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Chapter 1

Suppose the input to an amplifier is z,(t) = sin(2w Fyt) and the steady-state output is

Ya(t) = 100sin(27wEot + ¢1) — 2sin(dnFot + ¢2) + cos(6m EFpt + ¢3)

a

(a) Is the amplifier a linear system or is it a nonlinear system?
(b) What is the gain of the amplifier?
)

)

Find the average power of the output signal.

(c

(d) What is the total harmonic distortion of the amplifier?
Solution

(a) The amplifier is nonlinear because the steady-state output contains harmonics.
(b) From (1.1.2), the amplifier gain is K = 100.
(c) From (1.2.4), the output power is

P, = d—g+l(d2+d 2° 4 d3)
y 4 9 1 + 3

= .5(100% 4 2% +1)
= 5002.5

(d) From (1.2.5)

100(P, — d3/2)
Py
100(5002.5 — 5000)

5002.5
= .05%

THD =
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V Consider the following signum function that returns the sign of its argument.

. 1, t>0
sgn(t) = 0 , t=0
1, t<0

(a) Using Appendix 1, find the magnitude spectrum
(b) Find the phase spectrum

Solution

(a) From Table A2 in Appendix 1

Thus the magnitude spectrum is

Aa(f) = 1Xa(f)
lim |

mlf]

(b) The phase spectrum is

ba(f) = LX(f)
= —/jnf
= —sgn(f) (g)
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Parseval’s identity states that a signal and its spectrum are related in the following way.

[ loPa =[xt

—0o0 —0o0

Use Parseval’s identity to compute the following integral.

J = / sinc?(2Bt)dt

—0o0

Solution

From Table A2 in Appendix 1 if

xq(t) = sinc(2Bt)

then

Thus by Parseval’s identity

J = / sin?(2Bt)dt

—0o0

R

—0o0

- [t

—0o0

1 B
= ﬁ/_Bdf
= 1
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Consider the causal exponential signal

zo(t) = exp(—ct)pa(t)

(a) Using Appendix 1, find the magnitude spectrum.
(b) Find the phase spectrum
(c) Sketch the magnitude and phase spectra when ¢ = 1.

Solution

(a) From Table A2 in Appendix 1

Thus the magnitude spectrum is

Ao(f) = |Xa(f)
|c+ 727 f]

2+ (2 f)?
(b) The phase spectrum is

Au(f) = 1Xa(f)]
[1—L(c+ j2nf)

= —tan ! <ﬁ>
c
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A (f)

f(H2)
Problem 1.4 (c) Magnitude and Phase Spectra, ¢ =1

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

5



If a real analog signal x,(t) is square integrable, then the energy that the signal contains
within the frequency band [Fy, F}] where Fjy > 0 can be computed as follows.

Fy

B(F,F) — 2 / X (f)|2df

Fy

Consider the following double exponential signal with ¢ > 0.

za(t) = exp(—clt])

(a) Find the total energy, E(0, c0).
(b) Find the percentage of the total energy that lies in the frequency range [0, 2] Hz.

Solution

(a) From Table A2 in Appendix 1

Thus the total energy of z,(t) is

E(0,00) = 2 /0 X (F)2df
o0 2c
==L
= ﬂtan_l (ﬂ) =
2me c

- - (3)

=1

0

(b) Using part (a), the percentage of the total energy that lies in the frequency range [0, 2]
Hz is

100E(0,2)
E(0, 00)
= 100E(0,2)

200 2
= “—tan! (Lf>
m &

200 4
= “tan! (_7?) %
™ c
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Let z,(t) be a periodic signal with period Ty. The average power of z,(t) can be defined as
follows.

1 (7o

P, = — t)[2dt
x T J, |$a( )|

Find the average power of the following periodic continuous-time signals.

(a) x4(t) = cos(2mFyt)
(b) za(t) = c

(c) A periodic train of pulses of amplitude a, duration 7', and period Tj.

Solution

(a) Using Appendix 2,

1/Fy
P, = FO/ cos®(2m Fyt)dt

0
F 1/Fy
= 70/ [1 + cos(4mFut)]dt
0
_ 1
(b)
1 (7o
P, = — 2dt
‘ To Jo ‘
= 62
(c)
1 (7
P, = — 2dt
‘ To Jo ¢
_ a®T
= I
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Consider the following discrete-time signal where the samples are represented using N bits.

w(k) = exp(—ckT)u(k)

(a) How many bits are needed to ensure that the quantization level is less than .0017

(b) Suppose N = 8 bits. What is the average power of the quantization noise?

Solution

(a) For k > 0, the signal ranges over 0 < x(k) < 1. Thus Zyin = 0 and zpax = 1 and from (1.2.3)
the quantization level is

1
1= o
Setting ¢ = .001 yields
11
2N 1000

Taking the log of both sides, —N In(2) = —In(1000) or

¥ = o200

In(2)
= ceil(9.966)
= 10 bits

(b) From (1.2.8) the average power of the quantization noise using N = 8 bits is

Bl = 13

1

12(2N)2
= 1271 x 1076
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Show that the spectrum of a causal signal z,(¢) can be obtained from the Laplace transform
Xa($s) be replacing s by j2x f. Is this also true for noncausal signals?

Solution

For a causal signal z,(t), the one-sided Laplace transform can be extended to a two-sided
transform without changing the result.

If s is now replaced by j27 f, this reduces to the Fourier transform X,(f) in (1.2.16). Thus
the spectrum of a causal signal can be obtained from the Laplace transform as follows.

Xo(f) = Xa(8)|smjoryr if x4(t)=0fort <0

This is not true for a noncausal signal where x,(t) # 0 for t < 0.
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Consider the following periodic signal.

xa(t) = 1+ cos(107t)

(a) Compute the magnitude spectrum of z,(t).

(b) Suppose z4(t) is sampled with a sampling frequency of f; = 8 Hz. Sketch the magnitude
spectrum of z,(t) and the sampled signal, Z,(¢).

(c) Does aliasing occur when x,(t) is sampled at the rate fs = 8 Hz? What is the folding
frequency in this case?

(d) Find a range of values for the sampling interval T' which ensures that aliasing will not
occur.

(e) Assuming fs; = 8 Hz, find an alternative lower-frequency signal, z;(t), that has the same
set of samples as ,(t).

Solution

(a) From the linearity property and Table A2 in Appendix 1

N da(f +5) J2r da(f —5)

(c) Yes, aliasing does occur (see sketch). The folding frequency is

fd:%

= 4 Hz

(d) The signal z,(t) is bandlimited to 5 Hz. From Proposition 1.1, to avoid aliasing, the
sampling rate must satisfy fs > 10. Thus 1/7 > 10 or

0<T<.1sec
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1.5
1+ .
f‘“ i A‘B A‘B A‘B A‘B A‘B |
0
_05 | | | | |
-15 -10 -5 0 5 10 15
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Problem 1.9 (b) Magnitude Spectra

(e) Using the trigonometric identities from Appendix 2 with fs =8

Thus an alternative lower-frequency signal with the same set of samples is

1+ cos(107kT)
1+ cos(1.257k)
1+ cos(2nk — .757k)

1 + cos(.757k)

1 + cos(67k/8)
1 + cos(67kT)

xp(t) = 1+ cos(67t)

(
(
(
1 + cos(27k) cos(.75mk) + sin(27k) sin(.757k)
(-
(
(
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Vv Consider the following bandlimited signal.

za(t) = sin(4nt)[1 + cos®(27t)]

(a) Using the trigonometric identities in Appendix 2, find the maximum frequency present
in z4(t).

(b) For what range of values for the sampling interval 7' can this signal be reconstructed
from its samples?

Solution
(a) From Appendix 2

+ sin(4rt) cos®(27t)

+ .5sin(47t)[1 4 cos(4nt)]

+ .5sin(47t) + .5 sin(4nt) cos(4t)
+ .5sin(47t) + .25 sin(87t)

xq(t) = sin(4nt

I
@,
=]

I
RN
=]

Thus the highest frequency present in z,(t) is Fy = 4 Hz.
(b) From Proposition 1.1, to avoid aliasing fs; > 8 Hz. Thus

0< T < .125 sec
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It is not uncommon for students to casually restate the sampling theorem in the following
way: “A signal must be sampled at twice the highest frequency present to avoid aliasing”.
Interesting enough, this informal formulation is not quite correct. To verify this, consider the
following simple signal.

xq(t) = sin(2mt)

(a) Find the magnitude spectrum of x,(t), and verify that the highest frequency present is
F(] =1 Hz.

(b) Suppose z,(t) is sampled at the rate fs = 2 Hz. Sketch the magnitude spectrum of x,(t)
and the sampled signal, #,(t). Do the replicated spectra overlap?

(¢) Compute the samples z(k) = x,(kT') using the sampling rate f; = 2 Hz. Is it possible to
reconstruct x,(t) from x(k) using the reconstruction formula in Proposition 1.2 in this
instance?

(d) Restate the sampling theorem in terms of the highest frequency present, but this time
correctly.

Solution

(a) From Table A2 in Appendix 2

Thus the magnitude spectrum of z,(¢) is

Sa(f+ 1) +6a(f—1)
2

Ad(f) =

Clearly, the highest frequency present is Fy = 1 Hz. See sketch.

(b) Yes, the replicated spectra do overlap (see sketch). In this instance, the overlapping
spectra cancel one another.

(¢) When f; = 2, the samples are

xz(k) = sin(27kT)
= sin(7k)
— 0

No, it is not possible to reconstruct x,(¢) from these samples using Proposition 1.2.

(d) A signal must be sampled at a rate that is higher than twice the highest frequency
present to avoid aliasing.
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Problem 1.11 (b) Magnitude Spectra

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

14



Why is it not possible to physically construct an ideal lowpass filter? Use the impulse response,
ha(t), to explain your answer.

Solution

From Example 1.4, an ideal lowpass filter with gain one and cutoff frequency B has the
following impulse response

hq(t) = 2Bsinc(2Bt)

Therefore h,(t) # 0 for ¢t < 0. This makes the impulse response a noncausal signal and the
system that produced it a noncausal system. Noncausal systems are not physically realizable
because the system would have to anticipate the input (an impulse at time ¢ = 0) and respond
to it before it occurred.
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There are special circumstances where it is possible to reconstruct a signal from its samples
even when the sampling rate is less than twice the bandwidth. To see this, consider a signal
x4(t) whose spectrum X,(f) has a hole in it as shown in Figure 1.45.

(a) What is the bandwidth of the signal z,(¢) whose spectrum is shown in Figure 1.45? The
pulses are of radius 100 Hz.

(b) Suppose the sampling rate is fs = 750 Hz. Sketch the spectrum of the sampled signal
Za(t).
(c) Show that z,(t) can be reconstructed from #,(t) by finding an idealized reconstruc-

tion filter with input Z,(¢) and output z,(t). Sketch the magnitude response of the
reconstruction filter.

(d) For what range of sampling frequencies below 2fs can the signal be reconstructed from
the samples using the type of reconstruction filter from part (c)?

Spectrum with a Hole in It

1.5 T T T

0.5 b

0 1 1 1 1
-1500 -1000 -500 0 500 1000 1500
f (Hz)

Problem 1.45 A Signal Whose Spectrum has a Hole in It

Solution

(a) From inspection of Figure 1.45, the bandwidth of z,(¢) is B = 600 Hz.

(d) From inspection of the solution to part (c), the signal can be reconstructed from the
samples (no overlap of the spectra) for 700 < fs < 800 Hz.
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Sampled Spectrum

1000

800 b

o 600 b

400 ]

200 b

0 1 1 1 1
-1500 -1000 -500 0 500 1000 1500
f (Hz)

Problem 1.13b (b) Magnitude Spectrum of Sampled Signal

x 10 Ideal Reconstruction Filter
2 T T T

1.8 i

1.6 b

1.4} 1

1.2 b

g 1

0.8

0.6 i

0.4

0.2 i

0 1 1 1 1
-1500 -1000 -500 0 500 1000 1500
f (Hz)

Problem 1.13c (c) Magnitude Response of Ideal Reconstruction Filter
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Consider the problem of using an anti-aliasing filter as shown in Figure 1.46. Suppose the
anti-aliasing filter is a lowpass Butterworth filter of order n = 4 with cutoff frequency F,. = 2
kHz.

(a) Find a lower bound f7, on the sampling frequency that ensures that the aliasing error is
reduced by a factor of at least .005.

(b) The lower bound f7, represents oversampling by what factor?

Anti— ZL'b(t)
zq(t) O—> aliasing » ADC |—o z(k)
filter

Figure 1.46 Preprocessing with an Anti-Aliasing Filter

Solution

(a) Suppose fs = 2aF, for some o > 1. Using (1.5.1) and evaluating H,(f) at the folding
frequency fg = fs/2 we have

1

Tiras = 0

Squaring both sides and taking reciprocals

1+a® = 40000

Solving for «

a = 399991/8
— 3.761

Thus the lower bound on the cutoff frequency is

fo = 2afF;
= 2(3.761)2000
= 15.044 kHz

(b) This represents oversampling by a factor of factor a = 3.761.
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Show that the transfer function of a linear continuous-time system is the Laplace transform
of the impulse response.

Solution

Let y,(t) be the impulse response. Using Definition 1.8 and Table A4 in Appendix 1

L{ya(t)} = Ya(s)
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A bipolar DAC can be constructed from a unipolar DAC by inserting an operational amplifier
at the output as shown in Figure 1.47. Note that the unipolar N-bit DAC uses a reference
voltage of 2V, rather than —V,. as in Figure 1.34. This means that the unipolar DAC output
is —2y, where y, is given in (1.6.4). Analysis of the operational amplifier section of the circuit
reveals that the bipolar DAC output is then

Za = 2Yo— Vi

(a) Find the range of values for z,.
(b) Suppose the binary input is b = by_1by—_2 - - - by. For what value of b is z, = 07
(c) What is the quantization level of this bipolar DAC?

2V, R

-T — R
Unipolar 2ya v N\
bO DAC = \
R ———O Za
V,

GND

Figure 1.47 A Bipolar N-bit DAC

Solution

(a) From (1.6.5) we have 0 <y, < (2¥ —1)V;./2Y. When y, = 0, this yields z, = —V;. The
upper limit of z, is

202V — 1)V,

Za 2> T—Vr
_ eV -2V
— N

2N -2)v,
Y

Thus the range of values for the bipolar DAC output is

oN _9
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(b) If b=10---0, then from (1.6.4) and (1.6.1) we have

The bipolar DAC output is then

Za = 2Yo— Vi

(c) From (1.2.3), the quantization level of a bipolar DAC with output —V, < z, < V, is
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Vv Suppose a bipolar ADC is used with a precision of N = 12 bits, and a reference voltage of
V, = 10 volts.

(a) What is the quantization level ¢7

(b) What is the maximum value of the magnitude of the quantization noise assuming the
ADC input-output characteristics is offset by ¢/2 as in Figure 1.35.

(c) What is the average power of the quantization noise?
Solution

(a) From (1.6.7)

= .0049

(b) The maximum quantization error, assuming rounding, is

.0

(c) From (1.2.8), the average power of the quantization noise is

(]2

12
= 1.9868 x 107°

E[e?] =

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

22



Suppose an 8-bit bipolar successive approximation ADC has reference voltage V. = 10 volts.

(a) If the analog input is z, = —3.941 volts, find the successive approximations by filling in
the entries in Table 1.8.

(b) If the clock rate is feiock = 200 kHz, what is the sampling rate of this ADC?
(c) Find the quantization level of this ADC.

(d) Find the average power of the quantization noise.

Table 1.8 Successive Approximations

o

‘ bp—k ‘ ug, ‘ Yk H

N OO W N~ O

Solution

(a) Applying Alg. 1.1, the successive approximations are as follows

Table 1.8 Successive Approximations

[F [ bnn[ue]| o |
0 0 0 | -10.0000
1 1 1 | -5.0000
2 0 0 | -5.0000
3 0 0 | -5.0000
4 1 1 | -4.3750
5 1 1 | -4.0625
6 0 0 | -4.0625
7 1 1 | -3.9844

(b) Since there are N = 8 bits, the successive approximation sampling rate is

fclock
N
2 x 10°

8
= 25 kHz

fs:
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(c) Using (1.6.7), the quantization level of this bipolar ADC is

10
27
= .0781

(d) Using (1.2.8) the average power of the quantization noise is

(]2

12
= 5.083x 1074

E[?] =
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An alternative to the R-2R ladder DAC is the weighted-resistor DAC shown in Figure 1.48
for the case N = 4. Here the switch controlled by bit by, is open when by, = 0 and closed when
br, = 1. Recall that the decimal equivalent of the binary input b is as follows.

(a) Show that the current through the kth branch of an N-bit weighted-resistor DAC is

—V,by,
I, = ON—k R , 0<k<N

(b) Show that the DAC output voltage is

V.
- ()

(c) Find the range of output values for this DAC.
(d) Is this DAC unipolar, or is it bipolar?
(e) Find the quantization level of this DAC.

_Vr O
2R 4R 8R 16R
I3 I 5L Iy
R
b3 by by bo —
1
4 ——0OYa
GND © I
Figure 1.48 A Four-Bit Weighted-Resistor DAC
Solution

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

25



(a) The kth branch (starting from the right) has resistance 2V ~*R. For an ideal op amp, the
principle of the virtual short circuit says that the voltage drop between the noninverting
terminal (+) and the inverting terminal(—) is zero. Thus V' = 0. Applying Ohm’s law,
current through the kth branch is

(Vi = V)bg
IN-kR
—V,by,

= SN kR 0<k<N

I =

(b) For an ideal op amp, there is no current flowing into the inverting input (infinite input
impedance). Consequently, using V' = 0 and I from part (a),

Yo = V —RI

(¢) Since z ranges from 0 to 2V~1 it follows from part (b) that

2N—1
OSya§< 5N >W

(d) Since y, > 0, this is a unipolar DAC.
(e) For the unipolar DAC, 0 < y, < V.. Thus from (1.2.3), the quantization level is
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Use GUI module g_sample to plot the time signals and magnitude spectra of the square wave
using fs = 10 Hz. On the magnitude spectra plot, use the Caliper option to display the
amplitude and frequency of the third harmonic. Are there even harmonics present the square
wave?

Solution

Time signals, square wave input: n=4, F =4, N=8, Vr=1, f =10

. Ja\ Ja Ja %, (€)

g AN R R Ty
- L) L 0 (U

I I I I I I I
0 0.5 1 1.5 2 25 3 3.5 4
t (sec)

Problem 1.20 (a)

x(t)
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Magnitude spectra, square wave input: n=4, F =4, N=8, Vr=1, fs=10

140 T T T T T T I
1X_(£) |
120 M
S— N
| — I1X(f) | L
100 Ideal filtsg
— 80 i
ol
x L i
=% (xy) - (3.09.54/19)
40 4
0 ) !
-20 -15 -10 -5 0 5 10 15 20

f (Hz)

Problem 1.20 (b) There are no even harmonics

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

28



Vv Use GUI module g_sample to plot the magnitude spectra of the User-defined signal in the file,
u_samplel. Set F, = 1 and do the following two cases. For which ones is there noticeable

aliasing?

(a) fs=2Hz
(b) fs=10Hz
Solution

Magnitude spectra, user-defined input from file u_samplel: n=4, F =1, N=8, Vv =1, f =2
8 T T T T T

I
1X_(£) |
a
— X (D)

— [X(f) | M
Ideal filtey

IX(£) |

I —_
-4 -3 -2 -1 0 1 2 3 4
f (Hz)

Problem 1.21 (a) Significant aliasing, fs =2 Hz

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

29



Magnitude spectra, user-defined input from file u_samplel: n=4, F =1, N=8, Vr=l, fs=10

40 T T T T T T I
X (£) |
a
X ()]
30 — [X(f) | !
Ideal filtd
20
ol
10+ .
0 L L L 1 L L L
-20 -15 -10 -5 0 5 10 15 20

f (Hz)

Problem 1.21 (b) No significant aliasing, fs = 10 Hz
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Consider the following exponentially damped sine wave with ¢ =1 and Fy = 1.

xq(t) = exp(—ct)sin(2mwFyt)pqa(t)

(a) Write a MATLAB function called u_sample2 that returns the value z,(t).

(b) Use the User-Defined option in GUI module g_sample to sample this signal at f, = 12
Hz. Plot the time signals.

(c) Adjust the sampling rate to fs = 4 Hz and set the cutoff frequency to F, = 2 Hz. Plot
the magnitude spectra.

Solution

(a) Write a MATLAB function called u_sample2 that returns the value z,(t).

function y = u_sample2 (t)
%U_SAMPLE2: User file for problem 1.22

% Usage: y = u_sample2 (t);

% Inputs: t = vector of input times
% Outputs: y = vector of samples of analog signal evaluated at t

y = exp(-t) .* sin(2*pix*t);
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Time signals, user-defined input from file u_sample2: n=4, FC=4, N=8, Vr=1, fS=12

0.8 T T T T T T I
x_(t)
0.6 xb(t)H
0.4 —— x|
i m\ |
o’
x 0 m T
W =
-0.21 N
-0.41 N
0.6 I I I I I I I
0.5 1 1.5 2 25 3 3.5 4
t (sec)
Problem 1.22 (b) Time Plots
Magnitude spectra, user-defined input from file u_sample2: n=4, Fc=2, N=8, Vr=1, fs=6
12 T T T T I
[X (£) 1]
a
101~ 1%, (£) ] H
[X(£) |
1= Ideal filted
£ o6 a
ol
4+ i
2F i
0 1
-15 -10 -5 0 5 10 15

f (Hz)

Problem 1.22 (c) Spectra
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Vv Use GUI module g_reconstruct to load the User-Defined signal in the file, u_reconstructl.
Adjust fs to 12 Hz and set V,. = 4.

(a) Plot the time signals, and use the Caliper option to identify the amplitude and time of
the peak output.

(b) Plot the magnitude spectra.

Solution

Time signals, user-defined input from file u_reconstructl: N=8, Vr=4, n=4, Fc=4, fs=12

4 T T T T T T I
xy) = (1.62,3.31)

v, (©)
v, (B

Y

y (t)
T

o 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 35 4
t (sec)

Problem 1.23 (a)
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Magnitude spectra, user-defined input from file u_reconstructl: N=8, Vr=4, n=4, Fc=4, fs=12

120 T T T T T T T T T
— 1Y (£) |
100 _ \Yb(f)\
1Y (£) |
80 Ideal filtey
2 601 N
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s ]
201 N
0
-25 -20 -15 -10 -5 0 5 10 15 20 25

f (Hz)

Problem 1.23 (b)
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Consider the exponentially damped sine wave in problem 1.22.

(a) Write a MATLAB function that returns the value z,(t).

(b) Use the User-Defined option in GUI module g_reconstruct to sample this signal at fs = 8
Hz. Plot the time signals.

(c) Adjust the sampling rate to f; =4 Hz and set F. = 2 Hz. Plot the magnitude spectra.
Solution

(a) Write a MATLAB function that returns the value z,(t).

function y = u_sample2 (t)
%U_SAMPLE2: User file for problem 1.24

% Usage: y = u_sample2 (t);

% Inputs: t vector of input times

% Outputs: y = vector of samples of analog signal evaluated at t

= exp(-t) .* sin(2*pixt);

<
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Time signals, user-defined input from file u_sample2: N=8, Vr=1, n=4, Fc=4, f =8

0.8 T T \ T T T T
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Problem 1.24 (b)
Magnitude spectra, user-defined input from file u_sample2: N=8, Vr=l, n=4, Fc=2, fs=4
10 T T T T T T I
— 1Y ()|
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[Y (£)1
a
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Use GUI module g_sample to plot the magnitude responses of the following anti-aliasing filters.
What is the oversampling factor, «, in each case?

(a) n:27FC:17fs:2
(b) n=6, F, =2, f; =12

Solution

Anti-aliasing filter magnitude response: n=2, FC=1, N=8, Vr=1, f5=2

I
Anti-aliasing filt
Ideal filter

1.5 T T T T T

A(f)

| I | |

-4 -3 -2 -1 0
f (Hz)

Problem 1.25 (a) Oversampling factor: a = f,/(2F,) =1
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Anti-aliasing filter magnitude response: n=6, Fc=2, N=8, Vr=1, fs=12

1.5 T T \ T T T T T T
— Anti-aliasing filt
Ideal filter
1k i
y
«
0.5 *
0 I I I I I I I
-20 -15 -10 -5 0 5 10 15 20
f (Hz)

Problem 1.25 (b) Oversampling factor: o = f;/(2F.) =3
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Use GUI module g_reconstruct to plot the magnitude responses of the following anti-imaging
filters. What is the oversampling factor in each case?

Solution

DAC and anti-imaging filter magnitude responses: N=8, Vr=1, n=1, FC=2, f5=5

DAC
1k Anti-imaging filteqy

0.6 4

A(f)

0.4 b

0.2 a

0 Il
-15 -10 -5 0 5 10 15
f (Hz)

Problem 1.26 (a) Oversampling factor: o = f;/(2F.) = 1.25
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DAC and anti-imaging filter magnitude responses: N=8, Vr=1, n=8, FC=4, fs=16

DAC
1k Anti-imaging filteqy

A(f)
o
o

T
|

0.2 E

0 I ! I I I ! I
-50 -40 -30 -20 -10 0 10 20 30 40 50
f (Hz)

Problem 1.26 (b) Oversampling factor: o = f,/(2F.) =2
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Use the GUI module g_reconstruct to plot the magnitude responses of a 12-bit DAC with
reference voltage V,, = 10 volts, and a 6th order Butterworth anti-imaging filter with cutoff
frequency F, = 2 Hz. Use oversampling by a factor of two.

Solution

DAC and anti-imaging filter magnitude responses: N=12, Vr=10, n=6, Fc=2, fs=8

DAC
1k Anti-imaging filteqy
0.8 i

0.6 4

A(f)

| | | Il | | |

0
-25 -20 -15 -10 -5 0 5 10 15 20 25
f (Hz)

Problem 1.27
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Use GUI module g_sample with the damped exponential input to plot the time signals us-
ing the following ADCs. For what cases does the ADC output saturate? Write down the
quantization level on each time plot.

() N=4,V, =1

(b) N=8,V, =5
() N=8,V, =1

Solution
Time signals, damped exponential input: n=4, Fc=4, N=4, Vr=1, fs=20
1.4 T T \ T T T T
x_(t)
1.2 M
%, (t)
— x(k)
T T
3 3.5 4

Problem 1.28 (a) No saturation, ¢ =1/8
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Time signals, damped exponential input: n=4, F =4, N=8§, Vr=0.5, fs=20

1.4 T T T T T T T
x_(t)
1.2F xb(tf
——  x(k)
I e
0 0.5 1 1.5 2 25 3 3.5 4
t (sec)
Problem 1.28 (b) Saturation at 0.5, ¢ = 1/256
Time signals, damped exponential input: n=4, Fc=4, N=8, Vr=1, fs=20
1.4 T T T T T T T
x_(t)
1.2F xb(tf
——  x(k)
RN R ————
0.5 1 1.5 2 25 3 3.5 4

t (sec)

Problem 1.28 (c) No saturation, g = 1/256
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Use GUI module g_reconstruct with the damped exponential input to plot the time signals
using the following DACs. What is the quantization level in each case?

(a) N=4,V,=5
(b) N=12,V, =2

Solution

Time signals, damped exponential input: N=4, V =0.5, n=4, FC=4, f =20
0.6 T T \ T T T T

0.5 (oH

0.3 i

y (t)

0.2 b

0.1 b

N\
0 AIRARRRARARANANANANIAN

-0.1 1 1 1 I I I 1
0 0.5 1 1.5 2 25 3 3.5 4

t (sec)

Problem 1.29 (a) ¢ =1/16
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Time signals, damped exponential input: N=12, Vr=2, n=4, Fc=4, fs=20
1.4 T T \ T T T T

0 H[W{HWH[I[TTTHHTTvaver
0 0.5 1 1.5 2 25 3 3.5 4
t (sec)

Problem 1.29 (b) ¢ =1/1024
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Write a MATLAB function called u_sinc that returns the value of the sinc function

sin(x)

sinc(z) =
x

Note that, by L’Hospital’s rule, sinc(0) = 1. Make sure your function works properly when
x = 0. Plot sinc(27t) for —1 <t < 1.

Solution

% Problem 1.30

f_header (’Problem 1.30°)

p = 401;

t = linspace (-1,1,p);

y = u_sinc(2*pix*t);

figure

plot (t,y)

f_labels (’sinc(2t)’,’t (sec)’,’y(t)’)
set (gca,’FontSize’,11)
hold on

plot([-1 1],[0 0], ’k’)
plot ([0 0],[-0.5 1.51,°k’)
f_wait

function y = u_sinc (%)

% U_SINC: Implement the sifting function sin(pix*x)/(pi*x)
h

% Usage: y = u_sinc (x);

h

% Inputs: x = input scalar or vector

h

% Outputs: y = sin(pix*x)/(pi*x)

for i = 1 : length(x)
if abs(x(i)) < eps
y(i) = 1;
else
y(1) = sin(pi*x(i))/(pi*x(i));
end
end
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sinc (2t)
1.5

1
2 05
>y
° \J \/\
-0.5 ‘ ‘
- -0.5 0 0.5 1
t (sec)

Problem 1.30 Sinc Function
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The purpose of this problem is to numerically verify the signal reconstruction formula in
Proposition 1.2. Consider the following bandlimited periodic signal which can be thought of
as a truncated Fourier series.

zq(t) = 1—2sin(nt) + cos(2nt) + 3 cos(3nt)

Write a MATLAB script which uses the function u_sinc from problem 1.30 to approximately
reconstruct x,(t) as follows.

p

zp(t) = Y za(kT)sinc[fs(t — kT)]

k=—p

Use a sampling rate of f; = 6 Hz. Plot x4(t) and z,(¢) on the same graph using 101 points
equally spaced over the interval [—2, 2]. Using f_-prompt, prompt for the number p and do the
following three cases.

(a) p=5
(b) p=10
(c) p=20;
Solution

% Problem 1.31
% Initialize

f_header (’Problem1.31’)

x_a = inline (’1-2*sin(pix*t)+cos(2xpixt)+3*cos(3*pi*t)’,’t’);
fs = 6;

T = 1/fs;

% Reconstruct x_a(t) from it samples

f_prompt (’Enter number of terms p’,0,40,10);
linspace (-2,2,101);
x_p = zeros(size(t));
for i = 1 : length(t)
for k=-p :p

x_p(i) = x_p(i) + x_a(k*T)*u_sinc(fs*(t(i) - k*T));
end

o
nn

end
figure
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plot (t,x_a(t),t,x_p,’LineWidth’,1.0)

caption = sprintf (’Partial Reconstruction using p = %d’,p);
f_labels (caption,’t (sec)’,’x(t)’)

legend (’°x_a’,’x_p’)

f_wait

Partial Reconstruction using p = 5

6 T T T

Problem 1.31 (a)
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Problem 1.31 (b)
Partial Reconstruction using p = 20
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Problem 1.31 (c)
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The Butterworth filter is optimal in the sense that, for a given filter order, the magnitude
response is as flat as possible in the passband. If ripples are allowed in the passband, then
an analog filter with a sharper cutoff can be achieved. Consider the following Chebyshev 1
lowpass filter from Chapter 7.

1263.7
9 4+ 6.1s% + 67.8s3 + 251.552 4+ 934.3s + 1263.7

H,(s) =

Write a MATLAB script the uses the FDSP toolbox function f_fregs to compute the magnitude
response of this filter. Plot it over the range [0, 3] Hz. This filter is optimal in the sense that
the passband ripples are all of the same size.

Solution

% Problem 1.32
% Initialize

f_header(’Problem 1.32°)

N =100;
fmax = 3;
b = 1263.7

a=[16.167.8251.5934.3 1263.7]
% Compute and plot magnitude response

[H_a,f] = f_freqs (b,a,N,fmax);

A_a = abs(H_a);

figure

plot (f,A_a)

f_labels (’Magnitude Response of Chebyshev-I Filter’,’f (Hz)’,’A_a(f)’)
axis([0 3 0 1.4])

f_wait
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Magnitude Response of Chebyshev-I Filter
1.4 T T T T T
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Problem 1.32 Chebyshev-1 Filter
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Vv Consider the following Chebyshev II lowpass filter from Chapter 7.

3s* 4+ 49952 + 15747
s5 + 2052 + 20353 + 134152 + 51505 + 15747

H,(s) =

Write a MATLAB script the uses the FDSP toolbox function f_fregs to compute the magnitude
response of this filter. Plot it over the range [0, 3] Hz. This filter is optimal in the sense that
the stopband ripples are all of the same size.

Solution

% Problem 1.33
% Initialize

f_header(’Problem 1.33’)

N =100;
fmax = 3;
b = [3 0 499 0 15747]

a [1 20 203 1341 5150 15747]

% Compute and plot magnitude response

[H_a,f] = f_freqs (b,a,N,fmax);

A_a = abs(H_a);

figure

plot (f,A_a)

f_labels (’Magnitude Response of Chebyshev-II Filter’,’f (Hz)’,’A_a(f)’)
axis([0 3 0 1.4])

f_wait
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Magnitude Response of Chebyshev-II Filter
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Problem 1.33 Chebyshev-II Filter
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Consider the following elliptic lowpass filter from Chapter 7.

2.0484s> + 171.6597
$3 + 6.2717s2 + 50.0487s + 171.6597

H,(s) =

Write a MATLAB script the uses the FDSP toolbox function f_fregs to compute the magnitude
response of this filter. Plot it over the range [0, 3] Hz. This filter is optimal in the sense that
the passband ripples and the stopband ripples are all of the same size.

Solution

% Problem 1.34
% Initialize

f_header(’Problem 1.34°)

N =100;
fmax = 3;
b = [2.0484 0 171.6597]

a [1 6.2717 50.0487 171.6597]

% Compute and plot magnitude response

[H_a,f] = f_freqs (b,a,N,fmax);

A_a = abs(H_a);

figure

plot (f,A_a)

f_labels (’Magnitude Response of Elliptic Filter’,’f (Hz)’,’A_a(f)’)
axis([0 3 0 1.4])

f_wait
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Magnitude Response of Elliptic Filter
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Problem 1.34 Elliptic Filter
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Chapter 2

Classify each of the following signals as finite or infinite. For the finite signals, find the
smallest integer N such that z(k) =0 for |k| > N.

(a) z(k) = M(k‘ +5) — p(k —5)
(b) (k) = (-27T’<?)M(k)
(c) z(k) = mln(k‘2 —9,0)u(k)
(d) (k) = p(k)pu(— )/(1 +k?)
(e) @(k) = tan(v2mk)[u(k) — u(k —100)]
() z(k) = 6(k) 4 cos(mk) — (—1)F
) (k)

J
k) = k~Fsin(.5rk)

Solution

(a) finite, N =5

(b) infinite

(c) finite, N =2

(d) finite, N =1

(e) finite, N =99

(f) finite, N =0
)

(g) infinite
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Classify each of the following signals as causal or noncausal.
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Classify each of the following signals as periodic or aperiodic. For the periodic signals, find
the period, M.

Solution

(a) periodic, M = 100
(b) nonperiodic, (7 = 207)
(¢) nonperiodic, (17 = 27/v/3)
(d) periodic, M = 16
(e) periodic, M = 10
(f)

)

f) nonperodic, (causal)
(g) periodic, M =2
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Classify each of the following signals as bounded or unbounded.

Solution

(a) bounded
(b) bounded
(¢) bounded
(d) unbounded
(e) bounded
(f)

f) bounded
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For each of the following signals, determine whether or not it is bounded. For the bounded
signals, find a bound, B,.

(a) x(k) = [1+ sin(bmk)]pu(k)
(b) (k) = (5)"u(h)
[ (14 k) sin(10k)
(© ol = |00
(@) (k) = [1+ (1) cos(10k)(k)

Solution

(a) bounded, B, =1
(b) The following are the first few values of z(k).

Thus z(k) is bounded with B, = .5.
(¢) unbounded
(d) bounded, B, = 2.
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Consider the following sum of causal exponentials.

z(k) =

[e1(p1)" + ea(p2)*] (k)

(a) Using the inequalities in Appendix 2, show that

(k)|

< el - pa|* + [ea] - [p2f®

(b) Show that z(k) is absolutely summable if |p;| < 1 and |ps| < 1. Find an upper bound

on [llx

(c) Suppose |p1| < 1 and |ps| < 1. Find an upper bound on the energy E,.

Solution

(a) Using Appendix 2

(k)| = ler(pr)” + ea(p2)*] (k)]

I VAN (|

ler(p1)* + ca(p2)*| - (k)|
le1(p1)* + c2(p2)”|
le1(p1)*] + |e2(p2)”|

lea| - [PF[ + [eal - [p5]]

lea] - [p1]* + lea| - |p2l*

(b) Suppose |p1| < 1 and |p2| < 1. Then using (a) and the geometric series in (2.2.14)

[zl =
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k=—o00
o
Z lea| - Ipal* + lea] - [pal®
k=0
o o

|01|Z|p1|k+ |02|Z|p2|k

k=0 k=0

|1 |ca
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(c) Using (b) and (2.2.7) through (2.2.9)

E, = |z|3
< =l
< |c1] |ca]

L—Ipi|  1—|po
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Find the average power of the following signals.

Solution

Using (2.2.10)-(2.2.12) and Appendix 2

(a) P, =100
(b) P, =400
() Pb=(1+4+9+16)/5=6
(d)
[acos(mk/8) + bsin(wk/8)]2 = a?cos?(mk/8)) + 2ab cos(wk/8) sin(rk /i) 4+ b% sin?(wk/8)
LRI iy L)
Thus
Pm _ a2 _21_ b2
(e) P, =10%
(f)
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Classify each of the following systems as linear or nonlinear.

(a) y(k) = 4[y(k — 1) + 1]=(k)

(b) y(k) = 6kx(k)

(c) y(k) = —y(k —2) + 10x(k + 3)
(d) y(k) = .5y(k) — 2y(k — 1)

(e) y(k) = 2y(k — 1) +2°(k)

() y(k) = —y(k — 1)z(k —1)/10
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Classify each of the following systems as time-invariant or time-varying.

(a) y(k) = [z(k) - 2y(k — 1)]?
(b) y(k) = sin[ry(k — 1)] + 3x(k — 2)
(c) y(k) = (k+ 1)y(k — 1)+ cos|.1mx(k)]
(d) y(k) = 5y(k — 1) +exp(—k/5)u(k)
) y(k)
) y(k)

Solution

(a) time-invariant
(b) time-invariant

)
(

(c

d) time-varying

time-varying

(e) time-invariant

(f) time-varying
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Classify each of the following systems as causal or noncausal.

= [Bz(k) — y(k - 1))’

= sin[ry(k — 1)] + 3z(k + 1)

= (k+ 1)y(k — 1) + cos[.17z(k?)]
= .5y(k — 1) + exp(—k/5) (k)

Solution

(a) causal

(b

noncausal

d

[§]

causal
causal

noncausal

f

noncausal

)
)
(c)
(d)
)
)

(
(
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Consider the following system that consists of a gain of A and a delay of d samples.

y(k) = Azx(k—d)

(a) Find the impulse response h(k) of this system.

(b) Classify this system as FIR or IIR.

(c) Is this system BIBO stable? If so, find ||h]|;.

(d) For what values of A and d is this a passive system?
)
)

(
(

C

e) For what values of A and d is this an active system?

f) For what values of A and d is this a lossless system?

Solution

(a) h(k) = Ad(k —d)
(b) FIR
(c) Yes, it is BIBO stable with ||h]|; = |A4].
(d)
E, = Y (k)
k=—o0
= ) [Az(k—d)
k=—o0
= A ) 2P(k—d)
k=—o0
= A2 2Pi) , i=k-d
= A’E,

This is a passive system for |A| < 1.
(e) This is an active system for |A| > 1
(f) This is a lossless system for |A| =1
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Consider the following linear time-invariant discrete-time system S.

y(k) —y(k—2) = 2x(k)

(a) Find the characteristic polynomial of S and express it in factored form.
(b) Write down the general form of the zero-input response, y.;(k).

(c) Find the zero-input response when y(—1) =4 and y(—2) = —1.
Solution

(a)

a(z) = 22-1
= (z—1(z+1)
(b)
y=i(k) = ci(p)” + ca(p2)”
= 1+ Cg(—l)k

(c) Evaluating part (b) at the two initial conditions yields

Cl —Cp = 4

cite = —1

Adding the equations yields 2¢; = 3 or ¢; = 1.5. Subtracting the first equation from the
second yields 2co = —5 or co = —2.5.. Thus the zero-input response is

y.i(k) =1.5-25(-1)F
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Vv Consider the following linear time-invariant discrete-time system S.

y(k) = 18y(k—1)— .81y(k—2)—3z(k—1)

(a) Find the characteristic polynomial a(z) and express it in factored form.
(b) Write down the general form of the zero-input response, y.;(k).

(c) Find the zero-input response when y(—1) = 2 and y(—2) = 2.
Solution

(a)

a(z) = 2°—1.8z+ .81
= (22— .9)2
(b)
yai(k) = (c1+eak)p®

= (Cl + Cgk‘).9k

(c) Evaluating part (b) at the two initial conditions yields

(Cl — Cg).9_1 =

(Cl — 262).9_2 =
or
Cl —Cyp = 1.8
C1 — 262 = 1.62

Subtracting the second equation from the first yields co = .18. Subtracting the second
equation from two times the first yields ¢; = 1.98. Thus the zero-input response is

y.i (k) = (1.98 4 .18k).9%
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Consider the following linear time-invariant discrete-time system S.

y(k) = —.64y(k—2)+ z(k) — z(k — 2)

(a) Find the characteristic polynomial a(z) and express it in factored form.

(b) Write down the general form of the zero-input response, y.;(k), expressing it as a real
signal.

(c) Find the zero-input response when y(—1) = 3 and y(—2) = 1.
Solution

(a)

a(z) = 22+ .64
= (z—.8j)(z+ .8j)

(b) In polar form the roots are z = .8 exp(£jm/2). Thus

y.i(k) = 1F[er cos(kB) + o sin(kO)]
= .8%¢; cos(km/2) + cysin(mk/2)]

(c) Evaluating part (b) at the two initial conditions yields

.8_162(—1)
.8_261(—1)

3
1

Thus co = —3(.8) and ¢; = —1(.64). Hence the zero-input response is

Y.i (k) = —(.8)F[.64 cos(mk/2) + 2.4sin(rk/2)]
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Consider the following linear time-invariant discrete-time system S.

y(k) —2y(k —1) + 1.48y(k — 2) — 416y(k —3) = buxz(k)

(a) Find the characteristic polynomial a(z). Using the MATLAB function roots, express it
in factored form.

(b) Write down the general form of the zero-input response, y.;(k).

(c) Write the equations for the unknown coefficient vector ¢ € R? as Ac = yg where yo =
[y(—1),y(—2),y(—3)]" is the initial condition vector.

Solution

(a)
a(z) = 2°—22%41.482— 416

[1 -2 1.48 -.416]
roots(a)

L I
o

a(z) = (z—.8)(z—.6—.4j)(z— .6+ .4j)

(b) The complex roots in polar form are ps 3 = rexp(+jf) where

y - VR E
= .7211

6 = arctan(+.4/.6)
= +.588

Thus the form of the zero-input response is

vi(k) = @ (pl)k + 'r'k[CQ cos(k@) + c3sin(k0)]
= ¢1(.8)F + .7211%[¢; cos(.588k) + 3 sin(.588k)]

(c) Let ¢ € R? be the unknown coefficient vector, and yo = [y(—1), y(—2),y(—3)]”. Then
Ac =y or

871 721171 cos(—.588) 7211 !sin(—.588)
872 721172 cos[—2(.588)] .72112sin[—2(.588)] | ¢ = o
873

[— [—
721173 cos[—3(.588)] 721173 sin[—3(.588)]
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Consider the following linear time-invariant discrete-time system S.

y(k)—9y(k—1) = 2z(k)+z(k—-1)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).

(b) Write down the general form of the zero-state response, y.s(k) when the input is z(k) =
3(.4)ku(k).
(c) Find the zero-state response.

Solution

(a)

b(z) = 2z+1

Yos(k) = [do(po)® + di(p1)¥]pu(k)

i =

Thus the zero-state response is

yos(k) = [—10.8(.4)F +16.8(.9) (k)
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Consider the following linear time-invariant discrete-time system S.

ylk) = ylk—1)—.24y(k —2) + 3x(k) — 22(k — 1)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).

(b) Suppose the input is the unit step, x(k) = p(k). Write down the general form of the
zero-state response, y.s (k).

(c) Find the zero-state response to the unit step input.

Solution

(a)

a(z) = 22—z+.24

(b) The factored form of a(z) is

Thus the form of the zero-state response to a unit step input is

Yos(k) = [do+ di(.6)F + do(4)¥ (k)
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i =

dy =

Thus the zero-state response is

Uos(k) = [4.167+ 2.5(.6)F + 6.667(.4) (k)
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Consider the following linear time-invariant discrete-time system S.

ylk) = ylk—1)— 21y(k—2) + 3z(k) + 2z2(k — 2)

(a) Find the characteristic polynomial a(z) and the input polynomial b(z). Express a(z) in
factored form.

(b) Write down the general form of the zero-input response, y.;(k).

(c) Find the zero-input response when the initial condition is y(—1) =1 and y(—2) = —1.

(d) Write down the general form of the zero-state response when the input is z(k) =
2(.5)F (k).

(e) Find the zero-state response using the input in (d).

(f) Find the complete response using the initial condition in (¢) and the input in (d).

Solution

(a)

a(z) = 22—z+.21
= (2—3)(z—.7)
b(z) = 32242

yi(k) = c1(p)” + ca(p2)”

61(3_1—1-62(7_1 =1
ca(3) 24N = -1
Clearing the denominators,
Sler+ 3¢ = .21
49¢1 4 .09¢c; = —.0441
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Subtracting the second equation from seven times the first equation yields 2.01¢o = 1.51.
Subtracting .3 times the first equation from the second yields .28¢c; = —.127. Thus the
zero-input response is

yi(k) = —.454(.3)F + .751(.7)F
(d) First note that
a(k) = 205 (k)
= 4(.5)"u(k)

The general form of the zero-state response is

Uos(k) = [do(.5)* 4+ di(.3)F + do(.T)¥ (k)

A(z — p1)b(2)
(z —po)a(z)
4[3(.3)% + 2
(.3—.5)(.3—.7)
4(2.27)

.08
= 113.5

4y — A(z — p2)b(2)
(z —po)a(z)
413(.7)% + 2]
(.7—.5)(.7—.3)
4(2.63)

.08
= 131.5

d =

Z=p1

Z=p2
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Thus the zero-state response is

Uos(k) = [=275(.5)% +113.5(.3)F 4+ 131.5(.7)" u(k)

(f) By superposition, the complete response is

y(k‘) = yzz(k) + yzs(k)
= —.454(.3)F + . 751(.7)F + [—275(.5)F + 113.5(.3)F 4+ 131.5(.7)" (k)
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Consider the following linear time-invariant discrete-time system S. Sketch a block diagram
of this IIR system.

y(k) = 3y(k—1)—2y(k—2)+4z(k)+ dx(k—1)
Solution

a = [1,-3,2]
= [4,5,0]

Problem 2.19
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Consider the following linear time-invariant discrete-time system S. Sketch a block diagram
of this FIR system.

y(k) = x(k) —2x(k—1)+ 3z(k —2) —da(k —4)

Solution

a = [1,0,0]
b = [1,-2,3,0,—4]

z(k) O—¢—>{ 271 > 21 > 21 > 27t
¥ ¥ _1

1 -2 —4

Y Y
3 0
N\ g\ g\

Problem 2.20

Y

>
-

l
©; O y(k)
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Consider the following linear time-invariant discrete-time system S called an auto-regressive
system. Sketch a block diagram of this system.

y(k) = x(k)— .8y(k—1)+ .6y(k—2)— .4y(k—3)

Solution
= [1,.8,—.6,.4]
b = [1,0,0,0]
z(k)o
Y Y Y Y
0 0 0 1
Z_l z—l z_l Oy(k)
4 —.6 8
A A A

Problem 2.21

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

81



Consider the block diagram shown in Figure 2.32.

uq (k) l

]
9
0 ?1 X
(%>—’ 271 — ! —O0 y(k)

2.1 —-1.5

t i

Figure 2.32 A Block Diagram of the System in Problem 2.22

(a) Write a single difference equation description of this system.

(b) Write a system of difference equations for this system for w;(k) and y(k).

Solution

(a) By inspection of Figure 2.32

y(k) = —dz(k)+ 9zx(k—1)+1.8z(k—2)+1.5y(k—1) — 2.1y(k — 2)

(b) The equivalent system of equations is

us(k) = 1.8z(k) —2.1y(k)
ui(k) = 9z(k)+ 1.5y(k) 4+ ua(k — 1)
y(k) = —dx(k)+u(k—1)
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Consider the following linear time-invariant discrete-time system S.

y(k) = .6ylk—1)+z(k)— .Tx(k—1)

(a) Find the characteristic polynomial and the input polynomial.
(b) Write down the form of the impulse response, h(k).

(¢) Find the impulse response.

Solution

(a)

h(k) = dod(k) +di(.6) (k)

dy = ——

d =

Z=p1

Thus the impulse response is

h(k) = 1.1676(k) — .167(.6)"u(k)
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Consider the following linear time-invariant discrete-time system S.

ylk) = —25y(k—2)+xz(k—1)

(a) Find the characteristic polynomial and the input polynomial.

(b) Write down the form of the impulse response, h(k).

(c) Find the impulse response. Use the identities in Appendix 2 to express h(k) in real form.

Solution

(a)

a(z) = 2°4.25
b(z) = =z
(b) First note that
a(z) = (z—.55)(z+ .57)

Thus the form of the impulse response is

h(k) = dod(k)+ [di(.55)" + da(—.55)" u(k)

i =

Z=p1

do

Z=Pp2
)
—55(—J)
= j
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Thus from Appendix 2 the impulse response is

h(k) = [=§(55)"+ j(—55)"u(k)

= 2Re[—;(.55)" u(k)

= —2Re[(.5)"(j)" (k)
(.5)*Re{[exp(jm/2)]*} (k)
(.5)"Re[explj(k + 1) /2] u(k)
= 2(.5)kcos[(k‘ + 1) /2| u(k)

2
2
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Consider the following linear time-invariant discrete-time system S. Suppose 0 < m < n and
the characteristic polynomial a(z) has simple nonzero roots.

y(k) = Zbiiﬂ(k‘ — i) — Zaiy(k — 1)
=0 =1

(a) Find the characteristic polynomial a(z) and the input polynomial b(z).
(b) Find a constraint on b(z) that ensures that the impulse response h(k) does not contain

an impulse term.

Solution

(a)
a(z) = 2"+a2" '+ +a,
b(z) = boz" +b+ 12"t 4. 4 b2

(b) The coefficient of the impulse term is

dy = —=

Thus

d#0 < b0)#£0
< m=n
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Consider the following linear time-invariant discrete-time system S. Compute and sketch the
impulse response of this FIR system.

y(k) = u(k—1)+2u(k—2)+3u(k —3)+2u(k —4) + u(k —5)

Solution

By inspection, the impulse response is

k) = [0,1,2,3,2,1,0,0,..]

Impulse Response

3 ‘

251 b

o

k

Problem 2.26
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Using Definition 2.3, show that for any signal h(k)

h(k)*5(k) = h(k)

Solution

From Definition 2.3 we have

h(k) (k) = 'Z h(i)z(k — i)
= 'Z h(i)d(k — i)
— h(k)
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Use Definition 2.3 and the commutative property to show that the linear convolution operator
is associative.

f(R)*lg(k) xh(k)] = [f(k)*g(k)]*h(k)

Solution

From Definition 2.3 we have

di(k) = [f(k)*[g(k)xh(k)]

= > f(m) 'Z g(i)h(k —m — i)

= > > fm)g(i)h(k—m—i)

Mm=—00 {=—00

Next, using the commutative property

da(k) = [f(k)

Thus dg(k‘) = dl(k‘)
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Use Definition 2.3 to show that the linear convolution operator is distributive.

f(k)x[g(k)+ h(k)] = f(k)*g(k)+ f(k)*h(k)
Solution

d(k) = f(k)*[g(F) + h(F)]

= > f@)lg(k—1i) + h(k —i)]

= 2 Fglk— i)+ F@A(k )
_ Z f(z')g(k;—z')fz f(@)h(k —1)]

= [(k)xg(k) + f(k) x h(k)
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Suppose h(k) and z(k) are defined as follows.

= [27_17074]T
= [5,3,-7,6]T

(a) Let y.(k) = h(k)ox(k). Find the circular convolution matrix C(x) such that y. = C(z)h.
(b) Use C(x) to find y.(k).

Solution

(a) Using (2.7.9) and Example 2.14 as a guide, the 4 x 4 circular convolution matrix is

:EEO; $§3; $§2; :Eglg
z(l) z(0) x(3) =(2
@) = 1 22) (1) 2(0) 2(3)
L 2(3) «(2) x(1) z(0)
[ 5 6 -7 3 —|
|3 5 6 -7
N -7 3 ) 6
| 6 -7 3 5 J
(b) Using (2.7.10) and the results from part (a)
ye = C(z)h
[ 5 6 -7 3 2
3 5 6 -7 -1
N -7 3 ) 6 0
6 -7 3 ) 4
[ 16
| ]
B 7
|

This can be verified using the FDSP toolbox function f conwv.
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Suppose h(k) and z(k) are the following signals of length L and M, respectively.

3,6, —1]
r = [2,0,—4,5T

(a) Let h, and z, be zero-padded versions of h(k) and z(k) of length N = L + M — 1.
Construct h, and z..

(b) Let y.(k) = h.(k) oz (k). Find the circular convolution matrix C(z,) such that y. =
C(zz)h,.

(c) Use C(x,) to find y.(k).

(d) Use y.(k) to find the linear convolution y(k) = h(k) x z(k) for 0 < k < N.

Solution
(a) Here
N = L+M-1
= 34+4-1
Thus the zero-padded versions of h(k) and z(k) are

h. = [3,6,—1,0,0,0]"
Ty = [2a0a_4a5a0a0]T

(b) Using (2.7.9) and the results from part (a), the N x N circular convolution matrix is

[ 2.(0) 2.(5) 2:(4) 2.(3) 2.(2) z.(1) ]
z5(1) 2,(0) 2.(5) z.(4) 2.(3) 2:(2)
C(z,) = 22(2) x:(1) 2:(0) 2.(5) w.(4) :(3)
- r5(3) z2(2) x.(1) z.(0) 2.(5) w.(4)
r5(4) z:(3) 2.(2) z.(1) 2.(0) z5(5)
L 2:(5) 2.(4) 2:(3) 2.(2) (1) z.(0) ]
[ 2 0 0 5 —4 0 ]
0 2 0 0 5 —4
_ —4 0 2 0 0 5}
- 5 —4 0 2 0 0
0 5 —4 0 2 0
| 0 0 5 —4 0 2 |
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(c) Using (2.7.9), the circular convolution of h, (k) with =, (k) is

y.(k) = Cl(x,)h,

2 0 0 5 —4 0 3
0 2 0 0 5 —4]|/| 6
=4 0 2 0 0o 5 || -1
~ |5 -4 0 2 0 0 0
0 5 —4 0 2 0 0
L0 0 5 —4 0 2 || 0
e
12
] -4
— | -9
34
| 5 ]

(d) Using (2.7.14) and the results of part (c), the linear convolution y(k) = h(k) x z(k) is

y(k) = hy(k)ox,(k)
= C(x,)h,
= [6,12,—14,-9,34,5]"

This can be verified using the FDSP toolbox function f conwv.
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Consider a linear discrete-time system S with input z and output y. Suppose S is driven by
an input x(k) for 0 < k < L to produce a zero-state output y(k). Use deconvolution to find
the impulse response h(k) for 0 < k < L if z(k) and y(k) are as follows.

r = [2,0,—1,4)7T
= [6,1,-4,3]T

Solution

Using (2.7.15) and Example 2.16 as a guide

noy = L2

Applying (2.7.18) with k = 1 yields

h(l) =

Applying (2.7.18) with k = 2 yields

h(2) =

h(3) =

= —4.25
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Thus the impulse response of the discrete-time system is

hk) = [3,.5,—.5,—-4.25]7 | 0<k<4

This can be verified using the FDSP toolbox function f conwv.

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

95



Suppose z(k) and y(k) are the following finite signals.

r = [5,0,—4]7
= [10,-5,7,4,—12]T

(a) Write the polynomials x(z) and y(z) whose coefficient vectors are z and y, respectively.
The leading coefficient corresponds to the highest power of z.

(b) Using long division, compute the quotient polynomial ¢(z) = y(z)/z(z).
(c) Deconvolve y(k) = h(k) * z(k) to find h(k) using (2.7.15) and (2.7.18). Compare the
result with ¢(z) from part (b).

Solution

(a)

z(z) = 522-4
y(z) = 102" =523+ 722 +42 — 12
(b)
222 — 243

522 —4 | 1024 — 523+ 722 + 42 — 12
1021 — 023 — 822
—52% +152% + 42

—52° — 022+ 42
1522 + 0z — 12
1522 + 0z — 12
0
Thus the quotient polynomial is
q(z) = 222—2+43
(c) Using (2.7.15) and Example 2.16 as a guide
y(0)
0) = —/—=
12
4
= 3
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Applying (2.7.18) with k = 1 yields

q(1) =

Applying (2.7.18) with k = 2 yields

q(2) =

Thus g = [2, —1, 3] and the quotient polynomial is

q(z) = 222243

This can be verified using the MATLAB function deconw.
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Some books use the following alternative way to define the linear cross-correlation of an L
point signal y(k) with and M-point signal (k). Using a change of variable, show that this is

equivalent to Definition 2.5

Solution

Consider the change of variable i = n + k. Then n =i — k and

1 L—-1—-k
ryz(k) = T Z y(n + k)z(n)
n=0 i=n+k
1 5=
= 2 y(i=k)

i=k

Since z(n) = 0 for n < 0, the lower limit of the sum can be changed to zero without affecting

the result. Thus,

1

1 L-1
ree(k) = Y y(a(i—k) , 0<k<L
=0

This is identical to Definition 2.5.
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Suppose z(k) and y(k) are defined as follows.

z = [5,0,—10T
= [1,0,-2,4,3]%

(a) Find the linear cross-correlation matrix D(x) such that r,, = D(x)y.
(b) Use D(x) to find the linear cross-correlation 7y, (k).

(c) Find the normalized linear cross-correlation py, (k).
Solution

(a) Using (2.8.2) and Example 2.18 as a guide, the linear cross-correlation matrix is

[ 2(0) z(1) x=(2) O 0
1 0 z(0) z(1) x=(2) 0 —|
D(z) = - 0 0 x(0) =z(1) x(2)
L o 0o 0 20 z(1)
0 0 0 0 (0
(5 0 —-10 O 0
o5 0 10 0 1
= —-10 0 5 0 —10
o 0 0 O 5 0
00 0 0 5
10 -2 0 0
{0 1 0 -2 0 }
= loo 1 0 -2
\‘0 0 O 1 0 ‘
00 O 0 1

rye = D(z)y
(1 0 -2 0 0 1
01 0 -2 0 1 [ 0 1
= 0 0 1 0 -2 —2
00 O 1 0 4
00 O 0 1 3

B
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This can be verified using the FDSP toolbox function f_corr.
(c) Using (2.8.5) we have L =5 and M = 3. Also from Definition 2.5

=
ryy(0) = nyz(i)
=0

1+0+44+16+9
5

= 6
M-1

1 .

re(0) = > 22(i)
=0

25+ 0+ 100

3
= 41.67

Finally, from (4.49) the normalized cross-correlation of x(k) with y(k) is

ryz (k)
\/(M/L)Tm(o)ryy(o)
ryz (k)
.6(6)41.67
= [.408, —.653, —.653,.327, .245]

Pym(k‘)

This can be verified using the FDSP toolbox function f_corr.
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Vv Suppose y(k) is as follows.

Yy = [5777 _27478767 1]T

(a) Construct a 3-point signal 2(k) such that r,, (k) reaches its peak positive value at k = 3

and |z(0)| = 1.

(b) Construct a 4-point signal (k) such that 7y, (k) reaches its peak negative value at k = 4
and |z(0)| = 1.

Solution

(a) Recall that the cross-correlation ry,(k) measures the degree which (k) is similar to a
subsignal of y(k). In order for 7y, (k) to reach its maximum positive value at k = 3,
one must have maximum positive correlation starting at £ = 3. Thus for some positive
constant « it is necessary that

z = ofy(3),y4),y(5)"
= af4,8,6]

The constraint, |z(0)| = 1, implies that the positive scale factor must be o = 1/4. Thus

r = [1,2,1.5]7
(b) In order for ry,(k) to reach its maximum negative value at & = 2, one must have
maximum negative correlation starting at k = 2. Thus for some positive constant o we
need
r = _a[y(2)7y(3)7y(4)7y(5)]T

a2, —4, -8, —6]T

The constraint, |z(0)| = 1, implies that the positive scale factor must be o = 1/2. Thus

r = [1,-2,—4,-3]T

The answers to (a) and (b) can be verified using the FDSP toolbox function f_corr.
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Suppose z(k) and y(k) are defined as follows.

[4,0,—12,8]7
[27 37 17 _1]T

(a) Find the circular cross-correlation matrix E(zx) such that c,, = E(x)y.

(b) Use E(z) to find the circular cross-correlation ¢y, (k).

(c) Find the normalized circular cross-correlation oy, (k).

Solution

(a) Using Definition 2.6, ¢y, (k) is just 1/N times the dot product of y with « rotated right
by k samples. Thus the kth row of E(z) is the vector = rotated right by k samples.

Cyz

>~ =

] =

8 8 8
N N N N
w O
NP2 N’

8

z(l) 2(2)
2(0) (1)
z(3) 2(0)
x(2) x(3)
0 —12
4 0
8 4
12 8
~3 2
0 -3
1 0
2 1
~3 2
0 -3
1 0
2 1

This can be verified using the FDSP toolbox function f_corr.
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(c) Using (2.8.7), N = 4. Also from Definition 2.6

cyy(0) =

cz2(0) = — z2(0)
=0
16+0+ 144464
4

= 56

Finally, from (2.8.7) the normalized circular cross-correlation of y(k) with x(k) is

Cyx (k)

V/ €z (0)cyy (0)
(k)

(k) k

oya(k) =

3.75(56)
= [-.207,.690,.069, —.552]

This can be verified using the FDSP toolbox function f_corr.
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Suppose y(k) is as follows.

(a)
(b)

Yy = [8727_3747577]T

Construct a 6-point signal (k) such that o,,(2) = 1 and |z(0)| = 6.
Construct a 6-point signal z(k) such that o,,(3) = —1 and |z(0)| = 12.

Solution

(a)

Recall that normalized circular cross-correlation, —1 < oy, (k) < 1, measures the degree
which a rotated version of a signal (k) is similar to the signal y(k). In order for o, (k) to
reach its maximum positive value at k = 2, one must have maximum positive correlation
starting at £ = 2. Thus for some positive constant « it is necessary that

z = a[y(2),y(3),y(4),y(5),y(0),y(1)]"
= o[-3,4,5,7,8,2]7

The constraint, |2(0)| = 6, implies that the positive scale factor must be a = 2. Thus

r = [-6,8,10,14,16,4]"

Because y and x are of the same length, this will result is 0,,(2) = 1 which can be
verified by using the FDSP toolbox function f_corr.

In order for o,,(k) to reach its maximum negative value at & = 3, one must have
maximum negative correlation starting at £ = 3. Thus for some positive constant «

z = —aly(3),y(4),y(5),5(0),y(1),y(2)]"
= af4,5,7,8,2, -3

The constraint, |2(0)| = 12, implies that the positive scale factor must be ae = 3. Thus

r = [12,15,21,24,6,-9]7

Because y and x are of the same length, this will result is 0,,(3) = —1 which can be
verified by using the FDSP toolbox function f_corr.
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Let z(k) be an N-point signal with average power P,.

(a) Show that r,,(0) = ¢4 (0) = P,
(b) Show that p;,(0) = 0,,(0) =1

Solution

(a) The average power of z(k) is

N-1

1
P, = stﬁ(k)

k=0

From Definition 2.5, the auto-correlation of an N-point signal is

r22(0) =

From Definition 2.6, the circular auto-correlation of an N-point signal with periodic
extension zp(k) is

cz2(0) =

(b) From (2.8.5), the normalized auto-correlation of an N-point signal is

B 'r'mm(o)
pmm(o) - \/(N/N)Tmm(o)rmm(o)
= 1
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From (2.8.7), the normalized circular auto-correlation of an N-point signal is

¢22(0)

ou(0) = ern(0)can(0)
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This problem establishes the normalized circular cross-correlation inequality, |0y, (k) < 1. Let
z(k) and y(k) be sequences of length N where z,(k) is the periodic extension of z(k).

(a) Consider the signal u(i, k) = ay(i) + xp(i — k) where a is arbitrary. Show that
1 N-1
Z )+ x,(i — K)]* = a’eyy(0) + 2acy, (k) + cpe(0) >0

=0

(b) Show that the inequality in part (a) can be written in matrix form as

[ ) a0 ][]0

(c) Since the inequality in part (b) holds for any a, the 2 x 2 coefficient matrix C(k) is
positive semi-definite which means that det[C(k)] > 0. Use this fact to show that

Con(k) < Cax(0)cyy(0)  , 0<k<N

(d) Use the results from part (c) and the definition of normalized cross correlation to show

that
—1<ou,(k)<1 , 0<Ek<N
Solution
(a)
| V-1 | V-1
2 _ 2
N u” (i, k) i ;[ay(Z) +ap(i — k)]
| V-1
= ¥ Z a*y? (i) + 2ay (i), (i — k) + 2p(i — k)
o N—1 N-1 N-—1
_a 9, 2a ) 1 9.
= F 20+ vl k) + 5 2w~ k)
=0 =0 =0
| V-1
= a?cyy(0) + 2acy. (k) + NZ:&(Z)

1=
azcyy(O) + 2acy; (k) + cz2(0)
0

Y
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e o | [3) = e[

= a“cyy(0) + acyz (k) + acyz (k) + c22(0)
= a%cyy(0) + 2acy; (k) + cz(0)

(c) The coefficient matrix C'(k) from part (b) is positive semi-definite and therefore det[C(k)] >

0. But
derfett)) = aerf | ) ol ]}
= ¢yy(0)ar(0) — ¢, ()
>0
Thus
szjfﬂ(k) < Cmm(o)cyy(o) ) 0§k<N

(d) Using (2.8.7) and the results from part (c)

|oye (F)| =

cya (k)
‘ V/ €z2(0)cyy (0)
g (F)
Cz2(0)cyy(0)

IN
—

Thus

—1<o,(k)<1 , 0<k<N
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Consider the following FIR system.

Let z(k) be a bounded input with bound B,. Show that y(k) is bounded with bound B, =
cB;. Find the minimum scale factor, c.

Solution

= |[hll Bz

Here

5

Ihln = Y (1 +i)?

=0
= 14+44+9+16+25+36
= 93

Thus

B, = 93B,
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Consider a linear time-invariant discrete-time system .S with the following impulse response.
Find conditions on A and p that guarantee that S is BIBO stable.

Solution

The system S is BIBO stable if an only if ||||; < co. Here

Rl = > |h(k)]

Thus S is BIBO stable if and only if |p| < 1. There is no constraint on A.
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From Proposition 2.1, a linear time-invariant discrete-time system S is BIBO stable if and
only if the impulse response h(k) is absolutely summable, that is, ||h||3 < oo. Show that
|Ih|l1 < oo is necessary for stability. That is, suppose that S is stable but h(k) is not absolutely
summable. Consider the following input where h*(k) denotes the complex conjugate of h(k)
(Proakis and Manolakis,1992).

W (k)
o) = 4 TRR) MW7
0, hk)=0

(a) Show that x(k) is bounded by finding a bound B,.
(b) Show that S is not is BIBO stable, by showing that y(k) is unbounded at k = 0.

Solution

(a) Since z(0) = 0 when h(k) = 0, consider the case when h(k) # 0.

[z(k)] =

Thus x(k) is bounded with B, = 1.
(b)
wO) = |h(k) > x(k)|r=0

e e}

D h@)a(=i)
i)k (i)
i;oo [A(~1)]
_ o @] (=)
|

i=—00

= Y In)

1=—00
= [kl

= o0

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

111



Consider the following discrete-time system. Use GUI module g_systime to simulate this
system. Hint: You can enter the b vector in the edit box by using two statements on one line:

i=0:8; b=cos(pi*i/4)

8
y(k) = > cos(wi/d)x(k — i)
=0

(a) Plot the polynomial roots
(b) Plot and the impulse response using N = 40.

Solution
Polynomial roots: ’"x’'=a(z), 'o’'=b(z) Magnitude of b(z)/a(z)
2
1 ~ 20
™
: N S i
=10 h L5
1 K\/ a -2 >
2 -1 1 2 Im(z) -2 -2 Re (2)

Re (z)

Problem 2.44 (a) Polynomial Roots
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Time signals, unit impulse input

1 T T T

o

-1 ! ! ! ! ! ! !
0 5 10 15 20 25 30 35
k

Problem 2.44 (b) Impulse Response
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Consider a discrete-time system with the following characteristic and input polynomials. Use
GUI module g_systime to plot the step response using N = 100 points. The MATLAB poly

function can be used to specify coefficient vectors a and b in terms of their roots as discussed
in Section 2.9.

a(z) = (z24+.5£35.6)(z—.9)(z+.75)
b(z) = 32%(z—.5)*

Solution

Z 05

Q0w 0w w p w W
Z o JLHHMHTHHHHHHHWHHHHHWHHHHIHHHWHHWHHHWHHHHWHHHH
B T S S R

k

Problem 2.45 Step Response
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Vv Consider the following linear discrete-time system.

y(k) = L7y(k—2)—.72y(k —4) + bx(k — 2) + 4.5z(k — 4)

Use GUI module g_systime to plot the following damped cosine input and the zero-state
response to it using N = 30. To determine Fy, set 2n FpkT = .37k and solve for Fy/ f; where

T=1/f.

x(k) = .97%cos(.37k)

Solution

2nkokT = 3mk

Thus 2FyT = .3 or Fy = .15fs. If fo = 2000, then Fy = 300.

Time signals, damped cosine input: c¢=0.97, F0=300

Z 0 [ Hx TH Ih B b AP
% 1“ m Hi THrTEes

-1 L

| | | |
0 50 100 150 200 250
20 T T

y (k)

g1 —

PSR ML I aa

_10 | | | | |

0 50 100 150 200 250
k

Problem 2.46 Input and Output
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Consider the following linear discrete-time system.

y(k) = —dylk—1)+.19y(k —2) — .104y(k — 3) + 6x(k) — 7.7x(k — 1) + 2.5z(k — 2)

Create a MAT-file called prob2_47 that contains fs = 100, the appropriate coefficient vectors
a and b, and the following input samples where v(k) is white noise uniformly distributed over
[—.2,.2]. Uniform white noise can be generated with the MATLAB function rand.

z(k) = kexp(—k/50)+uv(k) , 0<Ek<500

(a) Print the MATLAB program used to create prob2_47.mat.

(b) Use GUI module g_systime and the User-defined option to plot the roots of the charac-
teristic polynomial and the input polynomial.

(c) Plot the zero-state response on the input z(k).
Solution

(a) % Problem 2.47

f_header(’Problem 2.47: Create MAT file’)

fs = 100;

a=[1.4-.19 .104]
b=1[6-7.7 2.5];

N = 500;

v = -.2 + .4*xrand(1,N);
k = 0:N-1;

x = k .* exp(-k/50) + v;

save prob2_47 fs a b x
what
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Polynomial roots: ’'x’"=a(z), ’'o’=b(z) Magnitude of b (z)/a(z)

(o)
o

|
a1
o

OA
CIN
o
-
d
b(z)/a(z)| (dB)
o

L
o
nNo

0

—2 -1 0 1 2 Im(z) -2 -2 Re (z)

Problem 2.47 (b) Polynomial Roots

Time signals, user-defined input from file C:\rjs\books\book4\_2e\chap2\prob\prob2_47.mat
0 \ \ \ \ \ \ \ \

! ! ! ! !
150 200 250 300 350

0 50 100 150 200 250 300 350 400 450
k

Problem 2.47 (c) Input and Output
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Consider the following discrete-time system which is a narrow band resonator filter with
sampling frequency of fs = 800 Hz.

y(k) = .704y(k—1) —.723y(k —2) + .141z(k) — .141z(k — 2)

Use GUI module g_systime to find the zero-input response for the following initial conditions.
In each chase plot N = 50 points.

(a) yo = [10,-3]"
(b) yo =[5, —8]"

Solution
Time signals, zero input
1 T T T T
<0
X
_1 | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45
10 T T T T T T T T T
g 0 ; 1 [ I 11 — 3
- T
_10 | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45

k

Problem 2.48 (a) Zero-input Response
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Time signals, zero input

1 T T T T
2 0
x
1 | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45
10 T T T T T T T T T T
= 0 1 X 1 11 ]
= - — x
> { I
_10 | | | | | | | | | |
0 5 10 15 20 25 30 35 40 45
k

Problem 2.48 (b) Zero-input Response
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Consider the following discrete-time system which is a notch filter with sampling interval
T = 1/360 sec.

y(k) = .956y(k—1)— .914y(k—2)+x(k) —z(k— 1) + z(k — 2)

Use GUI module g_systime to find the output corresponding to the sinusoidal input z(k) =
cos(2m FokT) (k). Do the following cases. Use the caliper option to estimate the steady state
amplitude in each case.

(a) Plot the output when Fy = 10 Hz.
(b) Plot the output when Fy = 60 Hz.

Solution

Time signals, damped cosine input: c=1, F0=10

_1 I I I I
0
2

k)

x (

50 100 150 200 250

T T T
ol Il I I ll [l I l iy
Il Il Il ll U [ Il ll
| | | |

0 50 100 150 200 250
k

Problem 2.49 (a) Fy =10 Hz

y (k)

-2
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(k)
o

y (k)
=)

I I I I I
0 50 100 150 200 250
k

Problem 2.49 (b) Fy =60 Hz
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Consider the following two polynomials. Use g_systime to compute, plot, and save in a data
file, the coefficients of the product polynomial ¢(z) = a(z)b(z). Then load the saved file and
display the coefficients of the product polynomial.

a(z) = 2°—22+43
b(z) = 42°+522—62+7

Solution
Convolution
10 T T T T
T —O a
a S I ? —
@ ) .L
_10 1 1 1 1 1 1
5! 0 1 2 conv(a,b) 3 4 5 6
T T T T T
: 7
:j 0 ° © )
: }
_50 1 1 1 1 1 1
-1 0 1 2 3 4 5 6
k
Problem 2.50 Polynomial Multiplication
product =
4 -3 -4 34 -32 21
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Consider the following two polynomials. Use g_systime to compute, plot, and save in a data
file, the coefficients of the quotient polynomial ¢(z) and the remainder polynomial r(z) where
b(z) = q(2)a(z) + r(z). Then load the saved file and display the coefficients of the quotient
and remainder polynomials.

a(z) = 224324
b(z) = 4zt —2%2-8

Solution

Deconvolution
5 T T
! ? —e
o 0 & —H b
| ! l |
_10 1 1 1 1 1
- 0 1 2 3 4 5
, 200 T T T T T
_e q
. 0 e & g l ol
7 —200(- .
* _400 ! ! ! ! !
-1 0 1 2 3 4 5
k
Problem 2.51 Polynomial Division
quotient =
4 -12 51
remainder =
0 0 0 -201 196
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Vv Use the GUI module g_correlate to record the sequence of vowels “A”,“E”, “I”,
“0”,“U” in y. Play y to make sure you have a good recording of all five vowels. Then record

the vowel “O” in z. Play x back to make sure you have a good recording of “O” that sounds
similar to the “O” in y. Save this data in a MAT-file named my_vowels.

(a) Plot the inputs = and y showing the vowels.

(b) Plot the normalized cross-correlation of y with x using the Caliper option to mark the
peak which should show the location of x in .

(c) Based on the plots in (a), estimate the lag d; that would be required to get the “O”
in z to align with the “O” in y. Compare this with the peak location ds in (b). Find
the percent error relative to the estimated lag d;. There will be some error due to the
overlap of z with adjacent vowels and co-articulation effects in creating .

Solution

Inputs x and y: user-defined inputs from file C:\rjs\books\book4\_2e\chap2\prob\my_vowels.mat
T T T T T T

1 I ! ! ! ! ! !
0 2000 4000 6000 8000 10000 12000 14000 16000
T T T T T T T

1 ! ! ! ! ! ! !
0 2000 4000 6000 8000 10000 12000 14000 16000
k

Problem 2.52 (a) The Vowels A, E, I, O, U
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lized cross-correlation: user-defined inputs from file C:\rjs\books\book4\_2e\chap2\prob\my_vowel
0 ‘ ‘ ‘ ‘ \ \ \
(x,y) = (6807.14,0.25)

0.2

0.1

! ! ! ! ! ! !
) 2000 4000 6000 8000 10000 12000 14000 16000
k

Problem 2.52 (b) Normalized Cross-correlation of x with y

(c) From part (a), the start of O in z is approximately o, = 9000, and the start of O in y
is approximately o, = 1800. Thus the translation of y required to get a match with x is

di = o0y — 0y
9000 — 1800
7200

Q

The peak in part (b) is at do = 6807. Thus the percent error in finding the location of
Oin z is

100(ds — dy)
dq
100(6807 — 7200)

7200
= —5.46 %

E =
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The file prob2_53.mat contains two signals, x and y, and their sampling frequency fs. Use
the GUI module g_correlate to load x, y, and fs.
(a) Plot z(k) and y(k).

(b) Plot the normalized linear cross-correlation py, (k). Does y(k) contain any scaled and
shifted versions of x(k)? Determine how many, and use the Caliper option to estimate
the locations of z(k) within y(k).

Solution

Inputs x and y: user-defined inputs from file C:\rjs\books\book4\_2e\chap2\prob\prob2_53.mat
5 \ \ \ \ \ \ \

5 ! ! ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500
T T T T

|

! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500
k

Problem 2.53 (a)
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lized cross-correlation: user-defined inputs from file C:\rjs\books\book4\_2e\chap2\prob\prob2_5:
0.25 \ \ \ \ \ \ \ \

" (xy) = (387.720.19) (xy)=(1717.630.18)  +(xy) = (2850.67,0.18)

0.15F 7

o
-
T

1

01 \ \ \ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 4000 4500
k

Problem 2.53 (b)

From the plot of pgy(k), there are three scaled and shifted versions of y(k) within (k). They
are located at

k = [388,1718,2851]
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Consider the following discrete-time system.

y(k) = .95y(k—1)+.035y(k —2) — .462y(k — 3) + .351y(k — 4) +
Sz(k) —.75x(k—1) — 1.20(k — 2) + 4x(k — 3 — 1.2z(k — 4)

Write a MATLAB program that uses filter and plot to compute and plot the zero-state
response of this system to the following input. Plot both the input and the output on the
same graph.

z(k) = (k+1D%(8)Fuk) , 0<k<100

Solution

% Problem 2.54
% Initialize

f_header (’Problem 2.54°)
a=[1-.95 -.035 .462 -.351]
b=1[.5-.75-1.2 .4 -1.2]

N =101;

k=0 : N-1;

x = (k+1).72 .x (.8).7k;

% Find zero-state response
y = filter (b,a,x);
% Plot input and output

figure

h = plot (k,x,k,y);

set (h(2),’LineWidth’,1.0)
f_labels (°’,’k’,’x(k) and y(k)’)
legend (’x’,’y’)

f_wait
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and vy (k)
|
2]
=)

x (k)

-120

~140

_1 60 | | | |
0 20 40 60 80 100
k

Problem 2.54 Input and Zero-State Response
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Consider the following discrete-time system.

a(z) = 2t—.323— 57224 1152+ .0168
b(z) = 10(z+.5)3

This system has four simple nonzero roots. Therefore the zero-input response consists of a
sum of the following four natural mode terms.

yui(k) = ci(p)® + ca(p2)® + c3(p3)® + ca(pa)F

The coefficients can be determined from the initial condition

Setting y.;(—k) = y(—k) for 1 < k < 4 yields the following linear algebraic system in the
coefficient vector ¢ = [cy, ¢, 3, cq] .

Write a MATLAB program that uses roots to find the roots of the characteristic polynomial
and then solves this linear algebraic system for the coefficient vector ¢ using the MATLAB
left division or \ operator when the initial condition is yg. Print the roots and the coefficient
vector c. Use stem to plot the zero-input response y.; (k) for 0 < k < 40.

Solution

% Problem 2.55
% Initialize

f_header (’Problem 2.55°)
a=[1-.3-.57 .115 .0168]
y=1[2-10 23]

n=4;
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% Construct coefficient matrix

roots(a)
zeros(n,n);
for i =1 :n
for k=1 :n
AGLK) = p()~(-1);

= 'O
o

end
end

% Find coefficient vector c
c=A\y

% Compute zero-input response

N =41;

k=0 : N-1;

y_0 = zeros(1,N);
for i =1 :n

i
y_0 = y_0 + c(i) .” k;
end

% Plot it

figure
stem (k,y_0,’filled’,’.’)
f_labels (°’,°k’,’y_0(k)’)
f_wait

Program Output:

p =
-.7000
.8000
.3000
-.1000

-.8195
.8720
-.0742
.0013
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Problem 2.55 Zero-Input Response to Initial Condition
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Vv Consider the discrete-time system in Problem 2.55. Write a MATLAB program that uses the
FDSP function f_filter0 to compute the zero-input response to the following initial condition.
Use stem to plot the zero-input response y.;(k) for —4 < k < 40.

Solution

% Problem 2.56
% Initialize

f_header (’Problem 2.56°)
a=[1-.3-.57 .115 .0168]
b = 10*poly([-.5,-.5,-.5])
y0 = [2 -1 0 3]’

n=4;

% Solve system
N = 41;

x = zeros(1,N);
y_zi = £f_filter0(b,a,x,y0);

% Plot it

figure

k= [-n : N-1];

stem (k,y_zi,’filled’,’.’)

f_labels (’Zero-input Response’,’k’,’y_{zi}(k)’)
f_wait
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Zero—-input Response
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Problem 2.56 Zero-input Response
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Consider the following running average filter. Write a MATLAB program that performs the
following tasks.

1

y(k) = 10 x(k—i) , 0<k<100

9
i=0
(a) Use filter and plot to compute and plot the zero-state response to the following input

where v(k) is a random white noise uniformly distributed over [—.1,.1]. Plot (k) and

y(k) below one another. Uniform white noise can be generated using the MATLAB
function rand.

x(k) = exp(—k/20)cos(mk/10)u(k) + v(k)

(b) Add a third curve to the graph in part (a) by computing and plotting the zero-state
response using conv to perform convolution.

Solution

The transfer function of this FIR filter is

% Problem 2.57
% Initialize

f_header (’Problem 2.57°)

m = 9;

b = .1xones(1,m+1);
a=1;

N =101;

k=0 : N-1;

c = .1;

x = exp(-k/20) .* cos(pixk/10) + f_randu(l,N,-c,c);
% Find zero-state response
y = filter (b,a,x);

% Plot input and output
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figure

h = plot (k,x,k,y);

set (h(2),’LineWidth’,1.0)

f_labels (’Input and Output’,’k’,’x(k) and y(k)’)
legend (’x’,’y’)

f_wait

Input and Output
1.2 T T

and vy (k)

x (k)

20 40 60 80 100

Problem 2.57 Running Average Filter of Order m =9
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Consider the following FIR filter. Write a MATLAB program that performs the following
tasks.

(a) Use the function filter to compute and plot the impulse response h(k) for 0 < k < N
where N = 50.

(b) Compute and plot the following periodic input.

x(k) = sin(.1wk) —2cos(.2wk) + 3sin(.37k) , 0<k<N

(c) Use conv to compute the zero-state response to the input z(k) using convolution. Also
compute the zero-state response to x(k) using filter. Plot both responses on the same
graph using a legend.

Solution

% Problem 2.58
% Construct filter

f_header(’Problem 2.58’)

i=0: 20;
b=(1)."2 ./ (10 + i.72);
a=1;

% Construct input

N = 50;
k=0 : N-1;
x = sin(.1*xpix*k) - 2*cos(.2%pixk) + 3*sin(.3*pix*k);

% Compute and plot impulse response

delta = [1,zeros(1,N-1)];

h = filter (b,a,delta);

figure

plot (k,h)

f_labels (’Impulse Response’,’k’,’h(k)’)
f_wait
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% Compute and plot zero-state response using convolution

figure

plot (k,x)

f_labels (’Input’,’k’,’x(k)’)

f_wait

circ = 0;

y1l = f_conv (h,x,circ);

k1 = 0 : length(yl)-1;

y2 = filter (b,a,x);

k2 =0 : N-1;

hp = plot (k1,y1,k2,y2);

set (hp(2),’LineWidth’,1.5)

f_labels (’Zero State Response’,’k’,’y(k)’)
legend (’Using f\_conv’,’Using filter’)
f_wait

Impulse Response

0-1 T T

0.09
0.08
0.07
0.06
£ 0.05
0.04
0.03
0.02

0.01

0 | | | |
0 10 20 30 40 50
k

Problem 2.58 (a) Impulse Response
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Problem 2.58 (b) Periodic Input

Zero State Response
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Using filter
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Problem 2.58 (c) Zero-State Response
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Consider the following pair of signals.

[1,2,3,4,5,4,3,2,1]"
= [27_173747 _5707 7797 _6]T

Verify that linear convolution and circular convolution produce different results by writing
a MATLAB program that uses the FDSP function f conv to compute the linear convolution
y(k) = h(k)*x(k) and the circular convolution y.(k) = h(k)ox(k). Plot y(k) and y.(k) below

one another on the same screen.

Solution

% Problem 2.59
% Initialize

f_header (’Problem 2.59°)
h=1[1234514321]
x=[2-134-5079 -6]

% Compute convolutions

y = f_conv (h,x,0);
y_c = f_conv (h,x,1);

% Plot them

figure

subplot (2,1,1)

k = 0 : length(y)-1;

plot (k,y)

f_labels (’Linear Convolution: y(k) = h(k) * x(k)’,’k’,’y(k)’)

subplot (2,1,2)

k = 0 : length(y_c)-1;

plot (k,y_c)

f_labels (’Circular Convolution: y_c(k) = h(k) \circ x(k)’,’k’,’y_c(k)’)
f_wait
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Problem 2.59 Linear and Circular Convolution
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Consider the following pair of signals.

[1,2,4,8,16,8,4,2,1]F
= [27_17_47 _47_172]T

Verify that linear convolution can be achieved by zero padding and circular convolution by
writing a MATLAB program that pads these signals with an appropriate number of zeros, and
uses the FDSP toolbox function f.conv to compare the linear convolution y(k) = h(k) * z(k)
with the circular convolution y,.(k) = h.(k) o x.(k). Plot the following.

(a) The zero-padded signals h,(k) and z,(k) on the same graph using a legend.
(b) The linear convolution y(k) = h(k) x z(k).
(c) The zero-padded circular convolution y,.(k) = h(k) o z,(k).

Solution

% Problem 2.60
% Initialize

f_header (’Problem 2.60°)
h=1[1248168 4 2 1];
x=[2-1-4-4-12];

% Construct and plot zero-padded signals

L = length(h);

M = length(x);

h_z = [h, zeros(1,M-1)]

x_z = [x, zeros(1,L-1)]
figure

k = 0 : length(h_z)-1;

hp = plot (k,h_z,k,x_z);
set (hp(1),’LineWidth’,1.5)
f_labels (’Zero-Padded Signals’,’k’,’Inputs’)
legend ("h_z(k)’,’x_z(k)’)
f_wait

% Compute and plot convolutions

y = f_conv (h,x,0);

y_zc = f_conv (h_z,x_z,1);
figure

plot (k,y)
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f_labels (’Linear Convolution: y(k) = h(k) * x(k)’,’k’,’y(k)’)

f_wait

figure

plot (k,y_zc)

f_labels (’Circular Convolution: y_{zc}(k) = h_z(k) \circ x_z(k)’,’k’,’y_{zc}(k)’)
f_wait

Zero-Padded Signals
16 T \

Inputs

10 12 14

Problem 2.60 (a) Zero-padded Signals
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Linear Convolution: y (k)
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Problem 2.60 (b) Linear Convolution
Circular Convolution: yzc(k) = hz(k) ° xz(k)
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Problem 2.60 (c) Zero-padded Circular Convolution
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Consider the following polynomials

a(z) = 24423422 — 243
b(z) = 22—3224+42-1
c(z) = a(2)b(z)

Let a € R%, b € R* and ¢ € R® be the coefficient vectors of a(z), b(z) and ¢(z), respectively.

(a) Find the coefficient vector of ¢(z) by direct multiplication by hand.

(b) Write a MATLAB program that uses conv to find the coefficient vector of ¢(z) by com-
puting ¢ as the linear convolution of a with b.

(¢) In the program, show that a can be recovered from b and ¢ by using the MATLAB
function deconv to perform deconvolution.

Solution

% Problem 2.61
% Initialize

f_header(’Problem 2.61°)
a=1[142 -1 3]
b=1[1-34-1]

% Construct coefficient vector of product polynomial
¢ = conv (a,b)
% Recover coefficients of a from b and c

[a,r] = deconv (c,a)

(a) Using direct multiplication, C'(z) = A(z)B(z), we have

A(2)B(z) = 2" 4423 +2:2— 243
223224421
2T 4425 4 22° — 2% 4328
—325 — 1225 — 62 +32% — 922
425 +162* + 823 — 422 + 122
2t 439224 23
27425 — 625+ 82" +1023 — 1522 + 132 — 3
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Thus the coefficient vector of the product polynomial is

¢ = [1,1,-6,8,10,—15,13,—3]%

(b) The program output for ¢ using conv is

C =
1 1 -6 8 10 -15 13 -3

(¢c) The program output for a using deconv is

a =
1 -3 4 -1

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

146



Consider the following pair of signals.

r = [2,-4,3,7,6,1,9,4,-3,2,7,8]7
= [37271707_17_27_37 _27_1707172]T

Verify that linear cross-correlation and circular cross-correlation produce different results by
writing a MATLAB program that uses the FDSP function f corr to compute the linear cross-
correlation, ry, (k) and the circular cross-correlation, ¢y, (k). Plot ry, (k) and ¢y (k) below
one another on the same screen.

Solution

% Problem 2.62

% Initialize

f_header (’Problem 2.62°)
x=[3210-1-2-3-2-101 2]
y=[2-4376194-327 8]

% Compute cross-correlations

f_corr (x,y,0,0);
f_corr (x,y,1,0);

r_Xy

C_Xy
% Plot them

figure

subplot (2,1,1)

k = 0 : length(r_xy)-1;

plot (k,r_xy)

f_labels (’Linear Cross-Correlation’,’k’,’r_{xy}(k)’)
subplot (2,1,2)

k = 0 : length(c_xy)-1;

plot (k,c_xy)

f_labels (’Circular Cross-Correlation)’,’k’,’c_{xy}(k)’)
f_wait
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Problem 2.62 Linear and Circular Cross-Correlation
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Vv Consider the following pair of signals.

r = [2,—-1,—4,-4,-1,2]"
= [1,2,4,8,16,8,4,2,1]"

Verify that linear cross-correlation can be achieved by zero-padding and circular cross-correlation
by writing a MATLAB program that pads these signals with an appropriate number of zeros,
and uses the FDSP toolbox function f_corr to compute the linear cross-correlation 7, (k) and
the circular cross-correlation ¢y, ., (k). Plot the following.

(a) The zero-padded signals x,(k) and y,(k) on the same graph using a legend.

(b) The linear cross-correlation 7y, (k) and the scaled zero-padded circular cross-correlation
(N/L)cy.o. (k) on the same graph using a legend.

Solution

% Problem 2.63
% Initialize

f_header (’Problem 2.63°)
x=1[1248168 4 2 1]
y=1[2-1-4 -4 -12]

% Construct and plot zero-padded signals

L = length(x);
M = length(y);
x_z = [x, zeros(1,M-1)];
y_z = [y, zeros(1,L-1)];

figure
N = length(x_z);
k=0 : N-1;

hp = plot (k,x_z,k,y_z);

set (hp(1),’LineWidth’,1.5)

f_labels (’Zero-Padded Signals’,’k’,’Inputs’)
legend (’x_z(k)’,’y_z(k)’)

f_wait

% Compute and plot cross-correlations

r_xy = f_corr (x,y,0,0);
R_xy (N/L)*f_corr (x_z,y_z,1,0);
kr = 0 : length(r_xy)-1;
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kR = 0 : length(R_xy)-1;

figure

h = plot (kR,R_xy,kr,r_xy);

set (h(2),’LineWidth’,1.5)

legend (’ (N/L)c_{x_zy_z}(k)’, ’r_{xy}(k)’)
f_wait

Zero-Padded Signals
16 T \

Inputs

10 12 14

Problem 2.63 (a) Zero-Padded Signals
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Problem 2.63 (b) Cross-Correlations
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Consider the following pair of signals of length N = 8.

r = [2,-4,7,3,8,—6,5,1]T
[37 17 _57 27 47 97 77 O]T

Write a MATLAB program that performs the following tasks.

(a) Use the FDSP toolbox function f_corrto compute and plot the circular cross-correlation,
Cya (k).

(b) Compute and print u(k) = z(—Fk) using the periodic extension, x,(k).

(c) Verify that cy.(k) = [y(k) o z(—k)]/N by using the FDSP toolbox function f_conv to

compute and plot the scaled circular convolution, w(k) = [u(k) o z(k)]/N. Plot cy. (k)
and w(k) below one another on the same screen.

Solution

% Problem 2.64
% Initialize

f_header(’Problem 2.64°)
x=1[31-524970]
y=1[2-4738-65 1]

% Compute and plot circular cross-correlation

c_xy = f_corr (x,y,1,0);

figure

kc = 0 : length(c_xy)-1;

plot (kc,c_xy)

f_labels (’Circular Cross-Correlation’,’k’,’c_{xy}(k)’)
f_wait

% Construct v(k) = y(-k) using periodic extension y_p(k)

N
v

length(y);
[y(1), yN:-1:2)]

% Compute and plot scaled circular convolution

w = f_conv (x,v,1)/N;
figure

kw = 0 : length(w)-1;
plot (kw,w)
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f_labels (’Scaled Circular Convolution’,’k’,’[x(k) \circ y(-k)]/N’)
f_wait

Circular Cross-Correlation
14 T T T T

Problem 2.64 (a) Circular Cross-Correlation

(b) The signal v(k) = y(—k) using the periodic extension y,(k) is

v =
2 1 5 -6 8 3 7 -4
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Scaled Circular Convolution
14 T T T T

Problem 2.64 (c) Scaled Circular Convolution
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Chapter 3

Consider the following finite causal signal where z(0) = 8.

r = [87 _6747 _270707"']

(a) Find the Z-transform X (z), and express it as a ratio of two polynomials in z.

(b) What is the region of convergence of X (z)?
Solution
(a) Using Definition 2.1

X(2) = 8—6z1 442722273
823 — 622+ 42 —2
Z3

(b) Since z(k) is causal, X (z) converges outside the outer-most pole. Thus

Qroc = {z €C| |z >0}
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Consider the following finite anti-causal signal where z(—1) = 4.

r = ["'7070737_7727974]

(a) Find the Z-transform X (z), and express it as a ratio of two polynomials in z.

(b) What is the region of convergence of X (z)?
Solution
(a) Using Definition 2.1
X(2) = 322 72342249244
(b) Since z(k) is anti-causal,

Qroc = C
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Consider the following finite noncausal signal where z(0) = 3.

r = ["'7070717273727170707"']

(a) Find the Z-transform X (z), and express it as a ratio of two polynomials in z.

(b) What is the region of convergence of X (z)?
Solution
(a) Using Definition 2.1

X(2) = 22+22+3+227 14272

22 4223432242241
2

z

Qroc = {z €C| |z >0}
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Consider the following causal signal.

2(k) = 208" (k)

(a) Find the Z-transform X (z), and express it as a ratio of two polynomials in z.

(b) What is the region of convergence of X (z)?
Solution

(a) Using the geometric series

(o)

X(z) = ) 2(8) u(k)z"

k=—o0
0o

= > 2>kl
k=0

= > (2/8)(8)r=7F

k=0
= 25) (8/2)"
k=0

2.5
= 2218/ <1
1- .8/z |:8/2

2.5z

= , .8 <1
== 18I/
2.5z

= , > .8
z—.8 2]

Qroc = {z €C| [z| > .8}
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Consider the following anti-causal signal.

(a) Find the Z-transform X (z), and express it as a ratio of two polynomials in z.

(b) What is the region of convergence of X (z)?
Solution

(a) Using a change of variable and the geometric series

(o)

X(z) = > 5(=Du(-k—1)z7"
k=—o00

—0o0

= Z 5(=7) " 'u@) T i=—(k+1)

=00

0

— Z 5(_‘7)—izi+1

=00
00

= Z5z(—.7)_izi

=0
= 52 /(=)
=0

5z
- 2F —7l<1
e S |z/(=.7)] <
—35
- = <
-7 —z
.35z
_ 7
z+ .7 ’ 2] <

Qroc = {z €C| [z|<.T}
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Consider the following noncausal signal.

z(k) = 10(.6)%u(k + 2)

(a) Find the Z-transform X (z), and express it as a ratio of two polynomials in z.

(b) What is the region of convergence of X (z)?
Solution

(a) Using a change of variable and the geometric series

(o)

X(z) = ) 10(.6)u(k+2)z""

k=—o0
00

= > 10(6) (@)=, i=k+2

1=—00

= f: 10(.6/2)2
=0

= 10(.6/2)7> (.6/2)°

=0
a .
= 10(2/.6)*) (.6/2)’
=0
1022/.36
= == | ]6/7<1
1—.6/z 1-6/2
27.7822
= 6 1
1—-.6/z /Il <
27.7823
= : > .6
z—.6 2

Qroc = {z €C| |z| > .6}
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Consider the following noncausal signal. Show that X (z) does not exist for any scalar c. That
is, show that the region of convergence of X (z) is the empty set.

Solution

Decomposing the sum into the anti-causal and causal parts.

X(z) = i Fak

k=—o00
—1 0
= Z ckrk + Z ckrk
k=—o00 k=0

= Xa(2) + Xe(2)
Using the geometric series, the Z-transform of the casual part is

[e.e]
Xe(2) = chz_k
k=0

o)

= S (e/2)t
k=0
1

= = o A<
z

= el > el
Z—C

Thus the region of convergence of the causal part is

Q= {z €l |z >}

Using the geometric series, the Z-transform of the anti-casual part is
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-1
Xu(2) = Z Fak

k=—o00

1

= E c'2,  i=-k
=00
o

= > (/)

=1
z/c
= 1—72;/6 s |Z/C| <1
z
= <1
T
—Zz
= ;o lal <l
zZ—C

Thus the region of convergence of the anti-causal part is

Q= {z eCl[z] <|cf}

For the overall system to converge, both parts must converge. Thus the region of convergence
for X(z) is

Qroc = Q:NQ,

Hence the Z-transform of x(k) does not exist for any ¢ € C.
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Consider the following discrete-time signal.

z(k) = aFsin(bk+ 0)u(k)

(a) Use Table 3.2 and the trigonometric identities in Appendix 2 to find X (z).
(b) Verify that X (z) reduces to an entry in Table 3.2 when # = 0. Which one?
(c) Verify that X (z) reduces to another entry in Table 3.2 when 6§ = 7/2. Which one?

Solution
(a) From Table 3.2 and the sine of the sum trigonometric identity we have

X(z) = Z{d"[sin(bk) cos() + cos(bk) sin(6)]}
= cos(#) Z{a" sin(bk)} + sin(0) Z{a* cos(bk)}
cos(f)asin(b)z sin(0)[z — a cos(b)]z
22 —2acos(b)z+a? = 22 —2acos(b)z + a2
{a cos(0) sin(b) + sin(0)[z — a cos(b)]} 2
22 —2acos(b)z + a?

(b) When 6 = 0, part (a) reduces to the damped sine

asin(b)z
22 — 2acos(b)z + a?

X(2)

(¢) When 0 = 7/2, part (a) reduces to the damped cosine

[z —acos(b)]z
22 — 2acos(b)z + a?

X(2)
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The basic geometric series in (2.2.14) is often used to compute Z-transforms. It can be
generalized in a number of ways.

(a) Prove that the geometric series in (2.2.14) converges to 1/(1 — z) for |z| < 1 by showing
that

N
lim (1 — k= — 1
Nliﬂoo( Z)kz_oz 2] <

(b) Use (2.2.14) to establish (3.2.3). That is, show that

[e.e] zm
sz = 15 m >0, [z] <1

k=m

(c) Use the results of part (b) to show the following. Hint: Write the sum as a difference of
two series.

n m n+1

2™ —z
E F = 5 n>m>0, |z] <1
k=m —

(d) Shows that the result in part (c) holds for all complex z by multiplying both sizes by
1 — z and simplifying the left-hand side.

Solution
(a)
N N N
li _ ko _ : kE k+1
fm (=93 = (343
k=0 k=0 k=0
N N+1
g (-3 )
k=0 k=1
= lim (1 -2V
N—oo
=1 = |z| <1
Thus

- 1
sz = .zl <1 (0.1)

1—=z
k=0
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(b) Let m > 0. Using (2.2.14)

[
E:Zk — sz:zk—m

k=m k=m

- <t

(¢c) Let n > m > 0. Using part (a)

n oo oo
§ :zk _ § :zk _ § : zk
k=m

- IR <

(d) Multiplying both sides of part (c¢) by 1 — z yields

n n
(1—Z)§:Zk: E:Zk_E:zk—l—l
k=m k=m
n+1

= izk—Zzi , t=k+1
k=m

i=m+1

n
= My § : Zk_ § : P _Zn—l—l

— gm_ Zn—l—l
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Suppose X (z) converges on Q, = {z € C| |z2| > R;} and Y (z) converges on Q, = {z €
C| |z| < Ry}.

(a) Classify z(k) and y(k) as to their type: causal, anti-causal, noncausal.
(b

(c
(d

Find a subset of the region of convergence of ax(k) + by (k).

Find the region of convergence of c*z(k).

Find the region of convergence of y(—k).
Solution

(a) Since Q, = {2z € C'| |z| > Ry}, x(k) is causal. Since Q, = {z € C | |z| < Ry}, y(k) is
anti-causal.

(b) Since both X(z) and Y (z) must converge, the region of convergence is

Qroc = QmﬂQy
= {z€C| R, <|z| <Ry}

(c) From the Z-scale property

Z{ckz(k)} = X(z/c)

Thus the region of convergence is
Qroc = {z€Cl|z/c] > Ry}

{z € Cl 2] > [¢| R}

(d) From the time-reversal property

Z{y(=k)} = Y(1/2)

Thus the region of convergence is

Qroc = {z€C|[1/2] < Ry}
= {z€C| |z >1/Ry}
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Consider the following signal.

10, 0<k<4
z(k) = {—2, 4<k< oo

(a) Write z(k) as a difference of two step signals.

(b) Use the time shift property to find X (z). Express your final answer as a ratio of two
polynomials in z.

(c) Find the region of convergence of X (z).
Solution
(a) If u(k) is the unit step, then

x(k) = 10p(k) —12u(k —4)

(b) Using the delay property, Table 3.2, and part (a)

X(2) = 10U(z) —1227U(z)
= (10 —122"NHU(2)

102t -12 z
N 24 z—1

2(52* — 6)
23(z—1)

(c) Since x(k) is causal, it converges outside the outer-most pole. Thus

Oroc = {z| |2| > 1}
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Consider the following signal.

2(k) = 2k, 0<k<9
B 18, 9<k< oo

(a) Write (k) as a difference of two ramp signals.

(b) Use the time shift property to find X (z). Express your final answer as a ratio of two
polynomials in z.

(c) Find the region of convergence of X (z).
Solution
(a) Let r(k) = ku(k) denote the unit ramp. Then

z(k) = 2r(k)—2r(k—9)
= 2[r(k) —r(k—9)]

(b) Using the time shift property and Example 3.7 (or Appendix 1)

X(z) = 2[R(z)—2R(2)]
= 2(1-2""R(2)
_ 2(2% - 1) [ z ]

29 (z—1)2
202" -1)
- 28(z—1)2

(c) Since x(k) is causal, X (z) converges outside the outer-most pole.

ROC = {z| |2|>1}
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Use Appendix 1 and the properties of the Z-transform to find the Z-transform of the following
cubic exponential signal. Simplify your final answer as much as you can.

Solution

From Table A6 in Appendix 1

Using the time multiplication property of the Z transform

X(z) = —deiz)
_ (2 —¢)3(2cz + 2) — cz(z +¢)3(2 — ¢)?
(z—¢)°
_ =2z = ¢)(2z+¢) —32(2 + ¢)]
(z—o)*
_ —cz222 — ez — 2 — 327 — 3¢z
(z—o)
_ —cz[—22 —dez — 7]
(z—0o)*
2
_ cz[(z(—: i)c)—: 2cz] > el
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Let z*(k) denote the complex conjugate of z(k). Show that the Z-transform of z*(k) can be
expressed in terms of the Z-transform of x(k) as follows. This is called the complex conjugate

property.

Solution

Using Definition 3.1
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Let h(k) and z(k) be the following pair of signals.

(a) Find H(z) as a ratio of polynomials in z and its region of convergence.
(b) Find X (z) as a ratio of polynomials in z and its region of convergence.

(c) Use the convolution property to find the Z-transform of h(k) xz(k) as a ratio of polyno-
mials in z and its region of convergence.

Solution

(a) From Table 3.2 and the linearity property

H(z) = Z{u(k)} - Z{.9"u(k)}
B zil_z_zg sz > 1 ]2 > 9

2(z—.9)—2(z—1)

= 1
G—1)(z—.9) A=
Az
= — = 1
G-De—9 = A°
(b) From Table 3.2
z
X() = == . l>]-1]
z
= 1
e

(c) Using the convolution property and the results from parts (a) and (b)

Z{h(k) xx(k)} = H(2)X(2)

- (Z—l.)l(Z—.9)<zi1> ;>

122
S RIS R
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In problem 3.15 the region of convergence of the Z-transform of h(k)xx (k) is Qroc = Qm N Qx
where Q7 is the region of convergence of H(z), and Qx is the region of convergence of X (z).
Is this true in general? If not, find an example of an H(z) and an X (z) where Qroc is larger

than Qg N Qx.

Solution

No, it is not always true that Qroc = Qg N Qx because there can be pole-zero cancellation

between H(z) and X (z). For example.

H(z) =
X(z) =
Then
Z{h(k) x (k)}
Here
Qroc

z
, > .8
z—.8 2]
z—.8
4
— k>
= H(2)X(z)
z
= , > 4
z— 4 12l

= {z€C||z| > 4}
# {z€C| |z| > .8}
= Qg NQx
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Consider the following noncausal signal

2(k) = Ful—k)

(a) Using Definition 3.1 and the geometric series, find X (z) as a ratio of two polynomials in
z and its region of convergence.

(b) Verify the results of part (a) by instead finding X (z) using Table 3.2 and the time
reversal property.

Solution

(a) Using Definition 3.1 and the geometric series

X(z) = Z Fu(—k)zF
k=—o00
0
_ Z ko
k=—o00
0 .
= ZC_ZZZ , i1=-—k
= > (z/0)
i=0
1
= 1
L k<
= — [21/lel < 1
 c—z
—c
= — ;o lal <l
z—c
(b) Using time reversal, let
y(k) = =(=k)
= ¢ Fu(k)
= (1/¢)*u(k)
From Table 3.2
Y(z) = — 2 > 1/le
- z—1/c 7
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Using the time reversal property

X(z) = Y(/2) |1/ > 1)
1/z
= — 1 1
e - > K
- ! 12 < |l
- 1—2z/c arsle
C
e NFRY
C VA
—C

= el <V

Z—C
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Consider the following pair of finite causal signals, each starting with sample k = 0.

z(k) = [1,2,3]
y(k) = [7,2,4,6,1]

(a) Find X (z) as a ratio of polynomials in z, and find the region of convergence.
(b) Find Y(z) as a ratio of polynomials in z, and find the region of convergence.
(c) Consider the cross-correlation of y(k) with z(k).

4
rpa(k) = %Zy(i):p(i k), 0<k<5
=0

Using the correlation property, find the Z-transform of the cross-correlation ry, (k) as
ratio of polynomials in z, and find the region of convergence.

Solution

(a) Using Definition 3.1

X(z) = 14227143272
22 +22+43

= T s |Z|>0

(b) Using Definition 3.1

Y(2) = 74+22 4427246273+ 271

724 4223 +422 462+ 1
= i , |z| >0

(c) Using the cross-correlation property

R = YEXO/)

T 4228 4422+ 6241 ((1/2)2+2(1/2) + 3 2> 0
- 421 (1/2)2 1

(T2 4+ 223 + 422 + 62+ 1)[(1/2)* +2(1/2) + 3]
= 2 , |z| >0
(724 4+ 223 + 422 + 62+ 1)(1 + 22 + 322)
- d >0
4z
(T2 4+ 223 + 422 + 62+ 1)(322+ 22+ 1)
= i , |z| >0
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Consider the following Z-transform.

10(z —2)%(z +1)3
(z—.8)2(z=1)(z —.2)2

X(z)=

(a) Find z(0) without inverting X (z).

(b) Find z(o0) without inverting X (z).

(c) Write down the form of z(k) from inspection of X (z). You can leave the coefficients of
each term of X (z) unspecified.

Solution

(a) Applying the initial value theorem

z(0) = Zlgglo X (2)
C 0G24 1)
T oo (2 8)2(z — 1)(2 - .2)2
— lim 10z°

Z—00 z5

= 10

(b) Since (z — 1) X (z) has no poles on or outside of the unit circle, one can apply the final
value theorem.

z(oco) = lim(z—1)X(z)
1 _9)\2 3
~ im 0(z—2)%(z+1)
=1 (2 —.8)%(z—.2)2
! 10(1 —2)2(1 4 1)3
= I
=1 (1— 8)2(1 — .2)2
B 80
~.04(.64)
= 3125
(c) Each pole at z = p of multiplicity m generates a natural mode term of the form

c(k)p*u(k) where c(k) is a coefficient polynomial of degree m — 1. Thus, the general
form of x(k) is

2(k) = [(cik +c2)(:8)" + ez + (eak + ¢5)(:2) (k)
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A student attempts to apply the final value theorem to the following Z-transform and gets the
steady-state value x(oo) = —5. Is this correct? If not, what is the value of z(k) as k — 00?
Explain your answer.

Solution

For the final value theorem to be applicable, (z — 1)X(z) must not have any poles on or
outside the unit circle. Here

1023
-1X = —
(-DX() = s
B 1023
 (z-2)(z+1)
Since there is a pole at z = 2, the final value theorem does not apply. Therefore z(c0) = —5

is not correct. Because of the pole at z = 2, z(k) is unbounded, and z(k) — oo as k — oo.
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Consider the following Z-transform.

(a) Find the causal part of z(k)
(b) Find the anti-casual part of z(k)

Solution

(a) Since X(z) is not strictly proper, first apply long division to get a quotient polynomial
and a remainder. Using the MATLAB function deconv this yields

b [1 000 1]
a [1 -3 2]
[g,r] = deconv(b,a)

q(z) = 22+32+7
r(z) = 15z—13
Thus
b
X(z) = bz)
a(z)
r(2)
= Q(Z)+@
152 — 13
2
= 3 7
oo +z2—3z—|—2)
15z — 13
= 22+32+7+ z

The causal part of X (z) is

Using the residue method, the initial value of z.(k) is
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z.(0) = lim X.(2)

Z—00

The residues are

z—1)r(z)zF1
Res(1,k) = ( 13(25)) .
15(1) - 13 B
S 1-2)
= -2
o _ (z —2)r(z)zF !
Res(2, k) o(2) »

[15(2) — 13]2F1
2-1)
= 17(2)*!

Thus the casual part of z(k) is

(k) = 2.(0)5(k) + [Res(1,k) + Res(2, k)|u(k — 1)
= 70(k) +[-2+ 17(2)%k — 1)]p(k — 1)

(b) The anti-casual part of X (z) is

Thus the anti-causal part of (k) is

zqo(k) = 6(k+2)+35(k+1)
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Consider the following Z-transform.

4 3 2
22 4+22°+3224+ 22+ 1
X(z) = i , |z| >0

a
b
c

d

Rewrite X (z) in terms negative powers of z.
Use Definition 3.1 to find z(k).

Verify that z(k) is consistent with the initial value theorem.

~ —~ N~

Verify that z(k) is consistent with the final value theorem.

Solution

(a) Multiplying the top and bottom by z=* yields

X(z) = 1422714372 42:73 47

(b) Using Definition 3.1,

r = {17273727170707'“}

(c) From the initial value theorem

z(0) = lim X(2)

Z—0Q

= lim1+22"1'4+32724+2,3 4274

Z—0Q

= 1 \/

(d) Since (z — 1) X (2) has no poles on or outside the unit circle, the final value of z(k) is

z(oc0) = lgri(z - 1)X(2)
(2= 1D (2 + 222 + 322 + 22+ 10)
= =

=0
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Consider the following Z-transform.

X(z) = 21 |z| > 1

(a) Find z(k) for 0 < k < 5 using the synthetic division method.
(b) Find x(k) using the partial fraction method.
(¢) Find z(k) using the residue method.

Solution

(a) Expressing X (z) in terms of negative powers of z

221
1— 22

X(z) =

Using synthetic division,

2 V492,73 42270 4.

1-272 | 2z7!
2,71 _9,73
2,73
2,73 9,75
2,70
2,75 9,77

2,77

Thus the first six samples are

x = {0,2,0,2,0,2,---}

(b) Expanding X (z) into partial fractions

X(z) 2
z o221
_ 2
(2= 1)(z+1)
R Ry
oz—1 z+1
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The partial fraction residues are

R~ (ZDXE)
z z=1
B 2
oz 41 =1
=1
p, — HDXE)
z z=—1
B 2
21 e 1
= -1
Thus
z z
X = —
(2) z—1 z+4+1

Finally, from Table 3.2

(c) Applying Algorithm 3.1, the initial value of z(k) is

#0) = lim X2
. 2z
= lim 3
z—o0 24 — 1
=0

The factored form of X (z) is

The residues of X(z)zk_1 for k > 1 are
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Res(1,k) = (z—1)X(2)zF .o

Res(—1,k) = (z+1)X(2)2" .oy

z=—1

= (-1
Thus

x(k) = x(0)d(k) + [Res(1, k) + Res(—1,k)]u(k — 1)

(1= (=1)"pk - 1)
= [1-(-

]
(~DMutk) v
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Consider the following Z-transform. Find z(k) using the time shift property and the residue
method.

X(z) = 5=, ld>5

Solution

Applying Algorithm 3.1, X (z) is already in factored form. Removing the r = 2 poles at z = 0

yields
100
X —
(2) (= — 5)3
The initial value of x(k) is
z(0) = lim X(z)

The pole at p; = .5 is of multiplicity m; = 3. Thus the residue is

1 d?
a2
1 d? _
= 50(I<: 1) (k—2)z83.—5
= 50(k—1)(k—2)(.5)k3

Res(.5,k) = (z—13X(2)2" Y.z 5

Thus

z(k) = x(0)6(k)+ Res(.5,k)u(k —1)
= (k=1)(k—2)(.5"u(k - 1)

Finally, one must delay by r = 2 samples.

z(k) = (k—3)(k—4)(.5)" ulk —3)
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Consider the following Z-transform. Use Algorithm 3.1 to find z(k). Express your final answer
as a real signal.

X(z) = .zl >1

Solution

Applying Algorithm 3.1, the factored form of X (z) is

1
X —
® = e
The initial value of x(k) is
z(0) = lim X(z)

The residue of the pole at z = j is

Res(j,k) = (Z—j)X(Z)Zk_1|Z=j

Since the pole at z = —j is the complex conjugate of the pole at z = j, its residue is

Res(—j,k) = Res(j, k)*
—(=5)"
2
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Thus z(k) is

z(k) = x(0)d(k) + [Res(j, k) + Res(—7, k)|u(k — 1)

- [ -y

Using Euler’s identity from Appendix 2, exp(+jn/2) = +j. Thus

[—exp(jm/2)F — (exp(—jm/2)k
= | p(j7/2) 2( p(=jm/2) ]#(k—l)
_ _—eXp(jk‘ﬂ'/2) _2 (eXp(_jkW/2):| w(k —1)
_ [zcoskn/2) - jsin(kn/2) — cos(hn/2) + jsin(hn/2] ) )
2

_ cos(km/2)u(k — 1)
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Repeat problem 3.25, but use Table 3.2 and the Z-transform properties.
Solution

Note that X (z) is generally similar to one of the entries in Table 3.2 except for the numerator.
If one multiplies and divide by z this yields

1 z
z 22 +1
= 'Y (2)

X(2) =

Here Y (2) = z/(2%2 4+ 1). Note that z(k) can be recovered from y(k) using the time shift
property. From row three of Table 3.2 with a =1 and b = 7/2

y(k) = sin(kr/2)u(k)

Using the sine of the difference trigonometric identity from Appendix 2 yields

w(k) = y(k—1)

sin[(k — 1)w/2)u(k — 1)

[sin(kw/2) cos(m/2) — cos(km/2) sin(w/2)|u(k — 1)
= —cos(km/2)u(k—1)

This is consistent with problem 3.25.
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V Consider the following Z-transform. Find z(k).

523
X(z2) = 1
(2) Z i mery o A7

Solution

The factored form of X (z) is

523
(z—.5)%(2+1)

X(z) =

Using the residue method, the initial value of z(k) is

z(0) = lim X(2)

Z—00

= 5
The residues of X (2)z*~! at the two poles are

Res(5, k) — %{(z—.5)2X(z)zk_1}|z:,5

d 5zk+2
B E; { z+1 } z=.5

(z 4+ 1)5(k 4 2)2FH1 — 525+2
(z+1)2
7.5(k + 2)(.5)k ! — 5(.5)k+2
(1.5)2
2.5(.5)F3(k +2) — 1]
2.25
10

= <§> (3k 4 5)(.5)F*!

z=.5

Res(—1,k) = (z+1)X(2)2" .=y
5zk+2
(z—.5)2
5(__1)k+2
(—1.5)2

_ (29_0> (—1)k+2
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Thus

x(k) = x(0)6(k)+ [Res(.5, k) + Res(—1, k)u(k — 1)

= 50(k)+ (19—0> (8K 4 5)(.5)* + 2(—=1)F 2| u(k — 1)
= () k4 515 4 2 )
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The formulation of the inverse Z-transform using the contour integral in (3.4.20) is based on
the Cauchy integral theorem. This theorem states if C' is any counter-clockwise contour that
encircles the origin then

1 k—1-iy, _ J 1, i=k
‘ﬂ—ﬁiz dZ = {0 ’ Z#k

Use Definition 3.1 and the Cauchy integral theorem to show that the Z-transform can be
inverted as in (3.4.20). That is, show that

1
k k—1
x(k) = 2 b X (2)2"dz

Solution

Let C be a contour in the region of convergence. In general, the region of convergence is an
annular ring around the origin, so C' will encircle the origin. Using Definition 3.1, and the
Cauchy integral theorem,

740 X(2)hds = 740 DIROEREITE

Thus

1
k - = X k—1
x(k) o b (2)2"dz
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Consider the following Z-transform.

(a) Find z(k) if the region of convergence is |z| > 1.

(b) Find z(k) if the region of convergence is |z| < 1.

Solution

(a) If the region or convergence is of the form |z| > 1, then z(k) is causal. From Table 3.2

Then

= R

= R

Thus from the delay property

X(z) = ;(Z:) L el<t1
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Therefore

w(k) = —y(k—1)
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When two signals are multiplied, this corresponds to one signal amplitude modulating the
other signal. The following property of the Z-transform is called the modulation property.

Z{h(k)z(k)} = ]% CH(u)X(%)u_ldu

Use the Cauchy integral representation of a time signal in Problem 3.28 to verify the modu-
lation property.

Solution

Let

Then, using the Cauchy integral representation of h(k)

Z{h(k)x(k)} = Y(2)

= ) hk)a(k)z"

e
_ kio []% 740 H(u)uk_ldu] (k)2

_ 32% ) Hw) Liouk—lm(k)z—k] du
_ ]% 740 H(u) Li}o (k) (§>_k] wdu
_ ]2% b )X (2) u
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Consider a running average filter of order M — 1.

1 M-1

i Z:E(k‘—i)

1=

y(k) =

(a) Find the transfer function H(z). Express it as a ratio of two polynomials in z.

(b) Use the geometric series in (3.2.3) to show that an alternative form of the transfer
function is as follows. Hint: Express y(k) as a difference of two sums.

M _q

HG) = o

(c) Convert the transfer function in part (b) to a difference equation.

Solution

(a) Using the delay property

=
Y(2) = — 27X (2)
M i=0
Thus the transfer function is
Y(z
H —
(Z) X(Z)
M—1
= i Z_i
M =0
14ty MH
N M
MM
B MM-1
(b) Starting with the hint
| M-
yB) = 2 (ki)
i=0
1 o0 o0
= a7 [Doeth =)= > a(k—i)
i=0 i=M
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Using the delay property and (3.2.3)

1 [& —i - —i
Y(2) = i Zz X(z)—Zz X(z)]
L:=0 =M
1 | —i - —i
= M ZZ — Z V4 ] X(Z)
Li=0 i=M
1 [ 1 (z~HM
= — — X
M|t 1o)X
1 [1—2M
= —|—| X
M[1-z21 ] (2)
Thus the transfer function is
Y(z
H —
(Z) X(Z)
B 1—2zM
- M(1-2z71)
_ M _q
M(z—1)zM-1

(c) Writing H(z) from part (b) in terms of negative powers of z we have

1—2M
M(1—z71)
[1—="M)/(M)
1—2-1

H(z) =

Thus by inspection the difference equation is
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Consider a discrete-time system described by the following difference equation.

ylk) = ylk—1)—.24y(k—2)+2z(k—1) — 1.6x(k —2)

Find the transfer function H(z).

(a)

(b) Write down the form of the natural mode terms of this system.
) Find the zero-state response to the step input x(k) = 10u(k).
)

Find the zero-state response to the causal exponential input x(k) = .8%u(k). Does a
forced mode term appear in y(k)? If not, why not?

(e) Find the zero state response to the causal exponential input x(k) = .4¥u(k). Is this an
example of harmonic forcing? Why or why not?

Solution

(a) By inspection, the transfer function is’

H(z) =

(b) From part (a), the form of the natural response is

y(k) = [e1(.6)" + c2(4) (k)

(¢c) The Z-transform of the zero-state response is

Y(z2) = H(2)X(z)

2(z — .8) 102
(z—.6)(z— 4) (z—l)
20z(z — .8)

(z—.6)(z—.4)(z—1)

From the initial value theorem y(0) = 0. The residues of Y (2)z*~! are
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Res(.6,k) = (2—.6)Y(2)2" .p
20(z — .8)zF

(z—=A(z-1)|,6

20(—.2)(.6)"
(:2)(—4)

= 50(.6)F

Res(.4, k) = (2—.4)Y(2)2"Y.—4
20(z — .8)2F
(z—.6)(z—1)
20(—.4)(.4)"
(—.2)(—.6)

()

Res(1,k) = (z—1)Y(2)2F 1.,

z=.4

~20(z—.8)2"
IR [ER]
_20(.2)

— (4)(.6)

50

3

Thus the zero-state response is

y(k) = [Res(.6,k)+ Res(.4,k)+ Res(1,k)|u(k—1)

_ (% 3(.6)F — 4(4)* + 1]pu(k — 1)

(d) The Z-transform of the zero-state response is

Y(z) = H(2)X(2)

Tz —2(22)_@8—) 4) (z - .8>

(z—.6)(z—.4)

From the initial value theorem y(0) = 0. The residues of Y (2)z*~! are
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Res(.6,k) = (2—.6)Y(2)2" .p
22k

(Z - 4) z=.6

2(.6)"

= 10(.6)"

Res(.4, k) = (2—.4)Y(2)2"Y.—4
22k

(z2—=6)],—4

2(.4)F

—2

= —10(.4)*

Thus the zero-state response is

y(k) = [Res(.6,k)+ Res(.4,k)|u(k—1)
10[.6)" — (4)*]u(k — 1)

No, the forced mode term does not appear in y(k) because it is canceled by the zero of
H(z)at z=.8.

(e) The Z-transform of the zero-state response is

Y(z) = H(2)X(2)
2(z—.8) z
(z—.6)(z—.4) z— 4
2z(z — .8)
(z—.6)(z— .4)2

From the initial value theorem y(0) = 0. The residues of Y (2)z*~! are

Res(.6,k) = (z—.6)Y(2)2" g
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Res(A, k) = %{(z_.4)2Y(z)zk—1}|Z:,4

_ d% {2(zz:.§(3)zk}

z=.4
(2= 6)[2(k+1)2" — 1.6k2"1] — 2(2 — .8)2F
- (z —.6) z=.4
(= 2)2(k+ 1)(A)F — 1.6k(A)1] —2(—.4)(4)F
(=2)?
2B+ 1)(A4)F = 1.6k(4)FT] + 4(.4)F
2

= [-10(k+1)— 20k + 20](.4)*
= (10 — 30k)(.4)"

Thus the zero-state response is

y(k) = [Res(.6,k)+ Res(.4,k)|u(k—1)
= [(10 — 30k)(.4)¥ — 10(.6)*u(k — 1)

Yes, this is an example of harmonic forcing because X (z) has a pole at z = .4 that
matches the pole of H(z) at z = .4. Thus the natural mode term associated with the
pole at z = .4 has a polynomial coefficient that grows with time.
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Consider a discrete-time system described by the following transfer function.

z+.5

H(z) = z—.

(a) Find an input z(k) that creates a forced mode of the form ¢(.3)* and causes the natural
mode term to disappear in the zero-state response.

(b) Find an input z(k) that has no zeros and creates a forced mode of the form (cik+c2)(.7)*

in the zero-state response.

Solution

(a) The input must have a pole at z = .3 and a zero at z = .7. Thus

(z—.7)
X —
(2) z—.3
Using the residue method
z(0) = lim X(2)=1

The residue of the pole at z = —.3 is

Res(.3,k) =

= (3-.7)(3)"!
= —4(.3)?

Thus the input is

z(k) = x(0)d(k)+ Res(.3,k)u(k—1)
= 0(k) —.4(=3)" 1k — 1)
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(b) The input must have a pole at z = .7. Thus

X@) = z —1 7
Using the residue method
z(0) = zlggo X(2)=0
The residue of the pole at z = .7 is
Res(.7,k) = (z2—.7)X(2)z*! s
= 7!

Thus the input is

z(k) = x(0)d(k)+ Res(.7,k)u(k—1)
= (k- 1)
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Consider a discrete-time system described by the following transfer function.

3(z—.4)

H(z) = z+ .8

(a) Suppose the zero-state response to an input z(k) is y(k) = p(k). Find X (2).
(b) Find z(k).

Solution

(a) The Z-transform of the zero-state response is

Thus

_ Y(?)

X(z) = i)
oz [3(z—4) -1
oz [ z+ .8) ]
B z(z+ .8)
3z 1)(z— 4)

(b) Using the residue method
z(0) = zlggo X(z)=1/3

The residue of the pole at z = .4 is

Res(.4,k) = (z2—.4)X(2)2" Yoy
(4+.8).4"
3(4—1)
1.2(.4)F
—1.8
= —(2/3)(4)"
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The residue of the pole at z =1 is

Res(1,k) = (z—1)X(2)2F Y.
(1+.8)(1)*
3(1— 4)

—
0]

=
00

Thus the input is

x(k) = x(0)6(k) + [Res(.4, k) + Res(1, k)]u(k — 1)
(1/3)8(k) + [—2/3(.4)% + 1 u(k — 1)
= (1/3)6(k) + [1 — 2/3(4)"u(k — 1)
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Find the transfer function H(z) = Y (z)/X (z) of the system whose signal flow graph is shown
in Figure 3.31. This is called a cascade configuration of Hi(z) and Ha(z).

. Hyi(z) v Hj(z) y

Figure 3.31 Signal Flow Graph of a Cascade Configuration

Solution

Starting from the output of Figure 3.31 and working backwards

Y(z) = Ha(2)V(2)
= Hy(2)H1(2)X(2)

Thus the composite cascade transfer function is
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Find the overall transfer function H(z) = Y (z)/X (z) of the system whose signal flow graph
is shown in Figure 3.32. This is called a parallel configuration of Hy(z) and Ha(z).

Hq(z
T e > :1() > o Y
Hy(z)

Figure 3.32 Signal Flow Graph of a Parallel Configuration

Solution

Starting from the output of Figure 3.32 and working backwards

Y(z) = Hi(2)X(2)+ Ha(2)X(2))
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Find the overall transfer function H(z) = Y (z)/X (z) of the system whose signal flow graph
is shown in Figure 3.33. This is called a feedback configuration of Hy(z) and Hs(z).

Hi(z
T e > :1() > ®
HQ(‘Z)

Figure 3.33 Signal Flow Graph of a Feedback Configuration

Solution

Let e be the output of the summing junction. Then from Figure 3.33

E(z) = X(z)+ Ha(2)Y(2)
= X(2) + Hy(2)Hi(2) E(2)

Solving for the summing junction output

X(2)
1-— Hg(Z)Hl(Z)

E(2)

Starting from the output of Figure P2.19 and working backwards

Y(z) = Hi(2)E(2)
Hl(z)X Z)
1-— Hg(Z)Hl(Z)

Thus the composite positive feedback transfer function is

H(z) =
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Consider a discrete-time system described by the following difference equation.

y(k) = .6y(k— 1)+ .16y(k — 2) + 10x(k — 1) + 5z(k — 2)

(a) Find the transfer function H(z).
(b) Find the impulse response h(k).
(c) Sketch the signal flow graph.

Solution

(a) From inspection

(b) The factored form of H(z) is

10z +5
22— 62— .16

10(z + .5)
(z—.8)(2+.2)

H(z) =

By the initial value theorem h(0) = 0. The residues of H(z)zF~! are

Res(.8,k) = (z—.8)H(z)z" .3
10(z + .5)2+1

z+ .2 =8
= 13(.8)F1
Res(—.2,k) = (24 .2)H(2)z" .- »
10(z + .5) 2+ 1
- z—.8 e 9
= —3(—.2)%1

Thus the impulse response is
h(k) = [Res(.8,k)+ Res(—.2,k)|u(k—1)

= [13(.8)"7" = 3(=2)" Mulk — 1)
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Tr e > > > > o Y
Y.—1
A z A
6 10
vz—l
.16 5

Problem 3.38 (c) Signal Flow Graph
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Consider a discrete-time system described by the following transfer function.

422 + 1

H(z) = ——2 75
(5)= T 187 81

(a) Find the difference equation.
(b) Find the impulse response h(k).
(c) Sketch the signal flow graph.

Solution

(a) The transfer function in terms of negative powers of z is

44272

H —
(2) 1—1.821+ 8122

By inspection, the difference equation is

y(k) = 18y(k—1)— .81y(k—2)+ 4x(k) + z(k — 2)

(b) The factored form of H(z) is

422 + 1

& = oo

By the initial value theorem h(0) = 4. The residues of H(z)zF~! are

Res(.9, k) — %{(z—.Q)zH(z)zk_1}|z:,g
Sl (R i T

= [k +1)2" 4+ (k= 1)2F 2|9
= A(k+1)(9)* + (k—1)(.9)*2

Thus the impulse response is
h(k) = h(0)d(k)+ Res(.9, k)u(k—1)

= 46(k) + [4(k+1)(.9)" + (k — (9 Hu(k — 1)
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A CO
o

Problem 3.39 (c) Signal Flow Graph
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Vv Consider a discrete-time system described by the following impulse response.

h(k) = [2 — 5% + 2871 (k)

(a) Find the transfer function H(z).
(b) Find the difference equation.
(c) Sketch the signal flow graph.

Solution

(a) Using Table 3.2, the transfer function is

H(z) = Z{h(k)}
2z z 52
z—1 _z—.5+z—.2
22(z—5)(z—.2)—z(z—1)(2— .2) + 5z(z — 1)(z — .5)
(z—=1)(z—.5)(z—.2)
2[2(22 — Tz +.1) — (22 = 1.22 + .2) + 5(22 — 1.5z +.5)]
(z—1)(z—.5)(z—.2)
2(62% — 7.7z +2.5)
(z—1)(z—.5)(z—.2)

(b) Expanding the denominator and converting to negative powers of z yields

62% — 7.72° +2.52

(z—1)(22=.7T2+.1)
62° — 7.7z +2.52

23— 7224 1z —224+.72—- .1

62% — 7.7z +2.52
23 —1.7224 8z — .1

6— 77271 +2.5272

1—1.7271 4+ 8272 — 13

H(z) =

Thus, by inspection, the difference equation is

y(k) = 1.7y(k—1)— .8y(k—2)+ 1y(k —3) + 6x(k) — 7.7x(k — 1) + 2.5z(k — 2)
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Tr e > > > > o Y
Y, —1
A < A
1.7 =7.7
A !
A z A
—-.8 2.5
vz—l
1 0

Problem 3.40 (c) Signal Flow Graph
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Consider a discrete-time system described by the signal flow graph shown in Figure 3.34.

(a) Find the transfer function H(z).
(b) Find the impulse response h(k).
(c) Find the difference equation.

T 4
Tr e > > > > e U
Yy.—1
A z A
—1.4 -8
vz—l
—.49 3

Figure 3.34 Signal Flow Graph of System in Problem 3.41

Solution

(a) From inspection of Figure 3.34, the transfer function is

4—-8z71 43272
14142714 4922

H(z) =

(b) The factored form of H(z) is

422 — 82 +3
224+ 142+ .49
422 — 82+ 3

(z+.7)2

By the initial value theorem h(0) = 4. The residues of H(z)zF~! are

Res(—.7,k) = %{(z—l—.?)zH(z)zk_le:_y

d
= a{(4z2 — 824 3)2F 1Y —_ s

= [4(k+1)2F —8k2"1 +3(k—1)2"|—_
= Ak + 1) (=7 = 8k(= 1)1+ 3(k —1)(—.7)F2
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Thus the impulse response is

h(k) h(0)6(k) + Res(—.7, k)u(k — 1)

= 40(k) + [A(k 4+ 1)(=.7)* = 8k(= 7)1 + 3(k — 1)(—. 1) Huk — 1)

(c) From inspection of the transfer function the difference equation is

y(k) = —1l4y(k—1)— .49y(k —2)+ 4z(k) — 8z(k — 1) 4+ 3z(k — 2)
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A discrete time system has poles at z = £.5 and zeros at z = £52. The system has a DC
gain of 20.

a) Find the transfer function H(z).

(¢

)

b) Find the impulse response h(k).
) Find the difference equation.
)

d

—

Sketch the signal flow graph.

Solution

(a) The form of the transfer function is

a(z - j2)(z +42)

HE) = <56+ 5)
B a(z? 4 4)
22925

The gain factor « is determined from the DC gain constraint, H(1) = 20. Thus

Sa
— = 20
.75
Solving for «,
B 20(3/4)
“ T T
= 3
Hence the transfer function is
3(22+4
H(z) = 2t
(z—.5)(z+.5)

(b) From the initial value theorem h(0) = 3. The residues of H(z)z*~! are
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Res(.5,k) = (z—.5)H(2)2" .5
3(2% 4 4) k1
z+ .5

= 12.75(.5)!

Res(—.5,k) = (24 .5)H(2)z* .5
3(2% 4 4) k1

z—.D —— 5
= —12.75(—.5)F!

Thus the impulse response is

h(k) = h(0)5(k) + [Res(.5, k) + Res(—.5, k)|u(k — 1)
= 36(k) +12.75[(.5)F L — (=.5)F u(k — 1)

(c) Writing H(z) in terms of negative powers of z

3(22 +4)
H = -
(2) 22— 25
3412272
- 1-.25272
By inspection, the difference equation is
y(k) = .25y(k—2)+ 3z(k) + 12z(k — 2)
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Problem 3.42 (d) Signal Flow Graph
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Consider a discrete-time described by the signal flow graph shown in Figure 3.35.

(a) Find the transfer function H(z).
(b) Write the difference equations as a system of two equations.

(c) Write the difference equation as a single equation.

1 U 2
Tr e > > > > > > > e U
y.—1 Y.—1
A z A A z A
0 1 —1.2 1.8
vz—l vz—l
—.49 —6 .32 36

Figure 3.35 Signal Flow Graph of System in Problem 3.43

Solution

(a) From inspection of Figure 3.35, the transfer function of each subsystem is

U(s)
X(s)
1421 —-6272
1+ .492—2

224+2—-6

22 + .49
Y(s)
U(s)
24+1.8271 4 .36272
1+4+1.2271 — 32272
222 4+1.82+ .36

Hl(s) =

HQ(S) =

22 4+1.22—.32
Thus the overall transfer function is
Y(s)
H —
(S) X(S)
= Hi(s)Ha(s)

22 +2—06[222+1.82+.36
22449 | 224 1.22— .32
(22 + 2 — 6)(222 + 1.8z + .36)
(22 + .49)(22 + 1.22 — .32)
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(b) Writing one equation for each subsystem

u(k) = z(k)+x(k—1)—6x(k—2)— .49u(k —2)
y(k) = 2u(k)+ 1.8u(k—1)+ .36u(k —2)+1.2y(k—1) —.32y(k — 2)y(k — 2)

(c) Using the overall transfer function

2(22 + 2 —6) (22 + .92+ .18)
(22 +.49) (22 + 1.2z — .32)
2024 +.92% + 1822 + 23 + +.92% 4 182 — 622 — 5.4z — 1.08)
244 1.223 — 3222 + .4922 + 588z — .1568
2(2* +1.92% — 5.732% — .5222 — 1.08)
24 4+ 1.223 4+ .0722 + 5882 — .1568
2(1+1.9271 - 5.73272 — 522273 — 1.0827%)
1412271+ .07272 + 58823 — . 156824

H(z)

Thus the overall difference equation is

y(k) = 20a(k)+1.92(k — 1) — 5.72(k — 2) — .5222(k — 3) — 1.08z(k — 4)] —
1.2y(k — 1) — .07y(k — 2) — .588y(k — 3) + .1568y(k — 4)
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Consider a system with the following impulse response.

(a) Find the transfer function, H(z).
(b

(c
(d

Find a bounded input z(k) such that the zero-state response is unbounded.
Find a bound for z(k).

Show that the zero-state response y(k) is unbounded.

Solution

(a) From Table 3.2

(b) One needs to use harmonic forcing to create a double pole in Y (z) on the unit circle at

z=—1 Ty
X(z) = zj—l
Then
z(k) = (=1)*ulk) (0.2)
(c) The input z(k) is bounded with
(k)| = |(=1)"p(k)|
<1

Thus B, = 1.
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(d) The zero-state response is

Using the residue method

The residue of the double pole at z = —1 is

Res(—1,k) = %[(Z-Fl)zX(z)zk_l}

- &

= (k‘—l—l)zk|z:—1
= (k+1)(-1)*

z=—1

Thus the zero-state output is

y(k) = y(0)8(k) + Res(—1, k)(~1)"pu(k — 1)
= 0(k)+ (k+1)(=1)"u(k — 1)

It is clear that y(k) is not bounded since |y(k)| =k + 1.
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Consider a discrete-time system described by the following transfer function.

(a) Show that this system is BIBO unstable.
(b) Find a bounded z(k) with bound B, = 1 that produces an unbounded zero-state output.
(c) Find the Z-transform of the zero-state output when the input in part (b) is applied.

Solution

(a) The factored form of the transfer function is

z+1

& = e

Since H(z) has poles at z = +j and |j| = 1, the poles of H(z) are not strictly inside the
unit circle. Therefore, this system is BIBO unstable.

(b) One needs to use harmonic forcing to create a double pole in Y'(z) on the unit circle.
Try

X(z) = z2i1 (0.3)

Then from Table 3.2 with d = 7/2

x(k) = sin(kn/2)u(k)

Clearly, z(k) is bounded with B, = 1.

(c) The zero-state response is

Y(z) = H(2)X(z)
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Is the following system BIBO stable? Show your work.

B 52%(z + 1)
Bz = o9t 2:-9
Solution
The factored form of H(z) is
B 522(z +1)
G = Co9eiDe=39)
B 522
(22— .8)2

Since all the poles of H(z) all lie strictly inside the unit circle, H(z) is stable.
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Consider the following transfer function with parameter a.

(a) Sketch the stability triangle from Figure 3.20. Use the sketch to find the maximum range
of values for o over which H(z) is stable.

(b) Find the poles of H(z) corresponding to the two stability limits in part (a).

Solution

(a) Since the pole at z = .8 is stable, it is sufficient to examine the quadratic factor. If
a(z) = 22 + a1z + az as in (3.7.9), then a1 = —1 and az = a. Thus from the stability
triangle in ag versus a; space, the stable range for « is

O<axl

Region of stable second-order parameters

1.5 T T T T T T
1+ @ 1
05k Complex poles i
3 \
||(\I 0 ]
©
Real | poles
-0.5F b
-1 B
_15 Il Il Il Il Il Il Il Il
-25 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
a =-1

Problem 3.47 (a) Stability Triangle

(b) The two stability limits are « = 0 and a = 1. At a =0,
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Thus the poles are

At a =1,

where

Thus the poles are

p:
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—8)(2% - 2)
= (z2—.8)z2(z—1)

p = [0,.8 17

= (z—8)(z*—2+1)
= (2= 8)(z—p2)(z —p3)

1+£/1-4

2
1+35V3
2

p23 =

(.8, .5+ 7.5V3,.5 — j.5V3]"
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Consider the following transfer function with parameter (3.

Z2

(z+.7)(22 4 Bz + .5)

H(z) =

(a) Sketch the stability triangle from Figure 3.20. Use the sketch to find the maximum range
of values for 3 over which H(z) is stable.

(b) Find the poles of H(z) corresponding to the two stability limits in part (a).

Solution

(a) Since the pole at z = —.7 is stable, it is sufficient to examine the quadratic factor. If
a(z) = 22 4+ a1z + az as in (3.7.9), then a; = B and az = .5. Thus from the stability
triangle in ag versus aj space, the stable range for ( is

—-15<a<l1b

Region of stable second-order parameters

1.5 T T T T T T
1F i
\ Complex poles /
0.5
) \ /
" 0
((SN
Real | poles
-0.5f E
1} 4
_1 -5 Il Il Il Il Il Il Il Il
25 -2 -15 41 -0.5 0 0.5 1 1.5 2 2.5
alzﬁ

Problem 3.48 (a) Stability Triangle

(b) The two stability limits are § = —1.5 and = 1.5. At 8 = —1.5,
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a(z) = (z+.7)(z* = 1.52+.5)
= (z4+.7)(z—1)(z—.5)

Thus the poles are

p = [-.7,517

At B = 1.5,

a(z) = (z+.7)(*+152+.5)
= (z4+.7(z+1)(z+.5)

Thus the poles are

p = [-1,—-.7,—.5]T
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Consider the following discrete-time system.

(a) Find the poles and zeros of H(z).
(b) Show that this system is BIBO unstable.

(¢c) Find a bounded input z(k) that produces and unbounded output. Show that z(k) is
bounded. Hint: Use harmonic forcing.

(d) Find the zero-state response produced by the input in part (c) and show that it is
unbounded.

Solution

(a) The factored form of H(z) is

10z

BN R Ve

Thus H(z) has a zero at z = 0, and poles at z =1 and z = .5.

(b) From part (a), H(z) has a pole on the unit circle at z = 1. Therefore by Proposition
3.1, H(z) is BIBO unstable.

(c) Using the hint, an input with a pole at z = 1 is required. For example, try the unit step.

This is clearly bounded with |z(k)| < 1.

(d) The Z-transform of the zero-state response to the step input from part (c) is

Y(z) = H(2)U(2)

B [ 10z ] z
- 1)(z—=.5)] z—1
1022
(z—1)%(2 —.5)

To find y(k), note from the initial value theorem that (0) = 0. The residues of Y (z)z¢~!
are

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

228



Res(1,k) = diz{(z—l)zH(z)zk_lﬂz:l

_ i 10zk+1
o dz | z—-.5 =1

(z —.5)10(k + 1)2F — 102F+1

(Z - 5)2 z=1
_(5)10(k+1) - 10
a (:5)2
= 20(k+1) — 40

Res(.5,k) = (22— .5)H(2)z" .5
105+
(z—1)%|,_;
10(.5)k+1
(—5)?
= 40(—.5)F!

Thus the zero-state response is

y(k) = [Res(1,k)+ Res(.5,k)|u(k—1)
= [20(k+ 1) — 40 + 40(—.5)" Y u(k — 1)

This is clearly unbounded due to the presence of the 20(k + 1) term generated by the
double pole at z = 1.
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Consider the following system that consists of a gain of A and a delay of d samples

y(k) = Azx(k—d)

(a
(b
(c
(d

Find the transfer function, the poles, the zeros, and the DC gain.
Is this system BIBO stable?. Why or why not?

Find the impulse response of this system.

Find the frequency response of this system.

e) Find the magnitude response,.

f

(
(

Find the phase response.
Solution

(a) By inspection the transfer function is

H(z) = Az
A
zd

There a no zeros, and d poles at z = 0. The DC gain is

H(1) = A

(b) Yes, it is BIBO stable because all of the poles are strictly inside the unit circle.
(¢) The impulse response is
h(k) Z'{H(2)}
= Z YA 4
Ad(k —d)

(d) The frequency response is

H(f) = H(z)|z:0xp(j27rfT)
= Alexp(j2n fT)] ™
= Aexp(—j2ndfT)
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(e) The magnitude response is

A(f) = [H(f)
= |Aexp(—j2ndfT)|
= |A]-exp(—j2mdfT)|
= |4]

(f) The phase response is

o(f) = LH(f)

LA exp(—j2mdfT)
LA+ Lexp(—j2mdfT)
w1 - p(A)] - 2T
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Consider the following first-order IIR system.

z+.5
z—.5

H(z) =

(a) Find the frequency response H(f).
(b) Find and sketch the magnitude response A(f).
(c) Find and sketch the phase response ¢(f).

Solution

(a) Let § = 2w fT. Then applying Definition 3.3 and using Euler’s identity, the frequency
response is

H(f) = H(?)|.= exp(56)
(j0)+ .5
(j0) — 5

exp
exp
cos

(0) + jsin(f) + .5
cos(#) + jsin(f) — .5
cos(f) + .5+ jsin(0
cos(f) — .5+ jsin(0

; ,  O=2nfl

(b) The magnitude response is

A = H()

| cos(f) + .5 + j sin(0)|

| cos(f) — .5+ jsin(0)|
V/[cos(9) +.5]% + sin®(0)
Vcos(9) — .5]% + sin®(9)
V/1.25 + cos(0)]

125 —cos(®)

V/1.25 + cos(27 fT)
V/1.25 — cos(27 fT)
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Magnitude Response

3 T T

0.5

0 | | | |
0 0.1 0.2 0.3 0.4 0.5

f/f

S

Problem 3.51 (b) Magnitude Response

(c) The phase response is

o(f) = LH(f)
= /{cos(0) + 5—|—jsm( )} — £{cos(0) — .5+ jsin(0)}

B 1 [ sin(6 ] tom [ sin(0) ]
cos(f cos(f) — .5

_ _1 [ sin 27TfT ] tan— [ sin(2w fT) ]
cos(2m fT)+ .5 cos(2 fT)— .5
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Phase Response

0 T T

_1 | | | |
0 0.1 0.2 0.3 0.4 0.5

Problem 3.51 (c) Phase Response
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Consider the following first-order FIR system which is called a backwards Euler differentiator.

z—1
Tz

H(z) =

(a) Find the frequency response H(f).
(b) Find and sketch the magnitude response A(f).
(c) Find and sketch the phase response ¢(f).

)

(d) Find the steady state response to the following periodic input.

xz(k) = 2cos(.87k)— sin(.5b7k)

Solution

(a) Let § = 2w fT. Then applying Definition 3.3 and using Euler’s identity, the frequency
response is

H(f) = H(z)|z=0xp(j9)

exp(j6) — 1
Texp(j0)

cos(f) + jsin(f) — 1
T'[cos(0) + jsin(0)]

cos(f) — 1 + jsin(6)

- T'[cos(0) + jsin(0)] o 0=

(b) The magnitude response is

A(f) = [H(f)
| cos(f) — 1+ jsin(6)]
T| cos(8) + jsin(6)|

V/[cos() — 1]2 + sin?(0)

T
_ 2[1 — cos(6)]
T
_ V/2[1 — cos(2m fT)]
T
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Magnitude Response
2 T T

1.8 b

1.6 b

1.2 b

0.8 i

0.6 i

0.4 b

0.2 i

0 | | | |
0 0.1 0.2 0.3 0.4 0.5

f/f

S

Problem 3.52 (b) Magnitude Response

(c) The phase response is

o(f) = LH(f)
= /{[cos(0) — 1+ jsin(6)]} — L{T[cos(f) + jsin(6)]}

- o [ e )

[ sin(27fT)
| cos(2m fT) — 1

] —2nfT

Note that by L’Hospital’s rule, ¢(0) = —m /2.
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Phase Response

1.6 \ \

1.4} 1

1.2 i

(f

o

oo
I

0.6 i

0.4 b

0.2 i

0 | | | |
0 0.1 0.2 0.3 0.4 0.5

f/f

S

Problem 3.52 (c) Phase Response

(d) Since f,T =1, the input can be rewritten as

x(k) = 2cos(.87k) — sin(.57k)
= 2cos2n(A)kfsT] — sin[2m(.25)k fsT]
= 2cos(2nF1kT) — sin(2n F2kT))

Thus the two frequencies, expressed as fractions of f;, are F} = .4fs and Fy, = .25f,.
Since H(z) is BIBO stable, it follows that the steady-state output is

yss(k) = 2A(F)) cos[.8mk + ¢(F1)] — A(Fy) sin[.57k + ¢(F»)]
2A(.Afs) cos|.8Tk + p(.Afs)] — A(.25fs) sin[.5mk + ¢(.25 f5)]
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V Consider the following second-order system.

(a) Find the frequency response H(f).
(b) Find and sketch the magnitude response A(f).
(c) Find and sketch the phase response ¢(f).

)

(d) Find the steady state response to the following periodic input.

xz(k) = 10cos(.67k)

Solution

(a) Let § = 2w fT. Then applying Definition 2.8 and using Euler’s identity, the frequency
response is

H(f) = H(z)|z=exp(j9)
3[exp(j0) +1]
exp(2;560) — .81
3[cos(#) + jsin(#) + 1]
[cos(20) + j sin(20) — .81]
3[cos(0) + 1 + jsin(6)]

= [cos(26) — .81 + j sin(26)] ) 0 =2nfT

(b) The magnitude response is

Af) = H())|
3| cos(f) + 1 + jsin(0)|
| cos(260) — .81 + jsin(20)|
3|v/[cos(8) + 1]2 + sin?(6)
V/[cos(20) — .81]2 + sin?(26)
34/2[1 + cos(6)]
V/[cos(20) — .81]2 + sin?(26)
3v/2[1 + cos(27 fT)]
V[cos(4m fT) — .81]2 + sin® (47 fT')
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Magnitude Response

35 ‘ ‘

Problem 3.53 (b) Magnitude Response

(c) The phase response is

o(f) = LH(f)
= /{3[cos(f) + 1+ jsin(0)]} — Z{[cos(260) — .81 + j sin(26)]}

1 [ osin(27 fT) 1 sin(4n fT)
- [W] ~tan [cos(47rfT)—.81]
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Phase Response

0 T T

Problem 3.53 (c) Phase Response

(d) Since f,T =1, the input can be rewritten as

x(k) = 10cos(.67k)
= 10cos[27(.3)k fT|
= 10cos(2n F1kT)

Thus the frequency of z(k), expressed as a fraction of fs, is F} = .3fs. Since H(z) is
BIBO stable, it follows that the steady-state output is

yss(k) = 10A(Fy) cos[.6mk + ¢(FY)]
= 10A(.3fs) cos[.6mk + ¢(.3 fs)]
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Consider a system with the following impulse response.

(a) Find the transfer function.
(b) Find the magnitude and phase responses.

(c) Find the fundamental frequency Fy, expressed as a fraction of fg, of the following periodic
input.

(d) Find the steady-state response yss(k) to the periodic input in part (c). Express your
final answer in terms of Fj.

Solution

(a) From Table 3.2, the transfer function is

H(z) = Z{hk)}
10z

(b) Let 8 =27 fT. The frequency response is

H(f) = H(z)|z=0xp(j9)
10 exp(j0)
exp(j0) — .5

Thus the magnitude response is
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A(f) = [H()I

_ 10 exp(j0)
cos(#) + jsin(f) — .5
_ [10exp(j8)]
| cos(#) + jsin(f) — .5
_ 10
V/[cos() — .5])2 4 sin?(0)
_ 10
V][cos(2m fT) — .5])2 + sin®(27 fT)
B 10
a V[cos2(27m fT) — cos(2n fT) + .25 + sin® (27 fT')
10

V/1.25 — cos(2n fT)

Thus phase response is

o(f) = LH(f)

- {mmomo—s)

= /fraclOexp(j#) — Lcos(0) + jsin(f) — .5
sin(0)
cos(f) — .5]
sin(27 fT)
cos(2m fT) — .5]

= @ — arctan [

= 2nfT — arctan [

(¢) The fundamental harmonic is the ¢ = 1 term. Set

2rbokT = 1wk
Then
1
Fy = —
0 2T
= .05f
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(d) Using the linearity of the system as in (3.8.15), the steady-state response is

9
yss(k) = ) A(iFy) cos[.1mik + ¢(iFp))]

=0 1+
2\ A(iF)
= Z Y cos2mik FyT + ¢(iFy)]
P 1+
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For the system in problem 3.54, consider the following following complex sinusoidal input.

x(k) = cos(mk/3)+ jsin(mk/3)

(a) Find the frequency Fy of z(k), expressed as a fraction of fs.
(b) Find the steady-state output yss(k).

Solution
(a) Here
k
WMFkT = =~
3
Thus
1
Fy = —
0 6T
5
6

(b) Let 8 =27 fT. The frequency response is

H(f) = H(z)|z=0xp(j9)
10z
z—=.5 z=exp(j0)
10 exp(j0)
exp(j0) — .5
10 exp(j27fT)
exp(j2nfT)—.5

Thus the complex steady-state response is

yss(k) = H(Fy)exp(jmk/3)

10 exp(j2m FyT) ,

_ . k/3
exp(j2rFoT) — .5 exp(jmk/3)
10 exp(j27/6) ,

= . 27k /6
exp(j2m/6) — .5 exp(j2mk/6)
10 exp(j27/3)

exp(j2m/6) — .5
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An alternative to using an AR model for system identification is to use a MA model. One
important advantage of an MA model is that it is always stable.

(a) Let D be the input-output data in (3.9.3). Suppose y = [y(0),...,y(N —1)]7, and let
b € R™*! be the parameter vector. Find a N x (m + 1) coefficient matrix U, analogous
to Y in (3.9.5), such that the MA model agrees with the data D when N =m + 1 and

Ub = y

(b) Find an expression for the optimal least-squares b when N > m + 1.
Solution

(a) Given the input-output date in D, the MA model will precisely fit the data if
y(k) = > bx(k—i) , 0<k<N

Let U be the N x (m + 1) matrix whose kth row is [z(k),x(k —1),...,z(k —m)] for
0 <k < N. That is,

x(0) z(—1) z(—m)
U z(1) :E(:O) z(1—m)
2(N—1) z(N-2) 2(N =1 —m)

Then the N equations can be written in vector form as

Ub = y
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(b) Suppose N > (m+1). Premultiply both sides of Ub = by the (m 4 1) x N matrix U”.

UTus = Uy

This is the vector form of the normal equations. If the input z(k) is selected such that
U has full rank, then the square matrix UTU will be nonsingular. Thus the optimal
least-squares b is

b = (UTo) Uty

The matrix UT! = (UTU)~1UT is the pseudo-inverse or Moore-Penrose inverse of U.
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Consider the system in Problem 3.53. Use GUI module g_sysfreq to perform the following
tasks.

(a) Plot the pole-zero pattern. Is this system BIBO stable?

(b) Plot the response to white noise. Use Caliper to mark the minimum point.

Solution

Rewriting H(z) in terms of negative powers of z yields

3(z+1)
22— 81

3z71 43272
1— .81z2

H(z) =

By inspection of the pole-zero plot, this system is BIBO stable.

Pole-zero plot Magnitude of transfer function

o N
:/
[b(z)/a(z) |

-2 -1 0 1 2

Problem 3.57 (a) Poles and Zeros (Stable System)
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Time signals, white noise input
T T

10 1 1 1 (x.) = (226.21,-8.21)
0 100 150 200 250 300

50
k

Problem 3.57 (b) Response to White Noise
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Consider the system in Problem 3.53. Use GUI module g_sysfreq to plot the step response.
Estimate the DC gain from the step response using the Caliper option.

Solution

Rewriting H(z) in terms of negative powers of z yields

3(z+1)
22— 81

3271 43272
1— .81z2

H(z) =

Time signals, unit step input

2 T T
S|
X
0 L L L L L
0 50 100 150 200 250 300
40 T T T T T
oyl =(250-31,31,48)
< 20l
>
0 L L L L L
0 50 100 150 200 250 300
k

Problem 3.58 Step Response: DC Gain ~ 31.5
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Vv Consider the following linear discrete-time system.

5272 4+4.5274
1—1.8272+ 8124

H(z) =

Use GUI module g¢_sysfreq to plot the following damped cosine input and the zero-state
response to it.

x(k) = .96"cos(.4rk)

Solution

The default value for the sampling rate is fs = 2000 Hz. To achieve cos(.47k) set .47k =
2n FokT'. Solving for Fy

o N to

s

= 400
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Time signals, damped cosine input: c=0.96, F0=4OO

T T T
20
X
_1 1 1 1 1 1
0 50 100 150 200 250 300
20 T T T T T
—~ 10 i
<
>0
_10 1 1 1 1 1
0 50 100 150 200 250 300
k

Problem 3.59 Damped Cosine Input and the Zero-state Response
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Consider the following linear discrete-time system.

6 — 77271425272

H —
(2) 1—172 1+ 82-2_ 1,3

Create a MAT-file called prob3_60 that contains fs = 100, the appropriate coefficient vectors
a and b, and the following input samples where v(k) is white noise uniformly distributed over
[—.5,.5].

x(k) = kexp(—k/50)+uv(k) , 0<Ek<500

Use GUI module g_sysfreq and the User-defined option to plot this input and the zero-state
response to this input.

Solution

Time signals, user-defined input from file C:\rjs\books\book4\_2e\chap3\prob\prob3_60.mat
20 \ \ \ \ \ \ \ \

_10 ! ! ! ! ! ! ! ! !
50 100 150 200 250 300 350 400 450 500
T T T T T T T T

0 ! ! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500
k

Problem 3.60 User-Defined Input and the Zero-state Response
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Consider the following linear discrete-time system. Suppose the sampling frequency is fs =
1000 Hz. Use GUI module g_sysfreq with to plot the magnitude response using the linear
scale and the phase response.

Solution

Expressing the transfer function in terms of negative powers of z yields

10(22 + .8)
24 +1.62%2 4+ .63
10272 48274
1+1.62724 .63274

H(z) =

Magnitude response

70 T T T

0 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
f (Hz)

Problem 3.61 (a) Magnitude Response
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Phase response

L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
f (Hz)

Problem 3.61 (b) Phase Response
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V Consider the following linear discrete-time system. Use GUI module g_sysfreq to plot the
magnitude response and the phase response. Use f; = 100 Hz, and use the dB scale for the
magnitude response.

5(2% 4 .9)

HE = op

Solution

Expressing the transfer function in terms of negative powers of z yields

H() - 5(2% +.9)
24 —1.82%2 + .81
B 52724 4.5274
1—1.8272+ .8127%
Magnitude response
60 T T T
40 1
o
)
20 1
)
<
O - -
20 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

f (Hz)

Problem 3.62 (a) Magnitude Response
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Phase response

4 T T T

ok i

_4 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
f (Hz)

Problem 3.62 (b) Phase Response
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Consider the running average filter in Problem 3.31. Suppose M = 10. Use GUI module
g_sysfreq to perform the following tasks.

(a) Plot the impulse response using N = 100 and stem plots.
(b) Plot the magnitude response using the linear scale.
(c) Plot the magnitude response using the dB scale.
(d) Plot the phase response.
Solution
Time signals, unit impulse input
1 T T T T T
% 05f 4
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
0.1 T T T T T T T T T
% 0.05H R
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Problem 3.63 (a) Impulse Response
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Magnitude response

1 T T T

0.8 4

0.6~ i

A(f)

0.2 i

0 L L L L L
0 5 10 15 20 25 30 35 40 45 50
f (Hz)

Problem 3.63 (b) Magnitude Response (linear)

Magnitude response

0 T T T

-350 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
f (Hz)

Problem 3.63 (c) Magnitude Response (dB)
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Phase response

2 T T T

Problem 3.63 (d) Phase Response
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Consider the following discrete-time system.

1.52% — 423 — 8224+ 1.12— .9
24 — 9523 — 03522 + .4622 — .351

H(z) =

Write a MATLAB program that uses filter and plot to compute and plot the zero-state
response of this system to the following input. Plot both the input and the output on the
same graph.

z(k) = (k+1D(9*uE) , 0<k<100

Solution

% Problem 3.64
% Initialize

f_header (’Problem 3.64°)
a=[1-.95-.035 .462 -.351]
b=1[1.5-.4-.81.1 .9]

N =101;

k=0 : N-1;

x = (k+1) .*x (.9).7k;

% Find zero-state response
y = filter (b,a,x);
% Plot input and output

figure

h = plot (k,x,k,y);

set (h(2),’LineWidth’,1.5)
f_labels (°’,’k’,’x(k) and y(k)’)
legend (’x’,’y’)

f_wait
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60

and vy (k)

x (k)

100

Problem 3.64 Input and Zero-State Response
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Consider the following discrete-time system. Write a MATLAB program that performs the
following tasks.

229 4+ 2524 — 823 — 14224+ 62— .9

H —
(2) 25+ 05524 — 8523 — 0422 + 49z — .32

(a) Compute and display the poles, zeros, and DC gain. Is this system stable?
(b) Plot the poles and zeros using the FDSP toolbox function f-pzplot.

(c) Plot the transfer function surface using f-pzsurf.

Solution

% Problem 3.65
% Initialize

f_header (’Problem 3.65°)
a=[1 .055 -.85 -.04 .49 -.32];
b=1[2 .25 -.8 -1.4 .6 -.9];

% Compute poles, zeros, and DC gain

poles = roots(a)
zeros = roots(b)
DC_gain = polyval(b,1)/polyval(a,l)
if max(abs(poles) < 1)
fprintf (’\nThis system is stable.\n’)

else
fprintf (’\nThis system is unstable.\n’)
end

% Pole-zero plot

figure
f_pzplot (b,a,’Poles and Zeros’)
f_wait

% Transfer function surface

N =61;

hmax = 10;

figure

f_pzsurf (b,a,hmax,N)

pause (.01) % Fix for Windows XP?
f_pzsurf (b,a,hmax,N)

f_wait
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Program output

poles =
-0.8681 + 0.46071
-0.8681 - 0.46071
0.8358
0.4227 + 0.46671
0.4227 - 0.46671
zeros =
-0.8004 + 0.69081
-0.8004 - 0.69081
1.0354
0.2202 + 0.58331
0.2202 - 0.58331
DC_gain =
-0.7463

This system is stable.
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Poles and Zeros

1.5¢

0.5r ©

Im(z)

-2 -1 0 1 2
Re(z)

Problem 3.65 (b) Pole-Zero Plot

Magnitude of transfer function

[b(z)/a(z) |

Problem 3.65 (c) Transfer Function Surface
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Consider the following discrete-time system.

Write a MATLAB program that performs the following tasks.

(a) Use f-freqz to compute the magnitude response and the phase response at M = 500
points assuming fs = 200 Hz. Plot them as a 2 by 1 array of plots

(b) Use filter to compute the zero-state response to the following periodic input with Fy = 10
Hz. Compute the steady state response yss(k) to z(k) using the magnitude and phase
responses evaluated at f = Fy. Plot the zero-state response and the steady-state response
on the same graph using a legend.

x(k) = 3cos2nFokT)u(k) , 0<k <100

Solution

% Problem 3.66
% Initialize

f_header(’Problem 3.66°)
a=1[1000 -.81]
b = [10 0 0 0]

% Frequency response

M =500;

fs = 200;

[H,f] = f_freqz(b,a,M,fs);

A = abs(H);

phi = angle(H);

subplot(2,1,1)

plot(f,A)

f_labels(’Magnitude Response’,’f (Hz)’,’A(f)’)
subplot(2,1,2)

plot (f,phi)

f_labels(’Phase Response’,’f (Hz)’,’\phi(f)’)
f_wait

% Zero-state response
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N = 101;

k=0 :N;

T = 1/fs;

FO = 10

X = 3%cos(2*pi*FO*kx*T) ;
y = filter (b,a,x);

% Steady-state response

i = max(find(f <= F0))

Fi = £(i)

yss = 3*%A(i)*cos(2*pi*FOxk*T + phi(i));

hp = plot(k,y,k,yss);

set (hp(2),’LineWidth’,1.5)

legend(’Zero-state response’,’Steady-state response’)
f_labels(’Responses to Cosine Imput’,’k’,’y’)

f_wait
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Magnitude Response

60 . T T .

A(f)

0 | | | |

0 20 40 60 80 100
f (Hz)

Phase Response

1 T T T T

o (f)

- ] ] ] ]
0 20 40 60 80 100
f (Hz)

Problem 3.66 Frequency Response
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Responses to Cosine Input

40 T T T T T
— Zero-state response
Steady-state response| |

30

_40 1 1 1 1 1
0 20 40 60 80 100 120

Problem 3.66 Steady-State Response
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V The MAT file prob3_67 contains an input signal x, an output signal y, and a sampling fre-
quency fs. Write a MATLAB program that performs system identification with this data by
performing the following tasks.

(a) Load z, y, and fs from prob3-67 and use f_idar to compute an AR model of order n = 8.
Print the coefficient vector a

(b) Plot the first 100 samples of the data, y(k), and the AR model output, Y (k), on the
same graph using a legend.

Solution

% Problem 3.67
% Initialize

f_header (’Problem 3.67°)
load prob3_67

% Identify an AR model

8;
f_idar(x,y,n)

poB
nn

% Plot first 100 samples

1

filter(b,a,x);

length(x);

1:min(100,N);

hp = plot(k,y(k),k,Y(k));

set (hp(2),’LineWidth’,1.5)
legend(’Data’,’AR Model’)
f_labels(’Output of AR Model’,’k’,’y(k)’)
f_wait

N =2 < o
nn

(a) The optimal coefficient vector a is

0.9685
-1.5327
0.6511
1.0016
-1.4963
0.7015
0.0962
-0.3520
0.1694
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Output of AR Model

6 T T T T
— Data
—— AR Model
4 ﬂ R
2 -
< of. 1
>
o} v |

_6 1 1 1 1
0 20 40 60 80 100
k

Problem 3.67 (b) Output of AR Model
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System identification can be performed using a MA model instead of the AR model discussed
in Section 3.9. Recall that this was the focus of problem 3.56.

(a) Write function called f-idma, similar to the FDSP function f.idar, that performs system
identification using a MA model. The calling sequence should be as follows.

A
A
A
A
A
A
A
A
A
A
A
A

F_IDMA: MA system identification

Usage:

Pre:

Post:

[b,E] = f_idma (x,y,m);

<

E

vector of length N containing the input samples
vector of length N containing the output samples
the order of the MA model (m < N)

vector of length m+l containing the least-squares
coefficients
least squares error

(b) Test your f-idma, function by solving Problem 3.67, but using f_idma in place of f_idar.
Use a MA model of order m = 20.

(¢) Print your user documentation for f-idma using the command help f_idma.

Solution

(a) function [b,E] = f_idma(x,y,m)

=

F_IDMA: MA system identification

Usage:

Pre:

Post:

Notes:

[b,E] = f_idma (x,y,m);

<

N =

= vector of length N containing the input samples
= vector of length N containing the output samples
= the order of the MA model (m < N)

= vector of length m+l containing the least-squares

coefficients

= least squares error

. For a good fit, use N >> m.
. The input x must be persistently exciting such

as white noise or a broadband input

Check inputs

= length(x);
ifm >= N
fprintf (’In f_idma, the number of data samples must larger than \n’)
fprintf (’the MA model order. Here N = %d, m = %d\n\n’,N,m);
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b = zeros(1,m+1);
E=-1;
return

end

X = 3

y=vy(G);

% Form coefficient matrix

U = zeros(N,m+1);
for k =0 : N-1
for i =0 :m
if (k-i) <0
U(k+1,i+1)
else
U(k+1,i+1)

]
o

x(k-i+1);
end
end
end

% Find least-squares fit

b=UN\y;
r = Uxb - y;
E =r. *r;
b

1.0155
1.5845
1.8261
0.7559
-0.0994
-0.8757
-0.5351
-0.0203
0.7329
0.7573
0.5521
-0.0907
-0.4068
-0.4939
-0.1353
0.2097
0.4762
0.3383
0.0492
-0.2421
-0.2894

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

272



Output of MA Model
6 T T

—— Data
N — MA Model

RAS

0 20 40 60 80 100
k

Figure 3.68 M A Model

(¢c) > help f_idma
F_IDMA: MA system identification

Usage:
[b,E] = f_idma (x,y,m);
Pre:
x = vector of length N containing the input samples
y = vector of length N containing the output samples
m = the order of the MA model (m < N)
Post:
b = vector of length m+l containing the least-squares
coefficients
E = least squares error
Notes:
1. For a good fit, use N >> m.
2. The input x must be persistently exciting such

as white noise or a broadband input
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Chapter 4

Find the DTFT of the following signals where |c| < 1.

(a) z(k) = ¥ cos(2m FokT) (k)
(b) z(k) = c¥sin(2m FokT) (k)

Solution

(a) From Table 3.2 the Z-transform of z(k) is

[z — ccos(2m FoT)]z
22 — 2ccos(2nFyT)z + 2

X(2)

Since |c| < 1, the region of convergence includes the unit circle. Thus from (4.2.1)

X(f) = X(z)|zzoxp(j27rfT)
lexp(j27m fT) — ccos(2nFoT)] exp(j27 fT)
exp(jmfT) — 2ccos(2n FyT) exp(j27 fT) + 2

(b) From Table 3.2 the Z-transform of (k) is

csin(2rFoT)z

X
(2) 22 — 2ccos(2nFyT)z + 2

Thus from (4.2.1)

X(f) = X(z)|zzoxp(j27rfT)
csin(2n FyT') exp(j2m fT)
exp(jmfT) — 2¢ccos(2n FyT) exp(j27 fT) + 2
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Consider the following signal where |c| < 1.

(k) = E2Fuk)

(a) Using Appendix 1, find the spectrum X (f).
(b) Find the magnitude spectrum, A, (f).
(c) Find the phase spectrum, ¢, (f).

Solution

(a) From Table A6 in Appendix 1, the Z-transform of z(k) is

cz(z+c)

X = (z—¢)3

Since |c| < 1, the region of convergence includes the unit circle. Thus from (4.2.1)

X(f) = X(z)|zzoxp(j27rfT)
cexp(j2m fT)[exp(j2r fT) + c]
lexp(j27 fT) — ]3
clexp(jm fT) + cexp(j2n fT)]
lexp(j27 fT) — c?

(b) The magnitude spectrum is

Ao (f) = [X(f)
|clexp(jm fT) + cexp(j2m fT)]|
|lexp(j27 fT') — c]?|
|c[cos(m fT) + ccos(2m fT)] + jelsin(m fT) + csin(2xw f7T)]|
|[cos(2mfT) — ¢+ jsin(2m fT)]3|
lc[\/[cos(m fT) + ccos(2m fT)]2 + [sin(r fT) + csin(27 fT))2
{[cos(2m fT) — ¢]2 + sin? (27 fT)}3/2
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(¢c) The phase spectrum is

= L{clexp(jmfT) + cexp(j2r fT)]} — L{[exp(j2r fT) — c’}
= L{c[cos(m fT) + ccos(2m fT)] + je[sin(w fT) 4+ csin(2n fT)]} —
3L{[cos(2mfT) — c+ jsin(2nw fT)]}

B tom {sm wfT) —|—csm(27rfT)} 3 arct { sin(27 fT) }
B P (7 fT) + ccos(2nfT) [ aretan cos(2m fT) — ¢

COS
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Consider the following causal finite signal with z(0) = 1.

z(k) = [1,2,17

(a) Find the spectrum X (f).
(b) Find the magnitude spectrum, A, (f).
(c) Find the phase spectrum, ¢, (f).

Solution
(a) Using Definition 4.1

X(f) = 142exp(—j2nfT)+ exp(—jdn fT)

(b) The magnitude spectrum is

A(f) = X

|1+ 2exp(—j27 fT) + exp(—j4n fT)]

|1+ 2[cos(2m fT) — jsin(2n fT)] + cos(4dn fT) — jsin(4dw fT)|

= /[l +2cos(2nfT) + cos(4m fT)]2 + [sin(27 fT)] + sin(47 fT))?

(¢c) The phase spectrum is

¢:(f) = LX)}
= /{14 2[cos(2nfT) — jsin(2w fT)] + cos(dn fT) — jsin(4n fT)}
—[sin(27 fT)] + sin(47 fT)] }
1+ 2cos(2n fT) + cos(4m fT)]

= arctan {
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Let z,4(t) be periodic with period Tj, and let z(k) be a sampled version of x,(t) using sampling
interval T'.

(a) For what values of T' is z(k) periodic? Provide an example.

(b) For what values of T' is (k) not periodic. Provide an example.
Solution

(a) If T'/7 is a positive rational number, then z(k) will be periodic. For example, let z,(t) =
sin(27t/1). Suppose T' = (L/M )T for integers L > 1 and M > 1. Then x(k) will contain
exactly M samples per L periods of z,(t). Thus z(k) is periodic with period M.

o) = sin

(b) If T/7 is not a positive rational number, then z(k) will not be periodic. For example,
let 2, (t) = sin(2nt). Suppose T = 1/v/2. Then x(k) will not be periodic.

z(k) = sin (27TfT>

()

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

278



If one allows for the possibility that X (f) can contain impulses of the form, J,(f), then the
table of DTFT pairs can be expanded. Using the inverse DTFT of an impulse, find the DTFT
of z(k) where ¢ is an arbitrary constant.

z(k) = ¢

Solution

Using (4.2.4) and the sifting property of the unit impulse in (1.2.13), the IDTFT of d,(f) is

y(k) = IDTFT{da(f)}

1 fS/2

- = /_ ) esplken T

1 )
— ~exp(j0)

fs
=T

Using linearity, the IDTFT of (¢/T)d4(f) is c¢. Thus

cda(f)
T

DTFT{c} =
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Using Euler’s identity, find the inverse DTFT of the following signals.

(a) Xl(f) _ 5a(f_F0)";5a(f+F0)

(f —F) —o(f + Fo)
2

(b) Xa(f) =

Solution

(a) Using (4.2.4) and the sifting property of the unit impulse in (1.2.13), the inverse DTFT

of X1(f) is
1 fS/2
ri(k) = f—/ X1 (f) exp(jk2n fT)df

s J—fs/2
1 fS/2 '

= 27 /_fs/z[%(f—Fo) + 6o (f + Fy)] exp(jk2m fT)df

= 2} [exp(jk2m FyT') + exp(—jk2m FyT)]

= T cos(2nkFyT)

(b) Similarly, using Euler’s identity the inverse DTFT of X, (f) is

1 fS/2
nah) = 5 [ Xa(f)exp(znsTIaf
s J—fs/2
Lt = o) = 6alf + F k2m T)d
= g |, s B s + F))esplkon ST
= j21fs [exp(jk2m FyT) — exp(—jk2m FyT)]
= Tsin(2rkFyT)
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Consider the following discrete-time signal.

x(k) = ccos(2nEokT + 6)

(a) Find a and b such that x(k) = a cos(2m FokT) + bsin(2n FokT)
(b) Use part (a) and Problem 4.6 to find X (f).

Solution
(a) Using the cosine of the sum trigonometric identity from Appendix 2

x(k) = ccos(2nEFykT + 6)
= c[cos(2m FokT) cos(0) — sin(2m FokT') sin(0)]
= acos(2nFokT) + bsin(2w FokT)

where

ccos(0)
b = —csin(h)

(b) Using part (a) and the results from problem 4.6

X(f) = a 5“(f_F0)+5a(f+F0)] _|_b[5a(f—F0)—5a(f—|—F0)

2T joT
= %{Cos(@[%(f — Fy) + 0a(f + Fo)] + 7sin(0)[04(f — Fo) — da(f + Fo)]}
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Suppose a signal (k) has the following magnitude spectrum.

Ao(f) = cos(nfT) ,  O0<[f]<fs/2

(a) Find the energy density spectrum, S, (f).
(b) Find the total energy, E,.
(c) Find the energy is contained in the range 0 < |f| < afs where 0 < o < .5.

Solution

(a) From (4.2.13) the energy density spectrum is

So(f) = 1X(HI
= A(f)
= cos*(nfT)

(b) The total energy is

fs/2
B, — / S, (f)df

—fs/2
fs/2
= / cos®(w fT)df
—fs/2
_ /fs/2 [1+cos(27rfT)] o
—fs/2 2
B /f5/2 d_f
_fs/2 2
_ b
2

(c) The energy in the band |f| < afs is

afs
E.(0,af) = 2 /0 So(f)df
afs

_ 2
= 2/0 cos*(m fT)df

B afs 1+ cos(2n fT)
o e

aurn,

afs
= / [1 4 cos(2m fT)]df
0
= afs+sin(2ra)
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Show that the DTFT satisfies the following property called the frequency differentiation prop- Frequency
erty. differentiatio

property

DTFT{kTz(k)} = <L>7

Solution

Using Definition 4.1 and the fact that the series converges absolutely

dX (f)

i x(k) exp(—jk2m fT)

I
&~
hE

T
8

{a(k) exp(—jk2m fT)}

I
NE
&=

N

—0o0
o)

— Z —jk2rTx (k) exp(—jk2m fT)

k—o0

= —j2m Z kTz (k) exp(—jk2m fT)
k—oo

= —j2rDTFT{kTz(k)}

Thus

DTFT{kTz(k)} = (
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Recall from Problem 3.30 that the Z-transform satisfies the following modulation property.

1

2y} = o CH(u)X(%)u_ldu

Use this result and the relationship between the Z-transform and the DTFT to show an
equivalent modulation property of the DTFT. Here multiplication in the time domain maps
into convolution in the frequency domain.

1 fS/2
DTET{h(k)z(k)} = E/_f/QH(A)X(f—A)dA (0.1)

Solution

For the DTFT to exist, the region of convergence of the Z-transform must include the unit
circle. For the contour C', pick the unit circle.

C = {exp(j2mAT) | — fs/2 < A< fo/2}

Then

Y(f) = DTFT{h( Ja(k)}

= Z{h(k)x(k)}|.- oxpuzwa)
= [ }{H u) X _ldu]
j2m z=exp(j27 fT)
1 21 fT)]
J2m Jo v -
1 12 [exp(j27 fT)
- H 2TAT)| X | 2o —j27AT) (52T 2nAT
32m J_g 0 [exp(j2mAT)] _exp(j27T/\T)] exp(—j21\T) (j27T) exp(j2m AT’ d

/2

_ / HO)X {explj2n(f — AT}

e
/2

1
_ E/_fs/zH(A)X(f—A)dA
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The following scalar, ¢, is real. Find its value. Hint: Use Euler’s identity.

c = j’

Solution

Euler’s identity can be used in reverse to represent j in polar coordinates. That is,

Then
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Consider the following discrete-time signal.

Tr = [27 _17 3]T

a) Find the third root of unity, Ws.
b) Find the 3 x 3 DFT transformation matrix W.

(a)
(b)
c) Use W to find the DFT of x.
)
)

(
(d) Find the inverse DFT transformation matrix W1,

(e) Find the discrete-time signal x whose DFT is given by

X = [37 _jvj]T

Solution

(a) Using (4.3.5) the third root of unity is

_i9
Wy = eXp( ‘737T>

(b) Using (4.3.10) as a guide, the DFT transformation matrix is

[ wy Wy Wy
wo= | we Wil owz
| Wy Wy Wy
(1 1 1

= 1 exp(—j27/3) exp(—jdn/3)
1 exp(—jdn/3) exp(—j8m/3)
1 1 1

= 1 —5—-7866 —.5+ 5.866

| 1 —5+7866 —.5— ;.866
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(c) From (4.3.11)

X = Wz
(1 1 1 2
= 1 —.5—35866 —.5-+3.866 -1
1 —5+35866 —.5—3.866 3
i 4
= 1+ 53.464
| 1—j3.464

(d) From (4.3.12), the inverse DFT transformation matrix is

w—t = w*/3
L1 1 1
= 3|1 —5+5866 —5-;.866
1 —5—75.866 —.5+7.866

(e) Thus

1 1 1 3
1 —.5+5.866 —.5—;.866 —j
1 —.5-—75.866 —.5+ ;.866 j
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Verify the following values of W% = exp(—j2rk/N) appearing in Table 4.6.

—-j . k=N/4

B -1 , k=N/2
Wy = j , k=3N/4
1 , k=N

Solution

From (4.3.5)

Wy = exp(—j2m/N)

Thus using Euler’s identity

Wt = lexp(—j2m/N]V/A
= exp(—j2m/4)
= exp(—jn/2)
= —J

Wa? = [exp(—j2m/N]V/2
= exp(—j27/2)
= exp(—jm)
= -1

W = Jexp(—j2m/NJPN/!
= exp(—j6m/4)
= exp(jm/2)
= J

WA = [exp(—j2r/N]V
= exp(—j2m)
= exp(j0)
= 1
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Using the results of Problem 4.13, verify the following properties of Wy = exp(—j27/N)
appearing in Table 4.6.

(a) W{TE = ik
(c) WE =W,
() Wi =wy'
Solution

(a) Using entry 4 of Table 4.6

WerN = WEWN
= Wk
(b) Using entry 2 of Table 4.6
k+N/2 k1 N/2
L1/VARME 1748 V7
- -k
(c) Using (4.3.5)
Wi = [exp(—2n/N)]*

= exp(—4kn/N)

— expl-2kn/(N/2)
= {exp[-2n/(N/2)}}*
= Wﬁ//z

(d) Using (4.3.5)

Wi = [exp(—j2m/N]"
= exp(j2n/N)
— 1/ exp(—j2m/N)
= W]gl
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The following orthogonal property of Wy was used to derive the IDFT.

N-1
W = Né(k) , 0<k<N
=0

The finite geometric series in Problem 3.9c¢ is valid for any complex z. Use this to verify the
orthogonality property of Wiy.

Solution

The finite geometric series is

n ; PR zn—l—l
Thus
N-1
z(k) = Wik
=0
N-1
= (WR)'
=0
_1-wp)Y
O 1-WE
Cw
O 1-WE
1 —exp(—j27k)
- 1—exp(—j27k/N)
=0 , O0<k<N
For k=0
N-1
z(0) = W
=0
= N
Consequently
(k) = Notk) , 0<k<N
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Compete the following DFT pairs for N-point signals.
(a) If x(k) = d(k), find X (7).
(b) If X(¢) =4(i), find z(k).

Solution

(a) Using Definition 4.2

— W](\]/
=1 , 0<i<N
(b) Using (4.3.7)
| V-1
_ i —ki
o) = 5 LWy
1
= NW](\]’
1
= — 0<k<N
N shs
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Vv Consider the following discrete-time signal.

r = [1,2,1,07

(a
(b
(c
(d

Find X (i) = DFT{z(k)}.
Compute the magnitude spectrum A, (7).

Compute the phase spectrum ¢, (7).

Compute the power density spectrum S, (7).

Solution

(a) Here Wy = exp(—j2n/4) = —j. Using Definition 4.2

Thus the DFT of z(k) is

X = [47 _]2707]2]T

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

292



(b) The magnitude spectrum of (k) is

A = |X]|
= [4,2,0,2]T

(¢c) The phase spectrum of z(k) is

A = /X
= [0,—7/2,0,7/2]"

(d) The power density spectrum of z(k) is

Sy = |X|*/4
= [4,1,0,1]"
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Let z(k) be an N-point signal. Starting with the definition of average power in (4.3.40),
use Parseval’s identity to show that the average power is the average of the power density
spectrum.

Solution

Using the definition of average power and Parseval’s identity

1>
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Consider the following discrete-time signal.

r = [-1,2,2,1]T

(a) Find the average power P,.
(b) Find the DFT of z.
(c) Verify Parseval’s identity this case.

Solution

(a) Using (4.3.40), the average power is

1
Po= 13 e

(b) Here Wy = exp(—j2m/4) = —j. Thus, using Definition 4.2, the DFT of z(k) is

k=0
= —1+4+2(—j)+2(-1)+ 1(y)
3
X(2) = ) a(k)(wpF
k=0
= —1+4+2(-1)+2(1)+1(-1)
= -2
3
X(3) = ) a(k)(WHF
k=0
= —1+4+2(j)+2(-1)+ 1(—y)
= —3+j
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Thus the DFT of z(k) is

X = [4,-3-j,-2,-3+4"

(c) The time side of Parseval’s identity is

le(B)? = 14+4+4+1

1 , 16+ OO+ 1) +4+(94+1)
12 IX@P .
= 10

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

296



Consider the following discrete-time signal where |c| < 1.

zk) = & | 0<k<N

(a) Find X (4)

(b) Use the geometric series to simplify X (i) as much as possible.
Solution

(a) Using Definition 4.2

N-1 '
X(@) = Y Wy
k=0

(b) Using (a) and the geometric series from Chapter 2

N-1

X(i) = Fwhi
k=0
N-1

k=0 k=N

_ W) i <1
1—cWy 1—-cWy
1— (eWi)N

el G0
1 —cWg

B 1_CNW1iV+N

B 1—CW]Z'V
1—cNwi

- 7N | g<i<N
1—cWi
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Suppose x(k) is a real N-point signal. Show that the spectrum of z(k) satisfies the following Symmetry
symmetry properties. property

(a) Re{X (i)} = Re{X (N —1)}.
(b) Im{X (i)} = —Im{X (N —1i)}.

Solution
(a) From Table 4.7, the symmetry property for real z(k) is

X*(i) = X(N—9)

Thus

Re{X (i)} = Re{X"(1)}

— Re{X(N —1i)}
(b) Using the symmetry property for real x(k)
Im{X (i)} = —Im{X"(i)}
= —Im{X(N —i)}
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Suppose z(k) is a real with X (i) = DFT{z(k)}.
(a) Show that X (0) is real.
(b) Show that when N is even, X (IN/2) is real.

Solution

(a) From Definition 4.2

N-1
X(0) = z(k)WR
k=0
N-1
= z(k)
k=0

Since the z(k) are real, the sum, X (0), is real.

(b) Since z(k) is real, from the symmetry condition

Thus

Im{X (i)} = —Im{X"(i)}
= —Im{X(N —i)}

Therefore Im{X (i)} exhibits odd symmetry about the midpoint i = N/2. If N is even,
then N/2 is and integer and Im{X (N/2)} = 0 which means X (N/2) is real.
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Consider an N-point signal z(k). Find the smallest integer N such that a radix-two FFT
of z(k) is at least 100 times as fast as the DFT of x(k) when speed is measured in complex
FLOPs.

Solution

From (4.4.2), the computational effort of an N-point DFT is

nppr = N? FLOPs

From (4.4.10), the computational effort of a radix-two N-point FFT is

N logy(N
nEFT = 7"%2( ) FLOPs

Using the itemized cases shown in the following table, the smallest integer N (which must be
a power of two) is

N = 512

Table Problem 4.23 Number of FLOPs

| N | norr | nerr | norr/nerer |
2 4 1 4.0
4 16 4 4.0
8 64 12 9.3
16 256 32 8.0
32 1024 80 12.8
64 4096 192 21.3
128 16384 448 36.6
256 65536 | 1024 64.0
512 262144 | 2304 113.8
1024 | 1048576 | 5120 204.8
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Recall that the DFT of an N-point signal is periodic with period N. One of the properties
of the DFT is the conjugate property

DFT{z*(k)} = X*(—i)

This property can be used to compute two real DFTs of length N using a single complex
DFT of length N. Let a(k) and b(k) be real and consider the complex signal

c(k) = a(k)+jbk) , 0<k<N

Using the identities in Appendix 2, and the conjugate property, show that

C(i) + C*(—1)

A(l) = 5
By = =)

Solution

From Appendix 2,

a(k) = Re{c(k)}
c(k) + c* (k)

b(k) = Imfe(k)}
(k) = (k)
32

Thus from conjugate property of the DFT

A(i) = DFT{a(k)}
_ DFT{M}

C(i) + C*(—i)
2
B(i) = DFT{b(k)}

c(k) — c*(k)
- oz
O(i) — C*(—i)
32
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Suppose h(k) and z(k) are both of length L = 2048.

(a) Find the number of real FLOPs for a fast linear convolution of h(k) with z(k).
(b) Find the number of real FLOPs for a direct linear convolution of h(k) with z(k).

(c) Express the answer to (a) as a percentage of the answer to (b).
Solution
(a) Using (4.5.8) with L = 2048, the number of real FLOPs for fast convolution is

Ngast = 12L1logy(2L) +8L +4
12(2048) log, (4096) + 8(2048) + 4
= 311300

(b) Using (4.5.9) with L = 2048, the number of real FLOPs for a direct linear convolution
is

Ndir = L?
= (2048)*
= 4194304

(c) The ratio of computational effort when L = 2048 is

1007 a5t
Ndir
100(311300)

4194304
= 7.422%
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Suppose h(k) is of length L, and (k) is of length M. Let L and M be powers of two with
M > L.

(a) Find the number of real FLOPs for a fast linear convolution of h(k) with (k). Does
your answer agree with (4.5.8) when M = L7

(b) Find the number of real FLOPs for a direct linear convolution of h(k) with z(k). Does
your answer agree with (4.5.9) when M = L?

Solution

(a) The common length of the zero-padded signals, N > L + M — 1, must be a power of
two. The sum of two powers of two is not necessarily a power of two. However, since
M > L, one can use N = 2M. Then using (4.5.8), but with M = L,

Npst = 12M1logy(2M) 4+ 8M +4 FLOPs

When M = L, this reduces to (4.5.8).

(b) Using the formulation in (4.5.1), the number of real FLOPs for a direct linear convolution
of h(k) with z(k) is

naw = L(L+ M)

When M = L, this reduces to (4.5.9).
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Suppose L is a power of two and M = QL for some positive integer ). Let npock be the
number of real FLOPs needed to compute a fast block convolution of an L-point signal h(k)
with an M-point signal z(k). Find npjock.

Solution

First consider step 1 of Alg. 4.1. Since L is a power of two and N is the smallest power of
two such that N > 2L — 1, it follows that

Thus from (4.4.10), the number of complex FLOPs required to compute H, is Llogy(2L).
From (4.5.7) there a four real multiplications per complex multiplication. Thus the compu-
tation of H, requires the following number of real FLOPs.

ny = 4Llogy(2L) FLOPs

Next consider step 2 of Alg. 4.1. From (4.4.10), the computation of X;, requires L logy(2L)
complex FLOPs, and from Algorithm 4.4, the computation of y; requires Llogy(2L) + 2L
complex FLOPs plus 2L real FLOPs to scale by 1/N. Thus the number of real FLOPs per
iteration is 8 L logy(2L) +8L+2L. From step 2, there are @ iterations where @ = M /L. Thus
the number of real FLOPs required to implement step 2 of Alg. 4.1 is

M[8L1logy(2L) + 10L]

L
—  M][81logy(2L) + 10] FLOPs

Finally, the total number of real FLOPs required to compute a fast block convolution of the
L-point signal h(k) with the M-point signal z(k) using Alg. 4.1 is

Mhlock = N1+ N2
= (8M +4L)logy(2L) + 10M FLOPs
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Use the DFT to solve the following.
(a) Recover z(k) from ¢y, (k) and y(k).
(b) Recover y(k) from ¢y, (k) and x(k).

Solution

(a) Using the circular correlation property from Table 4.8, the DFT of the circular cross
correlation is

Thus X (i) = NCyy(k)/Y*(i) or

z(k) = IDFT {NY(Ji(())}

(b) Again using the circular correlation property of the DFT, Y*(i) = NCy,/X (i). Thus
y(k) can be recovered as follows.

y(k) = IDFT
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Suppose z(k) and y(k) are both of length L = 4096.

(a) Find the number of real FLOPs for a fast linear cross-correlation of y(k) with z(k).
(b) Find the number of real FLOPs for a direct linear cross-correlation of y(k) with z(k).

(c) Express the answer to (a) as a percentage of the answer to (b).
Solution
(a) Using (4.5.20) with L = 4096, the number of real FLOPs for fast cross-correlation is

Nfast = 12L1ogy(2L) + 8L +6
12(4096) log, (8192) + 8(4096) + 6
= 671750

(b) Using (4.5.21) with L = 4096, the number of real FLOPs for a direct linear cross-

correlation is

nar = L?/2+1
= (4096)%/2 +1
= 8388609

(c) The ratio of the computational effort for L = 4096 is

1007 ast
Ndir
100(671750)

8388609
= 8.001 %
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Suppose y(k) is of length L and z(k) is of length M < L.

(a) Find the number of real FLOPs for a fast linear cross-correlation of y(k) with z(k). Does
your answer agree with (4.5.20) when M = L?

(b) Find the number of real FLOPs for a direct linear cross-correlation of y(k) with z(k).
Does your answer agree with (4.5.21) when M = L?

Solution

(a) The common length of the zero-padded signals, N > L+ M — 1, must be a power of two.
The sum two powers of two is not necessarily a power of two. However, since M > L,
one can use N = 2M. Then using (4.5.20), but with M = L,

Neast = 12M logy(2M) + 8M + 6 FLOPs

When M = L, this reduces to (4.5.20).

(b) Using the formulation in (4.5.14), the number of real FLOPs for a direct linear cross-
correlation of h(k) with z(k) is

Since this does not depend on M < L, when M = L, this is still identical to (4.5.21).
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Let v(k) be an N-point white noise signal with mean g, and variance o2. Show that the
average power, the mean, and the variance are related as follows.

Solution

P, = /%2;‘1‘012,

If v(k) is white noise with mean u, and variance o2, then

o(k) = py+ z(k)

where x(k) is zero-mean white noise with variance E[z%] = 2. The the average power of v(k)

is

E
E

2(k)]
{o + 2 (k)}
B2 + 2ppx (k) + 2% (k)]
E[1%] + E2u2(k)] + E[2*
po + 2u Bz (k)] + o
py + oy

[v
[
(e
[u (k)]
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Let v(k) be an N-point white noise signal with mean j, and variance o2. Show that the
circular auto-correlation of v(k) is

con(k) ~ s+ os0(k)

Solution

2

Since v(k) has mean p, and variance o, one can represent v(k) as follows.

o(k) = po +a(k)

Here x(k) is stationary with zero mean and variance E[x?(k)] = 2. From Definition 4.4

cw(k) = N v(i)vp(k — 1)

= El{po + (i)} {po + (i - k)}]
= Bluy + pofa(i) +x(i — k)} +2(i)z(i - k)]
= E[ o+ 1 Ble()] + poBle(i — k)] + Elz(i)x(i — k)]

[z
= uv +2u Bl ()] + Ele(i — k)] + Elz(i)x(i — k)]
=y + Bla(i)z(i— k)]

Since z(k) is zero-mean white noise x (i) and x(i — k) are statistically independent for k # 0.

Thus
con(k) ~ pp+ Ex(i)|E[z(i — k)]
For k=0
cow(k) =~ i+ Elz?(i)]
= 2402 , k=0
Thus

con(k) ~ s+ osd(k)
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Let v(k) be an N-point white noise signal with mean j, and variance o2. Using the results
of Problem 4.32, show that the power density spectrum of v(k) is

Su(i) ~ o+ Nu2s(i)

Solution

From (4.7.10) the power density spectrum is the DFT of the circular cross correlation. Thus
from problem 4.32

Su(i) = Cul(i)
= DFT{cu(k)}
= DFT{u; +075(k)}
= DFT{u2} + DFT{o25(k)}
= u2DFT{1} + ¢2DFT{5(k)}

N-1 N-1 '
= Y W+ > s(kWi
k=0 k=0
N-1
= ) Wi +o,
k=0

N-1 '
S WN = Né(i)
=0

Thus
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Let v be a random variable that is uniformly distributed over the interval [a, b].

(a) Find the mth statistical moment, E[v™], for m > 0.
(b) Verify that E[v™] = P, in (4.6.6) when m = 2.

Solution

(a) Using Definition 4.3 and (4.6.1)

B = / () dx

—00
b

m
T
dx
. b—a
l,m—l—l

(m+1)(b—a)|,
bm—l—l _ am—l—l

(m+1)(b—a)

(b) Setting m = 2 in part (a) and recalling (3.85)

P, = E[z}
b3_a3
M
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Let = be a random variable whose probability density function is given in Figure 4.55.

(a) What is the probability that —.5 < x < .57
(b) Find E[z?.

Probability density function
2 T T T T

0.5 i

_0-5 | | | | | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 4.55 Probability Density Function for Problem 4.35

Solution

(a) Using (4.6.2), the probability that —.5 <z < .5 is

D
Py = / p(z)ds

.5

_ /_Z(l—l—:n)d:n—l—/oﬁ(l—:n)dzn
= (:E-i—%z)(:s-i—(:ﬁ—%z)ﬁ
)

e~ w
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(b) Using Definition 4.3

ElzY] = / 22p(z)dx
o )
= /(1+:E):E2d$—|—/(1—$)$2d$+
-1 0
_ <$_3+$_4>0 +<$_3 $_4>1
1), \3 1),
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Consider the following discrete-time signal.

z = [10,-5,20,0,15]7

(a) Using (2.8.2), find a linear auto-correlation matrix D(z) such that ry, = D(x)z.

(b) Use D(x) to find the linear auto-correlation 7, (k).

(c) Using Definition 2.5, find the normalized linear auto-correlation pg. (k).
)

(d) Find the average power P;.

Solution

(a) Since auto-correlation is a special case of cross-correlation, one can use (2.8.2), but with
y(k) replaced by z(k).

z(0) =z(1) x(2) z(3) x(4)
1 0 z(0) z(1) x(2) =(3)
D(z) = = 0 0 z(0) =z(1) x(2)
>l o 0 0 20 201
0 0 0 0 0
(10 -5 20 0 15
1 0 10 -5 20 O —|
= -] 0 0 10 -5 20
g 0 O 0 10 -5
L0 0 0 0 10
2 -1 4 0 3
[0 2 -1 4 0 ]
= 0 O 2 -1 4
0 0 0 2 -1
0 0 0 0 2

(b) Using (2.8.3) with y = z and the results from part (a)

ree = D(x)x

(2 -1 4 0 3 10
A i el

= 0 O 2 -1 4 20
0 O 0 2 -1 0
000 0 0 2 15
[ 150
—30}

= 100
_15‘
30
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This can be verified using the FDSP toolbox function f_corr.
(c) Using Definition 2.5 with L =5

ree(0) = I. a0

100 + 25 + 400 + 0 4 225
5

= 150

Thus from (2.8.5) with y = z

prz(k) =

= [1,-.2,.667,—.1,.2]"

This can be verified using the FDSP toolbox function f_corr.
(d) Using (4.7.7) with k = 0, the average power of z(k) is

P, = 7ry(0)
= 150
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Consider the following discrete-time signal.

r = [12,4,-8,16]7

(a) Starting with (2.8.2), but replacing = with z,, find the circular auto-correlation matrix
E(z) such that ¢;, = F(x)x.

(b) Use E(z) to find the circular auto-correlation ¢, (k).

(c) Find the normalized circular auto-correlation o, (k).
Solution

(a) Using Definition 2.6 with y = x, ¢;,(k) is just 1/N times the dot product of = with x
rotated right by k samples. Thus the kth row of F(x) is the vector = rotated right by k
samples.

8
8

—
8
8

8

[\)
— — — —
A~ S S
w
— — — —
A~ S
(=)
— — — —
A~ S

3 1 -2 4
I R R
- -2 4 3 1
1 -2 4
(b) Definition 2.6 and the results from part (a)
Cze = FE(x)x
[ 3 1 -2 4 12
I R T 1
N -2 4 3 1 -8
1 -2 4 3 16
120
| ]
- —16
e

This can be verified using the FDSP toolbox function f_corr.
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(c) Using Definition 4.2 with (4.7.1)

1 N-1
cer(0) = stﬁ(i)
=0

144 + 16 + 64 + 256
4

= 120

From (4.7.2) the normalized circular auto-correlation of x(k) is

orz(k) =

= [1,.167,—.133,.167]%

This can be verified using the FDSP toolbox function f_corr.
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A white noise signal v(k) is uniformly distributed over the interval [—a, a]. Suppose v(k) has
the following circular auto-correlation.

con(k) = 88(k) , 0<k<1024

(a) Find the interval bound a.
(b) Sketch the power density spectrum of v(k).

Solution

(a) Using (4.7.6), the circular auto-correlation of zero-mean white noise with average power
P, is ¢z (k) = Py6(k). Thus

P, = 8

From (4.6.6), the average power of white noise uniformly distributed over [—a, a] is

B 3—(—(1)3
B = 3oy
2a3
= e
(12
= 3

Thus a?/3 = 8 or

a = V24=4.90

(b) From (4.7.10), for zero-mean white noise with average power P,, the power density
spectrum is flat with Sy (f) ~ P,. Thus

Sn(f) = 8 , 0<f<fy/2
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V Consider the following digital filter where |a| < 1.

(a) Find the impulse response h(k).
(b) Find the frequency response H(f).

(c) Let H(i) be the N-point DFT of h(k), and let f; = ifs/N. Given an arbitrary e > 0,
use (4.8.4) to find a lower bound n such that for N > n,

|[H(i)—H(f;)| < e for 0<i<N

Solution

(a) The impulse response is

{2

= d"u(k)

(b) The frequency response is

H(f) = H(2)|:=jons

2= 0| =jonf
exp(j27 f)

exp(j27f) —a

(c) Using (4.8.4) and the geometric series we have

VAN
hE
=
=

[H (i) — H(fi)|

Jal ¥
1 —1af
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Setting the upper bound to € > 0

|al ¥

1—|al

Multiplying both sides by 1 — |a| and taking the logarithm of both sides then yields

Nin(la)) = In [1_€|a|]

Solving for IV, and recalling that N must be an integer
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A signal z,(t) is sampled at N = 300 points using a sampling rate of fs = 1600 Hz. Let z,(k)
be a zero-padded version of x(k) using M — N zeros. Suppose a radix-two FFT is used to
find X, (7).

(a) Find a lower bound on M that ensures that the frequency precision of X, (i) is no larger
than 2 Hz.

(b) How much faster or slower is the FFT of 2, (k) in comparison with the DET of z(k)? Ex-

press your answer as a ratio of the computational effort of the FFT to the computational
effort of the DFT.

Solution

(a) From (4.8.11) the frequency increment is Af = f;/M. Thus we want fs/M < Af or

fs
Af
1600

2
= 800

(b) From (4.4.2), the number of FLOPs for the N-point DFT of z(k) is

nprr = NZ
= 3002
= 9000 FLOPs

To apply a radix-two FFT M > 800 must be a power of two. Thus M = 1024. From
(4.4.10), the number of FLOPs for the M-point FFT of z,(k) is

M logy (M)

2
1024 log, (1024)
2

= 512(10)
= 5120 FLOPs

NErT =

Thus the FFT of x,(k) is faster. The ratio of computational efforts, measured in FLOPs,
is
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NEFT

NDFT
5120

9000
= .5689
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Consider the spectrogram in Definition 4.5. Suppose the data z(k) is real.

(a) Find the number of complex FLOPs needed if the DFT is used.
(b) Find the number of complex FLOPs needed if the FFT is used.

Solution

(a) Since z(k) is real, the multiplications by the window w(k) are real FLOPs. The ith row
of the spectrogram requires an L-point DFT and there are 2M — 1 rows. From (4.4.2) an
L-point DFT requires L?/2 complex FLOPs. Thus the total number of complex FLOPs
per spectrogram using a DFT is

(2M —1)L?

mprr = 2

(b) Assuming L is a power of 2, a radix 2 FFT can be used. From (4.4.10), an L-point FFT
requires Llog,(L)/2 FLOPs. Thus the total number of FLOPs per spectrogram using
an FFT is

(2M — 1)L logy(L)
2

mrrr =
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Consider the spectrogram in Definition 4.5.

(a) Modify the spectrogram definition using zero padding so the frequency precision is im-
proved by a factor of two.

(b) Compute the percent increase in computational effort for the modified spectrogram in
comparison with the original spectrogram assuming the FFT is used. Use complex
FLOPs to measure the computational effort and assume z(k) is real.

(c) Does the modified spectrogram have improved frequency resolution? If not, how can the
frequency resolution be improved and what is the tradeoff?

Solution

(a) Let x,,(k) be the mth subsignal defined in (4.9.1). Next let x,,. (k) be the zero-padded
version of z,, using L zeros padded to the end of x,,(k). Thus z,.(k) is of length 2L.

A Tm(k) , 0<k<L
Tma(k) = { 0 , L<k<2L

Next let w(k) be a window of length 2L, The modified spectrogram G(m, i) is then a
(2M — 1) x 2L matrix defined

G(m,z) = |DFT{w(k)$mz(k)}|

(b) Since z(k) is real, the multiplications by the window are real FLOPs. If the FFT is used,
then an N-point FFT requires N logy(N)/2 complex FLOPs. Since there are 2M — 1
rows, the total number of FLOPs for the two cases are

(2M — 1)Llogy(L)
2
(2M — 1)2L log,(2L)
2

mrprr =

Mppr =

Thus the percent increase in computational effort measured by complex FLOPs is

100(mppr — MEFT)
MEFT
100[(2M — 1)Llogy(2L) — .5(2M — 1) L1ogy(L)]
5(2M — 1)Llog, (L)
100[(logy(2L) — .51logy(L)]
.5logy (L)
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(c) No, the modified spectrum G (m, i) does not have improved frequency resolution because
no new data has been added, only zeros. This improves the frequency precision, but not
the frequency resolution. To improve frequency resolution more data samples must be
added to x,,(k) by increasing L. The tradeoff is that by increasing L one increases
frequency resolution, but at the expense of decreasing time resolution because now M
must be decreased since ML = N.
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One of the problems with using data windows to reduce the Gibb’s phenomenon in the periodic
extension of an N-point signal (k) is that the samples are no longer weighted equally when
computing an estimate of the power density spectrum. This is particularly the case when no
overlap of subsignals is used.

(a) Use the trigonometric identities in Appendix 2 to show that the Hanning window in
Table 4.10 can be expressed as

on(k — L/2)

k) = b5+.5
w(k) + cos[ 7

] , 0<k<L

(b) If a 50% overlap of subsignals is used for the power density spectrum estimate, then
each overlapped sample gets counted twice, once with weight w(k) and once with weight
w(k + L/2). Show that if the Hanning window is used, the overlapped samples are
weighted equally. Find the total weight for each overlapped sample.

(c) Are there any other windows in Table 4.10 for which the total weighting of the overlapped
samples is uniform when a 50% overlap is used? If so, which ones?

Solution

(a) Using the cosine of the difference trigonometric identity from Appendix 2

w(k) = 5+5w%&ﬁ:££4

L
:.mw%%@?%mwﬂm@?%mﬂ

27k
= .5—.5cos (T)

(b) With a 50 percent overlap, each overlapped sample is counted twice. Using the results of part
(a), the total sample weight using the Hanning window is

wr(k) = w(k)+w(k+ L/2)

27k 27k
= .5 —.5cos (T) + .5+ .5cos (T)

= 1
(¢c) The only other window for which the total weighting of the overlapped samples is uniform,
when a 50 percent overlap is used, is the rectangular window.
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Using the GUI module g_correlate, select the periodic input.

(a) Plot z(k) and y(k).
(b) Plot the normalized circular auto-correlation, oy, (k). Notice how the noise has been
reduced.

(c) Estimate the period of y(k) in seconds by estimating the period of oy, .

Solution

Inputs x and y: periodic input

2 T T T T

y (k)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

_4 | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500
k

Problem 4.44 (a) Time Signals
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Normalized circular auto-correlation of y(k): periodic input

1.5 T T T T T T

0.5 4

e

I I ! | ! I !
0 500 1000 1500 2000 2500 3000 3500 4000 4500
k

Problem 4.44 (b) Circular Cross Correlation

(c) From the plot of 0., (k) there are 30 periods of x(k) in L = 4096 samples. Thus the
period is

L
3fs

4096
30(8192)

X~ —= Ssec

60
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Using the GUI module g_correlate select the white noise input. Set the scale factor to ¢ = 0.

(a) Plot z(k) and y(k). What is the range of values over which the uniform white noise is
distributed?

(b) Verify that r,, (k) = P,6(k) by plotting the auto-correlation of y(k).
(c) Use the Caliper option to estimate P,.
(d) Verify that this estimate of P, is consistent with the theoretical value in (4.6.6).

Solution

Inputs x and y: white noise input
I I

y (k)
o

[ LAY 1 i
0 500 1000 1500 2000 2500 3000 3500 4000 4500
T T T T T T T

1 ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500
k

Problem 4.45 (a) The noise is distributed over [—1,1].
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Auto-correlation of y(k): white noise input

0.4 T T T T T T T
+(xy) = (2.01,0.39)
0.3+ |
. 02b 8
/X
x
T ot .
S v 1
-0.1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

k

Problem 4.45 (b) Auto-correlation

(c) From the Caliper measurement in part (b), the estimated average power of the white

noise input z(k) is

(d) From (4.6.6) and the results from part (a), the predicted average power of the uniformly
distributed white noise is

b3 _ a2

Pu = 354
(1) = (=1)
31— (-1)]
1
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Using the GUI module g_correlate select the impulse train input. This sets y(k) to a periodic
input, and z(k) to an impulse train whose period matches the period of y(k). Set L = 4096
and M = 4096.

(a) Plot the noise-corrupted periodic input y(k) and the periodic impulse train z(k).
(b) Plot the normalized circular auto-correlation of y(k).

(c) Plot the normalized circular cross-correlation oy, (k). This should be proportional to
y(k), but with the noise reduced.

Solution

Inputs x and y: impulse train input

5 T T T T T T T T

y (k)
=)
!

|

_5 | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500
1 T T T T T T T
205 -
X
0 1l | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500

k

Problem 4.46 (a) Noise-Corrupted Periodic Input and Impulse Train Input
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Normalized auto-correlation of y(k): impulse train input

1 T T T T T T

o
|

Tyy

! ! ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500
k

Problem 4.46 (b) Normalized Circular Auto-Correlation of z(k)

Normalized circular cross-correlation: impulse train input

0.15 T T T T

0.05 o

-0.05- 4

~0.1 1 1 1 1
0 500 1000 1500 2000 2500
k

Problem 4.46 (c) Reconstruction of z(k) with Reduced Noise
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Vv Use the GUI module g_spectra to plot the spectrogram of the following signals. Use f; = 3000
Hz and N = 2048 samples for each.

(a) Cosine of unit amplitude and frequency Fy = 400 Hz
(b) Cosine of unit amplitude and frequency Fy = 400 Hz, clipped to [—.5, .5]

(c) Cosine of unit amplitude and frequency Fy = 400 Hz, plus white noise uniformly dis-
tributed over [—1.5, 1.5]

Solution

Spectrogram: cosine input (Hamming window)
T T T

0 I I I I I I
0 200 400 600 800 1000 1200 1400
f (Hz)

Problem 4.47 (a) Pure Cosine
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Spectro

gram:

clipped cosine input (Hamming window)

0.5

0.4

0.3

t (sec)

0.2

0.1

0 200

400

600

800
f (Hz)

1000

I
1200

I
1400

Problem 4.47 (b) Clipped Cosine

noise- corrupted cosine input (Hamming window)

BIRY 0

Spectrogram:

RV e

A

g o5 Q 0 ﬁ@ b

02k |

0.1 . (i q]
0YQ ﬂ\ N\ QM K-\ 17 h
0 200 400 600 800 1000 1200 1400

f (Hz)

Problem 4.47 (c) Noise-corrupted Cosine
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Vv Using the GUI module g_spectra record the word HELLO. Play it back to make sure it is
recorded properly. Save it in a MAT-file called hello. Then reload it as a User-defined input.
Plot the following spectral characteristics.

(a) Magnitude spectrum
(b) Power density spectrum (Hamming window)

(c) Spectrogram

Solution

Magnitude spectrum: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\hello.mat
140 \ \ \ \ \ \ \

120 1+ b

100 b

80 b

A(f)

60 -
40 4

20 b

0 I 1 L i, ! ..:W’M
0 500 1000 1500 2000 2500 3000 3500 4000
f (Hz)

Problem 4.48 (a) Magnitude Spectrum of “Hello”
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1sity spectrum: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\hello.mat (Hamming
1.4 \ \ \ \ \ \ \

1.2 B

0 L L L L L ——
0 500 1000 1500 2000 2500 3000 3500 4000
f (Hz)

Problem 4.48 (b) Power Density Spectrum of “Hello”

ctrogram: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\hello.mat (Hamming windc
T T T T T T T

0.8 b

0.6

(sec)

0.4

t

0.2

0 L L L L L L L
0 500 1000 1500 2000 2500 3000 3500
f (Hz)

Problem 4.48 (c) Spectrogram of “Hello”

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

336



Consider the signal shown in Figure 4.56 which contains one or more sinusoidal components
corrupted with white noise. The complete signal z(k) and the sampling frequency f, are
stored in the file probj_49.mat. Use the GUI module g_spectra to plot the following spectral
characteristics.

(a) The power density spectrum (Hamming window). Use the Caliper option to estimate
the frequencies of the sinusoidal components.

(b) The spectrogram (Hamming window).

Noise-corrupted signal

3 T T T

_3 | | | | | |
0 20 40 60 80 100 120

k

Figure 4.56 Noise-Corrupted Signal with Unknown Sinusoidal Components (Samples
0 to N/8)

Solution

(a) From the plot, the estimated frequencies are Fy = 250 Hz and F; = 399 Hz.
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ity spectrum: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\prob4_49.mat (Hammir

60 \ \ \ \ \ \ \ \ \

(x,y) = (250.45,54.63)
50 B
20l (x,y) = (398.66,42.07) |

“

;3 30 B
20 B
10 b

0 L L I I L I [ I

0 100 200 300 400 500 600 700 800 900 1000

f (Hz)
Problem 4.49 (a) Power Density Spectrum
:rogram: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\prob4_49.mat (Hamming win
T I T T g T

0.4 /] O <,A\/ o

. ) = | <><> < j} <

= o

AO.3 % o ]

o (;

] 0

S0z o o LY

: 4 o !

ol -
0.1 | (> @ 3 B
0 N w ! w ! ! (\/\\/\
0 100 200 300 400 500 600 700 800 900
f (Hz)

Problem 4.49 (b) Spectrogram
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Use the GUI module g_spectra to plot the power density spectrum of a noise-free cosine input
using the default parameter values. Use the dB scale and do the following cases.

(a) Rectangular window
(b)
(c)

)

(d) Blackman window

Hanning window

Hamming window

Solution

Power density spectrum: cosine input (Rectangular window)

20 T T T T T T T

(ap)

St

L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 4.50 (a) Rectangular Window
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Power density spectrum: cosine input (Hanning window)

20 T T T T T T T

! ! ! ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)
Problem 4.50 (b) Hanning Window
Power density spectrum: cosine input (Hamming window)
20 \ \ \ \ \ \ \

(ap)

St

| | | | |

100 200 300 400 500 600 700 800 900 1000
f (Hz)

_50 | | | |
0

Problem 4.50 (c) Hamming Window

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

340



Power density spectrum: cosine input (Blackman window)

20 T T T T T T T

L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 4.50 (d) Blackman Window

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

341



Use the GUI module g_spectra to plot the following characteristics of a noise-corrupted damped
exponential input using the default parameter values. Use the linear scale.

a) Time signal
b

)
(c) Power density spectrum (Blackman window)
)

(
(b) Magnitude spectrum

(d) Blackman window

Solution

Time signal: noise-corrupted damped exponential input

1.2 T T T T T T T

x(t)

0.4 b

—0.2 | | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t (sec)

Problem 4.51 (a) Time Signal
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Magnitude spectrum: noise-corrupted damped exponential input

300 T T T T T T T

250 - N

200 - b

150 - b

A(f)

100 b

0 AL AN AN A PN AN pe N PN AN A s NN
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 4.51 (b) Magnitude Spectrum

Power density spectrum: noise-corrupted damped exponential input (Blackman window)

14 T T T T T T T T T

n
T
1

0
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 4.51 (c) Power Density Spectrum (Blackman Window)
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Blackman window

1 T

0.8 4

0.6 i

w (k)

0.2 i

0 ! ! ! ! !
0 20 40 60 80 100 120 140
k

Problem 4.51 (d) Blackman Window
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Consider the following noise-corrupted periodic signal with a sampling frequency of f; = 1600
Hz and N = 1024. Here v(k) is white noise uniformly distributed over [—1, 1].

(k) = sin(6007kT) cos®(200nkT) +v(k) , 0<k<N

Create a MAT-file called prob/_52 containing = and fs. Then use g_spectra to plot the follow-
ing.

(a) Magnitude spectrum
(a) Power density spectrum using Welch’s method (rectangular window)

(c) Power density spectrum using Welch’s method (Blackman window)

Solution

Magnitude spectrum: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\prob4_52.mat
250 T T T T T T

200 b

150 B

A(f)

100

50

0 ! | ! I 1
0 100 200 300 400 500 600 700 800

f (Hz)

Problem 4.52 (a) Magnitude Spectrum
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y spectrum: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\prob4_52.mat (Rectangu
14 \ \ \ \ \ \

—

L L L
0 100 200 300 400 500 600 700 800
f (Hz)

Problem 4.52 (b) Power Density Spectrum (Rectangular Window)

Lty spectrum: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\prob4_52.mat (Blackm
T T T T T T T

(£)

S

0 ! { ! ! |
0 100 200 300 400 500 600 700 800

f (Hz)

Problem 4.52 (c) Power Density Spectrum (Blackman Window)
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Use the GUI module g_spectra to perform the following analysis of the vowels. Play back the
sound in each case to make sure you have a good recording.

a
b

) Record one second of the vowel “A”, save it, and plot the time signal.
)
¢) Record one second of the vowel “I”, save it, and plot the time signal.
)

)

(
(b) Record one second of the vowel “E”, save it, and plot the time signal.
(
(d

(e) Record one second of the vowel “U”, save it, and plot the time signal.

Record one second of the vowel “O”, save it, and plot the time signal.

Solution
Time signal: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\a.mat
1 T T T T T T T T T T
0.5 b
s
x  OoF Mt
-0.51 N
I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (sec)

Problem 4.53 (a) The Vowel “a”
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Time signal: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\e.mat

T T T T T T T T T T
0.4 B
0.2 b
s
X oF
-0.2 B
0.4 I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)
Problem 4.53 (b) The Vowel “e”
Time signal: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\i.mat
1 T T T T T T T T T T
0.5 b
s
%  0F
-0.51 N
I I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (sec)

Problem 4.53 (c¢) The Vowel “i”
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Time signal: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\o.mat
1 T T T T T T T T T

0.5

x(t)
o

-1 | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

Problem 4.53 (d) The Vowel “0”

Time signal: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\u.mat
1 T T T T T T T T T

x(t)

15 | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (sec)

Problem 4.53 (e) The Vowel “u”
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A signal stored in prob4_54.mat contains white noise plus a single sinusoidal component whose
frequency does not correspond to any of the discrete frequencies. Use GUI module g_spectra

to plot the following spectral characteristics.

(a) The magnitude spectrum of (k) using the linear scale.

(b) The power density spectrum of x(k) using the Blackman window. Use the Caliper option
to estimate the frequency of the sinusoidal component.

Solution

Magnitude spectrum: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\prob4_54.mat
100

80

60 -

A(f)

40}

L 1 L
0 100 200 300 400
f (Hz)

Problem 4.54 (a) Magnitude Spectrum (Linear)

I
500 600
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Lty spectrum: user-defined input from file C:\rjs\books\book4\_2e\chap4\prob\prob4_54.mat (Blackm

8 T T T T T (XY)E (272.10,7188) T 1

6 i
il |
U)S

2r i

0 I 1 1 I 1 1 1 1 1 S

0 50 100 150 200 250 300 350 400 450 500
f (Hz)

Problem 4.54 (b) Power Density Spectrum (dB)
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Let z,(t) be a periodic pulse train of period Ty. Suppose the pulse amplitude is a = 10, and
the pulse duration is 7 = T(/5 as shown in Figure 4.57 for the case Ty = 1. This signal can
be represented by the following cosine form Fourier series.

= 2mit
To(t) = %—I—Zdicos (%—1—9@-)
i=1

Write a MATLAB program that uses the DFT to compute coefficients dy and (d;, 6;) for
1 <1 < 16. Plot d; and 6; using a 2 x 1 array of plots and the MATLAB function stem.

Pulse train

1 5 T

10 b

Figure 4.57 Periodic Pulse Train with ¢ =10 and Ty =1

Solution

Using (3.12), the cosine coefficients are computed from the DFT of one cycle of z,(t) as
follows.

% Problem 4.55
% Construct one period of the pulse train

f_header (’Problem 4.55°)

a = 10;
T_0 =1;
tau = T_0/5;
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N = 32;

x = zeros(1,N);

x(1:1+floor (N*tau/T_0)) = 1;

k=0 : N-1;

figure

plot(k,x)

f_labels (’One Period of Pulse Train’,’k’,’x(k)’)
f_wait

% Compute complex Fourier coefficients

c = fft(x)/N;

d = 2xabs(c);

theta = atan2(-imag(c),real(c));
figure

k=0 : N/2;

subplot(2,1,1)
stem(k,d(k+1),’filled’,’.?)
f_labels (’Magnitudes’,’k’,’d_k’)
subplot(2,1,2)
stem(k,theta(k+1),’filled’,’.’)
f_labels (’Phase Angles’,’k’,’\theta_k’)
f_wait
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Magnitudes

0.5 ‘
0.4r b
0.3 i
A
ko]
0.2f 1
0.1F 1
. A I S N B AR
0 2 4 6 8 10 12 14 16
k
Phase Angles
3 T T T
2, 4
1, 4
A
|
_2 | | | | | | |
0 2 4 6 8 10 12 14 16

Problem 4.55 Fourier Series Coefficients of Pulse Train
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V In addition to saturation due to clipping, another common type of nonlinearity is the dead- Dead
zone nonlinearity shown in Figure 4.58. The algebraic representation of a dead zone of radius zone
a is as follows.

A [0, 0<z[<a
N x , a<|r]<oo

Suppose fs = 2000 Hz, and N = 100. Consider the following input signal where 0 < k < N
corresponds to one cycle.

x(k) = cos(407kT) , O0<k<N

Let the dead-zone radius be a = .25. Write a MATLAB program that does the following.

(a) Compute and plot y(k) = F|z(k), a] versus k.
(b) Compute and plot the magnitude spectrum of y(k).

(c) Using the DFT, compute and print the total harmonic distortion of y(k) caused by the
dead zone. Here, if d; and 6; for 0 < ¢ < M are the cosine form Fourier coefficients of
y(k) with M = N/2, then

_ 2
THD — 100(P —d?/2),
Py

Solution

function prob4_56 % include this to make F(x,a) a local function
% Initialize

f_header (’Problem 4.56°)
a = .25;

% Construct the input signal

fs = 2000;

T = 1/fs;

N = 100;

k=0 : N-1;

x = cos(40*pixkx*T);
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Dead-zone nonlinearity

0.8 i

0.6 4

0.4

0.2 s i

-1 -0.5 0 0.5 1

Figure 4.58 Dead-Zone Nonlinearity of Radius a

% Plot y(k) = Flx(k),a)]

y = F(x,a);

figure

plot (k,y)

f_labels (’Effect of Dead Zone on Cosine’,’k’,’y(k)’)
f_wait

% Plot magnitude spectrum

Y = ££ft(y);

A = abs(Y);

f = linspace (0, (N-1)*fs/N,N);
figure

i=1:N/2+ 1;

plot (£(i),A(i))

f_labels (’Magnitude Spectrum’,’f (Hz)’,’A(f)’)
f_wait

% Find total harmonic distortion

d = 2*xabs(Y)/N;

P_y = (1/4)*d(1)"2 + (1/2)*sum(d(2:N/2)."2);

THD = 100x(P_y - (1/2)*d(2)"2)/P_y;

fprintf (’\nTotal Harmonic Distortion = %g percent\n’,THD)
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function y = F(x,a)
% Dead-zone function

y = x;
i = find(abs(x) <= a);

Effect of Dead Zone on Cosine
1 T T

0.8

0.6

0.4f

|
o
©
T

_1 | | | |
0 20 40 60 80 100
k

Problem 4.56 (a) Distorted Cosine
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Magnitude Spectrum

YAVAVAVAN .S

200 400 600 800 1000
f (Hz)

Problem 4.56 (b) Magnitude Spectrum

(c)

Total Harmonic Distortion = .932876 percent
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Repeat Problem 4.56, but using fs = 1000 Hz, N = 50 samples, and the cubic nonlinearity

F(z) =2°

Solution

function prob4_57
% Construct the input signal

f_header (’Problem 4.57°)
fs = 1000;

1/fs;

50;

0 : N-1;

cos (40*pixkxT) ;

HowN =294
]

% Plot y(k) = F[x(k)]

y = F(x);

figure

plot (k,y)

f_labels (’Effect of Cubic Nonlinearity on Cosine’,’k’,’y(k)’)
f_wait

% Plot magnitude spectrum

Y = ££ft(y);

A = abs(Y);

f = linspace (0, (N-1)*fs/N,N);
figure

i=1:N/2+ 1;

plot (£(i),A(i))

f_labels (’Magnitude Spectrum’,’f (Hz)’,’A(f)’)
f_wait

% Find total harmonic distortion

d = 2xabs(Y)/N;

P_y = (1/4)*d(1)"2 + (1/2)*sum(d(2:N/2).72);

THD = 100%(P_y - (1/2)*d(2)°2)/P_y;

fprintf (’\nTotal Harmonic Distortion = %g percent\n’,THD)

function y = F(x)
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% Cubic nonlinearity

Effect of Cubic Nonlinearity on Cosine
1 T T T T

0.8 i

0.2 i

|
o
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_1 | | | |
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k

Problem 4.57 (a) Distorted Cosine
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Magnitude Spectrum
20 T \

100 200 300 400 500
f (Hz)

Problem 4.57 (b) Magnitude Spectrum

(c)

Total Harmonic Distortion = 10 percent
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Vv Let h(k) and z(k) be two N-point white noise signals uniformly distributed over [—1,1].
Recall that the MATLAB function conv can be used to compute linear convolution. Write
a MATLAB program which uses tic and toc to compute the computational time, tg;., of

conv and the computational time, tg.g;, of the FDSP toolbox function f.conv for the cases
N = 4096, N = 8192, and N = 16384.

(a) Print the two computational times tg;; and tgs for N = 4096, 8192, and 16384.
(b) Plot tgi; versus N/1024 and t,g versus N/1024 on the same graph and include a legend.

Solution

% Problem 4.58

f_header (’Problem 4.58°)
n = 3;

N = zeros(n,1);

t_dir = zeros(n,1);
t_fast = zeros(n,1);

% Compute convolutions

hw = waitbar (0, ’Computing Convolutions’);
for i =1 :n
N(i) = floor(2~(11+i));
h = f_randu (N(i),1,-1,1);
x = f_randu (N(i),1,-1,1);
tic
y = conv(h,x);
t_dir(i) = toc;
tic
y = f_conv(h,x,0);
t_fast(i) = toc;
waitbar (i/n,hw)
end
close (hw)

t_dir
t_fast

% Plot results

figure

hp = plot (N/1024,t_dir,’-o’,N/1024,t_fast,’-s’);
set (hp(1),’LineWidth’,1.5)

axis([4 16 -.1 1.6])

f_labels (’Computation Times’,’N/1024’°,’t (sec)’)
legend (’Direct Convolution’,’Fast Convolution’)
f_wait
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(a) The output from the MATLAB script is

t_dir =
0.0799
0.3272
1.2808

t_fast =
0.0016
0.0028
0.0057

Computation Times

1.6 \ \

—©6— Direct Convolution
14} —=&— Fast Convolution

10 12 14 16
N/1024

SN
o
©

Problem 4.58 Computational Times for Two Implementations of Linear Convolution
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Consider the following linear discrete-time system. Write a MATLAB program that performs
the following tasks.

(a) Compute and plot the impulse response h(k) for 0 < k < L — 1 where L = 500.

(b) Construct an M-point white noise input z(k) that is distributed uniformly over [—5, 5]
where M = 10000. Use the FDSP toolbox function f_blockconv to compute the zero-state
response y(k) to the input x(k) using block convolution. Plot y(k) for 9500 < k& < 10000.

(c) Print the number of FFTs and the lengths of the FFTs used to perform the block
convolution.

Solution

% Problem 4.59
% Construct impulse response h of filter

f_header (’Problem 4.59°)
L = 500;

b = [1 0];

a=[1-1.4 .98];

delta = [1 zeros(1,L-1)]1;
h = filter (b,a,delta);
figure

k=0 :L-1;

plot (k,h)

f_labels (’Impulse Response’,’k’,’h(k)’)
f_wait

% Compute input and zero-state response using fast block convolution

M = 10000;
x = f_randu (1,M,-5,5);
y = f_blockconv(h,x);

figure

k = 9500 : 10000;

plot (k,y(k+1))

f_labels (’Zeros-State Response’,’k’,’y(k)’)
f_wait

% Compute number and size of FFTs

r =L - mod(M,L);
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M=M+ r;

Q = M/L;

N = 27 (ceil(log(2*L-1)/1og(2)));
fprintf (’\nNumber of FFTs = %d\n’,Q+1)
fprintf (’Size of FFTs = %d\n’,N)

Impulse Response

15 ‘ :
1t ]
05} :
2 0
=
-0.5 ]
_1H i
1% 100 200 k 300 200 500

Problem 4.59 (a) Impulse Response
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Zeros—State Response
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Problem 4.59 (b) Zero-State Response

(c) Number of FFTs = 22
Size of FFTs = 1024
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Consider the following noise-corrupted periodic signal with a sampling frequency of f; = 1600
Hz and N = 1024.

(k) = sin?(4007kT) cos®(300nkT) +v(k) , 0<k<N

Here v(k) is zero-mean Gaussian white noise with a standard deviation of o = 1/v/2. Write
a program that performs the following tasks.

(a) Compute and plot the power density spectrum S, (f) for 0 < f < f/2.

(b) Compute and print the average power of (k) and the average power of v(k).

Solution

% Problem 4.60
% Initialize

f_header (’Problem 4.60°)

fs = 1600;
T = 1/fs;
N = 1024;

% Construct signal

mu = O;
sigma = 1/sqrt(2);

v = f_randg (1,N,mu,sigma);
k=0 : N-1;
x = (sin(400*pixk*T) .~ 2) .* (cos(300*pi*k*T) .~ 2) + v;

% Compute power density spectra

[A,phi,S,f] = f_spec (x,N,fs);

figure

i=1: N/2+1;

plot (£(i),8(i))

f_labels (’Power Density Spectrum’,’f (Hz)’,’S_N(f)’)
f_wait

% Compute average power of x and v

P_.x = (1/N)*sum(x .~ 2);
P_.v = (1/N)*sum(v .~ 2);
fprintf (°P_x = Y%g\n’,P_x)
fprintf (°P_y = %g\n’,P_v)
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Power Density Spectrum
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Problem 4.60 Power Density Spectrum

(b)

P_x

P_y

0.603097
0.491678
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Write a program which creates a 1 x 2048 vector x of white noise uniformly distributed over
[—.5,.5]. The program should then compute and display the following.

(a) The average power P,, the predicted average power P,, and the percent error in P,.

(b) Plot the estimated power density spectrum using Bartlett’s method with L = 512. Use
a y-axis range of [0, 1]. In the plot title, print L and the estimated variance 0% of the
power density spectrum.

(c) Repeat part (b), but use L = 32.

Solution

% Problem 4.61
% Initialize

f_header (’Problem 4.61°)
fs = 1;

% Construct signal

2048;
= .b5;
f_randu (1,N,a,b);

X o=
I

% Compute average power and predicted average power

P_.x = (1/N)*sum(x .~ 2);
Pu= (b3 -a"3)/(3*x(b - a));
err = 100x(P_x - P_u)/P_u;

fprintf (° Average Power: P_x = %g\n’,P_x)
fprintf (’Predicted Power: P_u = %g\n’,P_u)
fprintf (° Percent error: e = %g %%\n’,err)

% Estimate power density spectrum, Bartlett with L = 512

for L = [512 32]
[S_B,f,Px] = f_pds (x,N,L,fs,0,0);
figure
i=1:L/2+1;
plot (£(i),S_B(i))
v = (1/L)*sum((S_B - P_x)."2);
caption = sprintf (’Bartlett’’s Method, L = %d, \\sigma_B~"2 = %g’,L,v);
f_labels (caption,’f/f_s’,’S_B(£f)’)
axis ([0 .5 0 11)
f_wait

end
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(a)

Average Power: P_x = 0.0818834
Predicted Power: P_u 0.0833333
Percent error: e = -1.73994 \Y%

Bartlett’s Method, L = 512, Gé = 0.00197623

091 i

0.6 i

0.4f b

0.1

0 | | | |
0 0.1 0.2 0.3 0.4 0.5
f/f

S

Problem 4.61 (b) Power Density Spectrum, L = 512
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Bartlett’s Method, L = 32, Gé = 7.33985e-005

0.8 4
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0.4f b

0.3 i

o

Problem 4.61 (c) Power Density Spectrum, L = 32
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Let z(k) be an N-point white noise signal uniformly distributed over [—1, 1] where N = 4096.
Write a program that performs the following tasks.

(a) Create (k) and then compute and plot the normalized circular auto-correlation, o, (k).
(b) Compute ¢, (k), and use the result to compute and plot the power density spectrum of
x(k).

(¢) Compute and print the average power P,.

Solution

% Problem 4.62
% Iniitialize

f_header(’Problem 4.62°)
N = 1024;
x = f_randu (N,1,-1,1);

% Compute and plot normalized circular auto-correlation

sigma_xx = f_corr (x,x,1,1);

figure

k=0 : N-1;

plot (k,sigma_xx)

axis ([-N/8 9%N/8 -.2 1.2])

f_labels (’Normalized Circular Auto-Correlation’,’k’,’\sigma_{xx}(k)’)
f_wait

% Compute power density spectrum using circular auto-correlation

c_xx = f_corr (x,x,1,0);

S_N = fft(c_xx);

figure

i=0:N-1;

plot (i,real(S_N));

f_labels (’Power Density Spectrum’,’i’,’S_N(i)’)
f_wait;

% Compute and plot average power

P_x = c_xx(1)
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Normalized Circular Auto-Correlation
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Problem 4.62 (a) Normalized Circular Auto-Correlation

Power Density Spectrum
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Problem 4.62 (b) Power Density Spectrum from Auto-Correlation
(c) Px =
0.3282
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Consider the following N-point periodic signal of period M. Suppose M = 128 and N = 1024.

27k Ak
z(k) = 1+3cos<%>—2sin<%> , 0<k<N

Let y(k) be a noise-corrupted version of z(k) where v(k) is white noise uniformly distributed
over [—.5,.5].

yk) = x(k)+vk) , O0<k<N

The objective of this problem is to study how sensitive the periodic signal extraction technique
is to the estimate of the period M.

Write a program which performs the following tasks.

(a) Compute and plot the noise-corrupted periodic signal y(k).

(b) Compute and plot on the same graph z(k) and Z,,(k) for m = M — 5 using a legend.
)
)

(c
(d) Compute and plot on the same graph z(k) and Z,,(k) for m = M + 5 using a legend.

Compute and plot on the same graph z(k) and Z,,(k) for m = M using a legend.

Solution

% Problem 4.63
% Iniitialize

f_header (’Problem 4.63°)

M = 128;
N = 1024;
a=1.0;

% Construct noise-corrupted periodic input

k=0 : N-1;

x = 1 + 3xcos(2xpixk/M) - 2xsin(4*xpixk/M) ;
v = f_randu (1,N,-a,a);

y =X+ v;

figure

plot (k,y)
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f_labels (’Noise-Corrupted Periodic Signal’,’k’,’y(k)’)
f_wait

% Extract estimate of x using cross correlation

fori=-5:5:5
m=M+ i;
delta_m = zeros(1,N);
for j=1:N
if mod(j-1,m) == 0
delta_m(j) = 1;
end
end
L = floor(N/m);
x_hat = (N/L)*f_corr(y,delta_m,1,0);
hp = plot (k,x,k,x_hat);
set (hp(1),’LineWidth’,1.5)
f_labels (’Estimate of Periodic Component of Noise-Corrupted Signal’,’k’,’x(k)’)
caption = sprintf (’m/M = %.3f’,m/M);
legend (’x(k)’,caption)
f_wait
end

Noise-Corruped Periodic Signal

8 T T T

0 200 400 600 800 1000 1200
k

Problem 4.63 (a) Noise-Corrupted Periodic Signal
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Estimate of Periodic Component of Noise-Corrupted Signal
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Problem 4.63 (b) Estimated Periodic Component, m = M — 5

Estimate of Periodic Component of Noise-Corrupted Signal
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Problem 4.63 (c) Estimated Periodic Component, m = M
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Estimate of Periodic Component of Noise-Corrupted Signal
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Problem 4.63 (d) Estimated Periodic Component, m = M + 5
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Consider the following digital filter of order m = 2p where p = 20.

2p
H(z) = jg:luz !
=0
b, = .5
b, — [.54 — .46 cos(mi/p)|{sin[.757 (i — p)] — sin[.257 (i — p)] } it

m(i —p)

Suppose fs = 200 Hz. Write a program that uses filter to do the following.

(a) Compute and plot the impulse response h(k) for 0 < k < N where N = 64.
(b) Compute and plot the magnitude response A(f) for 0 < f < f,/2.

(c) What type of filter is this, FIR or IIR? What range of frequencies gets passed by this
filter?

Solution

% Problem 4.64

% Initialize

f_header (’Problem 4.64°)
fs = 200;

N = 64;

% Compute impulse response

m = 40;
p = m/2;
b = zeros(1,m+1);
b(p+1) = .5;
for 1 = 0 : 2%p
if i == p
b(p+1) = .5;
else
k=1-p;
b(i+1l) = (.54 - .46xcos(pi*i/p)) * (sin(.75xpixk) - sin(.26xpixk)) / (pix*k);
end
end
delta = [1,zeros(1,N-1)];
a=1;
h = filter (b,a,delta);
k=0 : N-1;
figure
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stem (k,h,’filled’,’.’)
f_labels (’Impulse Response’,’k’,’h(k)’)
f_wait

% Compute magnitude response

H = fft(h,N);

A = abs(H);

f = linspace (0, (N-1)*fs/N,N);
i=1: N/2+1;

figure

plot (£(i),A(i))
f_labels (’Magnitude Response’,’f (Hz)’,’A(f)’)
f_wait

Impulse Response

0.5 ‘ ‘

0.4

0.3 i

-0.31 b

_0-4 | | | | | |
0 10 20 30 40 50 60 70
k

Problem 4.64 (a) Impulse Response
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Magnitude Response
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Problem 4.64 (b) Magnitude Response

(c)

This is an FIR filter because the denominator polynomial is a(z) = 1. One can also see from
the impulse response plot that h(k) = 0 for £ > 2p. From the magnitude response plot, the
frequencies passed by the filter are 25 < f < 75 Hz.
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Consider the following digital filter of order n where n = 11 and r = .98.

(I+rmd—-=")

H(z) 2(1 — rrz—n)

Suppose fs = 2200 Hz. Write a program that uses filter to do the following.

(a) Compute and plot the impulse response h(k) for 0 < k < N where N = 1001.
(b) Compute and plot the magnitude response A(f) for 0 < f < f,/2.
(c) What type of filter is this, FIR or IIR? Which frequencies get rejected by this filter?

Solution

% Problem 4.65
% Initialize

f_header (’Problem 4.65°)
fs = 2200;
N = 1001;

% Compute impulse response

n=11;

r .98;

b_0 = (1 + r’n)/2;

b = b_0%[1 zeros(1,n-1) -1];
a = [1 zeros(1,n-1) -r°nl;
delta = [1,zeros(1,N-1)];

h = filter (b,a,delta);
k=0 : N-1;

figure

stem (k,h,’filled’,’.’)
f_labels (’Impulse Response’,’k’,’h(k)’)
axis ([0 N-1 -1 1])

f_wait

% Compute magnitude response

H = fft(h,N);

A = abs(H);

f = linspace (0, (N-1)*fs/N,N);
i=1: N/2+1;

figure
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plot (£(i),A(i))

f_labels (’Magnitude Response’,’f (Hz)’,’A(f)’)
axis ([0 fs/2 0 1.5])

f_wait

Impulse Response
1 T T

0.8 i
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-0.2F b

0 200 400 600 800 1000
k

Problem 4.65 (a) Impulse Response
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Magnitude Response
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Problem 4.65 (b) Magnitude Response

(c)
This is an IIR filter because the denominator polynomial is a(z) # 1. From the magnitude
response plot, the frequencies {200, 400, 600, 800, 1000} Hz are rejected by the filter.
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Chapter 5
Consider the following first order IIR filter.

41— 271

H(z) = G5

(a) Compute and sketch the magnitude response A(f).
(b

(c
(d

What type of filter is this (lowpass, highpass, bandpass, bandstop)?
Suppose I}, = .4f,. Find the passband ripple 9,.

Suppose Fy = .2fs. Find the stopband attenuation J;.

Solution

(a) Using (5.2.1), the frequency response is

H(f) = H(z)|zzoxp(j27rfT)
Al — exp(—j2n fT)]
14+ 2exp(—j2nfT)
Al — cos(2m fT) + jsin(2m fT)]
1+ .2cos(2nfT) — j.2sin(27 fT)

Thus the magnitude response is

A(f) = [H()
4V/[1 — cos(2m fT)]2 + sin®(27 fT')
VI + .2cos(2m fT))2 + .04 sin?(2n fT)

(b) From the magnitude response sketch in part (a), this is a highpass filter.
(c) Using Example 5.1 as a guide, the passband ripple is

6, = 1—A(F))
-1 A4
4y/[1 — cos(.87)]2 + sin(.87)
V14 .2 cos(.87)]2 + .04 sin?(.87)
= .1011
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Magnitude Response
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Problem 5.1 (a) Magnitude Response

(d) Using Example 5.1, the stopband ripple is

ds = A(Fs)
= A(2fs)
4y/[1 — cos(.47)]2 + sin®(.47)
V1 + .2cos(.4m)]2 + .04 sin®(.47)
= .4359
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V A bandpass filter has a sampling frequency of f; = 2000 Hz and satisfies the following design
specifications.

[Fa, Fy1, Fya, Fao, 6,,65] = [200,300,600, 700, .15, .05]

(a) Find the logarithmic passband ripple, A,.
(b) Find the logarithmic stopband attenuation, As.

(c) Using a logarithmic scale, sketch the shaded passband and stopband regions that A(f)
must lie within.

Solution
(a) Using (5.2.7a), the logarithmic passband ripple is

Ap = —-20 10g10(1 — 5]7)
—20 10g10(85)
= 1.4116 dB

(b) Using (5.2.7b), the logarithmic stopband attenuation is

AS = =20 10g10(5s)
—20 10g10(05)
= 26.0206 dB
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Passband Filter Specifications
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Problem 5.2 (c) Logarithmic Specifications
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A bandstop filter has a sampling frequency of fs = 200 Hz and satisfies the following design
specifications.

[Fp1, Fs1, Feo, Fi2, Ap, As] = [30, 40, 60, 80, 2, 30]

(a) Find the linear passband ripple, dp.
(b) Find the linear stopband attenuation, Js.

(c) Using a linear scale, sketch the shaded passband and stopband regions that A(f) must
lie within.

Solution

(a) Using (5.2.8a), the passband ripple is

5, = 1—10"4/%0
= 1-10""1
= .2057

(b) Using (5.2.8b), the stopband attenuation is

10—AS/20

10—15
= .0316

ds
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Stopband Filter Specifications
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Problem 5.3 (c) Linear Specifications
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Suppose H(z) is a stable filter with A(f) = 0 for .1 < |f/fs| < .2. Show that H(z) is not
causal.

Solution

From the Paley-Wiener theorem in Proposition 5.1, a stable causal filter must satisfy

f5/2
[ Noga(riar < oc

—fs/2

If A(f) =0 for .1f; <|f| < .2fs, then over this range |log[A(f)]| = co. Thus H(z) is not a
causal filter.
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Consider the following FIR filter of order M — 1 known as a running average filter.

1+ 274 g =MD
M

H(z) =

(a) Find the impulse response of this filter.
(b) Is this a linear-phase filter? If so, what type?
(c) Find the group delay of this filter.

Solution

(a) The impulse response is

hk) = Z7\{H(2)}

B Z_l{l—l-z_l—l—"'—l—z_(M‘l)}

M
Sk)+o6(k—=1)+---4+0(k—M+1)
M

1

— <

U 0<k<M
0 , M>k<o

(b) Here m = M —1. Since h(m — k) = h(k), this is a linear-phase filter. Using Table 5.1, if
m is even, then it is a type 1 linear-phase filter, and if m is odd it is a type 2 linear-phase
filter.

(c) For an FIR linear-phase filter of order m = M — 1, the group delay is

(M —1)T

D(f) =
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A linear-phase FIR filter H(z) of order m = 8 has zeros at z = £4.5 and z = +.8.

(a) Find the remaining zeros of H(z) and sketch the poles and zeros in the complex plane.
(b) The DC gain of the filter is 2. Find the filter transfer function H(z).

(c) Suppose the input signal gets delayed by 20 msec as it passes through this filter. What
is the sampling frequency, fs?

Solution

(a) The zeros must satisfy the reciprocal symmetry property in (5.26). Thus, the remaining
ZEeros are

z=4j2, z=+1.25

Pole-Zero Plot
2.5

1.5¢

-1.5}F
-2 (0]
-2.5
-2 -1 0 1 2
Re(z)

Problem 5.6 (a) Poles and Zeros
(b) The general form of H(z) is

bo(22 + .52) (2% + 22) (22 — .82)(2? — 1.25?)
8

bo(2? 4 .25)(22 + 4) (2% — .64) (2 — 1.5625)
8

H(z) =
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The DC gain is H(1) = 2. Thus

2

(1.25)(5)(.36)(—.5265)
= —1.5802

by =

(c) The group delay of a linear-phase FIR filter of order m is D = mT/2. Here m = 8 and

D = .02. Thus
2D
T = —
m
~2(.02)
8
= .005 sec
Thus the sampling frequency is
1
fs = T
= 200 Hz
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Consider a type 1 FIR linear-phase filter of order m = 2 with coefficient vector b = [1,1,1]7.

(a) Find the transfer function, H(z).
(b) Find the amplitude response, A,(f).
(c) Find the zeros of H(z).

Solution
(a) Using Example 5.3 as a guide,

H(z) = 1+z7'+272

(b) Let 8 =27 fT. Using Euler’s identity, the frequency response is

H(f) = H(Z)|z=0xp(j9)

1+ exp(—3j0) + exp(—720)
exp(—j0)[exp(j0) + 1 + exp(—j0)]
exp(—j0)[1 + 2Re{exp(j0)}]
exp(—j0)[1 + 2 cos(0)]

= exp(—j2mf)A:(f)

Thus the amplitude response is

A (f) = 14 2cos(2nfT)

(c) The numerator of H(z) is b(z) = 22 + z + 1. Thus the zeros of H(z) are

~1++/-3
2

—1+35V3
2
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Consider a type 2 FIR linear-phase filter of order m = 1 with coefficient vector b = [1,1]7.

(a) Find the transfer function, H(z).
(b) Find the amplitude response, A,(f).
(c) Find the zeros of H(z).

Solution
(a) Using Example 5.3 as a guide,

H(z) = 1+27!

(b) Let 8 =27 fT. Using Euler’s identity, the frequency response is

H(f) = H(Z)|z=0xp(j9)
1+ exp(—j0)
exp(—70/2)[exp(j6/2) + exp(—3j6/2)]
exp(—j0/2)[2Re{exp(j6/2)}]
exp(—j6/2)2cos(6/2)

(=im ) A (f)

= exp

Thus the amplitude response is

A.(f) = 2cos(nfT)

(¢) The numerator of H(z) is b(z) = z + 1. Thus the zero of H(z) is
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Consider a type 3 FIR linear-phase filter of order m = 2 with coefficient vector b = [1,0, —1]7.

(a) Find the transfer function, H(z).
(b) Find the amplitude response, A,(f).
(c) Find the zeros of H(z).

Solution

(a) Using Example 5.4 as a guide,

(b) Let 8 =27 fT. Using Euler’s identity, the frequency response is

H(f) = H(Z)|z=0xp(j9)

1 —exp(—720)
exp(—j0)[exp(j0) — exp(—j0)]
exp(—;j#)j2Im{exp(j0)}
jexp(—76)2sin(0)

= Jjexp(—j2mf) A (f)

Thus the amplitude response is

A (f) = 2sin(2nfT)

(c) The numerator of H(z) is b(z) = 22 — 1. Thus the zeros of H(z) are
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Consider a type 4 FIR linear-phase filter of order m = 1 with coefficient vector b = [1, —1]%.

(a) Find the transfer function, H(z).
(b) Find the amplitude response, A,(f).
(c) Find the zeros of H(z).

Solution

(a) Using Example 5.4 as a guide,

(b) Let 8 =27 fT. Using Euler’s identity, the frequency response is

H(f) = H(Z)|z=0xp(j9)

1 —exp(—j0)

exp(—70/2)[exp(j6/2) — exp(—;j6/2)]
exp(—j0/2)j2Im{exp(j0/2)}
jexp(—76/2)2sin(6/2)

= jexp(—jnf)A:(f)

Thus the amplitude response is

A.(f) = 2sin(xnfT)

(¢) The numerator of H(z) is b(z) = z — 1. Thus the zero of H(z) is
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Consider the following FIR filter.

H(z) = 14227143272 -3,3 2,747

(a) Is this a linear-phase filter? If so, what is the type?
(b) Sketch a signal flow graph showing a direct-form II realization of H(z) as in Section 3.6.
Solution

(a) Here m = 5. The impulse response is

h(k) = [1,2,3,-3,—2,1]

Since h(m — k) = —h(k), this is a linear phase filter. From Table 5.1, it is of odd order
with odd symmetry, so it is a type 4 linear-phase FIR filter.

U 1
T @ > > > > e U
v.—1
A z A
0 2
Y,—1
A < A
0 3
Y.—1
A < A
0 -3
A !
A z A
0 -2
v.—1
A z A
0 —1

Problem 5.11 (b) Signal Flow Graph Realization
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Consider the following FIR filter.

H(z) = 142z ' =522423-6271

(a) Is this a linear-phase filter? If so, what is the type?
(b) Sketch a signal flow graph showing a direct-form II realization of H(z) as in Section 3.6.

(c) Using the MATLAB function roots find the zeros of H(z). Then sketch a signal flow
graph showing a cascade form realization of H(z).

Solution
(a) Here m = 4. The impulse response is

h(k) = [1,1,-5,1,—6]

Since h(m — k) # +h(k), this is not a linear phase filter.

U 1
T e > > > > Yy
Y.—1
A z A
0 1
Y.—1
A z A
0 -5
v.—1
A z A
0 1
v.—1
A z A
0 —6

< >

Problem 5.12 (b) Direct Signal Flow Graph Realization

(c) Using the MATLAB roots function on b = [1,1, —5, 1, —6], the zeros are
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Thus the two subsystems are

Hi(z) = (z+3)(-2)

= 224+2-6
Hy(z) = (z—J)(z+1])
= 22+1
1 U 1
r e > > > > > > > e Y
—1 y _—1
A "Z A A ‘Z A
0‘ ‘1 0‘ ‘0
vz—l vz—l
0 —6 0 1

Problem 5.12 (c) Cascade Signal Flow Graph Realization
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Let H(z) be an arbitrary FIR transfer function of order m. Show that H(z) can be written
as a sum of two linear-phase transfer functions H.(z) and H,(z) where h.(k) exhibits even
symmetry about k = m/2 and h,(k) exhibits odd symmetry about &k = m/2. Hint: Add and
subtract h(m — k).

Solution

Consider the impulse response, h(k). The basic idea is to add and subtract h(m — k).

hk) = h(k) + f;(m — k) N h(k) — ;;(m k)

= he(k) + hO(k)
To check the symmetry of he(k),

he(m—k) =

Thus he(k) exhibits even symmetry about k = m/2. Next, consider h,(k).

h(m — k) — hlm — (m — k)]

ho(m —k) =

Thus h(k) exhibits odd symmetry about k = m/2. Finally,

20 — Z{h(k)+l;(m—k)}

0 - 2 {h(k) - him = k)}
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Recall from Table 5.1 that linear-phase FIR filters of types 2-4 have zeros at z = —1 or z =1
or both. A type 1 linear-phase FIR filter is more general.

(a) Show that for a type 1 linear-phase FIR filter, symmetry constraint (5.3.8) does not
imply that H(z) has a zero at z = —1.

(b) Show that for a type 1 linear-phase FIR filter, symmetry constraint (5.3.8) does not
imply that H(z) has a zero at z = 1.

Solution
(a) From symmetry constraint (5.3.8), the zeros of a linear phase filter must satisfy

H(z)=+z""H(z")

For a type 1 filter the symmetry is even (plus sign) and m is even. Thus at z = —1,

H(-1) = (~1)"H[1/(-1)]
= H(-1)

Since this does not place any constraint on the value of H(—1), z = —1 is not constrained
to be a zero.

(b) Again for type 1 filter the symmetry is even (plus sign) and m is even. Thus at z = 1,
H() = (W)™H[1/(1)]

= H(1)

Since this does not place any constraint on the value of H(1), z = 1 is not constrained
to be a zero.
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This question focuses on the concept of the amplitude response of a filter.

(a) Show how to compute the magnitude response from the amplitude response.

(b) Suppose the magnitude response equals the amplitude response for 0 < f < Fp, but for
f > Fj they differ. What happens to the phase response at f = Fy?

Solution

(a) From (5.3.5), the polar form of the amplitude response is

Ar(f) = A(f)expliB(f)]

Here [(f) is piecewise constant with values jumping between 0 and 7 when A(f) = 0.
Thus

This occurs if 5(f) jumps from 0 to 7 at f = Fy. Therefore the phase response ¢(f)
jumps by 7 at f = Fyp.
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Suppose H (z) is a type 2 linear-phase FIR filter.

H(z) = co+czt+cz72 4¢3

(a) Find the amplitude response of this filter.
(b) Find the phase offset, «, and group delay, D(f), of this filter.

Solution

(a) Recall that for an FIR filter h(k) = by for 0 < k < m. Thus the impulse response,
h = [co, c1, 1, co) T, exhibits even symmetry about the midpoint k& = m /2. The frequency
response of this filter, in terms of 6 = 27 fT, is

H(f) = H(z)|z=exp(j9)
= ¢o+ crexp(—j0) + c1exp(—3520) + coexp(—;36)
= exp(—430/2)[coexp(j30/2) + c1exp(jO/2) + c1 exp(—76/2) + coexp(—536/2)]

Combining terms with identical coefficients, and using Euler’s identity,

H(f) = exp(—j30/){colexp(j30/2) + exp(—j36/2)] + c1[exp(j0/2) + exp(—;jb)/2]}
= exp(—7360/2)[2¢cocos(30/2) + 2¢q cos(8/2)]
= exp(—37fT)A(f)

Thus the amplitude response of this filter is

A (f) = 2[epcos(3mfT) + c1cos(3mfT)]

(b) From part (a) the phase offset is @ = 0 and the group delay is

() = (55) o)

_ (;—D (—3T)

= 1.5T
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Suppose H(z) is a type 4 linear-phase FIR filter.

2 3

H(z) = co+cazt—cz7?—cpz

(a) Find the amplitude response of this filter.
(b) Find the phase offset, «, and group delay, D(f), of this filter.

Solution

(a) For an FIR filter h(k) = by, for 0 < k < m. Thus the impulse response, h = [cg, ¢1, —c1, —co] T,
exhibits odd symmetry about the midpoint k& = m/2. The frequency response of this
filter, in terms of 6 = 27 fT, is

H(f) = H(z) |z=0xp(j9)
= c¢o+ cpexp(—j0) — c1exp(—3520) — coexp(—;5360)
= exp(—730/2)[coexp(j36/2) + c1exp(jf/2) — c1exp(—j#/2) — co exp(—;j36/2)]

Combining terms with identical coefficients, and using Euler’s identity,

H(f) = exp(—j30/2){colexp(j30/2) — exp(—j30/2)] + c1[exp(j6/2) — exp(—;j#)/2]}

e { P2 — s a2 | eleco00)2) s/
J J

= jexp(—7360/2)[2¢cosin(30/2) + 2¢; sin(6/2)]

= Jjexp(—=j3nfT)A.(f)

Thus the amplitude response of this filter is

A(f) = 2[cosin(3nfT) + c1sin(3mwfT)]

(b) From part (a) the presence of the factor j = exp(j7/2) yields a phase offset of a = 7/2.
The group delay is

1

D(f) =

<
iy

) Floanimy
> (—37T)

L ¥

Ut o
N
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Suppose the impulse response of an FIR filter of order m = 5 is as follows where the X terms
are to be determined.

ho= [2,4,3,X,X,X]

(a) Assuming H(z) is a linear-phase filter, find the complete impulse response. If there are
multiple solutions, find each of them.

(b) For each solution in part (a), indicate the linear-phase FIR filter type.
(c) For each solution in part (a), find the phase offset, o, and the group delay, D(f).

Solution

(a) For a linear-phase filter the impulse response must exhibit either even or odd symmetry
about the midpoint as in h(m — k) = £h(k). Thus there are two solutions.

hl(k) = [27473737472]
ho(k) = 1[2,4,3,-3,—4,-2]

(b) From Table 5.1, hy(k) is a type 2 linear-phase filter, and ho(k) is a type 4 linear-phase
filter.

(c) Again from Table 5.1, the phase offsets for the two filters are ay = 0 and ag = 7/2.
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Consider the following running average filter.
13
_ —i
H(z) = 10 EO z
1=

(a) Write down the difference equation for this filter.

(b) Convert this filter to a noncausal zero-phase filter. That is, write down the difference
equations for the zero-phase version of the running average filter. You can use f; =

+/1/10 in Algorithm 5.1.

Solution

(a) By inspection the difference equation is

1 < ,
(k) = —10;5'3(’@—2)
@k) = a(N—k)
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Consider the following IIR filter.

(a) Find the minimum-phase version of this system, and sketch its poles and zeros.
(b) Find the maximum-phase version of this system, and sketch its poles and zeros.

(¢) How many transfer functions with real coefficients have the same magnitude response as
H(z)?

Solution

(a) The factored numerator polynomial is

b(z) = 2(z+1.25)(z+5.5)(z —j.5)

Thus the only zero outside the unit circle is z; = —1.25. Using (5.4.9), replace (z — 21)
by (z —1/z1) and multiply by —z;.

—z1(z —1/z1)H (%)
2.5(z + .8)21(7:2 +.25)
2(22 — .81)

Hmin(z) =

(b) One must replace the zeros inside the unit circle with their reciprocals and multiply by
the negative of each replaced zero. The zeros inside the unit circle are zp 3 = +5.5.

z923(z — 1/29) (2 — 1/23)H(2)
(z — 22)(2 — 23)
25(z — j2)(z+ j2)2(z + 1.25)

Hpox(2)

2(2%2 — .81)
_5(z2+4)(2+1.25)
2(22 — .81)

(c) Since there are three zeros, there are potentially 23 = 8 separate transfer functions.
However, for real coefficients, the complex conjugate zeros must remain complex con-
jugate pairs. This reduces the number distinct transfer functions to four: a minimum
phase, a maximum phase, and two mixed phase transfer functions.
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The following IIR filter has two parameters a and (3. For what values of these parameters is
this an allpass filter?

1+327 +(a+B)z72 42273
24+ (a—pF)z 1 + 32724273

H(z) =

Solution

The coefficients of an allpass transfer function must exhibit the reflective structure or reverse
symmetry property in (5.4.7). From inspection, this requires

a+pf = a—0

Thus 26 = 0 or 8 = 0. There is no constraint on «.
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Vv Consider the following IIR filter.

10(22 — 4) (2% + .25)

G = renez— 10

a) Find Hpin(2), the minimum-phase version of H(z).
b) Sketch the poles and zeros of Hpin(2).
)
)

c) Find an allpass filter Huy(z) such that H(z) = Han(z) Hpin(2).
d) Sketch the poles and zeros of Huy(z).

—

Solution

(a) The factored numerator polynomial is

b(z) = 10(z—2)(z+2)(z — j.5)(z + j.5)

Thus there are two zeros outside the unit circle at z; o = +2. Using (5.4.9), replace each
of these zeros by its reciprocal and multiply by the negative of the zero. This yields

z129(z — 1/21)(2 — 1/22)H(2)
(z = 21)(2 — 22)
—4(z — .5)(z + .5)H(2)
(z—2)(2+2)
—4(22% — .25)10(22 + .25)
(22 4 .64)(22 — .16)
—40(22 — .25)(22 + .25)
(22 + .64)(22 — .16)

Hmin(z) =
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Minimum-Phase System

2
151
1 L
X
0.5¢ 0]
N
z 0 ox *O
s
-0.5 (0]
X
-1t
-1.5}F
-2
-2 -1 0 1 2
Re(z)

(b) Problem 5.22 (b) Pole-zero Plot

(c) Since H(z) = Han(2)Hmin(z), one can solve for the allpass factor as follows.

Han(z) = H(2)Hy(2)
10(22 — 4) (22 + .25
(22 + .64)(22 — .16
10(22 — 4)(2%2 + .25
(22 + .64)(22 — .16
—.25(2% — 4)

22— .25

—40(2% — 25)(2% + .25)] "
[ (22 1 .64)(22 — .16) ]
[ (2% +.64)(2% — .16) ]
—40(2% — .25) (2% + .25)

— | — =
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Allpass System

0.5r ]

-0.5F 1

Re(z)

(d) Problem 5.22 (d) Pole-zero Plot
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Let H(z) be a nonzero linear-phase FIR filter of order m = 2.

(a) Is it possible for H(z) to be a minimum-phase filter? If so, construct an example. If not,

(b)

why not?

Is it possible for H(z) to be an allpass filter? If so, construct an example. If not, why
not?

Solution

(a) The general form of a FIR filter of order m = 2 is

H(Z) = by+ blz_l + bgz_2

For H(z) to be linear phase, h(k) = by, must exhibit even or odd symmetry about k = 1.
For H(z) to be minimum phase, the zeros must not lie outside the unit circle. Yes, it is
possible for a linear-phase FIR filter to be minimum phase. The following is a general
type 1 example where 0 < 0 < 27.

afz — exp(j0)][z — exp(—j0)]

H(z) = s
_ a{z? — [exp(j0) + exp(—jb)]z + 1
2
afz? —2cos(0)z + 1]

22

= afl —2cos(0)z7! 4 272

From (5.4.7), the coefficients of the transfer function for a second-order allpass filter
must exhibit reverse symmetry as follows.

as + a1zt + agz 2

ao+ a1z~ +agz2

H(z) =

For an FIR Filter, the denominator coefficient vector is a = [1,0,0]7. Thus for a second-
order FIR filter to be allpass, it is necessary that

However, h(k) = §(k — 2) does not exhibit even or odd symmetry about k& = 1, which
means that it is not linear-phase. Therefore it is not possible for a second-order linear-
phase FIR filter to be an allpass filter.
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Suppose H (z) is a filter with input z(k) and output y(k) whose magnitude response satisfies
the following constraint.

Alf) <= 1 fI=fs/2

(a) Show that [Y(f)] < X (f)]

(b) Use Parseval’s identity to show that H(z) is a passive system. That is, show that the
energy of y(k) is less than or equal to the energy of x(k).

Yook < Y |k

k=—00 k=—00

Solution

(a) Starting with the frequency response H (f)

YOI = [HHX)
= [H(N]- X
= ANIX()

[ X ()

IN

(b) Using Parseval’s identity from Table 4.3

i 1 fS/2
B2 = — Y (£)|%d
POTCIEE / o
1 fS/2

_ 2
= 5 [, Xy

1 fS/2
- / R X
1 fS/2

_ 2 2
- = / | AOXGP

1 fS/2
= / LG

e}

= > le(b)?

k=—o00

IN
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Suppose H (z) is an allpass filter with input (k) and output y(k) whose magnitude response
satisfies the following constraint.

Alf) =1 fI=fs/2

(a) Show that [Y(f)| = | X (f)]

(b) Use Parseval’s identity to show that H(z) is a lossless system. That is, show that the
energy of y(k) is equal to the energy of z(k).

Yo lymIP = Y lek)P

k=—00 k=—00

Solution

(a) Starting with the frequency response H (f)

YOI = [HHX)
= [H(N]- X
= ANIX()]
= [X(f)

(b) Using Parseval’s identity from Table 4.3

s 1
K2 = = Y(£)|2d
kgy( = = / o
1 fS/2

_ 2
= 5 [, Xy

1 fS/2
- / R X

1 fS/2

_ 2 2
- = / | AOXGP

1 fS/2
- £ / LG

e}

= > le(b)?

k=—o00
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Consider the following IIR filter.

H(z) =

(a) Find the minimum-phase form of H(z).

(b) Find a magnitude equalizer G(z) such at G(z)H (z) is an allpass filter with magnitude
response A(f) = 1.

Solution

(a) The factored form of H(z) is

2(2% + 2. 1
H(z) = (2" +252+1)
(z—1)(2+1)
o 2(z+2)(2+.5)
(z+1)(z+1)
Thus there is one zero outside the unit circle at z = —2. Using (5.4.5), replace this zero

by its reciprocal and multiply by the negative of the zero. This yields

(=2)(z+.5)H(2)
z+2
—4(z 4+ .5)?
(z—1)(2+1)
—4(2% + 2 + .25)
22 -1

Hmin(z) =

(b) From (5.4.14) and (5.4.15), the equalizer is the inverse of the minimum-phase part of
H(z). Thus

G(z) = Hpy
—4(2% + 2+ .25)]"
22 -1
22 -1
—4(22 + z + .25)
—.25(22 — 1)
22+ 2+ .25

1
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An ideal Hilbert transformer has the following frequency response.

Ha(f) = —gsen(f) ,  O<[fI<[s/2

Using the inverse DTFT, show that the impulse response of an ideal Hilbert transformer is

1 — cos(km)
_— k#0
ha(k) = = k7
0 L k=0

Solution

From (4.2.4), the inverse DTFT of Hy(f) is

1 fS/2

hilk) = / M) esplghom 1)
_ 1 fS/2

- 2 / s esplk2n T

_j f8/2 . 0 )
= < k — k
- [ /0 exp(ik2nfT)df - [ LR

—j [ exp(jk2n fT)

1s/2 exp(ijwalO ]

s jk2rT |, jk2nT |y

—1
~ (3 ) Explikm) — 1= 1+ exp(—km)]

k2w

—1
= (E) [2 cos(km) — 2]
_ 1 — cos(km) k40

km

At k = 0, using L’Hospital’s rule

ha(0) = msin(k)

= 0

m k=0

Thus, the impulse response of an ideal Hilbert transformer is

1 — cos(km)
_ k#0
ha(k) = . k7
0 L k=0
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Let X (k) = [z1(k), z2(k)]T. A digital oscillator that produces two sinusoidal outputs 1 (k)
and x9(k) that are in phase quadrature can be obtained using a first-order two-dimensional
system of the following form.

(a) Find a coefficient matrix A that produces an oscillator with frequency Fy = .3 f;.

(b) Find an initial condition vector ¢ that produces the solution

(c) Find a coefficient matrix A and an initial condition vector ¢ that produces the solution

B d cos(2m FokT + 1)
X(k) = [dSin(27TF(()]kT+¢)]

Solution
(a) Let
0 = 27TFOT
= 2n(.3fs)T
= .67

From (5.5.23), the coefficient matrix is the rotation matrix

A = C(Fy) |
e
_ [ C(.)S( 6m) —sin(.6m) ]
sin(.6m)  cos(.6m)
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(b) From (5.5.24) and (5.5.20)

[

(¢) The same A as in part (a) will work. For the initial condition vector, one needs a
magnitude of d and an initial phase angle of v. Thus

[det)]
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Suppose the following quadrature pair of sinusoidal signals with frequency Fy and unit am-
plitude is available.

X (k) [ cos(2m FokT) ]

sin(2w FokT)

(a) Find the Chebyshev polynomials of the first kind 7;(x) for 0 < i < 3.
(b) Find the Chebyshev polynomials of the second kind U;(z) for 0 < i < 3.
(c) Let X (k) = [z1(k), z2(k)]T. Find polynomials f and g such that

flz1(k)] + z2(k)glz1 (k)] = cos®(2nFokT) + 3sin(2m FokT)

Solution

(a) From (5.2.25)

T(](:E) =1

Ti(z) = =

TQ(JE) = 2:ET1(:E) — T(](:E)
= 222 -1

Tg(:E) = QZETQ(:E) — Tl(:E)
= 22(22° —1) -z
= 42° -3z

(b) From (5.2.27)

U(](:E) =1

Ui(x) = 2z

Us(z) = 22Ui(z) — Uy(x)
= 42% -1

Us(x) = 2aUs(z) — Ui(x)
= 2z(42® —1) — 22
= 82% —4a
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(c) Using the harmonic generating properties of the Chebyshev polynomials in (5.5.26) and

(5.5.28)
f(@) = Ts(z)
= 423 — 3z
g(z) = 3Uy(x)
= 06z
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V The general form for a notch filter with a notch at Fy # 0 is given in (5.6.10) where 6y =
27TFOT.

clz — exp(jo)][z — exp(—jo)]
[z = rexp(jifo))][z — rexp(—jb0)]

Hnotch(z) =

(a) Rewrite Hyoteh(2) as a ratio of two polynomials with real coefficients.

(b) Find an expression for the gain factor ¢ such that Hyoen(f) =1 at f = 0.

Solution

(a) Applying Euler’s identity

clz — exp(jo)][z — exp(—jbo)]
Hyoten(2) = [z —rexp(jby)][z — rexp(—jbo)]
c{z® — [exp(jbo) + exp(—jbo)]z + 1}
22 — rlexp(jfo) + exp(—jbo)]z + 2
c[z? — 2cos(fp)z + 1]
22 — 2rcos(6p)z + 12

(b) Since z = exp(j2n fT), DC or f = 0 corresponds to z = 1. Thus

1 = Hnotch(z)|z:1
c[1 —2cos(bp) + 1]
1 —2rcos(bp) + 2

Solving for c,

1 — 2rcos(by)
1 —2cos(bp)
1 — 2rcos(by)
2[1 — cos(6p)]

+ 72
+1
+ 72
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Using the results from problem 5.30 and (5.6.8), design a notch filter Hyotcn(z) that has a
notch at Fy = .1fs and a notch bandwidth of AF = .01f,.

Solution

For Fy = 1fs,

9(] = 27TFOT
= 2n(.1f,)T

From (5.6.8), the pole radius r is

_ TAF

Is
_ .01 fs

Is
= 1-— 0ln

From Problem 5.30, the notch filter transfer function is

c[z? — 2 cos(fy)z + 1]

H pumy
notch(2) 22 — 2rcos(fp)z + r?
_ c[z® —2cos(.2m)z + 1]
22— 2rcos(.2m)z + 12
The gain factor ¢ is
1 — 2rcos(.2m) + r?
c

2[1 — cos(.27)]
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Suppose the following two filters are notch filters with notches at Fj and Fj, respectively.
Write the difference equation of a double-notch filter with notches at Fy and Fj.

boz? + b1z + by
224+ a1z + ag

B(]Z2 + Blz + B2
22 + A1Z + A2

Solution

From Figure 5.31, the two notch filters must be in a cascade configuration. In terms of

negative powers of z

bo + blz_l + bgz_2
1+ a1z~ 4+ agz2

By + Blz_l + BQZ_2
1+ Alz—l + AQZ_2

Using intermediate variable u(k), the difference equations are

u(k) = box(k)+ bix(k — 1) + bex(k — 2) — aqu(ky) — agu(ks)
B(]u(k‘) + Blu(k‘ — 1) + Bgu(k‘ — 2) — Aly(k‘l) — Agy(k‘g)

<

—~
=y

S~—
I
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Consider the DC notch filter in (5.6.3).

S(1+r)(z—1)

Hpc(z) =
z—r
(a) Find the impulse response h(k).
(b) Find the difference equation.
Solution
(a) Using the residue method
h(0) = bo
= B5(1+r)
The residue of the pole at z = r is
Res(r, k) = (z—r)Hpc(2)2" .=,
= 5(1+7)(r—1)rk?
= 5(r2—1)rk!

Thus the impulse response is

h(k) = h(0)d(k)+ Res(r,k)u(k —1)
= 5(1+7)8(k)+.5(r* = Drf Lk — 1)

(b) Rewriting Hpc(z) in terms of negative powers of z

r — 21
o) = A0

Thus

y(k) = 5(1+r)|zk)—z(k—-1)]+ry(k—1)
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The general form for a resonator with a resonant frequency of Fy is given in (5.6.15) where
9(] = 27TFOT.

c(z? —1)
[z — rexp(jo)][z — rexp(—3o)]

Hres(z) =

(a) Rewrite Hyes(2) as a ratio of two polynomials with real coefficients.

(a) Find an expression for the gain factor ¢ such that |Hyes(f)| =1 at f = Fp.

Solution

(a) Applying Euler’s identity

c(z® —1)
Hros z = ) ]
(2) [z = rexp(jo)][z — rexp(—j0o)]
B c(z? 1)
22— rlexp(jo) + exp(—jbo)]z + 12
B c(z%—1)
22 — 2rcos(6p)z + 12
(b) At f = F07
z = exp(j2nFyT)
= eXP(jQO)
Thus
1 = |Hros(z)|zzoxp(j90)|

(exp(j26p) — 1)
exp(j26g) — 2r cos(bp) exp(jbp) + 12
. ( |(exp(j2600) — 1)| >
| exp(j260) — 2r cos(fy) exp(jho) + 12|

Solving for c,

| exp(j26p) — 27 cos(6y) exp(j6o) + 72|

|(exp(j260) — 1)
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Using the results from problem 5.34 and (5.6.8), design a resonator Hyes(z) that has a resonant
frequency at Fy = .4fs and a bandwidth of AF = .02f;.

Solution

For Fy = Afs,

9(] = 27TFOT
= 2n(Af)T

From (5.6.8), the pole radius r is

_ TAF

Is
_ .02 fs

Is
= 1-—.027

From Problem 5.34, the resonator filter transfer function is

c(z? —1)
Hyes =
(2) 22 —2rcos(bp)z + 12
c(z? —1)

22 — 2rcos(.8m)z + 12

The gain factor c is

| exp(j1.67) — 27 cos(.87) exp(4.87) + 72|

|(exp(j1.6m) — 1)
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Suppose the following two filters are resonators with resonant frequencies at Fy and Fj,
respectively. Write the difference equations of a double-resonator with resonant frequencies

at Fp and Fy.
boz? + b1z + by
Ho(z) = —5—— 2
zet+ a1z + a2
B(]Z2 + Bi1z + By
H J—
l(Z) 22 + A1z + Ay
Solution

From Figure 5.32, the two resonators must be in a parallel configuration. In terms of negative
powers of z

bo + blz_l + bgz_2
1+a1z71 +agz2

B(] + Blz_l + BQZ_2
1+ Alz—l + AQZ_2

Using intermediate variables uq (k) and us(k), the difference equations are

ui(k) = box(k)+ bix(k — 1)+ boz(k —2) — ajuy (k — 1) — aguq (k — 2)
’LLQ(k‘) B(]ZE(]C) + BllE( — 1) + BQJE(k‘ — 2) — Al’LLQ(k‘ — 1) — AQ’LLQ(]C — 2)
y(k) = wi(k) 4 ua(k)
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Consider the DC resonator in (5.6.14).

51 —r)(z+1)

Hdc(z) =
z—r

(a) Find the impulse response h(k).

(b) Find the difference equation.
Solution

(a) Using the residue method

h(0) = by
= 5(1—-r)

The residue of the pole at z = r is

Res(r, k) = (2 —7)Hge(2)2" 1=,
= 5(1—7r)(r+ 1)kt
= 5(1 -7kt

Thus the impulse response is

h(k) = h(0)d(k)+ Res(r,k)u(k —1)
= 5(1—7)8(k)+.5(1 — r)rF L u(k — 1)

(b) Rewriting Hq.(z) in terms of negative powers of z

51 —r) (14271

Hdc(z) = ]

1—rz

Thus

y(k) = 51 —r)zk)+z(k—1)]+ry(k—1)
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Consider the problem of designing a lowpass narrowband filter. Suppose the sampling fre-
quency is fs = 20 kHz.

(a) The desired lowpass cutoff frequency is F, = 50 Hz. Find the sampling rate reduction

factor M such that if Fy = fs/M, then the new normalized cutoff frequency will be
F. = 25F.

(b) A cascade configuration of three rate converters with rate conversion factors My, My,
M3 can be used to implement a multistage sampling rate converter. Factor M from part
(a) as follows where the maximum of { My, Ms, M3} is as small as possible.

M = M, My Ms,
Solution

(a) From (5.7.1), the sampling rate reduction factor is

(b) To get the smallest factors look for values near M'/3 = 4.64. For example

Thus the maximum of {M;, My, M3} is 5.
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Consider the filter bank with m = 2 filters shown in Figure 5.46.

(a) Find an expression for the magnitude response Ay(f) in the transition band [.2f, .3 fs].
(b) Find the 3 dB cutoff frequency Fy of the first filter.

(c) Find an expression for the magnitude response A;(f) in the transition band [.2fs, .3 fs].
(d)

)

(e) Show that the two filters form a magnitude-complementary pair with

Find the 3 dB cutoff frequency Fj of the second filter.

A(f)+A(f) = 1 (0.3)

A magnitude-complementary pair

1.5 T T T T
A, A,
1
Y o0sf -
<
0
_0-5 | | | |
0 0.1 0.2 0.3 0.4 0.5
£/f,
Figure 5.46 A magnitude-complementary pair of filters
Solution

(a)
Ao(f) = 1-10(f/fs—2) , 2<f/fs<3

(b) At the 3 dB cutoff frequency Ag(Fy) = .707.
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707 = 1—10(Fp/fs — .2)
= 1-10F/f; —2
= —1.9-10F/fs

Thus

Fy = (1.9+.707)f,/10
= 261f,

Ail(f) = 10(f/fs—2) , 2<f/fs<3

(d) At the 3 dB cutoff frequency A;(Fy) = .707.

707 = 10(Fy/fs — .2)
= 10F/f,—2

Thus

F, = 2.707f,/10
= 271f,

(e) Outside the transition band, [.2f,,.3fs] it is clear that Ay(f) + A1(f) = 1. Inside the
band

Ao(f) +Au(f) = 1-10(f/fs —.2) +10(f/fs — 2)
= 1
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Consider the filter bank with m = 2 filters shown in Figure 5.47.

(a) Find an expression for the magnitude response Ag(f) in the transition band [.22f;, .28 f;].
(b) Find the 3 dB cutoff frequency Fy of the first filter.
(c) Find an expression for the magnitude response A (f) in the transition band [.22f5, .28 f5].
(d)

)

(e) Show that the two filters form a power-complementary pair with

Find the 3 dB cutoff frequency Fj of the second filter.

A +A3(f) =1 (0.4)

A power-complementary pair

1.5 \ \
2 2
Ao Al
1
2 oosf -
Y
0
_0-5 | | | |
0 0.1 0.2 0.3 0.4 0.5
£/f
S
Figure 5.47 A power-complementary pair of filters
Solution

(a)

Ao(f) = V1-10(f/fs—2) , 2<f/f<3

(b) At the 3 dB cutoff frequency A3(Fp) = .5.
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5 o= 1-10(F/fs —.2)
= 1-10F/fs—2
= —1.9-10F/fs

Thus
Fy = 24f,/10
= .24f,
(c)
A(f) = VI0(f/fs—2) . 2<f/fs <3

(d) At the 3 dB cutoff frequency A?(F;) = .5.

5 = 10(F/f, —.2)
= 10F/f,—2

Thus

F = 25f,/10
= .25f,

(e) Outside the transition band, [.2fs,.3fs] it is clear that A3(f) + A%(f) = 1. Inside the
band

AS(f)+AT(f) = 1-10(f/fs—.2)+10(f/fs —.2)
=1
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Consider the mean square error performance criterion used for the adaptive filter in Figure
5.41.

(a) Suppose the mean square error is approximated as e(w) = e?(k). Find the gradient
vector Ve(w) = de(w)/Ow. Express your final answer in terms of the state vector of
past inputs, wu.

(b) Using your expression for Ve(w) from part (a) and the step size p, show that the following
steepest descent method for approximating w in (5.8.6) reduces to the LMS method.

Solution

(a) If e(w) = €?(k), then from (5.8.3) and (5.8.4)

Oe(w) 0e*(k)
awi awi

Thus the gradient vector is

(b) Starting with the steepest descent method for updating w
wk+1) = wk)—pVelw(k)]

= w(k)+2ue(k)u(k) , k>0
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Consider the adaptive filter shown in Figure 5.48. This configuration can be used to design
an equalizer with delay. Here G(z) is a stable IIR filter. Suppose the adaptive filter converges
to an FIR filter H(z) with error e(k) = 0. Let

(a) Show that Gequal(#) is an allpass filter with Aequal(f) = 1.
(b) Show that Gequal(2) is a linear-phase filter with ¢equal(f) = —27MT'f.

Y

Q
—~

I
SN—

aptive (F) (
A(}ﬂf‘; - - +>
7 e(k)

Figure 5.48 Equalizer Design using an Adaptive Filter

Solution

(a) If e(k) =, then

Thus

Y(Z) - Goqual(z)X(z)
= z_MX(Z)

It follows that
Goqual(z) = Z_M
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The magnitude response is

Aequal(f) = |G0qual(z)|z=exp(j27rfT)
- |z_M|z=exp(j27rfT

— Jexp(—j2nM/T)|
=1

(b) From part (a), Gequal(z) = 2~™. Thus the impulse response is

gcqual(k) = Z_l{z_M}
= 0(k—M)

The filter Gequal(2) can be regarded as a filter of order m = 2M. Then from Proposition
5.2, the symmetry condition for a linear-phase filter is

Gequal(Mm — k) = gequal(2M — k)
— 62M —k— M)

5(M — k)

5(k — M)

= Gequal(k)

Therefore Gequal(2) is a linear-phase FIR filter. The frequency response is

Gequal(f) = Gequal(Z) |z=0xp(j27rfT)

-M
z |z:oxp(j27rfT)
exp(—j2mrMTf)

= A(f) expljo(f)]

Thus the linear phase response is

¢oqua1(f) = —2rMTf
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Use the GUI module g_filters to analyze an IIR bandpass filter. Reduce the number of bits
of precision NV until the quantized filter first goes unstable. Then increase N by one.

(a) Plot the magnitude response

(b) Plot the pole-zero pattern

Solution
Direct Butterworth IIR filter: n=18, m=18, c=32, g=0.00195313, e = 0.69124
1.5 T T T T T T
Unquantized
Quantized, N = 1§
Specifications
1 - -
4
<:
051 4
0 I I I
0 100 200 300 400 500 600 700 800 900 1000

f/f
s

Problem 5.43 (a) Quantized Magnitude Response
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Unquantized pole-zero plot Quantized pole-zero plot: N = 15
2 2

Im(
o
Im(

-2 -1 0 1 2 -2 -1 0 1 2
Re (z) Re (z)

Problem 5.43 (b) Pole-Zero Plots
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Vv Use the GUI module g_filters and select an IIR highpass filter. Adjust the number of bits of
precision N to highest value that still makes the quantized filter go unstable.

(a) Plot the unstable pole-zero plot

(b) Increase N by one so the quantized filter becomes stable. Then plot the impulse response.

Solution
Unquantized pole-zero plot Quantized pole-zero plot: N = 12
2 2
1 1
Gl G
£ 0 £ 0
(=] (=
-1 -1
-2 -2
-2 -1 0 1 2 -2
Re (z) Re (z)

Problem 5.44 (a) Unstable Pole-Zero Plot
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Impulse response Quantized impulse response: N = 13

0.4 0.4
0.2 0.2
Z 9 J “ Hh.%.,, R mmﬁ ‘H In L; ALAEALIELH
F o N
—0.2 -0.2
-0.4 -0.4
0 50 100 0 50 100
k k

Problem 5.44 (b) Stable Impulse Response
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Use the GUI module g_filters and select the User-defined filter option. Load the filter in
MAT-file prob5_45. Set the number of bits for coefficient quantization to N = 10.

Plot the magnitude response using a direct form realization.

(a)
(b) Plot the phase response using a direct form realization.
(c)

)

(d) Plot the phase response using a cascade form realization.

Plot the magnitude response using a cascade form realization.

Solution

:d filter from file C:\rjs\books\book4\_2e\chap5\prob\prob5_45.mat: n=8, m=8, c=4, g=0.0078125, e
1.5 T T T T T T T

I I
Unquantized
Quantized, N =1

A(f)

—— | | | ——

L L
0 100 200 300 400 500 600 700 800 900 1000
f£/f

Problem 5.45 (a) Direct Magnitude Response
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1ser-defined filter from file C:\rjs\books\book4\_2e\chap5\prob\prob5_45.mat: n=8, m=8, c=4, g=0.
4

T T T T T T T I
Unquantized
Quantized, N =1
2 -
< 0
2+
4 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

f£/f
s

Problem 5.45 (b) Direct Phase Response

:d filter from file C:\rjs\books\book4\_2e\chap5\prob\prob5_45.mat: n=8, m=8, c=4, g=0.0078125, e

1.5 T T T T T T T I T
Unquantized
Quantized, N =1
1 - -
u
I
051 i
0 T — L L L = T
0 100 200 300 400 500 600 700 800 900 1000

f£/f
s

Problem 5.45 (c) Cascade Magnitude Response
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user-defined filter from file C:\rjs\books\book4\_2e\chap5\prob\prob5_45.mat: n=8, m=8, c=4, g=0.
4

T T T T T T T I I
Unquantized
Quantized, N =1
2,
< 0
2+
4 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

f£/f
s

Problem 5.45 (d) Cascade Phase Response
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V Use the GUI module g_filters and select an FIR bandstop filter. Adjust the number of bits of
precision N until the quantization level g is larger than .005.

(a) Plot the magnitude response.

(b) Plot the pole-zero plot

Solution
Direct Butterworth IIR filter: n=18, m=18, c=16, g=0.0078125, e = 0.269151
1.5 T T T T T T
1 B —
5
«
051 i
Unquantized
Quantized, N = 17
Specifications
0 I I I I T T
0 100 200 300 400 500 600 700 800 900 1000
f/f

Problem 5.46 (a) Magnitude Response
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Unquantized pole-zero plot Quantized pole-zero plot: N = 12

2 2
] ; o o)
— —~ X | X
<0 S0
-1 -1
o (o]
_2 -2
-2 -1 0 1 2 -2 -1 0 1 2
Re (z) Re (z)

Problem 5.46 (b) Pole-zero Plot
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Use the GUI module g_filters and select an FIR lowpass filter. Adjust the parameter values
to fs = 100 Hz, Fy = 30 Hz, and B = 10 Hz.

(a) Plot the magnitude response using the dB scale.
(b) Plot the phase response.
(c) Plot the impulse response. Is this a linear-phase filter? If so, what type?

Solution

Direct windowed FIR filter: m=60, c=1, g=1.52588e-005

0 T T T
ﬁﬂ‘i\\\\\\\ Unquantized
Quantized, N = 17
Specifications
-10 n
m
)
-20
)
<
=30
—40 L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
£f/£

Problem 5.47 (a) Logarithmic Magnitude Response
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Direct windowed FIR filter: m=60, c=1, g=1.52588e-005

4 T T T T T T I I
Unquantized
Quantized, N = 1

2r ,

< 0
. "
_4 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

f/f
s

Problem 5.47 (b) Phase Response

(c) Yes, thisis type 1 linear-phase filter with even order and even symmetry about k = m/2.

Impulse response Quantized impulse response: N = 17
0.6
0.6
0.4 0.4
0.2 { 0.2
< et lll e, < enllln,
< 0 T = 0 T8
< [ < I
-0.2 -0.2
-0.4 _0.4
-0.6
-0.6
-0.8
0 20 40 60 0 20 40 60
k k

Problem 5.47 (c) Impulse Response
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Consider the following running average filter. Create a MAT-file called prob5_48.mat that
contains fs = 300, a, and b for this filter.

1

gk = o> wlk—1)

9
i=0
Use the GUI module g_filters with the User-defined option to load this filter.
(a) Plot the magnitude response.
(b

)

) Plot the phase response.
(c) Plot the pole-zero plot.

)

(d) Plot the impulse response. Is this a linear-phase filter? If so, what type?

Solution

rect user-defined filter from file prob5_48.mat: n=0, m=9, c=1, g=1.52588e-005, €rax = 6.10352e-0(

1.5 T T
Unquantized
Quantized, N =1

A(f)

0.5

0 L I
0 50 100 150
f/f

Problem 5.48 (a) Magnitude Response
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Direct user-defined filter from file

prob5_48.mat:

n=0, m=9, c=1,

g=1.52588e-005

2 T T
Unquantized
Quantized, N = 1
1 i
0 —
<
1
2 -
_3 I I
0 50 100 150
f/fq
Problem 5.48 (b) Phase Response
Unquantized pole-zero plot Quantized pole-zero plot: N = 17
1 1
Gl G
z 0 x - 0 L3
(=] (=]
-1 -1
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
Re (z) Re (z)

Problem 5.48 (c) Pole-Zero Plot
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(d) Yes, thisis a type 2 linear-phase filter with odd order and even symmetry about k = m/2.

Impulse response Quantized impulse response: N = 17
0.1
0.1
0.05 0.05
£ 0 ER
< <
_0.05 -0.05
-0.1
-0.1
-10 0 10 -10 0 10

k k

Problem 5.48 (d) Impulse Response
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The derivative of an analog signal x,(t) can be approximated numerically by taking differences
between the samples of the signal using the following first-order backwards FEuler differentiator.

S~ SR —;(k: 1)

Create a MAT-file called prob5_49.mat that contains fs = 10, @ and b for this filter. Then
use GUI module g_filters with the User-defined option to load this filter.

(a) Plot the magnitude response.
(b) Plot the phase response.
(c) Plot the impulse response. Is this a linear-phase filter? If so, what type?

Solution

Direct user-defined filter from file prob5_49.mat: n=0, m=1, c=16, g=0.000244141, €oox = 0

20 T T T T T T T T
151 B
<10l R
<
5 |
Unquantized
0 | | | | | | | Quantized, N = 17
0 0.5 1 1.5 2 25 3 35 4 4.5 5

f/f
s

Problem 5.49 (a) Magnitude Response
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n=0, m=1, c=16, g=0.000244141
I

Direct user-defined filter from file prob5_49.mat:

2 T T T I
Unquantized
Quantized, N = 1
1.5) B
< 1 -
0.5 i
0 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 45 5

£f/f
s

Problem 5.49 (b) Phase Response

(c) Yes, this is type 3 linear-phase filter with odd order and odd symmetry about k& = m/2.

Impulse response Quantized impulse response: N = 17
10 10
5 5
£ 0 <0
< <
-5 -5
-10 -10
-10 -5 0 5 10 -10 -5 0 5 10
k k

Problem 5.49 (c) Impulse Response
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A notch filter is a filter that is designed to remove a single frequency. Consider the following
transfer function for a notch filter.

9766(1+ 271 + 272)
14 .97642—1 4 953422

H(z) =

Create a MAT-file called prob5_50.mat that contains fs = 1000, and the a and b for this filter.
Then use the User-defined option of GUI module g_filters to load this filter. Set N = 6 bits.

(a) Plot the magnitude response. Use the Caliper option to estimate the notch frequency.
(b) Plot the phase response.
(c) Plot the pole-zero pattern.

Solution

Direct user-defined filter from file prob5_50.mat: n=2, m=2, c=1, g=0.03125, Coax = 0.376828

1.4 T T T T T T : ‘ :
Unquantized
2r Quantized, N =
1
~ 081
ol
< 0.6
0.4
0.2
0 L 1 1 L | | (X,y) = (332.81,0.09)
0 50 100 150 200 250 300 350 400 450 500

f£/f
s

Problem 5.50 (a) Magnitude Response

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

454



Direct user-defined filter from file prob5_50.mat: n=2, m=2, c=1, g=0.03125
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Problem 5.50 (b) Phase Response
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Problem 5.50 (c) Pole-Zero Plot
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Consider the following IIR filter.

14175272 — 5274

H —
(2) 1+ 409624

(a) Write a MATLAB program that uses f-minall to compute and print the coefficients of
the minimum-phase and allpass parts of H(z).

(b) Use the MATLAB subplot command to plot the magnitude responses A(f), Amin(f) and
Aan(f) on a single screen using three separate plots.

(c) Repeat part (b), but for the phase responses.

(d) Use f_pzplot to plot the poles and zeros of H(z), Huin(z) and Hay(z) on one screen using
three separate square plots.

Solution

% Problem 5.51
% Initialize

f_header (’Problem 5.51°)
b=1[101.750 -0.5]
a=1[1000 0.4096]

N = 100;

fs = 1;

% Decompose H(z) and display coefficients

[B_min,A_min,B_all,A_all] = f_minall (b,a);
B_min = real(B_min)

A_min

B_all

A_all

% Plot magnitude responses

[H,f] = f_freqz (b,a,N,fs);

[H_min,f] = f_freqz (B_min,A_min,N,fs);
[H_all,f] = f_freqz (B_all,A_all,N,fs);

figure

subplot (3,1,1)

plot (f,abs(H));

f_labels (’Magnitude Responses’,’f/f_s’,’A(£)’)
subplot (3,1,2)

plot (f,abs(H_min));
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f_labels (’’,’f/f_s’,’A_{min}(f)’)
subplot (3,1,3)

plot (f,abs(H_all));

axis ([0 0.5 0 2])

f_labels (’’,’f/f_s’,’A_{all}(f)’)
f_wait

% Plot phase responses

figure

subplot (3,1,1)

plot (f,angle(H));

f_labels (’Phase Responses’,’f/f_s’,’\phi(f)’)
subplot (3,1,2)

plot (f,angle(H_min));

f_labels (’’,’f/f_s’,’\phi_{min}(£)’)
subplot (3,1,3)

plot (f,angle(H_all));

f_labels (’’,’f/f_s’,’\phi_{all}(£)’)
f_wait

% Plot pole-zero patterns

figure

subplot (2,2,1)

f_pzplot (b,a,’Original System’)

subplot (2,2,2)

f_pzplot (B_min,A_min,’Minimum-Phase Part’)
subplot (2,2,3)

f_pzplot (B_all,A_all,’Allpass Part’)
f_wait

(a) The coefficients are

b =

1.0000 0 1.7500 0 -0.5000
a =

1.0000 0 0 0 0.4096
B_min =

2.0000 -0.0000 0.5000 0.0000 -0.2500
A_min =

1.0000 0 0 0 0.4096
B_all =

0.5000 0.0000 1.0000
A_all =

1.0000 0.0000 0.5000
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Problem 5.51 (c) Phase Responses
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V A comb filter (see Chapter 7) is a filter that extracts a set of isolated equally spaced frequencies
from a signal. Consider the following comb filter that has n teeth.

Here the filter gain is bg = 1 — r™. Suppose n = 10, r = .98, and f; = 300 Hz. Write a
MATLAB program that uses f_ freqz to compute the frequency response. Compute both the
unquantized frequency response (set bits = 64), and the frequency response with coefficient
quantization using f quant with N = 4 bits. Plot both magnitude responses on a single plot
using the linear scale and a legend.

Solution

% Problem 5.52
% Initialize
f_header (’Problem 5.52°)

n = f_prompt(’Enter filter order’,0,50,10);
bits = f_prompt(’Enter number of bits’,1,64,4);

r = 0.98;

b=1-r"n

a = [1,zeros(1,n-1),r"n]
fs = 300;

realize = 0;
% Compare original and quantized magnitude responses

p = 500;

[H,f] = f_freqz (b,a,p,fs,64,realize);
[H_q,f] = f_freqz (b,a,p,fs,bits,realize);
A = abs(H);

A_q = abs(H_q);

figure

hi = plot (f,A,f,A_qQ);

set (h1(1),’LineWidth’,1.5)

f_labels (’Magnitude Responses’,’f (Hz)’,’A(f)’)
s = sprintf (’Quantized, N=Yd’,bits);
legend (’Unquantized’,s)

f_wait
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Magnitude Responses
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Problem 5.52 Magnitude Responses of Comb Filter
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An inverse comb filter (see Chapter 7) is a filter that eliminates a set of isolated equally-spaced
frequencies from a signal. Consider the following inverse comb filter that has n teeth.

bo(1—27")
1—rnzm

H(z)

Here the filter gain is by = (1 + r™)/2. Suppose n = 8 and r = .96. Suppose n = 10,
r = .98, and f; = 300 Hz. Write a MATLAB program that uses f freqz to compute the
frequency response. Compute both the unquantized frequency response (set bits = 64), and
the frequency response with coefficient quantization using f_quant with N = 4 bits. Plot both
magnitude responses on a single plot using the linear scale and a legend.

Solution

% Problem 5.53
% Initialize

f_header (’Problem 5.53°)

n = f_prompt(’Enter filter order’,0,50,10);
bits = f_prompt(’Enter number of bits’,1,64,4);
r 0.96;

b_0 = (1 + r’n)/2;

b = b_0%[1, zeros(1l,n-1), -1]

a [1,zeros(1,n-1), -r"n]

fs = 200;

realize = 0;

% Compare original and quantized magnitude responses

p = 500;

[H,f] = f_freqz (b,a,p,fs,64,realize);
[H_q,f] = f_freqz (b,a,p,fs,bits,realize);
A = abs(H);

A_q = abs(H_q);

figure

hi = plot (f,A,f,A_qQ);

set (h1(1),’LineWidth’,1.5)

f_labels (’Magnitude Responses’,’f (Hz)’,’A(f)’)
s = sprintf (’Quantized, N=Jd’,bits);
legend (’Unquantized’,s)

f_wait
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Magnitude Responses
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Problem 5.53 Magnitude Responses of Inverse Comb Filter
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Consider the following FIR system.

G(z) = 3—4z 14224723 4427149275

Suppose G(z) is driven by N = 500 samples of white noise x(k) uniformly distributed over
[—10,10]. Let D(z) = G(2)X (z) represent the desired output. Write a MATLAB program
that performs the following tasks.

(a) Compute the optimal weight w for an adaptive transversal filter of order m using the
LMS method. Start from an initial guess of w(0) = 0 and choose a step size p that
ensures convergence. Compute and display the final w for three cases: m = 3, m = 5,
and m = 7. Also display the coefficient vector b of G(z).

(b) Let H(z) be the transfer function of the transversal filter using the final weights when
m = 7. Create a 2 x 1 array of plots. Plot the magnitude responses of G(z) and H(z) on
the first plot with a legend. Plot the phase responses of G(z) and H(z) on the second
plot with a legend.

Solution

% Problem 5.54
% Initialize

f_header (’Problem 5.54°)

N = 500;

c = 10;

x = f_randu(N,1,-c,c);

mu = f_prompt(’Enter the step size mu’,.00001,.01,.001);
b=1[3-427409]

d = filter(b,1,x);

% Compute w using LMS method

form = [3 5 7]

w = zeros(m+1,1);
u = zeros(m+1,1);
y = zeros(N,1);

for k=1 : N-1
u =[xk ; u(l:m];
y = w’¥u;
ek) = dk) - y;
w = w + 2xmuxe(k)*u;
end

m
w
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end
% Plot the last case

M = 100;
fs =1
[G,f] f_freqz(b,1,M,fs);

[H,f] = f_freqz(w,1,M,fs);

Ag = abs(G);

phig = angle(G);

Ah = abs(H);

phih = angle(H);

subplot(2,1,1)

hp = plot(f,Ag,f,Ah);
set(hp(2),’LineWidth’,1.5);

f_labels (’Magnitude Responses’,’f/f_s’,’A(£)’)
legend (’A_g(£f)’,’A_h(z)’)

subplot(2,1,2)

hp = plot(f,phig,f,phih);
set(hp(2),’LineWidth’,1.5);

f_labels (’Phase Responses’,’f/f_s’,’\phi(f)’)
legend (’\phi_g(£)’,’\phi_h(£)’)

f_wait

| -

(a) Enter the step size mu (1e-005 to 0.01, default: 0.001):

b =
3 -4 2 7 4 9
m =
3
W =
-0.8970
-1.3557
2.5336
7.6154
m =
5
W =
3.0000
-4.0000
2.0000
7.0000
4.0000
9.0000
m =
7
W =
3.0000
-4.0000
2.0000
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Problem 5.54 (b) Magnitude and Phase Responses
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Chapter 6

Consider the following noise-corrupted periodic signal. Here v(k) is white noise uniformly
distributed over [—.5,.5].

x(k) = 3+ 2cos(.27k)
y(k) = 2(k)+ (k)

(a) Find the average power of the noise-free signal, z(k).
(b) Find the signal to noise ratio of y(k).
(c) Suppose y(k) is sent through an ideal lowpass filter with cutoff frequency, Fy = .15 to

produce z(k). Is the signal x(k) affected by this filter? Find the signal-to-noise ratio of
z(k).

Solution

(a) Using the trigonometric identities from Appendix 2,

22(k) = 94 6cos(.2mk) + 4 cos®(.27k)

1 + cos(.4mk)
=]
= 11+ 6cos(.2mk) + 2 cos(.4mk)

= 9+ 6cos(.2mk) +4 [

Thus the average power of the noise-free signal is

P, = Blz*(k)
= 11

(b) From Appendix 2 the average power of white noise uniformly distributed over [—¢, c] is
P, = c?/3. Thus P, = 1/12 and from Definition 6.1, the signal to noise ratio is

Py
SNR(y) = 10log;, (F)

v

= 1010g10 <i>
1/12
10 logy(132)
= 21.2057 dB
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(c) The frequencies present in the signal are fo = 0 and f; where

2r fikT = 27k

The frequency of the cosine term is

2
o= 55

= 1f;

Thus z(k) is not distorted by the filtering. However, since Fyy < fs/2, the average power
of the noise is reduced as follows.

B Fy \ 1
fo = (fs—/z>ﬁ
3

12
= .0235

Thus the new signal to noise ratio is

Py
SNR(Z) = 1010g10 (6—P>

— 101 1
= 00810\ Tpa35
—  26.7069 dB
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Consider the problem of designing an mth order type 3 linear-phase FIR filter having the
following amplitude response.

Ar(f) = sin@nfT) , 0<f<fsf2

(a) Assuming m = 2p for some integer p, find the coefficients using the windowing method
with the rectangular window.

(b) Find the filter coefficients using the windowing method with the Hamming window.

Solution
(a) Using the trigonometric identities from Appendix 2 and (6.2.9) we have

A (f)sin2n(k — .5m) fT] = sin(2xfT)sin]27(k — p) fT]
cos[2m(k —p — 1) fT] — cos[2n(k —p+ 1) fT]
2

Thus from (6.2.9) the desired impulse response is

Fs/2 ( cos[2m(k —p — —cos|2m(k —
iy = —or [ ol p WIT] ot pt DI

fs/2
_ —T/O {cos[2n(k — p — V) FT] — cos[2r(k — p+ 1) FT]}df

sin2m(k —p— 1) fT]  sin[2x(k —p+ 1) 7]\ |”*/*
_T{ 2r(k—p—1)T - 2r(k—p+1)T }0 ) k#p+1

When k=p+1

fs/271
hip+1) = _2T/0 [M] df
_Tfs

Similarly, when k =p — 1
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hp—1) = _2T/Ofs/2 [COS(—47Tft)—1] if

2
_T(_fs)

2

1
2

Thus the filter coefficients using the rectangular window are

h(k) = Bok—p—1)—35k—p+1)]
S, k=p+1
= -5 , k=p-1
0 , otherwise

(b) Using (6.2.12) and Table 6.2, the numerator coefficients using the Hamming window are

b = w(i)h(i)
= Slwlp+1)i(i—p—1) —wlp-1)0(—p+1)]
5{.54— 46cos[r(p+1)/p]} , i=p+1
= —.5{.54 — 46 ¢cos[mr(p—1)/p]} , zp -1
0 , otherwise

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

470



Suppose a lowpass filter of order m = 10 is designed using the windowing method with the
Hanning window and f; = 2000 Hz.

(a) Estimate the width of the transition band.
(b) Estimate the linear passband ripple and stopband attenuation.
(c) Estimate the logarithmic passband ripple and stopband attenuation.

Solution

(a) Using Table 6.3, the normalized width of the transition band is

N 3.1
B ~ 22—
m
= 31
Thus the width of the transition band is
B = st
= .31(2000)
= 620 Hz

(b) From Table 6.3, the linear passband ripple and stopband attenuation are

5, = .0063
5, = .0063

(c) From Table 6.3, the logarithmic passband ripple and stopband attenuation are

A, = .055dB
A, = 44 dB
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V Consider the problem of using the windowing method to design a lowpass filter to meet the
following specifications.

(fs, Fp, Fs) = (200,30,50) Hz
(A,, As) = (.02,50) dB

(a) Which types of windows can be used to satisfy these design specifications?

(b) For each of the windows in part (a), find the minimum order of filter m that will satisfy
the design specifications.

(c) Assuming an ideal piecewise-constant amplitude response is used, find an appropriate
value for the cutoff frequency Fr.

Solution

(a) From Table 6.3, the only windows that satisfy the passband ripple and stopband atten-
uation specifications are the Hamming and the Blackman windows.

(b) The normalized transition bandwidth required is

B _ |FS_F:D|
Is
|50 — 30|

100
= .2

For the Hamming window, the normalized transition bandwidth is B = 3.3/m. Thus

3.3/m= 2or
. (3.3)
m = ceil | —
2

= ceil(16.5)
= 17

For the Blackman window, the normalized transition bandwidth is B = 5.5/m. Thus

5.5/m = .2 or
1 5.9
m = ceil | —
2

= ceil(27.5)
= 28

Thus the Blackman window requires a higher order filter to meet the transition band-
width specification, but it has superior passband ripple and stopband attenuation.
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(¢) The ideal cutoff frequency should be placed in the middle of the transition band. Thus

Fp+F
Fczipgs

= 40 Hz
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Suppose the windowing method is used to design an mth order lowpass FIR filter. The
candidate windows include rectangular, Hanning, Hamming, and Blackman.

(a) Which window has the smallest transition band?
(b) Which window has the smallest passband ripple, A,7
(¢) Which window has the largest stopband attenuation, A4?

Solution

(a) From Table 6.3, the rectangular window has the smallest transition band with a normal-
ized transition bandwidth of B = .9/m.

(b) From Table 6.3, the Blackman window has the smallest passband ripple with A, = .002
dB.

(c) From Table 6.3, the Blackman window has the largest passband attenuation with A, = 75
dB.
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A linear-phase FIR filter is designed with the windowing method using the Hanning window.
The filter meets its transition bandwidth specification of 200 Hz exactly with a filter of order
m = 30.

(a) What is the sampling rate, f?

(b) Find the filter order needed to achieve the same transition bandwidth using the Hamming
window.

(c) Find the filter order needed to achieve the same transition bandwidth using the Blackman
window.

Solution

(a) From Table 6.3, the Hanning window has a normalized transition bandwidth of B =
3.1/m. The actual transition bandwidth is B = Bfs. Thus 3.1fs/m = 200 where
m = 30. Solving for fs yields

~200(30)
ko= 3.1

= 1935.5 Hz

(b) The required normalized transition bandwidth is

- 200
B

fs
= .1033

Using Table 6.3, the Hamming window has a normalized transition bandwidth of 3.3 /m.
Thus the required filter order is
1 3.3
= 1 _—
o= 1033

= ceil(31.9355)
= 32

(c) Using Table 6.3, the Blackman window has a normalized transition bandwidth of 5.5/m.
Thus the required filter order is
1 5.9
= 1 e
T T 033

ceil(53.2258)
= 54
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Consider the problem of designing an ideal linear-phase bandstop FIR filter with the win-
dowing method using the Blackman window. Find the coefficients of a filter of order m = 40
using the following cutoff frequencies.

(fss Fa, F2) = (10,2,4) kHz

Solution

From Table 6.1 with m = 40 and p = 20, the bandstop impulse response is

sin[2m(k — p)F1T| — sin[27(k — p) FsoT

h(k) =

2
_ sin[27(k — 20).2] — sin[27(k — 20).4]
B 2
_ sin[.4m(k — 20)] ; sin[.87(k — 20)] k42

At k = p we have

h(20) = 1—2(Fs— Fyq)T
= 1-2(4-.2)
= 6

Using (6.2.12) and Table 6.2, the numerator coefficients for a Blackman window are as follows
when i # 20

b = w(i)h(i)
= .5[.42 — .5cos(mi/20) + .08 cos(27i/20)]{sin[.47 (7 — 20)] — sin[.87 (i — 20)]}

When i = 20,

b20 = w(20)h(20)
= [42+4 .5+ .08].6
= .6
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Consider the problem of designing a type 1 linear-phase windowed FIR filter with the following
desired amplitude response.

Ar(f) = cos(nfT) ,  O0<|fI<fs/2

Suppose the filter order is even with m = 2p. Find the impulse response h(k) using a
rectangular window. Simplify the expression for h(k) as much as possible.

Solution

Using the trigonometric identities from Appendix 2 and (6.2.6)

A (f)cos]2m(k — .5m)fT] = cos(wfT)cos[2n(k — p)fT]
_ cos[2m(k — p+ .5) fT]| + cos[2m(k — p — .5) fT
2

Thus from (6.2.6) the desired impulse response is

fs/2 Ccos|2m(K — . cos|2m(Kk —p — .
bk = 2T/0 { 2rth —p + S)IT1 + o2l 5)fT]}df

f5/2
= T/O {cos[2m(k —p+ .5) fT] + cos[2m(k — p — .5) fT] }df

_ 7 {sin[QW(k‘ —p+.5)fT]  sin2n(k—p—.5)fT] } fs/2
N 2r(k—p+.5)T 2m(k —p—.5)T 0
_ sin[r(k —p+.5)] sin[r(k—p—.5)]
2n(k—p+.5) 2n(k —p—.5)
_ sin[w(k — p)] cos(mw/2) + cos[w(k — p)] sin(7/2) N sin[r(k —p — .5)]
2n(k—p+.5) 2n(k —p—.5)
_ cos[m(k —p)] = sin[r(k — p)]cos(m/2) — cos[n(k — p)] sin(m/2)
2n(k—p+.5) 2n(k —p—.5)

cos[r(k—p)]  cos[r(k—p)]
2n(k—p+.5) 2w(k—p—.5)

(=R 1 1
N 27 k—p+.5 k—p—.5
(=)t

— 0<k<2?2
on[(k—p)2—25 = =P
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Consider the problem of designing a type 1 linear-phase bandpass FIR filter using the fre-
quency sampling method. Suppose the filter order is m = 60. Find a simplified expression
for the filter coefficients using the following ideal design specifications.

(fs, Fp1, Fp2) = (1000, 100,300) Hz

Solution

One can use Example 6.4 as a guide. From the bandpass specifications, the desired amplitude
response is

0, O0<Z|[fI<.1fs
Ar(f) = 1 ) 1fs§|f|§3fs
0 , 3fs<|f| < fs/2

From (6.3.1), the ith discrete frequency is f; = ifs/N where N = m + 1 = 61. Hence the
samples of the desired frequency response are

0, 0<i<6
Afi) = ¢ 1, 6<[f]<18
0, 18<|fl <30

From (6.3.2), the filter coefficients are

floor(m/2

) .

A, (0) 2 27i(k — .5m)

- A (fi) cos | TEE— 2T
e m—|—1+m—|—1 ZZ:% (f)cos[ m+1
30 .

2N 4 () cos 27i(k — 30)

61 = 61

2 & 27i(k — 30)
- = TR = 9 <k<

1 Z':Gcos[ &1 ] , 0< k<60
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Vv Consider a type 3 linear-phase FIR filter of order m = 2p. Find a simplified expression for
the amplitude response A,.(f) similar to (6.4.7), but for a type 3 linear-phase FIR filter.

Solution

Starting from (6.4.5), the frequency response of H(z) can be expressed as follows where

0=2nfT.
H(f) = exp(—jr0) ) biexp[—j(i—r)0]
i=0
For a type 3 filter of order m, the odd symmetry constraint is b,,,_; = —b;. Since m is even for

a type 3 filter, the middle or rth term can be separated out. Euler’s identity from Appendix
2 then can be used to combine the remaining pairs of terms as follows.

H(f) = exp(—jr@){br+§biexp[—j<z'—r>e1 by expl—j(m — i — )]}
— exp(—jr0) gbi{exp[—m —1)0] — exp[—j(m — i — )]}
) ébi{exp[—m —r)0] — expli(i — r —m +2r)0])
) gbi{exp[—m —1)0] — explji - )6}

— —j2exp(—jrb) ;lb sin[(i — 1)0)]

= jexp(—jro)A.(f)

Here b, = 0 due to the odd symmetry. Recall that 8 = 27 fT. Thus the amplitude response
for a type 3 linear-phase filter is

r—1

A(f) = =2 bisin[2m(i — ) fT]

=0
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Use the results of Problem 6.10 to derive the normal equations for the coefficients of a least-
squares type 3 linear-phase filter. Specifically, find expressions for the coefficient matrix G
and the right-hand side vector d, and show how to obtain the filter coefficients from the
solution of the normal equations.

Solution

From (6.4.3) and the results of Problem 6.10, the least-squares objective function is

Tpb) = Y w@)[A(F) — Aa(F)]
=0

P r—1
= Y w(@)[-2 bisin2n(k — r)FT] — Aa(F))?
=0 k=0

Similar to the derivation in Section 6.4 for a type 1 FIR filter, let G be the following (p+1) xr
matrix and let d be the following (p + 1) x 1 column vector.

Gy = —2w(i)sin2n(k—r)FT] 0<i<p 0<k<r
di = w(i)Aq(F) , 0<i<yp

Then the objective function can be written in vector form as

J,(b) = (Gb—d)T(Gb—d)

From (6.4.12), the coefficient vector b which minimizes J,(b) is then

b = (GrG)~'GTd

Thus yields {bg, - ,b,—1}. From the odd symmetry condition, b,,—; = b; for 0 < i < r and
b, = 0.
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Suppose the equiripple design method is used to construct a highpass filter to meet the
following specifications. Estimate the required filter order.

Solution

(fs, Fs, F,) = (100,20, 30) kHz
(Ap, Ay) (.2,32) dB

Using (5.2.8), the passband ripple is

5, = 1—10"4/%0
= .0228

Similarly, the stopband attenuation is

5 = 1074/
= 0251

The normalized transition bandwidth is

|F:n_FS|

Finally, from (6.5.21) the estimated equiripple filter order is

© 2012 Cengage Learning. All Rights Reserved.

_ Ceﬂ { _[1010g10(5;058) + 13] + 1}

14.6B
. [ —[101og;o{.0228(.0251)} + 13]
—  ceil 1
cet { 14.6(.1) "
= 15
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Consider the problem of constructing an equiripple bandstop filter of order m = 40. Suppose
the design specifications are as follows.

(fs,Fpl,Fsl,Fsg,Fpg) = (200,20, 30,50, 60) Hz
(6,,05) = (.05,.03)

(a) Let r be the number of extremal frequencies in the optimal amplitude response. Find a
range for r.

Find the set of specification frequencies, F'.
Find the weighting function w(f).
Find the desired amplitude response Ay(f).

The amplitude response A, (f) is a polynomial in z. Find z in terms of f, and find the
polynomial degree.

Solution

(a) From Proposition 6.1, the number of extrema frequencies is at least 7 = p + 2 where
p =m/2. This implies r > 22. For a bandpass or bandstop filter the maximum number
of extremal frequencies is r = p+5 = 25. Thus the number of extremal frequencies must
satisfy:

(b) From Table 6.4 and the design specifications, the set of specification frequencies for the
bandstop filter is

F = [0, Fpl] U [FsL Fs2] U [Fp2a fs/2]
= [0,20] U [30,50] U [60, 100]

(c) From the design specifications, d5/d, = .6. Thus, from (6.5.7), the weighting function is

(.6, fe€][0,20]U[50,100]
wlf) = {1 : f € [30, 50]
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(d) The desired amplitude response for the bandstop filter is

1, 0<f<20
Aq(f) = 0, 30<f<50
1, 60<f<100

(e) From(6.5.5), A,(f) is a polynomial in = where

x = cos(2rfT)

Since the kth Chebyshev polynomial is of degree k, it follows from (6.5.5) that A,(f) is
a polynomial in z of degree p = m/2 = 20.
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Consider the problem of constructing an equiripple lowpass filter of order m = 4 satisfying
the following design specifications.

(fs; Fp, Fs) = (10,2,3) Hz
(510753) = (05,1)

Suppose the initial guess for the extremal frequencies is as follows.

(Fo, F1, Fo, F3) = (0, Fy, F, fs/2)

(a) Find the weights w(F;) for 0 <14 < 3.
(b) Find the desired amplitude response values Aq(F;) for 0 < ¢ < 3.
(c) Find the extremal angles §; = 2w F;T for 0 < ¢ < 3.

)

(d) Write down the vector equation that must be solved to find the Chebyshev coefficient
vector d and the parameter §. You do not have to solve the equation, just formulate it.

Solution

(a) Using (6.5.7), the weight vector for the lowpass filter is

w = [w(0), w(Fy), w(Fy), w(fs/2)]"
= [65/0,,084/6,,1,1]
= [2,2,1,1]";

(b) The desired amplitude response vector for the lowpass filter is

Ag = [A4(0), Aa(F,), Aa(Fy), Aa(fs/2)]"
= [1,1,0,0"

(c) The extremal angles 0; = 2w F;T are

0 = 2nT[Fy, F, Fy, F3]"
= 27T[0, Fy, Fy, f5/2]"
= .27[0,2,3,5]7
= 7[0,.4,.6,1]T
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(d) Since m = 4, the vector of unknowns is ¢ = [dg, d1, d, §]*. From (6.5.20) the coefficient
matrix is

cos(fp) cos(26p) 1/W(Fp) _|

D - cos(f1) cos(201) —1/W(Fy)
cos(fz) cos(202) 1/W(Fy) J

| 1 cos(f3) cos(265) —1/W(F3)

cos(0) cos(0) -5
cos(2nF,T)  cos(4mF,T) —.5
cos(2nF,T)  cos(4mF,T) 1

cos(2m fT'/2) cos(4mfT/2) —1

1 1 )
cos(.4m) cos(.8m) —.5 }
cos(.6m) cos(l.2w) 1 J

—_ = = = —_ = = = —_ = =

-1 1 -1

The right hand side vector is A4 from part (b), and the equations which must be solved are
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Consider the problem of designing a filter to approximate a differentiator. Use the frequency
sampling method to design a type 3 linear-phase filter of order m = 40 that approximates
a differentiator, but with a delay m/2 samples. That is, find simplified expressions for the
coeflicients of a filter with the following desired amplitude response.

Ar(f) = 27TfT

Solution

From (6.3.1), the ith discrete frequency is f; = ifs/N where N = m + 1 = 41. Thus the
samples of the desired frequency response are

Ar(fz) = 27TfZT

2me

N

2me

= N<e < 2
m+1 ’ <i<m/
2me

= — <73 <2
i1 , 0<:<20

From (6.3.6), the filter coefficients are

floor(m/2)

2 2mi(k — .5m)
b, = e Z A (f) sm[ | ]

_ ;_12 ;Af(fi) - [277@'(121— 20)]

—2 & 2mi . [2mi(k — 20)
— —sin | ————
41 =4 A1

1681 4 41

=0

20 .
. ori(k — 2
_ IS in [M] . 0< k<40
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Consider the problem of designing a quadrature filter with the following frequency response.
To simplify the final answer, you can assume that the Hilbert transformer component of the
quadrature filter is ideal.

5jexp(—jm20fT) , 0<f<fs/2
H(f) = 0 , [=0,%fs/2
—5jexp(—jm20fT) , —fs/2<f<0

(a) Find the magnitude response A(f) and the residual phase response 0(f).
(b) Suppose windowed filters with a Hamming window are used. Find F(z) and G(z)

Solution

(a) Since +j = exp(£j7m/2), the frequency response can be rewritten as

5exp(—jm20fT + jm/2) , 0< f < fs/2
H(f) = 0 s f:(),:l:fs/2
S5exp(—jm20fT — jmw/2) , —fs/2<f<0

Thus the magnitude response is

5, 0<[f] < fs/2
0, f=0,£f/2

There is a delay of 7 = 107". Thus the residual phase response is

72, 0<f<f)2
e(f) = 0 ) f:(),:l:fs/2
-m/2 , —fs/2<f<0

(b) From (6.7.10)

Af(z) = A(f)cos[]0(f)]

Thus F(z) = 0. Next, from (6.7.11)
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Ag(z) = —A(f)sin[0(f)]
{5 , 0<|fI < fs/2
0, f=0,£f/2

Since the total group delay is 107", G(z) is a mth order filter with m = 10. From (6.2.6)
the impulse response of G(z) is

f5/2
g(k) = 2T/0 A, (f)cos[2m(k — .5m) fTdf

fs/
= 2T/ 25005[27T(k—.5m)fT]df
0

_ sin[27(k — .5m) fT] fs/2
= or [ —27(.5)mT ] 0
—10sin[m(k — .5m)]

™m

Thus from (6.2.12) and Table 6.2, the coefficients using a Hamming window are

b = w(i)g(i)
= [.54 — .46 cos (;;)] (—105111[:52_ '5m)]>

Finally,
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Suppose F'(z) and G(z) are the following FIR filters.

F(z) = 1422714272
G(z) = 24271 +2:72

(a) Show that F'(z) and G(z) are type 1 linear-phase FIR filters.
(b) Find the amplitude responses Ay (f) and Ag4(f).

(c) Assuming F'(z) and G(z) are used to construct a quadrature filter using an ideal Hilbert
transformer, find the magnitude response A,(f) and the residual phase response 0,(f).

Solution

(a) From inspection of F(z) and G(z), the order in each case is m = 2, and the impulse
responses are

Since both f and g exhibit even symmetry about m/2 and m is even, F'(z) and G(z) are
type 1 linear-phase FIR filters.

(b) Proceeding as was done in Example 5.3, let § = 27 fT. Then

F(f) = F(z)|z=0xp(j9)
= 1+ 2exp(—j6) + exp(—;26)
= exp(—jb)lexp(jb) + 2 + exp(—j0)]

Combining terms with identical coefficients, and using Euler’s identity,

F(f) = exp(—jO){[exp(j0) + exp(—j0)] + 2}
= exp(—j0)[2cos(9) + 2]
= exp(—j2nfT)As(f)

Thus

Af(f) = 2[14cos(2nfT)]
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Similarly,

G(f) = G(z)|z=0xp(j9)
= 2+ exp(—j0) + 2exp(—;20)
= exp(—jO)[2exp(j0) + 1+ Lexp(—350)]

Combining terms with identical coefficients, and using Euler’s identity,

G(f) = exp(—j0){2[exp(jb) + exp(—jO)] + 1}
exp(—j0)[4 cos(0) + 1]
= exp(—j2m fT)Ay(f)

Thus

Ay(f) = [L+4cos(2mfT)

(c) From (6.7.15) the quadrature filter magnitude response is

A(f) = AR + A%(f)
= /A[1 + cos(2m fT)]2 + [L + 4 cos(27 fT)]2

From (6.7.16), the quadrature filter residual phase response is

$q(f) = JAHH + A3

1+ 4cos(2mfT)] }
[1+ cos(27m fT]

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

490



Consider the following FIR filter. Find a cascade form realization of this filter and sketch the
signal flow graph.

10(2% — .62 — .16)[(z — .4)% + .25]
4

H(z) = ~

Solution

Expressing H(z) as a product of second order factors with real coefficients yields

H(Z) = bQHl(Z)HQ(Z)

where

by = 10
22— 62— .16
Hl(z) = 22
= 1—.62"'—.16272
22 — 82+ 41
HQ(Z) = 52

—.16 41

> >

Problem 6.18 Cascade Form Signal Flow Graph
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Consider the following FIR filter. Find a lattice form realization of this filter and sketch the
signal flow graph.

H(z) = 1+2271 4327244273

Solution

Applying step 1 of Algorithm 6.3, H(z) = by As(z) where by = 1 and

A3(z) = 14227143272 44273
Bs3(z) = 4432714272473
Ky = 4

Applying step 2 with ¢ = 3 yields

1+227 04327244273 —4(4 + 3271 4+ 2272 4 279)

Aa(2) = 1-16
=15 —-10z71 — 5272
- —15
B 3427714 72
N 3

14227143272
By(z) = 3
Ky = 1/3

Next, applying step 2 with ¢ = 2 yields

(342271 4+272)/3 - (1/3)(1 + 2271 +3272)

Al(z) = 1 _4/9

(2/3 - (2/3)272
5/9
= 6/5+ (6/5)7>
Bi(z) = (6/5)+ (6/5)z2
K, = 6/5
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Thus by = 1 and the reflection coefficient vector is K = [6/5,1/3,4]%.

Uug Ul u9 us
T @ > > « > » > « > » > L > 4 > ® Y
6/5 1/3 4
Y
6/5 1/3 4
vy 1 v oyl (R U3

Problem 6.19 Lattice Form Signal Flow Graph
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Find an efficient direct form realization for a linear-phase filter of order m = 2p similar to
(6.8.4), but applicable to a type 3 filter. Sketch the signal flow graph for the case m = 4.

Solution

For a type 3 linear-phase FIR filter the symmetry about k& = m/2 is odd with h(m — k) =
—h(k). Thus the equivalent of (6.8.4) for a type 3 linear-phase filter of order m = 2r is

Notice that the center term is missing because b, = 0 due to the odd symmetry.

Z_l Z_l
T e > > >

A
A

Y o—=

A

Problem 6.20 Signal Flow Graph of Type 3 Linear-Phase Filter, m =4
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Suppose a 12-bit fixed point representation is used to represent values in the range —10 <
z < 10.

(a) How many distinct values of x can be represented?

(b) What is the quantization level, or spacing between adjacent values?

Solution

(a) Using N = 12 bits, the number of distinct values of x is
oN

= 4096

(b) The range of values for z is —¢ < 2 < ¢ where ¢ = 10. Thus from (6.9.3), the quantization
level, or spacing between adjacent values, is

2048
= .0049
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Consider the system shown in Figure 6.54. The ADC has a precision of 10 bits and an input
range of |x,(t)| < 10. The transfer function of the digital filter is

322 — 2z

H(z) = — 2 —2%
(2) 2122+ .32

(a
(b
(c

(d) Find the average power of the quantization noise at the output y.

Find the quantization level of the ADC.
Find the average power of the quantization noise at the input z.

)
)
) Find the power gain of H(z).
)

To 0—> ADC > H(z) —oUY

Figure 6.54 ADC Quantization Noise

Solution

(a) For the ADC, |z,(t)] < ¢ where ¢ = 10 and N = 10 bits. Thus from (6.9.3), the
quantization level is

512
= .0195

(b) Using (6.9.6), the average power of the quantization noise at the input x is

2 q2
O"r = E
~ (.0195)?
- 12
= 3.179 x 107°
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(c) First one must find the filter impulse response. The factored form of H(z) is

2(3z — 2)
H = —
(2) (z— 4)(z—.8)
By the initial value theorem,
h(0) = lim H(z)
= 3

The residues of H(z)z*~! at the poles of H(z) are

Res(.4,k) = (2— 4)H(2)2"Y.—4
(32 —2)2F
(z—.8)
—.8(.4)k
—4

z=.4

Res(.8,k) = (Z—.8)H(Z)Zk_1|z:.8

Thus the impulse response is

h(k) = Z7'{H(2)}
h(0)d(k) + [Res(.4, k) + Res(.8, k)| u(k — 1)
= 30(k) + [2(.4)F + (.8)Fu(k — 1)

Using (6.9.11) and the geometric series, the power gain of the filter H(z) is
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r = ihz(k‘)
k=0
= 9+ [2(9)F + (8)"
k=1
— 9+i4(.4)2’f+2(.4)’f(.8)’f+(.8)%
k=1

= 9+ i4(.l6)k +2(.32)% + (.64)"

k=1
_ 4(.16)  2(.32) .64
- 9+1—.16+1—.32 1— .64
_ g4 .64 N .64 N .64
- .84 .68 .36
= 12.4809

(d) Using (6.9.10), the average power of the quantization noise at the output is

05 = To?
= 12.4809(3.179) x 107°
= .0040
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Suppose a 16-bit fixed point representation is used for values in the range |z| < 8.
(a) How many distinct values of z can be represented?
(b

)

) What is the quantization level, or spacing between adjacent values?

(¢) How many bits are used to represent the integer part (including the sign)?
)

(d) How many bits are used to represent the fraction part?
Solution

(a) The number of bits is N = 16. Thus the total number of distinct values that can be
represented is

216

= 65536

(b) Here ¢ = 8. Thus from (6.9.3), the quantization level is

. C
9 = 9N-1
8
215
2—12

= 24414 x 1074

(c) Since ¢ = 8, the scale factor is 2" = ¢. Thus the number of bits used to represent the
integer part, including the sign, is

M+1 = 4

(d) There are N = 16 bits total. Thus the fractional part requires

P = N—(M+1)
= 12
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Suppose the coefficients of an FIR filter of order m = 30 all lie within the range |b;| < 4.
Assuming they are quantized to N = 12 bits, find an upper bound on the error in the
magnitude of in the frequency response caused by coefficient quantization.

Solution

Here ¢ = 4. Thus from (6.9.17), the following is an upper bound on the error in the magnitude
response due to coefficient quantization.

(m+1)c
31(4)
212
= .0303

AA(S)
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A high-order FIR filter is realized as a cascade of second-order blocks.

(a) Suppose the filter has a sampling rate of fs = 300 Hz and a zero at zp = exp(jn/3).
Find a nonzero periodic signal x(k) that gets completely attenuated by the filter.

(b) If a zero of a second-order block starts out on the unit circle, will the radius of the zero
change as a result of the coefficient quantization? That is, will the zero still be on the
unit circle?

(c) If a zero of a second-order block starts out on the unit circle, will the angle of the zero
change as a result of the coefficient quantization? That is, will the frequency of the zero
change?

Solution

(a) Here fs =300 Hz and zp = exp(jm/3). The zero zj is on the unit circle at

20 = exp(j2nfoT)
= exp(jm/3)

Thus 2fyT =1/3 or

6T
= 50 Hz

The following periodic signal (a pure tone at fy = 50 Hz) will be completely blocked by
the filter. Here a # 0 and v are arbitrary.

x(k) = acos(27fokT + 1)
= acos(mk/3+ )

(b) Using second-order blocks and (6.9.18), the radius of the zero will not change due to
coefficient quantization. Therefore, the zero will still be on the unit circle.

(c) Yes, the frequency of the zero of a quantized second-order block will change because the
middle coefficient in (6.9.18) depends on the zero angle 6.
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Consider the following FIR filter.

(22 4 25) (2% + .04)

H(z) = I

z

(a) Show that this is a type 1 linear-phase filter.

(b) Sketch a signal flow graph realization of H(z) that is still a linear-phase system even
when the coefficients are quantized.

Solution

(a) The transfer function can be written as

24 +25.0422 + 1

H(z) = 5

z
= 1+25.0427 1+ 272

Thus the impulse response is h(k) = {1,25.04,1}. Since m is even and h(k) is exhibits
even symmetry about k = m/2, it follows from Table 5.1 that this is a type 1 linear-phase
filter.

(b) For this filter, by = 1. The zeros are at r = 5, ¢ = £7/2 and at their reciprocals. Thus
using (6.9.20) we have

H(z) = (.04)(1+2527%)(25+ 272)
= co(1+c1z7 + ez ?) (e + 1zt 4+ 272)

Here ¢ = [.04, 0, 25]T.

8
p
\ 4
\ 4
\ 4
\ 4
\ 4
b
<

Problem 6.26 Signal Flow Graph of Linear-Phase Block
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Consider the following FIR filter.

H(z) = 34421 46224+423+4+3271
Suppose the input signal lies in the range |z(k)| < 10. Find scale factor for the input that
ensures that the filter output will not overflow the range |y(k)| < 10.
Solution

Using (6.9.26), we have

ol = > bl
=0

= 3+4+6+4+3

= 20
Thus from (6.9.25) the scale factor is
1
S1 = T
16111
= .05
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Use the GUI module g_fir to design a windowed lowpass filter. Set the width of the
transition band to B = 150 Hz. For each of the following cases, find the lowest value for
the filter order m that meets the specifications. Plot the linear magnitude response in
each case.

(a) Rectangular window
(b) Hanning window

(¢) Hamming window
(d) Blackman window

Solution
Lowpass windowed filter, rectangular window: m = 20
T T T T T T T I I
FIR filter
1 _____\/N Specification
0.8 i
Y o6l .
Y
0.4 b
0.2 i
0 L L L L
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.28 (a) Magnitude Response Using Rectangular Window
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Lowpass windowed filter, Hanning window: m = 74

T T T T T T I I
FIR filter
1 { Specification
0.8 4
Y o6l .
Y
0.4 A
0.2 4
0 L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 6.28 (b) Magnitude Response Using Hanning Window

Lowpass windowed filter, Hamming window: m = 72

T T T T T T I I
FIR filter
1 Specification
0.8 4
Y o6l .
Y
0.4 A
0.2 4
0 L L L L
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.28 (c) Magnitude Response Using Hamming Window
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Lowpass windowed filter, Blackman window: m = 90

T T T T T T I I
FIR filter
1 Specification
0.8 4
Y o6l .
Y
0.4 A
0.2 4
0 L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 6.28 (d) Magnitude Response Using Blackman Window
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Use the GUI module g_fir to construct a windowed highpass filter using the Hamming

window.

(a) Plot the linear magnitude response and use the Caliper option to measure the actual
width of the transition band.

(b) Plot the phase response.

(c) Plot the impulse response.

Solution

Highpass windowed filter, Hamming window: m = 40

I I T T T T T T
FIR filter
1 Specification

—7try) = (526.34.0.10)
0 ’I | | | |
0 100 200 300 400 500 600 700 800 900 1000

Problem 6.29 (a) Magnitude Response, Actual B = 637.1 — 536.3 = 110.8 Hz
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Highpass windowed filter, Hamming window: m = 40

4 \ \ \ \ \ \ \
2r 4
< 0fF
2k -
_4 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)
Problem 6.29 (b) Phase Response (Linear Phase)
Impulse response Highpass windowed filter, Hamming window: m = 40
0.5
Z - T%H Hl‘T -
<
-0.5
0 20 40
k

Problem 6.29 (c) Impulse Response
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Use the GUI module g¢_fir to design a windowed bandstop filter with the Hanning window
to meet the following specifications. Adjust the filter order to the lowest value that meets
the design specifications.

(fss Fp1, For, Fap, Fpo) = (100,20, 25,35,40) Hz
(6,,65) = (.05,.05)

(a) Plot the magnitude response using the linear scale.

(b) Save filter parameters a, b, and fs in prob6_30.mat. Then use GUI module g_filters
to load these as a user-defined filter. Adjust the number of bits used for coefficient
quantization to N = 6. Plot the linear magnitude responses.

Solution

Bandstop windowed filter, Hanning window: m = 112

1.4 T T T T T T T

1 ~]

0.2+ FIR filter I

Specification
T

0 | | | | N A

0 5 10 15 20 25 30 35 40 45 50
f (Hz)

Problem 6.30 (a) Windowed Magnitude Response Using Hanning Window
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Direct user-defined filter from file prob6_30b.mat: n=0, m=112, c=1, g=0.03125, € i = 0.125

14 T T T T T T T I I
Unquantized
1.2 Quantized, N =

1

0 ! ! ! 1 ! 1 !
0 5 10 15 20 25 30 35 40 45 50
f£f/f

Problem 6.30 (b) Quantized Magnitude Response
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Use the GUI module g_fir to design a frequency-sampled bandstop filter to meet the
following specifications. Adjust the filter order to the lowest value that meets the design

specifications.

(fss Fp1, For, Fap, Fpo) = (100,20, 25,35,40) Hz
(6,,65) = (.05,.05)

(a) Plot the magnitude response using the linear scale.

(b) Save filter parameters a, b, and fs in prob6_31.mat. Then use GUI module g_filters
to load these as a user-defined filter. Adjust the number of bits used for coefficient
quantization to N = 6. Plot the linear magnitude responses.

Solution

Bandstop frequency-sampled filter: m = 54

0.2+ FIR filter I

Specification
T

0 L L L L NAS o~ V|
0 5 10 15 20 25 30 35 40 45 50
f (Hz)

Problem 6.31 (a) Frequency-Sampled Magnitude Response

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

511



Direct user-defined filter from file probé6_3lb.mat: n=0, m=54, c=1, g=0.03125, € ok = 0.146345
1.4 T T T

Unquantized
1.2 Quantized, N =

1

A(f)

0.2

| |

0 ! !
0 5 10 15 20 25 30 35 40 45 50
f/f

Problem 6.31 (b) Quantized Magnitude Response

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

512



Write an amplitude response function called prob6_32.m for the following user-defined
filter (see wu_firl.m for an example).

Af) = —COS(;TJ{Q;;OO), 0< f<10Hz

Using GUI module g_fir, set fs = 20 Hz and select a frequency-sampled filter. Then use
the User-defined option to load this filter. Plot the following cases.

(a) Magnitude response, m = 10

(b) Magnitude response, m = 20

(c) Magnitude response, m = 40

(d) Impulse response, m = 40

Solution
User-defined filter from file prob6_32.m, frequency-sampled filter: m = 10
12 T T \ T T T I I I
— FIR filter, m = 10
1 Ideal amplitude response 1
0.8 _
—~ 06 _
!
< 04| 1
0.2 1
O - —
0.2 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
f (Hz)

Problem 6.32 (a) Frequency-Sampled Magnitude Response, m = 10
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User-defined filter from file prob6_32.m, frequency-sampled filter: m = 20
1.2 T T \ T T T I I I
— FIR filter, m = 20
— ldeal amplitude response []

A(f)

02 ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10

f (Hz)

Problem 6.32 (b) Frequency-Sampled Magnitude Response, m = 20

User-defined filter from file prob6_32.m, frequency-sampled filter: m = 40
1.2 T T \ T T T I I I
— FIR filter, m = 40
— ldeal amplitude response []

A(f)

0 1 2 3 4 5 6 7 8 9 10
f (Hz)

Problem 6.32 (c) Frequency-Sampled Magnitude Response, m = 40
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Impulse respdiiser-defined filter from file prob6_32.m, frequency-sampled filt

2
0.1
1
0.05 { }
g 0 .mTTﬂH ‘hhm'. E 0
P &
~0.05
1
0.1
0 20 40 =

k

Problem 6.32 (d) Impulse Response, m = 40
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Vv Use the GUI module g¢_fir to design a least-squares bandpass filter to meet the follow-
ing specifications. Adjust the filter order to the lowest value that meets the design
specifications.

(fss Fo1, Fp1, Fpa, Fia) = (2000, 300, 400, 600, 700) Hz
(A4,,A;) = (.4,30)dB

(a) Plot the magnitude response using the dB scale.

(b) Save filter parameters a, b, and fs in prob6_33.mat. Then use GUI module g_filters
to load these as a user-defined filter. Adjust the number of bits used for coefficient
quantization to N = 6. Plot the linear magnitude responses.

Solution
Bandpass least-squares filter: m = 60
T T T T T I
or FIR filter
Specification
-20 A
o
T
~ -40
3
“ _60
-80
L L L
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.33 (a) Least-Squares Magnitude Response Using dB Scale
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Direct user-defined filter from file prob6_33.mat: n=0, m=60, c=1, g=0.03125, €y = 0.0931356

1.4 T T T T T T T I I
Unquantized
1.2 Quantized, N =
s i
. 0.8 i
o’
< 0.6 B
04 B
0.2 |
0 I I | I —_—
0 100 200 300 400 500 600 700 800 900 1000
f/f

Problem 6.33 (b) Quantized Magnitude Response
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Use the GUI module g_fir and the User-defined option to load the filter in file u_firl.
Adjust the filter order to m = 90. Plot the linear magnitude response for each of the
following cases.

(a) Windowed filter with Blackman window
(b) Least-squares filter

Solution
User-defined filter from file u_firl.m, windowed filter, Blackman window: m = 90
1 T T \ T T I I I
— FIR filter, m = 90
08 — ldeal amplitude response
0.6 4
4
<
0.4 A
0.2 4
0 I I I 1 I I I I
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.34 (a) Windowed Magnitude Response Using Blackman Window
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User-defined filter from file u_firl.m, least-squares filter: m = 90

14 T T T T T T i i i
— FIR filter, m = 90
1.2 — ldeal amplitude response [|
1 - -
_ 08| |
ol
< 0.6 B
0.4 B
0.2 B
0 L L L L | . -
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.34 (b) Least-Squares Magnitude Response
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Vv Write an amplitude response function called prob6_35.m for the following user-defined
filter (see u_fir! for an example).
cos (27Tf> ‘
[s

Then use the User-defined option of GUI module g_fir to load this filter. Select a least-
squares filter. Plot the linear magnitude response for the following three cases.

A (f) = 2

(a) m=10
(b) m =20
(¢) m =40
Solution

User-defined filter from file prob6_35.m, least-squares filter: m = 10

2 T T T T T T
— FIR filter, m = 10
Ideal amplitude response
151 B
SRS |
<
051 B
0 | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.35 (a) Least-Squares Magnitude Response, m = 10
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User-defined filter from file prob6_35.m, least-squares filter: m = 20

25 T T T T T T T 1 T
— FIR filter, m = 20
» — ldeal amplitude response
1.5 B
5
«
1 - -
0.5 i
0 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)
Problem 6.35 (b) Least-Squares Magnitude Response, m = 20
User-defined filter from file prob6_35.m, least-squares filter: m = 40
2 T T T T T T i i i
— FIR filter, m = 40
— ldeal amplitude response
1.5 B
SRS |
«
0.5 B
0 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.35 (c) Least-Squares Magnitude Response, m = 40
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Use the GUI module g_fir to design an optimal equiripple bandpass filter to meet the
following specifications. Adjust the filter order to the lowest value that meets the design
specifications.

(fss Fo1, Fp1, Fpa, Fia) = (2000, 300, 400, 600, 700) Hz
(A4,,A;) = (.4,30)dB

(a) Plot the magnitude response using the dB scale.

(b) Save filter parameters in prob6_36. Then use GUI module g_filters to load these as
a user-defined filter. Adjust the number of bits used for coefficient quantization to
N = 6. Plot the linear magnitude responses.

Solution
Bandpass equiripple filter: m = 40
T T T T T I
or FIR filter
Specification
—20+ |
o
T
~ -40
3
“ _60
-80
L L L
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.36 (a) Equiripple Magnitude Response Using dB Scale
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Direct user-defined filter from file prob6_36b.mat: n=0, m=40, c=1, g=0.03125, €k = 0.0887215

14 T T T T T T T I I
Unquantized
1.2+ Quantized, N =
1 |
~ 08 i
o’
< 0.6 -
0.4 B
0.2 i
0 NN I I I N ]
0 100 200 300 400 500 600 700 800 900 1000

f/f
s

Problem 6.36 (b) Quantized Magnitude Response
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Write an amplitude response and residual phase response function called prob6_37.m
for the following user-defined filter (see u_fir! for an example).

Ar(f) = 10f/fs
0(f) = msin(20f/fs)

Set the filter order to m = 150, and select the quadrature filter. Use the User-defined
option of GUI module g_fir to load this filter.

(a) Print your amplitude response and residual phase response functions.
(b) Plot the linear magnitude response
(c) Plot the phase response

Solution

(a) function [A,thetal = prob6_37 (f,fs)
A = 10xf/fs;
theta = pi*sin(20%*f/fs);

User-defined filter from file prob6_37.m, quadrature filter: m = 300

5| T T T T T T T T T
—— FIR filter, m = 300
Ideal amplitude response
3 —
)
<
2 —
1 —
0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 6.37 (b) Linear Magnitude Response, m = 150
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User-defined filter from file prob6_37.m, quadrature filter: m = 300

4 T T T T T T T T T
Residual phase, 6
\\ Total phase, ¢
N
2 H
o 0f
-2 D H
\_/
_4 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

£ (Hz)

Problem 6.37 (c) Phase Response, m = 150
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Write an amplitude response and residual phase response function called prob6_38.m
for the following user-defined filter (see u_fir! for an example).

A.(f) = .5{1+ sgn[sin(87fT)]}
o(f) = 0

Set 05 = .001 and m = 120. Then use the User-defined option of GUI module g_fir
to load this filter. Plot the following.

(a) The linear magnitude response of a least-squares filter.

)
(b)
)
)

The pole-zero pattern of a least-squares filter.
The linear magnitude response of a quadrature filter.

(c

(d) The pole-zero pattern of a quadrature filter.

Solution

User—-defined filter from file prob6_38.m, frequency-sampled filter: m = 120
1.4 T T \ T T T I I I
—— FIR filter, m = 120
Ideal amplitude response [

(\/\ N [\/\/\AA A i

1THAA A/ AR 7

o\ *
! ! L ! ! |

0
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 6.38 (a) Least-squares Filter Magnitude Response
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d filter from file prob6_38.m, frequency-sampled filter: m =Iiplilse response
2 0.5

h (k)
o

oo “Ll" rY J"L‘T Tj‘l T‘lJ{ e e s

-2 -0.5
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 6.38 (b) Least-squares Filter Pole-zero Pattern

User-defined filter from file prob6_38.m, : m = 240
1.4 T T \ T T I I I
— FIR filter, m = 240
1.2 — ldeal amplitude response [|

0 L L L L L L 1 L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 6.38 (c) Quadrature Filter Magnitude Response
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User—-defined filter from file prob6_38.m, : m = 240 Impulse response
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Problem 6.38 (d) Quadrature Filter Pole-zero Pattern
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Write a MATLAB program that constructs the following signal where f; = 200 Hz.
Here v(k) is white noise uniformly distributed over [—1, 1], F; = 10 Hz, F;, = 30 Hz,
and N = 4096. Use a random number generator seed of 100 to produce v(k).

x(k) = 4sin(2nF1kT) cos(2nF2kT), 0<k<N
y(k) = x(k)+v(k) , 0<k<N

(a) Compute P, and P, directly from the samples. Use Definition 6.1.1 to compute
and print the signal-to-noise ratio of y(k).

(b) Compute P, directly from the samples. Use P,, (6.1.1), and Definition 6.1.1 to
compute and print the signal-to-noise ratio of y(k).

(¢) Compute and print the percent error of the estimate of the SNR found in part
(b) relative to the SNR found in part (a).

(d) Plot the magnitude spectrum of y(k) showing the signal and the noise.
Solution

% Problem 6.39
% Initialize

f_header (’Problem 6.39°)
fs = 200;

T = 1/fs;
rand(’seed’,100);

%, Construct signal

= f_prompt (’Enter amplitude of noise’,0,1,1);
4096;

f_randu (1,N,-c,c);

0 : N-1;

= 10;

= 30;

4xsin (2*pi*F_1%k*T) .* cos(2*pi*F_2%kxT);

X + v;

N =
|

< K TR < =20

% Compute direct SNR

P_vi (1/N)*sum(v."2)
P_x1 (1/N)*sum(x."2)
SNR_1 = 10%1logl0(P_x1/P_v1)

% Compute indirect SNR and percent error

P_y2 = (1/N)*sum(y."2)
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P_x2 = P_y2 - P_v1
SNR_2 = 10%1logl0(P_x2/P_v1)
E = 100%x(SNR_2 - SNR_1)/SNR_1

% Compute and plot magnitude spectrum

figure
[A_y,phi,S,f] = f_spec (y,N,fs);
i=1:N/2;

plot (£(i),A_y(i))
f_labels (’Magnitude Spectrum’,’f (Hz)’,’A_y(£f)’)
f_wait

(a) P_vl =
.3277

P_x1 =
3.9990

SNR_1 =
10.8648

(b) P_y2 =
4.2841

P_x2 =
3.9564

SNR_2 =
10.8183

(c) E =

-0.4279
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Magnitude Spectrum
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Problem 6.39 Magnitude Spectrum of Noise-Corrupted Signal
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V Write a MATLAB program that uses f_firideal to design a linear-phase lowpass FIR
filter of order m = 40 with passband cutoff frequency F, = f,/5 and stopband cutoff
frequency Fs = fs/4 where the sampling frequency is f; = 100 Hz. Use a rectangular
window, and set the ideal cutoff frequency to the middle of the transition band. Use
fofreqz to compute and plot the magnitude response using the linear scale. Then use
Table 6.3, the hold on command, and the fill function to add the following items to
your magnitude response plot.

(a) A shaded area showing the passband ripple, d,.
(b) A shaded area showing the stopband attenuation, Js.

Solution

% Problem 6.40
% Initialize

f_header (’Problem 6.40°)

fs = 100;
F_p = fs/5
F_s = fs/4

% Design filter

f_type = 0;

Fc=(F_p+ F_s)/2

m = 40;

win = O0;

b = f_firideal (f_type,F_c,m,fs,win);

% Compute and plot magnitude response

a=1;

N = 250;

[H,f] = f_freqz (b,a,N,fs);

A = abs(H);

figure

plot (f,A);

f_labels (’Windowed Lowpass Filter, Rectangular Window’,’f (Hz)’,’A(£)’)

% Add specifications

hold on
delta_p = 0.0819
delta_s = 0.0819

£i11 ([0 F_p F_p 0],[1-delta_p,1l-delta_p, 1+delta_p, 1+delta_p]l,’c’)
£fill ([F_s fs/2 fs/2 F_s],[0 O delta_s delta_s],’c’)

plot(f,A)

f_wait
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Windowed Lowpass Filter, Rectangular Window
1.4 T T T T

1.2 b
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f (Hz)

Problem 6.40 Windowed Lowpass Filter Using Rectangular Window
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Write a MATLAB program that uses f_firideal to design a linear-phase highpass FIR
filter of order m = 30 with stopband cutoff frequency Fy = 20 Hz, passband cutoff
frequency F), = 30 and sampling frequency f; = 100 Hz. Use a Hanning window,
and set the ideal cutoff frequency to the middle of the transition band.

(a) Use f-freqz to compute and plot the magnitude response using the dB scale.
(b) Use Table 6.3, the hold on command, and the fill function to add a shaded area

showing the predicted stopband attenuation, A,.
Solution
% Problem 6.41
% Initialize

f_header(’Problem 6.41°)

fs = 100;
F_s = 20;
F_p = 30;

% Design filter

f_type = 1;
Fc=(F_p+ F_s)/2
m = 30;

win = 1;

b = f_firideal (f_type,F_c,m,fs,win);
% Compute and plot magnitude response

a=1;

N = 250;

[H,f] = f_freqz (b,a,N,fs);

A = 20%*1ogl0(abs(H));

figure

plot (f,A);

f_labels (’Windowed Highpass Filter, Hanning Window’,’f (Hz)’,’A(£f) (dB)’)

% Add specifications

hold on

A_s = 44,

ylim = get (gca,’Ylim’);

fill ([0 F_s F_s 0], [ylim(1),ylim(1),-A_s,-A_s],’c’)
plot (f,A);

f_wait
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Windowed Highpass Filter, Hanning Window
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Problem 6.41 Windowed Highpass Filter Using Hanning Window
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Write a MATLAB program that uses f_firideal to design a linear-phase highpass FIR
filter of order m = 40 with stopband cutoff frequency Fy = 20 Hz, passband cutoff
frequency Fj, = 30 and sampling frequency f; = 100 Hz. Use a Hamming window,
and set the ideal cutoff frequency to the middle of the transition band.

(a) Use f-freqz to compute and plot the magnitude response using the dB scale.

(b) Use Table 6.3, the hold on command, and the fill function to add a shaded area
showing the predicted stopband attenuation, A,.

Solution

function prob6_42
% Initialize

f_header (’Problem 6.42°)

fs = 100;
F_s = 20;
F_p = 30;

% Design filter

f_type = 1;
Fc=(F_p+ F_s)/2
m = 40;

win = 2;

b = f_firideal (f_type,F_c,m,fs,win);
% Compute and plot magnitude response

a=1;

N = 250;

[H,f] = f_freqz (b,a,N,fs);

A = 20%*1ogl0(abs(H));

figure

plot (f,A);

f_labels (’Windowed Highpass Filter, Hamming Window’,’f (Hz)’,’A(£f) (dB)’)

% Add specifications

hold on

A_s = 53;

ylim = get (gca,’Ylim’);

fill ([0 F_s F_s 0], [ylim(1),ylim(1),-A_s,-A_s],’c’)
plot (f,A);

f_wait
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Windowed Highpass Filter, Hamming Window
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Problem 6.42 Windowed Highpass Filter Using Hamming Window
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Write a MATLAB program that uses f firwin to design a linear-phase highpass
FIR filter of order m = 60 with stopband cutoff frequency Fy = 20 Hz, passband
cutoff frequency Fj, = 30 and sampling frequency fs = 100 Hz. Use a Blackman
window, and make the desired amplitude response piecewise-constant with cutoff
F.=(Fs+ F,)/2.

(a) Use f-freqz to compute and plot the magnitude response using the dB scale.
(b) Use Table 6.3, the hold on command, and the fill function to add a shaded area
showing the predicted stopband attenuation, A,.

Solution

function prob6_43
% Initialize

f_header(’Problem 6.43°)

fs = 100;
F_s = 20;
F_p = 30;

% Design filter

m = 60;
win = 3;
sym = O;

p = (F_s + F_p)/2;
b = f_firwin (Ghighpass,m,fs,win,sym,p);

% Compute and plot magnitude response

a=1;

N = 250;

[H,f] = f_freqz (b,a,N,fs);

A = 20%log10(abs(H));

figure

plot (f,A);

f_labels (’Windowed Highpass Filter, Blackman Window’,’f (Hz)’,’A(f) (dB)’)

% Add specifications

hold on

A_s = 75;

ylim = get (gca,’Ylim’);

fill ([0 F_s F_s 0], [ylim(1),ylim(1),-A_s,-A_s],’c’)
plot (f,A);

f_wait

function A = highpass (f,fs,p)
% Piecewise-constant highpass amplitude response
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A = zeros(size(£));
for i = 1 : length(f)
if (£(1) >= p(1))
A(L) = 1;
end
end

Windowed Highpass Filter, Blackman Window
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A(f)

-100

-120
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-140
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Problem 6.43 Windowed Highpass Filter Using Blackman Window
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Write a MATLAB program that uses f_firwin to design a type 1 linear-phase FIR
filter of order m = 80 using fs = 1000 Hz and the Hamming window to approximate
the following amplitude response. Use f_fregz to compute the magnitude response.

2
(%) L 0<|f <250

5 cos [M

250 < 500
0] w0 <fl<

(a) Plot the linear magnitude response.
(b) On the same graph, add the desired magnitude response and a legend.

Solution

function prob6_44
% Initialize

f_header(’Problem 6.44°)
fs = 1000;

% Design filter

m = 80;
win = 2;
sym = O;

b = f_firwin (@fmag,m,fs,win,sym);

% Compute and plot magnitude and phase responses

a=1;

N = 250;

[H,f] = f_freqz (b,a,N,fs);
Al = abs(H);

A2 = abs(fmag(f,fs));
figure

h = plot (f,Al1,f,A2);

set (h(2),’LineWidth’,1.5)

f_labels (’Windowed Filter, Hamming Window’,’f (Hz)’,’A(f)’)
legend (’Hamming Window’,’Desired Response’)

f_wait

function A = fmag (f,fs)
% Desired amplitude response

A = zeros(size(f));
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for i = 1 : length(f)
if (£(1) <= fs/4)
A(1) (4xf (i) /£s)"2;
else
A(D)

0.5%cos(2%pix (£f(i) - fs/4)/fs);
end
end

Windowed Filter, Hamming Window
1 T T T T

— Hamming Window
Desired Response |

091

0.6 i

0.2 i

0.1 i

0 100 200 300 400 500
f (Hz)

Problem 6.44 Windowed Filter Using Hamming Window, m = 80
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V Write a MATLAB program that uses function f firsamp to design a linear-phase
bandpass FIR filter of order m = 40 using the frequency sampling method. Use a
sampling frequency of f; = 200 Hz, and a passband of F,, = [20,60] Hz. Use f_freqz
to compute and plot the linear magnitude response. Add the frequency samples
using a separate plot symbol and a legend. Do the following cases.

(a) No transition band samples (ideal amplitude response)
(b) One transition band sample of amplitude .5 on each side of the passband.

Solution
% Problem 6.45
% Initialize

f_header (’Problem 6.45°)

fs = 200;
F_p = [20,60];
m = 40;

% Construct samples of amplitude response

N = m+1;

i=0:m/2;

fi = ixfs/N;

ml = (F_p(1)/fs)*m+1;
m2 = (F_p(2)/fs)*m+1;
Ai = zeros(size(i));

for k = ml : m2
Ai(k) = 1;
end

% Design filter

sym = O;

b = f_firsamp (Ai,m,fs,sym);
a=1;

p = 256;

[H,f] = f_freqz (b,a,p,fs);
Al = abs(H);

figure

plot (f,A1,fi,Ai,’r.’);

f_labels (’Magnitude Response’,’f/f_s’,’A(£)’)
legend (’Filter’,’Frequency Samples’)

f_wait

% Add transition band samples

0.5;
0.5

Ai(m1-1)
Ai (m2+1)

3

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

542



b = f_firsamp(Ai,m,fs,sym);

[H,f] = f_freqz (b,a,p,fs);

A2 = abs(H);

figure

plot (£f,A2,fi,Ai,’r.’);

f_labels (’Magnitude Response with Transition Band Samples’,’f/f_s’,’A(£)’)
legend (’Filter’,’Frequency Samples’)

f_wait

Magnitude Response
1.4 T \

Filter
O  Frequency Samples
1.2 E

o
(o]
T

0.4f

OC/ | | |
0 20 40 60 80 100
f/f

Problem 6.45 (a) Frequency-Sampled Bandpass Filter, No Transition Band Samples
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Magnitude Response with Transition Band Samples
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Problem 6.45 (b) Frequency-Sampled Bandpass Filter, Transition Band Samples
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Write a MATLAB program that uses function f_firsamp to design a linear-phase
bandstop FIR filter of order m = 60 using the frequency sampling method. Use a
sampling frequency of f; = 20 kHz, and a stopband of Fs = [3, 8] kHz. Use f_freqz to
compute and plot the linear magnitude response. Add the frequency samples using
a separate plot symbol and a legend. Do the following cases.

(a) No transition band samples (ideal amplitude response)
(b) One transition band sample of amplitude .5 on each side of the stopband.

Solution
% Problem 6.46
% Initialize

f_header (’Problem 6.46°)

fs = 20000;
F_s = [3000, 8000];
m = 60;

% Construct samples of amplitude response

N = m+1;

i=0:m/2;

fi = i*xfs/N;

ml = (F_s(1)/fs)*m+1;
m2 = (F_s(2)/fs)*m+1;
Ai = ones(size(i));

for k = ml : m2
Ai(k) = 0;
end

% Design filter

sym = O;

b = f_firsamp (Ai,m,fs,sym);
a=1;

p = 256;

[H,f] = f_freqz (b,a,p,fs);
Al = abs(H);

figure

plot (f,A1,fi,Ai,’r.’);

f_labels (’Magnitude Response’,’f/f_s’,’A(£)’)
legend (’Filter’,’Frequency Samples’)

f_wait

% Add transition band samples

0.5;
0.5

Ai(m1-1)
Ai (m2+1)

3
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b = f_firsamp(Ai,m,fs,sym);

[H,f] = f_freqz (b,a,p,fs);

A2 = abs(H);

figure

plot (£f,A2,fi,Ai,’r.’);

f_labels (’Magnitude Response with Transition Band Samples’,’f/f_s’,’A(£)’)
legend (’Filter’,’Frequency Samples’)

f_wait
Magnitude Response
1.4 ‘ ‘
Filter
O  Frequency Samples
1.2 B

0.4

0.2

0 2000 4000 6000 8000 10000
f/f

S

Problem 6.46 (a) Frequency-Sampled Bandstop Filter, No Transition Band Samples
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Magnitude Response with Transition Band Samples
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Problem 6.46 (b) Frequency-Sampled Bandstop Filter, Transition Band Samples
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Write a MATLAB program that uses function f_firls to design a least-squares linear-
phase FIR filter of order m = 30 with sampling frequency fs = 400 and the following
amplitude response.

T < f) <100
_ 100 < < 200
00 <|f] <

Select 2m equally spaced discrete frequencies, and use uniform weighting. Use f_freqz
to compute and plot both magnitude response (ideal and actual) on the same graph.

Solution

function prob6_47

% Initialize
f_header(’Problem 6.47°)
fs = 400;

m = 20;

% Compute desired amplitude response

p = 3*m;

i=0: p;

F = ixfs/(2xp);

A = fmag(F,fs);

w = ones(size(i));

% Find least squares filter
b= f_firls (F,A,m,fs);
% Compute and display magnitude responses

N = 250;

[H,f] = f_freqz (b,1,N,fs);

figure

h = plot(F,A,f,abs(H));

set (h(1),’LineWidth’,1.5)

f_labels (’Least-Squares Filter’,’f/f_s’,’A(£)’)
legend (’Ideal’,’LS Filter’)

f_wait

function A = fmag (f,fs)

% Desired amplitude response
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A = zeros(size(f));
for i = 1 : length(f)
if (£(1) <= fs/4)
A(i) = 4xf(i)/fs;
else
A(i)
end

4% (fs/2 - £(i))/fs;

end

Least-Squares Filter

Ideal
0.91 —— LS Fitler |-

0.8 4

0.7 i

0.6 i

0.3 i

0.2 i

0.1 i

0 50 100 150 200
f/fS

Problem 6.47 Least-Squares Filter, m = 20
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The Chebyshev polynomials have several interesting properties. Write a MATLAB
program that uses the FDSP toolbox function f_chebpoly and the subplot command
to construct a 2 x 2 array of plots of the Chebyshev polynomials, Ty (x) for 1 < k < 4.
Use the plot range, —1 < x < 1. Using induction and your observations of the plots,
list as many general properties of Tj(z) as you can. Use the help command for
instructions on how to use f_.chebpoly.

Solution

% Problem 6.48
% Initialize

f_header (’Problem 6.48°)
N = 101;

x = linspace (-1,1,N);

T = zeros(size(x));

m= 2;

% Construct 2 by 2 array of plots

figure
for k=1 :m
for i=1:m
p = mx(k-1)+ i;
subplot (m,m,p);

for j=1:N

T(j) = f_chebpoly (x(j),p-1,1);
end
plot (x,T)

ylabel = sprintf (°T_%d(x)’,p-1);
f_labels (°’,’x’,ylabel);
end
end
f_wait

% List properties

fprintf (’Chebyshev polynomial properties:\n\n’)
fprintf (°1. |T_k(x)| <=1 for |x| <= 1\n\n’)
fprintf (°2. T_k(1) = 1\n\n’)

fprintf (°3. T_k(-1) = (-1)"k\n\n’)

fprintf (’4. T_k(x) has k+1 extrema in [-1,1]\n\n’)
fprintf (°5. T_k(x) is of degree k\n\n’)

Chebyshev polynomial properties:

1. |T_k(x)| <=1 for |x| <=1
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2. T_ k(1) =1
3. T_k(-1) = (-1)°k
4. T_k(x) has k+1 extrema in [-1,1]

5. T_k(x) is of degree k

2 1
15 0.5
5@ 1 % 0
= =
0.5 i -05
0 -1
1 05 0 05 1 1 05 0 05 1
X X
1 1
0.5 0.5
0 0
B B
-0.5 -0.5
1 -1
1 05 0 05 1 -1 05 0 05 1
X X

Problem 6.48 Chebyshev Polynomials of the First Kind
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Write a MATLAB function called u_firorder which estimates the order of an equirip-
ple filter required to meet given design specifications using (6.5.21). The calling
sequence for u_firorder should be as follows.

% U_FIRORDER: Estimate required order for FIR equiripple filter
T

% Usage:

% m = u_firorder (deltap,deltas,Bhat);

% Pre:

yA deltap = passband ripple

% deltas = stopband attenuation

% Bhat = normalized transition bandwidth
% Post:

yA m = estimated FIR equiripple order

Test your function by plotting a family of curves on one graph. For the kth curve
use deltap = deltas = § where § = .03k for 1 < k < 3. Plot m versus Bhat for
.01 < Bhat < .1 and include a legend.

Solution

function prob6_49
% Initialize

f_header (’Problem 6.49°)

N = 3;

p = 100;

m = zeros(N,p);

B_hat = linspace (0.01,0.1,p);

% Compute filter order
for k=1: N

delta = 0.03%k;

m(k,:) = u_firorder (delta,delta,B_hat);
end

% Display results

figure
plot (B_hat,m(1,:),’-’,B_hat,m(2,:),’:’,B_hat,m(3,:),’--’)

legend (’\delta = 0.037,...
’\delta = 0.06°,...
’\delta = 0.097);

axis([0 0.12 0 150])
f_labels(’Equiripple Filter Order’,’B/f_s’,’m’)
f_wait

function m = u_firorder (deltap,deltas,Bhat)
% U_FIRORDER: Estimate required order for FIR equiripple filter
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h
% Usage:

% m = u_firorder (deltap,deltas,Bhat);
% Pre:
yA deltap = passband ripple
yA deltas = stopband attenuation
yA Bhat = normalized transition bandwidth
% Post:
yA m = estimated FIR equiripple order
r = (10*loglO(deltap*deltas) + 13) ./ (14.6%Bhat);
m = ceil(-r + 1);
Equiripple Filter Order
150 \ \ \
—§8=0.03
§=0.06
- — —8=0.09
100 [ i
E
50 b
0 | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12

B/f
s

Problem 6.49 Equiripple FIR Filter Order with j, =, =0
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Write a MATLAB program that uses the function f firparks to design an equiripple
lowpass filter to meet the following design specifications where fs = 4000 Hz. Find
the lowest order filter that meets the specifications.

(F,,F,) = (1200,1400) Hz
(5,,0) = (.03,.04)

(a) Print the minimum filter order and the estimated order based on (6.5.21).
(b) Plot the linear magnitude response.
(c) Use fill to add shaded areas to the plot showing the design specifications.

Solution

% Problem 6.50
% Initialize

f_header (’Problem 6.50°)

fs = 4000;
F_p = 1200;
F_s = 1400;

delta_p = 0.03;
delta_s = 0.04;

% Construct equiripple filter

f_type = 0;

ml = f_prompt (’Enter filter order’,0,50,25);

[b,m2] = f_firparks (ml,F_p,F_s,delta_p,delta_s,f_type,fs);
fprintf (’\nMinimum Order = %d\n’,ml)

fprintf (’\nEstimated Order = %d\n’,m2)

% Plot magnitude response

p = 256;

a=1;

[H,f] = f_freqz (b,a,p,fs);

A = abs(H);

figure

plot (f,A);

f_labels (’Magnitude Response’,’f (Hz)’,’A(f)’)

% Add specifications

hold on
£i11 ([0 F_p F_p 0],[1-delta_p,1l-delta_p,l+delta_p,1+delta_p]l,’c’)
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£fill ([F_s fs/2 fs/2 F_s],[0 O delta_s delta_s],’c’)
plot (£,A)
f_wait

Minimum Order = 25

Estimated Order = 24

Magnitude Response
1.4 ‘

1.2 i

MNAN AN 7

0 500 1000 1500 2000
f (Hz)

Problem 6.50 Equiripple Lowpass Filter
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Write a MATLAB program that uses the function f firparks to design an equiripple
highpass filter to meet the following design specifications where f; = 300 Hz. Find
the lowest order filter that meets the specifications.

(F,,F,) = (90,110) Hz
(8, 0) (.02,.03)

(a) Print the minimum filter order and the estimated order based on (6.5.21).
(b) Plot the linear magnitude response.
(c) Use fill to add shaded areas to the plot showing the design specifications.

Solution
% Problem 6.51

% Initialize

f_header(’Problem 6.51°)

fs = 300;
F_s = 90;
F_p = 110;

delta_p = 0.02;
delta_s = 0.03;

% Construct equiripple filter

f_type = 1;

ml = f_prompt (’Enter filter order’,0,50,21);

[b,m2] = f_firparks (ml,F_p,F_s,delta_p,delta_s,f_type,fs);
fprintf (’\nMinimum Order = %d\n’,ml)

fprintf (’\nEstimated Order = %d\n’,m2)

% Plot magnitude response

P 256;

a 1;

[H,f] = f_freqz (b,a,p,fs);

A = abs(H);

figure

plot (f,A);

f_labels (’Magnitude Response’,’f (Hz)’,’A(f)’)

% Add specifications

hold on
£fill ([0 F_s F_s 0],[0 O delta_s delta_s],’c’)
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£i11 ([F_p fs/2 fs/2 F_p]l,[1-delta_p,l1-delta_p,l+delta_p,1l+delta_p]l,’c’)
plot (£,A)
f_wait

Magnitude Response
1.4 T \

1.2 b

0.4r b

0.2 i

0 V| I
0 50 100 150
f (Hz)

Problem 6.51 Equiripple Highpass Filter
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Write a MATLAB program that uses the function f_hilbert to compute a Hilbert trans-
former filter using a Blackman window. Do the following cases.

(a) Use f_fregz to compute and plot the magnitude responses for m = 40 and m = 80 on
the same graph. Also show the ideal magnitude response and add a legend. Specify
the filter type in the title.

(b) Use f-freqz to compute and plot the magnitude responses for m = 41 and m = 81 on
the same graph. Also show the ideal magnitude response and add a legend. Specify
the filter type in the title.

Solution
function prob6_52

% Initialize

f_header (’Problem 6.52°)

fs = 1;

T = 1/fs;

%hsym = 1;

win = 3;

a=1;

p = 500;

ml = 40;

m2 = 80;

% ()

bl = f_hilbert(ml,win);

b2 = f_hilbert(m2,win);
[H1,f] = f_freqz (bl,a,p,fs);
[H2,f] = f_freqz (b2,a,p,fs);

Al = abs(H1);
A2 = abs(H2);
figure

h = plot ([0 .51,[1 11,°k’,f,A1,f,A2);

set (h(2),’LineWidth’,1.5)

f_labels (’Type 3 Magnitude responses’,’{f/f_s}’,’{A(£)}’)
legend (’Ideal’,’m = 40’,’m = 80’)

f_wait

% () and (c)

bl f_hilbert(mi+1,win);

b2 = f_hilbert(m2+1,win);
[H1,f] = f_freqz (bl,a,p,fs);
[H2,f] = f_freqz (b2,a,p,fs);
Al = abs(H1);

A2 = abs(H2);
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figure

h = plot ([0 .5],[1 1],°k’,f,A1,f,A2);

set (h(2),’LineWidth’,1.5)

f_labels (’Type 4 Magnitude responses’,’{f/f_s}’,’{A(£)}’)
legend (’Ideal’,’m = 41’,’m = 817)

f_wait

Type 3 Magnitude responses
1.4 T T

— |deal
m =40
m =80 |

1.2

0.4 N

0.2

0 | | | |
0 0.1 0.2 0.3 0.4 0.5

f/f

S

Problem 6.52 (a) Type 3 Magnitude Responses
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Type 4 Magnitude responses
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Problem 6.52 (b) Type 4 Magnitude Responses
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Using function f_firquad and example 6.14 as a starting point, write MATLAB program
that designs an equalizer for a system H(z) with the following magnitude and phase
responses. Use filters of order m = 160, §; = .001 and the Hamming window.

Adf) = expl-(fT— 25)°/.01
da(f) = —107(fT)* + sin(57fT)

(a) Print the optimal delay 7, and the total delay 7, of the equalizer.

(b) Print a 3 x 1 array of plots showing the magnitude responses of the original system,
the equalizer, and the equalized system similar to Figure 6.29.

(c) Print a 3 x 1 array of plots showing the residual phase responses of the original
system, the equalizer, and the equalized system similar to Figure 6.30.

(d) Plot the impulse response of the equalizer filter.

Solution

(a)

function prob6_53
% Initialize

f_header (’Problem 6.53°)
fs = 1;
T = 1/fs;

% Find optimal delay

N = 300;

f = linspace(0,fs/2,N+1)’;
[A0,phiO] = fsysO(f,fs);

tau = (-1/(2%pi))*(phi0’*£f)/ (£’ *f)
M = round(tau/T);

tau_q = MxT

q=NM

% Design filter

= f_prompt (’Enter filter order’,2,250,160);

= f_prompt (’Enter window type (O=rectangular,l=Hanning,2=Hamming,3=Blackman’,0,3,
deltas = .01;
b = f_firquad(@fsys,m,fs,win,deltas,q);

% Compare magnitude responses

figure % Original
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subplot(3,1,1)
hd = plot(f,A0,’LineWidth’,1.5);
f_labels(’(a) Original System’,’’,’{A_0(£)}’)

[Hq,fq]l = f_freqz(b,1,N,fs); % Equalizer
Aq = abs(Hqg)’;

subplot(3,1,2)

hd = plot(fq,Aq,’LineWidth’,1.5);

f_labels(’ (b) Equalizer’,’’,’{A_q(£)}’)

Aequal = Aq .* AO; % Combined
subplot(3,1,3)

he = plot(fq,Aequal, [0 fs/2],[1 1],°k’);
set(he(1),’LineWidth’,1.5);

f_labels(’(c) Equalized System’,’{f/fs}’,’{A_{equal}(£)}’)
f_wait

% Compare phase responses

figure

[A,theta] = fsys(f,fs,q);

thetal = -theta; % Original
subplot(3,1,1)

hd = plot(f,thetal,’LineWidth’,1.5);

axis([0 fs/2 -2 1])

caption = sprintf(’(a) Original System, M = %d’,M);
f_labels(caption,’’,’{\theta_0(£)}’)

phiq = angle(Hq)’; % Equalizer
phiq = unwrap(phiq);

thetaq = phiq + 2*pi*m*f*T;

subplot(3,1,2)

hd = plot(fq,thetaq,’LineWidth’,1.5);

f_labels(’(b) Equalizer’,’’,’{\theta_q(£)}’)

theta_equal = thetaq + thetaO; % Combined
subplot(3,1,3)

he = plot(fq,theta_equal, [0 fs/2],[0 0],’k’);
set(he(1),’LineWidth’,1.5);

axis([0 fs/2 -pi pil)

f_labels(’(c) Equalized System’,’{f/fs}’,’{\theta_{equall}(£)}’)
f_wait

% Plot the impulse response

figure

h = f_impulse(b,1,2*m);
k = 0:2xm-1;

plot(k,h)
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f_labels(’Impulse Response’,’{k}’,’{h(k)}’)
f_wait

function [A,phi] = fsysO0(f,fs)

T = 1/fs;

A = exp(-(£*T-.25).72/.01);

phi = -10%pix(£*T) . 2 + sin(5*pi*f*T);

function [A,thetal = fsys(f,fs,q)
[AO,phiO] = fsysO(f,fs);

A =1 ./ AO;

T = 1/fs;

M= q;

tau_q = MxT;

theta = phiO + 2%pi*f*xtau_q;

Problem 6.53

tau =
1.8611
tau_q =
2
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(a) Original System
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Problem 6.53 (b) Magnitude Responses
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Problem 6.53 (c) Phase Responses
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Impulse Response
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Problem 6.53 (d) Impulse Response
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Consider the following FIR transfer function.

(a) Write a MATLAB program that uses f_lattice compute a lattice form realization of
this filter. Print the gain and the reflection coefficients of the blocks.

(b) Suppose the sampling frequency is fs = 600 Hz. Use f_freqz to compute the frequency
response using a lattice form realization. Compute both the unquantized frequency
response (e.g. 64 bits), and the frequency response with coefficient quantization
using N = 8 bits. Plot both magnitude responses on a single plot using the dB scale
and a legend.

Solution

% Problem 6.54
% Initialize
f_header(’Problem 6.54°)

m = f_prompt(’Enter filter order’,0,50,20);
for i =1 : mtl

b(i) = i;
end
a=1;
fs = 600;

bits = f_prompt(’Enter number of bits’,1,64,8);
realize = 2;

% Compute lattice form coefficients

[K,b_0] = f_lattice (b);
K = K’
b_0

% Compare original and quantized magnitude responses

p = 100;

[H,f] = f_freqz (b,a,p,fs,64,realize);

[H_q,f] = f_freqz (b,a,p,fs,bits,realize);

A = 20%log10(abs(H));

A_q = 20%logl0(abs(H_q));

figure

hi = plot (f,A,f,A_qQ);

set (h1(1),’LineWidth’,1.5)

f_labels (’Lattice Form Realization Magnitude Responses’,’f (Hz)’,’A(f) (dB)’)
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s = sprintf (’Quantized, N=Yd’,bits);
legend (’Unquantized’,s)
f_wait

(a) The lattice form parameters are
K =
.4992
.3331
.2499
.1999
.1666
.1428
.1250
1111
.1000
.0909
.0833
.0769
.0714
.0667
.0625
.0588
.0555
.0473
.0848
.0799
.0349
.0054

O O O OO O OO OO OO OO OO oOOoOo

IO"
o

N
N o o =
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Lattice Form Realization Magnitude Responses

50 T T T T T
Unquantized

—— Quantized, N=8

(dB)

A(f)

15 1 1 1 1
0 50 100 150 200 250 300
f (Hz)

Problem 6.54 (b) Lattice Form Magnitude Responses
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Consider the following FIR impulse response. Suppose the filter order is m = 30.

hk) = ——— | 0<k<m

(a) Write a MATLAB program that uses f_cascade to compute a cascade form realization
of this filter. Print the gain by and the block coefficients, B and A.

(b) Suppose the sampling frequency is fs = 400 Hz. Use f_freqz to compute the frequency
response using a cascade form realization. Compute both the unquantized frequency
response (set bits = 64), and the frequency response with coefficient quantization
using 8 bits. Plot both magnitude responses on a single plot using the dB scale and
a legend.

Solution

% Problem 6.55
% Initialize
f_header (’Problem 6.55°)

m = f_prompt(’Enter filter order’,0,80,30);
for i =1 : mtl

b(i) = i/m;
end
a=1;
fs = 400;

bits = f_prompt(’Enter number of bits’,1,64,8);
realize = 1;

% Compute cascade form coefficients
[B,A,b_0] = f_cascade (b)
% Compare original and quantized magnitude responses

p = 100;

[H,f] = f_freqz (b,a,p,fs,64,realize);
[H_q,f] = f_freqz (b,a,p,fs,bits,realize);
A = 20*1og10(max(abs(H),eps));

A_q = 20%logl0(max(abs(H_q),eps));

figure

hi = plot (f,A,f,A_qQ);

set (h1(1),’LineWidth’,1.5)

f_labels (’Cascade Form Realization Magnitude Responses’,’f (Hz)’,’A(f) (dB)’)
s = sprintf (’Quantized, N=Jd’,bits);
legend (’Unquantized’,s)

f_wait
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(a) The cascade form parameters are

B =
1.0000 -2.0773 1.1417
1.0000 -1.9680 1.1837
1.0000 -1.7620 1.2106
1.0000 -1.4757 1.2302
1.0000 -1.1235 1.2454
1.0000 -0.7212 1.2576
1.0000 -0.2860 1.2676
1.0000 0.1637 1.2758
1.0000 0.6094 1.2826
1.0000 1.0325 1.2882
1.0000 1.4156 1.2926
1.0000 1.7428 1.2961
1.0000 2.0008 1.2986
1.0000 2.1790 1.3002
1.0000 2.2699 1.3011

A =

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

b_0 =

0.0333
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Cascade Form Realization Magnitude Responses
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Problem 6.55 (b) Cascade Form Magnitude Responses
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Chapter 7

Consider the problem of designing a filter whose impulse response emulates the sound from
a stringed musical instrument. Suppose the sampling frequency is f; = 44.1 kHz and the
desired resonant frequency or pitch is Fy = 480 Hz.

(a) Find the feedback parameter L and the pitch parameter ¢ in Figure 7.1.

(b) Suppose the attenuation factor is 7 = .998. Find the tunable plucked-string filter transfer

function H(z).

Solution

(a) From (7.1.9a) the parameter L is

s — .0
ﬂOOT (fTOO>

fAoor <44100 - 240>
480

floor(91.375)

91

To compute ¢, one must first compute the intermediate variable §. Using (7.1.9b)

Finally, from (7.1.9¢)

fs B (L + -5)F0
Fo

44100 — 91.5(480)
480

375
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(b) Using r = .998 and (8.8), the tunable plucked string filter transfer function is

Sle+ (1+c)z7t + 272
1+ cz! — 5rlicz=L + (1 + ¢)z=(L+1) 4 2=(L+2)]
5[.4545 4 1.4545271 + 272]

H(z) =

1+ .45452=1 — .5(.998)91[.45452791 + 1.45452792 4 2—93]
22734+ 7273271 4+ 5272
1+ .45452~1 — 18942791 — 60612792 — 4167293
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Consider the problem of designing a resonator that extracts the frequency Fy = 100 Hz.

(a) Find a sampling frequency f, that places the resonator pole at an angle of 6y = 7/2.
(b) Design a resonator Hyes(z) that has a 3-dB passband radius of AF = 2 Hz.

(c) Sketch a signal flow graph using a direct form II realization.
Solution

(a) Using (7.2.3) and solving for fs yields

27TFO

fs =
27100

/2

= 400 Hz

(b) From (7.2.6), the pole radius required for a 3 dB passband radius of AF =2 Hz is

AFm
r ~ 1-—
fs
_ 2
N 400
= .9843

Next, from (7.2.7) the resonator gain is
| exp(j26p) — 27 cos(6y) exp(j6o) + 72|
| exp(j26o) — 1|
|exp(j7) — 2(.9843) cos(7/2) exp(jm/2) + (.9843)?|
|exp(jm) — 1|

by =

| — 1+ .9688|
| —1—1
= .0156

Finally, from (7.2.8), the resonator transfer function is

bo(1—272)
1 —2rcos(fy)z—t + r2z—2
0156(1 — 272)
1+ .968822

Hros(z) =
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—.9688 —.0156

Problem 7.2 (c) Signal Flow Graph of Resonator
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Consider the problem of designing a resonator that has two resonant frequencies. Suppose
the sampling frequency is fs = 360 Hz.

(a) Design a resonator Hy(z) that has a resonant frequency at Fy = 90 Hz and a 3-dB
passband radius of 3 Hz.

(b) Design a resonator Hy(z) that has a resonant frequency of F; = 120 Hz and a 3-dB
passband radius of 4 Hz.

(¢) Combine Hy(z) and Hy(z) to produce a resonator H(z) that has resonant frequencies at
Fy =90 Hz and F; = 120 Hz. Hint: Use one of the indirect forms.

(d) Sketch the signal flow graph of H(z) using direct form II realizations for the blocks Hy(z)
and Hi(z).

Solution

(a) From (7.2.3) the required pole angle is

27TFO

Is
27190

360

Oy =

Next, from (7.2.6), the pole radius needed to achieve a 3 dB passband radius of AF =3
Hz is

From (7.2.7) the resonator gain is
| exp(j260) — 27 cos(fp) exp(jo) + 2|
| exp(j20p) — 1]
| exp(jm) — 2(.9738) cos(/2) exp(jn/2) + (.9738)?|
|exp(jm) — 1

by =

= .0258

Finally, from (7.2.8), the resonator transfer function is
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bo(l — Z_2)
1 —2rcos(6p)z=1 +r2z—2
.0258(1 — 272)
1+ .9483272

Hres(z) =

(b) From (7.2.3) the required pole angle is

27TFO
fs
27120

360
2T

T

Next, from (7.2.6), the pole radius needed to achieve a 3 dB passband radius of AF =3
Hz is

1 AFT
r —
fs
B 47
B 360
= .9651

From (7.2.7) the resonator gain is
| exp(j260) — 27 cos(6p) exp(jo) + 2|
| exp(j200) — 1|
| exp(j4m/3) — 2(.9651) cos(27/3) exp(j2m/3) + (.9751)2
|exp(jdm/3) — 1|

= .0343

Finally, from (7.2.8), the resonator transfer function is

bo(1 — 272
Hres(2) = 1-—2r (:OS((HO)Z_1 )—1—7“22:—2
.0343(1 — 272)
= 1-—2(.9651) cos(2m/3)z L + (.9651)2z 2
.0343(1 — 272)

14.96512—1 +.9314272
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(c) Using the cascade form, the transfer function of a double resonator is

H(z) = Ho(2)H1(2)
0258(1 — 272) 0343(1 — 272)
1+.9483272 | 1+.96512~1 +.93142~2

ug 0258 U1 0343 u2
-1 -1
A 1 < A A 1 < A
0 0 —.9651 0
\ Z—l v Z_l
—.9483 —.0258 —.9314 —.0343

Problem 7.3 (d) Cascade Form Realization of Double Resonator
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Consider the problem of designing a notch filter that eliminates the frequency Fy = 60 Hz.

(a) Suppose the notch filter pole is at the angle 8y = 7/3. Find the sampling frequency fs.
(b) Design a notch filter Hyotch(2) that has a 3-dB stopband radius of AF =1 Hz.
(c) Sketch the signal flow graph using a transposed direct form II realization.

Solution

(a) Using (7.2.3) and solving for fs yields

21 F{
fs = 0

27160
/3
= 360 Hz

(b) From (7.2.6), the pole radius required for a 3 dB stopband radius of AF =1 Hz is

AFT

r ~ 1-—
Is
-1
360

= .9913

Next, from (7.2.12) the notch filter gain is

|1 — 2r cos(fp) + 2|
2|1 — cos(fy)]
|1 —2(.9913) cos(m/3) + (.9913)2
2|1 — cos(m/3)|
= |1—.9913 + .9826]
= .9913

by =

Finally, from (7.2.13), the notch filter transfer function is

bo[1 — 2cos(fy) 2t + 272
1—2rcos(fp)z=1 + 12272
9913[1 — 271 + 272
1—.9913z"1 4+ (.9913)22—2
9913[1 — 271 + 272
1—.9913271 +.98262—2

Hnotch(z)
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~.9826 | 9913

Problem 7.4 (c) Signal Flow Graph of Notch Filter
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Consider the problem of designing a notch filter that has two notch frequencies. Suppose the
sampling frequency is fs = 360 Hz.

(a) Design a notch filter Hy(z) that has a notch frequency at Fy = 60 Hz and a 3-dB
stopband radius of 2 Hz.

(b) Design a notch filter Hj(z) that has a notch frequency at Fy = 90 Hz and a 3-dB
stopband radius of 2 Hz.

(¢) Combine Hy(z) and Hy(z) to produce a notch filter H(z) that has notches at Fy = 60
Hz and F} = 90 Hz. Hint: Use one of the indirect forms.

(d) Sketch the signal flow graph of H(z) using direct form II realizations for the blocks Hy(z)
and Hi(z).

Solution

(a) From (7.2.3) the required zero angle is

27TFO

Is
2760

360

Oy =

Next, from (7.2.6), the zero radius needed to achieve a 3 dB stopband radius of AF = 2
Hz is

AFr
Is
2T

360
= 9825

From (7.2.12) the notch filter gain is

|1 — 2r cos(fp) + 2|
2|1 — cos(fy)|
|1 — 2(.9825) cos(m/3) + (.9825)2|
2|1 — cos(m/3)|
= |1 —.9825+ .9654]
= .9829

by =
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Finally, from (7.2.13), the notch filter transfer function is

bo[l — 2cos(fy) 2t + 272
1—2rcos(fp)z=t + r2z—2
9829(1 — 271 + 272)
1—.98252~1 4 (.9825)22—2
9929(1 — 271 4 272)
1—.9825271 4 .96242—2

Hnotch(z) =

(b) From (7.2.3) the required zero angle is

27TFO
Js
2790
360

by =

Next from (7.2.6), the zero radius needed to achieve a 3 dB stopband radius of AF = 2
Hz is

From (7.2.12) the notch filter gain is

|1 — 27 cos(bp) + r?|
2|1 — cos(fy)]
|1 —2(.9738) cos(m/2) + (.9738)?|
2|1 — cos(m/2)|
= |14 .9483|/2
= .9742

bo

Finally, from (7.2.13), the notch filter transfer function is

bo[l — 2cos(fy) 2t + 272
1—2rcos(bp)z=1 + 12272
9742(1 + 272)
1+ (.9738)22
9742(1 + 272)

1+ .9483272

Hnotch(z)
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(c) Using the cascade form, the transfer function of a double notch filter is

H(z) = Ho(z)H(2)
9929(1 — 271 4+ 272) ] .9742(1 + 272)
1—.98252"1 4 .96242=2| 14 .94832~2

ug .9929 u1 9742 u2
-1 -1
A 1 < A A 1 < A
.9825 —.9929 0 0
\ z—l v Z_l
—.9624 .9929 .9483 .9742

Problem 7.5 (d) Cascade Form Realization of Double Notch Filter
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Consider an input signal y(k) that consists of a periodic component z(k) plus a random white
noise component v(k).

ylk) = z(k)+vk) , 0<k<256

Suppose the sampling rate is fs and this results in a signal (k) that is periodic with a period
of L = 16. Design a comb filter Heomp(z) that passes harmonics zero through L/2 of z(k).
Use a 3-dB passband radius of AF = f;/100.

Solution

Since (k) is periodic with period L, the fundamental harmonic of z(k) has frequency Fy =
fs/L. Thus we need a comb filter of order n = L. From (7.2.6), the radius of each of the n
poles must be

AFr

r ~ 1-—
Is
- 1
100

= .9686

Next, from (7.2.16), the gain of a comb filter with n teeth is

bgp = 1—-7r"
= 1—(.9686)'°
= .3999

Finally, from (7.2.15), the comb filter transfer function is

bo
Hcomb(z) = 1 _nan
1 — (.9876)'¢
1 — (.9876)16,-16
B .3999
1 —.6001z"16
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Consider an input y(k) that consists of a signal of interest, z(k), plus a disturbance, d(k).

y(k) = z(k)+dk) , O0<k<N

Suppose that when the sampling rate is fs, the disturbance d(k) is periodic with a period of
L = 12. Design an inverse comb filter Hi,y(z) that removes harmonics zero through L/2 of
d(k) from y(k). Use a 3-dB passband radius of AF = f,/200.

Solution

Since d(k) is periodic with period L, the fundamental harmonic of d(k) has frequency Fy =
fs/L. Thus we need an inverse comb filter of order n = L to extract the harmonics zero
through L/2. From (7.2.6), the radius of each of the n zeros must be

AT

r ~ 1-—
Is
_
200

= .9843

Next, from (7.2.19), the gain of an inverse comb filter with n teeth is

147"
2
1+ (.9843)'2

2
= 9135

by =

Finally, from (7.2.18), the inverse comb filter transfer function is

bo(1 —27")

1 —rnz=n
9135(1 — 212
1 — (.9843)12;-12
9135(1 — 212
1—.8270z—12

Hinv(z) =
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Consider the problem of designing a lowpass analog filter H,(s) to meet the following speci-
fications.

[F,, Fy, 6,,6,] = [1000,1200,.05,.02]

(a) Find the passband ripple and stopband attenuation in units of dB.
(b) Find the selectivity factor, r.
(c) Find the discrimination factor, d.

Solution

(a) Using (7.3.2a) the passband ripple in dB is

Ap = =20 10g10(1 — 5]7)
= =20 10g10(95)
= .4455 dB

Similarly from (7.3.2b), the stopband attenuation in dB is

AS = =20 10g10(5s)
= 33.9794 dB

(b) From (7.3.4a), the selectivity factor of this filter is

(c) From (7.3.4b), the discrimination factor of this filter is

(1—dp) 21
652 —1

(.95)-2 — 1

(02)2—1

= .0066
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Consider the following design specifications for a lowpass analog filter.

[F,, Fy,6,,85] = [50,60,.05,.02]

Find the minimum-order filter needed to meet these specifications using the following classical
analog filters.

(a) Butterworth filter
(b) Chebyshev-I filter
(c) Chebyshev-II filter

Solution

(a) From (7.3.4a), the selectivity factor is

gl 8 &

= .8333

g (1-4,)"2-1
672 —1
(.95)—2
(.02)~2 -1
— .0066

[ln 0066 ]
= ceil

(-
In(. 8333
= ceil(27.558

= 28
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(b) From (7.4.23), the required order for a Chebyshev-I lowpass filter is

n = ceil lln(d_l + m)]

In(r—1 4+ vr=2 — 1)
| In[(.0066) " + 1/(.0066)~2 — 1]
-« [111[(.8333)_1—1— (.8333)—2—1)]
= ceil(9.1870)
= 10

(¢) The required order for a Chebyshev-II filter is identical to the required order for a
Chebyshev-I filter. Thus from part (b)
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V Consider the problem of designing a lowpass analog Butterworth filter to meet the following
specifications.

[Fy, Fy, 0,,6s] = [300,500,.1,.05]

(a) Find the minimum filter order n.

(b)

(c)

(d) Find a cutoff frequency F, for which H,(s) exceeds both the passband and the stopband
specification.

For what cutoff frequency F. is the passband specification exactly met?

For what cutoff frequency F. is the stopband specification exactly met?

Solution

(a) From (7.3.4a), the selectivity factor is

oot w
QO‘O:?:‘L?:‘
SRS

Similarly, from (7.3.4b), the discrimination factor is

g - (1—-0,)"2—1
652 —1
B (9)2-1
\ (05)2 -1
= .0242

Next, from (7.4.8), the required filter order is
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(b) From (7.4.9), the passband specification will be met exactly using the following cutoff
frequency.

FP
[(1—4,)—2_ 1)1/
300
[(9)2— 1]/19)
= 328.477 Hz

(¢c) From (7.4.10), the stopband specification will be met exactly using the following cutoff
frequency.

Fs
(052 — 1)1/Cn)
500
[('05)—2 _ 1]1/(16)
= 343.8188 Hz

(d) Any cutoff frequency in the range F,, < F. < F, will exceed both the passband and
the stopband specification. For example,

Fc _ Fcp;’ch

= 336.1698 Hz
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Find the transfer function H(s) of a third-order analog lowpass Butterworth filter that has a
3-dB cutoff frequency of F. = 4 Hz.

Solution

From Table 7.2, the transfer function of a normalized third-order lowpass Butterworth filter
is

1
s34+ 25242541

H, =

The desired cutoff frequency in radians/sec is

Q. = 2nF,

Thus from (7.4.13), the transfer function is

07
$3 +2Q.8% + 2025 + Q2
(87)°
s3 4 2(87)s2 + 2(8m)2s + (87)3
15875
s3 +50.2752 + 1263s + 15875

H,(s) =
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Sketch the poles and zeros of an analog lowpass Butterworth filter of order n = 8 that has a
3-dB cutoff frequency of F, = 1/m Hz.

Solution

From (7.4.4Db), the radius of the kth pole for 0 < k < n is

|pk| = 27F,

From (7.4.4a), the angle of the kth pole is

2k+1+n)m
2n
(2k+9)m
16

O, =

Butterworth Poles, n = 8

Problem 7.12 Lowpass Butterworth Filter Poles and Zeros
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Consider the problem of designing an analog lowpass Chebyshev-I filter to meet the following
design specifications. Find the minimum order of the filter.

[F,, Fy,6,,6,] = [100,200,.03,.05]

Solution

From (7.3.4a), the selectivity factor is

Fp
Fy
100
200

= .5

Similarly, from (7.3.4b), the discrimination factor is

(1-0p)2—1
652 —1

(97)"2 -1

(05)2—1

= .0125

Next, from (7.4.23), the required filter order is

In(r—1 +vr=2-1)
, [m[(.m%)—l +,/(0125)2 1]]

In[(.5)"1 + /(52— 1)
= ceil(3.8508)
= 4

n = ceil lln(d_l + \/‘1_27_1)]

593



Design a second-order analog lowpass Chebyshev-I filter, H,(s), using F,, = 10 Hz and §,, = .1.
Solution

First one must locate the poles. Using (7.4.17), the ripple factor parameter is

e = 4/(1-06,)2-1
= (9)2-1
= .4843
Next, from (7.4.19a)
a = el4e241
= (.4843)71 4+ \/(4843)2+1
= 4.3589

Using (7.4.19b) and (7.4.19¢c) with Fy = F),, the radii of the minor and major axes of the
ellipse containing the poles are

ro= nFy(at/™—a7lm)
= 107((4.3589)"/2 — (4.3589)"1/2)
= 50.5427

ry = mFy(at™ 4 a7l/m)
= 107((4.3589)"/2 + (4.3589)"1/?)
= 80.6375

From (7.4.20), the angles of the poles are

2k+1+n)m
2n
(2k+3)7
4
= {3w/4,5m/4}

O, =

Using (7.4.21),the real and imaginary parts of the poles are
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o = rycos(y)
= 50.5427 cos[(2k + 3)7/4]

= —35.7391
wp = rosin(fy)
= 80.6375sin[(2k + 3)7/4])
= 457.0193
Thus the poles are
pr = —3b.7391 4+ j57.0193

The denominator polynomial of the transfer function is then

(s—p1)(s—p2) = (s+35.7391 — j57.0193)(s + 35.7391 + j57.0193)
(54 35.7391)% 4 (57.0193)?
52 — 71.55 + 4528.5

Next, consider the transfer function numerator. From (7.4.18),

1

V14 e?
1

1+ (.4843)2
= .9

Au(0) =

From (7.4.22), the numerator is then

bo = BAL(0)
(—1)2(—35.7391 + j57.0193)(—35.7391 — j57.0193)(.9)
4075.6

Finally, from (7.4.22) the transfer function of the second-order Chebyshev-I lowpass filter is

4075.6

H —
als) 2 — 7155+ 42585
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Find the minimum order n of an analog elliptic filter that will meet the follow design spec-
ifications. You can use the MATLAB function ellipke to evaluate an elliptic integral of the
first kind.

[F,, Fy,6,,6,] = [100,200,.03,.05]

Solution

From (7.3.4a), the selectivity factor is

RIS

Similarly, from (7.3.4b), the discrimination factor is

(1—dp) 21
652 —1

(97)"2 -1

(.05)2—1

= .0125

Let g(x) be a complete elliptic integral of the first kind as in (7.4.32).

s do
9l@) = /0 V1 — 22sin?(6)

From (7.4.33), the required order for an elliptic filter is

n = ceil [g(rz)g( L—d ]
9(V1—1r?)g(d?)
- [g[(ﬁ)z]g(W)]
9(v/1—(.5)%[(.0125)%]
= ceil(2.6863)
= 3

Here g(x) is evaluated using the MATLAB function ellipke.
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Vv Consider the following first-order analog filter.

(a) What type of frequency-selective filter is this (lowpass, highpass, bandpass, or band-
stop)?

(b) What is the 3-dB cutoff frequency fy of this filter?
(c) Suppose fs = 10 Hz. Find the prewarped cutoff frequency Fp.

(d) Design a digital equivalent filter H(z) using the bilinear-transformation method.

Solution

(a) The frequency response is

f
Vit P
O = m/2tanl(f/2)

Since A(0) =0 and A(oo) = 1, this is a highpass filter.
(b) Setting A%(f) = .5 and solving for f yields

4+ 5.5
2+ f%/2

f2

Thus f2/2 =2 or

f(] = 2Hz
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(c) Using (7.5.10) with fs = 10 Hz yields

tan(w foT
T
tan(72/10)
710
= 2.3127 Hz

Fy =

(d) The prototype analog highpass filter is

S/FO
S/FO +1
S

s+ Fy
S

s+ 2.3127

H,(s) =

Using (7.5.5), the digital equivalent filter using the bilinear transformation is

H(z) = Ha(s)ls=

2(z—1)
2z-1)+ FT(2+1)
2(z—1)

(2 + FOT)Z + FyT — 2

2(z—1)
2.2313z — 1.7687

.8964(z — 1)
z —.7927
.8964(1 — 27 1)
1—.792721
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The simplest digital equivalent filter is one that preserves the impulse response of H,(s). Let
hq(t) denote the desired impulse response.

ha(t) = L™{Ha(s)}

Next let T' be the sampling interval. The objective is to design a digital filter H(z) whose
impulse response h(k) satisfies

Thus the impulse response of H(z) consists of samples of the impulse response of H,(s).
This design technique, which preserves the impulse response, is called the impulse-invariant
method. Suppose H,(s) is a stable, strictly proper, rational polynomial with n distinct poles

{p17p27 e 7pn}

(a
(b
(c
(d

Expand H,(s)/s into partial fractions.

Find the impulse response hg(t).

Sample h,(t) to find the impulse response h(k).
Find the transfer function H(z).

Solution

(a) Let pg = 0. Then H,(s)/s has n + 1 distinct poles, {pg, p1,...,pn}. Thus the partial
fraction expansion of H,(s)/s is

Here the partial fraction residue at the ith pole is

(s — pi)Ha(s)

R =
5 s=Ppi
(b) From part (a)
" RZ’S
Ha(s) = R +Z s — pi
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Thus the impulse response is

ha(t) = L7{Ha(s)}

= Roda(t) + ) Riexp(pit)ua(t)
i=1

(c) The samples of the impulse response are

h(k) = ha(kT)

= Rod(k) + Z R; exp(pikT) (k)
i=1

(d) The discrete-equivalent transfer function using the impulse invariant method is

H(z) = Ro+ Z R Z{exp(pikT) (k) }
i—1

= Ro+ ) RiZ{[exp(piT)] u(k)}

i=1
n
RZ’Z
- R _ ue
o+t ; z —exp(p;T)
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Consider the following analog prototype filter of order n = 2.

6

Has) = o555

(a) Find the poles of H,(s)/s.
(b) Find the residues of H,(s)/s at each pole.

(c) Find a digital equivalent transfer function using the impulse-invariant method in Problem
7.17. You can assume the sampling interval is T' = .5 sec.

Solution

(a) The factored form of H,(s)/s is

H,(s) 6
s  s(s+2)(s+3)
Thus the poles are
po = 0
pro= -2
p2 = -3

(b) The partial fraction residues of H,(s)/s are

Ry =

s=—2

s s=-—3

601



(c) From part(d) of Problem 8.17, the digital equivalent transfer function using the impulse
invariant method is

R1Z RQZ
H(z) = Ro+ z —exp(p1T) * z —exp(p2T)
_ —3z 2z
-t z —exp(—2/2) * z —exp(—3/2)
—3z 2z
= 14

z —.3679 * z —.2231
(z—.3679)(z — .2231) — 32 + 2z
(z —.3679)(z — .2231)

2% —1.591z +.0821
(z —.3679)(z — .2231)
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Consider the following analog filter that has n poles and m zeros with m < n.

B(s—z)(s—22)--- (8 — 2m)

Hals) = ) (5 )

An alternative way to convert an analog filter into a digital filter is to map each pole and
zero of H,(s) into a corresponding pole and zero of H(z) using z = exp(sT). This yields:

bo(z + D" ™[z — exp(z1T)][z — exp(22T)] - - - [z — exp(zmT)]
[z — exp(p1T)][z — exp(paT)] - - - [z — exp(pnT)]

H(z) =

Note that if n > m, then H,(s) has n —m zeros at s = co. These zeros are mapped into the
highest digital frequency, z = —1. The gain factor bg is selected such that the two filters have
the same passband gain. For example if H,(s) is a lowpass filter, then H,(0) = H(1). This
method, which is analogous to Algorithm 7.1 but using a different transformation, is called
the matched Z-transform method. Use the matched Z-transform method to find a digital Matched

equivalent of the following analog filter. You can assume 1" = .2. Match the gains at DC. Z-transform
method
10s+1
H = —
a(s) s2+3s+2
Solution

The factored form of H,(s) is

10(s +.1)

Hls) = GiDGeto)

Thus there are m = 1 finite zeros and n = 2 finite poles. Hence the form of the discrete
equivalent transfer function using the matched Z-transform method is

bo(z + 1)[z — exp(—.1T)
=~ exp(_ )] — exp(_27)
bo(z + 1)[z — exp(—.02)
) ——)
bo(z + 1) (= — .9802)
(= — R187)(z — .6703)

H(z) =

Matching the gains at DC, H,(0) = H(1) or
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2bo(1 — .9802)

5= AT S8 = .6703)
Solving for by yields
bp = .7545
Thus the transfer function is
H(z) = 7545(z 4+ 1)(z — .9802)

(z — .8187)(z — .6703)
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Find the transfer function H(s) of a second-order highpass Butterworth filter that has a 3-dB
cutoff frequency of F. =5 Hz.

Solution

From Table 7.2, the transfer function of a second-order normalized lowpass Butterworth filter
is

1
s2+1.4.14s+1

Hnorm(s) =

The desired highpass cutoff in radians/sec is

Q(] = 27TFO
= 107

Using the lowpass to highpass frequency transformation in Table 7.5, the highpass transfer
function is

Ha(s) = Hnorm[D(s)]
= Hnorm[QO/s]
1
(Q/5)2 + 1.414(Q/s) + 1

82

s2 +1.41400s + Q3

82

s2 + 14.147s + 10072

82

s2 +44.425 + 986.96
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Find the transfer function H(s) of a fourth-order bandpass Butterworth filter that has 3-dB
cutoff frequencies of Fy =2 Hz and F; = 4 Hz.

Solution

The lowpass to bandpass frequency transformation doubles the filter order. Therefore one
starts with a second order filter. From Table 7.2, the transfer function of a second-order
normalized lowpass Butterworth filter is

1
s24+1.4.14s+ 1

Hnorm(s)

The passband cutoff frequencies, in radians/sec, are

Qp = 27k
= A4r

O = 2l
= 87

Let AQ = Q1 — Q. Then from the lowpass to bandpass frequency transformation in Table
7.5, the bandpass transfer function is

Ha(s) Hnorm[D(s)]

1

52 + Qo
AQs

2
+ 1] +1.4.14 [

s? + Qo
——+1 1
AQs - ] -

1

AQs

AQs

(52 + AQs + Q9017 2 L AQs + Qo0
5%+ AQs + 01] +1‘4'14|:S+ s+ 01]_1_1

(AQ)2s?

[s2 + AQs + Qo2 + 1.4.14[s% + AQs + Qo ]AQs + (ANQ)2s2

167252

[s2 4+ 47s + 32722 4+ 1.4.14[s? + 47s + 32m2|dns + 167252

157.91s2

st 4+ 1852 + 79052 4 56125 + 99747
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Sketch a direct form I signal flow graph realization of the following IIR transfer function.

8—1.22" 4 4273

H(z) =
(2) 1—.9271 4 62724 3273
Solution
.8 U
Tr e > > > > e U
Z—lv vz—l
A
—1.2 9
Z—lv vz—l
A
0 —.6
Z—lv vz—l
A
4 -3

Problem 7.22 Direct Form I Signal Flow Graph
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Sketch a direct form II signal flow graph realization of the following difference equation.

y(k) = 10xz(k)+ 2z(k—1) — dx(k — 2) 4+ 5z(k — 3) — .Ty(k — 2) + .4y(k — 3)

Solution

By inspection, the transfer function is

1042271 — 427245273

H(z) =
(2) 14+ .7272 — 4273
U 10
r e > > > > e Y
Y,—1
A z A
0 2
Y,—1
A z A
—.7 4
Y.—1
A z A
4 9

Problem 7.23 Direct Form II Signal Flow Graph
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Sketch a transposed direct form II signal flow graph realization of the following transfer

function.
H(z) 1—2271 432724273
z prd
14+ 8271+ 62724 4273
Solution
Tr e > > > > o U
| 427! |
-2 -8
> PP
| 4z |
3 —.6
> -
| 4z |
—4 -4
> R

Problem 7.24 Transposed Direct Form II Signal Flow Graph
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Consider the following IIR system.

(a) Expand H(z) into partial fractions.

(b) Sketch a parallel form signal flow graph realization by combining the two poles that are
closest to the unit circle into a second-order block.

Solution

(a) The factored form of H(z)/z is

H(z) 22

The partial fraction residues at the poles are

R, — (z— .8)H(2)
z 2=.8
22
T (- 6)(z— 4)| g
64
- (.2)(.4)
= 8
R, — = OHE)
z 2=.6
z2
T - 8)(— )|,
B .36
(=2)(.2)
= -9
R, — = AHE)
z z=.4
z2
T -8 6)|_,
B 16
T (42
= 2
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Thus the partial fraction expansion is

(b) Combining the terms with poles at z = .8 and z = .6 then yields

2z 82(z — .6) — 9z(z — .8)
A G—8)(-20

22 822 -4.82-922+7.22
z—.4+ 22 — 1.4z + 48

H(z) =

B 2z n —22 4342
oz — 4 22—1.4z+ 48
2 —1+43.4z271

1—.4z71 + 1—1.42"2 4 48272

-1 Ul
Tr ® > > > > > >
Yy .1
A z A
1.4 3.4
\
—.48
2 u2
v .—1
A z
4

Problem 7.25 (b) Parallel Form Realization
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Consider the following IIR system.

2(2% +.64)(22 — 2z + .24)

HE) = sy ozt a0

(a) Sketch the poles and zeros of H(z).

(b) Sketch a cascade form signal flow graph realization by grouping the complex zeros with
the complex poles. Use a direct form II realization for each block.

Solution

(a) The fully factored form of H(z) is

2(z4+75.8)(z—j.8)(z — .6)(z — 4)

H(z) = - -
(2) (z+.9)(z+.3)(z+74.9)(2—4.9)
Pole-Zero Plot
2
1.5F
i :
0.5
\g/ 0 * * 00
-0.5
) g
-15¢
2
) 1 0 1 2

Re (z)

Problem 7.26 (a) Poles and Zeros of H(z)
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(b) Grouping the complex poles and zeros together (to preserve real coefficients),

bo = 2
2
2+ .64
H = —
1(2) 21 81
22—z 4 .24
H = - - =
2(2) 21122 27
2 U U1 U2
-1 -1
A 1 z A A 1 z A
0 0 —1.2 -1
4 Z—l Y Z—l
—.81 .64 .27 24

Problem 7.26 (b) Cascade Form Realization
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Consider the following IIR filter. Suppose 8-bit fixed-point arithmetic is used to implement
this filter using a scale factor of ¢ = 4.

(a) Find the quantization level q.
(b) Find the power gain of this filter.

(c) Find the average power of the product round-off error.

Solution

(a) Here ¢ =4 and N = 8. Thus, from (7.8.1) the quantization level ¢ is

(b) The impulse response is

Using (7.8.9) and the geometric series, the power gain is

L= > [wk)P
=0

= i4(.49)’f
=0

4

1—-.49
= 7.8431
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(¢) Here m = 0 and n = 1. Using (7.8.10), the average power of the product round-off error
is

2 (Tn +m + 1)¢®
0‘ prd
Y 12
_ (7.8431+1)(.0313)2
- 12
= 7.2916 x 1074
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Consider the following IIR filter.

(a) Sketch a direct form II signal flow graph of H(z).

(b) Suppose all filter variables are represented as fixed-point numbers, and the input is
constrained to |z(k)| < ¢ where ¢ = 2. Find a scale factor, s1, that eliminates summing
junction overflow error.

(c) Sketch a modified direct form II signal flow graph of H(z) that implements scaling to
eliminate summing junction overflow.

Solution

(a) The transfer function, in terms of negative powers of z, is

.0
H J—
(2) 1+.9271
U )
T e > > > > ° U
y.—1
A ) z A
-9 0

Problem 7.28 (a) Direct Form II Signal Flow Graph

(b) The impulse response is

_ .0z
k) = 2 1{73—1—.9}
= .5(—.9)"u(k)

The output at the first summing junction is h(k)/3. Using (7.8.13), the norm of A is
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Bl = 3 Ih(k)

From (7.8.14) the scale factor is

S1 =

8
®
\
\
Y.
\
[ J
<

-9 0

Problem 7.28 (c) Direct Form II Signal Flow Graph with Scaling
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For the system in Problem 7.28, find a scale factor s, that will eliminate summing junction
overflow when the input is a pure sinusoid of amplitude ¢ < 5.

Solution

The frequency response of the system in problem 7.28 is

H(f) = H(2)|:=jonsr

.D
1 =9exp(—527fT) | —jonsr
B .D
1 —.9cos(27fT) + j.9sin(2r fT)
= A(f) expljo(f)]
The magnitude response is
.D

A(f) =

V[ = .9cos(2m fT))2 + .81sin?(2n fT)

Thus the required scaled factor is

1
maXO§f§f5/2{A(f)}
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Let faip(z) be the following unit clipping nonlinearity.

A -1, —co<z< -1
fclip(l') = X s -1<z2<1
1 1<z <oo

Show how fciip can be used to eliminate limit cycles due to overflow error by sketching a
modified direct form II signal flow graph of a second-order IIR block. You can assume all
values are represented as fractions.

Solution

If all values are represented as fractions, then the output of each summing junction can be clipped
to [—1, 1] as follows.

fclip u bO fclip
r e > > > > o Y
A !
A z A
—ai b1
vz—l
—ag bg

Problem 7.30 Clipping to Avoid Limit Cycles Due to Overflow
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Use the GUI module g_ir to design a resonator filter with resonant frequency Fy = 100 Hz.

(a) Plot the linear magnitude response. Use the Caliper option to mark the peak.
(b) Plot the phase response. Is this a linear-phase filter?
(c) Plot the pole-zero plot.

Solution
Resonator filter, n = 2
T T T

1k (x.y) = (300.45,1.00) .
0.8F e
Y o6l .
0.4 :
0.2 B

0 | | | | T + . i

0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 7.31 (a) Resonator Magnitude Response
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Resonator filter, n = 2

4 T T T

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 7.31 (b) Resonator Phase Response (not linear phase)

I
N

Resonator filter, n Impulse response

0.04

0.02

Z I] ‘HMH ST

i

-0.02
-1
-0.04
-2 -0.06
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.31 (c) Resonator Pole-Zero Plot
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Use the GUI module g¢_7ir to design a notch filter with a notch frequency of Fy = 200 Hz, and
a sampling frequency of fs = 1200 Hz.

(a) Plot the linear magnitude response.
(a) Plot the phase response. Is this a linear-phase filter?

(c) Plot the impulse response.

Solution
Notch filter, n = 2
T

1

0.8 4
206 B

041 A
0.2 4

0 L L L L

0 100 200 300 400 500 600

f (Hz)

Problem 7.32 (a) Notch Filter Magnitude Response
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Notch filter, n = 2
2 T

15 | | | |
0 100 200 300 400 500 600

f (Hz)

Problem 7.32 (b) Notch Filter Phase Response (not linear phase)

Notch filter, n = 2 Impulse response
2
1
1
0.5
‘;’ 0 o~ 0 [7"3”'4“'.,"'..-‘-
= <
i -0.5
-1
-2
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.32 (c) Notch Filter Impulse Response
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Create a MAT-file called prob7_33.mat that contains b, a, and fs for an inverse comb filter

of order n = 12 using f; = 1000 Hz and a 3-dB radius of AF = 2 Hz. Then use the GUI
module g_iir and the User-defined option to load this filter.

(a) Plot the linear magnitude response.
(b) Plot the phase response
(c) Plot the pole-zero pattern.

Solution

User-defined filter from file prob7_33.mat, n = 12

T T T T T T T
0.8 ( ‘\ ( ‘}
L o6l 1
e
0.4 1
0 ! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500

f (Hz)

Problem 7.33 (a) Inverse Comb Filter Magnitude Response
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User-defined filter from file prob7_33.mat, n = 12

1.5 T T T T T T T
1 — -
0.5 A
> o -
-0.51
1+ |
15 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
f (Hz)
Problem 7.33 (b) Inverse Comb Filter Phase Response
User—-defined filter from file prob7_33.mat, n = 12 Impulse response
1
1
0.5
i~ —
= 0 =3 0 r———
g z T T
1 -0.5
-1
-2
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.33 (c) Inverse Comb Filter Pole-Zero Plot
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Use the GUI module g_iir to construct a Chebyshev-I lowpass filter. Plot the linear magnitude
response for the following cases.

(a) Adjust the filter order n to the highest value that does not meet the specifications.

(b) Adjust the filter order n to the lowest value that meets or exceeds the specifications.

Solution
Chebyshev-I filter, n = 4

‘ ‘ ‘ FIR filter §L

1 /\l Specification
0.8 i
L o6 B
0.4 N
0.2 i

0 L L L L I
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 7.34 (a) Chebyshev-I Filter, Specifications Not Met
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A(f)

Chebyshev-I filter, n = 5

T T T I
FIR filter
1 Specification
/ \_/\l
0.8 i
0.6 i
0.4 b
0.2 i
0 L L L L
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 7.34 (b) Chebyshev-I Filter, Specifications Exceeded
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Use the GUI module g_iir to design a lowpass Butterworth filter. Adjust the filter order to
the lowest value that meets or exceeds the specifications. Plot the following.

(a) The linear magnitude response
(b) The phase response. Is this a linear-phase filter?
(¢) The pole-zero plot

Solution
Butterworth filter, n = 10

‘ ‘ ‘ FIR filter §L

1 N Specification
0.8 i
“osf 8
0.4 N
0.2 i

0 L L L L N
0 100 200 300 400 . 5(0}?2) 600 700 800 900 1000

Problem 7.35 (a) Butterworth Lowpass Magnitude Response
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Butterworth filter, n = 10
4 \ \ \

-2

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 7.35 (b) Butterworth Lowpass Phase Response (not linear phase)

Butterworth filter, n = 10 Impulse response

0.5

b

E uw*

o
% XXIOOXXX i
(k)

o

-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.35 (c) Butterworth Lowpass Pole-Zero Plot
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V Use the GUI module g_7ir to design a highpass Chebyshev-I filter. Adjust the filter order to
the lowest value that meets or exceeds the specifications. Plot the following.

(a) The linear magnitude response
(b) The phase response. Is this a linear-phase filter?
(¢c) The pole-zero plot

Solution
Chebyshev-I filter, n =5
I I T T T
FIR filter
1 Specification
y\/ \
0.8
Y o6l
0.4
0.2
0 L L L L
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 7.36 (a) Chebyshev-I Highpass Magnitude Response
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Chebyshev-I filter, n = 5
4 \ \ \

ok J

4

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 7.36 (b) Chebyshev-I Highpass Phase Response (not linear phase)

Chebyshev-I filter, n = 5 Impulse response

0.4

1 0.2
<l I
E s NI
X
-1 -0.2

-2 -0.4
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.36 (c) Chebyshev-I Highpass Pole-Zero Plot

o
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Use the GUI module g_iir to design a bandpass Chebyshev-II filter. Adjust the filter order to
the lowest value that meets or exceeds the specifications. Plot the following.

(a) The linear magnitude response
(b) The phase response. Is this a linear-phase filter?
(¢c) The pole-zero plot

Solution
Chebyshev-II Filter, n = 6

‘ ‘ ‘ FIR filter §L

1k Specification
0.8 i
“osf 8
0.4 N
0.2 i

0 \/{ 1 1 1 ]\/
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 7.37 (a) Chebyshev-II Bandpass Magnitude Response
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Chebyshev-II Filter, n = 6
4 \ \ \

ot

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 7.37 (b) Chebyshev-II Bandpass Phase Response (not linear phase)

Chebyshev—-II Filter, n = 6 Impulse response
0.4

1 0.2
’; ) N
I S oy
E = I

-1 -0.2

-2 -0.4

-2 -1 0 1 2 0 50 100

Re (z) k

Problem 7.37 (c) Chebyshev-II Bandpass Pole-Zero Plot

633



Use the GUI module g_iir to design a bandstop elliptic filter. Adjust the filter order to the

lowest value that meets or exceeds the specifications. Plot the following.

(a) The linear magnitude response
(b) The phase response. Is this a linear-phase filter?
(¢) The pole-zero plot

Solution
Elliptic filter, n = 6
T T T

1 N ~_

0.8 i
Y o6l g
0.4 *
021 FIR filter
Specification
0 1 1 1 1 T
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 7.38 (a) Elliptic Bandstop Magnitude Response
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Elliptic filter, n = 6
4 \ \ \

ok J

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 7.38 (b) Elliptic Bandstop Phase Response (not linear phase)

Elliptic filter, n = 6 Impulse response
2 0.6
0.4
1
0.2 N
T ol RN (A
b= < J Il
-0.2
-1
-0.4
-2 -0.6
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.38 (c) Elliptic Bandstop Pole-Zero Plot
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Use the GUI module g_iir to design a Butterworth bandpass filter. Find the smallest order
filter that meets or exceeds the following design specifications.

[fos Fo, Fp1, Fpa, Fip] = [2000, 300, 400, 600, 700] Hz
[A,, A = [.6,30] dB

(a) Plot the magnitude response using the dB scale.
(b) Plot the pole-zero pattern.

(c) Save a, b, and fs in a MAT-file named prob7-39. Then use GUI module g_filters to load
this as a user-defined filter. Adjust the number of bits used for coefficient quantization
to N = 12. Plot the linear magnitude responses.

Solution
Butterworth filter, n = 12
10 T T T I
FIR filter
oF Specification
-10f A
o
S 20} e
& -30
<
-40
-50
_60 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 7.39 (a) Butterworth Bandpass Magnitude Response
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Butterworth filter, n = 12 Impulse response

2 0.4
1 0.2
¢ l {
’; —
=~ 0 I 0 b I I XTLM"
E z TITT]
-1 -0.2
-2 -0.4
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.39 (b) Butterworth Bandpass Pole-zero Pattern

)irect user-defined filter from file prob7_39.mat: n=12, m=12, c=8, g=0.00390625, €k = 0.0909091
1.4 T T T T T T T

I I
Unquantized
1.2 Quantized, N = 1

1 i

~ 08 i

A(f

0.2r- i

0 | | Il Il Il | |
0 100 200 300 400 500 600 700 800 900 1000
f£/f

Problem 7.39 (c) Butterworth Magnitude Response with Coefficient Quantization
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Use the GUI module g_iir to design a Chebyshev-I bandpass filter. Find the smallest order
filter that meets or exceeds the following design specifications.

[fos Fo, Fp1, Fpa, Fig] = [2000, 300, 400, 600, 700] Hz
[6,,0,] = [.05,.03]

(a) Plot the linear magnitude response.
(b) Plot the pole-zero pattern.

(c) Save a, b, and fs in a MAT-file named prob7_40. Then use GUI module g_filters to load
this as a user-defined filter. Adjust the number of bits used for coefficient quantization
to N = 10. Plot the linear magnitude responses.

Solution
Chebyshev-I filter, n = 8
‘ ‘ ‘ FIR filter §L
1 Specification
0.8 i
Y06 8
0.4 i
0.2 i
0 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 7.40 (a) Chebyshev-I Bandpass Magnitude Response
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Chebyshev-I filter, n = 8 Impulse response

2
0.2
1
0.1
Cl 2 [ MH 1
- 0 =2 0 . 35l e
g = T
1 X|X: -0.1
-0.2
-2
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.40 (b) Chebyshev-I Bandpass Pole-Zero Plot

Direct user-defined filter from file prob7_40.mat: n=8, m=8, c=4, g=0.0078125, emaX = 0.283333

1.5 T T T I I
Unquantized
Quantized, N = 1
1 - -
C
<
0.5 i
0 I I I I I
0 100 200 300 400 500 600 700 800 900 1000
f/f

Problem 7.40 (c) Chebyshev-I Magnitude Response with Coefficient Quantization
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Use the GUI module g_iir to design an elliptic bandpass filter. Find the smallest order filter
that meets or exceeds the following design specifications.

[fos Fo1, Fp1, Fpa, Fig] = [2000, 350, 400, 600, 650] Hz
[6,,0,] = [.04,.02]

(a) Plot the linear magnitude response.
(b) Plot the pole-zero pattern.

(c) Save a, b, and fs in a MAT-file named prob7_41. Then use GUI module g_filters to load
this as a user-defined filter. Adjust the number of bits used for coefficient quantization
to N = 9. Plot the linear magnitude responses.

Solution
Elliptic filter, n = 8

‘ ‘ ‘ FIR filter §L

1k Specification
0.8 i
Yol 8
0.4 N
0.2 i

0 L . 2 1 1 1 S . L
0 100 200 300 400 500 600 700 800 900 1000

f (Hz)

Problem 7.41 (a) Elliptic Bandpass Magnitude Response
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Elliptic filter, n = 8 Impulse response

2
0.2
1
X | X: 0.1
E 0 g 0 T L‘TVIMTVTvV‘va‘A
: = T
1 X | Xs -0.1
-0.2
-2
-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.41 (b) Elliptic Bandpass Pole-Zero Plot

Direct user-defined filter from file prob7_41.mat: n=8, m=8, c=4, g=0.015625, €oax = 0.908967
2 T I I
Unquantized
Quantized, N =
1.5 *
St i
<
0.5 i
0 . L I— I I I — .
0 100 200 300 400 500 600 700 800 900 1000

f£/f
s

Problem 7.41 (c) Elliptic Magnitude Response with Coefficient Quantization
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Use the GUI module g_iir to design a Butterworth bandpass filter. Find the smallest order
filter that meets or exceeds the following design specifications.

[fs, Fp1, Fa1, Fea, Fpo] = [100, 20, 25,35, 40] Hz
[6,,0s] = [05,.02]

(a) Plot the magnitude response using the dB scale.
(b) Plot the pole-zero pattern.

(c) Save a, b, and fs in a MAT-file named prob7_42. Then use GUI module g_filters to load
this as a user-defined filter. Adjust the number of bits used for coefficient quantization
to N = 16. Plot the linear magnitude responses.

Solution
Butterworth filter, n = 14
10 T T T I
FIR filter
oF Specification
-10
m -20 1
E
_. =30 1
Ui
< -40
-50
-60
L L L
0 5 10 15 20 25 30 35 40 45 50

f (Hz)

Problem 7.42 (a) Butterworth Bandstop Magnitude Response
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Butterworth filter, n = 14 Impulse response

2
0.2
1
0.1
’; —
= 0 2 0 vﬂ h:ﬁvh,h“v‘ y
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-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.42 (b) Butterworth Bandstop Pole-Zero Plot

irect user-defined filter from file prob7_42.mat: n=14, m=14, c=32, g=0.000976563, € ik = 0.15585¢
1.4 T T T T T T T

I I
Unquantized
1.2 Quantized, N = 1

1 i

0 | | | Il Il Il |
0 5 10 15 20 25 30 35 40 45 50
f£/f

Problem 7.42 (c) Butterworth Magnitude Response with Coefficient Quantization
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Vv Use the GUI module g_7ir to design a Chebyshev-II bandstop filter. Find the smallest order
filter that meets or exceeds the following design specifications.

[fss Fp1, Fu1, Fao, Fya] = [20000, 2500, 3000, 4000, 4500] Hz
[6,,0,] = [.04,.03]

(a) Plot the linear magnitude response.
(b) Plot the pole-zero pattern.

(c) Save a, b, and fs in a MAT-file named prob7_43. Then use GUI module g_filters to load
this as a user-defined filter. Adjust the number of bits used for coefficient quantization
to N = 17. Plot the linear magnitude responses.

Solution
Chebyshev-II Filter, n = 10
T T T

1 T

0.8 i
206 B
041 N
02 FIR filter
Specification
0 Il Il Il Il Il T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

f (Hz)

Problem 7.43 (a) Chebyshev-II Bandstop Magnitude Response
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Chebyshev-II Filter, n = 10 Impulse response

= 0 % 0 Jﬂ[h‘}""'ir“f"*‘ﬁ“" e

Im

-2 -1 0 1 2 0 50 100
Re (z) k

Problem 7.43 (b) Chebyshev-II Bandstop Pole-Zero Plot

)irect user-defined filter from file prob7_43.mat: n=10, m=10, c=32, g=0.000488281, €k = 0.62411
1.4 T T T T T T T

I I
Unquantized
1.2 Quantized, N = 1

1

~ 08 i

A(f
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
f£/f

Problem 7.43 (c) Chebyshev-II Magnitude Response with Coefficient Quantization
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Use the GUI module g_iir to design an elliptic bandstop filter. Find the smallest order filter
that meets or exceeds the following design specifications.

[fstplstlan27Fp2] - [20,65,7, 8,85] Hz
6,0 = [02,.015]

(a) Plot the linear magnitude response.
(b) Plot the pole-zero pattern.

(c) Save a, b, and fs in a MAT-file named prob7_44. Then use GUI module g_filters to load
this as a user-defined filter. Adjust the number of bits used for coefficient quantization
to N = 14. Plot the linear magnitude responses.

Solution
Elliptic filter, n = 8
T T T
1
0.8 _
206 J
0.4 _
02 FIR filter
Specification
0 L L L L L L =7 T
0 1 2 3 4 5 6 7 8 9 10

f (Hz)

Problem 7.44 (a) Elliptic Bandstop Magnitude Response
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Elliptic filter, n = 8 Impulse response

2 0.5
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x {
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Problem 7.44 (b) Elliptic Bandstop Pole-Zero Plot

Direct user-defined filter from file prob7_44.mat: n=8, m=8, c=32, g=0.00390625, € ok = 2.04225

2.5 T T T T T T T I T
Unquantized
Quantized, N =1
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s

Problem 7.44 (c) Elliptic Magnitude Response with Coefficient Quantization
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Use the GUI module g_izr and the User-defined option to load the filter in MAT-file u_iir1.

(a) Plot the linear magnitude response. What type of filter is this?
(b) Plot the phase response

(c) Plot the impulse response.

Solution
User-defined filter from file u_iirl.mat, n = 2
T T T T T T T

1 — -
0.8 i
Y o6l .
0.4 b
0.2 i

0 L L i L L L L

0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 7.45 (a) User-Defined Magnitude Response. This is a Resonator
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User-defined filter from file u_iirl.mat, n = 2

4 \ \ \ \ \ \ \
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Problem 7.45 (b) User-Defined Phase Response
User—-defined filter from file u_iirl.mat, n = 2 Impulse response
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Problem 7.45 (c) User Defined Impulse Response
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Write a MATLAB program that uses f_butters to design an analog Butterworth lowpass filter
to meet the following design specifications.

[Fp, Fs,6p,65] = [10,20,.04,.02]

(a) Print the filter order
(b) Use f_fregs to compute and plot the magnitude response for 0 < f < 2F.

(c) Use fillto add shaded areas showing the design specifications on the magnitude response
plot.

Solution

% Problem 7.46
% Initialize

f_header(’Problem 7.46°)

F_p = 10;
F_s = 20;
delta_p = 0.04;
delta_s = 0.02;

% Design filter

[b,a] = f_butters (F_p,F_s,delta_p,delta_s);
n = length(a)-1

% Plot magnitude response

figure

f_max = 2%F_s;

N = 200;

[H,f] = f_fregs (b,a,N,f_max);

A = abs(H);

plot (£,A)

f_labels (’Butterworth Filter’,’f (Hz)’,’A(f)’)
axis([0 f_max 0 1.2])

% Show specifications

hold on

£i11 ([0 F_p F_p 0], [1-delta_p, 1-delta_p, 1, 11,’c?)
£fill ([F_s f_max f_max F_s],[0 O delta_s delta_s],’c’)
plot (£,A)

f_wait
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The printed filter order is

Butterworth Filter
1.2 T T T

0 | | |
0 5 10 15 20 25 30 35 40

f (Hz)

Problem 7.46 Butterworth Lowpass Magnitude Response with Design Specifications
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Write a MATLAB program that uses f chebyls to design an analog Chebyshev-I lowpass filter
to meet the following design specifications.

[Fp, Fs,6p,65] = [10,20,.04,.02]

(a) Print the filter order
(b) Use f_fregs to compute and plot the magnitude response for 0 < f < 2F.

(c) Use fillto add shaded areas showing the design specifications on the magnitude response
plot.

Solution

% Problem 7.47
% Initialize

f_header (’Problem 7.47°)

F_p = 10;
F_s = 20;
delta_p = 0.04;
delta_s = 0.02;

% Design filter

[b,a] = f_chebyls (F_p,F_s,delta_p,delta_s);
n = length(a)-1

% Plot magnitude response

figure

f_max = 2%F_s;

N = 200;

[H,f] = f_fregs (b,a,N,f_max);

A = abs(H);

plot (£,A)

f_labels (’Chebyshev-I Filter’,’f (Hz)’,’A(£)’)
axis([0 f_max 0 1.2])

% Show specifications

hold on

£i11 ([0 F_p F_p 0], [1-delta_p, 1-delta_p, 1, 11,’c?)
£fill ([F_s f_max f_max F_s],[0 O delta_s delta_s],’c’)
plot (£,A)

f_wait
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The printed filter order is

Chebyshev-I Filter
1.2 T T T

0 | | |
0 5 10 15 20 25 30 35 40

f (Hz)

Problem 7.47 Chebyshev-I Lowpass Magnitude Response with Design Specifications
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Write a MATLAB program that uses f.cheby2s to design an analog Chebyshev-II lowpass
filter to meet the following design specifications.

[Fp, Fs,6,65] = [10,20,.04,.02]

(a) Print the filter order
(b) Use f_fregs to compute and plot the magnitude response for 0 < f < 2F.

(c) Use fillto add shaded areas showing the design specifications on the magnitude response
plot.

Solution

% Problem 7.48
% Initialize

f_header(’Problem 7.48’)

F_p = 10;
F_s = 20;
delta_p = 0.04;
delta_s = 0.02;

% Design filter

[b,a] = f_cheby2s (F_p,F_s,delta_p,delta_s);
n = length(a)-1

% Plot magnitude response

figure

f_max = 2%F_s;

N = 200;

[H,f] = f_fregs (b,a,N,f_max);

A = abs(H);

plot (£,A)

f_labels (’Chebyshev-II Filter’,’f (Hz)’,’A(£)’)
axis([0 f_max 0 1.2])

% Show specifications

hold on

£fi1l ([0 F_p F_p 0],[1-delta_p, 1-delta_p, 1, 11,’c’)
£fill ([F_s f_max f_max F_s],[0 O delta_s delta_s],’c’)
plot (£,A)

f_wait
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The printed filter order is

Chebyshev-II Filter
1.2 T T T

0 I I I S~—
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f (Hz)

Problem 7.48 Chebyshev-11 Lowpass Magnitude Response with Design Specifications
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V Write a MATLAB program that uses f_elliptics to design an analog elliptic lowpass filter to
meet the following design specifications.

[Fp, Fs,6p,65] = [10,20,.04,.02]

(a) Print the filter order
(b) Use f_fregs to compute and plot the magnitude response for 0 < f < 2F.

(c) Use fillto add shaded areas showing the design specifications on the magnitude response
plot.

Solution

% Problem 7.49
% Initialize

f_header (’Problem 7.49°)

F_p = 10;
F_s = 20;
delta_p = 0.04;
delta_s = 0.02;

% Design filter

[b,a] = f_elliptics (F_p,F_s,delta_p,delta_s);
n = length(a)-1

% Plot magnitude response

figure

f_max = 2%F_s;

N = 200;

[H,f] = f_fregs (b,a,N,f_max);

A = abs(H);

plot (£,A)

f_labels (’Elliptic Filter’,’f (Hz)’,’A(£)’)
axis([0 f_max 0 1.2])

% Show specifications

hold on

£i11 ([0 F_p F_p 0], [1-delta_p, 1-delta_p, 1, 11,’c?)
£fill ([F_s f_max f_max F_s],[0 O delta_s delta_s],’c’)
plot (£,A)

f_wait
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The printed filter order is

Elliptic Filter
1.2 T T T

0 1 1 I
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Problem 7.49 Elliptic Lowpass Magnitude Response with Design Specifications
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V Write a MATLAB program that uses f_butters and f_-bilin to find the digital equivalent, H(z),
of a sixth-order lowpass Butterworth filter using the bilinear transformation method. Suppose
the sampling frequency is fs = 10 Hz. Prewarp the analog cutoff frequency so that the digital
cutoff frequency comes out to be F, = 1 Hz.

(a) Plot the impulse response, h(k).
(b) Use fpzplot to plot the poles and zeros of H(z).

(c) Use f-freqz to compute and plot the magnitude response, A(f). Add the ideal magnitude
response and a plot legend.

Solution

% Problem 7.50
% Initialize

f_header (’Problem 7.50°)

n= 6;

fs = 10;
T = 1/fs;
f c=1;

% Prewarp cutoff frequency

F_c = tan(pi*f_c*T) / (pixT)

% Compute Butterworth lowpass filter
[B,A] = f_butters (F_c,2*F_c,0.1,0.1,n);
% Apply bilinear transformation

[b,al = £_bilin (B,A,fs);

% Plot impulse response

N = 50;

h = f_impulse (b,a,N);
k=0 : N-1;

figure

stem (k,h,’filled’,’.’)
f_labels (’Impulse Response’,’k’,’h(k)’)
f_wait

% Plot poles and zeros

f_pzplot (b,a,’Poles and Zeros’)

658



f_wait
% Plot magnitude response

p = 200;

[H,f] = f_freqz (b,a,p,fs);

A = abs(H);

figure

plot (£,A)

f_labels (’Magnitude Response’,’f (Hz)’,’A(f)’)

% Add ideal response

hold on

plot ([0 f_c f_c],[1 1 0],’k’,’LineWidth’,1.5)
axis ([0 fs/2 0 1.2])

legend (’Butterworth, n=6’,’Ideal’)

f_wait

Impulse Response
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Problem 7.50 (a) Butterworth Impulse Response
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Poles and Zeros
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Problem 7.50 (b) Butterworth Poles and Zeros
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Problem 7.50 (c) Butterworth Magnitude Response
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Write a MATLAB program that uses f_butterz to design a digital Butterworth bandstop filter
that meets the following design specifications.

[fs, Fp1, Fs1, Fs2, Fp2, 6p,05] = 2000, 200, 300, 600, 700, .05, .03]

(a) Find the smallest filter order that meets the specifications. Print the order
(b) Use f-freqz to compute and plot the magnitude response.
(c) Use fill to add shaded areas showing the design specifications.

Solution

% Problem 7.51
% Initialize

f_header (’Problem 7.51°)

fs = 2000;

F_p = [200,700];

F_s [300;600];

delta_p 0.05;

delta_s 0.03;

n = f_prompt(’Enter lowpass filter order’,1,20,8);

% Design Butterworth bandstop filter

f_type = 3;
[b,a] = f_butterz (F_p,F_s,delta_p,delta_s,f_type,fs,n);
n = length(a)-1

% Plot magnitude response

p = 200;

[H,f] = f_freqz (b,a,p,fs);

A = abs(H);

figure

plot (£,A)

axis ([0 fs/2 0 1.2])

f_labels (’Butterworth Magnitude Response’,’f (Hz)’,’A(f)’)

% Add design specifications

hold on

£ill ([0 F_p(1) F_p(1) 0],[1-delta_p,1-delta_p,1 11,’c?)

£fill ([F_s(1) F_s(2) F_s(2) F_s(1)],[0 O delta_s delta_s],’c’)
fill ([F_p(2) fs/2 fs/2 F_p(2)],[1-delta_p,1-delta_p,1 1],°c’)
plot (£,A)

f_wait
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The printed filter order is

16

Butterworth Magnitude Response
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Problem 7.51 Butterworth Bandstop Magnitude Response
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Write a MATLAB program that uses f_chebylz to design a digital Chebyshev-I bandstop filter
that meets the following design specifications.

[fs, Fp1, Fs1, Fs2, Fp2,6p,05] = 2000, 200, 300, 600, 700, .05, .03]

(a) Find the smallest filter order that meets the specifications. Print the order
(b) Use f-freqz to compute and plot the magnitude response.
(c) Use fill to add shaded areas showing the design specifications.

Solution

% Problem 7.52
% Initialize

f_header (’Problem 7.52°)

fs = 2000;

F_p = [200,700];

F_s [300;600];

delta_p 0.05;

delta_s 0.03;

n = f_prompt(’Enter lowpass filter order’,1,20,5);

% Design Butterworth bandstop filter

f_type = 3;
[b,a] = f_chebylz (F_p,F_s,delta_p,delta_s,f_type,fs,n);
n = length(a)-1

% Plot magnitude response

p = 200;

[H,f] = f_freqz (b,a,p,fs);

A = abs(H);

figure

plot (£,A)

axis ([0 fs/2 0 1.2])

f_labels (’Chebyshev-I Magnitude Response’,’f (Hz)’,’A(f)’)

% Add design specifications

hold on

£ill ([0 F_p(1) F_p(1) 0],[1-delta_p,1-delta_p,1 11,’c?)

£fill ([F_s(1) F_s(2) F_s(2) F_s(1)],[0 O delta_s delta_s],’c’)
fill ([F_p(2) fs/2 fs/2 F_p(2)],[1-delta_p,1-delta_p,1 1],°c’)
plot (£,A)

f_wait
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The printed filter order is

10

Chebyshev-I Magnitude Response
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Problem 7.52 Chebyshev-1 Bandstop Magnitude Response
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Write a MATLAB program that uses f.cheby2z to design a digital Chebyshev-II bandpass
filter that meets the following design specifications.

[fos Fo1, Fp1, Fya, Fag, 6,,65] = [1600, 250, 350, 550, 650, .06, .04]

(a) Find the smallest filter order that meets the specifications. Print the order
(b) Use f-freqz to compute and plot the magnitude response.
(c) Use fill to add shaded areas showing the design specifications.

Solution

% Problem 7.53
% Initialize

f_header (’Problem 7.53’)

fs = 1600;

F_p = [350;550];

F_s [250,650] ;

delta_p 0.06;

delta_s 0.04;

n = f_prompt (’Enter lowpass filter order’,1,20,4);

% Design Butterworth bandstop filter

f_type = 2;
[b,a] = f_cheby2z (F_p,F_s,delta_p,delta_s,f_type,fs,n);
n = length(a)-1

% Plot magnitude response

p = 200;

[H,f] = f_freqz (b,a,p,fs);

A = abs(H);

figure

plot (£,A)

axis ([0 fs/2 0 1.2])

f_labels (’Chebyshev-II Magnitude Response’,’f (Hz)’,’A(f)’)

% Add design specifications

hold on

£fill ([0 F_s(1) F_s(1) 0],[0 O delta_s delta_s],’c’)

fill ([F_p(1) F_p(2) F_p(2) F_p(1)], [1-delta_p, 1-delta_p,1,1],’c’)
£fill ([F_s(2) fs/2 fs/2 F_s(2)],[0 O delta_s delta_s],’c’)

plot (£,A)

f_wait
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The printed filter order is
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Problem 7.53 Chebyshev-11I Bandpass Magnitude Response
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Write a MATLAB program that uses f_ellipticz to design a digital elliptic bandpass filter that
meets the following design specifications.

[fos Fo1, Fp1, Fya, Faa, 6,,65] = [1600, 250, 350, 550, 650, .06, .04]

(a) Find the smallest filter order that meets the specifications. Print the order
(b) Use f-freqz to compute and plot the magnitude response.
(c) Use fill to add shaded areas showing the design specifications.

Solution

% Problem 7.54
% Initialize

f_header (’Problem 7.54°)

fs = 1600;

F_p = [350;550];

F_s [250,650] ;

delta_p 0.06;

delta_s 0.04;

n = f_prompt (’Enter lowpass filter order’,1,20,3);

% Design Butterworth bandstop filter

f_type = 2;
[b,a] = f_ellipticz (F_p,F_s,delta_p,delta_s,f_type,fs,n);
n = length(a)-1

% Plot magnitude response

p = 200;

[H,f] = f_freqz (b,a,p,fs);

A = abs(H);

figure

plot (£,A)

axis ([0 fs/2 0 1.2])

f_labels (’Elliptic Magnitude Response’,’f (Hz)’,’A(f)’)

% Add design specifications

hold on

£fill ([0 F_s(1) F_s(1) 0],[0 O delta_s delta_s],’c’)

fill ([F_p(1) F_p(2) F_p(2) F_p(1)], [1-delta_p, 1-delta_p,1,1],’c’)
£fill ([F_s(2) fs/2 fs/2 F_s(2)],[0 O delta_s delta_s],’c’)

plot (£,A)

f_wait
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The printed filter order is
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Write a MATLAB program that uses f.butters and f.low2highs to design an analog Butter-
worth highpass filter to meet the following design specifications.

[Fs, Fp, Ap, As] = [4,6,.5,24]

(a) Print the filter order, d,, and Js.

(b) Use f-fregs to compute and plot the magnitude response for 0 < f < 2F,, using the linear
scale.

(c) Use fillto add shaded areas showing the design specifications on the magnitude response
plot.

Solution

% Problem 7.55
% Initialize

f_header(’Problem 7.55°)

F_s =4,
F_p =6;
A_p = 0.5;
A_s = 24,

% Design normalized lowpass filter

n = f_prompt (’Enter filter order’,0,20,10)

F_0 = 1/(2*pi);

delta_p = 1 - 10~ (-A_p/20)

delta_s = 10" (-A_s/20)

[b,a] = f_butters (F_0,2*F_0,delta_p,delta_s,n);

%y Convert to highpass
[B,A] = f_low2highs (b,a,F_p);
% Plot magnitude response

figure

f_max = 2xF_p;

N = 200;

[H,f] = f_freqs (B,A,N,f_max);

A = abs(H);

plot (£,A)

f_labels (’Butterworth Highpass Filter’,’f (Hz)’,’A(£)’)
axis([0 f_max 0 1.2])
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% Show specifications

hold on

£fill ([0 F_s F_s 0],[0 O delta_s delta_s],’c’)

£i11 ([F_p f_max f_max F_p],[1-delta_p,1-delta_p,1,1],’c’)
plot (£,A)

f_wait

The printed output is

10
delta_p =

.0559
delta_s =

.0631

Butterworth Highpass Filter
1.2 T T T

17 W

0.8 4

Zo6r T

0.4f b

Problem 7.55 Butterworth Highpass Magnitude Response with Design Specifications
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Write a MATLAB program that uses f_chebyls and f_low2bps to design an analog Chebyshev-I
bandpass filter to meet the following design specifications.

[Fs1, Fp1, Fpo, Fe2, Ap, As] = [35,45,60,70,.4, 28]

(a) Print the filter order, 6,, and Js.

(b) Use f.fregs to compute and plot the magnitude response for 0 < f < 2Fy, using the
linear scale.

(c) Use fill to add shaded areas showing the design specifications on the magnitude response
plot.

Solution

% Problem 7.56
% Initialize

f_header(’Problem 7.56°)

F_s1 = 35;
F_pl = 45;
F_p2 = 60;
F_s2 = 70;
A_p = 0.4;
A_s = 28;

% Design normalized lowpass filter

n = f_prompt (’Enter filter order’,0,20,4);

F_0 = 1/(2%pi);

delta_p = 1 - 10~ (-A_p/20)

delta_s = 10" (-A_s/20)

[b,a] = f_chebyls (F_0,2*F_0,delta_p,delta_s,n);

%y Convert to highpass

[B,A] = f_low2bps (b,a,F_pl,F_p2);
n = length(A)-1

% Plot magnitude response

figure

f_max = 2%F_s2;

N = 200;

[H,f] = f_freqs (B,A,N,f_max);
A = abs(H);

plot (£,A)
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f_labels (’Chebyshev-I Bandpass Filter’,’f (Hz)’,’A(£)’)
axis([0 f_max 0 1.2])

% Show specifications

hold on

£fill ([0 F_s1 F_s1 0],[0 O delta_s delta_s],’c’)

£fill ([F_pl F_p2 F_p2 F_pi1],[1-delta_p,1-delta_p,1,1],’c’)
£fill ([F_s2 f_max f_max F_s2],[0 O delta_s delta_s],’c’)
plot (£,A)

f_wait

The printed output is

delta_p =
.0450
delta_s =
.0398

Chebyshev-I Bandpass Filter
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Problem 7.56 Chebyshev-1 Bandpass Magnitude Response with Design Specifications
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Write a MATLAB function called f_filtnorm that returns the L, norm, ||h||,, of a digital filter.
The function f_filtnorm should use the following calling sequence.

% F_FILTNORM: Return L_p norm of filter H(z) = b(z)/a(z)
h

% Usage:

% d = £f_filtnorm (b,a,p)

% Pre:

yA b = vector of length m+l containing coefficients of
yA numerator polynomial.

yA a = vector of length n+l containing coefficients of
yA denominator polynomial.

yA p = integer specifying norm type. Use p = Inf for
yA the infinity norm

% Post:

% d = the L_p norm, ||hl|_p

Test f_filtnorm by writing a MATLAB program that computes and prints the L, Lo,and L
norms of a comb filter with n = 10 and r = .98. Verify that (7.8.17) holds in this case.

Solution

function prob7_57
% Problem 7.57

f_header (’Problem 7.57°)

n = 10;
r = 0.98;
b=1-r"n

a = [1,zeros(1,n-1),r"n]

% Compute filter norms

h_1 f_filtnorm (b,a,1)
h_2 = f_filtnorm (b,a,2)
h_inf = f_filtnorm (b,a,Inf)

function 4 = f_filtnorm (b,a,p);

% F_FILTNORM: Return L_p norm of filter H(z) = b(z)/a(z)
h

% Usage:

% d = £f_filtnorm (b,a,p)

% Pre:

yA b = vector of length m+l containing coefficients of
yA numerator polynomial.
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yA a = vector of length n+l containing coefficients of

h denominator polynomial.

h p = integer specifying norm type. Use p = Inf for
b the infinity norm

% Post:

% d = the L_p norm, ||hl|_p

% Initialize
r = 500;
% Find impulse response

h = f_impulse (b,a,r);

if p "= Inf
d = (sum(abs(h). p))~(1/p);
else
[H,f] = f_freqz (b,a,r,1);
A = abs(H);
d = max(A);
end

The three filter norms are as follows. Observe that ||h|2 < ||h|/co < [|R]]1, sO (5.8.16) holds.

Problem 7.57

b=
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Chapter 8

Consider the variable delay system shown in Figure 8.42 where the sampling rate of x(k) is
fs. Suppose Hp(z) is a linear-phase FIR filter of order m. Find an expression for the total
delay that takes into account the interpolator delay, the shift register delay, and the decimator
delay.

Y

Y

Y

Y

z(k)o—s 1L Hp(z) Shift M Hp(2) | L —oy(k)

Figure 8.42 A Variable Delay System

Solution

From Figure 8.42, the interpolator filter delay is m/2 samples where the sampling rate is
fs=Lfs. Let T =1/fs be the sampling interval of x(k). Then

mT

T

Since the decimator filter precedes the downsampler, the decimator filter delay is also

mT

T2

From (8.1.7), the delay caused by the shift register is

Thus the total delay is

T = T1+T2+T3
mT+MT
L L
(m+ M)T
= —— SeC

L
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Suppose a signal is sampled at a rate of f; = 10 Hz. Consider the problem of using the
variable delay system in Figure 8.42 to implement an overall delay of 7 = 2.38 sec.

(a) Find the smallest interpolation factor L that is needed.

(b) Suppose the linear-phase FIR filters are of order m = 50. How much delay is introduced
by the two lowpass filters?

(c) What length of shift register, M, is needed to achieve the overall delay?
Solution

(a) The desired delay is 7 = 2.38 sec. This is an integer multiple of .02 sec, and the sampling
interval is T' = .1 sec. Thus the sampling interval will have to be reduced by a factor of

(b) The delay introduced by each of the linear-phase FIR lowpass filters is m7'/(2L). Thus
the delay introduced by the two filters is

Tlow = T

(c) From (8.1.7), the delay introduced by a shift register of length M is 7 = MT/L. Thus
one needs

MT
T = T — Tlow
= 238-1
= 1.38
Solving for M yields
1.38L
M = —
T
_ 69
1
= 69
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V Consider the problem of designing a sampling rate decimator with a down-sampling factor of
M = 8.

(a) Sketch a block diagram of the sampling rate decimator.

(b) Find the required frequency response of the ideal anti-aliasing digital filter assuming f;
is the sampling rate of z(k).

(c) Using Tables 6.1 and 6.2, design an anti-aliasing filter of order m = 40 using the win-
dowing method with a Hanning window.

(d) Find the difference equation for the sampling rate decimator.

Solution

x O—> Hp(2)

Y

IM —ouvy

Problem 8.3 Sampling Rate Decimator Block Diagram

(b) From (8.2.3), the ideal cutoff frequency is

fs
2M
fs
16

Fy =

The required frequency response for the ideal anti-aliasing digital filter is then

(1, 0<|fI< f/16
Hu(f) = {0  RJI6< |f] < )2

(c) Using Table 6.1 and Table 6.2 with m = 40, p = m/2, and the Hanning window, the
FIR filter coefficients are

bi = w(i)h(i)
_ s [1 B COS( i >] sin[27 (i — p) Fy T

Bm (i — p)
= 5 [1 — cos (%)] Sinp:((;:;g))/m] . i#£20
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The middle term is

bao = w(p)h(p)
= .5[1 — cos(m)]2FyT
= 2/16
= .125

(d) From (8.2.4) the decimator difference equation is

y(k) = > ba(Mk—1)
=0

40
= ) bix(20k — i)
=0
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Consider the problem of designing a sampling rate interpolator with an up-sampling factor
of L =10.

(a) Sketch a block diagram of the sampling rate interpolator.

(b) Find the required frequency response of the ideal anti-imaging digital filter assuming f;
is the sampling rate of z(k).

(c) Using Tables 6.1 and 6.2, design an anti-imaging filter of order m = 30 using the win-
dowing method with a Hamming window.

(d) Find the difference equation for the sampling rate interpolator.

Solution

Y

ro—> 1L Hi(z) —o vy

Problem 8.4 Sampling Rate Interpolator Block Diagram

(b) From (8.2.21), the ideal cutoff frequency is

fs
F, o= J=
L oL

fs
20

The required frequency response for the ideal anti-imaging digital filter is then

10, 0<|fI < fs/20
H(f) = { 0, [fs/20<|f| < fs/2

(c) Using Table 6.1 and Table 6.2 with m = 30, p = m/2, and the Hamming window, the
FIR filter coefficients are

b = w(i)h(i)
= [.54—.46COS<

i >] sin[27 (i — p) T

om (i~ p)
= [.54—.46(;05(717_;)] Sin[?:((;;l;)/%] iz
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The middle term is

bis = w(p)h(p)
= [.54 — .46 cos(m)|]2F T
— 2/20
= .1

(d) From (8.2.12) the interpolator difference equation is

(k) = gbm(k i) ("“;Z>

al k—i
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Consider the sampling rate interpolator shown previously in Figure 8.6. The input z(k) is
sampled at rate fs and has a triangular magnitude spectrum A, (f) as shown in Figure 8.43.
Suppose the up-sampling factor is L = 3.

(a) Sketch the spectrum of the zero-interpolated signal z (k) defined in (8.2.5) for 0 < |f| <
fs/2.
(b) Sketch the magnitude response of the ideal anti-imaging filter Hp,(z).

(c) Sketch the magnitude spectrum of y(k) for 0 < |f| < fs/2.

Magnitude Spectrum of x (k)
1.5 w

0.5F i

0 1
-0.5 0 0.5
£/£

Figure 8.43 Magnitude Spectrum of z(k) in Problem 8.5

Solution
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(a) Spectrum of x
1 T

LK)

0.7 i

0.6 i

- 05 4

0.4t -

0 | | | |
0 0.1 0.2 0.3 0.4 0.5
f/f

S

Problem 8.5 (a) Spectrum of zr (k)

(b) Magnitude Response
4 T T

251 b

1.5F i

0.5 i

0 | | | |
0 0.1 0.2 0.3 0.4 0.5
f/f

S

Problem 8.5 (b) Magnitude Response of H(z)
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(c) Spectrum of vy (k)
3 T T

0.5

0 | | | |
0 0.1 0.2 0.3 0.4 0.5

f/f

S

Problem 8.5 (c) Magnitude Spectrum of y(k)
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Consider the problem of designing a rational sampling rate converter with a frequency con-
version factor of L/M = 2/3.

(a) Sketch a block diagram of the sampling rate converter.

(b) Find the required frequency response of the ideal anti-aliasing and anti-imaging digital
filter assuming f is the sampling rate of z(k).

(c) Use Tables 6.1 and 6.2 to design an anti-aliasing and anti-imaging filter of order m = 50
using the windowing method with the Blackman window.

(d) Find the difference equation for the sampling rate converter.

Solution

T O— T2

Y

Ho(z)

Y

13 —ouy

Problem 8.6 (a) Rational Sampling Rate Converter

(b) Here L =2 and M = 3. From (8.3.2) the cutoff frequency is

Fy = min{%,%}
fo

6

The passband gain is L = 3. Thus

3, 0L f[ < fs/6
Hi(f) = {0 16 < |f] < o

(c) Using Table 6.1 and Table 6.2 with m = 50, p = m/2, and the Blackman window, the
FIR filter coefficients are

b = w(i)h(i)
- [.42— 5 cos (;—Z> + .08 cos <2m>] sinf2r (i — p) FoT]

5m 5m (i —p)
— [.42 — .5cos (%) + .08 cos (2275@)] Sin[izgi_—;;:;/fﬂ
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The middle term is

bys = w(p)h(p)
= [42— .5cos(m) + .08 cos(27)|2FyT
— 1/3

(d) From (8.3.4) the rational sampling rate converter difference equation is

k) = f:biéL(Mk—i)x (M’j:_i>

=0

50 .
k —
=0
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Consider the problem of designing a rational sampling rate converter with a frequency con-
version factor of L/M = 5/4.

(a) Sketch a block diagram of the sampling rate converter.

(b) Find the required frequency response of the ideal anti-aliasing and anti-imaging digital
filter assuming f is the sampling rate of z(k).

(c) Use Tables 6.1 and 6.2 to design an anti-aliasing and anti-imaging filter of order m = 50
using the windowing method with the Blackman window.

(d) Find the difference equation for the sampling rate converter.

Solution

zO—> 15

Y

Ho(z)

Y

14 —ouy

Problem 8.7 (a) Rational Sampling Rate Converter

(b) Here L =5 and M = 4. From (8.3.2) the cutoff frequency is

Fy = min{é,é}
10" 8
s

10

The passband gain is L = 5. Thus

(5. 0<|fl< /10
Hi(f) = {0 L AJ10< |fl < 00

(c) Using Table 6.1 and Table 6.2 with m = 50, p = m/2, and the Blackman window, the
FIR filter coefficients are

b = w(i)h(i)
- [.42— 5 cos (;—Z> + .08 cos <2m>] sinf2r (i — p) FoT]

5m 5m (i —p)
— [.42 — .5cos (%) + .08 cos (2275@)] Sin[2:((;:2255]))9/10]
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The middle term is

bys = w(p)h(p)
= [42— .5cos(m) + .08 cos(27)|2FyT
— 1/5

(d) From (8.3.4) the rational sampling rate converter difference equation is

k) = f:biéL(Mk—i)x (M’j:_i>

=0

50 .
4k —
=0
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Suppose a multirate signal processing application requires a sampling rate conversion factor
of L/M = .525.

(a) Find the required frequency response of the ideal anti-aliasing and anti-imaging digital
filter assuming a single-stage converter is used.

(b) Factor L/M into a product of two rational numbers whose numerators and denominators
are less than 10.

(c) Sketch a block diagram of a multi-stage sampling rate converter based on your factoring
of L/M from part (b).

(d) Find the required frequency responses of the ideal combined anti-aliasing and anti-
imaging digital filters for each of the stages in part (c).

Solution

(a) The reduced conversion factor is

525

1000
21

40

S

From (8.3.2), the filter cutoff frequency is

= min

s s
Fy = mm{ﬁ’2M}
Is 1s
427 80
fs
80

From (8.3.3), the required frequency response for the anti-aliasing and anti-imaging filter
is

21, 0<|fI < £s/80
Ho(f) = { 0 . f/80<|f| < fs/2

(b) The numerator and denominator each can be factored to yield

21

B
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Problem 8.8 (c) Multi-stage Sampling Rate Converter

(d) From (8.3.2) the cutoff frequency for H;(z) is

s Ts
o= mm{2L’2M

~ wnf{fe £
14’ 16
Is

16

Using (8.3.3), the required frequency response for the stage 1 anti-aliasing and anti-
imaging filter is

[T, 0<|fl< f./16
H(f) = {0 , fs/16 < |fI < fs/2

Next, from (8.3.2), the cutoff frequency for Hs(z) is

I O PR
F = mm{ﬁ’2M

o {fs fs}
= min< =, —
610

[s

10

Using (8.3.3), the required frequency response for the stage 2 anti-aliasing and anti-
imaging filter is

(3, 0<|fl< f./10
Hy(f) = {0 o fs/10 < | < fs/2
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Suppose a multirate signal processing application requires a sampling rate conversion factor
of L/M = 3.15.

(a) Find the required frequency response of the ideal anti-aliasing and anti-imaging digital
filter assuming a single-stage converter is used.

(b) Factor L/M into a product of two rational numbers whose numerators and denominators
are less than 10.

(c) Sketch a block diagram of a multi-stage sampling rate converter based on your factoring
of L/M from part (b).

(d) Find the required frequency responses of the ideal combined anti-aliasing and anti-
imaging digital filters for each of the stages in part (c).

Solution

(a) The reduced conversion factor is

1315

100
63

20

S

From (8.3.2), the filter cutoff frequency is

- fs Ts
Py = Js
0 mm{QL’ 2M

= min{fs E}
126 40

fs
126

From (8.3.3), the required frequency response for the anti-aliasing and anti-imaging filter
is

63, 0<|fI<f/126
Ho(f) = {0 , fe/126 < |f] < fo/2

(b) The numerator and denominator each can be factored to yield

63
20

- ()

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

690

L
M



:J:O—E—> 19 B Hi(z) P 15 ::: 17 P Halz) (o |4 —E—ey

Problem 8.9 (c) Multi-stage Sampling Rate Converter

(d) From (8.3.2) the cutoff frequency for H;(z) is

F, = min{fs fs}

2L’ 2M
I B O
= min§ —, —
18710
_ I
18

Using (8.3.3), the required frequency response for the stage 1 anti-aliasing and anti-
imaging filter is

9, 0<|fl< f./18
H(f) = {0 /18 < |fI < fs/2

Next, from (8.3.2), the cutoff frequency for Hs(z) is

I O PR
F = mm{ﬁ’2M

= min{{—z,%}
s

14

Using (8.3.3), the required frequency response for the stage 2 anti-aliasing and anti-
imaging filter is

(T, 0<|fl< fu/14
Hy(f) = {0 /1< fI < fs/2
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Consider an integer decimator with down-sampling factor M and a linear-phase FIR anti-
aliasing filter of order m.

(a) Find njs, the number of floating point multiplications (FLOPs) needed to compute each
sample of the output using a direct realization.

(b) Suppose a polyphase filter realization is used to implement the decimator. Find Ny,
the number of FLOPs needed to compute each sample of the output.

(c) Express Ny as a percentage of nyy.
Solution

(a) From (8.2.4), the difference equation for an integer decimator is

Since M and k are both integers, computing Mk is an integer multiplication, not a
floating point multiplication. Thus the number of FLOPs is

ny = m+1

(b) From (8.4.4), the number of FLOPs required to compute an output sample is

M

Is
m+1

M

Ny =

(c) Expressing Njs as a percentage of ny; we have

100Ny

ny
100

2
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Consider the problem of designing a decimator with f; = 60 Hz and a down-sampling factor
of M = 3.

(a) What is the sampling rate of the output signal?
(b) Sketch the desired magnitude response of the ideal anti-aliasing filter Hjs(2).

(c) Suppose the anti-aliasing filter is a windowed filter of order m = 32 using the Hamming
window. Use Tables 6.1 and 6.2 to find the impulse response, hys(k).

(d) Suppose a polyphase realization is used. Find the transfer functions F;(z) of the
polyphase filters.

(e) Sketch a block diagram of a polyphase filter realization of the decimator.
Solution

(a) The sampling rate of the output signal is

s
fs 7
= 20 Hz
(b) From (8.2.3), the ideal cutoff frequency is
[s
F =
M 2M
= 10 Hz

The required frequency response for the ideal anti-aliasing digital filter is then

_f1, 0<fI<10
Hulf) = {0 , 10<[f] <30

(c) Using Table 6.1 and Table 6.2 with m = 32, p = m/2, and the Hamming window, the
FIR filter coefficients are

har(k) = w(k)h(k)
_ ['54_ '46(:08( i >] sin[27(i — p) Fa T

5m m(i —p)
_ [.54 — 46 cos (%)] Sin[i?gi__lg)/m . k#£16
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Anti—Aliasing Magnitude Response

1.5

0.5

0 | | | |
0 5 10 15 20 25 30
f (Hz)

Problem 8.11 (b) Anti-Aliasing Filter Magnitude Response

The middle term is

ha(16) = w(p)h(p)
= [.54 — .46 cos(m)|2FyT

— 13

(d) From (8.4.2)
32 '
Eo(z) = Zh(?n')z—l
13220 |
Ei(z) = ) h(3i+1)z""
=0

32
Ey(z) = ) h(3i+2)z""
=0
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A
Z—l
3 1
o B (%) —1)
Y i
Z—l
L2
|—>‘ E2(23)

Problem 8.11 (e) Polyphase Realization of Decimator
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Consider an integer interpolator with an up-sampling factor of L and a linear-phase FIR
anti-imaging filter of order m.

(a) Find ny, the number of floating-point multiplications (FLOPs) needed to compute each
sample of the output using a direct realization.

(b) Suppose a polyphase filter realization is used to implement the interpolator. Find Ny,
the number of FLOPs needed to compute each sample of the output.

(c) Express Ny as a percentage of np.
Solution

(a) From (8.2.12), the difference equation for an integer interpolator is

o) = S nine e (M)

=0

Since L, k and i are integers, computing (k —i)/L is an integer operation, not a floating
point multiplication or division. Thus the number of FLOPs is

ny, = m+1

(b) From (8.4.8) the number of FLOPs required to compute an output sample is

PL
f+s
m+1

L

N =

(c) Expressing Njs as a percentage of ny; we have

100Ny,
nr

100
= 7 %
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V Consider the problem of designing an interpolator with fs = 12 Hz and an up-sampling factor
L=4.
(a) What is the sampling rate of the output signal?
(b) Sketch the desired magnitude response of the ideal anti-imaging filter Hy (z).

(c) Suppose the anti-imaging filter is a windowed filter of order m = 20 using the Hanning
window. Use Tables 6.1 and 6.2 to find the impulse response, hr (k).

(d) Suppose a polyphase realization is used. Find the transfer functions F;(z) of the polyphase
filters.

(e) Sketch a block diagram of a polyphase filter realization of the interpolator.
Solution

(a) The sampling rate of the output signal is

fS = Lfs
= 48 Hz

(b) From (8.2.11), the ideal cutoff frequency is

Is
2L
= 1.5 Hz

The required frequency response for the ideal anti-aliasing digital filter is then

(4, 0<|fl<15
Hilf) = {0 , 1L5<[f<6

(c) Using Table 6.1 and Table 6.2 with m = 20, p = m/2, and the Hanning window, the
FIR filter coefficients are

hr(k) = w(k)h(k)
_ & [1 B COS( i >] sin[27 (i — p) FT]

5m (i —p)
~ 5 [1 — cos (%)] Sin[izgi_—lg(;)/b‘] . k#10

The middle term is
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Anti-Imaging Magnitude Response
6 T T T

Problem 8.13 (b) Anti-Imaging Filter Magnitude Response

hp(10) = w(p)h(p)
5[ — cos(m)|]2F LT
1
3

(d) From (8.4.6)
20 '
Fy(z) = Zh(zu)z—l
12200 |
Fi(z) = Y h(4i+1)z"
=0

20
Fy(z) = > h(4i+2)z"
=0

20
Fy(z) = > h(4i+3)z"
=0
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xo
x(k) o— 14 > Fo(z%) —o y(k)
Z—l
1
> F1(2’4)
Z—l
)
> F2(24)
Z—l
A
€3
> Fs(zh)

Problem 8.13 (e) Polyphase Realization of Interpolator
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Consider a polyphase filter realization of a rational rate converter with rate conversion factor
L/M =2/3.

(a) Suppose the following FIR filter is used for the anti-aliasing filter of the decimator part.
Find the filters F;(z) for a polyphase realization of Hj(z).

30
HM(Z) = Z biz_i
=0

(b) Suppose the following FIR filter is used for the anti-imaging filter of the interpolator
part. Find the filters F;(z) for a polyphase realization of Hp(z).

30
Hp(z) = Zciz_i
=0

(c) Sketch a block diagram of a polyphase realization of the rational rate converter using a
cascade configuration of an interpolator followed by a decimator.

Solution

(a) Here M = 3. Thus from (8.4.2)

30 '
Eo(z) = Zh(?n')z—l
13200 |
Ei(z) = ) h(3i+1)z""
=0

30 '
By(z) = ) h(3i+2)z""
=0

(b) Here L = 2. Thus from (8.4.6)
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Y

o u
xz(k) o= 12 > Fp(2?) —»@—O—I—r
-1
271 i
A
x1
L] Fl(Zz) Y
Z—l

Problem 8.14 (c) Polyphase Realization of a Rational Rate Converter

Y2

13

—O y(k)
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Consider a polyphase filter realization of a rational rate converter with rate conversion factor
L/M =4/3.

(a) Suppose the following FIR filter is used for the anti-aliasing filter of the decimator part.
Find the filters E;(z) for a polyphase realization of Hys(z).

40
HM(Z) = Z biz_i
=0

(b) Suppose the following FIR filter is used for the anti-imaging filter of the interpolator
part. Find the filters F;(z) for a polyphase realization of Hp(z).

40
Hp(z) = Zciz_i
=0

(c) Sketch a block diagram of a polyphase realization of the rational rate converter using a
cascade configuration of a decimator and an interpolator.

Solution

(a) Here M = 3. Thus from (8.4.2)

40

Eyo(z) = Z h(3i)z "
1:00 |
Ei(z) = ) h(3i+1)z""
1:00 |
Ey(z) = Y h(3i+2)z""
=0
(b) Here L = 4. Thus from (8.4.6)
40 '
Fo(z) = Z h(4i)z""
1:00 |
Fi(z) = Y h(4i+1)z"
ZZOO |
Fy(z) = > h(4i+2)z"
=0

40 '
Fy(z) = > h(4i+3)z"
=0
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Y

z(k) o= 14 Fo(2%) L@_O_I_' Eo(2%) i»@—» 13 o yk)

-1
271 i
U1
> 3 ,(
| 1 ! > El(z ) ‘|‘>
o> Fl(Z ) A
-1
z
-1 Y2
z |_> E2(23)

T3

Problem 8.15 (c) Polyphase Realization of a Rational Rate Converter
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Consider the following FIR filter.

H(z) = 1432 45272 4... 423,711

(a) Find polyphase filters E;(z) such that
1 .
H(z) = ) z7'Ei(:?)
=0
(b) Find polyphase filters F;(z) such that
5 .
H(z) = ) 27Ei(:°
=0

(¢) Which of the two polyphase realizations of H(z) is faster in terms of the number of
floating point multiplications per output sample? How many times faster is it than a
direct implementation of H(z)?

Solution

(a) Using (8.4.2) with M =2, m = 11, and p = floor(m/M) =5

5
Eo(z) = Y h(2i)z"
=0

5

= > i+ 1)z

1=0
= 1452714922 4+1323 + 17274 + 21277

5
Ei(z) = ) h(2i+1)z""
=0

5

= ) (4i+3)z7"
1=0
= 3472 41127241523 419274 + 23275
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(b) Using (8.4.2) with M =6, m = 11, and p = floor(m/M) =1

1
Eo(z) = Y h(6i)z""
=0

1

= > (12i+1)z7"
=0
= 1+1327!

1
Ei(z) = ) h(6i+1)z""
=0

1

= > (12i+3)7"

1=0
= 3415271

1
Ey(z) = ) h(6i+2)z""
=0

1

= > (12i+5)z7"
=0

= 5417271

1
Es(z) = ) h(6i+3)z""
=0

1

= > (12i47)z7"
=0

= 7+1927!

1
Ey(z) = ) _h(6i+4)z""
=0

1
= > (12i+9)z7"
=0
= 9421271
1
Es(z) = ) h(6i+5)z"
=0
1
= > (12i411)z7
=0
= 11423271

(c) From (8.4.4) the computational rate for part (a) is po = 6fs FLOPs/sec and the com-
putational rate for part (b) is pg = 2fs FLOPs/sec. Thus the polyphase realization in
part (b) is faster. It is faster than a direct realization of H(z) by a factor of M = 6.
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Consider the following FIR filter.

H(z) = 24427 46272442471

(a) Find polyphase filters E;(z) such that
3 .
H(z) = ) z'Ei(z"
=0
(b) Find polyphase filters F;(z) such that
2 .
H(z) = ) 27Ei()
=0

(¢) Which of the two polyphase realizations of H(z) is faster in terms of the number of
floating point multiplications per output sample? How many times faster is it than a
direct implementation of H(z)?

Solution

(a) Using (8.4.2) with M =4, m = 11, and p = floor(m/M) = 2
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2
Eo(z) = ) h(4i)z""
=0

2

= > (Bi+2)z"

1=0
= 2410271 +18272

2
Ei(z) = ) h(4i+1)z""
=0

2

= > Bi+4)z"
1=0
= 4+4+12271+20272

2
By(z) = Y h(4i+2)z""
=0

2

= > (8i+6)z7"
1=0
= 6+ 14271 +22,72

2
Es(z) = Y h(4i+3)z""
=0

2

= > (Bi+8)z"
1=0
= 8416271 +24272

(b) Using (8.4.2) with M =3, m = 11, and p = floor(m/M) = 3
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3
Eo(z) = Y h(3i)z""
=0

3

= > (6i+2)z7"

1=0
= 24821 +14272 420273

3
Ei(z) = ) h(Bi+1)z"
=0

3

= > (6i+4)z7"
1=0
= 4+1027' +16272 + 22,73

3
By(z) = ) h(3i+2)2"
=0

3

= > (6i+6)z7"
1=0
= 6412271 +18272 424273

(c) From (8.4.4) the computational rate for part (a) is ps = 3fs FLOPs/sec and the com-
putational rate for part (b) is p3 = 4fs FLOPs/sec. Thus the polyphase realization in
part (a) is faster. It is faster than a direct realization of H(z) by a factor of M = 4.
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Consider the problem of designing a multirate narrowband lowpass FIR filter as shown in
Figure 8.44. Suppose the sampling frequency is fs = 8000 Hz and the cutoff frequency is
Fy =200 Hz.

(a) Find the largest integer frequency conversion factor M that can be used.

(b) Using (6.3.6), design an anti-aliasing filter Hy;(z) of order m = 32 using the frequency-
sampled method. Do not use any transition band samples.

Y
Y

G(2) TM Hy(z) —o0Y

Y
Y

x O— Hy(z) M

Figure 8.44 A Multirate Narrowband FIR Filter

Solution

(a) From (8.5.2), the largest frequency conversion factor is

M = ﬂoor(%)

_ foor (8000
N 4(200)

= 10

(b) From (8.5.3), the multirate cutoff frequency is

MFy, = 2000 Hz

Here M Fy/ fs = .25. Thus the desired samples for a filter of order m = 32 are

1, 0<i<7
Ar(B) = {0 , 8<i<16

From (6.3.6), the coefficients of the linear-phase FIR frequency-sampled filter are

floor(m/2)
A, (0) 2n(k — .5m)
= A, (F; _—
b m+1 * Zz:% (F) cos [ m+ 1

7
1 27 (k — 16)
= 33 + ZZ:% cos [ 33 ]
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Consider the problem of designing a complex passband filter with the following ideal magni-
tude response.

0, 0<f<h
A(f) = 1 ) FOSfSFl
0 ) F1<f<fs

(a) Let B = Fy — Fjy be the width of the passband, and consider the problem of designing a
lowpass filter G(z) with cutoff frequency F. = B/2. Using Tables 6.1 and 6.2, find the
impulse response g(k) for a filter of order m = 60 using the windowing method with the
Hamming window.

(b) Using the frequency shift property in (8.5.4) and g(k), find the impulse response h(k) of
the complex passband filter with cutoff frequencies Fjy and F3.

(c) Is the magnitude response of H(z) an even function of f? Why or why not?

(d) Is the magnitude response of H(z) a periodic function of f? If so, what is the period?
Solution

(a) Using Table 6.1 and Table 6.2 with m = 60, p = m/2, and the Hamming window, the
FIR filter impulse response is

g(k) = w(k)h(k)
- [.54 — 46 cos ( 75”“ >] sin2 (k — p) FeT|

m(k—p)
B 7wk \ | sin[r(k — 30) BT
= [.54 — .46 cos (% ] (k= 30) ) k # 30

The middle term is

9(30) = w(p)h(p)
= [.54 — .46 cos(m)]2F. T

= BT
Fy — Fy

[s

(b) One must use (8.5.4) to shift the spectrum to the right by Fy = (Fy + F31)/2. Thus

h(k) = exp(jk2mF>T)g(k)

7rl<:>] sin[r (k — 30) BT] k430

jkm(Fo+ F1)T) |54 — 4 —
expljkm(Fo+ F1) ][5 6cos< (k= 30) ,

30
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Similarly, the middle term is

h(30) = exp(jp2nF2T)g(p)

= epr30w(Fb+—PEXT]<

E—%)
Is

(¢) The magnitude response is not an even function of f because the filter coefficients, h(k),
are not real.

(d) G(f) is periodic with period fs. From (8.5.4), H(f) = G(f — F»). Therefore H(f) is
periodic with period f;.
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Consider the problem of designing a complex highpass filter with the following ideal magnitude
response.

0 ) 0§f<F0
1 ) F0§f<fs

(a) Let B = fs — Fy be the width of the passband, and consider the problem of designing a
lowpass filter G(z) with cutoff frequency F. = B/2. Using Tables 6.1 and 6.2, find the
impulse response g(k) for a filter of order m = 50 using the windowing method with the
Blackman window.

(b) Using the frequency shift property in (8.5.4) and g(k), find the impulse response h(k) of
the complex highpass filter with a cutoff frequency of Fy.

(c) Is the magnitude response of H(z) an even function of f? Why or why not?
(d) Is the magnitude response of H(z) a periodic function of f? If so, what is the period?

Solution

(a) Using Table 6.1 and Table 6.2 with m = 50, p = m/2, and the Blackman window, the FIR
filter coefficients are

g(k) = w(k)h(k)
= [.42 — 5cos (%) + .08 cos (2”’“)] sin[2r (k — p) F.T]

.5m m(k—p)
B wk 27k \ | sin[w(k — 25)BT]
= [.42—.5(:05 <%> —|—.08(:os< oF >] (k= 25) , k #£ 25

The middle term is

9(25) = w(p)h(p)
= [.52— .5cos(m) + .08 cos(27)|2F.T

- BT
-5

[s
(b) One must use (8.5.4) to shift the spectrum to the right by F» = (Fs + fs)/2. Thus

h(k) = exp(jk2nF>T)g(k)

7Tk 7Tk
= expljkn(Fo+ fs)T] [.42 — .5 cos <%> + .08 cos (2%>] )
sin[w(k — 25)BT]
m(k — 25) ’
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Similarly, the middle term is

h(25) = exp(jp2mFaT)g(p)
= exp[j257(Fy+ f)T)] (M>

[s

(¢) The magnitude response is not an even function of f because the filter coefficients, h(k), are
not real.

(d) G(f) is periodic with period fs. From (8.5.4), H(f) = G(f — F3). Therefore H(f) is periodic
with period f;.
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Consider the problem of designing a complex two-band filter with the magnitude response
shown in Figure 8.45.

(a) Let B = .1fs be the width of each passband, and consider the problem of designing a
lowpass filter G(z) with cutoff frequency F. = B/2. Using Tables 6.1 and 6.2, find the
filter impulse response g(k) for a filter of order m = 80 using the windowing method
with the Hanning window.

(b) Using the frequency shift property in (8.5.4) and g(k), find the impulse response hq (k)
of the complex passband filter with cutoff frequencies .1 f; and .2 fs.

(c) Using the frequency shift property in (8.5.4) and g(k), find the impulse response ho(k)
of the complex passband filter with cutoff frequencies .3 f; and .4 f.

(d) Using hi(k) and ho(k), find the impulse response h(k) of a filter whose magnitude re-
sponse approximates A(f) in Figure 8.45.

(e) Sketch a block diagram of H(z) using blocks Hi(z) and Ha(z).

Two-passband Magnitude Response

1.5 \ \ ‘ ‘

0.5F i

0 0.1 0.2 0.3 0.4 0.5
f/f

S

Figure 8.45 Two-band Magnitude Response of Problem 8.21

Solution

(a) Here B = .1f; and F, = B/2. Using Table 6.1 and Table 6.2 with m = 80, p = m/2,
and the Hanning window, the FIR filter coefficients are
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_ [.5 _ 5 cos (g;)] sin[?:ﬁ: - ]@;Fm
= [ e (L) | B t0BT) g

The middle term is

9(40) = w(p)h(p)

= [5—.5cos(m)]2F.T
BT
= .1

(b) One must use (8.5.4) to shift the spectrum to the right by Fy = (.1 4+ .2)fs/2 = .15fs.
Thus

hi(k) = exp(jk2riT)g(k)

= exp[jk2m.15fsT)( [.5 — .5 cos (

5m w(k — 40)
= exp(jkm.3)( [.5 — .5 cos (gi)] sin[z((l;;—_i%))BT] ., k#40

The middle term is

hi(40) = exp(jp2rFiT)g(p)
= exp[j80m(.15) f,T].1
= exp(j127).1
= .1

(¢c) One must use (8.5.4) to shift the spectrum to the right by Fy = (.3 4 .4)fs/2 = .35fs.
Thus

ha(k) = exp(jk2rnF3T)g(k)

exp[jk2m.35fT)( [.5 — .5 cos (

ik >] sin[r(k — 40)BT]

5m 7(k — 40)
ot e (Z8)] BEEZBT
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The middle term is

ha(40) = exp(jp2mF5T)g(p)
= exp[j80m(.35) f,T].1
= exp(j287).1
= .1

(d) To account for both passbands, a parallel configuration can be used where hq (k) passes
signals in the first passband and hs(k) passes signals in the second passband. Thus

h(k) = hi(k) + ha(k)

Y

HQ(Z)

Problem 8.21 Block Diagram of Two-band Filter
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Let zpr(k) = x(Mk) be the output of a factor of M down-sampler with input z(k). Recall
from (8.6.9) that the Z-transform of x s (k) can be written in terms of the Z-transform of x(k)
as follows where Wy = exp(—j27 /M)

M—1 .
Xu(f) = % X<7f+lfs>

Solution

The spectrum of zps(k) is Xps(2) evaluated along the unit circle z = exp(j27 fT). Recalling
that Wy = exp(—j27 /M) the spectrum is

| M1 '
Xu(f) = 37 X(Wy =)
i=0 z=exp(j2nfT)
| M- '
= 37 2 X[W,, exp(j2r fT/M)]
| M1
= 17 Xlexp(j2mi/M) exp(j2m fT/M)]
= a7 D Xexpl[2n(i+ fT)/M]}
=0
| M1
= 7 > X{expli2n(fT +if.T)/M]}
= 3 X{explj2n(f+ifs)T/M]}
i=0
LS (ftifs
B M =0 X< M >
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Consider the design of a two-channel QMF bank. Suppose the first analysis bank filter has
transfer function Fy(z) =2 — 273.

(a) Find the remaining analysis and synthesis filter bank transfer functions that ensure an
alias-free QMF bank.

(b) Find the overall QMF bank transfer function H(z).
(¢) Find the output y(k) in terms of the input x(k).

Solution

(a) From (8.6.19) the second analysis bank filter is

Fi(z) = Fo(—2)
= 24273

From (8.6.17) and (8.6.18), the synthesis bank filters are

G(](Z) = Fl(—z)
2273
—Fp(—2)
—(2+27%)
= 2,73

!
—
—
I
~—
I

(b) Since Gy(z) = Fy(z), it follows from (8.6.23) that

H(z) = 5[F() F§(~2)]

= 5[(2-270)? (2 +27°)7]
= 54— 2z_3 + 28 — (442273 + 279)]
= 92,73

(c) From the delay property of the Z-transform

y(k) = —2x(k-3)
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Consider the two-band filter whose magnitude response was shown previously in Figure 8.45.
Find the power gain I' of this filter.

Solution

If h(k) is the impulse response, then from (7.8.9) or (8.7.8) the power gain of the filter is

r = f: h2(k)

k=—o0

Using Parsevals identity from Table 4.3

L= Y [ak)P

k=—o00
1 fS/2

= - H(f)|%d
z / IR

-l e, )
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Consider an ideal lowpass filter with a passband gain of A > 1 and a cutoff frequency of
F. < fs/2. For what value of F, is the power gain equal to one?

Solution

Using Parseval’s identity from Table 4.3 and (8.7.8) the power gain is

r = f: h? (k)

1=—00

= > k)P

1 R
- / IR
2

fs/2
- = /0 H(f)Pdf

2 /F 2
= = Adf

fs 0

2A2%F,

[s

Setting I' = 1 and solving for F, yields

[s
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Consider the 10-bit oversampling ADC shown in Figure 8.46 with analog inputs in the range
|za(t)] < 5.

(a) Find the average power of the quantization noise of the quantized input, z,(k).

(b) Suppose a second-order Butterworth filter is used for the analog anti-aliasing prefilter.
The objective is to reduce the aliasing error by a factor of ¢ = .005. Find the minimum
required oversampling factor M.

(c) Find the average power of the quantization noise at the output, y(k), of the oversampling
ADC.

(d) Suppose fs = 1000 Hz. Sketch the ideal magnitude response of the digital anti-aliasing
filter Has(f).

(e) Using Tables 6.1 and 6.2, design a linear-phase FIR filter of order m = 80 whose fre-
quency response approximates Hy/(f) using the windowing method with a Hanning
window.

Y

ADC

Y

Y

Lo O——>{ Hq(s) H(z) |M ——ouy

Figure 8.46 An Oversampling ADC with an Oversampling Factor M

Solution

(a) Using (8.7.4) with ¢ =5 and N = 10, the input quantization level is

2N—1
5}

512
= .0098

From (8.7.6), the average power of the quantization noise of the quantized input z,(k)
is

2 q2
Uv = E
= 7.947x 107
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(b) From (7.4.1), the magnitude response of a second order analog Butterworth lowpass
filter with cutoff frequency Fy is

1

D= TR

The maximum magnitude of the aliasing error occurs at the folding frequency fy = fs/2.
To reduce the aliasing error by a factor of at least e = .005 set Aa(fq) < € or

1

ooy -

If oversampling by a factor of M is used, then f; = 2M F, where F, is the bandwidth of
xa(t). Thus

Taking reciprocals and squaring both sides yields

1+ M* > (200)2

Solving for M we then get

M = ceil](4 x 10%) — 1))Y/1]
= ceil(14.142)
= 15

(c) From (8.7.7) the average power of the quantization noise at the output of the oversam-
pling ADC is

o2 = q°
Y 12M
_ o
M
— 5.208 x 1077

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

722



(d) Here fs = 1000 Hz and M = 15. From (8.2.3), the ideal cutoff frequency is

fs
2M
1000

30
= 33.333 Hz

Fy =

The required frequency response for the ideal anti-aliasing digital filter is then

1 0 <|f| < 33.333
H = ’
m(f) { 0 , 33.333<|f| <500

Anti—Aliasing Magnitude Response
1 5 T T T

0.5F 4

0 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

f (Hz)
Problem 8.26 (d) Anti-Aliasing Filter Magnitude Response

(e) Using Table 6.1 and Table 6.2 with m = 80, p = m/2, and the Hanning window, the
FIR filter coefficients are

b(i) = w(i)h(i)
:‘5P_aw<wkﬂsmpﬂk—MFMﬂ

5m w(k—p)
:.5P—am<%>]m@ﬁ&iﬁyB%] .k #£40
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The middle term is

by = w(p)h(p)
= .5[1 — cos(m)]2FyT
2(33.333)

1000
= .0667

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

724



A 12-bit oversampling ADC oversamples by a factor of M = 64. To achieve the same average
power of the quantization noise at the output, but without using oversampling, how many
bits are required?

Solution

From (8.7.12), the quantization noise power of a B-bit ADC with oversampling by a factor
of M is the same as the quantization noise power of an N-bit ADC without oversampling.
Thus one can set B = 12, M = 64 and solve for N.

1 M
N — B+Og22( )

= 12+3

= 15 bits

Note that each additional bit corresponds to oversampling by a factor of four.
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Suppose an analog signal in the range |x,(t)| < 5 is sampled with a 10-bit oversampling ADC
with an oversampling factor of M = 16. The output of the ADC is passed through an FIR
filter H(z) as shown in Figure 8.47 where

H(z) = 1-2214322-2,34,71

Find the quantization level ¢
Find the power gain of the filter H(z).

(a)
(b)
(c)
(d) To get the same quantization noise power, but without using oversampling, how many
bits are required?

Find the average power of the quantization noise at the system output, y(k).

i xq(k
) o Oversmting 0 ) 60

Figure 8.47 A Discrete-time Multirate System

Solution

(a) Using (8.7.4) we have ¢ =5 and N = 10. Thus the quantization level is

(b) Using (8.7.8), the power gain of the filter H(z) is

m
r = > r3)
=0
= 1+449+4+1
= 19
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(c) Using (8.7.7), the average power of the quantization noise at the system output is

Fag
I'q?

12
19(.0098)2
12
1.51 x 107*

(d) From (8.7.12) one bit must be added for each oversampling by a factor of four
M = 16, this requires two additional bits if oversampling is not used. That is,

104 2
12 bits

. Since
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Consider the 10-bit oversampling DAC shown in Figure 8.48 with analog outputs in the range
|ya(t)] < 10.

(a) Suppose a first-order Butterworth filter is used for the analog anti-imaging postfilter.
The objective is to reduce the imaging error by a factor of ¢ = .05. Find the minimum
required oversampling factor L.

(b) Find the average power of the quantization noise at the output of the DAC.

(c) Suppose fs = 2000 Hz. Find the ideal frequency response of the digital anti-imaging
filter Hy(f). Include passband equalizer compensation for both the analog anti-imaging
filter and the zero-order hold.

Y

Y

Y

ro—s 1L Hi(2) DAC Hy(s) —o0%a

Figure 8.48 An Oversampling DAC with an Oversampling Factor L

Solution

(a) From (7.4.1), the magnitude response of a first order analog Butterworth lowpass filter with
cutoff frequency Fy is

1

= e

Since the magnitude response decreasing monotonically, the spectral images are all reduced
by a factor of at least Ai(fy) where fq = fs/2 is the folding frequency. Thus, to reduce the
anti-imaging error by a factor of at least e = .05 set A;(fy) < € or

1
1+ (fs/(2Fa)?

.05

If oversampling by a factor of L is used, then fs = 2LF, where Fy is the bandwidth of z(k).
Thus

1
V14 L?

Taking reciprocals and squaring both sides yields
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1+ L% > 400

Solving for L we then get

L = ceil[(400 —1))*/?]
= ceil(19.975)
= 20

(b) Using (8.7.4) with ¢ = 10 and N = 10, the quantization level is

512
= .0195

Then from (8.7.7), the average power of the quantization noise at the DAC output is

s o 4

v 12L
_.0195)?
-~ 12(20)
= 1.589x107°

(c) Here fs = 2000 Hz, and L = 20. If F, is the signal bandwidth, then from (8.8.6) the following
is the ideal frequency response of the digital anti-imaging filter.

201+ (f/Fu)?
Hi(f) = Tsinc(w fT/20) 0<|fI < F,
0 . Fy < |f] < fs)2

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

729



Vv Using the GUI module g_multirate, select the amplitude-modulated (AM) input. Reduce the
sampling rate of the input using an integer decimator with a down-sampling factor of M = 2.
Use a windowed filter with the Hanning window, and plot the following.

a) The time signals

(a)
(b)
(c)

)

(d) The filter impulse response

Their magnitude spectra

The filter magnitude response

Solution
Amplitude-modulated input, L/M = 0.5, Hanning window filter, m = 60

2 T T
< opf o
x

_2 1 1

2O 500 1000 1500

T T

y (k)
o
L

_2 I |
0 500 1000 1500
k

Problem 8.30 (a) Amplitude Modulated Time Signals
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Amplitude-modulated input, L/M = 0.5, Hanning window filter, m = 60
400 \ \ \ \ \ \ \ \ \

7 J\\A, |
%
<
0 ! ! ! ! ! I ! ! !
2000 200 400 600 800 1000 1200 1400 1600 1800 2000
T T T T T T T T T
ti "l /J\J\L |
>
ES
0 I I ! I 1 ! ! I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

f (Hz)

Problem 8.30 (b) Amplitude Modulated Magnitude Spectra

L/M = 0.5, Hanning window filter, m = 60
T T T

0.8 i

A(f)
o
(2}

T
1

0 L L L L Il 1 | | 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)

Problem 8.30 (c) Anti-Aliasing Filter Magnitude Response
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Impulse response L/M = 0.5, Hanning window filter, m = 60

0.5

0.4

0.3

-0.1 ‘ll“ll‘

-0.2
0

20 40 60 -2 0 2
k Re (z)

Problem 8.30 (d) Anti-Aliasing Filter Impulse Response
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Using the GUI module g_multirate, select the frequency-modulated (FM) input. Increase the
sampling frequency of the input using an interpolator with an up-sampling factor of L = 3.
Use a windowed filter with the Hamming window, and plot the following.

a) The time signals

(a)
(b)
(c)
(d) The filter phase response

Their magnitude spectra

The filter magnitude response

Solution
Frequency-modulated input, L/M = 3, Hamming window filter, m = 60
2 \ \ \ \ \ \ \ \
=~
=0 A
<l
_2 L L L L L L L L
20 500 1000 1500 2000 2500 3000 3500 4000 4500
T T T T T T T T
2 9
>y
_2 L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500
k

Problem 8.31 (a) Frequency Modulated Time Signals
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Frequency-modulated input, L/M = 3, Hamming window filter, m = 60

150 T T T T T

100 - N

A (I)

| |
0 1000 2000 3000 4000 5000 6000
T T

0 1 | L L L
0 1000 2000 3000 4000 5000 6000
f (Hz)

Problem 8.31 (b) Frequency Modulated Magnitude Spectra

L/M = 3, Hamming window filter, m = 60
35F T T T T T

A(f)

0.5 i

| | | 1 1

0 I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)

Problem 8.31 (c) Anti-Imaging Filter Magnitude Response
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L/M = 3, Hamming window filter, m = 60
4 \ \ \ \ \

o (£)
o
T

2+ —

L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)

Problem 8.31 (d) Anti-Imaging Filter Phase Response
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Using the GUI module g_multirate, print the magnitude responses of the following anti-aliasing
and anti-imaging filters using the linear scale.

(a) Windowed filter with the Blackman window
(b) Frequency-sampled filter

(c) Least squares filter

Solution

L/M = 1.5, Blackman window filter, m = 60
35F T T T T T

A(f)

0.5 i

0 1 1 1 I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)

Problem 8.32 (a) Windowed Filter with Blackman Window
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L/M = 1.5, frequency-sampled filter, m = 60
T

35F T T T T

A(f)

|

L L 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)

Problem 8.32 (b) Frequency-Sampled Filter

L/M = 1.5, least-squares filter, m = 60
35F T T T T T

A(f)

0 L L L L b L 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)

Problem 8.32 (c) Least Squares Filter
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Using the GUI module g_multirate, adjust the filter order to m = 80. Print the magnitude
responses of the following anti-aliasing and anti-imaging filters using the dB scale.
(a) Windowed filter with the Hanning window
(b) Windowed filter with the Hamming window
(c) Equiripple filter

Solution
L/M = 1.5, Hanning window filter, m = 80
T T T T T
O - -
o -20F B
c
G 40 -
<
60 i
—_80 L L L L m{\[\ /\ L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

f (Hz)

Problem 8.33 (a) Windowed Filter with Hanning Window
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L/M = 1.5, Hamming window filter, m = 80

T T T T T
of i
o -20F B
)
© 40 .
<<
—_80 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)
Problem 8.33 (b) Windowed Filter with Hamming Window
L/M = 1.5, equiripple filter, m = 80
T T T T T
of i
o -20F
)
© 40t .
<<
—-60 -
80 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)

Problem 8.33 (c) Equiripple Filter
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Using the GUI module g_multirate, select the damped cosine input. Set the damping factor
to ¢ = .995, the up-sampling factor to L = 2, and the down-sampling factor to M = 3. Plot
the following.

(a) The time signals
(b) The magnitude spectra

Solution

Damped cosine input, L/M = 0.666667, least-squares filter, m = 60
2 \ \ \ \ \ \ \ \ \

VWWWWWVWWWW\ANVW\AWWW

x (k)
o

) L L L L L L L L L
20 50 100 150 200 250 300 350 400 450 500
T T T T T T T T T
g 0 W\/\/\/\/\/W\/\/\/\WWVWM/\WWMWW i
>
) L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

k

Problem 8.34 (a) Damped Cosine Time Signals
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Damped cosine input, L/M = 0.666667, least-squares filter, m = 60
100 T T T T T T T T T
50 A
0 | | I I I I I I
800 200 400 600 800 1000 1200 1400 1600 1800 2000
T T T T T T T T T
60 A
40 A
20 A
0 I I I I I I | I 1
200 400 600 800 1000 1200 1400 1600 1800 2000
f (Hz)

Problem 8.34 (b) Magnitude Spectra
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Using the GUI module g_multirate, record the word hello in x. Play it back to make sure it
is a good recording. Save the recording in a MAT-file named prob8_85.mat using the Save
option. Then reload it using the User-defined option. Play it back with and without rate
conversion to hear the difference. Plot the following.

(a) The time signals
(b) Their magnitude spectra

(¢) The filter impulse response

Solution

User-defined input from file prob8_35.mat, L/M = 1.5, least-squares filter, m = 60
T T T T T T

-0.21 B
-0.4
0

! ! ! !
2000 4000 6000 8000 10000 12000
T T T

-0.2 B
-0.4 1 1 1 1 1 1
0

2000 4000 6000 8000 10000 12000
k

Problem 8.35 (a) Time Signals (Recorded Word HELLO)
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User-defined input from file prob8_35.mat, L/M = 1.5, least-squares filter, m = 60

40 T T T T T T
g ool a
X
<
0 | | I L P ke | |
0 1000 2000 3000 4000 5000 6000
60 T T T T T T
40} A
ol
>
< 20 B
0 1 ) it i L et NN i Al ! I
0 1000 2000 3000 4000 5000 6000
f (Hz)

Problem 8.35 (b) Magnitude Spectrum (Recorded Sound)

Impulse response L/M = 1.5, least-squares filter, m = 60
1
0.8
0.6
= 0.4 E
< 02 &
ok n_1n Lo o
S il H H i e
-0.2
-0.4
0 20 40 60 -2 0 2

k Re (z)

Problem 8.35 (c) Filter Impulse Response
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Vv Use the GUI module g-multirate and the User-defined input option to load the MAT-file
u_multiratel. Convert the sampling rate using L = 4 and M = 3 and a frequency-sampled
filter. Plot the following.

(a) The time signals. What word is recorded?
(b) Their magnitude spectra

(¢) The filter impulse response

Solution

User-defined input from file u_multiratel.mat, L/M = 1.33333, least-squares filter, m = 60
1 \ \ \ \ \ \ \ \ \ \

x (k)

! ! | ! ! ! ! !
) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
T T T T T T T

-1 | | | | | | | | | |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
k

Problem 8.36 (a) Time Signals. The Word is “multirate”
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User-defined input from file u_multiratel.mat, L/M = 1.33333, least-squares filter, m = 60

80 \ \ \ \ \ \ \ \ \ \
_ 60 1
“ 40 _
x
<
20 1
0 ) I‘lIALJIMALA A Aol | | Il
| 000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
T T T T T T T T T T
2 50 _
>
<
0 At i Aoy A | i |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
f (Hz)
Problem 8.36 (b) Magnitude Spectra
Impulse response L/M = 1.33333, least-squares filter, m = 60
1 2
0.8
0.6
—~ 04
3
= 02 ] ‘
0 ket 1 m m Mt
REEIN w HJ rar s
-0.2
-0.4 -2
0 20 40 60 -2 -1 0 1 2
k Re (z)

Problem 8.36 (c) Filter Impulse Response
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Consider the following periodic analog signal with three harmonics.

xq(t) = cos(2nt) — .8sin(4nt) + .6 cos(67t)

Suppose this signal is sampled at f; = 64 Hz using N = 120 samples to produce a discrete-
time signal (k) = z,(kT) for 0 < k < N. Write a MATLAB program that uses f_decimate to
decimate this signal by converting it to a sampling rate of Fy = 32 Hz. For the anti-aliasing
filter use a windowed filter of order m = 40 with the Hamming window. Use the subplot
command and the stem function to plot the following discrete-time signals on one screen.

(a) The original signal z(k)
(b) The resampled signal y(k) below it using a different color.

Solution

% Problem 8.37

f_header(’Problem 8.37°)

N = 120;
fs = 64;
T = 1/fs;
k=0 : N-1;

theta = 2*xpixk*T;
x = cos(theta) - 0.8*sin(2*theta) + 0.6*cos(3*theta);

% Resample

fS = 32;

M = fs/fS
m = 40;
f_type = 2;

[y,b] = f_decimate (x,fs,M,m,f_type);
% Plot both signals

figure

subplot (2,1,1)

stem (k,x,’.’,’filled’)

f_labels (’Decimation of a Signal’,’k’,’x(k)’)
subplot (2,1,2)

stem ([0: length(y)-1],y,’.r’,’filled’)
f_labels (°’,°k’,’y(k)’)

f_wait
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Vv Consider the following periodic analog signal with three harmonics.

xq(t) = sin(27t) — 3 cos(4nt) + 2 sin(67t)

Suppose this signal is sampled at fs = 24 Hz using N = 50 samples to produce a discrete-
time signal z(k) = x4(kT) for 0 < k < N. Write a MATLAB program that uses f_interpol
to interpolate this signal by converting it to a sampling rate of Fy; = 72 Hz. For the anti-
imaging filter use a least-squares filter of order m = 50. Use the subplot command and the
stem function to plot the following discrete-time signals on the same screen.

(a) The original signal z(k)
(b) The resampled signal y(k) below it using a different color.

Solution

% Problem 8.38
%y Construct signal

f_header(’Problem 8.38’)

N = 50;

fs = 24;

T = 1/fs;
k=0 : N-1;

theta = 2*xpixk*T;
x = sin(theta) - 3*cos(2xtheta) + 2*sin(3*theta);

% Resample

fS = 72;

L = fS/fs
m = 50;
f_type = 5;

[y,b] = f_interpol (x,fs,L,m,f_type);
% Plot both signals

figure

subplot (2,1,1)

stem (k,x,’.’,’filled’)

axis ([0 length(x) -6 6])

f_labels (’Interpolation of a Signal’,’k’,’x(k)’)
subplot (2,1,2)

stem ([0: length(y)-1],y,’.r’,’filled’)

axis ([0 length(y) -6 6])
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f_wait

Interpolation of a Signal
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Problem 8 .38 A Resampled Signal Using Interpolation




Consider the following periodic analog signal with three harmonics.

xa(t) = 2cos(27t) + 3sin(4nt) — 3 sin(67t)

Suppose this signal is sampled at fs = 30 Hz using N = 50 samples to produce a discrete-
time signal z(k) = x4 (kT) for 0 < k < N. Write a MATLAB program that uses f_-rateconv to
convert it to a sampling rate of F; = 50 Hz. For the anti-aliasing and anti-imaging filter use
a frequency-sampled filter of order m = 60. Use the subplot command and the stem function
to plot the following discrete-time signals on the same screen.

(a) The original signal z(k)
(b) The resampled signal y(k) below it using a different color.

Solution

% Problem 8.39
i Construct signal

f_header (’Problem 8.39°)

N = 50;

fs = 30;

T = 1/fs;
k=0 : N-1;

theta = 2*xpixk*T;
x = 2*cos(theta) + sin(2*theta) - 3*sin(3*theta);

% Resample

L=25
M=3

m = 60;
f_type = 4;

[y,b] = f_rateconv (x,fs,L,M,m,f_type);
% Plot both signals

figure

subplot (2,1,1)

stem (k,x,’.’,’filled’)

axis ([0 length(x) -6 6])

f_labels (’Rate Conversion of a Signal’,’k’,’x(k)’)
subplot (2,1,2)

stem ([0: length(y)-1],y,’.r’,’filled’)

axis ([0 length(y) -6 6])
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f_labels (°7,’k’,’y(k)’)
f _wait

Rate Conversion of a Signal
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Problem 8.39 A Resampled Signal Using a Rational Rate Converter
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Write a MATLAB function called u_narrowband that uses the FDSP toolbox functions f_firideal
and f_rateconv to compute the zero-state response of the multirate narrowband lowpass filter
shown in Figure 8.44. The calling sequence for u_narrowband is as follows.

% U_NARROWBAND: Compute output of multirate narrowband lowpass filter
T

% Usage:

pA [y,M] = u_narrowband (x,FO,win,fs,m);

% Pre:

yA x = array of length N containing input samples
yA FO = lowpass cutoff frequency (FO <= fs/4)

yA win = window type

h

yA 0 = rectangular

yA 1 = Hanning

yA 2 = Hamming

h 3 = Blackman

h

yA fs = sampling frequency

pA m = filter order (even)

% Post:

yA y = array of length N containing output samples
yA M = frequency conversion factor used

Use the maximum frequency conversion factor possible. Test function u_narrowband by writ-
ing a program that uses it to design a lowpass filter with a cutoff frequency of F0 = 10 Hz,
a sampling frequency of fs = 400 Hz, and a filter order of m = 50. Plot the following.

(a) The narrowband filter impulse response

(b) The narrowband filter magnitude response and the ideal magnitude response on the
same graph with a legend.

Solution

function prob8_40
% Initialize

f_header (’Problem 8.40°)

fs = 400;
F_0 = 10;
m = 60;

win = 2;

% Compute and plot narrowband impulse response

M = fs/(4%F_0)
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N = 750;

delta = [1,zeros(1,N-1)];

[h,M] = u_narrowband (delta,F_O,win,fs,m);

figure

k=0 : N-1;

plot (k,h)

f_labels (’Narrowband Impulse Response’,’k’,’h(k)’)
f_wait

% Compute and plot narrowband magnitude response

H = fft(h);
A = abs (H);
figure

f = linspace (0, (N-1)*fs/N,N);

i=1: N/2+1;

hp = plot (£(i),A(i),[0 F_O0 F_0 fs/2],[1 1 0 01);

set (hp(2),’Linewidth’,1.5)

legend (’Narrowband Filter’,’Ideal’)

f_labels (’Narrowband Magnitude Response’,’f (Hz)’,’A(f)’)
f_wait

function [y,M] = u_narrowband (x,FO,win,fs,m)

h

% U_NARROWBAND: Compute output of multirate narrowband lowpass filter
h

% Usage:

yA [y,M] = u_narrowband (x,FO,win,fs,m);

% Pre:

yA x = array of length N containing input samples
yA FO = lowpass cutoff frequency (FO <= fs/4)

yA win = window type

h

yA 0 = rectangular

yA 1 = Hanning

yA 2 = Hamming

h 3 = Blackman

h

yA fs = sampling frequency

yA m = filter order (even)

% Post:

yA y = array of length N containing output samples
yA M = frequency conversion factor used

% Compute maximum rate conversion factor

M = max(1,floor(fs/(4xF0)));
if M ==
a=1;
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y = filter (b,a,x);
else
f_type = 0;
b = f_firideal (f_type,M*FO,m,fs,win);
y1l = f_rateconv (x,fs,1,M,m,win);
y2 = filter (b,1,y1);
y = f_rateconv (y2,fs,M,1,m,win);
end

Narrowband Impulse Response
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_0-02 | | | | | | |
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Problem 8.40 (a) Narrowband Impulse Response
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Problem 8.40 (b) Narrowband Magnitude Response
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Vv Write a function called u_synbank that synthesizes a composite signal z(i) from N low-
bandwidth subsignals z;(k) using a uniform DFT synthesis filter bank. The calling sequence
for u_synbank is as follows.

% U_SYNBANK: Synthesize a complex composite signal from subsignals using a DFT filter banl
T

% Usage:

% x = u_synbank (X,m,alpha,win,fs);

% Pre:

yA X = p by N matrix containing subsignal i in column i

yA m = order of anti-imaging filter

yA alpha = relative cutoff frequency: F_0 = alphaxfs/(2N)

yA win = an integer specifying the desired window type

h

yA 0 = rectangular

yA 1 = Hanning

yA 2 = Hamming

yA 3 = Blackman

h

yA fs = sampling frequency

% Post:

yA x = complex vector of length q = Np containing samples of composite
yA signal. x contains N frequency-multiplexed subsignals. The
yA bandwidth of x is N*fs/2 and the ith subsignal is in band i

Test function u_synbank by writing a program that uses the FDSP toolbox function f_subsignals
to construct a 32 by 4 matrix X with the samples of the kth subsignal in column k. The func-
tion f_subsignals produces signals whose spectra are shown in Figure 8.23. Use alpha = .5,
fs =200 Hz, and a windowed filter of order m = 90 with a Hamming window. Save z and
fs in a MAT-file named prob8_41 and plot the following

(a) The real and imaginary parts of the complex composite signal x(z). Use subplot to
construct a 2 x 1 array of plots on one screen.

(b) The magnitude spectrum A(f) = |X(f)|for 0 < f < fs.

Solution

function prob8_41
% Initialize

f_header(’Problem 8.41°)

fs = 200;
N = 4;
p = 32;
m = 90;
win = 2;
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alpha = 0.5;

% Compute and plot complex composite signal

X = f_subsignals (p);

x = u_synbank (X,m,alpha,win,fs);
q = length(x);

k=0:qg1;

figure

subplot(2,1,1)

plot(k,real(x))

set (gca,’Fontsize’,11);

f_labels(’Composite Signal’,’k’,’Real\{x(k)\}’)
subplot(2,1,2)

plot (k,imag(x))
f_labels(’’,’k’,’Imag\{x(k)\}’)

f_wait

save prob7_30 x fs

fprintf (’Creating prob7_30.mat\n’)

% Compute and plot composite magnitude spectrum

Hox = £fft(x,q);

A_x = abs(H_x);

f_x = linspace(0, (q-1)*N*fs/q,q);
figure

plot(f_x,A_x)

set (gca,’Fontsize’,11);

f_labels (’Composite Magnitude Spectrum’,’f (Hz)’,’A(f)’)
axis ([0 Nxfs O 4])

a = 2.75;

text (fs/6,a,’A_0’,’HorizontalAlignment’,’Center’)

text (fs,a,’A_1’,’HorizontalAlignment’,’Center’)

text (2*fs,a,’A_2’,’HorizontalAlignment’,’Center’)

text (3*fs,a,’A_3’,’HorizontalAlignment’,’Center’)

text (Nxfs-fs/5,a,’A_0’,’HorizontalAlignment’,’Center’)
f_wait

function x = u_synbank (X,m,alpha,win,fs)

h

% U_SYNBANK: Synthesize a complex composite signal from subsignals using a DFT filter banl
h

% Usage:

% x = u_synbank (X,m,alpha,win,fs);

% Pre:

yA X = p by N matrix containing subsignal i in column i
yA m = order of anti-imaging filter

yA alpha = relative cutoff frequency: F_0 = alphaxfs/(2N)

yA win = an integer specifying the desired window type
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T

yA 0 = rectangular

yA 1 = Hanning

yA 2 = Hamming

h 3 = Blackman

h

yA fs = sampling frequency

% Post:

yA x = complex vector of length q = Np containing samples of composite
yA signal. x contains N frequency-multiplexed subsignals. The

yA bandwidth of x is N*fs/2 and the ith subsignal is in band i

%y Change sampling rate

[p,N] = size(X);

L = N;

q = L*p;

y = zeros(q,N);
type = 2;

for i=1:N
u = f_interpol(X(:,i),fs,L,m,type,alpha);
Y(:,i) = u(:);

end
% Construct composite signal

k=[0: qg-1]1’;
W_N = exp(-j*2xpi/N);
x = zeros(q,1);
for i =1:N
x=x+ WN."(-(i-D)*xk) .*x Y(:,1);
end
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Problem 8.41 (a) Components of the Complex Composite Signal
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Problem 8.41 (b) Magnitude Spectrum of the Complex Composite Signal
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Write a function called u_analbank that analyzes a composite signal (i) and decomposes it
into N low-bandwidth subsignals z;(k) using a uniform DFT analysis filter bank. The calling
sequence for u_analbank is as follows.

% U_ANALBANK: Analyze a complex composite signal into subsignals using a DFT filter bank.
T

% Usage:

% X = u_analbank (x,N,m,alpha,win,fs);

% Pre:

yA X = complex vector of length q = Np containing samples of composite
yA signal. x contains N frequency-multiplexed subsignals. The
yA bandwidth of x is N*fs/2 and the ith subsignal is in band i
yA N = number of subsignals in x

yA m = order of anti-imaging filter

yA alpha = relative cutoff frequency: F_0 = alphaxfs/(2N)

yA win = an integer specifying the desired window type

h

yA 0 = rectangular

yA 1 = Hanning

yA 2 = Hamming

h 3 = Blackman

h

yA fs = sampling frequency

% Post:

>
]

T

p by N matrix containing subsignal i in column i

Test function u_analbank by writing a program that analyzes the composite signal x(i) ob-
tained from the solution to Problem 8.41. That is, load MAT-file prob8_41. Use alpha = .5,
and a windowed filter of order m = 90 with a Hamming window. Plot the following

(a) The magnitude spectrum A(f) = |X(f)| for 0 < f < fs.

(b) The magnitude spectra of the subsignals extracted from X. Use subplot to construct a
2 x 2 array of plots on one screen.

Solution

function prob8_42
% Initialize

f_header (’Problem 8.42’)
N = 4;

m = 90;

win = 2;

alpha = 0.5;

load ’prob7_30°

p = length(x)/N;
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% Compute and plot composite magnitude spectrum

q = length(x);

Hox = £fft(x,q);

A_x = abs(H_x);

f_x = linspace(0, (q-1)*N*fs/q,q);
figure

plot(f_x,A_x)

set (gca,’Fontsize’,11);

f_labels (’Composite Magnitude Spectrum’,’f (Hz)’,’A(f)’)
axis ([0 Nxfs O 4])

a = 2.75;

text (fs/6,a,’A_0’,’HorizontalAlignment’,’Center’)

text (fs,a,’A_1’,’HorizontalAlignment’,’Center’)

text (2*fs,a,’A_2’,’HorizontalAlignment’,’Center’)

text (3*fs,a,’A_3’,’HorizontalAlignment’,’Center’)

text (Nxfs-fs/5,a,’A_0’,’HorizontalAlignment’,’Center’)
f_wait

% Compute and plot magnitude spectra of subsignals

X = u_analbank (x,N,m,alpha,win,fs);
for i =1:N
Y = £ (X(:,1));
A(:,i) = abs(fftshift(Y));
end
f = linspace (-fs/2,(p-1)*fs/(2*p),p)’;
figure
forr=1:N
subplot (2,2,r)
plot (f,A(:,r))
ylabel = sprintf (PA_%d(f)’,r-1);
f_labels (°’,’f (Hz)’,ylabel)
end
f_wait

function X = u_analbank (x,N,m,alpha,win,fs)

h

% U_ANALBANK: Analyze a complex composite signal into subsignals using a DFT filter bank.
h

% Usage:

% X = u_analbank (x,N,m,alpha,win,fs);

% Pre:

yA X = complex vector of length q = Np containing samples of composite
yA signal. x contains N frequency-multiplexed subsignals. The

yA bandwidth of x is N*fs/2 and the ith subsignal is in band i

yA N = number of subsignals in x

yA m = order of anti-imaging filter
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yA alpha = relative cutoff frequency: F_0O = alphaxfs/(2N)
yA win = an integer specifying the desired window type
h

yA 0 = rectangular

yA 1 = Hanning

yA 2 = Hamming

h 3 = Blackman

h

yA fs = sampling frequency

% Post:

yA X = p by N matrix containing subsignal i in column i

% Initialize

q = length(x);
p = a/N;

X = zeros(p,N);
M = N;

% Decompose composite signal

W_N

= exp(-j*2xpi/N);
i=[0: g-1]1’;
for k=1: N

y = zeros(q,1);
y =y + W_N."((k-1)*i) .* x;
u = f_decimate(y,fs,M,m,win,alpha);
X(:,k) = u(:);
end
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Problem 8.42 (a) Magnitude Spectrum of the Complex Composite Signal
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Chapter 9

The transversal filter structure used in this chapter is a time-varying FIR filter. One can
generalize it by using the following time-varying IIR filter.

y(k) = Y bi(k)alk—i) =) ai(k)y(k —1)
i=0 i=1

(a) Find suitable definitions for the state vector u(k) and the weight vector w(k) such that
the output of the time-varying IIR filter can be expressed as a dot product as in (9.2.3).
That is,

(b) Suppose the weight vector w(k) converges to a constant. Is the resulting filter guaranteed
to be BIBO stable? Why or why not?

Solution

(a) Suppose the weight vector is b(k) augmented by a(k). That is,

1>

w(k) [bo(k), ..., bm(k), a1(k), ..., an(k)]T

Next let u(k) be the following (m +n + 1) x 1 state vector

u(k) 2 [z(k),...,x(k—m), ~y(k—1),...,~y(k—n)]T
Then
y(k) = > bik)z(k—i) = ai(k)y(k—1)

i= =1
mO m+n+1

= > wiBuwk)+ > wi(k)ui(k)
=0 i=m-+1
m+n+1

= > wi(k)ui(k)
=0

= wl(B)uwk) , k>0
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(b) If w(k) converges to a constant, the resulting IIR filter may or may not be BIBO stable.
Unlike with an FIR filter, it is possible for the poles of an IIR filter to be on or outside
the unit circle. Therefore the filter is not guaranteed to be BIBO stable.
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Suppose a transversal adaptive filter is of order m = 2. Find the input auto-correlation matrix

R for the following cases.

(a) The input x(k) consists of white noise uniformly distributed over the interval [a, b].

(b) The input x(k) consists of Gaussian white noise with mean p, and variance 7.

Solution

2

(a) Since z(k) is white noise uniformly distributed over [a, b] it can be represented as follows.

(k) = po+ (k)

Here p1; = (a+0b)/2 is the mean and v(k) is zero-mean white noise uniformly distributed
over [—¢, c| where ¢ = (b — a)/2. Thus the auto-correlation matrix is

Rij = El{pa +o(k —i)H{pe +o(k = j)}]
[

um+5(

E[v*(i)]

7)
—7)P

From Appendix 2, the average power of v(k) is

P, = E[v*(k)]

_
3
B (b— a)?
B 12
Hence the auto-correlation matrix is
1 1 1
b)? b—a)?
R:(az) 111 +(12a)
1 1 1

(b) The form of R will be the same, but with P, = ¢2. Thus

Rij =2+ (i — j)oz

[Mm] + Elpev(k = j)] + Elpav(k — )] + Efv(k — i)v(k — j]
13+ paBlo(k = )]+ peBlo(k — )] + (i — ) E[v?(i)]

S O =
O = O
= o O
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With m = 2 this yields

O = O
= o O
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Find the constant term, Py = E[d?(k)], of the mean square error when the desired output is
the following signal.

) 27k 27k
d(k) = b+sin (T) — Cos (T)

Solution

From (9.2.18), the constant term of the mean square error, e(w), is the average power of the
desired output. Using the linearity properties of the expected value operator,

Py = E[d*(k)]

E[{b+ sin(2wk/N) — cos(2rk/N)}?]
[
[

E[{b+ sin(2wk/N)}? — 2{b + sin(27k/N)} cos(2wk/N) + cos*(2rwk /N)]
= E[b% 4 2bsin(27k/N) + sin?(27k/N) — 2bcos(2mk/N) — 2sin(2rk /N) cos(2wk/N) +
cos?(2mk/N)]
= E[b? + 2bE[sin(2rk/N)] 4+ E[sin®(27k/N)] — 2bE[cos(2rk /N)] —
2E[sin(27k/N) cos(2mk/N)] + E[cos*(2mk/N)]
= b + E[sin?(2nk/N)| — 2E[sin(27k/N) cos(27k /N)] + E[cos?(2nk/N)]

Next, using the trigonometric identities from Appendix 2,

Py = b?+ .5E[1+ cos(2nk/N)] — E[sin(4nk/N)] + .5E[1 — cos(27k/N)]
= b2+ .54+.5
b +1
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Consider a transversal filter of order m = 1. Suppose the input and desired output are as
follows.

z(k) = 2-+sin(rk/2)
d(k) = 1—3cos(mk/2)

(a) Find the cross-correlation vector p.
(b) Find the input auto-correlation matrix R.

(c) Find the optimal weight vector w*.
Solution

(a) From (9.2.13), Definition 9.1, and the trigonometric identities in Appendix 2, the cross-
correlation vector is

pi = raz(i)

E[{1 —3cos(mk/2)}{2 + sin(w[k — i]/2)}]

E[2 +sin(w[k — i]/2) — 6 cos(mk/2) — 3 cos(mwk/2) } sin(w [k — 1]/2)]

E[2] + E[sin(w[k —i]/2)] — 6 E[cos(mk) /2] — 3E[cos(mk/2) sin(n[k — i]/2)]
2 — 3E[cos(mk/2) sin(w[k — i]/2)]

2 — 1.5E[sin(w[2k — i]/2) + sin(7[—i]/2)]

2 — 1.5E[sin(m[2k — i]/2)] — 1.5E[sin(w[—i]/2)]

2 4+ 1.5E[sin(mi) /2]

= 2+ 15sin(mi/2) , 0<i<l

Thus the cross-correlation vector is

p = [2a35]T

(b) From (9.2.15), Definition 9.1, and the trigonometric identities in Appendix 2, the auto-
correlation matrix is
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Rij = r2.(j —1)

Elx(k)x(k—j+1)]

E[{2+ sin(7k/2)}{2 + sin(n[k — j + i]/2)}]

E[4+ 2sin(w[k — j +1i]/2) + 2sin(nk/2) + sin(7k/2) sin(w [k — j +i]/2)]

E[4] 4 2E[sin(n[k — j +1]/2)] + 2E[sin(7k/2)] + E[sin(wk/2) sin(w [k — j + i]/2)]
4 + Elsin(mk/2) sin(w[k — j + 1]/2)]

4+ 5E[cos(r[j — 1]/2) — cos(m[2k — j + 1]/2)]

4+ 5E[cos(n[j — 1]/2)] — .5E[cos(mw[2k — j + 1]/2)]

4+ 5E[cos(n[j — 1]/2)]

= 4+ .5cos(m[j—1il/2) , 0<i,j<1

Thus the auto-correlation matrix is

(c) From (9.2.20), the optimal weight vector is

w* = R7lp
B [4.5 4 ]—1[ 2 ]
4 45 3.5
_ L[4-5 —4“ 2]
425 | —4 45 || 35

[ —1.1765
~ | 1.8235
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Suppose the first row of an auto-correlation matrix R is r = [9,7, 5, 3, 1].

(a) Find R.
(b) What is the average power of the input?

(c) Suppose z(k) is white noise uniformly distributed over the interval [0, ¢]. Find c.
Solution

(a) Given the banded symmetric structure of R in (9.2.17), the auto-correlation matrix is

9 75 31
7T9 7 5 3
R = 579 75
35797
1 3 5 79
(b) From (9.2.16), the average power is
Py = Ry
= 9

(c) Using (9.2.8), the average power of white noise uniformly distributed over [0, ] is P, =
c/3c. Thus

Solving for ¢ yields ¢? = 27 or

c = V27
5.1962
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Suppose v(k) is white noise uniformly distributed over [—c, ¢|. Consider the following input.

z(k) = 2+sin(rk/2)+ v(k)

Find the input auto-correlation matrix R. Does your answer reduce to that of Problem 9.4
when ¢ = 07

Solution

When two signals are statistically independent, the expected value of their product is equal
to the product of the expected value. From (9.2.15), Definition 9.1, and the trigonometric
identities in Appendix 2, the auto-correlation matrix is

Rij = 7re(j —1)

Elz(k)z(k—j+1)]

E[{2 +sin(nk/2) + v(k) {2+ sin(w[k — j +14]/2) + v(k — 7 +1)}]

= FE[{2+sin(rk/2)}H{2+sin(n[k —j +1]/2)} + {2 + sin(wk/2) }v(k — j + i) +
v(k){2 +sin(n[k — 5 +1]/2)} + v(k)v(k — j +1)]

= FE[{2+sin(rk/2)}H{2+sin(n[k — j +1]/2)}] + E[2 + sin(nk/2)|E[v(k— j +1i)] +
Ew(k)]|E[2+ sin(n[k — j +1i]/2) + Elv(k)v(k— j + )]

Since v (k) is uniformly distributed about [—c, ¢], its mean is zero. Thus

Rij = E[{2+sin(rk/2) {2+ sin(r[k —j +1i]/2)}] + Elv(k)v(k — j +9)]

The samples of the white noise are statistically independent of one another. Thus when ¢ # 4,
Elw(k)v(k—j+1i)] = Elv(k)]E[v(k— j+1)]. Hence from (9.2.8), the expression for the input
auto-correlation matrix reduces to

Rij = E[{2+sin(rk/2) {2+ sin(n[k — j +1i]/2)}] + (i — j)E[v(k)v(k — j + )]
= FE[{2+sin(nk/2)}H{2+sin(n[k — j +1]/2)}] 4+ 5(i — j)E[vQ(k:)]
= FE[{2+sin(rk/2)}{2+ sin(n[k — j +i]/2)}] + (i — j) Py
63 —(—c 3
= E[{2+sin(rk/2)}{2+sin(nw]k — 7 +14]/2)} + 6(i — j) {3[6 —((—c) ] }
= E[{2+sin(rk/2)H{2+sin(x[k — j +14]/2)} + (¢?/3)d(i — §)

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

773



Using the trigonometric identities in Appendix 2,

Rij = E[4+ 2sin(rk/2) + 2sin(r[k — j + i]/2) + sin(rk/2) sin(x[k — j +1i]/2)] + (2/3)6(i — j)

E[4] + 2E[sin(rk/2)] + 2E[sin(r [k — j +4]/2)] + E[sin(rk/2) sin(r[k — j + i]/2)] + (¢*/3)5(i — 5)
4 + Efsin(rk/2) sin(n[k — j +1]/2)] + (¢*/3)0(i — 5)

4 4 5E[cos(n[i — j]/2) — cos(m[2k — j +1i]/2)] + (¢*/3)d(i — 7)

4 4 5E[cos(n[i — j]/2)] — .BE[cos(m[2k — j +i]/2)] + (¢*/3)(i — §)

= 44 5cos(nfi—j]/2)+ (c?/3)6(i—35) , 0<i,j<1

Thus the input auto-correlation matrix is

4.5+ c%/3 4
4 4.5+ c%/3

When ¢ = 0, this reduces to the R in problem 9.4.
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Suppose an input x(k) and a desired output d(k) have the following auto-correlation matrix
and cross-correlation vector. Find the optimal weight vector w*.

Solution

Using (9.2.20), the optimal weight vector is

BN
=l S

[ 7083
| —.5417
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V Suppose the mean square error is approximated using a running average filter of order M — 1
as follows.

M-1

(w) ~ %Zez(k—i)

1=

(a) Find an expression for the gradient vector Ve(w) using this approximation for the mean
square error.

(b) Using the steepest-descent method and the results from part (a), find a weight-update
formula.

(¢) How many floating-point multiplications (FLOPs) are required per iteration to update
the weight vector? You can assume that 2 is computed ahead of time.

(d) Verify that when M = 1 the weight-update formula reduces to the LMS method.

Solution

(a) Using (9.2.3) and (9.2.4), the partial derivative of this approximation to the mean square
error with respect to w; is

M—
Oe(w) = 9\ L 1 e*(k —q)
awi awi M
q=0
1 M_12 k )ae(k‘—q)
- M € B awi
q=0
M—1
2 0
= 2 X -0 (o ) k= o)~ (k)
q=0
M—1
—2 0
= 57 2= lk—a) <6w1> y(k—q)
q=0
M—1
2 0 T
= X -0 () wlutk -0
q=0
g M1
= 37 e(k—qui(k—q) , 0<i<m
q=0
Thus the gradient vector is
g M1
Ve(w) = 7 > e(k —i)u(k —1)
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(b) Using (9.3.3) and the results from part (a), the weight update formula using the steepest
descent method is

wk+1) = wk)— uVe[w(k)]
M-1

1 . .
7 - e(k —i)u(k — 1)
=0

)

= w(k)+

(c) Since u(k — 1) is a vector of length m + 1, the number of FLOPs per iteration to update
the weight vector is

Ny = (m+1)(M+1)
(d) Starting with the answer to part (b) and setting M = 1 yields

wk+1) = wk)+ 25 ek — iyulk — i)
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There is an offline or batch procedure for computing the optimal weight vector called the
least-squares method (see Problem 9.36). For large values of m, the least-squares method
requires approximately 4(m + 1)3/3 FLOPs to find w. How many iterations are required
before the computational effort of the LMS method equals or exceeds the computational
effort of the least-squares method?

Solution

Since the 2u can be computed ahead of time, it follows from (9.3.8) that the LMS method
requires the following number floating point multiplications per iteration

npMs = m—+1

Let p be the number of LMS iterations. Then the FLOPs for the LMS method equal the
FLOPs for the offline least-squares method when

pm+1) = 4(m+1)3/3

Solving for p yields

4(m + 1)2]

= il
P cei [ 3
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Suppose an input z(k) has the following auto-correlation matrix.
2 1
w7l

(a) Using the eigenvalues of R, find a range of step sizes that ensures convergence of the
LMS method.

(b) Using the average power of the input, find a more conservative range of step sizes that
ensures convergence of the LMS method.

(c) Suppose the step size is one tenth the maximum in part (b). Find the time constant of
the mean square error in units of iterations.

(d) Using the same step size as in part (c), find the misadjustment factor M.
Solution
(a) The characteristic polynomial of the input auto-correlation matrix is

A(N) = det(A\] — R)

S5

= (A-2)2%-1
= M4 +4-1
= M-4\+3
= (A=3)(A-1)
Thus the maximum eigenvalue is
/\max = 3

From Proposition 9.1, the range of step sizes that ensures convergence of the LMS
method is

0<p<.333
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(b) From (9.2.16), the average power of the input is

P, = Ry
= 2

Using (9.4.14), a more conservative upper bound for the step size is

Hmax = (m T 1)Pm

Thus the more conservative range of step sizes that guarantees convergence of the LMS
method is

0<p<.25

(c) Suppose p = .025. From part (a), the minimum eigenvalue of R is Ay, = 1. Setting
T =1 1in (9.4.27), the mean square error time constant in unit of iterations is

1
4ﬂ/\min

1
4(.025)1
= 10

Tmse =~

(d) Let p=.025. From (9.4.35), the misadjustment factor is

My ~ pim+1)P,
= .025(2)2
= .1
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Suppose the LMS learning curve converges to within one percent of its final steady-state value
in 200 iterations.

(a) Find the learning-curve time constant, Tyse, in units of iterations.
(b) If the minimum eigenvalue of R is Ayin = .1, what is the step size?

(c) If the step size is p = .02, what is the minimum eigenvalue of R?
Solution

(a) In terms of iterations, the learning curve converges at a rate of exp(—k/Tmse). For
the learning curve to converge to within one percent of its steady-state value in 200
iterations, it is necessary that

exp(—200/Tpse) = .01

Taking the natural log of both sides, multiplying by —200, and taking reciprocals, then
yields the following mean square error time constant

_—200
Tmse = 1n(.01)
= 43.4294

(b) Setting T'=1 in (9.4.27) and solving for the step size yields

1

4\ minTmse
1

4(.1)43.4294
1

4(.1)43.4294
= .0576

(c) Setting T'=1 in (9.4.27) and solving for the minimum eigenvalue yields

1
4pTmse
1
4(.02)43.4294
1
4(.02)43.4294
= .2878

/\min =
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Suppose the misadjustment factor for the LMS method is My = .4 when the input is white
noise uniformly distributed over [—2, 2].

(a) Find the average power of the input.
(b) If the step size is p = .01, what is the filter order?
(c) If the filter order is m = 9, what is the step size?

Solution

(a) From (9.2.8), the average power of the input is

28— (-2)3
32 — (=2)]
16

12
4

3

P, =

(b) From (9.4.35), the normalized excess mean square error or misadjustment factor is

My ~ pim+1)P,

If = .01, then the filter order is
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Financial considerations dictate that a production system must remain in operation while the
system is being identified. During normal operation of the linear system, the input z(k) has

relatively poor spectral content.

(a)
(b)

Which of the modified LMS methods would appear to be an appropriate choice? Why?

How might the input be modified slightly to improve identification without significantly
affecting the normal operation of the system?

Solution

(a)

(b)

The leaky LMS method would be best because it has the affect of adding low-level white
noise to the input thereby improving the spectral content. This makes the algorithm
more stable when the input has poor spectral content.

The input could be modified by explicitly adding low-level white noise to improve its
spectral content. By keeping the noise low level, this should not significantly interfere
with the normal operation of the system.

z(k) = z(k)+v(k)

If P, is the average power of the original input, then the average power of the white
noise should be small in comparison with P,.

P, < Py

For example, if v(k) is white noise uniformly distributed over [—c, ¢|, then v(k) has zero
mean and from (9.2.8) the average power of v(k) is

(=)’

e —
S ey
C2
3

Thus the bound on the amplitude of the uniform white noise should satisfy ¢?/3 < P,
or

c K /3P,
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Consider the normalized LMS method.

(a) What is the maximum value of the step size?

(b) Describe an initial condition for the past inputs that will cause the step size to saturate
to its maximum value.

Solution

(a) From (9.5.8), the maximum value of the normalized LMS method step size occurs when
u = 0. Thus

Hmax =

SRS

From (9.5.3), an upper bound for the constant step size is & = 1. Thus pimax < 1/6.

(b) From (9.5.8), the normalized step size will saturate whenever the previous (m + 1)
samples of the input are zero. Thus the following initial condition vector causes step
size saturation.

u(0) = 0
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Consider the following periodic input that is used as part of the input-output specification
for a pseudo-filter. Suppose f; = ifs/(2N) for 0 < i < N. Find the auto-correlation matrix
R for this input.

N-1

z(k) = ZCZ'COS(27Tfik‘T)

=0

Solution

Using (9.2.15) and the trigonometric identities from Appendix 2,

Rij = 7ra2(j—1)
= Elz(k)z(k—j+1)]
N-1 N-1
= FE Z Cycos(2m fokT) Z Cy cos(2m f [k — 7 +1]T)
q=0 r=0
N-1N
= Z CyC, Elcos(2m fokT') cos(2m fr [k — j +i]T)]
0 r=0
- N-1N-1
= 5 Z CyCrElcos2m{ fok + frlk — j +i4]}T) + cos2n{ fok — frlk — j +i]}T)]

r=

=2
NE:I

= .5 CyCElcos2n{ fok — frlk — j +1]}T)]
=0 r=0
-
= 5 CIE[cos(2mfyi — 4]T))]
=0
-
= 5Y Cleos(2nfyli—4T) , 0<ij<m
q=0
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V Consider the following periodic input and desired output that form the input-output specifi-
cation for a pseudo-filter. Suppose f; = ifs/(2N) for 0 < i < N. Find the cross-correlation
vector p for this input and desired output.

N-1
x(k) = Z C; cos(2m f;kT)
=0
N-1
d(k) = A;C; cos(2m fikT + ¢;)
=0

Solution

Using (9.2.13) and the trigonometric identities from Appendix 2,

bi

5 AyC2 cos(2m foiT + ¢q)

rdm(z)
Eld(k)x(k —1)]
N-1 N-1
E ZA Cycos(2m fokT + ¢q) Z Cy cos(2m f.[k — i]T)
9= r=0
N-1N-1
Z A,C,CrE[cos(27 fokT + ¢g) cos(2m fr[k — i]|T)]
—0 r=0
' N-1N-1
5 A,C,CLE[cos(2m{ fok + frlk —i|}T + ¢q) + cos(2m{ fok — fr[k — i]}T + ¢g)]
=0 r=0
sz IN-1
5 A,C,CrE[cos2m{ fok — frlk —i]}T + ¢4)]
=0 r=0
Vo
5 AqC’gE[cos(waqiT + ¢q)]
=0
N

, 0<t1<m

<
Il
o
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Consider the following expression for the generalized cross-correlation vector used by the RLS
method.

k
p(k) = Y A*d(i)u(i)
=1

Show that p(k) can be expressed recursively in terms of p(k — 1) by deriving the expression
for p(k) in (9.7.8).

Solution

Separating out the kth term we have

k—1
p(k) = D A*d(i)u(i) + d(k)u(k)
i=1

k—1
= 7 AT u(i) + d(k)u(k)
=1

= (k= 1) + d(k)u(k)
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Consider the active noise control system shown in Figure 9.46. Suppose the secondary path
is modeled as a delay with attenuation. That is, for some delay 7 > 0 and some attenuation
0<a<l,

(a) Let the sampling interval be T'= 7/M. Find the transfer function, F'(z).
(b) Suppose the primary path G(z) is modeled as follows. Find W (z) using (9.8.3).

—1

Glz) = le—l—z’

m
=0

(c) Is the controller W (z) physically realizable? Why or why not?

z(k) O = M O d(k)

>  H(z) = W(2) y(k‘)_
/ e(k)

Figure 9.46 Active Control of Acoustic Noise

Solution

(a) If T'= 7/M, then a delay of T corresponds to M samples. Using the delay property of
the Z-transform, the transfer function of the secondary path is

F(z) = az ™™

(b) Using (9.8.3), the controller transfer function is
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(c) The controller W(z) is not physically realizable because it is not causal. The transfer
function includes a weighted sum of positive powers of z and each positive power of z
corresponds to a time advance which is not causal.
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Consider the problem of identifying the nonlinear discrete-time system in (9.9.4) using a
raised-cosine RBF network. Let the number of past inputs be m = 1 and the number of past
outputs be n = 1. Suppose the range of values for the inputs is a = [—2, 2], and the range of
values for the outputs is b = [—3, 3]. Let the number of grid points per dimension be d = 4.

(f)

Find the domain U of the function f.

What is the total number of grid points?

What is the grid point spacing in the z direction and in the y direction?

For each u, what is the maximum number of nonzero terms in the RBF network output?

Consider the following state vector. Find the vector subscripts of the vertices of the grid
element containing wu.

u = [3,-1.7,1.1]%

Find the scalar subscripts of the vertices of the grid element containing the u in part

().

Solution

(a)

(b)

Using (9.9.7), the domain of the function f is

U = [a1,a2)™™ x [by, bo]"

= [-2,2]? x [-3,3]

Thus U C R3.

The number of dimensions is

p = m+n+1

The number of grid points per dimension is d = 4. Thus from (9.9.10), the total number
of grid points is
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(c) Using (9.9.9a), the grid point spacing in the x direction is

Az

. as — aq
o d-1
B 2—(-2)
41
4
-3

Similarly, from (9.9.9b) the grid point spacing in the y direction is

Ay

by — by

d—1
_ 3-(=3)
o 4-1
= 2

(d) The network dimension is p = 3. From (9.9.25), the maximum number of nonzero terms

in the raised-cosine RBF network is

(e) Using (9.9.12), the vector subscript of the base vertex of the grid element containing the

point w is as follows.

vi(u) =

va(u) =

v3(u) =

uy —ax
floor (

floor ( 4/(3 2)>
floor(1.725)
1

ug — ay
fl
oor (12

oo (12)
floor(.225)

0

floor (u?’A_yb1>
1.1—(=3)

por (1150

floor(2.05)
2
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Thus v(u) = [1,0,2]7. Next, from (9.9.13), the vector subscripts of the vertices of the
grid element containing u are

¢ = [1,0,217+10,0,07 =[1,0,2]"
¢ = [1,0,217+10,0,1]" =[1,0,3]"
? = [1,0,27+[0,1,0/" =[1,1,2]T
¢ = [1,0,27+10,1,1)F =[1,1,3]F
¢ = [1,0,217 +[1,0,01" =[2,0,2]T
¢ = [1,0,2]7+[1,0,1)F =[2,0,3]"
¢ = [1,0,27+[1,1,07 =[2,1,2]F
¢ = [1,0,2"+[1,1,1]" =12,1,3]"

(f) Using (9.9.14) and the results from part (e), the scalar subscripts of the vertices of the
grid element containing the point u are

i = 1+0(4)+2(16) = 33
il = 1+0(4)+3(16) = 49
2 = 141(4)+2(16) =37
i3 = 1+1(4)+3(16) = 53
it = 240(4)+2(16) = 34
i® = 240(4) +3(16) = 50
% = 24 1(4) +2(16) = 38
it = 24 1(4) +3(16) = 54
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Consider the following candidate for a scalar radial basis function.

Gi(z) = {C"S%@) MR

0 , 2l >1

(a) Show that G;(z) qualifies as an RBF for i > 1.
(b) Does G;(z) have compact support?
(c) Show that G;(z) reduces to the raised-cosine RBF when i = 1.

Solution
(a) The function G;(z) is continuous for i > 1 because cos?(£m/2) = 0. Next

Gi(0) = cos*(0)

Similarly, it is clear that

Gi(z) = 0 as |z| — o0

Thus the two properties in (9.9.17) hold. Hence G;(z) is a valid radial basis function for
1> 1.

(b) The function G;(z) does have compact support because G;(z) = 0 for z ¢ S where S is
the compact (closed and bounded) set S = [—1,1].

(c) Let i = 1. Using the trigonometric identities in Appendix 2

Gi(z) = cos*(rz/2)
1 + cos(mz)

:f\/
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Consider a raised-cosine RBF network with m = 0, n = 0, d = 2, and a = [0,1]. Using
the trigonometric identities from Appendix 2, show that the constant interpolation property
holds in this case. That is, show that

go(u) +g1(u) =1 , a1 <u<ay

Solution

When m = 1 and n = 0, the network dimension is p = 1. It follows from (9.9.20) that

gi(u) = G(“;;) . 0<i<1

Since d = 2, from (9.9.9a) the grid point spacing is

Az = a9 —ag

From (9.9.8) and (9.9.11) the two grid points are

ug = a3 = 0
Uy = a2 = 1
Thus from (9.9.20) for a1 < u < ay
go(u) = .5[1+ cos(mu)]
gi(u) = 5{1+ cos(m[u—1])}

Using the cosine of the difference trigonometric identity from Appendix 2 yields

go(u) +g1(u) = 14 .5cos(mu)+ .5cos(m[u— 1])
= 1+ .5cos(mu) + .5[cos(mu) cos(m) + sin(mu) sin(7)]
= 1+ .5cos(mu) — .5cos(mu)
=1 , a; <u<as
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Consider a raised-cosine RBF network with m = 2 past inputs and n = 2 past outputs.
Suppose the range of values for the inputs is a = [0,5], and the range of values for the
outputs is [—2, 8]. Let the number of grid points per dimension be d = 6.

(a) Find the compact support Q of the overall network. That is, find the smallest closed,
bounded region €2 C RP such that

ugQ = fo(u)=0

(b) Show that, in general, Q@ — U as d — oo where U € RP is the domain of f.
Solution

(a) The support for a raised-cosine RBF network is given in (9.9.30). From (9.9.9), the size
of the grid elements is as follows.

. ag — ay
Axr = -
= 1

by — by
Ay = T
= 2

Thus from (9.9.30) the support for this network is

Q = [a1 — Az, a9+ Ax]™ x [by — Ay, by + Ayl
= [0-1,5+1]x[-2-2,842)?
[~1,5)° x [~4,10]?

(b) Using (9.9.7) and the expressions for 2, Az and Ay from part (a),

dlim 0 = dlim [a1 — Az, as + Az]™ x [by — Ay, by + Ay]"
m+1 n
L az — a1 az —ay by — b1 by — by
T = d—l] X[bl_ i~
[ahaz]mH x [b1, bo]"
= U
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Suppose the nonlinear function in (9.9.4) is f(u) = ¢ for some constant c. Let d; = 2 for
1 <i<pandw; =cfor 0<i<r. Show that the zeroth-order RBF network, Sy, is exact.
That is, show that if fo(u) = w” g(u), then

foluy=c¢ for weU

Solution

Using the constant interpolation property in (9.9.23) and w; = ¢,

folu) = whg(u)

r—1
= Z w;gi(u)
=0
r—1
= Z cgi(u)
=0
r—1
= cC Z gi(u)
=0

= c uwelU
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Suppose the nonlinear function in (9.9.4) is f(u) = hTu + ¢ for some p x 1 vector h and some
constant ¢. Let d; =2 for 1 < i < p, w; =cfor 0 <i <r,and V;; = hjfor 1 <i < r
and 1 < j < p. Show that the first-order RBF network Sy is exact. That is, show that if

filw) = (Vu+w)Tg(u), then

fitw)=hTu4+c for weU

Solution

Using the constant interpolation property in (9.9.23), w; = ¢, and V;j = hj,

fi(u)

(V) g(u)

r—1

Z(VU + w)igi(u)
i=0

r—1

(]

(V)i + wilgi(u)

Il
- o

S -
|

(V)i + clgi(u)

™

=0
r—1 i P

ZVijuj +c| gi(u)
i=0 | j=1
r—1 i P

Z hjuj + c| gi(u)
i=0 |j=1
r—1

[WTu+ c]gi(u)

[en]

B r—1
(hTu +c) Z gi(u)
i=0

hWlu + ¢
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Suppose the nonlinear function f in (9.9.4) is continuously differentiable. Let Fy(u) = w” g(u)
and consider the following metric for the error between the output of the system Sy and the
output of the zeroth-order RBF network, Sy.

A

E(d) max{|f(u) = fo(u)l}

Show that the RBF model Sy converges uniformly to the nonlinear system Sy as d approaches
infinity. That is, show that

E(d)—0 as d— o

Solution

The function f : U — R is continuously differentiable. Let Vf = 0f(u)/0u be the gradient
vector of partial derivatives of f(u) with respect to the elements of u. Consider the following norms.

p
lelloe = nx{lai]}

p
lelh = > ad
=1

Since f(u) is continuously differentiable, V f(u) is continuous. But Vf : U — R and U C RP is
compact. Therefore ||V f(u)]|oo achieves a maximum value on the set U. Let

a = max{[|Vf(u)e}
Suppose w; = f(u’) for 0 <1 < 7. Then from the orthogonality property in (9.9.21)

folu') = whg(u’)

r—1 '
= > wjg;(u)
j=0

g wi

Thus the RBF model is exact at each of the r grid points. Let w € U be arbitrary, and let u’ be
the nearest grid point. Then from (9.9.9)
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[f(w) = fo(w)] = [f(u) = fu') + f(u') = fo(u)]
< f(w) = f(u)] + [ f(u?) = fol(w)l
< f(w) = f(u)] + [ f(u) = fol(u)l
< f(w) = fF)] + | f(u?) = fo(u) + fo(u') = fo(w)]
< [f(w) = Fud)] + [ (') = folu')] + [ fo(u") = fo(u)]
< |f(u) = f@h)] + [ fo(u') = fo(w)|
< allu—u'lloo + [ folu Z) fo(u)]
< allu — ule + Jwlut — wlyl
< aflu— oo + [wT (Ut — )|
< allu—u'floo + [Jwlh[lu’ = ullo
< (a+ wl)flu = flo
< (a+ ||lw]p) max{Az, Ay}

IN

)

lag —a1|, [b2 —bi|

(o ol {22 =y, 122 =2

(0 -+ ) maxf o — o] by — b
d—1

IN

This inequality holds for an arbitrary « € U. Thus

E(d) = max{f(u) = fo(u)}

uelU
(o + JJw|l1) max{|az — a1, |b2 — b1}
d—1

IN

Since the numerator is a constant, it follows that Sy converges uniformly to Sy on U. That is,

Ed) — 0 as d—
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Using the GUI module g_adapt, identify the black box system using the LMS method. Set
the step size to = .03, and then plot the following.

a) The outputs

(c
(d) The final weights

(a)
(b) The magnitude responses
) The learning curve

)

Solution

LMS method, outputs : m = 40, mu = 0.0300, E = 0.002465
6 T T T T

d (k)
v (k)

Outputs
o

! ! |
0 50 100 150 200 250
k

Problem 9.26 (a) LMS Method: Outputs
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LMS method, magnitude responses : m = 40, E = 0.002465
14 \ \ \ \ \ \ I

I
Black box
12+ Adaptive filte

A(f)

L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 9.26 (b) LMS Method: Magnitude Responses

LMS method, learning curve : m = 40, mu = 0.0300, E = 0.002465
14 \ \ \ \ \ \ \

P L L I I L L L

200 300 400 500 600 700 800 900 1000
k

Problem 9.26 (c) LMS Method: Learning Curve
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LMS method, final weights : m = 40, E = 0.002465
2 \ \ \ \ \

) ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40

i

Problem 9.26 (d) LMS Method: Final Weights
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Vv Consider the following FIR black-box system. Use the GUI module g_adapt to identify this
system using the LMS method.

H(z) = 1-22 472724427137

Save the data in a MAT-file named prob7_27.mat and then reload it using the Data source
option.

a) Plot the learning curve when m = 3.

(a)
(b)
(c)
(d) Plot the final weights m = 7.

Plot the learning curve when m = 5.

Plot the learning curve when m = 7.

Solution

LMS method, learning curve : m = 3, mu = 0.0200, E = 0.332515
80

60 b

20

1 00 300 400 500 600 700 800 900 1 000
k

Problem 9.27 (a) LMS Method Learning Curve: m = 3

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

803



LMS method, learning curve : m = 5, mu = 0.0200, E = 0.000000
T T T T T T T

N I L L L L L L

200 300 400 500 600 700 800 900 1000
k

Problem 9.27 (b) LMS Method Learning Curve: m = 5

LMS method, learning curve : m = 7, mu = 0.0200, E = 0.000000
60 \ \ \ \ \ \ \

LYL S N L L L L L L L

0
0 100 200 300 400 500 600 700 800 900 1000
k

Problem 9.27 (c) LMS Method Learning Curve: m = 7
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LMS method, final weights : m = 7, E = 0.000000
8 \ \ \ \

Problem 9.27 (d) LMS Method Final Weights: m = 7
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Vv Use the GUI module g_adapt to identify the following black box system using the normalized
LMS method with a filter of order m = 40.

(a) Plot the magnitude responses
(b) Plot the learning curve
(c) Plot the step sizes

Solution

Normalized LMS method, magnitude responses : m = 40, E = 0.000473
10 T T \ T T T I I
Black box
Adaptive filtely
8, —

A(f)

| | | | | | | | |

0
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 9.28 (a) Normalized LMS Method: Magnitude Responses
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Normalized LMS method, learning curve : m = 40, alpha = 0.200, E = 0.000473
12 \ \ \ \ \ \ \ \ \

e (k)

300 400 500 600 700 800 900 1000
k

Problem 9.28 (b) Normalized LMS Method: Learning Curve

Normalized LMS method, step sizes : m = 40, E = 0.000473
0.5 \ \ \ \ \ \ \

0.3 i

(k)

0.1 i

0 I !
0 100 200 300 400 500 600 700 800 900 1000
k

Problem 9.28 (c¢) Normalized LMS Method: Step Sizes
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Use the GUI module g_adapt to identify the following black box system using the correlation
LMS method with a filter of order m = 50.

2
H(z) =
(2) 1+ .8274

(a) Plot the magnitude responses

(b) Plot the learning curve

(c) Plot the step sizes
Solution

Correlation LMS method, magnitude responses : m = 50, E = 0.006136
10 T T T T T T T n I

I
Black box
Adaptive filtely

0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 9.29 (a) Correlation LMS Method: Magnitude Responses
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Correlation LMS method, learning curve : m = 50, alpha = 0.200, beta = 0.980, E = 0.006136
10 \ \ \ \ \ \ \ \ \

3
“o
0 3 ittt b ou 2 bl A Lenandaidtan, " Ll s )
0 100 200 300 400 500 600 700 800 900 1000
k
Problem 9.29 (b) Correlation LMS Method: Learning Curve
Correlation LMS method, step sizes : m = 50, E = 0.006136
0.06 \ \ \ \ \ \ \

Wk)

| | | | |

0
0 100 200 300 400 500 600 700 800 900 1000
k

Problem 9.29 (c) Correlation LMS Method: Step Sizes
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Using the GUI module g_adapt, identify the black-box system using the leaky LMS method.
Adjust the number of samples to N = 500, and the leakage factor to mu = .999. Plot the

following.

(a) The outputs
(b) The magnitude responses

(¢c) The learning curve

Solution
Leaky LMS method, outputs : m = 40, mu = 0.0200, nu = 0.999, E = 0.006997

5 T T T T
0
g 1
5 OH
j=}
o

_5 1 1 1 1

0 50 100 150 200 250

k

Problem 9.30 (a) Leaky LMS Method: Outputs
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Leaky LMS method, magnitude responses : m = 40, E = 0.006997

14 \ \ \ \ \ \ I I
Black box

12+ Adaptive filte

10 A
~ 8r A
et
< 6| -

4, -

2, -

0 1 I I I I I 1

0 100 200 300 400 500 600 700 800 900 1000
f (Hz)
Problem 9.30 (b) Leaky LMS Method: Magnitude Responses
Leaky LMS method, learning curve : m = 40, mu = 0.0200, nu = 0.999, E = 0.006997

12 \ \ \ \ \ \ \ \ \

10H A
z ]
“o

e, o) RPN 9| daltpnen) L S et
250 300 350 400 450 500
k

Problem 9.30 (c) Leaky LMS Method: Learning Curve

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

811



Using the GUI module g_adapt with the default parameter values, identify the black box
system using the leaky LMS method. Plot the learning curve for the following cases corre-
sponding to different values of the leakage factor.

(a) nu=.999
(b) nu =.995
(¢) nu=.990
Solution

Leaky LMS method, learning curve : m = 40, mu = 0.0200, nu = 0.999, E = 0.010443
12 \ \ \ \ \ \ \ \ \

[isontth I At -l Al L al o

100 200 300 400 500 600 700 800 900 1000

Problem 9.31 (a) Leaky LMS Method: nu = .999
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Leaky LMS method, learning curve : m = 40, mu = 0.0200, nu = 0.995, E = 0.071198
10 \ \ \ \ \ \ \ \ \

2y | l’l
hh il | I

600 700 800 900 1000

100 300 400

)
“o
0 il et U b bl AT Bl el PN AR, RO 50 T e Lt a2 0. T
0 100 200 300 400 500 600 700 800 900 1000
k
Problem 9.31 (b) Leaky LMS Method: nu = .995
Leaky LMS method, learning curve : m = 40, mu = 0.0200, nu = 0.990, E = 0.196996
12 \ \ \ \ \ \ \ \ \
10 *
8, -
2 |
o
4t
ik ! i \ll mme bl I /
I “ ‘ \ ‘
deMJ“M\MMMN MWA MW“MJM| ok hwwhlwmw MM " W$LNM
500

Problem 9.31 (c) Leaky LMS Method: nu = .990
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Using the GUI module g_adapt and the Data source option, load the input and desired output
from the MAT-file u_adapti. Then identify the system that produced this input-output data
using the normalized LMS method. Plot the following

(a) The learning curve
(b) The magnitude responses using the dB scale
(c) The step sizes. Use the Caliper option to mark the largest step size.

Solution

from file u_adaptl.mat, Normalized LMS method, learning curve : m = 40, alpha = 0.200, E = 0.00¢%
60 \ \ \ \ \ \ \ \ \

50

i I L I L

0 L. il 1. I i oty [t Ll
0 50 100 150 200 250 300 350 400 450 500
k

Problem 9.32 (a) Normalized LMS Method: Learning Curve
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Data from file u_adaptl.mat, Normalized LMS method, magnitude responses : m = 40, E = 0.005011
30 T T \ \ T T T I

I
Black box
Adaptive filtely

Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000
f (Hz)

Problem 9.32 (b) Normalized LMS Method: Magnitude Responses

Data from file u_adaptl.mat, Normalized LMS method, step sizes : m = 40, E = 0.005011
0.35 \ \ \ \ \ \ \ \ \

0.34(x,y) = (0.22,0.30) -

0.251 i

k)

I | I |

1
0 50 100 150 200 250
k

Problem 9.32 (c) Normalized LMS Method: Step Sizes

I 1 I
300 350 400 450 500
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Using the GUI module g_adapt, identify the black box system using the following two methods.
Plot the learning curve for each case. Observe the scale of the dependent variable.

(a) The LMS method
(b) The RLS method

LMS method, learning curve : m = 40, mu = 0.0200, E = 0.001822
12 \ \ \ \ \ \ \

] ‘“hn ‘.{m A | S ! ! ! e ) I
200 300 400 500 600 700 800 900 1000
k

Problem 9.33 (a) LMS Method
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RLS method, learning curve : m = 40, gamma = 0.950, E = 0.000057
0.25 T T T T T T T T T

0 . ! . ! ol L ! ! a ! ™
0 100 200 300 400 500 600 700 800 900 1000
k

Problem 9.33 (b) RLS Method
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Consider the problem of designing an equalizer as shown in Figure 9.47. Suppose the delay is
M =15 and H(z) represents a communication channel with the following transfer function.

14 .5271
1+ 4271 — 3222

H(z) =

Write a MATLAB program that uses the FDSP toolbox function f.Ims to construct an equal-
izer of order m = 30 for H(z). Suppose z(k) consists of N = 1000 samples of white noise
uniformly distributed over [—3, 3]. Use a step size of u = .002.

(a) Plot the learning curve
(b) Using the final weights, compute y(k) using input r(k). Then plot d(k) and y(k) for
0 <k < N/10 on the same graph with a legend.

(c) Using the final weights, plot the magnitude responses of H(z), W(z), and F(z) =
H(z)W(z) on the same graph using a legend. For the abscissa, use normalized fre-

quency, f/fs.

v(k) H(z) > W(2)

Figure 9.47 Equalization of a Communication Channel, H(z)

Solution

% Problem 9.34
% Initialize

_header (’Problem 9.34°)

f_prompt (’Enter adaptive filter order’,0,80,30);
f_prompt (’Enter delay’,0,m/2,m/2);

f_prompt (’Enter number of points’,1,5000,1000);
= [1 0.5]

[1 0.4 -0.32]

f
m
M
N
b
a

i Construct signals
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c = 3;

x = f_randu (1,N,-c,c); % input

r = filter (b,a,x); % filtered input
d = [zeros(1,M),x(1:N-M)]; % desired output

% Compute equalizer filter

mu = f_prompt (’Enter step size’,0,.1,0.002);
[w,e] = f_1ms (r,d,m,mu);

% Plot learning curve

figure

k=0 : N-1;

plot (k,e."2)

f_labels (’Learning Curve’,’k’,’e~2(k)’)
f_wait

% Plot d(k) and y(k)

y = filter (w,1,r);

figure

q=1: 100;

plot (g-1,d(q),q-1,y(q))

f_labels (’Outputs’,’k’,’d and y’)

legend (’Desired Output, d(k)’,’Equalizer Output, y(k)’)
f_wait

% Plot the magnitude responses

fs = 1;

[H1,f] = f_freqz (b,a,N,fs);

[H2,f] = f_freqz (w,1,N,fs);

H3 = H1 .x H2;

figure

hp = plot (f,abs(H1),’--’,f,abs(H2),’:’,f,abs(H3));
set(hp(2),’LineWidth’,1.5);

f_labels (’Magnitude Responses’,’f/f_s’,’A(£)’)
legend (CIH(E)|?,2 W), [HEWE) )

f_wait
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Learning Curve

9 T T T T

ol YN OB PR !
200

0 400 600 800 1000
k

Problem 9.34 (a) Equalizer Learning Curve

Outputs
3 T T T

Desired Output, d(k)
— Equalizer Output, y(k)

2,
1, -
O .

_3 1 1 1 1
20 40 60 80 100

k

d and y

o

Problem 9.34 (b) Desired Output and Equalizer Output

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

820



Magnitude Responses
2 T T

181 HHOW() |7

1.6 ;A

14 b

0.8, ‘\'\“\“ \\\ - ": |

0-4 | | | |
0 0.1 0.2 0.3 0.4 0.5

f/f

S

Problem 9.34 (c) Equalized Magnitude Response
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Consider the problem of designing an adaptive noise-cancellation system as shown in Figure
9.48. Suppose the additive noise v(k) is white noise uniformly distributed over [—2,2]. Let
the primary microphone signal be as follows.

B = (™) s (7)1 250 (T
X = COS 10 .0 S1n 20 . COS 30

Suppose the path for detecting the noise signal has the following transfer function.

5

H(z) = {755

Write a MATLAB program that uses the FDSP toolbox function f.lms to cancel the noise
v(k) corrupting the signal d(k). Use an adaptive filter of order m = 30, N = 3000 samples,
and a step size of p = .003.

(a) Plot the learning curve

(b) Using the final weights, compute y(k) using input r(k). Then plot z(k), d(k) and e(k)
for 0 < k < N/10 on the same graph with a legend.

z(k) O

Y
=

N
S~—
U
—~
=y
SN—

Y
=
™
~—
<
—~
=
| ~—
o)
—~
=
~

Figure 9.48 Noise cancellation

Solution

% Problem 9.35

% Initialize

f_header (’Problem 9.35°)

m = f_prompt (’Enter adaptive filter order’,0,80,30);
N = f_prompt (’Enter number of points’,1,4000,3000);
b = [0.5]

a=1[100.25]
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i Construct signals

f_prompt (’Enter magnitude of noise’,0,4,2);

f_randu (1,N,-c,c);

0 : N-1;

cos(pi*k/10) - 0.5*sin(pix*k/20) + 0.25%cos(pixk/30);
X + v;

filter (b,a,v);

H o XM X < 0
I

% Compute noise cancelling filter

mu = f_prompt (’Enter step size’,0,1,0.003);
[w,e] = f_1ms (r,d,m,mu);

% Plot learning curve

figure

plot (k,e."2)

f_labels (’Learning Curve’,’k’,’e~2(k)’)

f_wait

% Plot x(k), d(k), and e(k)

y = filter (w,1,r);
e=d-vy;

figure

q=1: 100;

hp = plot (q-1,x(q),q-1,d(q),q-1,e(q));

set(hp(1),’LineWidth’,1.5)

f_labels (’Signals’,’k’,’x and e’)

legend (’Noise-Free Signal x(k)’,’Noise-Corrupted Signal, d(k)’,’Estimated Signal, e(k) \:
f_wait

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

823



Learning Curve
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Problem 9.35 (a) Noise Cancellation Learning Curve
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Problem 9.35 (b) Noise Cancellation Signals
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There is an offline alternative to the LMS method called the least-squares method that is
available when the entire input signal and desired output signal are available ahead of time.
Suppose the weight vector w is constant. Taking the transpose of (9.2.3), and replacing the
actual output by the desired output, yields

Let d = [d(0),d(1),...,d(N —1)]T and let X be an N x (m + 1) past input matrix whose
ith row is u” (i) for 0 < i < N. Then the N equations can be recast as the following vector
equation.

When N > (m+1), this constitutes an over-determined linear algebraic system of equations.
A weight vector that minimizes the squared error £ = (Xw — d)”(Xw — d) is obtained by Normal
premultiplying both sides by X 7. This yields the normal equations equations

XTxw = x7Td

The coefficient matrix X7X is (m + 1) x (m + 1). If z(k) has adequate spectral content,
XTX will be nonsingular. In this case the optimal weight vector in a least-squares sense can
be obtained by premultiplying by the inverse of X7 X which yields

w = (XTx)'xTd

Write a MATLAB function called f.lsfit that computes the optimal least-squares FIR filter
weight vector, b = w, by solving the normal equations using the MATLAB left division
operator, \. The calling sequence should be as follows.

% F_LSFIT: FIR system identification using offline least-squares fit method
T

% Usage:

T w = f_lsfir (x,d,m)

% Pre:

yA X = N by 1 vector containing input samples

yA d = N by 1 vector containing desired output samples

yA m = order of transversal filter (m < N)

% Post:

yA b = (m+1) by 1 least-squares FIR filter coefficient vector
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In constructing X, you can assume that x(k) is causal. Test flsfit by using N = 250 and
m = 30. Let x be white noise uniformly distributed over [—1, 1], and let d be a filtered version
of = using the following IIR filter.

(a) Use stem to plot the least-squares weight vector b.

(b) Compute y(k) using the weight vector b. Then plot d(k) and y(k) for 0 < k < 50 on the
same graph using a legend.

Solution

function prob9_36
% Initialize

f_header (’Problem 9.36°)

= f_prompt (’Enter filter order m’,0,80,30);
f_prompt (’Enter number of points N’,1,4000,250);
[1 0 1]

= [1 -0.1 -0.72]

m
N
b
a
i Construct signals

¢ = f_prompt (’Enter magnitude of noise c¢’,0,4,1);
x = f_randu (1,N,-c,c);
d = filter (b,a,x);

% Identify least-squares filter
b = f_1sfit (x,d,m);
% Plot w as a stem plot

figure

stem (0:m,b,’filled’,’.’)
f_labels (’Weights’,’i’,’b_1i’)
f_wait

% Plot d(k) and y(k)

y = filter (b,1,x);
figure
q=1: 50;
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plot (g-1,d(q),q-1,y(q))

f_labels (’Outputs’,’k’,’d and y’)

legend (’Desired Output, d(k)’,’Filter Output, y(k)’)
f_wait

function b = f_1sfit (x,d,m)
% F_LSFIT: FIR system identification using offline least-squares fit method
h

% Usage:

% w = f_lsfir (x,d,m)

% Pre:

yA X = N by 1 vector containing input samples

yA d = N by 1 vector containing desired output samples

yA m = order of transversal filter (m < N)

% Post:

yA b = (m+1) by 1 least-squares FIR filter coefficient vector

% Initialize

length(x);

f_clip (m,0,N-1,3,’f_1sfir’);
zeros (N,m+1);

zeros(m+1,1);

x(:).7;

QL O X B =
]

% Construct matrix of past inputs

for i =1:N
if (i <= m)
X(i,1:1) = q(i:-1:1);
else
X(i,:) = q(d:-1:i-m);
end
end

% Solve normal equations

b=X\ d(:);
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V A plot of the squared error is only a rough approximation to the learning curve in the sense
that E[e?(k)] ~ e%(k). Write a MATLAB program that uses the FDSP toolbox function f.Ims
to identify the following system. For the input use N = 500 samples of white noise uniformly
distributed over [—1, 1], and for the filter order use m = 30.

z
23+ .722 — .82z — .56

H(z) =

(a) Use a step size u that corresponds to .1 of the upper bound in (9.4.16). Print the step
size used.

(b) Compute and print the mean square error time constant in (9.4.29), but in units of
iterations.

(c) Construct and plot a learning curve by performing the system identification M = 50
times with a different white noise input used each time. Plot the average of the M e2(k)
versus k curves and draw vertical lines at integer multiples of the time constant.

Solution

% Problem 9.37
% Initialize

f_header (’Problem 9.37°)

m = f_prompt (’Enter filter order m’,0,60,30);

N = f_prompt (’Enter number of points N’,1,2000,500);

¢ = f_prompt (’Enter magnitude of noise c¢’,0,4,1);

M = f_prompt (’Enter number of iterations M’,1,100,50);
b= [0 0 1]

a=[10.7-0.8 -0.56]

%y Construct signals

x = f_randu (N,1,-c,c);
d = filter (b,a,x);

% Compute step size

P_x = (1/N)*sum(x."2);
mu = 0.1/((m+1)*P_x)

% Compute MSE time constant

lambda_min = P_x;
T =1;
tau_mse = T/(4*muxlambda_min)
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% Find learning curve

E = zeros(N,1);
fori=1:M
x = f_randu (N,1,-c,c);
d = filter (b,a,x);
[w,e] = f_1ms (x,d,m,mu);
E=E+ e."2;
end
E = E/M;

% Plot learning curve showing time constants

figure
k=0 : N-1;
plot (k,E)
f_labels (’Learning Curve’,’k’,’E[e”2(k)]’)
hold on
r = floor (N/tau_mse);
ylim = get (gca,’Ylim’);
fori=1:r
plot ([i*tau_mse,i*tau_mse], [ylim(1),ylim(2)],°k’)

end

f_wait

(a) mu =
0.0096

(b) tau_mse =
77.5000
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Consider the problem of performing system identification as shown in Figure 9.49. Suppose
the system to be identified is the following auto-regressive or all-pole filter.

1

=) = a7 m

Write a MATLAB program which uses the FDSP toolbox function flmsnorm to identify a
model of order m = 60 for this system. Use an input consisting of N = 1200 samples of white
noise uniformly distributed over [—1, 1], a constant step size of a = .1, and a maximum step
size of pmax = dav.

(a) Plot the learning curve.
(b) Plot the step sizes.

(c) Plot the magnitude response of H(z) and W(z) on the same graph using a legend where
W (z) is the adaptive filter using the final values for the weights.

z(k) O * O d(k)

Figure 9.49 Identification of Linear Discrete-time System, H(z)

Solution

% Problem 9.38
% Initialize

f_header (’Problem 9.38°)

m = f_prompt (’Enter filter order m’,0,80,60);

N = f_prompt (’Enter number of points N’,1,2000,1200);
¢ = f_prompt (’Enter magnitude of noise c¢’,0,2,1);
b=1[0000 1]

a=1[10-0.10-0.72]

% Compute signals

x = f_randu (N,1,-c,c);
d = filter (b,a,x);
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% Identify model

alpha = 0.1;
delta 0.2;
[w,e,mu] = f_lmsnorm (x,d,m,alpha,delta);

% Plot learning curve

figure

k=0 : N-1;

plot (k,e."2)

f_labels (’Learning Curve’,’k’,’e~2(k)’)
f_wait

% Plot step sizes

figure

plot (k,mu)

f_labels (’Step Sizes’,’k’,’\mu(k)’)

f_wait

% Plot magnitude responses

figure
p = 200;
fs = 1;

[H1,f] = f_freqz (b,a,p,fs);

[H2,f] = f_freqz (w,1,p,fs);

Al abs (H1);

A2 = abs(H2);

plot (f,A1,f,A2)

f_labels (’Magnitude Responses’,’f/f_s’,’A(£)’)
legend (’System’,’Adaptive Filter’)

f_wait
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Consider the problem of performing system identification as shown previously in Figure 9.49.
Suppose the system to be identified is the following IIR filter.

Z2

23 4+ .822 4+ 252+ .2

H(z) =

Write a MATLAB program that uses the FDSP toolbox function f.Imscorrto identify a model
of order m = 50 for this system. Use an input consisting of N = 2000 samples of white noise
uniformly distributed over [—1, 1], a relative step size of @ = 1, and the default smoothing
parameter (.

(a) Plot the learning curve.
(b) Plot the step sizes.

(c) Plot the magnitude response of H(z) and W(z) on the same graph using a legend where
W (z) is the adaptive filter using the final values for the weights.

Solution

% Problem 9.39
% Initialize

f_header (’Problem 9.39°)

m = f_prompt (’Enter filter order m’,0,80,50);

N = f_prompt (’Enter number of points N’,1,3000,2000);
¢ = f_prompt (’Enter magnitude of noise c¢’,0,2,1);

b = [0 1]

a=[10.80.250.2]

% Compute signals

x = f_randu (N,1,-c,c);
d = filter (b,a,x);

% Identify model

alpha = f_prompt (’Enter relative step size alpha’,0,1,1);
[w,e,mu] = f_lmscorr (x,d,m,alpha);

% Plot learning curve

figure

k=0 : N-1;

plot (k,e."2)

f_labels (’Learning Curve’,’k’,’e~2(k)’)
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f_wait

% Plot step sizes

figure

plot (k,mu)

f_labels (’Step Sizes’,’k’,’\mu(k)’)

f_wait

% Plot magnitude responses

figure
p = 200;
fs = 1;

[H1,f] = f_freqz (b,a,p,fs);

[H2,f] = f_freqz (w,1,p,fs);

Al abs (H1);

A2 = abs(H2);

plot (f,A1,f,A2)

f_labels (’Magnitude Responses’,’f/f_s’,’A(£)’)
legend (’System’,’Adaptive Filter’)

f_wait

Learning Curve
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k

Problem 9.39 (a) Correlation LMS Learning Curve
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Consider the following IIR filter.

10(z2 + 2 + 1)

H(2) = T 5718

Write a MATLAB program which used the FDSP toolbox function f.lmsleak to identify a
model of order m = 30 for this system. Use an input consisting of N = 120 samples, a step
size of = .005 and the following periodic input.

- o2 (3

a) Plot the learning curve for v = .99.

(a)
(b)
(c)
(d) Using v = .995 and the final value for the weights, plot d(k) and y(k) on the same graph
with a legend.

Plot the learning curve for v = .98.

Plot the learning curve for v = .96.

Solution

% Problem 9.40
% Initialize

f_header (’Problem 9.40°)

m = f_prompt (’Enter filter order m’,0,60,30);

N = f_prompt (’Enter number of points N’,1,2000,120);
mu = f_prompt (’Enter step size mu’,0,1,.005);

b = 10%[0 0 1 1 1]

a=1[100.20 -0.48]

% Compute signals

k=0 : N-1;
x = cos(pixk/5) + sin(pi*k/10);
d = filter (b,a,x);

% Identify models and plot learning curves

for nu = [0.99, 0.98, 0.96]
[w,e] = f_1msleak (x,d,m,mu,nu);
figure
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plot (k,e."2)
caption = sprintf (’Learning Curve, \\nu = %g’,nu);
f_labels (caption,’k’,’e"2(k)’)
f_wait
end

% Compare outputs

[w,e] = f_lmsleak (x,d,m,mu,0.995);

y = filter (w,1,x);

figure

plot (k,d,k,y)

f_labels (’Leaking LMS Response’,’k’,’outputs’)
legend (’Desired Output, d(k)’,’Filter Output, y(k)’)
f_wait

Learning Curve, Vv = 0.99
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Problem 9.40 (a) Leaking LMS Learning Curve, = .99
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Learning Curve, Vv = 0.98
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Use the FDSP toolbox to write a MATLAB program that designs an FIR filter to meet the
following pseudo-filter design specifications.

2 , 0<f<ik

A(f) AR
= S s 55
3-24( —§> , L <f<iL

5fS fs

1 ) 12 ngf

o(f) = —=30mf/fs

Suppose there are N = 80 discrete frequencies equally spaced over 0 < f < fs/2 asin (9.6.2).
Use f.lms with a step size of u = .0001 and M = 2000 iterations.

(a) Choose an order for the adaptive filter that best fits the phase specification. Print the
order m.

(b) Plot the magnitude response of the filter obtained using the final weights. On the same
graph plot the desired magnitude response with isolated plot symbols at each of the N
discrete frequencies, and a plot legend.

(c) Plot the phase response of the filter obtained using the final weights. On the same graph
plot the desired phase response with isolated plot symbols at each of the N discrete
frequencies, and a plot legend.

Solution

function prob9_41
% Initialize

f_header (’Problem 9.41°)

N = f_prompt (’Enter number of discrete frequencies’,2,200,80);
mu = f_prompt (’Enter LMS step size mu’,0,1,.0001);

M = f_prompt (’Enter number of iterations M’,1,4000,2000);

m = f_prompt (’Enter filter order m’,0,80,30)

% Construct specifications

fs = 1;

T = 1/fs;

f = linspace(0, (N-1)*fs/(2xN) ,N);
C = ones(1,N);

=
]

mag_fun(f,fs);
phi = phase_fun(f,fs);

% Construct input and desired output

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

843



zeros(M,1);

zeros(M,1);

for k =0 : M-1

x(k+1) = sum(C .* sin(2*pixfxkx*T));

d(k+1) = sum(A .* C .* sin(2*xpi*fxk+T + phi));

QX
nn

end
% Find optimal weights
[w,e] = f_1ms (x,d,m,mu);

% Compute frequency response

b = w;
a=1;
r = N;

[H,freq]l = f_freqz(b,a,r,fs);
% Plot magnitude responses

A_FIR = abs(H);

figure

plot (f,A,’.’,freq,A_FIR);

legend (’Pseudofilter’,’FIR filter’)
f_labels (’’,’f/f_s’,’A(£)’)

f_wait

% Plot phase responses

phi_FIR = angle(H);

phi_FIR(end) = [];

figure

plot (f,phi,’.’,f,unwrap(phi_FIR));
legend (’Pseudofilter’,’FIR filter’)
f_labels (’,’f/f_s’,’\phi(£f)’)
f_wait

function A = mag_fun (f,fs)
N = length(f);
fori=1:N

if £(i) < fs/6

A(L) = 2;
elseif (f(i) >= fs/6) & (£(i) < fs/3)
A1) = 3;

elseif (f(i) >= fs/3) & (£f(i) < 5*fs/12)
A(i) = 3 - 24x(f(i) - fs/3);

else
A1) = 1;
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end
end

function phi = phase_fun (f,fs)
phi = -30xpixf/fs;

(a) The phase corresponding to a constant group delay of 7 is ¢(f) = —2n7f. For a linear-
phase filter, the group delay is 7 = mT'/2. Thus

o(f) = —2n(mT/2)f
= _wmf/fs

Thus the best value for m in this case is

m=
30

3.5 ‘

Pseudofilter
——— FIR filter

0-5 | | | |
0 0.1 0.2 0.3 0.4 0.5
f/f

S

Problem 9.41 (b) Magnitude Responses
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V Consider the problem of designing a signal predictor as shown in Figure 9.50. Suppose the
signal whose value is to be predicted is as follows.

7k 7k

z(k) = sin <?> cos (1—0> +o(k) , 0<k<N

Here N = 200 and v(k) is white noise uniformly distributed over [—.05, .05]. Write a MATLAB
program that uses the FDSP toolbox function f_rls to predict the value of this signal M = 20
samples into the future. Use a filter of order m = 40 and a forgetting factor of v = .9.

(a) Plot the learning curve.

(b) Using the final weights, compute the output y(k) corresponding to the input (k). Then
plot z(k) and y(k) on separate graphs above one another using the subplot command.
Use the fill function to shade a section of x(k) of length M starting at & = 160. Then
shade the corresponding predicted section of y(k) starting at k = 140.

z(k) O * O d(k)

Figure 9.50 Signal Prediction

Solution

% Problem 9.42
% Initialize
f_header (’Problem 9.42°)

m = f_prompt (’Enter filter order m’,0,100,40);
gamma = f_prompt (’Enter forgetting factor gamma’,0,1,0.9);

N = f_prompt (’Enter number of points N’,1,2000,200);
M = f_prompt (’Enter number of samples to predict ahead M’,0,40,20);
¢ = f_prompt (’Enter magnitude of white noise c’,0,1,0.05);

% Construct input and desired output

[0 : N-1]’;

= f_randu(N,1,-c,c);

sin(pi*k/20) .*cos(pi*k/10) + v;
X3

[T SIS
|
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x_M = zeros(size(x));
x_M(M+1:N) = x(1:N-M);

% Compute the optimal weights
[w,e] = f_rls (x_M,d,m,gamma) ;
% Plot learning curve

figure

plot (k,e."2)

f_labels (’Learning Curve’,’k’,’e~2(k)’)
f_wait

% Plot input and output

y = filter (w,1,x);

figure

subplot (2,1,1)

£fill ([160 180 180 160],[-2 -2 2 2],°c’)
hold on

plot (k,x)

f_labels (’Input and Output’,’k’,’x(k)’)
subplot (2,1,2)

fill ([140 160 160 140]1,[-2 -2 2 2],°c?)
hold on

plot (k,y)

f_labels (°’,°k’,’y(k)’)

f_wait
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Consider the active noise control system shown previously in Figure 9.45. Suppose the sec-
ondary path is modeled by the following transfer function which takes into account the delay
and attenuation of sound as it travels through air, and the characteristics of the microphones,
speaker, amplifiers and DAC.

2273
1—1.4z71 4 4822

F(z) =

Suppose the sampling frequency is fs = 2000 Hz. Write a MATLAB program that uses the
FDSP toolbox flms to identify an FIR model of the secondary path F(z) using an adaptive
filter of order m = 25. Choose an input and a step size that causes the algorithm to converge.

(a) Plot the learning curve to verify convergence.

(b) Plot the magnitude responses of F(z) and the model, F'(z), on the same graph using a
legend.

(¢) Plot the phase responses of F(z) and the model, F'(z), on the same graph using a legend.

Solution

% Problem 9.43
% Initialize

f_header (’Problem 9.43’)

fs = 2000;

f_prompt (’Enter filter order m’,0,60,25);
f_prompt (’Enter number of points N’,1,3000,1500);
mu = f_prompt (’Enter step size mu’,0,1,.01);

[0 00 0.2]

[1 -1.4 0.48]

= B
nn

p o
o

% Construct input and desired output

[0 : N-1]’;

1

= f_randu(N,1,-c,c);
filter (b,a,x);

a XM o W
(|

% Identify the secondary path
[w,e] = f_1ms (x,d,m,mu);
% Plot learning curve

figure
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plot (k,e."2)
f_labels (’Learning Curve’,’k’,’e~2(k)’)
f_wait

% Plot magnitude responses
M = 200;

[H,f] = f_freqz (b,a,M,fs);
[H_hat,f] = f_freqz (w,1,M,fs);

A = abs(H);
A_hat = abs(H_hat);
figure

plot (f,A,f,A_hat)

f_labels (’Magnitude Responses’,’f (Hz)’,’A(£)’)
legend (’Secondary Path’,’FIR Model’)

f_wait

% Plot phase responses

phi = angle(H);

phi_hat = angle(H_hat);

figure

plot (f,phi,f,phi_hat)

f_labels (’Phase Responses’,’f (Hz)’,’\phi(f)’)
legend (’Secondary Path’,’FIR Model’)

f_wait
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Consider the active noise control system shown previously in Figure 9.45. Suppose the primary
noise x(k) consists of the following noise-corrupted periodic signal.

5
(2m FyikT
Z ln Tl ) ’U(k)

1+

Here the fundamental frequency is Fy = 100 Hz and f; = 2000 Hz. The additive noise term,
v(k), is white noise uniformly distributed over [—.2,.2]. Coefficient vectors for FIR models of
the secondary path F(z) and the primary path G(z) are contained in MAT-file prob9_/4. The
coefficient vectors are f and g. Write a MATLAB program that loads f and g and uses the
FDSP toolbox function f_fxlms to apply active noise control with the filtered-z LMS method
starting at sample N/4 where N = 2000. Use a noise controller of order m = 30 and a step
size of u = .002. Plot the learning curve including a title that displays the amount of noise
cancellation in dB using (9.8.15).

Solution

% Problem 9.44
% Initialize

f_header (’Problem 9.44°)
= f_prompt (’Enter filter order m’,0,60,30);

N = f_prompt (’Enter number of points N’,1,3000,2000);
= f_prompt (’Enter number of harmonics r’,0,10,5);

delta = f_prompt (’Enter amplitude of white noise’,0,1,0.2);
= f_prompt (’Enter step size’,0,1,0.002);

load prob9_41 % loads f and g

% Construct noisy periodic input

= 1/fs;
= f_randu (N,1,-delta,delta);
fori=1:r
X = x + 2%sin(2*xpixixkxf_0xT)/(1+1);
end

% Apply active noise control starting at sample N/4+1
e = filter (g,1,x);

p= [N/4 + 1:N];
[w,e(p)] = f_fxlms (x(p),g,f,m,mu);
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% Plot learning curve

figure

plot(k,e."2)

f_labels (’Learning Curve’,’k’,’e~2(k)’)

P_u = sum(e(1:N/4).°2);

P_c sum(e (3*%N/4+1:N)."2);

E = real(10*logl0(P_u/P_c));

caption = sprintf (’Learning Curve, Noise reduction = %.1f dB’,E);
f_labels (caption,’k’,’e"2(k)’)

f_wait

Learning Curve, Noise reduction = 15.8 dB
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Problem 9.44 Learning Curve Using FXLMS Method
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Consider the active noise control system shown previously in Figure 9.45. Suppose the primary
noise x(k) consists of the following noise-corrupted periodic signal.

5
(2m FyikT
Z ln Tl )—1—’[)(k)

1+

Here the fundamental frequency is Fy = 100 Hz and f, = 2000 Hz. The additive noise term,
v(k), is white noise uniformly distributed over [—.2,.2]. Coefficient vectors for FIR models of
the secondary path F'(z) and the primary path G(z) are contained in MAT file prob9_44.mat.
The coefficient vectors are f and g. Write a MATLAB program that loads f and g and uses
the FDSP toolbox function f.sigsyn to apply active noise control with the signal synthesis
method starting at sample N/4 where N = 2000. Use a step size of p = .04.

(a) Plot the learning curve. Add a title which displays the amount of noise cancellation in
dB using (9.8.15).
(b) Plot the magnitude spectra of the noise without cancellation.

(c) Plot the magnitude spectra of the noise with cancellation.

Solution

% Problem 9.45
% Initialize

f_header (’Problem 9.45°)

N = f_prompt (’Enter number of points N’,1,3000,2000);
= f_prompt (’Enter number of harmonics r’,0,10,5);

delta = f_prompt (’Enter amplitude of white noise’,0,1,0.2);
= f_prompt (’Enter step size’,0,1,0.04);

load prob9_41 % loads f and g

% Construct noisy periodic input

= 1/fs;
= f_randu (N,1,-delta,delta);
fori=1:r
X = x + 2%sin(2*pixixkxf_0xT)/(1+1);

end
e = filter (g,1,x);
s = [N/4 + 1:N];

[p,q,e(s)] = f_sigsyn (x(s),g,f,f_0,fs,r,mu);
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% Plot learning curve

figure

plot(k,e."2)

f_labels (’Learning Curve’,’k’,’e~2(k)’)

P_u = sum(e(1:N/4).°2);

P_c sum(e (3*%N/4+1:N)."2);

E = real(10*logl0(P_u/P_c));

caption = sprintf (’Learning Curve, Noise reduction = ¥%.1f dB’,E);
f_labels (caption,’k’,’e"2(k)’)

f_wait

% Display power spectrum of noise

[A_u,phi_u,S_u,f] = f_spec (e(1:N/4),N/4,fs);
[A_c,phi_c,S_c,f] = f_spec (e(3%N/4+1:N),N/4,fs);
figure

i=1:N/8;

plot (£(i),A_u(i))

f_labels (’’,°f (Hz)’,’A_u(£)’)

ylim = get(gca,’Ylim’);

f_wait

figure

plot (£(i),A_c(i))

f_labels (’’,°f (Hz)’,’A_c(£)?)

axis ([0 fs/2 ylim(1) ylim(2)])

f_wait
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Learning Curve, Noise reduction = 19.2 dB
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Consider the following nonlinear discrete-time system which has m = 0 past inputs and n = 1
past outputs.

y(k) = Sy(ki) + 3la(k) —y(k - 1)’

Suppose the input x(k) consists of N = 1000 samples of white noise uniformly distributed
over [—1, 1]. Let the number of grid point per dimension be d = 8. Write a MATLAB program
that performs the following tasks.

(a) Use the FDSP toolbox function f-state to compute a set of output bounds b such that
b1 < y(k) < be. Use a safety factor of § = 1.2 as in (9.9.29). Print a, b, Az, Ay, and
the total number of grid points r.

(b) Plot the output y(k) corresponding to the white noise input (k). Include dashed lines
showing the grid values along the y dimension.

(c) Let f(u) denote the right-hand side of the nonlinear difference equation where u(k) =
[z(k),y(k —1)]T. Plot the surface f(u) over the domain [ay, as] x [by, ba].

Solution

function prob9_46
% Initialize

header (’Problem 9.46°)
= 1000;

[-1,1]

= 0;

=1;

= 8;

p = m+n+l;

beta = 1.2 ;

theta = zeros(p,1);

QB B o = H
I

% Estimate output bounds

f_randu(N,1,a(1),a(2));

zeros(size(x));

for k=1:N
theta = f_state (x,y,k,m,n);
y(k) = fun (theta);

end

y_min = min(y);

y_max = max(y);

< ™
nn

b(1) = (y_min + y_max)/2 - betax(y_max - y_min)/2;
b(2) = (y_min + y_max)/2 + betax(y_max - y_min)/2;
b
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Delta_x = (a(2)-a(1))/(d-1)
Delta_y = (b(2)-b(1))/(d-1)
r =d7p

% Plot output and range

figure;
k=0 : N-1;
hold on
plot (k,y)
for i =1:4d
y_g = b(1) + (i-1)*Delta_y;
if A>1 & (G <d
plot ([0 N-11,[y_g y_gl,’k:’)
else
plot ([0 N-1]1,[y_g y_gl,’k’)
end
end
f_wait

% Plot equation surface

P = 60;
A = linspace (a(1),a(2),P);
B = linspace (b(1),b(2),P);
f = zeros(P,P);
fori=1:P

for j=1:P

theta(l) = A(i);
theta(2) = B(j);
f(i,j) = fun (theta,m,n);
end
end
figure
surf (B,A,f)
pause (0.1)

surf (B,A,f)
f_labels (’Nonlinear System Surface’,’\theta_2’,’\theta_1’,’f(\theta)’)
f_wait

function y = fun (theta,m,n)
% Description: Nonlinear system (m = 0, n = 1)

y = 0.8*theta(2) + 0.3x(theta(l) - theta(2))"3;

(a) a =
-1 1
b =
-0.4633  0.4673
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Consider the following nonlinear discrete-time system which has m = 0 past inputs and n = 1
past outputs.

y(k) = Sy(ki) + 3[a(k) —y(k - 1)’

Let the range of inputs be —1 < z(k) < 1 and the number of grid points per dimension be
d = 8. Write a MATLAB program that does the following.

(a) Use the FDSP toolbox function f-state to compute a set of output bounds b such that
b1 < y(k) < ba. Use P = 1000 points of white noise uniformly distributed over [—1, 1]
for the test input and a safety factor of 8 = 1.2 as in (9.9.29). Print a, b, and the total
number of grid points r.

(b) Use FDSP toolbox function f_rbfw with N = 0 and ic = 1 to compute a weight vector
w that satisfies (9.9.22). Then use f-rbf0 to compute the output yo(k) to a white noise
input with M = 100 points uniformly distributed over [—1,1]. Use f_state to compute
the nonlinear system response y(k) to the same input. Plot the two outputs on one
graph using a legend. Compute the error E using (9.9.31) and add this to the graph
title.

Solution

function prob9_47
% Initialize

f_header (’Problem 9.47°)
m = 0;

n=1;

p = mt+n+1;

P = 1000;

N = 100;

theta = zeros(p,1);

w = zeros(p,1);

% Get parameters
d = f_prompt (’Enter number of grid points per dimension’,2,12,8);
% Estimate output bounds

a= [-1,1]

x = f_randu(P,1,a(l1),a(2));

y = zeros(size(x));

for k=1 :P
theta = f_state (x,y,k,m,n);
y(k) = fun (theta,m,n);

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

864



y_min = min(y);

y_max = max(y);

beta = 1.2; % safety factor
b(1) = (y_min + y_max)/2 - betax(y_max - y_min)/2;
b(2) = (y_min + y_max)/2 + betax(y_max - y_min)/2;

b

r =d7p

% Compute w so network is exact on grid

mu = O;
w = f_rbfw (@fun,0,a,b,m,n,d,mu,1);

% Compute outputs and error

x = f_randu (N,1,a(1),a(2));

y_0 = f_rbf0 (x,w,a,b,m,n,d);

y = zeros(N,1);

for k=1:N
theta = f_state (x,y,k,m,n);
y(k) = fun (theta);

end

% Compare outputs

figure

k=1 :N;

plot (k,y,k,y_0)

hold on

plot ([0 N],[b(1) b(1)1,’k’,[0 NI, [b(2) b(2)],’k’)
e = yy-0;

E = sum(e."2)/sum(y."2);

caption = sprintf (’System and Network Outputs, E = 7%.3g’,E);
f_labels (caption,’k’,’y(k) and y_0(k)’)

legend (’nonlinear system’,’RBF model’)

f_wait

function y = fun (theta,m,n)
% Description: Nonlinear system (m = 0, n = 1)

y = 0.8*theta(2) + 0.3x(theta(l) - theta(2))"3;
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