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Statistics Explained

Statistics Explained is a reader-friendly introduction to experimental

design and statistics for undergraduate students in the life sciences,

particularly those who do not have a strong mathematical background.

Hypothesis testing and experimental design are discussed first. Statistical

tests are then explained using pictorial examples and a minimum of

formulae. This class-tested approach, along with a well-structured set of

diagnostic tables, will give students the confidence to choose an appro-

priate test with which to analyse their own data sets. Presented in a lively

and straightforward manner Statistics Explained will give readers the

depth and background necessary to proceed to more advanced texts

and applications. It will therefore be essential reading for all bioscience

undergraduates, and will serve as a useful refresher course for more

advanced students.
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Preface

If you mention ‘statistics’ or ‘biostatistics’ to life scientists, they often look

nervous. Many fear or dislike mathematics, but an understanding of

statistics and experimental design is essential for graduates, postgraduates,

and researchers in the biological, biochemical, health, and human move-

ment sciences.

Since this understanding is so important, life science students are

usually made to take some compulsory undergraduate statistics courses.

Nevertheless, I found that a lot of graduates (and postgraduates) were

unsure about designing experiments and had difficulty knowing which

statistical test to use (and which ones not to!) when analysing their results.

Some even told me they had found statistics courses ‘boring, irrelevant and

hard to understand’.

It seemed there was a problem with the way many introductory biosta-

tistics courses were presented, which was making students disinterested

and preventing them from understanding the concepts needed to progress

to higher-level courses and more complex statistical applications. There

seemed to be two major reasons for this problem, and as a student I

encountered both.

First, a lot of statistics textbooks take a mathematical approach and often

launch into considerable detail and pages of daunting looking formulae

without any straightforward explanation about what statistical testing

really does.

Second, introductory biostatistics courses are often taught in a way that

does not cater for life science students who may lack a strong mathematical

background.

When I started teaching at Central Queensland University I thought

there had to be a better way of introducing essential concepts of



biostatistics and experimental design. It had to start from first principles

and develop an understanding that could be applied to all statistical tests. It

had to demystify what these tests actually did and explain them with a

minimum of formulae and terminology. It had to relate statistical concepts

to experimental design. And, finally, it had to build a strong understanding

to help the student progress to more complex material. I tried this

approach with my undergraduate classes and the response from a lot of

students, including some postgraduates who sat in on the course, was, ‘Hey

Steve, you should write an introductory stats book!’

Ward Cooper suggested I submit a proposal for this sort of book to

Cambridge University Press. Ruth McKillup read, commented on, and

reread several drafts, provided constant encouragement, and tolerated my

absent mindedness. My students, especially Steve Dunbar, Kevin Strychar,

and Glenn Druery, encouraged me to start writing and my friends and

colleagues, especially Dearne Mayer and Sandy Dalton, encouraged me to

finish. Finally, I sincerely thank the anonymous reviewers of the initial

proposal and the subsequent manuscript who, without exception, made

most appropriate suggestions for improvement.

xii Preface



1 Introduction

1.1 Why do life scientists need to know about experimental

design and statistics?

If you work on living things it is usually impossible to get data from every

individual of the group or species in question. Imagine trying to measure

the length of every anchovy in the Pacific Ocean, the haemoglobin count of

every adult in the USA, the diameter of every pine tree in a plantation of

200 000, or the individual protein content of 10 000 prawns in a large

aquaculture pond.

The total number of individuals of a particular species present in a

defined area is often called the population. Since a researcher usually

cannot measure every individual in the population (unless they are study-

ing the few remaining members of an endangered species), they have to

work with a carefully selected subset containing several individuals, often

called experimental units, that they hope is a representative sample from

which the characteristics of the population can be inferred. You can also

think of a population as the total number of artificial experimental units

possible (e.g. the 125 567 plots of 1m2 that would cover a coral reef) and

your sample being the subset (e.g. 20 plots) you have chosen to work with.

The best way to get a representative sample is usually to choose a

proportion of the population at random – without bias, with every possible

experimental unit having an equal chance of being selected.

The trouble with this approach is that there are often great differences

among experimental units from the same population. Think of the people

you have seen today – unless you met some identical twins (or triplets etc.),

no two would have been the same. Even species that seem to be made up of

similar looking individuals (like flies or cockroaches or snails) show great

variability. This leads to several problems.



First, even a random sample may not be a good representative of the

population from which it has been taken (Figure 1.1). For example, you

may choose students for an exercise experiment who are, by chance, far less

(or far more) physically fit than the population of the college they repre-

sent; a batch of seed chosen at random may not represent the variability

present in all seed of that species; and a sample of mosquitoes from a

particular placemay have very different insecticide resistance than the same

species from elsewhere.

Population

Sample 1

Sample 2

Figure 1.1 Even a random sample may not necessarily be a good

representative of the population. Two samples have been taken at random

from the same population. By chance, sample 1 contains a group of relatively

large fish, while those in sample 2 are relatively small.

2 Introduction



Therefore, if you take a random sample from each of two similar

populations, the samples may be different to each other simply by

chance. On the basis of this you might mistakenly conclude that the two

populations are very different. You need some way of knowing if the

difference between samples is one you would expect by chance, or whether

the populations really do seem to be different.

Second, even if two populations are very different, samples from each

may be similar, and give the misleading impression the populations are

also similar (Figure 1.2).

Population 1

 Sample 1

Population 2 

Sample 2

Figure 1.2 Samples selected at random from very different populations may

not necessarily be different. Simply by chance sample 1 and sample 2 are

similar.
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Finally, natural variation among individuals within a sample may

obscure any effect of an experimental treatment (Figure 1.3). There is

often so much variation within a sample (and a population) that an effect

of treatment may be difficult or impossible to detect. For example, what

would you conclude if you found that 50 people given a newly synthesised

drug showed an average decrease in blood pressure, but when you looked

more closely at the group you found that blood pressure remained

unchanged for 25, decreased markedly for 15, and increased slightly for

the remaining 10? Has the drug really had an effect? What if tomato plants

treated with a new fertiliser yielded from 1.5 to 9 kg of fruit per plant,

Control group (before the experiment)

Treatment group (before the experiment)

Control group (after 300 days)

Treatment group (after 300 days)

Figure 1.3 Two samples of fish were taken from the same population and

deliberately matched so that six equal-sized individuals were initially present

in each group. Fish in the treatment group were fed a vitamin supplement for

300 days, while those in the untreated control group were not. The

supplement caused each fish in the treatment group to grow about 10%

longer, but this difference is small compared with the variation in growth

among individuals, which may obscure any effect of treatment.
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compared with 1.5 to 7.5 kg per plant in an untreated group? Would you

conclude there was a meaningful difference between these two groups?

These sorts of problems are usually unavoidable when you work with

samples andmean that a researcher has to take every possible precaution to

try and ensure their samples are likely to be representative and thus give a

good estimate of conditions in the population. Researchers need to know

how to sample. They also need a good understanding of experimental

design, because a good design will take natural variation into account

and alsominimise additional unwanted variation introduced by the experi-

mental procedure itself. They also need to take accurate and precise mea-

surements to minimise other sources of error.

Finally, considering the variability among samples described above, the

results of an experiment may not be clear-cut. So it is often difficult tomake

a decision about a difference between samples from different populations

or different experimental treatments. Is it the sort of difference you would

expect by chance, or are the populations really different? Is the experi-

mental treatment having an effect?

You need something to help you decide, and that is what statistical tests

do, by calculating the probability of obtaining a particular difference

among samples. Once you have the probability, the decision is up to you.

So you need to understand how statistical tests work!

1.2 What is this book designed to do?

An understanding of experimental design and statistics is important,

whether you are a biomedical scientist, ecologist, entomologist, genetic

engineer, microbiologist, nursing professional, taxonomist, or human

movement scientist, so most life science students are made to take a general

introductory statistics course. Many of these courses take a detailed math-

ematical approach that a lot of life scientists find uninspiring. This book is

an introduction that does not assume a strong mathematical background.

Instead, it develops a conceptual understanding of how statistical tests

actually work, using pictorial explanations where possible and a minimum

of formulae.

If you have read other texts, or have already done an introductory

course, you may find that the way this material is presented is unusual,

but I have found that non-statisticians find this approach very easy to

1.2 What is this book designed to do? 5



understand and sometimes even entertaining. If you have a background in

statistics you may find some sections a little too explanatory, but at the

same time they are likely to make sense. This book most certainly will not

teach you everything about the subject areas, but it will help you decide

what sort of statistical test to use and what the results mean. It will also help

you understand and criticise the experimental designs of others. Most

importantly, it will help you design and analyse your own experiments,

understand more complex experimental designs, and move on to more

advanced statistical courses.
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2 ‘Doing science’ – hypotheses,
experiments, and disproof

2.1 Introduction

Before starting on experimental design and statistics, it is important to be

familiar with how science is done. This is a summary of a very conventional

view of scientific method.

2.2 Basic scientific method

The essential features of the ‘hypothetico-deductive’ view of scientific

method (see Popper, 1968) are that a person observes or samples the

natural world and uses all the information available to make an intuitive,

logical guess, called an hypothesis, about how the system functions. The

person has no way of knowing if their hypothesis is correct – it may or may

not apply. Predictions made from the hypothesis are tested, either by

further sampling or by doing experiments. If the results are consistent

with the predictions then the hypothesis is retained. If they are not, it is

rejected, and a new hypothesis formulated (Figure 2.1).

The initial hypothesis may come about as a result of observations,

sampling, and/or reading the scientific literature. Here is an example

from ecological entomology.

The Portuguese millipede Ommatioulus moreleti was accidentally intro-

duced into southern Australia from Portugal in the 1950s. This millipede

lives in leaf litter and grows to about four centimetres long. In the absence

of natural enemies from its country of origin (especially European hedge-

hogs, which eat a lot of millipedes), its numbers rapidly increased to plague

proportions in South Australia. Although it causes very little damage to

agricultural crops,O. moreleti is a serious ‘nuisance’ pest because it invades

houses. In heavily infested areas of South Australia during the late 1980s it



used to be common to find over 1000 millipedes invading a moderate sized

house in just one night. When you disturb one of these millipedes it ejects a

smelly yellow defensive secretion. Once inside a house themillipedes would

crawl across the floor, up the walls, and over the ceiling, where they fell into

food and on to the faces and even into the open mouths of sleeping people.

When accidentally crushed underfoot they stained carpets and floors, and

smelt. The problem was so great that almost half a million dollars was spent

on research to control this pest.

While working on ways to reduce the nuisance caused by the Portuguese

millipede I noticed that householders who reported severe problems hadwell-lit

houses with large, uncurtained windows. In contrast, nearby neighbours whose

houses were not so well lit, and who closed their curtains at night, reported far

fewer millipedes inside. The numbers of O. moreleti per square metre were

similar in the leaf litter around both types of houses. From these observations

and very limited sampling of less than ten houses, I formulated the hypothesis,

‘Portuguese millipedes are attracted to visible light at night.’ I had no way of

knowing whether this simple hypothesis was the reason for home invasions by

millipedes, but it seemed logical from my observations.

Hypothesis

Observations, previous work, ‘intuition’

Prediction from hypothesis

Test of prediction

Result consistent
with prediction 

Result not
consistent with 

prediction 

Hypothesis survives
and is retained 

Hypothesis
is rejected

Figure 2.1 The process of hypothesis formulation and testing.
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From this hypothesis it was straightforward to predict, ‘At night, in a

field where Portuguese millipedes are abundant, more will be present on

white tiles illuminated by visible light than on unlit white tiles.’

This prediction was tested by doing a simple and inexpensive manip-

ulative field experiment with two treatments – lit tiles and a control

treatment of unlit tiles.

Since any difference in millipede numbers between one lit and one

unlit tile might occur just by chance or some other unknown factor(s),

the two treatments were replicated five times. I set up ten identical white

ceramic floor tiles in a two row � five column rectangular grid in a field

where millipedes were abundant (Figure 2.2). For each column of two tiles,

I tossed a coin to decide which of the pair was going to be lit. The other

tile was left unlit. Having one lit tile in each column ensured that replicates

of both the treatment and control were dispersed across the field rather

than having all the treatment tiles clustered together and was a precaution

in case the number of millipedes per square metre varied across the field.

The coin tossing eliminated any likelihood that I might subconsciously

place the lit tile of each pair in an area where millipedes were more

common.

I hammered a thin two metre long wooden stake vertically into the

ground next to each tile. For every one of the lit tiles I attached a pocket

torch to its stake and made sure the light shone on the tile.

I started the experiment at dusk by turning on the torches. Three hours

later I went back and counted the numbers of millipedes on all tiles. The

tiles within each treatment were the experimental units (Chapter 1).

From this experiment there were at least four possible outcomes:

Column 1 2 3 4 5

Figure 2.2 Arrangement of a 2 � 5 grid of lit and unlit tiles across a field

where millipedes were abundant. Filled squares indicate unlit tiles and open

squares indicate lit tiles.

2.2 Basic scientific method 9



1 No millipedes were present on the unlit tiles but lots were present on

each of the lit tiles. This result is consistent with the hypothesis, which

has survived this initial test and can be retained.

2 High and similar numbers of millipedes were present on both the lit and

unlit tiles. This is not consistent with the hypothesis, which can probably

be rejected since it seems light has no effect.

3 No (or very few) millipedes were present on any tiles. It is difficult to

know if this has any bearing on the hypothesis – there may be a fault with

the experiment (e.g. the tiles were themselves repellent or perhaps too

slippery, or millipedes may not have been active that night). The hypoth-

esis is neither rejected nor retained.

4 Lots of millipedes were present on the unlit tiles, but none were present

on the lit ones. This is a most unexpected outcome that is not consistent

with the hypothesis, which is extremely likely to be rejected.

These are the four simplest outcomes. A more complicated and much

more likely one is that you find some millipedes on the tiles in both

treatments, and that is what happened – see McKillup (1988). This sort of

outcome is a problem, because you need to decide if light is having an effect

on the millipedes, or whether the difference in numbers between lit and unlit

treatments is simply happening by chance. Here statistical testing is extre-

mely useful and necessary because it helps you decide whether a difference

between treatments is meaningful.

2.3 Making a decision about an hypothesis

Once you have the result of the experimental test of an hypothesis, two

things can happen:

either the results of the experiment are consistent with the hypothesis,

which is retained;

or the results are inconsistent with the hypothesis, which may be

rejected.

If the hypothesis is rejected it is likely to be wrong and another will need to

be proposed.

If the hypothesis is retained, withstands further testing, and has some

very widespread generality, it may progress to become a theory. But a
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theory is only ever a very general hypothesis that has withstood repeated

testing. There is always a possibility it may be disproven in the future.

2.4 Why can’t an hypothesis or theory ever be proven?

No hypothesis or theory can ever be proven – one day there may be

evidence that rejects it and leads to a different explanation (which can

include all the successful predictions of the previous hypothesis).

Consequently we can only falsify or disprove hypotheses and theories –

we can never ever prove them.

Cases of disproof and a subsequent change in thinking are common.

Here are two examples.

Medical researchers used to believe that excess stomach acidity was

responsible for the majority of gastric ulcers in humans. There was a radical

change in thinking when many ulcers healed following antibiotic therapy

designed to reduce numbers of the bacterium Helicobacter pylori in the

stomach wall.

There have been at least three theories of how the human kidney

produces a concentrated solution of urine, and the latest may not necessa-

rily be correct.

2.5 ‘Negative’ outcomes

People are often quite disappointed if the outcome of an experiment is not

what they expected and their hypothesis is rejected. But there is nothing

wrong with this – rejection of an hypothesis is still progress in the process of

understanding how a system functions. Therefore, a ‘negative’ outcome

that causes you to reject a cherished hypothesis is just as important as a

‘positive’ one that causes you to retain it.

Unfortunately researchers tend to be very possessive and protective of

their hypotheses, and there have been cases where results have been falsified

in order to allow an hypothesis to survive. This does not advance our

understanding of the world and is likely to be detected when other scientists

repeat the experiments or do further experiments based on these false

conclusions. There will be more about this in Chapter 20, which is about

doing science responsibly and ethically.

2.5 ‘Negative’ outcomes 11



2.6 Null and alternate hypotheses

It is scientific convention that when you test an hypothesis you state it as

two hypotheses, which are essentially alternates. For example, the hypoth-

esis, ‘Portuguese millipedes are attracted to visible light at night’, is usually

stated in combination with, ‘Portuguese millipedes are not attracted to

visible light at night’. The latter includes all cases not included in the first

hypothesis (e.g. no response, or avoidance of visible light).

These hypotheses are called the alternate and null hypotheses respec-

tively. Importantly, the null hypothesis is always stated as the hypothesis of

‘no difference’ or ‘no effect’. So, looking at the two hypotheses above, the

second ‘are not’ hypothesis is the null hypothesis and the first is the

alternate hypothesis. This is a tedious but very important convention

(because it clearly states the hypothesis and its alternative) and there will

be several reminders in this book.

Box 2.1 Two other views about scientific method

Popper’s hypothetico-deductive philosophy of scientific method, where

hypotheses are sequentially tested and always at risk of being rejected, is

widely accepted. In reality, however, scientists may do things a little

differently.

Kuhn (1970) argues that scientific enquiry does not necessarily pro-

ceed with the steady testing and survival or rejection of hypotheses.

Instead, hypotheses with some generality and which have survived

initial testing become well-established theories or ‘paradigms’, which

are relatively immune to rejection even if subsequent testing may find

evidence against them. A few negative results are used to refine the

paradigm tomake it continue to fit all available evidence. It is only when

the negative evidence becomes overwhelming that the paradigm is

rejected and replaced by a new one.

Lakatos (1978) also argues that a strict hypothetico-deductive process

of scientific enquiry does not necessarily occur. Instead, fields of

enquiry, called ‘research programmes’ are based on a set of ‘core’ theories

that are rarely questioned or tested. The core is surrounded by a

protective ‘belt’ of theories that are tested. A successful research pro-

gramme is one that accumulates more and more theories that have
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2.7 Conclusion

There are five components to an experiment: (1) formulating an hypoth-

esis, (2) making a prediction from the hypothesis, (3) doing an experiment

or sampling to test the prediction, (4) analysing the data, and (5) deciding

whether to retain or reject the hypothesis.

The description of scientific method given here is extremely simple and

basic and there has been an enormous amount of philosophical debate

about how science is done (see Box 2.1). For example, more than one

hypothesis might explain a set of observations and it may be difficult to test

these by progressively considering each one against its null. For further

reading, Chalmers (1999) gives a very readable and clearly explained dis-

cussion of the process and philosophy of scientific discovery.

survived testing within the belt, which provides increasing protection

for the core. If, however, many of the belt theories are rejected, doubt

will eventually be cast on the veracity of the core and of the research

programme itself, which will be replaced by a more successful one.

These two views and the hypothetico-deductive view are not irrecon-

cilable. In all cases observations and experiments provide evidence either

for or against an hypothesis or theory. In the hypothetico-deductive

view science proceeds by the orderly testing and survival or rejection of

individual hypotheses, while the other two views reflect the complexity of

theories required to describe a research area and emphasise that it would

be foolish to reject a theory outright on the basis of limited negative

evidence.
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3 Collecting and displaying data

3.1 Introduction

One way of generating hypotheses is to collect data and look for patterns.

Often, however, it is difficult to see any pattern from a set of data, which

may just be a list of numbers. Graphs and descriptive statistics are very

useful for summarising and displaying data in ways that may reveal pat-

terns. This chapter describes the different types of data you are likely to

encounter and discusses ways of displaying them.

3.2 Variables, experimental units, and types of data

The particular attributes you measure when you collect data are called

variables (e.g. body temperature, the numbers of a particular species of

beetle per broad bean pod, the amount of fungal damage per leaf, or the

numbers of brown and albino mice). These data are collected from each

experimental unit, which may be an individual (e.g. a human being or a

whale) or a defined item (e.g. a squaremetre of the seabed, a leaf, or a lake). If

you only measure one variable per experimental unit, the data set is uni-

variate. Data for two variables per unit are bivariate, while data for three or

more variables measured on the same experimental unit are multivariate.

Variables can be measured on four scales – ratio, interval, ordinal, or

nominal.

A ratio scale describes a variable whose numerical values truly indicate

the quantity being measured.

* There is a true zero point below which you cannot have any data (for

example, if you are measuring the lengths of lizards, you cannot have a

lizard of negative length).



* An increase of the same numerical amount indicates the same quantity

across the range of measurements (for example, a 2 cm and a 40 cm lizard

will have grown by the same amount, if they both increase in length by

10 cm).
* A particular ratio holds across the range of the variable (for example, a

40 cm lizard is 20 times longer than a 2 cm lizard and a 100 cm lizard is

also 20 times longer than a 5 cm lizard).

An interval scale describes a variable that can be less than zero.

* The zero point is arbitrary (for example, temperature measured in

degrees celsius has a zero point at which water freezes), so negative values

are possible. The true zero point for temperature, where there is a

complete absence of heat, is zero kelvin (about –2738C), so unlike the

celsius scale the kelvin scale is a ratio scale.
* An increase of the same numerical amount indicates the same quan-

tity across the range of measurements (for example a 28C increase

indicates the same increase in heat whatever the starting

temperature).
* Since the zero point is arbitrary, a particular ratio does not hold

across the range of the variable (for example, the ratio of 68C compared

with 18C is not the same as 608C with 108C. The two ratios in terms of

the kelvin scale are 279 : 274 K and 333 : 283 K).

An ordinal scale applies to data where values are ranked – given a value

that simply indicates their relative order. These ranks do not necessarily

indicate constant differences. For example, five children of ages 2, 7, 9, 10,

and 16 years have been aged on a ratio scale. If, however, you rank these

ages in order from the youngest to the oldest (e.g. as ranks 1 to 5), the data

have been reduced to an ordinal scale. Child 2 is not necessarily twice as

old as child 1.

* An increase in the same numerical amount of ranks does not necessarily

hold across the range of the variable.

A nominal scale applies to data where the values are classified according

to an attribute. For example, if there are only two possible forms of coat

colour in mice, then a sample of mice can be subdivided into the numbers

within each of these two attributes.
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The first three categories described above can include either continuous

or discrete data. Nominal scale data (since they are attributes) can only be

discrete.

Continuous data can have any value within a range. For example, any

value of temperature is possible within the range from 108C to 208C, such
as 15.38C or 17.828C.

Discrete data are very different to continuous data, because they can

only have fixed numerical values within a range. For example, the number

of offspring produced increases from one fixed whole number to the next,

because you cannot have a fraction of an offspring.

It is important that you know what type of data you are dealing with,

because this will be one of the factors that determines your choice of

statistical test.

3.3 Displaying data

A list of data may reveal very little, but a pictorial summary is a way of

exploring the data that might help you notice a pattern, which can help

generate or test hypotheses.

3.3.1 Histograms

Here is a list of the number of visits made to a medical doctor during the

previous six months by a sample of 60 students chosen at random from a

first-year university biostatistics class of 600. These data are univariate,

ratio scaled, and discrete:

1,11,2,1,10,2,1,1,1,1,12,1,6,2,1,2,2,7,1,2,1,1,1,1,1,3,1,2,1,2,1,4,6,9,1,2,8,1,9,1,

8,1,1,1,2, 2,1,2,1,2,1,1,8,1,2,1,1,1,1,7

It is difficult to see any pattern from this list of numbers, but you could

summarise and display these data by drawing a histogram. To do this you

separately count the number (the frequency) of cases for students who

visited a medical doctor never, once, twice, three times, through to the

maximum number of visits and plot these as a series of rectangles on a

graph with theX axis showing the number of visits and the Y axis the number

of students in each of these cases. Figure 3.1 shows a histogram for the data.

This visual summary shows that the distribution is skewed to the right –

most students make few visits to a medical doctor, but there is a long ‘tail’
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(and perhaps even a separate group) who have made six or more visits.

Incidentally, looking at the graph you may be a little suspicious, since every

student made at least one visit. When the class was asked about this, it was

found that every student was required to undergo a routine medical

examination during their first year at university, so these data are some-

what misleading in terms of indicating the health of the group.

You may be tempted to draw a line joining the midpoints of the tops of

each bar to indicate the shape of the distribution, but this implies that the

data on the X axis are continuous, which is not the case since visits are

discrete whole numbers.

3.3.2 Frequency polygons or line graphs

If the data are continuous it is appropriate to draw a line linking the

midpoint of the tops of each bar in a histogram. Here is an example for

some continuous data that can be summarised as a histogram or as a

frequency polygon (often called a line graph).

The time a person takes to respond to a stimulus is called their reaction

time. This can be easily measured in the laboratory by getting them to press

a button as soon as they see a light flash. The time elapsing between the

instant of the flash and when the button is pressed is defined as the reaction

time. A researcher suspected that an abnormally long reaction time might

be a useful way of making an early diagnosis of certain neurological
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Figure 3.1 The number of visits made to a medical doctor during the past six

months for 60 students chosen at random froma first-year biostatistics class of 600.
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diseases, so they chose a group of 30 students at random from a first year

biomedical science class and measured their reaction times in seconds.

These data are shown below. Here too, nothing is very obvious from

this list:

0.70, 0.50, 1.20, 0.80, 0.30, 0.34, 0.56, 0.41, 0.30, 1.20, 0.40, 0.64, 0.52,

0.38, 0.62, 0.47, 0.24, 0.55, 0.57, 0.61, 0.39, 0.55, 0.49, 0.41, 0.72, 0.71, 0.68,

0.49, 1.10, 0.59

First, since the data are continuous, they are not as easy to summarise as

the discrete data in Figure 3.1. To display a histogram for continuous data

you need to subdivide the data into the frequency of cases within a series of

intervals of equal width. First you need to look at the range of the data (here

reaction time varies from aminimum of 0.24 through to a maximum of 1.20

seconds) and decide on an interval width that will give you an informative

display of the data. Here the chosen width is 0.999. Therefore, starting from

0.20, this will give 11 intervals, the first of which is 0.20–0.29. The chosen

interval width needs to be one that shows the shape of the distribution. There

would be no point in choosing a width that included all the data in just two

intervals because you would only have two bars on the histogram. Nor would

there be any point in choosingmore than 20 intervals because this would give

a lot of bars containing only a few data, which would be unlikely to reveal the

shape of the distribution.

Once you have decided on an appropriate interval size, you need to

count the number of students with a response time that falls within each

(Table 3.1) and plot these frequencies on the Y axis against the intervals

(indicated by the midpoint of each interval) on the X axis. This has been

done in Figure 3.2(a). Finally, the midpoints of the tops of each rectangle

have been joined by a line to give a frequency polygon, or line graph

(Figure 3.2(b)).

Most students have short reaction times, but there is a distinct group of

three who took a relatively long time to respond and who may be of further

interest to the researcher.

3.3.3 Cumulative graphs

Often it is useful to display data as a histogram of cumulative frequencies.

This is a graph that displays the progressive total of cases (starting at zero or

zero per cent and finishing at the sample size or 100%) on the Y axis against
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the increasing value of the variable on the X axis. Table 3.2 gives an

example, using the data in Table 3.1.

A cumulative frequency graph can never decrease. Figure 3.3 displays the

data in Table 3.2 as a frequency histogram.

Table 3.1. Summary of the data for the reaction times in seconds of

30 students chosen at random from a first year biomedical class

Interval range

Number of

students

0.20–0.29 1

0.30–0.39 5

0.40–0.49 6

0.50–0.59 7

0.60–0.69 4

0.70–0.79 3

0.80–0.89 1

0.90–0.99 0

1.00–1.09 0

1.10–1.19 1

1.20–1.29 2

Table 3.2. Summary of the data for the reaction time in seconds of

30 students chosen at random from a first year biomedical class as

frequencies and cumulative frequencies

Cumulative frequency

Interval range Number of students Total Per cent

0.20–0.29 1 1 3.3

0.30–0.39 5 6 20

0.40–0.49 6 12 40

0.50–0.59 7 19 63.3

0.60–0.69 4 23 76.6

0.70–0.79 3 26 86.6

0.80–0.89 1 27 90

0.90–0.99 0 27 90

1.00–1.09 0 27 90

1.10–1.19 1 28 93.3

1.20–1.29 2 30 100
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Although I have given the rather tedious manual procedures for construct-

ing histograms, you will find that most statistical software packages have

excellent graphics programs for displaying your data. These will automatically

select an intervalwidth, summarise the data, and plot the graphof your choice.

3.4 Displaying ordinal or nominal scale data

When you display data for nominal or ordinal scale variables you need to

modify the form of the graph slightly because the categories are unlikely to
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Figure 3.2 Data for the reaction time in seconds of 30 biomedical students

selected at random, displayed as (a) a histogram and (b) a frequency polygon

or line graph. The points on the frequency polygon (b) correspond to the

midpoints of the bars on (a).
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be continuous, so the bars need to be separated to clearly indicate the lack

of continuity. Here is an example for some nominal scale data. Table 3.3

gives the location of 596 basal cell carcinomas (a form of skin cancer that is

most common on sun-exposed areas of the body) detected and removed

0.40 0.60 0.80 1.00
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0
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20
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C
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nt

Figure 3.3 A cumulative frequency histogram for the reaction time of

30 students.

Table 3.3. The number of basal cell carcinomas detected and removed

from eight locations on the body for 400 males aged from 40–50 years,

during 12 months at a skin cancer clinic in Brisbane, Australia

Location

Number of

basal cell

carcinomas

Head (H) 211

Neck and shoulders (NS) 103

Arms (A) 74

Legs (L) 49

Upper back (UB) 94

Lower back (LB) 32

Chest (C) 21

Lower abdomen (LA) 12
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from 400 males aged from 40 to 50 years treated during 12 months at a skin

cancer clinic in Brisbane, Australia.

The locations have been defined as (a) head, (b) neck and shoulders,

(c) arms, (d) legs, (e) upper back, (f) lower back, (g) chest, and (h) lower

abdomen.

These can be displayed on a bar graph with the categories in any order

along the X axis and the number of cases on the Y axis (Figure 3.4(a)). It

often helps to rank the data in order of magnitude to aid interpretation

(Figure 3.4(b)).
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Figure 3.4 (a) The number of basal cell carcinomas detected and removed by

location on the body during 12 months at a skin cancer clinic in Brisbane,

Australia. (b) The same data but with the number of cases ranked in order

from most to least.
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3.5 Bivariate data

Data where two variables have been measured on each experimental unit

can often reveal patterns that may either suggest hypotheses, or be useful

for testing them. Table 3.4 gives two lists of bivariate data for the number of

dental caries (these are the holes that develop in decaying teeth) and the

ages for 20 children between the ages of one and nine years from each of the

cities of Uxford and Hambridge.

Looking at these data, there is not anything that stands out apart from an

increase in the number of caries with age. If you calculate descriptive

statistics such as the average age and average number of dental caries for

each of the two groups (Table 3.5), they are not very informative either.

(You have probably calculated the average for a set of data and this

Table 3.4. The number of dental caries and age of 20 children chosen

at random from each of the two cities of Uxford and Hambridge

Uxford Hambridge

Caries Age Caries Age

1 3 10 9

1 2 1 5

4 4 12 9

4 3 1 2

5 6 1 2

6 5 11 9

2 3 2 3

9 9 14 9

4 5 2 6

2 1 8 9

7 8 1 1

3 4 4 7

9 8 1 1

11 9 1 5

1 2 7 8

1 4 1 7

3 7 1 6

1 1 1 4

1 1 2 6

6 5 1 2
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Table 3.5. The average number of dental caries and age of 20 children

chosen at random from each of the two cities of Uxford andHambridge

Uxford Hambridge

Caries Age Caries Age

4.05 4.5 years 4.1 5.5 years
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(b) Hambridge
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Figure 3.5 The number of dental caries plotted against the age of

20 children chosen at random from each of the two cities of (a) Uxford and

(b) Hambridge.

24 Collecting and displaying data



procedure will be described in Chapter 6, but the average is the sum of all

the values divided by the sample size.)

Table 3.5 shows that the sample from Hambridge had slightly more

dental caries on average than the one fromUxford, but this is not surprising

since the Hambridge sample was an average of one year older. If, however,

you graph these data, patterns emerge. One way of displaying bivariate data

is as a two-dimensional plot with increasing values of one variable on the

horizontal (or X axis) and increasing values of the second variable on the

vertical (or Y axis). Figure 3.5 shows both sets of data, with tooth decay (Y

axis) plotted against child age (X axis) for each city.

These graphs show that tooth decay increases with age, but the pattern

differs between cities – in Uxford the increase is fairly steady, but in

Hambridge it remains low in children up to age seven but then suddenly

increases. This might suggest hypotheses about the reasons why, or stimu-

late further investigation (perhaps a child dental care program, or water

fluoridation, has been in place in Hambridge for the past eight years

compared with no action on decay in Uxford). Of course, there is always

the possibility that the samples are different due to chance, so perhaps the

first step in any further investigation would be to repeat the sampling using

much larger numbers of children from each city.

Graphs of this type are frequently used and you will have seen them

many times before in newspapers, reports, scientific articles, and on

television.

3.6 Multivariate data

Often life scientists have data for three or more variables measured on the

same experimental unit. For example, a biomedical scientist might have

data for age, blood pressure, and serum cholesterol for each individual in a

sample of 20 people, or a marine ecologist might have data for the numbers

of several species of marine invertebrates present in samples from a pol-

luted area.

Results for three variables could be shown as three-dimensional graphs,

but direct display is difficult for more than this number of variables. Some

relatively new statistical techniques have made it possible to condense and

summarise multivariate data in a two-dimensional display, but they are

beyond the scope of this book.
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3.7 Summary and conclusion

Graphsmay reveal patterns in data sets that are not obvious from looking at

lists or calculating descriptive statistics. Graphs can also provide an easily

understood visual summary of a set of results. In later chapters there will be

discussion of data displays such as boxplots and probability plots, which

can be used to decide whether the data set is suitable for a particular

analysis. Most modern statistical software packages have easy-to-use gra-

phics options that produce high-quality graphs and figures. These packages

are very useful for life scientists who are writing assignments, reports, or

scientific publications.
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4 Introductory concepts of
experimental design

4.1 Introduction

To generate hypotheses you often sample different groups or places (which

is sometimes called a mensurative experiment because you usually mea-

sure something, such as height or weight, on each experimental unit) and

explore these data for patterns or associations. To test hypotheses you may

do mensurative experiments, or manipulative experiments where you

change a condition and observe the effect of that change upon each

experimental unit (like the experiment with millipedes and light described

in Chapter 2). Often you may do several experiments of both types to test a

particular hypothesis. The quality of your sampling and the design of your

experiment can have an effect upon the outcome and determine whether

your hypothesis is rejected or not. Therefore it is important to have an

appropriate and properly designed experiment.

First, you should attempt to make your measurements as accurate and

precise as possible so they are the best estimates of actual values.

Accuracy is the closeness of a measured value to the true value.

Precision is the ‘spread’ or variability of repeated measures of the same

value.

For example, a thermometer that consistently gives a reading corre-

sponding to a true temperature (e.g. 208C) is both accurate and precise.

Another that gives a reading consistently higher (e.g. þ108C) than a true

temperature is not accurate, but it is very precise. In contrast,

a thermometer that gives a fluctuating reading within a wide range of

values around a true temperature is not precise and will usually be inaccu-

rate except when the reading occasionally happens to correspond to the

true temperature.



Inaccurate and imprecise measurements or a poor or unrealistic sam-

pling design can result in the generation of inappropriate hypotheses.

Measurement errors or a poor experimental design can give a false or

misleading outcome that may result in the incorrect retention or rejection

of an hypothesis.

The following is a discussion of some important essentials of sampling

and experimental design.

4.2 Sampling – mensurative experiments

Mensurative experiments are often a good way of generating hypotheses or

testing predictions from them. (An example of the latter is, ‘I think milli-

pedes are attracted to light at night. So if I sample 500 well-lit houses and

500 that are not well lit, the first group should, on average, contain more

millipedes than the second.’) You have to be careful when interpreting the

results of mensurative experiments because you are sampling an existing

condition, rather than manipulating conditions experimentally. There

may be some other difference between your groups (e.g. well-lit houses

may have a more ‘open plan’ design, which makes it easier for millipedes to

get inside, and light may not be important at all).

4.2.1 Confusing a correlation with causality

A correlation between two variables means they vary together. A positive

correlation means that high values of one variable are associated with high

values of the other, while a negative correlation means that high values of

one variable are associated with low values of the other. For example, the

graph in Figure 4.1 shows a positive correlation between the population

density of mice per square metre and the weight of wheat plants in kilo-

grams per square metre from different parts of a large field.

Unfortunately a correlation is often mistakenly interpreted as indicating

causality. It seems plausible that the amount of wheat might be the cause of

differences in the numbers of mice (whichmay be eating the wheat or using

it for shelter), but even if there is a very obvious correlation between any

two variables it does not necessarily show that one is responsible for the

other. The correlation may have occurred by chance, or a third unmeasured

factor might determine the numbers of the two variables studied
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(Figure 4.2). For example, soil moisture may determine both the number of

mice and the weight of wheat. Therefore, although there is a causal relation-

ship between soil moisture and each of the two variables, they are not

causally related themselves.

4.2.2 The inadvertent inclusion of a third variable: sampling

confounded in time

Occasionally researchers have no choice but to sample different popula-

tions of the same species, or different habitats, at different times. These

results should be interpreted with great caution, since changes occurring

over time may contribute to differences (or the lack of them) among

Number 
of mice 
per m2

Kilograms of wheat per m2

Figure 4.1 Example of a positive correlation between the numbers of mice

and the weight of wheat plants per square metre.

Number of mice Weight of wheat

Soil moisture

Figure 4.2 The involvement of a third variable ‘Soil moisture’ that

determines the ‘Number of mice’ and ‘Kilograms of wheat’ per square metre.

Even though there is no causal relationship between the number of mice and

weight of wheat, the two variables are positively correlated.
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samples. The sampling is said to be confounded in that more than one

variable may be having an effect on the results. Here is an example.

An ecologist hypothesised that the density of above-ground vegetation

might affect the population density of earthworms, and therefore sampled

several different areas for these two variables. The work was very time

consuming because the earthworms had to be sampled by taking cores of

soil and unfortunately the ecologist had no help. Therefore, areas of low

vegetation density were sampled in January, low to moderate density in

February, moderate density in March, and high density in April. The sam-

pling showed a negative correlation between vegetation density and earth-

worm density. Unfortunately, however, the density of earthworms was the

same in all areas, but decreased as the year progressed (and the ecologist did

not know this). Therefore, the negative correlation between earthworm

density and vegetation density was an artefact of the sampling of different

places being confounded in time. This is an example of a common problem,

and you are likely to find similar cases in many published scientific papers

and reports.

4.2.3 The need for independent samples in mensurative

experiments

Frequently researchers sample the numbers, or population density, of a

species in relation to an environmental gradient (such as depth in a lake), to

see if there is any correlation between density of the species and the gradient

of interest.

There is an obvious need to replicate the sampling – that is, to indepen-

dently estimate density more than once. For example, consider sampling

Dark Lake, Wisconsin, to investigate the population density of freshwater

prawns in relation to depth.

If you only sampled at one place (Figure 4.3(a)) the results would not be a

good indication of changes in the population density of prawnswith depth in

the lake. The sampling needs to be replicated, but there is little value in

repeatedly sampling one small area (e.g. by taking several samples under

‘�����’ in Figure 4.3(b)) since this still will not give an accurate indication of
changes in population density with depth across the whole lake (although it

may give a very accurate indication of conditions in that particular part of the

lake). This sort of sampling is one aspect of what Hurlbert (1984) called

30 Introductory concepts of experimental design



pseudoreplication, which is still a very common flaw in a lot of scientific

research. The replicates are ‘pseudo’ – sham or unreal – because they are

unlikely to truly describe what is occurring across the entire area being

discussed (in this case the lake). A better design would be to sample at several

places chosen at random within the lake as shown in Figure 4.3(c).

This type of inappropriate sampling is very common. Here is another

example. A researcher sampled a large coral reef by dropping a 1 m2 square

frame, subdivided into a grid of 100 equal-sized squares, at random in one

place only and then took one sample from each of these smaller squares.

Although these 100 replicates may very accurately describe conditions

within the sampling frame they may not necessarily describe the remaining

9999 m2 of the reef and would be pseudoreplicates if the results were

(a)
*

10m 10 100 25 38 34  83

20m 10   5 16 99  2 126

(b)

   *****

10m 10 100 25 38 34  83

20m 10   5 16 99  2 126

(c)

* *  * * *  * * *   * *
10m 10 100 25 38 34  83

20m 10   5 16 99  2 126

Figure 4.3 Variation in the number of freshwater prawns per cubic metre of

water at two different depths (10m and 20m) in Dark Lake, Wisconsin.

(a) An unreplicated sample taken at only one place (�) would give a very

misleading indication of changes in the population density of prawns with

depth within the entire lake. (b) Several replicates taken at only one place

(�����) would still give a very misleading indication of conditions within the

entire lake. (c) Several replicates taken at random across the lake would give a

better indication within the entire lake.
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interpreted in this way. A more appropriate design would be to sample 100

replicates chosen at random across the whole reef.

4.2.4 The need to repeat the sampling on several occasions and

elsewhere

In the example described above, the results of sampling Dark Lake can only

confidently be discussed in relation to that particular lake on that day.

Therefore, when interpreting results you need to be cautious. Sampling the

same lake on several different occasions will strengthen the findings, and

may be sufficient if you are only interested in that lake. Samplingmore than

one lake will make the results more able to be generalised. Inappropriate

generalisation is another example of pseudoreplication since data from one

location may not hold in the more general case. At the same time, however,

even if your study is limited you can still make more general predictions

from your findings provided these are clearly identified as predictions.

4.3 Manipulative experiments

4.3.1 Independent replicates

It is essential to have several independent replicates of any treatment used

in an experiment. I mentioned this briefly when describing the millipedes

and light experiment in Chapter 2 and said if there were only one lit and

one unlit tile any difference between them could have simply been due to

chance or some other unknown factor(s). As the number of randomly

chosen independent replicates increases, so does the likelihood that any

difference between the experimental group and the control group is a result

of the experimental treatment. The following example is deliberately

absurd because I will use it later in this chapter to discuss a lack of

replication that is not so obvious.

Imagine you were asked to test the hypothesis that vitamin C caused

guinea pigs to grow more rapidly. You obtained two six-week-old guinea

pigs of the same sex and weight, caged them separately, and offered one an

unlimited amount of commercial rodent food plus 20 mg of vitamin C per

day, while the other guinea pig was only offered an unlimited amount of

commercial rodent food. The guinea pigs were re-weighed after three
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months and the results were obvious – the guinea pig that received vitamin C

was 40% heavier than the one that had not.

This result is consistent with the hypothesis but there is an obvious flaw in

the experiment – with only one guinea pig in each treatment, any differences

between treatments may be due to differences between the guinea pigs,

differences between the treatment cages, or both. (For example, the slow-

growing guinea pigmay, by chance, have been heavily infested with intestinal

parasites). There is a need to replicate this experiment and the replicates need

to be truly independent – for example it is not sufficient to have ten

‘vitamin C’ guinea pigs together in one cage and ten control guinea pigs in

another, because any differences between treatments may still be caused by

some difference between the cages. There will be more about this shortly.

4.3.2 Control treatments

Control treatments are needed because they allow the experimenter to

isolate the reason why something is occurring in an experiment by compar-

ing two treatments that differ by only one factor. Frequently the need for a

rigorous experimental design makes it necessary to have several different

treatments, more than one of which can be considered controls.

Here is an example. Herbivorous species of marine snails are often

common in rock pools on the shore, where they eat algae that grow on

the sides of the pools. Very occasionally these snails are seen being attacked

and eaten by carnivorous species of intertidal snails, which also occur in the

rock pools. An ecologist was surprised that such attacks occurred so infre-

quently and hypothesised that this was because the herbivorous snails

showed ‘avoidance’ by climbing out of the water in response to water

borne odours from their predators.

The null hypothesis is, ‘herbivorous snails will not avoid their predators’

and the alternate hypothesis is, ‘herbivorous snails will avoid their pre-

dators’. One prediction that might distinguish between these hypotheses is

that, ‘herbivorous snails will crawl out of their pool when a predatory snail

is added’. This could be tested by dropping a predatory snail into a rock

pool where some herbivorous snails are present and seeing how many

crawled out during the next five minutes.

Unfortunately, this experiment is not controlled. By adding a predator

and waiting for five minutes, several things have happened to the
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herbivorous snails in the pool. Certainly, you are adding a predator. But the

pool is also being disturbed, simply by adding something (the predator) to

it. Also, the experiment is not well controlled in terms of time, since five

minutes have elapsed while the experiment is being done. Therefore, even if

all the herbivorous snails crawled out of the pool, the experimenter could

not confidently attribute this to the addition of the predator – the snails

may have crawled out in response to disturbance, because the pool had

warmed up in the sun, or many other reasons.

One improvement to this experiment would be a control for the dis-

turbance associated with adding a predator. A popular treatment to control

for this is to include another pool into which a small stone about the size of

the predator is dropped, as ‘something added to the pool’. Another import-

ant improvement would include a control pool to which nothing was

added.

At this stage, by incorporating the improvements, you would have three

treatments. Table 4.1 lists what these treatments are doing to the snails.

For such a simple hypothesis, ‘herbivorous snails will avoid their pre-

dators’, the experiment has already expanded to three treatments. But

many ecologists are likely to say that even this design is not adequate,

since the ‘predator’ treatment is the only one in which a snail has been

added to a pool. Therefore, even if the snails all crawled out of the pools in

the treatment to which the predator had been added but remained sub-

merged in the other two treatments, the response may have been only a

response to the addition of any living snail, rather than a predator. Ideally,

a fourth treatment should be included, where an herbivorous snail is added,

to control for this (Table 4.2).

You may, at this point, be thinking that the above design is far too

finicky. Nevertheless, experiments have to have appropriate controls so

Table 4.1. Breakdown of three treatments into their effects upon

herbivorous snails

Predator Control for disturbance Control for time

predator

disturbance disturbance

time time time
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that the effects of each potentially contributing factor can be isolated.

Furthermore, the design would have to include replicates as well – you

could not just do it once, using four pools, since any difference among

treatments may result from some difference among the pools rather than

the actual treatments applied. I have done this experiment (McKillup and

McKillup, 1993) and included all the treatments listed in Table 4.2 with six

replicates, using 30 pools altogether.

It is often difficult to work out what control treatments you need to

incorporate in a manipulative experiment. One way to clarify these is to list

all of the things you are actually doing to an experimental treatment and

make sure you have appropriate controls for each.

4.3.3 Other common types of manipulative experiments where

treatments are confounded with time

Many experiments confound treatments with time. For example, experi-

ments designed to evaluate the effects of drugs often measure some phy-

siological variable (e.g. blood pressure) of the same group of experimental

subjects before and after a treatment. Any change is attributed to the effect

of the drug.

Here, however, several different things have been done to the treatment

group. I will use blood pressure as an example, but they apply to any ‘before

and after’ experiment.

First, time has elapsed, and blood pressure can change over a matter of

minutes or hours in response to many factors, even room temperature.

Second, the group has been given a drug, but studies have shown that

administration of even an empty capsule or an injection of saline (these are

called placebo treatments) can affect a person’s blood pressure.

Table 4.2. Breakdown of four treatments into their effects upon

herbivorous snails

Predator Control for snail Control for disturbance Control for time

predator herbivore

disturbance disturbance disturbance

time time time time
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Third, each person in the group has had their blood pressure measured

twice. Many people are ‘white coat hypertensive’ – their blood pressure

increases substantially at the sight of a physician approaching with the

inflatable cuff and pressure gauge used to measure blood pressure.

An improvement to this experiment could include a group that was

treated in exactly the same way as the experimental group, except that the

subjects were given an appropriate placebo. This would at least isolate the

effect of the drug from the other ways in which both groups had been

disturbed. Consequently, well-designed medical experiments often include

‘shamoperations’ where the control subjects are operated on in the sameway

as the experimental subjects, except that they do not receive the experimental

manipulation. For example, early experiments to investigate the function of

the parathyroid glands, which are small patches of tissue present within the

thyroid, included an experimental treatment where the parathyroids were

completely removed from several dogs, while a control group of dogs had

their thyroids exposed and cut, but the parathyroids were left in place.

4.3.4 Pseudoreplication

One of the nastiest pitfalls is appearing to have a replicated manipulative

experimental design, which really is not replicated. This is another aspect of

‘pseudoreplication’ described by Hurlbert (1984) who invented the word –

before then it was just called ‘bad design’. Here is an example that relates

back to the discussion about the need for replicates.

An aquacultural scientist hypothesised that a diet which included excess

vitamin Awould increase the growth rate of prawns. They were aware of the

need to replicate their experiment, so they set up two treatment ponds, each

containing 1000 prawns of the same species and of similar weight and age

from the same hatchery. One pond was chosen at random and the 1000

prawns within it fed commercial prawn food plus vitamin A, while the 1000

prawns in the second pond were only fed commercial prawn food. After six

months the prawns were harvested and weighed. The prawns that received

vitamin A were twice as heavy, on average, as the ones that had not. The

scientist was delighted – an experiment with 1000 replicates of each treat-

ment had produced a result consistent with the hypothesis.

Unfortunately, there are not 1000 truly independent replicates in each

pond. All prawns receiving vitamin A were in pond 1 and all those receiving
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only standard food were in pond 2. Therefore, any difference in growth may,

or may not, have been due to the vitamin – it could equally well have been

due to some other (perhaps unknown) difference between the two ponds.

The experimental replicates are the ponds, not the prawns, so the experiment

has no effective replication at all and is essentially the same as the absurd

unreplicated guinea pig experiment described earlier in this chapter.

An improvement to the design would be to run each treatment in several

ponds. For example, an experiment with five ponds in each treatment, each

containing 200 prawns, has at least been replicated five times. But here too,

it is still necessary to have truly independent replicates – you can not

subdivide two ponds into five enclosures and run one treatment in each

pond. This is one case of apparent replication, and here are four examples.

1 Even if you have several separate replicates of each treatment (say five

treatment aquaria and five control aquaria), the arrangement of these

can lead to a lack of independence. First you may have your treatment

aquaria all clumped together at one end of a laboratory bench and the

experimental aquaria at the other. But there may be some known or

unknown feature of the laboratory (e.g. light levels, ventilation, dis-

turbance) that affects one group of aquaria differently to the other

(Figure 4.4(a)).

2 Replicates placed alternately. If you decided to get around the clustering

problem by placing treatments and controls alternately (i.e. by placing,

from left to right, treatment 1, control 1; treatment 2, control 2; treat-

ment 3 etc. . . . ), there can still be problems. Just by chance all the

treatment aquaria (or all the controls) might be under regularly placed

laboratory ceiling lights, next to windows, or subject to some other

regular feature you are not even aware of (Figure 4.4(b)).

3 Often, because of a shortage of equipment, you may have to have all of

your replicates of one temperature treatment in only one controlled

temperature cabinet, and all replicates of another temperature in only

one other. Unfortunately, if there is something peculiar to one cabinet, in

addition to temperature, then either the experimental or control treat-

ment may be affected. This pattern is called ‘isolative segregation’

(Figure 4.4(c)).

4 The final example is more subtle. Imagine you decided to test the

hypothesis that, ‘Water with a high nitrogen content increases the
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growth of freshwater mussels.’ You set up five control aquaria and five

experimental aquaria, which were placed on the bench in a completely

randomised pattern, to get around examples 1 and 2 above. All tanks had

to have water constantly flowing through them, so you set up one storage

tank containing water high in nitrogen and one containing water low in

nitrogen. Water from each storage tank was piped into five aquaria as

shown in Figure 4.5.

This looks fine, but unfortunately all of the five aquaria within each

treatment are sharing the same water. All in the ‘high nitrogen’ treatment

receive water high in nitrogen from Tank A and all aquaria in the control

receive water low in nitrogen from Tank B, so any difference in mussel

growth between treatments may be due either to the nitrogen or some

other feature of the storage tanks. Really, therefore, this design is little

better than the case of isolative segregation (example 3 above). Ideally,

each aquarium should have its own separate and independent supply.

Finally, the allocation of replicate tanks to treatments should be done

(a)

T1 T2 T3 T4 T5 C1 C2 C3 C4 C5
_________________________________________________________

(b)

T1 C1 T2 C2 T3 C3 T4 C4 T5 C5
_________________________________________________________

(c) 

Incubator 1 
20˚C

Incubator 2 
30˚C 

Figure 4.4 Three cases of apparent pseudoreplication. (a) Clustering of

replicates means that there is no independence among controls or treatments.

(b) A regular arrangement of treatments and controls may, by chance,

correspond to some feature of the environment (here the very obvious ceiling

lights) that might affect the results. (c) Clustering of temperature treatments

within particular incubators.
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using a method that removes any possibility of unintentional bias by the

experimenter. (For example, the toss of a coin was used to allocate pairs

of tiles to lit and unlit treatments in the experiment with millipedes and

light described in Section 2.2.)

4.4 Sometimes you can only do an unreplicated

experiment

Although replication is desirable in any experiment, there are some cases

where it is not possible. For example, when doing large-scale mensurative

or manipulative experiments on systems such as lakes or rivers there may

be only one polluted lake or river available to study. Although you cannot

attribute the reason for any difference, or the lack of it, to the treatment

(e.g. a polluted versus a relatively unpolluted river), since you only have

one replicate, the results are still useful. First, they are still evidence for or

against your hypothesis and can be cautiously discussed in the light of the

lack of replication. Second, it may be possible to achieve replication by

analysing your results in conjunction with those from similar studies done

elsewhere by other researchers. This is called a meta-analysis. Finally, the

results of a large-scale but unreplicated experiment may suggest smaller-

scale experiments that can be done with replication so that you

can continue to test the hypothesis.

Tank A – high nitrogen

T1 C1 C2 T2 T3 C3 T4 C4 C5 T5

Tank B – low nitrogen 

Figure 4.5 The positions of the treatment tanks are randomised, but all tanks

within a treatment share water from one supply tank.
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4.5 Realism

Even an apparently well-designedmensurative or manipulative experiment

may still suffer from a lack of realism. Here are two examples.

The first is a mensurative experiment on the incidence of testicular

torsion. Testicular torsion can occur in males when the testicular artery

supplying the testis with oxygenated blood becomes twisted. This can

restrict or cut off the blood supply and thereby damage or kill the testis.

Apparently this is an extremely painful condition and usually requires

surgery to either restore blood flow or remove the damaged testis.

Since the testes retract closer to the body as temperature decreases,

a physician hypothesised that the likelihood of torsion would be grea-

ter during winter compared with summer. Their alternate hypothesis

was, ‘Retraction of the testis during cold weather increases the incidence

of testicular torsion.’ The null hypothesis was, ‘Retraction of the testis

during cold weather does not increase the incidence of testicular

torsion.’

The physician found that the incidence of testicular torsion was twice as

high during winter compared with summer in a small town in Alaska.

Unfortunately there were very few affected males (six altogether) in the

sample, so this difference may have occurred simply by chance, making it

impossible to distinguish between these hypotheses. Later, another

researcher obtained data from a much larger sample of 96 affected males

from hospital records in north Queensland, Australia. They found no

difference in the incidence of testicular torsion between summer and

winter, but this may not have been a realistic test of the hypothesis, because

even Alaskan summers are considerably colder than north Queensland

winters.

Second, an experiment to investigate factors affecting the selection

of breeding sites by the mosquito Anopheles farauti offered adult females

a choice of salinities ranging from 0, 5, 10, 15, 20, 25, 30, and 35 parts

per thousand. Eggs were laid in all but the two highest salinities (30

and 35 parts per thousand). The conclusion was that salinity signifi-

cantly affects the choice of breeding sites by mosquitoes. Unfortunately

the salinity in the habitat where the mosquitoes occurred never excee-

ded ten parts per thousand, again making the choice of treatments

unrealistic.
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4.6 A bit of common sense

By now, youmay be quite daunted by the challenge of being able to design a

good experiment. Provided, however, that you have appropriate controls,

replicates, and have also thought about any obvious problems of pseudor-

eplication and realism, you are well on the way to a good design.

Furthermore, the desire for a near-perfect design has to be balanced against

financial constraints as well as space and time available to do the experiment.

Often it is not possible to have more than two incubators, or as many

replicates as you would like. It also depends on the type of life science you

do. For example, many microbiologists working with organisms they grow

on agar plates, where conditions can be strictly controlled, would never be

concerned about clustering of replicates or isolative segregation because they

were confident that conditions did not vary in different parts of their

laboratory and their incubators only differed in relation to temperature.

Most of the time they may be right, but considerations about experimental

design need to be borne in mind by all life scientists.

Also, you may not have the resources to do a large manipulative field

experiment at more than one site. Although, strictly speaking, the results

cannot be generalised to other sites, they may nevertheless apply, and

careful interpretation and discussion of results can make more general

predictions. For example, the ‘millipede and light’ experiment described

in Chapter 2 was initially done during one night at one site. It was

repeated on the following night at the same site in the presence of some

colleagues (who were initially rather sceptical), and later at two other

sites, as well as in the laboratory. All the results were consistent with the

hypothesis, so I concluded, ‘Portuguese millipedes are attracted to visible

light at night.’ Nevertheless, the hypothesis may not be correct or apply to

all populations of O. moreleti, but, to date, there has been no evidence to

the contrary.

4.7 Designing a ‘good’ experiment

Designing a well-controlled, appropriately replicated and realistic experi-

ment has been described by some researchers as an ‘art’. It is not, but there

are often several different ways to test the same hypothesis, and hence

several different experiments that could be done. Consequently, it is
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difficult to set a guide to designing experiments beyond an awareness of the

general principles discussed in this chapter.

4.7.1 Good design versus the ability to do the experiment

It has often been said, ‘There is no such thing as a perfect experiment.’ One

inherent problem is that, as a design gets better and better, the cost in time

and equipment also increases, but the ability to actually do the experiment

decreases (Figure 4.6). An absolutely perfect design may be impossible to

carry out. Therefore, every researcher must choose a design that is ‘good

enough’ but still practical. There are no rules for this – the decision on

design is in the hands of the researcher, and will be eventually judged by

their colleagues who examine any report from the work.

4.8 Conclusion

The above discussion only superficially covers some important aspects of

experimental design. Considering how easy it is to make a mistake, you

probably will not be surprised that a lot of published scientific papers have

serious flaws in design or interpretation that could have been avoided.

Ability

Cost 
of the 

experiment

Ability 
to do the 

experiment

Cost

Very poor Excellent
Quality of the experimental design

Figure 4.6 An example of the trade off between the cost and ability to do an

experiment. As the quality of the experimental design increases, so does the

cost of the experiment (solid line), while the ability to do the experiment

decreases (dashed line). Your design usually has to be a compromise between

one that is practicable, affordable, and of sufficient rigour.
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Work with major problems in the design of experiments is still being done

and, quite alarmingly, many researchers are not aware of these. As an

example, after teaching the material in this chapter I often ask my students

to find a published paper, review and criticise the experimental design, and

then offer constructive suggestions for improvement. Many have later

reported that it was far easier to find a flawed paper than they expected.
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5 Probability helps you make a
decision about your results

5.1 Introduction

Most science is comparative. Researchers often need to know if a particular

experimental treatment has had an effect, or if there are differences among

a particular variable measured at several different locations. For example,

does a new drug affect blood pressure, does a diet high in vitamin C reduce

the risk of liver cancer in humans, or is there a relationship between

vegetation cover and the population density of rabbits? But when you

make these sorts of comparisons, any differences among treatments or

among areas sampled may be real or they may simply be the sort of

variation that occurs by chance among samples from the same population.

Here is an example using blood pressure. A biomedical scientist was

interested in seeing if the newly synthesised drug ‘Arterolin B’ had any

effect on blood pressure in humans. A group of six humans had their

systolic blood pressure measured before and after administration of a

dose of Arterolin B. The average systolic blood pressure was 118.33 mm Hg

before and 128.83 mm Hg after being given the drug (Tab le 5.1).

The average change in blood pressure from before to after administra-

tion of the drug is quite large (an increase of 10.5 mm Hg), but by looking

at the data you can see there is a lot of variation among individuals – blood

pressure went up in three cases, down in two, and stayed the same for the

remaining person.

Even so, the scientist might conclude that a dose of Arterolin B increases

blood pressure. But there is a problem (apart from the poor experimental

design that has no controls for time or the disturbing effect of having one’s

blood pressure measured). How do you know that the effect of the drug is

meaningful or significant? Perhaps this change occurred by chance and

the drug had no effect. Somehow you need a way of helping you make a



decision about your results. This led to the development of statistical tests

and a commonly agreed upon level of statistical significance.

5.2 Statistical tests and significance levels

Statistical tests are just a way of working out the probability of obtaining

the observed, or an even more extreme, difference among samples (or

between an observed and expected value) if a specific hypothesis

(usually the null of no difference) is true. Once the probability is

known, the experimenter can make a decision about the difference,

using criteria that are uniformly used and understood. Here is a very

easy example where the probability of every possible outcome can be

calculated.

Imagine you have a large sack containing 5000 white and 5000 black

beads that are otherwise identical. All of these beads are well mixed

together. They are a population of 10 000 beads.

You take one bead out at random, without looking in the sack. Since

there are equal numbers of black and white, your probability of getting a

black one is 50%, or ½, which is also your chance of getting a white one.

The chance of getting either a black or white bead is the sum of these

probabilities: (½+½) which is 1.0 (or 100%) since there are no other

colours. (If you are unsure about probability, there is a short explanation

of the concepts you will need for this book in Box 5.1.)

Now consider what happens if you take out a sample of six beads in

sequence, one after the other, without looking in the sack. Each bead is

Table 5.1. The systolic blood pressure in mm Hg for six people before

and after being given the experimental drug Arterolin B

Person Before After

1 100 108

2 120 120

3 120 150

4 140 135

5 80 120

6 150 140

Average 118.33 128.83
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Box 5.1 Basic concepts of probability

The probability of any event can only vary between 0 and 1 (which

correspond to 0 and 100%). If an event is certain to occur, it has a

probability of 1; while, if it is certain the event will not occur, it has a

probability of 0.

The probability of a particular event is the number of outcomes giving

that event, divided by the total number of possible outcomes. For exam-

ple, when you toss a coin there are only two possible outcomes – a head or

a tail. These two events are mutually exclusive – you cannot get both.

Consequently, the probability of a head is 1 divided by 2=½ (and thus

the probability of a tail is also ½).

The addition rule

The probability of getting either a head or a tail is ½+½=1. This is an

example of the addition rule: when several outcomes are mutually

exclusive, the probability of getting any of these is the sum of their

separate probabilities. (Therefore, the probability of getting either a 1, 2,

3, or 4 when rolling a six-sided die is 4/6.)

The multiplication rule

Independent events. To calculate the joint probability of two or more

independent events (for example, a head followed by another head in two

independent tosses of a coin) you simply multiply the independent prob-

abilities together. Therefore, the probability of getting two heads with two

tosses of a coin are ½�½=¼. The chance of a head or a tail with two

tosses is ½, because there are two ways of obtaining this: HT or TH.

Related events. If the events are not independent (for example, the

first event being a number in the range of 1–3 inclusive when rolling a

six-sided die and the second event being that this is an even number),

the multiplication rule also applies, but you have to multiply the prob-

ability of one event by the conditional probability of the second.

When rolling a die the independent probability of a number from 1 to

3 is 3/6 =½, and the independent probability of any even number is also

½ (the even numbers are 2, 4, or 6 divided by the six possible outcomes).

If, however, you have already rolled a number from 1 to 3, the prob-

ability of that restricted set of outcomes being an even number is 1/3
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replaced after it is drawn and the contents of the sack remixed before taking

out the next, so these are independent events.

Here are all of the possible outcomes. You may get six black beads or six

white ones (both outcomes are very unlikely); five black and one white, or

one black and five white (which is more likely); four black and two white, or

two black and fourwhite (which is evenmore likely); or three black and three

white (which is very likely because the proportion of beads in the sack is 1:1).

The probability of getting six black beads in sequence is the probability

of getting one black one (½) multiplied by itself six times, which is ½

�½�½�½�½�½=1/64.

The probability of getting six white beads is also 1/64.

The probability of five black and one white is greater because there are six

ways of getting this combination (WBBBBB or BWBBBB or BBWBBB or

BBBWBB or BBBBWB or BBBBBW) giving 6/64.

There is the same probability (6/64) of getting five white and one black.

The probability of four black and two white is even greater because there

are 15 ways of getting this combination (WWBBBB, BWWBBB, BBWWBB,

BBBWWB, BBBBWW, WBWBBB, WBBWBB, WBBBWB, WBBBBW,

BWBWBB, BWBBWB, BWBBBW, BBWBWB, BBWBBW, BBBWBW)

giving 15/64.

There is the same probability (15/64) of getting four white and two black.

Finally, the probability of three black and three white (there are 20 ways

of getting this combination) is 20/64.

You can summarise all of the outcomes as a table of probabilities

(Table 5.2).

These probabilities are shown as a histogram in Figure 5.1. Note that

the distribution is symmetrical with a peak corresponding to the cases

where half the beads will be black and half white. (Incidentally, this is

(because ‘2’ is the only even number possible in this set of three outcomes).

Therefore, the probability of both related events is ½� 1/3¼ 1/6. You

can look at this the other way – the chance of an even number when

rolling a die is ½ (you would get numbers 2, 4, or 6) and the probability

of one of these numbers being in the range from 1 to 3 is 1/3 (the

number 2 out of these three outcomes). Therefore the probability of both

is again ½� 1/3¼ 1/6.
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an example of the binomial distribution, which will be discussed in

Chapter 17.)

Therefore, if you were given a sack containing 50% black and 50% white

beads, from which you drew six, you would have a very high probability of

drawing a sample that contains beads of both colours. It is very unlikely you
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Figure 5.1 The expected numbers of each possible mixture of colours when

drawing six beads independently with replacement on 64 different occasions

from a large population containing 50% black and 50% white beads.

Table 5.2. The probabilities of obtaining all possible combinations of

black and white beads in samples of six from a large population where

there are equal numbers of black and white beads

Number of

black

Number of

white

Probability of

this outcome

Percentage of

cases likely to

give this result

6 0 1/64 1.56

5 1 6/64 9.38

4 2 15/64 23.44

3 3 20/64 31.25

2 4 15/64 23.44

1 5 6/64 9.38

0 6 1/64 1.56

Total 64/64 100%
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would get only six black or six white (the probability of each is 1/64, so the

probability of either six black or six white is the sum of these which is only

2/64, or 0.0313 or 3.13%).

5.3 What has this got to do with making a decision or

statistical testing?

The statistician Sir Ronald Fisher proposed that, if the probability of getting

this or a more extreme difference between the expected outcome (the null

hypothesis discussed in Chapter 2) and the actual outcome is less than 5%,

then it is appropriate to conclude that the difference is statistically sig-

nificant (Fisher, 1954).

There is no biological reason for the choice of 5% (which is the same as 1/20

or 0.05). It is the probability that many researchers use as a standard

‘statistical significant level’.

Using the example of the beads in the sack, if your null hypothesis

specified that there were equal numbers of black and white beads in the

population, you could do an experiment to test it by drawing out a sample

of six beads as described above. If all six were black or all were white, the

probability of either outcome (which in this case are the most extreme

departures from the expected under the null hypothesis) is only 3.13% and

would be considered statistically significant. A researcher would reject the

null hypothesis and conclude that the sample did not come from a popula-

tion containing equal numbers of black and white beads.

5.4 Making the wrong decision

If the proportions of black and white beads in the sack really were equal,

then most of the time a sample of six beads would contain both colours.

But, if the beads in the sample were all only black or all only white, a

researcher would decide the sack (the population) did not contain 50%

black and 50% white. Here they would have made the wrong decision, but

this would not happen very often (the probability of either of these out-

comes is 2/64).

The unavoidable problem with using probability to help you make a

decision is that there is always a chance of making a wrong decision and

you have no way of telling when you have done this.
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As described above, if a researcher got a sample of six of one colour, they

would decide that the population (the contents of the bag) was not 50%

black and 50% white when really it was. This mistake, where the null

hypothesis of equal numbers is inappropriately rejected, is called a Type

1 error.

There is another problem too. Sometimes an unknown population is

different to the expected (e.g. it may contain 90% white beads and 10%

black ones), but the sample taken (e.g. four white and two black) is not

significantly different to the expected outcome predicted by the hypothesis

of 50:50. In this case the researcher would decide the composition of the

population was the one expected under the null hypothesis (50:50), even

though it was not. This mistake, when the alternate hypothesis holds but is

inappropriately rejected, is called a Type 2 error.

Every time you do a statistical test you run the risk of a Type 1 or Type 2

error. There will be more discussion of these errors in Chapter 8, but they

are unavoidably associated with using probability to help you make a

decision.

5.5 Other probability levels

Sometimes, depending on the hypothesis being tested, a researcher may

decide that the ‘less than 5%’ significance level (with its 5% chance of

inappropriately rejecting the null hypothesis) is too risky.

Here is a medical example. Malaria is caused by a parasitic protozoan that

is carried by certain species of mosquito. When an infected mosquito bites a

person the protozoans are injected into the person’s bloodstream, where they

reproduce inside red blood cells. A small proportion of malarial infections

progress to cerebral malaria, where the parasite infects cells in the person’s

brain, causing severe inflammation and often death. A biomedical scientist

was asked to test a new and extremely expensive drug that was hoped to

reduce mortality in people suffering from cerebral malaria. A large experi-

ment was done, where half of cerebral malaria cases chosen at random

received the new drug and the other half did not. The survival of both groups

over the nextmonth was compared. The alternate hypothesis was, ‘There will

be increased survival of the drug-treated group compared to the control.’

Here, the prohibitive cost of the drug meant that the manufacturer had

to be very confident that it was of real use before recommending and
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marketing it. Therefore, the risk of a Type 1 error (significantly greater

survival in the experimental group compared with the control simply by

chance) when using the 5% significance level might be considered too risky.

Instead, the researcher might decide to reduce the risk of Type 1 error by

using the 1% or even 0.1% level and only recommend the drug if the

reduction in mortality was so marked that it was significant at these levels.

Here is an example of the opposite case. Before releasing any new

pharmaceutical product on the market it has to be assessed for side effects.

There were concerns that the new sunscreen ‘Bayray Blockout 2020’ might

cause an increase in pimples among frequent users. A pharmaceutical

scientist ran an experiment using 200 high-school students during their

summer holiday. Each was asked to apply Bayray Blockout 2020 to their left

cheek and the best-selling but boringly named ‘Sensible Suncare’ to their

right cheek every morning, and then spend the next hour sunbathing. After

six weeks the number of pimples per square cm on each cheek were counted

and compared. The alternate hypothesis was, ‘Bayray Blockout 2020 causes

an increase in pimple numbers compared with Sensible Suncare.’ Here, an

increase could be disastrous for sales, so the scientist decided on a signifi-

cance level of 10% rather than the conventional 5%. Even though there was

a 10% chance (double the usual risk) of a Type 1 error, the company could

not take the chance that Bayray Blockout 2020 increased the incidence of

pimples.

The most commonly used significance level is 5%, which is 0.05. If you

decide to use a different level in an analysis, the decision needs to be made,

justified, and clearly specified before the experiment is done.

For a significant result the actual probability is also important. For

example, a probability of 0.04 is not very much less than 0.05. In contrast,

a probability of 0.002 is very much less than 0.05. Therefore, even though

both are significant, the result with the lowest probability gives much

stronger evidence for rejecting the null hypothesis.

5.6 How are probability values reported?

The symbol used for the chosen significance level (e.g. 0.05) is the Greek �

(alpha). Often you will see the probability reported as P < 0.05 or P < 0.01

or P < 0.001. These mean, respectively, ‘The probability is less than 0.05’ or

‘The probability is less than 0.01’ or ‘The probability is less than 0.001.’
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N.S. means ‘not significant,’ which is when the probability is 0.05 or more

(P � 0.05). Of course, as noted above, if you have specified a significance

level of 0.05 and get a result with a probability of less than 0.001, this is far

stronger evidence for your alternate hypothesis than a result with a

probability of 0.04.

5.7 All statistical tests do the same basic thing

In the ‘beads from a sack’ example all of the possible outcomes were listed

and the probability of each was calculated directly.

Some statistical tests do this. Most, however, use a formula to produce a

number called a statistic. The probability of getting each possible value of

the statistic has been previously calculated, so you can use the formula to

get the numerical value of the statistic, look up the probability of that value

in a published set of statistical tables, and make your decision to retain the

null hypothesis if it has a probability of �0.05 or reject it if it has a

probability of<0.05. Most statistical software packages now available will

generate the probability as well as the statistic, so you do not even need a set

of tables.

5.8 A very simple example – the chi-square test for

goodness of fit

Here is an example to illustrate the concepts discussed above, using one of

the simplest statistical tests.

The chi-square test for goodness of fit compares observed ratios with

expected ratios for nominal scale data. Imagine you have done a genetics

experiment on pelt colour in guinea pigs, where you expect a 3:1 ratio of

brown to albino offspring. You have obtained 100 offspring altogether, so

you would expect the numbers in the sample to be 75 brown to 25 albino,

but you actually get 86 brown and 14 albino offspring. This difference from

the expected frequencies might be due to chance, it may be because your

null hypothesis is incorrect, or a combination of both. You need to decide

whether this result is significantly different from the one expected under

the null hypothesis.

This is the same as the concept developed in Section 5.2 when I discussed

sampling a sack of beads, except that the chi-square test for goodness of fit
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generates a statistic (a number) that allows you to easily estimate the

probability of the observed (or any greater) deviation from the expected

outcome. It is so simple you can do it on a calculator.

To calculate the value of chi-square, which is symbolised by the Greek

�2, you take each expected value away from its equivalent observed value,

square the difference, and divide this by the expected value. These separate

values (two in the case above) are added together to give the chi-square

statistic.

First, here is the chi-square statistic for an expected ratio that is the same as

the observed (observed numbers 75 brown : 25 albino; expected 75 brown :

25 albino). Therefore the two categories of data are ‘brown’ and ‘albino’:

�2 ¼ ð75� 75Þ2

75
þ ð25� 25Þ2

25
¼ 0 þ 0 ¼ 0

The value of chi-square is zero when there is no difference between the

observed and expected values.

As the difference between the observed and expected values increases, so

does the value of chi-square. Here the observed ratio is 74 and 26 (the value

of chi-square can only be a positive number because you always square the

difference between the observed and expected values):

�2 ¼ ð74� 75Þ2

75
þ ð26� 25Þ2

25
¼ 0:0533

For an observed ratio of 70:30, the chi-square statistic is:

�2 ¼ ð70� 75Þ2

75
þ ð30� 25Þ2

25
¼ 1:333

When you take samples from a population in a ‘category’ experiment you

are, by chance, unlikely to always get perfect agreement to the ratio in the

population. For example, even when the ratio in the population is 75:25,

some samples will have that ratio, but you are also likely to get 76:24, 74:26,

77:23, 73:27 etc. The range of possible outcomes among 100 offspring goes

all the way from 0:100 to 100:0. So the distribution of the chi-square

statistic generated by taking samples in two categories from a population

in which there really is a ratio of 75:25 will look like the one in Figure 5.2,

and the most unlikely 5% of outcomes will generate values of the statistic
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that will be greater than a critical value determined by the number of

independent categories in the analysis.

Going back to the result of the genetic experiment given above, the

expected numbers are 75 and 25 and the observed numbers are 86 brown

and 14 albino.

To get the value of chi-square, you calculate:

�2 ¼ ð86� 75Þ2

75
þ ð14� 25Þ2

25
¼ 6:453

The critical 5% value of chi-square for an analysis of two independent

categories is 3.841. This means that only themost extreme 5% of departures

from the expected ratio will generate a chi-square statistic greater than this

value (I have not given a table of critical values of chi-square, because

statistical packages now give both the statistic and its probability). There

will be more about the chi-square test in Chapter 17.

Since the actual value of chi-square is 6.453, the observed result is sig-

nificantly different to the result expected under the null hypothesis. The

researcher would conclude that the ratio in the population sampled is not 3:1

and therefore reject the null hypothesis.

95% of the values of the statistic 
will be between zero and the 5% 
critical value of chi-square

Frequency 
of these
outcomes
under the
null
hypothesis

5% of the values 
of the statistic will
exceed the 
5% critical value 

0

Increasingly positive value of chi-square

Figure 5.2 The distribution of the chi-square statistic generated by taking

samples from a population containing only two categories in a known ratio.

Most of the samples will have the same ratio as the expected and thus generate

a chi-square statistic of zero, but the remainder will differ from this by chance,

thus giving positive values of chi-square. The most extreme 5% departures

from the expected ratio will generate statistics greater than the critical value of

chi-square.
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5.9 What if you get a statistic with a probability

of exactly 0.05?

Many statistics texts do not mention this and students often ask, ‘What if

you get a probability of exactly 0.05?’ Here the result would be considered

not significant, since significance has been defined as a probability of less

than 0.05 (<0.05). Some texts define a significant result as one where the

probability is less than or equal to 0.05 (�0.05). In practice this will make

very little difference, but since Fisher proposed the ‘less than 0.05’ defini-

tion, which is also used by most scientific publications, it will be used here.

More importantly, many researchers would be uneasy about any result

with a probability close to 0.05 and would be likely to repeat the experiment

because it is so close to the critical value. If the null hypothesis applies, then

there is a 0.95 probability of a non-significant result on any trial, so you

would be unlikely to get a similarly marginal result when you repeated the

experiment.

5.10 Statistical significance and biological significance

It is important to realise that a statistically significant result may not

necessarily have any biological significance. Here is an example. A large

study of male college students aged 21 was used to compare the sperm

counts of 5000 coffee drinkers with 5000 non-coffee drinkers. Results

showed that the coffee drinkers had fewer viable sperm per millilitre of

semen than non-coffee drinkers and this difference was significant at

P< 0.05. Nevertheless, a follow-up study of the same males over the next

15 years showed no difference in their effective fertility, as measured by the

number of children produced by the partners of each group. Therefore, at

least in terms of fertility, the difference was not biologically significant.

If you get a significant result you need to ask yourself, ‘What does this

mean biologically?’ This is another aspect of realism, which was first

discussed in relation to experimental design in Chapter 4.

5.11 Summary and conclusion

All statistical tests are a way of obtaining the probability of a particular

outcome. This probability is either generated directly as shown in the

5.11 Summary and conclusion 55



‘beads from a sack’ example, or a test that generates a statistic (e.g. the chi-

square test) is applied to the data. A test statistic is just a number that

usually increases as the difference between an observed and expected value

(or between samples) also increases. As the value of the statistic becomes

larger and larger, the probability of an event generating that statistic gets

smaller and smaller. Once the probability of that event or one more

extreme is less than 5%, it is concluded that the outcome is statistically

significant.

A range of tests will be covered in the rest of this book, but all of them are

really just methods for obtaining the probability of an outcome that helps

youmake a decision about your hypothesis. Nevertheless, it is important to

realise that the probability of the result does not make a decision for you,

and that even a statistically significant result may not necessarily have any

biological significance – the result has to be considered in relation to the

system you are investigating.
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6 Working from samples – data,
populations, and statistics

6.1 Using a sample to infer the characteristics of a

population

Usually you cannot study the whole population, so every time you gather

data from a sample you are ‘working in the dark’ because the samplemay not

be very representative of that population. You have to take every possible

precaution, including having a good sampling design, to try to ensure a

representative sample. Unfortunately you still do not know whether it is

representative! Although it is dangerous to extrapolate to the more general

case from measurements on a subset of individuals, that is what researchers

have to do whenever they cannot work on the entire population.

This chapter discusses statistical methods for estimating the character-

istics of a population from a sample, and explains how these estimates can

be used for significance testing.

6.2 Statistical tests

Statistical tests can be divided into two groups, called parametric and non-

parametric tests. Parametric tests make certain assumptions, including

that the data fit a known distribution. In most cases this is a normal

distribution (see below). These tests are used for ratio, interval, or ordinal

scale variables. Non-parametric tests do not make so many assumptions.

There is a wide range of non-parametric tests available for ratio, interval,

ordinal, or nominal scale variables.

6.3 The normal distribution

A lot of variables, especially ‘biological’ ones, tend to be normally distrib-

uted. For example, if you measure the height of the entire adult female



population of a large city and plot the frequency of individuals against their

height, the distribution will look like a symmetrical bell, which has been

called the normal distribution (Figure 6.1).

The normal distribution has been found to apply to many physiological

variables (e.g. the number of erythrocytes per millilitre of blood, resting

heart rate, reaction time and skull diameter). It also applies to an enormous

number of other variables in nature (e.g. the maximum speed at which

people can run, the initial growth rate of colonies of the mould Aspergillus

niger on laboratory agar plates, the shell length of many species of marine

snails, the number of abalone per square kilometre of seagrass, or the

number of sap-sucking bugs per tomato plant).

The very useful thing about normally distributed variables is that two

descriptive statistics – themean and the standard deviation – can describe

this distribution. From these, you can predict the proportion of data that

will be less than or greater than a particular value. Consequently, tests that

use the properties of the normal distribution are straightforward, powerful,

and easy to apply. To use them you have to be sure your data are reasonably

‘normal’. (There are methods to assess normality and these will be

described later.)

To understand parametric tests you need to be familiar with some

statistics used to describe the normal distribution and some of its

properties.

Frequency
of each
height

0 Height (cm) 240

average

Figure 6.1 An example of a normally distributed population. The shape of

the distribution is symmetrical about the average and the majority of values

are close to the average, with an upper and lower ‘tail’ of relatively tall and

relatively short people respectively.

58 Data, populations, and statistics



6.3.1 The mean of a normally distributed population

First, the mean (the average) symbolised by the Greek � describes

the location of the centre of the normal distribution. It is the sum of all

the values (X1, X2 etc.) divided by the population size (N). The formula for

the mean is:

� ¼

PN
i ¼ 1

Xi

N
(6:1)

This formula needs some explanation. It contains some common standard

abbreviations and symbols. First, the symbol � means ‘the sum of’.

The symbol Ximeans, ‘All the X values specified by the restrictions listed

below and above the � symbol.’ The lowest value of i is specified under-

neath � (here it is 1, meaning the first value in the data set for

the population) and the highest is specified above � (here it is N, which

is the last value in the data set for the population). The horizontal line

means that the quantity above this line is divided by the quantity below.

Therefore, you add up all the values (X1 toXN) and then divide this number

by the size of the population (N).

(Some textbooks use Y instead of X. From Chapter 3 you will recall that

some data can be expressed as two-dimensional graphs with an X and Y

axis. Here I will useX and show distributions with amean on theX axis, but

later in this book you will meet cases of data that can be thought of as values

of Y with distributions on the Y axis.)

As a quick example of the calculation of a mean, here is a population

of only four snails (N¼ 4). The shell lengths in mm of these four individuals

(X1 through to X4) are 6, 7, 9, and 10, so the mean, �, is 32� 4= 8mm.

6.3.2 The variance of a population

Themean describes the location of the centre of the normal distribution, but

two populations can have the same mean but very different dispersions

around their means. For example, a population of four snails with shell

lengths of 1, 2, 9, and 10mmwill have the samemean, but greater dispersion,

than another population with shell lengths of 5, 5, 6, and 6mm.
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There are several ways of indicating dispersion. The range, which is just

the difference between the lowest and highest value in the population, is

sometimes used. However, the variance, symbolised by the Greek �2,

provides a lot of information about the normal distribution that can be

used in statistical tests.

To calculate the variance you first calculate �. Then, by subtraction, you

calculate the difference between each value (X1, . . . ,XN) and �, square these

differences (to convert each to a positive quantity) and add them together

to get the sum of the squares, which is then divided by the sample size. This

is similar to the way the average is calculated, but here you have an average

value for the dispersion.

This procedure is shown pictorially in Figure 6.2 for the population of

only four snails, with shell lengths of 6, 7, 9, and 10 cm, followed by the

formula for the variance.

The formula for the above procedure is straightforward:

�2 ¼

PN
i ¼ 1

ðXi � �Þ2

N
(6:2)

( – 1) ( + 1)

( – 2) ( + 2)

6 7 µ = 8 9 10

Differences squared : 1 4 4 1
Sum of the squared differences = 10 

Population size = 4
Population variance = (10 ÷ 4) = 2.5

Figure 6.2 Calculation of the variance of a population consisting of only four

individuals with shell lengths of 6, 7, 9, and 10 mm, each indicated by the

symbol &. The vertical line shows the mean �. Horizontal arrows show the

difference between each value and the mean. The numbers in brackets are the

magnitude of each difference, and the contents of the box show these

differences squared, their sum, and the variance obtained by dividing the sum

of the squared differences by the population size.
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If there is no dispersion at all, the variance will be zero (everyX value will be

the same and equal to �, so the top line in the equation above will be zero).

The variance will increase as the dispersion of the values about the mean

increases.

6.3.3 The standard deviation of a population

The importance of the variance is apparent when you obtain the standard

deviation, which is symbolised for a population by� and is just the square root

of the variance. For example, if the variance is 64, the standard deviation is 8.

The standard deviation is important because the mean of a normally

distributed population, plus or minus one standard deviation, includes

68.27% of the values within that population.

Even more importantly, 95% of the values in the population will be

within�1.96 standard deviations of the mean. This is especially important

since the remaining 5% of values will be outside this range and therefore

further away from the mean (Figure 6.3). Remember from Chapter 5 that

5% is the commonly used significance level.

These two statistics are all you need to describe the location and shape of

a normal distribution and can also be used to determine the proportion of

the population that is less than or more than a particular value. There is an

example in Box 6.1.

6.3.4 The Z statistic

The proportions of the normal distribution described in the previous

section can be expressed in a different and more workable way. For a

normal distribution the difference between any value and the mean,

Box 6.1 Use of the standard normal distribution

For a normally distributed population with amean height of 170 cm and

a standard deviation of 10, 95% of the individuals in that population

will have heights within the range of 170 � (1.96� 10) (which is 150.4

to 189.6 cm). You only have a 5% chance of finding someone who is

either taller than 189.6 cm or shorter than 150.4 cm.
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divided by the standard deviation, gives a ratio called the Z statistic that is

also normally distributed, with a mean of zero and a standard deviation of

1.00. This is called the standard normal distribution:

Z ¼ Xi � �

�
(6:3)

Consequently, the value of the Z statistic specifies the number of standard

deviations it is from themean. In the case of the example in Box 6.1 above, a

value of 189.6 cm is
189:6 � 170

10
¼ 1:96 standard deviations away from

the mean.

In contrast, a value of 175 cm is
175 � 170

10
¼ 0:5 standard deviations

away from the mean.

(a)

Frequency

(b)

Frequency

µ

µ

Figure 6.3 Illustration of the proportions of the values in a normally

distributed population. (a) 68.27% of values are within � 1 standard

deviation from the mean and (b) 95% of values are within � 1.96 standard

deviations from the mean. These percentages correspond to the area of the

distribution enclosed by the two vertical lines.
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Once this ratio is greater than +1.96 or less than�1.96 the probability of

obtaining that value of X is less than 5%. The Z statistic will be discussed

again later in this chapter.

6.4 Samples and populations

The equations for the mean, variance, and standard deviation given above

apply to a population – the case where you have obtained data for every

individual present. For a population the values of �, �2, and � are called

parameters or population statistics and are true values (assuming no

mistakes in measurement or calculation).

When you take a sample from a population and calculate the sample

mean, sample variance and sample standard deviation, these are true values

for that sample but are only estimates of �, �2, and �. Consequently, they

are given different symbols (the Roman �X, s2, and s respectively) and are

called sample statistics. But remember – since these statistics are only

estimates theymay not be accurate measures of the true population statistics.

6.4.1 The sample mean

First, the procedure for calculating a sample mean is the same as for

calculating the population mean, except (as mentioned above) the sample

mean is symbolised by �X because it is only an estimate of �.

The sample mean is:

�X ¼

Pn
i ¼ 1

Xi

n
(6:4)

(Note that the lower case n is used to indicate the sample size, compared

with the capital N used to indicate the population size in equation (6.1.))

6.4.2 The sample variance

When you calculate the sample variance this estimate of �2 is also likely to

be subject to error. Small sample size also introduces a consistent bias, but

this can be compensated for by a modification to equation (6.2). For a

population the variance is:
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�2 ¼

PN
i ¼ 1

ðXi � �Þ2

N
(6:5) copied from ð6:2Þ

In contrast, the sample variance is estimated using the following formula:

s2 ¼

Pn
i ¼ 1

ðXi � �XÞ2

n� 1
(6:6)

Note that the sum of squares is divided by n – 1, when you would expect

it to be divided by n. This is to reduce a bias caused by small sample size,

and which is easily explained by an example. Imagine you wanted to

estimate the population variance of the height of all adult females in a

population of 10 000 by sampling only 100. This small sample is unlikely

to include a sufficient proportion of people who are in either the upper

or lower extremes of height within that population (the really short and

really tall people), because there are relatively few of them. They will,

nevertheless, make a big contribution to the population variance because

they are so far from the mean (the value of (Xi��)2 will be a large

quantity for every one of those individuals). So the sample variance will

tend to underestimate the population variance and needs to be

corrected.

To illustrate this I ask my students to look around the lecture room and

ask themselves, ‘Are there any extremely tall or very short people present?’

(The answer so far has been, ‘No.’ One day, depending on who shows up to

my classes, I may have to choose a different variable). To make s2 the best

possible estimate of �2, you need to divide the sum of squares by n� 1, not n.

This correction will make the sample variance (and sample standard

deviation) larger.

Note that this correction will have a considerable effect when n is small

(imagine dividing by 3 instead of 4) but less effect as sample size increases

(imagine dividing by 999 instead of 1000). Less correction is needed as

sample size increases because larger samples are more likely to include

individuals from the extremes of the population you are sampling.

Here you may be thinking, ‘Why don’t I have to correct the mean in this

way as well?’ You do not have to because you are equally likely to miss out

on sampling both the positive and negative extremes in the population.
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6.5 Your sample mean may not be an accurate

estimate of the population mean

A sample mean (�X) may, or may not, be an accurate estimation of the true

population mean �. Estimates from small samples are especially likely to be

inaccurate, simply by chance.

To illustrate this, if you take a lot of samples of a certain size (n) at

random from a population and calculate themean of each sample, they are

unlikely to all be the same. Instead the sample means will be dispersed

around the population mean �.

Statisticians have shown that the distribution of these sample means is

also normal with its own mean (which is also �), variance, and standard

deviation.

The standard deviation of the distribution of sample means is an extre-

mely important statistic. It is called the standard error of the mean (or the

standard error, or abbreviated as SEM or SE) and given the symbol ��X to

distinguish it from the sample standard deviation (s) and the population

standard deviation (�). Importantly, as sample size increases the standard

error of the mean decreases and therefore the accuracy of any single

estimate of the population mean is likely to improve. This is shown in

Figure 6.4.

It is useful to know how precise your estimate (�X) of � is likely to be for a

certain sample size. When you take a lot of samples, each of size n, from a

population whose parametric statistics are known (as illustrated in Figure 6.4)

the standard error of the mean can be estimated by dividing the standard

deviation of the population by the square root of the sample size (n):

SEM ¼ ��X ¼ �ffiffiffi
n

p (6:7)

A numerical example is given in Table 6.1, which clearly illustrates that

the means of larger samples are likely to be relatively close to the popula-

tion mean.

The standard error of the mean is important because it can be used to

calculate the range within which a particular percentage of the sample

means will occur. Since the sample means are normally distributed with a

mean of �, then �� 1 SEM will include 68.27% of the sample means and

�� 1.96 SEM will include 95% of the sample means.
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(a)  n = 2

Frequency

(b) n = 20

Frequency

(c)  n = 200

Frequency

µ

µ

µ

Figure 6.4 The effect of sample size on the precision and accuracy of values

of �X as estimates of �. The heavy line shows the distribution of a population

with parametric mean �. The lighter line shows the distribution of the means

of 200 independent samples, each of which has a sample size of (a) 2, (b) 20,

and (c) 200. Note that the distribution of the means is normal with a mean of

� and that the expected range of the sample means decreases as sample size

increases. The double-headed arrow shows the range within which 95% of the

sample means are expected to occur.
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This can also be expressed as a ratio. The difference between any sample

mean �X and the population mean �, divided by the standard error of the

mean:
�X � �

��X

(6:8)

will give the Z statistic already discussed in Section 6.3.4, with a mean of zero

and a standard deviation of 1.00. As the difference between �X and � increases

the value of Z will become increasingly positive (if �X is greater than �) or

increasingly negative (if �X is less than �). Once Z is less than �1.96, or

greater than +1.96, the probability of getting that difference between the

sample mean and the known populationmean � is less than 5% (Figure 6.5).

This formula can be used to test hypotheses about the means of samples

when population parameters are known. Box 6.2 gives a worked example.

6.6 What do you do when you only have data from

one sample?

As shown above, the standard error of the mean is very important for

hypothesis testing because it can be used to predict the range around �

within which 95% of means of a certain sample size will occur.

Unfortunately, a researcher usually does not know the true values of the

population parameters � and � because they only have a sample, and

statistical decisions have to bemade from the limited information provided

Table 6.1. A numerical example of the effect of sample size on the accuracy and

precision of values of �X obtained by taking random samples of size 2, 20, or 200

from a population with a known variance of 600. As sample size increases the

values of the sample means become much closer to the population mean.

Precision improves and therefore the sample means will tend to be more

accurate estimates of �

Population parameters

Variance

� 2 �

Sample

size (n)
ffiffiffi
n

p

Standard

error of the

mean �ffiffi
n

p
� �

600 24.49 2 1.41 17.32

600 24.49 20 4.47 5.48

600 24.49 200 14.14 1.73
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by that sample. Here too, knowing the standard error of the mean would be

extremely helpful!

If you only have data from a sample, you can calculate the sample mean

(�X), the sample variance (s2) and sample standard deviation (s). These are

your best estimates of the population statistics �, �, and � 2. Therefore you

can use s to estimate the standard error of the mean by substituting s for �

in equation (6.7). This is also called the standard error of the mean and

abbreviated as ‘SEM’:

Box 6.2 Use of the Z statistic

The known population value of � is 100 and � is 36. You take a sample

of 16 individuals and obtain a sample mean of 81. What is the prob-

ability that this sample mean is the same as the population mean?

�¼ 100, �¼ 36, n¼ 16, so the
ffiffiffi
n

p ¼ 4, and the SEM ¼ �ffiffi
n

p ¼ 36
4 ¼ 9

Therefore the value of:

�X � �

SEM
is

81 � 100

9
¼ �2 �11

The ratio is outside the range of�1.96 so the probability that the sample

mean has come from a population with amean of � is less than 0.05. Thus,

the sample mean is significantly different to the population mean.

Frequency

–1.96 0 +1.96 

 

Figure 6.5 Distribution of the Z statistic (the ratio of
�X � �
SEM obtained by

taking the means of a large number of small samples from a normal

distribution). By chance 95% of the sample means will be within the range

�1.96 to +1.96 (the unshaded area), with the remaining 5% outside this range

(the two symmetrical shaded areas).
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s�X ¼ sffiffiffi
n

p (6:9)

where s is the sample standard deviation and n is the sample size. Note from

equation (6.9) that the sample SEM estimated in this way has a different

symbol to the SEM estimated from the population statistics (s�X instead

of ��X).

What does this give you? The estimate of the standard error of the mean,

made from your sample, can be used to predict the range around any

hypothetical value of �within which 95% of themeans of all samples of size

n taken from that population will occur. This is illustrated in Figure 6.6.

Therefore, in terms of making a decision about whether your sample

mean differs significantly from an expected value of �, the formula:

�X � �expected

SEM
(6:10)

corresponds to equation (6.8), but with s�X used instead of ��X as the SEM.

Here it seems logical that once this ratio is <�1.96 or >+1.96, the

difference between the sample mean and the expected value would be

considered statistically significant at the 5% level.

This is an appropriate procedure, but a correction is needed, especially

for samples of less than 100, which are very prone to sampling error and

therefore likely to give poor estimates of the population mean, standard

µ

Figure 6.6 If you only have one sample, you can calculate the standard

deviation, s, which is your only estimate of the population standard deviation

�. You can estimate the standard error of the mean of the population by

dividing the sample standard deviation by the square root of the sample size

(equation (6.9)). The lower shorter double-headed arrow shows the range

within which 95% of the means of all samples of size n taken from a

population with an hypothetical mean of � would be expected to occur.
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deviation, and standard error of the mean. For small samples the distribu-

tion of this ratio is wider and flatter than the distribution obtained by

calculating the standard error of the mean from the (known) population

standard deviation. As sample size increases the distribution gets closer and

closer to the one shown in Figure 6.5 (see Figure 6.7). Therefore equation

(6.10) is appropriate, but for small samples the range within which 95% of

the values of all means will occur is wider (e.g. for a sample size of 4 the

adjusted range within which 95% of values would be expected is from

�3.182 to +3.182). Using this correction, you can test hypotheses about

your sample mean �X without knowing the population statistics.

The shape of this wider and flatter distribution of the expected ratio for

small samples was established by W.S. Gossett who published his work

 (a) n = 4

–3.18  –1.96  +3.18

(b) n = 60

–3.18  –1.96 0 +1.96  +3.18

(c) n = ∞

–3.18  –1.96 0 +1.96  +3.18

+1.96 0

Figure 6.7 Illustration of the distribution of the t statistic obtained when the

sample statistic s is used as an estimate of � (a) for n= 4, (b) for n= 60, and

(c) n=1.
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under the pseudonym of ‘Student’ (see Student, 1908). Consequently the

distribution is often called the ‘Student’ distribution or ‘Student’s t’ dis-

tribution. Two examples of the distribution of t are shown in Figure 6.7 and

Table 6.2. As sample size increases the t statistic for an � of 0.05 decreases

and becomes closer and closer to 1.96, which is the value for a sample of

infinite size and also for the Z statistic.

6.7 Why are the statistics that describe the normal

distribution so important?

Sample statistics like themean, variance, standard deviation, and especially

the standard error of the mean are estimates of population statistics that

can be used to predict the range within which 95% of the means of a

particular sample size will occur. Knowing this, you can use a parametric

test to estimate the probability that a sample mean is the same as an

expected value, or the probability that the means of two samples are from

the same population. These tests will be described in Chapter 7.

Here you might be thinking, ‘These statistical methods have the poten-

tial to be very prone to error! My sample mean may be an inaccurate

estimate of � and then I am using the sample standard deviation (s) to

infer the standard error of the mean.’ This is true and unavoidable when

you extrapolate from only one sample, but the corrections described in this

Table 6.2. The range of the 95% confidence interval for the t statistic in relation

to sample size. (a) n=4, (b) n=60, (c) n=200, (d) n=1000, and (e) n=1.

Note that the 95% confidence interval decreases as the sample size increases

and that the value of t for a sample of infinite size is the same as the Z statistic.

Values of t were calculated using the equations given by Zelen and Severo

(1964)

Formula Statistic Sample size

95% confidence

interval

(a)
�X��
s�X

t 4 �3.182

(b)
�X��
s�X

t 60 �2.001

(c)
�X��
s�X

t 200 �1.972

(d)
�X��
s�X

t 1000 �1.962

(e)
�X��
s�X

t 1 �1.96
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chapter and knowledge of how the sample mean is likely to become a more

accurate estimate of � as sample size increases, helps ensure that the best

possible estimates are obtained.

6.8 Distributions that are not normal

Some variables do not have a normal distribution. Nevertheless, statisticians

have shown that even when a population does not have a normal distribu-

tion, if you take repeated samples of size 25 or more, the distribution of the

means of these samples will have an approximately normal distribution

with amean � and standard error of the mean
�ffiffiffi
n

p (which can be estimated by

sffiffiffi
n

p ), just as they do when the population is normal (Figure 6.8). Furthermore,

(a)

Frequency

10
X

(b) 

Frequency

10
X

µ

µ

5

5

0

0

Figure 6.8 An example of the central limit theorem. Even if a population

does not have a normal distribution, the means of samples of size 25 (or

greater) from that population will have an approximately normal distribution

with mean � and standard error of �ffiffi
n

p (which can be estimated from a sample

by sffiffi
n

p ). (a) Distribution of a population that is not normal, with mean � and

standard deviation �. (b) The distribution of the means of 200 samples, each

of n= 25 taken at random from the population shown in (a), is approximately

normal with a mean of � and standard error of �ffiffi
n

p .
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for populations that are approximately normal, this even holds for sample sizes

as small as five. This property, which is called the central limit theorem, makes

it possible to use some parametric tests on data fromnon-normal populations,

provided you have a reasonably sized sample.

For data that are grossly non-normal, and for nominal scale data, non-

parametric tests have been developed. These can be used with a wide range

of data, including normally distributed data, and will be discussed later in

this book. You have already met a non-parametric test for categorical data

in Chapter 5 when the chi-square test was used to compare the observed

and expected proportions in two categories.

6.9 Other distributions

Not all data are normally distributed. Sometimes a frequency distribution

may resemble a normal distribution and be symmetrical, but is much flatter

(Figure 6.9(b)). This type of distribution is platykurtic. In contrast, a

distribution that resembles a normal distribution but has too many values

around the mean and in the tails is leptokurtic (Figure 6.9(c)).

If the distribution is similar to a normal one but not symmetrical in that

one of the tails of the distribution extends further than the other, it is skewed.

If the upper tail is longer the distribution has a positive skew (Figure 6.9(d))

(c) (d)

(a) (b)

Figure 6.9 Distributions that are similar to the normal distribution. (a) A

normal distribution, (b) a platykurtic distribution, (c) a leptokurtic

distribution, (d) positive skew.
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and if the lower tail is longer, it has a negative skew. Other distributions

include the binomial distribution and the Poisson distribution.

The binomial distribution has already beenmentioned in Chapter 5. If a

population can be partitioned into two categories (e.g. black and white

beads in a sack), then the probability of sampling either category is 1.0 and

the probability of sampling a particular category will be its proportion in

the population (e.g. 0.5 for a population where half the beads are black and

half are white). The proportions of each of the two categories in samples

containing two or more individuals will follow a pattern called the

binomial distribution. Table 5.2 gave the expected distribution of the

proportions of two colours in samples where n¼ 6 from a population

containing 50% black and 50% white beads.

The Poisson distribution applies when you sample something by exam-

ining randomly chosen patches of a certain size, within which there is a very

low probability of finding what you are looking for, so most of your data

will have the value of zero. Here is an example. Koala bears are not common

in most parts of Queensland and you can walk through some areas of forest

for days without seeing one. If you sample a large number of randomly

chosen patches, each one square kilometre in area, you will generally record

no koalas. Sometimes, however, you will find one koala, even more rarely

two, and, very rarely indeed, three or more. This will generate a Poisson

distribution where most values are zero, a few are ‘1’ and even fewer are ‘2’

and ‘3’ etc.

6.10 Other statistics that describe a distribution

Although the mean and standard deviation are the most commonly used

descriptive statistics, there are others that describe a distribution.

6.10.1 The median

The median is the middle value of a set of data listed in order of magnitude.

For example, a sample with the values 1, 6, 3, 9, 4, 11, and 16 is ranked in

order as 1, 3, 4, 6, 9, 11, and 16, and the middle value is 6. You can calculate

the location of the value of the median using the formula:

M ¼ Xðnþ1Þ=2 (6:11)
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Which means, ‘The median is the value of X whose numbered position in

an ordered sequence corresponds to the sample size plus one, and then

divided by two.’ For the sample of seven listed above themedian is the fourth

value, X4, which is 6. For even-sized samples the median will lie between two

values (e.g. X5.5) in which case it is the average of the value below (X5) and

above it (X6). The procedure becomes more complex when there are tied

values, but most statistical packages will calculate the median of a set of data.

6.10.2 The mode

The mode is defined as the most frequently occurring value in a set of data,

so a normal distribution has only one mode. Sometimes, however, a

distribution may have two or more clearly separated peaks in which case

it is bimodal or multimodal respectively (Figure 6.10).

6.10.3 The range

The range is the difference between the largest and smallest value in a

sample or population. The range of the set of data in Section 6.10.1 is

16� 1¼ 15.

6.11 Conclusion

The mean and the standard deviation are sufficient to describe the shape of

a normal distribution. The sample statistics �X and s provide estimates of the

population statistics � and �. Importantly, the distribution of the means of

samples from a normal population is also normal, with a mean of � and

a standard error of
�ffiffiffi
n

p that can be estimated from a sample of two or more

(a) (b)

Figure 6.10 (a) A unimodal distribution. (b) A bimodal distribution.

6.11 Conclusion 75



by
sffiffiffi
n

p . This allows you to use the properties of the normal distribution to

predict the range around �X (your best and only estimate of �) within which

95% (or 99% or 99.9% if required) of the means of all samples of size n

taken from that population will occur.

Even more importantly, when the population of the variable you have

measured is not normally distributed, the distribution of the means of

samples of about 25 or more will be approximately normal, with a mean of

� and a standard error of
�ffiffiffi
n

p . This also provides a way of predicting the

range of values within which there is a 95% probability that any sample

mean of size n will occur. In the next chapter some very straightforward

tests that use this property of the normal distribution of sample means will

be described.
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7 Normal distributions – tests for
comparing the means of one
and two samples

7.1 Introduction

Sample statistics such as �X and s are only estimates of population statistics

but it is still possible to use these to make statistical decisions. First, as

sample size increases, sample statistics are likely to become increasingly

accurate estimates of population statistics. Second, as described in Chapter

6, the distribution of the means of samples of a particular size (n) taken

from a normal population with population statistics of � and � will also be

normal, with a mean of � and a standard error of the mean of sffiffi
n

p that can be

estimated from a sample by sffiffi
n

p . Even more usefully, provided you have a

sample size of about 25 or more, these properties of the distribution of

samplemeans apply even when the population they have been taken from is

not normal, provided it is not grossly non-normal (e.g. a distribution

which is bimodal). Therefore, you can often use a parametric test to

make decisions about sample means even when the population you have

sampled is not normally distributed.

In this chapter these concepts are used to describe how some parametric

tests for comparing the means of one and two samples actually work. The

first test is for comparing a single sample mean to a known population

mean. The second is for comparing a single sample mean to an hypothe-

sised value. These are followed by tests for comparing the means of two

samples.

7.2 The 95% confidence interval and 95% confidence

limits

In Chapter 6 it was discussed how 95% of the means of samples size n,

taken from a population with a known � and �, would be expected to



occur within the range of �� 1.96� SEM. This range is called the

95% confidence interval, and the actual numbers that show the limits

of that range (�� 1.96� SEM) are called the 95% confidence limits.

If you only have data for one sample of size n, then the sample standard

deviation s is your best estimate of � and it can be used with the

appropriate t statistic to calculate the 95% confidence interval for an

expected or hypothesised value of �. You have to use the formula

�expected� t� SEM because the population statistics are not known.

This formula will give a wider confidence interval than if population

statistics are known because the value of t for a finite sample size is always

greater than 1.96, especially for small samples (Chapter 6).

7.3 Using the Z statistic to compare a sample mean

and population mean when population

statistics are known

This test uses the Z statistic to give the probability that a sample mean

has been taken from a population with a known mean and standard

deviation. From the population statistics � and � you can calculate the

expected standard error of the mean sffiffi
n

p
� �

for a sample of size of n

and therefore the 95% confidence interval (Figure 7.1), which is the

range within �� 1.96� SEM. If your sample mean, �X, occurs within

this range, the probability it has come from the population with mean

� is 0.05 or greater, so the mean of the population from which the

sample has been taken is not significantly different to the known

population mean. If, however, your sample mean occurs outside the

confidence interval, the probability it has been taken from the popula-

tion of mean � is less than 0.05, so the mean of the population from

which the sample has been taken is significantly different to the

known population mean �.

This is a very straightforward test (Figure 7.1). If you decide on a

probability level other than 0.05, you simply need to use a different value

than 1.96 (e.g. for the 99% confidence interval you would use 2.576).

Although you could calculate the 95% confidence limits every time

you made this type of comparison, it is far easier to calculate the ratio

Z ¼ �X��
SEM as described in Section 6.3.4. All this formula does is divide the

distance between the sample mean and the known population mean by
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the standard error, so, once the value of Z is <�1.96 or >+1.96, the

mean of the population from which the sample has been taken is con-

sidered significantly different to the known population mean, assuming

an � of 0.05.

Here you may be wondering if a population mean could ever be

known, apart from small populations where every individual has been

censused. Sometimes, however, researchers have so many data for a

particular variable that they consider the sample statistics indicate the

true values of population statistics. For example, many physiological

variables such as the number of red (or white) blood cells per ml, fasting

blood glucose levels, and resting body temperature have been measured

on several million healthy people. This sample is so large it can be

considered to give extremely accurate estimates of the population statis-

tics. Remember, as sample size increases, �X becomes closer and closer to

the true population mean and the correction of n� 1 used to calculate the

standard deviation also becomes less and less important. There is an

example of the comparison between a sample mean and a ‘known’

population mean in Box 7.1.

Frequency

µ

(–1.96 × SEM) (+ 1.96 × SEM)

Figure 7.1 The 95% confidence interval, obtained by taking the means of a

large number of small samples from a normally distributed population with

known statistics, is indicated by the horizontal distance enclosed within

�� 1.96 SEM. The remaining 5% of sample means are expected to be further

away from �. Therefore, a sample mean that lies inside the confidence

interval will be considered to have come from the population with a mean of

�, while a sample mean that lies outside the 95% confidence interval will be

considered to have come from a population with a mean significantly

different to �, assuming an � of 0.05.
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Box 7.1 Comparison between a sample mean and a known

population mean where population parameters are known

The mean number of white blood cells per ml of blood in healthy adults

is 7500 per ml, with a standard deviation of 1250. These statistics are

from a sample of over one million people and are therefore considered

to be the population statistics � and �.

Ten astronauts who had spent six months in space had their white cell

counts measured as soon as they returned to Earth. The data are shown

below. What is the probability that the sample mean �X has been taken

from the healthy population?

The white cell counts are: 7130, 6845, 7055, 7235, 7200, 7450, 7750,

7950, 7340, and 7150 cells/ml.

The population statistics for healthy human adults are �= 7500 and

�= 1250

The sample size n¼ 10

The sample mean �X ¼ 7310.5

The standard error of the mean ¼ sffiffi
n

p ¼ 1;250ffiffiffiffi
10

p ¼ 395:3

Therefore, 1.96� SEM¼ 1.96� 395.3¼ 774.76 and the 95% confi-

dence interval for the means of samples of n¼ 10 is 7500� 774.76,

which is from 6725.24 to 8274.76.

Since the mean white cell count of the ten astronauts lies within the

range in which 95% of means with n¼ 10 would be expected to occur by

chance, the probability that the sample mean has come from the healthy

population with mean � is not significant.

Expressed as a formula:

Z ¼
�X � �

SEM
¼ 7310:5� 7500

395:3
¼ �189:5

395:3
¼ �0:4794

Here too, since the Z value lies within the range of � 1.96, the mean of

the population from which the sample has been taken does not differ

significantly from the mean of the healthy population. (The negative

value is caused by the sample mean being less than the population

mean.)
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7.4 Comparing a sample mean with an expected value

The single sample t test compares a single sample mean to an expected

value of the population mean. When population statistics are not known,

the sample standard deviation s is your best and only estimate of � for the

population from which it has been taken. You can still use the 95%

confidence interval of the mean, estimated from the sample standard

deviation, and the t statistic described in Chapter 6 to predict the range

around an expected value of �within which 95% of the means of samples

of size n taken from that population will occur. Here too, once the

sample mean lies outside the 95% confidence interval, the probability

of it being from a population with a mean of �expected is less than 0.05

(Figure 7.2).

Expressed as a formula, as soon as the ratio of t ¼ �X��expected

SEM is less than

the critical 5% value of �t or greater than +t, then the sample mean is

considered to have come from a population with a mean significantly

different to �expected.

Frequency

µ expected

(–t × SEM ) (+t × SEM)

Figure 7.2 The 95% confidence interval, estimated from one sample of size n

by using the t statistic, is indicated by the horizontal distance enclosed within

�� t� SEM. Therefore, 5% of the means of samples size n from the

population would be expected to lie outside this range. If �X lies inside the

confidence interval, it will be considered to have come from a population

with a mean the same as �expected, but if it lies outside the confidence interval,

it will be considered to have come from a population with a significantly

different mean, assuming an � of 0.05.
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7.4.1 Degrees of freedom and looking up the appropriate

critical value of t

The appropriate critical value of t for a sample is easily found in tables of

this statistic, which are in most statistical texts. Table 7.1 gives a selection of

values as an example. First, you need to look for the chosen probability level

along the top line labelled as �(2). (There will shortly be an explanation for

the column heading �(1).) Here I am using an � of 0.05 and the column

giving these critical values is shown in bold.

The column on the left gives the number of degrees of freedom, which

needs explanation. If you have a sample of size n and the mean of this

sample is a specified value, then all of the data within the sample except

Table 7.1. Critical values of the distribution of t. The column on the far left

gives the number of degrees of freedom (v). The remaining columns give the

critical value of t. For example, the third column, shown in bold and headed

�(2) =0.05, gives the 5% critical values. Note that the 5% probability value of t

for a sample of infinite size (the last row) is 1.96 and thus equal to the 5%

probability value for the Z distribution. Critical values were calculated using the

methods given by Zelen and Severo (1964)

Degrees of

freedom v

�(2) = 0.10 or

�(1) = 0.05

a(2) = 0.05 or

a(1) = 0.025

�(2) = 0.02 or

�(1) = 0.01

�(2) = 0.01 or

�(1) = 0.005

1 6.314 12.706 31.821 63.657

2 2.920 4.303 6.965 9.925

3 2.353 3.182 4.541 5.841

4 2.132 2.776 3.747 4.604

5 2.015 2.571 3.365 4.032

6 1.943 2.447 3.143 3.707

7 1.895 2.365 2.998 3.499

8 1.860 2.306 2.896 3.355

9 1.833 2.262 2.821 3.250

10 1.812 2.228 2.764 3.169

15 1.753 2.131 2.602 2.947

30 1.697 2.042 2.457 2.750

50 1.676 2.009 2.403 2.678

100 1.660 1.984 2.364 2.626

1000 1.646 1.962 2.330 2.581

1 1.645 1.96 2.326 2.576
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one are free to be any number at all, but the final one is fixed because the

sum of the data in the sample divided by n must equal the mean.

Here is an example. If you have a specified sample mean of 4.25 and

n¼ 2, then the first value in the sample is free to be any value at all, but the

second must be one that gives a mean of 4.25, so it is a fixed number. Thus,

the number of degrees of freedom for a sample of n¼ 2 are 1. For n¼ 100

and a specified mean (e.g. 4.25), 99 of the values are free to vary, but the

final value is also determined by the requirement for the mean to be 4.25.

Therefore the number of degrees of freedom are 99.

The number of degrees of freedom determines the critical value of the t

statistic. For a single sample t test, if your sample size is n, then you need to

use the t value that has n� 1 degrees of freedom. Therefore, for a sample

size of 10, the degrees of freedom are 9 and the critical value of the t statistic

for an � of 0.05 is 2.262 (Table 7.1). If your calculated value of t is less than

�2.262 or more than 2.262, the expected probability of that outcome is

<0.05. From now on, the appropriate t value will have a subscript to show

the degrees of freedom (e.g. t7 indicates 7 degrees of freedom).

7.4.2 One-tailed and two-tailed tests

All of the alternate hypotheses dealt with so far in this chapter do not

specify anything other than, ‘The mean of the population from which the

sample has been drawn is different to an expected value’ or ‘The two

samples are from populations with different means.’ Therefore, these are

two-tailed hypotheses because nothing is specified about the direction of

the difference. The null hypothesis could be rejected by a difference in

either a positive or negative direction.

Sometimes, however, youmay have an alternate hypothesis that specifies

a direction. For example, ‘The mean of the population from which the

sample has been taken is greater than an expected value’ or ‘The mean of

the population from which sample A has been taken is less than the mean

of the population from which sample B has been taken.’ These are called

one-tailed hypotheses.

If you have an alternate hypothesis that is directional, the null hypothesis

will not just be one of no difference. For example, if the alternate hypothesis

states that the mean of the population from which the sample has been

taken will be less than an expected value, then the null should state, ‘The
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mean of the population from which the sample has been taken will be no

different to, or more, than the expected value.’

Youneed tobe cautious, however, because adirectional hypothesiswill affect

the location of the region where the most extreme 5% of outcomes will occur.

Here is an example using a single sample testwhere the true populationmean is

known. For any two-tailed hypothesis the 5% rejection region is split equally

into two areas of 2.5% on the negative and positive side of � (Figure 7.3(a)).

If, however, the hypothesis specifies that your sample is from a popula-

tion with a mean that is expected to be only greater (or only less) than the

true value, then in each case themost extreme 5% of possible outcomes that

you would be interested in are restricted to one side or one tail of the

distribution (Figure 7.3(b)).

Therefore, if you have a one-tailed hypothesis, you need to do two things

to make sure you make an appropriate decision.

(a) 

Frequency
2.5% of outcomes will be
each side of the mean

(b) 

Frequency
5% of outcomes will be
on the positive side of the mean

µ

µ

Figure 7.3 The distribution of the 5% of most extreme outcomes under a two-

tailed hypothesis and a one-tailed hypothesis specifying that the expected value

of themean is larger than�. (a) The rejection regions for a two-tailed hypothesis

are on both the positive and negative sides of the true populationmean. (b) The

rejection region for a one-tailed hypothesis occurs only on one side of the true

population mean. Here it is on the right side because the hypothesis specifies

that the sample mean is taken from a population with a larger mean than �.
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First, you need to examine your results to see if the difference is in the

direction expected under the alternate hypothesis. If it is not, then the

value of the t statistic is irrelevant – the null hypothesis will stand and the

alternate hypothesis will be rejected (Figure 7.4).

Second, if the difference is in the appropriate direction, you need to

choose an appropriate critical value to ensure that 5% of outcomes are

concentrated in one tail of the expected distribution. This is easy. For the Z

or t statistics the critical two-tailed probability of 5% is not appropriate for

a one-tailed test, because it only specifies the region where 2.5% of the

values will occur in each tail. So, to get the critical 5% value for a one-tailed

test, you would need to use the 10% critical value for a two-tailed test. This

is why the column headed �(2)¼ 0.10 in Table 7.1 also includes the head-

ing �(1)¼ 0.05, and you would need to use the critical values in this

column if you were doing a one-tailed test.

It is important to specify your null and alternate hypotheses, and there-

fore decide whether a one-or two-tailed test is appropriate, before you do

an experiment, because the critical values are different. For example, for an

� of 0.05, the two-tailed critical value for t10 is � 2.228 (Table 7.1), but, if

the test were one-tailed, the critical value would be either +1.812 or

�1.812. So a t value of 2.0 in the correct direction would be significant

for a one-tailed test but not for a two-tailed test (Figure 7.5).

Many statistical packages only give the calculated value of t (not the

critical value) and its probability for a two-tailed test. In this case, however,

it is even easier to obtain the one-tailed probability and you do not even

Frequency

Sample
mean

Only reject the null if the sample
mean falls in this region

X

µ

Figure 7.4 An example of the rejection region for a one-tailed test. If the

alternate hypothesis states that the sample mean will be more than � , then

the null hypothesis is retained unless the sample mean lies in the region to the

right, where the most extreme 5% of values would be expected to occur.
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need a table of critical values such as Table 7.1. All you have to do is halve

the two-tailed probability to get the appropriate one-tailed probability

(e.g. a two-tailed probability of P¼ 0.08 is equivalent to P¼ 0.04, provided

the difference is in the right direction).

If your hypothesis is one-tailed, it is appropriate to do a one-tailed test.

There have, however, been cases of unscrupulous researchers who have

obtained a result with a non-significant two-tailed probability (e.g.

P¼ 0.065) but have then realised this would be significant if a one-tailed test

were applied (P¼ 0.0325) and have subsequentlymodified their initial hypoth-

esis. This is not appropriate or ethical and will be discussed in Chapter 20.

7.4.3 The application of a single sample t test

Here is an example where you might use a single sample t test. Many

agricultural crops such as wheat and barley have an optimal water content

(a) 

Frequency

(b) 

Frequency

µ

µ

Figure 7.5 The critical value for a 5% one-tailed test is the same as the critical

value for a 10% two-tailed test, except that it will be in only one tail of the

distribution. (a) A two-tailed test using the 5% probability level will have a

rejection region of 2.5% on both the positive and negative sides of the known

population mean. The positive and negative of the critical value will define the

region where the null hypothesis is rejected. (b) A one-tailed test using the 5%

probability level will have a rejection region of 5% on only one side of the

populationmean. Therefore the 5%critical valuewill correspond to the value for

a 10% two-tailed test, except that it will be only be either the positive or negative

of the critical value, depending on the direction of the alternate hypothesis.

86 Normal distributions



for harvesting by machine. If the crop is too dry, the seed heads may shatter

and be damaged, thereby reducing their value. If it is too wet, the crop may

clog and damage the harvester.

The optimal desired mean water content at harvest of the rather dubious

sounding crop ‘Panama Gold’ is 50 g/kg. Many growers sample their crop

to establish whether the water content is significantly different to a desired

value before making a decision to harvest.

A grower took nine 1.0 kilogram replicates at random over a widely

dispersed area of their crop of Panama Gold and measured the water

content of each. The data are given in Box 7.2. Is the sample likely to

have come from a population where �¼ 50 g/kg? The calculations are

straightforward. If you analyse these data using a statistical package, the

results will usually include the value of the t statistic and the probability,

making it unnecessary to use a table of critical values.

Box 7.2 Comparison between a sample mean and an expected

value when population statistics are not known

Thewater content of nine 1 kg replicates of PanamaGold taken at random

from within a large field is 44, 42, 43, 49, 43, 47, 45, 46, and 43 g/kg.

The null hypothesis is that this sample is from a population with a

mean water content of 50 g/kg.

The alternate hypothesis is that this sample is from a population with

a mean water content that is not 50 g/kg.

The mean of this sample is: 44.67

The standard deviation s= 2.29

The standard error of the mean is sffiffi
n

p ¼ 2:29
3 ¼ 0:764

Therefore t8¼
�X��expected

SEM ¼ 44:67�50
0:764 ¼ �6:98

Although the mean of the sample is less than the desired mean value

of 50, is the difference significant? The calculated value of t8 is �6.98.

The critical value of t8 for an � of 0.05 is�2.306 (Table 7.1). Therefore,

the probability that the sample mean has been taken from a population

with a mean water content of 50g/kg is <0.05. The grower concluded

that the mean moisture content of the crop was significantly different to

that of a population with a mean of 50 g/kg.
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7.5 Comparing the means of two related samples

The paired sample t test is designed for cases where you have measured the

same variable twice on each experimental unit under two different condi-

tions. Some common applications of this type of comparison are measure-

ments taken before and after drug treatments, and performance tests on

athletes. Here is an example.

A sports psychologist hypothesised that athletes may perform either more

or less efficiently than usual when they are first introduced to unfamiliar

surroundings. They called this the ‘familiarity effect’. For example, when

sprinters are taken to an unfamiliar stadium it was feared theymay run either

faster or slower on the first day compared with the second. The familiarity

effect is thought to be small, but could make the difference between achieving

a world record or winning a race. There is, however, a lot of variation in

running speed among individuals, so a comparison of two independent

groups of different athletes might obscure any difference in speed between

the first and second days. Instead, the psychologist decided to measure the

running time of the same ten athletes over a fixed distance on the first and

second day after arriving at a new stadium. The results are shown in Table 7.2.

Here the two groups are not independent because the same individuals are

in each group. Nevertheless, you can generate a single independent value for

each individual by taking their ‘Day 1’ reading away from the ‘Day 2’ reading.

This will give a single column of differences for the ten experimental subjects,

which will have its own mean and standard deviation (Table 7.2).

The null hypothesis is that there is no difference between the running

times of each athlete on both days. Therefore, if the null hypothesis were

true, you would expect the population of values for the difference for each

athlete to have a mean of zero, and a standard error that can be estimated

from the sample of differences by sffiffi
n

p . This is just another case of a single

sample t test (Section 7.4), but here the expected population mean is

zero. Consequently, all you need to do is calculate the ratio of
�X�0
SEM and see

if this statistic lies within or outside the region where 95% of the means of

this sample size would be expected to occur around a population mean of

zero. This has been done in Box 7.3.

Interestingly, the athletes took longer to run the same distance on the

second day. Although this is a poor experimental design in that many other

factors (including fatigue, differences in air temperature or wind speed)
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Table 7.2. The time taken, in seconds, for ten athletes to sprint the

same distance on their first and second day of running in an unfamiliar

environment. The column headed ‘Difference’ gives the race time for

Day 2 minus Day 1 for each athlete, and the sample statistics are for

this column of data

Race time (seconds)

Athlete number Day 1 Day 2 Difference

1 13.5 13.6 + 0.1

2 14.6 14.6 0.0

3 12.7 12.6 � 0.1

4 15.5 15.7 + 0.2

5 11.1 11.1 0.0

6 16.4 16.6 + 0.2

7 13.2 13.2 0.0

8 19.3 19.5 + 0.2

9 16.7 16.8 + 0.1

10 18.4 18.7 + 0.3
�X= 0.100

s= 0.1247

n= 10

SEM=0.0394

Box 7.3 A worked example of a paired sample t test using the

data from Table 7.2

�X¼ 0.100

s ¼ 0.12472

n ¼ 10

SEM¼ 0.0394

Therefore t9 ¼ 0:10�0
0:03944 ¼ 2:5355

From Table 7.1 the critical value of t9 is 2.262. Therefore the value of t

lies outside the range within which you would expect 95% of t statistics

generated by samples of n¼ 9 from a population where �¼ 0, so it was

concluded that the mean of the population of the differences in race

time was significantly different (P< 0.05) to an expected mean of zero.
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may have confounded the results, it is consistent with the alternate hypoth-

esis and is likely to lead to further investigation.

7.6 Comparing the means of two independent samples

Often you will need to compare the means of two independent samples.

This type of comparison is particularly common when you have two

randomly chosen independent samples such as a control and an experi-

mental group, each containing different experimental units. Here the

question is, ‘Have the two sample means been drawn from populations

with the same mean �?’

It is easy to visualise this pictorially. Under the null hypothesis, each

sample is from the same population, so 95% of the time you would expect

the two sample means to lie within the 95% confidence interval surround-

ing �. Here, however, you are interested in the range of possible differ-

ences between two values of �X, which will be much wider than the

confidence interval for each sample, because there will be cases where one

mean is at the lower end of the expected range and the other at the higher

end and vice versa (Figure 7.6).

To obtain a t statistic for the difference between two independent sample

means you simply need to divide �XA � �XB by the standard error of the

distribution of differences shown in Figure 7.6(b). The latter is easy to

estimate because the variance of the difference between the means of two

independent samples is the sum of the variances of these samples:

S2A�B ¼ S2A þ S2B (7:1)

This is consistent with the much greater variance in Figure 7.6(b)

compared with Figure 7.6(a). Since the SEM from a sample is
ffiffiffi
s2

n

q
, in

order to get the best estimate of the standard error of �XA � �XB you use the

following formula, which is just the square root of the variance of sample A

divided by the sample size of A plus the variance of sample B divided by

the sample size of B:

SEM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A
nA

þ s2B
nB

s
(7:2)

Finally, to obtain the t statistic for the differences between the twomeans

you divide �XA � �XB by this estimate of the SEM:
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(a) 

Frequency

XA

XB

(b) 

Frequency

0

XA
 – XB

µ

Figure 7.6 Illustration of the comparison made by an independent sample t

test. (a) The upper graph shows the range, indicated by the double-headed

arrows, within which 95% of the values of means of samples size n, from a

population with a mean �, are expected to occur. (b) The lower graph shows

the expected distribution of the differences ð�XA � �XBÞ between any two

sample means of size n from that population. The distribution of differences

will have a mean of zero (when both �XA and �XB are equal) and a much greater

dispersion than in (a), because there will be cases where �XA is at the low end of

the range and �XB is at the high end of the range (giving large negative values)

and vice versa (giving large positive values). The double-headed arrow shows

the 95% confidence interval for �XA � �XB. Note that it is much wider than the

95% confidence interval for the sample means shown in (a).
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t ¼
�XA � �XBffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
A

nA
þ S2B

nB

r (7:3)

Here the number of degrees of freedom is (n(A)� 1) + (n(B)� 1), which

is usually put as (n(A)+ n(B)� 2). This is because you have calculated the

standard error using two independent samples, both of which have n� 1

degrees of freedom. You have lost a degree of freedom from each sample.

A worked example is given in Box 7.4.

You may never have to manually calculate a t statistic, because statistical

packages have excellent programs for doing them. But the simple worked

examples in this chapter will help you understand how t tests work and will

be very helpful as you continue through this book.

7.7 Are your data appropriate for a t test?

The use of a t test makes three assumptions. The first is that the data are

normally distributed. The second is that each sample has been taken at

Box 7.4 A worked example of a t test for two independent

samples

A freshwater ecologist sampled the shell length of 15 freshwater clams in

each of two lakes to see if these samples were likely to have come from

populations with the same mean. The data are shown below:

Lake A: 25, 40, 34, 37, 38, 35, 29, 32, 35, 44, 27, 33, 37, 38, 36

Lake B: 45, 37, 36, 38, 49, 47, 32, 41, 38, 45, 33, 39, 46, 47, 40

nA¼ 15, nB¼ 15, �XA ¼ 34:67, �XB ¼ 40:87, s2A ¼ 24:67, s2B ¼ 28:69

therefore

t28 ¼
34:67� 40:87ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24:67
15 þ 28:69

15

q ¼ �6:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:645þ 1:913

p ¼ �3:287

Note that the value of t is negative, because the mean for Lake B is

greater than Lake A.

The critical value of t28 for an� of 0.05 is 2.048, so the two samplemeans

have a less than 5% probability of being from the same population.
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random from its respective population and the third is that for an inde-

pendent sample test, the variances are the same.

It has, however, been shown that t tests are actually very ‘robust’ – that is,

they will still generate statistics that approximate the t distribution and give

realistic probabilities even when the data show considerable departure

from normality and when sample variances are dissimilar.

7.7.1 Assessing normality

First, if you already know that the population from which your sample has

been taken is normally distributed (perhaps you have data for a variable

that has been studied before), you can assume the distribution of sample

means from this population will also be normally distributed.

Second, the central limit theorem discussed in Chapter 6 states that the

distribution of the means of samples of about 25 or more taken from any

population will be approximately normal, provided the population is not

grossly non-normal (e.g. a population that is bimodal). Therefore, provided

your sample size is sufficiently large you can usually do a parametric test.

Finally, you can examine your sample. Although there are statistical tests

for normality, many statisticians (see Quinn and Keough, 2002) have

cautioned that these tests often indicate the sample is significantly non-

normal even when a t test will still give reliable results.

Some authors (e.g. Zar, 1999, Quinn and Keough, 2002) suggest plotting

the cumulative frequency distribution of the sample. The easiest way to do

this is to use a statistics package to give you a probability plot (often called a

P-P plot). This graphs the actual cumulative frequency against the expected

cumulative frequency assuming the data are normally distributed. If they

are, the P-P plot will be a straight line. Any gross departures from this

should be analysed cautiously and perhaps a non-parametric test used.

Most statistical packages will draw a P-P plot for a sample.

7.7.2 Have the sample(s) been taken at random?

This is really just a case of having an appropriate experimental design. For a

single sample test, the sample needs to have been selected at random in

order to appropriately represent the population from which it has been

7.7 Are your data appropriate for a t test? 93



taken. For an independent sample test, both samples need to have been

selected at random.

7.7.3 Are the sample variances equal?

One easy test of whether sample variances are equal is to divide the largest

by the smallest. If the samples have equal variances, this ratio will be 1.00.

As the variances become more and more unequal, the value of this statistic,

which is called the F statistic or F ratio after the statistician Sir Ronald A.

Fisher, will increase. There will be discussion of F and tests for equality of

variances in Chapters 9 and 11. Even if the variances of two samples are

significantly different, you can often still apply a t test.

7.8 Distinguishing between data that should be analysed by

a paired sample test or a test for two independent

samples

As a researcher, or reviewer of another person’s work, you may have to

decide if an experimental outcome should be analysed as a paired sample

test or a test for two independent samples. The way to do this is to ask, ‘Are

the experimental units in the two samples related or are they independent?’

Here are some examples.

First, Table 7.3 shows two samples that are related – two measurements

of systolic blood pressure on eachmember of the same group of four people

given two different drugs.

Each experimental unit (person) in Table 7.3 experiences both drugs, so

you would do a paired-sample test.

Table 7.3. Data for the systolic blood pressure of four people in

response to Drug A and Drug B

Person Drug A Drug B

1 120 130

2 150 140

3 170 150

4 110 120
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An independent example is to measure blood pressure of two different

groups of individuals, with each group receiving a different drug.

Experimental units 1 to 4 only receive Drug A, while units 5 to 8 only

receive Drug B (Table 7.4).

The samples are obviously independent. You would do an independent

sample test.

7.9 Conclusion

This chapter explains how the Z test and t tests for one and two samples

actually work. The concepts will help you make decisions about which test

to use for a particular set of data and also be very useful when you work

through the material in later chapters. They will also help you understand

the results given by statistical packages.

Table 7.4. Data for the systolic blood pressure of four people

given Drug A and four people given Drug B

Person Drug A Drug B

1 120

2 150

3 160

4 130

5 135

6 160

7 120

8 140
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8 Type 1 and Type 2 errors, power, and
sample size

8.1 Introduction

Every time you make a decision based on the probability of a particular

result, there is a risk that your decision is wrong. There are two sorts of

mistakes you can make and these are called Type 1 error and Type 2

error.

8.2 Type 1 error

A Type 1 error or false positive occurs when you decide the null hypothesis

is false when in reality it is not. Imagine you took a sample of size n from a

population with known statistics of � and � and subjected this sample to a

particular experimental treatment. Since the population statistics are

known, you could test whether this sample mean was significantly different

to the population mean by doing a Z test (Section 7.3).

If the treatment had no effect, the null hypothesis would apply and your

sample would simply be equivalent to one drawn at random from the

population. Nevertheless, 5% of the sample means of size n will lie outside

the 95% confidence interval of �� 1.96. Therefore, 5% of the time you

would incorrectly reject the null hypothesis of no difference between your

sample mean and the population mean (Figure 8.1) and accept the alter-

nate hypothesis. This is a Type 1 error.

It is important to realise that Type 1 error can only occur when the

null hypothesis applies. There is absolutely no risk if the null hypothesis

is false.Unfortunately, you are most unlikely to know if the null hypothesis

applies or not – if you did know, you would not be doing an experiment to

test it! If the null hypothesis applies, the risk of Type 1 error is the same as

the probability level you have chosen.



Here, therefore, you may be thinking, ‘Then why do we usually set � at

0.05? Surely an � of 0.01 or 0.001 would reduce the risk of Type 1 error?’ It

will, but it will affect the likelihood of Type 2 error.

8.3 Type 2 error

A Type 2 error or false negative occurs when you do not reject the null

hypothesis, even though it is false. For the example above, this would occur

when the treatment had a real effect but your experiment and analysis did

not detect it.

Here is an example, using a single sample, two-tailed Z test where the

population statistics are known.

8.3.1 A worked example showing Type 2 error

The population mean and variance of the number of white blood cells per

millilitre in blood from healthy adults is 7500, with a standard deviation of

7500

µ

Figure 8.1 Illustration of Type 1 error. The known population mean is

7500 and the 95% confidence interval for the mean is shown as the

double-headed horizontal arrow. There is no effect of treatment, so the

distribution of sample means from the experimental population will be the

same as those from the untreated population. Nevertheless, 5% of your

sample means will, by chance, lie in the shaded areas outside the 95%

confidence interval. Whenever a sample mean occurs in either of these areas

you will incorrectly reject the null hypothesis and make a Type 1 error. This

risk is unavoidable when the null hypothesis applies, but can be controlled by

the chosen value of �. An � of 0.05 will have a 5% probability of Type 1 error,

but an � of 0.01 will only have a 1% probability of Type 1 error.
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1250. These statistics are from more than a million people, so are consid-

ered to be the population statistics � and �. They were first used in Box 7.1.

Here you need to imagine the casewhere the new anduntested experimental

drug ‘leucoxifen’ actually causes an average increase in white blood cells of 700

per ml, so the mean of the population given leucoxifen is 700 cells/ml more

than the mean of the healthy population. This change is often called the effect

size of the treatment. Since leucoxifen is a new drug it is not known if there is

an effect size or not. A researcher was asked to investigate this drug, so they

administered it to a sample of several healthy people and then compared the

mean white cell count of this sample with the known population (Figure 8.2).

First, consider the case where you take a sample of n= 5 from both

populations. The expected standard error of the mean will be
�
ffiffiffi

n
p ¼ 1250

ffiffiffi

5
p ¼ 559:02. Therefore, the range around � within which you

would expect 95% of sample means from the untreated population to

occur would be �� 1.96� SEM, which is 7500� (1.96� 559.02) and thus

7500� 1095.67, giving a range from 6404.33 to 8595.67.

With an effect size of 700, the range around � (treated) within which you

would expect 95% of sample means from the experimental population is

8200� 1095.67, which is from 7104.33 to 9295.67.

These two ranges are shown in Figure 8.3(a). Importantly, they overlap

considerably, with most of the means of samples from the treated

population falling within the expected range of the means of samples

from the untreated population. Therefore, if you were to treat five people

with leucoxifen, there is a very high probability that your sample mean

from the treatment group will fall within the 95% confidence interval of the

untreated population and thus would not be considered significantly

different to �. Even though there is a real effect of this drug, your sample

Effect size = 700

7500 8200
µ µ (treated)

Figure 8.2 The concept of effect size displacing the population mean.

The populationmean, �, is 7500 white blood cells/ml, but the drug leucoxifen

increases this by 700 to 8200 cells/ml.
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(a) n = 5 

7500 8200
µ  µ (treated)

(b) n = 10 

7500 8200
µ  µ (treated)

(c) n = 30

7500 8200

µ µ (treated)

Figure 8.3 Sample size has an effect on the range within which 95% of the

means of samples from a population will occur. The expected distributions of

the means of samples taken from two populations with the same variance,

one of which has a � of 7500 and the other which has a � of 8200, are shown.

(a) When n¼ 5 the sample means are expected to occur within a relatively

wide range around each mean. (b) When n¼ 10 the sample means are

expected to occur within a narrower range. (c) When n¼ 30 the sample

means are expected to occur within a much narrower range.
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size is too small to detect it very often, so you will frequently make a

Type 2 error.

Now, consider the case where you have ten people in your experimental

group. As sample size increases, the standard error of the mean, and

therefore the 95% confidence interval of the mean, will reduce.

For a sample size of ten the standard error of the mean

¼ �
ffiffiffi

n
p ¼ 1250

ffiffiffiffiffi

10
p ¼ 395:3. Therefore, for samples where n¼ 10, the 95%

confidence interval for the distribution of values of the mean around � is

7500� 774.76 (which is from 6725.24 to 8274.76) and the distribution

around � (treated) is 8200� 774.76 (which is from 7425.24 to 8974.76).

These two ranges are shown in Figure 8.3(b). The confidence intervals have

been reduced, but the majority of the sample means from the treated

population still lie within the range expected from the untreated popula-

tion, so the risk of Type 2 error is still very high.

Finally, for a sample size of 30 the standard error will be greatly reduced

at
1250
ffiffiffiffiffi

30
p ¼ 228:22. Therefore, the 95% confidence interval for themeans of

sample size 30 will be �� 447.3, which is from 7052.7 to 7947.3 for the

untreated population and from 7752.7 to 8647 for the treated population

(Figure 8.3(c)). There is less overlap between the 95% confidence intervals

of both groups, so you are less likely to make a Type 2 error.

Even when the sample size is 30, there is still a considerable risk of failing

to reject the null hypothesis that �¼ 7500, because about 25% of the

possible values of the sample mean from the treated population are still

within the region expected if the mean of 7500 is correct (Figure 8.4).

The probability of Type 2 error is symbolised by � and is the probability

of failing to reject the null hypothesis when it is false. Therefore, as

shown in Figure 8.4, the value of � is the shaded area of the treated

distribution lying to the left of the upper confidence interval for �.

8.4 The power of a test

The power of a test is the probability of making the correct decision and

rejecting the null hypothesis when it is false. Therefore power is the area of

the treated distribution to the right of the vertical line in Figure 8.4. If you

know �, you can calculate power as 1��.
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An 80% power is considered desirable. That is, there is only a 20%

chance of a Type 2 error and an 80% chance of not making a Type 2

error when the null hypothesis is false.

8.4.1 What determines the power of a test?

The power of a test depends on several things, only some of which can be

controlled by the researcher.

The uncontrollable factors are effect size and the variance of the

population.

As effect size increases, power will increase and will eventually be 100%

as the two distributions get further and further apart (Figure 8.5(a)).

Samples from populations with a relatively small variance will have a

smaller standard error of the mean, so overlap between the untreated and

treated distributions will be less than for samples from populations with a

larger variance (Figure 8.5(b)).

The controllable factors are the sample size and your chosen value of�.

As sample size increases, your risk of Type 2 error decreases and power

therefore increases since the standard error of the mean decreases (this has

already been described in Figure 8.3).

As the chosen value of � decreases (e.g. from 0.10 to 0.05 to 0.01 to

0.001), the risk of Type 1 error decreases, but the risk of a Type 2 error

increases. This is shown in Figure 8.6. There is a trade-off between the risks

of Type 1 and Type 2 errors.

n = 30

Null hypothesis
applies  

Null hypothesis false
(there is an effect of treatment)

7500 8200

µ µ (treated)

Figure 8.4 The probability of a Type 2 error is the shaded area to the left of

the horizontal line marking the upper confidence limit of �. The risk of Type

2 error is considerable, but it will be even greater if the sample size is smaller.
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8.5 What sample size do you need to ensure the risk

of Type 2 error is not too high?

Without compromising the risk of Type 1 error, the only way a researcher

can reduce the risk of Type 2 error to an acceptable level and therefore ensure

sufficient power is to increase their sample size. Every researcher has to ask

themselves the question, ‘What sample size do I need to ensure the risk of

Type 2 error is low and therefore power is high?’ This is an important

question because samples are usually costly to take, so there is no point in

increasing sample size past the point where power reaches an acceptable level.

For example, if a sample size of 35 gave 100% power, there is no point in

taking a larger sample.

Unfortunately, the only way to estimate the appropriate minimum

sample size needed in an experiment is to know, or have good estimates

of, the effect size and standard deviation of the population(s). Often the

(a)

  Frequency

µ (treated) µ (treated) µ (treated)

µ (treated)µ (treated)

(b)

Frequency

µ µ

µ

Figure 8.5 Uncontrollable factors affecting power. (a) Effect size will

determine power and, if the effect size is large enough, power will be 100%.

The arrows show effect size. (b) With a fixed effect size, a test comparing the

distribution of sample means from a population with a relatively small

variance (the pair of graphs on the left) will have greater power than if the

population variance is large (the pair of graphs on the right).
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only way to estimate these is to do a pilot experiment with a sample. For

most tests there are formulae that use these (sample) statistics to give the

appropriate sized sample for a desired power. Some statistical packages will

calculate the power of a test as part of the analysis.

(a) α set at 10% 

Null hypothesis
applies

Null hypothesis false

7500 8200
µ µ (treated)

(b) α set at 5%

Null hypothesis
applies 

Null hypothesis false

7500 8200
µ µ (treated)

(c) α set at 1% 

Null hypothesis
applies

Null hypothesis false

7500 8200
µ µ (treated)

Figure 8.6 The trade-off between Type 1 and Type 2 error. (a) � set at 10%.

(b) Decreasing � to 5% will reduce the risk of Type 1 error, but will increase

the risk of Type 2 error. (c) Decreasing � to 1% will further decrease the risk

of Type 1 error, but greatly increase the risk of Type 2 error.
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8.6 Type 1 error, Type 2 error, and the concept

of biological risk

The commonly used � of 0.05 sets the risk of Type 1 error at 5%, while 20%

is considered an acceptable risk of Type 2 error. Nevertheless, these risks

have to be considered in relation to the consequences of an incorrect

decision about the null or alternate hypotheses. There was a discussion

about the appropriate risk of Type 1 error depending on the consequences

in Chapter 5 and the same considerations apply to the risk of Type 2 error.

For example, a test that has a 20% chance of incorrectly retaining the null

hypothesis of no effect may be considered inappropriate if you are testing

for the undesirable side effects of a new drug, or evaluating whether the

release of sewage into a river is affecting the number of bacteria pathogenic

to humans in a lake downstream. Every time you run a statistical test you

have to consider not only the risks of Type 1 and Type 2 errors, but also the

consequences of these risks.

8.7 Conclusion

Whenever you make a decision based on the probability of a result, there is

a risk of either a Type 1 or a Type 2 error. There is only a risk of Type 1 error

when the null hypothesis applies, and the risk is the chosen probability level

�. There is only a risk of Type 2 error when the null hypothesis is false. Here

the risk of Type 2 error, �, is affected by several factors, but the most

controllable is sample size. As sample size increases, the risk of Type 2 error

decreases.

Power is the converse of Type 2 error. Power is 1�� and is the ability of

the test to reject the null hypothesis when it is false.

There are formulae for calculating the appropriate sample size to ensure

that the risk of Type 2 error is acceptable (e.g. 20%) and thereby have

acceptable power, but these calculations rely on an estimate of effect size

and the standard deviation of the sample or population.

Finally, the risks of Type 1 and Type 2 errors need to be considered in

terms of biological risk – depending on the consequences of making each

type of error, you may find an � of 5%, or a � of 20%, unacceptable.
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9 Single factor analysis of variance

9.1 Introduction

So far, this book has only covered tests for one and two samples. Often,

however, you are likely to have univariate data from three or more samples,

from different locations or experimental groups, and wish to test

the hypothesis that, ‘The means of the populations from which these

samples have come from are not significantly different to each other’, or

‘�1¼�2¼�3¼�4¼�5 etc . . . ’.

For example, you might have data for the length in millimetres of adult

grasshoppers of the same species from five different regions and wish to test

the hypothesis that the samples have come from populations with the same

mean.

Here you could test this hypothesis by doing a lot of two sample t tests

that compare all of the possible pairs of means (e.g. mean 1 compared with

mean 2, mean 1 compared with mean 3, mean 2 compared with mean 3

etc.). The problem with this approach is that every time you do a two

sample test and the null hypothesis applies you run a 5% risk of a Type 1

error. So, as you do more and more tests on the same set of data, the risk of

a Type 1 error rises rapidly.

Put simply, every time you do a two sample test it is like having a ticket in

a lottery where the chance of winning is 5% – themore tickets you have, the

more likely you are to win. Here, however, to ‘win’ could be to make the

wrong decision about your results. If you have five groups, there are ten

possible pairwise comparisons among them and the risk of a getting a

Type1 errorwhenusing an�of 0.05 is 40%,which is extremelyhigh (Box9.1).

Obviously there is a need for a test that compares three or more groups

simultaneously, but only has a risk of Type 1 error the same as your chosen

value of �. This is where analysis of variance (ANOVA) can often be used.



A lot of scientists make decisions on the results of ANOVA without

knowing how it works. But it is very important to understand how ANOVA

does work so that you can appreciate its uses and limitations!

Analysis of variance was developed by the statistician Sir Ronald A.

Fisher from 1918 onwards. It is a very elegant technique and can be applied

to numerous and very complex experimental designs. This book introduces

the simpler ANOVA models, because an understanding of these makes the

more complex ones easier. The following is a pictorial explanation, like the

pictorial explanations developed to explain t tests in Chapter 7. This

approach is remarkably simple and does represent what happens. By con-

trast, a look at the equations in many statistics texts makes ANOVA seem

very confusing indeed.

9.2 Single factor analysis of variance

Imagine you are interested in assessing the effects of two experimental

drugs on the growth of brain tumours in humans. Many of these tumours

Box 9.1 The probability of a Type 1 error increases when you

make several pairwise comparisons

Every time you do a statistical test where the null hypothesis applies, the

risk of a Type 1 error is your chosen value of �. If � is 0.05, then the

probability of not making a Type 1 error is (1��) or 0.95.

If you have three treatment means and therefore make three pairwise

comparisons (1 versus 2, 2 versus 3, and 1 versus 3), the probability of

no Type 1 errors is (0.95)3¼ 0.86. The probability of at least one Type 1

error is 0.14 or 14%.

For four treatment means there are six possible comparisons, so the

probability of no Type 1 errors is (0.95)6¼ 0.74. The probability of at

least one Type 1 error is 0.26 or 26%.

For five treatment means there are ten possible comparisons, so the

probability of no Type 1 error is (0.95)10¼ 0.60. The probability of at

least one Type 1 error is 0.40 or 40%.

These risks are unacceptably high. You need a test that compares

more than two treatment means with a Type 1 error the same as �.
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cannot be removed because the brain would be badly damaged in the

process. A growing tumour will compress and replace neural tissue, often

causing fatal damage, so there is great medical interest in drugs that affect

tumour growth.

You have been assigned 12 consenting experimental subjects, each of

whom has a brain tumour of the same size and type. Four are allocated at

random to an untreated control group, four are treated with the drug

‘Tumostat’ and four more with the drug ‘Inhibin 4’. After two months of

treatment, their tumours are remeasured. Your null hypothesis is that,

‘There is no difference in mean tumour diameter among the populations

from which these three samples have been taken.’ The alternate hypothesis

is, ‘There is a difference in mean tumour diameter among the populations

from which these samples have been taken’.

The results of this experiment have been displayed pictorially in Figure 9.1,

with tumour diameter (inmillimetres) increasing on the Y axis and the three

treatment categories on the X axis. The sample means of each group of four

are shown, together with the grand mean, which is the mean diameter of all

12 tumours.

Now, think about the diameter of each tumour. There are two possible

sources of variation that will contribute to its displacement from the

grand mean.

Tumour 
diameter Grand mean

Control Inhibin 4Tumostat

Figure 9.1 Pictorial representation of the diameter of human brain tumours

in clinical volunteers either left untreated (control) or treated with the

experimental drugs Tumostat or Inhibin 4. Tumour diameter increases up

the page. The heavy horizontal line shows the grand mean, while the shorter

lighter lines show treatment means. The diameter of each replicate tumour is

shown as a filled square &.
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First, there is the effect of the treatment it has experienced (Control or

Tumostat or Inhibin 4).

Second, there is likely to be variation among individuals that cannot be

controlled, such as slight differences in initial tumour size, differences in

the general health, genotype, nutritional state, and immune responses of

each person, plus other unintended aspects of the experiment, as discussed

in Chapter 3. This uncontrollable variation is called ‘error’.

Therefore, the displacement of each point on the Y axis from the grand

mean will be determined by the following formula:

Tumour diameter ¼ treatmentþ error (9:1)

In the example shown in Figure 9.1, Tumostat and Inhibin 4 appear to have

an inhibitory effect on growth compared with the control (in which the

tumours have grown larger) but is the effect significant, or is it just the

sort of difference that might occur by chance among samples taken from

populations with the same mean? A single factor ANOVA calculates this

probability in a very straightforward way. The key to understanding how

the ANOVA does this is to consider the reasons why the values for each

tumour and the treatment means are where they are.

First, the diameter of each tumour will be displaced from its treatment

mean by error only. This is called error or within group variation

(Figure 9.2).

Second, each treatment mean will be displaced from the grand mean by

any effect of that treatment plus error. Here, since we are dealing with

Tumour
diameter Grand mean

     Control      Tumostat Inhibin 4

Figure 9.2 Arrows show the displacement of each replicate from its

respective treatment mean. This is the variation due to error only.
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treatment means, the distance between a particular treatment mean and the

grand mean is the average effect of all of the replicates within that treat-

ment. To get the total effect you have to think of this displacement

occurring for each of the replicates. This is called among group variation

(Figure 9.3).

Third, the diameter of each tumour will be displaced from the grand

mean by both sources of variation – the within group variation (Figure 9.2)

plus the among group variation (Figure 9.3) described above. This is called

the total variation in the experiment. In Figure 9.4, the distance displaced is

shown for the four tumours in each treatment.

Each of Figures 9.2–9.4 show the dispersion of points around means.

Therefore it is possible to calculate a separate variance from each figure.

(a) The within group variance, which is due to error only (Figure 9.2),

can be calculated from the dispersion of the points around each of their

respective treatment means.

(b) The among group variance, which is due to treatment and error

(Figure 9.3), can be calculated from the dispersion of the treatment

means around the grand mean. The distance between each treatment

mean and the grand mean will represent the average effect for the

number of replicates in that treatment.

(c) The total variance (Figure 9.4) is the combined effects of the within

group variance and the among group variance (quantities (a) and (b)

above). This can be calculated from the dispersion of all the points

around the grand mean.

treatment 
+ error

treatment 
+ error

treatment 
+ error

Tumour 
diameter Grand mean

Control Inhibin 4Tumostat

Figure 9.3 The arrows show the displacement of each treatment mean from

the grand mean and represent the average effect of the treatment plus error

for the replicates in that treatment.

9.2 Single factor analysis of variance 109



These estimates give a very easy way of assessing whether the three

treatment means have come from populations with the same mean �.

First, if there is no effect of any treatment, the among group variance

(due to treatment plus error) will be a small number, because all the

treatment means will only be displaced from the grand mean by any effect

of error (Figure 9.5(a)).

Second, if there is a relatively large treatment effect, some or all of the

treatment means will be very different to each other and further away from

the grand mean. Therefore the among group variance (due to treatment

plus error) will be large compared with the within group variance (due to

error only) (Figure 9.5(b)). As the differences among treatments get larger

and larger so will the among group variance.

Therefore, to get a statistic that shows the relative effect of the treat-

ments compared with error, all you have to do is calculate the among

group variance (due to the treatments plus error) and divide this by the

within group variance (due to error):

Among group variance ðtreatmentþ errorÞ
Within group variance ðerrorÞ (9:2)

If there is no treatment effect, then both the numerator and denomi-

nator of equation (9.2) will only estimate error, so the value of this

statistic will be approximately 1.0 (Figure 9.5(a)). But, as the treatment

effect increases (Figure 9.5(b)), the numerator of equation (9.2) will get

larger and larger, so the value of the statistic will also increase. As it

Tumour 
diameter Grand mean

Control Tumostat Inhibin 4

Figure 9.4 Arrows show the displacement of each replicate from the grand

mean. The length of each arrow represents the total variation affecting each

replicate.
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increases, the probability that the treatments have been taken from

populations with the same mean will decrease and will eventually be

less than 0.05.

The statistic obtained by dividing one variance by another was

previously mentioned in Section 7.7.3 and is called the F statistic or

F ratio. Once an F ratio is calculated, its significance can be assessed

by looking up the expected distribution of F under the null hypothesis of

no difference among the treatment means. Just like the example of the

chi-square statistic discussed in Chapter 2 and the Z and t statistics in

Chapter 7, even when the treatment groups are drawn from populations

with the same mean (that is, there is no effect of any of the treatments) the

value of the statistic will, just by chance, be larger than a particular value in

5% of cases and be considered statistically significant.

(a)

Tumour 
diameter

Grand mean

Inhibin 4

(b)

Tumour 
diameter Grand mean

Inhibin 4

Tumostat

Tumostat

Control

Control

Figure 9.5 (a) No effect of treatment. The three treatment means are only

displaced from the grandmean because of error, so the among group variance

will be relatively small. (b) An effect of treatment. There are relatively large

differences among the treatment means, so they are further from the grand

mean, making the among group variance relatively large.
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9.3 An arithmetic/pictorial example

Doing a single factor analysis of variance is straightforward and the following

example will also help you interpret the results provided by statistics programs.

Here I am using a simple set of data for tumour diameter (in mm) for

four replicates of three chosen treatments in another experiment involving

two experimental drugs (Table 9.1).

To do a single factor ANOVA, all you have to do is calculate the among

group (treatment) variance and divide this by the within group (error) var-

iance to get the F ratio. The procedure is shown pictorially in Figures 9.6–9.9.

9.3.1 Preliminary steps

First, you calculate the grand mean, by taking the sum of all the values, and

dividing this by n (which in this example is 12). The value of the grand

mean is shown in the large box to the right of the line indicating the

position of the grand mean in Figure 9.6.

Second, you calculate each treatment mean, by taking the sum of the

values in each treatment and dividing by the appropriate sample size (here,

in each case it is 4). These values are shown in the boxes to the right of the

lines indicating each treatment mean.

These are all the values you need to calculate the three different variances.

Figures 9.7, 9.8, and 9.9 show the calculation of the total, error, and

treatment variances. The general formula for any sample variance is:

X ðXi � �XÞ2

n� 1
(9:3)

Table 9.1. The diameter of 12 brain tumours in mm after

three months of either (a) no treatment, (b) treatment with

Neurohib, or (c) treatment with Mitostop

Control Neurohib Mitostop

7 4 1

8 5 2

10 7 4

11 8 5
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Tumour 
diameter

9

6
6

NeurohibControl

8
7

10
11

8

5
4

2
1

Mitostop

3

5
4

7

Figure 9.6 Pictorial representation of the diameter of human brain tumours

in clinical volunteers either left untreated (control) or treated with the

experimental drugs Neurohib or Mitostop. Tumour diameter increases up

the page. The heavy horizontal line shows the grand mean, while the shorter

lighter lines show treatment means. The tumour diameter of each replicate is

shown as &. Boxes show the values of the treatment means and the grand

mean.

Step 1: The within group (error) sum of squares is:

Control Tumostat Inhibin 4 Sum of squares

=+ +4 1 4 1 1 1 4 4 4 4 1 1 30 

Step 2: The within group (error) variance is 30 ÷ 9 = 3·33

Control

8

5
4

7

8
7

10
11

9

6
6

2
1

5
4

Inhibin 4

3

Tumostat

Figure 9.7 Calculation of the within group (error) sum of squares and

variance. This has been done in two stages. First, the displacement of each

point from its treatment mean has been squared and these values added

together to get the sum of squares. Second, the sum of squares has been

divided by the number of degrees of freedom to give the mean square, which

is the within group (error) variance.
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and the variances have been calculated in two steps. First the sum of each

value minus the appropriate mean and then squared (the numerator of the

equation above which is called the sum of squares) has been calculated.

Second this value has been divided by the appropriate degrees of freedom

(the denominator of the equation above) to give the variance, which is

often called the mean square.

9.3.2 Calculation of within group variation (error)

This has been done in two steps in Figure 9.7. First, you calculate the sum of

squares for error. The distance between each replicate and its treatment

Step 1: The total among group (treatment) sum of squares is the sum of the average
displacement of each treatment, squared and multiplied by the sample size of each
treatment:

Control Tumostat Inhibin 4 Sum of squares

4 4 49 90 72

Step 2: The among group (treatment) variance is  72 ÷ 2 = 36

× × × =+ +

2
1

5
4

8

5
4

7
8
7

10
11

Inhibin 4

9

6

3

6

Control Tumostat

Figure 9.8 Calculation of the among group (treatment) sum of squares and

variance. This has been done in two steps. First, the displacement of each

treatment mean from the grand mean has been squared. This value has to be

multiplied by the sample size within each treatment to get the total effect for

the replicates within that treatment because the displacement is the average

for the treatment. These three values are then added together to give the sum

of squares. Second, the sum of squares has been divided by the number of

degrees of freedom to give the mean square value, which is the among group

(treatment) variance. Note that one of the treatment means happens to be the

same as the grand mean, but this will not always occur.
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mean is the error associated with that replicate. You square each of these

values and add them together to get the sum of squares.

Second, you calculate the mean square by dividing the total by the

number of degrees of freedom. Here you need the sum of the number of

replicates in each treatment minus 1. Since each treatment contains four

replicates the number of degrees of freedom is 3þ 3þ 3¼ 9.

9.3.3 Calculation of among group variation (treatment)

This has been done in two steps in Figure 9.8.

First, you calculate the sum of squares for treatment. The distance

between any of the three treatment means and the grand mean is the

average effect of that treatment. Therefore, to get the total effect for all

the replicates within each treatment, this value has to be squared and then

multiplied by the number of replicates in that treatment and these values

added together to give the sum of squares for treatment.

Second, you calculate the mean square by dividing the sum of squares

by the degrees of freedom, which is n� 1 where n is the number of

Step 1: The total sum of squares is:

Control Tumostat Inhibin 4 Sum of squares 

25 16 1 4 4 16 25 4 1 4 1 1 102+ + =

Step 2: There are 11 degrees of freedom, so the total variance is 102 ÷ 11 = 9.273

2
1

5

8

5
4

7
8

10
11

  4

Inhibin 4

9

6

3

6

Control

7

Tumostat

Figure 9.9 Calculation of the total sum of squares and total variation. This

has been done in two steps. First, the displacement of each point from the

grand mean has been squared, and these values added together to give the

sum of squares. Second, the sum of squares has been divided by the number of

degrees of freedom to give the mean square, which is the total variance.
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treatments. Here, since there are three treatments, there are only two

degrees of freedom.

9.3.4 Calculation of the total variation

First you calculate the sum of squares for the total variation by taking the

displacement of each point from the grand mean, squaring it and adding

these together for all replicates. This gives the total sum of squares. Dividing

the total sum of squares by the total number of degrees of freedom (there

are n� 1 degrees of freedom, and in this case n¼ 12) gives themean square.

This has been done in two steps in Figure 9.9.

Finally, to obtain the F ratio, which compares the effect of treatment to

the effect of error, you simply divide the among group (treatment) var-

iance by the within group (error) variance.

Since the treatment variance is 36 (Figure 9.8) and the error variance is

3.33 (Figure 9.7), the F ratio of treatment variance /error variance is

36/3.33¼ 10.8. Table 9.2 gives the results of this analysis in a similar format

to the one provided by most statistical packages.

Here you may be wondering why the total sum of squares and total

variance in the experiment have been calculated, since they are not needed

for the F ratio given above. The calculation has been included to illustrate

the additivity of the sums of squares and degrees of freedom. Note from

Table 9.2 that the total sum of squares (102) is the sum of the treatment

(72) plus the error (30) sums of squares. Note also that the total degrees of

freedom (11) is the sum of the treatment (2) plus the error (9) degrees of

freedom. This additivity of sums of squares and degrees of freedom will be

used when discussing more complex ANOVA models.

Table 9.2. Summary of the results of the calculations from Figures 9.7–9.9. The

results have been formatted as a typical single factor ANOVA summary table

provided by most statistical software packages

Source of variation Sum of squares df Mean square F ratio Probability

Among groups (treatment) 72 2 36.0 10.8 0.004

Within groups (error) 30 9 3.3

Total 102 11
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Now, all you need is the critical value of the F ratio. This used to be a tedious

procedure because there are two values of the degrees of freedom to consider –

the one associated with the treatment mean square and the one associated

with the error mean square – and you had to look up the critical value in a

large set of tables. Here, however, you can use a statistics program to run this

analysis, generate the F ratio, and obtain the probability. It is shown in the

column on the far right of Table 9.2 and is significant since it is less than 0.05.

The F ratio is always written with the number of degrees of freedom for

the numerator and denominator given in order as a subscript. Therefore

the F ratio for the among group mean square divided by the within group

mean square from Table 9.2 would be written as F2,9, because there are two

degrees of freedom for the among group variance and nine degrees of

freedom for the within group variance.

9.4 Unequal sample sizes (unbalanced designs)

The example described above has used an experimental design with equal

numbers in each treatment. If they are not equal the method for calculating

the F ratio will still work, but the means and variances within each group

will not be estimated with the same precision (Chapter 6). For example, the

mean of a relatively small sample is likely to be less accurate than that of a

larger one, so the conclusion from a comparison of means may be mis-

leading. You should, wherever possible, aim to have equal numbers in each

treatment, especially when sample sizes are relatively small.

9.5 An ANOVA does not tell you which particular treatments

appear to be from different populations

Although a significant result of a single factor ANOVA indicates that the

treatment means are unlikely to come from populations with the same

mean, it has not shown where the differences actually lie. In the example

given above, a significant effect might be caused by one or both experi-

mental drugs actually enhancing tumour growth compared with the con-

trol! You will almost certainly want to know how each of the two drugs

actually affect tumour growth. To do this, you will need to make multiple

comparisons among the treatment means. This procedure is described in

Chapter 10.
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9.6 Fixed or random effects

This is an important concept. There are two types of single factor ANOVA

models, which are called Model I and Model II. An understanding of the

difference between them is necessary, especially when you meet two factor

ANOVAs later in this book.

A Model I or fixed effects ANOVA applies when the treatments (e.g. the

experimental drugs) have been specifically chosen. For example, you are

only interested in the effect of a particular set of four drugs and the null

hypothesis reflects this – for example, ‘There is no difference between the

effects of drugs A, B, C, and D on tumour growth.’

A Model II or random effects ANOVA applies to more general hypoth-

eses. For example, instead of seeking the effects of specific drugs, the

hypothesis is, ‘There is no difference among drugs, in general, on tumour

growth.’ Therefore the drugs chosen and used in the experiment are merely

random representatives of the wider range of drugs available, even though

your random selection might be drugs A, B, C, and D.

For a single factor ANOVA the actual computations for both models are

the same. But, if you have done a Model II ANOVA, you would not

normally go any further and make multiple comparisons among treat-

ments because you would not be interested in knowing which ones were

different. This is discussed in more detail in Chapter 10. When you do two

factor ANOVAs, which are discussed in Chapter 11, it also matters whether

the effects are fixed or random.
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10 Multiple comparisons after ANOVA

10.1 Introduction

When you use a single factor ANOVA to examine the results of an experi-

ment with three or more treatments, a significant result only indicates that

one or more appear to come from populations with different means. It

does not identify which particular treatment means appear to be from

the same or different populations.

For example, a significant difference among the means of the three

treatments A, B, and C can occur in several ways. Mean A may be greater

(or less) than B and C; mean B may be greater (or less) than A and C; mean

Cmay be greater (or less) than A and B; and, finally, means A, B, and Cmay

all be different to each other.

If the treatments have been chosen as random representatives of all the

possible treatments available (i.e. the factor is random so you have done a

Model II ANOVA), you will not be interested in knowing which particular

treatment means appear to be from the same or different populations

because your hypothesis is more general. A significant result will reject the

null hypothesis and show a difference, but that is all you will want to know.

In contrast, if the treatments have been specifically chosen (i.e. the factor is

fixed so you have done aModel I ANOVA), youwill be interested in knowing

which treatment means appear to be from the same or different populations.

There are several multiple comparison tests designed to do this.

10.2 Multiple comparison tests after a Model I ANOVA

Multiple comparison tests are used to make comparisons among a set of

means and assign them to groups that appear to be from the same popula-

tion. These tests are usually done after a Model I ANOVA has shown a



significant difference among treatments. They are called a posteriori or

post hoc tests, both of which mean ‘after the event’, where the ‘event’ is a

significant result of the ANOVA.

A lot of multiple comparison tests have been developed, but all of

them work in essentially the same way. Here is an example using the

Tukey test, which works in an analogous way to the two sample t test

described in Chapter 7.

The t statistic is calculated by dividing the difference between two

means by the standard error of that difference. The Tukey statistic, q, is

calculated by dividing the difference between two means by the standard

error of the mean. The smaller mean is always taken away from the larger,

therefore giving a positive number:

q ¼
�XA � �XB

SEM
(10:1)

This procedure is first used to compare the largest mean to the smallest.

If the difference is significant, testing continues by comparing the largest

with the next smallest and so on. If a non-significant difference is found, all

the means included within the range between that pair are assigned to the

same population. Then the procedure is repeated, starting with the second

largest and the smallest mean; repeated again starting with the third largest

and the smallest mean, and so on. Eventually the means will be assigned to

one or more groups, each containing those which appear to be from the

same population (Figure 10.1).

From the example in Figure 10.1, means A, B, and C appear to be from

the same population and D and E from a second population. The analysis

has revealed two distinct groups.

For the Tukey statistic you need the SEM and the best way to obtain this

is from the error mean square of the ANOVA, because this is an estimate of

the population variance, �2, calculated from the displacement of all the

replicates in the experiment from their respective treatment means.

Therefore, since the standard error of a mean is:

SEM ¼ sffiffiffi
n

p or

ffiffiffiffiffiffi
s2

n

r
(10:2)

the standard error of the mean estimated from an ANOVA is:
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(a) 

A

B

C

(A–E and A–D are significant)
(A–C is not significant)

D

E

(b) 

A

B (B–E and B–D are significant)

C

D

E

(c)

A

B

C

(C–E and C–D are significant)

D

E

(d)

A

B

C

(D–E is not significant)

D

E

Figure 10.1 General procedure for a Tukey a-posteriori test. The treatment means (A–E)

are displayed in order of magnitude from the smallest (E) to the largest (A). (a) First the

largest mean is comparedwith the smallest (A–E). If the difference is significant, the largest

is then compared with the second smallest (A–D) and so on, until a non-significant

difference (here, as an example, A–C) is found or there are no more pairs of means left to

compare. All means included within the range between A–C (A, B, and C) are assigned to

the same population. (b) Testing continues using the same procedure but starting with the

second largest mean and comparing it with the smallest (B–E). (c) The third largest mean

(C) is compared with D and E. (d) The fourth largest (D) is compared with E. This

difference is not significant so D and E appear to be from the same population, which has a

different mean to the one from which A, B, and C have been taken.
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SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

n

r
(10:3)

where n is the sample size of each treatment. If the treatment sample sizes

are different, you use the formula:

SEM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

2
� 1

nA
þ 1

nB

� �s
(10:4)

Then you calculate the Tukey statistic q for each pair of means by using

equation (10.1) and the procedure in Figure 10.1.

The calculated value of qwill be zero when there is no difference between

the two sample means and will increase as the difference between themeans

increases. If q exceeds the critical value, the hypothesis that the means are

from the same population is rejected.

The critical value of q depends upon your chosen value of �, the number

of degrees of freedom for the MS error, and the number of means being

tested. Here I deliberately have not given a table of q values because most

statistical packages will do multiple comparisons and even generate a dis-

play assigning the sample means to groups that appear to be from the same

population. Section 10.3 gives two examples and also illustrates that

ambiguous results are possible.

10.3 An a-posteriori Tukey comparison following a significant

result for a single factor Model I ANOVA

10.3.1 The effects of dietary supplements on pig growth

These data are for the amount of weight gained in kilograms by piglets of

the same age and initial weight after six months of feeding with four

different dietary supplements: ‘Pigout’, ‘Sowgrow’, ‘Baconbuster II’, and

‘Fatboar III’. This is aModel I ANOVA – the researcher is only interested in

the effects of these four supplements on pig growth.

If you run a single factor ANOVA on the data in Table 10.1, you will

obtain an F ratio (F3,16) of 74.01, which has a probability of less than 0.001.

Some of the treatment means appear to be from different populations. If

you then run an a-posteriori Tukey test, you will find that each of the four

means appear to be from different populations.
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10.3.2 Growth of brain tumours treated with experimental drugs

Table 10.2 gives data for the diameter of brain tumours exposed to three

months of (a) no treatment (control) or two experimental drugs.

A one factor ANOVA will give an F ratio (F2,9) of 10.8, which has a

probability of 0.004. The three treatment means do not appear to be from

the same population.

If, however, you run an a-posteriori Tukey test, it will show that means

for the control and Neurohib appear to be from the same population, while

the means for Neurohib and Mitostop appear to be from another.

The result in Figure 10.2 is obviously ambiguous. The a-posteriori

analysis has separated the data into two subsets, but the mean of the

Neurohib treatment cannot be distinguished from the means of either

the control or the Mitostop treatment. At the same time, the mean of the

control can be distinguished from the mean for Mitostop. Therefore, it

seems a Type 2 error has been committed somewhere, since themean of the

Neurohib treatment has been assigned to two different populations.

10.4 Other a-posteriori multiple comparison tests

There are many other multiple comparison tests. These include the LSD,

Bonferroni, Scheffé, and Student–Newman–Keuls. The most commonly

used are the Tukey and Student–Newman–Keuls (Zar, 1999). Most statis-

tical packages offer you a wide choice of these tests and their relative merits

are described in more advanced texts.

Table 10.1. The weight gain of piglets fed four different dietary

supplements

Pigout Sowgrow Baconbuster II Fatboar III

16 19 25 12

14 20 30 10

16 22 26 12

17 20 27 13

18 24 28 9
�X 16.2 21.0 27.2 11.2
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10.5 Planned comparisons

Chapter 9 began with a discussion about the danger of an increased

probability of Type 1 error when making numerous pairwise comparisons

among three or more means. Here, however, the a-posteriori method for

identifying which treatment means appear to be from the same population

uses numerous pairwise comparisons. Therefore, you may well be thinking

that this procedure will also have an increased risk of Type 1 error.

First, however, unplanned a-posteriori comparisons are usually only

made across all groups if the ANOVA has detected a significant difference

among the treatment means. Second, a-posteriori tests are specifically

designed to take into account the number of means being compared and

have a much lower risk of Type 1 error than the same number of t tests.

Unfortunately this makes multiple comparison tests relatively low in

power. For example, it sometimes happens that an ANOVA detects a

Control 

Diameter 
(mm)

Neurohib

Mitostop 

0

3.0

6.0

9.0

Figure 10.2 Summary of the results of an a-posteriori Tukey test comparing

among the means of the three samples in Table 10.2. Treatment means

connected by vertical lines are not significantly different.

Table 10.2. The diameter of 12 brain tumours inmillimetres after three

months of either (a) no treatment, (b) treatment with Neurohib, or

(c) Mitostop

Control Neurohib Mitostop

7 4 1

8 5 2

10 7 4

11 8 5
�X 9.0 6.0 3.0
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significant difference among treatments, but subsequent a-posteriori testing

fails to detect a significant difference among any means.

Instead ofmaking a large number of indiscriminate unplanned a-posteriori

comparisons, a better approach can be to make a small number of planned

(a-priori meaning ‘before the event’) comparisons. For example, your

hypotheses might be that each of the two experimental drugs used in

Example 2 above will re du ce the growth of brain tumours compared with

the control. An ANOVA will test for differences among treatments with an

� of 0.05 and also give a good estimate of the sample variance from the MS

error, since this has been calculated from all the individuals used in the

experiment. Next, however, instead of making a large number of

unplanned comparisons, you could carry out two (one-tailed) t tests

comparing the mean growth of tumours in each drug treatment and the

control.

If you make only one planned comparison, the probability of Type 1

error is an acceptable 0.05. If you make several a-priori comparisons that

really have been planned for particular reasons before the experiment

(e.g. to test the hypotheses, ‘Mitostop will reduce tumour growth com-

pared to the untreated control’ and ‘Neurohib will reduce tumour growth

compared to the untreated control’), then each is a distinct and different

hypothesis, so the risk of a Type 1 error is still an acceptable 0.05. It is only

when you make indiscriminate comparisons that the risk of Type 1 error

increases and you should consider using one of the a-posteriori tests

described previously, which maintains an � of 0.05.

To make a planned comparison after a one factor ANOVA you use the

formula for a t test from Chapter 7 except that you use the mean square

error as the best estimate of s2:

tnAþnB�2 ¼
�XA � �XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MS error
1 � 1

nA
þ 1

nB

� �r (10:5)

which reduces to equation (10.6) when there are equal numbers in both

treatment groups:

tnAþnB�2 ¼
�XA � �XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MS error

n

q (10:6)
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Here is an example, using the data from Example 2 in Section 10.3 . The

planned comparison is of the mean tumour size in the Mitostop treatment

compared with the control.

From the ANOVA the mean square for error is 3.333. The mean of the

Mitostop treatment is 3.0 mm and the control is 9.0 mm. Therefore:

t6 ¼
3:00� 9:00ffiffiffiffiffiffiffiffiffiffi

2�3:33
4

q ¼ �4:65

From Table 7.1 the critical one-tailed 5% value for t is 1.943. The two

means appear to be from different populations.

Interestingly, the planned comparison to test the effect of Neurohib

compared with the control is:

t6 ¼
6:00� 9:00ffiffiffiffiffiffiffiffiffiffi

2�3:33
4

q ¼ �2:325

Again, since the critical one-tailed 5% value for t is 1.943, these two means

also appear to be from different populations. This example illustrates the

value of planned comparisons. Each drug appears to suppress tumour

growth compared with the control.
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11 Two factor analysis of variance

11.1 Introduction

A single factor ANOVA gives the probability that two or more sample means

have come from populations with the same mean (Chapter 9). Single factor

ANOVA is used to analyse univariate data from samples exposed to different

levels or aspects of only one factor. For example, it could be used to compare

the oxygen consumption of a species of intertidal crab (the variable) at two or

more temperatures (the factor), the growth of brain tumours (the variable)

exposed to a range of drugs (the factor), or the insecticide resistance of a

moth (the variable) from several different locations (the factor).

Often, however, life scientists obtain univariate data in relation tomore

than one factor. Examples of two factor experiments are the oxygen

consumption of an intertidal crab at several combinations of temperature

and humidity, the growth of brain tumours exposed to a range of drugs

and different levels of radiation therapy, or the insecticide resistance of an

agricultural pest from different locations and different host plants.

It would be very useful to have an analysis that gave separate F ratios (and

the probability that the treatment means had come from populations with the

samemean) for each of the two factors. That is what two factor ANOVAdoes.

11.1.1 Why do an experiment with more than one factor?

Experiments that simultaneously include the effects of more than one

factor on a particular variable may be far more revealing than looking at

each factor separately because you may detect certain combinations of

factors that have a synergistic effect. Also, by examining several factors

at once, there may be significant savings in time and resources compared

with doing a series of separate experiments and separate analyses.



Here is an example of the advantage of a two factor experiment. It also

illustrates a synergistic effect – what statisticians call interaction – which

occurs when the effect of one factor varies across the levels of the other.

Cockroaches are a serious public health risk, especially in tropical and

subtropical cities with poor sanitation. These insects often live in sewers and

drains, but forage widely and frequently infest areas where food is stored

and prepared. Urban cockroaches have a broad diet, which often includes

excrement and other wastes, so they can contaminate food and thereby cause

disease in humans. An urban entomologist investigating ways of controlling

cockroaches was interested in the effects of both temperature and humidity

on the activity of the cockroach Periplaneta americana. The entomologist

devised a method of measuring cockroach activity by placing these insects

individually in open topped cylindrical glass jars. By videotaping them from

above, and analysing the recordings by computer, the entomologist obtained

data for the amount of movement of each cockroach per hour.

The entomologist set up an experiment where cockroaches were kept

individually in glass jars in all six combinations of three temperatures (20,

30, and 40oC) and two humidity levels (33 and 66%). There were 20

cockroaches in each treatment, so 120 were used altogether. After two

hours of acclimation, activity was recorded for one hour.

This type of design, where there is a treatment for every combination of

the levels of each factor used, is called a ‘fully orthogonal’ design or an

‘orthogonal’ design (Table 11.1). If one of the treatments were not included

(for example the combination of 33% humidity with 20oC), the design

would not be orthogonal.

The results of the experiment can be displayed as a graph of the means

for each of the six combinations (which are often called cell means), with

Table 11.1. Example of an orthogonal two factor design. There are three levels

of Factor A (temperature) and two levels of Factor B (humidity) with

experimental units (cockroaches) in each of the six possible combinations

of the 3�2 treatment levels

Temperature (8C)

Humidity (%) 20 30 40

33 20 cockroaches 20 cockroaches 20 cockroaches

66 20 cockroaches 20 cockroaches 20 cockroaches
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temperature on the X axis, cockroach activity on the Y axis, and lines

joining the three means within each of the two levels of humidity. (If you

wanted you could show humidity on the X axis and have lines joining each

of the three temperatures, but it is easier to visualise when the greatest

number of treatment levels are on the X axis.)

Figure 11.1(a) shows a set of cell means where there is no interaction –

the change in humidity from 33 to 66% (or from 66 to 33%) has the same

effect on movement at each temperature (in all cases an increase in

humidity increases activity by about the same amount). Similarly, the effect

of an increase in temperature from 208C through to 408C (or vice versa) is

the same at each humidity.

In contrast, Figure 11.1(b) shows interaction. A change in humidity

from 33 to 66% does not have the same effect on activity at each of the three

temperatures, and a change in temperature from 208C through to 408C
does not have the same effect on activity at each humidity.

That is all interaction is. When there is a complete lack of interaction

(e.g. Figure 11.1(a)) the lines joining the treatment means always run

exactly parallel to each other (even though both lines move up, they move

up in parallel). In contrast, when there is interaction (e.g. Figure 11.1(b))

the lines are not always parallel. As the amount of interaction increases,

the lines become less and less parallel and eventually the amount of inter-

action may reach a point where it is considered significant.

Interaction between two or more factors is often of great interest to life

scientists. It may be very helpful to know that a response to one factor is not

uniform across the range of a second factor, or that it is uniform! For

example, if you found that cockroaches are only extremely active when

both humidity and temperature are high (Figure 11.1(b)), you might save

considerable resources and time by only implementing cockroach control

measures when this combination of weather conditions was forecast.

11.2 What does a two factor ANOVA do?

Here you need to remember that a single factor ANOVA partitions the

total variation into two components – the variation among groups

(treatmentþ error) and the variation within groups (error) – and examines

whether there is a significant effect of treatment by dividing the among

groups mean square by the within groups mean square. This gives an
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 66% humidity

Cockroach
activity

(a)

(b)

33% humidity

20 30 40
Temperature (°C)

 66% humidity

Cockroach
activity

 33% humidity

20 30 40

Temperature (°C)

Figure 11.1 Interaction in a two factor experiment. (a) No interaction

between the two factors of temperature and humidity on the activity of

cockroaches. A change in humidity from 33 to 66% has the same effect on

cockroach activity at each of the three temperatures, and a change in

temperature from 208C through to 408C has the same effect at each humidity.

(b) An interaction between temperature and humidity on the activity of

cockroaches. A change in humidity from 33 to 66% does not have the same

effect on activity at each of the three temperatures, and a change in

temperature from 208C through to 408C does not have the same effect on

activity at each humidity.
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F ratio and probability that all the treatment means have come from

populations with the same mean.

A two factor ANOVA works in a similar way, but partitions the total

variation within a set of data into four components: the among group varia-

tion due to (a) Factor Aþ error, (b) Factor Bþ error, (c) Interactionþ error,

and (d) error.

The way the analysis works is a straightforward extension of the concept

developed to explain single factor ANOVA, and can also be explained

pictorially. I will use the simplest case of a two factor design with two levels

only of each factor, both of which are fixed.

First, here are some examples of the types of outcomes youmight get from

a two factor experiment. The urban entomologist mentioned above was also

interested in the effects of temperature and humidity on the growth of

cockroaches. They did a growth experiment with four newly hatched cock-

roaches in each treatment, using 16 altogether. Each cockroach was the same

starting weight. They were kept at four combinations of two temperatures

and two humidities, offered food to excess, and reweighed after four weeks.

Several different outcomes are shown in Figure 11.2. Themean weight gain

within each treatment combination of the cockroaches kept at 66% humidity

are indicated by &, while those kept at 33% humidity are indicated by *.

11.3 How does a two factor ANOVA analyse these data?

This explanation assumes you are familiar with the one already given for a

single factor ANOVA in Chapter 9. I am using a two factor experiment with

two levels of each factor, giving four treatment combinations, each of

which contains four replicates. The design is summarised in Table 11.2.

Both factors are fixed – the researcher is only interested in these specific

temperatures and humidities.

To start, think about the final weight of each cockroach. It will be displaced

from the grand mean by four sources of variation – that associated with

Factor A, plus Factor B, plus interaction, plus error. This is called the

total variation in the experiment. Put formally, the position on the Y axis

of each replicate in relation to the grand mean will be determined by the

following formula:

Growth ¼ Factor Aþ Factor Bþ interactionþ error (11:1)
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66% humidity

Cockroach
growth

33% humidity

20 30

Temperature (°C)

(b)

Cockroach
growth

(a)

66% and 33% 
humidity

20 30
Temperature (°C)

(c)

Cockroach
growth 66% and 33%

humidity

20 30
Temperature (°C)

Figure 11.2 Some of the possible outcomes of an orthogonal two factor

experiment. (a) No effect of temperature or humidity and no interaction. All

treatment means are the same and the lines joining the means within each

humidity are also the same. (b) An effect of humidity but no effect of

temperature and no interaction. The two treatment means for 66% humidity

are consistently more than the two for 33% humidity. (c) An effect of

temperature but no effect of humidity and no interaction. The two treatment

means for 208C are consistently greater than the two for 308C. (d) An effect of

temperature and humidity but no interaction. All treatmentmeans are different,

but the change in growth in relation to a change in humidity from 33 to 66% is

the same at each temperature and vice versa. (e) An effect of temperature and
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Here you may wish to contrast this with the much simpler equation for

the total variation within a single factor experiment from Chapter 9:

Tumour diameter ¼ treatmentþ error (11:2) copied from ð9:1Þ

(d)

66% humidity

Cockroach
growth 33% humidity

20 30
Temperature (°C)

66% humidity

Cockroach
growth   33% humidity

20 30

Temperature (°C)

(e)

Figure 11.2 (cont.) humidity and some interaction. The change in growth

from 66 to 33% humidity is not the same at each temperature and vice versa.

Only the means for each treatment combination are shown. Note that all lines

joining the treatments within the same humidity are parallel except for example

(e) where there is some interaction between temperature and humidity.

Table 11.2. The orthogonal design used to explain how two

factor ANOVA works in Figures 11.3–11.7. There are four

combinations of the two temperatures and two humidities,

with four experimental units (cockroaches) in each

Temperature (8C)

Humidity (%) 20 30

33 4 cockroaches 4 cockroaches

66 4 cockroaches 4 cockroaches
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Just as in the single factor ANOVA, the variation within a two factor

experiment can be partitioned into several additive components. These are

shown in Figures 11.3–11.6.

First, the final weight of each cockroach will be displaced from its

respective cell mean by error only. This is estimated in just the same way as

for a single factor ANOVA and also called the within group variation or

error (Figure 11.3). The distances between each replicate and its cell mean are

squared and added together to give the within group (error) sum of squares.

The sum of squares is divided by the appropriate degrees of freedom (here

there are 3þ 3þ 3þ 3= 12) to give the within group (error) mean square.

Second, each replicate will be displaced from the grand mean by all

sources of variation in the experiment – the effect of Factor A, plus

Factor B, plus interaction, plus error. This is called the total variation in

the experiment. In Figure 11.4 below the distance displaced is shown for all

replicates. These distances can be squared and added together to give the

total sum of squares for the experiment. (Again, this is the same as the

procedure for a single factor ANOVA.)

So far, this is the same procedure used to calculate the within group

(error) variance and total variance for a single factor ANOVA.

Growth
Grand mean

20 °C 30 °C

Figure 11.3 The estimation of within group (error) variation in the growth of

cockroaches exposed to four different combinations of temperature and

humidity. Each cockroach is shown as a symbol: &¼ cockroaches at 66%

humidity, *¼ cockroaches at 33%humidity.Horizontal lines indicate the grand

mean and each cell mean. The displacement of each replicate from its cell mean

(arrows) will be caused by error only.
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Growth
Grand mean

20 °C 30 °C

Figure 11.4 The total variation within the experiment on the growth of

cockroaches. Each cockroach is shown as a symbol: &¼ cockroaches at 66%

humidity, *¼ cockroaches at 33% humidity. The heavy horizontal line

indicates the grand mean. The four shorter horizontal lines indicate each cell

mean. The displacement of each replicate from the grand mean (arrows) will

be caused by the total variation within the experiment.

Growth
Grand mean

20 °C 30 °C

Figure 11.5 The effect of Factor A (temperature þ error) only on the

growth of cockroaches. Each cockroach is shown as a symbol: &¼
cockroaches at 66% humidity, *¼ cockroaches at 33% humidity. These data

have been pooled for each temperature, ignoring humidity, thereby

generating two new treatment means, shown by the horizontal lines. The

displacement of each treatmentmean from the grandmean is an estimate of the

average effect of temperature plus error. The sum of squares is the sum of each

displacement squared, which is then multiplied by the number of replicates in

that treatment. The mean square is the sum of squares divided by n� 1 degrees

of freedom, where n is the number of pooled treatments (here n¼ 2).
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(a) The within group variance (Figure 11.3), which is due to error only,

can be calculated from the dispersion of the points around each of their

respective cell means.

(b) The total variance (Figure 11.4) will estimate the total variation in the

experiment (the within group (error) variance, plus Factor A, Factor B,

plus interaction), and can be calculated from the dispersion of all the

points around the grand mean.

At this stage you still need separate effects for Factor A (temperatureþ
error), Factor B (humidityþ error), and A�B (interactionþ error).

11.4 How does a two factor ANOVA separate out the

effects of each factor and interaction?

Two factor ANOVA separates out the effects of each factor and interaction

in a very elegant way.

Growth
Grand mean

33% 66%

Figure 11.6 The effect of Factor B (humidityþ error) only on the growth of

cockroaches. Each cockroach is shown as a symbol: &¼ cockroaches at 66%

humidity, * ¼ cockroaches at 33% humidity. These data have been pooled

for each humidity, ignoring temperature, thereby generating two different

treatment means, shown by the horizontal lines. The displacement of each

treatment mean from the grand mean is the average effect of humidity for the

number of replicates in that treatment. The sum of squares for the effect of

humidity is the sum of each displacement squared and multiplied by the

number of replicates in that treatment. The mean square is the sum of squares

divided by n� 1 degrees of freedom, where n is the number of pooled

treatments (here n¼ 2).
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After having done the preliminary calculations in Figures 11.3 to 11.4,

the data are only considered in relation to each of the two factors. This is

done by first ignoring the different levels within Factor B and considering

the data only in relation to Factor A (temperature), after which the same is

done for Factor B (humidity). These procedures are shown in Figures 11.5 and

11.6 and allow you to calculate separate sums of squares for temperature þ
error and also humidity þ error. They are called the simple main effects

because they examine each factor in isolation from the other.

First, the levels of humidity are ignored and the data treated as though

they are the results of a single factor experiment on temperature only. Here,

therefore, you will have eight replicates within each of the two levels of

temperature and you can calculate a mean for each group. These new

means, calculated from all eight replicates within each treatment, will

only be displaced from the grand mean by the average effect of tem-

perature plus error. Therefore, the displacement of the treatment means

from the grand mean can be used to calculate the sum of squares and mean

square for Factor A (temperature) only (Figure 11.5) just as in a single

factor ANOVA.

Second, the levels of temperature are ignored and the data are treated as

though they are the results of a single factor experiment on humidity only.

Here too, you will have eight replicates within each of the two levels of

humidity and you can calculate a mean for each of the two groups. These

new means, calculated from all eight replicates within each treatment, will

only be displaced from the grand mean by the average effect of humidity

plus error (Figure 11.6). Therefore, the displacement of the treatment

means from the grand mean can be used to calculate the sum of squares and

mean square for Factor B (humidity) only, just as in a single factor ANOVA.

At this stage you have sums of squares for the following:

(a) The total variation in the experiment (the combined effects of Factor A,

Factor B, A�B and error) (Figure 11.4)

(b) The effect of Factor A (temperature þ error) (Figure 11.5)

(c) The effect of Factor B (humidity þ error) (Figure 11.6)

(d) Error (Figure 11.3)

From this list, the only separate sum of squares you still need is the one

for interaction plus error. Since the sums of squares are additive and the

total variation is the combined effects of all the factors in the ANOVA
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(Section 9.3.4), you can calculate the sum of squares for interaction by

subtraction. This is done by taking away the sums of squares for Factor A,

Factor B, and error from the total sum of squares ((a) above, minus (b) and

(c) and (d)). Now you have the following sums of squares:

* The total variation in the experiment (the combined effects of Factor A,

Factor B, A�B, and error) (Figure 11.4)
* The effect of Factor A (temperature þ error) (Figure 11.5)
* The effect of Factor B (humidity þ error) (Figure 11.6)
* The effect of interaction (interaction þ error) (by subtraction)
* Error (Figure 11.3)

Once you have these, dividing by the appropriate degrees of freedomwill

give you mean square values, just as for a single factor ANOVA. The effect

of each factor can be estimated by dividing the factor mean square by the

error mean square to get an F ratio. If the F ratio is significant, the factor is

considered to have an effect.

The F ratios for the effects of interaction, Factor A, and Factor B are

summarised in Table 11.3.

Most statistical packages will give an analysis of variance summary table

that has all of these sums of squares, degrees of freedom, mean square

values, and F ratios.

Table 11.3. Variation estimated by each mean square term and

the appropriate division to estimate the effect of each factor

when Factor A and Factor B are both fixed

Source of variation Calculation of F ratio

Factor A Mean square for Factor A
_________________________

Mean square error

Factor B Mean square for Factor B
_________________________

Mean square error

Interaction (A�B) Mean square for interaction
_________________________

Mean square error
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11.5 An example of a two factor analysis of variance

The data in Table 11.4 are for the growth of cockroaches at three tempera-

tures and three levels of humidity.

As an initial step you might plot the cell means on a graph similar to

Figure 11.2 to see what they look like. Which factors might you expect to be

significant? Would you expect a significant interaction? Why?

Next, if you use a statistical package to run a two factor ANOVA on these

data, your results will include something similar to that shown in Table 11.5,

where the F ratio and probability for each of the two factors and their

interaction are given. The interaction term is symbolised by Temperature�

Humidity. Note that the F ratios for temperature and humidity are sig-

nificant at P< 0.001, but there is no significant interaction (P¼0.852). It

Table 11.4. Length in mm for 27 cockroaches fed ad libitum and

kept in nine different combinations of temperature and humidity

Temperature (8C)
Humidity (%)

20

(level 1)

30

(level 2)

40

(level 3)

33 (level 1) 1 5 9

2 6 10

3 7 11

66 (level 2) 9 13 17

10 14 18

11 15 19

99 (level 3) 17 21 25

18 22 26

19 23 27

Table 11.5. An example of the type of output given by a statistical package

for a two factor ANOVA

Source of variation Sum of squares df Mean square F ratio Significance

Temperature 312.66 2 156.33 156.33 0.000

Humidity 1200.66 2 600.33 600.33 0.000

Temperature� Humidity 1.33 4 0.33 0.33 0.852

Error 18.00 18 1.00
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seems the samples have come from different populations in relation to the

levels of temperature and also humidity, but there is no interaction between

these factors. This result should not be a surprise if you have plotted the

nine treatment means before doing the analysis.

11.6 Some essential cautions and important complications

There are some essential cautions and important complications associated

with two factor and more complex ANOVAs that you must be aware of.

1 A significant effect of a factor does not reveal where differences occur if

you have examined more than two levels of that factor.

2 A significant interaction can make the F ratios for Factor A or Factor B

misleading.

3 If one or both of the factors are random, you need to use a different

procedure for calculating the F ratios for one or both of Factors A and B.

These three complications are explained below.

11.6.1 A-posteriori testing is still needed when there is a

significant effect of a fixed factor

First, just as for a single factor ANOVA, a significant effect does not reveal

where differences occur among the levels of that factor. For example, if you

did a two factor ANOVA with four levels of Factor A and six of Factor B,

and found a significant effect of Factor A, it will not identify which levels of

Factor A appear to come from populations with the same, or different,

means. Here, just as for a single factor analysis, you need to carry out

a-posteriori testing. This is straightforward if there is no significant

interaction.

If the interaction is not significant, a-posteriori testing can be done for

each factor that has a significant effect. This compares the mean values for

the pooled data (e.g. Figures 11.5 and 11.6) in just the same way as a single

factor ANOVA (Chapter 10). For example, if you were to use a Tukey test,

the formula is the same as the one given in Chapter 10:

q ¼
�XA � �XB

SEM
(11:3)
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To calculate the standard error of the mean from the ANOVA statistics

you use:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

n

r
(11:4)

where n is the sample size of each pooled group. If the sample sizes are

different, you need to use a slight modification of the formula (which

reduces to the one above when nA is the same size as nB).

SEM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror

2
� 1

nA
þ 1

nB

� �s
(11:5)

Then you simply calculate the Tukey q statistic for each pair of

means and look up the critical value of q using the degrees of freedom for

MS within groups (error). If the calculated q value is greater than the

critical value of q, the hypothesis that the means are from the same

population is rejected. The value of q will range from zero when the

two sample means are the same, to high values as the means become

increasingly different. Once again, many statistical packages will do

Tukey tests and assign the means to groups that are significantly different

to each other.

Just as with a one factor experiment, a-priori planned comparisons can

also be made between particular cell means, but only if these have been

specified beforehand (see Section 10.5).

11.6.2 An interaction can obscure a main effect

The two factor analysis described in Section 11.5 gave mean squares for

the main effects of Factor A (temperature) and Factor B (humidity),

interaction, and also error. The effect of each factor is estimated by dividing

the factor mean square by the error mean square.

This is appropriate, but there can be a complication. A significant

interaction means that the effect of one factor (e.g. humidity) is not

constant across the levels of the second factor (e.g. temperature).

Therefore, if there is a significant interaction, the conclusion of a non-

significant main effect (because of a non-significant F ratio for that

factor) may not be correct.
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Here is a rather extreme example which clearly illustrates the problem.

Imagine an experiment designed to investigate the effects of two treat-

ments, with three levels of Factor A and two of Factor B. Figure 11.7 shows

the results of this experiment. Although there is obviously an effect of

temperature and also humidity on cockroach activity, the response to

temperature at 66% humidity is the opposite of that at 33% humidity.

When these results are analysed by a two factor ANOVA the total sum of

squares will be large because the replicates will be well dispersed from the

grand mean (Figure 11.7(a)). There will also be some error because the

replicates are dispersed from their treatment means (Figure 11.7(a)). But

when the ANOVApartitions the sums of squares among the separate factors

of temperature and humidity, the results are extremely misleading.

First, consider the pooled analysis for temperature. The new cell means

for each of the three levels of temperature (ignoring humidity) will all lie on

the grand mean. Consequently there will be no overall effect of tempera-

ture and the sum of squares for temperature will be zero (Figure 11.7(b)),

even though there is obviously an effect of temperature within each level of

humidity.

Second, consider the pooled analysis for the two levels of humidity. The

new cell means for each of the two levels of humidity (ignoring tempera-

ture) will also lie on the grand mean, so the sum of squares for humidity

will also be zero (Figure 11.7(c)), even though there is an effect of humidity

within each temperature.

The sum of squares for interaction will be realistic and very large.

Therefore, when there is a significant interaction, it is not appropriate

to trust the F ratios for the effects of Factors A and B. This caution

is particularly important because most statistical packages calculate

F ratios for main effects regardless of whether the interaction is significant

or not.

The solution to this problem is straightforward.

A graph of the cell means such as Figure 11.7(a) is a useful first step,

because it will give you a visual indication of the positions of each cell mean.

The next step is statistical – you need to look at the effects of each factor

across all levels of the second factor using an a-posteriori test. This proce-

dure is a little fiddly, but quite easy to do. Here, shown pictorially, is how

you can analyse the cockroach example.
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(b) 

Cockroach
activity

Grand mean

20 30 40
Temperature (˚C)

(a)

66% humidity

Cockroach
activity

Grand mean

33% humidity

20 30 40
Temperature (˚C)

(c) 

Cockroach
activity

Grand mean

33 66
Humidity (%)

Figure 11.7 An illustration of how interaction can obscure main effects in a

two factor ANOVA. (a) As temperature increases, activity decreases at 33%

humidity, but increases at 66% humidity. (b) When humidity is ignored the

cell means for the three levels of temperature only, are shown as short

horizontal lines. Note they all lie on the grand mean. The sum of squares for

temperature will be zero. (c) When temperature is ignored the cell means for

the two levels of humidity only, are shown as two short horizontal lines. Note

they both lie on the grandmean. The sum of squares for humidity will be zero.
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First you compare the two cell means within each of the three levels of

temperature (Figure 11.8(a)). Second, you compare the three cell means

within each level of humidity (Figure 11.8(b)).

Here too, for a Tukey test, you simply use the formulae:

(a) 

66% humidity

Cockroach
activity Grand mean

Grand mean

33% humidity

20 30 40

Temperature (˚C)

(b) 

Cockroach
activity

33 66
Humidity (%)

Figure 11.8 Illustration of the comparisons required for full a-posteriori

testing of a two factor ANOVA when there is a significant interaction.

(a) Double-headed arrows show the means for the two levels of Factor B

(humidity) within each level of Factor A (temperature) compared as part of

full a-posteriori testing. (b) Double-headed arrows show the means for the

three levels of Factor A (temperature) within each level of Factor B

(humidity) compared as part of full a-posteriori testing.

144 Two factor analysis of variance



q ¼
�XA � �XB

SEM
(11:5) copied from ð11:2Þ

and

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

n

r
(11:6) copied from ð11:3Þ

where n is the sample size within each cell. Again, the modification to the

formula shown in equation (11.7) applies if there are different numbers in

each cell.

This rather long but extremely important example emphasises that when

there is a significant interaction you need to examine all possible combinations

of treatments and that conclusions from F ratios formain effectsmay not hold.

Most statistical programs will not calculate a-posteriori tests for all

possible combinations of cell means given above, so it may be necessary

for you to do these calculations using a spreadsheet or a calculator. This

procedure, and the statistical tables necessary to decide whether each dif-

ference is significant, are covered in more advanced texts such as Zar (1999).

11.6.3 Fixed and random factors

The final complication applies to two factor and more complex analyses of

variance that include random factors.

The concept of fixed and random factors was discussed in Section 9.6,

but here is a reminder.

A fixed factor is one where the treatments (e.g. levels of temperature)

have been specifically chosen. You are only interested in those particular

treatments and the null hypothesis reflects this – for example, ‘There is no

difference in cockroach activity at 208C and 308C.’
A random factor is one where the treatments are used as random

representatives of the full set of possible treatments within that factor.

Therefore, the null hypothesis is more general. Instead of comparing

specific temperatures the hypothesis is, ‘There is no difference in cockroach

activity at different temperatures.’ The levels of temperature chosen and

used in the experiment are merely random representatives of the wider

range of temperatures that cockroaches may experience.

For a two factor ANOVA both factors could be fixed; one could be

random and the other fixed, or both could be random.
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If a two factor experiment contains two fixed factors, the method for

calculating the F ratios for the main effects (Factor A and Factor B) are those

given in Table 11.3 and repeated in Table 11.6. The mean square for each

factor estimates the effect of that factor plus error, and an F ratio is obtained

by dividing the mean square for that factor by the within groups (error)

mean square.

If, however, the analysis contains two random factors, the sum of squares

and mean square for each of the two factors will be inflated by the inclusion

of any additional variation caused by interaction. Therefore, the variation

estimated by the mean square for each main effect will be the effect of that

factor, plus interaction plus error. This is explained pictorially below. Most

importantly, to realistically estimate the F ratios for each random factor you

need to divide the factor mean squares by the interaction MS (which

estimates interaction plus error) rather than the error MS (Table 11.6).

Finally, if the ANOVA has one fixed and one random factor, it is even

more complicated. Most authors recommend that, if Factor A is fixed and

Factor B is random, the F ratio for Factor A is obtained by dividing the Factor

A MS by the interaction MS, but the F ratio for Factor B is obtained by

dividing the Factor BMS by the errorMS (Table 11.6). In all cases the F ratio

for interaction is obtained by dividing the interaction MS by the error MS.

Importantly, many statistical packages do not give appropriate F ratios

when random factors are included in an analysis, so you have to do these

calculations yourself by dividing by the appropriate mean squares.

Here is a conceptual pictorial explanation for the different ways of esti-

matingmain effects in a two factor ANOVA depending on whether the other

factor is fixed or random. In all cases the fixed factor of interest is Factor A.

Table 11.6. Sources of variation contributing to the mean squares for Factor A,

Factor B, and interaction when both A and B are fixed, A is fixed and B is

random, and both A and B are random

Source of

variation

Both factors

fixed

Factor A fixed,

B random

Both factors

random

Factor A Factor A þ error Factor A þ
interaction þ error

Factor A þ
interaction þ error

Factor B Factor B þ error Factor B þ error Factor B þ
interaction þ error

Interaction Interaction þ error Interaction þ error Interaction þ error
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Imagine the hypothetical case where the only levels of Factor A and B that

exist in the world are A1 and A2, and B1, B2, B3, and B4. As an example, A1

and A2 may be the only two dietary supplements available for feeding to

farmed catfish, of which there are only four species (B1 to B4) and you are

interested in the effects of dietary supplements on the growth of these species.

Figure 11.9(a) shows growth for all eight possible combinations of

Factors A and B. Note that there is no effect of Factor A when averaged

over all possible levels of Factor B, since the means for each of the levels A1

and A2, ignoring the separate levels of Factor B, are the same, but there is

considerable interaction between the two factors.

Both factors fixed and an interaction

First, consider the case where both factors are fixed, and you are only

interested in the four combinations of A1 and A2 with B2 and B4. Since

both factors are fixed, you are not interested in whether any differences in

growth between A1 and A2 within this very restricted comparison also

reflect those averaged over all possible levels of Factor B.

The comparisons between A1, A2 and B2, B4 are shown in Figure 11.9(b).

Cell means have been copied from the appropriate part of Figure 11.9(a).

Although the means of treatments A1 and A2 (ignoring B) are affected by

the interaction, you are only interested in treatment A1 compared with A2

within the two fixed levels of B2 and B4. Therefore, to get a realistic effect of

Factor A within this limited and fixed comparison, the variation due to the

interaction is a necessary additional component of Factor A and you calculate

the F ratio for Factor A by dividing its treatment mean square by error only.

Factor A fixed, Factor B random, and an interaction

Second, consider the case where Factor A is fixed and Factor B is random.

You are interested in the comparison between A1 and A2 across all possible

levels of B, from which B2 and B4 have been chosen as random

representatives.

The results of the experiment on the combinations of A1, A2 and B2, B4

are shown in Figure 11.9(c). Here too, the pooled means of treatments A1

and A2 (ignoring B) are affected by the interaction, but the difference

within the experiment does not reflect the lack of change between A1

and A2 averaged over all possible levels of Factor B in Figure 11.9(a).

Therefore, since the interaction has contributed additional variation to the
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(a) 

B1

B3

Growth
B4

B2

A1 A2

(b) 

Growth

B4

B2

A1 A2

(c) 

Growth

B4

B2

A1 A2

Figure 11.9 A pictorial explanation for the reason why the F ratio for a main

effect is calculated differently, depending on whether the other factor is fixed

or random. Cell means are indicated by symbols and pooled treatment means

are indicated by the two heavy horizontal lines. (a) All the possible levels of

Factor A and Factor B, together with all possible combinations of these, are

shown. Note that there is considerable interaction, but overall there is no

effect of Factor A (when Factor B is ignored, the pooled treatment means for

A1 and A2 are identical). (b) When Factor B is fixed and only a subset of B is

considered (B2 and B4), the interaction will contribute to the difference

between the pooled means of A1 and A2, but this variation is a relevant

addition within the deliberately restricted levels of each factor being

compared. (c) When Factor B is random, the interaction will contribute

unrealistic additional variation to the difference between the pooled means of

A1 and A2. It will not indicate the true lack of change fromA1 to A2 across the

entire set of the levels of B and therefore needs to be excluded.
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sum of squares and mean square for Factor A, it is appropriate to exclude it

by dividing the Factor A mean square by the interaction þ error mean

square to get a more realistic effect of Factor A averaged over all four

possible levels of B.

For any two factor ANOVA, the effect of a particular factor (e.g. Factor A)

is estimated by dividing by the mean square for error only if the other factor

is fixed, but by themean square for interaction (i.e. interactionþ error) if the

other factor is random. Therefore, if both factors are random, you divide the

mean squares of both by the interaction mean square.

Finally, although I have specified the procedure for obtaining realistic

F ratios when one or both factors are random, there is still some disagree-

ment about this (e.g. Quinn and Keough, 2002). Some authors recommend

dividing themean square for Factor A and also Factor B by themean square

for interactionþ error when either or both are random. Most importantly,

if you have an analysis involving one or more random factors, it is import-

ant to clearly specify how you calculated the F ratios for each factor.

11.7 Unbalanced designs

The cautions about unbalanced designs (when the sample size is not the

same in each treatment) in relation to one factor ANOVA also apply to

more complex models. Whenever possible you should try to ensure that

sample sizes are equal in each treatment combination, especially when

sample sizes are relatively small, because they may not give good estimates

of cell means and result in misleading conclusions.

11.8 More complex designs

Once you understand the concept of one and two factor analyses of vari-

ance, extension to three or more factors and other designs is relatively easy.

A two factor ANOVA breaks the analysis down into two main factors

(which are each analysed like a single factor ANOVA) and generates an

interaction term by subtraction. A three factor ANOVA does the same

thing, but the analysis and ANOVA table are more complex because there

are three main factors (Factors A, B, and C), plus interaction among all

three (A�B, A�C, B�C, A�B�C), and error. More advanced texts

give rules for obtaining the appropriate F ratios with more complex
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designs, where there can be several combinations of fixed and random

factors as well.

If you continue on to use ANOVA a lot, you will realise that this chapter

is very introductory. There are nested ANOVAs, two factor ANOVAs

without replication, ANOVAs for split plot designs, unbalanced designs,

andmanymore. This book does not attempt to cover all of these – instead it

provides you with a general conceptual view that will help you work with

more complex designs. Perhaps the best advice if you have to do complex

experiments requiring complicated ANOVAs is to find a good textbook

(e.g. Quinn and Keough, 2002; Zar, 1999; Sokal and Rohlf, 1995) and

perhaps talk to a statistician before you design the experiment.
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12 Important assumptions of analysis of
variance: transformations and a test
for equality of variances

12.1 Introduction

Parametric analysis of variance assumes the data are from normally dis-

tributed populations with the same variance and there is independence,

both within and among treatments. If these assumptions are not met, an

ANOVA may give you an unrealistic F statistic and therefore an unrealistic

probability that several sample means are from the same population.

Therefore it is important to know how robust ANOVA is to violations of

these assumptions and what to do if they are not met, since in some cases it

may be possible to transform the data to make variances more homoge-

neous or give distributions that are better approximations to the normal

curve.

This chapter discusses the assumptions of ANOVA, followed by three

frequently used transformations. Finally, there are descriptions of two tests

for the homogeneity of variances.

12.2 Homogeneity of variances

The first andmost important assumption is that the data for each treatment

(or treatment combination in the case of two factor and more complex

ANOVA designs) are assumed to have come from populations that have

the same variance. Equality of variances is called homogeneity of variances

or homoscedasticity, while unequal variances show heterogeneity of var-

iances or heteroscedasticity. Nevertheless, statisticians have found that

ANOVA is relatively robust in terms of departures from homoscedasticity,

and there has been considerable discussion about whether it is necessary to

apply tests which assess this before doing an ANOVA, especially since these

may be too sensitive when sample sizes are large, or too insensitive when



sample sizes are small (e.g. Quinn and Keough, 2002). Many authors

suggest preliminary testing for homoscedasticity is not necessary, provid-

ing as a very general rule the ratio of the difference in variance of the largest

to the smallest does not exceed 4:1.

Some cases of heteroscedasticity can be reduced by transforming the data

(Section 12.5). Consequently, it is often useful to plot the data or calculate

the variance within each treatment, or treatment combination, to see if there

is a trend. For example, biological data often show an increase in variance as

the mean increases, in which case transforming the data by taking the square

root of each value may reduce heteroscedasticity (Section 12.5).

There are several tests designed to assess heteroscedasticity and these

have more uses than just checking whether data are suitable for parametric

analysis. Sometimes you may be interested in an hypothesis about the

variances rather than the means of different treatments. For example,

you might hypothesise that a drug treatment increases the variance of

systolic blood pressure in humans, so you would need to analyse your

data with a test that compares variances among treatments. The Levene test

for heteroscedasticity is described in Section 12.7.

12.3 Normally distributed data

The second assumption is that the data are from normally distributed

populations. Nevertheless, it has been shown that ANOVA is quite robust

in terms of minor departures from normality. As previously described in

Section 7.7.1, drawing P-P plots can assess normality. You should only be

cautious about proceeding with a parametric analysis if a P-P plot shows

gross departures from linearity such as sharp kinks.

12.3.1 Skew and outliers

A box and whiskers plot (Tukey, 1977) is a way of visually summarising the

distribution of a sample (Figure 12.1) so it can be assessed for skew and

whether there are values in the data set which are unusually distant (either

greater or less) from the mean. These are called outliers. Construction of a

box and whiskers plot is straightforward.

For a sample containing an odd number of values you need to find the

median, which is the middle value of this set of data.
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Next, divide the data into two sets, the first of which contains all the

values less than the median and the second of which contains all the values

more than the median. Include the median in each set.

Then, find the median of each of the lower and upper set. These new

medians are called the lower quartile and upper quartile, which are used

to draw the upper and lower limits (which are also called the hinges) of the

box. The distance between these quartiles or hinges is the interquartile

range. Twenty-five per cent of the values in the sample will be larger than

the upper quartile, 50% will lie between the two quartiles, and 25% will be

smaller than the lower quartile.

Finally, you need to add the whiskers to the box. Each whisker can extend

outwards for a maximum distance of 1.5 times the interquartile range from

each end of the box, but is only drawn to themaximum value within that

range.

This will give you a plot with a box running from the lower to upper

quartiles and whiskers extending out from each end of the rectangular box

(Figure 12.1).

For a data set with an even number of values the procedure is almost

the same except that after finding the median you divide the data into two

sets, the first of which contains all the values less than the median and the

second of which contains all the values more than the median.

Upper whisker

Upper quartile or upper hinge

Interquartile 
range 
(50% of 
values) 

Median

Lower quartile or lower hinge

Lower whisker

Figure 12.1 The features of a box and whiskers plot.
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12.3.2 A worked example of a box and whiskers plot

This example uses a sample with an odd number of values (n¼ 9): 1, 3, 4, 6,

7, 9, 10, 12, 25. The median of this sample is 7, so it is divided into two

groups, where the lower group contains 1, 3, 4, 6, and 7, while the upper

group contains 7, 9, 10, 12, and 25. The median of the lower group is 4,

which becomes the lower quartile. The median of the upper group is 10,

which becomes the upper quartile. These are the limits of the ends of the

box (called the hinges).

The interquartile range is 10 – 4¼ 6 units. From this you can draw the

rectangular box in Figure 12.2(a). The maximum potential length of each

whisker is 1.5 times the interquartile range and thus 1.5 � 6¼ 9. This is

shown in Figure 12.2(b). Each whisker can extend out a maximum of nine

units from its hinge. Since each whisker is only drawn to the most extreme

value within its potential range, the lower whisker will only extend down to

1, while the upperwill only extend up to 12. The outlier of 25, indicated by an

asterisk, lies outside the range of the box and its whiskers (Figure 12.2(c)).

25 25

12 12 12

10 10 10
  9   9   9

  7   7   7
  6   6   6

  4   4   4
  3   3   3

  1   1   1

*25

(a) (b) (c)

Figure 12.2 The three steps in drawing a box and whiskers plot, using the

data in 12.3.2. (a) Drawing the box. (b) Establishing the maximum potential

length of each whisker. (c) Drawing the actual length of each whisker.
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The shape of the box and whiskers plot indicates whether the distribu-

tion is skewed. If the distribution of the data is symmetrical about the

mean, the box and whiskers plot will have a median equidistant from the

hinges and whiskers of similar lengths. As the distribution becomes increas-

ingly skewed, the median will become less equidistant from the hinges and

the whiskers will have different lengths (Figure 12.3).

Any values outside the range of the whiskers are called outliers and

should be scrutinised carefully. In some cases outliers are obvious mistakes

caused by incorrect data entry or recording, faulty equipment, or inap-

propriate methodology (e.g. a human body temperature of 508C or a

negative number of individuals) in which case they can justifiably be

deleted. When outliers appear to be real, they are of great interest, since

theymay indicate that something unusual is occurring, especially if they are

present in some samples or treatments and not others. Importantly, how-

ever, when there are outliers you should be cautious about using a para-

metric test. One or two extreme values can greatly affect the variance of a

sample, since the formula for the variance uses the square of the difference

between each value and the mean, so the assumption of equal variances

among treatments or samples can be easily violated.

12.4 Independence

Finally, the data must be independent of each other, both within and

among groups. This important assumption needs very little explanation

*

*
*

(b)(a)

Figure 12.3 Examples of box and whiskers plots for (a) normally distributed

data and (b) data with a gross positive skew. Outliers are shown as asterisks.
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since it is really just a matter of good experimental design. For example, you

need to ensure each experimental unit within each treatment is chosen

independently and all possible experimental units within the population

have an equal likelihood of being selected. You also need to ensure that

independence applies among treatment groups as well.

12.5 Transformations

Transformations are a way of reducing heteroscedasticity or making data

more closely resemble a normal distribution. There are many transfor-

mations available, and three commonly used ones are described

below. Most spreadsheet and statistical packages include a large set of

transformations.

12.5.1 The square root transformation

If the variance of the data increases as the mean increases, a square root

transformation will make these data more homosecdastic. There is an

example in Table 12.1.

Table 12.1. An example of the effect of a square root transformation on data

where the variance increases as the mean increases. Data are given for the

growth of tumours in three drug treatments. The original data show gross

heteroscedasticity among groups in that the largest variance is 75.34 and the

smallest is 9.00, giving a ratio of largest to smallest of 8.4:1. A square root

transformation reduces this ratio to 2.5:1

Control Tumostat Inhibin 4

Original

Square

root Original

Square

root Original

Square

root

17 4.12 9 3.00 5 2.24

16 4.00 8 2.83 4 2.00

2 1.41 3 1.73 2 1.41

1 1.00 2 1.41 1 1.00

s2 75.34 6.92 30.25 5.02 9.00 2.75
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Logarithm of the number of fruit per plant
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Figure 12.4 The effect of logarithmic transformation on data for the number

of fruit produced by tomato plants. The X axis shows the number of fruit

produced per plant and the Y axis shows the number of plants bearing each

number of fruit. The data show a pronounced positive skew before

transformation. (a) Untransformed data show a positive skew. (b) After

transformation to the log10. Note that the distribution in (b) is far more

symmetrical than in (a).
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12.5.2 The logarithmic transformation

If the data show a gross positive skew, a logarithmic transformation will

give a distribution that better approximates the normal distribution. In

cases where the data set includes any values of zero you need to use the

logarithm ofX + 1, since the logarithm of zero is�1. Biological data often

show a positive skew.

Figure 12.4 shows the effect of a logarithmic transformation on a posi-

tively skewed distribution.

12.5.3 The arc-sine transformation

The arc-sine transformation can be useful for data that are percentages.

Since percentage data have an absolute minimum of 0% and an absolute

maximum of 100%, any distribution with a mean close to either of these

extremes is unlikely to have a normal distribution because it will cease at

these values (Figure 12.5). An arc-sine transformation will give these data a

far more normal shape.

12.6 Are transformations legitimate?

Here you may be thinking that transforming data to make them more

suitable for parametric statistical analysis sounds like cheating or altering

the data to get the result you want.

First, however, transformations are applied to the entire data set, so each

value is treated in the same way.

Second, there is no scientific necessity to use the linear base ten scale

that we are so familiar with. Many biological relationships between two

Frequency

0 50 100

Percentage

Figure 12.5 Restriction of the normal distribution for percentage data when

the mean is close to zero or 100%.
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variables (e.g. the metabolic rate of an invertebrate and temperature, the

number of eggs per female toad versus the length of that female) are

logarithms, squares, or cubes. The apparently linear pH scale is actually

logarithmic – a pH of 4 indicates a ten-fold difference from pH 5 and

a 100-fold difference from pH 6. Therefore, in many cases it is actually

more appropriate to transform the data so they reflect the underlying

relationship.

Importantly, if you transform a set of data, you also need to transform

your null and alternate hypotheses. For example, if you were to hypothesise

that ‘drugs A, B, and C have no effect on the mean blood glucose concen-

tration in humans’ but carried out a logarithmic transformation on your

data before analysis, your original hypothesis would also have to be trans-

formed to ‘drugs A, B, and C have no effect on the mean of the logarithm of

blood glucose concentration in humans’.

12.7 Tests for heteroscedasticity

There are several tests designed to examine whether two or more samples

appear to have come from populations with the same variance. As

mentioned earlier, if you are only interested in whether the data are suitable

for a parametric analysis, the general rule that the ratio of the largest

variance to the smallest should not exceed 4:1 can be used. If this ratio is

greater, it may be useful to examine the data and see where the differences

occur, since it may be possible to transform the data so that a parametric

analysis can be done.

If, instead, you are interested in testing an hypothesis about the variance

of two or more samples, you can use the Levene test, which also gives an F

ratio. Remember, however, that a significant result for the Levene test may

not mean the data are unsuitable for analysis by ANOVA, which is quite

robust to heteroscedasticity.

Levene’s original test calculates the absolute difference between each

replicate and its treatment mean and then does a one factor ANOVA on

these differences. The absolute difference is the difference between any two

numbers expressed as a positive value. (For example, the difference

between 6 and 3 is –3, while the difference between 3 and 6 is +3, but the

absolute difference in both cases is +3.)

12.7 Tests for heteroscedasticity 159



Figures 12.6 and 12.7 are a pictorial explanation of the Levene test. Two

cases are shown, using the experiment on the growth of brain tumours in

three different treatments first described in Section 9.2.

First, if the variances within all treatments are similar, then the set of

absolute differences between the replicates and their sample means will also

be similar for each treatment. For example, Figure 12.6 shows the absolute

differences for three samples that all have the same variance. Note that the

means of the absolute differences in 12.6(b) are the same, even though

the treatment means in 12.6(a) are not. A one factor ANOVA comparing

the means of the absolute differences will not be significant.

(a)
 11
 10

  8   8
  7   7

  5   5
  4   4

  2
 1

Control Tumostat Inhibin 4

(b)

Control Tumostat Inhibin 4

2 2 2
1 1 1
1 1 1
2 2 2

9

6

3

6

Figure 12.6 The Levene test examines whether two or more variances are

likely to have come from the same population by doing a one factor

ANOVA on the absolute differences between the replicates and their

treatment means or cell means. (a) Arrows show the difference between

each replicate and its treatment mean. Note that some differences are

positive and some are negative. (b) The absolute differences are listed

under each treatment. Every value of the absolute difference between each

replicate and its sample mean will be positive. In this case the means of the

absolute differences are the same for each treatment, and a one factor

ANOVA comparing these will not be significant, thereby indicating the

variances are homoscedastic.
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Second, if the variances differ among treatments (Figure 12.7(a)), then

so will the values of the absolute differences (Figure 12.7(b)). Note that the

set of absolute differences for the control treatment has a mean that is

much larger than the other two and a one factor ANOVA comparing these

means is likely to be significant.

The Levene test is available in most statistical packages.

(a)

 17
 16

  8
  7

  5   5
  4   4

  2
  1

Control Tumostat Inhibin 4

(b)

Control Tumostat Inhibin 4
 8 2  2
 7 1  1
 7 1  1
 8 2  2

9

6

3

6

 2
 1 

Figure 12.7 An example of the Levene test where there is heteroscedasticity.

(a) Arrows show the difference between each replicate and its treatment

mean. (b) The absolute differences between each replicate and its treatment

mean are listed under each treatment. Since the absolute differences for the

control are much greater than the other two treatments a one factor ANOVA

comparing the means of the values in (b) will show the variances are

significantly heteroscedastic.
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13 Two factor analysis of variance
without replication, and nested
analysis of variance

13.1 Introduction

This chapter describes two slightly more complex ANOVA models often

used by life scientists, but an understanding of these is not essential if you

are reading this book as an introduction to biostatistics. If, however, you

need to use more complex models, the explanations given here for two

factor ANOVAwithout replication and nested ANOVA are straightforward

extensions of the pictorial descriptions in Chapters 9 and 11 and will help

with many of the ANOVA models used to analyse more complex designs.

13.2 Two factor ANOVA without replication

This is a special case of the two factor ANOVA described in Chapter 11.

Sometimes an orthogonal experiment with two independent factors has to

be done without replication, because there is a shortage of experimental

subjects or the treatments are very expensive to administer. The simplest

case of ANOVA without replication is a two factor design. You cannot do a

one factor ANOVA without replication.

The data in Table 13.1 are for a preliminary trial of two experimental

drugs ‘Proshib’ and ‘Testoblock’, which were being evaluated, together

with a control treatment, for their effect on the growth of solid tumours

of the prostate, in combination with three levels of radiation therapy (high,

medium, and low). The researcher had only nine consenting volunteers

with advanced prostate cancer, so an orthogonal design was only possible

without replication.

This causes a problem. There is no way to estimate error directly from

the dispersion of replicates around their respective cell means (as was done

for a one factor ANOVA in Chapter 9 and two factor ANOVA with



replication in Chapter 11), since there is only one value in each treatment

combination, so this will be the same as the cell mean. A two factor ANOVA

without replication uses a different way of estimating error, which has to

assume there is no interaction between the factors.

Figures 13.1 to 13.4 give a pictorial explanation of how a two factor

ANOVA without replication estimates three sources of variation and uses

these to isolate the effects of the two factors. The data in Table 13.1 are

graphed in Figure 13.1.

First, the total variation within the experiment is estimated. Each point

will be displaced from the grand mean by the effects of Factor A, Factor B,

Table 13.1. The increase in volume (in mm3) of prostate tumours in nine males

after three months of treatment with nine different combinations of radiation

therapy and drugs

Drug

Radiation level Proshib Testoblock Control

Low 81 76 79

Medium 45 46 45

High 28 27 27

Growth 
(mm3)

Grand mean

Proshib Testoblock Control

Figure 13.1 The growth of prostate tumours in nine combinations of three

levels of drug treatment and three levels of radiation. There is only one

replicate within each treatment combination. The increased volume of each

tumour is shown as a symbol: ^ = tumours receiving low radiation,
* = tumours receiving medium radiation, and & = tumours receiving high

radiation. The heavy horizontal line shows the grand mean and the nine

shorter horizontal lines show each cell mean.
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any interaction, and error. These distances can be squared and summed to

give the sum of squares for the total variation in the experiment, with

degrees of freedom that are one less than the number of experimental

subjects.

Second, the effect of Factor A is estimated by ignoring Factor B and

calculating a new mean for each of the levels within Factor A. The displace-

ment of each treatment mean from the grand mean will be caused by the

average effect of Factor A plus error (Figure 13.3). Each of these is squared,

multiplied by the number of replicates within each treatment, and added

Growth 
(mm3)

Grand mean

Proshib Testoblock Control

Figure 13.2 The total variation within the experiment on the growth of

prostate tumours. The heavy horizontal line indicates the grandmean and the

nine shorter horizontal lines indicate each cell mean. The displacement of

each point from the grand mean (arrows) will be caused by the total variation

within the experiment.

Grand meanGrowth 

(mm3)

Proshib Testoblock Control

Figure 13.3 Estimation of the effect of Factor A. The displacement of each

treatment mean from the grand mean (arrows) will be caused by the effect of

Factor A (here drugs) plus error.
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together to give the sum of squares for Factor A. The number of degrees of

freedom is one less than the number of treatments, and dividing the sum of

squares by this value will give the mean square for Factor A.

Finally, the effect of Factor B is estimated by ignoring Factor A and

calculating a new mean for each treatment level of Factor B. The displace-

ment of each treatment mean from the grand mean will be caused by the

effect of Factor B plus error (Figure 13.4). Here too, the displacements are

squared, multiplied by the number of replicates within each treatment, and

added together to give the sum of squares for Factor B. The number of

degrees of freedom is one less than the number of treatments, and dividing

by this value will give the mean square for Factor B.

At this stage you have estimates for the following sources of variation:

(a) The total variation in the experiment (the combined effects of Factor

A, Factor B, A � B, and error) (Figure 13.2).

(b) The effect of Factor A (drug treatment + error) (Figure 13.3).

(c) The effect of Factor B (radiation level + error) (Figure 13.4).

Since there is only one replicate within each treatment combination,

there is no way to separately estimate error. Therefore, unlike a two factor

ANOVA with replication, it is not possible to estimate the sum of squares

for the effect of any interaction by subtracting the sums of squares for

Factor A, Factor B, and error from the total variation.

Two factor ANOVA without replication does the next best thing.

The sums of squares and degrees of freedom in an ANOVA are additive

Growth 
(mm3)

Grand mean

Low 
radiation

Medium 
radiation

High 
radiation

Figure 13.4 Estimation of the effect of Factor B. The displacement of each

treatment mean from the grand mean (arrows) will be caused by the effect of

Factor B (here radiation) plus error.
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(e.g. in Chapter 9 it was explained how the total sum of squares and total

degrees of freedom in a one factor ANOVA were the sums of those for

Factor A and for error). Therefore, by subtracting the sums of squares for

Factor A plus Factor B from the total variation, you are left with the sum of

squares for the remaining variation in the experiment, which will include

error and any effect of interaction. This sum of squares, which is the only

possible estimate of error, is divided by the remaining degrees of freedom to

give the best estimate of the mean square for error. If there is an interaction,

the mean square will be inflated, but this is unavoidable and undetectable if

you do a two factor ANOVA without replication.

The results of a two factor ANOVA without replication will include the

sums of squares and mean squares for Factor A, Factor B, and error,

together with the F ratios and probabilities for Factors A and B. For the

example given above the results of the analysis are in Table 13.2.

13.3 A-posteriori comparison of means after a two factor

ANOVA without replication

If a two factor ANOVA without replication shows a significant effect of a

fixed treatment factor (e.g. the three radiation levels being specifically

compared in Section 13.2), you are likely to want to knowwhich treatments

appear to be from the same or different populations.

The procedure for a-posteriori testing is a modification of the formula

for a one factor ANOVA, except that, since there is no directly estimated

value for error, the MS error for interaction plus error (estimated by

subtraction) is used as the best estimate of this. For a Tukey test each factor

is examined separately using the formula:

Table 13.2. Results of a two factor ANOVA without replication on the data in

Table 13.1. There is a significant effect of radiation but no significant effect of the

drugs on the growth of tumours of the prostate

Source of variation Sum of squares df Mean square F P

Radiation 4070.222 2 2035.111 835.545 0.000

Drug 4.222 2 2.111 0.864 0.488

Error 9.778 4 2.444

Total 4084.222 8
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q ¼
�XA � �XB

SEM
(13:1) copied from ð10:1Þ

with the standard error of the mean estimated from:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MS error

n

r
(13:2) copied from ð10:3Þ

where the MS error is also the one calculated by subtraction in the ANOVA

table (see Table 13.2) and n is the number of data within each group (for

example, there are three values within each of the three radiation levels

when the drug treatments are ignored and vice versa).

13.4 Randomised blocks

Two factor ANOVAwithout replication can be used to analyse results from

a randomised block experimental design. Many agricultural experiments

on the productivity of commercial crops are done on a large scale and

involve treatments applied to particular plots within a field or paddock.

When each plot is harvested, you usually only get one value (e.g. the weight

of the crop harvested from that plot).

Unfortunately, factors including soil fertility, wind exposure, and soil

type may vary across fields and paddocks. Therefore, if you use an experi-

mental design with several replicates of each treatment allocated at ran-

dom, you may get a lot of variation among replicates of the same treatment

simply due to their different locations.

A randomised block design gives a way of isolating treatment effects

from this type of spatial variation. An area of land is subdivided into several

rows (which are called blocks). Each block is then subdivided into several

plots of equal size, usually with one plot for each treatment type. One

replicate of each treatment is assigned at random within each block, as

shown in Figure 13.5.

The results from this design can be analysed as a two factor ANOVA

without replication, using treatments as the first factor and blocks as

the second.

Two factor ANOVA without replication is often used to analyse experi-

ments on animals, where you might expect great variation among the

offspring of different parents. For example, small mammals usually only

have relatively few individuals per litter (e.g. cats have an average of about
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three kittens per litter) and there is likely to be considerable genetic varia-

tion among litters from different females. In such cases the best approach is

often to treat litters as one (random) factor and your treatments as the

second factor, with each treatment applied to one individual per litter. Here

the factor ‘litters’ is equivalent to the blocks in the previous example.

13.5 Nested ANOVA as a special case of a one factor ANOVA

An experimental design that compares the means of two or more levels of

the same factor (e.g. different levels of salinity or different drugs) can be

analysed by a single factor ANOVA, as described in Chapter 9. Sometimes,

however, researchers do an experiment with two or more levels of a

particular factor, but also have two or more subgroups nested within

each level. Here is an example.

Large-scale experiments in aquaculture are often constrained by the num-

ber of ponds available to the researcher. For example, only nine ponds were

available for an investigation into the effects of two different vitamin supple-

ments (vitamin A and vitamin B) on the growth of prawns. Each pond was

stocked with 100 prawns of the same species, age, and weight. Three ponds

were allocated at random to each of the two vitamin supplement treatments

Block 
number
1 A C B D

2 D A B C

3 C B D A

4 A D C B

5 B C D A

Figure 13.5 An example of a randomised block experimental design. The

grid represents a paddock that has been subdivided into several rows, which

are treated as separate blocks. Each block has been subdivided into four

equal-sized plots. One replicate of each treatment (A–D) is assigned at

random to a plot within each block.
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and the remaining three ponds used as a control. After six months the 100

prawns in each pond were recaptured and weighed.

This is called a nested or hierarchical design. Three ponds, each contain-

ing several replicates (in this case 100), are nested within each treatment

(Figure 13.6).

This design is not appropriate for analysis using a one factor ANOVA

with diet as the factor and the 300 prawns within each treatment as the

number of replicates, since this ignores the presence of the ponds that may

contribute to the variation within the experiment. You may also be think-

ing that the design appears pseudoreplicated in that the real level of

replication within each treatment is the number of ponds rather than the

number of prawns. This is true and the nested analysis described below

takes this into account.

This design is also unsuitable for analysis as a two factor ANOVA with

diet as the first factor and ponds as the second, because the three ponds are

simply random subgroups nested within each treatment, which do not

intentionally contain different levels of a second factor. For example, the

first pond in treatment 1 does not share an exclusive property with the first

pond in treatments 2 and 3 (Table 13.3).

When one factor (e.g. Factor B) is nested within another (e.g. Factor A) it

is often written as Factor B(Factor A). For the nested design above, where

Factor A is diet and Factor B is the ponds, the following will contribute to

the final weight of each prawn:

Growth ¼ Factor Aþ Factor BðFactorAÞ þ error (13:3)

Pond A Pond B Pond C Pond D

Pond E Pond F Pond G Pond H  Pond I

Figure 13.6 Example of a nested or hierarchical design. Each pond contains

100 replicates and three ponds are nested within each treatment. Open circles

indicate the control (prawn food only), grey circles treatment 1 (prawn food

plus vitamin A), and black circles treatment 2 (prawn food plus vitamin B).
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This is the same as equation (9.1) for a one factor ANOVA apart from an

additional source of variation from the ponds nested within each diet.

There is no interaction term because the design is not orthogonal.

A nested ANOVA isolates the effects of treatments and subgroups within

these treatments and gives an F ratio for both factors. The way this analysis

works is described in Section 13.6.

13.6 A pictorial explanation of a nested ANOVA

For simplicity the following example has two treatments and two

ponds nested within each treatment, with only four prawns in each

pond. The data are in Table 13.4. Diet is Factor A and the ponds are

Factor B(A).

Table 13.3. A hierarchical design should not be analysed as an independent

factor design

(a) A hierarchical design has one factor nested within the other. The ponds

have been chosen at random and are nested within each treatment.

Prawn food

Prawn food +

vitamin A

Prawn food +

vitamin B

Pond C Pond E Pond I Pond B Pond F Pond G Pond A Pond D Pond H

(b) Incorrect format of the nested design shown above in (a) as a fully

orthogonal design. There is nothing exclusively shared within any of the rows

of ponds across treatments so it is incorrect to treat the three rows as three

different levels of the factor ‘pond’.

Treatment

Pond

Prawn

food

Prawn

food +

vitamin A

Prawn

food +

vitamin B

First within each

treatment

100 prawns

(Pond C)

100 prawns

(Pond B)

100 prawns

(Pond A)

Second within each

treatment

100 prawns

(Pond E)

100 prawns

(Pond F)

100 prawns

(Pond D)

Third within each

treatment

100 prawns

(Pond I)

100 prawns

(Pond G)

100 prawns

(Pond H)
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Figure 13.7 shows the data for each of the four groups in Table 13.4

graphed as four separate cells, including each cell mean and the grand mean.

First, error is estimated. The value for each replicate is displaced from its cell

mean by error only (Figure 13.7). The sum of squares for error is obtained by

squaring each displacement and adding these together. This quantity is

divided by the appropriate degrees of freedom (the sum of one less than the

number of replicates within each of the cells) to give themean square for error.

Second, the subgroups (in this case the ponds) are ignored and new

means are calculated by combining all of the replicates within each treat-

ment (in this case diet) (Figure 13.8). This will give the effect of treatment,

but for a nested ANOVA each treatment mean will be displaced from the

grand mean because of the effect of treatment, plus the subgroups nested

within each treatment, plus error.

This seems inconsistent with the explanation given for an orthogonal

two factor ANOVA, where ignoring a factor (e.g. Factor B) removed it as a

source of variation, allowing the effect of the other (e.g. Factor A) to be

estimated. For a two factor orthogonal design, all levels of Factor A are

present within every level of Factor B and vice versa, so each of the two

factors can be ignored in turn and the effect of each factor separately

estimated. For a nested design, however, the effects of Factor B (the

subgroups) cannot be excluded in this way, because different subgroups

(here different ponds) are present and may contribute very different

amounts of variation within each of the levels of Factor A.

Table 13.4. Data for the weight in grams of prawns after six weeks of feeding

with (a) standard prawn food plus vitamin A and (b) standard prawn food only.

Two ponds are nested within each treatment

Treatment

Prawn food + vitamin A Prawn food only

Pond 1 Pond 2 Pond 3 Pond 4

30 60 80 110

35 65 85 115

45 75 95 125

50 80 100 130

13.6 A pictorial explanation 171



Weight

Prawn food + vitamin A Prawn food only

120

90

70

40

105

55

Figure 13.8 Estimation of the effects of Factor A (treatment). The

displacement of each combined treatment mean for Factor A from the grand

mean shown by the arrows is caused by the average effects of that treatment,

plus ponds nested within each treatment, plus error. The number of degrees

of freedom will be one less than the number of treatments, so in this example

with two treatments there is one degree of freedom.

Weight

Prawn food + vitamin A Prawn food only 

120 

90 

70 

40 

80 

Figure 13.7 Arrows show the displacement of each replicate from its cell

mean, which is the variation due to error only. The number of degrees of

freedom is the sum of one less than the number within each of the cells. In this

example there are 12 degrees of freedom.
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The displacements of each treatment mean from the grand mean are

squared, multiplied by the number of replicates within their respective

treatment, and added together to give the sum of squares for Factor A,

which will include treatment, plus subgroups(treatment), plus error.

The number of degrees of freedom is one less than the number of

treatments, and dividing the sum of squares by this number will give

the mean square for Factor A (i.e. treatment plus subgroups(treatment),

plus error).

Third, a mean is also calculated for Factor B(A), which is the variation

contributed by each subgroup (in this case each pond) (Figure 13.9). Each

subgroup mean will only be displaced from its respective treatment mean

by the effect of the subgroup plus error. The displacements are squared,

multiplied by the number of replicates within their respective subgroups

and added together to give the Factor B(A) sum of squares. The number of

degrees of freedom will be the sum of one less than the number of

subgroups within each treatment. Dividing the sum of squares by this

number will give the mean square for Factor B(A) (i.e. subgroups

plus error).

Weight

Prawn food + vitamin A Prawn food only

120

90

70

40

105

55

Figure 13.9 Estimation of the effect of Factor B(A). The displacement of

each cell mean from its treatment mean is shown by each arrow and is caused

by the average effect of that subgroup (each pond) plus error. The number of

degrees of freedom will be the sum of one less than the number of ponds

within each treatment. In this example there are two degrees of freedom.
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The procedures shown in Figures 13.7 to 13.9 give three separate sums of

squares and mean squares:

(a) Factor A: treatment + subgroups(treatment) + error (Figure 13.8)

(b) Factor B(A): subgroups(treatment) + error (Figure 13.9)

(c) error (Figure 13.7)

and no other mean squares are needed to isolate the effects of the treat-

ments from the subgroups nested within each treatment.

First, to isolate the effect of treatment only, the MS for treatment plus

subgroups(treatment) plus error is divided by the MS for subgroups(treat-

ment) plus error. Second, to isolate the variation due to subgroups(treat-

ment), the MS for subgroups(treatment) plus error is divided by the MS

error (Table 13.5).

In the example shown in Figures 13.7 to 13.9 the F ratio for the effect of

Factor Awill only have one and two degrees of freedom, despite there being 16

prawns in the experiment. This is appropriate because the level of replication

for this comparison is the ponds rather than the prawns within each pond.

Most statistical packages will do a nested ANOVA and the results will be

in a similar format to Table 13.6, which gives the results for the data in

Table 13.4. If the treatment factor is fixed and significant, you are likely to

want to carry out a-posteriori testing to examine which treatment means are

Table 13.5. The appropriate division and components of each mean

square term used to estimate the effect of each factor when Factor B

is nested within Factor A

Source of variation

Calculation

of F ratio

Components of each

mean square

Factor A (treatment)
Mean square for

Factor A_____________

Mean square

for B(A)

Factor A + Factor B(A) +

error_____________________

Factor B(A) + error

Factor B(A)

(subgroups nested

within each treatment)

Mean square for B(A)__________________

Mean square error

Factor B(A) + error________________

error
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significantly different. The Tukey test (equation (13.1)) can be used, but

when comparing among treatments the appropriate ‘MS error’ to use in

equation (13.3) is the MS for subgroups(treatments) instead of the error.

I suggest you use a more advanced text (e.g. Sokal and Rohlf (1995) or Zar

(1999)) if you need to do a-posteriori testing after a nested ANOVA.

This example is the simplest case of a nested or hierarchical design. More

complex designs can include several levels of nesting, and nested factors in

combination with two and higher factor ANOVAs. If you need to use more

complex designs, it is important to read an advanced text or talk to a

statistician before doing the experiment.

13.7 A final comment on ANOVA – this book is only an

introduction

Even though this book has five chapters about analysis of variance, it is only

an introduction to an enormous and diverse topic. There are far more

complex ANOVAmodels, including those for analysing repeated measures

on the same experimental unit over time, several variables measured on the

same experimental unit, and designs with several factors that include

nesting. Hopefully the introduction developed here will make it easier for

you to understand more complex designs described in advanced texts!

Table 13.6. Results of a nested ANOVA on the data in Table 13.4. Note that the F

ratio for diet has been obtained by dividing the MS for diet by the MS for pond

(diet)

Source of variation Sum of squares df Mean square F P

Diet 10000.0 1 10000.0 5.556 0.143

Pond(diet) 3600.0 2 1800.0 21.600 0.000

Error 1000.0 12 83.3
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14 Relationships between variables:
linear correlation and linear
regression

14.1 Introduction

Often life scientists obtain data for two or more variables measured on the

same set of subjects or experimental units because they are interested in

whether these variables are related and, if so, the type of functional

relationship between them.

If two variables are related they vary together – as the value of one

variable increases or decreases, the other also changes in a consistent way.

If two variables are functionally related, they vary together and the value

of one variable can be predicted from the value of the other.

To detect a relationship between two variables, both are measured on

each of several subjects or experimental units and these bivariate data

examined to see if there is any pattern. One way to do this, by drawing a

scatter plot with one variable on the X axis and the other on the Y axis, was

described in Chapter 3, but, although this can reveal patterns, it does not

show whether two variables are significantly related, or have a significant

functional relationship. This is another case where you have to use a

statistical test, because an apparent relationship between two variables may

only have occurred by chance in a sample from a population where there is

no relationship. A statistic will indicate the strength of the relationship,

together with the probability of getting that particular result, or an outcome

even more extreme, in a sample from a population where there is no

relationship between the two variables.

Two parametric methods for statistically analysing relationships between

variables are linear correlation and linear regression, both of which can be

used on data measured on a ratio, interval, or ordinal scale. Correlation

and regression have very different uses, and there have been many cases

where correlation has been inappropriately used instead of regression and



vice versa. After contrasting correlation and regression, this chapter explains

correlation analysis. Regression analysis is explained in Chapter 15.

14.2 Correlation contrasted with regression

Correlation is an exploratory technique used to examine whether the

values of two variables are significantly related, meaning whether the

values of both variables change together in a consistent way. (For example,

an increase in onemay be accompanied by a decrease in the other.) There is

no expectation that the value of one variable can be predicted from the

other, or that there is any causal relationship between them.

In contrast, regression analysis is used to describe the functional

relationship between two variables so that the value of one can be predicted

from the other. A functional relationship means that the value of one

variable (called the dependent variable) can be determined by the value

of the second (the independent variable), but the reverse is not true. For

example, the amount of tooth wear in koala bears, which feed on leaves, is

likely to be determined by age, because older koalas will have spent more

time chewing. The opposite is not true – the age of a koala bear is not

determined by how worn its teeth are! Nevertheless, although tooth wear is

determined by age, it is not caused by age – it is actually caused by chewing.

This is an important point. Regression analysis can be used provided there

is a good reason to hypothesise that one variable (the dependent one) can

be determined by another (the independent one), but it does not necessarily

have to be caused by it.

Regression analysis provides an equation that describes the functional

relationship between two variables and which can be used to predict values

of the dependent variable from the independent one. The very different

uses of correlation and regression are summarised in Table 14.1.

14.3 Linear correlation

The Pearson correlation coefficient, symbolised by � (the Greek letter rho)

for a population and by r for a sample, is a statistic that indicates the extent

to which two variables are linearly related, and can be any value from�1 to

þ1. Usually the population statistic � is not known, so it is estimated by the

sample statistic r.
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An r ofþ1, which shows a perfect positive linear correlation, will only be

obtained when the values of both variables increase together and lie along a

straight line (Figure 14.1(a)). Similarly, an r of �1, which shows a perfect

negative linear correlation, will only be obtained when the value of one

variable decreases as the other increases and the points also lie along

a straight line (Figure 14.1(b)). In contrast, an r of zero shows the lack of

a relationship between two variables and Figure 14.1(c) gives one example

where the points lie along a straight line parallel to the X axis. When the

points are more scattered but both variables tend to increase together, the

values of rwill be between zero andþ1 (Figure 14.1(d)), while, if one variable

tends to decrease as the other increases, the value of r will be between zero

and �1 (Figure 14.1(e)). If there is no relationship and considerable scatter

(Figure 14.1(f)), the value of r will be close to zero. Finally, it is important to

remember that linear correlation will only detect a linear relationship

between variables – even though the two variables shown in Figure 14.1(g)

are obviously related the value of r will be close to zero.

14.4 Calculation of the Pearson r statistic

A statistic for correlation needs to reliably describe the strength of a linear

relationship for any bivariate data set, even when the two variables have

Table 14.1. A contrast between the uses of correlation and regression

Correlation Regression

Exploratory – are two variables

significantly related?

Definitive – what is the functional

relationship between variable Y

and variable X and is it significant?

Predictive – what is the value of

Y given a particular value of X?

Neither Y nor X has to be dependent

upon the other variable. Neither

variable has to be determined by

the other.

Variable Y is dependent upon X, but

the reverse is not true. It must be

plausible that Y is determined by X,

but Y does not necessarily have to

be caused by X.
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been measured on very different scales. For example, the values of one

variablemight range from zero to 10, while the othermight range from zero

to 1000. To obtain a statistic that always has a value between 1 and�1, with

these maximum and minimum values indicating a perfect positive and

negative linear relationship respectively, you need a way of standardising

(a)

Y

X

(b)

X

(c)

X

(d)

Y

X

(e)

X

(f)

X

(g)

Y

X

Figure 14.1 Some examples of the value of the correlation coefficient r.

(a) A perfect linear relationship where r ¼ 1. (b) A perfect linear relationship

where r ¼ �1. (c) No relationship (r ¼ 0). (d) A positive linear relationship

with 0< r < 1. (e) A negative linear relationship where �1< r < 0. (f) No

linear relationship (r is close to zero). (g) An obvious relationship, but one

that will not be detected by linear correlation (r will be close to zero).
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the data. This is straightforward and is done by transforming the values of

both variables to Z scores, as described in Chapter 6.

To transform a set of data to Z scores, the mean is subtracted from each

value and the result divided by the standard deviation. This will give a

distribution that always has a mean of zero and a standard deviation (and

variance) of 1. For a population the equation for Z is:

Z ¼ Xi � �

�
(14:1) copied from ð6:3Þ

and for a sample it is:

Z ¼ Xi � �X

s
(14:2)

Figure 14.2 shows the effect of transforming bivariate data measured on

different scales to their Z scores.

Once the data for both variables have been converted to their Z scores it

is easy to calculate a statistic that indicates the strength of the relationship

between them.

If the two increase together, large positive values of Zx will always be

associated with large positive values of Zy and large negative values of Zx
will also be associated with large negative values of Zy (Figure 14.3(a)).

If there is no relationship between the variables, all of the values of Zywill

be zero (Figure 14.3(b)).

Finally, if one variable decreases as the other increases, large positive

values of Zx will be consistently associated with large negative values of Zy
and vice versa (Figure 14.3(c)).

This gives a way of calculating a comparative statistic that indicates the

extent to which the two variables are related. If the Zx andZy scores for each of

the experimental units aremultiplied together and summed (equation (14.3)),

datawith a positive correlationwill give a totalwith a positive value,while data

with anegative correlationwill give a totalwith anegativeone. In contrast, data

for two variables that are not related will give a total close to zero:

Xn

i¼1

ðZxi � ZyiÞ (14:3)

Importantly, the largest possible positive value of
Pn

i¼1

ðZxi � ZyiÞ will be
obtained when each pair of data has exactly the same Z scores for both
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variables (Figure 14.3(a)) and the largest possible negative value will be

obtained when the Z scores for each pair of data are the same number but

opposite in sign (Figure 14.3(c)). If the pairs of scores do not vary together

completely in either a positive or negative way, the total will be a smaller

positive (Figure 14.3(d)) or negative number (Figure 14.3(f)).

This total will increase as the size of the sample increases, so dividing by

the degrees of freedom (N for a population and n� 1 for a sample) will give

a statistic that has been ‘averaged’, just as the equation for the standard

deviation and variance of a sample are averaged and corrected for sample

size by dividing by n� 1. The statistic given by equation (14.4) is the

Pearson correlation coefficient r.

(a)

Y

X

(b)

Y

X

(c)

Zy 0

0
Zx

Figure 14.2 For any set of data, dividing the distance between each value and

the mean by the standard deviation will give a mean of zero and a standard

deviation (and variance) of 1.0. The scales on which X and Y have been

measured are very different for cases (a) and (b) above, but transformation

of both variables gives the distribution shown in (c), where both Zx and Zy
have a mean of zero and a standard deviation of 1.0.
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Y

(d)

X

Y

X

(a)

i = 1

n

∑ (Zxi × Zyi)

i = 1

n

∑ (Zxi × Zyi)

8
7
5
4

+1.10
+0.55
–0.55
–1.10

3.00

Raw score Z score
X ZyZxY

800
+0.55
–0.55
–1.10

+1.10
700
500
400

8
7
5
4

+0.55
+0.10
–0.10
–1.55

2.40

Raw score Z score
X ZyZxY

700
+0.55
–0.55
–1.10

+1.10
800
400
500

X

(b)

X

(e)

8
7
5

0.00

Raw score Z score
X ZyZxY

4
–0.55
–1.10

+1.10
+0.55

500

500
500
500

0

0
0
0

8
7
5

0.00

Raw score Z score
X ZyZxY

4
–0.55
–1.10

+1.10
+0.55

800

800
700
700

+0.87

+0.87
–0.87
–0.87

X

(f)

X

(c)

8 –1.10
7 –0.55
5 –0.55
4 –0.55

–3.00

Raw score Z score
X ZyZxY

+1.10
+0.55

+0.55
+1.10

400
500

800
700

8 –1.55
7 –0.10
5 –0.55
4 –0.10

–2.40

Raw score Z score
X ZyZxY

+1.10
+0.55

+0.10
+1.55

500
400

700
800

Figure 14.3 Examples of raw scores and Z scores for data with (a) a perfect

positive linear relationship (all points lie along a straight line), (b) no

relationship, (c) a perfect negative linear relationship (all points lie along a

straight line), (d) a positive relationship, (e) no relationship, and (f) a

negative relationship. Note that the largest positive and negative values for the

sum of the products of the two Z scores for each point occur when there is a

perfect positive or negative relationship, and that these values (þ3 and �3)

are equivalent to n�1 and �(n�1)respectively.
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r ¼

Pn

i¼1

ðZxi � ZyiÞ

n� 1
(14:4)

More importantly, equation (14.4) gives a statistic that will only ever be

between�1 andþ1. This is easy to show. In Chapter 6 it was described how

the Z distribution always has a mean of zero and a standard deviation (and

variance) of 1.0. If you were to calculate the variance of the Z scores for only

one variable, you would use the equation:

s2 ¼

Pn

i¼1

ðZi � �ZÞ2

n� 1
(14:5)

but, since �Z is zero, this equation becomes:

s2 ¼

Pn

i¼1

Z2
i

n� 1
(14:6)

and, since s2 is always 1 for the Z distribution, the numerator of equation

(14.6) is always equal to n � 1.

Therefore, for a set of bivariate data where the two Z scores within each

experimental unit are exactly the same inmagnitude and sign, the equation

for the correlation between the two variables:

r ¼

Pn

i¼1

ðZxi � ZyiÞ

n� 1
(14:7)

will be equivalent to:

r ¼

Pn

i¼1

Z2
xi

n� 1
or

n� 1

n� 1
¼ 1:0 (14:8)

Consequently, when there is perfect agreement between Zx and Zy for each

point, the value of r will be 1.0. If the Z scores generally increase together but

not all the points lie along a straight line, the value of r will be between zero

and 1 because the numerator of equation (14.8) will be less than n� 1.

Similarly, if every Z score for the first variable is the exact negative

equivalent of the other, the numerator of equation (14.8) will be the
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negative equivalent of n�1 so the value of r will be �1.0. If one variable

decreases while the other increases but not all the points lie along a straight

line, the value of r will be between �1.0 and zero.

Finally, for a set of points along any line parallel to the X axis, all of the Z

scores for the Y variable will be zero, so the value of the numerator of

equation (14.6) and r will also be zero.

14.5 Is the value of r statistically significant?

Having obtained the value of r, you need to establish whether it is sig-

nificantly different to zero. Statisticians have calculated the distribution of

r for random samples of different sizes taken from a population where there

is no correlation between two variables. When � ¼ 0, the distribution of

values of r for many samples taken from that population will be normally

distributed with a mean of zero. Both positive and negative values of r will

be generated by chance, and 5% of these will be greater than a positive

critical value or less than its negative equivalent. The critical value will

depend on the size of the sample, and as sample size increases the value of

r is likely to become closer to the value of �. Statistical packages will

calculate r and give the probability the sample has been taken from a

population where � ¼ 0.

14.6 Assumptions of linear correlation

Linear correlation analysis assumes that the data are random representa-

tives taken from the larger population of values for each variable, which are

normally distributed and have beenmeasured on a ratio, interval or ordinal

scale. A scatter plot of these variables will have what is called a bivariate

normal distribution. If the data are not normally distributed, or the

relationship does not appear to be linear, they may be able to be analysed

by nonparametric tests for correlation, which are described in Chapter 17.

14.7 Summary and conclusion

Correlation is an exploratory technique used to test whether two variables

are related. It is often useful to draw a scatter plot of the data to see if

there is any pattern before calculating the correlation coefficient, since the
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variables may be related together in a non-linear way. The Pearson correla-

tion coefficient is a statistic that shows the extent to which two variables are

linearly related, and can have a value between �1.0 and 1.0, with these

extremes showing a perfect negative linear relationship and perfect positive

linear relationship respectively, while zero shows no relationship. The value

of r indicates the way in which the variables are related, but the probability

of getting a particular r value is needed to decide whether the correlation

is statistically significant.
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15 Simple linear regression

15.1 Introduction

This chapter explains how simple linear regression analysis describes

the functional relationship between a dependent and an independent vari-

able. The different uses of correlation and regression were contrasted in

Chapter 14. Correlation examines if two variables are related. Regression

describes the functional relationship between a dependent and an inde-

pendent variable.

15.2 Linear regression

Linear regression analysis is often used by life scientists. For example, the

equation for the regression of one variable on anothermay suggest hypotheses

about why the two variables are functionally related. More practically,

regression can be used in situations where the dependent variable is

difficult, expensive or impossible to measure, but its values can be predicted

from another easily measured variable to which it is functionally related.

Here is an example.

There is considerable variation in the height of adult humans.

Consequently, parents who have a child that is relatively short for its

age often become concerned that it will be relatively short when it

becomes an adult. It is easy to make a person grow taller by administering

human growth hormone, but this treatment becomes less and less effec-

tive after the age of ten and ineffective after about the age of 17. It also has

to be used with caution because only small amounts of hormone can

cause a considerable increase in growth. Nevertheless, it has been shown

that the amount of extra height by which a person will grow can be

predicted from the length of uncalcified cartilaginous bone remaining



in the bones of their fingers, which can be accurately measured from an x-

ray of their hands at quite a young age (e.g. six years). Additional growth

is therefore dependent upon (but not caused by) the length of uncalcified

bone remaining in the fingers and can be predicted from it by using a

regression line (Figure 15.1). If the predicted height is considered unac-

ceptably short by the parents, they may ask for their child to be given

additional growth hormone. This is another deliberate example where the

dependent variable is not caused by the independent variable but is

plausibly determined by it.

A linear regression analysis gives an equation for a line that describes the

functional relationship between two variables and tests whether the statistics

that describe this line are significantly different to zero.

The simplest functional relationship between a dependent and independent

variable is a straight line. Only two statistics, the intercept a (which is the

value of YwhenX is zero) and the slope of the line b, are needed to uniquely

describe where that line occurs on a graph.

The position of any point on a straight line can be described by the

equation:

A
dd

iti
on

al
 h

ei
gh

t

Length of uncalcified bone at age six

Figure 15.1 An example of the use of regression. The additional height by

which a child will grow (the dependent variable) can be accurately predicted

from the length of uncalcified bone remaining in the fingers at the age of six

years (the independent variable). The additional height is determined by and

easy to predict from the independent variable, but is not caused by it.
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Y ¼ aþ bX (15:1)

where ‘a’ is the value ofYwhenX=0, and b is the slope of the line. For example,

the equation Y=6+0.5Xmeans, ‘The Y value is 6 units plus half the value of

X.’ Therefore, for this line, when X=0, Y=6, and, when X=10, Y=11.

Simple linear regression analysis gives an equation for a straight line that

is the ‘best fit’ through a set of data points. It is very easy to obtain a and b if

all the points lie on a straight line. When the points are scattered, which

they usually are for biological data, the method for obtaining these statistics

is also straightforward.

15.3 Calculation of the slope of the regression line

The slope of the regression line is the amount bywhich the value ofY increases

in relation to an increase in the value of X. For example, if an increase in

the value of X by one unit is also accompanied by a one unit increase in

the value of Y, the slope of the line is 1.0. If, however, the value of Y decreases

by three units for every one unit increase in X, then the slope is �3.0.

If all points lie along a straight line, you can calculate the slope by taking

any two points and using the equation:

b ¼ Y2 � Y1

X2 � X1
(15:2)

which divides the relative change inY by the relative change inX (Figure 15.2).

Y4

Y3

Y
X2 – X1

Y2

Y2 – Y1

Y1

X1 X2 X3 X4

X

Figure 15.2 Calculation of the slope when all points lie along a straight line.

The vertical arrow shows the relative change in Y from Y1 to Y2 that occurs

with an increase in X from X1 to X2 shown by the horizontal arrow. For any

two points, Y2� Y1 divided by X2�X1 will give the slope, which in this case is

positive since Y increases as X increases and vice versa.
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Equation (15.2) will not work for a set of points that are scattered. To

calculate the slope of the line of best fit running through a set of scattered

points, a procedure is needed that gives the average slope, taking into

account the values for all of the points. The equation for calculating the b,

the slope of the regression line, is:

(a) (b)

(c) (d)

X X

X X

Y

Y

Y

Y

Figure 15.3 Examples of the use of equation (15.3) to obtain the slope of

the regression line. Vertical arrows show Yi � �Y and horizontal arrows

show Xi � �X. (a) For every point along a line with a slope of 1.0, Yi � �Y

will be the same magnitude and sign as Xi � �X, so equation (15.3) will

give a value of 1.0. (b) For every point along a line with a slope of 3.0,

Yi � �Y will be the same sign but three times greater than Xi � �X, so

equation (15.3) will give a value of 3.0. (c) For every point along a line

with a slope of �1.0, Yi � �Y will be the same magnitude but opposite

sign as Xi � �X, so equation (15.3) will give a value of �1.0. (d) For a

slope of zero, each value of Yi � �Y will be zero, so equation (15.3) will

give a value of zero.

15.3 Calculation of the slope 189



b ¼

Pn

i¼ 1

ðXi � �XÞðYi � �YÞ

Pn

i¼ 1

ðXi � �XÞðXi � �XÞ
(15:3)

This is an extension of equation (15.2). Instead of calculating the change in

X and Y from any two data points, equation (15.3) calculates an average

slope using every point in the data set.

First, the means of X and Y are separately calculated. Then, for each data

point, the value of Xminus its mean is multiplied by the value of Yminus its

Xi –X Yi –Y Xi –X Yi –Y Xi –X Yi –Y

–2 –2 –2

i = 1

n
(Xi – X)(Yi – Y)

b

2 6 2 4 2 2

6 –2 – 4

24

8 8

8

8

3 2 1

∑

i = 1

n
(Xi – X)(Xi – X)∑

16

X = 2 X = 2X = 2

(b)

 4,8

Y

0,0

4

(c)

 4,4

Y

0,0

2

(a)
 4,12

Y

0,0

6

Figure 15.4 Graphs (a), (b), and (c) show three lines of slope 3, 2, and 1

respectively, with two data points on each. The six points have been

combined in (d), and the line of best fit through these would be expected

to have a slope of 2.0. Use of equation (15.3) gives this appropriate average

for b.
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mean and these values summed. This is the numerator of equation (15.3),

which is thendividedby the sumof eachvalueofXminus itsmeanandsquared.

It is easy to see how equation (15.3) will give an appropriate average value

for the slope. The first examples are for points that lie on straight lines.

For a line with a slope of +1, as X increases by one unit from its mean,

the value of Y will also increase by one unit from its mean (and vice versa if

X decreases). The difference between any value of X and its mean will

always be the same as the difference between any value of Y and its mean, so

the numerator and denominator of equation (15.3) will be the same, thus

giving a b value of 1.0 (Figure 15.3(a)).

For a line with a slope of +3, as X increases by one unit from its mean,

the value of Y will increase by three units from its mean (and vice versa if

X decreases). Therefore, the value of the numerator of equation (15.3) will

4,12

4,8

Y

(d)

4,4

0,0

X = 2

4

Xi – X Yi – Y

2 8
2 4

2 0

–2
–2

–2

–4
–4

–4

i = 1

n
(Xi – X)(Yi – Y) 48

i =1

n
(Xi – X)(Xi – X) 24

b 2

∑

∑

Figure 15.4 (Cont.)
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always be three times the size of the denominator, no matter how many

points are included, thus giving a b value of 3.0 (Figure 15.3(b)).

For a line with a slope of �1, as X increases by one unit from its mean,

the value of Y will decrease by one unit from its mean (and vice versa if

X decreases). Therefore the numerator of equation (15.3) will give a total

that is the samemagnitude but the negative of the denominator, thus giving

a b value of �1.0 (Figure 15.3(c)).

For a line with a slope of�3, as X increases by one unit from its mean, the

value of Y will decrease by three units from its mean (and vice versa if X

decreases), so the numerator of equation (15.3) will always have a negative sign

and be three times the value of the denominator, thus giving a b value of�3.0.

Finally, for a line running parallel to the X axis, every value of Yi � �Y

will be zero, so the total of the numerator of equation (15.3) will also be

zero, thus giving a b value of zero (Figure 15.3(d)).

When the data are scattered, equation (15.3) will also give the average

change in Y in relation to the increase in X. Figure 15.4 gives an example.

First, cases 15.4(a), (b), and (c) show three lines, each of which has been

drawn through two data points. These lines have slopes of 3.0, 2.0, and 1.0,

respectively, and the calculation of each b value is given in the box under

the graph. In Figure 15.4(d) the six data points have been combined.

Intuitively, this group of six scattered points should have a slope of 2.0,

since this is the average of the slopes of the three lines shown in (a), (b),

and (c). Equation (15.3) gives this value.

15.4 Calculation of the intercept with the Y axis

The intercept of the regression line with the Y axis when X= 0 is easy to

calculate, using an extension of the formula for the regression line.

Since:

Y ¼ aþ bX (15:4) copied from ð15:1Þ
then:

�Y ¼ aþ b�X (15:5)

which can be rearranged to give the value of a from:

a ¼ �Y � b�X (15:6)

and statistical packages will do this as part of a regression analysis.
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15.5 Testing the significance of the slope and the intercept of

the regression line

Although the equation for a regression line describes the functional rela-

tionship between X and Y, it does not show whether the slope of the line

and the intercept are significantly different to zero.

For a population, the equation of the line of best fit is:

Y ¼ �þ �X (15:7)

but, since life scientists usually only have data for a sample, the population

statistics � and � are only estimated by the sample statistics a and b.

Therefore you need to test the null hypotheses that a and b are from a

population where � and � are zero. (Please note that you will find different

symbols for the intercept and slope in some texts. Introductory texts

generally use a and b (and for a population � and �) for the intercept

and slope, but more advanced texts use b0 and b1 for these two sample

statistics and �0 and �1 for the equivalent population statistics. Here I have

used the same symbols as most introductory texts for clarity.)

15.5.1 Testing the hypothesis that the slope is significantly different

to zero

Onemethod for testing whether the slope of a regression line is significantly

different to a slope of zero is very similar to the one factor ANOVA

described in Chapter 9. A pictorial explanation is given in Figures 15.5

and 15.6.

Graphs of four regression lines are shown in Figure 15.5, together with a

horizontal line showing the average value of Y, which the regression line

will always cross. If there is no increase or decrease in the value of Y as X

increases, the regression line will have a slope of zero and be indistinguishable

from the line showing �Y (Figure 15.5(a)). Nevertheless, samples taken from

a population where � is zero will, by chance, have values of b distributed

around zero, often giving regression lines that are slightly tilted upwards or

downwards (Figure 15.5 (b) and (c)). Finally, if there is a marked increase

or decrease in Y as X increases, the regression line will be strongly tilted

(e.g. a negative slope is shown in Figure 15.5(d)).
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The amount by which the regression line is tilted from the horizontal can

be detected in the same way a one factor ANOVA detects whether several

treatment means are all similar to the grand mean, or whether any are

significantly displaced from it.

In Chapter 9 it was described how a one factor ANOVA calculates an F

ratio by dividing the mean square for treatment (i.e. treatment + error) by

the mean square for error only. If treatment has no effect, the treatment

means will be the same or close to the grand mean, so the F ratio will be

close to 1.0. The test for whether the slope of a regression line is significantly

different to the horizontal line showing �Y is done in a similar way.

First, the regression line will be tilted from the line showing �Y because

of the variation explained by the regression equation (regression plus

error).

(a) (b)

X X

(c) (d)

Y

Y

Y

Y

X X

Figure 15.5 A regression line always crosses the line showing �Y . (a) If the

slope is exactly zero, the regression line will be indistinguishable from the

horizontal line showing �Y . Samples from a population where the slope � is

zero will nevertheless be expected to include cases with small (b) positive and

(c) negative slopes. (d) If Y increases or decreases markedly as X increases, the

regression line will be strongly tilted from the line showing �Y . A negative slope

is shown as an example.
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Second, each of the points in the scatter plot will be displaced upwards or

downwards from the regression line because of the remaining variation

(error only).

It is easy to calculate the sums of squares and mean squares for these two

separate sources of variation. Figure 15.6 shows scatter plots for two sets of

data. The first regression line ( 15. 6(a)) has a large positive s lope and t he second

(15 .6(b)) has a slope m uch closer t o zero. The horizontal l ine on each g raph

shows �Y .

Here you need to think about the vertical displacement of each point from

the line showing �Y . To illustrate this, the point at the top far right of each

scatter plot in Figure 15.6 has been identified by a circle instead of a square.

The vertical arrow running up from �Y to each of the circled points (Y� �Y)

indicates the total variation or displacement of that point from �Y . This

distance can be partitioned into the two sources of variation mentioned

above.

The first is the amount of displacement explained by the regression line

(which is affected by both the regression plus error) and is the distance

(Ŷ � �Y) shown by the heavy part of the vertical arrow in Figure 15.6.

The second is the distance (Y� Ŷ ) shown by the lighter vertical part of the

arrow in Figure 15.6. This is unexplained variation or error and often called

the residual variation, since it is the amount of variation remaining between

the data points and �Y that cannot be explained by the regression line.

This gives a way of calculating an F ratio that indicates how much of the

variation can be accounted for by the regression.

First, you can calculate the sum of squares for the variation explained by

the regression line by squaring the vertical distance between the regression

line and �Y for each point (Ŷ � �Y) and adding these together. Dividing this

sum of squares by the appropriate number of degrees of freedom will give

the mean square due to explained variation (regression plus error).

Second, you can calculate the sum of squares for the unexplained varia-

tion by squaring the vertical distance between each point and the regression

line (Y� Ŷ ) and adding these together. Dividing this sum of squares by the

appropriate number of degrees of freedom will give the mean square due to

unexplained variation or ‘error’.

At this stage, you have sums of squares andmean squares for two sources

of variation that will be very familiar to you from the explanation of one

factor ANOVA in Chapter 9:
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(a)
X,Y

X,Y

X,Y

 

X

(b)

X,Y

Y

Y

X

Figure 15.6 The diagonal solid line shows the regression through a scatter

plot of six points, and the dashed horizontal line shows �Y . The vertical arrow

shows the displacement of one point, symbolised by a circle instead of a

square, from �Y . The distance between the point and the Y average (Y� �Y) is

the total variation, which can be partitioned into variation explained by the

regression line and unexplained variation or error. The heavy part of the

vertical line ðŶ � �YÞ shows the displacement explained by the regression

line (regression plus error) and the remainder ðY � ŶÞ is unexplained
variation (error). Note that (a) when the slope is large the explained

component is also large, and (b) when the slope is close to zero the explained

component is very small.
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(a) The variation explained by the regression line (regression plus

error).

(b) The unexplained residual variation (error only).

Therefore, to get an F ratio that shows the proportion of the variation

explained by the regression line compared with the unexplained varia-

tion due to error, you divide the mean square for (a) by the mean square

for (b).

F1;n�2 ¼
MS regression

MS residual
(15:8)

If the regression line has a slope close to zero (Figure 15.5(a)), both the

numerator and denominator of equation (15.5) will be similar, so the value

of the F statistic will be approximately 1.0. As the slope of the line increases

(Figure 15.5(b), (c), and (d)), the numerator of equation (15.5) will become

larger, so the value of F will also increase. As F increases, the probability

that the data have been taken from a population where the slope of the

regression line, �, is zero will decrease and will eventually be less than 0.05.

Most statistical packages will calculate the F statistic and give the prob-

ability. There is an explanation for the number of degrees of freedom for

the F ratio in Box 15.1.

Box 15.1 A note on the number of degrees of freedom in an

ANOVA of the slope of the regression line

The example in Section 15.6 includes an ANOVA table with an F statistic

and probability for the significance of the slope of the regression line

(Table 15.3). Note that the ‘regression’ mean square, which is equivalent

to the ‘treatment’ mean square in a single factor ANOVA, has only one

degree of freedom. This is the case for any regression analysis, despite the

sample size used for the analysis. In contrast, for a single factor ANOVA

the number of degrees of freedom is one less than the number of treat-

ments. This difference needs explaining.

For a single factor ANOVA, all but one of the treatment means are free

to vary, but the value of the ‘final’ one is constrained because the grand

mean is a set value. Therefore, the number of degrees of freedom for the

treatment mean square is always one less than the number of treatments.
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15.5.2 Testing whether the intercept of the regression line is

significantly different to zero

The value for the intercept a calculated from a sample is only an estimate of

the population statistic �. Consequently, a positive or negative value of a

might be obtained in a sample from a population where a is zero. The

standard deviation of the points scattered around the regression line can be

used to calculate the 95% confidence interval for a, and a single sample t

test can be used to compare the value of a to zero or any other expected

value. Once again, most statistical packages include a test of whether a

differs significantly from zero.

15.5.3 The coefficient of determination r2

The coefficient of determination, symbolised by r2, is a statistic that shows

the proportion of the total variation of the values of Y from the average �Y

that is explained by the regression line. It is the regression sum of squares

divided by the total sum of squares:

r2 ¼ Sum of squares explained by the regression ððaÞ aboveÞ
Total sum of squares ððaÞ þ ðbÞ aboveÞ (15:9)

which will only ever be a number from zero to 1.0. If the points all lie along

the regression line and it has a slope that is different to zero, the unexplained

In contrast, for any regression line every value of Ŷ must (by defini-

tion) lie on the line. For a regression line of known slope, once the first

value of Ŷ has been plotted the remainder are no longer free to vary

since they must lie on the line, so the regression mean square has only

one degree of freedom.

The degrees of freedom for error in a single factor ANOVA are the sum

of one less than the number within each of the treatments. Since a degree

of freedom is lost for every treatment, if there are a total of n replicates

(the sum of the replicates in all treatments) and k treatments, the error

degrees of freedom are n – k. In contrast, the degrees of freedom for the

residual (error) variation in a regression analysis are always n� 2. This is

because a regression line, which only ever has one degree of freedom, is

always only equivalent to an experiment with two treatments.
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component (quantity (b)) will be zero and r2 will be 1. If the explained sum

of squares is small in relation to the unexplained, r2 will be a small number.

15.6 An example – mites that live in your hair follicles

The follicle mite Demodex folliculorum is less than a millimetre long and

lives in the hair follicles of humans, including those of the eyelashes.

A fascinating account of the ecology of these mites, including illustrations,

can be found in Andrews (1976), who notes that most adult humans have

D. folliculorum living in the hair follicles of the ‘chin, the nose, or the

forehead and scalp’. These mites are acquired after birth and prefer follicles

where a relatively large amount of sebum (the waxy material produced by

the sebaceous gland within the follicle) is produced. A biomedical scientist

hypothesised that the number of mites would be determined by a person’s

age. To test this they obtained ten volunteers, plucked 25 eyelashes at

random from each eye and counted the number of mites. These bivariate

data for age in years and the number of mites are in Table 15.1.

From a regression analysis of these data a statistical package would give

values for the equation for the regression line, plus a test of the hypotheses

that the intercept, a, and slope, b, are from a population where � and �

are zero.

Table 15.1. Data for the age of a person and the

number of mites found on 50 of their eyelashes

Age (years) Number of mites

3 5

6 13

9 16

12 14

15 18

18 23

21 20

24 32

27 29

30 28
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The output would be similar in format to Table 15.2.

From the results in Table 15.2 the equation for the regression line is

mites¼ 5.773 + 0.853 � age. The slope is significantly different to zero (in

this case it is positive) and the intercept is also significantly different to

zero. You could use the regression equation to predict the number of mites

on a person of any age between 3 and 30.

Most statistical packages will give an ANOVA of the slope. For the data

in Table 15.1 there is a significant relationship between mite numbers and

age (Table 15.3).

Finally, the value of r2 is also given. Sometimes there are two values: r2,

which is the statistic for the sample, and a value called ‘Adjusted r2’, which

is an estimate for the population from which the sample has been taken.

The r2 value is usually the one reported in the results of the regression. For

the example above you would get the following values:

Table 15.2. An example of the table of results from a regression

analysis. The value of the intercept a (5.733) is given in the first

row, labelled ‘(Constant)’ under the heading ‘Value’. The slope b

(0.853) is given in the second row (labelled as the independent

variable ‘Age’) under the heading ‘Value’. The final two columns

give the results of t tests comparing a and b to zero. These show

the intercept, a, is significantly different to zero (P = 0.035) and

the slope b is also significantly different to zero (P= 0.001)

Model Value Std error t Significance

Constant 5.733 2.265 2.531 0.035

Age 0.853 0.122 7.006 0.001

Table 15.3. An example of the results of an analysis of the slope of a regression.

The significant F ratio shows the slope is significantly different to zero

Sum of squares df Mean square F Significance

Regression 539.6481 1 539.648 49.086 0.000

Residual 87.952 8 10.994

Total 627.600 9

200 Simple linear regression



r ¼ 0:927; r2 ¼ 0:860; adjusted r2 ¼ 0:842

This shows that 86% of the variation in mite numbers with age can be

predicted by the regression line.

15.7 Predicting a value of Y from a value of X

Since the regression line has the average slope through a set of scattered

points, the predicted value of Y is only the average expected for a given

value of X. If the r2 value is 1.0, the value of Y will be predicted without

error, since all the data points will lie on the regression line. Usually,

however, the points will be scattered around the line. More advanced

texts (e.g. Sokal and Rohlf (1995), Zar (1999)) describe how you can

calculate the 95% confidence interval for a value of Y and thus predict its

likely range.

15.8 Predicting a value of X from a value of Y

Often you might want to estimate a value of the independent variable X

from the dependent variable Y. Here is an example.

The concentration of sugar in fruit can only be directly measured by

damaging the fruit, which makes it unsuitable for sale. Sugar content

varies among fruit from the same plant and from the same farm, and

fruit relatively high in sugar usually taste sweeter and can often be sold

for a higher price. Therefore it would be advantageous to identify fruit with

the highest sugar concentration without damaging them before sale. It has

been shown that the amount of infra red light reflected from the surface of

certain fruit, such as melons and tomatoes, is significantly dependent on

the sugar concentration. Therefore, if sugar concentration could be pre-

dicted from the amount of infra red light reflected from the fruit, it would

provide a way of estimating sugar concentration without damage.

In this case it is not appropriate to designate sugar concentration as the

dependent variable and calculate a regression equation, because it clearly

does not depend on the amount of infra red light reflected from the fruit, so

one of the assumptions of regression would be violated.

Predicting X from Y can be done by rearranging the regression equation

for any point from:
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Yi ¼ aþ bXi (15:10)

to:

Xi ¼
Yi � a

b
(15:11)

but here too the 95% confidence interval around the estimated value of X

must also be calculated, because the measurement of Y is likely to include

some error. Methods for doing this are given in more advanced texts

(e.g. Sokal and Rohlf, 1995).

15.9 The danger of extrapolating beyond the range

of data available

Although regression analysis draws a line of best fit through a set of data,

it is dangerous to make predictions beyond the measured range of X.

Figure 15.7 illustrates that a predicted regression line may not be a correct

estimation of the value of Y outside this range.

15.10 Assumptions of linear regression analysis

The procedure for linear regression analysis described in this chapter is

often described as a Model I regression, and makes several assumptions.

First, the values of Y are assumed to be from a population of values

normally distributed about the regression line. If this does not apply, a

regression analysis should not be used. More advanced texts discuss meth-

ods for testing this assumption.

Second, it is assumed the independent variable X is measured with-

out error. In practice, it is often difficult to ensure this and many texts

note that X should be measured with little error. For example, levels of

an independent variable determined by the experimenter, such as

several different temperature treatments, are usually measured with

very little error indeed. In contrast, a variable such as the wet weight

of a frog is likely to be measured with a great deal of error. When the

dependent variable is subject to error, a different analysis called Model

II regression is appropriate. Again, this is described in more advanced

texts.
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Third, it is assumed that the dependent variable is determined by the

independent variable. This was discussed in Section 14.2.

Fourth, the relationship between X and Y is assumed to be linear and it is

important to be confident of this before carrying out the analysis. A scatter

plot of the data should be drawn to look for any obvious departures from

linearity. In some cases it may be possible to transform the Y variable (see

Chapter 12) to give a linear relationship and proceed with a regression

analysis on the transformed data.

Finally, the variance of the Y values is also assumed to be the same,

whatever the value of X. Tests for heteroscedasticity in regression are

described in more advanced texts, but again a scatter plot may reveal if the

variance of the points around the regression line is similar across the range of

X. If not, transformation of the Y variable may remedy this problem.

(a)

Y

0 2 4 6 8 10

X

(b)

Y

0 2 4 6 8 10

X

Figure 15.7 It is risky to use a regression line to extrapolate values of Y

beyond the measured range of X. The regression line (a) based on the data for

values of X ranging from 1 to 5 does not necessarily give an accurate

prediction (b) of the values of Y beyond that range.
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15.11 Further topics in regression

This chapter is an introduction to linear regression analysis. More

advanced analyses include procedures for comparing the slopes and

intercepts of two or more regression lines. Non-linear regression models

can be fitted to data where the relationship between X and Y is exponential,

logarithmic, or even more complex. Multiple linear regression is used to

separate the effects of several independent variables upon a dependent

variable. These topics are beyond the scope of this book but the under-

standing of simple linear regression developed here will make them easier

to understand if you need to use them.
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16 Non-parametric statistics

16.1 Introduction

Parametric tests are designed for analysing data from a known distribution,

and the majority assume a normally distributed population. Although

parametric tests are quite robust to departures from normality, and

major ones can often be reduced by transformation, there are some cases

where the population is so grossly non-normal that parametric testing is

unwise. In these cases a powerful analysis can often still be done by using a

non-parametric test.

Non-parametric tests are not just alternatives to the parametric proce-

dures for analysing ratio, interval, and ordinal data described in Chapters 7

to 15. Often life scientists obtain data that have been measured on a

nominal scale. For example, Table 3.3 gave the numbers of basal cell

carcinomas detected and removed from different areas of the human

body. This is a sample containing frequencies in several discrete and

mutually exclusive categories and there are non-parametric tests for analys-

ing these types of data (Chapter 17).

16.2 The danger of assuming normality when a population is

grossly non-normal

Most parametric tests have been specifically designed for analysing data

from populations having bell-shaped distributions with 66.27% of values

occurring within �� 1 standard deviation and 95% within �� 1.96 stan-

dard deviations (Chapter 6). This distribution is used to determine the

range within which 95% of the values of the sample mean, �X, will occur

when samples of a particular size are taken from a population. If �X occurs

outside the range of �� 1.96, the probability the sample has come from



that population is less than 5%. If the population is not normally distributed,

the range occupied by 95% of the values of the mean may be either wider or

narrower than assumed, in which case judgements about statistical signifi-

cance made on the basis of the normal distribution will be misleading.

An example is shown in Figure 16.1 . The population is bimodal and the

range within which 95% of the values of the means of samples of size n¼ 30

from this population actually occur is narrower than the range predicted if

the population is assumed to be normally distributed.

(a)

Frequency

µ
(b)

Frequency

(c)

Frequency

Figure 16.1 Illustration of how the range in which the means of samples from

a grossly non-normal population does not correspond to the expected range,

assuming the population is normally distributed. (a) Distribution of a bimodal

population, (b) Actual shape of the distribution of means of sample size n¼ 30

from the population shown in (a). (c) Shape of the distribution of means

calculated from the standard error when n¼ 30, assuming the population is

normally distributed. Horizontal arrows show the range within which 95% of

means would be expected to occur. Note that the expected range in (c) is much

wider than the true range in (b).
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16.3 The value of making a preliminary inspection of the data

It has already been emphasised that parametric tests for comparing means

can often be applied to data from populations that are not normally

distributed, because the distribution of the means of samples from most

populations will usually be relatively normal (Chapter 6). Once again,

however, the example in Section 16.2 emphasises the value of graphing

the data to inspect it for normality and homoscedasticity before attempting

a statistical analysis.

The next two chapters describe tests for analysing nominal scale data,

followed by some non-parametric alternatives to the parametric tests for

independent and related samples described in Chapters 7–11, as well as a

non-parametric test for correlation.
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17 Non-parametric tests for nominal
scale data

17.1 Introduction

Life scientists often collect samples in which the experimental units can be

assigned to two or more discrete and mutually exclusive categories. For

example, a sample of 20 humans can be partitioned into the two mutually

exclusive categories of ‘right-handed’ or ‘left-handed’ (since even people

who claim to be ambidextrous still perform a greater proportion of actions

with one hand and can be classified as having a dominant right or left

hand). These two categories are discrete because there is no intermediate

state and mutually exclusive because a person cannot be assigned to both.

They also make up the entire set of possible outcomes within the sample

and therefore are contingent upon each other, since for a fixed sample size a

decrease in the number in one category must be accompanied by an

increase in the number in the other and vice versa.

These are nominal scale data (Chapter 3). The questions researchers ask

about these data are the sort asked about any sample(s) from a population.

First, you may want to know the probability a sample has been taken

from a population having a known or expected proportion within each

category. For example, the proportion of left-handed people in the world is

close to 0.1 (10%), which can be considered the proportion in the popula-

tion, since it is from a sample of several million people. A biomedical

scientist, who knew that the proportion of left- and right-handed people

showed some variation among occupations, sampled 20 statisticians and

found that four were left-handed and 16 right-handed. The question is

whether the proportions in the sample were significantly different from the

expected proportions of 0.1 and 0.9 respectively. The difference between

the population and the sample might be solely due to chance, or also reflect

career choice.



Second, you may want to know the probability that two or more

samples have come from the same population. For example, a geneticist

noticed that the children of male deep-sea divers seemed to be predomi-

nantly female. Consequently they sampled 100 male divers and 100 male

deckhands within a similar age range and who worked on the same dive

boats. For each individual they recorded the gender of their first-born

child. The offspring of the divers were 67 females and 33 males, while the

offspring of the deckhands were 53 females and 47 males. Here too, the

difference between the two samples might be due to chance, or also

occupation.

For both of these examples a method is needed that gives the probability

of obtaining the observed outcome under the null hypothesis. This chapter

describes some tests for analysing samples of categorical data.

17.2 Comparing observed and expected frequencies – the

chi-square test for goodness of fit

The chi-square test for goodness of fit compares the observed frequencies

in a sample with those expected in a population, and the following

example may be familiar to you from an introductory biology course.

The genes that control pelt colour in guinea pigs are described as ‘domi-

nant’ and ‘recessive’, with the gene for a lack of pigment being recessive to

the gene for brown pelt. This is because the dominant gene codes for a

protein that makes brown pigment, while the recessive gene does not code

for any pigment. Therefore, an individual with two copies of the recessive

gene will be albino, but heterozygotes with one copy, and homozygotes

with two copies, of the brown gene will be brown. Consequently, you

would expect the proportions of three brown to one albino among the

offspring from a cross between two heterozygotes. To test this, a geneticist

crossed several guinea pigs heterozygous for pelt colour and obtained 100

offspring altogether. Under the null hypothesis the expected numbers in

the sample were 75 brown and 25 albino, but the sample actually contained

86 brown and 14 albino offspring. This difference from the expected

frequencies in the sample might be due to chance, or because the null

hypothesis is incorrect. The chi-square test calculates the probability that a

sample has come from a population with the expected proportions in each

category.
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The chi-square statistic is the sumof eachof theobserved frequencies,minus

its expected frequency, squared, and then divided by the expected frequency:

�2 ¼
Xn
i¼1

oi � eið Þ
ei

2

(17:1)

This is sometimes written as:

�2 ¼
Xn
i¼1

fi � bfi� �
bfi

2

(17:2)

where fi is the observed frequency and bfi is the expected frequency.

It does not matter whether the difference between the observed and

expected frequencies is positive or negative, because the square of any

difference will be positive.

If there is perfect agreement between every observed and expected fre-

quency, the value of chi-square will be zero. Nevertheless, even if the null

hypothesis applies, samples are unlikely to always contain the exact propor-

tions present in the population. By chance, small departures are likely and

larger departures will also occur, all of which will generate positive values of

chi-square. The most extreme 5% of departures from the expected ratio are

considered statistically significant andwill exceed a critical value of chi-square.

Table 17.1 gives a worked example for the sample of left- and right-

handed statisticians mentioned above.

Table 17.1. A worked example comparing the observed

frequencies in a sample to those expected from the

proportions in the population. The observed frequencies in a

sample of 20 are 4:16 and the expected frequencies are 2:18

Handed Left Right

Observed 4 16

Expected 2 18

Obs – Exp 2 �2

(Obs – Exp)2 4 4

ðObs�ExpÞ2
Exp 2 0.22

�2 ¼
Pn
i¼1

oi�eið Þ
ei

2
¼ 2:22
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The value of chi-square in Table 17.1 has one degree of freedom because

the sample size is fixed, so as soon as the frequency of one of the two

categories is set the other is no longer free to vary. The 5% critical value of

chi-square with one degree of freedom is 3.84, so the proportions of left-

and right-handed people in the sample are not significantly different to the

expected proportions of 0.1 to 0.9. The chi-square test for goodness of fit

can be extended to any number of categories and the degrees of freedom

will be k� 1 (where k is the number of categories). Statistical packages will

calculate the value of chi-square and its probability.

17.2.1 Small sample sizes

When expected frequencies are small, the calculated chi-square statistic is

inaccurate and tends to be too large, therefore indicating a lower than

appropriate probability, which increases the risk of Type 1 error. It used to

be recommended that no expected frequency in a goodness of fit test

should be less than five, but this has been relaxed somewhat in the light

of more recent research, and it is now recommended that no more than

20% of expected frequencies should be less than five.

An entirely different method, which is not subject to bias when the sample

size is small, can be used to analyse these data. It is an example of a group of

procedures called randomisation tests that will be discussed further in

Chapter 18. Instead of calculating a statistic that is used to estimate the

probability of an outcome, a randomisation test uses a computer program to

simulate the repeated random sampling of an hypothetical population

containing the expected proportions in each category. These samples will

often contain the same proportions as the population, but departures will

occur by chance. The simulated sampling is iterated,meaning it is repeated,

several thousand times and the resultant distribution of the statistic used to

identify the most extreme 5% of departures from the expected proportions.

Finally, the actual proportions in the real sample are compared with this

distribution. If the sample statistic falls within the region where the most

extreme 5% of departures from the expected occur, the sample is considered

significantly different to the population.

Repeated random sampling of an hypothetical population is an example

of a more general procedure called the Monte Carlo method that uses the

properties of the sample, or the expected properties of a population, and
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takes a large number of simulated random samples to create a distribution

that would apply under the null hypothesis.

For the data in Table 17.1, where the sample size was 20 and the

expected proportions were 0.1 left-handers to 0.9 right-handers, a rando-

misation test works by taking several thousand random samples, each of

size 20, from an hypothetical population containing these proportions.

This will generate a distribution of outcomes similar to the one shown in

Figure 17.1, which is for 10 000 samples. If the procedure is repeated

another 10 000 times, the outcome is unlikely to be exactly the same, but

nevertheless will be very similar to Figure 17.1, because so many samples

have been taken. It is clear from Figure 17.1 that the likelihood of a sample

containing four or more people who are left-handed is greater than 0.05.

17.3 Comparing proportions among two or more

independent samples

Life scientists often want to compare the proportions in categories among

two or more samples to test the null hypothesis that the samples have come

from the same population. Unlike the previous example, there are no

Number of left-handed people in a sample of 20
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Figure 17.1 An example of the distribution of outcomes from aMonte Carlo

simulation, where 10 000 samples of size 20 are taken at random from a

population containing 0.1 left-handed and 0.9 right-handed people. Note

that the probability of obtaining four or more left-handed people in a sample

of 20 is greater than 0.05.
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expected proportions – instead these tests examine whether the propor-

tions in each category are heterogeneous among samples.

17.3.1 The chi-square test for heterogeneity

Here is an example for three samples, each containing twomutually exclusive

categories. The cane toad, Bufo marinus, was deliberately introduced to

Australia in an attempt to control insect pests of sugar cane, and has since

become extremely abundant in northern Queensland. Unfortunately the

cane toad is now a pest because it preys on a wide variety of small native

species and can poison animals that attack it. The population density of cane

toads appears to have peaked and subsequently decreased in some areas of

Queensland, so conservation biologists are sampling these in an attempt to

find out if the toads are being affected by parasites or pathogens thatmight be

useful as biological control agents. A researcher decided to test the hypothesis

that the proportion of cane toads with intestinal parasites was the same in

three different areas of Queensland, so they sampled 20 from each area,

dissected them, and categorised them as being infected or free from intestinal

parasites. The researcher did not have a preconceived hypothesis about the

expected proportions of infected and uninfected toads – they simply wanted

to compare the three samples. The data are shown in Table 17.2. This format

is often called a contingency table.

These data are used to calculate an expected frequency for each of the

six cells. This is done by first calculating the row and column totals

(Table 17.3(a)) often called the marginal totals. The proportions of

infected and uninfected toads in the marginal totals shown in the right-

hand column of Table 17.3 are the overall proportions within the sample.

Therefore, under the null hypothesis of no difference in the proportions

Table 17.2. Data for samples of 20 cane toads taken at each of

three locations in Queensland, Australia and dissected to see if

they were infected with, or free from, intestinal parasites

Rockhampton Bowen Mackay

Infected 12 7 14

Uninfected 8 13 6
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among locations, each will have the same proportion of infected toads. To

obtain the expected frequency for any cell under the null hypothesis, the

column total and the row total corresponding to that cell are multiplied

together and divided by the grand total. For example, in Table 17.3(b) the

expected frequency of infected toads in a sample of 20 from Rockhampton

is (20� 33)� 60¼ 11 and the expected frequency of uninfected toads from

Mackay is (20� 27) � 60¼ 9.

After the expected frequencies have been calculated for all cells, equation

(17.1) is used to calculate the chi-square statistic. The number of degrees of

freedom for this analysis is one less than the number of columns, multiplied

by one less than the number of rows, since all but one of the values within

each column and each row are free to vary, but the final one is not because

of the fixed marginal total. Here, therefore, the number of degrees of

freedom is 2� 1¼ 2. The smallest contingency table possible has two

rows and two columns (this is called a 2� 2 table), which will give a chi-

square statistic with only one degree of freedom.

17.3.2 The G test or log-likelihood ratio

The G test or log-likelihood ratio is another way of estimating the chi-

square statistic. The formula for the G statistic is:

Table 17.3. (a) The marginal totals for the data in Table 17.2. To obtain the

expected frequency for any cell, its row and column total are multiplied together

and divided by the grand total. (b) Note that the expected frequencies at each

location (11:9) are the same and also correspond to the proportions of the

marginal totals (33:27)

Rockhampton Bowen Mackay Row totals

(a) Observed frequencies and marginal totals

Infected 12 7 14 33

Uninfected 8 13 6 27

Column totals 20 20 20 Grand total¼ 60

(b) Expected frequencies calculated from the marginal totals

Infected 11 11 11 33

Uninfected 9 9 9 27

Column totals 20 20 20 Grand total¼ 60
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G ¼ 2
Xn
i¼1

fi ln
fibfi
 !

(17:3)

This means, ‘The G statistic is twice the sum of the frequency of each cell

multiplied by the natural logarithm of each observed frequency divided by

the expected frequency.’ This formula will give a statistic of zero when each

expected frequency is equal to its observed frequency, but any discrepancy

will give a positive value of G. Some statisticians recommend the G test and

others recommend the chi-square test. There is a summary of tests recom-

mended for categorical data near the end of this chapter.

17.3.3 Randomisation tests for contingency tables

A randomisation test procedure similar to the one discussed in Section

17.2.1 for goodness of fit tests can be used for any contingency table. First,

the marginal totals of the table are calculated and give the expected propor-

tions when there is no difference among samples. Then the Monte Carlo

method is used to repeatedly ‘sample’ an hypothetical population containing

these proportions with the constraint that both the column and row totals

are fixed. Randomisation tests are available in some statistical packages.

17.4 Bias when there is one degree of freedom

When there is only one degree of freedom and the total sample size is less

than 200, the calculated value of chi-square has been shown to be inaccu-

rate because it is too large. Consequently it gives a probability that is smaller

than appropriate, thus increasing the risk of Type 1 error. This bias

increases as sample size decreases, so the following formula, called Yates’

correction or the continuity correction, was designed to improve the

accuracy of the chi-square statistic for small samples with one degree of

freedom.

Yates’ correction removes 0.5 from the absolute difference between

each observed and expected frequency. (The absolute difference is used

because it converts all differences to positive numbers, which will be

reduced by subtracting 0.5. Otherwise, any negative values of oi – ei
would have to be increased by 0.5 to make their absolute size and the
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square of that smaller.) The absolute value is the positive of any number

and is indicated by enclosing the number or its symbol by two vertical

bars (e.g. |� 6| = 6). The subscript ‘adj’ after the value of chi-square means

it has been adjusted by Yates’ correction.

�2
adj ¼

Xn
i¼1

oi � eij j � 0:5ð Þ
ei

2

(17:4)

From equation (17.4) it is clear that the compensatory effect of Yates’

correction will become less and less as sample size increases. Some authors

(e.g. Zar, 1999) recommend that Yates’ correction is applied to all chi-

square tests having only one degree of freedom, but others suggest it is

unnecessary for large samples and recommend the use of the Fisher Exact

Test (see Section 17.4.1 below) for smaller ones.

17.4.1 The Fisher Exact Test for 2�2 tables

The Fisher Exact Test accurately calculates the probability that two sam-

ples, each containing two categories, are from the same population. This

test is not subject to bias and is recommended when sample sizes are small

or more than 20% of expected frequencies are less than five, but it can be

used for any 2� 2 contingency table.

The Fisher Exact Test is unusual in that it does not calculate a statistic

that is used to estimate the probability of a departure from the null

hypothesis. Instead, the probability is calculated directly.

The easiest way to explain the Fisher Exact Test is with an example.

Table 17.4 gives data for the presence or absence of a lizard called the banded

gecko on ten western Pacific islands. An examination of museum specimens

showed that this lizardwas present onmost islands in thewestern Pacific in the

mid-nineteenth century, but since then the vegetation of many has been

cleared for agriculture. A conservation biologist, whowas interested inwhether

vegetation clearing had any effect on the presence of the banded gecko,

sampled five islands that had been cleared and five that had not. The results

for the presence or lack of detection of the banded gecko are in Table 17.4.

These frequencies are too small for accurate analysis using a chi-square test.

If there were no effect of clearing you would expect, under the null

hypothesis, that the proportions of islands with geckos in each sample

(cleared and uncleared) would be the same as the marginal totals
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(Table 17.5), with any departures being due to chance. The Fisher Exact

Test uses the following procedure to calculate the probability of an out-

come equal to ormore extreme than the one observed, which can be used to

decide whether it is statistically significant.

First, the four marginal totals are calculated, as shown in Table 17.5.

Second, all of the possible ways in which the data can be arranged within

the four cells of the 2� 2 table are listed, subject to the constraint that the

marginal totals must remain unchanged. This is the total set of possible

outcomes for the sample. For these marginal totals, the most likely out-

come under the null hypothesis of no difference between the samples is

shown in Table 17.5 and identified as (c) in Table 17.6.

For a sample of ten islands, five of which must be cleared and five of which

must not, together with the constraint that six islands must have geckos

Table 17.4. Data for the presence of the banded gecko on a sample

of ten islands in the western Pacific. The sample deliberately included

five islands that had been cleared for agriculture and five that had not.

The marginal totals show that four islands have geckos present and six

do not

Island cleared for

agriculture

Island not

cleared

Banded gecko present 0 4 4

Banded gecko not found 5 1 6

5 5 10

Table 17.5. Under the null hypothesis that there is no effect of clearing

on the banded gecko, the expected proportions of islands with and

without geckos in each sample (2:3 and 2:3) will correspond to the

marginal totals for the two rows (4:6). The proportions of islands

cleared and uncleared (2:2) and (3:3) will also correspond to the

marginal totals for the two columns (5:5)

Island cleared for

agriculture

Island not

cleared

Banded gecko present 2 2 4

Banded gecko not found 3 3 6

5 5 10
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present and four must not, there are five possible outcomes (Table 17.6). To

obtain these you start with the outcome expected under the null hypothesis

(c), choose one of the four cells (it does not matter which), and add one to

that cell. Next, adjust the values in the other three cells so the marginal totals

do not change. Continue with this procedure until the number within the cell

you have chosen cannot be increased any further without affecting the

marginal totals. Then go back to the expected outcome and repeat the

procedure by subtracting one from the same cell until the number in it cannot

decrease any further without affecting the marginal totals (Table 17.6).

Third, the actual outcome is identified within the total set of possible

outcomes. For this example, it is case (e) in Table 17.6. The probability of

this outcome, togetherwith anymore extremedepartures in the samedirection

from the one expected under the null hypothesis (here there are none more

extreme than (e)) can be calculated from the probability of getting this

particular arrangement within the four cells by sampling a set of ten islands,

four of which contain geckos and six of which do not, with five out of ten

cleared. This is similar to the example used to introduce hypothesis testing in

Chapter 5, where you had to imagine a sample of beads drawn from a sack.

Here, however, a very small group is sampled without replacement, so the

initial probability of selecting an island with geckos present is 4/10, but, if one

is drawn, the probability of next drawing an islandwith geckos is now 3/9 (and

6/9without). I deliberately have not given this calculation because it is long and

tedious, and most statistical packages do it as part of the Fisher Exact Test.

The calculation gives the exact probability of getting the observed outcome

or a more extreme departure in the same direction from that expected under

the null hypothesis. This is a one-tailed probability, since the outcomes in the

opposite direction (e.g. on the left of (c) in Table 17.6) have been ignored. For

a two-tailed hypothesis you need to double the probability. Once the prob-

ability is less than 0.05, the outcome is considered statistically significant.

17.5 Three-dimensional contingency tables

The contingency tables described in this chapter are two dimensional,

but three-dimensional tables can also be analysed. For example, if you

had two or more samples within which two categorical variables have

been measured on each individual (e.g. a person’s sex and whether they

are left or right-handed), these would give a contingency table consisting of
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a three-dimensional block of cells with one column and two rows. Three-

dimensional chi-square analyses are described in more advanced texts.

17.6 Inappropriate use of tests for goodness of fit

and heterogeneity

Tests for goodness of fit and contingency tables assume that the data are

mutually exclusive and contingent upon one another. It is also assumed

that the categories are the entire set possible within each sample.

Occasionally, however, these tests are misused. The most common misuse

occurs when samples are incorrectly considered as categories, as shown in

the following example.

Marine ecologists often use small traps baited with dead or damaged fish

or crustaceans to sample benthic scavengers, such as whelks. A researcher

was interested in comparing the numbers of the scavenging whelk

Nassarius subtidalis in traps baited with four different baits (crab, oyster,

fish, and prawn), so they placed one trap containing each bait, plus an

empty trap as a control, on the seabed in an area where N. subtidalis was

common. The traps were left for six hours, retrieved, and the number of N.

subtidalis inside them counted (Table 17.7).

Fifty whelks were trapped. The data were analysed using a chi-square test

for goodness of fit, with the null hypothesis that equal numbers of whelks

(in this case 10, since 50 were caught in total and there were five traps)

would be expected in each trap.

Unfortunately these data are not suitable for a goodness of fit test,

because the five treatments are neither mutually exclusive nor contin-

gent categories within a sample. This is clear if you consider that a whelk

that did not enter a particular trap would not have to enter another. The

numbers in each trap are actually single samples from each treatment.

In contrast, if the whelks caught within each trap were subdivided into the

mutually exclusive categories of male and female, it would be appropriate to

use a test for heterogeneity to test the (very different) hypothesis that the sex

ratio does not vary among treatments, because the two sexes are mutually

exclusive and contingent categories within each treatment (Table 17.8). To

avoid the pitfall of confusing categories and samples, you need to ask yourself,

‘Do I have data for categories that aremutually exclusive and contingentwithin

each sample, or are my ‘‘categories’’ really separate independent samples?’
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17.7 Recommended tests for categorical data

Several tests have been developed for data that are frequencies in mutually

exclusive and contingent categories. The following are broad

recommendations.

When comparing the frequencies in two or more categories within a

single sample to their expected proportions, chi-square can be used where

no more than 20% of expected frequencies are less than five. A randomisa-

tion test can be used for any sized sample.

For 2� 2 contingency tables the Fisher Exact Test will give an unbiased

probability and is available in most statistical packages.

For contingency tables with more than two rows and columns, the chi-

square or G test can be used if no more than 20% of expected frequencies

are less than five. A randomisation test will give an unbiased probability for

any sized sample.

Table 17.7.Data for the number ofN. subtidalis found in five traps, four of which

contained different baits and one left empty as a control, after six hours. The

numbers in each trap are not mutually exclusive or contingent upon the

numbers within any other, so the data are unsuitable for analysis by a goodness

of fit test

Crab Oyster Fish Prawn Control

Number of N. subtidalis present 14 1 16 17 2

Table 17.8.Data for the number ofN. subtidalis found in five traps after

six hours. The numbers of male and female whelks in each trap are

mutually exclusive and contingent categories, so these data are

suitable for a contingency table analysis comparing the proportions of

each sex among bait types

Crab Oyster Fish Prawn Control

Male 6 1 7 7 0

Female 8 0 9 10 2
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17.8 Comparing proportions among two or more related

samples of nominal scale data

If you have measured the same variable more than once on each experi-

mental unit, the samples are not independent and need to be analysed using a

test for related samples. Table 17.9 gives an example of two related samples

of nominal scale data from a laboratory experiment where 12 individually

numbered banded geckos were placed in an arena with a background tiled as

an alternating ‘checkerboard’ pattern of large black and white squares. One

hour later the background type (black or white) occupied by each lizard was

recorded. Next, the silhouette of a predatory bird known to eat banded

geckos was displayed above the arena and the background occupied by

each lizard recorded a second time. The null hypothesis was that geckos

would show no change in the background occupied before and after the sight

of the predator, while the alternate hypothesis was that they would change to

either a darker or lighter background. It is not appropriate to analyse these

data with a test that compares two independent samples.

TheMcNemar test for the significance of changes compares two related

samples of nominal scale data in two categories. The data in Table 17.9 are

Table 17.9. The background occupied by 12 banded geckos before

and after being exposed to the silhouette of a predatory bird. B¼black

background, W¼white background. These two samples are not

independent since they contain the same 12 lizards

Gecko number Before After

1 B B

2 B B

3 W B

4 B B

5 W B

6 W W

7 B B

8 W B

9 B B

10 W B

11 W B

12 W B
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summarised in a 2� 2 table giving the number of individuals in all four

possible combinations of categories and samples. These are (a) black before

and after, (b) black before and white after, (c) white before and black after,

and (d) white before and white after (Table 17.10).

The null hypothesis predicts that there will be no difference in the

proportions of lizards on each background between the two samples,

while the alternate predicts there will be a difference. Therefore, under

the null hypothesis, the set of lizards that did change backgrounds (com-

binations (b) and (c)) would be expected to include equal numbers that

changed from black to white and from white to black, so you would expect

cells (b) and (c) of Table 17.10 to contain equal frequencies. If, however,

the background preference differed before and after exposure to the silhou-

ette, the frequencies in these two cells would be expected to be unequal.

In this example six lizards changed backgrounds, so three would be

expected to change from black to white and vice versa. The McNemar test

ignores categories (a) and (d) where no change has occurred and compares

the observed and expected frequencies in cells (b) and (c) using a goodness of

fit test (e.g. the chi-square, exact, or randomisation tests for two mutually

exclusive categories discussed earlier in this chapter, or the exact probability

calculated from the binomial distribution discussed in Chapter 5). If there is

a statistically significant difference between the numbers in each of these two

categories, it indicates a change between the two samples.

For three or more related samples of nominal scale data in two cate-

gories, the CochranQ test is an extension of the McNemar test. These tests

are also included in most statistical packages.

Table 17.10. The numbers of banded geckos on black and white

backgrounds before and after exposure to the silhouette of a predatory

bird. Two cells show the individuals whose background preference

changed and these are (b) from black to white and (c) from white to

black

After

Before Black White

Black (a) 5 (b) 0

White (c) 6 (d) 1
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18 Non-parametric tests for ratio,
interval, or ordinal scale data

18.1 Introduction

This chapter describes some non-parametric tests for ratio, interval, or

ordinal scale data. Non-parametric tests do not use the predictable dis-

tribution of sample means, which is the basis of most parametric tests, to

infer whether samples are from the same population. Consequently non-

parametric tests are generally not as powerful as their parametric equiva-

lents, but, if the data are grossly non-normal and cannot be satisfactorily

improved by transformation, it is necessary to use a non-parametric test.

Non-parametric tests are often called ‘distribution free tests’ but most

nevertheless assume that the samples being analysed are from populations

with the same distribution. Therefore, most non-parametric tests should

not be used where there are gross differences in distribution (including

the variance) among samples. The general rule that the ratio of the largest

to smallest sample variance should not exceed 4:1 discussed in Chapter 12

also applies to non-parametric tests.

Many non-parametric tests for ratio, interval, or ordinal data calculate a

statistic from a comparison of two or more samples and work in the

following way.

First, the raw data are converted to ranks. For example, the lowest value

is assigned the rank of ‘1’, the next highest ‘2’ etc. This transforms the data

to an ordinal scale (see Chapter 3) with the ranks indicating only their

relative order. Under the null hypothesis that the samples are from the

same population you would expect a similar range of ranks within each,

with differences among samples only occurring by chance.

Second, a statistic that reflects any differences in the ranks among

samples is calculated and its value compared with the expected distribution

of this statistic when samples have been taken from the same population.



If the calculated value falls within the range generated by the most extreme

5% of departures from the null hypothesis, the result is considered statis-

tically significant. Most statistical packages give the value of the test statis-

tic, together with the probability of that outcome. Randomisation and

exact tests can also be used to compare two or more samples of ratio,

interval, or ordinal data, and are described in this chapter.

18.2 A non-parametric comparison between one sample

and an expected distribution

The Kolmogorov–Smirnov one-sample test can be used to compare the

distribution of a single sample with an expected or known distribution. For

example, if you were interested in examining whether the growth rate

(measured by the weight gained) of pigs raised on organic farms during

their first year of life was different to factory reared pigs, you might have

data for 36 ‘organic’ pigs but no data for 36 equivalent factory grown

controls. In this case you would have to test the hypothesis that the

distribution of the weight gained by ‘organic’ pigs during their first year

is no different to the known (population) distribution of weight gained

during this time by factory grown pigs.

Here is an example. Data for the increase in weight in kilograms for the

36 organically reared pigs during their first year are shown below:

10.1, 12.2, 18.6, 19.5, 13.6, 17.5, 14.0, 20.2, 11.7, 15.8, 18.4, 19.2, 11.8,

19.6, 12.4, 20.5, 12.9, 13.3, 13.7, 13.1, 12.8, 20.7, 20.9, 10.4, 11.4, 22.1, 21.7,

15.6, 19.3, 18.6, 16.2, 18.0, 23.0, 14.1, 12.5, 13.6

If you make a preliminary inspection of these data by drawing a histo-

gram, you will find the distribution is bimodal and clearly not appropriate

for analysis using a parametric test such as a one-sample t test. A non-

parametric test is needed.

You can use a Kolmogorov–Smirnov one-sample test to compare this

bimodal distribution with the known distribution of weight gained by

factory reared pigs during their first year (which is also bimodal) and has

been well established from such a large number of pigs over several decades

that it can be assumed to be the distribution for the population.

First, you need to construct a table of frequencies that summarises these

data, using the procedure for drawing a frequency histogram described in

Section 3.3.2. Once you have decided on an interval number and width that
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will reveal the shape of the distribution (Section 3.3.2), you need to count

the number of cases that fall within each interval (Table 18.1) and convert

these to their proportions of the sample. Next, progressively add these propor-

tions together to give the cumulative proportions. Here too, this procedure is

the same as drawing a cumulative frequency graph (Section 3.3.3).

The cumulative proportions for the sample have to be compared with

the cumulative proportions of the known distribution. To do this you

calculate the absolute value of the difference between the observed and

expected proportions in each interval, which will always be positive. The

greatest difference is identified and called the D statistic.

If the observed and expected proportions in each interval are the same,

the value of D will be zero. As the discrepancy between the observed and

expected proportions increases, the value of D will increase and eventually

exceed the critical value, which will depend on sample size. A worked

example is given in Table 18.1. Statistical packages generate the cumulative

frequency distributions, calculate D, and give the probability.

Table 18.1. A worked example of a Kolmogorov–Smirnov one-sample test. The

numbers of pigs in each category are converted to proportions of the sample and

then expressed as cumulative proportions, which are compared, by subtraction,

with the known (expected) cumulative proportions for the population and

expressed as the absolute difference. The greatest difference is identified. In this

case it is 0.1217 (shown in bold in the far right-hand column), which is the value

of D. If the probability of obtaining this or a more extreme value of D is less than

5% the sample is considered significantly different to the expected distribution

Category of

weights

Observed numbers

in each category

Observed

proportion

in each

category

Observed

cumulative

proportions in

each category

Expected

cumulative

proportions

Absolute

difference

(observed

minus

expected)

10–11.99 5 0.1389 0.1389 0.1045 0.0344

12–13.99 10 0.2778 0.4167 0.3943 0.0224

14–15.99 4 0.1111 0.5278 0.5623 0.0345

16–17.99 2 0.0556 0.5833 0.6236 0.0403

18–19.99 8 0.2222 0.8056 0.6839 0.1217

20–21.99 5 0.1389 0.9444 0.9325 0.0119

22–23.99 2 0.0556 1.0000 1.0000 0.0000

Total 36 1.0000
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18.3 Non-parametric comparisons between two

independent samples

18.3.1 The Mann–Whitney test

The Mann–Whitney test is used to compare two independent samples.

First, the values are ranked over both samples as shown in Table 18.2,

which gives data for the height of nine palm seedlings grown in two

different soil types. The smallest value is given the rank of 1, the next largest

the rank of 2 etc., so the largest will have the rank of n1 + n2 (which is the

sum of the number of cases in both samples). For the data in Table 18.2, the

largest possible rank is 9.

If two or more values are the same (that is, they are tied), each is given

the average of the ranks assigned to that many values. For example, if the

data in Table 18.2 contained two 4 cm high seedlings and these were the

smallest, each would be given the average of ranks 1 and 2, which is 1.5.

If most of the seedlings grew taller in one soil type than the other, the

ranks would differ between treatments. In contrast, if the seedlings grew to

a similar height in both soil types, the ranks within each treatment would

also be similar.

The ranks are summed separately for each sample (these are R1 and R2 in

Table 18.2) and the two Mann–Whitney statistics U and U0 calculated:

U ¼ n1 � n2 þ
n1ðn1 þ 1Þ

2
� R1 (18:1)

and:

Table 18.2. The height, in centimetres, of palm seedlings germinated and grown

for six weeks in clay soil and sandy soil. Ranks are shown in the two right-hand

columns, together with the rank sums (R1 and R2) for each treatment

Height in clay soil Height in sandy soil Rank for clay soil Rank for sandy soil

24 22 7 6

41 6 9 2

17 11 5 3

38 15 8 4

4 1

n1 = 4 n2 = 5 R1 = 29 R2 = 16
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U 0 ¼ n1 � n2 þ
n2ðn2 þ 1Þ

2
� R2 (18:2)

where n1 and n2 are the size of each sample.

These formulae may appear complex, but are easily explained by separ-

ating them into three components as shown for U in equation (18.3).

U ¼ n1 � n2

component A

þ
n1ðn1 þ 1Þ

2

component B

� R1

component C

(18:3)

Component A will increase with the size of both samples. Component B

will only increase as the size of sample 1 increases. In contrast, component C

will be affected by the way the ranks are distributed between the two

samples. A lot of low ranks in sample 1 will give a relatively small value

of R1 and vice versa. Therefore, sinceU is calculated by taking component C

away from the sum of components A and B, it will be large compared with

U 0 when sample 1 contains mainly low ranks. In contrast, if sample 1

contains mainly high ranks, the value of U will be small compared with

U 0. Finally, if both samples contain similar ranks, then neitherU norU 0 will

be relatively large or small.

When both samples are from the same population, most values ofU and

U 0 will be similar, but differences between them will occur by chance and

the most extreme 5% of discrepancies will give values ofU orU 0 that will be

equal to, or exceed, a critical value. For a two-tailed test, if either of the U

statistics exceeds the critical value, then the probability that the samples are

from the same population is less than 5%.

18.3.2 Randomisation tests for two independent samples

Another way of comparing two independent samples, without assuming

they are from a normal distribution, is to use a randomisation test. These

tests were first discussed in relation to samples of categorical data in

Chapter 17.

If two independent samples are taken from the same population, then

the values within each should differ only by chance. A randomisation test

takes the combined set of ranks from both samples (a group of size n1 + n2),
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repeatedly samples it at random, and assigns the ranks to two groups of size

n1 and n2.

The simulated sampling is iterated several thousand times and used to

generate the expected distribution of U and U 0 from the data set and

therefore identify the most extreme 5% of departures from the outcome

expected under the null hypothesis. Finally, the U statistics for the actual

outcome are compared with these distributions and, if the probability is

less than 5%, it is statistically significant (Figure 18.1).

18.3.3 Exact tests for two independent samples

Data for two samples can also be analysed by tests that calculate the exact

probability, and work in a very similar way to the Fisher Exact Probability

Test described in Chapter 17.

An exact test for two independent samples calculates the probability of

the actual difference (or values of statistics such as U and U 0) between the

ranks of the samples, together with any more extreme differences from the

outcome expected under the null hypothesis. This gives the one-tailed

probability of the outcome.

Here is an example for two independent samples with three data in each.

The values range from 1 to 6, and the total set of ways in which they can be

distributed between two samples is shown in Table 18.3. I have deliberately

made the values the same as their ranks, and used a simple comparison

between the rank sums of the samples.

For this example there are only two combinations that will give the

greatest difference between the rank sums. These are when the first sample

contains the three lowest (1, 2, and 3) and the second the three highest (4, 5,

and 6) ranks and vice versa, giving an absolute difference of nine. Less

extreme differences can be obtained from several combinations and are

therefore more likely (Table 18.3).

For example, you may wish to calculate the probability of the observed

outcome and any more extreme departures from the one expected under

the null hypothesis when one sample contains the ranks 1, 2, and 5 (and the

other contains ranks 3, 4, and 6). The observed difference between the sums

of the ranks is�5. You will find this outcome in the third line from the top

of Table 18.3. There are two more extreme differences (�7 and �9) in the

same direction (that is, with increasingly negative values) from the
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(a)

R1 = 14 R2 = 22

Group 1 Group 2

(b)

(c)

(d)

R1 = 23 R2 = 13

×10,000

1 4 3 6

6 4 2 1 7 8 5 3

8 7 52

(e)

Fr
eq

ue
nc

y

0 0
Value of U Value of U ′

5 4 1 36 7 2 8

Figure 18.1 Illustration of a randomisation procedure that gives

distributions of the two Mann-Whitney statistics U and U 0 from simulated

sampling, which can be used to decide whether an observed outcome is

statistically significant. (a) The actual outcome of the expriment. (b) The

ranks from both groups are combined. (c) The combined set of ranks is

resampled at random to give two more groups of size n1 and n2 and thereby

generate two new values of R1 and R2. (d) Steps (b) and (c) are repeated

several thousand times. Each time, two more values of R1 and R2 are

generated. (e) The simulated sampling gives the distributions ofU andU 0 for

two samples taken at random from the same group. By chance there will often

be differences between samples, and as they increase so will U or U 0. The

largest 5% of the values of U and U 0 are shown as the filled areas on the right

of each graph. Finally, the U statistics from the actual outcome (a) are

compared with these distributions. If the probability of getting either U orU 0

is less than 5% (i.e. either statistic falls within the filled area), the null

hypothesis that the samples in (a) are from the same population is rejected.
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Table 18.3. The set of ways in which six ranks can be distributed between two

samples of three. Note that the most extreme differences (of �9 and 9)

between the sums of the ranks of two samples can only be obtained when one

contains ranks 1, 2, and 3 and the other 4, 5, and 6, so these outcomes have a

relatively low probability compared with less extreme differences (e.g. 1

and �1), which can be obtained in several different ways

Sample 1 Rank sums and their differences Sample 2

(a) (b) (c) (c) (b) (a)

1 4

2 R1 = 6 R1 � R2 = �9 R2 = 15 5

3 6

1 3

2 R1 = 7 R1�R2 = �7 R2 = 14 5

4 6

1 1 2 3

2 3 R1 = 8 R1�R2 = �5 R2 = 13 5 4

5 4 6 6

2 1 1 3 2 1

3 3 2 R1 = 9 R1�R2 = �3 R2 = 12 4 4 5

4 5 6 5 6 6

2 1 1 2 2 1

3 3 4 R1 = 10 R1�R2 = �1 R2 = 11 3 4 4

5 6 5 6 5 6

1 2 2 1 1 2

4 4 3 R1 = 11 R1�R2 = 1 R2 = 10 2 3 3

6 5 6 5 6 5

1 2 3 1 1 2

5 4 4 R1 = 12 R1�R2 = 3 R2 = 9 2 3 3

6 6 5 6 5 4

3 2 1 1

4 5 R1 = 13 R1�R2 = 5 R2 = 8 3 2

6 6 4 5

3 1

5 R1 = 14 R1�R2 = 7 R2 = 7 2

6 4

4 1

5 R1 = 15 R1�R2 = 9 R2 = 6 2

6 3
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outcome expected under the null hypothesis. The probability of each out-

come is calculated directly from sampling a set of six values without

replacement (e.g. the chance of rank 1 is 1/6, but the chance of then

selecting rank 2 is 1/5 etc.). Once calculated, these probabilities are

summed and thus give the one-tailed probability of the observed outcome

and anymore extreme departures from the null hypothesis. The probability

is one-tailed, because differences in the same absolute size between the

samples (i.e. the last three lines showing differences of 5, 7, and 9) in Table

18.3 have been ignored, and has to be doubled to get the two-tailed

probability.

18.3.4 Recommended non-parametric tests for two independent

samples

If you have a statistical package that includes an exact or randomisation test

for two independent samples, either of these is recommended in preference

to the Mann–Whitney test.

18.4 Non-parametric comparisons among more than two

independent samples

The most frequently used non-parametric test for more than two indepen-

dent samples is the Kruskal–Wallis test. It is also called the Kruskal–Wallis

single factor analysis of variance by ranks, but this is misleading because it

does not use analysis of variance to compare samples. Instead, the

Kruskal–Wallis test is an extension of the Mann–Whitney test that can be

applied to three or more samples.

18.4.1 The Kruskal–Wallis test

For a Kruskal–Wallis test the data are ranked in the same way as for a

Mann–Whitney test, starting by assigning the lowest rank to the smallest

value. Here is an example for the number of sandfly bites on the arms of 16

college students who spent three hours without insect repellent while on a

class field trip to a Florida mangrove swamp (Table 18.4). The students

were classified into three groups according to their natural hair colour and
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the null hypothesis was, ‘There is no difference in the number of sandfly

bites on the arms of people with different hair colour.’

It is clear that a marked difference in the number of sandfly bites among

groups will also result in a difference in the ranks and rank sums.

The rank sums for each group are used in the following formula for the

Kruskal–Wallis statistic H:

H ¼ 12

NðN þ 1Þ
Xk

i¼1

R2
i � 3ðN þ 1Þ (18:4)

where N is the total sample size and k is the number of groups or samples.

Although this formula looks complex, it is straightforward when consid-

ered as three components:

H ¼ 12

NðN þ 1Þ

component A

�
Xk

i¼1

R2
i

component B

� 3ðN þ 1Þ

component C
(18.5)

Components A and C will increase as sample size increases. Component B

is the sum of all the squared rank totals. If all Ri values are relatively similar,

Table 18.4. The number of sandfly bites on both arms of 16 students, who did

not wear insect repellent, after spending three hours in a Florida mangrove

swamp. Five had black hair, six had brown hair, and five were blonde. The totals

are the rank sums within each group

Number of sandfly bites

Number of sandfly bites ranked

from the least to most

Black hair Brown hair Blonde hair Black hair Brown Hair Blonde hair

25 31 22 9 13 8

14 20 4 4 7 1

35 29 11 14 11 3

41 15 18 16 5 6

28 40 8 10 15 2

30 12

Total R1¼ 53 R2¼ 63 R3¼ 20

18.4 More than two independent samples 233



then component B (and therefore H) will be smaller, than when some are

large and others small, because of the effect of squaring relatively large

numbers (Box 18.1).

The distribution of H for samples taken at random from the same

population has been established and used to identify the 5% most extreme

departures from the null hypothesis of no difference. For large samples, or

where the number of groups or treatments is more than five, the value ofH

Box 18.1 The effect of an unequal allocation of ranks on the total

of the squared rank sums

This example uses three groups with two values in each. Only the ranks

of the values are shown. First, the rank sums are identical among groups.

Xk

i¼1

R2
i ¼ 3� 49 ¼ 147

Second, the rank sums are different among groups and this gives a

larger sum of the squared rank sums.

Xk

i¼1

R2
i ¼ 32 þ 72 þ 112 ¼ 179

Group A Group B Group C

1 2 3

6 5 4

R1 = 7 R2 = 7 R3 = 7

Group A Group B Group C

1 3 5

2 4 6

R1 = 3 R2 = 7 R3 = 11
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is a close approximation to the chi-square statistic with (k� 1) degrees of

freedom, and many statistical packages only give this statistic (and its

probability) for the result of a Kruskal–Wallis test.

18.4.2 Exact tests and randomisation tests for three or more

independent samples

Randomisation and exact tests on the ranks of three or more independent

samples are extensions of the methods described for two independent

samples in Section 18.3 and it is not necessary to explain these further.

18.4.3 A-posteriori comparisons after a non-parametric test

A non-parametric comparison can detect a significant difference among

three or more groups, but it cannot show which groups appear to be from

the same, or different, populations. This problem was discussed in Chapter 9

in relation to a single factor parametric ANOVA. If the effect of the variable

you are examining is considered fixed, you need to use non-parametric

a-posteriori tests to compare among groups. These are described in more

advanced texts (e.g. Sprent, 1993).

18.4.4 Rank transformation followed by one factor ANOVA

Another way of analysing data that are grossly non-normal is to run a

parametric single factor ANOVA on the ranks. This is not a true non-

parametric test, but has the advantage of easy a-posteriori comparisons

when an effect is fixed and the initial analysis shows a significant difference

among samples. It is as powerful as applying a Kruskal–Wallis test.

18.4.5 Recommended non-parametric tests for three or more

independent samples

Most statistical packages include the Kruskal–Wallis test, which is up to

95% as powerful as the equivalent parametric single factor ANOVA

described in Chapter 9. If you have a package that includes an exact test

or randomisation test, these are recommended in preference to the
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Kruskal–Wallis test. Several texts recommend using a parametric ANOVA

after rank transformation but it is important to note that this is not a true

non-parametric comparison.

18.5 Non-parametric comparisons of two related samples

Related samples were first discussed in Chapter 7. Some examples are when

a variable is measured twice (and usually under different conditions) on the

same experimental unit, or when the experimental units within one sample

or treatment are somehow related to those in a second (e.g. an experiment

with two treatments, where a pair of rats is taken from each of several litters

and one in each pair assigned to different treatments). There are several

non-parametric tests for determining the probability that two related

samples have been taken from the same population. These include the

Wilcoxon paired-sample test, as well as randomisation and exact tests for

this statistic.

18.5.1 The Wilcoxon paired-sample test

TheWilcoxon paired-sample test is the non-parametric equivalent of the

paired sample t test. The following example is for two samples taken from

each of ten experimental units. In humans the trachea branches into two

bronchi, which lead to different lungs. The bronchus leading to the right

lung is wider, shorter, and angled more closely to the vertical than

the one leading to the left lung. Not surprisingly, it has been found

that inhaled objects are more likely to lodge in the right bronchus, so

a pathologist hypothesised the right lung may also receive a greater

proportion of inhaled airborne particles such as smoke, and therefore

be more prone to damage. To test this, the pathologist counted the

number of lesions found during post mortem examination of the left

and right lungs of ten males who had died of natural causes. The data are

in Table 18.5.

For theWilcoxon test the difference between each pair of related samples

is first calculated. This is also expressed as the absolute difference and these

values ranked (Table 18.5). Finally, the ranks associated with negative and
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positive differences are summed separately to give the Wilcoxon statistics

T+ and T�. For the data in Table 18.4, the ranks of the positive differences

sum to 25 (cases 1, 2, 4, 5, 6, and 9), while the ranks of the negative

differences sum to 30 (cases 3, 7, 8, and 10).

Under the null hypothesis of no effect of bronchial structure on the

number of lesions in each lung, any difference between each pair of related

samples (and therefore T+ and T�) would only be expected by chance. If,

however, there were an effect of bronchial structure, it would contribute to

differences between these two statistics.

The values of T+ and T� can be compared with their expected

distributions by taking related samples at random from a population.

For a two-tailed test the null hypothesis is rejected if either T+ or T� is

less than a critical value, but for a one-tailed test the null hypothesis is

only rejected if the appropriate T statistic is less than a critical value. For

example, if it were hypothesised there were more lesions in the right lung

than the left, a reduction in the number of negative ranks would be

expected, so the null hypothesis would only be rejected if T� were less

than the critical value.

For large samples the distributions of both T statistics approximate the

normal curve, so statistical packages often give the value of the Z statistic

and probability for the result of the Wilcoxon test.

18.5.2 Exact tests and randomisation tests for two

related samples

The procedures for randomisation and exact tests on the ranks of two

related samples are conceptually similar to the analyses for two indepen-

dent samples described in Section 18.3 and it is not necessary to explain

them any further.

18.6 Non-parametric comparisons among three or more

related samples

Tests for three or more related samples include the Friedman test, together

with randomisation and exact tests for this statistic.
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18.6.1 The Friedman test

The Friedman test is often called the Friedman two way (or two factor)

analysis of variance by ranks, but this is misleading because it is not

equivalent to the two factor ANOVA discussed in Chapter 11. The

Friedman test cannot detect interaction and only examines differences

among the levels of one factor, so is really analogous to the two factor

ANOVAwithout replication applied to the randomised block experimental

design described in Chapter 13.

For a Friedman test the data are first transformed to ranks. Table 18.6

gives the results of an experiment designed to compare the effects of two

different antibiotics on the growth of pigs. Considerable differences in

growth can occur among pigs from different litters, so each treatment

was assigned one piglet from each of six litters, in a randomised block

design with three treatments and six blocks. Piglets in the control treatment

were offered unlimited food, while those in the other two treatments were

offered unlimited food laced with either antibiotic A or antibiotic B. Data

for the increase in weight of each piglet during the next two months are in

Table 18.6.

First, ranks are assigned within each block and therefore within each

row of Table 18.5. The lowest value in each row is given the rank of ‘1’, the

next highest ‘2’ etc, and the highest rank cannot exceed the number of

treatments.

Table 18.6. The increase in weight, in kilograms, for piglets from six litters

assigned to three different treatments. Piglets in the control treatment were

offered unlimited food, while those in treatments A and B were offered

unlimited food plus antibiotic A and B respectively

Litter Control Antibiotic A Antibiotic B Rank of control Rank of A Rank of B

1 2.5 2.7 2.1 2 3 1

2 1.8 1.9 2.0 1 2 3

3 4.4 4.7 4.1 2 3 1

4 2.4 2.6 2.3 2 3 1

5 5.1 5.3 5.2 1 3 2

6 1.7 1.9 1.6 2 3 1

Totals R1¼ 10 R2 = 17 R3 = 9
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If the treatments are from the same population, the range of ranks (and

the rank sums) for each should be similar, with any variation due to chance.

If, however, there is any effect of either treatment, the ranks and their sums

will also differ. For the example in Table 18.6, antibiotic treatment A

contains all but one of the highest ranks, while treatment B contains all

but two of the lowest.

Second, the total of the squared rank sums is calculated. The size of this

total will depend on the relative size of the rank sums (Box 18.1) with a set

of similar ones giving a smaller total than a set of dissimilar ones.

Finally the following formula is used to calculate the Friedman

statistic �2
r :

�2
r ¼

12

baðaþ 1Þ
Xa

i¼1

R2
i � 3bðaþ 1Þ (18:6)

where a is the number of treatments or groups and b is the number of

blocks. This appears complex, but can be split into three components as

shown in equation (18.7) below. The Friedman statistic is obtained by

multiplying components A and B together and then subtracting com-

ponent C.

�2
r ¼

12

baðaþ 1Þ
component A

�
Pa

i¼1

tR2
i

component B

� 3bðaþ 1Þ

component C

(18:7)

Components A and C will increase as sample sizes and the number of

samples increase. If the rank sums are very similar among treatments,

component B will be relatively small, so the value of the Friedman statistic

will also be small. As the differences among the rank sums increase,

component B will increase, thus giving a larger value of the Friedman

statistic. Once this exceeds the critical value above which less than 5% of

the most extreme departures from the null hypothesis occur when samples

are taken from the same population, the outcome is considered statistically

significant.

This analysis can be up to 95% as powerful as the equivalent two way

ANOVA without replication for randomised blocks.

240 Further non-parametric tests



18.6.2 Exact tests and randomisation tests for three or more

related samples

The procedures for randomisation and exact tests on the ranks of three or

more related samples are extensions of the methods for two independent

samples and do not need to be explained any further.

18.6.3 A-posteriori comparisons for three or more related samples

If the Friedman test shows a significant difference among treatments and

the effect is considered fixed, you are likely to want to know which

treatments are significantly different (see 18.4.3). A-posteriori testing

can be done and instructions are given in more advanced texts, such as

Zar (1999).

18.7 Analysing ratio, interval, or ordinal data that show gross

differences in variance among treatments and cannot

be satisfactorily transformed

Some data show gross differences in variance among treatments that

cannot be improved by transformation and are therefore unsuitable for

parametric or non-parametric analysis. A peridontologist was asked to

assess the effects of a dental hygiene program upon the incidence of caries

among 14–19 year old adolescent males. Thirty males aged 14 years were

chosen at random within a large high school. Fifteen were assigned at

random to a ‘hygiene’ group and regularly encouraged to eat only three

meals a day, carefully clean and floss their teeth after every meal, and reduce

their consumption of carbonated sugary drinks, while the 15 students in

the other group received no encouragement about dental hygiene.

Members of both groups had regular dental examinations. The number

of new cases of dental caries recorded during the next five years for each

student are given in Table 18.7.

It is clear there are gross differences in variance among the treatments

that cannot be remedied by transformation. The variance of the control

group is 15.11, compared with 0.12 in the ‘hygiene’ group and the large
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number of zeros makes it impossible to satisfactorily reduce this

heteroscedasticity.

One solution is to transform the data to a nominal scale and reclassify

both samples into two mutually exclusive categories of ‘no new caries’ and

‘new caries’ (Table 18.8), which can be compared using a test for two

independent samples of categorical data (Chapter 17).

Table 18.8. Transformation of the ratio data in Table 18.6 to a nominal

scale showing the number of new caries within twomutually exclusive

categories

Control Hygiene

Number without new caries 0 13

Number with new caries 15 2

Table 18.7. The number of cases of new dental caries occurring in two

groups of males between the ages of 14 and 19 years. Themembers of

the ‘hygiene’ group were encouraged to undertake a rigorous dental

hygiene program, while those in the control received no

encouragement about dental hygiene

Control Hygiene

4 0

7 0

4 0

10 0

2 0

7 0

1 0

9 1

3 0

9 0

12 1

7 0

5 0

4 0

15 0
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18.8 Non-parametric correlation analysis

Correlation analysis was introduced in Chapter 14 as an exploratory tech-

nique used to examine whether two variables are related or vary together.

Importantly, there is no expectation that the numerical value of one

variable can be predicted from the other, nor is it necessary that either

variable is determined by the other.

The parametric test for correlation gives a statistic that varies between

+1.00 and –1.00, with both of these extremes indicating a perfect positive

and negative straight line relationship respectively, while values around

zero show no relationship. Although parametric correlation analysis is

powerful, it can only detect linear relationships and also assumes that

both the X and Y variables are normally distributed. When normality of

both variables cannot be assumed, or the relationship between the two

variables does not appear to be linear and cannot be remedied by transfor-

mation, it is not appropriate to use a parametric test for correlation.

The most commonly used non-parametric test for correlation is

Spearman’s rank correlation.

18.8.1 Spearman’s rank correlation

This test is extremely straightforward. The two variables are ranked sepa-

rately, from lowest to highest, and the (parametric) Pearson correlation

coefficient calculated for the ranked values. This gives a statistic called

Spearman’s rho, which for a population is symbolised by �s and by rs for

a sample.

Spearman’s rs and Pearson’s rwill not always be the same for the same set

of data. For Pearson’s r the correlation coefficients of 1.00 or �1.00 were

only obtained when there was a perfect positive or negative straight-line

relationship between the two variables. In contrast, Spearman’s rswill give a

value of 1.00 or �1.00 whenever the ranks for the two variables are in

perfect agreement or disagreement, which occurs in more cases than a

straight-line relationship (Figure 18.2).

The probability of the value of rs can be obtained by comparing it with

the expected distribution of this statistic and most statistical packages will

give rs together with its probability.
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(a) (b) (c)

(d) (e)

rs = 1.00 rs = 0.80 rs = 0.60

rs = 1.00 rs = 0 rs = –1.00

Y

X XX

Y

X XX

Raw score Rank
XX

8 900 4 4
6 700 3 3
5 300 2 2
2 200 1 1

YY

Raw score Rank

XX

8 800 4 4
7 700 3 3
5 500 2 2
4                 400 1 1

YY

Raw score Rank

XX

8 500 4 2.5
7 500 3 2.5
5 500 2 2.5
4 500 1 2.5

YY

Raw score Rank

XX

8 400 4 1
7 500 3 2
5 700 2 3
4 800 1 4

YY

Raw score Rank
XX

8 900 4 4
7 700 3 3
4 200 2 1
2 300 1 2

YY
Raw score Rank

XX

8 800 4 3
6 900 3 4
4 200 2 1
2 400 1 2

YY

(f)

Figure 18.2 Examples of raw scores, ranks and the Spearman rank

correlation coefficient for data with (a) A perfect positive relationship (all

points lie along a straight line). (b) No relationship. (c) A perfect negative

relationship (all points lie along a straight line). (d) A positive relationship

which is not a straight line but all pairs of bivariate data have the same ranks.

(e) A positive relationship with only half the pairs of bivariate data having

equal ranks. (f) A positive relationship with no pairs of bivariate data having

equal ranks. Note that the value of rs is 1.00 for case (d) even though the raw

data do not show a straight line relationship.
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18.9 Other non-parametric tests

This chapter is only an introduction to some non-parametric tests for two

or more samples of independent and related data. Other non-parametric

tests are described in more specialised but nevertheless extremely well-

explained texts, such as Siegel and Castallan (1988).
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19 Choosing a test

19.1 Introduction

Statisticians and life scientists who teach statistics are often visited in their

offices by a researcher or student they may have never met before, who is

clutching a dauntingly thick pile of paper and perhaps a couple of CDs with

labels like ‘Experiment 1’ or ‘Trial 2’. The visitor sits down, drops everything

heavily on the desk, and says, ‘Here are my results. What stats do I need?’

This is not a good thing to do. First, the person whose advice you are

seeking may not have the time to work out exactly how you have done the

experiment, so they may give you bad advice. Second, the answer can be a

very nasty surprise like, ‘There are problems with your experimental design’.

The decision about the appropriate statistical analysis needs to be made

by considering the hypothesis being tested, the experimental design, and

the type of data. It can save a lot of time, trouble, and disappointment if you

think about possible ways of analysing the data at the time the experiment

is designed, rather than only after the data have been collected.

The following tables are a guide to choosing an appropriate test. You

need to start at Table 19.1, which initially gives three columns that are

mutually exclusive choices. Once you have decided among these, work

downwards within the column you have chosen. There may be more

choices and here you also need to select the appropriate column and

continue downwards. Eventually you will be referred to another table

with more choices that lead to suggested tests.
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Table 19.8. Tests for whether two variables are related

To test whether two variables are related

Do X and Y  vary together?

Y

X

Do the data fit the
bivariate normal
distribution and does the 
relationship appear
linear? 

Linear correlation 
analysis (Chapter 14) 

Are the data grossly non- 
normal or is the
relationship non-linear?

Non-parametric
correlation analysis
(Chapter 18)

What is the functional relationship between X 
and Y?

Y

Y = aX +b 

X

Linear regression analysis  (Chapter 15) 

Cautions: Data must be normally distributed and 
the relationship must be linear. Transformation of
the Y variable may be needed
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20 Doing science responsibly
and ethically

20.1 Introduction

By now you are likely to have a very clear idea about how science is done.

Science is the process of rational enquiry, which seeks explanations for

natural phenomena. Scientific method was discussed in a very prescriptive

way in Chapter 2 as the proposal of an hypothesis from which predictions

aremade and tested by doing experiments. Depending on the results, which

may have to be analysed statistically, the decision is made to either retain or

reject the hypothesis. This process of knowledge by disproof advances our

understanding of the natural world and seems impartial and hard to fault.

Unfortunately, this is not necessarily the case, because science is done by

human beings who sometimes do not behave responsibly or ethically.

For example, some scientists fail to give credit to those who have helped

propose a new hypothesis. Others make up, change, or delete results so

their hypothesis is not rejected, omit details to prevent the detection of

poor experimental design and deal unfairly with the work of others. Most

scientists are not taught about responsible behaviour and are supposed to

learn a code of conduct by example. Considering the number of cases of

scientific irresponsibility that have been exposed, this does not seem to be a

very good strategy. This chapter is about the importance of behaving

responsibly and ethically when doing science.

20.2 Dealing fairly with other people’s work

20.2.1 Plagiarism

Plagiarism is the theft and use of techniques, data, words, or ideas without

appropriate acknowledgement. If you are using an experimental technique



or procedure devised by someone else, or data owned by another person, you

must acknowledge this. If you have been reading another person’s work, it is

easy to inadvertently use some of their phrases, but plagiarism is the repeated

and excessive use of text without acknowledgement. Once your work is

published any detected plagiarism can affect your credibility and your career.

20.2.2 Acknowledging previous work

Previous studies can be extremely valuable since they may add weight to an

hypothesis and even suggest other hypotheses to test. There is a surprising

tendency for scientists to fail to acknowledge previous published work by

others in the same area, sometimes to the extent that experiments done two

or three decades ago are repeated and presented as new findings. This can

be an honest mistake in that the researcher is unaware of previous work,

but the availability of electronic databases has made it far easier to search

the scientific literature than it used to be. When you submit your work to a

scientific journal for publication it can be embarrassing to be told that

something similar has been done before. Even if a reviewer or editor of a

journal does not notice, others may and are likely to say so in print.

20.2.3 Fair dealing

Some researchers cite the work done by others in the same field but

downplay or even distort it. Although it appears that previous work in

the field has been acknowledged, since the publication is listed in the

references at the end of the paper or report, the researcher has nevertheless

been somewhat dishonest. I have found this in about 5% of the papers

I have reviewed, but it may be more common since it is quite hard to detect

unless you are very familiar with the work. Often the problem seems to arise

because the writer has only read the abstract of a paper, which can be

misleading. It is important to carefully read and critically evaluate previous

work in your field, because it will improve the quality of your own research.

20.2.4 Acknowledging the input of others

Often hypotheses may arise from discussions with colleagues or with your

supervisor. This is an accepted aspect of how science is done. If, however,
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the discussion has been relatively one sided in that someone has suggested

a useful and novel hypothesis to you, then you should seriously think

about acknowledgement. One of my colleagues once said bitterly,

‘My suggestions become someone else’s original thoughts in a matter of

seconds.’ Acknowledgement can be a mention (in a section headed

‘Acknowledgements’) at the end of a report or paper, or you may even

include the person as an author. It is not surprising that disputes often arise

between supervisors and their postgraduate students about authorship of

papers. Some supervisors argue that they have facilitated all of the student’s

work by being the supervisor and therefore expect their name to be

included on all papers from the research. Others recognise the importance

of the student having some single-authored papers and do not insist on

this. The decision depends on the amount and type of input and rests with

the principal author of the paper, but it is often helpful to clarify the matter

of authorship and acknowledgement with your supervisor(s) at the start

of a postgraduate program or new job.

20.3 Doing the experiment

20.3.1 Approval

You are likely to need prior permission or approval to do some types of

research, or to work in a national park or reserve. Research on endangered

species is very likely to need a permit (or permits) and you will have to give

a good reason for doing the work, including its likely advantages and

disadvantages. In many countries there are severe penalties for breaches

of permits or doing research without one.

20.3.2 Ethics

Ethics are moral judgements where you have to decide if something is right

or wrong, so different scientists can have different ethical views. Ethical

issues include honesty and fair dealing, but they also extend to whether

experimental procedures can be justified – for example procedures which

kill, mutilate, or are thought to cause pain or suffering to animals. Some

scientists think it is right to test cosmetic products on animals, because it

will reduce the likelihood of harming or causing pain to humans, while
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others think it is wrong, because it may cause pain and suffering to the

animals. Both groups would probably find it odd if someone said it was

unethical to do experiments on insects or plants. Importantly, however,

none of these three views can be considered the best or most appropriate,

because ethical standards are not absolute. Provided a person honestly

believes, for any reason, that it is right to do what they are doing, they are

behaving ethically (Singer, 1992) and it is up to you to decide what is right.

The remainder of this section is about the ethical conduct of research,

rather than whether a research topic or procedure is considered ethical.

Research on vertebrates, which appear to feel pain, is likely to require

approval by an animal ethics committee in the organisation where you are

working. The committee will consider the likely advantages and disadvan-

tages of the research, the number of animals used, possible alternative

procedures, and the likelihood the animals will experience pain and suffer-

ing, and your research proposal may not necessarily be approved. Taking a

wider view, research on any living organism has the potential to affect that

species and others, so all life scientists should think carefully about their

experimental procedures and should try to minimise disturbance, deaths,

and possible suffering.

Most research organisations also have strict ethical guidelines on using

humans in experiments. Any procedures need to be considered carefully in

terms of the benefits, disadvantages, possible pain and suffering, together

with issues of maintaining privacy and confidentiality, before being sub-

mitted to the human ethics committee for approval. Once again, the

committee may not approve the research. There are usually strict reporting

requirements and severe penalties for breaches of the procedure specified

by the permit.

20.4 Evaluating and reporting results

Once you have the results of an experiment you need to analyse and

discuss them in terms of rejection or retention of your hypothesis.

Unfortunately some scientists have been known to change the results of

experiments to make them consistent with their hypothesis, which is

grossly dishonest. I suspect it is more common than reported and may

even be fostered by assessment procedures in universities and colleges,

where marks are given for the correct outcomes of practical experiments.
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I once asked an undergraduate statistics class how many people had ever

altered their data to fit the expectations of their biology practical assign-

ments and got a lot of very guilty looks. I know two researchers who were

dishonest. The first had a regression line that was not statistically sig-

nificant, so they changed the data until it was. The second made up entire

sets of data for sampling that had never been done. Both were found out

and neither is still doing science.

It has been suggested that part of the problem stems from people

becoming attached to their hypotheses and believing they are true,

which goes completely against science proceeding by disproof! Some

researchers are quite downcast when results are inconsistent with their

hypothesis, but you need to be impartial about the results of any experi-

ment and remember that a negative result is just as important as a positive

one, because our understanding of the natural world has progressed in

both cases.

Another cause of dishonesty is that scientists are often under extra-

ordinary pressure to provide evidence for a particular hypothesis. There

are often career rewards for finding solutions to problems or suggesting

new models of natural processes. Competition among scientists for jobs,

promotion, and recognition is intense and can also foster dishonesty.

The problem with scientific dishonesty is that the person has not

reported what is really occurring. Science aims to describe the real world,

so, if you fail to reject an hypothesis when a result suggests you should, you

will report a false and misleading view of the process under investigation.

Future hypotheses and research are likely to produce results inconsistent

with your findings. There have been some spectacular cases where scientific

dishonesty has been revealed, which has only served to undermine the

credibility of the scientific process.

20.4.1 Pressure from peers or superiors

Sometimes inexperienced, young, or contract researchers have been pres-

sured by their superiors to falsify or give amisleading interpretation of their

results. It is far better to be honest than risk being associated with work that

may subsequently be shown to be flawed. One strategy for avoiding such

pressure is to keep good records.
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20.4.2 Record keeping

Some research groups, especially in the biomedical sciences, are so con-

cerned about honesty that they have a code of conduct where all researchers

have to keep records of their ideas, hypotheses, methods, and results in

hard bound laboratory books with numbered pages that are signed and

dated on a daily or weekly basis by the researcher and their supervisor. Not

only can these records be scrutinised if there is any doubt about the work

(including who thought of something first), but it also encourages good

data management and sequential record keeping. Results kept on pieces of

loose paper with no reference to the methods used can be quite hard to

interpret when the work is written up for publication.

20.5 Quality control in science

Publication in refereed journals ensures your work is scrutinised by at least

one referee who is a specialist in the research field. Nevertheless, this

process is more likely to detect obvious and inadvertent mistakes than

deliberate dishonesty, and many journal editors have admitted that work

they publish is likely to be flawed (LaFollette, 1992). Institutional strategies

for quality control of the scientific process are becoming more common

and many have rules about the storage and scrutiny of data. At the same

time, however, there is a need in many institutions for explicit guidelines

about the penalties for misconduct, together withmechanisms for handling

alleged cases reported by others. The responsibility for doing good science

is often left to the researcher and applies to every aspect of the scientific

process, including devising logical hypotheses, doing well-designed experi-

ments, and using and interpreting statistics appropriately, together with

honesty, responsible and ethical behaviour, and fair dealing.
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