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ZERO

THE KNOWN UNKNOWNS



E

0
Everyone by nature desires to know.

—Aristotle, M etaphysics

VERY WEEK, headlines announce new breakthroughs in our understanding of the
universe, new technologies that will transform our environment, new medical

advances that will extend our lives. Science is giving us unprecedented insights into some of
the big questions that have challenged humanity ever since we’ve been able to formulate
them. Where did we come from? What is the ultimate destiny of the universe? What are
the building blocks of the physical world? How does a collection of cells become conscious?

In the last ten years alone we’ve landed a spaceship on a comet, built robots that can
create their own language, used stem cells to repair the pancreas of diabetic patients,
discovered how to use the power of thought to manipulate a robotic arm, and sequenced the
DNA of a 50,000-year-old cave girl. Science magazines are bursting with the latest
breakthroughs emerging from the world’s laboratories. We know so much.

Science is our best weapon in our fight against fate. Instead of giving in to the ravages
of disease and natural disaster, we have created vaccines to combat deadly viruses like
polio and Ebola. As the world’s population continues to escalate, scientific advances provide
the best hope of feeding the 9.6 billion people who are projected to be alive in 2050. Science
warns us about the deadly impact we are having on our environment and gives us the
chance to do something about it before it is too late. An asteroid might have wiped out the
dinosaurs, but science is our best shield against any future direct hits. In the human race’s
constant battle with death, science is its best ally.

Science is king not only when it comes to our fight for survival but also in improving our
quality of life. We are able to communicate with friends and family across vast distances.
We have created virtual worlds to which we can escape in our leisure time and we can re-
create in our living rooms the great performances of Mozart, Miles, and Metallica at the
press of a button.

The desire to know is programmed into the human psyche. Early humans with a thirst
for knowledge were the ones who survived to transform their environment. Those not
driven by that craving were left behind. Evolution has favored the mind that wants to know
the secrets of how the universe works. The adrenaline rush that accompanies the discovery
of new knowledge is nature’s way of telling us that the desire to know is as important as the
drive to reproduce. As Aristotle suggested in the opening line of Metaphysics,
understanding how the world works is a basic human need.

When I was a schoolkid, science very quickly captivated me. I fell in love with its
extraordinary power to reveal the workings of the universe. The fantastic stories that my
science teachers told me seemed even more fanciful than the fiction I’d been reading at
home. I persuaded my parents to buy me a subscription to New Scientist and devoured



Scientific American in our local library. I hogged the television each week to watch
episodes of Horizon and Tomorrow’s World. I was enthralled by Jacob Bronowski’s
Ascent of Man, Carl Sagan’s Cosmos, and Jonathan Miller’s Body in Question. Every
Christmas, the Royal Institution Christmas Lectures provided a dollop of science alongside
our family turkey. My stocking was stuffed with books by George Gamow and Richard
Feynman. It was a heady time, with new breakthroughs announced each week.

Alongside these stories of discovery, I began to get fired up by the untold tales. What
we knew lay in the past but we didn’t yet know the future, my future. I became obsessed
with the puzzle books of Martin Gardner that my math teacher gave me. The excitement of
wrestling with a conundrum and the sudden release of euphoria as I cracked each puzzle
got me addicted to the drug of discovery. Those puzzles were my training ground for the
greater challenge of tackling questions that didn’t have an answer in the back of the book. It
was the unanswered questions, the mathematical mysteries and scientific puzzles that no
one had cracked, that would become the fuel for my life as a scientist.

It is quite extraordinary how much more we have understood about the universe even in
the half century that I’ve been alive. Technology has extended our senses so we can see
things that were beyond the conception of the scientists who excited me as a kid. A new
range of telescopes that look out at the night sky enabled us to discover planets like Earth
that could be home to intelligent life. They have revealed the amazing fact that three
quarters of the way into the lifetime of our universe, its expansion started to accelerate. I
remember reading as a kid that we were in for a big crunch, but now it seems that we have
a completely different future awaiting us.

Particle colliders like the Large Hadron Collider at CERN have allowed us to penetrate
the inner workings of matter itself, revealing new particles—like the top quark discovered in
1994 and the Higgs boson discovered in 2012—that were bits of speculative mathematics
when I was reading my New Scientist at school. And since the early ’90s the fMRI
scanner has allowed us to look inside the brain and discover things that were not even
considered part of the remit of science when I was a kid back in the ’70s. The brain was
the preserve of philosophers and theologians, but today technology can reveal when you are
thinking about Jennifer Aniston or predict what you are going to do next even before you
know it yourself.

Biology has seen an explosion of breakthroughs. In 2003 it was announced that
scientists had mapped an entire human DNA sequence consisting of 3 billion letters of
genetic code. In 2011 the complete neuronal network of the C. elegans worm was
published, providing a complete picture of how the 302 neurons in the worm are connected.
Chemists, too, have been breaking new territory. A totally new form of carbon was
discovered in 1985, which binds together like a football; and chemists surprised us again in
2003 by creating the first examples of graphene, showing how carbon can form a
honeycomb lattice one atom thick.

In my lifetime the subject to which I would eventually dedicate myself, mathematics,
has seen some of the great enigmas finally resolved: Fermat’s Last Theorem and the
Poincaré conjecture, two challenges that had outfoxed generations of mathematicians. New
mathematical tools and insights have opened up hidden pathways to navigate the
mathematical universe. Keeping up with all these new advances, let alone making your own
contribution, is a challenge in its own right.



A few years ago I got a new job title to add to my role as a professor of mathematics at
Oxford: the Simonyi Professor for the Public Understanding of Science. There seems to be
a belief that with such a title I should know it all. People ring me up expecting me to know
the answer to every scientific question. Shortly after I’d accepted the job, the Nobel Prize
for medicine was announced. A journalist called, hoping for an explanation of the
breakthrough that was being rewarded: the importance of telomeres.

Biology has never been my strong point, but I was sitting in front of my computer
screen and so I’m embarrassed to admit I got the Wikipedia page up on telomeres and, after
a quick scan, proceeded to explain authoritatively that they are the bit of genetic code at the
end of our chromosomes that controls aging, among other things. The technology we have
at our fingertips has increased that sense that we have the potential to know anything. Tap
any question into a search engine and the device seems to predict, even before you finish
typing, what you want to know and provides a list of places to find the answer.

But understanding is different from a list of facts. Is it possible for any scientist to know
it all? To know how to solve nonlinear partial differential equations? To know how SU(3)
governs the connection between fundamental particles? To know how cosmological inflation
gives rise to the state of the universe? To know how to solve Einstein’s equations of general
relativity or Schrödinger’s wave equation? To know how neurons and synapses trigger
thought? Newton, Leibniz, and Galileo were perhaps the last scientists to know all that was
known.

I must admit that the arrogance of youth infused me with the belief that I could
understand anything that was known. With enough time, I thought, I could crack the
mysteries of mathematics and the universe, or at least master the current lay of the land.
But increasingly, I am beginning to question that belief, to worry that some things will
forever remain beyond my reach. Often my brain struggles to navigate the science we
currently know. Time is running out to know it all.

My own mathematical research is already pushing the limits of what my human brain
feels capable of understanding. I have been working for more than ten years on a
conjecture that remains stubbornly resistant to my attempts to crack it. My new role as the
Professor for the Public Understanding of Science has pushed me outside the comfort zone
of mathematics into the messy concepts of neuroscience, the slippery ideas of philosophy,
the unfounded theories of physics. It has required a way of thinking that is alien to my
mathematical mode of thought, which deals in certainties, proofs, and precision. My
attempts to understand everything currently regarded as scientific knowledge have severely
tested the limits of my own ability to understand.

We stand on the shoulders of giants, as Newton famously declared. And so my own
journey to the frontiers of knowledge has pushed me to explore how others have articulated
their work, to listen to lectures and seminars by those immersed in the fields I’m trying to
understand, and to talk to those pushing the boundaries of what is known, questioning
contradictory stories and consulting the evidence recorded in scientific journals. How much
can you trust any of these stories? Just because the scientific community accepts a story as
the current best fit doesn’t mean it is true. Time and again, history reveals the opposite to be
the case, and this must always act as a warning that current scientific knowledge is
provisional. Mathematics has a slightly different quality, as a proof provides the chance to
establish a more permanent state of knowledge. But even when I am creating a new proof,



I will often quote results by fellow mathematicians whose proofs I haven’t checked myself.
To do so would mean running in order to keep still.

For any scientist the real challenge is not to stay within the secure garden of the known
but to venture out into the wilds of the unknown. That is the challenge at the heart of this
book.

WHAT WE DON’T KNOW

Despite all the breakthroughs made over the last centuries, there are still lots of deep
mysteries waiting out there for us to solve. Things we don’t know. The knowledge of what
we don’t know seems to expand faster than our catalog of breakthroughs. The known
unknowns outstrip the known knowns. And it is those unknowns that drive science. A
scientist is more interested in the things he or she can’t understand than in telling all the
stories we already know the answers to. Science is a living, breathing subject because of all
those questions we can’t answer.

For example, the stuff that makes up the physical universe we interact with seems to
account for only 4.9 percent of the total matter content of our universe. So what is the other
95.1 percent of so-called dark matter and dark energy made up of? If our universe’s
expansion is accelerating, where is all the energy coming from that fuels that acceleration?

Is our universe infinite? Are there infinitely many other infinite universes parallel to our
own? If there are, do they have different laws of physics? Were there other universes
before our universe emerged from the Big Bang? Did time exist before the Big Bang? Does
time exist at all, or does it emerge as a consequence of more fundamental concepts?

How can we unify Einstein’s theory of general relativity, the physics of the very large,
with quantum physics, the physics of the very small? This is the search for something called
quantum gravity, an absolute necessity if we are ever going to understand the Big Bang.

And what of the understanding of our human body, something so complex that it makes
quantum physics look like a high school exercise? We are still trying to come to grips with
the complex interaction between gene expression and our environment. Can we find a cure
for cancer? Is it possible to beat aging? Could there be someone alive today who will live to
be a thousand years old?

And what about where humans came from? Evolution is a process of random
mutations, so would a different roll of the evolutionary dice still produce organisms with
eyes? If we rewound evolution and pressed “play,” would we still get intelligent life, or are
we the result of a lucky roll of the dice? Is there intelligent life elsewhere in our universe?
And what of the technology we are creating? Can a computer ever attain consciousness?
Will I eventually be able to download my consciousness so that my mind can survive the
death of my body?

Mathematics, too, is far from finished. Despite popular belief, Fermat’s Last Theorem
was not the last theorem. Mathematical unknowns abound. Are there any patterns in prime
numbers, or are they outwardly random? Will we be able to solve the mathematical
equations for turbulence? Will we ever understand how to factorize large numbers
efficiently?



Despite so much that is still unknown, scientists are optimistic that these questions won’t
remain unanswered forever. The last few decades give us reason to believe that we are in a
golden age of science. The rate of discoveries in science appears to grow exponentially. In
2014 the science journal Nature reported that the number of scientific papers has been
doubling every nine years since the end of World War II. Computers are also developing at
an extraordinary rate. Moore’s Law has it that computer processing power will double
every two years. Ray Kurzweil believes that the same applies to technological progress:
that the rate of change over the next hundred years will be comparable to what we’ve
experienced in the last 20,000 years.

Can scientific discovery really sustain this growth? Kurzweil talks about the Singularity,
a moment when the intelligence of our technology will exceed human intelligence. Is
scientific progress destined for its own singularity, a moment when we know it all? Surely at
some point we might actually discover the underlying equations that explain how the
universe works. We will discover the final particles that make up the building blocks of the
physical universe and how they interact with each other. Some scientists believe that the
current rate of scientific progress will lead to a moment when we might discover a theory of
everything. They even give it a name: ToE.

As Stephen Hawking declared in A Brief History of Time, “I believe there are grounds
for cautious optimism that we may be near the end of the search for the ultimate laws of
nature.” He concludes dramatically with the provocative statement that then “we would
know the mind of God.”

Is such a thing possible? To know everything? Would we want to know everything?
Scientists have a strangely ambivalent relationship with the unknown. On the one hand,
what we don’t know is what intrigues and fascinates us, and yet the mark of success as a
scientist is resolution and knowledge, to make the unknown known.

Are there limits to what we can discover? Are there quests that will never be resolved?
Are some regions beyond the predictive powers of science and mathematics—like time
before the Big Bang? Are there ideas so complex that they exceed the conception of our
finite human brains? Can brains really investigate themselves, or does the analysis enter an
infinite loop from which it is impossible to rescue itself? Are there mathematical conjectures
that can never be proved true?

It seems defeatist, even dangerous, to acknowledge such questions. While the unknown
is the driving force for doing science, the unknowable is science’s nemesis. As a fully
signed-up member of the scientific community, I hope that we can ultimately answer the big
open questions. So it seems important to know whether the expedition I’ve joined will hit
boundaries beyond which we cannot proceed. Are there in fact any questions that won’t
ever get closure?

That is the challenge I’ve set myself in this book. I want to know whether there are
things that, by their very nature, we will never know. Are there things that will always be
beyond the limits of knowledge? Despite the marauding pace of scientific advances, are
there things that will remain beyond the reach of even the greatest scientists? Mysteries
that will forever remain part of the great unknown?

It is, of course, very risky at any point in history to try to articulate the Things We
Cannot Know. How can you know what new insights will suddenly pull the unknown into
the knowable? This is partly why it is useful to look at the history of how we came to know



the things we know, because it reveals how often we’ve been at a point where we think we
have reached the frontier, only to find a greater landscape beyond.

Take the statement made by French philosopher Auguste Comte in 1835 about the stars:
“We shall never be able to study, by any method, their chemical composition or their
mineralogical structure.” An absolutely fair statement given that this knowledge seemed to
depend on our visiting the star. What Comte hadn’t considered was the possibility that the
star could visit us, or at least that photons of light emitted by the star could reveal its
chemical makeup.

A few decades after Comte’s prophecy, scientists had determined the chemical
composition of our own star, the sun, by analyzing the spectrum of light emitted. As the
nineteenth-century British astronomer Warren de la Rue declared: “If we were to go to the
Sun, and to bring some portions of it and analyze them in our laboratories, we could not
examine them more accurately than we can by this new mode of spectrum analysis.”

Scientists went on to determine the chemical composition of stars we are unlikely ever
to visit. As science in the nineteenth century continued to give us an ever greater
understanding of the mysteries of the universe, there began to emerge a feeling that we
might eventually have a complete picture.

In 1900 Lord Kelvin, regarded by many as one of the greatest scientists of his age,
believed that moment had come. He declared to the meeting of the British Association of
Science: “There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.” American physicist Albert Abraham Michelson
concurred. He too thought that the future of science would simply consist of adding a few
decimal places to the results already obtained. “The more important fundamental laws and
facts of physical science have all been discovered . . . our future discoveries must be looked
for in the sixth place of decimals.”

Five years later, Einstein announced his extraordinary new conception of time and
space, followed shortly by the revelations of quantum physics. Kelvin and Michelson
couldn’t have been more wrong.

What I want to try to explore is whether there are problems that we can prove will
forever remain beyond our knowledge. Perhaps there are none. As a scientist, that is my
hope. One of the dangers when faced with currently unanswerable problems is to give in
too early to their unknowability. But if there are unanswerables, what status do they have?
Can you choose from the possible answers and it won’t really matter which one you opt
for?

Talk of known unknowns is not reserved to the world of science. Secretary of Defense
Donald Rumsfeld strayed into the philosophy of knowledge with the famous declaration:

There are know n know ns; there are things that w e know  that w e know. We also know  there are
know n unknow ns; that is to say, w e know  there are some things w e do not know. But there are also
unknow n unknow ns, the ones w e don’t know  w e don’t know.

Rumsfeld received a lot of flack for this cryptic response to a question fired at him
during a briefing at the Department of Defense about the lack of evidence connecting the
government of Iraq with weapons of mass destruction. Journalists and bloggers had a field
day, culminating in Rumsfeld being given the Foot in Mouth award by the Plain English
Campaign. And yet if one unpacks the statement, Rumsfeld very concisely summed up
different types of knowledge. He perhaps missed one interesting category: the unknown



knowns, the things that you know yet dare not admit to knowing. As the philosopher Slavoj
Zizek argues, these are possibly the most dangerous, especially when held by those with
political power. This is the domain of delusion. Repressed thoughts. The Freudian
unconscious.

I would love to tell you about the unknown unknowns, but then they’d be known!
Nassim Taleb, author of The Black Swan, believes that the emergence of unknowns is
responsible for the biggest changes in society. For Kelvin, relativity and quantum physics
turned out to be the great unknown unknown that he was unable to imagine. My hope in this
book is to articulate the known unknowns and ask whether any will remain forever
unknown.

I have called these unknowns “Edges.” There are seven of them, and each one
represents the horizon beyond which we cannot see. My journey to the Seven Edges of
knowledge will pass through the known knowns, to demonstrate how we have traveled
beyond what we previously thought were the limits of knowledge. This journey will also test
my own ability to grasp what is known, because it’s becoming increasingly challenging as a
scientist to know even the knowns.

As much as this book is about what we cannot know, it is also important to understand
what we do know and how we know it. My journey to the frontiers of knowledge will take
me through the terrain that scientists have already mapped, to the very limits of today’s
breakthroughs. On the way I will stop to consider those moments when scientists thought
they had hit a wall beyond which progress was no longer possible, only for the next
generation to find a way. This will give us an important perspective on those problems that
we might think are unknowable today. By the end of our journey, I hope this book will
provide a comprehensive survey not just of what we cannot know but also of the things we
do know.

To help me through these areas of science that are outside my comfort zone, I have
enlisted the help of experts to guide me as I reach each science’s Edge and to test whether
it is my own limitations or limitations inherent in the questions I am tackling that make these
questions unknowable.

What happens then if we encounter a question that cannot be answered? How does one
cope with not knowing? Dare I admit to myself that some things will forever remain beyond
my reach? How do we cope with not knowing? That challenge has elicited some interesting
responses from humans across the millennia, not least the creation of an idea called God.

TRANSCENDENCE

There is another reason why I have been driven to investigate the unknowable, which is
also related to my new job. The previous incumbent of the chair for the Public
Understanding of Science was a certain Richard Dawkins. When I took over the position
from Dawkins I braced myself for the onslaught of questions that I would get, not about
science, but about religion. The publication of The God Delusion and his feisty debates
with creationists resulted in Dawkins spending the later years of his tenure debating
questions of religion and God.



So it was inevitable that when I took up the chair people would be interested in my
stance on religion. My initial reaction was to distance myself from the debate about God.
My job was to promote scientific progress and to engage the public in the breakthroughs
happening around them. I was keen to move the debate back to questions of science rather
than religion.

In an urban environment like London, football has taken over the role that religion
played in society of binding a community together, providing rituals that they can share. For
me, the science that I began to learn as a teenager did a pretty good job of pushing out any
vaguely religious thoughts I had as a kid. I sang in my local church choir, which exposed me
to the ideas that Christianity had to offer for understanding the universe. School education in
the 1970s in the United Kingdom was infused with mildly religious overtones: renditions of
“All Things Bright and Beautiful” and the Lord’s Prayer in assemblies. Religion was dished
up as something too simplistic to survive the sophisticated and powerful stories that I would
learn in the science labs at my secondary school. Religion was quickly pushed out.
Science . . . and football . . . were much more attractive.

Inevitably the questions about my stance on religion would not be fobbed off with such a
flippant answer. I remember that during one radio interview on a Sunday morning on BBC
Northern Ireland I was gradually sucked into considering the question of the existence of
God. I guess I should have seen the warning signs. On a Sunday morning in Northern
Ireland, God isn’t far from the minds of many listeners.

As a mathematician I am often faced with the challenge of proving the existence of
new structures or coming up with arguments to show why such structures cannot exist. The
power of the mathematical language to produce logical arguments has led a number of
philosophers throughout the ages to resort to mathematics as a way of proving the existence
of God. But I always have a problem with such an approach. If you are going to prove
existence or otherwise in mathematics, you need a very clear definition of what it is that you
are trying to prove exists.

So after some badgering by the interviewer about my stance on the existence of God, I
pushed him to try to define what God meant for him so that I could engage my
mathematical mind. “It is something which transcends human understanding.” At first I
thought: what a cop-out. You have just defined it as something that by its very nature I can’t
get a handle on. But I became intrigued by this definition. Perhaps it wasn’t such a cop-out
after all.

What if you define God as the things we cannot know. The gods in many ancient
cultures were often placeholders for the things people couldn’t explain or understand. Our
ancestors found volcanic eruptions or eclipses so mysterious that they became acts of gods.
As science has explained such phenomena, these gods have retreated.

This definition has some things in common with a God commonly called the “God of the
gaps.” This phrase was generally used as a derogatory term by religious thinkers who could
see that this God was shrinking in the face of the onslaught of scientific knowledge, and a
call went out to reject this kind of God. The phrase “God of the gaps” was coined by the
Oxford mathematician and Methodist church leader Charles Coulson, when he declared:
“There is no ‘God of the gaps’ to take over at those strategic places where science fails.”

But the phrase is also associated with a fallacious argument for the existence of God,
one that Richard Dawkins spends some time shooting down in The God Delusion: if there
are things that we can’t explain or know, there must be a God at work filling the gap. I am



more interested not in the existence of a God to fill the gap, but in equating God with the
abstract idea of the things we cannot know. Not in the things we currently don’t know, but
the things that by their nature we can never know—the things that will always remain
transcendent.

Religion is more complex than the simple stereotype often offered up by modern
society. For many ancient cultures in India, China, and the Middle East, religion was not
about worshiping a supernatural intelligence so much as it was an attempt to appreciate the
limits of our understanding and of language. As the theologian Herbert McCabe declared,
“To assert the existence of God is to claim that there is an unanswered question about the
universe.” Science has pushed hard at those limits. So is there anything left? Will anything
always be beyond the limit? Does McCabe’s God exist?

This is the quest at the heart of this book. But first we need to know if, in fact, anything
will remain unanswered about the universe. Is there really anything we cannot know?
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A

1
The unpredictable and the predetermined unfold together to
make everything the way it is. It’s how nature creates itself, on
every scale, the snowflake and the snowstorm. It makes me so
happy. To be at the beginning again, knowing almost nothing.

—Tom Stoppard, Arcadia

SINGLE RED DIE sits next to me on my desk. I got it on a trip to Las Vegas. I fell in love
with it when I saw it on the craps table. It was so perfectly engineered: such precise edges
coming to a point, the face so smooth you couldn’t feel what number you were touching.
The pips are carved out and then filled in with paint that has the same density as the plastic
used to make the die itself. This ensures that the face representing the 6 isn’t a touch lighter
than the opposite side, with a single pip. The feeling of the die in my hand is incredibly
satisfying. It is a thing of beauty.

And yet I hate it.
Three pips are pointing up at me at the moment. But if I pick it up and let it fall from my

hand I have no way of knowing how it will land. Dice are the ultimate symbol of the
unknowable. The future seems knowable only when it becomes the past.

I have always been extremely unsettled by things that I cannot work out. I don’t mind
not knowing something, provided there is some way ultimately to calculate the answer—
with enough time. Is the fate of this perfect Las Vegas die truly unknowable? Or with
enough information can I actually deduce its next move? Surely it’s just a matter of applying
the right laws of physics and solving the appropriate mathematical equations. Surely this is
something I can figure out. Or is it?

My subject, mathematics, was invented to give people a glimpse of what’s out there, to
look into the future—to become masters of fate, not its servants. Mathematics is the
science of patterns. Being able to spot a pattern is a powerful tool in the evolutionary fight
for survival. The pattern of the sun means that I can rely on its rising in the sky tomorrow or
on the moon running through twenty-eight sunrises before it becomes full again. The caves
in Lascaux show how counting thirteen quarters of the moon from the first winter rising of
the Pleiades will bring you to a time in the year when the horses are pregnant and easy to
hunt. Being able to predict the future is the key to survival.

But some things appear to have no pattern or appear to have patterns so complex that
they are beyond our ability to spot them. An individual roll of the dice is not like the rising of
the sun. There seems to be no way of knowing which of the six faces will be pointing
upward once the die finally comes to rest. This is why dice have been used since antiquity
as a way to decide disputes, to play games, to wager money.

On a recent trip to Israel I took my children to an archeological dig at Beit Guvrin. It
was such a popular settlement in ancient times that the site consists of layer upon layer of



cities built on top of one another. There is so much stuff in the ground that the archeologists
are happy to enlist amateurs like me and my kids to help excavate the site, even if a few
pots are broken along the way. Sure enough, we pulled out lots of pottery shards, but we
also kept unearthing animal bones. We thought they were the remains of dinner, but our
guide explained that in fact they were the earliest form of dice.

Archeological digs of settlements dating back to Neolithic times have revealed a
disproportionately high density of heel bones of sheep and other animals among the
shattered pottery and flints that are usually found in such sites. These bones are, in fact, the
ancestors of my casino dice. When thrown, the bones naturally land on one of four sides.
Often there are letters or numbers carved into each side. These early dice are thought to
have been used for divination, connecting the outcome of the roll of the dice to the will of
the gods. Knowledge of how the dice would land was believed to transcend human
understanding.

Over time, dice assumed a more prosaic place as part of our world of leisure. The first
cube-shaped dice like the one on my desk were found around Harappa in what is now
northeast Pakistan, where one of the first urban civilizations evolved, dating back to the third
millennium BC. At the same time, you find four-faced pyramid dice appearing in a game
that was discovered in the city of Ur, in ancient Mesopotamia. The Romans and Greeks
were addicts of games of dice, as were medieval soldiers, who returned from the Crusades
with a new game called hazard, derived from the Arabic word for dice: al-zahr. It was an
early version of craps, the game that is being played in the casinos in Vegas.

If I could predict the roll of the dice, the many games that depend on them would never
have caught on. The excitement of backgammon or craps comes from not knowing what
number you will throw. So perhaps gamers won’t thank me as I try to break the mystery
and predict the roll of my dice.

For centuries no one even thought that such a feat was possible. The ancient Greeks,
who were among the first to develop mathematics as a tool to navigate their environment,
didn’t have any clue as to how to tackle such a dynamic problem. Their mathematics was a
static, rigid world of geometry, not one that could cope with things tumbling across the floor.
They could produce formulas to describe the contours of a cube, but once the cube started
moving they were lost.

Aristotle believed that events could essentially be classified into three categories:
“certain events” that happen by necessity following the laws of nature; “probable events”
that happen in most cases but could have a few exceptions; and finally “unknowable
events” that happened by pure chance. Aristotle put the roll of dice firmly in the last
category.

As Christian theology made its impact on philosophy, matters worsened. Since the roll of
the dice was in the hands of God, it was not something that humans could aspire to know.
As St. Augustine put it, “We say that those causes that are said to be by chance are not
non-existent but are hidden, and we attribute them to the will of the true God.”

There was no such thing as chance, no free will. The unknowable was known to God,
who determined the outcome. Any attempt to predict the roll of the dice was the work of a
heretic, someone who dared to think they could know the mind of God. King Louis XI of
France even went as far as to prohibit the manufacture of dice, believing that games of
chance were ungodly. It wasn’t until the sixteenth century that dice were wrestled out of
the hands of God and put into the hands, and minds, of humans.



I’ve put two more dice next to my beautiful Las Vegas die. So here’s a question: If I
throw all three dice, is it better to bet on a score of 9 or a score of 10 coming up? Prior to
the sixteenth century no tools were available to answer such a simple question. And yet
anyone who had played for long enough would know that if I were throwing only two dice
then it would be wise to bet on 9 rather than 10. Experience would tell you before too long
that, on average, you get 9 a third more often than you get 10. With three dice it is harder to
get a feel for which way to bet, because 9 and 10 seem to occur equally often. But is that
really true?

In Italy at the beginning of the sixteenth century, an inveterate gambler by the name of
Girolamo Cardano first realized that there are patterns that can be exploited in a game of
dice. They weren’t patterns that could be used on an individual throw. Rather, they emerged
over the long run, patterns that a gambler like Cardano, who spent many hours throwing
dice, could use to his advantage. So addicted was he to gambling that on one occasion he
even sold his wife’s possessions to raise the funds for the table stakes.

Cardano had the clever idea of counting how many different futures the dice could
have. If I throw two dice, there are thirty-six different futures. They are depicted in the
following diagram.

Only three of them total 10, while four give you a score of 9. So Cardano reasoned that
if you are throwing two dice, it makes sense to bet on 9 rather than 10. It did not help in any
individual game, but in the long run it meant that Cardano would come out on top.
Unfortunately, while he was a disciplined mathematician, he wasn’t very disciplined when it
came to gambling. He managed to lose all of his father’s inheritance and would regularly
get into knife fights with his opponents when the dice went against him.

He was nevertheless determined to get one prophecy correct. He had predicted the
date of his death: September 21, 1576. To make sure he got this bet right he took matters
into his own hands and committed suicide when the date finally struck. As much as I crave
knowledge, I think this is going a little far. Indeed, knowing the date of your death is
something that most people would prefer to opt out of. But Cardano was determined to win,
even when he was dicing with Death.

Before taking his life, he wrote what many consider to be the first book that made
inroads into predicting the behavior of dice as they roll across the table. Although written
around 1564, Liber de Ludo Aleae didn’t see the light of day until it was eventually
published in 1663.



The great Italian physicist Galileo Galilei applied the same analysis as Cardano to decide
whether to bet on a score of 9 or 10 when three dice are thrown. He reasoned that there
were 6 × 6 × 6 = 216 different futures the dice could take. Of these, twenty-five gave you a
9 while twenty-seven gave you a 10. Not a big difference, and one that would be difficult to
pick up, but large enough so that betting on 10 should give you an edge in the long run.

PASCAL’S WAGER

The mathematical mastery of dice shifted from Italy to France in the mid-seventeenth
century, when two big hitters, Blaise Pascal and Pierre de Fermat, started applying their
minds to predicting the future of these tumbling cubes. Pascal had become interested in
trying to understand the outcome of the roll of the dice after meeting one of the great
gamblers of the day, the Chevalier de Méré. De Méré had challenged Pascal with a number
of interesting scenarios. One was the problem Galileo had cracked. Others included
whether it was advisable to bet that at least one 6 will appear if a die is thrown four times,
and a popular challenge at the time called the “problem of points.”

Pascal entered into a lively correspondence with the great mathematician and lawyer
Pierre de Fermat and they tried to sort out the problems set forward by de Méré. With the
throw of four dice, one could consider the 6 × 6 × 6 × 6 = 1,296 different outcomes and
count how many include a 6, but that becomes pretty cumbersome. Instead, Pascal
reasoned that there is a 5/6 chance that you won’t see a 6 with one throw. Since each
throw is independent, that means there is a 5/6 × 5/6 × 5/6 × 5/6 = 625/1,296 = 48.2 percent
chance that you won’t get a 6 in four throws. Which means there is a 51.8 percent chance
that you will see a 6—just above an even chance, so worth betting on.

The problem of “points” was even more challenging. Suppose two players—let’s call
them Fermat and Pascal—are rolling a single die. Fermat scores a point if it lands on 4 or
higher; Pascal scores a point otherwise. Each, therefore, has a 50:50 chance of winning a
point on any roll of the die. They’ve wagered sixty-four francs, which will go to the first to
score three points. The game is interrupted, however, and can’t be continued, when Fermat
is on two points and Pascal is on one point. How should they divide the sixty-four francs?

Traditional attempts to solve the problem focused on what had happened in the past.
Maybe, having won twice as many rounds as Pascal, Fermat should get twice the winnings.
This would make no sense if Fermat had won only one round before the game was
interrupted. Pascal would get nothing but still had a chance of winning. Niccolò Fontana
Tartaglia, a contemporary of Cardano, believed, after much thought, that this conundrum
had no solution: “The resolution of the question is judicial rather than mathematical, so that
in whatever way the division is made there will be cause for litigation.”

Others weren’t so certain. Attention turned not to the past, but to what could happen in
the future. Their goal was not to predict the roll of the die but to imagine all the different
future scenarios and divide the spoils according to which version of the future favored
which player.

It is easy to get fooled here. There seem to be three scenarios. Fermat wins the next
round and pockets sixty-four francs. Pascal wins the next round, resulting in a final round
that either man wins. Fermat wins in two out of these three scenarios, so perhaps he should



get two thirds of the winnings. This was the trap that de Méré fell into. Pascal argued that
this wasn’t correct: “The Chevalier de Méré is very talented but he is not a mathematician;
this is, as you know, a great fault.” A great fault, indeed!

Pascal argued that the spoils should be divided differently. There was a 50:50 chance
that Fermat would win in one round, in which case he would get sixty-four francs. But if
Pascal won the next round, then the two friends were equally likely to win the final round,
so could divide the spoils thirty-two francs each. In either case, Fermat is guaranteed thirty-
two francs. So the other thirty-two francs should be split equally, giving Fermat forty-eight
francs in total.

Fermat, writing from his home near Toulouse, concurred with Pascal’s analysis: “You
can now see that the truth is the same in Toulouse as in Paris.”

Pascal and Fermat’s analysis of the game of points could be applied to much more
complex scenarios. Pascal discovered that the secret to deciding the division of the spoils is
hidden inside something now known as Pascal’s triangle.

The triangle is constructed in such a way that each number is the sum of the two
numbers immediately above it. The numbers you get are key to dividing the spoils in any
interrupted game of points. For example, if Fermat needs two points for a win while Pascal
needs four, then you consult the 2 + 4 = 6th row of the triangle and add the first four
numbers together and the last two. This is the proportion in which you should divide the
spoils. In this case it’s a 1 + 5 + 10 + 10 = 26 to 1 + 5 = 6 division. So Fermat gets 26/32 ×
64 = ₣52 and Pascal gets 6/32 × 64 = ₣12. In general, a game where Fermat needs n points
to Pascal’s m points can be decided by consulting the (n + m)th row of Pascal’s triangle.

The French may have been beaten by several millennia to the discovery that this
triangle is connected to the outcome of games of chance. The Chinese were inveterate
users of dice and other methods like the I Ching to try to predict the future. The text of the
I Ching dates back some three thousand years and contains precisely the same table that
Pascal produced to analyze the outcomes of tossing coins, but today the triangle is attributed
to Pascal rather than the Chinese.

Pascal wasn’t interested only in dice. He famously applied his new mathematics of
probability to one of the great unknowns: the existence of God.

“God is, or He is not.” But to w hich side shall w e incline? Reason can decide nothing here. There is an
infinite chaos w hich separated us. A game is being played at the extremity of this inf inite distance
w here heads or tails w ill turn up. . . . Which w ill you choose then? Let us see. Since you must choose,
let us see w hich interests you least. You have tw o things to lose, the true and the good; and tw o
things to stake, your reason and your w ill, your know ledge and your happiness; and your nature has



tw o things to shun, error and misery. Your reason is no more shocked in choosing one rather than the
other, since you must of necessity choose. . . . But your happiness? Let us w eigh the gain and the
loss in w agering that God is. . . . If  you gain, you gain all; if  you lose, you lose nothing. Wager, then,
w ithout hesitation that He is.

Called Pascal’s wager, the argument is hardly compelling. It hinges on the belief that the
payout would be much greater if one opted for a belief in God. You lose little if you are
wrong and win eternal life if correct. On the other hand, wager against the existence of God
and losing results in eternal damnation, while winning gains you nothing beyond the
knowledge that there is no God. The argument falls to pieces if the probability of God
existing is actually zero. Even if it isn’t, the cost of belief might be too high when set against
the probability of God’s existence.

The probabilistic techniques developed for dealing with uncertainty by mathematicians
like Fermat and Pascal were incredibly powerful. Phenomena that were regarded as the
expression of the gods were beginning to be within reach of the minds of men. Today these
probabilistic methods are our best weapon for trying to navigate everything from the
behavior of particles in a gas to the ups and downs of the stock market. Indeed, the very
nature of matter itself seems to be at the mercy of the mathematics of probability, as we
shall discover in the Third Edge, when we apply quantum physics to predict what
fundamental particles are going to do when we observe them. But for someone searching
for certainty, these probabilistic methods represent a frustrating compromise.

I certainly appreciate the great intellectual breakthrough that Fermat, Pascal, and others
made, but it doesn’t help me to know the outcome when I throw my dice. As much as I’ve
studied the mathematics of probability, it has always left me with a feeling of dissatisfaction.
The one thing any course on probability drums into you is that it doesn’t matter how many
times in a row you get a 6: this has no influence on what will happen on the next throw.

So is there some way of knowing how my dice will land? Or is that knowledge always
going to be out of reach? Not according to the revelations of a scientist in England.

THE MATHEMATICS OF NATURE

Isaac Newton is my all-time hero in the fight against the unknowable. The idea that I could
possibly know everything about the universe has its origins in Newton’s revolutionary work
Philosophiae Naturalis Principia Mathematica. First published in 1687, the book is
dedicated to developing a new mathematical language that promised to unlock how the
universe behaves. It was a dramatically new model of how to do science. The work
“spread the light of mathematics on a science which up to then had remained in the
darkness of conjectures and hypotheses,” declared the French physicist Alexis Clairaut in
1747.

The Principia Mathematica is also an attempt to unify, to create a theory that
describes the celestial and the earthly, the big and the small. Johannes Kepler had come up
with laws that described the motions of the planets, laws he’d developed empirically by
looking at data and trying to come up with equations that would explain the data. Galileo had
described the trajectory of a ball flying through the air. It was Newton’s genius to
understand that these were two examples of a single phenomenon: gravity.



Born on Christmas Day in 1643 in the Lincolnshire town of Woolsthorpe, Newton was
always trying to tame the physical world. He made clocks and sundials, constructed
miniature mills powered by mice, sketched countless plans for buildings and ships, and drew
elaborate illustrations of animals. The family cat disappeared one day, carried away by a
hot-air balloon that Newton had made. His school reports, however, did not anticipate a
great future, describing him as “inattentive and idle.”

Idleness is not necessarily such a bad trait in a mathematician. It can be a powerful
incentive to look for some clever shortcut to solve a problem rather than relying on hard
labor. But it’s not generally a quality that teachers appreciate. Newton was doing so badly
at school that his mother decided the whole thing was a waste of time and that he’d be
better off learning how to manage the family farm in Woolsthorpe. Unfortunately, Newton
was equally hopeless at managing the family estate, so he was sent back to school.
Although probably apocryphal, it is said that Newton’s sudden academic transformation
coincided with a blow to the head that he received from the school bully. Whether true or
not, his academic transformation saw him suddenly excelling at school, culminating in a
move to study at Cambridge University.

When bubonic plague swept through England in 1665, Cambridge was closed as a
precaution. Newton retreated to his family house in Woolsthorpe. Isolation is often an
important ingredient for coming up with new ideas. Newton hid himself away in his room
and thought: “Truth is the offspring of silence and meditation. I keep the subject constantly
before me and wait ’til the first dawnings open slowly, by little and little, into a full and clear
light.”

In the isolation of Lincolnshire, Newton created a new mathematical language that
could capture the problem of a world in flux; today we call it calculus. This tool would be
key to our discovery of predicting how the universe will behave. It is this language that
gives me the hope of one day gleaning how my casino dice might land.

Calculus tries to make sense of what at first looks like a meaningless sum: zero divided
by zero. This is the sum that I must calculate if I want to know my die’s instantaneous
speed as it falls through the air. The speed is constantly increasing as gravity pulls it to the
ground. So how can I calculate its speed at any given moment of time? For example, how
fast is it falling after one second? Speed is the distance traveled divided by the time elapsed.
So I could record the distance it drops in the next second and that would give me an
average speed over that period. But I want to know its precise speed. I could record the
distance traveled over a shorter period of time, say half a second or a quarter of a second.
The smaller the interval of time, the more accurately I will be calculating its speed.
Ultimately, to get the precise speed, I will need to take an interval of time that is
infinitesimally small. But then I am faced with calculating zero divided by zero.

Newton’s calculus made sense of this calculation. He understood how to calculate
speed as the interval of time becomes infinitesimally small. It was a revolutionary new
language that managed to capture a changing dynamic world. The geometry of the ancient
Greeks was perfect for a static, frozen picture of the world. Newton’s mathematical
breakthrough could describe a moving world. Mathematics had gone from describing a still
life to capturing a moving image. This was the scientific equivalent of how the dynamic art
of the Baroque period burst forth from the static art of the Renaissance. Newton later
looked back at this time as one of the most productive of his life, calling it his annus
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mirabilis: “I was in the prime of my age for invention and minded Mathematicks and
Philosophy more than at any time since.”

Calculus: Making Sense of Zero Divided by Zero

uppose that a car starts from a stationary position. When the stopw atch starts, the driver slams his
foot on the accelerator. Suppose that w e record that after t seconds the driver has covered t x t

meters. How  fast is the car going after ten seconds? We get an approximation of the speed by looking at
how  far the car has traveled in the period from ten to eleven seconds. The average speed during this time is
(11 x 11 − 10 x 10)/1 = 21 meters per second.

But if  w e look at a smaller w indow  of time, say the average speed over 0.5 seconds, w e get:

(10.5 x 10.5 − 10 x 10)/0.5 = 20.5 meters per second.

Slightly slow er, of course, because the car is accelerating, so on average it is going faster in the
second half second. But w hat if  w e take an even smaller snapshot. What about halving the w indow  of time
again:

(10.25 x 10.25 − 10 x 10)/0.25 = 20.25 meters per second.

I hope the mathematician in you has spotted the pattern. If  I take a w indow  of time that is x seconds, the
average speed over this time w ill be 20 + x meters per second. The speed as I take smaller and smaller
w indow s of time is getting closer and closer to tw enty meters per second. So, although to calculate the
speed at 10 seconds looks like I have to f igure out the calculation 0/0, the calculus makes sense of w hat
this should mean.

Everything around us is in a state of flux, so it was perhaps no wonder that his
discovery would be so influential. But for Newton calculus was a means to an end, a
personal tool that helped him reach the scientific conclusions that he documents in the
Principia, the great treatise published in 1687 that describes his ideas on gravity and the
laws of motion.

Writing in the third person, he explained that his calculus was key to the scientific
discoveries contained inside: “By the help of this new Analysis Mr. Newton found out most
of the propositions in the Principia.” And yet no account of the “new analysis” is
published. He privately circulated his ideas among friends, but he felt no urge to publish
them for others to appreciate.

Fortunately calculus is now widely taught. It is a language that I spent years learning
and gaining fluency in as a mathematical apprentice. To know my dice, I will need to mix
Newton’s mathematical breakthrough with his great contribution to physics: the famous
laws of motion with which he opens his Principia.

A THEORY OF EVERYTHING

Newton outlines in the Principia three simple laws from which so much of the dynamics of
the universe evolve.

Newton’s First Law of Motion: A body will continue in a state of rest or uniform
motion in a straight line unless it is compelled to change that state by forces acting on
it.

This sounds obvious, but it was not so obvious to the likes of Aristotle. If you roll a ball
along a flat surface it comes to a rest. It looks like you need a force to keep it moving.



There is, however, a hidden force that is changing its speed: friction. If I throw my dice in
outer space, away from any gravitational fields, then they will carry on flying in a straight
line at constant speed ad infinitum.

In order to change an object’s speed or direction you need a force to act against it.
Newton’s second law explained how that force would change its motion. Calculus has
already allowed me to calculate the speed of my die as it falls down toward the table. The
rate of change in that speed may be deduced by applying calculus again. Newton’s second
law holds that there is a direct relationship between the force being applied and the rate of
change in speed.

Newton’s Second Law of Motion: The rate of change of motion, or acceleration, is
proportional to the force that is acting on it and inversely proportional to its mass.

To understand the speed of my cascading dice, I need to understand the forces acting
on them. Newton’s Universal Law of Gravitation identified one of the principal forces
affecting everything from the fall of an apple to the movement of a planet through the solar
system. The law states that the force acting on a body of mass m1 by another body of mass
m2 that is a distance of r away is equal to

where G is an empirical physical constant that controls how strong gravity is in our
universe.

With these laws I can now describe the trajectory of a ball flying through the air, or a
planet traveling through the solar system, or of dice falling from my hand. The next problem
occurs when the dice hit the table. What happens then? Newton has a third law, which
provides a clue.

Newton’s Third Law of Motion: When one body exerts a force on a second body,
the second body simultaneously exerts a force equal in magnitude and opposite in
direction to that of the first body.

Newton himself used these laws to deduce an extraordinary string of observations about
the solar system. As he wrote, “I now demonstrate the system of the World.” To apply his
ideas to the trajectory of the planets, he began by reducing each planet to a point located at
the center of mass and assumed that all the planet’s mass was concentrated at this point.
Then, by applying his laws of motion and his new mathematics, he successfully deduced
Kepler’s laws of planetary motion.

He was now able to calculate the relative masses of the large planets, the Earth and the
sun, and to explain a number of the curious irregularities in the motion of the moon due to
the pull of the sun. He deduced that the Earth is not a perfect sphere and suggested it must
be squashed between the poles due to its rotation, causing a centrifugal force. The French
thought the opposite was true: that the Earth should be pointy in the direction of the poles.
An expedition set out in 1733 that proved Newton—and the power of mathematics—
correct.

It was an extraordinary feat. Newton’s three laws meant that all motion of particles in
the universe could potentially be deduced. He had come up with the seeds of a Theory of



Everything. It took other scientists to grow these seeds and apply them to more complex
settings. In their original form, Newton’s laws were not suited to describing the motion of
less rigid bodies or bodies that deform. It was the great eighteenth-century Swiss
mathematician Leonhard Euler who would provide equations that generalized Newton’s
laws. Euler’s equations could be applied more generally to something like a vibrating string
or a swinging pendulum.

After Newton, more equations were developed that explained various natural
phenomena. Euler produced equations for nonviscous fluids. At the beginning of the
nineteenth century, French mathematician Joseph Fourier found equations to describe heat
flow. Compatriots Pierre-Simon Laplace and Siméon-Denis Poisson took Newton’s
equations to produce more generalized equations for gravitation, which were then seen to
control other phenomena like hydrodynamics and electrostatics. The behaviors of viscous
fluids were described by the Navier–Stokes equations, and electromagnetism by James
Clerk Maxwell’s equations.

With the discovery of calculus and the laws of motion, it seemed that Newton had
turned the universe into a deterministic clockwork mechanism controlled by mathematical
equations. Scientists believed they had indeed discovered the Theory of Everything. In his
Philosophical Essay on Probabilities published in 1812, the mathematician Pierre-Simon
Laplace summed up most scientists’ belief in the extraordinary power of mathematics to
explain everything about the physical universe: “We may regard the present state of the
universe as the effect of its past and the cause of its future. An intellect which at a certain
moment would know all forces that set nature in motion, and all positions of all items of
which nature is composed; if this intellect were also vast enough to submit these data to
analysis, it would embrace in a single formula the movements of the greatest bodies of the
universe and those of the tiniest atom; for such an intellect nothing would be uncertain and
the future just like the past would be present before its eyes.”

This view that the universe was knowable, both past, present and future, became
dominant among scientists in the centuries following Newton’s great opus. It seemed as if
any thought of God acting in the world had been completely removed. God might be
responsible for getting things up and running, but from that point on, mathematics and
physics took over.

So what of my lowly die? Surely with the laws of motion at hand I can simply combine
my knowledge of its geometry with information on its motion and subsequent interactions
with the table to predict the outcome. I’ve written out the equations on my notepad, and
they look pretty daunting.

Newton, as it turns out, also contemplated the problem of how to predict the role of
dice. His interest was prompted by a letter he received from Samuel Pepys, who wanted
Newton’s advice on which option he should back in a wager he was about to make with a
friend:

(1) Throw ing six dice and getting at least one 6.
(2) Throw ing tw elve dice and getting at least tw o 6s.
(3) Throw ing eighteen dice and getting at least three 6s.

Pepys was about to stake £10, the equivalent of £1,000 in today’s money, and he was
quite keen to get some good advice. Pepys’s intuition was that (3) was the more likely
option, but Newton replied that his calculations suggested the opposite was true. He should



put his money on the first option. It wasn’t his laws of motion or calculus to which Newton
resorted to solve this problem but ideas developed by Fermat and Pascal.

THE FATE OF THE SOLAR SYSTEM

If Newton is my hero, then French mathematician Henri Poincaré should be the villain in my
drive to predict the future. And yet I can hardly blame him for uncovering one of the most
devastating blows for anyone wanting to know what’s going to happen next. He was hardly
very thrilled himself with the discovery, given that it cost him rather a lot of money.

Born a hundred years after Laplace, Poincaré believed, like his compatriot, in a
clockwork universe, one governed by mathematical laws and utterly predictable: “If we
know exactly the laws of nature and the situation of the universe at the initial moment, we
can predict exactly the situation of the same universe at a succeeding moment.”
Understanding the world was Poincaré’s prime motivation for doing mathematics. “The
mathematical facts worthy of being studied are those which, by their analogy with other
facts, are capable of leading us to the knowledge of a physical law,” he wrote.

Newton’s laws of motion had spawned an array of mathematical equations to describe
the physical world, but most of them were extremely complicated. Take the equations for a
gas. Think of a gas as made up of molecules crashing around like tiny billiard balls;
theoretically, the future behavior of the gas should be bound up in Newton’s laws of motion.
But the sheer number of balls meant that an exact solution was well beyond reach.
Statistical or probabilistic methods were still by far the best tool to understand the behavior
of billions of molecules.

There was one situation where the number of billiard balls was reasonably small and a
solution seemed tractable: the solar system. Poincaré became obsessed with predicting
what lay in store for our planets as they danced their way into the future.

Because the gravitational pull of one planet on another planet at some distance from the
first is the same as if all its mass were concentrated at its center of gravity, to determine the
ultimate fate of the solar system one can consider planets as if they were just points in
space, as Newton had done. This meant that the evolution of the solar system could be
described by three coordinates for each planet, locating the center of mass in space
together with three additional numbers recording the speed in each of three dimensions. The
forces acting on each planet are determined by the gravitational forces exerted by each of
the other planets. One just needs to apply Newton’s second law to map out the course of
the planets into the distant future. The trouble was that the math was extremely tricky.

Newton had solved the behavior of two planets (or a planet and a sun). They would
follow elliptical paths, with their common focal point being the common center of gravity.
This would repeat itself periodically to the end of time. But Newton was stumped when he
introduced a third planet. Trying to calculate the behavior of a solar system consisting of the
sun, the Earth, and the moon seemed simple enough, but already you are facing an equation
with eighteen variables: nine for the positions and nine for the speeds of the three planets.
Newton conceded that “to consider simultaneously all these causes of motion and to define
these motions by exact laws admitting of easy calculation exceeds, if I am not mistaken, the
force of any human mind.”



King Oscar II of Norway and Sweden decided to mark his sixtieth birthday in 1889 by
offering a prize for solving a problem in mathematics. There are not many monarchs around
the world who would choose math problems to celebrate their birthdays, but Oscar had
enjoyed the subject ever since he had excelled at it as a student at Uppsala University.

His majesty Oscar II, w ishing to give a fresh proof of his interest in the advancement of mathematical
science, has resolved to aw ard a prize on January 21, 1889, to an important discovery in the f ield of
higher mathematical analysis. The prize w ill consist of a gold medal of the eighteenth size bearing his
majesty’s image and having a value of a thousand francs, together w ith the sum of tw o thousand f ive
hundred crow ns.

Three eminent mathematicians convened to choose a number of suitable challenges and
to judge the entries. One of the questions they posed was to establish mathematically
whether the solar system was stable. Would it continue to turn like clockwork, or, at some
point in the future, might the Earth spiral off into space and disappear from our solar
system?

To answer this question it would be necessary to solve the equation that had stumped
Newton. Poincaré believed that he had the skills to win the prize. One of the common tricks
used by mathematicians is to attempt a simplified version of the problem first, to see if it is
tractable. So Poincaré started with three bodies. This was still far too difficult, so he
decided to simplify the problem further. Instead of the sun, Earth, and moon, why not try to
understand two planets and a speck of dust? The two planets won’t be affected by the dust
particle, so he could assume, thanks to Newton’s solution, that they just repeated ellipses
around each other. The speck of dust, on the other hand, would experience the gravitational
force of the two planets. Poincaré set about trying to describe the path traced by the speck
of dust. Some understanding of its trajectory would form an interesting contribution to the
problem.

Although he couldn’t crack the problem completely, the paper he submitted was more
than good enough to secure King Oscar’s prize. He’d managed to prove the existence of an
interesting class of paths that would repeat themselves, so-called periodic paths. Periodic
orbits were by their nature stable because they would repeat themselves over and over, like
the ellipses that two planets would be guaranteed to execute.

The French authorities were very excited that the award had gone to one of their own.
The nineteenth century had seen Germany steal a march on French mathematics, so the
French academicians excitedly heralded Poincaré’s win as proof of a resurgence of French
mathematics. Gaston Darboux, the permanent secretary of the French Academy of
Sciences, declared, “From that moment on the name of Henri Poincaré became known to
the public, who then became accustomed to regarding our colleague no longer as a
mathematician of particular promise but as a great scholar of whom France has the right to
be proud.”

Preparations began for the publication of Poincaré’s solution in a special edition of the
Royal Swedish Academy of Science’s journal Acta Mathematica. Then came the moment
every mathematician dreads. Poincaré thought his work was safe. He’d checked every step
in the proof. But just before publication, one of the editors of the journal raised a question
over one of the steps in his mathematical argument.

Poincaré had assumed that a small change in the positions of the planets, a little
rounding up or down here or there, was acceptable, as it would result in only a small change
in their predicted orbits. It seemed a fair assumption. But there was no justification given for



why this would be so. And in a mathematical proof, every step, every assumption, must be
backed up by rigorous mathematical logic.

The editor wrote to Poincaré for some clarification on this gap in the proof. But as
Poincaré tried to justify this step, he realized he’d made a serious mistake. He wrote to
Gösta Mittag-Leffler, the head of the prize committee, hoping to limit the damage to his
reputation:

The consequences of this error are more serious than I f irst thought. I w ill not conceal from you the
distress this discovery has caused me. . . . I do not know  if you w ill still think that the results w hich
remain deserve the great rew ard you have given them. (In any case, I can do no more than to confess
my confusion to a friend as loyal as you.) I w ill w rite to you at length w hen I can see things more
clearly.

Mittag-Leffler decided he needed to inform the other judges. He did so in a letter:

Poincaré’s memoir is of such a rare depth and pow er of invention, it w ill certainly open up a new
scientif ic era from the point of view  of analysis and its consequences for astronomy. But greatly
extended explanations w ill be necessary and at the moment I am asking the distinguished author to
enlighten me on several important points.

As Poincaré struggled away he soon saw that he was simply mistaken. Even a small
change in the initial conditions could result in wildly different orbits. He couldn’t make the
approximation that he’d proposed. His assumption was wrong.

Poincaré telegraphed Mittag-Leffler to break the bad news and tried to stop the paper
from being printed. Embarrassed, he wrote:

It may happen that small differences in the initial conditions produce very great ones in the f inal
phenomena. A small error in the former w ill produce an enormous error in the latter. Prediction becomes
impossible.

Mittag-Leffler was “extremely perplexed” to hear the news:

It is not that I doubt that your memoir w ill be in any case regarded as a w ork of genius by the majority
of geometers and that it w ill be the departure point for all future efforts in celestial mechanics. Don’t
therefore think that I regret the prize. . . . But here is the w orst of it. Your letter arrived too late and the
memoir has already been distributed.

Mittag-Leffler’s reputation was on the line for not having picked up the error before
they’d publicly awarded Poincaré the prize. This was not the way to celebrate his
monarch’s birthday! “Please don’t say a word of this lamentable story to anyone. I’ll give
you all the details tomorrow.”

The next few weeks were spent trying to retrieve the printed copies without raising
suspicion. Mittag-Leffler suggested that Poincaré should pay for the printing of the original
version. Poincaré, who was mortified, agreed, even though the bill came to over 3,500
crowns, 1,000 crowns more than the prize he’d originally won.

In an attempt to rectify the situation, Poincaré set about trying to sort out his mistake, to
understand where and why he had gone wrong. In 1890 Poincaré wrote a second, extended
paper explaining his belief that very small changes could cause an apparently stable system
suddenly to fly apart.

What Poincaré discovered, thanks to his error, led to one of the most important
mathematical concepts of the twentieth century: chaos theory. It was a discovery that



placed huge limits on what we humans could ever hope to know. I may have written down
all the equations for my die, but what if it behaves like the planets in the solar system?
According to Poincaré’s discovery, if I make just one small error in recording its starting
location, that error could expand into a large difference in the outcome by the time the die
comes to rest on the table. So is the future of my Vegas dice shrouded behind the
mathematics of chaos?

The chaotic path mapped out by a single planet orbiting tw o suns
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If nature were not beautiful it would not be worth knowing, and if
nature were not worth knowing, life would not be worth living.

—Henri Poincaré

WASTED A LOT  OF TIME at university playing billiards in our student common room. I could
have pretended that it was all part of my research into angles and stuff, but the truth is that
I was procrastinating. It was a good way of putting off having to cope with not being able to
answer that week’s set of problems. But, in fact, the billiard table hides a lot of interesting
mathematics in its contours, mathematics highly relevant to my desire to understand my
dice.

If I shoot a ball around a billiard table and mark its path, then follow that by shooting
another ball off in very nearly the same direction, the second ball will trace out a path very
similar to the first ball. Poincaré had conjectured that the same principle applied to the solar
system. Fire a planet off in a slightly different direction and the solar system will evolve in a
very similar pattern. This is most people’s intuition—if I make a small change in the initial
conditions of the planet’s trajectory it won’t alter the course of the planet much. But the
solar system seems to be playing a slightly more interesting game of billiards than the ones I
played as a student.

Rather surprisingly, if you change the shape of the billiard table this intuition turns out to
be wrong. If you shoot balls around a billiard table shaped like a stadium with semicircular
ends but straight sides, the paths can diverge dramatically even if the balls started off
heading in almost exactly the same direction. This is the signature of chaos theory:
sensitivity to very small changes in the initial conditions.

Tw o quickly diverging paths taken by a billiard ball around a stadium-shaped billiard table



So the challenge is to determine whether the fall of my dice can be predictable, like a
conventional game of billiards, or whether we are playing a giant game of chaotic billiards.

Poincaré is generally credited as the father of chaos theory, but the sensitivity of
dynamic systems to small changes was not very well known for decades into the twentieth
century. It really took the rediscovery of the phenomenon by scientist Edward Lorenz, who
like Poincaré thought he’d made some mistake, before the ideas of chaos theory became
more widely known.

While working as a meteorologist at the Massachusetts Institute of Technology in 1963,
Lorenz had been running equations for the change of temperature in a dynamic fluid on his
computer when he decided he needed to rerun one of his models for longer. So he took
some of the data that had been output earlier in the run and re-entered it, expecting to be
able to restart the model from that point.

When he returned from coffee, he discovered to his dismay that the computer hadn’t
reproduced the previous data and that it had very quickly generated a wildly divergent
prediction. At first he couldn’t understand what was happening. If you input exactly the
same numbers into an equation, you don’t expect to get a different answer at the other end.
It took him a while to realize what was going on: he hadn’t input the same numbers. The
computer printout of the data he’d used had only printed the numbers to three decimal
places, while it had been calculating using the numbers to six decimal places.

Even though the numbers were different, they differed only in the fourth decimal place.
You wouldn’t expect this to make that big a difference, but Lorenz was struck by the impact
of such a small difference on the resulting data. Here are two graphs created using the
same equation, where the data that are put into the equations differ very slightly. One graph
uses the input data 0.506127 and the second graph approximates this to 0.506. Although the
graphs start out following similar paths, they very quickly behave completely differently.

The model that Lorenz was running was a simplification of weather models that
analyzed how the flow of air behaves when subjected to differences in temperature. His
rediscovery of how small changes in starting conditions can have such a big impact on
future outcomes would have huge implications for our attempts to use mathematical
equations to predict the future. As Lorenz wrote, “Two states that were imperceptibly
different could evolve into two considerably different states. Any error in the observation of
the present state—and in a real system, this appears to be inevitable—may render an
acceptable prediction of the state in the distant future impossible.”



When Lorenz sought to explain his findings to a colleague, he was told, “Edward, if your
theory is correct, one flap of a seagull’s wings could alter the course of history forever.”
The seagull would eventually be replaced by the now famous butterfly when Lorenz
presented his findings in 1972 at the American Association for the Advancement of Science
in a paper titled “Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in
Texas?”

Curiously, both the seagull and the butterfly might have been preempted by the
grasshopper. It seems that already in 1898 Professor W. S. Franklin had realized the
devastating effect that the insect community could have on the weather. In a book review,
he posited, “An infinitesimal cause may produce a finite effect. Long-range detailed
weather prediction is therefore impossible, and the only detailed prediction which is possible
is the inference of the ultimate trend and character of a storm from observations of its early
stages; and the accuracy of this prediction is subject to the condition that the flight of a
grasshopper in Montana may turn a storm aside from Philadelphia to New York!”

This is an extraordinary position to be in. Science offers a completely deterministic
description of the evolution of many dynamic systems like the weather. And yet in many
cases we are denied access to its predictions, as any measurement of the location or wind
speed of a particle is inevitably going to be an approximation of its true conditions.

The National Weather Service, when making weather predictions, takes the data
recorded by weather stations dotted across a region and then, instead of running equations
on these data, the meteorologists do several thousand runs, varying the data over a range of
values. The predictions stay close for a while, but by about five days into the future the
results have often diverged so wildly that one set of data predicts a heat wave while a few
changes in the decimal places of the data result in drenching rain.

“There is a maxim which is often quoted, that ‘The same causes will always produce
the same effects,’” wrote the great Scottish scientist James Clerk Maxwell in his book
Matter and Motion, published in 1877. “There is another maxim which must not be
confounded with this, which asserts that ‘Like causes produce like effects.’ This is only true
when small variations in the initial circumstances produce only small variations in the final
state of the system.” The discovery of chaos theory in the twentieth century revealed this
maxim to be false.

Of course, there are times when small changes don’t alter the course of the equations
dramatically, like the paths in the classic billiard table. So how can you know the point when
you can’t know what is going to happen next? Robert May discovered a beautiful example
when he analyzed the equations for population growth.

Born in Australia in 1938, May had originally trained as a physicist working on
superconductivity, but his academic work took a dramatic turn when he was exposed in the
late 1960s to the newly formed movement for social responsibility in science. His attention
shifted from the behavior of collections of electrons to the more pressing questions of the
behavior of population dynamics in animals. Biology, at the time, was not a natural
environment for the mathematically minded, but following May’s work that would change.
This fusion of the hardcore mathematical training he’d received as a physicist with a new
interest in biology led to his great breakthrough.

In a paper in Nature called “Simple Mathematical Models with Very Complicated
Dynamics,” published in 1976, May explored the dynamics of a mathematical equation
describing population growth from one season to the next. He revealed how even a quite
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basic equation can produce extraordinarily complex results. His equation for population
dynamics wasn’t some complicated differential equation but a simple, discrete feedback
equation that anyone with a calculator could explore.

May's Feedback Equation for Population Dynamics

onsider a population of animals w hose numbers can vary betw een 0 and some hypothetical maximum
value that I w ill call N. Given some fraction Y (lying betw een 0 and 1) of that maximum, the equation

determines the proportion of the population that w ill survive in the next season after reproduction and
competition for food. Let’s suppose that each season the reproduction rate is given by a number r. If  the
fraction of the maximum population that survived to the end of the season w as Y, the next generation w ould
sw ell to r x Y x N.

But not all of these new  animals w ill survive. The equation determines that the fraction that w ill not
survive is also given by Y. So out of the r x Y x N animals that start the season, Y x (r x Y x N) die. So the
total left at the end of the season is (r x Y x N)—(r x Y2 x N) = [r x Y x (1—Y)] x N, w hich means that the
fraction of the maximum population that exists in the current season is r x Y x (1—Y).

Essentially, the model assumes that at the end of each season the surviving population is
multiplied by a constant factor, called r (the reproduction rate) to produce the number of
animals that will be alive at the beginning of the next season. But there aren’t enough
resources for all of them to survive. The equation then calculates how many of these
animals will make it until the end of the season. The resulting number is then multiplied by r
again for the next generation. The fascinating property of this equation is that its behavior
really depends only on the choice of r, the reproduction rate. Some choices of r lead to
extremely predictable behaviors. I can know exactly how the numbers will evolve. But
there is a threshold beyond which I lose control. Knowledge is no longer within reach; the
addition of one extra animal into the mix can result in dramatically different population
dynamics.

May discovered that if r lies between 1 and 3, the population eventually stabilizes.
Regardless of the initial conditions, the numbers will gradually tend to be a fixed value. It’s
like playing billiards on a table with a sinkhole in the middle. However I shoot the ball, it
eventually finds its way to the bottom of the sinkhole.

For r above 3, we still see a region of predictable behavior, but of a slightly different
character. If r remains between 3 and 1 + √6 (approximately 3.44949) the population
dynamics ping-pong between two values that depend on r. As r passes 1 + √6, we see the
population dynamics changing character again. For r between 1 + √6 and 3.54409 (or, more
precisely, the solution of a polynomial equation of degree 12), there are four values that the
population periodically cycles through. As r gets bigger, we get eight values, then sixteen,
and so on. As r climbs, the number of different values doubles each time until we hit a
threshold moment, when the dynamic flips from periodic to chaotic.

When May first explored this equation, he admitted that he frankly hadn’t a clue what
was going on beyond this point—he had a blackboard outside his office in Sydney on which
he offered a prize of ten Australian dollars to anyone who could explain the behavior of his
equation. He wrote on the blackboard, “It looks like a mess.”

He got his answer on a visit to Maryland. This was, in fact, when the term “chaos” was
actually coined. In a seminar, he explained his findings but admitted he’d hit a point beyond
which he didn’t know what the hell was happening. In the audience was a mathematician
who did know. Jim Yorke had never seen the doubling behavior, but he knew exactly what
was going on in this higher region. And it was what he called chaos.



Beyond r = 3.56995 (or, more precisely, the limit point of a system of equations of
increasing degree), the result becomes very sensitive to what the initial population looks like.
Change the initial number of animals by a minute amount and a totally different result can
ensue.

Tw o populations w ith r = 4 that start off w ith a difference of just one animal in a thousand. Although
they start behaving similarly, by year 15 they are demonstrating very different behaviors.

As I turn up the dial on r, there can still be pockets of regular behavior, as Jim Yorke
had discovered. For example, take r = 3.627 and the population becomes periodic again,
bouncing around between six different values. Keep dialing r up and the six changes to
twelve, which becomes twenty-four, doubling each time until chaos strikes again.

Bob May recognized just what a warning shot such a simple system was to anyone who
thought they knew it all: “Not only in research, but in the everyday world of politics and
economics, we would be better off if more people realized that simple systems do not
necessarily possess simple dynamic properties.”

THE POLITICS OF CHAOS

Bob May is currently practicing what he preaches. Or perhaps I should say Lord May of
Oxford, as I was corrected by a man in a top hat who greeted me at the door to the
entrance of the House of Lords. May has in recent years combined his scientific endeavors
with energetic political activism. He now sits as a cross-party member of the House of
Lords, where I popped in for lunch to find out how he was faring in his mission to alert
politicians to the impact of chaotic systems on society.

Ushered through the entrance to the Lords by the man in the top hat and policemen with
machine guns, I found May waiting for me on the other side of metal detectors and X-ray
machines. May has no truck with all these formal titles and, in his earthy Australian manner,
still insists on being called Bob. “I’m afraid I messed up and already ate lunch but I’ll come



and eat cake while you get some lunch,” he said with a guileless smile. As I ate my fish he
consumed an enormous piece of chocolate cake. At seventy-nine, May is as energetic and
engaged as ever, and he was rushing off after his second lunch to a select committee
discussing the impact of a new rail link between London and northwest England. Before
joining the Lords, May was chief scientific adviser both to John Major’s Conservative
government and Tony Blair’s Labor government. I asked how tricky a balancing act such a
political position is for a man who generally is not scared to tell it like it is.

“At the interview I was told that there would be occasions where I would be called
upon to defend the decisions of a minister and how would I feel about that? I said that I
would never under any circumstances deny a fact. On the other hand, I’m fairly good at the
kind of debating competition where you’re given a topic and according to a flip of a coin
you’ve got to argue for either side of the debate. So I said I’d be happy explaining why the
minister’s choice was arrived at. I simply wouldn’t agree to endorse it if it wasn’t right.”

A typical mathematician’s response. Set up the minister’s axioms and then demonstrate
the proof that led to the conclusion—a judgment-free approach. That’s not to say that May
isn’t opinionated and prepared to give his own views on the subject at hand.

I was curious as to how governments deal with the problems that chaos theory creates
when trying to make policy decisions. How do politicians cope with the challenges of
predicting or manipulating the future, given that we can have only partial knowledge of the
systems being analyzed?

“I think that’s rather a flattering account of what goes on here,” he said. “With some
notable exceptions it’s mostly a bunch of very egotistical people, very ambitious people, who
are primarily interested in their own careers.”

What about May personally? What impact did the discoveries he’d made have on his
view of science’s role in society?

“It was weird. It was the end of the Newtonian dream. When I was a graduate student
it was thought that with better and better computer power we would get better and better
weather predictions because we knew the equations and we could make more realistic
models of the Earth.” But May is cautious not to let the climate change deniers use chaos
theory as a way to undermine the debate.

“Not believing in climate change because you can’t trust weather reports is a bit like
saying that because you can’t tell when the next wave is going to break on Bondi beach you
don’t believe in tides.”

May likes to quote a passage from Tom Stoppard’s play Arcadia to illustrate the strange
tension that exists between the power of science to know some things with extraordinary
accuracy and chaos theory, which denies us knowledge of many parts of the natural world.
One of the protagonists, Valentine, declares, “We’re better at predicting events at the edge
of the galaxy or inside the nucleus of an atom than whether it’ll rain on auntie’s garden
party three Sundays from now.” May jokes that his most cited works are not the high-
profile academic papers he’s published in prestigious scientific journals like Nature, but the
program notes he wrote for Stoppard’s play when it was first staged at the National Theater
in London. “It makes a mockery of all these citation indexes as a way of measuring the
impact of scientific research.”

So what are the big open questions of science that May would like to know the answer
to? Consciousness? An infinite universe?



“I think I’d look at it in a less grand way, so I’d look at it more in terms of the things I
am working on at the moment. Largely by accident I’ve been drawn into questions about
banking.”

That was a surprise. The question of how to create a stable banking system seemed
very parochial, but May has recently been applying his models of the spread of infectious
diseases and the dynamics of ecological food webs to understanding the banking crisis of
2008. Working with Andrew Haldane at the Bank of England, he has been considering the
financial network as if it were an ecosystem. Their research has revealed how financial
instruments intended to optimize returns with seemingly minimal risk can cause instability in
the system as a whole.

May believes that the problem isn’t necessarily the mechanics of the market itself. It’s
the way small things in the market are amplified and perverted by how humans interact with
them. For him, the most worrying thing about the banking mess is getting a better handle on
this contagious spreading of worry.

“The challenge is: How do you put human behavior into the model? I don’t think human
psychology is mathematizable. Here we are throwing dice with our future. But if you’re
trying to predict the throw of the dice, then you want to know the circumstance of who
owns the dice.”

That was something I hadn’t taken into account. Perhaps I should factor in who sold me
the casino die in the first place.

“I think many of the major problems facing society are outside the realm of science and
mathematics,” he said. “It’s the behavioral sciences that are the ones we are going to have
to depend on to save us.”

Looking around the canteen at the House of Lords, you could see the sheer range and
complexity of human behavior at work. It makes the challenge of mathematizing even the
interactions in this tiny microcosm of the human population well nigh impossible. As the
French historian Fernand Braudel explained in a lecture on history he gave to his fellow
inmates in a German prison camp near Lübeck during World War II, “An incredible number
of dice, always rolling, dominate and determine each individual existence.” Although each
individual throw is unpredictable, patterns still emerge in the long-range behavior of many
throws of the dice. In Braudel’s view, this is what makes the study of history possible:
“History is indeed ‘a poor little conjectural science’ when it selects individuals as its
objects . . . but much more rational in its procedure and results when it examines groups and
repetitions.”

May believes that understanding the history and origins of the collection of dice that
make up the human race is not as straightforward as Braudel makes out. To his mind, it’s
not at all clear that we can unpick how we got to this point in our evolutionary journey.

“I’ll tell you one of the questions that I think is a particularly interesting one: trying to
understand our evolutionary trajectory as humans on our planet. Is the trajectory we seem
to be on what happens on all or most planets, or is it the result of earlier fluctuations in the
chaos which took us on this trajectory rather than another? Will we ever know enough to be
able to ask whether the disaster we seem to be heading for is inevitable or whether there
are lots of other planets where people are more like Mr. Spock, less emotional, less colorful,
but much more detached and analytical?”

Until we discover other inhabited planets and can study their trajectories, it’s difficult to
assess whether evolution inevitably leads to mismanaged ecosystems based on just one



dataset called Earth.
“The question of whether where we’re heading is something that happens to all

inhabited planets or whether there are other planets where it doesn’t happen is something I
think we’ll never know.” And with that, May polished off the last few crumbs of his
chocolate cake and plunged back into the chaos of the select committees and petty politics
of Westminster.

May’s last point relates to the challenge that chaos theory poses for knowing something
about the past as much as the future. At least with the future we can wait and see what the
outcome of chaotic equations produces. But trying to work backward and understand what
state our planet was in to produce the present is equally if not more challenging. The past,
even more than the future, is probably something we can never truly know.

LIFE: A CHANCE THROW OF THE DICE?

May’s pioneering research explored the dynamics of a population as it went from season to
season. But what determines which animals survive and which will die before reproducing?
According to Darwin, this is simply down to a lucky roll of the evolutionary dice.

Darwin’s model for the evolution of life on Earth is based on the idea that once you
have organisms with DNA, then the offspring of these organisms share the DNA of their
parent organisms. Parts of the genetic code in the DNA can undergo random mutations.
These are essentially down to the chance throw of the evolutionary dice. But there is a
second important strand to Darwin’s proposal, which is the idea of natural selection. Some
of those random changes will give offspring an increased chance of survival, while others
will result in a disadvantage. The point of evolution by natural selection is that the organism
with the advantageous change will be more likely to survive long enough to reproduce.

Suppose, for example, that I start with a population of giraffes with short necks. The
environment of the giraffes changes such that there is more food in the trees, so that any
giraffe born with a longer neck is going to have a better chance of survival. Let’s suppose
that I throw my Vegas die to determine the chance of a mutation for each giraffe born in
the next generation following this environmental change. A roll of a 1, 2, 3, 4, or 5 condemns
the giraffe to a neck of the same size or shorter, while a throw of a 6 corresponds to a
chance mutation that causes a longer neck. The lucky longer-necked giraffes get the food,
and the shorter-necked giraffes don’t survive to reproduce. So it is just the longer-necked
giraffes that get the chance to pass on their DNA.

In the next generation the same thing happens. Roll a 1, 2, 3, 4, or 5 on the die and the
giraffe doesn’t grow any taller than its parents. But another 6 and the giraffe’s neck grows
a bit more. The taller giraffes survive again. The environment favors the giraffes that have
thrown a 6. Each generation ends up a bit taller than the last generation until there comes a
point when it is no longer an advantage to grow any further.

The combination of chance and natural selection results in our seeing more giraffes with
ancestors that all threw 6s. In retrospect it looks like amazing serendipity that you would see
so many 6s in a row. But the point is that you don’t see any of the other rolls of the dice
because they don’t survive. What looks like a rigged game is just the result of the
combination of chance and natural selection. There is no grand design at work. The run of



consecutive 6s isn’t a lucky streak; it is the only thing we would expect to see from such a
model.

It’s a beautifully simple model, but, given the complexity of the changes in the
environment and the range of mutations that can occur, this simple model can produce
extraordinary complexity, which is borne out by the sheer variety of species that exist on
Earth. Although the model is simple, it is frustratingly inadequate at making predictions. One
of the reasons I never really fell in love with biology is that there seemed to be no way to
explain why we got cats and zebras out of this evolutionary model and not some other
strange selection of animals. It all seemed so arbitrary, so random. But is that really right?

There is an interesting debate going on in evolutionary biology about how much chance
there is in the outcomes we are seeing. If we rewound the story of life on Earth to some
point in the past and threw the dice again, would we see very similar animals appearing or
could we get something completely different? This is the question that May raised at the
end of our lunch.

It does appear that some parts of our evolutionary process seem inevitable. It is striking
that throughout evolutionary history, the eye evolved independently fifty to a hundred times.
This is strong evidence for the fact that the different rolls of the dice that have occurred
across different species seem to have produced species with eyes regardless of what is
going on around them. Lots of other examples illustrate how some features, if they are
advantageous, seem to rise to the top of the evolutionary swamp. This is illustrated every
time you see the same feature appearing more than once in different parts of the animal
kingdom. Dolphins and bats, for example, use echolocation, but they evolved this trait
independently at very different points on the evolutionary tree.

But it isn’t clear how far these outcomes are guaranteed by the model. If there is life on
another planet, will it look anything like the life that has evolved here on Earth? This is one
of the big open questions in evolutionary biology. As difficult as it may be to answer, I don’t
believe it qualifies as something we can never know. It may remain something we will never
know, but there is nothing by its nature that makes it unanswerable.

Are there other great unsolved questions of evolutionary biology that might be
contenders for things we can never know? For example, why, 542 million years ago, at the
beginning of the Cambrian period, was there an explosion in the diversity of life on Earth?
Before this moment life consisted of single cells that collected into colonies. But over the
next twenty-five million years, a relatively short period on the scale of evolution, there is a
rapid diversification of multicellular life that ends up resembling the diversity that we see
today. An explanation for this exceptionally fast pace of evolution is still missing. This is in
part due to lack of data from that period. Can we ever recover that information, or could
this always remain a mystery?

Chaos theory is usually a limiting factor in what we can know about the future. But it
can also imply limits on what we can know about the past. We see the results, but deducing
the cause means running the equations backward. Without complete data, the same
principle applies backward as forward. We might find ourselves at two very divergent
starting points that can explain very similar outcomes. But we’ll never know which of those
origins was ours.

One of the big mysteries in evolutionary biology is how life got going in the first place.
The game of life may favor runs of 6s on the roll of the evolutionary dice, but how did the
game itself evolve? Various estimates have been proposed for the chances of everything



lining up to produce molecules that replicate themselves. In some models, the origin of life is
equivalent to nature having thrown thirty-six dice and getting them all to land on 6. For
some, this is proof of the existence of God or of some form of a grand designer to rig the
game. But this is to misunderstand the huge time scale that we are working on.

Miracles do happen . . . given enough time. Indeed, it would be more striking if we
didn’t get these anomalies. The point is that the anomalies stick out. They get noticed, while
the less exciting rolls of the dice are ignored.

The lottery is a perfect test bed for the occurrence of miracles in a random process. On
September 6, 2009, the following six numbers were the winning numbers in the Bulgarian
state lottery: 4, 15, 23, 24, 35, 42. Four days later, the same six numbers came up again.
Incredible, you might think. The government in Bulgaria certainly thought so and ordered an
immediate investigation into the possibility of corruption. But what it failed to take into
account is that each week, across the planet, different lotteries are being run. They have
been running for decades. If you do the math, it would be more surprising not to see such a
seemingly anomalous result.

The same principle applies to the conditions for producing self-replicating molecules in
the primeval soup that made up the Earth before life emerged. Mix together plenty of
hydrogen, water, carbon dioxide, and some other organic gases and subject them to lightning
strikes and electromagnetic radiation, and already experiments in the lab show the
emergence of organic material found only in living things. No one has managed to
spontaneously generate anything as extraordinary as DNA in the lab. The chances of that
are very small.

But that’s the point. Given the billion billion or so possible planets available in the
universe on which to try out this experiment, together with a billion or so years to let the
experiment run, it would be more striking if that outside chance of creating something like
DNA didn’t happen. Keep rolling thirty-six dice on a billion billion different planets for a
billion years and you’d probably get one roll with all thirty-six dice showing 6. Once you
have a self-replicating molecule, it has the means to propagate itself, so you only need to get
lucky once to kick off evolution.

THE FRACTAL TREE OF LIFE

Our problem as humans is that we have not evolved minds able to navigate very large
numbers. Probability is something we have little intuition for. But it’s not only the
mathematics of probability that is at work in evolution. The evolutionary tree itself has an
interesting quality that it shares with chaos theory. This quality is known as a fractal.



The fractal evolutionary tree

The evolutionary tree is a graphic representation of the evolution of life on Earth. Each
time the tree branches, this represents the evolution of a new species. If a branch
terminates, this means the extinction of that species. The nature of the tree is such that the
overall shape seems to be repeated on smaller and smaller scales. This is the characteristic
feature of a shape mathematicians call a fractal. If you zoom in on a small part of the tree it
looks remarkably like the large-scale structure of the tree. This self-similarity means that it
is very difficult to tell at what scale we are looking at the tree. This is the classic
characteristic of a fractal.

Fractals are the geometric signature of a chaotic system, so it is suggestive of chaotic
dynamics at work in evolution: small changes in the genetic code can result in huge changes
in outcome. This model isn’t necessarily a challenge to the idea of convergence, as there
can still be points in chaotic systems toward which the model tends to evolve. Such points
are called attractors. But it certainly questions whether if you reran evolution it would look
anything like what we’ve got on Earth today. The evolutionary biologist Stephen Jay Gould
contended that if you were to rerun the tape of life, you would get very different results.
This is what you would expect from a chaotic system. Just as with the weather, very small
changes in the initial conditions can result in dramatically different outcomes.

Gould introduced the idea of punctuated equilibria to capture the fact that species seem
to remain stable for long periods and then undergo what appears to be quite rapid
evolutionary change. This has been shown to be a feature of chaotic systems. The
implications of chaos at work in evolution could well fall under the umbrella of things we
cannot know.

Will we ever know whether humans were destined to evolve? An analysis of DNA in
different animals has given us exceptional insights into the way animals have evolved in the
past. The fossil record, although incomplete in places, has also given us a way to know our
origins. But given the time scales involved in evolution, it is impossible to experiment and



rerun the tape of life and see whether something different could have happened. As soon as
we find life on other planets (if we do), this will give us new sample sets to analyze. But
until then all is not lost. Just as the National Weather Service doesn’t have to run real
weather to make predictions, computer models can illustrate different possible outcomes of
the mechanism of evolution by speeding up time. But the model will only be as good as our
hypotheses. If we’ve got the model wrong, it won’t tell us what is really happening in
nature.

Computer models such as these hold the key to answering the question Poincaré first
tackled when he discovered chaos: Will there even be a stable Earth orbiting the sun for
evolution to continue playing its game of dice? How safe is our planet from the vagaries of
chaos? Is our solar system stable and periodic, or do I have to worry about a grasshopper
disrupting our orbit around the sun?

A BUTTERFLY CALLED MERCURY

Poincaré wasn’t able to answer the King of Sweden’s question about the solar system, that
is, whether it would remain in a stable equilibrium or fly apart in a catastrophic exhibition of
chaotic motion. His discovery that some dynamic systems can be sensitive to small changes
in data opened up the possibility that we may never know the precise fate of the solar
system much in advance of any potentially devastating scenario unfolding.

It is possible that the solar system is in a safe, predictable region of activity, but the
evidence suggests we can’t console ourselves with this comforting mathematical hope.
Recent computer modeling has provided us with new insights, which reveal that the solar
system is indeed within a region dominated by the mathematics of chaos. We can now
measure how big an effect a small change will have on the outcome of a closed system
using something called the Lyapunov exponent. If the Lyapunov exponent is positive, it
means that if I make a small change in the initial conditions then the distance between the
paths will diverge exponentially.

Using this new equation, several groups of scientists have confirmed that our solar
system is indeed chaotic. They have calculated that the distance between two initially close
orbital solutions increases by a factor of ten every ten million years. This is certainly on a
different timescale to our inability to predict the weather. Nevertheless, it means that I can
have no definite way of knowing what will happen to the solar system over the next five
billion years.

If you’re wondering in despair whether we can know anything about the future, then
take heart in the fact that mathematics isn’t completely hopeless at making predictions.
There is an event that the equations guarantee will occur if we make it to five billion years
from now, but it’s not good news. At this point, the sun will run out of fuel and evolve into a
red giant that will engulf Earth and the other planets in our solar system. But until this solar
blowout, I am faced with trying to solve chaotic equations if I want to know which planets
will still be around to see that red giant.

If I want to know what will happen, I have no choice but to run simulations in which I
vary the precise locations and speeds of the planets. The forecast is in some cases rather
frightening. In 2009 French astronomers Jacques Laskar and Mickael Gastineau ran several



thousand models of the future evolution of our solar system. Their experiments have
identified a potential butterfly: Mercury.

The simulations start by feeding in the records we have of the positions and velocities of
the planets to date, but it is difficult to know these with one hundred percent accuracy. So
each time they run the simulation they make small changes to the data. Because of the
effects of chaos theory, a small change could result in a large deviation in the outcomes.

For example, astronomers know the dimensions of the ellipse of Mercury’s orbit to an
accuracy of several meters. Laskar and Gastineau ran 2,501 simulations varying these
dimensions over a range of less than a centimeter. Even this small perturbation resulted in
startlingly different outcomes for our solar system.

If the solar system were to be ripped apart, you might expect one of the big planets, like
Jupiter or Saturn, would be the culprit. But the orbits of the gas giants are extremely stable.
It’s the rocky terrestrial planets that are the troublemakers. In one percent of simulations,
Laskar and Gastineau found that tiny Mercury posed the biggest risk. The models show that
Mercury’s orbit could start to extend due to a certain resonance with Jupiter, with the
possibility that Mercury could collide with its closest neighbor, Venus. In one simulation, a
close miss was enough to throw Venus out of kilter, with the result that Venus collides with
Earth. Even close encounters with the other planets would be enough to cause such tidal
disruption that the effect would be disastrous for life on our planet.

This isn’t simply a case of abstract mathematical speculation. Evidence of such
collisions has been observed in the planets orbiting the binary star Upsilon Andromedae.
Their current strange orbits can be explained only by the ejection of an unlucky planet
sometime in the star’s past. But before we head for the hills, the simulations reveal that it
will take several billion years before Mercury might start to misbehave.

INFINITE COMPLEXITY

What of my more modest goal of predicting the throw of my die? Laplace would have said
that provided I can know its dimensions, the distribution of its atoms, the speed at which it is
launched, and its relationship to its surrounding environment, theoretically the calculation is
possible. But the discoveries of Poincaré and those who followed have revealed that just a
few decimal places could be the difference between a 6 or a 2. The die is designed to have
only six different outcomes, yet the input data range over a potentially continuous spectrum
of values. The question is whether the dynamics of the die are truly chaotic—or could they
be simpler than one might expect? If I vary the angle at which the die leaves my hand, is
there a moment when the outcome flips from a 6 to a 2, or is it much more sensitive to small
changes?

A Polish research team recently analyzed the throw of a die mathematically, and by
combining this with the use of high-speed cameras they have revealed that my die may not
be as chaotic and unpredictable as I feared. It just depends on the conditions of the table
onto which you are throwing your die. The research group consists of a father-and-son
team, Tomasz and Marcin Kapitaniak, together with Jaroslaw Strzalko and Juliusz Grabski,
and they are based in Lódź. The model they considered, published in a paper in the journal
Chaos in 2012, assumes that the die is perfectly balanced, like the one I brought back from



Vegas. Air resistance, it turns out, can be ignored, as it has very little influence on our cube
as it tumbles through the air. When it hits the table a certain proportion of its energy is
dissipated, so that after a number of bounces it has lost all kinetic energy and comes to a
rest. (Friction on the table is also key, as the die is likely to slide only in the first few
bounces, but the model explored by the Polish team assumed a frictionless surface, as the
dynamics get too complicated to handle when friction is present. So imagine throwing your
dice onto an ice rink.)

I’d already written down equations based on Newton’s laws of motion to calculate the
dynamics of the die as it flies through the air. In the hands of the Polish team they turn out
not to be too complicated, but the equations for the change in dynamics after the impact
with the table are pretty frightening, taking up ten lines of their paper.

The paper includes pictures that describe the outcome of their experiments. The Polish
team investigated the effect of varying two parameters: the height from which the die was
launched and the angular velocity around one of the axes. They gave each face of the die
its own color and constructed a picture that took each coordinate in the diagram and colored
it according to the face of the die that resulted from launching it within the parameters
corresponding to that coordinate. So if the resulting picture is fractal—meaning that
however much I zoom in, I still see regions containing at least two colors—then the
outcome of the roll of the die is impossible to predict. The Polish team tried throwing their
dice on different types of tables. They discovered that if the amount of energy dissipated on
impact with the table is quite high, the picture of the outcome does not have a fractal quality.
This means that if one can settle the initial conditions with appropriate accuracy, the
outcome can be predictable and repeatable. This predictability implies that more often than
not, the dice will land on the face that was lowest when they were launched. A die that is
fair when static may actually be biased when one adds in its dynamics.

As the table becomes more rigid, resulting in less energy being dissipated and hence
more bouncing, I start to see a fractal quality emerging.



Moving from (a) to (d), the table dissipates less energy, resulting in a more fractal quality for the
outcome of the dice.

So the bottom line is look for a casino whose craps tables have thick felt that might
absorb the energy of the die as it hits the table. The less energy that is dissipated on impact
with the table, the more chaotic its resulting behavior and the more it seems that the
outcome recedes back into the hands of the gods.

There is an important message here. Dynamical systems like the weather, population
growth, the economy, or the fall of my die can have regions that are very predictable and
knowable. Throw the die on a table that causes the die to lose energy and the behavior of
the die is not chaotic. Approximate knowledge of how the die is launched will be enough to
calculate its outcome. But there are other conditions under which these dynamical systems
become chaotic and unknowable. The trick is knowing for any dynamical system the
moment when it flips from being predictable to chaotic, knowing when you can’t know what
is going to happen next.

DOES GOD PLAY DICE?

In the deep past, gods weren’t considered to be supernatural intelligences living outside the
system. They were rivers, the wind, fire, the sun—things that could not be predicted or
controlled. They lived in the realm of chaos. Twentieth-century mathematics has revealed
that these ancient gods are still with us. There are natural phenomena that will never be
tamed and known. Chaos theory asserts that I cannot know the future of certain systems



because they are too sensitive to small inaccuracies. Because we can never have complete
knowledge of the present, chaos theory denies us access to the future.

That’s not to say that all futures are unknowable. Very often we are in regions that
aren’t chaotic, where small fluctuations have little effect. This is why mathematics has been
so powerful in helping us to predict and plan. The power of mathematical equations has
allowed us to land spaceships on other planets, predict the paths of deadly typhoons on
Earth, and model the effects of deadly viruses, allowing us to take action before they
become a pandemic. But at other times we cannot accurately predict or control outcomes.

Some religious commentators who know their science and seek to offer a scientific
explanation for how a supernatural intelligence could act in a scientific world have
intriguingly tried to use the gap that chaos provides as a space for this intelligence to affect
the future. One of these is the quantum physicist John Polkinghorne. Based at the
University of Cambridge, Polkinghorne is a rare man who combines both the rigors of a
scientific education with years of training to be a Christian priest. I will return to
Polkinghorne in the Third Edge, when I explore the unknowability inherent in his own
scientific field of quantum physics, but he has also been interested in the gap in knowledge
that the mathematics of chaos theory provides as an opportunity for God to influence the
future course of humanity.

Polkinghorne has proposed that a supernatural intelligence can still act without violating
the laws of physics via the indeterminacies implicit in chaos theory. Chaos theory says that
we can never know the setup precisely enough to be able to run deterministic equations, and
hence there is room in Polkinghorne’s view for divine intervention, to tweak things in such a
way as to remain consistent with our partial knowledge but still influence outcomes.

Polkinghorne is careful to stress that to use infinitesimal data to effect change requires a
complete holistic top-down intervention. This is not a God in the details but an all-knowing
God. Given that chaos theory means that even the location of an electron on the other side
of the universe could influence the whole system, we need to have complete, holistic
knowledge of the system—the whole universe—to be able to steer things. We cannot
successfully isolate a part of the universe and hope to make predictions based on that part.
So it would require knowledge of the whole to act via this tiny chink.

Polkinghorne’s take on how to square the circle of determinism and influence is to use
the gap between epistemology and ontology—in other words, between what we know and
what is true. It is important to recognize that chaos theory is deterministic. It is not random.
Repeat the experiment with exactly the same starting conditions and the result will be the
same each time. But since we cannot know with complete certainty the state of the
universe at this moment in time, from our perspective there is no determinacy. Many
different scenarios coincide with our impartial description of what we currently know about
how the universe is set up. Polkinghorne’s contention is that at any point in time this gives
God the chance to intervene and shift the system between any of these scenarios without
our being aware of the shift. As we have seen, chaos theory means that these small shifts
can still result in hugely different outcomes. Polkinghorne is careful to assert that there is
change only in information, not energy. The goal here is not to violate any rules of physics.
As Polkinghorne says, “The succession of the seasons and the alternations of day and night
will not be set aside.”

Even if you think this is rather fanciful (as I do), a similar principle is key to our own
feeling of agency in the world. Free will is related ultimately to the deep desire to challenge



a belief in a reductionist philosophy. It makes sense to create a narrative in which we have
free will because that is how we experience life. If things were obviously deterministic, we
wouldn’t think that we had any meaningful choice. From a human perspective, we feel like
we make meaningful choices every day. But perhaps that feeling is just a result of chaos
theory masking our ability to see determinism at work in the world.

It is striking that Newton, the person who led us to believe in a clockwork deterministic
universe, also felt that there was room in the equations for God’s intervention. He wrote of
his belief that God would sometimes have to reset the universe when things looked like they
were going off course. He got into a big fight with his German mathematical rival, Gottfried
Leibniz, who couldn’t see why God wouldn’t have set things up perfectly from the outset. In
Leibniz’s view, “Sir Isaac Newton and his followers have also a very odd opinion
concerning the work of God. According to their doctrine, God Almighty wants to wind up
his watch from time to time: otherwise it would cease to move. He had not, it seems,
sufficient foresight to make it a perpetual motion.”

Newton’s calculus gave me a feeling that I could know the future, that I could shortcut
the wait for it to become the present. But the mathematics of the twentieth century
revealed that theory doesn’t necessarily translate into practice. Even if Laplace is correct
that complete knowledge of the current state of the universe should lead to complete
knowledge of the future, I will never have access to that complete knowledge. The
shocking revelation of twentieth-century chaos theory is that even an infinitesimally small
approximation can change everything. The divergent paths of the chaotic billiard table mean
that since we can never know which path we are on, our future is not predictable.

The mathematics in which I had placed so much faith revealed its own limitations. But
the situation is not entirely hopeless. Many times equations are not sensitive to small
changes and hence do give us access to predictions about the future. After all, this is how
we landed a spaceship on a passing comet.

It is striking to listen to Laplace on his deathbed. With only a finite amount of time to go,
he admitted, “What we know is little, and what we are ignorant of is immense.” It isn’t just
the outward behavior of planets that is unknowable. Probing deep inside my casino die
reveals another challenge to Laplace’s belief in a clockwork universe.
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Everyone takes the limits of his own vision for the limits of the
world.

—Arthur Schopenhauer

HEN I STARTED AT  THE LOCAL SCHOOL, I remember my music teacher asking the
class whether anyone wanted to learn a musical instrument. Three of us put up our

hands. The teacher led us into the storeroom cupboard to see what instruments were
available. The cupboard was bare except for three trumpets stacked up on top of each
other.

“It looks like you’re learning the trumpet.”
I don’t regret the choice (even if there wasn’t one). I had a great time playing in the

local town band and larking around in the brass section of the county orchestra as we
counted bars of rest. But I used to look over with a little envy at the string section, which
seemed to be playing all the time, getting all the good tunes. A few years ago, during a radio
interview, I was asked what new musical instrument I would choose to learn, given the
opportunity, and which piece of music I would aspire to play.

“The cello. Bach’s suites,” I said without thinking.
The question has been nagging at the back of my mind since that interview—could I

learn to play those beautiful cello suites? Perhaps it was too late to pick up such new skills,
but I needed to know. So I bought a cello. It sits behind me as I write. When I need a break
from analyzing equations, I massacre one of the gigues from the first suite for cello. I can
feel Bach turning in his grave, but I am enjoying myself.

One of the fun things about the cello is the possibility of sliding your finger up the string
to create a continuous glissando of notes. This is not something I can do on my trumpet,
which is an instrument of discrete notes corresponding to different combinations of fingers.
It turns out that this tension between the continuous glissando of the cello and the discrete
notes of the trumpet is relevant to our attempt to predict the behavior of my die.

To predict how it will land I need to know what it is made from. Denser acetate in one
corner will lead to one side of the die being favored over the others. So if I am going to
attempt to apply Newton’s laws to my die as it tumbles through the air, I need to know how
it is put together. Is it a continuous structure, or, if I look closely, is it made up of discrete
pieces?

If I accept the limits of my own vision, then I can’t see anything other than the clear red
acetate. But with an optical microscope I could magnify the die by a factor of fifteen
hundred, which would scale it up to the size of a large building. Peering inside this huge
cube wouldn’t reveal much about how it is built. Everything would still look pretty smooth
and continuous.



In the twentieth century, microscopes exploiting the electromagnetic spectrum allowed
scientists to magnify things a further thousand times. Now my die will span from one side of
London to the other. At this magnification it starts looking grainier. The sense of continuous
structure gives way to something more discrete. Current electron microscopes allow me to
zoom in another ten times closer, at which point I might start to see the carbon and oxygen
atoms that I know to be ingredients of the acetate from which my die is made.

Scientists formulated an atomic view of matter long before they could actually see
atoms under a microscope. (The word atom was coined by the ancient Greeks to denote
the indivisible particles from which all matter was built.) But atoms like oxygen and carbon
turned out not to be as indivisible as their name suggested. Now we know that atoms are
made up of electrons, protons, and neutrons, which in turn are made up of quarks. In 2013,
quantum microscopes captured pictures of electrons orbiting the nucleus of a hydrogen
atom. But is there a limit to how far we can dig?

What will happen if I take my die and keep dividing it in half? The mathematical side of
me says no problem. If I have a number, I can keep dividing it by two.

There is no point, mathematically, at which I have to stop. But if I try to do the same
thing with the physical die sitting on my desk—if I cut it in half, then in half again—how far
can I keep going? The tension between the continuous versus the discrete nature of matter,
between what is mathematically possible and what is physically possible, has been raging
for millennia. Is the universe dancing to the sound of my trumpet or shimmying to the
glissando of my cello?

THE MUSIC OF THE SPHERES

How do I know about the electrons and quarks that are believed to be the last layer of my
die? I’ve never seen them. I’ve actually forgotten when or why I first became aware of
their existence. It is a bit like the way I know that Everest is the tallest mountain. I know it
only because I’ve been told so many times. But before asking whether there is anything
beyond electrons and quarks, I want to know how we got to these basic building blocks in
the first place.

It’s only just over a hundred years ago that convincing evidence emerged that things are
made up of discrete building blocks, but the hunch that this was the case goes back
thousands of years. In India it was believed that matter was made of basic units
corresponding to taste, smell, color, and touch. The Indians divided these units into some that
were infinitesimally small and took up no space, and others that were “gross” and took up
finite space—an extremely prescient theory, as you will see once I explain our current
model of matter.

In the West the ancient Greeks were the first to propose an atomistic philosophy of
nature, advocating the view that physical reality could be reduced to fundamental units that
made up all matter and could not be broken down into anything smaller. One of the seeds



for this belief was a rather remarkable discovery attributed to Pythagoras: namely, that
numbers form the basis of musical harmony. Legend has it that inspiration struck when he
passed a blacksmith and heard hammers banging out a combination of harmonious notes.
Intrigued by the musical harmony, he went home and experimented with the notes made by
a stringed instrument.

If I take the vibrating string on my cello, I can produce a continuous sequence of notes
by gradually pushing my finger up toward the bridge of the cello, making a sound called a
glissando. If I stop at the positions that sound harmonious when combined with the open
vibrating string, it turns out that the lengths of the strings are in a perfect whole-number
ratio with each other. If I place my finger at the halfway point along the vibrating string I
get a note that sounds almost exactly like the note I started with. The interval is called an
octave, and to the human ear the notes sound so similar that we give them the same names.
If I place my finger a third of the distance from the head of the cello, I get a note that
sounds particularly harmonious when combined with the note of the open string, known as
the perfect fifth. Our brains respond to a subliminal recognition of this whole-number
relationship between the wavelengths of the two notes.

Having found that whole numbers were at the heart of harmony, the Pythagoreans
began to build a model of the universe with these whole numbers as the fundamental
building blocks of everything they saw or heard around them. Greek cosmology was
dominated by the idea of a mathematical harmony in the skies. The orbits of the planets
were believed to be in a perfect mathematical relationship to each other, giving rise to the
idea of the music of the spheres.

More importantly for understanding the makeup of my die, the Pythagoreans also
believed that discrete numbers were the key to understanding the physical world. They
were the first to propose the idea that atoms, like numbers, could be added together to make
up matter. Plato took this one step further and argued that these atoms were shapes, which
he believed to be the key to the ingredients of Greek chemistry: the elements of fire, earth,
air, and water. Each element, Plato believed, had its own three-dimensional mathematical
shape. Fire was the shape of a triangular-based pyramid, or tetrahedron, made from four
equilateral triangles. Earth was cube-shaped, like my Vegas dice. Air was made from a
shape called an octahedron, constructed from eight equilateral triangles. It is a shape that
looks like two square-based pyramids fused together along the square faces. Finally, water
corresponded to the icosahedron, a shape made from twenty equilateral triangles. Plato
believed that the geometrical interaction of these basic shapes gave rise to the chemistry of
the elements.

An atomistic view of matter was not universally held across the ancient world. After all,
there was no evidence for these indivisible bits. You couldn’t see them. Aristotle was one of
those who did not believe in the idea of fundamental atoms. He thought that the elements
were continuous in nature, that you could theoretically keep dividing my die up into smaller
and smaller pieces. He believed that fire, earth, air, and water were elemental in the sense
that they could not be divided into “bodies different in form.” If you kept dividing, you would
still get water or air. If you take a glass of water, to the human eye it appears to be a
continuous structure that, theoretically, can be infinitely divided. Likewise if you take a piece
of rubber, you can stretch it in a smooth manner, making it appear continuous in nature. The
stage was set for the battle between the continuous and the discrete models of matter. The
glissando versus the discrete notes of the musical scale. The cello versus the trumpet.



Intriguingly, it was a discovery credited to the Pythagoreans that would threaten the
atomistic view and turn the tide for many years in favor of the belief that matter could be
divided infinitely.

IRRATIONAL EXUBERANCE

If I draw two lines on the page, from an atomistic point of view each line will consist of a
certain number of indivisible atoms whose lengths would be in a ratio corresponding to the
number of atoms making up each line. But things didn’t turn out to be quite so orderly. In
fact, it was Pythagoras’s own theorem about right-angled triangles that revealed that the
world of geometry could give rise to lines whose relative lengths could not be captured by
simple fractions.

My casino die offers a challenge to this atomistic view of nature. Take two of the edges
of the cube at ninety degrees to each other. They have equal length. Now consider the
diagonal line across the face of the cube that completes the triangle. How long is this
diagonal line relative to the shorter sides?

Pythagoras’s theorem about right-angled triangles says that the square of the length of
the diagonal is equal to the sum of the squares of the lengths of the two shorter sides. If I
set the length of the sides of my die as 1, then Pythagoras’s theorem implies that the length
of the diagonal across its face is a number that, when you square it, is equal to 2. So what is
this number?

The Babylonians, it turns out, were fascinated by the challenge of solving this riddle. A
tablet housed at Yale University dating back to the Old Babylonian period (1800–1600 BC)
offers an estimate. Written using the sexagesimal system, or base 60, the Babylonians
proposed that the length be:

In decimal notation this comes out to 1.41421296296296 . . . , where the 296 repeats itself
infinitely. It is true of all fractions that when written as decimals, they repeat themselves
after some point (and any decimal expansion that repeats itself can always be written as a
fraction). The Babylonian calculation is quite a feat. It is correct up to six decimal places.
But when you square that fraction it just misses 2. The ancient Greeks discovered that
however hard the Babylonian scribes tried, they would always find that their fractions just
missed squaring to 2.

One of Pythagoras’s followers, Hippasus, is credited with the discovery that the
Babylonians were doomed to failure. He proved that the length of this diagonal could never
be expressed as a fraction. Pythagoras’s theorem about right-angled triangles implies that
the long side would equal the square root of 2 times the length of the short sides. But
Hippasus proved that there was no fraction whose square was exactly 2. This length would
have to be expressed by a new sort of number. The proof uses one of the classic tools in
the mathematician’s arsenal: proof by contradiction. Hippasus began by assuming that there
was a fraction whose square was 2. By some deft manipulation this always led to the



contradictory statement that there was a number that was both odd and even. The only way
to resolve this contradiction was to realize that the original assumption must have been false
—there can be no fraction whose square is 2.

His fellow Pythagoreans were reputedly dismayed by the revelation that their beautiful
right-angled triangles could produce such inharmonic lengths. The sect took a vow of
silence. When Hippasus let the discovery out of the bag, legend has it that he was drowned
at sea for revealing such disharmony in the physical world. But these new numbers, called
irrational numbers because they are not ratios of whole numbers, were not so easily
silenced.

Irrational lengths inside the cube

I certainly have the feeling that this length exists. I can see it on a ruler held up against
the long side of the triangle. It is the distance between two opposite corners of any side of
my die. Yet if I try to write down the number as an infinite decimal I can never capture it. It
begins 1.414213562 . . . and then continues to infinity, never repeating itself.

The discovery by the ancient Greeks that there were lengths that couldn’t be expressed
as simple ratios of whole numbers led the mathematicians of the time to create new
mathematics, the mathematics of irrational numbers, to take the measure of the universe.
Other basic lengths like π, the circumference of a circle of unit diameter, also turned out to
be irrational and not captured by ratios of whole numbers. Although the ancient Greeks
knew two thousand years ago about the irrationality of the square root of 2, it took until the
eighteenth century for Swiss mathematician Johann Heinrich Lambert to prove that no
fraction could capture π.

Reading about numbers that can’t be captured using simple fractions was one of the
defining moments that sparked my love affair with mathematics. The same year that my
music teacher introduced me to the trumpet in the storeroom cupboard, my math teacher
introduced me to the proof of the irrationality of the square root of 2. The proof was
contained in a book called A Mathematician’s Apology, which he recommended to ignite
the mathematical fire in me. It worked. I was amazed to find that you could prove with a
finite logical argument that only the infinite could articulate a simple length such as the



diagonal across a square. If I couldn’t write out this length, the next best thing was to know
why.

Since reading that proof as a schoolkid, I have learned about alternative ways to explore
irrational numbers. There are infinite expressions with patterns that make the number less
mysterious. For example,

or

The discovery of these expressions pulled irrational numbers into the known. A fraction
is a number whose decimal expansion repeats itself from some point, and I comforted
myself with the thought that these expressions formed a clear pattern, which helped me to
know these new numbers. Of course, for any practical application, I could probably get
away with an approximation in the form of a fraction. Most engineers are happy to use the
estimate 22/7 for π, which Archimedes got by approximating a circle with a ninety-six-sided
figure. In fact, I need only know thirty-nine digits of π to be able to calculate the
circumference of a circle the size of the observable universe to the precision of a hydrogen
atom.

But only by dividing space infinitely would I be able to measure the precise dimensions
of my simple cube. The discovery of irrational numbers meant that Aristotle’s continuous
view of matter would remain dominant in the West until the Renaissance. Newton’s
contemporary Robert Boyle appears to have been the first to question the Aristotelian view
of matter, which had dominated for nearly two thousand years. In his book The Skeptical
Chymist, Boyle challenged the idea that matter was made up of the four elements of fire,
earth, air, and water. These might be good descriptions of the states of matter, he argued,
but not of its constituent parts.

Instead, he argued for the existence of chemical elements. Not only that, he also made
what at the time was a rather heretical statement. He believed that these elements were
minute bodies differing only in “bulk, figure, texture, and motion.” This was theologically
dangerous, as it seemed to suggest a materialistic and godless view of the world. Because
of this, some have gone as far as to declare Boyle the Galileo of the chemical revolution.

Although Newton would concur with Boyle’s suggestion that the material world was
made up of indivisible units, the mathematical tools he developed at the same time relied
heavily on the notion that time and space were infinitely divisible. Calculus, which allowed
one to take a snapshot of a universe in constant flux, made sense only as a process in which
space is divided up into ever smaller pieces.

The question of the infinite divisibility of time and space had fueled philosophical
argument since the days of the ancient Greek thinker Zeno of Elea. In one of his famous
paradoxes, Zeno proposed that an arrow can never hit its target because it must first cover
half the distance to the target, then half the distance again, and then half again, requiring
infinitely many moves if it is ever going to make it to the target.



The success of Newton’s calculus reignited the debate. There were still those who
considered the notion of infinite divisibility almost heretical. One such, Bishop Berkeley,
dedicated a whole treatise, The Analyst, to arguing that trying to make sense of dividing by
zero was absurd. The subtitle made his intentions clear—it was “Addressed to an Infidel
MATHEMATICIAN.”

While most infidel mathematicians quickly latched onto the power of calculus, Newton’s
other breakthroughs supported the view that, although space and time could be infinitely
divided, matter could not. His idea of a world made up of indivisible matter would in time
become the prevalent theory of the universe. But at this point, it was still very much a
theory without a great deal of evidence.

Newton’s discovery of the laws of motion—of how forces acted on objects such as
planets and apples—had been so successful that Newton came to believe that if it held true
for the very large and the medium sized, then why not for the very small? Maybe all matter
consisted of tiny particles whose behavior was determined by his laws of motion. In his
Principia he stated his belief that by applying his ideas to these particles one could predict
the behavior of all material things.

Newton’s theory of light also contributed to the growing feeling that an atomistic
perspective was the best way to understand the world. The easiest way to describe the
phenomena he documented in his book Opticks was to think of light as a particle. The way
it reflected seemed to mimic the behavior of a billiard ball as it bounced off the sides of the
table. From a scientific point of view, there was no empirical evidence for this model of a
universe made from indivisible particles. Even with the new microscopes that began to
emerge in the seventeenth century, you couldn’t see anything to justify an atomistic model
of matter. But atoms began to permeate the popular culture of the time. Nicholas Brady’s
“Ode to Saint Cecilia,” set to music by Purcell in 1691, talks of seeds of matter:

Soul of the World! Inspir’d by thee,
The jarring Seeds of Matter did agree,
Thou didst the scatter’d Atoms bind,
Which, by thy Law s of true proportion join’d,
Made up of various Parts one perfect Harmony.

The best evidence for an atomistic view of matter came a hundred years later, and it
was, as Brady had intimated, “made up of various Parts one perfect Harmony.”

ATOMIC ALGEBRA

At the beginning of the nineteenth century, English chemist John Dalton provided the first
real experimental justification for the notion that matter was made up of indivisible atoms.
His discovery that compounds were made up of substances that were combined in fixed
whole-number ratios was a breakthrough, and it led to a new scientific consensus that the
building blocks of matter really did come in discrete packages.

“The elements of oxygen may combine with a certain portion of nitrous gas or with
twice that portion, but with no intermediate quantity,” he wrote. This certainly didn’t
constitute a proof that matter was discrete, and it was not strong enough evidence to knock
the belief of those who favored a continuous model of matter. But it was highly suggestive.



The combination of nitrogen and oxygen could be expressed algebraically as N + O or
N + 2O. There was nothing in between. All compounds seemed to come in whole-number
ratios. For example, aluminum sulfide was given algebraically as 2Al + 3S = Al2S3. In this
instance the elements combined in a 2:3 ratio. Elements never combined in a non-whole-
number relationship. It was as if a musical harmony existed at the heart of the chemical
world. The music of tiny spheres.

The Russian scientist Dmitri Mendeleev is remembered for laying out this growing list
of molecular ingredients in such a way that a pattern began to emerge. Like several
scientists before him, Mendeleev arranged the elements in increasing relative weight, but he
realized that to get the patterns he could see emerging he needed to be flexible. He’d
written the known elements down on cards and was continually moving them around on his
desk in a game of chemical patience, trying to get them to yield their secrets. But nothing
worked. It was driving him crazy. Eventually he collapsed in exhaustion and the secret
emerged in a dream. When he awoke, his dream gave him the pattern for laying out the
cards. One of the important points that led to his successful arrangement was the realization
that he needed to leave some gaps—that some of the cards from the pack were missing.

The key to his arrangement was something called the atomic number, which depended
on the number of protons inside the nucleus rather than the combination of protons and
neutrons that determines the overall weight. Since no one had any clue yet about these
smaller particles, Mendeleev was guessing at its underlying reason. Next he noticed that
elements eight along seemed to share very similar properties. Eight on from lithium was
sodium, followed after another eight by potassium. All of these were soft, shiny, highly
reactive metals. Similar patterns matched up gases with related properties.

This rule of eight had been picked up before Mendeleev’s breakthrough and was called
the law of octaves. It was compared to the musical octave: if I play the eight notes of a
major scale on my cello, the top and bottom notes sound very similar and are given the same
letter names. When John Newlands, the originator of this law of atomic octaves, first
proposed his concept, he was laughed out of the Royal Society. “Next you’ll be trying to tell
us that the elements can be understood by putting them in alphabetical order,” joked one
Fellow. Mendeleev’s arrangement confirmed to a certain extent the veracity of this law of
octaves. This idea of repeating or periodic patterns led to Mendeleev’s arrangement being
called the “periodic table.”

Mendeleev’s genius was to realize that if the elements didn’t quite match up, it might
simply indicate a missing element that had yet to be discovered. The gaps in his table were
probably his most insightful contribution. The fact that there was a hole in the thirty-first
place, for example, led Mendeleev to predict in 1871 the existence and properties of a new
substance that would later be called gallium. Four years later, French chemist Lecoq de
Boisbaudran isolated the first samples of this new element, predicted thanks to the
mathematical patterns discovered by Mendeleev.

Here was a list of the elements that made up all matter. My die, for example, is made
by putting together carbon atoms, oxygen atoms, and hydrogen atoms in a structure called
cellulose acetate (my own body is predominantly made up of combinations of these same
atoms but with a different structure). Cellulose acetate is a homogeneous structure, free of
bubbles. Older dice were made from a nitrate-based cellulose concocted by John Wesley
Hyatt in 1868. His cocktail of nitric acid, sulphuric acid, cotton fibers, and camphor



produced an impressive substance with great tensile strength that resisted the effects of
water, oils, and even diluted acids.

Hyatt’s brother named their new substance “celluloid,” and it became a highly cost-
effective substitute for objects that had previously been carved out of ivory or horn. Billiard
balls, removable collars, and piano keys were all made from this synthetic plastic. Dice
made from cellulose nitrate were the industry standard in the early twentieth century, but
after several decades of use they would crystallize and decompose, crumbling in on
themselves and releasing nitric acid gas. The real collectors’ items are Vegas dice made
from cellulose nitrate in the late ’40s that avoided this crystallization. Mine won’t suffer the
same fate. On the next page is a picture of how its atoms are put together.

The identification of these elements was not proof of a discrete model of matter. There
was no reason why this pictogram couldn’t be a formula for the way a continuous structure
combines. Although chemists were tending toward an atomistic view of the universe, this
was far from the case among physicists. The few who embraced an atomic model of
matter were laughed out of the lab.

Ludwig Boltzmann, a German physicist, challenged his peers. He believed that atomic
theory offered a powerful way to explain the concept of heat. He argued that a gas was
made up of tiny molecules bashing around like a huge game of micro-billiards. Heat was just
the combined kinetic energy of these tiny moving balls. Using this model, combined with
ideas of probability and statistics, he was successfully able to explain the large-scale
behavior of a gas. Most physicists, committed as they were to a continuous view of matter,
dismissed his ideas.

Boltzmann was so fiercely ridiculed that he was forced to retreat from his belief that
this billiard-ball theory of matter represented reality, and to refer to it as a heuristic model if
he wanted to get his ideas in print. Ernst Mach, his great nemesis, taunted him, saying:
“Have you ever seen an atom?” Boltzmann was plagued by depression (there is evidence
that he was, in fact, bipolar). The rejection of his ideas by the scientific community
contributed to the depression that struck in 1906. That summer, he hung himself during a
holiday with his family near Trieste, while his daughter and wife were out swimming.

This was a tragic end, not least because evidence that he was right was just emerging.
The work that Einstein and others did on Brownian motion would prove extremely difficult



to explain for those, like Mach, who believed in a continuous view of the world.

POLLEN PING-PONG

Although conventional microscopes don’t allow one to see individual atoms, nineteenth-
century microscopes did allow scientists to see the effect these atoms were having on their
surroundings. In 1827, Robert Brown was struck by the random behavior of small particles
of pollen floating on the surface of water. Since pollen was organic, Brown’s first thought
was that it might be exhibiting signs of life as it jumped around the surface. When Brown
saw the pollen’s behavior replicated by inorganic matter like coal dust, he was rather
stumped as to what was causing the jittery motion.

The idea that invisible atoms might be bashing around in such a way as to impact the
visible world had first been suggested by the Roman poet Lucretius in his didactic poem On
the Nature of Things:

Observe w hat happens w hen sunbeams are admitted into a building and shed light on its shadow y
places. You w ill see a multitude of tiny particles mingling in a multitude of w ays . . . their dancing is an
actual indication of underlying movements of matter that are hidden from our sight. . . . It originates w ith
the atoms w hich move of themselves. Then those small compound bodies that are least removed from
the impetus of the atoms are set in motion by the impact of their invisible blow s and in turn cannon
against slightly larger bodies. So the movement mounts up from the atoms and gradually emerges to the
level of our senses, so that those bodies are in motion that w e see in sunbeams, moved by blow s that
remain invisible.

This was written in 60 BC, but it would take Einstein’s mathematical analysis of the
motion to confirm this atomic explanation of the random movement in Lucretius’s sunbeams
and Brown’s pollen. Nowadays we call it Brownian motion.

Could some model explain the strange motion Brown had observed exhibited by pollen
dancing on the surface of the water? If you divide the surface into a grid, there seems to be
an equal probability that the pollen will move left, right, up, or down. Its motion is similar to
that of a drunken man who randomly stumbles this way and that. The picture below shows
the paths of various particles of pollen as plotted by the French physicist Jean Baptiste
Perrin, who took up the challenge of explaining the pollen’s motion in his book Les Atomes.



It was only at the beginning of the twentieth century that scientists were finally able to
prove that the pollen was being buffeted by the motion of much smaller molecules of water.

Thanks to his mathematical brilliance, Einstein came up with a model that explained how
a large object was subjected to the impact of much smaller objects moving randomly. He
proved that his model predicted precisely the observed behavior. Think of an ice rink with a
large puck sitting in the middle of the rink and then introduce a whole system of tiny pucks
that are set off in random directions at particular speeds. Every now and then the tiny pucks
will hit the large puck, causing it to move in one direction. The challenge was to assess how
many small pucks you would need, and their relative size, in order to produce the observed
behavior of the larger puck.

Einstein’s success in producing a mathematical model that replicated the motion of the
pollen was a devastating blow to anyone who believed that a liquid like water was a
continuous substance. No one still believing in Aristotle’s view of matter was able to come
up with a comparably convincing explanation. And yet, although Einstein’s model offered
convincing evidence that matter came in discrete pieces, it did not answer the more
fundamental question of whether you could infinitely divide these pieces into ever-smaller
parts.

Indeed, the indivisible atoms turned out to be far from indivisible. Scientists would soon
discover smaller constituent parts. The next layer down revealed that an atom is made up of
even tinier pucks called electrons, protons, and neutrons, the first of which had already
come to light some eight years before Einstein’s breakthrough.



PULLING APART THE ATOM

The way science works is that you hang on to your model of the universe until something
pops up that doesn’t seem to fit—something new that you can’t quite explain with the
current model. Sometimes the challenge comes from an altogether different field. This was
the case with the discovery of subatomic particles.

The realization that the atom might be made up of smaller bits emerged from
experiments British physicist J. J. Thomson conducted at the end of the nineteenth century
to understand electricity. Thomson had been investigating how gas conducted electricity. His
early experiments involved a single glass tube filled with air with two electrodes at either
end. By applying a high-voltage charge between the electrodes, an electric current was
produced. The strange thing was that Thomson seemed to be able to actually see the
current, as an arc of light that appeared in the air between the two electrodes.

Things became even stranger when he removed the gas completely from the tube and
applied the voltage across a vacuum. The arc of light disappeared. But, bizarrely, the glass
at the end of one tube was found to fluoresce. When he placed a metal cross in the tube, a
cross-shaped shadow appeared in the middle of the glowing fluorescent patch.

Electrons emitted from the cathode that hit the opposite w all cause the glass to f luoresce.

The shadow always appeared opposite the negative electrode, otherwise known as the
cathode. The best explanation was that the cathode was emitting some sort of ray that
interacted with matter and made either the gas in the tube or, in the case of the vacuum, the
glass of the tube itself glow.

These “cathode rays” were something of a mystery. They were found to pass right
through thin sheets of gold when they were placed in the way. Were they some sort of
wave-like phenomenon, like light? Some scientists thought they were made up of negatively
charged particles spat out by the negative electrode and then attracted to the positive
electrode. But how could these particles pass through solid gold?

If they were negatively charged particles, Thomson believed he should be able to
change their path through the tube by applying a magnetic field. The German physicist



Heinrich Hertz had already tried this and failed, but Hertz hadn’t removed enough gas,
which interfered with the experiment. With the gas fully removed, things worked just as
Thomson had hoped. Apply a magnetic field to the rays, and, sure enough, the shadow
shifted. The rays were being bent by the magnet.

The real surprise came when Thomson made a mathematical calculation of what the
mass of these charged particles must be. If you apply a force to a mass then, as Newton’s
laws of motion state, the amount you’ll be able to move it will depend on the mass. So the
amount of deflection that a magnetic field will cause will have encoded in it information
about the mass of these particles. The calculation also depends on the charge. Once this
was determined in a separate experiment, Thomson could finally work out the mass of his
mysterious charged particles. The answer was startling. It was nearly two thousand times
smaller than the mass of a hydrogen atom, the smallest atom in the periodic table.

That these particles seemed to originate from the metal making up the electrode led to
the hunch that these particles were actually smaller constituents of the atom. The atom
wasn’t indivisible after all: there were smaller bits. They were called electrons, from the
Greek word for amber, the first substance to exhibit a charge.

The discovery that atoms were made up of even smaller constituents was a shock to
many scientists’ view of the world. When Thomson gave a lecture on his findings, he was
met by startled disbelief. As he wrote with his characteristic wit, “I was told long afterward
by a distinguished physicist who had been present at my lecture that he thought I had been
pulling their leg.”

When Thomson used a different metal, the masses of particles didn’t change. This
seemed to suggest that every atom had the same microparticles as constituent parts. The
first thought was that a hydrogen atom, given that it is two thousand times heavier than this
new electron, might be made up of two thousand or so of these electrons. But a helium
atom was roughly twice the mass of a hydrogen atom. Why would the number of electrons
jump from two thousand to four thousand, with nothing in between? Whole-number ratios
between the masses of atoms in the periodic table had been one of the reasons for
supposing that they were truly atomic. So what could account for these discrete steps in
mass? Furthermore, atoms were electrically neutral. So were there other particles that
canceled out the charge of the electron? Could you get atoms to emit positive particles to
counter these negative electrons?

The experiments offered evidence of a positive ray of particles running in the opposite
direction. When a magnetic field was applied to these particles, they were much harder to
deflect, implying that they were larger than the electrons. But their masses seemed to vary
according to the gas that was being used to fill the tubes. Thomson started with hydrogen
and found that the mass of the particles in this positive ray was essentially the same as the
mass of the atom you started with. It seemed that the hydrogen atoms in the tube were
having their electrons stripped away, leaving a large positive particle that was then attracted
to the opposite electrode.

Thomson managed to achieve a similar effect with other gases such as helium, nitrogen,
and oxygen. The masses were all whole-number multiples of the positive particle produced
by the hydrogen atom. Atomic harmony yet again. As yet, there was no reason to believe
that there weren’t many sorts of positive particles, just as there were many sorts of atoms.
Thomson put forward a model of the atom known as the plum pudding. The positively



charged part of the atom formed the pudding making up the bulk of the atom, while the
negative electrons were the tiny plums inside.

STRANGE BALLISTICS

Ernest Rutherford is generally credited with the discovery of the proton, the building block
for all these positive particles that Thomson had investigated. Just as with the electron, the
discovery came in a rather roundabout manner. Rather than the electricity that had
interested Thomson, Rutherford was fascinated by the new science of radioactivity. He
found that uranium spat out positively charged particles, known as alpha particles, and
became interested in what would happen when these particles collided with other atoms.
The age of the bombardment of the atom had begun. It would eventually lead to the ultimate
atom smasher: the Large Hadron Collider at CERN.

When Rutherford’s student Hans Geiger placed a thin sheet of gold foil between a
stream of alpha particles and the plate detecting the particles, to Rutherford’s surprise the
resulting behavior contradicted the theoretical model of the atom. In Thomson’s plum
pudding model of the atom, which has a positive charge evenly distributed, positive alpha
particles passing through the metal would be repelled by the positive charge in the atom.
Given that the charge is distributed over the full extent of the atom, you wouldn’t expect
much deflection.

Alpha particles being deflected by the nuclei of atoms of gold

But Geiger found that some of the alpha particles were deflected wildly, bouncing back
off the gold foil in the direction they’d been fired from. Rutherford was staggered: “It was
as if you fired a fifteen-inch shell at a piece of tissue paper and it came back and hit you.”
By counting how many alpha particles were deflected, and by how much, Geiger and
Rutherford discovered that the data were consistent with the charge and mass being
concentrated in a tiny center of the atom, which became known as the nucleus. It still
wasn’t clear whether this nucleus was indivisible.



When Rutherford bombarded lighter atoms with alpha particles, evidence emerged that
the nucleus wasn’t a single entity and that it was made up of constituent particles. Tracing
the paths of the alpha particles in a cloud chamber, he detected paths that were four times
longer than they should be. It was as if another particle four times as light was being kicked
out of the nucleus by the impact of the alpha particles. Rutherford found that once the
particle was kicked out of the nucleus, the atoms transformed. Pure nitrogen was being
converted into oxygen by the impact. Knock out one of these particles and the element
changed.

Here was evidence for a building block from which all nuclei of atoms were built. It
behaved just like the hydrogen atom with its electron stripped off. Rutherford had
discovered the proton. The nuclei of atoms were built by taking multiples of this proton. The
only trouble was that the charge didn’t make sense. The nucleus of helium was four times
as heavy as that of the hydrogen atom, yet its charge was only twice as big. How could this
be? Perhaps there were electrons in the nuclei attached to protons, canceling out the
charge. But electrons and protons couldn’t operate in such close proximity, so that couldn’t
be the answer.

This led Rutherford in the 1920s to guess that there might be a third constituent, which
he called a neutron, with approximately the same mass as the proton but no charge.
Producing evidence for this particle proved very tricky. He proposed to his colleague James
Chadwick crazy ways by which they might reveal the neutron. Experiments conducted in
the 1930s in Germany and France eventually picked up evidence of neutral particles emitted
when various nuclei were bombarded with alpha particles, but the experimenters mistakenly
believed it was some sort of electromagnetic radiation.

Chadwick was convinced that these particles must be the neutrons he’d discussed with
Rutherford. Further experiments revealed that their mass was only slightly bigger than the
proton, and without charge this new particle was the missing ingredient that made sense of
the numbers. With Chadwick’s discovery it seemed as if the building blocks of matter had
been revealed.

It was an attractive model. Fire, earth, air, and water—Aristotle’s four elements—had
been reduced to three particles: the electron, proton, and neutron. With these three building
blocks, scientists believed they could build all matter. Oxygen: eight protons, eight neutrons,
and eight electrons. Sodium: eleven protons, twelve neutrons, and eleven electrons. All
matter seemed to be made up of whole-number combinations of these three particles, and
for many decades, that is where things stood.

Except that the dividing didn’t stop there. It turned out protons and neutrons were not
indivisible, but their building blocks—quarks—have a strange property: they don’t like to be
seen in isolation. They only come in groups. Safety in numbers. If they have never been
seen on their own, why are scientists so confident that there are smaller bits into which
protons and neutrons can be divided? And if protons and neutrons can be divided, why
couldn’t these new constituent parts be equally divisible? Perhaps the question of the
indivisibility of matter is fundamentally unknowable. The discovery of the next layer, as we
probe even deeper into matter, is the topic of our next excursion.
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Everything we call real is made of things that cannot be
regarded as real.

—Niels Bohr

HE REALIZATION THAT  protons and neutrons might not be indivisible came not from
new and more sophisticated technology, but from the mathematics of symmetry. It is

striking that time and again, mathematics appears to be the best lens we have to peer into
the mysteries of science. The mathematical model responsible for our belief in the divisibility
of the proton and neutron arose shortly after physicists discovered that there were many
more particles out there than the three that were believed to be the constituent parts of
stable atoms. The discovery of these new particles emerged from the study of collisions that
happen in the upper atmosphere when cosmic rays strike the atmosphere.

The first evidence of new particles was found in the cloud chambers that scientists had
built in their labs to record the path of charged particles. (Cloud chambers are sealed tanks
full of a supersaturated vapor of water and alcohol; the supersaturation is such that any
charged particle passing through it leaves a trail of condensation.) Carl Anderson, a
physicist working at the California Institute of Technology, had used cloud chambers in 1933
to confirm the existence of a strange new thing called antimatter, first predicted some years
earlier by British physicist Paul Dirac. Dirac’s attempt to unify quantum physics and the
theory of electromagnetism had successfully explained many things about electrons, but it
had also suggested something that didn’t correspond to anything anyone had seen in the lab.

Dirac’s equations were a bit like the equation x2 = 4. The obvious solution is x = 2, but
there is also another mirror solution, namely x = –2, because –2 × –2 is also equal to 4. The
mirror solution in Dirac’s equations suggested that there might be a mirror version of the
electron with a positive charge. Most thought this was a mathematical curiosity with no
basis in reality, but when, four years later, Anderson spotted in his cloud chamber traces of
a particle behaving like an electron in a mirror, antimatter went from theory to reality.
Anderson’s “positrons,” as they came to be known, could be found in the particle
interactions happening in the upper atmosphere. And they weren’t the only new things to
appear.

Even stranger particles were soon leaving trails in Anderson’s cloud chamber. Anderson
started to analyze these unanticipated negatively charged new particles with his doctoral
student Seth Neddermeyer in 1936. The paths they were leaving indicated that their mass
was much larger than that of an electron (mass can be measured by how much a particle is
deflected under the influence of a magnetic field). The particle seemed to have the same
charge as the electron, but it was much harder to deflect.

The muon, as this particle is now called, was one of the first new particles to be
discovered in the interactions of cosmic rays with the atmosphere. The muon is unstable. It



quickly falls apart, most often into an electron and a couple of neutrinos (another new
particle, first detected in the 1950s) with almost no mass and no charge. Neutrinos made
sense both of neutron decay and of the decay of this new muon. The decay rate of the
muon was on average 2.2 microseconds, slow enough for some particles to still be around
when they reached the surface of the Earth.

The muon helped confirm Einstein’s prediction that time slows down as you approach
the speed of light. Given its half-life, far fewer muons should be reaching the surface of the
Earth than were being detected. The fact that time slows down close to the speed of light
helped explain this discrepancy. I will return to this in the Fifth Edge, when we consider
pushing time to the limits of knowledge.

The muon behaved remarkably like the electron, but it had greater mass and was less
stable. When the American physicist Isidor Rabi was told of the discovery, he said, “Who
ordered that?” It seemed strangely unnecessary for nature to introduce a heavier, less
stable version of the electron. Little did Rabi realize how much more there was on the
menu.

Having realized that the interactions of cosmic rays with the upper atmosphere were
creating new forms of matter, physicists decided that they had better not wait for these
particles to reach the cloud chambers in their labs, by which time they might have decayed
into traditional forms of matter. So the cloud chambers were moved to high-altitude
locations in the hope of picking up other particles.

The Caltech team chose the top of Mount Wilson, near their home base in Pasadena.
Sure enough, new tracks indicated that new particles were being picked up. Other teams
placed photographic plates in observatories in the Pyrenees and the Andes to see if they
could record different interactions. It turned out that the muon was the least of Rabi’s
worries. A whole menagerie of new particles started showing up.

Some had masses about one-eighth that of a proton or neutron. They came in positively
or negatively charged varieties and were dubbed pions. An electrically neutral version,
harder to detect, was later discovered. In Manchester two photographs showed what
appeared to be a neutral particle decaying into pions. The mass of these new particles was
roughly half that of a proton. The cloud chamber at the top of Mount Wilson recorded more
evidence to support the discovery of what would soon become known as kaons.

As time went on, more and more particles were uncovered, so many that the whole
thing became totally unwieldy. As Nobel Prize winner Willis Lamb quipped in his
acceptance speech of 1955, “The finder of a new elementary particle used to be rewarded
by a Nobel Prize, but such a discovery now ought to be punished by a $10,000 fine.” It had
been hoped that the periodic table would be simplified once scientists had discovered how it
was put together using electrons, protons, and neutrons. But these three particles turned out
to be just the tip of the iceberg. Now there were more than a hundred particles that seemed
to make up the building blocks of matter. Enrico Fermi went so far as to tell a student at the
time, “Young man, if I could remember the name of these particles, I would have been a
botanist.”

Just as Mendeleev had managed to find some sort of order with which to classify and
make sense of the atoms in the periodic table, the search was on for a unifying principle that
would explain these new muons, pions, kaons, and numerous other particles. The underlying
structure that finally made sense of this menagerie of particles—the map, as it were, to the
zoo—was ultimately discovered thanks to nimble mathematics.



MAPPING THE PARTICLE ZOO

When you are trying to classify things, whether plants, animals, or subatomic particles, it
helps to recognize their dominant characteristics. In the case of animals, the concept of
species offers some order in the animal kingdom. In particle physics, one of the
characteristics that helped divide the zoo into smaller groups was the idea of charge. How
does the particle interact with an electromagnetic force? Electrons would bend one way,
protons the other, and the neutron would be unaffected. As new particles emerged, they
could be filtered through the gateway of electromagnetic force. Some would join the
electron’s cage, others would head toward the proton, and the rest would be put together
with the neutron—a first pass at imposing some order on our particle menagerie.

Electromagnetic force is one of four fundamental forces identified as being at work in
bringing the universe together. The other forces are gravity; the strong nuclear force
responsible for binding protons and neutrons together at close quarters; and the weak
nuclear force, which controls things like radioactive decay.

What other characteristics could distinguish the different behaviors of these new
particles? It was soon found that the mass of a particle was actually quite a good way of
establishing some hierarchy. Pions and kaons were a factor lighter than the protons or
neutrons that made up ordinary matter, and could thus be collected together. But mass was
a rather rough and ready way of sorting particles. Physicists were on the lookout for
something more fundamental—a pattern as effective as the one Mendeleev had discovered
with his periodic table.

The key to making sense of the onslaught of new particles was a new property called
strangeness. The name arose due to the unusual behavior demonstrated by some of these
new particles as they decayed. Because mass is equivalent to energy (this is the crux of
Einstein’s equation E=mc2), and nature favors low-energy states, particles with larger mass
often try to find ways to decay into particles with smaller mass.

There are several mechanisms for this decay, each of which depends on one of the four
fundamental forces. Each mechanism has a characteristic signature, helping physicists to
understand which fundamental force is causing the decay. Energy considerations determine
the most likely force at work in the decay of any given particle. The strong nuclear force is
usually the first to have a go at decaying a particle, and this will generally decay the particle
within 10–24 of a second. Next in the hierarchy is electromagnetic force, which might result
in the emission of photons. The weak nuclear force is the most costly in energy terms, and
so it takes longer. A particle that decays via the weak nuclear force is likely to take 10–11

seconds to decay. That’s a factor of 10 trillion times slower. So by observing the time a
particle takes to decay, scientists can get some indication of which force is at work.

Imagine a ball sitting in a valley flanked by two hills of differing sizes. There is a path to
the right that, with a little push, will take the ball over the lower hill into a lower valley. This
path corresponds to the strong nuclear force. To the left is a higher hill that also offers a
path to the lower valley. This direction represents the work of the weak nuclear force.



A Delta baryon ∆ decays via the strong nuclear force to a proton and a pion. In contrast, a Sigma
baryon ∑ decays via the w eak nuclear force.

So why do some particles find a way over the easy hill while others go the longer way?
This seemed rather strange. Certain particles appeared to encounter a barrier (represented
in the figure by a broken line) that prevented them from crossing via the easy route to the
lower valley.

The physicists Abraham Pais, Murray Gell-Mann, and Kazuhiko Nishijima came up with
a cunning strategy to solve this puzzle. They proposed a new property that mediated the
way particles interacted with the strong nuclear force. This new property, called
strangeness, gave physicists a new way to classify all these new particles. Each new
particle was given a measure of strangeness according to whether it would have to take the
long route to decay. The idea is that the strong nuclear force can’t change the strangeness
of a particle, so if you have two particles with different strangeness, the strong nuclear
force can’t decay one into another. But the weak nuclear force can change strangeness.

Then even more exotic particles were detected, created by higher-energy collisions that
seemed to decay in two steps via the weak nuclear force. They were called cascade
particles. The proposal was that these were doubly strange, so they were given strangeness
number –2. The first step in the decay had been given a strangeness of –1 and after
decaying again via the weak nuclear force the particles became protons and neutrons,
which had strangeness 0. It may seem a bit like pulling a rabbit out of a hat, but that’s part



of the process of doing science. You keep pulling stranger and stranger things out of your
hat. Most you chuck away because they get you nowhere, but pull enough things out of the
hat and every so often you’ll get a rabbit. As Gell-Mann later admitted, “The strangeness
theory came to me when I was explaining a wrong idea to someone, but then I made a slip
of the tongue and I had the strangeness theory.” Strangeness turned out to be a pretty
amazing rabbit.

Originally the idea of strangeness was meant as a bookkeeping device, something that
conveniently kept track of the decay patterns of different particles. It was just another set
of cages to help classify the many animals in this particle zoo. But it transpired that this new
feature was actually the first hint of a much deeper physical reality at work. The exciting
moment came when scientists took particles of a similar mass and began to plot them on a
graph measuring their strangeness and charge together. What they got were pictures full of
symmetry.

They found themselves with a hexagonal grid, with two particles occupying the center
point of the grid. If one took pions and kaons and arranged them on a grid of strangeness
against charge, a similar picture emerged. When you get a pattern like this you know you
are on to something. The hexagonal patterns these particle pictures were making were not
new—they’d been seen before. Not in physics, but in the mathematics of symmetry.

STRANGE SYMMETRIES

To someone trained in the mathematics of symmetry, these arrangements of cages in a
hexagonal pattern with a double point at the center look very familiar. They are the
signature of a very particular symmetrical object called SU(3). For me this is brilliant.
Symmetry is something I know. It gives me a chance to get a handle on what is going on
just when things are getting complicated. SU(3) stands for “the special unitary group in
dimension 3,” but it can describe the symmetries of a range of different geometric objects in



different dimensions. Although the objects can look very different, even existing in different
dimensional spaces, their underlying symmetries can be the same. The hexagonal grids
created by the particles are the same as the images mathematicians use to describe the way
SU(3) acts on an object in eight-dimensional space. The eight particles of the hexagonal grid
correspond to the number of dimensions you need to create this symmetrical object.

This hexagonal picture was the Rosetta Stone that opened up a whole new world in
particle physics. The picture led physicists to the realization that the symmetry group SU(3)
was the secret to understanding all these new particles. This new insight became known as
“the eightfold way,” an invocation of the Buddhist idea of the eightfold way to spiritual
enlightenment. Similar pictures, it was soon discovered, could be used to gather together
other members of the particle menagerie. Each new picture corresponded to another object
whose symmetries were described by SU(3). It was an extraordinary discovery. The
fundamental particles were far from being a wild mess. They all seemed to be elements of
geometries with a common symmetry.

It is amazing to me how, time and again, the physical world seems to be guided by
mathematics. To what extent is it just a good story that helps us make sense of things? Is
the physical universe actually a form of physicalized math? This is something I’ve been
asking myself for a long time, and my journey thus far seems to suggest it might well be the
case.

Heisenberg was right when he wrote, “Modern physics has definitely decided in favor
of Plato. In fact, the smallest units of matter are not physical objects in the ordinary sense;
they are forms, ideas which can be expressed unambiguously only in mathematical
language.” Plato’s watery icosahedron and fiery tetrahedron have been replaced by the
strange new symmetrical shape of SU(3).

When the physical world turns into a piece of mathematics, I immediately feel that this
is something I can comprehend. The mathematics of symmetry is my language. For most
people, turning fundamental particles into math means a move away from things they know.
Comparing particles to billiard balls or waves gives them a more tangible sense of what is
going on. Even the abstract language of eight-dimensional symmetrical objects is possible
only because we are abstracting the ideas of things we have physically encountered.

Murray Gell-Mann and Yuval Ne’eman both independently recognized the patterns in
these particles in 1961. Ne’eman combined his physics with a career in the Israeli Defense
Force, and that year he had been posted to London as a military attaché. He’d meant to
study general relativity at King’s College, but when he realized that it was miles from the
Israeli Embassy in Kensington, he decided to check out what was happening five minutes
down the road at Imperial College. It wasn’t long before he turned his attention from the
very big to the very small.

Although the pattern for the lambda, sigma, and xi particles matched the eight-
dimensional symmetry of SU(3), the corresponding pattern of kaons and pions was missing
a particle at its center. It was either wrong or there was a new particle to be discovered.
Gell-Mann published his prediction of a missing particle in a Caltech preprint in early 1961.
Sure enough, physicists in Berkeley discovered the eta particle a few months later.

This is the perfect scenario for a new theory. If you make a prediction that is
subsequently confirmed, you know you’re on to a winner. In June 1962, Gell-Mann and
Ne’eman attended a conference together at CERN. At the conference, a whole host of
new particles was announced: three sigma-star baryons with a strangeness of –1, and two



xi-star baryons with a strangeness of –2. It was thought that these particles could be used
to build a picture that corresponded to another geometric object that had the symmetries of
SU(3).

As Gell-Mann and Ne’eman sat there in the lecture, they could both see this new
picture emerging, except that one of the corners of the picture was missing. There were
only nine particles. The picture should have had ten. Both Gell-Mann and Ne’eman
simultaneously realized that one place had been left empty, leading to the prediction of a
new particle. Gell-Mann stuck his hand up first and predicted the existence of a new omega
particle with a strangeness of –3, a prediction that would be confirmed in January 1964.

It was a twentieth-century version of Mendeleev’s periodic table: the recognition of an
underlying pattern with missing jigsaw pieces. Just as the discovery of the missing atoms
gave credence to Mendeleev’s model, the discovery of these missing particles helped
convince scientists that mathematical patterns were powerful ways to navigate the particle
menagerie.

The patterns in the periodic table ultimately revealed that atoms were made up of
protons, electrons, and neutrons. There was a feeling that the patterns of the newly
discovered particles hinted at a similar story—the existence of still more fundamental
building blocks.

QUARKS: THE MISSING LAST LAYER?

A number of physicists had noticed that if you place the different pictures that were
emerging from all these new particles, you get a pyramid shape—with the top layer missing.
If you looked at these layers from the perspective of symmetry, this missing layer, a single
triangle, was really the one from which you could grow all the other layers. But no one had
spotted any particles that corresponded to this missing layer.



Triangle hinting at three new  particles: the up quark u, the dow n quark d, and the strange quark s

Robert Serber, Oppenheimer’s right-hand man during the Manhattan Project,
conjectured that maybe this extra layer suggested the existence of three new fundamental
particles. At a lunch with Gell-Mann in 1963, Serber put forward his idea, but when Gell-
Mann challenged him to explain what electrical charge these hypothetical particles would
have, Serber wasn’t sure. Gell-Mann started scribbling on a napkin and soon he had the
answer. The charges would be ⅔ or –1⁄3 of the charge on a proton. The answer seemed
ridiculous. “That would be a funny quirk,” Gell-Mann commented. Nowhere in physics had
anything been observed that wasn’t a whole-number multiple of the charge on the electron
or proton.

No one had ever seen such a fractional charge. Although Gell-Mann was initially
skeptical about these hypothetical particles with fractional charge, by the evening they
began to work their magic on him. In the subsequent weeks he teased out the implications
of these ideas, calling the particles “kworks” whenever he talked about them, a word he had
used previously to denote “funny little things.” Serber believed the word was a play on the
idea of the quirkiness Gell-Mann had mentioned at lunch.

It was while perusing James Joyce’s experimental novel Finnegans Wake that Gell-
Mann came across a passage that determined how he would spell the word he was using to
describe these hypothetical particles. The opening line of a poem ridiculing King Mark, the
cuckolded husband in the Tristan myth, caught his attention: “Three quarks for Muster
Mark!”

Given that there were three of these hypothetical new particles that could be used to
build the other layers, the reference seemed perfect. The only trouble was that Joyce
clearly intended the new word quark to rhyme with “Mark” not “kwork.” But the spelling
and pronunciation Gell-Mann wanted won out.

These quarks would eventually become what we now believe to be the last layer in the
construction of matter. But it would take some time for the idea to catch on. During a
conversation on the telephone to his former PhD supervisor about these quarks, Gell-Mann



was stopped in his tracks. “Murray, let’s be serious,” his supervisor told him. “This is an
international call.”

For Gell-Mann, the patterns seemed too beautiful not to have at least some underlying
truth to them. He continued to develop his theory that matter was made up of a new layer
of three fundamental particles: the up quark, the down quark, and the strange quark, with
charge 2⁄3, –1⁄3, and –1⁄3, respectively. All other particles were made up of combinations of
these quarks (and their antiparticles in the case of kaons and pions). The number of strange
quarks in the makeup determined the strangeness of the particle.

Gell-Mann wasn’t the only one to play with the idea of pulling matter apart into these
smaller particles. American physicist George Zweig also believed the patterns that had been
observed hinted at a more fundamental layer of particles. He called them “aces” and he
was even more convinced than Serber or Gell-Mann that these particles had a physical
reality. His preprints explaining his ideas were dismissed as “complete rubbish” by the head
of the theory group at CERN. Even Gell-Mann didn’t initially regard them as more than a
mathematical model that created some coherent order in the pictures they were drawing.
They were a mnemonic, not concrete reality. Gell-Mann dismissed Zweig’s belief in the
physical reality of these particles: “The concrete quark model—that’s for blockheads.”

FROM FANTASY TO REALITY

That would all change when evidence emerged at the end of the 1960s from experiments
conducted by physicists working at the Stanford Linear Accelerator Center in which
protons were bombarded with electrons. Analysis of a proton’s charge revealed that it could
be thought to have a size of 10–15 meters. The belief was that the proton would be
uniformly distributed across this small region. But when electrons were fired at the proton
blob, the researchers got a shock from the resulting scatter patterns. The proton, like the
atom, turned out to be mostly empty space.

The scattering was, in fact, consistent with a proton that was made up of three smaller
particles. Just as with Rutherford’s experiments on gold atoms, every now and again one of
these electrons would score a direct hit with one of the three points and come shooting back
toward the source of the electrons. The experiments seemed to confirm the idea that the
proton was made up of three smaller particles. Although a quark has never been seen, the
scattering of the electrons indicated, sure enough, that three smaller particles made up the
proton.

It turns out the blockheads were right. The up, down, and strange quarks were not just a
mathematical mnemonic; they were a physical reality. Over time it was discovered that
these three quarks weren’t enough to cover all the new particles, and eventually we found
ourselves with six quarks together with their antiparticles. In addition to the three Gell-Mann
named, three more appeared on the scene: the charm quark, the top quark, and the bottom
quark.

The discovery of quarks and their underlying symmetry is one of the most exciting
discoveries of the twentieth century. Seeing these fundamental particles lining up in patterns
that were already recognized in the mathematics of symmetry must have been so thrilling. If
I could choose one discovery in physics I would love to have made, this one would rank



pretty high. It must have been like an archeologist coming across a pattern that had
previously been seen only in some other distant part of the world, and suddenly realizing
there had to be a connection between the two cultures.

The weird thing is that this pyramid of triangles and hexagons giving rise to different
representations of SU(3) goes on to infinity, implying that you could keep on gluing together
more and more quarks to make more and more exotic particles. Announcements from the
Large Hadron Collider in 2015 revealed exciting evidence for a five-quark particle. The
researchers at CERN almost missed the particle, called a pentaquark, thinking it was just
background noise. But when they tried to remove the noise they discovered a strong signal
pointing toward this next layer in the symmetry tower. As one of the researchers working at
CERN admitted, “We didn’t go out looking for a pentaquark. It’s a particle that found us.”

How much further can we push our understanding of mathematics to predict what else
we might see in the LHC? There is an even bigger symmetrical object called SU(6) that
would unite all six quarks—up, down, strange, charm, top, and bottom—into a fusion of
fascinating particles. Instead of the two-dimensional pictures scientists have drawn
combining particles together in families, you’d need five-dimensional pictures. Although it is
possible to cook up some of these more exotic combinations of quarks, the beautiful
mathematical symmetry breaks down as the differences in mass between the basic quarks
is amplified. Indeed, the top quark is so unstable that it decays before it has time to bind to
another quark. Why quarks have different masses seems to be a question that physicists
don’t know the answer to—yet. The mathematics seems to suggest a much richer cocktail
of particles than physical reality can actually sustain. Reality seems a pale shadow of what
might be possible mathematically, but understanding that reality still holds many challenges.

I must admit that even with the mathematical toolkit I’ve spent years assembling, I’m
still not sure I know what these quarks really are. I’ve sat at my desk poring over books on
particle physics for months—light fare, such as Sudbury’s Quantum Mechanics and the
Particles of Nature—and lecture notes downloaded for Oxford graduate courses and
occasionally begun to despair a little. There is so much that I still don’t know: path integrals
describing the futures of these particles, the inner workings of the Klein–Gordon equations,
what exactly those Feynman diagrams that physicists so easily draw up on the board really
mean. I look enviously at my son, who has started his degree in physics. He will have the
time to steep himself in this world, to get to know these things as intimately as I know the
area I chose to specialize in.

It is the same with my cello. As an adult I hanker to play those Bach suites now, not in
ten years’ time. But just as it took years to learn the trumpet, so it will be a slow, gradual,
sustained period of learning that will bring me to the point where I can play the suites.

As with the cello, I know that if I spend enough time in this world of particle physics I
have some hope of understanding what my colleagues across the road in the physics
department live and breathe daily. It frightens me to realize I don’t have time to know it all.
But even those physicists whom I envy for the ease with which they play with our current
state of knowledge recognize that ultimately they’ll never know for sure whether they know
it all.

COWBOYS AND QUARKS



I arranged to meet one of the scientists responsible for discovering one of the last pieces in
the quark jigsaw puzzle to see whether particle physicists think there may yet be even tinier
pieces. Now a professor at Harvard, Melissa Franklin was part of the team responsible for
detecting the top quark at Fermilab in Illinois. Contrary to popular perception, discovering a
particle is not a eureka moment but a slow burn. But Franklin told me she preferred it that
way: “If it’s just ‘boom,’ it would be a drag. You spend fifteen years building the thing and
boom, in one minute it’s over? It would be terrible.” The team spent almost a full year
gathering data before they felt confident enough in 1995 to confirm its discovery.

Franklin is definitely on the experimental rather than theoretical side of the physics
divide. Happier with a power drill in her hand than a pencil, she helped to build the detector
at Fermilab from the bottom up. We had both been invited to talk at the Rome Science
Festival on the theme of the unknowable, so we agreed to meet in the lobby of our rather
strange hotel, which seemed to be dedicated to the sport of polo. Given that Franklin strides
around the department in cowboy boots, I thought she might feel more at home, but she
ended up making an extremely dramatic entrance, crashing to the bottom of the stairs into
the lobby. She dusted herself off and strode over as if nothing had happened.

I was keen to know if she thought quarks were the last layer or whether there might be
more structure hiding beneath the particles she’d helped to discover.

“We’re down to 10–18 meters. The next seven or eight orders of magnitude are kind of
hard to investigate,” she said. “But certainly a lot more could happen in there. It’s kind of
strange that I could die before—especially if I keep falling down the stairs—I could die
before we get any further.”

Did she think there might be fundamental limits to what we could know?
“There are definitely limits in my lifetime, but I’m not sure there are any other limits. In

experimental physics, saying there’s no way we can do something is the perfect way to get
someone to figure out how to do it. In my lifetime I’m never going to be able to measure
something that decays in 10–22 seconds. I don’t think there’s any way. That’s not to say it’s
provably unknowable.

“We couldn’t have imagined the laser or the atomic clock, right? I think all the
limitations in physics are going to be atomic because all the things we do are with atoms. I
know that sounds weird, but you need the atoms in your detector.”

It’s intriguing to consider how Einstein inferred the existence of atoms by looking at how
they impacted things you could see, like pollen or coal dust. And today we know about
quarks because of the way particles bounce off protons. I asked her if she thought there
would be new ways to dig deeper.

“I’m sure those guys like Heisenberg and Bohr couldn’t have imagined what we can
detect today. I guess the same must apply to our generation . . . although of course we’re
much smarter,” she laughed.

I guess that is the problem each generation faces. How can we ever know what
cunning new method might be developed to dig deeper into the fabric of the universe?
Franklin wondered how much we were missing that was already there in the data coming
out of the current generation of detectors.

“Many young people in my field don’t believe it’s possible to find anything new that
wasn’t predicted by theorists. That’s sad. If you found something and it wasn’t predicted by
theory, then you’ll probably think it’s wrong and you’ll dismiss it, thinking it’s a fluctuation. I
worry that because of the way our experiments are constructed you have these triggers that



trigger on certain things, but only things you’re looking for and not other things. I wonder
what we’re missing.”

That was almost the fate of the pentaquark; it was nearly dismissed as noise. Franklin
was intrigued to know whether, if I could press a button and know it all, I would do so. As I
was putting out my hand to press her hypothetical button, selling my soul to Mephistopheles
to know the proofs of all the theorems I’m working on, she stopped me in my tracks.

“I wouldn’t.”
“Why not?”
“Because it’s not fun that way. There are certain things, like if I could push a button and

speak perfect Italian, I would do it. But not with science. I think it’s because you can’t
really understand it that way. You have to struggle with it somehow. You have to actually try
and measure things and struggle to understand things.”

I was intrigued. Wouldn’t she press the button if she could know there were more
particles sitting underneath the quarks?

“If they just told me the method, then that would be great. But a lot of the reason we
like doing science is coming up with the ideas in the first place. The struggle is more
interesting.”

I think, in the end, Franklin likes making things. She likes driving forklift trucks and
drilling concrete in the search for new particles, and wouldn’t want knowledge to come too
easily.

“Experimentalists are a bit like cowboys in a way. Lasso that old thing over there and
bring it over here. Don’t mind that boy over there sitting in the corner thinking about stuff.

“When I turn 60, I’m going to be less judgmental and more open minded,” she mused.
“I’m going to stop being a cowboy . . . no, I don’t want to stop being a cowboy . . . I don’t
know . . . it’s hard. Cowboys can be deep.”

And with that she strode out to a taxi and rode off into the Roman sunset, continuing the
scientific quest to know what else is out there to tame.

THE CELLO OR THE TRUMPET?

Are the quarks that Franklin helped discover the final frontier, or might they one day divide
into even smaller pieces, just as the atom broke into electrons, protons, and neutrons, which
in turn broke into quarks?

Many physicists feel that current experimental evidence, combined with the
mathematical theory that underpins these experiments, has given us the answer to the
question of the true indivisible units of all matter. Just as the periodic table of 118 chemical
elements could be reduced to different ways of assembling the three basic building blocks of
the electron, proton, and neutron, the hundreds of new particles found in the cosmic-ray
collisions could be reduced to a simple collection of ingredients. The wild menagerie of
particles has been tamed. But how sure am I that the gates won’t open again to new
customers? The truth is that physicists don’t know.

If you look at the symmetrical model underlying these particles, then the triangle
corresponding to the quarks is the last indivisible layer. The mathematics of symmetry
suggests that we’ve reached the end of the road. That triangle corresponding to the quarks



is the indivisible layer that builds all the other layers. So the mathematics of symmetry tells
me I’ve hit the indivisible. Maybe we are falling into the same trap that Gell-Mann did when
he first dismissed quarks because they had fractional charges. And yet another feature of
quarks and electrons provides some justification for the belief that they might not come
apart: they don’t seem to occupy any space but behave as if they are concentrated at a
single point.

In mathematics, geometry is made up of three-dimensional solids, two-dimensional
planes, one-dimensional lines, and zero-dimensional points. The strange thing is that these
were meant to be abstract concepts that didn’t have a physical reality in our three-
dimensional universe. After all, what is a line? If you draw a line on a piece of paper and
look at it under a microscope, you’ll see that the line actually has width. It isn’t really a line.
In fact, it even has height, because the atoms that are sitting on the page are piling up to
create a little ridge of graphite across the page.

Similarly, a point in space might be identified by its GPS coordinates, but you wouldn’t
expect to find an object located solely at this point and nowhere else. You could never see
it. Its dimensions would be zero. And yet an electron behaves in many ways as if it is
concentrated in a single point in space, as do the quarks inside the proton and neutron. The
manner in which electrons scatter off one another and off the quarks makes sense only in
the context of a model in which these particles have no volume. Give them volume and the
scattering would look different. If they truly are point particles, you wouldn’t expect them to
come apart.

But what about the fact that electrons have mass? What is the density of an electron? It
should be mass divided by volume. But what if the volume is zero? Divide by zero and the
answer is infinite. Infinite? So is every electron actually creating a tiny black hole? We are
firmly in the territory of the quantum world, because where a particle is located turns out
not to be as easy a question to answer as one might expect, as we shall discover in the next
Edge.

Have the discrete notes of my trumpet won out over the continuous glissando of the
cello? It is very difficult to know. Atoms were regarded as indivisible because of the
indivisible nature of the whole numbers that showed how they combine. And yet they
eventually fell apart into the tiny pieces that make up our conception of the universe. Why
shouldn’t I expect history to repeat itself with more surprises as I dig deeper and deeper?
Why should there be a beginning, a first layer that made it all? It’s a classic problem of
infinite regression that we shall meet over and over again. As the little old lady once told a
scientist who mocked her theory that the universe was supported on the back of a turtle,
“You’re very clever, young man, very clever, but it’s turtles all the way down!”

Even if electrons and quarks are particles concentrated at a single point in space, there
is no reason why a point can’t actually be pulled apart to be made of two points. Or perhaps
there are hidden dimensions we have yet to interact with. This is the suggestion of string
theory. Point particles in string theory are actually believed to be one-dimensional strings
vibrating at resonant frequencies, with different frequencies giving rise to different particles.
Perhaps my cello does win out over the trumpet and the fundamental particles are really just
vibrating strings.

Will we ever find ourselves at the point at which there are no new layers of reality to
reveal? The current theory of the very small—quantum physics—proposes that there are



limits to knowledge as I try to divide my dice into smaller and smaller units, that at some
point I will run up against a barrier beyond which I cannot pass, as my next Edge reveals.
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It is absolutely necessary, for progress in science, to have
uncertainty as a fundamental part of your inner nature.

—Richard Feynman

T’S EXTRAORDINARY what you can buy over the Internet. Today a small pot of radioactive
uranium-238 arrived in the post. “Useful for performing nuclear experiments,” the advert

assured me. I rather enjoyed the comments from other people who purchased a pot: “So
glad I don’t have to buy this from Libyans in parking lots at the mall anymore.” One
purchaser wasn’t so happy: “I purchased this product 4.47 billion years ago and when I
opened it today, it was half empty.”

Uranium is a naturally occurring element, and I’m assured it is safe to have on my desk
next to me as I write. The documentation just warns me that I shouldn’t grind it up and
ingest it. The packet claims that it emits radiation at a rate of 766 counts per minute. It’s
kicking out a range of radiation: alpha particles, beta particles, and gamma rays. But what
the specifications cannot guarantee is when exactly the uranium is going to spit out its next
particle.

In fact, current quantum physics asserts that this is something I can never know. There
is no known mechanism so far developed that will predict precisely when radioactive
uranium will emit radiation. The Newtonian physics that I explored in the First Edge implied
that theoretically everything in the universe is controlled by and follows a deterministic set
of mathematical equations. But at the beginning of the twentieth century a group of young
physicists—Heisenberg, Schrödinger, Bohr, Einstein, and others—sparked a revolution,
giving us a new perspective on what we can really know about the universe. Determinism
was out. Randomness, it appears, rules the roost.

To understand this new frontier, I will have to try to master one of the most difficult and
counterintuitive theories ever recorded in the annals of science: quantum physics. Listen to
those who have spent their lives immersed in this world and you will have a sense of the
challenge we face. After making his groundbreaking discoveries in quantum physics,
Werner Heisenberg recalled, “I repeated to myself again and again the question: Can nature
possibly be so absurd as it seemed to us in these atomic experiments?” Einstein declared
after one discovery, “If it is correct it signifies the end of science.” Schrödinger was so
shocked by the implications of what he’d cooked up that he admitted, “I do not like it and I
am sorry I had anything to do with it.” Nevertheless, quantum physics is now one of the
most powerful and well-tested pieces of science on the books. Nothing has come close to
pushing it off its pedestal as one of the great scientific achievements of the last century. So
there is nothing to do but to dive headfirst into this uncertain world. Feynman has some good
advice for me as I embark on my quest: “I am going to tell you what nature behaves like. If
you will simply admit that maybe she does behave like this, you will find her a delightful,



entrancing thing. Do not keep saying to yourself, if you can possibly avoid it, ‘But how can it
be like that?’ because you will get ‘down the drain,’ into a blind alley from which nobody
has yet escaped. Nobody knows how it can be like that.”

The revolution these scientists instigated is perfectly encapsulated in my attempts to
understand what my pot of uranium is going to do next. Over a long period of time the rate
of radioactive decay approaches a constant and on average is very predictable, just like the
throw of my casino die. But according to the physics of the twentieth century, there is a
fundamental difference between the die and the pot of uranium. At least with the die I have
the impression that I could know the outcome, given enough data. However, there seems to
be no way of determining when the uranium will emit an alpha particle. Complete
information doesn’t make any difference. According to the current model of quantum
physics, it’s completely and genuinely random. Quantum physics demolished Laplace’s
theory of a clockwork universe.

For someone on the search for certainty and knowledge, the revelations of quantum
physics are extremely unsettling. There is nothing I can do to know when that pot on my
desk is going to emit its next alpha particle? That’s deeply shocking. Is there really no way
I can know? There is much debate about whether this is truly something random, something
we can never know, or whether there is a hidden mechanism we have yet to uncover that
would explain the moment that radiation occurs.

This unknown is related to an even deeper layer of ignorance shrouding the universe of
the very small. In order to apply the equations of motion Newton discovered to calculate the
future evolution of the universe, it is necessary to know the location and momentum of
every particle in the universe. Of course, practically speaking, this is impossible, but
discoveries made in the twentieth century hint at a deeper problem. Even if I take just one
electron, it is theoretically impossible to know precisely both its position and its momentum.
Our current model of the very small has a built-in limitation on what we can know. This is
called Heisenberg’s uncertainty principle.

Whereas my First Edge revealed that the randomness meant to describe the roll of the
die is just an expression of a lack of knowledge, the world of the very small seems to have
randomness at its heart. I have learned to cope with the unknowability of the roll of the die,
as deep in my heart I know it is still dancing to the regular beat of Newton’s equations. But
I’m not sure I can ever come to terms with the unknowability of my radioactive pot of
uranium—something that apparently is dancing to no one’s beat. Will it always remain
unknowable, or does another theoretical revolution need to take place, akin to the radical
new perspective that emerged at the beginning of the twentieth century?

WAVE OR PARTICLE?

The first inklings of this revolution came when scientists tried to understand the nature of
light. Is it a wave or a particle? Newton’s great opus on optics, published in 1704, painted a
picture of light as a particle. If you considered light as a stream of particles, then the
behavior that Newton described in his book appeared very natural. Take the way that light
reflects. If I want to know where a ray of light will emerge when it hits a reflecting surface,
then thinking of it like a billiard ball fired at the wall gives me a way to predict its path. The



geometry of light, Newton believed, could be explained only by thinking of light as composed
of particles.

Rivals soon emerged who believed that a wave was a much better model for describing
the nature of light. Too many characteristics of light were hard to explain if it was a particle.
An experiment that English physicist Thomas Young concocted in the early 1800s seemed
to be the nail in the coffin for anyone believing in light as a particle.

If I shine a light at a screen with a single thin vertical slit cut into it, and place a
photographic plate beyond the screen to record the light as it emerges, the pattern I observe
on the photographic plate is a bright region directly in line with the slit and the light source
that gradually tails off to darkness as I move away from this central line. So far, this is
consistent with a particle view, in which small deflections can occur as the particles pass
through the slit, causing some of the light to fall on either side of this bright region. (Even
with the single slit, if the slit is small, there is some wavelike variation in the intensity of the
light as you move away from the central bright region, which hints at waves at work.)

The intensity of light recorded on the photographic plate after the light has passed through a single
narrow  slit

The trouble for the particle theory of light was revealed when Young introduced a
second vertical slit into the screen, parallel to the first slit. You would have expected to see
two bright regions occurring in line with each slit corresponding to the particles of light
passing through one slit or the other. But that’s not what Young observed. Instead, he found
a whole series of bands of light and dark lines across the photographic plate. Bizarrely, there
are regions of the plate that are illuminated if only one slit is open and plunged into darkness
if two slits are open. How, if light is a particle like a billiard ball, can giving it more options
result in its suddenly being unable to reach certain regions of the plate? The experiment
truly challenged Newton’s model of light as a particle.

Only a model of light as a wave could possibly explain these bands of brightness and
darkness. Think of a still lake full of water. If I throw two stones into the water at the same
time, then the waves caused by the stones will interact in such a way that some parts of the
waves combine to form a much larger wave and other parts of the waves cancel each other
out. If I place a piece of wood in the water, I will see this interaction as the combined



waves strike the board. The wave hits the board with a series of peaks and troughs across
the length of the board. The same principle explained what Young had observed. The light
emerging from the two slits appears to produce two waves that interact in a similar way to
the stones thrown into the water. In some regions the light waves combined to create bright
bands, while in others they canceled each other out to produce dark bands. No particle
version of light could get anywhere near explaining these patterns.

Light emitted from the left passes through the double-slit screen and strikes the photographic plate on
the right. The light and dark bands depicted to the right of the plate represent the interference pattern

detected.

Supporters of the particle theory finally had to throw in the towel in the early 1860s,
when it was discovered that the speed at which light travels matched exactly the speed
predicted by James Clerk Maxwell’s new theory of electromagnetic radiation based on
waves. Maxwell’s calculations revealed that light was, in fact, a form of electromagnetic
radiation described by equations whose solutions were waves of differing frequencies
corresponding to different sorts of electromagnetic radiation.

But there was a twist in store. Just as Young’s experiment seemed to push scientists
toward a wave model of light, the results of two new experiments at the end of the
nineteenth century could be explained only if light came in packets. That is, if it is made up
of discrete bits or what scientists call “quantized,” which is where the word quantum
comes from.

A CACOPHONY OF WAVES

The first inkling that light could not be wavelike arose from trying to understand the
electromagnetic radiation being cooked up in the coal-fired furnaces that drove the
Industrial Revolution. Heat is movement, but if you jiggle an electron up and down, then,
because it has a negative charge, it is going to emit electromagnetic radiation. This is why
hot bodies glow: the jiggling electrons emit radiation. Think of the electron a bit like a person
holding the end of a skipping rope. As the person’s hand goes up and down, the rope begins



to oscillate like a wave. Each wave has a frequency that records how often the wave
pulses up and down per second. It’s this frequency that controls, for example, what color
visible light will have. Red light has a low frequency; blue light a high frequency. The
frequency also plays a part in how much energy the wave contains. The higher the
frequency, the more energy the wave has. The other contributing factor to a wave’s energy
is its amplitude. This is a measure of how big the waveform is from trough to peak. If you
think of the skipping rope, the more energy you put in, the higher the rope will vibrate. For
many centuries, scientists used the dominant frequency of the radiation as the measure of
its temperature. Red hot. White hot. The hotter a fire, the higher the frequency of the light
emitted.

I got a chance to see one of these coal-fired furnaces at work when I visited
Papplewick Pumping Station near Nottingham. Once a month they fire up the furnaces for
one of their “steaming days.” The furnace is housed in a beautifully ornate Victorian
building. Apparently the cost of building the station was so far under budget that there were
funds left over to decorate the pump house. It feels like a church dedicated not to God, but
to the science of the industrial age.

The temperature inside the furnace at Papplewick was hitting something in the region of
a thousand degrees Celsius. Scientists at the end of the nineteenth century were interested
in what the spectrum of frequencies of light looked like inside the furnace for any fixed
temperature. A closed furnace can reach a thermodynamic equilibrium where the heat
jiggling the atoms causes radiation to be emitted that is then reabsorbed, so none of the
electromagnetic radiation is lost.

When the furnace hits equilibrium, what frequencies of radiation do you find inside it?
You can think of this as like a lot of my cello strings waiting to be vibrated. The total energy
of the vibrating string is a function of the frequency of the vibration and the amplitude of the
vibration of the string. Higher-frequency waves need more energy to get them going, but
this can be compensated for by creating a wave with lower amplitude. Classically, a fixed
amount of energy can theoretically get waves of any frequency vibrating, but the amplitude
will be correspondingly smaller as the frequency increases.

A theoretical analysis of the spectrum seemed to indicate that waves of arbitrary
frequency would occur in the furnace. When I looked inside the furnace at Papplewick I
didn’t get zapped by a load of high-frequency X-rays. But the wave-based theory of
electromagnetism predicted that I should. Not only that, but if I added up all the
contributions of the frequencies inside the furnace at thermal equilibrium, then an analysis
based on light as a vibrating wave would lead to the absurd conclusion that the total energy
contained in the oven is infinite. The furnace in Papplewick wouldn’t have lasted long if that
had been the case.

At any given temperature, there seems to be some cutoff frequency beyond which the
waves fail to get going and vibrate. The classical picture is the following: If light is like a
vibrating cello string, then the oven should generate waves of all frequencies, the number of
waves increasing with the frequency. At low frequency the graph is correct, but as the
frequency increases, I see the intensity of the radiation at higher frequencies tailing off until,
beyond some point (which depends on the temperature), no waves of greater frequency
than this number are observed.



The frequencies inside a closed oven predicted by classical and quantum models

In 1900, the German physicist Max Planck took the experimentally observed distribution
of frequencies coming out of a furnace like that at Papplewick and came up with a clever
idea to explain how to get the true curve rather than the nonsensical curve produced by a
classical cello-string interpretation of light.

He posited that each frequency of electromagnetic radiation had a minimum energy that
was required before it got going. You couldn’t just continuously reduce the energy of a
wave vibrating at a given frequency and expect it to sound. At some point, as the energy is
reduced, the wave would just flatline. Planck’s model asserted that there wasn’t any
continuous behavior. Each time the energy increased, it went up in jumps. The jumps in
energy were tiny, so they were very hard to observe unless you were looking for them. But
once Planck had this assumption in place, he found that the mathematical implications for
the intensity of electromagnetic radiation at each frequency corresponded precisely with the
observed radiation emerging from the oven.

So perhaps the universe was not the smooth, continuous place that scientists had
believed it to be up to the end of the nineteenth century. Even the atomists—those who
believed that matter was built of basic building blocks—had no idea whether this would
apply to more intangible things like energy. If I draw the bow across my cello string and
increase the pressure, although your ear hears a gradual and continuous increase in the
volume, actually it is jumping up in steps. The size of the steps is very small. For any given
frequency v, the energy, goes up in steps of h × v, where h is called the Planck constant.
This number, which controls the steps in energy measured in joule seconds, has thirty-three
zeros after the decimal place before we get the first non-zero digit:

h = 6.626 × 10–34 joule seconds.

At this stage, Planck had no real physical explanation for the steps in energy. It was just
what was needed mathematically to explain the electromagnetic radiation scientists had
observed inside an oven like the one at Papplewick. It was Einstein’s explanation of a



second experiment that shifted scientists toward thinking of light as a particle rather than a
wave. These particles each had an energy of h × v.

THE PHOTOELECTRIC EFFECT

Metals are such good conductors of electricity because there are lots of free electrons that
can move through them. This means that if I fire electromagnetic radiation at a piece of
metal, I can actually kick these electrons off. The energy is transferred to the electron,
which then has enough energy to escape the confines of the metal. This was the key to
Thomson’s discovery of the electron, described in the previous Edge.

If you think of electromagnetic radiation as a wave, I should be able to increase the
energy of the wave until it knocks out the electron. The greater the energy in the wave, the
more of a kick I will give the electron and the faster it will speed off. As I explained in the
previous section, there are two ways to increase the energy of a wave like my vibrating
cello string. One is to increase the frequency of the wave, to vibrate it faster. Do this, and,
sure enough, the speed of the electrons that are ejected goes up proportionally. The other
way is to increase the amplitude of the wave, to play it louder. The strange thing is that in
this case, despite dialing up the intensity of the wave at a given frequency, the speed at
which the electrons are emitted is not affected. What goes up is the number of electrons
kicked off the metal.

If I decrease the frequency of the wave while increasing the amplitude, I can keep the
total energy constant, but there is a point at which I can’t seem to kick out any more
electrons. There are frequencies below which, however loud I play my cello, the energy just
doesn’t kick out electrons. In contrast, with a high-frequency wave it doesn’t matter how
far down you dial the volume; even an extremely low-intensity wave has the power to
knock out electrons. What’s going on? How can I explain this strange behavior, which
scientists call the photoelectric effect?

The answer is that we need to change our model. At the moment I’ve been thinking in
terms of wave in, particle out. What if I try particle in, particle out? Perhaps the particle
nature of the outgoing electron is actually the key to how I should view the incoming
electromagnetic radiation.

This was Einstein’s great paradigm shift, which he made in 1905, the year many call his
annus mirabilis. It is also the year he came up with the special theory of relativity, which I
will tackle in the Fifth Edge when we explore the nature of time and the theory of Brownian
motion, which provided the most convincing support for the thesis that matter is made from
atoms.

Einstein suggested that we think of electromagnetic radiation, or light, not as a wave but
as a machine gun firing off tiny billiard balls, just as Newton had suggested. The energy of
each particle depends on the frequency of the radiation. With this new idea, we have a
model that can perfectly describe what scientists were experiencing in the lab. In Planck’s
model of the energy inside the furnace, the energy did not go up continuously but went up in
tiny steps equal to h × v. What Einstein proposed is that each billiard ball of light will have
energy corresponding to these tiny step changes. Electromagnetic radiation of frequency v
should be thought of in Einstein’s model as billiard balls each with energy h × v. The jumps



in energy that Planck introduced simply correspond to the addition of more billiard balls of
light to the radiation. Einstein called these light balls quanta, but they were renamed in the
mid-1920s, and we know them today as photons. How does this particle model of light
explain the behavior of the electrons being kicked off a metal? Again, think of the
interaction like a game of billiards. The photons of light come crashing onto the surface of
the metal. If a photon hits an electron, the energy is transferred to the electron and the
electron flies off. But the electron needs to receive a certain amount of energy before it can
be kicked off.

The energy of each incoming photon depends only on the frequency of its radiation. If
the frequency of the radiation is too low, the energy will be too small to kick out the
electron. It doesn’t matter if you turn up the intensity of the radiation; you’re firing more
billiard balls at the metal, but each individual billiard ball has the same energy. There is an
increased chance of an electron being hit, but since each billiard ball is as impotent as any
other, the electron is never going to be kicked off. In the wave model, the electron could sit
there absorbing the incoming energy until it had accumulated enough to fly off. With the
particle model I can kick the electron as many times as I want, but no single kick will be
enough to knock out the electron. It’s like gently prodding someone with your finger. Lots
more gentle prods are not going to cause the person to fall over.

But if the frequency of the incoming radiation is above a certain value, the energy of
each billiard ball will be enough to kick the electron off if it hits. It’s like replacing hundreds
of tiny prods with one huge shove: now the person falls over. Essentially, the ball has enough
energy to transfer to the electron, and the resulting energy is sufficient to overcome the
forces binding the electron to the metal. Increasing the intensity of the radiation means firing
more balls at the metal, and this simply increases the number of electrons that will be
emitted. Hence, rather than knocking out electrons with higher speeds, I just see more
electrons being radiated off the metal.

The speed of the emitted electron in Einstein’s model will be linearly proportional to the
frequency. Interestingly, this relationship had not been observed or previously predicted, so it
gave Einstein’s model the perfect characteristic for any good scientific theory—not only
could it explain what had been seen in the laboratory to date but it also predicted a new
phenomenon that could be tested. This was important, as many scientists were intensely
skeptical of Einstein’s model. Maxwell’s equations had been so persuasive that scientists
were not going to change their minds without some convincing. How would Einstein explain
the result of Young’s experiment with the two slits and bands of light?

One of the skeptics was American physicist Robert Andrews Millikan. But his attempts
to disprove Einstein’s model of light as billiard balls of energy ended up confirming Einstein’s
prediction that the speed of outgoing electrons would be directly proportional to the
frequency of the incoming radiation. Millikan had previously determined the charge on the
electron as part of his research and would subsequently coin the term “cosmic rays,” after
he proved that the radiation being picked up by detectors on Earth was of an extraterrestrial
nature. For all this work Millikan received the Nobel Prize in Physics in 1923, just two years
after Einstein.

Einstein received his Nobel Prize in 1921 for his explanation of the photoelectric effect,
not for his theory of relativity! Einstein’s ideas gave the particle party a reason to retrieve
the towel they’d thrown in a few decades earlier. Soon there would be a counter-revolution,
which revealed that electrons have characteristics that make them look more like waves



than discrete particles. It seemed as if light and electrons could behave both like particles
and waves. Everyone was a winner in the new theory that was emerging!

Despite Einstein’s paradigm shift, the experiments that were better explained by light as
a wave were not invalidated. Weirdly, the circumstances of the experiments seemed to
dictate which model of light you should use. The wave–particle duality was upon us.

Recall that Young’s double-slit experiment had been the most devastating demonstration
of why light is a wave, not a particle. The photoelectric effect had rather nicely used the
particle nature of the electron to provide convincing support for thinking of electromagnetic
radiation as a particle. But did the dialogue work the other way? What if I ask an electron
to take part in Young’s double-slit experiment? Firing electrons at a screen with two slits
turned out to have shocking implications for our grasp on reality.

EXPERIMENTING WITH ELECTRONS

One of the most curious consequences of quantum physics is that a particle like an electron
can seemingly be in more than one place at the same time until it is observed, at which point
there seems to be a random choice made about where the particle is really located.
Scientists currently believe that this randomness is genuine, not just caused by a lack of
information. Repeat the experiment under the same conditions and you may get a different
answer each time. This uncertainty about position is ultimately responsible for bits of my
uranium suddenly finding themselves located outside rather than inside the pot on my desk.

The quintessential illustration of this repeats Young’s double-slit experiment, but with
electrons rather than light. A physicist colleague of mine in Oxford let me come and play in
his lab so that I could see with my own eyes the bizarre game these electrons seem to be
playing. I’ve read about it many times, but as Kant once said, “All our knowledge begins
with the senses.”

I felt compelled to warn my colleague that experiments and I don’t mix well. No one
would agree to be my lab partner at school because my experiments invariably went wrong.
It was one of the reasons I was drawn to the more theoretical end of the scientific
spectrum, where the mess of the physical universe can be kept at bay. But my colleague
assured me this experiment was pretty robust.

To start, we set up a source emitting electrons at a rate that allowed me to record them
arriving on the detector plate one at a time. I then placed the screen with two slits between
the source and the detector plate. I first observed what happened when one slit was closed.
The electrons that passed through the open slit hit the detector plate, and, after sending
sufficiently many through, I began to see a pattern emerge.

The region directly in line with the source and the slit saw a high intensity of electrons
arriving. As I moved to either side of this central line I still detected electrons arriving, but
the number dropped off as I moved farther from the central line. The electrons sometimes
seemed to be deflected as they passed through the slit, resulting in their paths being bent on
either side of the central line. Nothing too strange up to this point. But then I opened the
second slit.

If the electrons behaved like classical particles, I would have expected to see two
regions of high intensity in line with the two slits, depending on whether the electron passed



through the first or second slit. But this wasn’t what I saw. Instead, I saw the interference
pattern begin to build up, just as Young did when he shined light at the screen with two slits.
What I observed was consistent with the analogy of a water wave passing through the slits
and creating two waves that interfere with each other.

As more electrons are detected, the w avelike pattern of interference emerges.

Remember that I’d set the experiment up so that only one electron was passing through
the screen at a time. So there weren’t many electrons interacting with each other in a
wavelike manner. This was a single electron doing what a wave usually does. Even more
inexplicably, there were regions on the detector plate totally devoid of any electrons arriving,
despite the fact that with one slit open, electrons could reach this point. What was
happening? I had opened another slit, providing several paths to a point on the detector
plate, but the extra choice had resulted in no electrons arriving.

Kant proposed that all knowledge begins with the senses but “proceeds thence to
understanding, and ends with reason, beyond which nothing higher can be discovered.” So



how did scientists distill reason from the strange behavior of these single electrons passing
through the screen?

When it passed through one slit, how could the electron know whether the other slit was
open? After all, the other slit was some distance away from the slit through which the
electron was traveling. It’s not that the electron splits into two and goes through both slits.
The extraordinary thing is that I have to give up on the idea of the electron being located at
any particular point until it is observed. To explain its strange behavior I need to describe the
electron with a mathematical wave function that gives a range of possible locations. This
was the revolutionary new viewpoint Austrian physicist Erwin Schrödinger proposed in
1926. The amplitude of the wave encodes the probability that when the electron is observed
it will be found in a particular region of space.

A quantum w ave: the higher the w ave, the more likely it w ill be to f ind the electron at this point in
space.

You might ask, a wave of what? What is vibrating? Is it a wave of information rather
than physical stuff? Just as a crime wave isn’t a wave of criminals but rather information
about the likelihood of a crime happening in a particular area, the wave is simply a
mathematical function, and a mathematical function is like a machine or computer—you
input information, and it calculates away and spits out an answer. The wave function of the
electron has as input any region of space, and the output is the probability that you will find
the electron in that region. Amazingly, it should really be thought of as a piece of evolving
mathematics. It is called a wave because the functions describing these probabilities have
many of the features of classical wave functions. The peaks and troughs encode
information about where the electron might be. The bigger the amplitude of the wave, the
more likely you are to find the electron in that region of space.

When the wave encounters the screen with the double slits, it is affected by its
interaction with the screen. The result is a new wave whose characteristics produce the
strange interference pattern that I picked up on the detector plate. At this moment of
detection, the electron must make up its mind where on the plate to land. The wave function



provides the probability of where the electron might appear, but at this moment of detection
the die is cast and probabilities become certainties. The wave is no more, and the electron
looks once again like a particle hitting one point on the detector plate. Run the experiment
again, and each time the electron might appear somewhere else. The more electrons I fire
at the screen, the more I see the statistics encoded in the wave appearing. But in any
individual case, physics claims I’ll never know where on the plate I’ll find the electron.

The curious thing is that I can return to the original experiment Young performed with
light, and interpret it in light (if you’ll excuse the expression) of Einstein’s discovery. If I turn
down the intensity of the light source in Young’s experiment, I can reach a point at which
the energy being emitted is so low that it corresponds to firing one photon of light at a time
at the double-slit screen.

When this photon arrives at the photographic plate it shows up as a single point on the
plate. So what’s happened to Young’s interference pattern? Here is the amazing thing—
keep firing photons one at a time at the double-slit screen, and eventually the buildup of the
pricks of light on the photographic plate reveals the interference pattern. Young wasn’t
witnessing a continuous waveform hitting the plate—it was an illusion. It’s actually made up
of billions of billions of pixels corresponding to each photon’s arrival. To give you a sense of
how many photons are hitting the plate, a 100-watt lightbulb emits roughly 1020 (or 100
billion billion) photons per second.

The wave quality of light is the same as that of the electron. The wave determines the
probable location of the photon of light when it is detected. The wave character of light is
not vibrating stuff like a wave of water but rather a wavelike function encoding information
about where you’ll find the photon of light once it is detected. Until it reaches the detector
plate, like the electron, it is seemingly passing through both slits simultaneously, making its
mind up about its location only once it is observed. If you are finding this hard to follow,
don’t despair. The scientists of the early twentieth century had an equally hard time trying to
reset their model of how light or an electron really behaves.

It’s this act of observation that is such a strange feature of quantum physics. Until I ask
the detector to pick up where the electron is, the particle should be thought of as
probabilistically distributed over space, with the probability described by a mathematical
function that has wavelike characteristics. The effect of the two slits on this mathematical
wave function alters it in such a way that the electron is forbidden from being located at
some points on the detector plate. But when the particle is observed, the die is cast,
probabilities disappear, and the particle must decide on a location.

I remember the Christmas when I first read about this crazy story of how things could
appear to be in more than one place at the same time. Along with the toys and sweets that
had been crammed into my Christmas stocking, Santa had also included a curious-sounding
book, Mr. Tompkins in Paperback by a physicist called George Gamow. It tells the story of
Mr. Tompkins’s attempts to learn physics by attending a series of evening lectures given by
an eminent professor. The trouble is, Mr. Tompkins always drifts off to sleep mid-lecture.

In his dream world, the microscopic quantum world of electrons is magnified up to the
macroscopic world, and the quantum jungle Mr. Tompkins finds himself in is full of tigers
and monkeys that are in many places at the same time. When a large pack of fuzzy-looking
tigers attacks Mr. Tompkins, the professor who accompanies him in his dreams lets off a
salvo of bullets. One finally hits its mark and the pack of tigers suddenly become a single
“observed” tiger.



I remember being enchanted by this fantasy world and even more excited by the
prospect that it wasn’t as fantastical as it appeared. I was beginning to have doubts about
the existence of Santa, given that he had to visit a billion children in the course of one night,
but the book renewed my faith in the idea. Of course, Santa was tapping into quantum
physics! Provided that no one actually observed him, he could be in multiple chimneys at the
same time.

QUANTUM ANTHROPOLOGY

Now let us return to the double-slit experiment. If we try to sneak a look at which slit the
electron “really” passed through by placing a detector at one of them, the interference
pattern suddenly disappears. The simple act of looking changes the nature of the wave
function charting the electron’s trajectory. The pattern at the detector plate simply shows
two regions of light lining up with the two slits. (The electron is either passing through one
slit or the other and hits the screen behind the slit it passed through.)

Although it is a bit of a cheat, one way to think of this is to imagine an anthropologist
observing a previously undiscovered Amazon tribe. To observe the tribe is to alter its
behavior. It is impossible to observe without interacting in some fashion, and any interaction
will affect the behavior of the tribe. This is even more evident in the case of an electron. To
know which slit the electron went through there has to be some sort of interaction, and that
interaction has consequences. If I look to see if the electron passes through one slit but
don’t detect it, I can infer that it has passed through the other slit. The detector hasn’t
interacted with the electron so much as with the wave function controlling the probability of
where we’ll find the electron. Before we looked, there was an even chance of the electron
passing through either slit. By detecting no electron at one slit, we now know with one
hundred percent certainty that it must have passed through the other slit.

Let’s think of this in another way. Suppose I could make a bomb that would be activated
by a single electron hitting a sensor. The trouble is, there is no guarantee the bomb works.
The only way to know for certain is to engage in the rather useless act of firing an electron
at the bomb. If it goes off, I know it works. If it doesn’t, then it’s a dud. But either way,
after testing, I don’t have a bomb.

The weird thing is, I can use the double-slit experiment to detect working bombs without
setting them off. Remember that there were places on the screen that the electron can’t hit
if it is really going through both slits at the same time. We are going to use this region as the
“bomb detector region.” Place the bomb’s sensor at the location of one of the slits, and if
the bomb is a dud, the sensor won’t detect the electron, and the electron can’t hit the bomb
detector region.

But what if it isn’t a dud? Well, the sensor will detect the electron if it goes through the
slit and sets the bomb off. Not much good. But because now I am detecting which slit the
electron is going through, it will go through only one slit and thus has the chance to reach
our “bomb detector region.” So if I pick up an electron in the “bomb detector region,” and
the bomb wasn’t detonated, it must mean the bomb is live.

Strangely, the act of observation can also stop the pot of uranium on my desk from
decaying. By continually making lots of mini-observations, trying to catch it in the act of



emitting radiation, I can freeze the uranium and stop it from decaying. It’s the quantum
version of the old adage that a watched pot never boils.

The code-cracking mathematician Alan Turing was the first to realize that continually
observing an unstable particle could somehow freeze it and stop it from evolving. The
phenomenon became known as the quantum Zeno effect, after the Greek philosopher who
believed that because instantaneous snapshots of an arrow in flight reveal no movement, the
arrow cannot in fact be moving at all.

Think of a particle that can be in two states, HERE and THERE. Unobserved, like the
electron passing through both slits at the same time, we can consider it to be in a mixture of
the two states, but observation forces it to decide which one. If it decides to be HERE, then
after observation it begins to evolve into a mixed state again, but observe it quickly enough
and it’s still mostly HERE and will probably collapse into the HERE state again. So, by
continually observing the particle, it never evolves sufficiently into the THERE state.

My children are obsessed with the science fiction TV series Doctor Who, just as I was
as a kid. The aliens we find scariest are the Weeping Angels, stone figurines like those in
our local cemetery that don’t move, provided you don’t take your eyes off them. But blink
and they can move. The theory has it that the pot of uranium on my desk is a bit like a
Weeping Angel. If I keep observing the uranium, which means a little more than keeping my
eyes on the pot on my desk and involves something akin to surrounding it with a whole
system of Geiger counters, I can freeze it in such a way that it stops emitting radiation.

Although Turing first suggested the idea as a theoretical construct, it turns out that it is
not just mathematical fiction. Experiments in the last decade have demonstrated the real
possibility of using observation to inhibit the progress of a quantum system.

Quantum physics seems to suggest that there are multiple futures for the electron in my
double-slit experiment until I observe it, at which point a roll of the quantum dice determines
which of these possible futures will occur. I suppose I can come to terms with the fact that
I will never know the future until it becomes the present. After all, if I pick up my casino die
with the intention of throwing it three times, there are 6 × 6 × 6 = 216 possible future
outcomes. My act of rolling picks out one of these 216 possible futures, just as observing the
electron determines one of its many possible locations. But another twist of the double-slit
experiment has the frightening implication that the past isn’t uniquely determined either.

I seem, in fact, to be able to alter the past through my actions in the present.
It is possible to see which slit the electron went through long after it has passed through

the screen. The observation device can be put up just before the electron is about to hit the
detector plate. Let’s call this observation device the “slit detector.” Suppose I set up the
double-slit experiment on a cosmic scale and I put my electron-emitting device on one side
of the universe and the double-slit screen just in front of it, and my detector plate on the
other side of the universe. It will take many years for the electron to travel through space
until it finally hits the detector plate. When the electron passes through the screen with the
double slit, it won’t know whether I am going to observe it with my slit detector.



The decision to insert a slit detector in the path of the particle in AD 2016 can alter w hat the particle did
in 2000 BC.

If, years later, I do use the slit detector to observe which way the electron went, it will
mean that many years earlier the electron must have passed through one slit or the other.
But if I don’t use the “slit detector,” then the electron must have passed through both slits.
This is, of course, extremely weird. My actions at the beginning of the twenty-first century
can change what happened thousands of years ago when the electron began its journey. It
seems that just as there are multiple futures, there are also multiple pasts, and my acts of
observation in the present can decide what happened in the past. As much as it challenges
any hope of ever really knowing the future, quantum physics asks whether I can ever really
know the past. It seems that the past is also in a superposition of possibilities that crystallize
only once they are observed.

THE LIMITS OF REALITY

The interesting point for me—one that is often missed—is that up to the point of
observation, quantum physics is totally deterministic. No one questions the nature of the
wave equation that describes the electron as it passes through the slits. When he came up
with his theory in 1926, Schrödinger formulated a differential equation that predicts the
evolution of the wave function. Schrödinger’s wave equation is as deterministic in some
sense as Newton’s equations for the laws of motion.

Uncertainty occurs only when I observe the particle and try to extract classical
information. Suddenly I am left with an electron randomly located at some point in space.
Over the long term, the randomness is described by information contained in the wave



function, but scientists have not identified a mechanism that will let me determine where the
electron will be located in each individual instance.

Schrödinger hated quantum physics’ discontinuous changes in behavior. “If all this
damned quantum jumping were really here to stay, then I should be sorry I ever got involved
with quantum theory,” he groused.

We should be careful not to over-egg the role of humans here. Worms, too, can
presumably collapse the wave function. It is not just living creatures that are doing the
measuring. There are particles on the other side of a potentially lifeless universe that are
interacting with inanimate objects, causing the wave function to collapse. This interaction is
as much an act of observation as my experimental investigations in the lab.

I am having real trouble getting my head around this idea of observation marking a
divide between a deterministic electron described by a wave function and an electron that
suddenly has a location determined purely by chance. The whole thing seems crazy.
Nonetheless, there is no denying that it works as a computational tool. As the physicist
David Mermin is reputed to have said to those who, like me, are unhappy with quantum
logic, “Shut up and calculate.”

Still, I can’t help but feel that the objections are valid. The equipment I use to make a
measurement is a physical system made up of particles obeying the laws of quantum
physics. And I am too! I’m just a bunch of particles obeying quantum laws. Surely the
observer, whether a photographic plate or a person, is part of the world of quantum physics,
itself described by a wave function. The interaction of the wave function of the electron and
the observer should still be described by a wave. After all, what constitutes an
“observation” or “measurement”?

If the equipment and the observer and the particles are all described by a wave
function, shouldn’t everything be deterministic? Why are physicists happy to say that the act
of observation collapses the wave function when frankly there is a mega-wave function at
work describing all the particles at play—the electron, the equipment, and me. Where’s the
dividing line between the quantum world of probability and the classical world of certainties?
This dualistic vision of a microscopic quantum world and a macroscopic classical world all
seems a bit suspicious. Surely the whole shebang should be described by a wave equation.

It is all highly unsatisfactory, but the truth is that most physicists just take Mermin’s
advice and get on with it. My colleague Philip Candelas tells a story of how a promising
young graduate student, for whom everyone had high hopes, suddenly dropped out of sight.
When Candelas investigated what had happened, he discovered the reason. A family
tragedy? Illness? Debts? None of these. “He tried to understand quantum mechanics.”

I guess I have forgotten the advice Feynman gave to those who, like me, are quantum
initiates: “Do not keep saying to yourself, if you can possibly avoid it, ‘But how can it be like
that?’ because you will get ‘down the drain,’ into a blind alley from which nobody has yet
escaped. Nobody knows how it can be like that.”

That said, there are a number of ways in which people have tried to understand how it
came to be like that. One is the hypothesis that at the point of observation, reality splits into
a superposition of realities. In each reality, the photon or the electron is located in a different
position so that the wave in some sense doesn’t collapse but remains, describing the
evolution of all these different realities. It’s just that as conscious beings, we are stuck in
one of the realities and unable to access the others.



This fascinating attempt to make sense of quantum physics is called the “many worlds”
hypothesis, first proposed in 1957 by American physicist Hugh Everett. But are these many
worlds really out there, existing simultaneously with our own? No one has yet come up with
a way to probe these other worlds—or to prove whether they do, in fact, exist. The theory
posits that there is just one wave function that describes the evolution of the universe in an
entirely deterministic manner. It is back to Newton and Laplace, but with a new equation.

As a part of this wave function, we are denied access to other parts of it. It traps us
inside, confined to one branch of reality. It may in fact be an in-built feature of our
conscious experience that we can never experience these other worlds. But could I still use
my math to analyze what is happening on the other branches? I can’t see them, but can I at
least describe them mathematically? Of course, just as the electron exists in many worlds,
so do “I”—there are copies of me on the other branches witnessing the electron hitting
other regions of the detector plate.

This model of reality is very intriguing, as it seems to affect directly what we understand
by consciousness. I shall return to the question of consciousness in my Sixth Edge, but
tantalizing questions are already dancing around in my head. Why am I aware of only one
result of the electron hitting the plate? Is my conscious awareness of what is happening
around me some version of the electron hitting a plate? Is the equipment in my skull unable
to process multiple worlds? I look out of the window, and the photons emitted from the
house opposite enter my eye and are detected on my retina. Why can’t I sometimes look
out and see house numbers 14 and 16 swapped over?

This attempt to reconcile what is going on in the physical world with what we are
discovering at the subatomic level is challenging. Is it possible that the jump caused by the
act of observation is not real but just something going on in the mind? We perceive a jump,
but that isn’t what is really happening. This unsatisfying explanation raises the question of
what exactly we are trying to do when we give a scientific explanation of the world.

What is science? It is only by measuring and observing that we know anything.
Mathematical equations can tell us what to expect, but it’s just a story until we measure. So
it’s curious that our only way of “knowing” anything about the universe is to observe and
make particles and light make up their mind about where and what they are doing. Before
that, is it all just fantasy? I can’t measure an entire wave function; I can only know it
mathematically. Is a quantum wave function part of the universe that we can never really
know?

Perhaps it’s just greedy to believe that I can know more than I can measure. Hawking
has certainly expressed such a view: “I don’t demand that a theory correspond to reality
because I don’t know what it is. Reality is not a quality you can test with litmus paper. All
I’m concerned with is that the theory should predict the results of measurements.”

ONE INPUT, MULTIPLE OUTPUTS

My real problem with the current mainstream interpretation of quantum physics is that if
you run the double-slit experiment twice, set up with exactly the same conditions, the
outcome can be different. This goes against everything I believe in. I was drawn to
mathematics by the certainty that a proof that there are infinitely many prime numbers



means I’m not suddenly going to get finitely many prime numbers next time I check. I
believed that science was made up of similar certainties, even if we as humans might not
have access to them. I throw my die, and chaos theory tells me I may never be able to
calculate the final outcome, but at least the mathematics says that if I start the throw in the
same place it will end up with the same face pointing up. But quantum physics
fundamentally questions whether this is the case.

Probability in the realm of dice is an expression of a lack of information. In quantum
physics, even if I know everything, probability and chance remain.

Some might question whether it makes sense to talk about setting up the experiment and
running it again with exactly the same conditions—that it is, in fact, impossible. Locally, you
might get the conditions exactly the same, but you have to embed the experiment in the
universe, and that has moved on. You can’t rewind the wave function of the universe and
rerun it. The universe is a one-time-only experiment that includes us as part of its wave
function, and there’s no going back.

But what if reality truly is random? Feynman, in his Lectures on Physics, states, “At
the present time we must limit ourselves to computing probabilities. We say ‘at the present
time,’ but we suspect very strongly that it is something that will be with us forever—that it is
impossible to beat the puzzle—that this is the way nature really is.”

It looks like the truly random thing sitting on my desk may not be the casino die I picked
up in Vegas but that little pot of uranium I bought over the Internet.
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6
How puzzling all these changes are! I’m never sure what I’m
going to be, from one minute to another.

—Lewis Carroll, Alice’s Adventures in Wonderland

MUST  ADMIT  that I am having real trouble with the counterintuitive nature of the quantum
world. Apparently, this is a good sign. The quantum physicist Niels Bohr once declared, “If
quantum physics hasn’t profoundly shocked you, you haven’t understood it yet.”

Richard Feynman went even further, declaring, “no one understands quantum physics.”
In a keynote address he gave in his sixties he admitted, “Might I say immediately that we
have always had (secret, secret, close the doors!) a great deal of difficulty in understanding
the worldview that quantum mechanics represents. I still get nervous with it.”

The mathematician in me hankers after some mechanism that will tell me when my pot
of uranium is going to spit out its next particle. Newton’s equations held out the exciting
possibility that if I know the momentum and position of a particle, then the equations of
motion will tell me the complete behavior of that particle into the future. And if I repeat the
same experiment with another particle located at the same point with the same momentum,
it will repeat the path of the first particle.

The hope that we could ever really know the future was fundamentally crushed by the
discoveries made by Heisenberg in 1927. He revealed that it doesn’t actually make sense to
say, “I know the momentum and the position of a particle at the same time.” There seems
to be an elastic relationship between knowing the location of a particle and knowing its
momentum. If I measure the position of a particle with increasing precision, it seems to lead
to its momentum having a whole range of different possible values. This is the content of
Heisenberg’s famous uncertainty principle. And as we shall discover, Heisenberg’s
uncertainty principle accounts for why the uranium sitting on my desk is randomly chucking
out particles.

Heisenberg himself expressed well how important it is to be ready to reset your view of
the world in light of new revelations: “Whenever we proceed from the known into the
unknown we may hope to understand, but we may have to learn at the same time a new
meaning of the word ‘understanding.’” Quantum physics isn’t about figuring out answers to
old questions, but about challenging the questions we are allowed to ask.

Suppose I take one of the particles inside my uranium. If I know that the particle is at
rest, it turns out I can’t know where it is located. Indeed, there is a chance that when I look,
I could find it anywhere across the universe. But if I try to pin down exactly where this
particle is, I suddenly lose my handle on how it is moving. What appeared to be a particle at
rest can suddenly find itself moving in any direction.

This seems totally crazy. If I throw my die through the air, I don’t expect that watching
it fall will suddenly cause it to fly off in a totally new direction. This intuition, as it turns out,



applies only to things with a large mass. When the mass is as small as an electron, anything
can happen. If I pin down the location of the electron to within the radius of an atom, its
speed could change by as much as a thousand kilometers per second in any direction.

It’s like trying to install a strange quantum carpet: every time I pin down one end of the
carpet, the other end pops out.

To get a feel for this elastic relationship between position and momentum, let’s return to
my screen with the slits. I’ve been exploring the strange behavior of a particle fired at a
screen with two slits in it. The tension between its position and momentum has actually
already revealed itself in the behavior of the particle as it passes through a single slit. I get
some diffusion of the particles as they pass through the single slit. But why should just one
electron passing through the slit be deflected at all? Why doesn’t it sail straight through?
The trade-off between knowledge of position versus knowledge of momentum explains the
diffusion I see.

If I can arrange for the electron to be fired from a distant source, which ensures that it
passes through the slit, then I will know that there was no movement in the direction
perpendicular to the slit. This means that as the particle enters the slit, I know the up–down
momentum is zero.

If I think of the electron as a point particle, then it either passes cleanly through the slit
or it doesn’t pass through it at all. If it passes through the slit, I have very precise
knowledge of its position and should be able to predict precisely where it is going to hit the
screen. The momentum was zero in the direction perpendicular to the slit before the
electron entered the slit, so it should hit a region on the detector screen whose width is
precisely the width of the slit. So why, as I fire more and more electrons through the slit, do
I get the same diffusion pattern that I see for waves hitting the detector plate? Why aren’t
they all arriving in a region that is the same width as the slit?

Heisenberg’s uncertainty principle asserts that any measurement that involves
determining the precise position of the electron results in a new indeterminacy in the value
of the momentum. So if the electron has passed through the slit, I can know the location of



the electron within a margin of error given by the width of the slit. As the width of the slit is
reduced, that margin of error decreases. But this causes the diffusion pattern to get wider
and wider. Why? Because the value of the momentum is affected. While it was zero, once
the electron emerges with its position narrowed down, the momentum becomes
indeterminate. I’ve pulled the quantum carpet down in the position end and caused the
momentum end to pop out.

This is a very strange situation. To top it off, the precise impact on the momentum is
something I can’t calculate in advance. I can measure it only at a later date. What I can
know is a range of possible values in which I can expect to find the momentum once
observed. Not only that, it now seems that if I repeat the experiment, I have only a
probabilistic mechanism to determine what the momentum might be.

QUANTIFYING UNCERTAINTY

Heisenberg’s uncertainty principle isn’t some wishy-washy statement. It actually quantifies
the loss of knowledge. Once I know the position of the electron with high precision, the
momentum of the electron as it emerges can vary statistically around the average value of
0. I can’t know what value I’ll get when I measure the momentum, since that is still
undetermined, but I know that statistically the possibilities for the momentum will be
distributed on either side of the average value of 0. I can measure the spread of this
distribution with something called the standard deviation, denoted as ∆p, a statistical
measure of the spread of possibilities. The greater the spread, the larger ∆p, and the more
uncertain I am of the value of the momentum.

Following Heisenberg’s original paper detailing this strange inverse relationship between
knowledge of position and knowledge of momentum, Earle Kennard and later Howard
Robertson mathematically deduced the trade-off in knowledge. If the spread of possibilities
of the position has a standard deviation of ∆x, and the standard deviation for the spread of
momentum is ∆p, then these two values satisfy the following inequality,

Where h is Planck’s constant, which we came across when considering the energy of a
photon of light. It is a mathematical consequence of quantum physics that the more
knowledge you gain of the possible locations of a particle, the more this results in the
possibility of the momentum being spread over a larger range of values. This is exactly what
happens in the case of the electron passing through the single slit.

The order in which I do my measurements matters—the act of measuring position and
momentum are described mathematically by two operations that give different answers if
you do them in a different order. This idea can be illustrated using my casino die. Suppose I
place my die on the table with the 1 on top, as illustrated on the next page. Now I am going
to rotate it by a quarter turn around the vertical axis running through the top face and will
follow that by a quarter turn through a horizontal axis running through one of the side faces.
The top face now has a 5 showing. If I return the die to its original position and repeat the



moves but in reverse order, horizontal axis spin followed by vertical axis spin, I get a
different outcome. Now there is a 4 showing on the top face.

Any measurements that have this property—such that when you translate them into
mathematical operations it matters what order you do them in—will give rise to an
uncertainty principle. This is simply a mathematical consequence of a property called non-
commutativity.

The math underlying quantum physics accounts for much of its counterintuitive nature.
As I’ve buried myself in books and papers explaining quantum physics, I sometimes feel like
I’ve entered a labyrinth. I thought I knew where I was before I started my journey. I’ve
worked my way logically through the twists and turns of the labyrinth, relying on my math
skills to lead me, as the walls are too high for me to intuit anything about the world beyond.
The trouble is, once I make it out, where I’ve ended up doesn’t look anything like where I
started.

Quantum physics is a rabbit hole. Once you fall through it you have to reset your vision
and formulate a new language to navigate this looking-glass world. For better or worse, that
language is mathematics.

But can we trust the math? In this case, yes. The behavior predicted by Heisenberg’s
uncertainty principle has been confirmed. In a paper published in 1969, American physicist
Clifford Shull described the results of firing neutrons at slits of decreasing width. As the slit
narrowed, the increased knowledge of the location of the neutrons resulted, as theory
predicted, in a greater spread of possible values for the momentum. When the neutrons
arrived at the detector plate, they were spread in a distribution whose standard deviation
corresponded exactly to that predicted by the equation of Heisenberg’s uncertainty
principle.



Clifford Shull’s experiment confirmed that as the size of the slit is decreased, the statistical spread of
the locations of the neutrons increases.

Visit bit.ly/2m8g2vg for a larger version of this diagram.

An increase in the known must always be traded off against a corresponding increase in
the unknown. But this indeterminacy can have some unexpected consequences. If I trap an
electron in a very tiny box, its position is known to a high degree of accuracy. That results in
the possible values of the momentum being spread over a huge range. As soon as I have
measured the momentum, you might say that I now know both the position and the
momentum. But it actually results in the position becoming indeterminate, so much so that I
get an effect called quantum tunneling, whereby the particle that I thought was trapped
inside a box can suddenly appear outside the box. This phenomenon is responsible for the
radiation of the uranium that is sitting on my desk.

An alpha particle, consisting of two protons and two neutrons, can be found inside the
nucleus of my uranium. In general, alpha particles don’t have enough energy to escape the
confines of the nucleus. But if we follow Heisenberg’s uncertainty principle and think of the
nucleus as a box, we will find that the position of these particles is not so clearly defined. In
fact, there is a chance that they might be located outside the nucleus. This uncertainty about
position is responsible for the possibility of radiation.

http://ebookassets.penguinrandomhouse.com/ebookassets/features/thegreatunknown/30.jpg


OBSERVATION IS CREATION

There have been many attempts to explain the uncertainty principle as a consequence of the
act of observation. If you want to see where a particle is, you have to fire a photon at it, and
this will kick the particle, giving it an unknown momentum. Beware of such explanations!
They sound attractive, but they are misleading. In the description I gave above of the
electron passing through a single slit, I did not need to fire any photons at the electron to
alter its momentum. It was purely the act of the electron passing through the screen that
gave me new knowledge of its location. There was no direct interaction with the particle
that kicked it in one direction or the other. Apparently this misleading description of photons
of light kicking the particle goes back to Heisenberg’s original paper. He needed to include it
in order to persuade his skeptical editors to publish the paper.

What does Heisenberg’s uncertainty principle really tell us? Is it that we can never
know the precise location and momentum of an electron? Or is it that such things don’t
exist? Or that observation is creation? His own formulation in this instance is that reality is
created by our observations: “I believe that one can formulate the emergence of the
classical ‘path’ of a particle as follows: the ‘path’ comes into being only because we
observe it.”

For some time I’ve found it very hard to believe that fundamental properties like position
and momentum come into existence only once they are measured. The momentum of an
electron might change after it passes through the tiny slit, but surely it must have some
precise value even before I measure it? I can accept that I might not know what that value
is until I determine the momentum, but there are lots of things I don’t know before I
measure them. Quantum physics, however, is trying to tell me that this belief in the
existence of a precise value before measurement is a mistake. Can it really be my act of
measurement that produces the reality of this particle?

It turns out I am in good company. Einstein (among others) tried to challenge the idea
that things like momentum and position are indeterminate until they are observed. Surely, he
argued, these things really do have explicit values as the particle flies through the vacuum.
We might not know what they are, or have the machinery or knowledge to work them out,
but they still exist. The argument is that we shouldn’t confuse epistemology with ontology. I
may not be able to know both momentum and position (epistemology), but that doesn’t mean
they don’t exist (ontology).

I finally, reluctantly, had to give up on this intuitive belief when I read about Bell’s
theorem. In 1964, Northern Irish physicist John Bell definitively proved that it was
impossible for certain properties of a particle to exist prior to a measurement being taken.
Try to make them exist prior to measurement and everything ends in a contradiction. Bell
showed that it was impossible to assign a value to account for every possible measurement
without creating contradictory results. It’s like trying to do a Sudoku puzzle with a mistake in
it. However hard I try to assign values to all the squares, I will always get a row or column
with the same number twice.

Given that Bell’s theorem is as mathematically robust as they come, I’ve had to
concede that the act of measuring truly seems to determine the properties of my particle.
But I’m still deeply suspicious that the outcome is as random as current theory would have
us believe.



I must admit to a sneaky feeling that quantum physics is a stopgap on the way to a more
complete understanding of the behavior of fundamental particles. Surely there must be some
mechanism deciding when my lump of radioactive uranium is going to spit out an alpha
particle, or where the electron will hit after passing through the double slits.

Einstein certainly thought so, leading to his famous quote: “Quantum mechanics is very
impressive. But an inner voice tells me that it is not yet the real thing. The theory produces
a good deal but hardly brings us closer to the secret of the Old One. I am at all events
convinced that He does not play dice.”

Einstein believed that there must be something behind the veil that we have yet to
penetrate. Even if we can’t access it, he believed there must be some internal mechanism
at work that determines the outcome. I am happy to concede that this mechanism may
follow a model of randomness, just as the throw of my die does. But there must be
something that determines the outcome. Perhaps the particles inside my pot of uranium
have some little internal ticking clock, so that if the second hand is between zero and thirty
when I measure it, the uranium will emit radiation; but if it’s between thirty and sixty, then
no radiation is detected.

The trouble is that a scenario first dreamed up by Einstein and his colleagues Boris
Podolsky and Nathan Rosen revealed that if there is such a mechanism, then part of it could
be on the other side of the universe. The scenario that Einstein, Podolsky, and Rosen
cooked up involves the idea of quantum entanglement. It is possible to create two particles
whose properties are entangled such that if I measure the properties of one particle, it will
force the result to be mirrored by the other particle. It is a bit like having two casino dice,
and whenever one lands on a 6, the other must too. It would be pretty difficult to rig up such
an entangled pair of dice, but in quantum physics it is entirely possible to create such
entangled and dependent particles. These entangled particles in turn reveal the very strange
properties of any hidden mechanism that could determine how they will behave when
measured.

To demonstrate the weird nonlocal nature of such a mechanism—if it exists—the
experiment sends the two quantum dice in their entangled state off to opposite sides of the
universe. If I then measure the first quantum die, it instantaneously determines which face
is showing on the other at the opposite side of the universe. Some people, Einstein included,
had a real problem with this “spooky” action at a distance. He felt that there might be a
way for the roll of the dice to be preset before the particles head off to opposite ends of the
universe. But that was before Bell proved his theorem, which tells me that it is impossible to
preset the properties of a quantum particle in advance of measurement. Remember—
measurement is creation.

The real challenge is to understand how creation at one end of the universe can
instantaneously create a new state for the second particle at the other end. Because if there
is some internal mechanism at work determining the outcome of the second particle, that
mechanism has just been altered by something that has happened on the other side of the
universe. It cannot be localized.

Einstein already expressed his concerns at this “spooky action at a distance” with the
double-slit experiment. How does the photographic plate know not to record an electron in
one location if it is to be detected at a second location? There seems to be an instantaneous
collapse of the wave function with no cascade effect from the point of observation across
the result of the plate.



In this new case I have two particles, but because they are entangled in some sense,
they are described by one wave function, which makes them not dissimilar to the particle
being detected in the double-slit experiment. The two particles must be considered as one
holistic unit. Bell’s theorem means that the properties of the particles can’t be preset before
they travel to the ends of the universe, which in turn means that any mechanism determining
their properties must span the entire universe.

So if there is a mechanism deciding when my radioactive uranium emits radiation (as
my deterministic soul yearns for there to be), it will have to span the universe. It can’t just
be an internal mechanism in the heart of the blob of uranium on my desk.

Many scientists are not as keen as I am to eliminate the possibility that the behavior of
my uranium is random, fueled by the hope that this small chink in the knowable will allow
something many people cherish to enter the scientific picture: free will. Some have argued
that if there is genuine randomness in quantum physics it is evidence of free will at work in
the universe. Humans may not be totally free, but these microparticles seem able to do what
they want . . . within reason.

Some religious thinkers contend that quantum physics allows room for an external agent
to act in the world and influence its course. Provided that the results over the long term are
in line with what we’d expect from randomness, there seems to be room for an agent to
determine individual outcomes. This would take advantage of our present inability to explain
how the macroscopic world of measurement interacts with the quantum world. So is the
unknown of quantum physics home for a theistic God? If I wanted to get anywhere in my
attempt to understand whether God could hide in the equations of quantum physics, I would
need to talk to someone who was as much at home in a laboratory as in a cathedral. So I
made a trip to Cambridge.

THE VEGETARIAN BUTCHER

John Polkinghorne learned his physics at the feet of Paul Dirac in Cambridge and then with
Richard Feynman and Murray Gell-Mann at Caltech. You can’t ask for better teachers than
that. His research has, among other things, helped to confirm the existence of quarks.
Polkinghorne is back at his alma mater, so I arranged to meet him at his home in
Cambridge. Having done a five-year research stint at Cambridge, I always enjoy a chance
to visit, even if my heart is with Oxford. Polkinghorne’s decision to become an ordained
priest, after a quarter of a century pushing the limits of quantum physics, makes him the
perfect person to explore the theology in the quantum unknowable. To many it seemed like
a dramatic career change. As he explained the decision, “I didn’t leave science because I
was disillusioned, but felt I’d done my bit for it after about 25 years. I was very much on the
mathematical side, where you probably do your best work before you’re 45.”

Yikes. I hate it when people say that. I’ve always clung to the hope that it is a myth that
mathematics is only for the under-forties. But then I guess, being on the wrong side of that
divide, I would say that. So long as there are still unanswered questions to struggle with, that
is what drives me on. And I’ve still got plenty of those unanswered questions on my desk.
But I can certainly understand the desire to set yourself new challenges . . . like my current
attempts to understand quantum physics. For Polkinghorne, the new challenge was getting



ordained, and he often jokes about the seemingly contradictory natures of the two
professions he has dedicated his life to. “People sometimes think that it is odd, or even
disingenuous, for a person to be both a physicist and a priest. It induces in them the same
sort of quizzical surprise that would greet the claim to be a vegetarian butcher.” He himself
thinks of the two roles as a harmonious combination. “The basic reason is simply that
science and theology are both concerned with the search for truth.”

I wondered whether there were any questions that he thought were beyond the reach of
either discipline.

“There are two sorts of questions that science cannot answer,” he offered. “Some of
them arise out of science itself. The first is something we’ve learned from quantum physics,
which is that although the world is orderly, it’s also cloudy and fitful in its character and we
don’t have access to that clear, unquestionable post-Newtonian world that seems to be
sitting there.

“But there are also questions that by their very nature don’t lie within science’s purview
to answer. I think science has been tremendously successful and I have enormous respect
for it, but it’s achieved its success by limiting its ambition. Essentially, science is asking a
single question about how things happen: What is the process of the world? And it
deliberately brackets out by its nature questions of meaning and value and purpose.”

That’s not the first time I’ve come across this supposed dividing line. Science does the
“how” and religion does the “why.” It’s an attractive sound bite, but I think it’s a
fundamentally flawed take on science.

Science tackles a lot of “why” questions. Why is my pot of uranium radiating alpha
particles? Why do the planets orbit the sun on the same two-dimensional plane rather than
at arbitrary angles to each other? Why do bees make their hives in hexagons? Why does
the population of lemmings plummet every four years? Why is the sky blue? Why can’t
things travel faster than light?

Polkinghorne tried to tease out for me the difference he sees in the two approaches.
“My favorite homely example is that you come into my kitchen and you see the kettle

boiling. If I put on my scientific hat, then I explain that it is boiling because the burning gas
heats the water, and so on. But I can take off my scientific hat and say the kettle is boiling
because I wanted a cup of tea and would you like to have one?”

I decided to take him up on his offer of tea. As it brewed, Polkinghorne continued.
“I don’t have to choose between those two answers, and if I am to fully understand the

phenomenon of the boiling kettle, I have to answer both questions: how it’s happening and
why it’s happening.”

I agree with Polkinghorne to some extent that science has limited its ambitions.
Fermat’s Last Theorem is frankly easier to grasp than the logic of my cat’s behavior or the
next move my son is going to make. But that doesn’t mean that science can’t hope
ultimately to understand the complexities of a cat or the vagaries of human desire.

In my view, the science-versus-religion debate has fallen prey to our terrible desire to
compartmentalize everything, the silo mentality that says, “This is science and this is
theology and this is art and this is psychology.” The exciting thing is that we have developed
a multitude of discourses to navigate our environment. The evolution of everything in the
universe might be reducible to the solutions of Schrödinger’s wave equation—and that
includes Polkinghorne’s decision to boil his kettle—but while math is a great language for



describing the behavior of my pot of uranium, it isn’t the right language to explain the
migration of a flock of birds, the thrill of listening to Mozart, or the immorality of torture.

Polkinghorne concurred that there were real dangers of a too-reductionist take on
reality: “Sometimes when I’m having arguments with firmly reductionist friends who say
that physics is everything, I say, first of all, ‘What about mathematics?’ and secondly, ‘What
about music?’ Of course, music is just vibrations of the ear, but when you’ve said that
you’ve said all that science can say about music, but you certainly haven’t said all that can
be said about music. It does seem to me very important that one doesn’t just take a
reductionist ax and chop everything down.” I pushed him on his first example of a question
science can’t answer. Does he really believe that quantum physics means that I can’t know
when my pot of uranium is going to spit out its next particle? Is it really just chance?

“It’s very unsatisfactory that there is this sort of lottery going on. A casino, in effect.
Most quantum physicists who are busy doing the numbers have just got used to that, but I
think it is unsatisfactory. The question is whether it is epistemic or ontological.

“Epistemological problems have an answer, but you don’t happen to know it. But
ontological things are situations where you could not know it. And that’s the traditional
interpretation of quantum theory—you cannot know.

“In the casino, we know it’s essentially epistemic. There are tiny effects that influence
things. My feeling is that if the problems of quantum theory are epistemic, then you need to
have some notion of how that epistemological frustration arises, what stops you from finding
an answer. I think it’s sensible to try to push the issue ontologically as far as you can. We
haven’t got there yet.”

Most quantum physicists believe that before you observe a particle, it is in a
superposition of states described by the wave function, and that observation by macroscopic
apparatus causes a jump in the behavior. The particle now has one state, and the wave
function encodes the probability that you will find the particle in one state rather than
another. There is no attempt to explain the jump. This is called the Copenhagen
interpretation, after the home of its principal proponent, the Danish physicist Niels Bohr.
Basically it’s the “Shut Up and Calculate” school of quantum physics.

“Although I sign up to the Copenhagen interpretation of quantum theory, I don’t think
it’s intellectually satisfying,” Polkinghorne confessed. “At the end of the day all these things
come down to someone saying ‘and then it happens.’ It’s somehow produced by the
intervention of macroscopic measuring apparatus. End of discussion. But that’s just winning
by definition. It is a problem. There are still puzzles.”

Given Polkinghorne’s belief that there is a God acting in the world, I wondered whether
he thought the unknown of this collapsing wave function was a window for his God to act.

“I don’t think that God is on hand to decide whether the nucleus in your uranium
decays. There is some sort of mechanism . . . no, ‘mechanism’ isn’t quite the right word . . .
some sort of influence that sorts this thing out. One of the paradoxes of quantum theory is
that here we are eighty years later and we still don’t understand it.”

I wondered why, as I discovered in the First Edge, Polkinghorne had chosen chaos
theory, rather than his home territory of quantum physics, as the unknown through which his
God might act.

“There was a period of about ten years when the science and theology communities
were wrestling with these forms of agency. Of course they didn’t solve the problem,
because that would have been a very ambitious project. There were a lot of people,



especially on the West Coast of America, who put their money on quantum theory
explaining everything. That appeared to me just a little too slick. To counterbalance that, I
lurched a bit too far in the other direction. I don’t think chaos theory is the whole solution.
It’s really just the suggestion that the physical universe is orderly but looser in its order than
Newton would have thought.”

But he certainly isn’t dismissive of the implications of quantum physics.
“The discovery of the intrinsic unpredictability in quantum theory shows us that the

world certainly isn’t mechanical and therefore we certainly aren’t automata in some trivial
and unbelievable sense.”

It’s intriguing to consider that an agent trying to dictate the course of the future using
the unknown of quantum physics would have the opportunity to act only when measurement
is made. Until the measurement causes a phase change, the equations of quantum physics
are totally deterministic, rolling along in a linear, nonchaotic fashion, with no room for
agency. This is one reason why religious physicists like Polkinghorne are not particularly
enamored of the God of quantum physics.

As I drive back from Cambridge, I find myself lingering on this question of epistemology
versus ontology, as it seems central to navigating what quantum physics tells me about the
limits of human knowledge. Is it like my casino die? Although we can’t know the precise
starting point for the throw, we don’t question whether the dice exist. But quantum physics
questions whether I can talk about my pot of uranium as having a well-defined initial state.
As Heisenberg put it, “The atoms or elementary particles themselves are not real; they form
a world of potentialities or possibilities rather than one of things or facts.”

Although Heisenberg’s uncertainty principle seems to create an unknown or gap
through which God can slip back in, it may actually fill another gap that is the spark for most
people’s belief in a creator. One of the big unknowns is this: Why is there something rather
than nothing? My pot of uranium arrived in the post, sent via Amazon from Images
Scientific Instruments in Staten Island. But if I keep reaching back, trying to find the
ultimate origin of my uranium, I am eventually going to hit an unknown. The need for some
explanation of this unknown is at the heart of many cultures’ concepts of God. But what
sort of answer is that?

I think most scientists who talk of God have in mind something that answers the
seemingly unanswerable question of where all this stuff came from. Once the universe is up
and running, they are happy to engage their scientific brains to understand how the stuff we
have behaves. They are not looking for God to intervene in the world. This is what is often
called deism rather than theism. This sort of God is very much one that can be equated with
“things we cannot know.”

Of course, if we try to describe what this answer actually looks like, we encounter the
problem of infinite regress. If you think that something is responsible for creating the
universe, then you quickly hit the question of who created that something. Of course, that
“who” is part of the problem, because we have a terrible urge to personify this concept.

So this is why many talk about transcendent definitions, things that can’t be articulated;
to avoid the problem of infinite regress, they avoid even an attempt to articulate what the
answer might look like. It’s just something that is unknown and transcends our attempts to
know it. This is the God the presenter of the Sunday morning program on BBC Northern
Ireland whom I tangled with asked me about.



But if God is defined as something that can’t be articulated, does it have any potency at
all to act? If it can’t interfere, or influence, if it can’t be articulated and described, why do
we need it? This is why mythmakers have had to mold their gods into forms that can be
articulated, recognized, often personified. A God that is too transcendental loses its potency.
For many early religions, this was precisely what happened to the idea of the High God or
Sky God. As religious commentator Karen Armstrong writes in her book The Case for
God, “He became Deus otiosus, a ‘useless’ or ‘superfluous’ deity, and gradually faded
from the consciousness of his people.”

As the theologian Herbert McCabe declared, “To assert the existence of God is to claim
that there is an unanswered question about the universe.” But he also warned that the fault
of religion was always to make this God into a thing rather than a philosophical idea. The
problem, he believed, is that religion far too often commits idolatry by trying to engage too
personally with this concept of God.

The trouble is that an undefined, unknowable, transcendent concept is too abstract for
many to engage with. It can’t offer the sort of consolation that many seek. So perhaps it is
inevitable that God’s potency depends on becoming a little less transcendent, and more
tangible.

ZERO EQUALS ONE MINUS ONE

The question of why there is something rather than nothing may not be as unanswerable as
we think. As soon as you have a bit of empty space, quantum physics is going to start filling
it with stuff. The version of Heisenberg’s uncertainty principle that I have explored so far
looks at the relationship between position and momentum. But there are other physical
concepts that are similarly entangled.

For one thing, Heisenberg’s uncertainty principle also connects the measurement of
energy and time. If I look at what is happening in an apparently empty bit of space, then
decreasing the time period in which I examine the space increases the uncertainty of the
energy content—which means that empty space can never be truly empty. Over very short
periods of time there is the chance of energy fluctuations. Since energy can change into
mass, this results in particles spontaneously appearing from the vacuum. Most of the time,
they annihilate each other and disappear back into the void, but sometimes things survive.
And this gives us a mechanism for getting something out of nothing.

But where does this energy come from? Doesn’t its sudden appearance contradict the
concept of conservation of energy that physics holds dear? Some propose that the total
energy content of the universe is actually zero, so no one is cheating the system. The key
here is that gravity provides a negative energy content. So the universe can emerge from
zero energy—from nothing—because what emerges is a combination of positive and
negative energy. We are just seeing the equation 0 = 1 – 1 at work.

It might seem a bit bizarre to call gravity negative energy, but think about putting a large
mass like an asteroid next to the Earth. As the asteroid falls toward Earth it gains kinetic
energy, but the gravitational pull is also going up because gravity increases the closer two
masses are to each other. So to maintain a constant energy, this gravitational potential
energy is negative and balances the increase in kinetic energy.



According to Heisenberg’s uncertainty principle, it follows from the fact that space
exists that you will get particles appearing from nothing. You don’t have any need for a
creator. Quantum fluctuations mean that we are seeing something appearing from nothing
all the time. As we shall see in the Fifth Edge, this is how Hawking explained why black
holes radiate particles. Nothing becomes a particle and an antiparticle—one gets trapped in
the black hole and the other radiates away. So quantum physics already provides a partial
answer to the something-from-nothing question.

However, you do at least need a stage on which to play this quantum game. Some
equate empty space with nothing. But that is a mistake. Three-dimensional empty space, a
vacuum, is still something. It is an arena in which geometry, mathematics, and physics can
play out. After all, the fact that you have a three-dimensional rather than a four-dimensional
empty space already hints at the evidence of something. Nothing does not have a
dimension. The ultimate challenge, therefore, is to explain how quantum fluctuations might
produce space and time out of genuine nothingness.
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I venture to suggest this solution to the ancient problem: the
Library is unlimited and cyclical. If an eternal traveler were to
cross it in any direction, after centuries he would see the same
volumes were repeated in the same disorder. My solitude is
gladdened by this elegant hope.

—Jorge Luis Borges, The Library of Babel

HAVE ALWAYS BEEN INTRIGUED by the question of whether infinity physically exists. My
attempts to create infinity by cutting the dice up into infinitely small pieces ran aground
when I hit indivisible quarks. It even seems that I can’t divide space infinitely, since space
may be quantized. So my quest to know whether infinity exists will turn in a different
direction.

What happens if I keep going in a straight line? Will I go on forever? It is a question that
I think everyone who looks up into space must contemplate at some point in his or her life.
If I throw my die into the vacuum of space, will it one day return to this starting point, or
perhaps hit a cosmic wall and bounce back, or will it just tumble forever? Whether the
universe goes on forever is a surprisingly subtle question that touches on the fact that space
itself is not static.

To help me on my journey I’ve downloaded the universe—or what I can see of it at
least. I’ve glued together a star globe from the European space agency website. It’s not
exactly a globe. It’s made from two sheets of A4 paper that I’ve cut out and glued together
to form one of my favorite mathematical shapes—an icosahedron made from 20 equilateral
triangles. Like my casino die, it is an example of one of the five Platonic shapes that make
good dice.

As we look out into space on a clear night, it seems as though the stars are all painted
onto a huge black celestial globe that encases the universe. This was certainly the model of
the universe for many ancient cultures. They believed that the Earth sat at the center of this
globe and that the globe would spin on an axis that passes through the Polaris star, the one
star that seems to stay still in the night sky, while other stars rotate around it.

I’ve put my paper star globe on my desk with the Polaris star sitting at the top. Around
the middle are the signs of the zodiac that mark the passing of the year, including, of course,
my own constellation of Virgo. The sun appears to move through each of these
constellations, taking a full year to return to its starting point. On the bottom of the shape are
the stars that you can see from the southern hemisphere, the brightest of which is Alpha
Centauri. This is actually made up of three stars, including Proxima Centauri, which is
thought to be the nearest to our own star, the sun.

People have been making versions of my paper globe for millennia. Cicero writes of
ancient Greek astronomers making models of the universe with stars marked on them.



Sadly, none of the Greek models have survived, so I popped into one of my favorite
museums in Oxford, the Museum of the History of Science, to see some others that have.
There was a beautiful globe about half a meter high dating from the early sixteenth century.
Made in Germany, it brings the constellations to life with graphic images of birds, fish,
animals, and men printed onto paper sections that have been glued onto the sphere.

Although my modern paper cutout doesn’t match the beauty of this sixteenth-century
globe, its design harks back to Plato, who believed that the celestial globe that encases our
universe may not be a sphere but a dodecahedron—another one of the Platonic shapes that
make good dice.

TRIANGULAR TELESCOPES

Every culture has looked up into the night sky and contemplated what is out there. Most
immediately obvious are the sun and the moon. But how could ancient cultures discover
anything about these bodies, given that they were confined to the surface of the planet? For
me this is one of the striking things about mathematics—it allows us to deduce things about
the universe from the comfort of our observatories. The fact that we can know anything
about regions of space we may never visit is extraordinary.

Trigonometry, the mathematics of triangles and angles, was a tool developed not to
torture schoolkids but rather to navigate the night sky. It is actually the earliest form of a
telescope. Already in the third century BC, Aristarchus of Samos was able to calculate the
size of the sun and the moon in terms of the radius of the Earth and to determine their
relative distance from the Earth, just with the help of a mathematical triangle.

When the moon is exactly half full, the angle between the Earth, the moon, and the sun
is essentially 90 degrees. So by measuring the angle Φ between the moon, Earth, and sun I
can use the mathematics of trigonometry to calculate the distance from the Earth to the
moon relative to that from the Earth to the sun. The ratio of those two distances is the
cosine of the angle Φ, and that is something that I can determine with a purely mathematical
analysis.

The inaccuracy of the measurement meant that Aristarchus was off by a factor of 20.
He’d estimated the angle to be 87 degrees, while the true value is 89.853, almost a right
angle. Small differences in angles of this size result in quite large differences in the relative
size of the lengths of the sides of the triangle. It would take the invention of the telescope
and some more clever mathematics to truly determine the size of the solar system.

The right-angle triangle made by the Earth, moon, and sun w hen the moon is half full



Yet even without telescopes, astronomers could see that the moon and sun weren’t the
only bodies processing through the night sky. Ancient cultures picked up several tiny pricks
of light that behaved very differently from the plethora of other stars. They were wandering
beacons of light—Mercury, Venus, Mars, Jupiter, and Saturn—luminous bodies that can’t be
marked on my cutout sphere because the next night they will be located at a different point.
One explanation for the importance of the number seven to many cultures derives from the
fact that with the sun and moon, the visible planets make up seven heavenly bodies.

Just as the planets move from day to day relative to the stars, it turns out that the stars
are moving relative to each other. So the celestial sphere I have on my desk is just a
snapshot of the night sky at a particular moment. Marked on my sphere is the easily
identifiable constellation of the Plow or Big Dipper. But the stars that make up the Plow—
Merak, Dubhe, Alkaid, Phecda, Megrez, Alioth, Mizar—are on the move: a hundred
thousand years ago they would have been painted on my globe in a very different
configuration, and a hundred thousand years hence they will look different again.

But for ancient astronomers the stars were fixed, bound to the celestial sphere that
encompassed the universe. There was little discussion of what lay beyond them. Few
medieval philosophers were prepared to contemplate the nature of the void. Nicolas
Oresme believed that the extra cosmic space beyond the celestial sphere really existed and
was infinite. In his writings he identified this immensity with God.

The changing shape of the Big Dipper



Oresme was not frightened by the philosophical challenge of the infinite. Indeed, he
proved that you can reach infinity by adding the fractions 1 + 1⁄2 + 1⁄3 + 1⁄4 + . . . , a
counterintuitive mathematical result, given that the bits you are adding are getting smaller
and smaller. This infinite sum is known as the harmonic series. When I pluck a string on my
cello the sound is built from harmonics whose wavelengths are given by all these fractions.
As I will explain later, the revelation that this harmonic series sums to infinity has interesting
repercussions for how far we may ever be able to see into space.

It seems that it was only in the fifteenth century that astronomers began to contemplate
the idea that the celestial sphere might be an illusion, and that the universe might extend
infinitely in all directions. Nicolaus Cusanus suggested that the universe was infinite and any
point could therefore be considered its center. This was picked up by the Italian Dominican
friar Giordano Bruno, who in 1584 wrote a seminal work, On the Infinite Universe and
Worlds: “The universe is then one, infinite, immobile. . . . It is not capable of comprehension
and therefore is endless and limitless, and to that extent infinite and indeterminable, and
consequently immobile.”

The logic that led Bruno to this conclusion is interesting. He argued that the universe is
created by God, but God is unknowable. Therefore the universe must be beyond our
comprehension and must be infinite, since a finite universe is, in theory, knowable. Now, I
would say that the converse is true—if the universe is endless, it means that potentially it is
beyond our comprehension. And if I am exploring the concept of God as a way of
articulating the things we cannot know, then an infinite universe, if unknowable, could imply
the existence of this concept of transcendence. But is the universe infinite, and, if so, is it as
unknowable as it may first appear?

Bruno offers more than just his belief in God to justify his view of an infinite universe.
One of the most powerful challenges to a finite universe contained in a celestial sphere is
the question of what is behind the wall that contains the sphere. For centuries astronomers
and philosophers suggested that there was nothing—the void. But Bruno was dissatisfied
with this answer. He also believed that time was infinite both in the past and into the future.
This somewhat controversially did away with the need for a moment of creation and a day
of final judgment. Bruno was not shy of controversy. His pronouncements on the Bible
eventually led to his falling foul of the Catholic Church—not a good thing at the time. He
was burned at the stake on February 17, 1600.

How can we know if the universe is infinite? The opposite would be much easier to
prove. The surface of the Earth turned out to be finite and navigable, so perhaps we could
simply navigate our universe and prove that it was finite. Although we don’t yet have a ship
in which we can sail to the edges of the universe, scientists in the seventeenth century did
come up with a cunning way to explore space: the telescope.

HOW FAR CAN YOU SEE?

Galileo’s generation discovered you could enhance how far you can see by placing carved
glass lenses in a tube. For years Galileo himself was credited with the invention of the
telescope, but that distinction really belonged to the Dutch spectacle-maker Hans



Lippershey, who filed a patent for an instrument “for seeing things far away as if they were
nearby.” The Dutch instrument was able to magnify things by a factor of three.

Galileo first heard about the instrument on a trip to Venice. That same night he figured
out the principle on which it worked, and he was soon constructing instruments that could
achieve a magnification of thirty-three times. The name telescope was coined by a Greek
poet who attended a banquet to honor Galileo in 1611; in Greek tele means “far” and
skopein means “see.” And Galileo’s new contraption did indeed allow him and subsequent
generations of astronomers to see farther than ever before. Galileo discovered moons
orbiting Jupiter and sunspots that rotated, suggesting that the sun was spinning on its axis—
phenomena that helped to confirm Copernicus’s model of a sun-centered solar system.

In 1663, the Scottish mathematician James Gregory realized that the telescope could
also be used to make new calculations of the distance of the sun from the Earth. Johannes
Kepler had already observed the time it takes each planet to orbit the sun and deduced,
using his laws of planetary motion, the relative distance of each planet from the sun.
Kepler’s third law stated that the square of the time a planet takes to complete one orbit of
the sun is proportional to the cube of its distance from the sun. Venus, for example,
completes an orbit in three fifths of the time it takes the Earth to go around the sun, which
means that Venus’s distance from the sun is about seven tenths (approximately [3/5]2/3) of
the distance of the Earth to the sun. (When we talk about distance from the sun we need to
be careful since, as Kepler discovered, the planets aren’t moving in perfect circles but in
ellipses, so the distance actually varies. In general, I mean something like the average
distance.)

But these are only relative distances. What Gregory and others realized is that they
could use observations of the planet Venus crossing the sun, known as a transit, and a bit
more trigonometry to calculate how far the Earth and Venus really are from the sun. If they
made observations from two different locations on the Earth of the different points and
times at which Venus crossed the sun, they would be able to work out the angle of the
triangle formed by the two observers and Venus. And from there, by calculating the
distance between the two observers on the Earth and using some trigonometry, they could
deduce the distance to Venus.

The trick with trigonometry is to use triangles to change something you can’t measure
directly, such as the distance between the Earth and Venus, into something you can measure
from the surface of the Earth, such as an angle or the distance between two points on
Earth. The calculation was a complicated but clever application of abstract mathematical
thought combined with practical astronomical observation.

The trouble is that these transits don’t happen that often. Venus has crossed in front of
the sun only ten times since 1400. Gregory had originally proposed using the transit of
Mercury, since the next transit of Venus wouldn’t be till 1761. Edmond Halley knew of his
work and made observations of the transit of Mercury that occurred in 1676, but it
transpired that only one other observation was made—enough, theoretically, to calculate the
distance, but given the errors that can creep in, you really want as many observations as
possible.



The transit of Venus from tw o different locations on Earth

It was the multiple observations of the transits of Venus in 1761 and 1769 that finally
enabled accurate calculations to be made of the distance of the Earth from the sun. In one
of the first coordinated global scientific experiments of its kind, it was calculated that the
Earth was ninety-five million miles from the sun. Halley, alas, had died nineteen years
earlier and missed the culmination of the project he’d tried to realize nearly ninety years
before. Today, the calculations give the average distance of the Earth from the sun as
92,955,807.267 miles.

I continue to be astounded by the power of trigonometry to translate a measurement on
Earth into the distance to a planet that no human has ever visited. More impressive
mathematical feats were to follow. Telescopes and light aren’t the only ways to detect what
might be out there. Mathematics also turned out to offer a farseeing view of the universe,
so much so that it succeeded in predicting the existence of a new planet before it was ever
seen down the barrel of a telescope.

DISCOVERING A PLANET WITH THE POINT OF YOUR PEN

There are two ways to find a new planet: luck and logic. The first planet to be detected
since antiquity was discovered by luck. The German musician Friedrich Wilhelm Herschel
had moved from Hanover to England in an attempt to further his musical career. He was
also something of an amateur astronomer and he spent his nights staring at the sky with his
impressive range of telescopes.

On March 13, 1781, Herschel spotted something unusual. What he at first thought was
a star seemed to change size according to the magnification of his telescope. That was
generally an indication of something close enough that it could be zoomed in on. The next
test was: Did it move? Sure enough, four days later it had changed position relative to the
stars. Given the number of comets that had been spotted, his first thought was that it must
be a comet.

But after he alerted the Astronomer Royal and the object was tracked further, it
became clear that its orbit was not parabolic, as you would expect of a comet, but nearly
circular. The object was also too bright to be a comet and there was no visible tail. The



astronomers concluded that it was in fact a new planet. Herschel wanted to name the
planet after King George III, but classical mythology prevailed. Saturn was the father of
Jupiter, and this new planet, orbiting farther out again, took the name of Saturn’s father:
Uranus.

Astronomers were ecstatic at the idea of a new planet and started mapping its
trajectory, looking for moons, and calculating the length of its orbit around the sun. But
Uranus was not as well behaved as they expected. Newton’s theory of gravitation, so
successful in predicting the path of the other planets, was distinctly faulty when it came to
predicting where Uranus would be found. By 1788, the planet was 1⁄120 of a degree out
from where it should be. This led to the realization that the gravitational effect of Jupiter and
Saturn needed to be factored in.

A new trajectory was published in 1791, but by 1800 Uranus was out of line again. By
1825, it was way ahead of its predicted position, but then it started to slow down, and by
1832 it had fallen behind the point where scientists had predicted it should be. Was there
some mysterious substance out there causing resistance? Did Newton’s laws of gravitation
break down at such a great distance from the sun? Some suggested that just as Jupiter and
Saturn were exerting a gravitational pull on Uranus, perhaps there was another planet out
there pushing and pulling it around. But if another planet existed, where was it?

While Uranus was discovered by luck, the existence of this new planet would be
pinpointed using the power of math and logic. Up until this point, astronomers would feed in
the location of the planets and use mathematical equations to calculate their orbits. Now the
process would be reversed. Uranus had been tracked for some decades. Where would a
planet have to be to explain Uranus’s strange trajectory?

The task was pretty daunting, but John Couch Adams in England and Urbain Leverrier
in France decided to try their hand. Both succeeded in inverting the problem and identifying
where they thought a new planet might be. Adams completed his calculations by September
1845 and approached astronomers in England to try to locate the new planet, but his lack of
credentials and antisocial manner didn’t endear him to the authorities. The Astronomer
Royal was also distracted by a scandalous murder case involving one of his assistants. The
net result was that Adams’s prediction was ignored on the English side of the Channel.
Leverrier took until June 1846 to complete his calculations and had similar problems
persuading astronomical authorities in France to spend precious telescope time searching for
a hypothetical planet. But he was more persistent, and wrote to the Berlin Observatory for
assistance.

On September 23, 1846, Johann Gottfried Galle pointed the Fraunhofer telescope to the
position in the night sky where Leverrier’s calculations had predicted the new planet should
be located. Sure enough, there was a point of light that wasn’t on any of the star charts in
the observatory. The next night it had moved . . . by exactly the distance Leverrier’s
calculations predicted.

The announcement of the discovery of a new planet was greeted with great excitement.
But the astronomers who had failed to follow up on Adams’s predictions were left looking
rather foolish. Herschel, now a member of the Board of Visitors of the Royal Observatory,
attempted to prove Adams had made the prediction first. The affair inevitably led to a bitter
priority dispute. The naming of the planet became a political football, with the French
wanting it named after Leverrier, and the English objecting that it broke with the tradition of



naming planets after Roman gods. Eventually the international community settled on a
name: Neptune.

As the astronomer François Arago wryly observed, Leverrier had discovered Neptune
“with the point of his pen.” Of course, Galle’s observations at the Berlin Observatory had
been required to confirm that theory did indeed match reality.

While we continue to be mostly stuck on the surface of the Earth, we’ve nevertheless
managed to navigate to the edge of our solar system. How much farther would it be
possible to explore? Although the telescope had allowed us to journey so far, it would also
reveal the theoretical limits of how far we will ever be able to see—because, it turns out,
light takes time to reach us.

COSMIC SPEED LIMIT

The telescope was instrumental in settling a dispute that had been raging since antiquity.
Does light assert its presence instantaneously, or does it take time to travel from one point to
another? Aristotle did not believe that light moved. He thought it was just present or not.
The ancient Greeks thought that sight involved light traveling from the eye to the object. If
that was so, argued the mathematician Heron of Alexandria, light must be instantaneous.
Otherwise, when we open our eyes, how could we immediately see distant stars?

The Islamic scholar Alhazen was the first to suggest, in his Book of Optics, that light
travels in the other direction, from the object to the eye. But even if light traveled the other
way, many still believed that it would travel infinitely fast. Galileo wasn’t sure. He thought
that if light took time to travel from its source, then surely you could measure the time. His
attempt to do so was too small in scale for any appreciable difference to be detected.
Descartes revisited his experiment and increased the distance looking at solar and lunar
eclipses. Both Galileo and Descartes were actually on to something—it’s just that light
travels so fast that the sun and moon were still too close to detect any discrepancy.

The moons orbiting Jupiter finally provided proof that it takes time for light to cross
space. Galileo had proposed that the moons of Jupiter could be used as a clever means of
solving the longitude problem. His method, which involved comparing the time of a lunar
eclipse in different locations, didn’t really catch on as a method for determining longitude at
sea, which was the great challenge at the time, but it was used to determine longitude on
land.

Then, in 1676, the Danish astronomer Ole Rømer used the moons of Jupiter to discover
the finite speed of light. While working at the observatory in Paris, he recorded the times at
which the moon Io disappeared into the shadow of Jupiter. The timing seemed to depend on
where the Earth was on its orbit around the sun. If the Earth was on the other side of the
sun from Jupiter, there seemed to be a delay. This, he realized, was because light took
longer to travel to the Earth than if it was on the same side of the sun as Jupiter. Giovanni
Cassini, the director of the observatory in Paris, announced the discovery on August 22,
1676, at the Royal Academy of Sciences in Paris. He explained that astronomers would
need to change the tables predicting the times at which Io would disappear: “This appears to
be due to light taking some time to reach us from the satellite; light seems to take about ten
to eleven minutes to cross a distance equal to the half-diameter of the terrestrial orbit.”



The current measurement is that it takes eight minutes and twenty seconds, so the
seventeenth-century astronomers weren’t far off. A whole series of experiments followed
to determine the speed of light. Given that it is in the order of three hundred million meters
per second, it is little wonder that many people thought it was infinite. Now, with the
telescope making it possible to measure huge distances in space, the speed of light would
become an important limit on any attempt to look into the far reaches of our universe.

I sometimes marvel, as I look out at the night sky, at the fact that I am looking back in
time. A snapshot of the sky depicts the sun as it was eight minutes and twenty seconds ago,
the nearest star as it was four years ago, and the most distant galaxies as they looked
billions of years ago. It’s possible that in some distant galaxy, telescopes trained on Earth
are witnessing the extinction of the dinosaurs some sixty-six million years ago.

The speed of light became one of the ways astronomers measure the vastness of
space. When astronomers say something is one light year away, they mean that it takes light
one year to travel from that point to us.

THE STARS IN OUR NEIGHBORHOOD

Looking at the celestial sphere on my desk, I find it laughable that the ancient Greeks
thought the stars were painted on a huge celestial ball enclosing the universe with the void
beyond. But they didn’t have much to go on. To the naked eye, the stars all seem to be a
long way away. The invention of the telescope brought them a little closer, close enough for
modern astronomers to see that they were not all the same distance from the Earth.
Although we are stuck on the surface of the Earth, the Earth is moving relative to the stars,
which means we get different viewpoints on the cosmos.

If you stick your finger in front of you and look out of the window and move your head
from side to side, then you’ll notice the things that are near, such as your finger, move a
greater distance relative to the things that are farther away. This effect is called parallax.
Astronomers can do the same thing when looking at the stars. If they compare the location
of the stars in the summer to their position in the winter, this can tell them which stars are
nearer to the Earth than others.

Herschel was trying to detect this stellar parallax, as it is now known, when he stumbled
upon the new planet Uranus. The difference in locations of a star is extremely small, and it
takes telescopes of a sufficient accuracy to detect the shift. Successful measurements
weren’t made until the 1830s, when the German astronomer and mathematician Friedrich
Bessel recorded the first accurate observations of stellar parallax. To apply the technique to
nearby stars, astronomers need to assume that the far-off stars are essentially on a single
celestial wall that encases the universe, rather like the Greek model. The point is that for the
purposes of detecting parallax of nearby stars, the farthest stars look fixed and can be used
as a background to pick up the apparent movement of nearby stars.

Bessel compared the locations of a star called 61 Cygni in summer and winter. He
made a triangle out of the star and two points in the Earth’s orbit, and calculated one of the
angles in the triangle. Then, taking his knowledge of the distance of the Earth from the sun
and using the mathematics of trigonometry, he came up with the first estimate of how far
the nearest stars were from the Earth. Bessel’s calculation suggested that 61 Cygni was



660,000 times farther away from the Earth than the sun is. His calculation was about ten
percent off the mark, but it was close enough to give us our first feeling for the depth of
space.

Further calculations picked up other stars that were even closer. In 1915, Scottish
astronomer Robert Innes spotted the closest known star to our own. Proxima Centauri is
too faint to be seen by the naked eye, which may be why it took so long to detect it, but
parallax calculations put the star 268,326 times farther away from the Earth than the sun, or
4.24 light years away.

Stellar parallax started to peel some of the stars off my celestial sphere and bring them
closer to Earth. Provided a star is not more than 400 light years from us, this method works.
But most stars still seemed to be so distant that they might as well be stuck on my paper
sphere. Analysis of the wavelengths of the light coming from these stars let us take our next
great step toward the edge of the universe.

TWINKLE, TWINKLE, LITTLE STAR

The farther away a star is, the less bright it appears to be. But how do we know whether I
am looking at a bright star that is far away, like 61 Cygni, which can be seen with the naked
eye, or a duller star that is closer, like Proxima Centauri? Apparent brightness is a
combination of actual brightness and distance from the Earth. So how can astronomers use
brightness to judge distances? It turns out that, in many cases, the color of the light emitted
by a star gives us enough information to measure its distance from the Earth.

By measuring the light coming from a star and analyzing its frequencies, scientists saw
that certain characteristic frequencies were missing. The light at these frequencies was
being absorbed by the particular atoms in the star. This was key to proving Auguste Comte
was wrong when he’d famously said that we’d never know the chemical composition of the
stars. The light frequency could also be used to calculate how bright a star was. When
astronomers looked at nearby stars whose distances from us (and thus their luminosity)
were known, they found a direct relationship between the different frequencies absorbed by
the star and how brightly it was shining.

This discovery meant that you could use the missing frequencies of light to measure
absolute luminosity. Now astronomers turned again to the stars whose distances were too
far away to apply parallax. By measuring the missing frequencies and their apparent
luminosity, they could work out how far the stars were from us. This gave us for the first
time a much clearer idea of the true depth of space.

In the end it was a very special, pulsating star that turned out to provide the best way to
measure distances across the universe. Cepheid stars twinkle, and in 1912 American
astronomer Henrietta Leavitt discovered how to use these twinkling stars to navigate the
universe. She was employed at the time not as an astronomer but as a “computer” at the
Harvard College Observatory, extracting data from the photographic plates for thirty cents
an hour. Women weren’t allowed to operate the telescopes. She’d been assigned the task of
analyzing stars that grew brighter and dimmer over a period of time. Curious to know
whether there was a pattern to the pulse of these stars, Leavitt focused on a batch of stars



that were located in the Small Magellanic Cloud and were therefore all believed to be at a
similar distance from the Earth.

When she plotted luminosity against the period of pulsation, she discovered a very clear
pattern. The time it takes a Cepheid star to pulsate is directly correlated with its luminosity:
the longer the period of pulsation, the brighter the star is shining. So to know how bright a
Cepheid star really is, all you need to measure is the period of pulsation, something that is
much easier to do than measuring missing light frequencies. These stars were perfect for
measuring distances.

If a Cepheid star is pulsating slowly but looks very dim, it must be a long way away.
Conversely, an apparently bright, rapidly pulsating Cepheid must look bright because it is
close. With these new rulers to hand, the universe began to take shape. More stars took
their place in the emerging map of the Milky Way. And our own star, the sun, we
discovered, was tucked away in the corner of a huge spiraling mass of stars.

Was this the full extent of the universe? Had we finally seen and measured everything
out there? Scientists had their doubts. There were some spots of light that didn’t appear to
be single stars. Were these clouds part of our Milky Way galaxy, or did they make up
another galaxy like ours but completely separate? The first such region to come under
investigation was a small cloud identified by the Persian astronomer Abd al-Rahman al-Sufi
in the tenth century. It is bright enough to be detected by the naked eye and became known
as the Andromeda nebula. In 1750, English astronomer Thomas Wright first suggested that
this and other clouds might actually be galaxies in their own right. After reading about
Wright’s ideas, Immanuel Kant romantically referred to them as “island universes.”

The debate about the status of these clouds raged for years, culminating in a face-off
between rival groups in an event now called “The Great Debate,” staged at the Smithsonian
Museum of Natural History in 1920. At stake was the question of the size and extent of the
universe. Astronomer Harlow Shapley presented the case for why such clouds would have
to be part of our local galaxy to be shining so bright. Heber Curtis countered that the
number of novae—cataclysmic nuclear explosions that stars can undergo—that had been
counted in this cloud exceeded all those that had been recorded in the whole of our local
galaxy. How could such a novae-rich region exist as part of our galaxy?

Andromeda was finally ripped out of our local galaxy and proved to be another galaxy in
its own right by the observations of American astronomer Edwin Hubble, who in 1925 used
the Hooker telescope at the top of Mount Wilson in California, the largest telescope of its
kind at the time, to analyze how far away Andromeda was.

Hubble spotted one star in particular that he could use to calculate the distance. At the
heart of the Andromeda cloud was one of the Cepheid stars that Leavitt had investigated.
The star was pulsating, growing dimmer and brighter over a period of 31 days. Leavitt’s
analysis suggested that it was burning very brightly, and yet when viewed through a
telescope it looked very dim. Combining the period of pulsation with a measurement of the
apparent luminosity of the star revealed that it had to be 2.5 million light years away from
our sun. The stars in the Milky Way had been calculated to be a maximum of 100,000 light
years apart from each other. Leavitt’s insight, combined with Hubble’s calculations,
dramatically changed our view of the universe. It turned out to be substantially bigger than
anyone had previously imagined.

Leavitt’s use of Cepheid stars as a way of navigating space transformed our picture of
the universe—so much so that the Swedish mathematician Gösta Mittag-Leffler wanted to



nominate her for the Nobel Prize in 1924. He was devastated to discover that Leavitt had
died four years earlier from cancer.

The discovery of the existence of far-off galaxies gave us a new understanding of the
true nature of space. But how far did the universe extend beyond these distant galaxies?
The first explorers on Earth leaving their villages must have had the impression that the
Earth was vast, perhaps extending forever. But as people journeyed more and more, there
came a realization that the surface of the Earth was finite and navigable. So what about
space? As we leave our galaxy, can we get a feel for how our cosmic village fits into a
bigger picture of space?

A HUGE GAME OF ASTEROIDS

I can easily picture the Earth as finite but without an edge, a larger floating sphere. But how
can space be finite? One of my favorite films that explores this puzzle is The Truman
Show. It stars Jim Carrey as Truman Burbank, who doesn’t realize that his whole universe
is a scripted reality TV show housed in a huge dome. When doubts emerge as to the true
nature of his world, he sets out in a boat across the water that surrounds his home town of
Seahaven, only to discover that what he thought was an endless sky is actually painted onto
the studio wall. Beyond the edge of his universe, he discovers cameras filming his every
move.

I don’t think we are living in our own Truman Show. I don’t think that if I travel out into
space I’ll suddenly hit a studio wall or a celestial sphere like my model. And I think it’s safe
to assume most people would agree with me. After all, such a model only raises the
question of what is beyond that boundary. Would we find a celestial film crew looking in on
us? And what would be on the other side of that? This is why most people, when pressed,
conclude that the only way to solve this conundrum is to believe in an infinite universe.

But mathematicians have a third alternative, which posits a universe that has no
boundary but is nonetheless finite. In this universe you travel out into space until, rather than
carrying on to infinity, eventually you find yourself heading back to your starting location,
just like a terrestrial explorer rounding the Earth.

To get a feel for how this universe might work, it is useful to consider a small toy
universe. The game of Asteroids created by Atari in 1979 serves as a perfect example of a
two-dimensional universe that is finite yet without boundary. The universe consists of a
computer screen, but when a spaceship heads toward the top of the screen, rather than
bouncing back off the edge, like a 2D Truman Show, it seamlessly reappears at the bottom.
As far as the astronauts inside the spaceship are concerned, they are traveling endlessly
through space. The same applies if the spaceship heads to the left-hand side of the screen;
it doesn’t hit a wall but simply reappears on the right. The astronauts might begin to notice
landmarks (or spacemarks) repeating themselves, although of course with an evolving
universe it might be difficult to recognize things as you pass them for a second or third time.

This Asteroids universe actually has a recognizable shape. If I allow myself a third
dimension within which to wrap up this universe, I can join the top and bottom of the screen
to make a cylinder. Since the left- and right-hand sides of the screen are also connected, I



can join the two ends of the cylinder to create a bagel or what mathematicians call a torus.
The surface of this three-dimensional shape is the finite universe in the game of Asteroids.

If I take any finite three-dimensional shape, its two-dimensional surface will provide an
alternate universe that is finite and unbounded. The surface of a sphere, for example, is
another such two-dimensional universe. These two-dimensional universes are not just
mathematical games but are key to navigating the Earth. Indeed, many cultures across the
globe wondered whether the Earth went on forever or had an edge over which you would
fall. Many ancient civilizations’ model of the Earth consisted of a finite disk surrounded by
water, a bit like Truman’s world.

It wasn’t until the fifth century BC that the Pythagoreans’ idea of a spherical Earth
started to take hold. The disappearance of ships over the horizon, the shadow created by
the Earth on the moon during eclipses, the variation of the sun and stars in the sky as one
travels south—all contributed to this shifting perspective. But for a long time it was nothing
more than a hypothesis that went in and out of fashion. Copernicus, Galileo, and the
astronomers of the Renaissance revived this idea, but it was only the 1522 circumnavigation
of the world organized by Ferdinand Magellan (who was killed on the voyage) that finally
proved beyond doubt that the Earth is round.

So what about the universe? Does it have a shape? We are sitting at a similar juncture
to those ancient cultures contemplating the Earth and wondering whether it went on forever
or had an edge or was somehow wrapped up.

How can I wrap up a three-dimensional universe so that it has finite volume but no
edges? Such is the power of mathematics that it allows us to embed our three-dimensional
universe in a higher-dimensional space and wrap it up like I did with the game of Asteroids.
Although I can’t physically picture the wrapping up, the language of mathematics gives me
the equations to describe it and, more important, explore the properties of these finite three-
dimensional universes.

So we may live in a three-dimensional version of Asteroids. Perhaps the universe is
essentially a huge cube with six faces like my casino die. When a spaceship approaches one
of these faces, instead of bouncing off the face it seamlessly exits the cube-shaped universe
through one face and reappears at the opposite face. In the game of Asteroids two
directions were joined up left–right and up–down. In my three-dimensional cube-shaped
universe, the third direction is also fused. If I could put this cube in a four-dimensional
universe I could wrap it up, joining the faces to make a four-dimensional bagel, or torus,
whose three-dimensional surface is our universe.

But there are other possible shapes that our universe could take. A circle is a finite two-
dimensional shape whose surface is a finite one-dimensional universe. A sphere is a finite
three-dimensional shape whose surface is a finite two-dimensional universe. Mathematical
equations can be used to construct a four-dimensional sphere whose surface is a finite
three-dimensional universe—another model for what our universe could look like.

Although mathematics provides us with candidates for a finite yet unbounded universe,
how can we ever know whether our universe is finite and what shape it might be? Do we
have to wait for an astro-Magellan to circumnavigate the universe? Given the scale of the
known universe, human exploration seems a rather hopeless way of proving whether the
universe is finite. But there are explorers that have been navigating the universe for billions
of years and can provide us with some insight into whether it is finite: photons of light.



COSMIC MAGELLANS

Light is a great explorer. We are constantly being showered with light that has spent billions
of years traversing the universe. Does some of that light have a story to tell us that could
give us an inkling of whether the universe is finite? I’ve already explored what would
happen to a spaceship that plunged off into the depths of space; in these finite universes it
would eventually come back to its starting position, just as Magellan’s expedition did on its
return to Seville in 1522.

The same could happen to light. Imagine a photon of light leaving our sun in its early
years, some 4.5 billion years ago. Suppose we are living on the surface of a four-
dimensional bagel, the cube-shaped universe where opposite faces are joined. What
happens to the light as it approaches one of these faces? It passes seamlessly through,
reappearing at the opposite face, at which point it can continue its journey back toward its
starting point. Provided nothing gets in the way, it could return and enter the telescope of an
observer on Earth who detects this photon for the first time after its long journey. So what
will our astronomer see? Well, nothing special. It will look like the light from a far distant
star in its early years. It will be hard to detect that they actually are seeing what our sun
looked like 4.5 billion years ago.

However, it does present us with a possible approach to proving that the universe is
finite, because we can look in the opposite direction and see whether there might be a
similar picture shining at us from the opposite face. Researchers in France, Poland, and the
United States have been looking at the picture of light from the very early universe in the
hope that parts of the map we’ve made may actually match up.

Much to their surprise and delight, they believed they had detected the first hint of some
matching in the data. They began analyzing what shapes could possibly give rise to the
patterns of wavelengths that they were observing. The results suggested that the best
candidate for the shape of a universe that would produce these patterns is a dodecahedron.
This is the dice-like shape made up of twelve pentagonal faces. Remarkably, Plato had
suggested two millennia ago that the shape of the celestial sphere with the stars marked on
it was not a sphere but a dodecahedron! In this modern interpretation, the suggestion was
that like a joined-up cube, space would be fused at opposite faces of the dodecahedron.
Interestingly, they had to give the pentagons a bit of a twist (by thirty-six degrees) before
they could match them up. This is one theory, but the majority of astronomers are not
convinced. It is difficult to tell whether the matchings are not the result of random
coincidences.

There is another way that light could tell us about the geometry of our universe. Light
tells us how the universe curves. Let’s give our explorer setting out from his village a
telescope and a featureless plain to venture across. At first the Earth seems flat, but after
some time the curvature of the Earth becomes apparent: looking back, the explorer can no
longer see his village—something is in the way. If the curvature continues across the whole
surface, then it must join up to form a finite surface. Curvature like that of a sphere is called
positive curvature. If a surface is flat, then it could be infinite, extending forever, but it could
also be like the game of Asteroids, in which the universe on the screen is flat but finite. Flat
surfaces are said to have zero curvature. There is another sort of curvature, which is like
the saddle of a horse or a Pringle crisp. The curvature seems to dip down in one direction
and up in the other direction. This is called negative curvature, in contrast to the positive



curvature of the surface of a sphere. It gives rise to infinite surfaces, rather than finite
surfaces like that of the sphere.

Tw o-dimensional surfaces w ith positive, negative, and zero curvature

Just as the two-dimensional surface of the Earth can be curved one way or another, it
turns out that three-dimensional space also can have curvature. Measuring this curvature
can give us some sense of how space might be wrapped up. If, like the surface of the
Earth, the overall curvature of the universe is positive, the universe will curve in on itself
into a finite shape. If it is negative it will be infinite. If it is flat, it could be infinite or finite
like our cube-shaped universe fused at its opposite faces.

To pick up the overall curvature of space we can examine light as it traverses space.
What do we see? Well, it almost looks flat, but it’s hard to tell whether it is truly flat, or
whether there is a small curvature. The margins seem to be so small that it is hard to say
whether we’ll ever be able to determine the curvature with sufficient accuracy to know
which way space is bending.

There is another problem preventing us from really knowing the curvature of the
universe. Much of our exploration of space depends on the assumption that where we sit in



the universe isn’t particularly special. It’s called the Copernican principle. Once we thought
we were at the center of it all. But Copernicus put an end to that. So we now believe that
what the universe looks like around us is pretty much what it looks like everywhere. That is
certainly what the evidence tells us. But it need not be the case. It’s possible that the bit of
the universe we see is rather special.

Suppose, for example, that our explorer on Earth had been living on a planet shaped like
a hemisphere: perfectly flat on the bottom but suddenly curving off in a half sphere. If our
explorer’s village was on the flat bit, he’d think the whole planet was flat until he suddenly
encountered a change in curvature. Perhaps the universe looks the same: flat in our patch,
but beyond the region we can see, it does something completely different. How can we
ever know whether the universe is as homogeneous as we think it is?

So the quest is still on to see if light is doing circles around a finite universe, like a
cosmic Magellan expedition. If it is, this gives us the possibility that we may discover
whether the universe is finite. Or perhaps it is bending in such a way that we can work out
how the universe is wrapped up.

Magellan, of course, navigated a static planet. It turns out that our universe is a little
more dynamic than we thought, as Hubble, the Magellan of space, discovered when he
started analyzing the light coming from the stars in distant galaxies.
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For in and out above, about, below
It is nothing but a Magic Shadow-Show
Play’d in a Box whose candle is the Sun
Round which we Phantom Figures come and go.

—Omar Khayyam, The Rubaiyat

USED TO FANTASIZE about being able to look up at the night sky and point confidently at
various stars and planets and declare: “That’s Betelgeuse” or “You see that bright spot
there, that’s actually not a star but the planet Venus.” But one of my problems is that I have
an extremely bad memory. If something’s random, like the stars scattered across the
firmament, then without some logic to guide me, I find it very difficult to name much beyond
the Plow. This is, of course, why we’ve created patterns like the Plow, or Orion the Hunter,
to help us navigate these random spots of light.

But it turns out that I’m also not very physically suited to astronomy. My first attempt to
take a deeper look into space was a trip to the telescope housed in Mill Hill in north London.
But my wish to see to the edge of the universe was scuppered by the scourge of
astronomers: clouds.

So next I tried to get above the clouds. This required more effort than jumping on the
Northern Line to Mill Hill. I took a train to Switzerland, culminating in a beautiful alpine
climb to the final stop at Jungfraujoch. From there a lift tunneled into the mountain took me
to the mountain peak on which the Sphinx observatory sits, 3,571 meters above sea level.

Built in 1912, it looks like the villain’s lair from a James Bond movie. As the sun set over
the snow and glaciers, I prepared myself for a wonderful evening of stargazing. Except my
body had other ideas. I’d already been feeling quite dizzy and even nauseous. I hadn’t been
able to eat much. As the first stars started to appear, I was hit by a crashing headache.
Before long I was throwing up. When an elderly German couple said that I had all the
symptoms of altitude sickness save one, it suddenly dawned on me that I’d never been this
high before.

“And what’s the last symptom?”
“Death.”
It was then that I realized my dream of becoming an amateur astronomer wasn’t really

worth it. I got the first train back to a sensible altitude and the symptoms disappeared. I just
had to face it: I’m a Thames Valley boy born in London whose body was built to stare up at
the stars from the comfort of a telescope closer to sea level. But observations made by
some of those great telescopes that sit high on the mountains across the world have
revealed a remarkable fact. At some point in the future, there won’t be so many stars for
me to look at—they are disappearing over our cosmic horizon!



THE UNIVERSE THROUGH RED-TINTED SPECTACLES

When an ambulance drives by with its siren blaring, your ears experience the squashing up
of sound waves as the ambulance approaches, which causes the wavelength to shorten,
resulting in the siren sounding higher-pitched than when the ambulance passes you. As it
pulls away, the sound waves are stretched out, resulting in a longer wavelength and lower
pitch. This phenomenon is known as the Doppler effect.

The same thing happens to light. As a star speeds away from us, its light shifts toward
the longer red wavelength. If it moves toward us, the light shifts toward the shorter blue
wavelength. Having already discovered that our galaxy was not special but just one of
many, Edwin Hubble turned his attention in 1929 to analyzing the light from these galaxies to
see how they were moving relative to our own. To his surprise, the light from distant stars in
the galaxies he observed was all shifted toward the red. Nothing seemed to be coming
toward us. It was as if the other galaxies were fleeing from us. Even more interestingly, the
farther the stars were from our own star, the more the wavelength shifted. Hubble couldn’t
believe that the Earth was in such a special place in the universe. He soon realized there
was a much better explanation: space is expanding in all directions simultaneously.
Whatever your point of observation, it will appear that everything is moving away from you.
The space between us and the stars is being stretched. The galaxies are being carried along
by the expansion of space like leaves in the wind.

Although often credited to Hubble, an expanding universe was actually predicted by a
Jesuit priest, Monsignor Georges Lemaître, two years earlier. Lemaître deduced that the
universe must be expanding as a consequence of Einstein’s equations for gravitation. When
Einstein heard about this theory, he dismissed it with the damning declaration: “Your
calculations might be correct but your physics is atrocious.” Einstein was so confident that
Lemaître was wrong that he ended up sticking something called the cosmological constant
into his equations to try to force the universe to be static and thus scupper Lemaître’s
prediction.

Lemaître didn’t help his cause by publishing his findings in an obscure Belgian journal.
Once Hubble’s observations supported the idea of an expanding universe, Einstein changed
his tune. Hubble's and Lemaître’s discoveries were the first indication that our universe isn’t
static. Instead, space is always on the move.

It is the stretching of space that makes the wavelength of the incoming light longer. The
farther the light has traveled, the more its wavelength will gradually have been stretched.
We call this stretching redshifting because the visible light with the longest wavelength is
red. So to say that light has been redshifted simply means that the wavelength has been
stretched. The bigger the redshift, the more space has been stretched on the way and
therefore the farther the original source of the light from Earth.

To explain why this stretching changes wavelengths of light, blow up a balloon and mark
three points on it. One represents Earth, the other two points are distant stars. Draw two
waves of light of a fixed wavelength between the stars and Earth. This is what the light
looks like when it leaves the stars. By the time the light from the nearer star reaches Earth
the balloon has expanded. If I blow it up a bit, the wavelength gets longer. It takes longer
for the distant star’s light to reach Earth, so the universe has expanded a bit more. If I blow
the balloon up even more, the wavelength gets longer again. So the greater the redshift, the
farther the star is from Earth.



In the f irst balloon, the light leaves the stars w ith the same w avelength. In the second balloon, the universe
has expanded and the light from the nearer star reaches Earth. The w avelength has gotten longer. In the
third balloon, the universe has expanded further by the time the light arrives from the farther star. The
w avelength has shifted even more tow ard the red.

This was a new way of measuring distance to far-flung stars. It has helped astronomers
to identify stars that must now be thirty billion light years away from us. It may seem
something of a paradox that we can see something thirty billion light years away when, as
we shall soon see, the universe is only 13.8 billion years old, but remember that we are
seeing the star in the past, when it was close enough that the light could reach us. It is only
by analyzing the expansion mathematically that we can infer that today the star is at a point
from which it would take its light thirty billion years to reach us.

THE ANT AND THE BAND

What does it mean to live in an expanding universe? If the universe is expanding, then
perhaps some stars will always remain out of sight, since they are moving farther and
farther away from us. But scientists have discovered that if the universe is expanding at a
constant rate, even if that rate is faster than the speed of light, if we wait long enough, we’ll
eventually see light from every star.

The best way to understand this is to consider an example that has a curiously
counterintuitive outcome. Consider an ant (playing the role of a photon of light) sitting on the
end of a rubber band (playing the role of space) that is stuck down at one end (playing the
role of the Earth). The end where the ant starts plays the role of a far-distant galaxy.



Now pull the end of the rubber band at a constant speed. Suppose the rubber band
starts with a length of one kilometer and every second it increases in length by one
kilometer. The ant is moving at a much slower speed along the band, say, at one centimeter
every second. At first glance, with the end flying off at a much faster rate, it appears as if
the ant has no chance of reaching the other end, just as light from a galaxy far enough away
seems to have no chance of reaching Earth if the space between them is expanding at a
uniform rate.

There are some subtleties here, so let me add a condition to help us get a grip on what is
happening. The rubber band gets stretched only after each second, and it will be an
instantaneous stretch. So after one second the ant has traveled one centimeter, which is
1/100,000 of the total distance. Then the band expands. The point to note is that although
the distance that the ant needs to travel has increased, it has at least still covered 1/100,000
of the distance between the star and Earth, because the stretch has also helped push the ant
on a little from its starting position.

Now the ant travels another centimeter. The rubber band is two kilometers long. So the
ant has covered a further 1/200,000 of the total distance. The total proportion that the ant
has now covered is 1/100,000 + 1/200,000 of this total distance. The band expands by
another kilometer. The proportion hasn’t changed with the stretch. The band is now three
kilometers long. The ant travels another centimeter. This is only 1/300,000 of the total
distance. Every time the rubber band stretches, the proportion that the ant’s centimeter
represents is going down. But hold on—here is the power of mathematics. After n seconds,
the proportion of the band that the ant will have covered is



This is the harmonic series that the mathematician Oresme calculated many centuries
ago and that I considered at the beginning of the last chapter. Oresme proved that this
series will get arbitrarily large. So I can make n so large that the sum is bigger than 100,000.
In that case, the proportion of the band that the ant has covered will be over one hundred
percent. This means that the ant has arrived!

In this example I have the rubber band stretching at a uniform rate. This is pretty much
how astronomers like Hubble thought space was behaving—perhaps even slowing down,
given that gravity should have a decelerating effect. This implies that even if the universe is
infinite, we should be able to see more and more of it if we just sit and wait—like a colony
of ants crawling along the expanding rubber band of space.

Does this mean that in theory, if the universe is infinite, we should already be receiving
light from all stars? Perhaps we can already see an infinite universe. The thing to
remember, though, is that the farther away the star is, the further in the past we are looking
at it. If we rewind our expanding universe far enough, we will find there were no stars at
all.

REWINDING THE UNIVERSE

The discovery by Hubble and Lemaître of the expanding universe provided the first
evidence for what scientists now call the Big Bang. If I reverse time, an expanding universe
turns into a contracting universe. But keep contracting and the universe becomes so dense
that the state of the universe changes rather dramatically. In fact, as Lemaître first realized,
at some finite point in time this reversed expansion leads to a universe that is infinitely
dense, a point he called the primeval atom or cosmic egg. This “singularity” is what
scientists refer to as the Big Bang. Given that it is a point at which relativity and quantum
physics must fuse into a coherent theory, there are still debates about how far we can
rewind the universe before current models fail and new ideas are needed.

When I first heard about the Big Bang at school, I thought that if the universe started as
a point then it had to be finite now. But with a bit of mathematics it is possible to show how
an infinite universe can still start as a single point. This seems extraordinary. How can a
point with no volume contain infinite space? To get an idea of how this works it is worth
starting with an infinite space and working backward. Think of infinite space one second
after the Big Bang. Take an arbitrary point as the center of this universe and consider all
the points that are a distance R from this point. They all sit on the sphere of radius R.

Now I am going to rewind our universe backward to time zero. At time t = 1⁄2, the
points on the sphere of radius R will contract to points on a sphere of radius 1⁄2R. At time t
= 1⁄4, they’ve contracted further to sit on a sphere of radius 1⁄4R. As I keep halving the time
in the direction of the Big Bang, this sphere is getting smaller and smaller, until at time t = 0
it becomes a point. But this is true of every sphere regardless of how big R is. So every
point in my infinite space sits on some sphere of radius R and when rewound to t = 0



collapses to the point I chose. So in one second the mathematics gives me a way to suck
infinite space into a single point with no volume. Shakespeare put it nicely when Hamlet
declares, “I could be bounded in a nutshell and count myself a king of infinite space.”

Of course, we run into problems with this model if space and time are quantized. As I
saw when I tried to keep halving my die, there may come a point when I can’t halve things.
This is at the heart of the debate when quantum physics meets general relativity: trying to
resolve what happens as we contract the universe to a point.

Many call this the beginning of our universe, and I shall return to the nature of what we
mean by beginnings and time in the next Edge. But the Big Bang certainly has implications
for just how far we may ultimately be able to see, because it means that the stars could not
have existed for more than 13.8 billion years, which is the current estimate of how long ago
the Big Bang occurred. It took some time after that before the first stars could form.

As you head out into space, you are heading back in time. Since there were no stars
before 13.8 billion years ago, this means there is a sphere around us beyond which there will
be nothing to see. The wonderful thing is that we are back to the model of the universe
proposed by the ancient Greeks. There is a huge sphere with the Earth at its center, and
photons from beyond that sphere have not had time to reach us yet. That sphere is getting
larger as time passes, and the question of how much space is contained inside this
expanding horizon will turn out to have an unexpected answer.

The farthest galaxy whose distance has been confirmed is one whose light has taken
13.1 billion years to reach us. That does not mean the galaxy is 13.1 billion light years away
from us today, because the space between us has expanded over all those years.
Calculations suggest that the galaxy is currently thirty billion light years away from Earth.

You might think we should be able to see light going back to the first moment after the
Big Bang. But scientists now believe there was a moment when no light could travel
through space because space was opaque. Photons just found themselves buffeted between
one particle and the next. It was only 378,000 years after the Big Bang that the density of
particles dropped sufficiently for the first photons to start their uninterrupted journey through
space. This is when space suddenly had enough room for these photons to zip through the
universe without running into something that might absorb them. These first visible photons
of light make up what we call the cosmic microwave background radiation, and they
represent the farthest that we can see into space. They are like a cosmic fossil telling us
about the early universe.

Those first photons were only forty-two million light years away from Earth when they
started their journey. Today, the distance has stretched to an estimated 45.7 billion light
years. This is the edge of the visible universe, the cosmic horizon. But light isn’t everything.

Although light couldn’t make it through the plasma of space for 378,000 years after the
Big Bang, neutrinos could. They are particles that don’t seem to be stopped by anything
(well, hardly anything; every now and again they bump into stuff that allows us to detect
their existence). You have trillions of neutrinos passing undetected through your body every
second. So it’s possible that we could “see” a bit farther into space if we could detect the
neutrinos that decoupled two seconds after the Big Bang.

There is a sphere surrounding the Earth that represents a horizon beyond which we
cannot explore even with the most sophisticated of telescopes, because no information has
had time to reach us. As time goes on, this cosmic horizon is growing, allowing us to see
farther and farther into space. At least that’s what we thought for a long time, but a



discovery in 1998 revealed the alarming fact that, rather than extending farther into space,
our cosmic horizons are actually contracting. Although the cosmic horizon is growing at a
constant rate, the underlying fabric of space itself isn’t just expanding, the expansion seems
to be accelerating. As it does so, it is pushing things we can see out beyond our horizon,
with devastating implications for what future generations can ever know.

THE STARS ARE GOING OUT

Some stars end their lives in a catastrophic explosion called a supernova. The luminosity is
so intense that these supernovae can be seen over huge distances. When type 1a
supernovae explode they all have the same luminosity, no matter where they are in the
universe. When that is compared with the apparent brightness, we have a measure of how
far away they are.

If the universe were expanding at a constant rate, then, given the distance of a
supernova from Earth, you could predict the amount the wavelength of light should have
been stretched by this constant expansion, or what we call its redshift. But when this
theoretical redshift was checked against the recorded redshift of distant supernovae,
astronomers got a shock. They didn’t match. It should have been much higher. For galaxies
farther away, whose light allows us to look back in time, the rate of change of redshift was
slower than that of closer galaxies. The only possible conclusion was that the expansion of
space in the early universe was much slower, but then it started to accelerate, ripping space
apart.

It seems that something dramatic happened about seven billion years ago. Up to this
point, the universe’s expansion appeared to be slowing down, as one would expect as the
gravitational force of the matter exerted a braking effect. But at this point, halfway through
the current life span of the universe, the expansion rate changed character and started to
increase, accelerating as if something had suddenly put its foot on the pedal. The fuel
driving the acceleration is what scientists call dark energy.

It seems that in the first half of the universe’s existence, the density of matter was
enough to exert a slowing gravitational pull, but as the universe expanded this density
decreased to such a point that the underlying dark energy was strong enough to take over.
Dark energy isn’t thought to be something whose density decreases with expansion. It is a
property of space itself.

The sphere containing the visible universe is growing, which should mean that we can
see even farther into space. Unfortunately, space is expanding so fast that stars that were
previously within the sphere of the visible universe are being pushed beyond its edge. This
suggests that in the future all galaxies other than our own will disappear from view and
forever remain beyond the edge of our visible universe. Even though the sphere containing
the visible universe is expanding, it will never expand fast enough to catch up with the
galaxies as they are carried away by the acceleration of space.

Imagine if life had taken longer to evolve and humans had started doing astronomy only
after all this interesting stuff had been pushed over the horizon. We would have an entirely
different story of the evolution of the universe. It would look like the static universe that we



believed to be our home before telescopes were able to pick out other galaxies. So what we
can know depends on when we live.

Astronomy in the distant future won’t consist of going to the top of mountains and
peering through telescopes like the one at the Sphinx observatory. Instead, it will consist of
consulting books and journals full of the data recorded by previous generations of
astronomers, before what they observed was pushed beyond our cosmic horizon. Perhaps
future astronomy will be more suited to a Thames Valley boy like me who prefers low-lying
libraries to high-altitude observatories. But it will take another 150 billion years before the
other galaxies disappear over the cosmic horizon.

It is worth noting that we won’t ever lose the stars in our own galaxy. The local pull of
gravity will keep the galaxy together. The expansion of space is not sufficient to pull the
stars apart, but it raises the question of how much has already disappeared from view that
might have told a different story.

If you are in a car and you want to accelerate, you need to put your foot on the pedal
and produce energy by burning fuel. So where is the fuel or energy coming from that drives
the acceleration of the universe, and won’t it run out eventually?

The answer is that we don’t know. Dark is used in cosmology to indicate that
something doesn’t seem to interact with light or other forms of electromagnetic radiation. In
other words, we can’t detect it. There are several conjectures as to what dark energy might
be. One involves the cosmological constant that Einstein famously inserted into his equations
to try to make the universe static. But now that constant is being used to push space apart.
Usually we would think of energy spread out across space as being used up or thinning out
as space expands. But this energy is now thought of as a property of space itself. More
gets created as space grows. In any cubic meter of space it is constant. In other words, it
has a fixed density. The acceleration is a runaway process that can’t be stopped. This
doesn’t contradict the theory of the conservation of energy because dark energy is treated
as a negative energy that is balanced by an increase in kinetic energy as space expands.

Information travels at the speed of light. With a static universe, this means that all
information would reach us given enough time. With a universe expanding at a constant
rate, my example of the ant on the expanding rubber band shows again that information
traveling across an infinite universe would eventually reach us. But with an accelerating
expansion, some things will never cover the intervening space quickly enough to counter the
expansion. Using our current estimate for the cosmological constant we think might be
responsible for this expansion, we believe that the sphere from beyond which we will not
receive any information is currently eighteen billion light years in radius. As the space
between the stars stretches, their light will stretch, too, and the more the light stretches, the
longer the wavelength. Stars will seem to go out because the wavelength of light will be so
elongated that we can no longer detect it.

It is amazing to think that cosmologists in the future may have no evidence that we live
in an expanding universe. Future civilizations will perhaps return to the model of the
universe held by the ancient world: our local galaxy surrounded by the void. We would look
like an exceptional point in a universe of nothingness.

COSMIC FINGERPRINTS



If the universe is infinite, it seems very probable that its structure will preclude us from ever
observing such a fact. And yet the universe beyond our visible horizon can still leave its
fingerprints on the space we can see. If, on the other hand, the universe is finite, its shape
will impose certain limitations on its behavior.

Think of the universe as a large resonating box like the body of my cello. The shape of
the cello has been chosen because of the pleasing sound made by the frequencies that can
vibrate within the box. What distinguishes a Stradivarius from a factory-made cello is partly
the perfection of shape, which leads to a more beautiful sound. Can you deduce the shape
of the box from the frequencies of the waves vibrating inside it? This is one of the intriguing
problems that challenged mathematicians for some time. In a seminal paper, Mark Kac
posed the question: “Can you hear the shape of a drum?” Only a square has the particular
set of frequencies that are produced by a square. But in 1992, mathematicians Carolyn
Gordon, David Well, and Scott Wolpert constructed two strange shapes whose resonant
frequencies were identical, even though the underlying shapes differed.

In the mid-1990s, Jean-Pierre Luminet and his colleagues in France explored the cosmic
microwave background radiation to see what waves were left over from the Big Bang.
They believed waves with long wavelengths seemed to be missing from the spectrum. Was
space not big enough to support them? Alas, more refined data from the Planck spacecraft
released in 2013 has revealed that there is no such evidence of missing wavelengths that
would have hinted at a finite universe. So the jury is still out. And therein lies the real
dilemma—if the universe is finite, we could conceivably someday know it, but if it is infinite,
we will forever be left in a state of epistemological unease.

Tw o drums w ith the same resonant frequencies

Although the waves detected in the microwave background radiation can’t tell us
whether the universe is finite, they may allow us to estimate its minimum size. For starters,
they give us a chance to sneak a peek beyond our cosmic horizon. As Soviet scientists
Leonid Grishchuk and Yakov Zel’dovich explained in a paper in 1978, certain waves can
resonate only if the universe is big enough. Patricía Castro, Marian Douspis, and Pedro
Ferreira have used the resonances that we can detect to propose that the universe is at
least 3,900 times bigger than the space we can see.



Another way we may be able to deduce things about space beyond the edge of our
visible universe is to witness events that can only be explained by influences outside our
cosmic horizon. For example, something large beyond our cosmic horizon might be pulling
on the galaxies we can see, causing an unusual drift in certain regions of the night sky.
Although we might not be able to see this large thing, we can still experience its effect on
the things we can see. What we can know is not limited to what we can see. This is, in fact,
how we know about dark matter. The gravitational behavior of the things we see makes
sense only if there is more stuff out there. It is also how we discovered Neptune. Although
we eventually saw Neptune with our eyes, its existence was initially predicted on the basis
of the effect it was having on the planets around it.

As long as humans have been looking out at the night sky, from one generation to the
next we’ve constantly found ourselves adjusting our sense of scale. At first it appeared that
the Earth was the center of it all. Then we had to readjust our position in the cosmos when
we realized that the sun was at the center, with the Earth just one of many planets orbiting
the sun. Then we realized that all those stars out there might have their own planets and
that our sun was tucked away at the edge of a galaxy of stars. And then we had to rethink
our place in the universe once more as we came to terms with the fact that there were
billions of other galaxies out there in space.

Discoveries made in my lifetime—since I’d come to terms with my place in the
universe—have forced me to expand my horizons once again. Just as previous generations
recognized that our planet was actually one of many, so it appears we have to face the
possibility that our universe is simply one of many universes. The first inkling of these other
universes was provided by a rather curious enigma encoded in the very first photons that
zipped through our own universe.

THE MULTIVERSE

There is something curious about the cosmic microwave background radiation. Why is it so
uniform? The photons that we are picking up in our detectors all have a temperature of
2.725 degrees above absolute zero. When they set off on their journey some 370,000 years
after the Big Bang, they were much hotter—around three thousand degrees, the
temperature at which electrons and nuclei amalgamate to become atoms. As space
expanded, the photons cooled off, which means that their energy gradually decreased, until
today it is so low that we find them in the microwave region of the electromagnetic
spectrum.

But why do all photons have very nearly the same temperature? If two objects of
different temperatures come into contact, then over time they will transfer energy from one
to the other until their temperatures equal out. This may seem like the obvious explanation,
except that there is an important word in that sentence: contact. Einstein’s theory of
relativity implies that information cannot travel faster than the speed of light. For one photon
to communicate its temperature to another photon it needs to be close for long enough for
this information to travel between them. This means that to reach a common temperature,
opposite sides of the universe must have been much closer to each other much longer than
our model of an expanding universe had suggested.



In the early 1980s, American cosmologist Alan Guth came up with a potential solution.
He posited that in the early stages of the universe’s existence, space didn’t expand quickly.
It was a slow start, allowing its photons to achieve a uniform temperature. Then space went
through an exceedingly rapid expansion in a period that is now called inflation. An
antigravity field confusingly called the inflaton is conjectured to have pushed space apart at
an exponential rate. The rapid inflation didn’t last for long: some 10–36 seconds, according to
the current model. That’s a billionth of a billionth of a billionth of a billionth of a second. Yet
in that time, space is thought to have expanded by a factor of 1078. It’s as if a buildup in
pressure had suddenly been released, after which the universe settled down into the more
sedate expansion we have picked up since.

This model helps explain why the universe appears flat and essentially homogeneous.
The large variations we see, like galaxies here but empty space there, are actually the
product of very small quantum fluctuations in the small bit of space that were blown up by
this massive inflation. The inflation also explains why the universe appears so flat. It would
have virtually flattened out any identifiable curvature that had been present in the early
universe.

The mathematics developed to explain this inflation, by Andrei Linde at Stanford and
Alexander Vilenkin at Tufts, makes an extraordinary prediction. It implies that space could
be inflating in other regions of space. Quantum fluctuations across space cause the inflaton
field to pop in certain places, creating vast universes. In other words, there may be other
universes out there like ours, making space look like Swiss cheese, with the holes in the
cheese corresponding to different universes.

Can we ever know whether this description of the universe is true? Are we just coming
up with internally consistent stories that could be true but are untestable? Even in our own
universe there seems to be a limit to how far we can see. So how can we hope to know
whether these other universes are real or just the fantasy of theoretical physicists?

Scientists hoping to prove the existence of these other universes have focused on the
possibility that they might interact with our universe in such a way as to leave some sort of
imprint. Could the cosmic microwave background radiation provide evidence that our
universe collided with other universes during its formation? There has been some
speculation that temperature differences in the map of the early universe could be a result
of such collisions, but, as a member of the team at University College London investigating
this possibility admits, “One of many dilemmas facing physicists is that humans are very
good at cherry-picking patterns in the data that may just be coincidence.” It is devilishly
complicated, but not a hopeless quest. Discovering evidence for neighboring universes is not
a priori something beyond our reach. The challenge is to find ways in which these other
universes could have influenced what we see within our cosmic horizon.

DIALING UP DIFFERENT UNIVERSES

One of the intriguing consequences of these potentially unknowable universes is that they
provide us with a way to answer one of the principal questions with which many believers
challenge those who don’t believe in a God. The possibility of the multiverse offers the best



rationalization we have so far for the troubling feeling that our own local universe must have
been designed.

I’m not talking about the illusion that only a supernatural designer could explain the
complexity of life. Thanks to Darwin’s theory of evolution, we don’t need a designer. But
what we lack is a good explanation for the constants of nature—the twenty or so numbers
like the mass of an electron, the gravitational constant, the speed of light, the charge of a
proton—that had to be so perfectly fine-tuned to get life up and running. Although we have
a mechanism that explains biology, we don’t have a similar way to explain physics.

There seems to be no clear rationale for why these constants assume the values they
do. Why couldn’t they be dialed to other values? What is particularly striking is how
sensitive the possibility of life in our universe is to a small change in these constants. For
example, if the constant that controls the way the electromagnetic field behaves is changed
by four percent, then fusion in stars could not produce carbon—any life that could exist in
such a universe would have to be based on other atoms. Some of the other constants turn
out to be similarly sensitive to small tweaks. Change the cosmological constant in the 123rd
decimal place and suddenly it’s impossible to have a habitable galaxy.

The multiple universes beyond our cosmic horizon could hold the solution to this
dilemma. In the multiverse model there are lots of different universes, and in each of these
universes the fundamental constants could be randomly assigned. In most cases, a universe
wouldn’t really have much going on because the constants aren’t set favorably for action.
But in a few, the constants are in the sweet spot for atoms to form out of the soup of
electrons and quarks in a way that eventually leads to life. Of course, for us to be around to
observe this universe, we have to be in one of these special universes. This is known as the
anthropic view.

I think most scientists hope for a more satisfying answer to why our universe is the way
it is. They’d like to be able to show that these constants aren’t really random, that things
had to be the way they are. Relying on multiverses feels like a bit of a cop-out. But perhaps
I have to bite the bullet and accept the multiverse model. The Earth may just be a random
planet that turns out to be in the sweet spot for life. I’m not going to be able to come up
with a reason why it had to be there. Lots of planets failed to be in the right spot. It’s just
chance that our planet fits the bill. Perhaps our universe is the same, one of many different
universes that just happens to be in the sweet spot for life.

My hope is that we can explain why the universe has to be the way it is without
recourse to the idea of the multiverse. That is what most scientists would prefer. Some
suggest that there is an explanation—a transcendental intelligence that fine-tuned the whole
thing. But that feels like even more of a cop-out. The multiverse theory at least has that
sense of economy we are after in a good theory. The explanation terminates and does not
require further explanation. The addition of these other universes is just more of the same
with variations, and once you accept all these universes you get a complete solution to the
fine-tuning problem. A designer who fine-tunes the constants raises as many questions as it
answers.

A good scientific theory should make sense of how everything is put together, and you
shouldn’t need to introduce too many extra characters into the story to get the narrative we
experience. There is a simplicity and naturalness about the multiverse theory that makes it a
strong candidate theory. The physics of inflation provides a possible mechanism for
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producing these other universes, so it isn’t just a wild hypothesis. But we need to take care
when using the qualities of simplicity and economy to judge the possible truth of a theory.

If I asked you to name the next number in the sequence 1, 2, 4, 8, 16, . . . , the obvious
answer would be 32. To guess that doubling is the key to this sequence would be the
majority view. But what would you say to the person who announces that 31 is the next
number? That person would probably be laughed at. But once you know that these numbers
could describe the number of ways you can divide a circle, both 31 and 32 become
legitimate responses. So then you may ask for more experimental data to help you decide
which is the best explanation.

Why 31 Is the Next Number . . .

lace n dots on a circle and then draw  lines connecting each dot to the other dots. How  many regions
have you divided the circle into? The maximum number of regions you get starting w ith one dot follow s

the follow ing sequence: 1, 2, 4, 8, 16, and then at six dots there is a surprise—you get a maximum of thirty-
one regions.

The interesting point is that, however much data you uncover, I can give you an
equation that will provide a coherent reason for why any number might legitimately come up
next. So, given a finite amount of data, it seems we can never really know what the
explanation is for that data unless we can get another bit of data against which to test our
equation. This is the model of science that the philosopher Karl Popper proposed: a theory
can only be falsified, never proved.

In judging a good theory, scientists often apply some measure of simplicity, an Occam’s
razor measure that favors one equation over another. The simplicity of the equation—that is,
the less you have to put in to get an answer out—is generally significant when deciding
which explanation to favor. That’s why most would choose doubling as the obvious
explanation for the sequence of numbers, rather than the quartic polynomial that gives us
31.

So, when we are faced with two competing theories and there is no way of telling
which one is right, it does seem to be the case that we favor the simplest theory. This is
captured by the idea of something philosophers call “inference to the best explanation,” or
the theory of abduction. But there is no reason why simplicity should guarantee truth.

Our association of beauty with truth comes from our being evolutionarily programmed to
respond with a shot of dopamine when we think we’ve struck on an idea that helps us to
navigate our environment. We call things beautiful because of our body’s response to
something that will be advantageous to our evolutionary survival.

What happens when alternative stories are proposed? How do you deal with people
who believe the universe is 5,775 years old? You show them the fossil record and they
counter that the universe was created old. They construct for themselves a narrative that is
logical and self-consistent but to my mind highly unlikely. It is hard to argue with someone
who posits a theory that is immune to testing.

Increasingly we are being pushed toward scientific narratives for the evolution of the
universe that may turn out to be untestable. If you come up with a theory that predicts new
particles but the theory doesn’t pin down at what energy these particles can be detected, no
amount of evidence will convince those who believe in this new theory that they are wrong.



They will always retort that the hypothetical particles exist in the region that you haven’t
been able to test yet.

Some have argued that the current untestability of the multiverse theory means that it is
as fanciful as proposing that a supernatural designer fine-tuned the whole thing. Although at
the moment there is no way of testing the multiverse theory, there is no a priori reason why
it will always remain untestable. The same applies to string theory, which is often shot down
as a scientific theory because it fails to make predictions that can be tested. But that is no
justification for throwing it out yet, as there is no reason to believe that it will always remain
untestable.

The multiverse theory, although potentially untestable, does come with a mechanism,
inflation, for how these multiverses arise. And we do at least have evidence for one of
these multiverses: our own universe. One of the criteria for a scientific theory is that it
should provide explanations based on things that are natural rather than supernatural. If you
are going to posit a new thing like “dark energy” or “gravity,” you need to embed it in the
natural world. How can you do that? You show how its behavior affects the rest of what
we see and experience.

Another criterion for good science is that you can do experiments to test your theory.
One of the problems with cosmology is that it is a one-time experiment. It is very difficult to
run another Big Bang and to see what happens. That said, you can test the conditions of the
Big Bang on a small scale on Earth to get a sense of the physics of the larger cosmological
event. But it’s difficult to see how you could test whether other physical theories with
different fundamental constants, or even different physics, could emerge from different
moments of creation.

Since experiments are out, one of the central tenets of cosmology is the concept of
homogeneity. You have to work under the assumption that what happens in our local bit of
the universe is representative of its overall structure. Without this assumption, anything
goes. We assume that the way space curves near us is true universally, but this need not be
the case, just as someone living on the flat part of a hemisphere-shaped planet will think the
whole planet is flat until they reach the point where curvature changes.

Without the assumption of homogeneity, how can we preclude the possibility of
something outrageously different going on beyond our horizon? Perhaps someone has
downloaded our universe from a website and glued it together like my celestial sphere.
Perhaps we are just the dollhouse of some supernatural being—supernatural in the sense
that it exists outside our universe. If this supernatural being never plays with the dollhouse, it
is unclear that we could ever know about it. But if it truly has no influence, then why
imagine that it exists? Why do we need to let our imaginations run riot? If this supernatural
being plays with its dollhouse, then we are up for testing its impact and it is potentially
knowable.

IS THERE ANYONE OUT THERE?

It is striking how often cosmology and religion have intersected throughout history. The
question of what might lie beyond the edge of the universe has always intrigued scientists
and theologians alike. For the medieval philosopher Oresme, this was where God was



hiding. Most religions include a creation myth for the cosmos. For the Australian Aborigines
everything spewed forth from the belly of the Rainbow Serpent. For scientists it’s the Big
Bang. Galileo ran into trouble with the Catholic Church because he challenged its
conception of our place in the cosmos. Yet it was a Jesuit priest, Lemaître, who came up
with science’s current story of how our cosmos emerged from the Big Bang.

Even in our current era, cosmology and religion are sometimes controversially
intersecting. In 1972, Sir John Templeton, an American-born British entrepreneur,
introduced a prize (given in his name) to reward “progress in religion.” It has evolved to
recognize “progress toward research or discoveries about spiritual realities.” It is a big-
money prize, currently standing at £1,100,000. Templeton stipulated that the prize should
exceed the Nobel Prizes, which he felt had unjustly ignored the spiritual dimension.

The prize has been awarded to some obvious people. The first Templeton Prize went to
Mother Teresa. Subsequent prizes have rewarded priests, evangelists, rabbis, and the Dalai
Lama. But in recent years a growing number of scientists have joined their ranks, and
invariably it’s scientists researching cosmology and big questions about the universe who
have been honored.

A number of leading scientists have been critical of those who have accepted the prize,
believing that it endorses a spiritual approach to scientific questions. My predecessor
Richard Dawkins, one of those critics, declared that the prize was usually given “to a
scientist who is prepared to say something nice about religion.” Physicist Sean Carrol
outlined his reasons for refusing funding from the Templeton Foundation. “It’s not a matter
of ethical compromise,” he wrote. “It’s simply a matter of sending the wrong message.
Anytime respectable scientists take money from Templeton, they lend their respectability—
even if only implicitly—to the idea that science and religion are just different paths to the
same ultimate truth.”

I was keen to talk to a cosmologist who had accepted the prize and approached
Professor John Barrow, based in the Department of Applied Mathematics and Theoretical
Physics at the University of Cambridge, who received the Templeton Prize in 2006. “Most
of the fundamental questions in cosmology are unanswerable,” he immediately wrote back
in response to my e-mail. “In fact, I will talk about some of them in a lecture I’m giving this
Saturday.”

Perfect. Here was a chance to hear what cosmologists believe are the great unknowns.
Sitting in the front row of the lecture hall, I waited impatiently for him to begin. As Barrow
went from one question to the next, accompanied by the obligatory pretty pictures with
which astronomers pepper their presentations, he proceeded to confirm all the fears I’ve
been accumulating about how little we can know about our universe.

The Big Bang: “At a finite time in the past the universe seemed to have a beginning—a
time when the density was infinite and the temperature was infinite. We don’t know if that
beginning was real.”

The size of the universe: “There is no doubt a lot of universe beyond our horizon, but we
haven’t seen it, and almost all of it we will never see. So when people ask whether the
universe had a beginning, or is it finite or infinite, we can never answer questions like those
about the entire universe.”

When I met up with Barrow after the lecture and challenged him about the Templeton
Prize, he explained to me why he thought the Templeton Foundation was funding and
rewarding cosmologists. “Sir John Templeton liked science because there was progress. He



believed cosmology was tackling deep and important questions that everyone ought to know
about whatever they were doing, whether it be philosophy or religion or theology. You
couldn’t study those subjects while ignoring what was going on in the rest of science.”

Barrow believes the science–religion debate needs to be much more nuanced. “One of
the lessons to be learned for people who are interested in the science–religion interaction is
that you have to say which science you mean because the interaction is very different.

“Cosmology and fundamental physics bring you into contact with these big questions
that you know you’re not going to answer. You’re used to uncertainty, to not knowing, and,
to some extent, seeing why you’re not knowing. People in lab physics or biology, like
Dawkins, they’re not used to that kind of situation. They think every problem is solvable by
grinding it down.”

Not that Barrow was belittling what they do. “People always think that because you’re
studying the universe this must be the hardest problem. Not at all. Understanding the brain,
for example, is a much harder subject. It’s much more complicated. In cosmology things
happen very slowly, there are nice approximations for understanding. You can pick a simple
symmetrical solution and then iterate away. You can’t do that with human society. There’s
no simple model.”

Barrow believes that the science he is engaged in has a markedly different quality. “In
fundamental physics and cosmology you know there are problems that you’re not going to
solve. Why are there laws of nature at all? The question of the number of dimensions of
space and time. Whether there is a multiverse. Was there an initial singularity? Is the
universe infinite? You can think of loads of questions that you’re not going to answer. This
creates a different complexion.”

Barrow received the Templeton Prize for his work highlighting the intrinsic limitations of
scientific inquiry. There is a growing tendency to think that science will ultimately be able to
fill all the gaps, and Barrow is keen to rein in this faith in the all-knowing power of science.
He is a big believer in the Copernican principle that we are not at the center of things and
that the universe does not revolve around the human race.

“The universe is not constructed for our convenience. It’s not an exercise in the
philosophy of science. It’s too bad if we can’t find these things out. In fact, I’d be very
suspicious if all these fundamental questions happened to be answerable by what we’re
doing. I would regard that as anti-Copernican. So I regard the fact that we can’t solve
certain problems, or we can’t get the data we need, as a Copernican aspect of things.”

BLACK SWANS, BIASES, AND THE BACK OF THE BOOK

Barrow believes we must recognize that we have an extraordinarily biased view of our
universe. “Most astronomy is based on observing things that shine in the dark: stars in
distant galaxies, so-called luminous matter. Only five percent of the universe is composed of
ordinary material that composes us and the luminous stars. Luminous material is rather
biased. Luminous material tells you about places in the universe where the density became
so high that nuclear reactions could ignite and produce luminosity.”

In some ways, this applies to the whole of science. Our view of the universe is biased
toward the bits that have impact on our senses. Anything that doesn’t isn’t going to get



noticed.
“If you lived on a planet that was covered in cloud all the time—planet Manchester, say

—then there would be no astronomy. On the other hand, you might learn an awful lot about
meteorology.”

In Barrow’s view, cosmology has a very different quality to other sciences, and this may
be key to its close relationship with theology. “If you’re a scientist you’re used to carrying
out experiments, testing theories. You can’t experiment on the universe. You just have to
take it as it is.”

Many modern scientists have signed up to Karl Popper’s conception of the limits of
knowledge—that because you can never actually prove that a scientific theory is correct,
the best you can do is to try to falsify it. All swans are white. You can never prove that.
The best you can do is to falsify it by discovering a black swan. In Popper’s book, anything
that can’t potentially be falsified is therefore unscientific. So if you can’t do experiments in
cosmology, are large swathes of it unscientific? Barrow wasn’t going to give in too quickly.

“Popper’s philosophy of science is incredibly naive. It doesn’t really work in astronomy,
because when you make your observations you don’t know whether they have been made
correctly. So your prediction might have been falsified because something has been done
wrong in the experiment. Or, more likely, there is some bias in the way the evidence has
been gained.”

Black swans seem pretty damning for a theory that says all swans are white, but in
other more complex settings, it might be much less clear whether the theory is at fault, or
the evidence. Perhaps the swan rolled in coal dust before you observed it.

Barrow believes that cosmology could have its own black-swan moment. “The key data
point in all these ultimate questions that could really change things is making contact with
some well-evolved extraterrestrial civilization that has evolved independently and knowing
how they have come to think about some of these questions. Have they found the same bits
of math useful? Have they done physics in the same way? Do they define fundamental
constants in ways that we could make sense of? What do they think about these ultimate
questions? Now this would be an unsurpassably important data point and is the most
important reason to make contact with extraterrestrials.”

Given the tantalizing possibility that this advanced civilization might have come up with
answers to some of our big questions, I thought Barrow would be excited by the possibility
of contact. But I got a surprise.

“The scientific content I think will be a disaster. If we made contact with a very
advanced civilization that had answered all the questions we had ever posed, the game
would be over for us. There would be no motivation for us to do science. It would be like
looking at the back of the book and finding all the answers.”

You wouldn’t want to do that?
“I think it would be a disaster.”
Just as particle physicist Melissa Franklin didn’t want to press the button that would give

her complete knowledge, so Barrow was averse to looking up the answers in the back of
the book. Unlike Franklin, Barrow is convinced that there are questions that even the most
advanced civilization will never be able to answer. Those pages, to his mind, will forever
remain blank.

“The bad news is that cosmology has unknowable unknowns: things that we are never
going to know even though we suspect we might know of their existence.”
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MAKING CHOICES

Many would argue that you should remain agnostic in the light of an unknowable question,
so I was intrigued to know Barrow’s stance on the question of God. Was he agnostic?
Atheist?

“Christian, in fact.”
That was a surprise. I have heard Barrow talk many times, and have read many of his

books, but unlike Polkinghorne, he does not wear his beliefs on his sleeve (or around his
neck). But I guess I also have made a choice. I don’t believe that the only logical response
to an unanswerable question is to remain on the fence.

Our response to an unknowable question can have implications for how we conduct
ourselves. Take, for example, the question of whether the universe is infinite. That may well
be a question that we will never be able to answer. So should we just remain agnostic on the
subject?

There is an argument that we would be wise to take out Pascal’s wager on this one. If
the universe is infinite, you’re (probably) never going to know. But if the universe is finite,
it’s possible that you could know this. So isn’t the better strategy to choose to believe that
the universe is finite? In the end, if the universe is infinite you can never be proved wrong,
but if it’s finite you could be proved right.

But what if an infinite universe offers a more exciting framework within which to live
your life? An infinite universe has some interesting implications. One of these is that there
could be infinitely many copies of you across the universe reading this book. The
psychological impact of this conclusion might have a dramatic effect on the way you live
your life.

Why There Could Be Infinitely Many Copies of You Reading This Book

his hinges on a couple of assumptions. The f irst comes from quantum physics; namely, that everything
in the universe is quantized. This means that in a f inite region of space there are only f initely many

points and they can take only a f inite number of different values.
A simplif ied version of this universe looks like an infinite checkerboard on w hich each square can only

be black or w hite. Take a region of this checkerboard, w hich is meant to represent the complexity of life,
including you reading this book. Suppose, for example, that it is a 10 x 10 region w ith a particular pattern of
black and w hite squares.

One model of the entire inf inite universe is that outside this 10 x 10 region everything else is colored
black. Rather like the void. So w e need another assumption: that it is equally probable that any of the
possible patterns can occur. No pattern is favored over any other. Since there are only f initely many
possible patterns and infinitely many 10 x 10 cells across this universe, if  our pattern occurred only f initely
many times then there must be another pattern that occurs infinitely often and therefore is inf initely more
likely, w hich contradicts our second assumption. That means our pattern must be repeated infinitely across
the checkerboard universe.

I think this is why I reject Pascal’s original wager on the question of the existence of
God (in the conventional sense of a supernatural intelligence that created the universe) and
choose to declare myself an atheist. Ultimately it affects the way I conduct my life. I’m not
denying that it is a question I may never know the answer to, but to admit such leaps of the
imagination would open up too many other wild possibilities. It goes against my natural
predisposition to argue for the best explanation. Believing in multiverses may not be the
most satisfying thing, but it is to my mind a better—or simpler—explanation.



CAN WE REALLY EVER KNOW WE WON’T KNOW?

After leaving Barrow in his office, I was rather downcast. I know I was on the lookout for
things we cannot know, but I was beginning to doubt whether we could actually ever know
anything. On my way back home, lines in one of Barrow’s books struck a chord: “The idea
of the impossible rings alarm bells in the minds of many. To some, any suggestion that there
might be limits to the scope of human understanding of the Universe or to scientific progress
is a dangerous meme that undermines confidence in the scientific enterprise.”

Looking back at the Edges we’ve visited so far, nothing seems quite so unanswerable as
the question of whether the universe is infinite. Chaos theory told me that the future was
unknowable, but I can just wait until it becomes the present and then I’ll know. As I slice
my die, I might actually hit a point at which space is quantized, so it’s possible that there are
only finitely many steps inside my die before I hit the indivisible. It’s true that it might be
almost impossible to navigate this parsing into even smaller pieces, but it isn’t a challenge
that is a priori unsolvable. And Heisenberg’s uncertainty principle does not so much
challenge us to give an answer as to consider whether the questions we are asking are well
posed. It’s not that we can’t know position and momentum simultaneously; the revelation is
that it is not a question it makes sense to ask.

But the question of an infinite universe does not seem ill posed. The universe is either
infinite or not. If it is infinite, it is a real challenge to think of how we could ever know this,
given what we’ve discovered about the cosmic horizon.

Then I had a revelation. Perhaps the question of an infinite universe is not as
unknowable as one might think. Might there not be a more indirect way to reach a
conclusion? The answer might lie in my own field of expertise. Mathematics has been a
very powerful telescope through which to view the universe. What if the current laws of
physics lead to a mathematical contradiction under the assumption that the universe is
finite? That would force us to conclude that the universe must be infinite, or that our laws of
physics are at fault. This is, after all, how we discovered irrational numbers.

This is in fact the power of mathematics: to use our finite brains to know the infinite.
The Pythagoreans showed that the length across the diagonal of a unit square is given by a
number that can’t be written as a simple ratio of whole numbers. The only way this length
can be expressed is by a decimal expansion that is infinite and nonrepeating. Perhaps an
infinite universe will be susceptible to a proof of existence by the same tools that helped us
discover irrational numbers—a proof by contradiction.

Perhaps the real lesson is that “what we cannot know” is something we can never
know because it is so hard to preclude the possibility that new ideas might pull the
unknowns into the known. Although the universe that I will ever be able to see or explore is
as finite as the paper model that sits on my desk, perhaps the message is that we should not
give in too early to the lure of the great unknown. The mathematical telescopes of the mind
may one day allow us to break through the unknown and discover that our sphere really
does sit in an infinite expanse of space.



FIFTH EDGE

TIME
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No people who have the same word for yesterday and tomorrow
can be said to have a firm grip on time.

—Salman Rushdie, M idnight’s Children

T’S 8:50 . . . ROUGHLY . . . or so my wristwatch tells me. The weak February sun is trying
to climb above the rooftops of the houses opposite. The radio is on, the coffee is brewed.

The beginning of another day. But the pulse of Prokofiev’s Cinderella vibrating the
speakers alarmingly reminds me that time is pressing on. The chimes are telling Cinderella
that her time at the ball is up. And here I am procrastinating on the Internet. I’ve just put
my birthday into Wolfram Alpha and it’s telling me that I’ve been alive for 18,075 days. But
when I ask it how many more I have left, it says it doesn’t understand my query. Probably
just as well. I’m not sure I want to know how many more times the hands on my watch will
go around before the pulse beneath stops.

When I was younger I thought it might be possible to know everything. I just needed
enough time. As the years tick by, I’m beginning to realize that time is running out. That
youthful sense of infinity is giving way to the middle-aged acknowledgment of finitude. I
may not be able to know everything. But is there still hope that humanity can know it all? Or
will time run out for us collectively too? Whether space is infinite may well be something we
can never know, but what about time? I think we all have the feeling that time will probably
go on forever. Keep putting batteries in my watch and it will carry on ticking. But when it
comes to the question of when it all began, people are less certain: Did time have a
beginning, or has it been there forever?

I may not be able to look into the future and make predictions, but the past has
happened, so shouldn’t I be able to look back and see if time had a beginning? Tracing the
expansion of the universe backward has led us to a moment we call the Big Bang, when
space was infinitely dense, a singularity that occurred 13.8 billion years ago. But what about
before the Big Bang? Is that simply a no-go area for scientific investigation? Or are there
telltale signs in the current state of the universe that might show me what was going on
before it all began?

The nature of time has troubled philosophers and scientists for generations. Tied up in
the attempt to understand this slippery concept is the challenge of understanding why there
is something rather than nothing. To talk about a moment of creation is to talk about a
moment in time.

Einstein’s theory of relativity—with its revelation that time and space are inseparably
linked—seems to suggest that time exists only once you’ve created space. But if time and
space came into being only at the Big Bang, the concept of time “before” the Big Bang has
no meaning.



There are rumblings in the cosmological corridors. Perhaps time can’t be
mathematically packaged up so easily. Perhaps the question of what happened before the
Big Bang is not so easily dismissed. But to try to unravel time means diving into some pretty
mind-bending ideas.

As I stare at my watch I can’t actually see the hands moving, but if I look away and
then look back again after some time has passed, the hands have moved on. It’s saying 9:15
now . . . or thereabouts. Tiny cogs inside the watch are driven by a tiny electric motor that
in turn is driven by one-second pulses that have their origin in the oscillations of a tiny quartz
crystal. The battery that sits inside the watch sets up a voltage across the crystal that
makes it vibrate like a bell with a frequency tuned to 32,768 vibrations per second. This
number is chosen for its mathematical properties. It is 2 to the power of 15. Digital
technology likes powers of 2 because computer circuitry can quickly convert this into a
mechanical pulse to drive the cogs every second. Importantly, this frequency is not greatly
affected by the surrounding temperature, air pressure, or altitude (factors that affect a
pendulum, for example). And this vibrating, the repetition of motion, is key to marking the
passage of time. But is this sufficient to describe the idea of time?

With my watch ticking away on my wrist, there are no further excuses for
procrastinating. So . . .

WHAT IS TIME?

Most attempts to define time very quickly run into difficulties that become quite circular. It’s
something my watch keeps track of . . . It’s what stops everything from happening at
once . . . The fourth-century theologian St. Augustine summed up the difficulty in his
Confessions: “What then is time? If no one asks me, I know: if I wish to explain it to one
that asketh, I know not.”

Measuring time is, at heart, a very mathematical process. It depends on spotting things
that repeat, things with patterns in them, such as day and night, the movement of the planets
or the passing of the seasons or the swinging of a pendulum or the pulsing of an atom. As
the nineteenth-century Austrian physicist Ernst Mach had it, “Time is an abstraction at
which we arrive through the changes of things.”

The Lascaux caves in France are believed to contain evidence of one of the first
attempts by humans to keep track of time. Dating back fifteen thousand years, the caves
were discovered in 1940 by four French boys after their dog Robot came across a hole
leading down into the rocks. The caves are famous for the extraordinary Paleolithic
paintings of animals running across the walls: bison, horses, deer, and aurochs.

I’ve had a chance to visit the caves, but because of the delicate nature of the drawings,
I got to see only the replica cave that has been built alongside the original. They are still
impressively atmospheric, and there is a dramatic sense of energy captured by the ancient
images. But it isn’t only animals that the artist depicts. There are also strange arrangements
of dots that punctuate the paintings, which some archeologists believe are evidence of
ancient humans keeping track of the passage of time.

One collection of dots is generally believed to depict the constellation of the Pleiades.
The reappearance of this constellation in the night sky was regarded by many ancient



cultures as marking the beginning of the year. As I moved around the cave I came to a
sequence of thirteen dots with a rectangle drawn at one end. Above the rectangle is a huge
image of a rutting stag. Farther along the wall there is a sequence of what could be counted
as twenty-six dots with a huge pregnant cow at the end.

Some archeologists have interpreted the dots as marking quarters of the moon’s cycle,
what would become the seven days of the week. These quarter phases of the moon were
easily identifiable in the night sky. So thirteen quarters of the moon represents a quarter of a
year, or a season. Counting on a quarter of a year from the reappearance of the Pleiades
gets you to the season of rutting stags, when they are more easily hunted. Then the twenty-
six dots can be interpreted as two lots of thirteen dots, representing two seasons, or half a
year. This gets us to the point in the year when the bison are pregnant and again vulnerable
and easily hunted.

The paintings on the wall might represent a training manual for new hunters, a calendar
telling them what to hunt at what point in the annual cycle. This early evidence of
timekeeping relies on spotting patterns that repeat themselves. Identifying repeating patterns
would always be key to understanding the nature of time.

The cycle of the sun, moon, and stars would inform the way we measured time until
1967. There is nothing in the natural cycle that dictated how we partition our day. Rather, it
was the mathematical sensibilities of the Babylonians and Egyptians that gave us a day
divided into twenty-four units of time and an hour subsequently divided up into units of sixty.
The choice of these numbers was based on the high divisibility of the numbers 60 and 24.
Napoleon did attempt to make time decimal by introducing a day with ten hours, but it was
about the only unit of measurement that he failed to get the world to count with their ten
fingers.



Until 1967, the second, the basic unit for measuring time, was defined variously in terms
of the time it takes the Earth to rotate on its axis or the Earth to rotate around the sun,
neither particularly constant when measured against our modern concept of time. For
example, six hundred million years ago the Earth rotated once on its axis every twenty-two
hours and took four hundred days to orbit the sun. But the tides of the seas have the strange
effect of transferring energy from the rotation of the Earth to the moon, which results in the
Earth’s rotation slowing down and the moon gradually moving away from us. Similar effects
are causing the Earth and sun to drift apart, changing the time it takes to complete an orbit.

Given the vagaries of the motions of the planets, from 1967, instead of measuring the
passage of time by looking outward to the universe, meteorologists looked to the atom to
define the second, which is now understood as “the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two hyperfine levels of the ground
state of the cesium-133 atom at rest at a temperature of 0 K.”

Quite a mouthful. And you should see the clock that does the measuring. I visited the
National Physical Laboratory in southwest London to see the atomic clock that tells Big
Ben when to sound the hour. It’s enormous—definitely not something that you could wear
on your wrist. It includes six lasers that trap the atoms of cesium before launching them
upward into a microwave chamber. As they fall back down under the effect of gravity in
what’s called a cesium fountain, the atoms are zapped with microwaves, causing them to
emit the radiation whose frequencies are used to define the second.

The atomic clocks that sit at the national laboratories across the world are some of the
most extraordinary measuring devices created by humans. The regularity and universality of
the atom means that two atomic clocks put next to each other would, after 138 million
years, differ by at most a second. These clocks produce some of the most precise
measurements ever made by humans. So perhaps we can say we know time. The trouble is
that time isn’t as constant as we had hoped. If two atomic clocks are moving relative to
each other, then, as Einstein famously revealed at the beginning of the twentieth century,
they will soon be telling very different stories of time.

TORCHES ON TRAINS

Newton believed that time and space were absolutes against which we could measure how
we move. In the Principia he laid out his convictions: “Absolute, true and mathematical
time, of itself, and from its own nature flows equably without regard to anything external.”

For Newton, space and time were like a backdrop upon which nature played out its
story. Space was the stage on which the story of the universe was performed and time
marked the passage through this story. He believed that you could place clocks across the
universe, and once they had all been synced they would continue to show the same time.
Others were not so certain. Newton’s archrival Gottfried Leibniz believed that time existed
only as a relative concept.

A discovery made in 1887 by Albert Michelson and Edward Morley ultimately led to
Leibniz’s view winning out over Newton’s. The American scientists found that if we
measure the speed of light in a vacuum, regardless of whether we are moving toward or
away from the source of the light, the measurement remains the same. This revelation was
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the seed for Einstein’s discovery that time was not quite as absolute as Newton had
envisioned.

At first sight, the fact that the speed of light would be the same however I am moving
relative to the light source seems counterintuitive. Consider the Earth orbiting the sun. If I
measure the speed of the light coming from a distant star, I would expect it to be faster
when I am heading toward the star than when I am heading away from it.

Newtonian physics implies that if I am running ten miles an hour down a train traveling
at ninety miles an hour, then relative to someone on the platform I am traveling at a
combined speed of a hundred miles an hour. So why isn’t the same true of light shining from
a torch on the train? Why isn’t the speed of light ninety miles an hour faster for the person
measuring it on the platform? It transpires that Newton was wrong about how to calculate
the speed of the runner on the train relative to someone on the platform. You can’t simply
add the speed of the runner to the speed of the train. The calculation turns out to be more
subtle.

Relativistic Formula for Combining Speeds

o calculate the apparent speed s of a passenger running at u miles an hour dow n the length of a train
traveling at v miles an hour, Einstein discovered that you need to use the follow ing equation:

w here c is the speed of light. When the speeds u and v are small compared to c, the term uv/c2 is very
small. This means that the speed s can be approximated by adding the speeds u + v. But w hen the speeds u
and v get close to the speed of light, the approximation breaks dow n and the formula gives a different
answ er. The formula is such that it never outputs a combined speed that is faster than the speed of light.

It was by trying to understand why the speed of light is invariant that Einstein, in 1905,
made the breakthrough that changed our perception of the universe. He discovered that
time and space are not absolute but vary according to the relative motion of the observer.
Einstein was employed at the time as a clerk in the Swiss patent office and was responsible
for evaluating applications for a range of new inventions, from gravel sorters to electrical
typewriters. But he also had to assess attempts to create devices to electrically synchronize



time, an important task for a world that was becoming increasingly interconnected. It was
such apparently mundane work that fired the thought experiments that led to Einstein’s
special theory of relativity.

SLOWING DOWN TIME

To explain Einstein’s new ideas about time, I need a clock, or something that repeats itself
at regular intervals. I could use one of the atomic clocks at the National Physical
Laboratory or my wristwatch, but, in fact, light is the best clock to use to reveal the strange
effect of motion on time. I am going to exploit Michelson and Morley’s discovery that the
speed of light does not seem to depend on how fast you are moving when you measure it.

So let me consider time measured by a device consisting of two mirrors with a light
beam bouncing between them. Each tick of this clock corresponds to the light bouncing
between the two mirrors.

I am going to take one such clock onto a spaceship and the other I will leave with you
on the surface of the Earth. To show that—from your perspective on Earth—my
spaceship’s clock ticks at a slower rate requires nothing more sophisticated than
Pythagoras’s theorem. That said, the argument is still quite subtle and will require some
deep concentration to comprehend. This is, after all, one of the most extraordinary
revelations of the twentieth century, so it isn’t going to be easy. The reward for the effort
will be to change your perspective on time in quite an astounding manner.

Einstein’s revelation depends on the important discovery made by Michelson and
Morley that the speed of light is the same everywhere. This means that the person on Earth
must record the light bouncing at the same speed between the mirrors in the clock on the
spaceship as it does on Earth. Just because the spaceship is moving, that movement can’t



add speed to the light. So let us look at how far the light travels when it is emitted from one
mirror and hits the opposite mirror in my clock on board the spaceship.

Suppose the mirrors in both clocks are four meters apart. Let us suppose also that in the
time it takes for the light to travel between the mirrors on the spaceship, the ship has moved
three meters as measured by you on Earth. Pythagoras’s theorem tells us that the light has
traveled across the hypotenuse of the triangle and has therefore covered five meters. That’s
all the math you need to understand Einstein’s theory of special relativity!

From this we can calculate that the spaceship is traveling at 3/5 the speed of light
relative to the Earth—in other words, the spaceship covers three meters in the time that it
takes light to travel five meters.

The spaceship’s clock moves three meters in the time it takes the light to travel betw een the mirrors set
at four meters apart. By Pythagoras’s theorem, this means the light has actually traveled f ive meters.

The key point is that light on the Earth will have traveled the same distance—five
meters—since the speed of light must be the same everywhere. But the distance between
the mirrors in the clock on the Earth is also four meters. This means it must have hit the top
mirror, and be on its way back down again, one quarter of the way through a second tick.
So time is running faster according to the person on Earth because one tick of the clock on
the spaceship takes the same time as 11⁄4 ticks of the clock on Earth. According to you, my
clock in space is going 4⁄5 slower!

To get a sense of why this is happening, take a look at the beam of light as it travels on
the spaceship and on Earth. The beam of light is going at the same speed in both clocks.
The freeze-frames on the next page show where the light will be at various points in time.
Because the light on the spaceship has to travel through space in the direction of the
movement of the spaceship, it can’t travel as far in the direction of the opposite mirror in the
clock on the spaceship. So from your perspective on Earth, the light in your clock reaches
the mirror before the light on my clock on the spaceship does. This means that your clock is
“ticking” faster.



Fair enough . . . and yet when I compare the clocks from my perspective on the
spaceship, things get very counterintuitive. To understand why things get so weird I need to
apply what is known as the “principle of relativity.” This says that if you are in uniform
motion (i.e., not accelerating and not changing direction), then it is impossible to tell that you
are moving. This principle of relativity can be found in Newton’s Principia, although it is
probably Galileo who should be credited with the realization. It captures that strange
experience you may have had when you’re in a train alongside another train at a station and
then your train starts moving. Until the platform is revealed, it’s impossible to tell which train
is moving.

When this is applied to our clocks, it leads to a rather strange outcome. As far as I am
concerned in my spaceship, it is the Earth that is whizzing by me at 3/5 the speed of light.
The same analysis that I performed above implies that I will calculate that it is your clock on
Earth that is going slower, not my clock. Time, it turns out, is far less obvious a concept than
we experience in everyday life.

The whole thing seems so bizarre as to be unbelievable. How can the spaceship clock
be ticking slower than the Earth clock and at the same time the Earth clock be ticking
slower than the spaceship clock? Yet if I accept the indisputable observation that the speed
of light is constant regardless of how I measure it, the mathematics leads me to this
conclusion. It’s one of the reasons I love mathematics. It is like a rabbit hole of logic
dropping you into unexpected wonderlands.

It’s not just the ticking clock on the spaceship that appears to be slowing down from the
perspective of Earth. Anything that keeps track of time must also slow down. If I am sitting
on the spaceship I cannot tell that my clock is doing anything strange. So it means that



anything that measures time on the spaceship will be similarly affected, including the quartz
pulsating in my wristwatch, the Prokofiev on the spaceship’s radio, the aging of my body,
my brain’s neural activity. On board the spaceship, I will not be aware that anything strange
is happening because everything on board the spaceship will be ticking at the same rate.

But from your perspective on the Earth, it appears that my watch is losing time, the
Prokofiev has turned into a deep-sounding dirge, I am aging more slowly, and my neurons
aren’t firing quite as fast as they usually do. Time and the sensation of its passing are
relative. If everything is slowing down or speeding up at the same rate, I can’t tell the
difference. Everything seems normal on board my spaceship. The curious thing is that when
I look down at you, I see everything around you slowing to a snail’s pace.

SPEED UP AND LIVE LONGER

A rather striking example of this relative difference in the passage of time is the strange
case of muon decay that I encountered in the Second Edge. When cosmic rays hit the
upper atmosphere, the collisions create a shower of fundamental particles, including the
muon, a heavy version of the electron. These muons are not stable and very quickly decay
into more stable forms of matter.

Scientists talk about something called half-life. This is the amount of time it takes for the
population of muons to be reduced by half because of decay. (Knowing when the decay will
happen for a particular particle is still something of a mystery.) In the case of muons, after
2.2 microseconds, half of these particles on average will have decayed away.

The speed at which they decay should mean that, given the distance they must travel to
the surface of the Earth, not many will survive the journey. But scientists detected far more
muons than they expected. It turns out that these particles are traveling at close to the
speed of light. So the half-life of the muon is actually longer than we’d expect when
measured by a clock on Earth. The muon’s internal clock is going slower than the clock on
Earth, and hence, since not so much time has passed in the frame of reference of the muon,
the 2.2 microseconds that it takes for half the muons to decay takes much longer than 2.2
microseconds measured by a clock on the Earth’s surface.

How does this work from the perspective of the muon? The clock on board the muon is
running normally, and it’s the clock on Earth that is running slowly. So, from their
perspective, what causes more muons to reach the surface of the Earth than expected? The
point is that it isn’t only time but also our perception of distances in space that is altered by
looking out the window of a spaceship traveling close to the speed of light. Distances shrink
when you are moving, so the distance from the outer atmosphere to the surface of the
Earth, from the muons’ perspective, is much shorter than it is from our own perspective. So
the muon doesn’t think it has as far to go, and more reach their destination.

Is this a strategy I can use to add a few more days to my finite life? Can I cheat my
own half-life? The trouble is that, as I explained, everything slows down on my speeding
spaceship. I’m not going to squeeze any more time out of the universe to solve the
mathematical problems I’m working on by speeding along near the speed of light, because
while my body may age more slowly, my neurons will fire more slowly too. The principle of



relativity means that as far as I am concerned, I appear to be at rest and it’s everything else
that is speeding by.

RELATIVITY DOGS

What does it mean for two events to happen at the same time? This was a problem Einstein
confronted when working on patents to synchronize time. It turns out that the answer will
depend on your frame of reference.

Let’s start with a scene from a fictional movie called Relativity Dogs, in homage to
Quentin Tarantino. It takes place on a train (as many things do in relativity). Two people
with identical guns are standing at either end of the train. Exactly halfway between them is
a third member of the gang. The train is racing through a station. A police officer is
watching the scene. Let me first consider the situation on the train. As far as the gang
members are concerned, the train can be considered at rest. The guns go off. The bullets hit
the man in the middle at the same time. The speed of the bullets and the distance they have
to cover is the same, and as far as everyone on the train is concerned the gunmen both shot
at the same moment. Indeed, the victim saw light flash from the guns at the same moment,
just before being hit by the bullets.

But what about the perspective of the police officer? Let’s suppose the victim passes
the police officer at precisely the moment both flashes of light reach the victim, so that the
police officer witnesses the flashes at the same time too. But then the officer begins to
wonder. Although they are the same distance away from him now, when the guns went off,
the one at the front of the train was actually nearer to him. So the light had a shorter
distance to travel than the light of the gun at the back of the train. In which case, since the
speed of light is constant, if the light arrived at the same time it must have left the gun at the
back of the train earlier than it left the gun at the front. So to the police officer it seems that
the gunman at the back of the train shot first. But if I put another officer on a train going in
the opposite direction, then everything is reversed and the second police officer will
conclude that the gun at the front of the train must have gone off first.

So who shot first? The gunman at the back shot first from the perspective of the
policeman on the platform; but the gunman at the front shot first from the perspective of the
policeman on the train speeding in the opposite direction. To talk about which gun was fired
first is therefore meaningless in an absolute sense. Time takes on different meanings for



different frames of reference. It turns out there is something that is absolute for all of the
observers, but it requires the combination of time and space.

The trouble is that I have been trying to measure the distance between two objects, and
this changes according to my own movement relative to the two points. The time between
two events also changes. But if I can identify a new distance that measures the distance in
time and space, I can get something invariant—that is, not dependent on who is doing the
measuring. This was the great idea of mathematician Hermann Minkowski, Einstein’s
former teacher at the Polytechnic in Zürich. On hearing about Einstein’s ideas, he
immediately understood that the high-dimensional geometries discovered by German
mathematician Bernhard Riemann fifty years earlier were the perfect stage for Einstein’s
theory.

For those happy to contemplate a formula, the distance between an event happening at
location (x1, y1, z1) at time t1 and an event happening at location (x2, y2, z2) at time t2 is
defined by

The first three bits of the equation

make up the usual distance measured in space (using Pythagoras’s theorem). The last bit is
the usual measurement of the difference in time. Your first intuition might be to add these
two distances together. The clever thing Minkowski did was to take the second away from
the first. This creates a very different sort of measure, leading to a geometry that doesn’t
satisfy the usual laws of geometry as developed by the Greeks. It views the universe not as
three-dimensional space animated in time but rather as a four-dimensional block of
something called space-time, whose points are located by four coordinates (x, y, z, t)—three
for space and one for time. Minkowski introduced this new way of looking at the universe
two years after Einstein’s announcement of his special theory of relativity.

If the formula leaves you none the wiser, don’t despair. Einstein too was rather
suspicious of what he regarded as something of a mathematical trick. But Minkowski’s
four-dimensional geometry would provide a new map of the universe. As Minkowski
declared, “Henceforth space by itself, and time by itself, are doomed to fade away into
mere shadows, and only a kind of union of the two will preserve an independent reality.”

This was Einstein’s response to the mathematization of his ideas: “Since the
mathematicians pounced on the relativity theory I no longer understand it myself.” But he
soon realized that mathematics was the best language for navigating this strange new
universe called space-time.

The power of measuring distance in space-time is that, regardless of your frame of
reference, everyone agrees on the measurement. If you measure time and distance
separately you will get different values depending on how you are moving relative to the
things you are measuring. But combine space and time and now your movements don’t
matter. So Newton was right in some respects: you do need a background that is absolute.
His mistake was to consider time and space separately. Post-Einstein, we must consider the



two simultaneously. And it’s this mixing of the nature of time and space that makes the
question of what happened before the Big Bang really interesting.

For a start, it forces us to consider time in a very different light. We should regard the
universe as a block of space and time in which the ideas of “before” and “after” are as
questionable as pinpointing which point of space is in front of another—it depends on your
perspective. This is very disconcerting. For both policemen in my fictional movie scene,
there is a moment when one of the gunmen still hasn’t squeezed the trigger. Perhaps there
is time for him to stop and consider his actions, to decide not to shoot and let the other
person be responsible. But hold on! For the policeman on the platform that decision is in the
hands of the man at the front of the train. But for the policeman on the train going in the
opposite direction, it’s the gunman at the back. Does that actually mean the future is not
really in our hands at all?

Usually when I draw a graph of distance against time, the time axis runs along the
horizontal and the distance, traveled by a ball, say, is represented on the vertical. But space-
time doesn’t allow me to divide time and space up so neatly. When I think of space-time as
a block, I must be careful not to think of one privileged direction in this block representing
time and three other independent directions keeping track of space. Two different directions
in this space-time can represent the time dimension. It just depends on how you are moving
through space. Time and space are mixed in this new view.

This is a real challenge to my intuition about the universe. Suppose I am speeding away
from you on a spaceship. If I draw a line connecting all simultaneous events from my
perspective in this space-time geometry, they will be a very different set of lines from yours.

On your timeline, events A and B happen simultaneously and C happens later. How ever, for me, B and C
are simultaneous events, w hile A happened earlier. If  A and C are causally linked then for everyone’s
timeline A w ill alw ays happen before C. But B is not causally connected to either A or C, so there are
timelines that place event B before A, or alternatively after C.



In Hindi and Urdu the word kal is used to mean both yesterday and tomorrow. In the
quote from Midnight’s Children at the head of this chapter, Salman Rushdie joked that
people who have the same word for yesterday and tomorrow cannot be said to have a firm
grip on time. But could they be on to something? The idea of “before” or “after” is not as
clear as some languages imply.

And yet, even with this mixing of space and time, time does have a different quality
from space. Information cannot travel faster than the speed of light. Causality means that
we can’t place ourselves at a point in space-time where the bullet hits the victim before it
was fired. There are constraints on how these timelines can be drawn. My intuition about
space and time is not going to help me. Instead, as Einstein reluctantly conceded, I have to
rely on mathematics to lead me.

THE SHAPE OF TIME

Just as I can talk about space having a shape, I can also talk about space-time having a
shape. My initial instinct is to think of time as a line, which makes it very difficult for me to
think of anything other than a line that is finite and therefore has a beginning and an end, or
a line that is infinite. But there are other possibilities. Since time and space make up four
dimensions, I must consider shapes that I can’t see. I need mathematics to describe them.
But I can picture shapes representing parts of space-time that enable me to understand
what I mean by the question of what happened before the Big Bang. For example, imagine
there was only one spatial dimension, so that space-time is two-dimensional. This creates a
surface that I can see, like a rubber sheet that I can play with and wrap up in interesting
ways.

I think most people’s model of two-dimensional space-time would be an infinite flat
sheet with time extending infinitely backward and forward and space also one-dimensional
and infinite. But, as I explored in the last Edge, space could be finite. I could wrap space up
to make a circle and then time would extend this circle to make space-time look like a
cylinder. I could, of course, join the cylinder up to make a bagel- or torus-shaped space-
time. That would make time finite too. In this model of space-time I could loop around and
return to a previous moment in history. Logician Kurt Gödel proposed solutions to Einstein’s
equations of general relativity that have this feature. Gödel, as I shall explain in my final
Edge, greatly enjoyed messing with people’s logical expectations. But Gödel’s circles of
space-time are generally regarded as curiosities, because going back in time causes too
many problems when it comes to causality.



Possible shapes for a tw o-dimensional space-time

To get a more realistic picture of space-time, I need to create a geometry that takes into
account our current model of the history of the universe, which includes a beginning: the Big
Bang. To see this point in my two-dimensional space-time universe, I could wrap up the
surface so that it looks like a cone. The universe, which is just a circle, shrinks as I go back
in time until I hit the point at the end of the cone. This is where time begins. There is nothing
before that. No space. No time. Just a point of infinite density. This is a good model for
something rather like the Big Bang.

Or, rather than pinching space-time at a point, perhaps it could look like a sphere—like
the surface of the Earth. This has its own implications for how I answer the question of
what happened before the Big Bang. If I head south along a line of longitude, then when I
hit the South Pole there is a sudden flip and I find myself on another line of longitude on the
other side. But these are just numbers that we give to these points on the Earth’s surface. It
doesn’t actually represent a discontinuous flip in the shape, just a jump in the way that we
measure it.

So by changing the coordinates, what appears to be a singular point can look quite
smooth. This is one of Hawking’s ideas for time. Perhaps I should try to embed space-time
in a shape such that this point that seems to show time stopping is actually just the south
pole of the shape. After all, how do you answer the question, what’s south of the South
Pole? The question doesn’t really make sense.

It is striking that often when a question arises to which it seems we cannot know the
answer, it turns out you need to acknowledge that the question is not well posed.
Heisenberg’s uncertainty principle is not really an expression of the fact that we cannot
simultaneously know both the momentum and position of a particle, so much as that these
two things don’t actually exist concurrently. Similarly, attempts have been made to show



that the question “What happened before the Big Bang?” isn’t one whose answer cannot be
known. Rather, the question does not really make sense. To talk about “before” is to
suppose the existence of time, but what if time existed only after the Big Bang?

By picturing the shape of space-time I begin to get a sense of why many scientists have
dismissed the question of understanding time before the Big Bang as meaningless. But there
are other shapes that allow time to have a history before the Big Bang. What if the cone,
instead of coming to a point and ending, actually bounced out of a contracting universe
before the Big Bang? To truly get a sense of time’s history as I head back toward the Big
Bang, I need to understand what happens to time as it approaches a point with increased
gravity. This was Einstein’s second great discovery: that gravity also has an effect on the
ticking clock of time.

WHY SKYSCRAPERS AREN’T GOOD FOR YOU

Einstein’s second assault on the nature of time came when he threw gravity into the mix.
His general theory of relativity, developed between 1907 and 1915, describes the very
geometric nature of gravity. Gravity is not really a force but a property of the way this four-
dimensional sheet of space-time is curved. The moon orbits the Earth because the mass of
the Earth distorts the shape of space-time in such a way that the moon simply rolls around
the curved shape of space-time in this region. The force of gravity is an illusion. There is no
force. Objects are just free-falling through the geometry of space-time, and what we
observe is the curvature of this space. But if massive bodies can distort the shape of space,
they can also have an effect on time.

This was yet another one of Einstein’s great revelations, and it is based, once again, on
a principle of equivalence. The strange consequences of special relativity are teased out of
the principle of relativity, which states that it is impossible to tell whether I am moving or my
environment is moving past me. Einstein applied a similar principle of equivalence to gravity
and acceleration.

If you are floating out in space, in a spaceship with no windows, and I place a large
massive planet underneath the spaceship, you will be pulled toward the floor. This is the
force of gravity. But if instead I accelerate the ship upward, you will experience exactly the
same sensation of being pulled toward the floor. Einstein hypothesized that there is no way
to distinguish between the two: gravity and acceleration produce the same effects.

Let’s suppose that our spaceship is as tall as the Shard in London. I’m going to place a
photon clock at the bottom of the spaceship and another at the top. Next to each clock I’m
going to station an astronaut who will help me compare the running of these two clocks.

The astronaut at the bottom of the spaceship is going to send a pulse of light to the
astronaut at the top each time his clock ticks. The astronaut at the top can then compare the
arrival of these pulses with the ticking of her clock. Without acceleration or gravity, the
arrival of the pulses and the ticking of the clocks will be in sync. However, let me now
accelerate the spaceship in the direction of the top of the spaceship. A pulse is emitted at
the bottom of the spaceship, and, as the spaceship accelerates away, the light has farther to
travel each time, so that it takes longer and longer for each pulse to reach the top of the
spaceship, and the astronaut at the top will receive the pulses at a slower rate. This is



similar to the Doppler effect we experience with sound, where moving away from the
source causes the frequency to decrease, resulting in a lower pitch. But in this case it is
important to note that the spaceship is accelerating rather than just flying along at a constant
speed.

The clock at the bottom of the spaceship will appear to be going slower than the clock
at the top. But what if I reverse the experiment and get the astronaut at the top of the
spaceship to send pulses down to the bottom of the spaceship? Because the astronaut at the
bottom is accelerating toward the pulses, he is going to receive them at a faster rate than
the pulses of light he is sending. So he will confirm that his clock is running slower than the
clock at the top of the spaceship.

The interesting conclusion of the experiment comes when I replace acceleration with
gravity. According to Einstein’s principle of equivalence, whatever effect acceleration had
on the clocks in the spaceship, the effect of gravity must be the same. So when I place a
large planet at the foot of our Shard-sized spaceship, the impact is the same as if the
spaceship were accelerating through space: clocks run slower at the foot of the Shard than
they do at the top.

Since the aging body is a clock, this means that you age slower the closer you are to the
center of the Earth—people working at the top of the Shard in London are aging faster than
those on the ground floor. Of course, the difference in the speed of the clocks is extremely
small at this scale, but it makes a significant difference if we compare the ticking of atomic
clocks on the surface of the Earth with those in orbit on satellites. The difference in gravity
experienced by the two clocks results in them ticking at different rates. Since these atomic
clocks are integral to the functioning of GPS, it is essential that the effect of gravity on time
is taken into account if the systems are to be accurate.



Acceleration and gravity have the same effect: slow ing the clock at the bottom of the Shard
spaceship.

ASYMMETRICAL TWINS

There is a classic story that reveals the strange nature of time in Einstein’s new world. It
involves sending twins, or actually one twin, on a space journey. It is particularly close to my
heart because I have identical twin girls, Magaly and Ina. If I send Ina off on a spaceship
traveling at close to the speed of light and then bring her back to Earth, the physics of
relativity implies that, although she will think that she’s been away for only ten years, her
twin sister’s clock on Earth has raced ahead, so that Magaly is now in her eighties.

To truly understand the asymmetric nature of the story, I need to take into account
Einstein’s revelation about the effect of gravity and acceleration on time. Once Ina is
traveling at a constant speed close to the speed of light, Einstein’s first revelation declares
that neither twin can tell who is moving and who is still. Ina will think Magaly’s clock is
running slower, and Magaly will think Ina’s is slower. So why does Ina return younger?

Ina returns younger because she has to accelerate to get to her constant speed.
Similarly, when she turns around she needs to decelerate and then accelerate in the opposite
direction. This causes her clock to slow down relative to that of her twin on Earth, who
doesn’t accelerate. This asymmetry results in Ina heading into Magaly’s future. If I sent
both twins off in spaceships in opposite directions and brought them back together, then
they’d be the same age—and everyone on Earth would have aged quicker.

Einstein’s general theory of relativity revealed that time as well as space gets pulled
about by things with mass. Gravity is actually the distortion of this space-time surface. If
something has mass, it curves the surface. The classic way to imagine this is to consider
space-time as a two-dimensional surface, and the effect of mass as that of placing a ball on
this surface. The ball pulls the surface down, creating a well. Gravity can be thought of as
the way things get pulled down into this well.

This distortion of space-time has an interesting effect on light. Light follows the shortest
path between two points—the definition of a “straight” line. But I am now talking about
lines in space-time, where distance is measured using Minkowski’s formula that includes the
coordinates of space and time. Weirdly, using Minkowski’s formula, it turns out that the
distance between two points in space-time is reduced if the light takes longer to get there.



So in order to find the shortest space-time path, light will follow a trajectory that tries to
balance a minimizing of distance traveled against a maximizing of time taken. By following a
trajectory such that the light particle is essentially free-falling, the clocks on board the
particle will go faster. Pull against gravity and you are accelerating and thus slowing your
clock down. So Einstein’s theory predicted that light would be bent by the presence of a
large mass. It was a highly unexpected prediction, but one that could be tested—a perfect
scenario for a scientific theory.

British astronomer Arthur Eddington’s observations of light from distant stars recorded
during the solar eclipse of 1919 provided convincing evidence for this picture of a curved
space-time. The theory predicted that the light from distant stars would be bent by the
gravitational effect of the sun. Eddington needed the eclipse to block out the glare of the sun
so that he could see the stars in the sky. The fact that the light did indeed seem to bend
round objects of large mass confirmed that the shortest paths weren’t Euclidean straight
lines but curved.

We experience the same effect on the surface of the Earth. An airplane flying from
London to New York takes a curved path passing over Greenland rather than the straight
line we’d expect by looking at a map of the Earth. This curved line is the shortest path
between the two points on the Earth. Light too found the shortest path from the star to
Eddington’s telescope on Earth.

Eddington announced his experimental evidence confirming Einstein’s ideas on
November 6, 1919. Within days, newspaper headlines across the world trumpeted the great
achievement: “EINSTEIN THEORY TRIUMPHS: Stars Not Where They Seemed to Be,
but Nobody Need Worry” announced the New York Times; “Revolution in Science”
declared the London Times. This was probably the first time in history that a scientific
achievement was given such public exposure. Heralded by journalists as the new Newton,
the obscure forty-year-old Einstein shot to international fame.

If you are finding all this warping of space and time bending your brain, don’t despair.
You are in good company. After Eddington announced his discovery that light bends, a



colleague came up to congratulate him: “You must be one of only three people in the world
to understand Einstein’s theory.” When Eddington failed to respond, the colleague prompted,
“Come, come, there is no need to be modest.”

“On the contrary,” replied Eddington, “I was trying to think who was the third.”
Trying to say what happens to time as we head back toward the Big Bang would test

even Eddington’s understanding of Einstein’s theory.
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There is a place where time stands still. Raindrops hang
motionless in air. Pendulums of clocks float mid-swing. Dogs
raise their muzzles in silent howls. Pedestrians are frozen on
the dusty streets, their legs cocked as if held by strings. The
aromas of dates, mangoes, coriander, cumin are suspended in
the space.

—Alan Lightman, Einstein’s Dreams

’M RATHER FOND of the design of my watch. The face is a simple brown square sitting
inside a circular silver case. I like the symmetry of the shape, and the subtle tension

between the square and the circle. It’s not expensive, which is a good thing, as I tend to lose
watches.

My last watch slipped off my wrist when I was kayaking across a lake next to the
glacier on Mount Cook. I tried to rescue it but the water was so bitterly cold that I couldn’t
leave my hand in for more than a couple of seconds. (Not that I had anything to measure
time with anymore.) The watch had disappeared below the surface and its mechanism is by
now presumably rusted and frozen, stopped by the glacial waters flowing off Mount Cook.

If I want an environment to freeze the ticking of my current watch, dropping it into the
extreme regions of space discovered within Einstein’s equations for general relativity would
be a good bet. Only I’d need a spaceship, not a kayak, to explore the strange phenomena
known as black holes.

One reason why the universe is so fascinating is that thanks to gravity, atoms attract
other atoms. And so unless everything is in a perfect balance, we see a movement of
matter toward other bits of matter. But the interesting thing about gravity is that its pull
grows stronger as things get closer. This attraction is what leads to the creation of stars like
our sun, but also to the potential for more catastrophic events.

The simplest atom is hydrogen, made up of one electron and one proton held together by
the electromagnetic force. If I have two atoms of hydrogen, the force of gravity will pull
them together. And as the atoms are pulled closer and closer they start to collide. Increase
the number of hydrogen atoms and the collisions become more and more energetic until the
atoms no longer simply bounce off each other; eventually, the conditions for nuclear fusion
are satisfied and I get a star. Hydrogen atoms fuse to create helium atoms. In the process,
energy is given off, creating outward pressure as the energy is dissipated. This is the energy
that we depend on for life on Earth. Stars remain stable because the inward gravitational
pull is counterbalanced by the outward pressure of the energy released in the process of
fusion.

At some point all the hydrogen gets used up. Some stars will continue to fuse helium
into atoms further up the periodic table. Many of the atoms we find on Earth, such as iron,



oxygen, or even the carbon that is crucial for making life, are all products of this continuing
fusion of lighter atoms. Eventually, the star isn’t able to sustain this fusion—the fuel is spent.
Gravity takes over once again, and as the star contracts, quantum physics comes into play.
If I confine particles in a smaller and smaller space then I know a lot about their position.
According to Heisenberg’s uncertainty principle, this must be balanced by huge uncertainty
about the velocity of the particles. The movement of the particles away from each other
results in a second period of stability that counteracts the pull of gravity, resulting in what is
known as a white dwarf.

In 1930, the Indian physicist Subrahmanyan Chandrasekhar challenged this theory.
Stuck on a boat sailing from India to England where he was heading to do his doctoral
studies in Cambridge, Chandrasekhar suddenly realized that special relativity puts a speed
limit on how fast particles can move. So if the mass of the star is great enough, gravity will
win out over the speed limit and the star will continue to collapse, creating a region of space
of increasingly high density. His calculations, made on board the ship, revealed that any star
more than 1.4 times the mass of our sun would suffer such a fate. The supernovae
responsible for creating elements like gold and uranium are the result of these cataclysmic
collapses.

In 1916, German physicist Karl Schwarzschild first deduced from Einstein’s equations
that space around these points of high density would be severely warped, so much so that
light would be trapped inside. Einstein didn’t believe such points could exist, but now
Chandrasekhar’s work revealed that such points are not just theoretically possible but would
be the result of collapsing stars. One way to get a sense of why light might get trapped is to
consider what happens when you throw a ball in the air. On the surface of the Earth it is
possible to launch a ball fast enough to escape the gravitational pull of the Earth. The speed
at which you need to throw the ball is called its escape velocity. But imagine gradually
increasing the mass of the Earth. The speed required to escape its gravitational pull would
also increase until, at some point, the mass of the Earth would be so enormous that the ball
would need to be launched at a speed faster than the speed of light in order to escape. At
this point the ball is trapped. It cannot go beyond a certain point before it is pulled back to
Earth.

This scenario follows our classical pre-Einstein view of gravity. Indeed, there is
evidence that the idea of light being unable to escape the effects of gravity had been
predicted before Einstein ever appeared on the scene. Toward the end of the eighteenth
century, Pierre-Simon Laplace and John Michell had already flirted with the proposal that
light could be trapped by massive objects. A hundred years later, Michelson and Morley
discovered that light always travels at the same speed in a vacuum. This meant that light
would not actually behave like our ball. Gravity won’t slow it down, as Laplace and Michell
thought.

Einstein’s conceptions then complicated things once again. Although gravity might not
slow light down, in Einstein’s theory massive objects could warp space so much that light
could not find a path to escape the region surrounding the object. The light in effect gets
bent back on itself. In 1967, American physicist John Wheeler whimsically referred to these
regions as “black holes.” Richard Feynman thought the name was obscene; in French, trou
noir has other connotations. But the name stuck.

As you move away from the center of the collapsed star, the effect of gravity
decreases. This results in a boundary, shaped like a sphere, with a black hole at its center



that represents a point of no return—any light or anything inside this boundary will be
trapped because it doesn’t have enough speed to escape. This sphere is known as the event
horizon of the black hole, as anyone outside the sphere cannot witness the events occurring
on the inside.

Black holes have been a subject of hot debate since their existence was first proposed
following Einstein’s publication of his equations for gravity in 1915. Some believed that stars,
as they collapsed, would somehow avoid such no-go regions. Perhaps the star would throw
off mass. That is certainly possible, but a star that is twenty times the mass of the sun
would need to throw off ninety-five percent of its mass to avoid becoming a black hole,
which seems unlikely. Still, many scientists insisted that these bizarre and unfathomable
regions of space-time would not occur.

In 1964, the first potential example of such a high-density region was identified in the
constellation of Cygnus. Astrophysicists called it Cygnus X-1. By 1971, calculations of its
mass and concentration led to the conjecture that it was a black hole. Not everyone was
convinced. In fact, one notable person made a bet in 1975 to the effect that Cygnus X-1
was not a black hole: Stephen Hawking. This was somewhat odd, given that he’d dedicated
much of his research to probing the nature of black holes. If Cygnus X-1 turned out to be
the first example of a black hole, all Hawking’s theoretical musings would have been
justified.

As he explained in A Brief History of Time, the bet was an insurance policy. Betting
against your football team winning the final of the FA cup is a win–win situation: if your
team loses, at least you benefit financially. If it turned out that his life’s work on black holes
had been fruitless, then at least he’d won the bet. His prize? A subscription to Private Eye
magazine so he could distract himself from the misery of his failed research. He made the
bet with fellow cosmologist Kip Thorne. Convincing evidence that Cygnus X-1 was indeed
a black hole would in turn win Thorne a subscription to the journal of his choice. He opted
for Penthouse magazine.

By 1990, evidence was finally found that Cygnus X-1 was indeed a black hole. It is
estimated to have a mass of 14.8 times the mass of the sun and to be too compact to be a
star and is believed to have an event horizon of forty-four kilometers. Inside this spherical
ball, whose diameter stretches the distance between Oxford and Cambridge, no light can
escape. Given all the data, Hawking conceded the bet. Thorne got his subscription to
Penthouse, much to his wife’s chagrin.

There is something mathematically disturbing about these black holes. As the star
collapses, creating a point of high density, nothing seems to counter the continuing pull of
gravity. So why would it not continue collapsing, becoming smaller and smaller and more
and more dense with nothing to stop the implosion? Could it keep collapsing until it created a
singular point of infinite density?

Einstein himself tried to prove the absurdity of this conclusion. Eddington could see what
the math was implying but balked at the implications. “When we prove a result without
understanding it—when it drops unforeseen out of a maze of mathematical formulae—we
have no grounds for hoping that it will apply,” he said. It wouldn’t be until 1964 that Oxford
mathematician Roger Penrose finally proved that such singular points were a necessary
consequence of the theory of general relativity.



A black hole in tw o-dimensional space-time. The event horizon is a circle inside of w hich w e cannot
penetrate.

In collaboration with a young Stephen Hawking, Penrose went on to prove that the
same infinite density is predicted when we rewind the universe back to the Big Bang. Both
black holes and the Big Bang are examples of a mathematical entity called a singularity.
Singularities encompass a whole range of situations where it is impossible to work out
what’s happening. A singularity is a point at which our ability to model the scenario breaks
down—a place where we have to throw up our hands and declare that we do not know.

SINGULARITIES

Singularities are points at which mathematical functions crash. A function in mathematics is
a little like a computer program. You input numbers, the function calculates away, and then
it spits out an answer. Mathematicians often represent functions visually by using graphs.
The input is given by a number on the horizontal line, we mark the output above the
horizontal line, and the result is a curve.

Consider the function that inputs the distance from a massive object and outputs the
gravitational pull experienced at that point due to the massive object. Newton realized that
the greater the distance from the object, the weaker the pull. He discovered a very precise
relationship between the pull and the distance. If I am a distance x from the planet,
Newton’s function calculates that the pull of gravity is proportional to 1/x2. This is what we
mean by an inverse square law. I can draw a picture of this function.



Graph of 1/x2. The function has a singularity at x = 0.

But something interesting happens as I get closer to the object. The force increases
until, when I am at distance x = 0, the output is infinite and the graph doesn’t have a value.
Of course, in reality I am measuring the distance from the center of gravity of the planet,
and once I reach the surface of the planet the function and graph change because, as I pass
through the surface, parts of the planet start pulling in the other direction. When I hit the
center of gravity, all the pulls balance out and I experience zero gravitational pull. But what
if I replace the planet with a black hole, a region in space where all the mass is meant to be
concentrated at a single point? Now this point has infinite density, and I can approach it, and
as I hit the point the gravitational pull is infinite.

The fact that the function doesn’t really make sense at x = 0 is what mathematicians
call a singularity. There are different sorts of singularities, but they all have a point at which
the function doesn’t give a sensible output, or where there is a sudden discontinuous jump
from one value to another.

A very homespun example of a singularity can be realized by taking a coin and spinning
it on a table. If there were no friction on the table or air resistance, the coin would spin
forever at a constant speed. However, because energy is dissipated, the coin does not spin
forever. Instead, the angle of the coin to the table decreases, and, intriguingly, the speed of
the rotation increases proportionally. As the angle approaches zero, the speed eventually
becomes infinite. The final stages of the spinning result in the coin shuddering as it falls and
there is a whirring sound whose frequency rapidly increases until suddenly the coin comes
to a juddering halt.

The equations of motion reveal that the speed of the coin’s rotation increases at such a
rate that after a finite amount of time it hits infinite speed. This is what we hear when the
frequency of the sound increases. The spinning coin is an example of a singularity. Of
course, other effects come into play to stop the full realization of this mathematical infinity,
but it does reveal that you don’t have to disappear down a black hole for physics to produce
infinities.

Singularities are typically moments beyond which it is impossible to make predictions. It
isn’t just in physics that these singularities can emerge. There is a famous example,
published in 1960 by Heinz von Foerster, Patricia Mora, and Lawrence Amiot, that predicts
a serious singularity here on Earth. The rate of population growth, following the pattern



observed up to 1960, indicated that the population of the planet would become infinite on
November 13, 2026. A Friday, it so happens, if you’re at all superstitious.

The simplest model of population growth posits that it is exponential. For example, a
species might double in number every fifty years. With such a model, the population quickly
explodes but never becomes infinite. But the authors’ analysis of previous data revealed that
the period of time it took for the human population to double was getting shorter and shorter.

The population took 1,650 years to double from 250 million in AD 0 to 500 million in
1650. Two hundred years later, it reached a billion. The next doubling took only eighty years.
The population hit four billion in 1976. The rate of growth is faster than exponential. So in
1960, with the data to hand, the authors estimated that the population of the Earth is due to
hit a singularity a decade or so from now.

Another example of this super-exponential growth is the rate of increase in computer
power. There is a dictum called Moore’s law, which states that computers double in power
every eighteen months. With such an increase, computers are powerful but never hit a
singularity. But others have suggested that just as the time it takes for the population to
double seems to be getting shorter, the same applies to technology. The possibility of a
technological singularity has given rise to something called the Singularity movement.
Popularized by inventor and futurist Ray Kurzweil in his book The Singularity Is Near, the
singularity is due to hit humanity in 2045. At this point, Kurzweil believes, humans will be
able to create artificial intelligence that exceeds our own. This moment will be accompanied
by a breakdown in our ability to predict what life after such a singularity will be like.

We have to be careful about mathematical equations, because there may be a hidden
piece that becomes significant only when we approach the singularity, and which will then
play a large role in preventing any physical realization of this infinity. This clearly occurs in
the case of population growth. The finite area of the Earth’s surface will, beyond some
threshold, constrain how big a population can be produced. At this point we will be more
likely to see the chaotic population dynamics that we explored in the First Edge start to
dominate. But with any luck we will constrain ourselves before then.

Similar factors could come into play with the Big Bang and black holes. Some have
suggested that the equations of general relativity don’t apply in these extreme settings. It is
possible that we may need to introduce another term into Einstein’s equations for gravity
that would affect the equations only when we approach the singularity. It is like the subtle
change that Einstein needed to introduce when considering things traveling near the speed
of light. As I explained in the previous chapter, the formula for the speed of a man running
on a moving train relative to the platform is given by adding together the speed of the man
and the train, but then you need to divide by a second formula. At low speeds, this second
formula is so close to 1 that it has little effect, which is why pre-Einstein scientists believed
that the speeds were simply added together. But close to the speed of light, a different
behavior dominates. The same could be true close to the Big Bang or a black hole.

But if the universe does contain these singular points of infinite density, what effect do
they have on time? Einstein discovered that increased gravity slows time down. So what
would happen to my watch if I were to travel to the center of a black hole?

WHAT’S INSIDE A BLACK HOLE



If I throw my watch into a black hole, something strange occurs. If I stay on Earth and
observe my watch being sucked into the black hole, there is a moment when time seems to
stop. My watch goes slower and slower until it doesn’t tick anymore. Eventually the image
of my watch is frozen, and then fades. The event horizon surrounding a black hole is like a
bubble in space beyond which time seems to break down. From my perspective outside the
black hole, there is no “after.” Could this be the reverse of what happens to time as we
head back to the Big Bang? In that scenario would time not have a “before"?

But remember, this is from my perspective, as I compare time on Earth to the time I can
see on my watch as it heads toward the black hole. How do things look if I wear my watch
on my wrist and join it on its trip? My experience is now very different. From Earth, when
my watch hit the event horizon of the black hole it appeared to stop ticking. But from my
new perspective, as I cross the event horizon my watch seems to continue ticking. Indeed, I
won’t actually be able to detect when I have crossed this line of no return.

That’s not to say that all is well for me as I hurtle through space. The infinitely dense
center is not so easily ironed out. As I head feet first toward the center of the black hole,
gravity pulls harder on my feet than my head, stretching me out until I am spaghettified.
Then, a short while later, everything will be crushed, including my watch, and time will come
to an end. Like a line drawn across a page, time reaches the edge and there is nowhere for
it to go, while elsewhere it seems to tick on obliviously.

I guess we all have a similar fate awaiting us. When we die, time stops for us, but we
know that time will continue on unawares. Just as I cannot experience my own death, I
wouldn’t experience arriving at a singularity in space-time.

Just in case I do slip into a black hole, a physicist friend offered me some advice: as
with quicksand, the best thing is not to struggle. If I free-fall toward my destiny, I will
survive longer. This sounded very counterintuitive. My friend told me to think of what
happened to my watch under the effects of gravity and acceleration. If I struggle, and try to
pull away, I’ll find time running slower where I am. Increased acceleration, like gravity,
slows clocks down. But that won’t be good. Remember my accelerating daughter Ina, who
raced into the future while her twin Magaly stayed behind on Earth? By accelerating her
spaceship, Ina only experienced ten years while Magaly was in her eighties when Ina
returned to Earth. By not struggling or accelerating, Magaly had experienced many more
decades of life than her space-traveling sister. A similar push and pull is at work here. So if
I struggle when I arrive at the singularity I will have aged less. But that’s not much good: I’ll
be extinguished after having experienced less of life. So it’s better not to struggle and to
enjoy my last few moments of free falling.

The interesting thing is that someone watching from Earth will never know what is
going on inside the black hole. From their perspective, time appears to stop as soon as I
cross the event horizon; and for them there is no telling what comes after, although there is
an after for me as I hurtle on toward spaghettification. Asking what happens next appears
to be a sensible question. It has an answer. The only trouble is that if you are outside the
event horizon, the laws of physics deny your access to that answer.

The same principle was thought to apply to the challenge of knowing what, if anything,
happened before the Big Bang. Time comes to an end inside a black hole. But the Big Bang
is like the collapse of a star into a black hole played in reverse. So does time also come to
an end as I head back toward the Big Bang? In other words, does time have a beginning—
and does that time itself start at the Big Bang?



These black holes offer a serious challenge to our concept of time. They also appear to
contradict one of the other discoveries of modern physics: that information is never lost.

THE ULTIMATE PAPER SHREDDER

A rather remarkable consequence of the laws of quantum physics is that they are
reversible. This means that information is never lost. It is a very counterintuitive proposition.
If I took a subscription to Private Eye and a subscription to Penthouse magazine and I
burned a year’s worth of both, then it seems highly unlikely that I could ever determine
which pile of ashes corresponds to which magazine. But provided I have complete
information about all the atoms and photons involved in my bonfire, it is theoretically possible
to rewind the process and recover the information contained inside the magazines. It would,
of course, be extremely difficult in practice, but the science asserts that there is nothing
irreversible about the process of burning. The laws of physics work both ways.

The existence of black holes challenges this idea. If I throw one magazine into one
black hole and the other into another black hole, it will be impossible to find out which
magazine went into which black hole. Black holes seem to be the ultimate paper shredders
—information appears to be genuinely lost. But is it really?

Black holes are particularly tantalizing in my search for things we cannot know, because
once something has disappeared behind the event horizon—the boundary beyond which light
cannot escape—it appears that I actually lose all information about it. If I take the casino
die that I’ve been carrying with me and I toss it into the black hole, I can never know how it
will land. There could be a desk on the other side on which it lands and comes up with a 6.
Someone on the other side could see this but never be able to communicate the result.

According to general relativity, the only things I can know about a black hole from the
outside is its mass, its angular momentum, and its electric charge. All other information is
unknowable. This is known colorfully as the no-hair theorem. (The idea is that information
would represent hairs on this bald ball of a black hole.) I could chuck my die, my cello, and
my wristwatch inside, and once they have passed the event horizon nothing about the black
hole would give me the slightest hint of what I had thrown in there—or so most physicists
believed. But this belief was less of a certainty than it was a conjecture.

In 1974, this fundamental axiom of physics was finally challenged by none other than
Stephen Hawking, who suggested that black holes are leaking.

NOT-SO-BLACK BLACK HOLES

Once my die is thrown into a black hole, there is no way of knowing how it will land. At
least most scientists thought this must be the consequence of such a concentration of mass
warping of space-time. But when Stephen Hawking applied the second law of
thermodynamics to black holes, it turned out that they weren’t as black as everyone had
originally thought.



The second law of thermodynamics states that we are moving from a highly ordered
universe into a more disorderly one. What is changing is something called entropy, which is
a measure of disorder. Entropy essentially measures the number of different possible
scenarios, which in turn suggests how likely it is that any one of them will come to pass.
And the second law states that the entropy of the universe is increasing.

A classical example of the increase in entropy is to consider a gas trapped inside a
container. If the gas is concentrated in one corner (imagine it has been squashed into the
corner), it will, in time, distribute itself across the container. Entropy considers how many
different scenarios are possible for the gas. When the gas is trapped in the corner there are
fewer possible scenarios than when it can occupy the whole container. Entropy increases as
the number of possible scenarios increases. So entropy starts low and rises.

Or consider the more tangible example of an egg falling from a table and smashing on
the ground. The highly ordered eggshell becomes a scattered mass of fragments. There are
many more ways for the broken shell to be arranged than when it was in one piece
wrapped around the egg. Watch a video of this scenario run forward and backward, and it
is clear which direction represents the true flow of time. An increase in entropy generally
follows the path of time.

This is why entropy is intimately related to the concept of time. It is one of the few
things that helps us to know which way the movie is running. Many other laws of physics
work perfectly well if I run them forward or backward. Although it is physically possible for
an egg to reassemble itself on the table, the decrease in entropy is an indication of how
unlikely it is.

You may feel that this move from order to disorder is not always demonstrated on
Earth. We have evolved from unicellular creatures in a messy swamp to a state that is in
some respects at least more orderly. This seeming violation of the second law of
thermodynamics can be explained by the fact that the Earth is taking low entropy from
another source—there is a trade going on. The incoming photons from the sun, which are
the source of life on Earth, have low entropy. Instead of warming up, the planet radiates
heat via electromagnetic waves of lower frequency (and hence energy). So a few high-
energy waves from the sun are changed into many low-energy waves emitted by the Earth.
The process is a bit like smashing the egg. A single high-frequency photon is absorbed by
the Earth, like the egg falling to the ground, and then the Earth kicks out many photons of
low energy like bits of eggshell. The Earth benefits by a net decrease in its own entropy,



and we witness order emerging out of chaos. But consider the whole system of the Earth
and sun, and entropy is indeed increasing just as the second law of thermodynamics
demands.

So what happens to a container of gas when it is thrown into a black hole? Or, more
intriguingly, what happens to its entropy? Is it lost, contradicting the second law of
thermodynamics? Or should we regard the black hole as having its own entropy, which
would increase as stuff gets chucked in? That’s all very well, but physics tells us that things
with entropy have temperature—and things with temperature radiate heat. So it seemed
that black holes should be emitting radiation inversely proportional to their mass. And if this
is true, then they can’t be as black as their name suggests, and should be glowing gently in
the night sky.

FUZZY EDGES

This doesn’t make sense. How can a black hole be glowing if everything, including light, is
meant to be trapped inside? Heisenberg’s uncertainty principle tells us that the event horizon
is a little fuzzier than the mathematics of general relativity implied. We know that position
and momentum cannot both be known precisely, and that time and energy are similarly
related in such a way that we can’t know both simultaneously. This gives rise to the
possibility of quantum fluctuations where matter appears out of nothing.

Hawking realized that the vacuum at the edge of a black hole can experience these
quantum fluctuations. This means that a particle and an antiparticle can appear, one with
positive energy and the other with negative energy. It may have been this mechanism of
creating something from nothing that got the universe up and running. Usually in the vacuum
of space, a particle and antiparticle will very quickly annihilate each other. But if this pair
should form in such a way that the particle with positive energy is outside the event horizon
of a black hole and the particle with negative energy is trapped inside, something interesting
happens. The particle inside gets sucked into the black hole, and since it has negative
energy it reduces the mass of the black hole, while the particle with positive energy radiates
away from the black hole. The black hole is glowing—it has a temperature, just as we
would expect if it had positive entropy.

But hold on. Half the time, the positive-energy particle ends up on the inside rather than
the outside. Wouldn’t that lead to the black hole increasing in mass? The way to resolve this
question is to understand that a negative-energy particle outside the black hole doesn’t have
the energy to get away, so the net effect of these random fluctuations is an overall decrease
in the mass of the black hole over time.

Hawking radiation, as it is known, hasn’t been detected emanating from any of the
black holes we’ve identified so far. The trouble is that the math implies that the rate of
emission depends inversely on the mass of the black hole. So a black hole with the mass of
several suns will be emitting radiation at such a slow rate that it is below the temperature of
the cosmic microwave background radiation, meaning that it is impossible to detect against
the background noise left over from the Big Bang.

Hawking’s proposal provided a mechanism for black holes to fade away, shrinking as
time passes. As the mass decreases, the radiation increases, with the result, it’s believed,



that black holes will eventually disappear with a pop. Hawking predicted the “pop” would be
pretty grand, equivalent to the explosion of millions of H-bombs. Others believe it would be
more on par with an artillery shell going off.

But this leaves us with something of a puzzle. When I threw the copies of Private Eye
and Penthouse into the black hole, it was believed that this information was lost inside the
black hole. But if the black hole disappears, then where does this information go? I could
cope with the idea that it was trapped inside the black hole—at least it still existed. But if
the black hole eventually disappears, does the information vanish with it? Or is it somehow
encoded in the radiation? If I throw my casino die into the black hole, can I somehow tell
how it lands from the particles emitted at the edge of the event horizon? Perhaps there is a
way to untangle this radiation and retrieve information about everything that has ever
disappeared into the black hole. The puzzle of what happens to the information sucked up
into the vortex is called the black hole information paradox.

In 1997, Hawking took out another bet, and this time Kip Thorne sided with him. Their
bet was with Caltech theoretical physicist John Preskill. They believed that the loss of
information was inevitable. Given that it contradicted the theory of quantum physics, Preskill
wasn’t prepared to concede that information was lost. The wager this time was an
encyclopedia of the winner’s choice. If it were thrown into a black hole, could the
information contained in the encyclopedia somehow be encoded in the new particles being
radiated thanks to the uncertainty principle?

In 2004, Hawking dramatically conceded the bet. Based on his latest mathematical
calculations he understood that there was a mechanism for the radiation to encode
information about the content of the black hole. This was enough for him to change his
mind. Preskill collected Total Baseball: The Ultimate Baseball Encyclopedia. Hawking
later joked, “I gave John an encyclopedia of baseball, but maybe I should just have given
him the ashes.”

Hawking now believes that the information that plunges into a black hole is actually
encoded on the surface of the event horizon and is then imparted back to the particles that
are emitted. Weirdly, this surface is two-dimensional, yet it seems to be able to encode
information about the three-dimensional space inside. This has led to the idea of the
holographic universe: the whole of our three-dimensional universe is actually just the
projection of information contained on a two-dimensional surface. Although Hawking
conceded the bet, Thorne has stood his ground. He still believes that the information is lost.

Roger Penrose, like Thorne, believes that Hawking conceded too quickly. Once a black
hole has radiated away, Penrose believes that information and entropy are lost. For Penrose,
this is relevant to the question of why the universe started in such a low-entropy state. The
second law of thermodynamics states that entropy is increasing. Entropy is a measure of
disorder. The universe is a bit like the egg that started with low entropy, whole and orderly,
but then smashed to the ground into a disorderly collection of fragments with high entropy.
But this raises some questions. Why was there order to begin with? Where did the order
come from? If black holes actually destroy entropy, could they also provide a mechanism
for resetting the universe to a low-entropy state?

Penrose had always believed that the Big Bang was a boundary beyond which you
couldn’t do physics. As we head back toward the singularity of the Big Bang, the equations
underpinning our understanding of physics break down. If we accept the description of the
Big Bang as an infinitely dense point, on many levels it doesn’t make sense to explore the



question of what happened before the Big Bang. We can’t measure anything that lies
beyond it, so we may as well treat it as if it doesn’t exist. Or should we? Penrose has
changed his mind.

JOINING UP THE PAST AND THE FUTURE

There are stories emerging of what might have happened before the Big Bang, and Penrose
tells one of the most remarkable. He proposes that the Big Bang was just one in an infinite
cycle of Big Bangs. This isn’t the first time such a possibility has been suggested; when it
was thought that the universe would end in a big crunch, it seemed a good idea to turn the
crunch into the Big Bang of a new era.

But as we discovered in the last Edge, the universe is not contracting but expanding at
an accelerating rate, heading for a cold state where no life, galaxies, or even matter will
exist, just photons of light. This is what Penrose calls the “very boring era.” Even the black
holes that will swallow much of the galaxies we see at the moment are believed to leak
radiation, so that they too will be spent, disappearing in a final pop and leaving a universe full
of photons and gravitons, the hypothetical massless particles thought to mediate the force of
gravity.

Penrose admits to being somewhat depressed by this vision of our universe’s future:
“Good God, is that what we are in for!” he once exclaimed. But then he was struck by the
question of who would be around to witness this “overpowering eventual tedium.” Certainly
not us. The only things around to be bored by events would be the photons and gravitons
that alone would make up the universe.

But it turns out that a photon has no concept of time. It lives in a timeless environment.
As things approach the speed of light, relativity tells us that time slows down, so much so
that by the time something hits the speed of light, clocks stop. But hold on. Light travels at
the speed of light. So photons exist outside of time. In fact, in Penrose’s scenario, in which
all particles with mass will have decayed to massless photons or gravitons, there will be
nothing left to mark time, nothing from which to make a clock. Similarly, since time is
essential to measuring space, this future universe will have lost all ability to quantify and
measure distance—big or small.

Rather than giving in to pessimism, Penrose saw an opportunity. Didn’t that sound
remarkably like the state of the universe just after the Big Bang? A universe full of energy,
but with no matter yet formed. Admittedly, this energy was meant to be concentrated into
an infinitely small region to create the conditions for the Big Bang, but if the universe has
lost any sense of scale, then couldn’t the conditions at the end of our universe be the
starting point for a new Big Bang?

These two scenarios—the universe ending in a boring heat death and the universe
starting in an exciting Big Bang—can actually be seamlessly fused together, like two
landscapes whose boundaries match up to create one continuous landscape. Sewing
together these scenarios requires that the end of one universe contracts and the beginning
of the next expands, so that the two ends fit together, smoothly passing from one to the
other. Cold faraway photons become hot close-together photons, initiating a new Big Bang.



By rescaling the universe at the end of one eon w ith the beginning of another, w e can pass
seamlessly from one to another.

Penrose’s theory is controversial, and I couldn’t find many scientists who thought it was
more than a clever idea. And yet when Penrose first revealed that the mathematics of
general relativity predicted the existence of singularities in space-time, many dismissed this
idea as physically impossible. His current theory of the cycles of time may prove to be
wrong, but for me there is something exciting about the possibility of exploring time before
the Big Bang.

Penrose calls the period between one Big Bang and the next an eon. Our eon, to his
mind, is just one of possibly infinitely many eons that preceded and will follow our own.

One big challenge to this model, and to many cyclical models, is the second law of
thermodynamics. This law states that the entropy in the universe is continually increasing.
But that means it must be small at the beginning of each new eon. How is entropy reset to
such a low state as we go from one eon to the next so that we can run the second law of
thermodynamics in each new eon?

The Big Bang occurs in a state of very low entropy. As the universe evolves, entropy
increases. How, then, can we move seamlessly into the next eon and reset the entropy?
This is why Penrose was unhappy that Hawking conceded the bet about black holes. In



Penrose’s view, black holes are the mechanism for resetting entropy. All the entropy
entering a black hole is lost or subtracted from the whole system, so that by the end of the
eon we are at low entropy again, because all the information has been lost in the plethora of
black holes that populate the universe. This sets up the conditions for the next Big Bang.

Even if the theory is correct, how can we ever dig back into the period that preceded
our own Big Bang to test it? Is “before the Big Bang” a no-go area? Penrose thinks not.
Given that the two landscapes must match up, things that happened in the previous eon
should have an impact on our own. He believes that the bumping together of black holes
toward the closing stages of the last eon will have caused gravitational ripples that passed
into our eon. He compares it to a pond into which many pebbles have been thrown. Once
the black holes, or pebbles, have disappeared, we will have a pattern of ripples that results
from these interacting expanding circles.

Penrose believes that this is something we could look for in the cosmic microwave
background radiation left over after our Big Bang. Although the fluctuations across this
radiation appear random, perhaps some of them are the result of black holes bouncing off
each other toward the end of the last eon.

The trouble is that the cosmic microwave background radiation is notoriously difficult to
analyze, partly because there isn’t enough of it. You may consider this crazy, given the fact
that it makes up the surface of the sphere enclosing the observable universe. And yet, if you
are surveying sections of this sphere and you need to take sections that span a ten-degree
arc, you are very quickly going to run out of bits you haven’t looked at. Although many are
skeptical that we will ever see evidence of previous eons in our own, it does raise the
exciting prospect that perhaps the question of what happened before the Big Bang is not as
unanswerable as we once thought!

A MODERN-DAY GALILEO

I popped into Penrose’s office, which is one floor down from my own at the Mathematical
Institute in Oxford, to get his take on whether we will ever know what happened before the
Big Bang. Penrose, who is now in his eighties, is a great example of how the desire to know
never fades. Given that he wrote a book with the modest subtitle A Complete Guide to the
Laws of the Universe, you may assume that he thinks he knows it all. But he is still asking
new questions.

“I used to say that the Big Bang was a singularity so the notion of time doesn’t mean
anything before the Big Bang. ‘Before’ is a meaningless question. Don’t ask that question.
I’ve heard Stephen Hawking saying not to do so, and I would have agreed. But the view I
take now is that you really are allowed to ask that question.”

Did this mean that he thought there was no beginning to it all?
“My belief is that it’s an infinite sequence of eons.”
I asked him whether this might actually be an example of something we could never

know. After all, infinity is usually a no-go area for physics.
“We might be able to increase technology and see a few eons back,” he said. “But

going back to the beginning of them all? Well, there’s a candidate for something we may



never know. People say that the infinite is unknowable, but in mathematics people use it all
the time. We feel completely at home. Well, if not completely, then largely.”

When I asked Penrose whether he thought there was any question that by its very
nature was unanswerable, he was typically cautious.

“I slightly worry about the concept that there might be anything that will always remain
beyond our knowledge. There may be questions that you might not expect an answer to, I
suppose. Problems that you think are unsolvable, but then you think of a way around them
and get some handle on them. I don’t like the term unknowable. It just means we’re not
looking at the thing in the right way.

“You might not think you could ever know what’s happening in the middle of the sun, but
now people do know what is going on there. Not so long ago, people would have thought of
that as an impossible question, I suppose.

“Can you multiply together two incredibly large numbers when the result has more digits
than there are particles in the universe and therefore cannot be written down? Does that
count as an unsolvable problem? It just seems a tiresome unsolvable problem.

“I think I have a bias—although I wouldn’t like to say it’s a position I’m taking—a bias
in favor of not having absolutely unknowable things.” Penrose looked a little concerned. “I
hope I haven’t disappointed you by saying there are no unknowables.”

I suggested that this could be an important mind-set for doing science.
“A problem may be pretty difficult, but somehow you feel there’s got to be a solution. I

do have that feeling, but I don’t know if it is justified. I don’t expect to see answers to the
big questions in my lifetime, though it would be nice to see a few of the more immediate
ones resolved.”

I wanted to know which problem he would like to see resolved if he could choose one.
Since time is on Penrose’s mind, he chose evidence of a time before the Big Bang.

“I’d like to see signals from the previous eon. But we’re a long way from that.”
So is doing away with the need for a beginning a threat to those who believe in a God

that created everything? Penrose laughed as he recalled how he was worried that his
proposal might ruffle ecclesiastical feathers, just as his hero Galileo had.

“I did this event at the Vatican and I was a little bit nervous. But then I realized they
were honoring Galileo and the invention of the astronomical telescope. So I described my
theory of cycles of time and I thought they might be a bit uncomfortable about the Big Bang
not being the beginning. Their response: ‘No, that’s fine . . . God created the whole thing.’”

OUTSIDE OF TIME

The Vatican response points to a question that has always intrigued religious thinkers: What
is God’s relation to time? This question has become even more intriguing given our modern
revelations about time's fluid nature. Einstein’s special theory of relativity asks whether you
can talk about one event happening before another. From one perspective, event A happens
before event B, but Einstein showed that from another perspective event B can occur first.

For religious commentators this poses an interesting challenge. What is God’s
perspective? For God, did A happen before B, or vice versa? One answer is to respond as



the Vatican representative did to Penrose—take God outside of time. Just as God is not
located at one point in space, there is no need to locate God at one point in time.

An outsider would look at space-time just as someone on top of a mountain might look
down on the lay of the land. But this view of space-time would include the past, present,
and future—all of time in one take. Although not phrased in terms of four-dimensional
Lorentzian geometry, this is actually the position taken by the fourth-century theologian Saint
Augustine of Hippo.

Einstein tried to use this perspective on time to comfort the widow of his friend Michele
Besso shortly after his death. “Now he has departed from this strange world a little ahead
of me,” he wrote to her. “That means nothing. People like us, who believe in physics, know
that the distinction between past, present, and future is only a stubbornly persistent illusion.”
We should regard our existence at this point in time like being in London rather than Paris.

But some theologians have a problem with a God outside of time, because it doesn’t
leave much room for God to act in the world. If you opt for theism rather than deism, then
God needs to have a temporal quality to intervene in the world. Interestingly, although
people may argue over the order of events, they won’t argue about it if they are causally
related. This demands a God that steps in and out of time. But a God that acts in the world
is a God that acts in time. So it is very difficult to square a timeless God with a God that
acts in the universe.

The question remains—what is this thing called God that is meant to be outside of time?
Can anything be outside of time? Actually, there is something that I would regard as
timeless: mathematics. And as a timeless thing, it is well suited to the job of sparking the
creation of what we observe around us. It is the creator responsible for the equations of
quantum physics that gives us space-time and something from nothing. Mathematics has an
attractive quality: you don’t need to ask who created the mathematics. It is something that
exists outside of time and doesn’t need a moment when it was created. It just is. Perhaps
we should reverse the old adage “God is a mathematician.” Perhaps mathematics is the god
everyone is chasing. If I replace the word God with the word mathematics in Thomas
Aquinas’s attempt at a definition, I think it works quite well: “Mathematics is to be thought
of as existing outside the domain of existents, as a cause from which comes everything that
exists in different forms.”

This is close to theoretical physicist Max Tegmark’s idea of the Mathematical Universe
Hypothesis, or MUH, which sees our physical universe as an abstract mathematical
structure. It’s a modern take on Pythagorean philosophy. In the paper in which he proposes
this theory, he concludes with the following: “If the MUH is true, then it constitutes great
news for science, allowing the possibility that an elegant unification of physics, mathematics
and computer science will one day allow us humans to understand our reality even more
deeply than many dreamed would be possible.”

I probably wouldn’t go as far as Tegmark in identifying our physical universe with
mathematics. It seems hard, mathematically, to distinguish between two universes in which
positive and negative charges are swapped over. The two universes would be physically
different, but their mathematical descriptions would be exactly the same. This is an example
of something called quidditism, the idea that there is more to the universe than just the
relationship between objects—what they are (the quid is Latin for “what”) provides
another level of distinction.



If mathematics is eternal and outside of time, you don’t need a creator to begin things.
Its equations could play the role of something supernatural and godlike. It is not, however, a
God that acts in the world. The interesting question is then how many different ways are
there to set up a universe out of a set of mathematical equations?

Some argue that simply having an equation that goes from zero unicorns to three
unicorns per second doesn’t mean unicorns exist. So having equations that allow for the
physics of quarks and their interactions with various fields doesn’t make the quarks any
more real than the unicorns. It’s what Hawking refers to as the necessity of understanding
how “to breathe fire into the equations.” What led to our universe having negative and
positive charges set as they are rather than the other way around? Where did the “quid” in
quidditism come from?

If there were no universe, no matter, no space, nothing, I think there would still be
mathematics. Mathematics does not require the physical world to exist, which to my mind
makes it a very strong candidate for the initial cause. Eugene Wigner spoke of the
“unreasonable effectiveness of mathematics” to describe its uncanny knack to explain
physical phenomena. If physical phenomena were a result of mathematics, it would not be
surprising to keep finding mathematical explanations at the heart of our universe.

THOUGHTS ON TIME

There are those who would have us do away with the need to talk of time at all. My watch
has been ticking away. It says it is a little past ten in the evening. But what does that mean?
Put another watch with the same time in a spaceship, and when it returns it won’t match
my watch.

Einstein’s discoveries reveal that the best I can do is to compare the running of clocks.
No one clock measures absolute time. Such a thing does not make sense. If you think about
it, this was always the case. How did Galileo discover that swinging pendulums are a good
way of measuring time? He was sitting in Mass watching the chandelier in the church
swinging in the wind. When he compared it with his pulse, he realized that the time it took to
swing from one side to the other did not depend on the angle of swing. But here Galileo was
comparing one measure of time with another that he assumed to be constant. The truth is
that all these time-keeping devices are relative.

If we go back to physics, although time appears to play a major role, it is possible to
rewrite all of the equations without reference to time at all. It seems that because we have
such a strong sense of the passage of time, it was the most obvious window through which
to observe the world. Books on quantum are all about the evolution of the universe with
respect to time. The equation for the trajectory of a ball takes time as input, and outputs
where you will find the ball. But none of these books define time, and no physicist has
satisfactorily pinned down what we mean by time, so perhaps the best strategy is to
eliminate it altogether.

This was the aim of physicist Julian Barbour. Working without an academic position,
supporting his family by translating Russian scientific journals, Barbour has developed a
theory of physics that removes the need for time. His ideas are articulated in his
groundbreaking book The End of Time, published in 1999: “Nothing happens; there is being



but no becoming. The flow of time and motion are illusions.” A number of academic
physicists have since taken his ideas very seriously.

But why do I feel that there is something called time flowing along, with me at its
mercy? I have the feeling that I can never go back in time, that the future is waiting out
there still to happen. I remember the past but not the future. Italian physicist Carlo Rovelli
and French mathematician Alain Connes believe that this sensation is a result of
incompleteness of knowledge. Called the thermal time hypothesis, it proposes that time is an
emergent phenomenon, not a fundamental concept.

If I take any physical system, like the molecules of gas in my room, then generally I
don’t have complete knowledge of the microscopic state of these particles, but only some
overall macroscopic description that could allow for many possible microscopic states. I am
reduced to considering the situation statistically because of my incomplete knowledge.
Rovelli and Connes are able to demonstrate mathematically how this incomplete knowledge
can give rise to a flow that has all the properties we associate with our sensation of time.
They believe that time emerges only from this macroscopic consideration of an unknown
microscopic system. If you dig deep enough, time will disappear, rather like the way the idea
of the surface of a liquid doesn’t make sense when you are at the atomic level. Or consider
the fact that you can’t talk about an atom having a temperature or a molecule of water
being wet. Time is not fundamental but a similar emergent property.

That’s not to say these things aren’t real. Hotness, wetness, time ticking by. I look at my
watch. Staring me in the face is 11:55. Another day drawing to a close. Midnight is about to
strike, heralding the end of the party, and the feeling that I am one day closer to the moment
when I won’t be sentient anymore. But why do I feel anything—the passage of time, the
pain of a stubbed toe, the pleasurable taste of a fine wine, the excitement of listening to
Prokofiev? These things are at the heart of one of the biggest unsolved and possibly
unanswerable questions on the scientific books, as we will discover in the next Edge.
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My brain? It’s my second favorite organ.

—Woody Allen, Sleeper

’VE DOWNLOADED a smartphone app called Cleverbot, which I’m trying out. It is
attempting to convince me that it is human. So I’ve decided to ask it a few questions to

test it out. I’ve texted a friend of my son’s, too, to get a comparison, so here are the
responses. Can you tell which is the human and which the chatbot?

Question 1: Do you have a girlfriend?
Response A: Do you w ant me to have a girlfriend?
Response B: Mind your ow n business.

Question 2: What is your dream?
Response A: My dream is to become a famous poet.
Response B: To make lots of money.

Question 3: Are you conscious?
Response A: If  I w asn’t I don’t think I . . .
Response B: It’s the only thing I’m sure of.

It turns out that the more I play with Cleverbot the more I am training the app to
respond like a human. Every conversation I have with the app is banked and tapped into for
future conversations, so that my responses will become part of the next conversation that
Cleverbot might have.

Although the responses to my questions so far are inconclusive, it’s not long before a
conversation with Cleverbot reveals it to be rather less than human. But the question of
whether my smartphone will ever be clever enough to be conscious of its own existence, or
whether I can really tell if my son’s friend is truly conscious or is also just a good simulation,
is far trickier and goes to the heart of one of the toughest unknowables on the books.

Both responses to my question about consciousness tap into Descartes’s famous
declaration: “I think, therefore I am.” This was his response to the skeptics who doubted
whether we could be sure that we truly knew anything about the universe. Originating in
Plato’s Academy in Athens, the skeptics believed nothing could be known for certain. You
think you are currently holding a book or perhaps some electronic device in your hand. But
are you sure? I’ve picked up the die on my table. At least I think I have, but perhaps the
whole thing is a dream and there is no book and no die. Perhaps the whole experience is
some computer-simulated environment fed into our brains like some scene from The
Matrix. Descartes in his Meditations retorts that in all these scenarios the one thing I can
be sure about is my own existence, my own consciousness. However, this “I” could turn out
to be one of the ultimate unknowables.



ARE YOU THINKING WHAT I’M THINKING?

There is something scientists call the “hard problem of consciousness.” It concerns our
internal world—what makes me me? What is it, exactly, that creates our feeling of being?
What are the ingredients and mechanism that create consciousness, and how does it
emerge? How can I know that my conscious experience has the same quality as yours?
Can I ever get inside your head and experience what you are feeling? I feel pain in my head
the morning after I’ve drunk too much, but is that feeling anything like the hangover you
experience? I see red when I look at my casino die. You give the color the same name, and
we both experience the same wavelength of light. But are you really seeing it how I see it?
Does it even make sense to ask that question? When I play my cello, the vibrations of the
strings are the same as they reach our ears, but can I ever know that our ears are hearing
the same things or that we feel the same thrill of a Bach suite?

We are in a golden age for the question of consciousness. In the Fourth Edge I
described how the invention of the telescope allowed Galileo and his contemporaries to
probe the edges of the universe. In the Second Edge we saw how the invention of the
microscope gave us a tool with which to dig deep into the structure of matter. At the
beginning of the twenty-first century we are blessed with new telescopes, telescopes of the
mind: fMRI and the EEG scanners allow scientists to peer into our brains and measure the
activity associated with our different experiences of red, pain, and cellos.

But even if I can observe exactly the same activity going on inside your head, it doesn’t
tell me that my conscious experience is the same as yours. Why not? We are built in a very
similar way, so why wouldn’t it be safe to assume that your internal world is similar? We
can use the same principle of homogeneity that is key to doing cosmology. What’s
happening here is very likely to be the same as what’s happening over there. And yet I have
only my own conscious experience to go on—one data point. What if my consciousness is
uniquely different, yet in all tests my brain appears to behave in exactly the same way as
your brain? How could I ever know I was experiencing things differently? Perhaps you are
not conscious at all. How can I ever be certain? Language has evolved in such a way that I
say “red” to describe all the things that my society declares to be red, yet perhaps I am
experiencing something wildly different from your conscious experience of red.

We already know that there are people who have a different quality of conscious
experience when they hear a cello or see the number 2. Synesthetes find that other senses
are triggered by these experiences. My wife experiences the sensation of very dark red
when she sees the number 9 or the letter S. For my favorite composer, Olivier Messiaen,
colors were triggered by certain chords. The physicist Richard Feynman had the same
Technicolor experience with mathematical equations. These are things that our new
telescopes of the mind could explain or at least detect. They could possibly pick up
genuinely different brain behavior. But even if all the evidence shows that the person in
front of you has a brain that is displaying the same activity as your brain, will you ever be
able to know that he or she is truly conscious or just a zombie doing a very good impression
of a conscious person? This is the hard question of consciousness, and some believe that it
is one whose answer we cannot know.



WHERE IS CONSCIOUSNESS?

Many of the other questions we’ve been exploring have a rich history and reveal how much
we have managed to learn, thanks to our investigations over the centuries. But the problem
of consciousness, of getting inside a living brain, is so difficult that, until the dawn of the new
technology of the last few decades, it has remained the preserve of theologians and
philosophers rather than scientists. That’s not to say that scientists haven’t been trying to
solve the problem.

The question of where my “I” is located has vexed scientists for centuries. I have a
strong feeling that my “I” is situated somewhere just behind my eyes. It feels like there is a
tiny version of myself sitting there observing the world through my eyes as if it were a
cinema screen, making executive decisions about how the body that encases my
consciousness will act. There is certainly a feeling that my consciousness is not dependent
on my whole body for its existence. If I chopped off my hand, I wouldn’t feel as though my
consciousness had been split in two. My hand is not me. But how many bits can I chop off
before I discover what it is that makes me me?

Not everyone has been convinced that the brain is the seat of our consciousness.
Aristotle, for example, thought the brain was simply a cooling agent for the heart, which he
believed was the true location of the senses. But others realized that the brain probably was
key to who we are. The first-century anatomist Rufus of Ephesus gave us one of the first
physical descriptions of the brain. Once the brain is removed from the skull, you first notice
that there are three distinct pieces: two halves, which seem to be mirror images of each
other, called the cerebrum, and then, sitting underneath, what looks like a tiny version of the
brain called the cerebellum.

Cut into the brain and you find holes filled with liquid: the ventricles. In the Middle Ages,
scientists thought these cells controlled different mental activities: imagination in the front
ventricle, memory in the rear, and reason located in between. Leonardo da Vinci believed
that common sense, the thing that fused the five senses into a common experience close to
our idea of consciousness, was located in the front ventricle.

On the left is a top-dow n view  of the brain revealing the tw o hemispheres. On the right is a view  from the
left-hand side of the brain show ing the cerebellum at the base of the brain.



In contrast, Descartes thought that if we each have a single consciousness, we should
be looking for something in the brain that does not have a mirror image but is a single entity.
He proposed the pineal gland, a pinecone-shaped gland located at the center of the brain
between the two hemispheres that we now know modulates sleep patterns, as the seat of
the soul.

Even with a microscope, it is hard to see what it is about this lump of gray matter that
could give rise to the complex individual currently reading this book. I’d never seen a brain
in the flesh before, and I wondered if meeting one face to face, or brain to brain, might give
me new insights. So I visited somewhere with one of the highest concentration of brains in
the country. Not Oxford University, but the Parkinson’s UK Brain Bank, where I was
allowed to hold my first brain, the brain of a man who had recently died and had donated his
organ to the tissue bank.

The container in which the brain now sat was labeled C33. But the contents of the vat
once had a name like yours or mine. The brain was once home to the hopes and fears,
memories and dreams, loves and secrets of the eighty-nine-year-old man who chose to
donate his brain to medical science after his death. But where is he now? What was going
on inside this brain before the man died that gave rise to his conscious experience, and what
is it that has stopped now?

Just from holding the brain, it was no easier to see how it could give rise to our
conscious experience. It looked like a huge lump of foie gras. The belief that the ventricles,
the liquid-filled holes, were the key to our conscious world turned out to be a red herring;
the idea that different regions of the brain were responsible for different functions would,
however, turn out to be correct.

By analyzing brains that weren’t functioning properly because of damage or lesions,
scientists in the nineteenth century began to understand that different parts of the brain are
responsible for different functions. For example, the front part of the brain is responsible for
problem-solving and decision-making, and social and sexual behavior. The middle portion
deals with sensing and perceiving and integrating the data collected by the senses. The back
of the brain is like the cinema screen responsible for visual perception, which partly explains
the feeling that my consciousness sits at the back of my head watching the film that is my
life.

What about the two sides of the brain? There has been much speculation as to the role
of each side, but recent research has shown that the brain is perhaps more plastic and
flexible than some have thought. That said, we know that the language center is housed
principally in the left side of the brain. The nineteenth-century French physician Paul Broca
analyzed the brains of patients who had lost the power of speech and discovered that they
all had lesions in the same part of the brain, now called Broca’s area. Some years later, in
1874, the German physician Carl Wernicke hypothesized that damage to a different area of
the brain was causing patients problems with processing language (rather than articulating
words). Located toward the back of the left hemisphere of the brain, it is now known as
Wernicke’s area.

The left side of the brain is also responsible for the number crunching that I do when
I’m calculating the probabilities associated with the throw of my casino die. This is where
numbers are processed. The right side of the brain is responsible for processing the sound
of my cello and listening to music, as well as imagining geometric figures like the
icosahedral shape of my cutout universe. To work most effectively, the two halves of the



brain are in constant communication through the corpus callosum that divides the two
hemispheres. The two hemispheres communicate with each other via nerve fibers that run
through this junction. It is a curious design feature, causing quite a bottleneck in
communication between the two sides of the brain.

While cutting off a hand certainly isn’t going to alter my sense of consciousness, what
happens if you cut a brain in two? Since consciousness is a result of brain activity, if I cut
the corpus callosum so that the two sides of the brain can’t communicate, what happens to
my consciousness? Does it split in two?

CUTTING CONSCIOUSNESS IN TWO

A surgical procedure called corpus callosotomy, which cuts the corpus callosum, was first
carried out in the 1940s on living patients in order to limit epileptic seizures. An epileptic
seizure essentially consists of huge simultaneous firing of neurons across the brain. A surge
of electrical activity sweeps across the brain, causing the patient to go into seizure. The
theory was that cutting the corpus callosum would spare at least one side of the brain from
these huge power surges. But what effect did such surgery have on consciousness?

There is good evidence to suggest that the body now housed two distinct
consciousnesses. Since each hemisphere of the brain is dedicated to physical behavior on
the opposite side of the body, this split consciousness can be observed in the contrasting
behavior of the two sides of the body. Extraordinary footage exists of one patient who
underwent such a corpus callosotomy, which shows the left side of the body physically
attacking the right side. The left side of the body, which is controlled by the right hemisphere
of the brain, does not have access to the language side of the brain, which is located in the
left hemisphere, so was unable to articulate itself verbally. This frustration seems to have
manifested itself in the attack. Eventually, the patient took drugs in order to suppress the
right hemisphere and allow the articulate left hemisphere to dominate.

Whether this genuinely reveals a consciousness housed in the right-hand side at
loggerheads with the left is difficult to determine. These could be physical responses
disconnected from any conscious experience, just as tapping your knee with a hammer
produces an involuntary jerk.

Another remarkable experiment that supports the idea that there are two identities at
work inside a single body involved counting. A screen was erected between a patient who
had undergone a corpus callosotomy and a table on which a number of objects would be



placed. The patient could put her right or left hand through a hole in the screen and then use
her hand to count how many objects were on the screened-off table.

When the right hand was used, the patient would say out loud the correct number of
objects the hand had encountered. But something very curious occurred when the left hand
was used. The experimenter would ask the patient to say out loud how many objects the left
hand had encountered, and the answer would be completely random and wrong. The
language side of the brain (the left), which was saying the number, had no access to the left
hand (controlled by the right side of the brain) and was just guessing.

However, when the experimenter asked the patient to put up the number of fingers
corresponding to the number of items encountered, she had no problem indicating the
correct number. One side of the brain was articulate but had to guess; the other half could
only use sign language but had access to the correct answer. This seems less explicable in
terms of simple automatic physical response to external stimuli.

Again, the right-hand side might still be able to function intelligently, but perhaps we
have here a case of a zombie, without any internal conscious world, that is still able to
function like a conscious being. How can we know either way? And in any case, why
should we restrict consciousness to the language-generating left hemisphere?

Split brains seem unable to unify information the way that connected brains can. Show
the left eye the word key and the right eye the word ring and the person will say “ring” out
loud and can point with his left hand to a picture of a key, but isn’t able to unify the two in
the concept of a “key ring.” But is this an example of two consciousnesses, or simply
evidence for the failure of a cut brain to formulate a cognitive connection?

Many patients who have undergone corpus callosotomy are able to function quite
successfully. They can drive, work, and function normally in a social setting. So are the two
sides actually able to integrate, or is this an example of the two consciousnesses acting
successfully in tandem, essentially just two identical copies with one replicating the behavior
of the other?

Consciousness takes the multiple inputs that our brain receives from our senses and
integrates them into a single experience. In the case of the patients who have undergone
corpus callosotomy, the brain is unable to do this. But perhaps there are some brains that
even without corpus callosotomy, have difficulty integrating brain activity into a unified
experience. Perhaps disorders like schizophrenia or multiple personality disorder are caused
by a brain that can’t integrate everything into a single voice. The result is that it sounds like
there is more than one conscious being inside the brain.

Although these damaged brains helped neuroscientists to understand how certain
regions in the brain are associated with certain functions, the real breakthrough in
understanding brain architecture came at the end of the nineteenth century, with the work of
Spanish scientist Santiago Ramón y Cajal.

SWITCHING ME ON AND OFF

As a young boy Ramón y Cajal wanted to be an artist, but his father had not considered this
a suitable profession. He thought medicine was a much worthier cause and came up with
an intriguing strategy to spark his son’s medical interests: he took him to graveyards in



search of human remains. Ramón y Cajal would indulge his artistic disposition by drawing
diagrams of the bones they had unearthed, but his father’s plan succeeded, and he became
more and more fascinated by the human anatomy he was drawing. He received his medical
doctorate in 1877.

Ten years later, Ramón y Cajal discovered a way to combine his love of art and
anatomy. While a professor at the University of Barcelona, he learned about a new
technique using silver nitrate that could reveal the structure of nerve cells. By applying the
technique to cells in the brain, he provided some of our first views of the truly extraordinary
and complex nature of this organ. Using silver nitrate, he could randomly stain individual
cells in the brain to reveal their structure. The results were startling and beautiful.

As Ramón y Cajal stained more and more cells across the brain, he discovered neurons
of different shapes and sizes. Using his artistic skill, he filled his sketchbooks with the
complex array of structures, documenting them like a butterfly collector. We now know that
there are approximately eighty-six billion neurons in the human brain—it would take more
than 2,700 years to count them at one per second. Although these neurons come in many
different shapes and sizes, as Ramón y Cajal’s sketches revealed, they have a very similar
underlying structure, consisting of a central cell called the soma, with branches stretching
away from the soma called axons and dendrites.

How does a neuron actually work? A neuron gets turned on or fires a little bit like a
switch. For example, if my ears pick up a change of air pressure when I play my cello, this
initiates a molecular change in the neuron, causing an electrical current to pass through the
cell. This neuron can then talk to another neuron via connections called synapses. Each
neuron has one axon coming out of the cell, which is like an electrical wire along which
information travels to other neurons. This axon is then connected to the dendrites of other
neurons via the synapses. The electrical activity in one neuron can cause a chemical
reaction across one of the synapses connected to another neuron, causing it to fire. The
brain works very much like a computer or my smartphone with its chatbot app: the neurons
are either firing or not.



This human retinal cell is one of the f irst pictures of a neuron. It w as the f irst indication that the brain w as
not a continuous structure but w as made up of discrete, interconnected cells.

A few things distinguish the brain from a computer. For one thing, the chemical flow
across the synapse must pass a critical rate to trigger the firing of the associated neuron.
And the rate of firing of the neurons is as important as the firing itself for the transmission
of information. That said, these discrete neuronal cells connected by wires that cause cells
to activate or not are extremely suggestive when considering the possibility of creating
artificial consciousness in something like my smartphone. But the brain is an extremely
complicated network that evolution has wired for us. Each axon can be connected to a
thousand different dendrites. This may seem a lot, but given that the brain has eighty-six
billion neurons, each individual neuron is actually communicating with only a small fraction
of the brain.

This electrical and chemical activity is what gives rise to brain activity. Its loss can give
rise to problems and pathologies. The eighty-nine-year-old man whose brain I held at the
Parkinson’s UK Brain Bank suffered from Alzheimer’s disease, which is a direct result of
the loss of these neurons and synapses.

We can cut open brains, stain their cells with silver nitrate, and build a static map of the
network, but how do we get a picture of the dynamic activity of a living brain? The thing
that has revolutionized the study of the brain is the ability to look inside it while it performs



certain tasks. The study of the brain has progressed remarkably in recent years thanks to
advances in technology.

NEURAL TELESCOPES

The easiest and quickest way to get some idea of brain activity is to use an EEG. When I
first had my brain scanned by EEG as part of my ongoing research to understand
consciousness, I was a bit nervous. It looked rather like an alien brain-extraction device. In
quite a lengthy procedure, which seemed to involve sandpapering my scalp to get a good
connection, sixty-four electrodes were attached to the surface of my head, which, while not
used to extract my brain, did probe aspects of my thought processes.

Developed by German physiologist Hans Berger in the 1920s, electroencephalography
(much easier to call it EEG) records electrical activity along the scalp. It measures the
voltage fluctuations resulting from the electrical current flowing within and between the
neurons of the brain. Scientists have picked up different kinds of waves corresponding to
different brain activity. Synchronized activity of a large number of neurons gives rise to
macroscopic oscillations of different frequencies, which correspond to different brain states.

The first-discovered and best-known frequency band is the one known as alpha waves,
a synchronized activity of many neurons that gives rise to macroscopic oscillations of eight
to twelve hertz. This is a much lower frequency than the notes produced by my cello, the
lowest of which vibrates at sixty-five hertz. Nevertheless, it is rather like a musical note
singing through the brain. Alpha waves can be detected at the back of the brain during
relaxed wakefulness, and increase when our eyes are closed. They’re not the only notes the
brain plays, and you fire other frequency waves during different periods of brain activity.

The slowest are delta waves, at one to four hertz, associated w ith deep, unconscious,
dreamless sleep.
Theta waves are next at four to eight hertz, associated w ith light sleep or meditation.
Faster than alpha waves are the beta waves at thirteen to thirty hertz, which the brain hits
when it is w ide awake.
Then come the fast gamma waves at thirty to seventy hertz, which are believed to be
most important for the brain’s ability to create consciousness. Gamma waves are
associated w ith the formation of ideas, language and memory processing, and with
various types of learning.

gamma waves

beta waves

alpha waves

theta waves



delta waves

As we make our way through day and night, the brain seems to behave like an
orchestra performing a symphony, moving between fast movements and slow movements,
with the occasional scherzo when we generate new ideas or encounter new situations.

EEG signals change dramatically during sleep and show a transition from faster
frequencies to increasingly slower frequencies such as alpha waves. In fact, different sleep
stages are characterized by differences in wave frequency across the brain, which is why
these neural oscillations are thought to be linked to cognitive states such as awareness and
consciousness. It is when the EEG detects no waveform at all that doctors call a patient
brain dead. It seems that the waves inside the brain are the brain’s way of synchronizing
activity to work in the most efficient manner.

Although the EEG gives scientists fast access to brain activity, the functional magnetic
resonance imaging (fMRI) scanner, developed in the 1990s, is the better known of the new
tools for seeing what is happening inside the brain. Compared to the compact EEG, the
fMRI scanner is a beast. It looks like a space-age sleeping pod, but once it gets going, there
is no way you’d be able to sleep. The sound of the magnets at work is so loud that I’ve
needed earplugs when I’ve been inside a scanner. Although it is not a painful experience,
having your brain scanned by fMRI requires keeping still for an unnaturally long time inside
the device in order to get a clear picture of what’s going on inside your head.

The scanner works by detecting changes in blood oxygenation and flow in response to
neural activity. When a brain area is more active, it uses more oxygen. The increased blood
flow to the active area can be picked up because oxygenated blood is more magnetic. The
fMRI scanner detects this magnetic fluctuation, which can then be used to produce
activation maps that show which parts of the brain are involved in a particular mental
process.

Since the EEG measures actual brain activity by monitoring the change in electrical
behavior, while the fMRI detects a secondary feature (oxygenation), the EEG provides a
much better measure of what’s actually going on in the brain. But its ability to record brain
activity changing over time cannot at present be matched by fMRI scanners. Where fMRI
scanners come into their own is in giving a much higher-definition snapshot of the brain. So
the combination of the two will give you a pretty good picture of the brain in action. Both
EEG and the fMRI scanner can identify the very specific region of the brain that is active
when I think about mathematics. But can we use these neural telescopes to see
consciousness? The question is whether there is really anything to see.

IS MY CAT CONSCIOUS?

Even if we understand which bit of the brain is firing when we engage in different activities,
and how the physics and chemistry of the brain work, it still doesn’t give us much
understanding of why we have a sense of “I.” How can we even approach this kind of
question? A common strategy for a mathematician trying to understand what something is,
is to try to understand why something else isn’t.



Despite my chatbot app’s best attempts to convince me otherwise, I do not believe my
smartphone is conscious. Neither is the chair I am sitting on. But what about animals?
Before he left home, my black-and-white cat Freddie would sit in my office living a life of
leisure as I sat scribbling away at my desk. But did he have a sense of self? What about
babies? As my children grew up, their brains evolved, and with it their sense of self-
awareness changed. So can we identify different levels of consciousness? Are there
thresholds in brain development at which different states of consciousness emerge?

Of course, asking my cat about its internal world is a problem. In the late 1960s, animal
behaviorist Gordon Gallup was shaving in the mirror, pondering the question of how to test
self-awareness in animals, when he was suddenly struck by an idea. He was aware that the
face he was looking at in the mirror was his. He wondered which animals would recognize
that what they see in the mirror is not another animal but a reflection of themselves.

Perusing the near infinite number of cat videos on the Internet reveals that cats tend to
think the image in the mirror is a rival cat in the room. But how can we really tell? Gallup
came up with a test to reveal which species recognize themselves in the mirror, which in
turn indicates that they have a sense of self.

His test is simple. Introduce the animal to the mirror so that it familiarizes itself with its
reflection. (There is fascinating footage of chimpanzees excitedly dancing along with their
images in front of the mirror. But do they think they are dancing with another chimp, or are
they admiring their own moves?) At some point, the experimenter takes the animal aside
and, while wiping its face, surreptitiously places a red mark just below its eye in such a way
that it is unaware of the mark and can’t see it without looking in the mirror. Gallup wanted
to know how the animal would now react to seeing its image in the mirror.

If you looked in the mirror and noticed something strange on your cheek, your
immediate reaction would be to touch the mark to investigate it. Gallup’s mirror self-
recognition test, as it is known, reveals the startling fact that humans are part of a very
small group of animals that systematically pass this test of consciousness or self-awareness.
The only other species that react in a similar fashion are orangutans and chimpanzees. A
third species was added to the list in 2001, thanks to research by Diana Reiss and Lori
Marino on bottlenose dolphins.

Although dolphins have no hands with which to touch their mark, they spent much more
time in front of the mirrors in their tanks when they had been marked and were uninterested
in marks on other dolphins in their tank, indicating some awareness that the dolphin in the
mirror was not just another dolphin. Other individual animals have also passed the test. A
clever magpie. An elephant. But not a whole species on a consistent basis.

It is striking that chimpanzees start to fail the test once they reach thirty years old;
despite having some ten or fifteen years left to live, it seems that self-awareness comes at a
cost. Consciousness allows the brain to take part in mental time travel. You can think of
yourself in the past and even project yourself into the future. But at the same time, being
aware of your own existence means having to confront the inevitability of your demise.
Death-awareness is the price we pay for self-awareness. That is why Gallup believes that
later in life chimpanzees prefer to lose their ability to be conscious of themselves. Could
dementia in humans play a similar role, protecting aging humans from the painful recognition
of their impending death?

Of course, the mirror self-recognition test is a very crude measure of consciousness. It
has a bias toward species with highly developed sight. Dogs, for example, do not have good



vision but rely on scent to identify other dogs, so you wouldn’t expect a dog to pass such a
test of self-awareness even if it had an equally well-developed sense of self. Even for those
species for whom sight is the primary sense with which to negotiate the world, it is a very
rough test of self-awareness. Nonetheless, it has striking consequences when applied to
humans, because we can use it to discover when the brain goes through a transition that
allows us to start to recognize the image in the mirror.

I don’t think my children, when they were babies, had the same sense of self as they do
now. But at what point would they have started to react like the chimpanzees to a mark
surreptitiously placed on their faces? It turns out that a child of sixteen months will continue
playing in front of a mirror quite oblivious to the new mark, although they might put their
hand up to the mirror to investigate the slightly unusual image.

But place a child of twenty-four months in front of the mirror and you will see her hands
reach up for her face at once to explore the strange spot. The two-year-old recognizes the
image and thinks, “That’s me.” Something happens during the brain’s development that
means we become self-aware, but what it is remains a mystery.

If consciousness emerges in humans between eighteen and twenty-four months, can we
ask the same question on a more cosmic scale? Can we figure out when consciousness first
emerged in the universe? Surely nothing was sufficiently evolved to qualify as conscious just
after the Big Bang. So there must be a moment when the first conscious experience
occurred. Consciousness must then have a different quality to gravity or time.

American psychologist Julian Jaynes, who died in 1997, hypothesized that the
emergence of consciousness in humans may help to explain the concept of God. With the
evolution of consciousness came the creeping awareness of a voice in our heads. Perhaps,
Jaynes suggested, God was formulated as a way to try to make sense of this emerging
internal world.

As you read this now, you can probably sense the words being sounded out in your
head. This is part of our conscious world. But those words aren’t being sounded out aloud
or heard by anyone else. They are part of your conscious world, and yours alone. Jaynes
believed that as we evolved and consciousness emerged, the shock of the voice in our
heads might well have given rise to the idea of a transcendent intelligence, something that
isn’t of this world, and this led the brain to interpret it as the voice of God.

This idea of our internal world being close to the transcendent concept of God is central
to many Eastern religious practices, including the Vedic tradition. Brahman, the transcendent
supreme being of the Hindu religion, is often identified with Atman, or the concept of the
self.

Jaynes believed that you can actually date the emergence of consciousness in human
evolution. He placed it somewhere in the eighth century BC, between the creation of
Homer’s Iliad and the Odyssey. In the Iliad there is no evidence in the characters of an
internal world, of introspection or consciousness. The characters in the Trojan siege are
simply pushed around by the gods. In the Odyssey, by contrast, Odysseus is clearly
introspective, aware of his own self, conscious in a way the characters in the Iliad appear
not to be.

TRICKS OF THE MIND



One of the pleasures of reading a book like the Odyssey or the Iliad is that it immerses you
in another world. A good book can make you totally unconscious of your surroundings. The
brain is very good at filtering what reaches your consciousness. You don’t want to be aware
of the whole gamut of sensory input that you receive—it would be overwhelming. But it is
striking that your brain can switch between one conscious perception and another without
any change in the external input.

My favorite example of this change in consciousness is the brain’s reaction to a sketch
of my casino die. What do you see?

At first it appears to be a cube with one square to the fore. But then, as you stare at it,
suddenly the cube flips and it seems as if another square is to the fore. Called the Necker
cube, the image hasn’t changed, but what you are conscious of has. What has happened in
the brain? Is consciousness really just a story that your brain tells about the sensory input it
receives through the body’s interaction with the world?

Neuroscientist Christof Koch showed me another striking example of how the brain
processes visual data in surprising ways. Koch is one of the leading lights in the modern
investigation into consciousness. For years, the subject was not something well-respected
scientists would say they were studying. It was the preserve of academics in the humanities
department, not a subject for scientists in the lab. But when Nobel Prize winner Frances
Crick turned his attention from DNA to exploring the question of how the brain generates
consciousness, it suddenly became okay for a scientist to take consciousness seriously.
Forty years his junior, Koch was Crick’s partner in the probing of this problem.

I first met Koch at the top of Mount Baldy just outside Pasadena, home to Caltech,
where Koch worked at the time. We’d arranged to meet there, as it was the halfway point
on one of the epic runs Koch regularly likes to do. I’m ashamed to say that I declined his
offer to join him on a run and cheated by taking the ski lift to the top. Before we grappled
with the thorny subject of consciousness, I couldn’t help but be distracted by a tattoo Koch
sports on his shoulder. It seemed to be the rainbow bitten-apple logo used by the Apple
computer company.

“I had it done in 2000 while I was on an archeological dig in Israel with my son,” he told
me. “The Apple computer is one of the most beautiful and elegant artifacts of the twentieth
century. A perfect marriage of form and function.”

I think he believes that the Apple computer will be as significant to understanding
today’s culture as the pots he was digging out of the ground with his son are to appreciating



Herod’s Caesarea in 20 BC. Koch talks a lot about his Apple computer and is constantly
wondering whether one day it might be conscious and talk back to him. His other love is his
dogs, which he believes have a much higher level of consciousness than we give them
credit for. It was his belief in animal consciousness that led him to become a vegetarian.

“Because it is likely that mammals can consciously experience the pains and pleasures
of life, can be happy or sad, we should not be eating their flesh,” he explained. Then he
reflected, “It was difficult to immediately follow this growing realization with action—the
taste of meat is very deeply ingrained.”

Koch’s area of neurological expertise is vision, and with a piece of A4 paper he had in
his pocket he illustrated how vision gives us some interesting insights into how things reach
our conscious minds. Koch gave me the A4 paper and asked me to roll it up into a cylinder
to make a telescope. Then he told me to bring the telescope up to my right eye and, keeping
my left eye open, to hold my left hand open about four inches from my left eye.

“Now look at the mountains over there. What do you see?”
As I looked across at the view I could not stop laughing. I seemed to have a hole in my

hand!

Koch explained that this was the case because the brain was trying to process two
seemingly inconsistent pieces of information. So what reached my conscious brain was a
fusion of what it thought I might be interested in. I was seeing part of my hand from the
visual information entering my left eye, but also the small circle at the center of the
telescope from my right eye. Superimposed, it appeared that I had a hole in my hand. Koch
believes that how the brain decides what to make my consciousness aware of could help us
to understand more about consciousness itself.

Can we use our new neural telescopes to see what happens when our brain becomes
conscious of one thing or another? According to Koch’s research, it appears that the retinal
nerves are not sending different information, so the change in our conscious experience is
happening further down the line in the brain. The trouble is that the fMRI and EEG
scanners are too crude to pick up changes as subtle as the flip from one view of the Necker
cube to the other. But in 2004 Koch, together with his team at Caltech, spotted an
opportunity to ask an individual neuron questions about what stimulated it to fire, which led
to the discovery of some curious neuronal activity.



THE JENNIFER ANISTON NEURON

Epileptic seizures can be caused by a miswiring of the synapses, or by scar tissue that
triggers the synchronized firing of neurons across the brain, a bit like the chain reaction of
an atomic bomb. In some cases, the removal of a small section of the brain can prevent
such seizures by removing the trigger that sets off the cascade.

The procedure is daunting. To locate the source of the seizure, and so as not to remove
too much tissue, around twenty electrodes are inserted into the soft tissue of a patient’s
brain through holes drilled in the skull. It sounds like some medieval torture regime, but is
actually a procedure that is very much part of current medical practice. Each electrode has
tiny wires, as thin as a hair, that are wired up to a region of about ten to fifty neurons. If any
of these neurons fire, the electrical activity is picked up by the electrode. The surgeon then
waits for the patient to have a seizure, at which point a recording can be made of the
neurons firing across the brain. A mathematical analysis of the data then pinpoints the
potential source of the surge.

But a seizure can take some time to occur, and in the interim these wired-up patients sit
on the ward twiddling their thumbs. The Caltech team saw an opportunity. Why not ask
them questions and see which ones made their neurons fire? The region of the brain that is
the most common source of seizures is also where memories are encoded. Since this is
where the bulk of the electrodes were attached, they decided to see what electrical activity
could be picked up when memories were fired. To trigger these memories, the patients
were shown a range of different pictures.

It took some probing, but the results were striking. In one instance, neurons would fire
only when the patient was shown pictures of the actress Jennifer Aniston. It didn’t matter if
she was dressed differently or her hair was a different color; the neuron seemed to fire in
recognition of the concept of Jennifer Aniston. Even when the patient was just shown the
name, the neuron would fire.

In one sense, the discovery was not surprising. To encode memories, ideas, and
concepts, the brain has to find some way to convert the data into neuronal activity. Just as a
digital photo of Jennifer Aniston translates her image into a series of 0s and 1s, our brains
take the sensory data that bombards us and decide whether Jennifer Aniston is important
enough to be encoded as a concept. If she is, then the synapses that are currently
connected to that neuron will strengthen and survive, ensuring that the neuron fires when
the brain receives the associated visual information. Each concept will have its own
characteristic synaptic chain of neuronal activity. I particularly liked the patient whose
neuron fired whenever he was shown an image of Pythagoras’s theorem—a much more
discerning neuron!

What was surprising was how selective the neuron was in its firing. It didn’t seem to be
interested in any other images. Koch told me that this neuron was certainly not the only one
involved in encoding the idea of Aniston or Pythagoras. That would be extremely inefficient.
The experiment was limited in the number of neurons it could question, and just like the
digital 1s that are switched on to record a digital photograph in my smartphone, the brain has
a selection of neurons that fire across it to encode the concept of Aniston. But Koch
believes that a remarkably small number are involved in the encoding, in the hundreds or
perhaps thousands, rather than the millions of bits that would be required to encode such
images on a computer.



This encoding helps explain something called qualia, a quality or property of things as
perceived or experienced by someone, like the color red. It doesn’t matter whether you are
looking at a tomato, a fire truck, or a drop of blood, you will experience a sensation of
redness. The challenge is to determine whether your qualia are anything like mine. Do
animals or computers experience qualia?

Koch’s results suggest that we can think of what happens when we are shown a tomato
as billions of 0s and 1s lighting up in the brain as the concept is recognized. These different
code words can be thought of as points that can be lined to make out shapes, like crystals.
Is there something common to the shapes of the encodings of a tomato and a fire truck that
means that we experience the feeling of red? Could this be the source of synesthesia?
Perhaps in some brains the encoding of the qualia for red has a shape that is very close to
the shape that encodes the concept of the number 7, so much so that when the brain
recognizes the concept of 7 it fires the sensation of red.

Returning to my paper telescope and the hole in my hand, Koch told me you can modify
the experiment a little to test whether being conscious of something is enough to make these
concept neurons fire. Suppose we have two paper telescopes, one attached to each eye. At
the end of one telescope I place a picture of Jennifer Aniston. Sure enough, the Jennifer
Aniston neurons in my brain fire. But now I flash an image of Pythagoras’s theorem at the
end of the other telescope. The brain now has to choose which image to prioritize, or which
one will reach your consciousness.

What tends to happen is that the image of Jennifer Aniston disappears in deference to
the new image. Pythagoras’s theorem takes precedence, so that the participant is no longer
conscious of Jennifer Aniston, despite the fact that the brain is still receiving all the same
Aniston-related input.

Can we observe a change in brain activity corresponding to the change in
consciousness? Experiments similar to those conducted on epileptic patients have been run
on monkeys, and these indicate that the neurons that fire in recognition of one concept stop
firing when a second image is introduced. So there is something in the electrochemical
activity of the brain that contributes to what we are conscious of. At some level this seems
obvious, but suppose you think that consciousness is the result of an as-yet undiscovered
force. Then, if the neurons keep firing even when we are no longer conscious of the image
of Jennifer Aniston, this other force could be controlling why we are suddenly unaware of
the image.

This ability to switch our conscious experience on and off lies at the heart of many
magicians’ acts. I vividly remember an evening with Fellows at the Royal Society when we
were shown a video by Richard Wiseman, a professor of psychology at the University of
Hertfordshire. The video showed two teams passing two basketballs between them. “I want
you to count how many passes of the ball the team in black makes,” Wiseman instructed us.
In a classic illusionist’s move, we were sold a red herring to ensure that we all concentrated
our attention on the task at hand: “Men and women tend to count the passes differently.”

The video played and we all counted away. When the video finished, Wiseman asked
who had counted seventeen passes. Hands went up. Eighteen passes? Some other hands
went up. “And who in the room saw the man in the monkey suit walk to the center of the
court and bang his chest before walking off?” What! I hadn’t seen anything of the sort. I
thought he was having us on—until I saw two people with their hands up. They hadn’t
bothered to concentrate on counting the passes, and, with their attention free to wander,



they had registered the man in the monkey suit. It was an important message to the
scientists sitting in the room at the Royal Society: focus on one thing too much and you will
miss the monkey right in front of your eyes.

This sense of things floating in and out of consciousness is familiar to me as a research
mathematician. I have often felt that the work I do at my desk sows the seeds of ideas that
only come to fruition in a flash once I’ve moved on to other things. The mathematical
discovery I am most proud of certainly seemed to come to me in this way. I had been
working away all day at the Max Planck Institute in Bonn, trying to come to grips with a
thorny problem I was trying to solve with a colleague. Nothing seemed to give. That
evening, when I’d switched off from consciously trying to solve the problem, as I tried to
phone my wife in London, I suddenly “saw” a new symmetrical object with strange and
unexpected properties. I quickly scribbled down on my yellow legal notepad the idea I’d
suddenly become conscious of, and to this day I find it quite extraordinary how this thing
appeared in my mind, an object that had never been conceived of before that moment. It
was as if this new mathematical object was thrust into my conscious brain, having been
honed in my subconscious, accompanied by a chemical rush to make sure I didn’t miss it.
But still, what happened so that I had that experience is a mystery.

OUT-OF-BODY EXPERIENCES

Koch’s paper telescope reveals how easy it is to confuse our conscious senses and change
how we experience our environment. But there are even more spectacular tricks you can
play on the brain. By messing with several senses at the same time, it is possible to alter
quite dramatically our consciousness such that we can shift our sense of “I” outside our
bodies completely.

Search for “the McGurk effect” on YouTube and you will find a video that illustrates the
extraordinary power of the brain to create conscious experiences that aren’t really there.

At first you see a face that appears to be saying “Fa . . . Fa . . . Fa.” But then you are
told to close your eyes, and the sound suddenly turns into “Ba . . . Ba . . . Ba.” This was
actually the sound that was being made all along, but because you see a face making the
movements associated with the sound “Fa,” your brain is confused by the contradictory
input. The brain always seeks one integrated conscious experience, and vision generally
trumps sound when it comes to integrating the different senses. Even when you know what
is going on, it is very difficult to make your brain hear “Ba” as you watch the mouth make
the sound of “Fa.” The brain is a pattern searcher, eager to impose structure on the
cacophony of information it is being bombarded with. When the information is ambiguous, it
must choose.

These illusions offer a potent warning to all of us trying to solve the deeper mysteries of
the universe. We have no privileged access to reality. Our interaction with our environment
is constructed from the information our brains receive, and we build a plausible
representation of the external world. This mixing of the senses has some very strange
implications for the location of our consciousness.

An experiment I participated in at the Karolinska Institute in Sweden really made me
question where “I” was. Developed by Henrik Ehrsson in 2007, the experiment succeeded



in making me feel as though my consciousness was actually located in someone else’s body.
Ehrsson’s inspiration stems from a famous experiment called the false hand illusion, where
the participant’s hand is placed out of view, behind a screen, and a false rubber hand is
placed in view and joined via a sleeve to the participant’s body. Initially, the participant sees
it for what it is: a false hand. But if the experimenter starts stroking both the false hand (in
view) and the real hand (out of view) in such a way that the actions are synchronized,
there’s a strange shift.

The combined visual and tactile stimulus is ambiguous, so the brain tries to make sense
of what is going on. Vision again dominates, and the participant begins to identify with the
false hand, so much so that when a hammer is taken to the false hand, the participant very
often reacts as if he or she is being attacked. The combination of the sense of sight and the
sense of touch has tricked the brain into identifying with the false hand. What’s striking is
the plasticity of the brain, which has reprogrammed itself within only a few minutes to
identify with a false hand.

At the Karolinska Institute this combination of visual and tactile input has been taken
one step further. Many recent advances in neuroscience are due to the development of new
technology—in this case, virtual reality goggles. I was asked to wear the goggles while
Ehrsson donned what looked like an academic mortarboard with two cameras on top. These
cameras were to become my eyes. By taking the video feed from the cameras on top of
Ehrsson’s head, I was given Ehrsson’s perspective. Nothing too strange there. It was when
he asked me to shake his hand that things became somewhat surreal.

As we shook hands, Ehrsson asked me to squeeze his hand in a regular rhythm that he
matched, and this combination of vision and touch caused me to identify more and more
with the arm that I could see supposedly emanating from my body. The weird thing was that
the arm I was looking at belonged not to me but to Ehrsson. The identification was so strong
that when Ehrsson produced a knife and drew it across his hand, I reacted as if my hand
were about to be cut. Since my visit to Stockholm, Ehrsson has pushed this illusion even
further, making participants feel as if their consciousness is located in a Barbie doll.

A number of recent science fiction films have explored this idea of out-of-body
experience, including Avatar and Surrogate. Having taken part in Ehrsson’s experiments, I



wonder just how long it will be before I can send an avatar to a concert or to the top of
Everest and, by feeding my body at home with all the sensory input experienced by the
avatar, feel as though I am inside the concert hall or standing on top of the world.

These experiments get to the heart of what is called the mind–body problem. Is
consciousness separate from our physical body? It certainly appears to be created by it, but
should we regard it as something distinct? Some have argued that the mind is genuinely
independent of the body. This was Descartes’s view, one that he shared with many
Enlightenment thinkers.

Descartes was a dualist; he believed that the mental world was separate from the
physical one. This dualism lies at the heart of many people’s faith. Some have described this
“other thing” as the soul. But how independent is that other thing from the body to which it
is connected? Ehrsson’s experiments challenge our sense of the spatial unity of mind and
body. But our sense of self still seems very dependent on the body, as it is by manipulating
sensory input that we are able to play with the nature of our conscious experience.

The concept of “emergence” has become popular recently in many fields of science.
The term was coined to express how some things arise from more fundamental things and
yet are themselves fundamental and irreducible. Wetness is the classic example of an
emergent phenomenon. One molecule of H2O is not wet; wetness requires that you put
many molecules together before it appears. Emergence, when applied to consciousness, is
an attempt to find a middle ground between hardcore reductionism and Descartes’s spooky
dualism.

Many neuroscientists now speak of consciousness as being similar to the wetness of
water. Consciousness is an emergent phenomenon in the sense that it is a higher-level
property of a system triggered by neuronal activity happening at a lower level. But that
doesn’t really explain what this higher-level thing really is.

Some have argued that the concept of emergence is really just a way for chemists and
biologists to claim that their subject is distinct from, and not merely a corollary of, physics
and mathematics. A hardcore reductionist will tell you that a chemical reaction or a
biological process is just a mathematical equation describing physics in action.

Visit bit.ly/2lw2Ugm for a larger version of this diagram.

http://ebookassets.penguinrandomhouse.com/ebookassets/features/thegreatunknown/61.jpg


Isn’t the app on my phone that is trying to convince me it is conscious really just a
mathematical code? When I ask Cleverbot whether it is just a piece of mathematics, it
comes back with an interesting answer:

“I might be. Are you?”
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What we are today comes from our thoughts of yesterday and our
present thoughts build our life of tomorrow: our life is the
creation of our mind.

—The Dhammapada

OME YEARS AGO, my wife was in a coma following an accident. I spent many hours in
the hospital wondering whether “she” was still inside, or whether this was just a body

with no consciousness. Fortunately she woke up after two weeks, but what about those
who don’t? For some, the body has become a collection of cells with no conscious
experience—this is what we call the vegetative state. But for others there is the terrifying
scenario of a consciousness locked in a body that won’t respond. So is there a way to ask
the brain whether it is conscious in these situations? Amazingly, there is, and it involves
playing tennis—or at least imagining that you are playing tennis.

Think of yourself playing tennis. Big forehands. Overhead smashes. Try to conjecture
yourself in the middle of a point. To do so, you have to make a conscious decision to
participate. But once you start imagining, an fMRI scan can pick up the neural activity that
corresponds to the motor activity associated with the shots you are picturing yourself
playing.

In early 2006, British neuroscientist Adrian Owen and his team discovered that we
could use an fMRI to see patients making conscious decisions. They were investigating a
twenty-three-year-old woman who had been diagnosed as being in a vegetative state after a
traffic accident. When the patient was instructed to imagine that she was playing tennis,
Owen saw, to his surprise, the region corresponding to the supplementary motor cortex light
up inside the scanner. When asked to imagine taking a journey through her house, a
different region called the parahippocampal gyrus, which is needed for spatial navigation,
was activated. It was an extremely exciting breakthrough, and the doctors quickly
rediagnosed this young woman as conscious but locked in. Unfortunately, they were not
able to do much to improve her condition and she died five years later.

Many other patients who had previously been thought to be in a vegetative state have
now been rediagnosed as locked in. This makes it possible for doctors and, more important,
family members to talk to them and solicit responses. A patient can indicate the answer
“yes” to a question by imagining that they are playing tennis. Conversations are a bit more
tricky, but the ability to trigger and measure a neural response has given us an extraordinary
conscious-o-meter.

I recently volunteered to be participant number 26 in a research project in Cambridge
seeking to explore the moment when anesthesia knocks out consciousness. There have
been some terrible examples of patients who can’t move their bodies but are completely



conscious during an operation, and scientists want to understand how much anesthetic is
needed to really knock out a patient’s consciousness.

So I found myself lying inside an fMRI scanner while plugged into a supply of propofol,
the drug Michael Jackson had been taking when he died. After a few shots, I must admit I
could understand why Jackson had become addicted. It had an extremely calming effect.
But I was here to work. With each new dose, I was asked to imagine that I was playing
tennis. As the dose was increased, the research team could assess the critical moment
when I lost consciousness and stopped playing imaginary tennis. I was very curious to know
just how much more propofol was needed to go from knocking out my body so that it was
no longer moving to the moment when my consciousness was turned off.

The ability to question the brain even when the rest of the body is unable to move or
communicate has allowed researchers to gauge just how much anesthetic you need to
temporarily switch off someone’s consciousness so that you can operate on them. This
tennis-playing conscious-o-meter leads us also to the close relationship between
consciousness and free will: you must choose to imagine playing tennis. But how much can
we really choose? Recent experiments looking at the brain in action have fundamentally
challenged our understanding of free will.

AM I IN CONTROL?

I’m sure you thought you were asserting your free will when you decided to read this book.
You probably feel it was a conscious choice to pick up the book and turn to this page. But
free will, scientists are learning, may be just an illusion.

Unlike the discovery of the quark or the expanding universe, it is possible to witness
much of the cutting-edge research into consciousness as it is conducted, even to be part of
the research.

I hope fMRI scanners are not bad for you, because in my quest to understand how the
brain shapes my conscious experience here I was in another city (Berlin this time) and
another scanner. Lying inside, I was given a little handheld console with two buttons: one to
be activated with my right hand, the other with my left. John-Dylan Haynes, the
neuroscientist who developed the experiment, asked me to go into a Zen-like state of
relaxation, and told me that whenever I felt the urge I could press either the right-hand or
left-hand button.

I was then given a pair of goggles with a tiny screen on which a random stream of
letters was projected. I was asked to record which letter was on the screen each time I
decided to press the right or left button.

The fMRI scanner recorded my brain activity as I randomly pushed the right or left
button. What Haynes discovered is that, by analyzing my brain activity, he could predict with
a surprising degree of accuracy which button I would press six seconds before I myself
became aware of which one I was going to choose. Six seconds is a very long time. My
brain decides which button it will instruct my body to press. Then one elephant, two
elephants, three elephants, four elephants, five elephants, six elephants—and only now is the
decision sent to my conscious brain.



Haynes can see which button I will press because a region in the brain lights up six
seconds before I do so, preparing the motor activity. A different region of the brain lights up
according to whether the brain is preparing the left or right finger. Haynes can’t predict with
one hundred percent certainty, but his predictions are accurate more than sixty percent of
the time, and he believes that with more refined imaging, it may be possible to get close to
one hundred percent accuracy.

It should be stressed that this is a very particular decision-making process. If you are in
an accident, your brain makes decisions in a split second, and your body reacts without the
need for any conscious brain activity to take place. Many processes in the brain occur
automatically, so that the brain is not being overloaded with routine tasks. But whether I
choose to press the right or left button is not a matter of life or death. I am freely making a
decision with the luxury of time.

The brain seems to prepare the decision far in advance, but it is still not clear where the
final decision is being made. Maybe I can override the decision my brain has prepared for
me. If I don’t have “free will,” some have suggested that perhaps I at least have “free
won’t.” In this experiment, the choice of button is immaterial, so there is little reason not to
go with the decision my unconscious brain has prepared for me. But what if my brain tells
me to do something that I know to be bad for me? What if it tells me to reach for heroin?

The experiment suggests that consciousness may be a secondary function of the brain.
We already know that so much of what our body does is totally unconscious, but what we
believe distinguishes us as humans is that our consciousness is an agent in our ultimate
actions. At some point, we decide. But what if it is only way down the chain of events that
our consciousness kicks in? Is our consciousness of a decision just a chemical afterthought
with no actual influence on what we do? What implications would this have legally and
morally? “I’m sorry sir, but it wasn’t me who shot the victim. My brain had already decided
six seconds before that my finger was going to pull the trigger.” Be forewarned: biological
determinism is not a strong legal defense!

The button pressing was of no consequence, and this may skew the outcome of the
experiment. Haynes followed his experiment with a slightly more intellectually engaging
activity. Participants were now asked whether to add or subtract a number to numbers
shown on a screen. Again, the decision was suggested by brain activity four seconds before
the conscious decision to act.

But what if we take the example proposed by the French philosopher Jean-Paul Sartre
of a young man who must choose between joining the resistance or looking after his
grandmother. Perhaps in this case conscious deliberation will rescue free will from the
fMRI scanner. Maybe the actions performed in Haynes’s experiments are too automatic.
Free will is replaced by the liberty of indifference.

The preconscious brain activity may well be just a contributing factor to the decision
that is made at the moment of conscious deliberation. It does not necessarily represent the
sole cause, but helps inform the decision—here’s an option you might like to consider.

If we have free will, one of the challenges is to understand where it comes from. I don’t
think my smartphone has free will. It is just a set of algorithms that it must follow in a
deterministic manner. Just to check, I asked my chatbot app whether it thought it was acting
freely, making choices. It replied, rather cryptically, “I will choose a path that’s clear, I will
choose free will.”



I know that this response is programmed into the app. It may be that the app has a
random-number generator that ensures its responses are varied and unpredictable. But
randomness is not freedom—those random numbers are being generated by an algorithm.

Free will is one of the things I cling to because I believe it marks me out as different
from an app on my phone. I think this is why Haynes’s experiment left me with a deep
sense of unease. Perhaps my mind is just the expression of a sophisticated app at the mercy
of the brain’s biological algorithm.

Alan Turing was one of the first to question whether machines could ever think
intelligently. He thought a good test of intelligence was to ask, if you were communicating
with a person and a computer, whether you could distinguish which was the computer. This
test, now known as the Turing test, was the one I was now putting Cleverbot through. If a
computer can pass itself off as human, shouldn’t I call it intelligent?

But isn’t there a difference between my brain and a machine following instructions? If I
type a sentence in English into my smartphone, the apps on board are fantastic at translating
it into any language I choose. But no one thinks the smartphone understands what it’s doing.
The difference perhaps can be illustrated by an interesting thought experiment called the
Chinese Room, devised by philosopher John Searle of the University of California. It
demonstrates that following instructions doesn’t prove that a machine has a mind of its own.

I don’t speak Mandarin, but imagine that I was in a room with an instruction manual that
gave me an appropriate response to any string of Chinese characters. I could have a very
convincing discussion with a Mandarin speaker without ever understanding a word of my
responses. In a similar fashion, my smartphone appears to speak many languages, but we
wouldn’t say it understands what it is translating.

It’s a powerful challenge to anyone who thinks that just because a machine responds
like a conscious entity, we should regard that as a sufficient measure of consciousness.
Sure, it could be doing what a conscious person would do, but is it really conscious? Then
again, what is my mind doing when I’m writing down words? Isn’t it just following a set of
instructions? Could there be a threshold beyond which we would have to accept that the
computer understands Mandarin, or that the algorithm should be regarded as having
consciousness? But before we can program a computer to be conscious, we need to
understand what is so special about the algorithms at work in a human brain.

THE SCIENCE OF SLEEP

One of the best ways to tease out the correlation between consciousness and brain activity
is to compare our conscious brain with our unconscious brain. Is there a noticeable
difference in the brain’s activity? We don’t have to wait for a patient to be in a coma or
under anesthetic to make this comparison, as there is another state we go into every day—
or rather every night—when we lose consciousness: sleep. The science of sleep may give
us the best insight into what the brain does to create our experience of consciousness.

So I went to the Center for Sleep and Consciousness at the University of Wisconsin–
Madison, where experiments conducted by neuroscientist Giulio Tononi and his team have
revealed strikingly different brain behavior during waking and dreamless sleeping.



In the past it was impossible to ask the sleeping brain questions. But transcranial
magnetic stimulation, or TMS, allows scientists to infiltrate the brain and artificially fire
neurons. By applying a rapidly fluctuating magnetic field, the team can activate specific
regions of the brain when their subjects are awake and, more excitingly, when they are
asleep.

I was a bit nervous about the idea of someone zapping my brain. After all, it is my
principal tool for doing my job. Scramble that and I’m in trouble. But Tononi assured me it
was quite safe. Using his own brain, one of his colleagues demonstrated how he could
activate a region connected with the motor activity of the hand. It was quite amazing to see
that zapping this region caused his finger to move. Each zap threw a switch in the brain that
made the finger move. Given that Tononi’s colleague seemed unaffected by the zapping, I
agreed to take part in the experiment.

Tononi and his team started by applying TMS to a small region of my brain when I was
awake. Electrodes attached to my head recorded the effect via EEG. The results revealed
that different parts of the brain respond at different times in a complex pattern that feeds
back to the original site of the stimulation. The brain, Tononi told me, is a complex integrated
network. Its neurons act like a series of interrelated gates. One neuron may fire if most of
the neurons connected to it are firing. Or it may fire only if one connected neuron is on.
What I was seeing on the EEG was the logical flow of activity caused by the first zap.

The next part of the experiment required that I fall asleep. The room was plunged into
semidarkness to help me nod off. I’d just stepped off a transatlantic flight, so my body clock
was rather unclear as to what time it really was. I was exhausted and ready for sleep, but a
head covered in electrodes wasn’t going to make it easy. Once I would be in a deep “stage
four” sleep, Tononi and his team would apply TMS to my brain in exactly the same location,
stimulating the same region. Essentially, the TMS fires the same neurons, turning them on
like switches, to investigate how the structure of the network changes as the brain goes
from conscious to unconscious. This part of the experiment proved to be extremely difficult
for me. I am an incredibly light sleeper. Having a head covered in electrodes and knowing
that someone was about to creep up and zap me once I’d dropped off isn’t very conducive
to deep sleep. Despite depriving myself of coffee for the whole day, I failed to get past a
light “stage one” fitful sleep.

Instead, I had to content myself with the data from another more cooperative patient.
The results were striking. Electrical activity does not follow the same path when we are
asleep, as it does when we’re conscious. It’s as if the network were down. Any activity is
very localized. The exciting implication is that consciousness may be related to the way the
network feeds information back and forth across the brain.



Having failed to fall asleep in his lab, I was taken by Tononi to his office, where he
promised he would make up for my caffeine deficiency by crafting the perfect espresso
from his prized Italian coffee machine. But he also had something he wanted to show me.
As we sat down to the intoxicating aroma of grinding coffee beans, he passed me a paper
with a mathematical formula penned on it.

My interest was immediately piqued. Mathematical formulas are for me like Pavlov’s
bell. Put one in front of me and I’m immediately hooked and want to decode its message.
But I didn’t recognize it.

“It’s my coefficient of consciousness,” he said with a suggestive smile.
Consciousness in a mathematical formula . . . how could I resist?
Tononi explained that as a result of his work on the sort of networked behavior that

corresponds to conscious brains, he has developed a new theory of networks that he
believes are conscious. He called it integrated information theory, or IIT, and it includes a
mathematical formula that measures the amount of integration and irreducibility present in a
network, which he believes is key to creating a sense of self. Called Φ (that is, phi, the
twenty-first letter of the Greek alphabet) it is a measure that can be applied to machines like
my smartphone as much as it can the human brain, and it offers the prospect of a
quantitative mathematical approach to what makes me “me.” According to Tononi, the
larger the value of Φ, the more conscious the network.

A conscious brain is like a network with a high degree of connectivity and feedback. If I
fire neurons in one part of the brain, it results in a cascade of cross-checking and
information fed across the network. If the network consists of only isolated islands, then it
appears to be unconscious. Tononi’s coefficient of consciousness is a measure of the extent
to which the network is more than a sum of its parts.

Tononi believes it’s the nature of this connectivity between the neurons in the brain that
is important. It isn’t enough that there should be high connectivity across the network. If the



neurons start firing in a synchronous way, this does not seem to yield a conscious
experience. (We can find synchronous brain activity during deep sleep, and seizures are
often associated with the highly synchronous firing of neurons across the brain.) It seems to
be important that there is a large range of differentiated states. Too many patterns or
symmetries in the wiring can be a problem, as they can sometimes lead to an inability to
differentiate experiences. Connect a network up too much and the network will behave in
the same way whatever you do to it.

Tononi’s coefficient tries to capture one of the extraordinary traits of our conscious
experience: the brain’s ability to integrate the vast range of inputs our body receives and
synthesize them into a single experience. Consciousness can’t be broken apart into
independent experiences felt separately. When I look at my red casino die I don’t have
separate experiences: one of a colorless cube and another of a patch of formless color.
Tononi’s coefficient also tries to quantify how much more information a network will
generate when it is complete than when it is cut into disconnected pieces, which is what
happens to the brain during deep sleep.

Tononi and his colleagues have run interesting computer simulations on “brains”
consisting of eight neurons, connecting them in different ways to see which network has the
greatest Φ. The results reveal that you want each neuron to have a connection pattern with
the rest of the network that is different from that of the other neurons. But at the same
time, you want as much information as possible to be able to be shared across the network.
If you consider any division of the network into two separate halves, you want the two
halves to be able to communicate with each other. It’s an interesting balancing act between
overconnecting and cutting down differentiation versus creating difference at the expense
of communication.

The nature of the connectivity is also important. Tononi’s team has created two
networks that are functionally equivalent and have the same outputs, but in one case the Φ
count is high, because the network feeds back and forth, while in the other the Φ count is
low because the network is set up so that it only feeds information forward (the neurons
can’t feed back). Tononi believes this is an example of a “zombie network”: a network that
outputs the same information as the first network but has no sense of self. Just by looking at
the output, you can’t differentiate between the two networks, but according to Tononi’s Φ,
the zombie network has no internal world.

It’s encouraging to know that the brain’s thalamocortical system, which is known to play
an important part in generating consciousness, has a structure similar to networks with a
high Φ. Contrast this with the network of neurons in the cerebellum, which doesn’t create
consciousness. Called the little brain, the cerebellum is located at the back of the skull and
controls things like balance and our fine motor control. It accounts for eighty percent of the
neurons in the brain, and yet, if it is removed, although our movement is severely impaired,
we do not have an altered sense of consciousness.

In 2014, a twenty-four-year-old woman in China was admitted to the hospital with
dizziness and nausea. When her brain was scanned to try to identify the cause, it was found
that she had been born without a cerebellum. Although it had taken her some time to learn
to walk as a child, and she was never able to run or jump, none of the medical staff who
encountered her ever doubted that she was fully conscious. This was not a zombie, just a
physically unstable human being.



If you examine the neural network at the heart of the cerebellum, you find patches that
tend to be activated independently of one another with little interaction, just like the sleeping
brain. The low Φ of the cerebellum’s network fits in with the idea that it does not create
conscious experience.

Left: A netw ork w ith a high Φ and perhaps a higher level of consciousness.
Right: Although highly connected, the symmetry of this netw ork causes little differentiation to occur across
the netw ork, resulting in the w hole not contributing to the creation of new  information not already inherent
in the parts. This leads to a low  Φ and hence a low er consciousness.

That the connectivity of the brain could be the key to consciousness has led to the idea
that my “connectome,” a comprehensive map of the neural connections in the brain, is part
of the secret of what makes me “me.” Just as the human genome project gave us
unprecedented information about the workings of the body, mapping the human connectome
may provide similar insights into the workings of the brain. Combine the wiring with the
rules for how this network operates and we may have the ingredients for creating
consciousness in a network.

Mapping the human brain is a distant goal, but already we have a complete picture of
the wiring of the neurons inside C. elegans, a one-millimeter-long brainless worm with a
fondness for compost heaps. Its nervous system contains exactly 302 neurons, ideally suited
for us to map out a complete neuron-to-neuron wiring. Despite this map, we are still a long
way from relating these connections to the behavior of C. elegans.

IS THE INTERNET CONSCIOUS?

Given that Tononi’s Φ is a measure of how a network is connected, it could help us
understand if my smartphone, the Internet, or even a city can achieve consciousness.
Perhaps the Internet or a computer, once it hits a certain threshold at some point in the
future, might recognize itself when it looks in the mirror. Consciousness could correspond to
a phase change in this coefficient, just as water changes state when its temperature passes
the threshold for boiling or freezing.



It is interesting that the introduction of an anesthetic into the body doesn’t gradually turn
down consciousness but at some point seems to suddenly switch it off. If you’ve ever had
an operation and the anesthetist asks you to count to twenty, you’ll know (or perhaps won’t
know) that there is a point at which you suddenly drop out. The change seems to be very
nonlinear, like a phase transition.

If consciousness is about the connectivity of the network, what other networks might
already be conscious? The total number of transistors that are connected via the Internet is
of the order of 1018, while the brain has about 1011 neurons. The difference lies in the way
they are connected. A neuron is typically linked to tens of thousands of other neurons,
which allows for a high degree of information integration. In contrast, transistors inside a
computer are not highly connected. On Tononi’s measure it is unlikely that the Internet is
conscious . . . yet.

If I take a picture with the digital camera in my smartphone, the memory in my phone
can store an extraordinary range of different images. A million pixels, for example, will give
me 21,000,000 different possible black-and-white images. It will record detail that I am
completely unaware of when I look through the viewfinder. But that’s the point—my
conscious experience could not deal with that huge input. Raw sensory data are processed
by the brain and integrated to glean the significant information and limit its content.

At present, computers are very bad at matching the power of human vision. A computer
tends to read a picture pixel by pixel and finds it hard to integrate the information. Humans,
however, are excellent at taking this huge amount of visual input and creating a story from
the data. It is this ability of the human mind to integrate and pick out what is significant that
is at the heart of Tononi’s measure of consciousness Φ.

Of course, there is still no explanation of how or why a high Φ should produce
conscious experience. We can certainly correlate it with consciousness, which is very
suggestive—witness the experiments on sleeping patients—but we still can’t say why this
produces consciousness, or whether a computer wired in this way would experience
consciousness.

There are reasons why having a high Φ might offer significant evolutionary advantages.
It seems to allow one to plan for the future. By taking data from different sensors, the
highly integrated nature of a network with a high Φ can make recommendations for future
action. This ability to project oneself into the future, to perform mental time travel, seems to
be one of the key evolutionary advantages of consciousness. A network with a high Φ
appears to be able to demonstrate such behavior. But why couldn’t it do all of this while
being unconscious?

SKYPING CONSCIOUSNESS

Christof Koch, of the Jennifer Aniston neuron, is a big fan of Φ. I was keen to push him on
whether he thought it was robust enough to provide an answer to the “hard problem,” as
philosopher David Chalmers famously put it, of getting inside another person’s head.

Since I first met Koch at the top of Mount Baldy outside Caltech, he had taken up the
directorship of an extraordinary venture called the Allen Institute for Brain Science, funded
by Paul G. Allen, cofounder of Microsoft, to the tune of $500 million. Allen’s motivation?



He simply wants to understand how the brain works. It’s all open science, it’s not for profit,
and his institute releases all of its data free. As Koch says, “It’s a pretty cool model.”

Since it was going to be tricky to make another trip to California to quiz Koch on his
views on Φ, I decided the next best thing was to access Koch’s consciousness via a call on
Skype. But before that, Koch was keen to know which side of the philosophical divide I
was on.

“Sure, we can chat about consciousness and the extent to which it is unanswerable. But
I would hope that you’re not going to turn away young people who are contemplating a
career in neuroscience by buying in to the philosopher’s conceit of the ‘Hard problem’ (hard
with a capital H). Philosophers such as Dave Chalmers deal in belief systems and personal
opinions, not in natural laws and facts. While they ask interesting questions and pose
challenging dilemmas, they have an unimpressive historical record of prognostication.”

Koch reminded me of Auguste Comte’s prediction that we would never know what was
at the heart of a star. It is a parable I have kept in mind ever since embarking on this
journey into the unknown. He then added another important voice to the debate, that of his
collaborator Francis Crick, who wrote in 1996, “It is very rash to say that things are beyond
the scope of science.”

Koch was in an ebullient mood when we finally connected via Skype—although to be
honest, I’ve never seen him anything but excited about life at the cutting edge of one of
today’s greatest scientific challenges. Two days earlier, the Allen Institute had released data
that tried to classify the different cell types in the brain.

“We’ve known for two hundred years that the body is made up of cells, but there are
heart cells and skin cells and brain cells. But then we realized that there aren’t just one or
two types of brain cell. There may well be a thousand. Or several thousand. In the cortex
proper, we just don’t know.”

Koch’s latest research has produced a database detailing the different range of cortical
neurons to be found in a mouse brain. “It’s really cool stuff. But this isn’t just a pretty
picture in a publication as it usually is in science. It’s all the raw data and all the data is
downloadable.” Koch believes that this kind of detailed scientific analysis of how the brain
functions is key to chipping away at the challenge of understanding how the brain produces
conscious experience.

I asked Koch what had inspired him to embark on this research project in the first
place. At the time, many regarded setting off in search of consciousness as akin to heading
into the Sahara desert in search of water.

“One reason was to show them all they were wrong,” Koch said. “I like to provoke.”
Koch is also someone who likes taking risks. It’s what drives him to hang off the side of a
mountain, climbing unaided to the top. But there was an aspect to his choice that was more
unexpected. It turned out that Koch’s religious upbringing was partly responsible for his
desire to understand consciousness.

“Ultimately, I think I wanted to justify to myself my continued belief in God. I wanted to
show to my own satisfaction that to explain consciousness we need something more. We
need something like my idea of a God. It turned out to be different. It provoked a great
internal storm within me when I realized there wasn’t really any need for a soul. There
wasn’t any real need for it to generate consciousness. It could all be done by a mechanism
as long as we had something special like Tononi’s integrated information theory, or
something like that.”



In some respects, Koch admits he failed. “Over the last ten years I lost my faith; I
always tried to integrate it, but couldn’t. I still very much have a sentiment that I do live in a
mysterious universe. It’s conducive to life. It’s conducive to consciousness. It all seems
very wonderful, and literally every day I wake up with this feeling that life is mysterious and
a miracle. I still haven’t lost that feeling.”

Koch believes we are getting closer to demystifying consciousness, and he believes it is
this mathematical coefficient Φ and Tononi’s IIT that hold the key.

“I’m a big fan of this integrated information theory,” he told me. “I have this
mechanism, this brain, this computer currently in this one state. These neurons are off;
these neurons are on; these transistors are switching; these are not. The theory says that, at
least in principle, I can predict the experience of that system, not by looking at the input–
output but by actually looking inside the system.”

Koch has a tough battle on his hands if he hopes to convince others of his view. A
hardcore group of philosophers and thinkers don’t believe that science can ever really
explain consciousness. They are members of a school of thought that goes by the name of
mysterianism, which asserts that there are mysteries that will always be beyond the limits of
the human mind. Top of the mysterians’ hit list is the hard problem of consciousness.

The name of the movement—taken from a rock band called Question Mark and the
Mysterians—was initially a term of abuse concocted by philosopher Owen Flanagan, who
thought the movement's standpoint was extremely defeatist. As Flanagan wrote, “The new
mysterianism is a postmodern position designed to drive a railroad spike through the heart of
scientism.” Koch has often found himself debating with mysterian philosophers who think
he is misguided. So what does he say to those who question whether you can ever really
know that a system is experiencing something?

“If you pursue that to its end you just end up with solipsism,” he says. You can hear the
exasperation in his voice. “Yes . . . solipsism is logically consistent, but then it’s extremely
improbable that everyone’s brain is like mine, except only I have consciousness and you are
all pretending. You can believe that, but it’s not very likely.”

Koch believes that seeking to pinpoint the brain states that correspond to certain
experiences is as good as it’s going to get if you want to explain consciousness. As he put it,
“Well, Marcus, now you are seeing red or right now you are having the experience of
smelling a rose. I can do fMRI and I can see that your rose neurons are activated, that your
color area is activated. So in principle, this is an entirely empirical project.”

Hardcore mysterians will contend that this does not explain how such a network gives
rise to this sensation of feeling something. But aren’t they in danger of demanding too
much? We understand that the sensation of heat is just the movement of atoms. No one
then suggests that we haven’t really explained why the movement of atoms gives rise to
heat. I think Koch would say the same of consciousness.

I wondered whether Koch thought we could ever get to a point at which we can use an
fMRI scanner or something more sophisticated to know what someone is really
experiencing.

“That’s a pragmatic problem,” he said. “That’s the same problem that thermodynamics
faced in the nineteenth century. You couldn’t compute those things. But at least for a simple
thing like a critter of ten neurons, the expressions are perfectly well defined and there is a
unique answer. The maximum number of neurons one could navigate is a big practical



problem. Will we ever overcome it? I don’t know, because the problem scales exponentially
with the number of neurons, which is really bad. But that’s a different problem.”

MAKING MINDS

The ultimate test of our understanding of what makes me “me” is to see whether we can
build an artificial brain that has consciousness. Humans are actually quite good at making
conscious things. My son is an example of how we can combine various cellular structures,
an egg and sperm, and together they have all the kit and instructions for growing a new
conscious organism. At least I have to assume that my son is conscious—on some mornings
he appears to be at the zombie end of the spectrum.

The Human Brain Project, the brainchild of Henry Markram, aims within ten years to
produce a working model of the human brain that can be uploaded onto a supercomputer.
“It’s going to be the Higgs boson of the brain, a Noah’s archive of the mind,” declared
Markram. He was rewarded with a billion-euro grant from the European Commission to
realize his vision. But when this is done, would these simulations be conscious? To my
surprise, Koch didn’t think so.

“Let’s suppose that Henry Markram’s brain project pans out and we have this perfect
digital simulation of the human brain. It will also speak, of course, because it is a perfect
simulation of the human brain, so it includes a simulation of Broca’s area, responsible for
language. The computer will not exist as a conscious entity. There may be a minimal
amount of Φ at the level of a couple of individual transistors, but it will never feel like
anything to be the brain.”

Because it is a perfect simulation, it is going to object vociferously that it is conscious,
that it has an internal world. But in Koch’s view it would be all talk.

“If you get a computer to simulate a black hole, the simulated mass will not affect the
real mass near the computer. Space will never be distorted around the computer simulation.
In the same way, you can simulate consciousness on a computer, but the simulated entity
will not experience anything. It’s the difference between simulating and emulating.
Consciousness arises from the cause–effect repertoire of the mechanism. It’s something
physical.”

So it would seem that consciousness depends on how the network is put together. A
similar issue is at work with the zombie network that Tononi constructed with ten neurons.
The principle that Tononi used to turn a high-Φ network with ten neurons into a zero-Φ
network with exactly the same input–output repertoire can be applied to the network of the
human brain. Both would have the same input–output behavior, and yet, because of the
difference in the internal state transitions, one has a high Φ, the other zero Φ. But how can
we ever know whether this would mean that one is conscious and the other a zombie?

What bugs me is that this seems to highlight the near unanswerability of the question of
consciousness. Φ is certainly a great measure of the difference between a simulation of the
brain and the actual nature of the brain’s architecture. It defines the difference between a
zombie network and the human mind. But how can we really know that the zombie isn’t
conscious? It is still there shouting its head off: “For crying out loud, how many times do I
need to tell you? I am conscious in here.” But Φ says it’s just pretending. I tell the zombie



that Φ says it doesn’t have an internal world. But just as my conscious brain would, the
zombie insists, “Yes I do.”

One of the reasons Koch likes Φ as a measure of consciousness is that it plays into his
panpsychic belief that we aren’t the only ones with consciousness. If consciousness is about
the integration of information across a network, then it can apply to things as small as an
amoeba and as vast as the whole universe.

Consciousness is ultimately how much difference you make to yourself, the cause–
effect power you have on yourself. So even if you take a minimal system like a cell—a
single cell is already incredibly complex—it has some cause–effect power on itself. It will
feel like something to be that cell. It will have a small but non-zero Φ. It may be vanishingly
small, but it will have some level of consciousness. Of course, that’s a very ancient intuition.

IS THERE CONSCIOUSNESS AFTER DEATH?

When I tell people I am investigating what we cannot know, a typical question is whether
I’ll be tackling life after death. This is intimately related to the question of consciousness.
Does our consciousness live on? There is no good evidence that anything survives after
death, but is there any way we can definitively know? Given the high level of correlation
there is between brain activity and consciousness, it seems extremely unlikely that
consciousness can survive beyond death. If some communication were possible, it might
give us some hope. But no one outside Hollywood has yet succeeded in communicating with
the dead.

When I put this question to Koch, he agreed with me and told me he had spent a week
in India debating the issue with an unlikely collaborator: the Dalai Lama.

“It was very intense. Four hours in the morning, four hours in the afternoon, talking
about science. Two whole days were dedicated to consciousness. Buddhists have been
exploring their own consciousness from the inside using meditative techniques for two
thousand years. In contrast, we do it using fMRI and electrodes and psychophysics from
the outside, but basically our views tend to agree. He was very sympathetic to many of the
scientific ideas and we agreed on many things. For example, he has no trouble with the idea
of evolution.”

But there must have been points of difference?
“The one thing where we fundamentally disagreed was this idea of reincarnation. I

don’t see how it would work. You have to have a mechanism that carries my consciousness
or my memories over into the next life. Unless we find something in quantum physics, and I
don’t know enough about it to know, I don’t see any evidence for it.”

If you are going to attempt to argue for the possibility of reincarnation as a scientist, you
will need to come up with a plausible explanation of how consciousness survives the death
of your body. There have been some interesting proposals. For example, if consciousness
corresponds ultimately to patterns of information in the brain—something close to what
Tononi is advocating—then some argue that information can theoretically always be
reconstructed. Provided you avoid the black hole crematorium, the combination of quantum
determinism and reversibility means no information is ever lost and thus some transfer might
be possible.



The religious physicist John Polkinghorne offers a story for the possibility of life after
death: “Though this pattern is dissolved at death, it seems perfectly rational to believe that it
will be remembered by God and reconstituted in a divine act of resurrection.” But
nowadays, not everyone resorts to God for the promise of resurrection. Some people are
already exploring how to ensure that their brain’s information is stored somewhere before
their hardware packs up, but we are still decades away from this being possible. The idea of
downloading my consciousness onto my smartphone so that “it” becomes “me” may not be
so far from Polkinghorne’s proposal. It’s just Apple playing the role of God. “Rapture for
nerds,” as Koch calls it.

ZOMBIELAND

When faced with a question that we cannot answer, we have to make a choice. Perhaps
the intellectually correct response is to remain agnostic. But what if your answer would
have an impact on how you lead your life? Imagine if you regarded yourself as unique and
everyone else as zombies—it would have a big effect on your interaction with the world.

Some posit that to crack the problem of consciousness we will have to add to our
description of the universe a new basic ingredient that gives rise to consciousness, an
ingredient that—like time, space, or gravity—can’t be reduced to anything else. All we can
do is explore the relationship between this new ingredient and the other ingredients we have
to date.

To me this seems a cop-out. There are many examples in nature of critical tipping points
where a phase transition happens, but rarely does the phase transition create something that
can’t be explained other than by creating a new fundamental entity. It’s not without
precedent, of course. Electromagnetic waves are created as a consequence of accelerating
charged particles. That is not an emergent phenomenon, but a new fundamental ingredient
of the natural world.

Others have suggested that consciousness may be associated with another state of
matter, like solid or liquid. This state of matter has even been given a name: perceptronium,
which is defined as the most general substance that feels subjectively self-aware. It sounds
like a crazy idea, but perhaps, in order to get to grips with such a slippery concept, we need
crazy ideas.

Some argue that nothing physical is ever going to answer the problem of what it feels
like to be me, that the very existence of consciousness implies something that transcends
our physical reality. But if mind can move matter, then something must connect these two
realms that would allow science back into the game.

Perhaps the question of consciousness is not one of science, but one of language. This
is the stance of a school of philosophy that traces its conception back to Ludwig
Wittgenstein. In his Philosophical Investigations, Wittgenstein explores the problem of a
private language. The process of learning the meaning of the word table involves people
pointing at a table and saying, “Here is a table.” If I point at something that doesn’t
correspond to what society means by “table,” then I get corrected. Wittgenstein wonders
whether the same principle can apply to more abstract concepts such as pain. Pain does not
involve an object that is external to us, or that we can point at and call pain. We may be able



to find a correlation within an output on an fMRI scanner that always corresponds to my
feeling of pain. But when we point at the screen and say that is pain, what do we really
mean by “pain”?

Wittgenstein believed that the problem of exploring the private worlds of our feelings
was one of language. How can we share the meaning of “here is a pain”? It is impossible.
“I have a pain in my tooth” seems to have the same quality as “I have a table,” and it
tempts us into assuming that there is something called “my pain” in the same sense that
there is “a table.” “The confusions which occupy us arise when language is like an engine
idling,” Wittgenstein explained. “Not when it is doing work.”

If you have a feeling and declare, “I think this is pain,” I have no way of correcting you.
I have no criterion against which to determine whether what you are feeling is what I
understand by the word pain. Wittgenstein explores whether it is possible to show you pain
by pricking your finger and declaring, “That is pain.” If you now reply, “Oh, I know what
‘pain’ means; what I don’t know is whether this, that I have now, is pain,” Wittgenstein
writes that “we should merely shake our heads and be forced to regard [your] words as a
queer reaction which we have no idea what to do with.”

We can get at the problem of identifying what is going on inside our heads by imagining
that we each have a box with something inside. We all name the thing inside “a beetle,” but
we aren’t allowed to look in anyone else’s box, only our own. So it is quite possible that
everyone has something different in the box, or that the thing inside is constantly changing,
or even that there is nothing in the box. And yet we all call it “a beetle.” But for those with
nothing in the box, the word beetle is a name for nothing. Does this word therefore have
any meaning? Are our brains like the box and consciousness the beetle? Does an fMRI
scanner allow us finally to look inside someone else’s box and see if your beetle is the same
as mine? Does it rescue consciousness from Wittgenstein’s language games?

Wittgenstein explores how a sentence can fool us into thinking it means something
because it takes exactly the form of a real sentence, but when you examine it carefully you
find that it doesn’t actually refer to anything. This, many philosophers believe, is at the heart
of the problem of consciousness. It is not a question of science, but simply a confusion of
language.

Daniel Dennett is one of the most famous of the modern-day philosophers who follow in
the tradition of Wittgenstein. He believes that in years to come we will recognize that there
is little point in having this long debate about the concept of consciousness. To his mind, if
we do encounter a machine or organism that functions exactly as we would expect a
conscious being to, we should simply define this thing as conscious. The question of whether
it is a zombie, whether it is actually feeling anything, should just be ignored. If there is no
way to distinguish the unconscious zombie from the conscious human, what point is there in
having a word to describe this difference? Only when you pinpoint the difference is there
any point in having a word to describe it.

Dennett cites vitalism, the idea that there is some extra special ingredient, an elan vital,
that breathes life into a collection of cells to support his stance. If you show me a collection
of cells that have the ability to replicate themselves, that meows and purrs like a cat, and
then declare that it isn’t actually alive, you would have a very hard time convincing me that
you are correct. Some believe that arguments over consciousness will go the same way as
those over vitalism, which came into being as an attempt to explain how a physical system
could do the things associated with a living organism: reproduce, self-organize, adapt. Once



the mechanisms were explained, we had solved the problem of life and no elan vital was
needed. But in the case of consciousness, some believe that the question of how physical
stuff produces a subjective experience cannot by its very nature be answered
mechanistically.

With the advent of extraordinary new equipment and techniques, our internal world has
become less opaque. Mental activities are private, but their physical manifestations are
public. To what extent can I gain access to private thoughts by analyzing their traces? We
can probably get to the stage where I will know that you are thinking about Jennifer Aniston
rather than Pythagoras’s theorem just by looking at the neurons that are firing. But to get a
sense of what it feels like to be you—is that possible just by understanding the firing of
neurons? Will I ever be able to distinguish the conscious from the zombie?

My gut has as many as a hundred million neurons, 0.1 percent of the neurons in my
brain, yet it isn’t conscious. Or is it? How can I be certain that it doesn’t actually have a
distinct consciousness? My stomach might start communicating with me, but does that
communication imply it is conscious? I might scan it, probe it with electrodes, discover that
the wiring and firing are a match for a cat brain that has as many neurons, but is that as far
as we can go?

The question of how we can definitively distinguish the zombies from the conscious may
be one of the great unknowns—the unanswerable questions of science. The question that I
put to my smartphone at the beginning of this Edge hints at the challenge ahead. Was it the
zombie chatbot who wanted to become a poet, or did it want to become rich? Is it clever
enough to make a joke about Descartes’s “I think, therefore I am?” Will it eventually start
dating? Who is the zombie and who is conscious?

As we finished our Skype chat, Koch conceded that there was no guarantee we would
ever know how to determine consciousness.

“There is no law in the universe which says we have the cognitive power to explain
everything. If we were dogs—I mean, I love my dog—my dog is fully conscious, but my
dog doesn’t understand taxes, it doesn’t understand special relativity, or even the simplest
differential equation. I really dislike it when people say you will never know this. Yes,
there’s no guarantee. But it’s a really defeatist attitude, right? I mean, what sort of research
program is it, Marcus, where you throw up your hands and say forget about it, I can’t
understand it ever, it’s hopeless? That’s defeatism.”

With that clarion call not to give up trying to answer life’s unanswerable questions we
ended our Skype call. Koch’s face vanished from my screen, leaving me with a slightly
uneasy feeling. Was I sure it had been Koch at the other end of the line? Or had he devised
some algorithmically generated avatar to handle my onslaught of inquiries? Our
conversation had presented so many tantalizing possibilities.
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Number is the ruler of forms and ideas and the cause of gods
and demons.

—Pythagoras

HRISTMAS DINNER IN ENGLAND consists of turkey, a flaming Christmas pudding, and
Christmas crackers, colorfully decorated tubes that explode with a bang as two diners

pull each end to reveal a toy, a joke, and a tissue paper crown that is then worn throughout
the dinner. Bored of the uninspiring range of Christmas crackers available in the shops, I
decided this year to treat my family to my very own homemade mathematical crackers.
Each one included a math joke and a paradox. My children were of the unanimous opinion
that the jokes were stronger on the mathematics than the humor. I’ll let you decide . . . How
many mathematicians does it take to change a lightbulb? 0.99999 recurring. And if you’re
not laughing, don’t worry. My family wasn’t either. If you don’t get it, then—although you
should never have to explain a joke—the point is that you can prove that 0.9999 recurring is
actually the same number as 1.

The paradoxes were a little less lame. One contained a Möbius strip, a seemingly
paradoxical geometric object that has only one side. If you take a long strip of paper and
twist it before gluing the ends together, the resulting shape has only one side. You can check
this by trying to color the sides: start coloring one side and you soon find you’ve colored the
whole thing. The strip has the surprising property that if you cut it down the middle, it
doesn’t come apart into two loops, as you might expect, but remains intact. It’s still a single
loop but with two twists in it.

The cracker I ended up with wasn’t too bad, if I say so myself. The joke was quite
funny. What does the B in Benoit B. Mandelbrot stand for? Benoit B. Mandelbrot. If you
still aren’t laughing, the thing you’re missing is that Mandelbrot discovered the fractals that
were featured in my First Edge, those geometric shapes that never get simpler, however
much you zoom in on them. And the paradox was one of my all-time favorites. It consisted
of two statements, one on either side of a card, as follows:

The statement on the other side of this card is false.
The statement on the other side of this card is true.

I’ve always enjoyed and in equal measure been disturbed by word games of this sort.
One of my favorite books as a kid was called What Is the Name of This Book? It was
stuffed full of crazy word games that often exploited the implications of self-reference.

I have learned not to be surprised by sentences that give rise to paradoxes like the one
captured by the circular logic of the two sentences on the card in my Christmas cracker.
Just because you can form a meaningful sentence doesn’t mean it is true or false. I think



the slippery nature of language is one of the reasons that I was drawn toward the
certainties of mathematics, where this sort of ambiguity was not tolerated. But, as we shall
discover in this Edge, my cracker paradox was used by one of the greatest mathematical
logicians of all time, Kurt Gödel, to prove that even my own subject contains true statements
about numbers that we will never be able to prove are true.

SCIENCE VERSUS MATH

The desire for certainty, to know—to really know—was one of the principal reasons why I
chose mathematics over the other sciences. In science, the things we think we know about
the universe are models that match the data. To qualify as scientific, the model must be
capable of potentially being falsified or proved wrong. A theory can only survive if all
evidence supports it. As soon as evidence is discovered that contradicts the model, we must
change our theory. By its very nature, a scientific theory is thus something that can
potentially be thrown out. So how can we ever truly know we’ve got it right?

We thought the universe was static, but then new discoveries revealed that galaxies
were racing away from us. We thought the universe was expanding at a rate that was
slowing down, given the drag of gravity, but then we discovered that the expansion was
accelerating. We modeled this with the idea of dark energy pushing the universe apart, and
that model waits to be falsified. Eventually, we may well hit on the right model of the
universe, but we’ll never know for sure.

One of the exciting things about science is that it is constantly evolving—there are
always new stories. I sometimes feel rather sorry for the old stories that fade into
irrelevance. Of course, the new stories grow out of the old. As a scientist you live with the
fear that your theory may be the flavor of the moment, winning prizes only to be suddenly
superseded, like the plum pudding model of the atom, or the idea of absolute time. These are
no longer atop the science bestseller list. They have been replaced by new stories.

The model of the universe I read about as a schoolkid has been completely rewritten.
The same cannot be said of the mathematical theorems I learned. They are as true now as
they were the day I first read them and the day they were first discovered, sometimes as
long as two thousand years ago. As an insecure, spotty teenager, I found that certainty
attractive. That’s not to say that mathematics is static. It is constantly growing as unknowns
become known; but the knowns remain known and robust, and form the first pages in the
next great story. Why is the process of attaining mathematical truth so different from that
faced by the scientist who can never really know?

The all-important ingredient in the mathematician’s cupboard is the proof.

PROOF: THE PATH TO TRUTH

Archeologists have found evidence of people doing math as far back as the second
millennium BC. Clay tablets in Babylon and papyri in Egypt show sophisticated calculations
and puzzles being solved: estimates for π, the formula for the volume of a pyramid,



algorithms to solve quadratic equations. But in general, these documents describe
procedures that can be applied to particular problems to derive solutions. We don’t find
justification for why these procedures should always work, beyond the evidence that it’s
worked in the thousands of examples that have been documented in the clay tablets to date.
Mathematical knowledge was originally based on experience and had a more scientific
flavor to it. Procedures were adapted if a problem cropped up that wasn’t amenable to the
current algorithm.

Then, around the fifth century BC, things began to change as the ancient Greeks got
their teeth into the subject. The algorithms started to come with arguments to justify why
they would always do what it says on the tin or tablet. It isn’t simply that it’s worked the last
thousand times, so it will probably work the next time too—the argument explains why the
proposal will always work. The idea of proof was born.

Thales of Miletus is credited with being the first known author of a mathematical proof.
He proved that if you take any point on the circumference of a circle and join that point to
the two ends of a diagonal across the circle, then the angle you’ve created is an exact right
angle. It doesn’t matter which circle you choose or what point on the circle you take, the
angle is always a right angle. Not approximately, and not because it seems to work for all
the examples you’ve drawn, but because it is a consequence of the properties of circles and
lines.

Thales’s proof takes a reader from things they are confident are true and, by a clever
series of logical moves, arrives at this new point of knowledge, which is not one that you
would necessarily think obvious just from looking at a circle. The trick is to draw a third line
going from the initial point B on the circle to the center of the circle at O.

Why does this help? Now you have two triangles with two sides of equal length. This
means that in both triangles the two angles opposite the center of the circle are equal. This
is something that has already been proved about such triangles. Take the larger triangle you
originally drew. Its angles add up to 2α + 2β. Combine this with the knowledge that a
triangle has angles adding up to 180 degrees, and we know that α + β must be 90 degrees,
just as Thales asserted.

When I first saw this proof as a kid it gave me a real thrill. I could see from the pictures
that the angle on the circle’s edge looked like a right angle. But how could I know for sure?
My mind searched for some reason why it must be true. And then as I turned the page and
saw the third line Thales drew to the center of the circle, and took in the logical implications



that flowed from that, I suddenly understood with thunderous clarity why that angle must
indeed be 90 degrees.

Note that already in this proof you see how the mathematical edifice is raised on top of
things that have already been proved, things like the angles in a triangle adding up to 180
degrees. Thales’s discovery in turn becomes a new block on which to build the next layer of
the mathematical edifice.

Thales’s proof is one of the many to appear in Euclid’s Elements, the book many regard
as the template for what mathematics and proof are all about. The book begins with a few
basic building blocks or axioms, statements of geometry that seem so blindingly obvious that
you are prepared to accept them as secure foundations on which to start building logical
arguments.

The idea of proof wasn’t created in isolation. It emerged alongside a new style of
writing that developed in ancient Greece. The art of rhetoric, formulated by the likes of
Aristotle, provided a new form of discourse aimed at persuading an audience. Whether in a
legal context or political setting, or simply the narrative arc of a story, audiences were taken
on a logical journey as the speaker attempted to convince listeners of his position. Just as
mathematics emerged in Egypt and Babylon to support the building and measuring of new
cities growing up around the Euphrates and Nile, logic and rhetorical argument emerged
from the political institutions of Greece’s flourishing city-states.

Aristotle defined rhetoric as a combination of pure logic and strategic emotional
manipulation. Mathematical proofs are more logic than emotion, but a proof is also about
storytelling. The development of the proof at this time and place probably had as much to do
with the sophisticated narratives of Sophocles and Euripides as with the philosophical
dialogues of Aristotle and Plato. The mathematical explorations of the Greeks moved
beyond functional algorithms for building and surveying to surprising and exciting
discoveries.

A proof is a logical story that takes a reader from a place they know to a new
destination. Like Frodo’s adventures in J.R.R. Tolkien’s Lord of the Rings, it describes the
journey from the Shire to Mordor. Within the boundaries of the familiar land of the Shire are
our well-known axioms, the self-evident truths about numbers, together with those
propositions that have already been proved. This is the setting for the beginning of the quest.
The rules of mathematical deduction, like the legitimate moves of a chess piece, establish
the steps you are permitted to take through this world. At times you arrive at what looks like
an impasse and will need to take a lateral step, moving sideways or even backward to find a
way around. Sometimes you need to wait centuries for new mathematical characters like
imaginary numbers or calculus to be created so you can continue on your journey. The proof
is the map charting the coordinates of your journey. It is the mathematician’s log.

To earn its place in the mathematical canon it isn’t enough that the journey produces a
true statement about numbers or geometry. It needs to surprise, delight, move the reader. It
should contain drama and jeopardy. Mathematics is distinct from the collection of all true
statements about numbers, just as literature is not the set of all possible combinations of
words or music all possible combinations of notes. Mathematics involves aesthetic judgment
and choice. This is probably why the art of the mathematical proof grew out of a period
when the art of storytelling was flourishing. Proof probably owes as much to the pathos of
Aristotle’s rhetoric as to its logos.



L

NUMBERS AT THE EDGE

While many of the first geometric proofs are constructive, the ancient Greeks also used
their new mathematical tools to prove that certain things are impossible, that they lay
beyond knowledge. The discovery, as we saw, that the square root of 2 cannot be written as
a fraction is one such striking example.

The proof has a narrative quality to it, and at first one assumes that we will reach our
hypothetical destination of expressing the square root of 2 as a fraction. As the story
innocently unfolds, one gets sucked further and further down the rabbit hole until finally a
completely absurd conclusion is reached: odd numbers are even and vice versa. The moral
of the tale is that the imaginary fraction representing the square root of 2 must be an
illusion. (If you would like to take a trip down the rabbit hole, the story is reproduced in the
box below.

For those encountering a number like the square root of 2 for the first time, it must have
seemed like something that by its nature was incomprehensible. To know a number was to
write it down, to express it in terms of other numbers you knew. But here was a number
that seemed to defy any attempt to record its value.

Proof of the Irrationality of the Square Root of 2

et L be the length of the hypotenuse of a right-angled triangle w hose short sides are both of length 1
unit. Pythagoras’s theorem implies that a square placed on the hypotenuse w ill have the same area as

the sum of the area of squares placed on the tw o smaller sides. But these smaller squares each have area
1 w hile the larger square has area L2. Therefore L is a number w hich, w hen squared, gives you 2.

Suppose L is actually equal to a fraction L = p/q.
We can assume that one of p or q is odd. If  they are both even, w e can keep dividing both top and

bottom by 2 until one of the numbers becomes odd.
Since L2 = 2, it follow s that p2/q2 = 2.
Multiply both sides by q2: p2 = 2 x q2.
So is p odd or even? Well p2 is even, so p must be even because odd times odd is still odd. So p = 2 x n

for some number n. Since p is even, that means that q must be the odd number. But hold on . . .
2 x q2 = p2 = (2 x n)2 = 2 x 2 x n2,
so w e can divide both sides of the equation by 2 to get
q2 = 2 x n2.
Remember that w e’d w orked out that q w as the odd number.
So q2 is also odd. But the right-hand side of this equation is an even number! So if  L is expressible as a

fraction it w ould imply that odd = even. That’s clearly absurd, so our original assumption that L can be
w ritten as a fraction must have been false.

I think this is one of the most stunning proofs in mathematics. With just a f inite piece of logical argument
w e have show n there is a length that needs infinity to express it.

It was an extraordinary moment in the history of mathematics: the creation of a
genuinely new sort of number. You could have taken the position that the equation x2 = 2
doesn’t have any solutions. At the time, no known number could solve this equation
precisely. Indeed, it was really only in the nineteenth century that sufficiently sophisticated
mathematics was developed to make sense of such a number. And yet you felt it did exist.
You could see it—there it was, the length of the side of a triangle. Eventually,
mathematicians took the bold step of adding new sorts of numbers to our mathematical tool
kit so that we could solve these equations.

There have been other equations that seemed to defy solution, where the answer was
not as visible as the square root of 2, and yet we’ve managed to create solutions. Solving



the equation x + 3 = 1 looks easy from our modern perspective: x = –2. But the Greeks had
no conception of negative numbers. Diophantus refers to this sort of equation as absurd. For
Greek mathematicians like Diophantus, numbers were geometrical: they were real things
that existed, lengths of lines. There was no line such that if you extended it by three units it
would be one unit in length.

Other cultures were not so easily defeated by such an equation. In ancient China
numbers counted money, and money often involved debt. There certainly could be a
circumstance in which I could add three coins to my purse, only to find I had one coin left.
A debt to a friend could be responsible for swallowing two of the coins. In 200 BC Chinese
mathematicians depicted their numbers using red sticks; but if they represented debts, they
used black sticks. This is the origin of the term “going into the red,” although somewhere
along the line for some reason the colors were swapped.

It was the Indians, in the seventh century AD, who first successfully developed a theory
of negative numbers. Brahmagupta even deduced some of the important mathematical
properties of these numbers—for example, that “a debt multiplied by a debt is a fortune,” or
minus times minus is plus. Interestingly, this isn’t a rule; it’s a consequence of an axiom. It is
a fun challenge to prove why this must be so. It took Europeans until the fifteenth century to
be convinced of the existence of negative numbers. Their use was at first so disruptive that
they were banned in thirteenth-century Florence.

Over the centuries new numbers continued to appear, as mathematicians were faced
with the challenge of solving an equation like x2 = –1. At first sight, it seems impossible.
After all, if I take a positive number and square it, the answer is positive, and, as
Brahmagupta proved, a negative number squared is also positive. When mathematicians in
the Renaissance encountered this equation, their first reaction was to assume it was
impossible to solve. Then Italian mathematician Rafael Bombelli took the radical step of
supposing there was a new number that had a square equal to –1, and he found that he
could use this new number to solve a whole host of equations that had been thought
unsolvable. Interestingly, this mysterious number would sometimes be needed only in the
intermediate calculations and would disappear from the final answer, leaving ordinary
numbers that people were familiar with that clearly solved the equation at hand.

It was like mathematical alchemy, but many refused to admit Bombelli’s new number
into the canon of mathematics. Descartes wrote about them in a rather derogatory manner,
dismissing them as imaginary numbers. As time went on, more mathematicians realized
their power and appreciated the fact that they didn’t seem to give rise to any contradictions
if they were admitted. It wasn’t until the beginning of the nineteenth century that imaginary
numbers truly found their place in mathematics, thanks in part to a picture that helped
mathematicians to visualize them.

Ordinary numbers (or what mathematicians now call real numbers) were laid out along
the number line running horizontally across the page. The imaginary numbers like i, the
name given to the square root of –1, and multiples of i were pictured on the vertical axis.
This two-dimensional picture of the imaginary or complex numbers was instrumental in their
acceptance. The potency of this picture was demonstrated by the discovery that its
geometry reflected the arithmetic of the numbers.



So are there even more numbers out there beyond the edge that we haven’t yet
discovered? I might try writing down more strange equations in the hope that I get more
new numbers. For example, what about the equation x4 = –1?

Perhaps to solve this equation I’ll need even more new numbers. But one of the great
theorems of the nineteenth century, now called the Fundamental Theorem of Algebra,
proved that using the imaginary number i and real numbers, I can solve any equation built
out of powers of x that I want. For example, if I take

and raise it to the power of 4, then the answer is –1. The edge had been reached beyond
which no new numbers would be found by trying to solve equations.

PROVING THE IMPOSSIBLE

The ancient Greek proof of the irrationality of the square root of 2 was the first of many
mathematical proofs to show that certain things are impossible. Another proof of the
impossible was the concept of “squaring the circle,” a concept that has entered many
languages as an expression of impossibility. Squaring the circle was a geometric challenge
that the ancient Greeks enjoyed trying to crack, using a ruler (without measurements) and a
compass (to make the arcs of circles). They discovered clever ways to use these tools to



draw perfect equilateral triangles, pentagons, and hexagons, but never managed to square a
circle.

Squaring the circle involves trying to construct from any given circle a square whose
area is the same as that of the circle you started with. Try as hard as the Greeks could, the
problem stumped them.

A similarly impossible challenge was posed by the oracle of the island of Delos.
Residents of Delos had consulted the oracle to get advice about how to defeat a plague that
the god Apollo had sent down upon them. The oracle replied that they must double the size
of the altar to Apollo. The altar was a perfect cube. They could have just put two copies of
the cube side by side to make a rectangular box, but that was too easy. Plato interpreted this
as a challenge by the oracle to construct, using straight edge and compass, a second perfect
cube whose volume was double the volume of the first cube.

If the second cube is double the volume of the first, this means the sides have lengths
that are the cube root of twice the length of the first cube. The challenge, therefore, was to
construct a length equal to the cube root of 2. Constructing a length that is the square root
of 2 was easy, since it is the diagonal of a unit square; but the cube root of 2 turned out to
be so difficult that the residents of Delos could not solve the problem. Perhaps the oracle
wanted to distract the Delians with geometry to divert their attention from the more pressing
social problems they faced as a result of the plague.

Doubling the cube, squaring the circle, and a third classical problem, trisecting the angle,
all turned out to be impossible. But it wasn’t until the nineteenth century that
mathematicians could prove beyond a doubt that this was the case. The development of
group theory by the French revolutionary Evariste Galois in the 1820s—a language for
understanding symmetry that I use in my own research—held the key to proving the
impossibility of these geometric constructions. It turns out that the only lengths that can be
constructed by a ruler and compass are those that are solutions to certain types of algebraic
equation.

In the case of squaring the circle, the challenge requires you to produce, using a ruler
and compass, a straight line of length √π. But it was proved in 1882 that π is not only an
irrational number but also a transcendental number, which means it isn’t the solution to any
algebraic equation. This in turn means that it is impossible to square the circle.

Mathematics is remarkably good at proving when things are impossible. One of the
most celebrated theorems on the mathematical books is Fermat’s Last Theorem, which
states that it is impossible to find any whole numbers that will solve any of the equations xn

+ yn = zn, where n is greater than 2. By contrast, n = 2 is easy, as it corresponds to the
equation Pythagoras produced from his right-angled triangles. If n = 2, there are many
solutions, for example, 32 + 42 = 52. In fact, there are infinitely many solutions, and the
ancient Greeks found a formula to produce them all. But it is often much easier to find a
solution than to prove that you will never find one.

Fermat famously thought he had found an argument that proved that his equations had
no solutions. He scribbled in the margin of his copy of Diophantus’s Arithmetica that the
margin was too small for his remarkable proof. Then he died without ever elaborating. It
took 350 years before my Oxford colleague Andrew Wiles finally produced a convincing
argument to explain why you will never find whole numbers that solve Fermat’s equations.
Wiles’s proof runs to more than one hundred pages, in addition to the thousands of pages of
preceding theory that it is built on. So even a very wide margin wouldn’t have sufficed.



The proof of Fermat’s Last Theorem is a tour de force. I regard it as a privilege to
know the man who cracked it and to have been alive when the final pieces of the proof
were put in place.

Before Wiles had shown the impossibility of finding a solution, there was always the
prospect that maybe there were some sneaky numbers out there that did solve one of these
equations. I remember a great April Fool’s joke that went around the mathematical
community around the same time as Wiles announced his proof. The punchline was that a
respected number theorist at Harvard, Noam Elkies, had produced a nonconstructive proof
that solved Fermat’s equations. It was a cleverly worded April Fool’s e-mail because the
“nonconstructive” bit meant he couldn’t explicitly say what the numbers were, just that his
proof implied there must be a solution. Most people were forwarded the e-mail several days
after the joke first started its rounds, and so had no clue it was a joke!

April Fool’s or not, the mathematical community had spent 350 years not knowing
whether there was a solution. But finally Wiles put us out of our misery. His proof means
that, however many numbers I try, I’ll never find three that make Fermat’s equations work.

RUNNING OUT OF NEURONS

We are living in a golden age of mathematics, a time when some of the great unsolved
problems have finally been cracked. In 2003, Russian mathematician Grigori Perelman
proved the Poincaré conjecture, one of the great challenges of geometry. But there are still
many statements about numbers and equations whose proofs elude us: the Riemann
hypothesis, the twin primes conjecture, the Birch–Swinnerton-Dyer conjecture, Goldbach’s
conjecture.

In my own research I have dedicated the last twenty years to trying to settle whether
something called the PORC conjecture is true or not. The PORC conjecture was
formulated more than fifty years ago by Oxford mathematician Graham Higman, who
believed that the number of symmetry groups with a given number of symmetries should be
given by nice polynomial equations (this is what the P in PORC stands for). For example,
the number of symmetry groups with p6 symmetries, where p is a prime number, is given by
a quadratic expression p2 + 39p + c (where c is a constant that depends on the remainder
you get on dividing p by 60).

My own research has cast real doubts on whether this conjecture is true. I discovered a
symmetrical object with p9 symmetries whose behavior suggests something very different
to what was predicted by Higman’s conjecture. But it doesn’t completely solve the problem.
There is still a chance that other symmetrical objects with p9 symmetries could smooth out
the strange behavior I unearthed, leaving Higman’s conjecture true. So at the moment, I
don’t know whether this conjecture is true, and Higman, alas, died before he could know. I
am desperate to know before my finite time on earth comes to an end, and it is questions
like this that drive my mathematical research.

I sometimes wonder, as I get lost in the seemingly infinite twists and turns of my
research, whether my brain will ever have the capacity to crack the problem I am working
on. In fact, mathematics can be used to prove that there are mathematical challenges



beyond the physical limitations of the human brain, with its eighty-six billion neurons
connected by more than a hundred trillion synapses.

Mathematics is infinite. It goes on forever. Unlike chess, which has an estimated 1010 50

possible different games, the provable statements of mathematics are infinite in number. In
chess, pieces are taken, games are won, and sequences are repeated. Mathematics, though,
doesn’t have an endgame, which means that even if I get my eighty-six billion neurons firing
as fast as they physically can, there are only a finite number of logical steps that I will be
able to make in my lifetime, and therefore only a finite amount of mathematics that I can
ever know. What if my PORC conjecture needs more logical steps to prove than I will ever
manage in my lifetime?

Even if we turned the whole universe into a big computer, there are limits to what it
could ever know. In his paper “Computational Capacity of the Universe,” Seth Lloyd
calculates that since the Big Bang the universe cannot have performed more than 10120

operations on a maximum of 1090 bits. This means that at any point in time, the universe can
only know a finite amount of mathematics. You might ask, what is the universe calculating?
It’s actually computing its own dynamical evolution. Although this is a huge number, it is still
finite. It means that we can prove computationally that at any point in time, there will
always be things that the observable universe will not know.

But it turns out that mathematics has an even deeper layer of unknown. Even if we had
a computer with infinite capacity and speed, there are things it would never know. A
theorem proved in 1930 has raised the horrific possibility that even a computer with this
infinite capacity may never know whether my PORC conjecture is true. Called Gödel’s
incompleteness theorem, it shook mathematics to the core. Gödel proved that within any
axiomatic framework for mathematics there are mathematically true statements that we will
never be able to prove are true within that framework. A mathematical proof that there are
things beyond proof—mathematics beyond the edge.

When I learned about this theorem at university, it had a profound effect on me. Despite
my own physical limitations, I grew up with the comforting belief that, at least theoretically,
there was a proof out there that would demonstrate whether the Riemann hypothesis was
true or not. One of my mathematical heroes, the Hungarian Paul Erdős, used to speak
affectionately about proofs from “The Book.” This was where Erdős believed God kept the
most elegant proofs of each mathematical theorem. The challenge for a mathematician is to
uncover the proofs in The Book. As Erdős joked in a lecture he gave in 1985, “You don’t
have to believe in God, but you should believe in The Book.” Erdős himself doubted the
existence of God, dubbing him the Supreme Fascist and holding him responsible for hiding
his socks and passport. But I think most mathematicians accept the metaphor of The Book.
The trouble was, the proof of Gödel’s incompleteness model, which I learned about in my
university course on mathematical logic, proved that there were pages missing from The
Book, pages that even the Supreme Fascist did not possess.

PARALLEL UNIVERSES

The revelation that there were mathematical statements beyond the limits of proof was
sparked by the realization that one of Euclid’s axioms was not as axiomatic as had been



thought.
An axiom is a premise or starting point for any logical train of thought. In general, an

axiom is meant to express a self-evident truth that is accepted as true without the need for
proof. For example, I believe that if I take two numbers and add them together, I will get the
same answer regardless of the order of the equation. If I take 36 and add 43, I won’t get a
different answer than if I start with 43 and add 36. You might ask how I know that this will
always be true. Perhaps something weird happens if I take really large numbers and add
them together. What mathematics does is to make deductions from axioms. If the way we
count things in the universe does something weird, we just have to accept that the
mathematics that we have developed from this axiom is not applicable to the way physical
numbers work in the universe. We would then develop a new number theory based on
numbers that satisfy a different fundamental set of axioms.

Although most of the axioms that Euclid used to deduce his theory of geometry seemed
self-evident, there was one that mathematicians increasingly thought a bit suspicious.

The parallel postulate states that if you have a line and a point off that line, then there is
a unique line through the point that is parallel to the first line. This postulate certainly seems
logical if you are drawing geometry on a flat page. It is one of the axioms that is crucial to
Euclid’s proof that triangles have angles that add up to 180 degrees. Certainly any geometry
in which the parallel postulate is true will give rise to triangles with this property. But the
discovery in the nineteenth century of new sorts of geometry with no parallel lines, or with
many lines that could be drawn parallel, led mathematicians to the realization that Euclid’s
geometry was just one of a whole host of different possible geometries.

If I take the surface of a sphere—a curved geometry—then lines confined to this
surface are not straight, but bend. Take two points on the surface of the Earth for example,
and as anyone who has flown across the Atlantic knows, the shortest path between these
two points won’t match the line you would draw on a flat atlas. This is because the line
between these two points is part of a circle, like a line of longitude that divides the sphere
perfectly in half. Indeed, if one of the points is a North or South Pole, then the line would be
a longitudinal line. All lines in this geometry are just longitudinal lines that are moved around
the surface so that they pass through the two points you are interested in. They are called
great circles. But now if I take a third point off this great circle, there is no way to arrange
another great circle through the third point that won’t intersect the first. So here is a
geometry that doesn’t have parallel lines.

Consequently, any proof that depends on the parallel postulate won’t necessarily be true
in this new geometry. Take the proof that angles in a triangle add up to 180 degrees. This
statement depends on the geometry satisfying the parallel postulate. But this curved
geometry doesn’t. And indeed, this geometry contains triangles whose angles add up to
more than 180 degrees. Take the North Pole and two points on the equator and form a
triangle through these three points. Already the two angles at the equator total 180 degrees,
so the total of all three angles will be greater than 180 degrees.



A triangle w hose angles add up to more than 180 degrees

Other geometries were discovered in which there was not just one but many parallel
lines through a point. In these geometries, called hyperbolic, triangles have angles that add
up to less than 180 degrees. These discoveries didn’t invalidate any of Euclid’s proofs;
mathematical breakthroughs only enrich rather than destroy previous knowledge. But the
introduction of these new geometries in the early nineteenth century nonetheless caused
something of a stir. Indeed, some mathematicians felt that a geometry that didn’t satisfy
Euclid’s axiom about parallel lines must contain some contradiction that would lead to that
geometry being thrown out. But further investigation revealed that any contradiction
inherent in these new geometries would imply a contradiction at the heart of Euclidean
geometry.

Such a thought was heresy. Euclidean geometry had not produced a contradiction for
two thousand years. But hold on . . . this is beginning to sound like the way we do science!
Surely mathematics should be able to prove that Euclidean geometry won’t give rise to
contradictions. We shouldn’t just rely on the fact that it’s worked up to this point. That’s
how the scientists in the labs across the road work. We mathematicians should be able to
prove that our subject is free of contradictions.

WHAT IS THE NAME OF THIS SECTION?

When, at the end of the nineteenth century, mathematical set theory produced strange
results that seemingly led to unresolvable paradoxes, mathematicians began to take more
seriously this need to prove our subject as free of contradictions. The British philosopher
Bertrand Russell came up with a number of these worrying paradoxes. He challenged the
mathematical community with the set of all sets that don’t contain themselves as members.
Was this new set a member of itself? The only way you could be in this new set was if you
were a set that didn’t contain you as a member. But as soon as this set entered the new set,
suddenly it is (of course) a set that contains itself as a member. Arrgh! There seemed no
way to resolve this paradox.

Russell came up with a few more prosaic examples of this sort of self-referential
paradox. For example, he imagined an island on which a law decreed that the barber had to
shave all those people who didn’t shave themselves—and no one else. The trouble is that
this law leads to a paradox—can the barber shave himself? No, since he is allowed only to



shave those who don’t shave themselves. But then he qualifies as someone who must be
shaved by the barber. Arrgh, again! The barber has taken the role of the set Russell was
trying to define, the set of all those sets that don’t contain themselves as members.

I think my favorite example of all these paradoxes is the puzzle of describing numbers.
Suppose you consider all the numbers that can be defined using fewer than twenty words
taken from the Oxford English Dictionary. For example, 1,729 can be defined as “the
smallest number that can be written as the sum of two cubes in two different ways.” Since
there are only finitely many words in the Oxford English Dictionary and we can use only
a maximum of twenty words, we can’t define every number in this way, as there are
infinitely many numbers and only finitely many sentences with fewer than twenty words. So
there is a number defined as follows: “the smallest number that cannot be defined in fewer
than twenty words from the Oxford English Dictionary.” But hold on . . . I just defined it
in fewer than twenty words. Arrgh!

Natural language is prone to throw up paradoxical statements. Just putting words
together doesn’t mean they make sense or have a truth value. But the worrying aspect to
Russell’s set of all sets that don’t contain themselves is that it is very close to the sorts of
things we might want to define mathematically.

Mathematicians eventually found a way around this paradoxical situation, which
required refining the intuitive idea of a set, but it still left a worrying taste in the mouth. How
many other surprises were in store? When the great German mathematician David Hilbert
was asked to address the International Congress of Mathematicians in 1900, he decided to
set out the twenty-three greatest unsolved problems facing mathematicians in the twentieth
century. Proving that mathematics was free of contradictions was second on his list.

In his speech, Hilbert boldly declared what many believed to be the mantra of
mathematics: “This conviction of the solvability of every mathematical problem is a
powerful incentive to the worker. We hear within us the perpetual call. There is the
problem. Seek its solution. You can find it by pure reason, for in mathematics there is no
ignorabimus.” In mathematics there is nothing that we cannot know. A bold statement
indeed.

Hilbert was reacting to a growing movement at the end of the nineteenth century that
held that there were limits to our ability to understand the universe. The distinguished
physiologist Emil du Bois-Reymond had addressed the Berlin Academy in 1880, outlining
what he regarded as seven riddles about nature that he believed were beyond knowledge,
declaring them “ignoramus et ignorabimus.” Things we do not know and we will never
know.

In the light of my attempt to understand what questions may be beyond knowledge, it is
interesting to compare my list with the seven riddles presented by du Bois-Reymond:

1. The ultimate nature of matter and force.
2. The origin of motion.
3. The origin of life.
4. The apparent teleological arrangements of nature.
5. The origins of simple sensations.
6. The origins of intelligent thought and language.
7. The question of free w ill.

Du Bois-Reymond believed that riddles 1, 2, and 5 were truly transcendent. The first
two are very much still at the heart of the questions we considered in the first few Edges.



The teleological arrangement of nature refers to the question of why the universe seems so
fine-tuned for life, something that still vexes us today. The idea of the multiverse is our best
answer to this riddle. The last three riddles were the subject of the previous Edge, which
probed the limits of the human mind. The riddle about the origin of life is the only one that
we have made some headway on. Despite amazing scientific progress in the last hundred
years, the other six problems still appear to be beyond the limits of knowledge.

Hilbert was not going to admit mathematical statements to the list of du Bois-
Reymond’s riddles. Thirty years later, on September 7, 1930, when Hilbert returned to his
hometown of Königsberg to be made an honorary citizen, he ended his acceptance speech
with the clarion call to mathematicians:

For the mathematician there is no Ignorabimus, and, in my opinion, not at all for natural science
either. . . . The true reason w hy no one has succeeded in f inding an unsolvable problem is, in my
opinion, that there is no unsolvable problem. In contrast to the foolish Ignorabimus, our credo avers: Wir
müssen w issen. Wir w erden w issen. [We must know. We shall know.]

When he said this, Hilbert was unaware of the startling announcement that had been
made at a conference in the same town of Königsberg the day before the ceremony. It
turns out that mathematics does contain ignorabimus. A twenty-five-year-old Austrian
logician by the name of Kurt Gödel had proved that it was impossible to prove whether
mathematics was free of contradictions. And he went even further. Within any axiomatic
framework for mathematics, there will be true statements about numbers that you can’t
prove are true within that framework. Hilbert’s directive—“Wir müssen wissen. Wir
werden wissen.”—would eventually find its rightful place: on his gravestone. Mathematics
would have to face up to the revelation that it too had unsolvable riddles.

THE NEXT SENTENCE IS FALSE

The title of this section is true.
It was self-referential statements like the two above and the one I found in my cracker

last Christmas that Gödel tapped into for his devastating proof that mathematics had its
limitations.

Although sentences may throw up paradoxes, we expect statements about numbers to
be either true or false. Gödel was intrigued by the question of whether you could exploit the
idea of self-reference in mathematical statements. He wanted to show that within any
axiomatic system there would always be true statements about numbers that couldn’t be
proved from these axioms. It’s worth pointing out that you can try to set up different sets of
axioms to try to capture how numbers work. Hilbert’s hope was that mathematicians could
construct a system from which we could prove all mathematical truths. Gödel found a way
to scupper this hope.

He began by producing a code that assigned to every meaningful statement about
numbers its own code number. The advantage of this coding is that it would allow
mathematics to talk about itself.

According to Gödel’s code, any axiom will have its own code number. For example, the
axiom “if A = C and B = C, then A = B” has its own code number. But statements that can



be deduced from these axioms like “there are infinitely many primes” will also have their
own code numbers. Even false statements like “17 is an even number” will have a code
number.

These code numbers allowed Gödel to talk using the language of number theory about
whether a particular statement is provable within the system. The basic idea is to set up the
code in such a way that a statement is provable if its code number is divisible by the code
numbers of the axioms. It’s much more complicated than that, but this is a helpful
simplification.

To express the fact “The statement ‘There exist infinitely many primes’ can be proved
from the axioms of number theory” translates into “The code number of the statement
‘There exist infinitely many primes’ is divisible by the code numbers of the axioms of
number theory”—a purely mathematical statement about numbers that is either true or
false.

Hold your hats as I take you on the logical twists and turns of Gödel’s proof. He
decided to consider the statement S: “This statement is not provable.” Statement S has a
code number. Thanks to Gödel’s coding, S is simply a statement about numbers. Either the
code number of S is divisible by the code numbers of the axioms or it isn’t. It must either be
true or false. It can’t be both, or it would contradict our assumption that the system doesn’t
lead to contradictions.

Suppose there is a proof of S from the axioms of number theory. This implies that the
code number of S is divisible by the code number of the axioms. But a provable statement is
true. If we now analyze the meaning of S, this gives us the statement that the code number
of S is not divisible by the axioms. A contradiction. But we are assuming that mathematics
doesn’t have contradictions. Unlike my Christmas cracker paradox, there has to be a way
out of this logical conundrum.

The way to resolve this is to realize that our original assumption is false—we can’t
prove S is true from the axioms of number theory. But that is exactly what S states. So S is
true. We have managed to prove that Gödel’s statement S is a true statement that can’t be
proved true.

One of the striking consequences of Gödel’s proof is that there is no way of rescuing
mathematics by making one of these unprovable statements into an axiom. You may think
that if the statement S is true but unprovable, why not just make it an axiom and then maybe
all true statements are provable? Gödel’s proof shows why, however many axioms you add
to the system, there will always be true statements left over that can’t be proved.

Don’t worry if your head is spinning a bit from this logical dance. Despite having studied
the theorem many times, I’m always left a bit dizzy by the end of the proof. But the
implications are amazing. Gödel proved mathematically that mathematics has its limitations.
The intriguing thing is that the statement S is not unknowable. We’ve actually proved that it
is true. What Gödel showed is that it can’t be proved true within that axiomatic framework.

Gödel used this devastating revelation, called Gödel’s first incompleteness theorem, to
kill off Hilbert’s hope of a proof that mathematics was free of contradictions. If you could
prove mathematically that there were no contradictions, this could be used to give a proof
that the statement “This statement is not provable” is true. But that is a contradiction
because it says it can’t be proved. So any proof that mathematics is free of contradictions
would inevitably lead to a contradiction. We are back to our self-referential statements
again. The only way out of this was to accept that we cannot prove mathematically that



mathematics is free of contradictions. This is known as Gödel’s second incompleteness
theorem. Much to Hilbert’s horror, it revealed ignorabimus at the heart of mathematics.

Mathematicians are very attached to their belief that mathematics is free of
contradictions. If there were contradictions, how could we have come this far without the
edifice collapsing? We call a theory consistent if it is free of contradictions. The French
mathematician André Weil summed up the devastating implications of Gödel’s work: “God
exists since mathematics is consistent, and the Devil exists since we cannot prove it.”

Did Gödel’s revelations mean that mathematics was as open to falsification as any other
scientific theory? We might have hit on the right model, but just as with a model for the
universe or fundamental particles, it might suddenly fall to pieces under the weight of new
evidence.

For some philosophers there was something attractive about the fact that, although we
cannot prove Gödel’s statement S is true within the axiomatic system for number theory, we
have at least proved it is true by working outside the system. It seemed to imply that the
human brain was more than a mechanized computing machine for analyzing the world
mathematically. In a paper called “Minds, Machines and Gödel,” presented to the Oxford
Philosophical Society in 1959, philosopher John Lucas put forward the argument that if we
modeled the mind as a machine following axioms and the deductive rules of arithmetic, then,
as it churned away constructing proofs, at some point it would hit the sentence “This
statement is not provable” and would spend the rest of time trying to prove or refute it,
while we as humans could see that it was undecidable by understanding the content of its
meaning. “So the machine will still not be an adequate model of the mind . . . which can
always go one better than any formal, ossified, dead system can.”

It is an attractive argument. Who wouldn’t want to believe that we humans are more
than just computational devices, more than an app installed on some biological hardware? In
his recent research on consciousness, Roger Penrose used Lucas’s argument as a platform
for his belief that we need a new physics to understand what makes the mind conscious.
But although it is true that we acknowledge the truth of the statement “This statement is not
provable” by working outside the system, we are assuming that the system we were
working within to prove the truth of Gödel’s sentence is itself free of contradictions. And
this takes us to Gödel’s second incompleteness theorem: we can’t prove it.

Gödel’s statement—“This statement is not provable”—may seem a little esoteric from a
mathematical point of view. Surely the really interesting statements about numbers—the
Riemann hypothesis, Goldbach’s conjecture, the PORC conjecture—will not be unprovable?
For many years the hope remained for a number of mathematicians that only tortuous
Gödelian sentences would transcend proof. But then in 1977, Jeff Paris and Leo Harrington
came up with a bona fide mathematical statement about numbers that they could show was
true but unprovable within the classical axiomatic setup for number theory.

If you’ve made it this far in this chapter, you are now just about ready to get one of the
other jokes from my Christmas crackers. The only other thing you need to know to
understand it is that the linguist and philosopher Noam Chomsky made a distinction between
linguistic competence (the linguistic knowledge possessed by a culture) and linguistic
performance (the way the language is used in communication). The joke goes like this:

Heisenberg, Gödel, and Chomsky w alk into a bar. Heisenberg looks around the bar and says,
“Because there are three of us and because this is a bar, it must be a joke. But the question remains, is
it funny or not?”



Gödel thinks for a moment and says, “Well, because w e’re inside the joke, w e can’t tell w hether it
is funny. We’d have to be outside looking at it.”

Chomsky then looks at both of them and says, “Of course it’s funny. You’re just telling it w rong.”



W
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The eternal silence of these infinite spaces frightens me.

—Blaise Pascal, Pensées

E DISCOVERED in the Fourth Edge that there are limits to how far we can see and
explore. But I spend my life exploring a mental universe of mathematical truths.

Here I don’t need telescopes, spaceships, or microscopes. I have different tools for probing
the limits of this world. For a start, the question of infinity can be settled with the finite
equipment inside my head. Mathematics allows us to transcend barriers that prevent us
from exploring the edges of the physical universe. But are there limits to how far my finite
neurological tools can navigate the truths in this infinite universe of numbers? Before the
nineteenth century, “infinity” was synonymous with “beyond knowledge.” And yet ever
since the ancient Greeks concocted the dark art of mathematics, we humans have been
using our finite minds to navigate the infinite.

I can’t resist sharing another one of the mathematical jokes that burst out of our
Christmas crackers:

Teacher: What’s the biggest number?
Student: Seventy-three million and tw elve.
Teacher: What about seventy-three million and thirteen?
Student: Well, I w as close!

The ancient Greeks understood that numbers do not have an end, but this was different
from knowing that infinity genuinely existed. Aristotle made the distinction between potential
infinity and actual infinity. You can keep adding 1 to a number, but that is just a way to make
a finite thing bigger and bigger. To Aristotle, that didn’t actually make infinity. Even if the
Greeks couldn’t create an actual infinity, it is striking how nimbly they were able to use logic
to explore a potential infinity.

One of the first great proofs in Euclid’s Elements is the explanation that among the
universe of numbers there is an infinite number of indivisible numbers, which we call prime
numbers. Even today, this proof gives me a frisson of excitement—the idea that something
that outwardly looks infinite and intractable can nevertheless be understood.

You may ask, since you’ve admitted to the possibility that numbers are unlimited, why
should proving that there are infinitely many primes be so extraordinary? After all, knowing
there are infinitely many even numbers is not so surprising once you have admitted that
numbers go on forever. And yet it is the fact that we don’t genuinely understand the nature
of primes that makes the proof so surprising. It shows that the set of primes is infinite
without being able to say what they are. The question of whether the physical universe is
infinite might require a similar approach: a logical argument implying that it must go on
forever without our physically being able to see it.



For millennia, infinity has caused problems. Most regarded it as an expression of
something beyond our comprehension. Thomas Aquinas, the thirteenth-century Christian
theologian and philosopher, wrote:

The existence of an actual inf inite multitude is impossible. For any set of things one considers must be
a specif ic set. And sets of things are specif ied by the number of things in them. Now  no number is
infinite, for number results from counting through a set of units. So no set of things can actually be
inherently unlimited, nor can it happen to be unlimited.

Discussions of infinity were never too far removed from questions of theology. In the
fifth century, St. Augustine wrote in City of God that infinity was reserved for the mind of
God. He was dismissive of those who believed infinity was beyond even the mind of God:

Such as say that things infinite are past God’s know ledge may just as w ell leap headlong into this pit of
impiety, and say that God know s not all numbers. . . . What madman w ould say so? . . . What are w e
mean w retches that dare presume to limit his know ledge?

The medieval philosopher Oresme, who contemplated the idea that there might be
infinite space beyond the celestial sphere that encloses our universe, was also adept at
manipulating mathematical infinities. He was the first to prove the startling fact that if you
keep adding up the fractions 1 + 1⁄2 + 1⁄3 + 1⁄4 + . . . the answer can be as big as you want.
He was also one of the first to consider the idea that you might be able to compare the size
of different infinities. After all, if you compare the infinity of all whole numbers and the
infinity of even numbers then you could match every whole number with its double. Yet
Oresme concluded that comparing infinities was a dangerous move.

For centuries many felt that arguments of this sort proved that infinity could not really
exist. The fourteenth-century English cleric and mathematician Thomas Bradwardine used
a similar logic to prove that the world could not be eternal. If the world were eternal, he
argued, the number of female souls and the number of all souls would be infinite. If they
were infinite, you could match them up. But that would leave no room for the male souls.
Therefore, an infinity of souls led to a contradiction.

Galileo confronted a similar problem when contemplating the number of square
numbers. On the one hand, there are clearly more numbers that are not square numbers
than numbers that can be written as a square. The square numbers 1, 4, 9, 16, 25, . . . get
sparser and sparser, with more non-squares appearing between each successive square.
And yet wasn’t every number the square root of some square number? So from this
perspective every number could be paired with a square number, leading to the conclusion
that there were the same number of squares as of numbers.

Like Oresme before him, Galileo was flummoxed by this. As he wrote in the Two New
Sciences:

The diff iculties in the study of the infinite arise because w e attempt, w ith our f inite minds, to discuss
the infinite, assigning to it those properties w hich w e give to the f inite and limited; but this . . . is w rong,
for w e cannot speak of inf inite quantities as being the one greater or less than or equal to another.

Shortly after Galileo’s death, the now familiar symbol that represents infinity was
introduced. The symbol ∞ was first used by the English mathematician John Wallis in 1655.
He chose it to capture the idea that one could traverse the curve infinitely often.



For another two centuries, mathematicians were happy with the idea of a potential
infinity but not with the idea that infinity genuinely existed, which just seemed to cause too
many problems. As the nineteenth-century mathematician Carl Friedrich Gauss wrote in a
letter to his colleague Heinrich Christian Schumacher, “I protest against the use of infinite
magnitude as something completed, which is never permissible in mathematics. Infinity is
merely a way of speaking.”

Then, at the end of the nineteenth century, an intellectual shift occurred. Thanks to one
man’s finite brain, the infinite suddenly seemed to be within reach. For the nineteenth-
century German mathematician Georg Cantor, infinity was not simply a way of speaking. It
was a tangible mathematical object: “The fear of infinity is a form of myopia that destroys
the possibility of seeing the actual infinite, even though it in its highest form has created and
sustains us, and in its secondary transfinite forms occurs all around us and even inhabits our
minds.”

At the end of the nineteenth century many practicing scientists questioned the basic
facts of religion. But religious Georg Cantor embraced science and religion, and he wrote
with clarity about the influence of his faith on his mathematical ideas. His belief in God was
the foundational hypothesis from which he deduced that the infinite must exist: “One proof
is based on the notion of God. First, from the highest perfection of God, we infer the
possibility of the creation of the transfinite, then, from his all-grace and splendor, we infer
the necessity that the creation of the transfinite in fact has happened.”

Cantor’s proposal for navigating the infinite goes back to some of the ideas
contemplated by Oresme. Cantor suggested that we think of mathematicians as a tribe with
names for the numbers 1, 2, and 3, but beyond that every number was just called “lots,” the
tribe’s version of infinity. If two such tribes meet, they are still able to compare sizes and
judge whose tribe is bigger. Members of the first pair up with members of the second, and
whichever tribe has people unpaired has the biggest “lots.” If the tribes match up exactly,
then their “lots” are equal.

This is a good description of the mathematics of the animal kingdom: Animals probably
don’t have names for numbers. But they can still judge whose group is the biggest.
Developing a sense of size is key to their survival. If one group encounters another, they
need to assess quickly which one is bigger. Bigger they fight, smaller they flee. They don’t
need names for the numbers to make that comparison.

Using the idea of pairing objects, Cantor was able to propose a way of determining
whether two infinite sets were numerically identical. You might be tempted to think, for
example, that there are half as many even numbers as there are all numbers. But Cantor
showed, just as Oresme had suggested, that one can line up both sets of numbers so that
each number has its pair—1 is paired with 2, 2 with 4, 3 with 6, and n with 2n. So these two
sets are actually the same size. The tribe that arrives with even numbers on their backs will
be able to hold its own against a tribe made up of all numbers.

Oresme and Galileo offered a similar argument, but both were disturbed by the fact that
even numbers or square numbers are a subset of all numbers and should then in some sense
be the smaller set. Cantor believed that you only had to find one way to pair up sets to deem
them equal in size. For finite sets, if you tried pairing them up and couldn’t do it, no
reordering or rearranging would create a way of pairing everything up perfectly. But in the
case of the infinite, Cantor saw that rearranging the order of a set might help you find a
new way to pair them so that nothing was left over.



What about fractions? How big is that infinity? Cantor came up with an ingenious way
to compare all whole numbers with all fractions and prove that both sets are identical in
size. At first sight, this looks impossible: between each pair of whole numbers there are
infinitely many fractions. But there is a way to match all whole numbers perfectly with all
fractions so that no fractions are left unmatched.

It starts with a table containing all the fractions. The table has infinitely many rows and
columns. The nth column consists of a list of all the fractions 1/n, 2/n, 3/n, . . .

How did Cantor pair up the whole numbers with the fractions in this table? The trick is,
first of all, to wend a snake diagonally through the fractions in the table, as illustrated on the
next page. Then, in order to pair the whole numbers with all the fractions, what we do is
work our way along the path, pairing 1 with 1⁄1, 2 with 2⁄1, 3 with 1⁄2, 4 with 1⁄3. The number
9, for example, gets paired with ⅔, the ninth fraction that we meet as the snake slithers
through the table of fractions. Since the snake covers the whole table, every fraction will be
paired with some whole number.

It’s a beautiful and surprising argument. If I were cast away on a desert island and
allowed to take only eight theorems with me, Cantor’s snake would be one of them. How
remarkable to find a way to match up all fractions with whole numbers and show they have
the same order of magnitude!

COUNTING INFINITIES

It is beginning to look like all infinities are identical in size. Perhaps once a tribe has infinitely
many members it will never be beaten by another tribe. Now enter the new big-cheese tribe
whose members are labeled with all the possible decimal expansions there are of numbers.
Will the tribe whose members are labeled with the whole numbers 1, 2, 3, . . . be able to pair



themselves up with this new tribe? I might start by matching tribe member number 1 with
tribe member π = 3.1415926 . . . , then tribe member number 2 with e = 2.7182818 . . . But
how can I find a way to exhaust all the members of the infinite decimal tribe? Is there a
clever way to arrange the infinite decimal numbers so that I can snake whole numbers
through them as Cantor did with fractions?

Cantor produced a clever argument to show why he could be certain that, however hard
I tried to match up the whole-number tribe, he could guarantee that an infinite decimal tribe
member would always be unaccounted for. The infinity of all infinite decimal expansions of
numbers is a genuinely bigger sort of infinity than the infinity of whole numbers. It’s a
beautifully simple if subtle argument and I think it would be another one of the mathematical
theorems I’d take to my desert island.

How could Cantor be sure that he could always guarantee an infinite decimal tribe
member would be unaccounted for? Let’s take one of my attempts to match the whole-
number tribe with the infinite decimal numbered tribe.

1 ←→ 3.1415926 . . .
2 ←→ 2.7182818 . . .
3 ←→ 1.4142135 . . .
4 ←→ 1.6180339 . . .
5 ←→ 0.3331779 . . .
. . .

What Cantor does is to build a number with an infinite decimal expansion that he can
guarantee is not on my list and has not been paired up with one of the whole numbers. He
does this by choosing each decimal place of this new number one step at a time, working his
way down the list. Each decimal place is a number between 0 and 9. In the first decimal
place, Cantor chooses a number that is different from the first decimal place of the number
paired with number 1. In the second decimal place, he chooses a number different from the
second decimal place of the number paired with number 2. Cantor carries on building this
new infinite decimal number, choosing a different decimal place each time as he works his
way through the list.

1 ←→ 3.1415926 . . .
2 ←→ 2.7182818 . . .
3 ←→ 1.4142135 . . .
4 ←→ 1.6180339 . . .
5 ←→ 0.3331779 . . .
. . .

There are lots of different ways he could cook up this new infinite decimal number, but
one example might start 0.22518 . . . , which we can already see is not paired with the first
five whole numbers because the infinite decimal is different from the first five infinite
decimals in this list. But how can we guarantee that this number isn’t somewhere in the list
we’ve made? Perhaps it’s paired with, say, number 101. Given the way this new number
has been constructed, Cantor could simply say, “Check the 101st decimal place; it’s
different from the 101st decimal of this new number.” The number has been cooked up so
that it can’t be anywhere on this list. That means there are decimal numbers missing from
the list.

There are a few technical points to watch out for, but the essence of the argument
suffices to show that there are more numbers with infinite decimal expansions than there



are whole numbers. The argument works for any attempt I might make to pair up whole
numbers with infinite decimal numbers—there are always infinite decimals left over.

Cantor himself was genuinely surprised by his discovery. “I see it, but I do not believe
it,” he said.

He eventually proved that there are infinitely many types of infinity. He showed we
could replace “lots” with meaningful names for all these different infinities and introduced
new symbols for these new infinite numbers, using letters of the Hebrew alphabet. The
smallest infinity, 0, was called aleph-zero, after the first letter of the Hebrew alphabet.
Cantor was probably aware of its mystical significance in Jewish Kabbalah, where it
represents the infinity of God, but the choice also hints at the idea of a new beginning. For
me, this is one of the most exciting moments in mathematical history. It is like the moment
when we counted for the first time. But instead of counting 1, 2, 3, we were counting
infinities.

The great German mathematician David Hilbert recognized that Cantor had created a
genuinely new mathematics. Hilbert declared Cantor’s ideas about infinities to be “the most
astonishing product of mathematical thought, one of the most beautiful realizations of human
activity in the domain of the purely intelligible . . . no one shall expel us from the paradise
which Cantor has created for us.” I would agree.

Cantor believed that he was tapping into the mind of God, and that he was just a
mouthpiece for God. It may be that his faith gave him the courage to believe that infinity
also existed. But it was Cantor’s mathematical brilliance that wrested the infinite from the
unknown into the known. The Christian Church, far from being disturbed by Cantor’s
attempts to read the infinite mind of God, took an active interest in his emerging ideas.
Cantor entered into a lengthy correspondence with cardinals at the Vatican over the nature
of God and infinity.

But not everyone was so enamored with his ideas. One of the most influential
mathematicians in Germany, Leopold Kronecker, thought Cantor’s mathematics an
aberration. “I don’t know what predominates in Cantor’s theory—philosophy or theology,”
he wrote, “but I am sure that there is no mathematics there.” Kronecker once famously
said, “God created the integers. All the rest is the work of man.” But what Cantor had
created was so revolutionary that Kronecker regarded it as a mathematical carbuncle.
Kronecker’s opposition ensured that Cantor never claimed a job at one of the big German
universities, including Berlin, where Kronecker was based. Instead, he spent his days in the
backwater of the University of Halle. Cantor tried to fight back, writing directly to the
minister of education, but to no avail.

Even publishing his ideas proved difficult. Another influential mathematician of the day,
Gösta Mittag-Leffler, eventually rejected Cantor’s work, declaring it a hundred years ahead
of its time. Cantor was severely thrown by this rejection from a mathematician he greatly
respected. The continual battle with the establishment, his struggles with the mysteries of
the infinite, and the deaths of his mother, brother, and then youngest child took their toll.
Cantor suffered from bouts of manic depression, and the controversy only exacerbated his
condition. He was admitted to the Nervenklinik, a mental hospital in Halle, in 1884 and spent
much of the last few decades of his life there. Disillusioned with mathematics, he turned to
questions of religion. He also spent a lot of time trying to prove that Francis Bacon was the
real author of Shakespeare’s plays.



Mittag-Leffler’s premonition was right in some respects. A century later, Cantor’s ideas
are considered some of the most beautiful and extraordinary proofs of the last three
hundred years. Cantor has allowed mathematicians to touch infinity, to play with it, compute
with it, to finally recognize that infinity is a number. Not just one number, but infinitely many
numbers.

But for Cantor, the infinite was not just an abstraction:

I am so in favor of the actual inf inite that instead of admitting that Nature abhors it, as is commonly said,
I hold that Nature makes frequent use of it everyw here, in order to show  more effectively the
perfections of its Author. Thus I believe that there is no part of matter w hich is not—I do not say
divisible—but actually divisible; and consequently the least particle ought to be considered as a w orld
full of an infinity of different creatures.

YES AND NO

Cantor’s discovery of these layers of infinity led to a very real example of a problem that
could not be resolved within the current axioms of mathematics—a statement without proof,
undecidable, beyond what we can know. It was a question that went to the heart of what a
number is and revealed just how subtle numbers are.

Cantor wanted to know whether there are sets of numbers that are bigger in size than
whole numbers but small enough that they can’t be paired with all infinite decimal
expansions. In other words, can there be a tribe that beats the whole-number tribe but is
outdone by the tribe with all infinite decimal numbers? The name given to the infinity of all
infinite decimal numbers is the continuum. The continuum hypothesis posited that there was
no infinity smaller than the continuum but larger than the infinity of all whole numbers.

Hilbert was so struck by the challenge of proving the continuum hypothesis that he put it
at the top of his list of twenty-three problems for the mathematicians of the twentieth
century.

It is a question Cantor wrestled with his whole life. One day he was convinced he’d
proved there was no infinity between these two. But then he found a mistake. The next day
he thought he’d proved the opposite. As Cantor always believed, “In mathematics the art of
asking questions is more valuable than solving problems.”

And so it turned out to be. The reason Cantor was having so much trouble was that
both answers are correct.

The answer to this problem, which finally arrived in the 1960s, rocked the mathematical
community to its foundations. Building on work done by Gödel, Paul Cohen, a logician at
Stanford, demonstrated that you couldn’t prove from the axioms we currently use for
mathematics whether there was a set of numbers whose size was strictly between the
number of whole numbers and all infinite decimal numbers. In fact, he produced two
different models of numbers that satisfied the axioms we use for mathematics; in one model
the answer to Cantor’s question was yes, and in the other model the answer was no.

I’m not sure whether Cantor would have liked this conclusion. He did once declare,
“The essence of mathematics lies entirely in its freedom.”

Some regard this as similar to the moment when mathematicians discovered that there
are many sorts of geometries in addition to Euclid’s. Euclid’s geometry satisfies the parallel
postulate, while the new spherical and hyperbolic geometries don’t. Now we understood



that there are different models for our numbers, some of which have these intermediate
infinities, others of which don’t.

It was deeply unsettling for many mathematicians. We thought we knew our numbers.
Numbers like the square root of 2 and π might be irrational, with infinite decimal expansions,
but we felt that we could see these numbers marked on a ruler. So in the case of the
numbers we think we know, we feel there should be an answer to Cantor’s question. Is
there a subset of numbers on this ruler that is strictly bigger than the whole numbers, yet
strictly smaller than the set of all infinite decimal numbers? Most mathematicians believe
that the answer must be yes or no, not yes and no.

Cohen’s colleague Julia Robinson wrote to him, “For heaven’s sake there is only one
true number theory! It’s my religion.” Intriguingly, she crossed out the last sentence before
sending the letter. Cantor himself would probably in the end have embraced this new
uncertainty, as his religion encouraged the acceptance of things that transcended human
knowledge.

How many other unresolved problems on the mathematical books will turn out to be
unprovable? To tackle some of these great unsolved problems we may need to add new
axioms. Gödel thought this could account for the difficulty of proving the Riemann
hypothesis, the greatest unsolved problem of mathematics. He questioned whether our
current axioms were sufficient to tackle many of the problems of number theory:

One is faced w ith an infinite series of axioms w hich can be extended further and further, w ithout any
end being visible. . . . It is true that in the mathematics of today the higher levels of this hierarchy are
practically never used . . . it is not altogether unlikely that this character of present-day mathematics
may have something to do w ith its inability to prove certain fundamental theorems, such as, for
example, Riemann’s hypothesis.

PROVING WHAT IS TRUE

Gödel’s incompleteness theorem is a fascinating microcosm of the challenge of trying to
prove what is true. Within any consistent axiomatic system for number theory there will be
truths that cannot be proved true. The intriguing thing is that by working outside the system
we can prove that a particular statement is true but unprovable within the system. You
might say: Then why not work in that larger framework? But Gödel guarantees that this
larger system will have its own unprovable true statements, requiring another move outside
the system. It’s a very familiar infinite regress.

There are resonances with many of the problems I have been wrestling with. Perhaps it
is impossible to understand the universe when we are part of the system. If the universe is
described by a quantum wave function, does something need to be outside the system to
observe it? Chaos theory implies that we can’t understand part of the system as an isolated
problem, because an electron on the other side of the universe may have an influence that
will send a chaotic system in a completely different direction. We must stand outside in
order to consider the whole system. The same problem applies to the question of
understanding consciousness. We are stuck inside our own heads, our own systems, unable
to access anyone else’s consciousness. This is also why some say we will always be limited
in our ability to tackle questions like the existence of a God that transcends the universe we
are stuck in.



The other important aspect of Gödel’s work is the fact that you cannot prove that
mathematics is consistent, that it contains no contradictions. This begs the question of
whether the methods we employ to gain knowledge about the universe are effective. Any
attempt to explain, for example, why induction is the right strategy for studying physical
phenomena is going to rely on applying induction. The whole thing becomes very circular.

Cohen’s discovery led to the exciting revelation that there are statements about numbers
that you can either assume are true or assume are false and both answers derive from
legitimate models. Can we do the same once we encounter a genuinely unknowable
question about the universe? If we identify a question whose answer cannot be known, then
it makes perfect sense to work under the hypothesis that the answer is one thing or another.
Your choice of working hypothesis may depend in part on the probability that the answer is
one thing rather than another. But sometimes probabilities are not relevant, and your choice
may be based on your personal relationship to the consequences that follow from working
within that system.

In mathematics we are freed up from this need to choose. As a mathematician, I’m
quite happy to move between different mathematical models that are individually self-
consistent yet mutually contradictory. For example, I can do mathematics under the
assumption that the continuum hypothesis is true or that it is false. If the original model is
consistent, then both mathematical models are consistent. If it makes my equations work, I
might use the continuum hypothesis to explore this particular mathematical universe. Can
we do the same thing with other unknowables? If God is the unknowable, can we make a
choice to give flesh to this unknown? But by doing that, aren’t we trying to make it
knowable, going against the spirit of the definition?

You have to be careful when making choices or hypotheses under which to operate.
You can’t just assume that something you don’t know can be true or false. You have to
prove first that both possibilities are consistent. For example, I don’t know whether the
Riemann hypothesis about prime numbers is true or false, but only one of these is consistent
with our theory of numbers. If it turns out to be unprovable within the current axioms of
number theory, this would actually imply that it was true. If it is false, we know that it is
provably false because we will be able to find a counterexample with a finite systematic
search. If it is false, you can’t work within a model of numbers where you assume it is true
because you’ll generate contradictions. This is the amazing thing about the continuum
hypothesis—either it or its negation can be incorporated into a consistent theory without
creating contradictions.

Some have argued that the numbers we are trying to capture axiomatically are meant to
be the numbers we measure with, that are located somewhere on a ruler. So there might be
good reason to assume the continuum hypothesis as a better description of what we are
trying to model. In fact, logician Hugh Woodin has recently put forward arguments for why
the numbers we are trying to model are those in which the continuum hypothesis is false.
He argues that if these numbers model measurements on a ruler, then there are reasons to
believe this would imply that there are infinite subsets of intermediate size between the set
of whole numbers and the set of infinite decimals.

This illustrates the tension between mathematics and physics. For centuries,
mathematics has been happy with the mathematical multiverse: different, mutually exclusive
mathematical models of geometry or number theory. But even if the physicist is happy with



the idea of the multiverse, there is still the desire to identify which of these possibilities
describes the universe in which we exist.

Suppose a scientist cooks up a perfectly consistent logical theory of how the universe
might work, but then discovers that it doesn’t match the experimental evidence of our own
universe. The hypothetical theory is booted out and is no longer of interest to the world of
science. If a biologist starts writing papers about a hypothetical beast that potentially could
exist, like a unicorn, but doesn’t actually walk this Earth, no one is going to be interested
unless it casts some light on the animals that do exist. By contrast, in mathematics such new
worlds and beasts are celebrated and embraced. They become part of a richer tapestry of
mathematical possibilities. Science does the actual, mathematics does the possible. Science
charts a single pathway through a tree of possible universes, mathematics maps every
possible journey.

But what do we do about science questions that can’t be resolved? In the case of
physics, once we have a question that is beyond knowledge, one answer will still be a
correct description of our universe, and one will not. But by its nature, if it is unanswerable,
we are not going to get any new evidence about our universe that would allow us to decide
which is the true description and which the false. If we do, the question wasn’t
unanswerable in the first place. So what happens to those who labor under the false
hypothesis? Nothing! As with the continuum hypothesis, its negation will still be consistent
with our current theory of the universe. You will get a different story with different
theorems and results. If it led to contradictions, this would give us a way to know that it was
wrong, and hence the question was not genuinely unanswerable.

Consider the question of whether the universe is infinite. If this is an unknowable, it is
because the universe is infinite or because it is finite and of such a size that it will always
remain beyond our event horizon and therefore beyond the realms of investigation. If it is
infinite, what happens to someone who works under the hypothesis that it is finite but too big
ever to prove finite? The interesting thing is that if this led to problems—it contradicted
current theory or new data—we’d have a way of proving that the universe is infinite. Of
course, in mathematics this is a great way to proceed. We proved that the square root of 2
cannot be captured by a ratio of two finite numbers by working under the hypothesis that it
could and eventually running up against a contradiction. It is possible that an infinite universe
might be the only assumption that doesn’t lead to contradictions. It could be that
mathematics is again our best means of exploring the far reaches of the universe.

In this Edge I’ve explored how mathematics has even managed to help us navigate
infinity itself. It is quite striking that infinity was once regarded as something beyond
knowledge and often connected to the idea of God. Descartes wrote, “God is the only thing
I positively conceive as infinite.” And yet Cantor’s extraordinary insights at the end of the
nineteenth century provide us with a way to explore and compare infinities. Infinity is no
longer beyond our reach. Cantor was not unaffected by the implications of his discoveries
for the question of God. Indeed, he believed he had been chosen by God to reveal these
ideas about infinity to the world.

Infinity has played a key role in the exploration of the existence of God. Thomas
Aquinas’s proof of God, known as the cosmological argument, proposes that anything that
exists needs a creator, but this would then apply to the creator itself. To avoid infinite
regress, God is the solution to the problem of a first cause. But mathematics allows us to
keep building new infinities by considering all the old infinities and then taking their union, so



there is no need to stop this chain of creators, as Aquinas believed. Each time we get
something new, and the process never ends.

Even though the mathematics is there to keep building new infinities from the old, it
becomes very hard even for a mathematician to grasp the extent of our mathematical
universe. Most content themselves with playing down in the lower echelons of the infinite.
But we know that these are just part of an unending hierarchy. This gives those who try to
define God as “that which nothing greater can be thought of” some problems. In one sense,
such a thing doesn’t exist because there is always a way to make something greater. But if
we come back to the idea of something beyond that which humans can conceive of, then
we are back to things we as humans cannot know: the limitations of our own biology.



S
BEYOND THE EDGE

O, AT  THE END of my journey to the edges of knowledge, have I found things that we
can categorically say we cannot know? The things I thought we could never know,

such as whether the universe is infinite, turn out not to be as unassailable as I thought. We
can use mathematics to employ finite means to prove the existence of the infinite. So
although we may never explore or see beyond the finite bubble that encloses our bit of the
universe, we may be able, using the power of our minds alone, to discover what is beyond.

Understanding the nature of time before the Big Bang was another edge that I thought
was unassailable. But chinks have opened up in that wall, too. Recent progress has provided
us with ways to theorize and even perhaps detect evidence of a time before we thought it
all began. And yet the question of whether time has a beginning feels like one that will
remain on the scientific books for some time yet.

In contrast, the infinitely small at the heart of the die that I hold in my hand feels like
something that will always remain beyond complete knowledge. Every generation imagines
they’ve hit the indivisible, only for matter to fall apart into smaller pieces. How can we ever
know that the current building blocks of the universe—quarks, electrons, neutrinos—aren’t
as divisible as all the other particles we’ve hit as we’ve peeled the onion of reality?
Quantum physics even posits a limit to how far we will be able to penetrate in our
investigation of matter: beyond the Planck length, it’s simply no-go.

Whether we can ever truly understand the nature of consciousness is very much in a
state of flux. Will this challenge vanish because it will turn out to be an ill-posed question?
Will it be answered with a strategy similar to that used by scientists to pin down the essence
of life? There was no elan vital, just a set of biological processes that means a collection of
molecules has life. Or will the problem of consciousness remain something that can never
be understood because we are stuck inside our own consciousnesses and can never get
inside another’s?

The possibility that we cannot know because we are stuck within the system is a
common theme among many of the problems I have tried to tackle. Mathematics has truths
that will remain unprovable within a system. Step outside and you can know, but this creates
a new system, which will have its own unprovable truths. Likewise, the idea that a quantum
experiment can be repeated is an impossibility because we can never isolate the experiment
from the universe it is conducted in, one that will have changed and evolved by the next
time we run the experiment.

Even the mathematics of probability is something of a fantasy. What is probability? If I
throw my die six hundred times, I expect to get one hundred 6s. But I just want to throw it
once and know something about how it will fall. The equations of chaos theory tell us that
so much of the future depends on fine-tuning the decimal places that control the input of the



equations. So I can never know the present completely enough to have any real chance of
knowing the future or the past.

The physical limitations of the human brain place boundaries on how much we can ever
know, so there will always be things beyond knowledge. But this isn’t an absolute
unknowability. It is more like light coming in from the outer reaches of the universe before
we realized that the expansion of the universe was accelerating. Wait long enough and the
light will arrive. Wait long enough and a computer can make its way through all the provable
truths of mathematics. But what if time itself runs out while we are waiting?

The limitations of language are at the heart of many of the boundaries of knowledge,
and these could evolve and change. Certainly, many philosophers identify language as a
problem when it comes to the question of consciousness. Understanding quantum physics is
also a problem because the only language that helps us navigate its ideas is mathematics.
Try to translate the mathematics into the language of everyday experience and we create
the absurdities that make quantum physics so challenging. So the unknowability of position
and momentum isn’t really a genuine unknowable. Rather, it is a failure of translation from
mathematics to natural language.

We are bound by the ways of thinking particular to our own moment in history. Auguste
Comte thought we could never know the constituents of a star. How wrong he was! So I
wonder if the safest bet is to say that we can never truly know for sure what we cannot
know.

IS GOD AN IMAGINARY NUMBER?

How far can we get by creating solutions to seemingly unanswerable problems? For many
centuries, mathematicians looked at the equation x2 = –1 and believed it had no answer. But
then a more imaginative approach was taken. We admitted imaginary numbers into the
landscape of mathematics by defining i as the number whose square is –1. Why does this
work? Because it doesn’t create a contradiction in the theory. We interweave this concept
with the mathematics we know and we begin to know i. And most important, it gives us
access to new and exciting bits of the mathematical world. Not admitting imaginary
numbers into mathematics would have limited its extent and power.

What happens if I try to be creative with some of our unknowable questions? What if,
for example, I were to define God as the solution to the question “Why something rather
than nothing?” This concept is meant to be nothing more than the solution to that question. It
doesn’t have any other properties. Even if we gain more knowledge about the answer to the
question, it will just mean that we know more about this particular God.

But we have to be careful with such an approach. Just because you can write down a
mathematical equation doesn’t mean it has solutions. Admitting a new concept that solves
x2 = –1 was profitable because it provided access to new consistent mathematics. For the
Platonist, the idea was sitting there all along, waiting to be articulated; for others, it was a
creative act that enriched our mathematical world. But if I write down the equations for
Fermat’s Last Theorem and try to define new numbers to solve these equations, I am going
to find myself with self-contradictory statements. This is, after all, precisely how Wiles
proved that the equations couldn’t be solved.



The trouble with most religions is that the God that is served has so many properties that
have nothing to do with the definition. It’s as if we are working backward, focusing on the
strange properties conjured up over the generations without really understanding the original
definition. We come across this bastardized picture early on as kids, and then when we ask
the question “Why something rather than nothing?” it doesn’t really work as a solution. But
we’ve been shown the wrong thing.

Being an atheist means, for me, that I reject the classical solutions that religion seems to
offer for these unknowns. But maybe I shouldn’t throw everything out. There are things
that will always remain unknown, so perhaps God does exist. The traditional argument
against the God of the gaps is that we should strive to know God, to have a personal
relationship with it. And this God, defined as the transcendental or unknown, precludes by
its definition the possibility of knowing it.

The trouble with this definition of God is that it doesn’t really get you much further.
While defining a number whose square is –1 resulted in a rich array of consequences,
defining something as the solution to “Why something rather than nothing?” doesn’t give
rise to anything new. You need to make up properties for this thing that don’t follow from its
definition. As Karen Armstrong put it, this high God is too high.

There are several responses to identifying the unknowable. One is to leave it at that; if it
is unknowable, then it can’t be known. But there is also the temptation to make a choice
and live your life according to that choice. Perhaps the logically most consistent response is
to be open to many solutions and allow all the solutions to run parallel until new ideas
collapse the possibilities.

I wonder, though, whether, as I come to the end of my exploration, I have changed my
mind about declaring myself an atheist. With my definition of a God as that which we
cannot know, to declare myself an atheist would mean that I believe there is nothing we
cannot know. I don’t believe that anymore. In some sense I think I have proved that this
God does exist. The challenge now is to explore what quality this God has.

My statement about being an atheist is really just a response to the rather impoverished
version of God offered by most religions and cultures. I reject the existence of a
supernatural intelligence that intervenes in the evolution of the universe and in our lives. This
is a rejection of the God that people assign strange properties to—such as compassion,
wisdom, love—that make no sense when it comes to the idea that I am exploring.

Such a position and definition will probably not satisfy either side of the divide. The
militant atheists don’t want to admit anything named God into the debate, while those who
believe in a God will criticize the concept of God as the unknown as impotent and missing
the point. So how do we engage with this God of the gaps?

Perhaps the important lesson is to maintain a schizophrenic state of mind. A multi-mind-
set. On the one hand, as humans we must recognize that we cannot know it all. There are
provable limits to knowledge. Such a state of humility is intellectually important, or we will
live in a state of delusion and hubris. Yet the other lesson is that we cannot always know
what will forever transcend our understanding. This is why it is essential for a scientist not
to give in too early. To believe that we can find answers. To believe that perhaps we can
know it all.



DO I OWN AN ODD OR EVEN NUMBER OF DICE?

My journey through science has thrown up a number of challenging questions. But there is
also the basic epistemological question of whether we can actually know anything at all.
More than two thousand years ago Socrates declared, “True knowledge exists in knowing
you know nothing.” An acknowledgment of your ignorance is the only true statement of
knowledge.

There have been volumes of philosophy that tackle the theory of knowledge and try to
pin down what we can know, to define what we mean by knowledge. Plato proposed that
knowledge should be defined as “justified true belief,” but Bertrand Russell and then the
American philosopher Edmund Gettier in the 1960s questioned whether this truly captures
its meaning.

The classic example proposed by Bertrand Russell tells the story of a woman who looks
at a clock that says two o’clock. She believes therefore that it is two o’clock. She seems
justified in her belief because the clock says so. And it does indeed happen to be two
o’clock. Yet actually the clock stopped twelve hours ago, and it’s just a coincidence that she
happened to look at the clock exactly twelve hours later.

Gettier created similar scenarios to challenge “justified true belief.” You are looking at a
field and see what you believe is a cow. You infer that there is a cow in the field. Actually,
there is a cow in the field, so the inference is true, but it can’t be seen because it is in a dip
in the field. You are in possession of a true statement. It was based on a justifiable belief,
and the thing you were looking at certainly looked exactly like a cow. But the fact that the
statement you made is true does not imply knowledge.

We can imagine a situation in which we have come up with a true statement about the
universe. But the justification for the statement is completely incorrect, even if it led us to
make a true statement. Surely that doesn’t constitute knowledge. I have often cooked up
proofs of true mathematical statements that turn out to have a logical flaw in them (which I
hope to spot before I send them to a journal for publication). But my false proof can’t really
justify my knowledge that the mathematical statement is true.

I don’t know whether the Riemann hypothesis is true or false. However, a few people
have come up with what they believe are proofs of the truth of this hypothesis, and they
have pages and pages of equations to back up their belief. Most of the time a fault is found.
Once shown to the proposer, that justified belief vanishes. But what if that false proof
convinces everyone? Suppose the fault is actually quite subtle. We cannot say we know that
the Riemann hypothesis is true despite our justified true belief. Surely the justification has to
be true to lead to justified true belief.

Some ancient astronomers proposed that the Earth goes around the sun, but their
justification of this fact was not correct. The Indian philosopher Yajnavalkya justified this
belief in a heliocentric solar system in the ninth century BC by proposing, “The sun strings
these worlds—the Earth, the planets, the atmosphere—to himself on a thread.” Can we say
that he knew that the Earth goes around the sun?

I think that I side with my colleague in New College, Timothy Williamson, who asserts in
his book Knowledge and Its Limits that knowledge should be regarded as something
fundamental, not something that can be defined in terms of other things. It seems like we all
seem to know what “to know” means. It is one of only a hundred or so phrases that have a



comparable translation in every language on Earth, which is not the case for as basic a
word as eat.

It was also from Williamson that I learned about a fantastic piece of logical trickery
called the paradox of unknowability, which proves that, unless you know it all, there will
always be truths that are by their nature unknowable. This paradox is attributed to
American logician Frederic Fitch, who published it in a paper in 1963. Fitch admitted that
the original source of the argument was actually a comment made in 1945 by an anonymous
referee about a paper Fitch had submitted for publication but had never made it into print.
For many years, the referee responsible for this logical gem remained a mystery. But
subsequent detective work has tracked down the handwritten copy of the report, and an
analysis of the handwriting reveals the author to be the famous American logician Alonzo
Church, who made major contributions to the understanding of Gödel’s incompleteness
theorem.

Church’s argument has a whiff of the self-referential strategy that Gödel employed, but
this time there is no mathematics involved, just pure logic. And while Gödel proves that
there are mathematical truths that can never be proved within a particular consistent
axiomatic system of mathematics, Church goes one further, promising a truth that will never
be known by any means.

Suppose there are true statements that I do not know are true. In fact, there are lots of
such statements. For example, my house is full of dice, not just the casino die that I have on
my table. There are dice in our Monopoly set, our box of ludo, dice that have gone missing
down the side of our sofa, dice that are buried in the chaos of my kids’ rooms. I do not
know whether my house contains an odd or even number of dice. This by itself is, of
course, not an unknowable statement, because I could make a systematic search of my
house to determine the answer. But it is certainly something that, at this point in time, I do
not know the answer to.

Now hold on tight—this is the bit that leaves my brain in a spin every time I read it. Let
p be the true statement between the two options: “there are an even number of dice in my
house” and “there are an odd number of dice in my house.” I don’t know which one is true,
but one of them must be. The existence of an unknowable truth is squeezed out of the
existence of this unknown truth. The following statement is an unknowable truth: “p is true
but unknown.” It is certainly true. Why is this unknowable? Because to know this means I
know that p is true and unknown, but that’s a contradiction because p can’t be unknown
and known simultaneously. So the statement “p is true and unknown” is itself an
unknowable statement. It’s not that p itself is unknowable. As I said, I can go and find all
the dice in my house and know whether it is an odd or even number. It is the meta-
statement “p is true and unknown” that is unknowable. The proof works, provided
something exists that is true but unknown. The only way out of this is if I already know it
all. The only way that all truths are knowable is if all truths are known.

Although it has become known as a paradox, there is, as Williamson points out, no
paradox involved. It is simply a proof that there are unknowable truths. After our long
journey to the outer limits of science, it turns out that a clever logical riff produces the
answer I was looking for.



CAN WE KNOW ANYTHING?

Many philosophers of knowledge question how much we can ever really know about
anything. The eighteenth-century Scottish philosopher David Hume identified one of the
fundamental problems we’ve had with many of the questions I’ve been tackling—that of
being stuck inside the system. If we are going to apply scientific methods to establish that
we actually know something, we get into a loop because we are using scientific and logical
arguments to prove that these methods are sound. It is impossible to assume an outside
position. Wittgenstein summed this up colorfully: “You cannot shit higher than your arse.”

What about mathematics? Surely there we have certain knowledge. Doesn’t proof give
us complete certainty that, for example, there are infinitely many prime numbers? Yet even
mathematical proofs have to be processed by the human brain to check whether they are
correct. What if we are all convinced of the truth of an argument that nonetheless has a
subtle hole in it? Of course, one of the things that we take advantage of is the fact that any
fatal hole should eventually reveal itself. But doesn’t this imply that mathematics, like
science, is subject to an evolutionary process? The mathematical philosopher Imre Lakatos
believed so. He developed a philosophy of mathematics that was modeled on Popper’s view
of science as something that could only be falsified, not proved true. For Lakatos, it can
never be known whether a proof might hide a subtle flaw.

His book Proofs and Refutations presents a fascinating discussion among students
exploring the proof of Euler’s theorem on the relationship between the number of vertices,
edges, and faces of a three-dimensional polyhedron. It mirrors the history of the evolution of
this theorem: E = V + F – 2. At first, the students think they’ve got a proof. Then a student
proposes a shape with a hole in the middle. The formula doesn’t work on this shape. Nor
does the proof. One interpretation is that the proof works for the shapes that it was intended
to work on. But now a new proof and theorem are introduced pertaining to a new formula
that in addition to vertices, edges, and faces, includes the number of holes in the shape. The
story reveals a much more evolutionary approach to mathematical knowledge than many
mathematicians will dare admit to, more akin to the process of scientific investigation. So
how effective is either in discovering the truth?

One of the reasons for believing that science is producing true knowledge is its success
rate. Science is so successful in its description and prediction of the way things appear to be
that we feel like it must be getting close to a reality that most of us believe does exist. The
fact that science works so well at making predictions and explaining phenomena is perhaps
the best measure that we are close to the truth. If the map that you are using consistently
gets you to your destination, that’s a good sign that the map is an accurate representation of
reality.

Science has mapped the universe pretty well. Space probes land on distant planets
thanks to our discoveries about the nature of gravity. Gene therapies help to tackle
previously untreatable conditions thanks to our discoveries about the biology of the cell. We
find our way with a GPS by exploiting our discoveries about time and space. When the
scientific map doesn’t work, we are ready to redraw its contours to find a description that
successfully helps us navigate our environment. It is survival of the fittest theory: continued
success at making predictions and controlling our environment means the theory survives.
Science may not really represent reality, but nothing comes close as an alternative.



Ever since Kant, we have had to wrestle with the unknowability of “things in
themselves.” The limits of human perception, highlighted by how easily our senses can be
tricked, raise questions about how much our brain can really know about reality. Isn’t
everything being viewed through the spectacles we wear to look at our universe?

One of the key problems with our attempt to know the world is that we use our senses
to gain knowledge of the world around us, and analytic argument to extend that knowledge.
We come up with stories that match all the information that we gather with our senses. The
inventions of the telescope, the microscope, and the fMRI scanner have extended how
much we can perceive with our senses.

Yet what if there are things in the universe that our senses can’t detect? We have more
senses than many people realize; in addition to sight, hearing, taste, touch, and smell, we also
have a sense called proprioception that gives us an awareness of how our body is located in
space. There are also senses that give us information about the inner state of our body. The
fluid in the inner ear tells us how our body’s position is changing in relation to gravity. But
are there physical phenomena that we miss because we don’t have the sensory tools to
interact with them?

Consider an organism without an eye or neurons to detect light. If it has no way of
accessing electromagnetic waves, how could it ever come up with a theory of
electromagnetism? We have done very well to combine our sense of sight, which can see
part of the electromagnetic spectrum, with mathematical analysis to deduce other parts of
the spectrum. And then we developed tools that can detect these waves and convert them
into things that we can interpret. But could we have got going without being able to access,
via our sense of sight, some bit of the spectrum?

It is possible that the limitations of our senses also limit the mathematics we can know.
Despite mathematics being all in the mind, there is a school of thought that suggests that
because our intelligence is ultimately an embodied intelligence, the knowledge we can obtain
about mathematics is restricted to that which can be embodied. It is certainly true that if you
look at the mathematics we do know, it often has its origins in descriptions of the physical
world. Take imaginary numbers—you may question how they are embodied. And yet they
emerge from the act of measuring lengths in geometric shapes. The act of understanding
the diagonal across the face of my cube-shaped die led the Babylonians to consider the
square root of 2. And from here we begin the journey that leads to the idea of the square
root of –1.

There are proponents of artificial intelligence who assert that if we are to create an
intelligence that matches ours, it must be physically embodied. In other words, a brain that
lives exclusively in computer hard drives cannot generate intelligence like ours without
physically interacting with the world through a body. It is a challenging hypothesis. Could
there really be parts of the mathematical world that are off limits to me because they don’t
originate in physically embodied concepts?

And yet there is the deep philosophical issue of the extent to which our senses allow us
to know anything for sure. We’ve already seen how our senses can be fooled into believing
things that turn out to be tricks of the mind. How, for example, can we be sure that the
universe as we apprehend it isn’t a simulation? As we saw in the Sixth Edge, we can make
someone believe they are in another person’s body. So how can we be sure that we aren’t
just brains in a jar being fed artificial sensory information by a computer and that the whole
world around us isn’t just a trick?



My response to this attempt to undermine everything we know is to counter that this
book has tried to explore how we can know anything about that simulation. Kant believed
that the way things really are will always remain hidden from our view. All we can ever
know is the appearance of things. I think most scientists spend some time reading about this
debate concerning ontology and epistemology, and listening to philosophers who question
whether science is really telling us how it is. And then they get back to the science, telling
themselves that if we can never know what reality is really like, then let us at least try to
say what the reality we apprehend through our senses is like. After all, that is the one that
affects us.

So perhaps the best we can hope for is that science gives us verisimilitudinous
knowledge of the universe; that is, it gives us a narrative that appears to describe reality.
We believe that a theory that makes our experience of the world intelligible is one that is
close to the true nature of the world, even if philosophers tell us we’ll never know. As Niels
Bohr said, “It is wrong to think that the task of physics is to find out how nature is. Physics
concerns what we can say about nature.”

But what of the things that we cannot know? If something is beyond scientific
investigation, if it is unknowable, perhaps some other discipline will have a better grip on the
unknowable? Here is Martin Rees wrestling with the “something rather than nothing”
question: “The preeminent mystery is why anything exists at all. What breathes life into the
equations, and actualized them in a real cosmos? Such questions lie beyond science,
however: they are the province of philosophers and theologians.”

Perhaps that is to give in too easily, but it is certainly true that science flourishes when
we share the unknowable with other disciplines. If the unknowable has an impact on how
we lead our lives, then it is worth having ways to probe the consequences of choosing an
answer to an unknowable. Music, poetry, stories, and art are powerful tools for exploring
the implications of the unknowable.

Take the question of whether the universe is infinite. There are interesting
consequences if you believe that space goes on forever. The fact that across the universe
there may be infinitely many copies of you reading this book might have a profound effect
on the way you lead your life, even if you will never know whether it’s true.

Chaos theory implies that not only my casino die but also humans are in some ways part
of the unknowable. Although we are physical systems, no amount of data will help us
completely predict human behavior. The humanities are the best language we have for
understanding as much as we can about what it is to be human.

Studies into consciousness suggest boundaries beyond which we cannot go. Our internal
worlds are potentially unknowable to others. But isn’t that one of the reasons we write and
read novels? It is the most effective way to give others access to that internal world.

What we cannot know creates the space for myth, for stories, for imagination, as much
as for science. We may not know, but that doesn’t stop us from creating stories, and these
stories are crucial in providing the material for what one day might be known. Without
stories, we wouldn’t have any science at all.

Wittgenstein concluded his Tractatus Logico-Philosophicus with the famous line:
“Whereof one cannot speak, thereof one must be silent.” I think that is defeatist, as did
Wittgenstein in later life. A better denouement would be: “Whereof we cannot know, there
our imaginations can play.” After all, it’s by telling stories that we began our journey to
know what we know.



That journey has always been driven by what we do not know. As Maxwell declared,
“Thoroughly conscious ignorance is the prelude to every real advance in science.” I
certainly think that’s true when it comes to mathematics. I need to believe that there is a
solution, and that I can find it if I’m going to have any chance of maintaining my faith as I
venture into the unknown. Being aware that we don’t know is crucial to making progress.
Stephen Hawking appreciates the danger of believing we know it all: “The greatest enemy
of knowledge is not ignorance but the illusion of knowledge.”

For me, the conjectures of mathematics, the things we haven’t proved, are its lifeblood.
It is the things I do not know that drive me to continue my mathematical quest. I want to
know if the Riemann hypothesis is true, and whether the PORC conjecture to which I have
dedicated the last few decades of my research is false. As Jacob Bronowski put it, “Human
knowledge is personal and responsible, an unending adventure at the edge of uncertainty.”

The importance of the unattained destination is illustrated by the strange reaction many
mathematicians have when a great theorem is finally proved. Just as there is a sense of
sadness when you finish a great novel, the closure of a mathematical quest can have its
own sense of melancholy. I think we were enjoying the challenge of Fermat’s equations so
much that there was a sense of depression mixed with the elation that greeted Andrew
Wiles’s solution of this 350-year-old enigma.

It is important to recognize that we must live with uncertainty, with the unknown, the
unknowable. Even if we eventually manage to produce a theory that describes the way the
universe works, we will never know that there isn’t another chapter in the story, waiting for
us to discover it. As much as we may crave certainty, to do science we must always be
prepared to move on from the stories we tell now. But that’s why science is alive and will
never ossify.

So maybe it is important that I embrace the uncertainty of my casino die as it rattles
around in my hand. And once it falls from my palm, perhaps not knowing how it will land
will drive me to keep looking.
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