyroid. Table 22.8 is 
also for ATB data and lists for leukaemia both relative and absolute risks. 

The incidence of leukaemia peaked in 1951, Figure 22.2, and the excess 
risk at all dose levels was always higher in Hiroshima than in Nagasakig. There 
has been a recent reclassification of leukaemia among the ATB survivors and 
the radiation effects differ depending on the type of leukaemia. The four types 
are acute myeloid leukaemia (AML), acute lymphoid leukaemia (ALL), chronic 
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Figure 22.1. (Top) Excess relative risk at 1 Sv (RBE 10) and 95% confidence interval, 
1958-19878. (Bottom) Relative risk at 1 Gy (shielded kerma) and 90% confidence 
interval, 1950-1985’, for selected cancers which are not given in the earlier (top) bar 
chart. 
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Table 22.8. Estimated relative risks at 1 Gy, and absolute risks stated as an excess risk 
per lo4 person-yearsGy for leukaemiag for the period 1950-1985. The figures given in 
brackets are 90% confidence intervals. 

Estimated Excess risk 
RR at 1 Gy per IO4 PY.Gy 

4.92 [3.89, 6.403 2.29 [1.89, 2.731 

myeloid leukaemia (CML) and chronic lymphocytic leukaemia (CLL). 
The A-bomb exposure effects are significantly greater for ALL and CML, 

than for AML. ALL and CML were also observed earlier than AML and it also 
appears* that the leukaemia type most characteristic of the A-bomb survivors 
in CML. However, there does not appear to be a difference in the shape of the 
dose-response curve. 

Figure 22.3 is a schematic representation2 of the induction period and risk 
of leukaemia as a function of age at exposure. 
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Figure 22.2. Leukaemia among A-bomb survivors proximally exposed within 2000 
metres from ground zero who received more than 1 rad radiation dose, Hiroshima and 
Nagasaki 19459. 
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Figure 22.3. Schematic respresentation of the induction period and risk of leukaemia as 
a function of age at exposure. 

22.5 CHERNOBYL 

There are many problems in estimating risks of cancer induction following the 
Chernobyl accident, not least of which is that very few direct measurements 
of radiation exposure at the time of the accident are available, and that the 
Hiroshima-Nagasaki data cannot be automatically used for Chernobyl because 
the types and patterns of radiation exposure are very different. Reliance is 
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therefore placed on estimates from mathematical models which are still largely 
unproven for the Chernobyl accident which occured only 10 years ago. 

Nevertheless, best estimates for relative and absolute risks have been 
modelled, particularly for thyroid cancer and leukaemia. For example for 
the Bryansk oblast in Russia, which is the area in  Russia with the highest 
contamination, the relative risk of thyroid cancer in children and adolescents 
for the dose range 0.6-1.4 Cy is 7.3, but the 95% confidence limits are wide at 
(1.7, 38.9)''. 

Some of the more recent estimates] were given at the IAEA International 
Conference in Vienna in April 1996 on One decade after Chernobyl and Table 
22.9 is taken from the presentations summing up the consequences of the 
accident. 

The term attributable fraction (AF) in Table 22.9 is sometimes used in the 
presentation of risk estimates and is defined as: 

Excess deaths 
Total deaths from the same cause 

AF = 

Table 22.9. Predicted background and excess deaths'' for a lifetime period, from solid 
tumours (ST) and leukaemia (L) in selected populations exposed as a result of the 
Chemobyl accident. AF = attributable fraction. EAWs = emergency accident workers, 
also termed liquidators. Evacuees: 30km = evacuees from the 30 km zone. SCZs = 
specially controlled zones. 

Population Population Cancer Average Background Predicted AF (%) 
size type dose no. of cancer excess 

(mSv) deaths number 

EAWs 198687 200,000 ST I00 41,500 2000 5 
L 800 200 20 

Evacuees:30km 135,000 ST I O  21,500 150 0.1 
L 500 10 2 

Residents:SCZs 270,000 ST 50 43.500 1,500 3 
L 1000 100 9 

The lifetime risk estimates in Table 22.9 have followed the methods of 
the UNSCEAR 1994 Report12. However, at the November 1995 World Health 
Organisation International Conference in GenevaI3 on Health consequences of 
the Chernobyl and other radiological accidents, the following conclusions were 
drawn for thyroid cancer, Table 22.10, although for leukaemia it was stated that 
there was 'No significant increase in leukaemia or other blood disorders so far'. 

At the time of writing, the most recent datal4 on excess relative risk of 
thyroid cancer relates to the cohort of emergency accident workers (liquidators) 
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Table 22.10. Summary ~ommentary’~  on thyroid cancer incidence in Belarus, Ukraine 
and Russia postChemoby1 accident: WHO, Geneva, November 1995. 

More solid papillary type of cancer more frequently observed than in European 

Causative relationship with Chemobyl based on geographical distribution: 

0 Cancer type particularly aggressive 
Extra-thyroidal invasion with lymph node invasion in more than 60% 
Some 7% with lung metastases 

0 Thyroid cancer cases conceived before but not after the accident 
0 Increase in thyroid cancer in children 

countries 

see Table 22. I 1 

Belarus: 400-600 depending on reports 
0 Ukraine: more than 200 
0 Russia: less than 60 

Table 22.11. Incidence of thyroid cancer in children” (age < 15 years) in Belarus. 
There is a geographical correlation with the incidence in Gomel since the radioactive 
cloud passed directly over this town when i t  was raining. 

Region Year 
86 87 88 89 90 91 92 93 94 95 86-95 

Gomel 1 2 1 3 14 43 34 36 44 48 226 

Remainder 
ofBelarus 1 2 4 4 15 16 32 43 38 43 198 

who reside in Russia, as distinct from Belarus and Ukraine. This analysis 
showed that there is an excess relative risk (ERR) of thyroid cancer per C y  
of 5.31 (95% confidence interval 0.04-10.58) and an excess absolute risk of 
thyroid cancer per l o 4  person-years per C y  of 1.15 (95% confidence interval 
0.08-2.22). Where is good agreement between these results and those of BEIR 
v‘5. 

The liquidators’ mean radiation dose was 140 mGy and in 67.3% (33/47) 
of cases they were in the age range 3549  years when the thyroid cancer was 
diagnosed. 
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22.6 BREAST CANCER 

The BEIR V ~ o m m i t t e e ' ~  has estimated the risk of radiation induced cancers 
using a linear quadratic dose-response function with a relative risk function 
that depends on sex, age at exposure and time elapsed since exposure. Most 
of the data which have been used to fit the model parameters are from single 
dose/high dose rate exposures such as for the A-bomb survivors. Hence the 
BEIR V parameters might not be very accurate for highly fractionated and/or 
low dose rate exposure. 

For further reading on limitations of the model see the work of Hendee 
and Edwards16 on health effects of exposure to low level ionising radiation and 
for risk estimates for specific sites the work of Mettler and Upton*. Figure 22.4 
shows the relative risk of breast cancer per 0.1 Gy and Figure 22.5 the excess 
deaths from breast cancer per 10,000 person-years.Gy 

T. 
0 

1 .o 
30 45 60 75 

Attained age (years) 

Figure 22.4. Replotted BEAR V of the relative risk of breast cancer per 0.1 
Gy, as a function of attained age, for four different ages ( 5 ,  15, 25 and 45 years) at time 
of exposure. The time since exposure is the attained age minus the age at the time of 
exposure. 
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Figure 22.5. Replotted BEIR V of excess deaths from breast cancer per 10,000 
person-yearsGy, as a function of attained age for four different ages at the time of 
exposure. This is an absolute risk. 

22.7 MORTALITY RATIO 

Relative and absolute risks are used in predictive modelling beyond the period 
of observation but it is only from the 1980s that much work has been undertaken 
with BEIR and other models. Prior to such modelling for A-bomb survivors, 
virtually all that was stated was essentially mortality ratios (MR) for various 
population subgroups where the MR was defined as follows. 

MR = 
Observed deaths 
Expected deaths 

In one of the earlier RERF reports” in 1972, the observed and expected 
deaths from leukaemia were tabulated by time period and the values of MR are 
seen in Figure 22.6 as a vertical bar chart”. MR peaks for the period 1950-54 
and as seen in Figure 22.2 this agrees with the peak incidence year of 1951. 

Mortality ratios are also shown in Figure 22.7 for radiologists’8 and include 
the period 1896-1920 when radiation protection procedures were only slowly 
being adopted worldwide. This is reflected in the reduction of the mortality 
ratio with time. 
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Figure 22.6. Leukaemia mortality statistics for atomic bomb survivors. 
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Figure 22.7. Leukaemia mortality statistics for radiologists. The mortality ratio (MR) is 
the ratio of the observed number of deaths to the expected number of deaths. 

22.8 LUNG CANCER AND SMOKING 

Another example of the use of mortality ratios is shown in Table 22.12 for lung 
cancer and different types of smoking. These data are for American males in a 
1975 s t ~ d y ' ~ ~ l ~  but the mortality ratio is defined slightly differently to those for 
Figures 22.6 and 22.7. In this instance it is: 

Age-standardised death rate of smokers with a given type of smoking 
Age-standardised death rate of those who never smoked regularly MR = 
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Table 22.12. Lung cancer mortality ratios for different types of smoking for American 
males aged 35-84 years’x,”. 

MR Type of smoking 

1 .OO Never smoked regularly 
1.23 Pipe and cigar 
2.15 Cigar only 
2.23 Pipe only 
8.23 Cigarette and other 
10.08 Cigarette 

Data for BritWdoctors, 
0011 a d  Hill ( 1 9 6 4  

American Concw b c r c f y  survey data 
Ex-smdrers r h o  prrviourly smoked 

American Cancrr Sal r ty  Ivrrry data 
El-smokers uho prwlously smokrd O 1-W cigarettes Der day 

< 5  1 - 6  5-9 10-19 ( 0 .  
limr prriad w c e  last maklng f y e o r i l  

Figure 22.8. Lung cancer mortality statistics for ex-smokers. Mortality ratio is 
the ratio of the age-standardised mortality rate in current cigarette smokers and the 
age-standardised mortality rate for ex-smokers. 

Mortality ratios also provide useful information when tabulated for the 
number of cigarettes smoked daily. For men who smoke 30 cigarettes per day, 
compared with non-smokers, it has long been demonstrated*O that the increase 
in mortality risk is in the range 12-fold to S f o l d ,  depending on the population 
considered. It has also been demonstrated both in America and the United 
Kingdom that lung cancer mortality starts to decline in smokers who cease 
smoking and this can conveniently be expressed’* in terms of mortality ratios, 
Figure 22.8. 
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22.9 

Prevention is better than cure and this is the aim of educational cartoons 
and probably one of the most effective series is that in the late 1980s in 
Hungary which together formed a large poster detailing the seven main warning 
signs and symptoms for cancer. The introduction to this poster is ‘Our body 
sends messages to us with symptoms and signs which are warning us about 
the development of dangerous illnesses. Naturally, the symptoms don’t mean 
cancer in every case. If you find any suspicious malformation on your body, see 
your doctor without delay. Don’t forget that cancer which has been diagnosed 
in time, can certainly be cured. You have to learn the Seven Warning Signs. 
Early symptoms rarely give pain. If you have any of these symptoms for more 
than two weeks go to see a doctor straight away’. 

EDUCATIONAL CARTOONS ON CANCER RISK 
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The seven warning signs are described as follows. 

1. Visual changes to any wart or birthmark. 
2. Changes in connection with stool and urine. 
3. Persistent cough or hoarseness. 
4. Constant swallowing problems. 
5 .  Not recovering from ulcers or skin damage. 
6. Unusual bleeding or secretion dripping. 
7. Palpable mass in the breast or anywhere else in your body. 

(I am grateful to Erika Bender and Lodi Fox 
for translation from the Hungarian) 
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Many cartoons have been designed for anti-smoking campaigns and that 
shown is a badge from the UK Health Education Bureau in the 1970s. Excessive 
exposure to ultra violet radiation is a known cause of skin cancer and the two 
car stickers shown are from the Anti-Cancer Council of Victoria, Melbourne, 
Australia in  the early 1980s. 
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Chapter 23 

Types of Epidemiological Study: 
Case-Control, Cohort and Cross-Sectional 

23.1 INTRODUCTION 

Epidemiology has already been defined in section 19.1 as the study of the 
distribution and determinants of health related states or events in specified 
populations and the application of this study to control health problems. 
Expanding the terms study, distribution and determinants we have the 
following'. 

0 Study includes surveillance, observation, hypothesis testing, analytical 
research and experiments. 
Distributions refer to analysis by time, place and classes of persons affected. 

0 Determinants are all the physical, biological, social, cultural and 
behavioural factors that influence health. 

The term analytical study is one which attempts to explain the observed 
pattern of occurrence of a disease and a descriptive study describes the 
occurrence of the disease or disease-related phenomena in populations. 

Epidemiological studies are not generally amenable to being investigated 
by randomised trials and observational studies are therefore the more practical 
to study factors or exposures which cannot be controlled by the investigators2. 
The two main types of observational study, are the case-control study and the 
cohort study but the terminology can be confusing, and has been described by 
Gordis3 as a terminology jungle, Table 23.1. 

There are several possible sources of bias in  these studies and one such 
source, which is also relevant to clinical trials, see section 20.6 on historical 
controls, is the inaccuracies of retrospective data. Another is a detection bias 
in  which the cases receive more frequent screening for a disease, eg. cervical 
cancer, than do the controls. There is also potential bias in the assessment 
of the outcome (when this is other than death) if the assessor knows if the 

3 27 
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Table 23.1. Terminology jungle: after Gordis3. 

Case-control study - - Retrospective study 
Cohort study = Longitudinal study = Prospective study 
Concurrent cohort study = Prospective cohort study = Concurrent 

prospective study 
Retrospective cohort study = Historical cohort study = Non-concurrent 

prospective study 
Randomised trial - - Experimental study 
Cross-sectional study - - Prevalence study 

person was exposed and the assessment is not blind. The quality and extent 
of the information for the exposed and non-exposed may be different and this 
could produce an information bias. Losses to follow-up can also cause serious 
problems. 

23.2 CASE-CONTROL STUDIES 

Figure 23.1 is a WHO schematic diagram4 of the design of a case-control study. 
They include people with a disease (or other outcome variable) of interest and 
a suitable control group (comparison or reference group) of people unaffected 
by the disease or outcome variable. The occurrence of the possible cause is 
compared between cases and controls. 

Data concerning more than one point in time are collected and thus the 
study is termed longitudinal and it is also retrospective since the study looks 
backwards from the disease to a possible cause. However, terminology as 
seen from Table 23.1 can be confusing, and a case-control study may be either 
retrospective when all data deal with the past, or prospective in which data 
collection continues with the passage of time4. 

Furthur information to that given in this chapter can be obtained from 
several textbooks devoted to the topic of e p i d e m i ~ l o g y ~ - ~  and for cancer 
research in particular, from the IARC publication by Breslow and Day7. 

23.2.1 Selection of Cases 

Cases can be selected from various sources including hospital case notes, patient 
records in a general practitioner’s practice, and any specialist registries such as 
a cancer registry. However, several problems in case selection must be avoided 
to prevent bias and ensure that the final results of the study can be generalised 
to all patients with the disease. 

Thus for example if hospital cases are used it must be ensured that there 
is no patient referral pattern which results in these patients having a risk factor 
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Not exposed , +---. disease) 

Figure 23.1. Design of a case-control study (Courtesy: World Health Organisation4). 

unique to that hospital caseload. It is good practice to select from several 
hospitals and not only a single hospital. 

One method of ensuring that cases and controls are as comparable as 
possible is to individually match them by for example, age, sex and occupation. 
However, this is only useful for variables which are known to be strongly 
related to both exposure and outcome. They should certainly not be matched 
for possible risk factors since this matching would mean that no association 
could be found, if one exists, between the disease and this possible risk factor. 

A decision must also be made as whether to use incident cases, i.e. those 
who are new cases of the disease or prevalent cases, i.e. those who have already 
had the disease for a period of time. One advantage of prevalent cases is that 
the case numbers already exist, whereas with incident cases one has to wait for 
the cases to accrue. 

However, it is preferable to use incident cases because it will not be certain 
if prevalent cases are used in a case-control study of disease aetiology if the 
risk factors which will be identified are related more to survival with the disease 
than to its development. 

23.2.2 Selection of Controls 

The controls should represent people who would have been designated study 
cases if they had developed the disease. They may be selected from non- 
hospitalised patients living in the community or from hospitalised patients 
without the disease under study but care must be taken to avoid bias. 

One good example of an incorrect method of choosing controls is quoted 
by Gordis3 and refers to a 1929 study8 at Johns Hopkins University to test 
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the hypothesis that tuberculosis protected against cancer. The study data were 
taken from autopsy reports with 816 cases with cancer and 816 controls without 
cancer. The percentage of autopsies with TB was 6.6% (54/816) cases and 
16.3% (133/816) controls and the conclusion was that TB had a protective 
effect against cancer. 

When the study was performed the majority of the patients at Johns Hopkins 
Hospital were TB cases and what had happened when choosing the controls 
were that many of them had been diagnosed with TB and the control group was 
therefore not representative of the distribution of TB in the general population. 
What the case-control study had performed was a comparison of the prevalence 
of TB at autopsy in patients with cancer and the prevalence of TB at autopsy 
in patients who had already been diagnosed with TB. 

When the study was repeated later’ the controls were taken from patients 
who had died from heart disease and had not been admitted to hospital because 
of TB. This study showed no difference in the prevalence of TB in the two 
groups. 

Hospital records are more accurate than patients’ memories as demonstrated 
in Table 23.2. When choosing the controls this shows that total reliance on 
memory would not be an acceptable option. Sensitivity and specificity (see 
Chapter 19) can be calculated from the data and are quoted below the data in 
Table 23.2. 

Table 23.2. Comparison of hospital records and patient’s statements as to the presence 
or absence of a prenatal abdominal X-ray examination. Data from Harvard School of 
Public Healths. 

Hospital Patient’s statement Total 
record X-rayed Not X-rayed Don’t know 

X-rayed 24 10 3 31 
Not X-rayed 2 31 5 38 

Total 26 41 8 15 

Sensitivirj is the probability of the patient stating they had been 
X-rayed when in fact this was true: 24/37 = 65%. 
Specifcity is the probability of the patient stating they had not 
been X-rayed when in fact this was true: 31/38 = 82% 
The positive predictive value is the probabilitiy that persons who 
say they manifest a characteristic truly do: 24/26, i.e. 92%. The 
negative predictive value is the probability that persons who say 
they do not have the characteristic, truly do not: 31/41, i.e. 76%. 
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23.2.3 Example: Thalidomide and Limb Defects 

A classic example" of a case-control study was undertaken in 1961; the 
discovery of the relationship between thalidomide and unusual limb defects 
in babies born in the Federal Republic of Germany in 1959 and 1960. This 
case-control study compared affected children with normal children and of 46 
mothers whose babies had typical malformations, 41/46 had taken thalidomide 
between the fourth and ninth weeks of pregnancy whereas none of the 300 
control mothers, whose children were normal, had taken the drug during this 
period. 

23.2.4 

The association between recent meat consumption and enteritis necrotans in 
Papua New Guinea4*" is shown in Table 23.3. The cases were people with the 
disease and the controls were those who did not have the disease and the results 
of this study are given below by describing the association of an exposure and 
an outcome by calculating the odds ratio (see also section 22.3). 

Example: Meat Consumption and Enteritis Necrotans 

Table 23.3. Association between recent meat consumption (exposure) and the disease 
enteritis necrotans (outcome) in Papua New Guinea". 

Outcome Exposure Total 
Yes No 

Yes 50 11 61 
No 16 41 57 

Total 66 52 118 

The odds ratio is the ratio of the odds of exposure among the cases to the 
odds in favour of exposure among the control. Thus for the data in Table 23.3 

Odds Ratio = (50/11)/(16/41) = 11.6 

This shows that the cases were 11.6 times more likely than the controls to have 
recently ingested meat. 

23.3 COHORT STUDIES 

The term cohort has been encountered in section 21.7.1 when cohort interpolated 
life tables were discussed. The term originates from the Latin cohors meaning 
warriors and referred to one-tenth of a Roman legion. 

In medical statistics it refers to a component of the population born during 
a particular period so that its characteristics (e.g. numbers still alive, see ,P ,  
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survival probabilities in Table 21.13) can be described as it enters successive 
time and age periods. It is also now broadened to describe any designated group 
of persons who are followed-up over a period of time, as in cohort (prospective) 
study. 

Figure 23.2 is a WHO schematic diagram4 of the design of a cohort study. 
This begins with a group of persons, the cohort, free of disease, who are 
classified into subgroups according to exposure to a potential disease or outcome. 

Variables of interest are specified and measured and the entire cohort is 
followed-up to assess how the development of the disease, or other outcome, 
differs between the groups with and without exposure. However, although they 
provide the best information about the causation of disease and the most direct 
measurement of risk of developing a disease, they suffer the disadvantage that 
they usually require long periods of follow-up. 

A concurrent cohort study, Table 23.1, is one which first identifies the 
cohort to be studied, hypothetically for example school children, follows them 
up for say 10 years until smokers and non-smokers can be identified, then 
both sub-cohorts are followed up to determine who develops lung cancer and 
who does not. The term concurrent is used because the investigator identifies 
the original population at the start of the study and in effect accompanies the 
members of the cohort concurrently through time until the disease (lung cancer) 
has or has not developed. 

A hypothetical example of a retrospective cohort study, Table 23.1, is one 
in which retrospective data is already available on smoking habits and the study 
commences from this point in time until lung cancer has developed or not. 

[ Population f 
I C  

----*[disease] 
posed 

' IO disease 1 

Figure 23.2. Design of a cohort study (Courtesy: World Health Organisation4). 

23.3.1 Example: The Framingham Study 

One of the most well known cohort studies is the Framingham ~ t u d y ' ~ . ' ~  of 
cardiovascular disease which commenced in 1948. The town of Framingham 
is some 20 miles from Boston and had a population in 1948 of some 30,000 
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of which the cohort for study consisted of 5127 men and women in the age 
range 30-62 years who when entered into the study were free of cardiovascular 
disease. Table 23.4 gives some of the details of this study. 

Table 23.4. Details of the Framingham coronary heart disease (CHD) s t ~ d y ~ * ' ~ ~ ' ~  

Exposures 

These included smoking, obesity, elevated blood pressure, 
elevated cholesterol levels and low levels of physical activity 

Cohort surveillance for new coronary events 

Cohort examined every two years and by daily surveillance 
of hospitalisations at the only hospital in Framingham 

Hypothesis testing aims and objectives 

0 Incidence of CHD increases with age and 

0 Persons with hypertension develop CHD at a greater 

0 Elevated blood cholesterol level is associated 

0 Tobacco smoking and an habitual use of alcohol are 

0 Increased physical activity is associated with 

0 An increase in body weight predisposes a person to CHD 
0 An increased rate of development of CHD occurs 

occurs earlier and more frequently in males 

rate than those who are not hypertensive 

with an increased risk of CHD 

associated with an increased incidence of CHD 

a decrease in the development of CHD 

in patients with diabetes mellitus 

Derivation of the study cohort of 5127 persons 

No. of men No.of women Total 

Random sample 3074 3433 6507 
Responders from sample 2024 2445 4469 
Volunteers 312 428 740 

Responders free of CHD 1975 2418 4393 
Volunteers free of CHD 307 427 734 

Total free of CHD 2282 2845 5127 

In conclusion, it is noted that much of our knowledge about CHD today, 
which is currently taken for granted, was obtained as a result of this Framingham 
study which commenced some 50 yekrs ago. 
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23.4 NESTED CASE-CONTROL STUDY 

One of the disadvantages of a cohort study is the lengthy time period required 
and the high cost to implement the study. This can be partially overcome by 
using a nested case-control study design, Figure 23.3, in  which the cases and 
controls are chosen from a defined cohort (the population in Figure 23.3) and 
for which some information on exposures and risk factors are already available. 
The case-control study is nested within the cohort. 

Population 0 

Caw control 6tUdy ’ 
Figure 23.3. Design of a nested case-control study. 

23.5 CROSS-SECTIONAL STUDIES 

Cross-sectional studies measure the prevalence of a disease, see Table 23.1, and 
the measurements of exposure and outcome (i.e. effect) are made simultaneously, 
Figure 23.4. It is therefore not always easy to interpret the reasons for 
associations found in cross-sectional studies. The major question to be asked is 
whether the exposure precedes or follows the effect. 
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Figure 23.4. Schematic diagram of a cross-sectional study. The study can be analysed 
using 2 x 2 tables in the two ways shown below. 

The prevalence of the disease is compared in exposed and non-exposed This will be, 
using the notation below: ( a / [ a  + b ] )  versus (c/[c + d ] }  

The prevalence of exposure is compared in diseased and non-diseased. This will be 
{ a / [ a  + cl) versus {b / [b  + dll 

Disease No disease 

Exposed a b 
Not Exposed c d 

Defined 
population 

Obtain data on exposure and 
disease 

. . . . . . . . . . . . . .  

Not exposed 

. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  - 
i i 1 4 

Disease No disease Disease No disease 

lal Ibl 
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23.6 SUMMARY OF ADVANTAGES AND DISADVANTAGES OF THE 
DIFFERENT STUDIES 

Table 23.5 summarises, after WHO4, the advantages and disadvantages of the 
three types of study so far considered in this chapter. Possibilities of selection 
bias have already been discussed in sections 23.2-23.5 and sources of bias in 
general at the end of section 23.1. Recall bias and counfounding, Table 23.5, are 
two special types of bias which can be encountered in epidemiological studies 
and are defined in  the next two sections. 

Table 23.5. Advantages and disadvantages of different types of observational study 
(NA: not applicable). 

Feature Case-control Cohort Cross-sectional 

Time required Medium High Medium 
cost Medium High Medium 

Probability of: 
Selection bias High L O W  Medium 
Loss to follow-up Low High NA 
Recall bias High L O W  High 
Confounding Medium Low Medium 

23.6.1 Recall Bias 

The word recall refers to memory recall of a person entering a study. In practice 
this has been shown to be not always good in many persons: one generally 
accepted example is a patient’s estimate of duration of symptoms. An example 
where numerical data is available is from an assessment by the Harvard School 
of Public Health5 and refers to memory recall of whether or not an X-ray 
examination had been performed, Table 23.2. 

23.6.2 Confounding 

In an epidemiological study of an association between exposure and occurrence 
of a disease, confounding can occur when another exposure exists in the study 
population and is associated both with the disease and the exposure being 
studied. 

If this confounding factor is unequally distributed between the exposure 
groups under analysis then incorrect conclusions can be drawn from the study. 
Age and social class are often confounding factors4. 
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Figure 23.5 (see also section 17.1, page 198) illustrates the fact that 
confounding may be the explanation for the relationship demonstrated between 
coffee consumption and the risk of coronary heart disease, since it is known 
that coffee consumption is associated with cigarette smoking. People who drink 
coffee are more likely to smoke than people who do not drink coffee. It is 
also well known that cigarette smoking is a cause of coronary heart disease. 
It is thus possible that the relationship between coffee consumption and heart 
disease merely reflects the known causal association of smoking with the disease. 
In this situation, smoking confounds the apparent relationship between coffee 
consumption and coronary heart disease. 

EXPOSURE DISEASE 
(coffee drinking) - (heart disease) 

(cigarette smoking) 

Figure 23.5. Confounding: coffee drinking, cigarette smoking and coronary heart disease 
(Courtesy: World Health Organisation4). 

23.7 OTHER TYPES OF EPIDEMIOLOGICAL STUDY: CLUSTER 
ANALYSES OF HISTORICAL INTEREST 

Epidemiological studies are not limited to the three types of observational study 
listed in the title of this chapter. They also include experimental studies (also 
termed interventional studies), such as randomised controlled trials (i.e. clinical 
trials) in which the population under study consists of patients, j e l d  trials using 
healthy persons, and community trials (also termed community intervention 
studies) on communities. 

Observational studies allow nature to take its course and the investigator 
measures but does not intervene: they may be descriptive or analytical. In 
the former the study only describes the occurrence of a disease in a population 
whereas the latter extends to analysing relationships between health status and 
other variables. 

For further details of epidemiological studies reference should be made to 
textbooks devoted solely to epidemiology, such as those already referred to3-6 
and a recently published workbook of epidemiologyi4. Three epidemiological 
studies, each with a historical aspect, and each detective stories, are now 
described as examples of cluster analysis, of which John Snow’s in section 
23.7.2 is the classic example. 
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23.7.1 The Unique Hostel 

Standardised mortality rates (SMRs) are useful when mortality data for several 
subregional populations within a region, such as a city or county, have to be 
compared. There is perhaps less likelihood of the subregional populations having 
widely different age and sex structures from the standard regional population, 
as in the paper by Freedman and Rubin” when SMRs were used to compare 
lung cancer mortality in 40 voting constituencies in  the city of Liverpool. 

The paperi5 concerns the limitations of lung cancer SMRs as a guide to lung 
cancer incidence, but it was also noted in these data that only two of the 40 SMRs 
exceeded 165, one for Central Liverpool (SMR = 222) and the highest (SMR = 
326) for Everton with a population of some 5000. Further study, using a cluster 
analysis technique involving identification of the addresses at which pulmonary 
deaths (lung cancer, tuberculosis, chronic bronchitis) occurred In Everton and 
surrounding wards, showed that the reason for this high lung cancer SMR was 
due to the presence of a 200-bed privately owned registered common lodging 
house for men with the somewhat appropriate name The Unique Hostel, Figure 
23.6. 

Figure 23.6. The Unique Hostel, Shaw Street, Everton, Liverpool. The lettering on the 
door states All Enquiries for Beds to be Made in the Cafe Basement. It was later found 
that the cook, an ex-sailor, suffered from pulmonary tuberculosis. 

Copyright © 1998 IOP Publishing Ltd



Other Types of Epidemiological Study 339 

The buildings were in the centre of a decaying 150-year old terrace of 
houses which had an architectural preservation order placed on it because the 
houses had cast iron balconies with a distinctive Prince of Wales feathers 
design”. Table 23.6 shows the pattern of pulmonary disease mortality in  
Everton, 1969-76 including the data for the lodging house which artificially 
inflated the SMR to 326. 

Table 23.6. Chest disease in Everton, 1969-76. 

Disease Year 
~~ 

Area X 
Everton 

200-bed Six Other ward 
lodging high-rise housing excluding 
house blocks of area X 

flats 

Lung 1969-72 2 5 7 5 
cancer 1973-76 8 1 7 12 
Chronic 1969-72 2 4 3 6 
bronchitis 1973-76 9 2 4 5 
Pulmonary 1969-72 I 0 1 1 
tuberculosis 1973-76 6 0 0 0 

~ 

Totals 1969-76 28 12 22 29 

The fact that the Unique Hostel was identified was due to a knowledge of 
the folklore of Everton which said that in the 19th century if one lived at the 
bottom of the hill (Everton valley) which ran from St. George’s Church (Figure 
23.7: interior view of the cast iron structure) then you would die young, but if 
you lived at the top of the hill on which stood the church, you would remain 
healthy. 
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Figure 23.7. Areas mentioned in the sketch map in Table 23.6. [Top] View of Everton 
in 1819. [Centre left] Interior of St. George’s church, Everton: the world’s first cast iron 
church. It was built in 1813 by subscription to consist of 110 shares at flOO each. It was 
also agreed (at the founding meeting in a Coffee House in 1812 and later legalised by 
an 1813 Act of Parliament) that each seat in the church be put up for sale to the highest 
bidder among the subscribers and the monies arising from the sale to be divided among 
the proprietors according to their shares. In the early days it was an Everton joke that 
‘a gentleman’s best dividends came from St. George’s’. [Centre right]. Architectural 
detail of the roof. [Bottom left]. In the 19th century Everton was famous for Everton 
Toffee which in 1862 was recommended by Charles Dickens when he visited Liverpool. 
[Bottom right]. The Stone Jug which was Everton’s 18th century gaol and was known 
by Liverpool urchins at the tum of the 20th century as the Stewbum’s Palace. It forms 
the central motif (often mistaken for a beehive) of the badge of Everon Football Club. 
[Photographs courtesy Mr Rick Houghton.] 
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This pattern repeated itself in the 1970s with the data in Table 23.6. It was 
of course realised that the high death rate in  the 1800s in  Everton valley was 
due to over-crowding (Figure 23.7: The church is shown faintly at top left in  
this 1930s photograph), unhygienic living conditions and epidemics (Table 23.7) 
whereas near St. George’s were the villas of the Liverpool business magnates 
of the era. Nevertheless, it was an intriguing pattern for a local historian17 and 
this is what prompted the study! 

For football fanatics, the sketch map in Table 23.6 shows the grounds of 
both Liverpool FC and Everton FC. The latter are known as The Tofees because 
of the famous Everton toffee (Figure 23.7: advertisement of 1832) and the team 
badge is usually considered to include a beehive. Actually it is the local 19th 
century gaol (Figure 23.7: photograph in 1977), The Stone Jug which is only 
some two minutes walk from the Unique Hostel. 

Table 23.7. Liverpool epidemic statistics 1832-1 866. 20,000 deaths representing one 
in 15 of the entire 1847 population of Liverpool, occurred during four epidemics of 
cholera, three of typhoid (also known as gaol fever, Irish fever and famine fever) and 
one o f  smallpox. 

Years Epidemic Statistics 

1832 

1837 
1837-39 
1838-39 
1840 
1847 
1849 

1854 
1866 

Cholera 

Qphoid 
Smallpox 
Qphoid 
Smalllpox 
Qphoid 
Cholera 

Cholera 
Cholera 

1523 deaths, 
4912 registered cases (600/month) 
524 deaths 
880 deaths 
1000 deaths 
400 deaths 
7000 deaths 
5308 deaths 
(600 in one August week), 20,000 registered cases 
1290 deaths 
2 122 deaths 

23.7.2 The Broad Street Pump 

The technique of cluster analysis in the identification of mortality patterns, not 
only from cancer, is well known and the most famous example is illustrated in 
Figure 23.8. This map was published by John Snow (1813-58) in 1855 and 
shows the concentration of cholera deaths during the period 19 August 1854 to 
30 September 1854 in the vicinity of the Broad Street water pump in London. 
Snow confirmed his theory that the cholera epidemic was due to this water 
supply by tying the handle of the pump, after which the epidemic ceased. 
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Figure 23.8. Map showing the distribution of cholera deaths in the Broad Street epidemic 
of 1854. The map formed the frontispiece of John Snow's book On rhe Mode of 
Communication of Cholera, published in London by Churchill in 1855. (Courtesy of 
the Wellcome Trustees.) 

23.7.3 Typhoid Mary 

Epidemiologieal studies also led to the discovery of the currier concept. A 
carrier of an infectious disease is an individual who does not suffer from any ill 
effects of the disease, but nevertheless is able to transmit the disease to others. 
This concept was first proposed in  1884 for diptheria and then in 1893 for 
cholera". 

The most famous carrier was an Irish born cook, Mary Mallon (ca. 1868- 
193X), working in households in New York. She is now known as Typhoid 
Mary,  Figure 23.9. and her detection had a major impact in changing the 19th 
century theory of transmission of infectious  disease^^^^'^. which was considered 
to be due to filthy living conditions, including sewage disposal, when in fact it 
was due to micro-organisms. 
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Figure 23.9. nphoid Mary". 

19th century public health measures had concentrated on providing 
programmes for urban sanitation projects to bring clean water into cities and to 
institute sewage disposal, garbage collection and disposal, vaccination measures 
and in keeping the environment clean. By the end of the 19th century, following 
the work of Louis Pasteur and Robert Koch, the science of bacteriology had 
begun and the dirt fheory of the cause of epidemics (such as typhoid, smallpox, 
cholera and yellow fever) would eventually be abandoned. 

The leading proponent in the USA at the turn of the century, for applying 
bacteriological theory in the field of public health was Charles V. Chapin (1856- 
1941)J the public health officer in Providence, Rhode Island for the years 1884- 
1931. His interest in public health statistics led him to devise a points scale 
with the total of city activities scored at 100 and among the items he scored a 
maximum of 36 points for communicable disease work but only 9 points for 
sanitation. The control of water supplies and garbage disposal eventually passed 
from a city public health department to the department of public works. 

Mary Mallon was the first typhoid fever carier identified in North America. 
In August 1906 she was employed in a rented summer home in Oyster Bay, 
Long Island, when typhoid struck 6 out of 11 persons. The owner thinking 
he would be unable to rent out his property again unless the mystery of the 
cases could be solved, hired a civil engineer, George Soper, known for his 
epidemiological analyses of typhoid, to investigate. 

Soper eventually found a clue in the fact that the cooks had changed during 
the weeks of the outbreak. He then found eight families who had previously 
employed Mary Mallon before August 1906 and in 7 families out of 8, typhoid 

0 Chapin is credited with the statistical quotation from his paper Pleasures and hopes ofthe Health 
Officer of 'We cannot expect that figures will ever cease to lie, but we may hope that vital statisticians 
will'. 
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had followed her stay. 
Eventually she was found in March 1907 at a Park Avenue home in which 

she was employed. Soper appeared unannounced and tried to explain that 
Mallon was carrying the disease (carriers transmit typhoid through water or 
food contaminated by their faeces or urine. She promptly threw Soper out of 
the house! 

Soper continued and convinced the New York City health department that 
the evidence was strong enough for them to pursue her and gather specimens 
of blood, faeces and urine to confirm her as the source of these outbreaks. The 
New York police department was called in to assist and had to restrain her before 
taking her to hospital18 and she ended up with a public health official sitting on 
her chest19. 

She was duly identified as the typhoid carrier and kept in health department 
custody but in 1909 she successfully sued a court for her release and was freed 
in 1910. However, in 1915, typhoid outbreaks were traced to her kitchen in 
a New Jersey sanatorium and a New York maternity hospital”. She was then 
kept in custody until her death in 1938, a total of 26.5 years confinement. 

Figure 23.10 shows the increase in identification of typhoid carriers in the 
city of New York 1908-1950 including the detection of Typhoid Mary in 1908 
who had been a proven carrier of the disease at least from the year 1900 and 
who is considered to have caused at least 10 outbreaks which included 51 cases 
and three deaths. 

The effect of epidemics such as typhoid and smallpox was noticeable not 
only in the populations of crowded urban cities but also in armies. For example, 
the French and German armies adopted sanitation procedures as a result of 
typhoid epidemics and the annual French typhoid morbidity of some 380 per 
100,000 was reduced by one-third in a single year when water filtration was 
introduced in 1888 and in 1889 this mortality was reduced by a further 50% 
because of additional hygiene and sanitation procedures. The German army had 
a typhoid death rate in 1870 of 170 per 100,000 whereas by 1914 it was only 8 
per 100,000. 

The British army were slow to learn this lesson and in the Boer War of 
1899-1901 where were more than 57,000 cases and some 8OOO deaths, with 
typhoid being responsible for more deaths than those in combat! 
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Figure 23.10. Statistics'* for health carriers of typhoid fever in New York city 
1908-1950. The outbreaks identified by George Soper in 1908 as having been caused 
by Typhoid Mary were as follows. 1900: 1 case in Maranaroneck, NY. 1901: 1 case in 
New York city. 1902: 9 cases in Dark Harbor, Maine. 1904: 4 cases in Sands Point, 
NY. 1906: 6 cases in Oyster Bay, NY and 1 case in Tuxedo, NY. 1907: 2 cases in New 
York city. The case of Typhoid Mary and those in the previous two sections: the Broad 
Street pump and the Unique Hostel, are examples of investigating the pattern of a cluster 
of sites where a disease has been observed and identifying the reason for the cluster. It 
should, though, also be noted that the term cluster analysis is used to describe a type of 
complex multivariate analysis where the relationship between several variables are being 
studied. 
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ROMAN ADVICE ON DRUG TESTING, 1000 AD 

Avicenna recommended that drugs should be tried on opposed 
cases and he stressed the importance of human pharmacology 

when he warned that 'testing a drug on a lion or a horse might 
not prove anything about its effect on man'. 
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Glossary of Rates and Ratios: 
Terminology in Vital Statistics 

There are many different rates and ratios in medical statistics and those which 
fall into the category of viral statistics may be grouped as follows: Demographic 
statistics (population, marriages and fertility), Mortality statistics (number 
and causes of death), Morbidity statistics (illnesses and injuries, incapacity, 
hospitalisations etc). This short glossary contains some of the rates and ratios 
encountered in vital statistics. 

Index of Terms 

Age-adjusted incidence rate 
Age-corrected mortality rate 
Age-corrected survival rate 
Age-specific rates 
Age-specific incidence rate 
Age-specific mortality rate 
Age-standardised incidence rate 
Age-standardise0 mortality rate 
Case fatality rate 
Crude rate 
Crude incidence rate 
Crude mortality rate 
Hazard rate 
Infant mortsdity 
Life expectation 

Likelihood ratio 
Mortality 
Neonatal mortality 
Odds ratio 
Perinatal mortality 
Period prevalence rate 
Point prevalence rate 
Prevalence 
Relative survival rate 
Standardised rate 
Standardised mortality ratio 
Standardised registration ratio (SRR) 
Still birth rate 
Survival fraction 
Survival rate 

347 
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Age-adjusted incidence rate This is an alternative term for age-standardised 
incidence rate. An example is given for the state of Kentucky, USA, for lung 
cancer rates per 100,OOO population, presented in a map format for the 15 area 
development districts of Kentucky which are formed from 120 counties’. The 
highest age-adjusted rates are seen in two areas. These are rural districts where 
most of the tobacco farming takes place and they are also high coal mining 
areas. In a separate study’ of self-reporting of smoking habits the areas with 
the highest number of smokers correlated well with these two areas. 

Glossary of Rates and Ratios: Terminology in Vital Statistics 

Figure G.l. Age-adjusted lung cancer rates for Kentucky, USA8. (Courtesy: Kentucky 
Cancer Registry.) 

Age-corrected mortality rate see Age-standardised mortality rate 

Age-corrected survival rate see Relative survival rate. 

Age-specific rates Refer to the rates for specific age groups for each sex. The 
definition of the age groups will depend on the nature of the disease and its 
distribution in the population. However, it is wise to ensure that the age groups 
fall into one or more of the five year age intervals used by a country in official 
publications on population. 

Age-specific incidence rate An age-specific incidence rate refers to a population 
in a specified age range, usually a 5-year or 10-year range. Thus for the age 
range 40-45 years, the annual age-specific incidence rate for a specified disease 
in males is per 100,OOO population in the defined population group equal to 

Number of new cases of the disease in males aged 
40-45 years registered in year Y 

Average number of males aged 4 0 4 5  years at risk 
in year Y ] io5 
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A similar rate can be defined for females aged 4 0 4 5  years. The advantage of the 
age-specific incidence rate over the crude incidence rate is that any peculiarities 
in the disease incidence pattern which are related to particular age groups can be 
shown. Variations with age would not he apparent using only a crude incidence 
rate. An example of age-specific incidence rates IS seen in  Figure 1.1 1 .  

Age-specific mortality rate An age-specific mortality rate is defined for a 
population in a specified age range, say 50-55 years. The annual age-specific 
mortality rate for a specified disease for year Y ,  for males, per million population 
in  the defined population group is 

Number of deaths from the disease in males aged 50-55 years [ Average number of males aged 50-55 years at risk in year Y 
which occurred during year Y ] x lo6 

A similar rate can be defined for females aged 50-55 years. 

Age-standardised incidence rate Age-standardised rates have been designed 
to enable comparisons to be made of rates in different places and for different 
registration periods. To calculate an age-standardised incidence rate for a 
disease, a standard population must first be defined. For a given age group 
i ,  for example, 4 0 4 4  years, the following data will be available: 

For the observed population Population in 100,000s for age group i = ni. 
Number of disease registrations for age group = r j .  Hence the age-specific 
incidence rate per 100,000 population = ri /n i .  

For the standard population Population in 1000s for age group i = N ,  
(Ni = WSi in Table G.2). Total population = 100,000. One method of 
calculating an age-standardised incidence rate for the observed population is by 
the following summation for all age groups i: 

x (r i /ni)  c N ,  

This is known as direct standardisation and is the rate which would have 
occurred if the observed age-specific rates had operated in the standard 
population defined by the arbitrary proportion of people in each age group. 
The use of age-standardised incidence rates is rather limited and the figures of 
greatest value are the age-specific rates (see Standard population). 

Age-standardised mortality rate (sometimes termed Age-adjusted) Defined 
in a similar manner to age-standardised incidence rate. An example of 
standardisation of mortality rates is given in Figure G.2 and is for mortality from 
cancer at selected sites 1970-1993 in the USA. The rates are termed age-adjusted 
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\ Colorectal cancer 

Lymphoma and 
other cancers .." s 

__-e-- 

0 0  
1970 1975 1980 1985 1990 

Figure G.2. Age-adjusted mortality rates' in the total United States population. The 
rates have been age-adjusted to the USA resident population of 1990. 

rather than age-standardised in this New England Journal of Medicine 1997 
paper' ' 

WHO has defined four different Standard Populations which can be used for 
standardisation of incidence rates and mortality rates. These are the World, 
African, European and Truncated, Table G. 1. Table G.2 shows this method of 
calculation with the World standard data from Table G.l for the age-specific 
incidence rate per 100,OOO for a given country C being AS; = ri /ni .  

Case fatality rate The death rate amongst those known to have a specific 
disease. 

Crude rate refers to the average rate for the whole population. Unless 
populations have a similar age structure and similar sex structure, the crude 
rate can be misleading when making comparisons. See Age-specific rates. 

Crude incidence rate An annual incidence rate is a measure of the new cases of 
a disease in a particular year. It is usually quoted as a proportion per 100,000 of 
a defined population at risk, but can also be stated per million or per thousand 
population at risk. The adjective crude refers to the fact that the rate is not 
modified to take into account such factors as age or reference year. The crude 
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Table G.l. WHO defined World and African standard populations, each 
persons. 

35 1 

of 100,000 

Age African World Age African World 

0- 
1 4  
5-9 

10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
40-44 

2 
8 

10 
10 
10 
10 
10 
10 
10 
5 

2.4 
9.6 
10 
9 
9 
8 
8 
6 
6 
6 

4 5 4 9  5 
50-54 3 
55-59 2 
60-64 2 
65-69 1 
70-74 1 
75-79 0.5 
80-84 0.3 
85+ 0.2 

Totals 100 

6 
5 
4 
4 
3 
2 
1 

0.5 
0.5 

100 

(Populations for given age groups are in 1000s) 

annual incidence rate per 100,000 for a specified disease in males is equal to 

Number of new cases of the disease in males registered in year Y 
Average number of males at risk in year Y 

A similar rate can be defined for females. An example of crude incidence rates 
is seen in Figure 1.7(a). 

Crude mortality rate The crude annual male mortality rate per million 
population, for year Y ,  is 

Number of deaths from the disease among males 
which occurred in year Y ] x lo6 I Average number of males at risk in year Y 

A similar rate can be defined for females. 

Hazard rate see section 18.2 

Infant mortality The number of deaths of infants in the$rst year of life stated 
per 1000 live births. 

Life expectation Number of years a person is expected to live after birth. Figure 
2.3 shows how the expectation of life in England and Wales has varied from 
1841 (the year of the first census in England and Wales) to 1968-1970, by sex. 
,ife expectation estimates as of April 1997 for selected countries’ are given in 
rable G.3. 
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Table G.2. Calculation schedule for an age-standardised incidence rate for country C. 

Age group WS, AS, WS, x AS, 
f years) 

i World standard Age-specific 
population incidence rate per 
(thousands) 100,000 for country C 

0- 
1-4 
5-9 

10-14 
15-1 9 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
10-74 
75-79 
80-84 
85+ 

2.4 
9.6 
10 
9 
9 
8 
8 
6 
6 
6 
6 
5 
4 
4 
3 
2 
1 

0.5 
0.5 

2 . 4 ~  AS, 
9 . 6 ~  AS2 
] O X  AS3 
9~ AS4 
9~ AS5 
8~ AS6 
8~ AS7 
6~ AS8 
6~ AS9 
6x  ASio 
6~ AS]] 
5~ AS12 
4~ AS13 
4~ AS14 
3~ AS15 
2~ AS16 
IX AS17 

0 . 5 ~  AS18 
0 . 5 ~  AS19 

C(WSi x ASj) = 
= 100,000 Age-standardised 

incidence rate 
per 100,000 

Likelihood ratio see section 18.7.2 

Mortality The death rate or mortality is the proportion of persons dying from 
a disease or set of diseases (i.e. a cause or multiple causes or all causes). The 
rate might be expressed per 1OOO; 10,OOO; 100,000 or per million population at 
risk. 

Neonatal mortality Deaths of infants in the first four weeks of life stated per 
1000 live births. 

Odds ratio see section 22.3 
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3 5 L '  ' / I ,  , 
le411 1838-54 1871-80 1891-1900 1950-2 1968-70 
1838-44 1881-90 190140 1910-12 1930-2 1960-2 

Years 

Figure G.3. Expectation of life, England and Wales, from English Life Table datal0. 

Perinatal mortality Number of stillbirths plus the number of deaths in the first 
week of life stated per 1000 total live and stillbirths. 

Period prevalence rate A period prevalance rate per 100,000 male population 
refers to the number of cases of disease existing at any time within the specified 
period. It is equal to 

Number of cases of disease present in the male 
population at any time during a specified period ] x 105 [ Number of males in the population at the midperiod time 

Whereas the point prevalence rate will describe the cases of a given disease 
existing on a particular day, the period prevalence rate will give the cases during 
a specified interval, for example, a month. Prevalence refers to all cases and 
not, as for incidence, only new notifications. Thus for a period prevalence rate 
persons must be included whose illness began and ended during the period, or 
began during the period and still existed at the end, or began before the period 
started and ended either during the period or after the end of the period. 

Point prevalence rate A point prevalence rate per 100,000 male population is 
equal to 

Number of cases of disease present in the male 
population at a specified time 

Number of males in  the population at that specified time 

A similar rate can be defined for females. 
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Table G.3. Life expectancy at birth for selected countries, April 1957 data’ 

Country Life expectancy 
(1 995-2000) 

Algeria 
Argentina 
Australia 
Austria 
Bangladesh 
Botswana 
Canada 
China 
Denmark 

Ethiopia 
France 
Gambia 
Germany 
India 
Japan 
Kenya 
Malawi 
Nigeria 
Russia 
South Africa 
United Kingdom 
USA 
Zaire 
Zambia 

Egypt 

69 
73 
78 
77 
58 
50 
75 
70 
76 
66 
50 
19 
47 
77 
62 
80 
54 
41 
52 
64 
65 
77 
77 
53 
43 

Prevalence Number of cases of a disease in a defined population. See Period 
prevalence rate and Point prevalence rate. Figure G.4 (top right) is an example 
published7 by the World Health Organisation for selected cancers of five-year 
(period) prevalence. These figures can be compared with 1996 statistics for 
worldwide mortality (top left) and incidence for both the developed world 
(bottom left) and the developing world (bottom right). Examples of annual 
(period) prevalence for 1996 for other diseaseskonditions are given7 in Table 
G.4. 
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Table G.4. Estimated incidence (new cases) and prevalence (all cases) for selected 
diseaseskonditions worldwide in 1996’. (NS: not stated7.) The numbers are given in 
thousands and thus for example the prevalence of HIV/AIDS is 22.6 million worldwide 
in 1996. 

Diseasekondition Incidence Prevalence 

Tuberculosis 
HIV/AIDS 
Leprosy 
Syphilis 
Gonorrhoea 
Haemophilia 
Epilepsy 
Asthma 

7400 
3100 
530 

12000 
62000 

10 
2000 
NS 

NS 
22600 
1260 

28000 
23000 
420 

40000 
155000 

Relative survival rate 

Crude T-year survival rate 
Expected T-year survival rate in the normal 

population with the same age and sex structure 
as the group under observation 1% : Relative 

T-year 
survival 
rate 

= 100 x 

A relative survival rate is also sometimes termed an age-corrected survival. 

Figure (3.5 shows the crude and relative 5-year to 15-year survival rates for all 
the cancer of the cervix and cancer of the tongue patients who were registered 
in England and Wales in 1954-1955. If the patients were all relatively young 
at treatment, the expected T-year survival rate in the normal population would 
be high and the crude and age corrected T-year survival rates would be similar. 
It is seen, though, that for the two cancers shown, there is a large difference 
between crude and age corrected rates. This emphasises the need to be aware 
of exactly which type of rate is quoted when comparing survival results from 
different publications. See also section 21.7.1 for further comments on relative 
survival rates. 

Standardised rates are rates which have been compounded to take into account 
differences in the age and sex structures of populations over several areas and 
are therefore considered to refer to average or standard populations. 

Standardised mortality ratio is a comparison of actual deaths in a particular 
population compared with those which would be expected in the standard 
population. See also section 22.7. 
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Figure G.5. Crude and relative (age corrected) survival rates for cancer registrations in 
England and Wales, 1954-1955, which have been followed-up for a period of 15 years. 
The number of cancer of the cervix patients is 3014 and the number of the cancer of the 
tongue patients, all males, is 378. 

Standardised registration ratio (SRR) The standardised registration ratio is an 
index routinely used by the Office of Population Censuses and Surveys (OPCS) 
in their cancer statistics publications for England and Wales. OPCS compute 
SRR for a given cancer size relative to a standard set of age-specific incidence 
rates for a standard year. However, SRRs can also be calculated for different 
countries with respect to a standard country and year, or for different regions 
within a country or for diseases other than cancer. For cancer registration data in 
England and Wales the OPCS has chosen as standard years 19682-4 and 19795. 
The SRR equals 100 for the standard year 1968 and for 1970 and cancer of the 
lung, for example, the ratio is calculated by the formula 

Total registrations of lung cancer in 1970 
Population for 

in 1970 
age group i x (ri/ni)Standard year 

SRR = 

Total registrations of lung cancer in 1970 
Population for 

where population for age group i in 1968 (the standard year) = ni, number 
of registration of lung cancers for age group i in  1968 = ri, and age-specific 
registration rate in  1968 = t-i/ni. 
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Figure G.6. (Left) SRRs for the period 1962-1977 for lung cancer with the SRR 
standardised as 100 for 1968. These data are from OPCS publications 1979-19832-4 
but those from later OPCS publications such as for 19875 have standardised on the 
year 1979, (right). This use of SRR clearly demonstrates for England and Wales the 
continuing increase in lung cancer incidence in women. It is noted that April 1996 the 
Office of Population Censuses and Surveys (OPCS) merged with the Central Statistics 
Office to form the Office for National Statistics (ONS) and published their first data for 
cancer registrations in 1997' and at this point in time SRRs are only available to 1989. 

Still birth rate Number of still births expressed per 1000 total live and still 
births. 

Survival fraction A T-year survival fraction is the proportion of persons 
surviving to T-years, stated as a number between 0 and 1. 

Survival rate Proportion of persons surviving to T-years, stated either as a 
percentage between 0 and 100 per cent or as a number between 0 and 1; see 
also Survival fraction. 
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