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Foreword

At the early age of eleven, the author of this book participated in the

“Children Learned Society”, organized at home by prominent Russian

mathematician and computer scientist, A. A. Lyapunov (the Russian

acronym, ���, which means “bottom”, can be also interpreted as

the “Voluntary Learned Society”). In a “Kvant” interview (1990),1

Arnold remembers:

The curriculum included mathematics and physics,

along with chemistry and biology, including genet-

ics, that was just recently banned (a son of one of

our best geneticists was my classmate; in a ques-

tionnaire, he wrote: “my mother is a stay-at-home

mom, my father is a stay-at-home dad”).

Natalia Lyapunova, a daughter of A. A. Lyapunov, recalls:2

... And look what were the topics of the talks:

“The structure of the solar system”, “On comets”,

“Molecular forces”... One cannot forget the talk

“Waves” by Dima Arnold. We had a huge din-

ner table, extendable to 6 sections. The table was

unfolded, an aquarium with water was put into

1http://kvant.mccme.ru/1990/07/intervyu_s_viarnoldom.htm, in Russian.
2http://oso.rcsz.ru/inf/pp/177, in Russian.

ix
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x Foreword

the hole, and a slide projector was placed under-

neath. At the time no one had such a projector,

but my dad found one somewhere. The light went

through the water whose surface projected on the

ceiling. Two corks were floating in the aquarium;

one needed to give them a push, and the waves

started: circular, counter, interference! And all

this is projected on the ceiling! Dima is lecturing,

and visual demonstrations follow. . . . I was then in

the 4th grade. . . .

The present book is written in the spirit of the “Children Learned

Society”, and its target audience consists of “young mathematicians

of all ages”.3

The level of sophistication of these essays differs substantially,

from being accessible to a high school student to presenting serious

challenges for a seasoned researcher. In my opinion, this is a merit of

the book: it belongs, equally well, to a high school library and to a

faculty lounge.

The philosophy of the author is clearly visible:

Mathematics is part of physics. Physics is an ex-

perimental science, a part of natural science. Math-

ematics is the part of physics where experiments

are cheap.4

A popularizer of mathematics finds himself between a rock and

a hard place. According to Michael Faraday (one of the greatest

popularizers of science),

Lectures which really teach will never be popular;

lectures which are popular will never teach.

The present book is a (rare) counter-example to Faraday’s maxim: it

is eye-opening, open-ended, and never boring.

In the preface, Arnold says:

3In his memories of Vladimir Rokhlin, Arnold quotes from Courant: “. . . a math-
ematician should be considered young for as long as he is inclined to discuss math at
the most inappropriate times”.

4V. Arnold. “On teaching mathematics”.



Foreword xi

Examples teach no less than rules, and errors more

than correct but abstruse proofs.

Indeed, there is an error in the essay “What Force Drives a Bicycle

Forward?”, and the reader is encouraged to ponder what is going on.5

There is another special feature of this book that I have to com-

ment upon, its provocative in-your-face style. Arnold was on a cru-

sade against a formalized approach to mathematics or, in his parlance,

“criminal Bourbakization”. In this fight, he would take no prisoners–

consider, for example, his famous ‘mathematical duel’ with J-P. Serre

on Bourbaki at the Institut Henri Poincaré on March 13, 2001.6

Equally passionately, Arnold was fighting against the incorrect

attribution of mathematical results. I cannot help but quote from

Michael Berry’s website:7

Three laws of discovery

1. Arnold’s law (implied by statements in his

many letters disputing priority, usually in response

to what he sees as neglect of Russian mathemati-

cians):

Discoveries are rarely attributed to the correct per-

son.

(Of course Arnold’s law is self-referential.)

2. Berry’s law (prompted by the observation

that the sequence of antecedents under law 1 seems

endless):

Nothing is ever discovered for the first time.

3. Whitehead’s law (quoted by Max Dresden

at the beginning of his biography of Kramers):

Everything of importance has been said before by

someone who did not discover it.

I suspect that Arnold used hyperbole and overstated his opinions

on purpose; the reader should be ready to take his most extreme

claims with a grain of salt.

5See G. Hart’s recent take on this problem at http://www.simonsfoundation.org/
multimedia/mathematical-impressions-multimedia/the-bicycle-pulling-puzzle/

6http://www.etnoka.fr/qualified/one.tcl?info_id=69919
7http://michaelberryphysics.wordpress.com/quotations/

http://www.simonsfoundation.org/multimedia/mathematical-impressions-multimedia/the-bicycle-pulling-puzzle/
http://www.simonsfoundation.org/multimedia/mathematical-impressions-multimedia/the-bicycle-pulling-puzzle/
http://www.etnoka.fr/qualified/one.tcl?info_id=69919
http://michaelberryphysics.wordpress.com/quotations/


xii Foreword

Most of the essays in this little book are quite short; therefore,

it is not fitting for this foreword to get any longer. Let me finish

with another quotation from Arnold’s “Kvant” interview that, in my

opinion, well represents both the spirit of this book and of its author:

The word “Mathematics” means science about truth.

It seems to me that modern science (i.e., theoreti-

cal physics along with mathematics) is a new reli-

gion, a cult of truth, founded by Newton 300 years

ago.

Serge Tabachnikov

May 2014



Preface

The investigation of a murder led a movie director (a character of a

detective story by Victoriya Tokareva8) to the conclusion: “Mathe-

matics is that which can be explained.”

The main contribution of mathematics to the natural sciences is

not in formal computations (or in other applications of ready-made

mathematical achievements), but in the investigation of those non-

formal questions where the exact setting of the question (what are we

searching for and what specific models must be used) usually consti-

tutes half the matter.

The 39 essays collected below have the same goal: to teach the

reader not only to multiply large numbers (which sometimes also

has to be done), but to guess about unexpected connections between

seemingly unrelated phenomena and facts, at times coming from dif-

ferent branches of the natural and other sciences.

Examples teach no less than rules, and errors, more than correct

but abstruse proofs. Looking at the pictures in this book, the reader

will understand more than learning by rote dozens of axioms (even

together with their consequences about what sea the Volga river falls

into and what horses eat).

8A Soviet and Russian screenwriter and short story writer.

xiii



xiv Preface

Boris Pasternak wrote that “the question of the usefulness of

poetry arises only in periods of its decline, while in periods of its

flowering, no one doubts its total uselessness.”

Mathematics is not quite poetry, but in it I try to avoid the feeling

of decline preached by the enemies of all natural sciences.

Let me also add that Niels Bohr divided true statements into two

classes: the trivial ones and those of genius. Specifically, he regarded

a true statement as trivial when the opposite statement is obviously

false, and a true statement as genius when the opposite statement is

just as non-obvious as the original, so that the question of the truth

of the opposite statement is interesting and worth studying.

I take this occasion to thank N. N. Andreev who coerced me into

writing this book.

From the editors. Vladimir Arnold died on June 3, 2010. He par-

ticipated in the preparation of the second edition, but did not see the

proofs (in which the only changes were in the essays on pages 37–38

and 51–53).



Chapter 1

The Eccentricity of the
Keplerian Orbit of Mars

The following problems have the same mathematical model:

A right triangle has the hypotenuse of length 1 m and a leg of

length 10 cm. Find the length of the other leg.

The mathematical “solution”√
1 − (1/10)2 m

given by the Pythagorean theorem is unsatisfactory. The point is

that, since

(1 − a)2 = 1 − 2a + a2 ≈ 1 − 2a

(with very small error a2, provided that a is small), it follows that
√

1 − A ≈ 1 − A/2.

For A = 1/100, we obtain 1 − 1/200 m, that is, 99.5 cm: The length

of the long leg cannot be distinguished by eye from that of the hy-

potenuse, the half-percent difference is indiscernible, although the

small angle of the triangle is not that small (about 6◦).

The eccentricity of the Keplerian ellipse of Mars is about 0.1.

When Kepler sketched1 the orbit of Mars, he took it for a circle with

the Sun off-center. Why did he make such a mistake?

1On the basis of visual observations that Kepler’s teacher Tycho Brahe made
during many decades at the Uranus observatory on an island between Elsinore and
Copenhagen, which Brahe owned. Later, Newton sent Halley with a telescope to this
observatory in order to prove that telescopic observations may be as precise as those
of Tycho Brahe.

1

http://dx.doi.org/10.1090/mbk/085/01



2 1. The Eccentricity of the Keplerian Orbit of Mars

Solution. An ellipse is the locus of all points in the plane for

which the sum of distances from two fixed points P and Q (called

foci) is constant. Let us denote this sum of distances by 2a. Then,

for an ellipse centered at O (the midpoint between the foci) with semi

axes OX and OY , we have

|OX| = a (because |PX| + |QX| = 2a),

|QY | = a (because |PY | = |QY | and |PY | + |Y Q| = 2a), and

|OQ| = ea (this is the definition of the eccentricity e).

From the right triangle OY Q we obtain

|OY | =
√
|QY |2 − |OQ|2 =

√
a2 − a2e2 = a

√
1 − e2 ≈ a(1 − e2/2).

For the eccentricity e = 0.1, the distance from each focus to the center

is 10% of the semi-major axis, |OX| = a, and the minor axis is shorter

than the major one by only 0.5% (Kepler did not notice such a small

difference at first.)



Chapter 2

Rescuing the
Empennage

The jet stream from the engine of the first jet planes burned their

empennages. Engineers suggested slightly turning the engines (by a

small angle α). The jet ceased burning the empennage (it moved aside

by l tanα, where l is the distance to the empennage).

What fraction of the traction force 2F had to be sacrificed for this

purpose?

Solution. The resulting traction force is

2F cosα ≈ 2F (1 − α2/2).

For the quite noticeable deviation of 3◦, we have α ≈ 1/20 radian.

Thus, the loss α2/2 is 1/800 of the traction force, which is negligi-

bly small (the deviation of the jet stream l tanα ≈ l/20 amounts to

several meters).

3

http://dx.doi.org/10.1090/mbk/085/02





Chapter 3

Return Along a Sinusoid

Returning home along a sinusoid, a drunkard lengthens his path. By

how much?

Solution. By approximately 20%. Most people believe that a

sinusoid is twice or at least one and a half times as long as a straight

line. But actually, even the sawtooth path ABCDE is longer than

the straight one (AE) only by a factor of
√

2; i.e., by approximately

40%.

The sinusoidal path is much shorter. The point is that the part of

the sinusoid inclined to AE at an angle α is longer than its projection

on the line AE by a factor of about
√

1 + α2 ≈ 1 + α2/2. Therefore,

even those parts of the sinusoid that are inclined by 20◦ are longer

than their projections by only (1/3)2/2 ≈ 1/20 times their length

(5%). Only the fragments of the path close to the inflection points (A,

C, and E) are lengthened significantly. Because these fragments are

short the total lengthening of the path is small. Thus, the lengthening

of the major part of the sinusoid is barely noticeable.

5

http://dx.doi.org/10.1090/mbk/085/03





Chapter 4

The Dirichlet Integral
and the Laplace
Operator

The membrane z = 0 was slightly bent (in three-dimensional space

with Cartesian coordinates (x, y, z)) so that it became the graph of a

small function z = εu(x, y) (where ε is small).

By how much is the area of the bent membrane greater than that

of the initial flat membrane?

Solution. In the first (nonvanishing) approximation, near each

point, the membrane stretches along the gradient gradu of the func-

tion u (in the same ratio as that of the hypotenuse in a right triangle

in which the tangent of the smallest angle is ε|grad u| to the longest

leg). Therefore, accurate to ε2, the increment of the area element s

is proportional to the squared deviation:

δs =
1

2
ε2|∇u|2 =

ε2

2

((∂u

∂x

)2

+
(∂u

∂y

)2)
.

7

http://dx.doi.org/10.1090/mbk/085/04



8 4. The Dirichlet Integral and the Laplace Operator

In other words, the increment of the area of the whole membrane is

the (Dirichlet) integral

δS =
ε2

2

∫∫ ((∂u

∂x

)2

+
(∂u

∂y

)2)
dx dy + o(ε2).

Remark. It can be shown that the Dirichlet integral expresses

not only the area increment of a membrane but also its potential

energy; i.e., the work required of the force bending the membrane to

change the state z = 0 to the state z = εu(x, y).

A proof of this (nonobvious) fact can be found in, e.g., the book

Lectures on Partial Differential Equations (Fazis, 1997, pp. 68–701)

At the same time, it is proved there that the force bending (and

stretching) the membrane is proportional to the Laplacian Δu of the

function u (where Δ = div grad) and; moreover, that∫∫
M

(∇u)2 dx dy = −
∫∫

M

uΔu dx dy

if u = 0 on the boundary of M .

The operator Δ, which takes u to Δu, is expressed (in the Carte-

sian coordinates xi of Euclidean space Rn) as

(∗) Δu =
∂2u

∂x2
1

+ . . . +
∂2u

∂x2
n

.

In other coordinate systems in Euclidean space, the expression

is different. For example, in polar coordinates (r, ϕ) in the plane

(x1 = r cosϕ, x2 = r sin ϕ), the Laplace operator of u is given by

Δu =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂ϕ2
.

This operator carries over to functions u on any Riemannian manifold

as Δu = div grad u. The physical meaning of these expressions is the

same as in the example with the Dirichlet integral considered above

that dealt with area expansion.

The enemies of physics define the Laplace operator in their math-

ematical textbooks by relation (∗), which renders this physical object

1[Translator’s note] English translation: Vladimir I. Arnold, Lectures on
Partial Differential Equations Springer-Verlag, Berlin–Heidelberg and PHASIS,
Moscow, 2004, pp. 57–59.



4. The Dirichlet Integral and the Laplace Operator 9

relativistically meaningless (it depends not only on the function to

which the operator is applied, but also on the choice of coordinate

system). On the contrary, the operators div, grad, rot, and Δ depend

only on the Riemannian metric and do not depend on the coordinate

system.





Chapter 5

Snell’s Law of
Refraction

The velocity of motion (in any direction) in the upper half-plane y > 0

(of the plane with Cartesian coordinates (x, y)) is equal to v. In the

lower half-plane y < 0 the velocity of motion is w = (3/4)v (v = 1

and w = 3/4 for light propagation in air and water, respectively).

The least-time path ABC from a point A in the upper half-plane

to a point C in the lower half-plane is the broken line ABC that breaks

at the point B on the interface.

Determine the ratio of the angles α and β made by the paths AB

and BC with the normal to the interface.

Solution. Consider an interface point B′ close to B: |BB′| = ε.

Let the path AB′ be longer than AB by the straight line segment

B′D of length ε sin α + O(ε2).

11

http://dx.doi.org/10.1090/mbk/085/05



12 5. Snell’s Law of Refraction

Similarly, the path CB′ is shorter than CB by the segment BD′

of length ε sin β + O(ε2).

Therefore, the time required to traverse the path AB′C is longer

than that required to traverse ABC by

Δ(ε) =
ε sin α

v
− ε sin β

w
+ O(ε2).

For the travel time along the path ABC to be minimal (for ε of

any sign; i.e., for points B′ both on the right and on the left of B), it

is necessary that Δ(ε) = 0 (in the first approximation in ε); i.e., that

(∗) sin α

v
=

sin β

w
.

The quantity reciprocal to velocity is called the index of refraction

and is usually denoted by n = 1/v. The above-obtained law (∗) of

refraction on the interface between media with indices of refraction

n1 = 1/v and n2 = 1/w can be written in the form of Snell’s law as

n1 sin α1 = n2 sin α2.

Example. For a light beam traveling from air (n1 = 1) into

water (n2 = 4/3), the law of refraction takes the form

sin α1 =
4

3
sin α2.

If the angle α1 between the beam moving from air to water and

the vertical normal to the horizontal water surface is small, then the

angle α2 between the refracted ray and the perpendicular is even less,

about (3/4)α1.

Above we derived the law of refraction from Fermat’s principle,

according to which light beams reach their target in the shortest time.

Snellius himself discovered this law of refraction experimentally,

by measuring the angles α and β in numerous examples.

The reader familiar with Huygens’ principle (which describes wave

propagation by using envelopes of families of local wave fronts) will

be pleased to observe that Huygens’ principle readily implies Snell’s

law (as a simple special case).



5. Snell’s Law of Refraction 13

Interestingly, in all of these examples, the nature of propagating

waves does not matter much. For example, acoustic and optical beams

and fronts behave similarly, and the same mathematics applies to the

theory of epidemic dynamics.





Chapter 6

Water Depth and
Cartesian Science

By how much does the depth of a water-filled pan on a table appear

to be less than its true depth to an observer looking from above?

Solution. The triangles BAC and BAD are right, so that

|AB| = |AC| tanα1 = |AD| tan α2.

For a small angle of incidence α1, we have

|AD|
|AC| =

tanα1

tanα2
≈ sin α1

sin α2
= n =

4

3
;

thus, the apparent depth |AC| is one quarter less than the true depth

|AD|.

15

http://dx.doi.org/10.1090/mbk/085/06



16 6. Water Depth and Cartesian Science

Remark. Descartes should have looked into that pan before

claiming that light propagates in water 30% faster than in air.

He made this conclusion because he knew that sound propagates

in water faster than in air (about five times as fast).

Deductive inferences based on such analogies are very dangerous;

they must always be tested experimentally. But Descartes solemnly

announced that science is a sequence of derivations of deductive con-

sequences from arbitrary axioms, and the experimental verification of

these axioms does not belong to science (although may be useful for

a market economy).

Of the several dozen of Descartes’ similar “principles” the most

dangerous is the following one: “The government should immediately

prohibit all other methods of teaching except mine, because only this

method is politically correct: following my course, any dimwit will

advance as quickly as any genius, whereas under any other method

of teaching, talent benefits learners.”

Following his principles, Descartes expelled figures from geom-

etry, which are, on the one hand, traces of experiments involving

drawing straight lines and circles, and on the other hand, a niche for

imagination, which Descartes endeavored to eliminate from science.

The former French president Jacques Chirac told me (on June 12,

2008, in the Kremlin) that it is for these features of Cartesian science

that he hated mathematics since childhood. But then he added (in

Russian): “Although, probably, this refers only to French, Bourbaki’s,

mathematics, while here I understand all you say. But not for nothing

did your Fedor Ivanovich1 say:

Who would grasp Russia with the mind?
For her no yardstick was created:
Her soul is of a special kind,
By faith alone appreciated.2

In Russia, nobody believes in Descartes’ theory that light propa-

gates in water faster than in air; in return, his remarkable theory of

the rainbow is better known here than in France.

1[Translator’s note]“Fedor Ivanovich” is the Russian poet F. I. Tyuchev (1803–
1873) .

2Translated by John Dewey.



Chapter 7

A Drop of Water
Refracting Light

By what angle θ does a beam incident on a spherical water drop of

radius r at a distance x from the ray OD passing through the center

of the drop and parallel to the beam deviate from returning along the

incidence direction?

Solution. The angle BOD is equal to β − (α − β) = 2β − α.

The deviation angle θ is twice as large (due to the symmetry in

the OB axis): θ = 4β − 2α.

According to the law of refraction, we have sin α = n sin β, and

by the definition of the incident ray, we have r sin α = x. Therefore,

α = arcsin(x/r), β = arcsin(x/(nr)), and

θ(x) = 4 arcsin
3x

4r
− 2 arcsin

x

r
.

17
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18 7. A Drop of Water Refracting Light

Although this expression answers the question, its meaning be-

comes clear only after the graph of the calculated function θ is con-

structed. This investigation explains both the amazing glitter of dew-

drops and rainbows in a rainy sky.



Chapter 8

Maximal Deviation
Angle of a Beam

Which of the beams incident on a spherical water drop deviates from

returning along itself by a maximal angle θmax (and by what angle

exactly)?

Solution. Let us denote 3x/(4r) by u, then x/r = nu and

θ

2
= 2 arcsin u − arcsin nu.

The derivative of θ/2 with respect to u must vanish for a beam

with maximal deviation angle θmax: for this beam, we have

2√
1 − u2

=
n√

1 − n2u2
,

4

1 − u2
=

n2

1 − n2u2
,

so that

u2
max =

4 − n2

3n2
,

θmax

2
= 2 arcsin umax − arcsin numax.

For n = 4/3, we find

u2
max = 5/12, umax =

√
5/3

2
, numax =

√
5/3 · 2/3.

Since 5/3 ≈ 1.666, we readily calculate√
5/3 ≈

√
166.6/10 ≈ 1.29.

Thus,

umax ≈ 0.645, numax ≈ 0.86.
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20 8. Maximal Deviation Angle of a Beam

Since

sin(π/6) = 0.5, sin(π/4) ≈ 0.707, sin(π/3) ≈ 0.86,

it follows that

arcsin numax ≈ π/3, arcsin umax ≈ π/4 − π/40,

whence
θmax

2
≈ π

2
− π

20
− π

3
, θmax ≈ π

3
− π

10
,

which is about 42◦.



Chapter 9

The Rainbow

Why does an observer see a rainbow as an arc centered at the antisolar

point at an angle of about 42◦?

Solution. The beams most bent by refraction carry the maxi-

mum energy:
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22 9. The Rainbow

1

2

1© The cone of beams reflected most by a droplet. 2© The antisolar

direction.

The energy of the beams at angles from θ to θ +ε of nonmaximal

deviation is proportional to ε, while the energy of the beams within

an angle of the same width ε, around θmax, is much higher (it is

proportional to
√

ε).

For this reason, these beams are visible, and they are seen as a

rainbow. The point is that the refraction indices of light beams of

different colors are somewhat different, so that the maximum angle of
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deviation θmax differs between beams of different colors. This is why

a rainbow is multicolored.

Remark. A second rainbow (inside the primary one) is caused

by beams reflected more than once on the rear surface of droplets.

For these beams, the maximum angle of deviation in somewhat less

than 42◦.

The blueness of the sky also has a mathematical explanation:

looking at a phonograph record from one side, one can observe iri-

descent colors, which are explained by the interference of light waves

in the grating of the record groove (this phenomenon is similar to a

moire, that is, to the long-period pattern obtained when a fence is

projected on another fence).

The blueness of the sky is due to the moire-like interference of sun-

beams caused by density fluctuations in the rarefied atmosphere.





Chapter 10

Mirages

The index of refraction n(y) of air at altitude y over a desert is maxi-

mal at a certain altitude Y (at which the air density is maximal : The

heat of the desert drives lower layers up, and at high altitude, the

density of the atmosphere drops down to zero).

Explain the mirage phenomenon in view of such a behavior of the

index of refraction.

Solution. Let us study the motion y = f(x) of light beams

by using the law of refraction n sin α = const, where α is the angle

between the beam and the vertical.

We obtain a (differential) equation for beams of the form

α(y) = arcsin
C

n(y)
.

The parameter C is determined by the choice of the beam under

examination. We conclude that a beam (with fixed C close to Y ) is

entirely contained in the strip where n(y) � C (and oscillates between
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its boundaries):

These oscillations render the beam wave-shaped (with wavelength

X depending on the constant C).

The value X(C) is finite if C is not a critical value for the index

of refraction n: if dn/dy �= 0 at the points where n(y) = C.

As the constant C increases to the critical value n(Y ) of the

index of refraction, the wavelength X(C) grows to infinity, the wave

amplitude tends to zero, and the beam propagates along the line

y = Y .

To understand how the tortuosity of beams affects the images of

remote palms, let us look from the point (x = 0, y) at a palm growing

at a distance x.

Let us draw rays a and b from the top and the bottom of the

palm to the observation point (x = 0, y).
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At the observation point (0, y), the ray a, which issues from the

top of the palm, is below the ray b, which issues from its bottom.

Therefore, the image of the palm turns upside down—that is what

the mirage phenomenon is all about.

Remark. To comprehend all this, we must clearly understand

how the geometry of beams of light is related to the images (of the

emitting objects by these beams for the observer).

This relation (“image construction”) is explained when lenses are

described in high-school physics courses, but only a few students un-

derstand this theory. (To see a mirage, it is not necessary to go to

a desert: in summer, looking along the platform while awaiting a

commuter train, it is easy to see puddles at a distance, although the

platform is perfectly dry; noticing this, smart kids come around to

the theory described above, but they are few.)





Chapter 11

Tide,
Gibbs Phenomenon,
and Tomography

In the city C, the tide occurred at noon today. When will it occur

tomorrow?

Solution. Tides are explained by the attraction of the Moon:

roughly speaking, this attraction causes the formation of two bulges

(one directed toward the Moon and the other in the opposite direc-

tion) on the equipotential surface of the Earth’s gravity field.1 Under

the influence of this field, ocean water tends to occupy a position in

which its surface is aligned with the equipotential (i.e., it is “horizon-

tal”)

This is what causes tides: since Earth rotates about its axis once

in 24 hours, it follows that the vertex of the bulge directed to (or

1Both Kepler and Copernicus discussed two possibilities for the gravitational at-
traction force; they thought that the decrease in this force with the increase of the
distance is inversely proportional to either the distance or the squared distance. The
conclusion from this discussion was that the inverse proportionality to the squared
distance is more likely, because otherwise tides would be many times higher.
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30 11. Tide, Gibbs Phenomenon, and Tomography

from) the Moon moves with respect to Earth’s continents.

As is known, the Moon moves around Earth and performs a com-

plete rotation in a month (about 28 days), in the plane (of the ecliptic)

inclined (not too strongly) to the plane of Earth’s equator, in the same

direction as Earth rotates about its axis (from the West to the East

as viewed from the North).

During one day, the Moon shifts by about 1/28 of its orbit with

respect to Earth, approximately in the direction of its own rotation.

The bulge attracted by the Moon will be directed toward the new

position of the Moon tomorrow at noon, and Earth must move by

1/28 of its full rotation for the city C to reach the bulge. Since Earth

performs a complete rotation in 24 hours, it must additionally rotate

24/28 hours, which is approximately 50 minutes, for the city C to fall

under the tidal bulge.

Thus, the tide will occur in the city C at 50 minutes after midday

tomorrow.

Remark. Of course, we used a highly simplified model for the

complex phenomenon of tides, assuming that water has time to follow

the equipotential bulges. In reality, it is somewhat behind (in different
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cities, the lags are different); our model would be more accurate if

Earth rotated slower. The attraction of the Sun creates tides as well

(they are lower than the lunar ones but are particularly noticeable

during the spring and autumn equinoxes, when solar tides are added

to lunar ones rather than subtracted from them).

But the answer, a 50-minute delay, agrees well with observations.

Apparently, this is caused by the fact that the lag of water behind

bulges today and tomorrow is approximately the same.

A detailed prediction of tides in certain geographic zones requires

a significant amount of mathematical computation.

Working on these computations, J. Gibbs experimentally discov-

ered the following amazing fact (which is now known as the Gibbs

phenomenon but, unfortunately, is not included in calculus courses):

The limit of the graphs of functions which form a convergent se-

quence may strongly differ from the graph of the limit function.

Of course, the point is that the sequence may converge nonuni-

formly. Gibbs noticed this when expanding a discontinuous function

in its Fourier series. Near the point of discontinuity (of the simplest

type), the limit of the graphs of partial sums contains, in addition to

the interval joining the left and right limit values, its extension (AB

is about 9% longer than A′B′).

Nowadays, this Gibbs phenomenon is used in tomography in order

to explain the “artifacts” observed on tomograms: the increase in

brightness of the plane section of the body at points of double tangents

and tangents at inflection points to the cross section of the bone.
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1

2

3

1©Double tangent 2©Bone boundary 3©Inflection tangent



Chapter 12

Rotation of a Liquid

A glass of water is put on a uniformly rotating phonograph record

(e.g., at the center of this record, so that its axis of rotation coincides

with the axis of symmetry of the glass).

What shape does the water surface acquire?

Solution. It is clear from the symmetry that this will be a surface

of revolution with an equation of the form z = f(r), where r is the

distance to the axis of rotation and z is the height of the water.
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The centrifugal force acting on a mass m at distance r from the

axis of rotation with angular velocity ω is mω2r, and the force of

gravity is mg.

The condition that the resultant force R is orthogonal to the

water surface is that the tangent of the angle α between this surface

and a horizontal radius of the glass equals

mω2r

mg
= cr,

(where the constant c = ω2/g does not depend on the point of the

water surface but rapidly increases with the angular velocity ω of

rotation).

For the function f , we obtain the following differential equation

(which specifies the slope of the graph of this function):

df

dr
= cr.

Its solution

f(r) = f(0) +
c

2
r2

shows that the water surface has the shape of a paraboloid of revolu-

tion.

Remark. Our differential equation means that a tangent to a

parabola bisects the corresponding segment of the axis of abscissas:

|OT | = |OX|/2, because (cr2/2)/(cr) = r/2.
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For a parabola of degree a, we have (as Archimedes already knew)

|TX| = |OX|/a; thus, for a cubic parabola, T is two times closer to

X than to O.





Chapter 13

What Force Drives a
Bicycle Forward?

The lower pedal of a bicycle standing still on a horizontal floor is

pulled back. Which way does the bicycle go, and in what direction

does the pulled back lower pedal move with respect to the floor?

Solution. Let us denote the length of the crank arm (from the

pedal to the axle) by l, the radii of the front and rear sprockets

(toothed wheels) by ρ and r, and the radius of the rear wheel by R.

Let x be the (backward) displacement of the pedal with respect to

the axle. The lowest tooth of the front (and, hence, the rear) sprocket

moves back a distance of y = x(ρ/l).
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Therefore, the rear wheel turns by an angle such that its point of

tangency with the floor covers a distance of

z = y
(R

r

)
= x

(ρ

l

)(R

r

)
.

Looking at the bicycle, we estimate the parameter values as

l ≈ 2ρ, R ≈ 10r.

Therefore, the displacement z of the bicycle with respect to the

floor is

z ≈ 5x (forward!).

This is the displacement of the axle; the pedal moves backward

by x relative to the axle crank arm and forward by 4x relative to the

floor.

Answer. The bicycle moves forward, and the lower pedal pulled

back moves forward as well but 20% less than the whole bicycle.

Remark. It seems surprising that a force directed back (applied

to the pedal) forces the bicycle to move forward. But the rotation of

the rear wheel creates at its point of tangency with the floor a forward

friction force, which wins.

Original Editor’s Note. After the first edition of this book was

published, some readers correctly noticed that the model considered

above is inaccurate.

Corrections were being preliminarily discussed with the author,

and it was planned to finalize them before publishing a new edition

of the book. The sudden death of Vladimir Igorevich Arnold on June

3, 2010, prevented this.

Considering it wrong to change the original text, we leave the

construction of a correct model to the reader. It is assumed that the

force is applied to the pedal (rigidly connected with the wheel) by a

rider sitting on the bicycle’s saddle.



Chapter 14

Hooke and Keplerian
Ellipses and Their
Conformal
Transformations

A point of the Euclidean plane attracted to the origin by a force pro-

portional to the distance from this point to the origin (“Hooke’s law”

�̈z = −ω2�z ) moves along a Hooke ellipse centered at the origin, which

is given by

(∗) x = a cos(ωt), y = b sin(ωt)

under an appropriate choice of Cartesian coordinates x and y in the

plane of motion.

The gravitational field (of attraction with strength inversely pro-

portional to the distance from the origin) causes the attracted point (if
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its initial velocity is not too large) to move along a Keplerian ellipse

with the attracting center at one of its two foci.

Prove that if the Euclidean plane is treated as the complex line

(z = x + iy), then the squared points z of any Hooke ellipse form a

Keplerian ellipse.

Solution. Consider the complex number of modulus r with ar-

gument ωt, that is,

ζ = reiωt = r cos(ωt) + ir sin(ωt).

The reciprocal complex number has modulus r−1 and argument −ωt:

ζ−1 = r−1 cos(ωt) − ir−1 sin(ωt).

Therefore, the sum

Z = ζ + ζ−1 = (r + r−1) cos(ωt) + i(r − r−1) sin(ωt)

of these two complex numbers belongs to the Hooke ellipse with

a = r + r−1, b = r − r−1.

For simplicity, we assume that r � 1. Then a is the semi-major

axis of this Hooke ellipse and b is its the semi-minor axis. A point

moving according to Hooke’s law describes this ellipse once while the

point ζ performs one full rotation on the circle |ζ| = r.
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For the foci of the ellipse thus obtained, the Pythagorean theorem

gives c2 = a2 − b2 = 4, so that the distance between the center and

each focus is equal to 2.

Any ellipse with the same distance between its foci can be con-

structed in this way (for a suitable radius r of the initial circle).

Moreover, any ellipse (centered at the origin) can be constructed in

this way under a suitable choice of the direction of the coordinate

axes and the scale.

Squaring the complex numbers Z = ζ + ζ−1, that is, the points

of the Hooke ellipse, we obtain

Z2 = ζ2 +
1

ζ2
+ 2.

As a point ζ = reiωt describes a circle of radius r once, the point

ζ2 = r2e2iωt describes a circle of radius r2 twice.
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1

2

3

1© Circle. 2© Hooke ellipse. 3© Keplerian ellipse.

Thus, the point

W = ζ2 +
1

ζ2
= X + iY

twice describes the Hooke ellipse centered at 0 whose foci (the points

c = ±2) are at distance 2 from the center:

X = A cos(2ωt), Y = B sin(2ωt).

Recall that Z2 = W +2. Therefore, the point Z2 describes (twice)

an ellipse with foci 0 and 4 (i.e., a Keplerian ellipse), as required.

Remark 1. Taking an appropriate initial ellipse (centered at the

origin Z = 0), we can obtain any ellipse with a focus at 0 as the set

of points Z2. This follows from the above consideration of special

ellipses of the form (∗) under a suitable choice of the directions of the

coordinate axes and the scale.

Remark 2. A motion along a Hooke ellipse governed by Hooke’s

law does not transform into a motion along a Keplerian ellipse gov-

erned by Kepler’s law when the points of Hooke’s ellipse are squared.

Indeed, constant areal velocities cease to be constant when complex

points are squared (because areal velocities only double, while squared

distances to the origin are multiplied by different numbers).



14. Hooke and Keplerian Ellipses 43

Remark 3. Surprisingly, raising complex numbers to an appro-

priate power transforms the orbits of motion in a central field whose

force of attraction is proportional to the αth power of the distance

from the center into the orbits of motion in a central field whose force

of attraction is proportional to the βth power of the distance from

the center.

Here the exponents α and β in the dual laws of attraction are

related by

(α + 3)(β + 3) = 4.

Example. Hooke’s law corresponds to α = 1, and the law of

universal gravitation corresponds to β = −2.

The power to which the points of an orbit in an α-field should be

raised in order to obtain points of an orbit in a β-field is γ = (α+3)/2.

Thus, for α = 1, we have γ = 2; i.e., Hooke ellipses transform

into Keplerian ellipses when complex numbers are squared.

For α = −2, we have γ = 1/2; i.e., Hooke ellipses are obtained

from Keplerian ellipses by taking the square root of complex numbers.

Interestingly, the (dual) laws of Hooke and of universal gravi-

tation describe two unique central fields in which all orbits close to

circular ones are closed; in all other cases, their shapes are similar to

the epicycloid (in the annuli between the apocenters and pericenters).

Remark 4. The transformation of orbits of motion in a central

field with exponent α into orbits of motion in a central field with

dual exponent β is the same in quantum mechanics: the solutions of

the Schrödinger equation corresponding to the first attracting field

are mapped under this transformation of the plane into solutions of

the Schrödinger equation corresponding to the second one (R. Faure,
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Transformations conformes en mécanique ondulatoire, C. R. Acad.

Sci. Paris, vol. 237, pp. 603–605 (1953)).

Although this conclusion can also be made from direct calcula-

tions (similar to those given above), it is much easier to transform

Lagrangians of variational principles equivalent to the Schrödinger

equation (by appropriately transforming the total energy value and

the eigenvalues) rather than its solutions.

Interestingly, the whole theory of duality between fields with po-

tentials |∂w/∂z| and |∂z/∂w| described above carries over (both in

classical mechanics and for the Schrödinger equation) from the case of

the conformal mapping w = z2 of the Hooke–Kepler duality not only

to the case w = zγ (as shown above, for forces with exponents α and β

satisfying the condition (α+3)(β+3) = 4, we have γ = (α+3)/2) but

also to the case γ = ∞, which corresponds to the conformal mapping

w = ez, z = ln w. (The strange relation w0 = ln w is explained later

on in the essay “Mathematical notion of potential” on pp. 115–126.)



Chapter 15

The Stability of the
Inverted Pendulum and
Kapitsa’s Sewing
Machine

Suppose that the pivot point of a pendulum oscillates in the vertical

direction so that z = a cos(Ωt). If the frequency Ω of these oscillations

is sufficiently high, then the inverted pendulum will remain steady in

its upward position (for ϕ = 0 in the figure).

Solution. We pass to the (noninertial) coordinate system in

which the pivot point is fixed. To the force of gravity acting on the

pendulum we must add the inertia force, which is proportional to the

acceleration of the coordinate system, that is, to

z̈ = Ω2a cos(Ωt).
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This is equivalent to oscillations of the gravitational constant g

in the usual equation

ϕ̈ = (l/g) sin ϕ

of an (inverted) pendulum of length l.

The study of the second-order differential equation thus arising

(in which the coefficients vary periodically with time) is provided

for by KAM theory (see; e.g., the 1967 book Ergodic Problems of

Classical Mechanics by V. Arnold and A. Avez reprinted in 1999

in Izhevsk by the journal Regulyarnaya i Khaoticheskaya Dinamika,

pp. 87–90, 245–263).1

Replacing the difficult nonlinear equation of motion of the pen-

dulum by its linearization, we obtain the linear equation

ϕ̈ = (l/g)ϕ

“of small oscillations” for the inverted pendulum.

The eigenvalues of the monodromy operator of this linear equa-

tion with periodic coefficients can be calculated, at least approxi-

mately, by integrating the equation over the period (0 � t � T =

2π/Ω) on a computer or by means of perturbation theory (as de-

scribed; e.g., in V. Arnold’s book Ordinary Differential Equations, on

pages 281–289 of the fourth 2000 Izhevsk edition.2

From these calculations of the eigenvalues of the monodromy op-

erator it follows that, for an inverted pendulum of length l = 20 cm

whose pivot point oscillates with amplitude 1 cm, the equilibrium po-

sition ϕ = 0 of the linearized equation is stable when the pivot point

performs vertical oscillations with frequency more than 30 oscillations

per second.

The fact that this stability is preserved for nonlinear pendulums

is not as obvious, but it is true.

Remark. This problem arose in the theory of accelerators. One

of the projects was based on the stability of an inverted pendulum

1[Translator’s note] English translation: V. I. Arnold and A. Avez, Ergodic
Problems of Classical Mechanics (Benjamin, New York, 1968), pp. 88–90, 250–269.

2[Translator’s note] English translation: V. I. Arnold, Ordinary Differential
Equations (MIT Press, Cambridge, Mass., 1973), pp. 199–207.
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with a vertically oscillating pivot point (the problem on the stability

of the circular motion of accelerated particles reduces to the same

equation).

P. L. Kapitsa suggested that, before millions are spent for build-

ing an accelerator, the conclusion about pendulums should be checked

experimentally. He rebuilt an electric sewing machine so that its ro-

tation caused vertical oscillations of the pivot point of the pendulum.

The pendulum stood steadily upward, and when slightly dis-

placed sideways, it began to swing about this vertical position in the

same way as an ordinary pendulum swings about its lower equilibrium

position.

When Kapitsa was the chairman of the organizing committee of

a physics olympiad for school students and Arnold was the chairman

of the organizing committee of a math olympiad (the committees sat

together at the Institute for Physical Problems), P. L. demonstrated

his sewing machine-cum-pendulum, which was kept in the next room

as a relic, to the members of both committees.

Arnold, who did not have an electric sewing machine, adapted

a Neva vibrating electric shaver to create vertical oscillations of the

pivot point of a pendulum.3

The upper equilibrium position turned out to be unstable, be-

cause the length l = 20 of the pendulum was too large. Arnold had

to perform the (linearized) calculations whose results are presented

above.

After the pendulum was shortened to 10 cm, its oscillations (about

the upper equilibrium position) became stable, and then Arnold proved

3A video record of the operation of this electric shaver is stored at the site “Math-
ematical Etudes” (http://etudes.ru).
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this stability by using KAM theory (this theory includes a general

theorem on the stability of elliptic fixed points, which substantiated

the possibility of judging the stability of a nonlinear system from its

linearization, as early as in 1961).

The accelerators had been already constructed at that time, be-

cause physicists were satisfied by the experimental verification of sta-

bility in Kapitsa’s experiments with his sewing machine (notwith-

standing that they did not yet possess mathematical KAM theory

rigorously proving this nontrivial nonlinear stability).



Chapter 16

Space Flight of a Photo
Camera Cap

An astronaut in a spaceship flying along a circular orbit threw a photo

camera lens cap to Earth (say with velocity 10 m/sec). Where will it

fly?

Describe the orbit of the cap relative to the spaceship (in the plane

of the orbit).

Solution. Let r denote the distance to the center of Earth, and

let ϕ be the central angle (counted from some point on the orbit).

We take the radius of the orbit for the unit of length and choose the

unit of time so that the orbital period is 2π.

The differential equation for the law of universal gravitation is

written in this coordinate system as

�̈r = − �r

r3
.
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Let us investigate the solutions of this equation close to the cir-

cular motion (r0 = 1, ϕ0 = t). We seek them in the form (r = r0+r1,

ϕ = ϕ0 + ϕ1); after linearization, we obtain the variational equations

r̈1 = 3r1 + 2ϕ̇1, ϕ̈1 = −2ṙ1

for the perturbations r1 and ϕ1.

We solve these equations under the initial conditions determined

by the problem (these are r1(0) = ϕ1(0) = ϕ̇1(0) = 0 and ṙ1(0) =

−1/800, because the first cosmic velocity, which is equal to 1 in our

coordinate system, is about 8 km/sec).

The variational equations imply ˙̇ṙ1 = −ṙ1, whence, taking into

account the initial conditions, we obtain

r1 = − 1

800
sin t, ϕ1 =

2

800
cos t.

This means that the cap moves along an ellipse with major axis

about 32 km and minor axis about 16 km whose center is 16 km

ahead of the ship on the orbit. In about an hour and a half (which

is the rotation period of the ship), the lens cap will describe its one-

hundred-kilometer elliptic orbit around the ship and return to the

ship from above, passing at a distance of a few dozen meters from

the ship, because its true motion differs from the first approximation

considered above.

Remark. The flight of the lens cap described above indeed oc-

curred during the walk of astronaut Leonov in outer space (it was

Leonov’s narrative which had led V. V. Beletskii to the above calcu-

lations).

Leonov, however, said that the lens cap, which he had thrown to

Earth, “flew there”: he did not expect that it would return back (in

an hour and a half). His description of the experiment was correct:

the first kilometer of the one-hundred-kilometer ellipse is very nearly

a segment of the straight path to Earth; at greater distances, the lens

cap was indiscernible.



Chapter 17

The Angular Velocity of
a Clock Hand and
Feynman’s
“Self-Propagating
Pseudoeducation”

On a horizontal table in St. Petersburg, a watch lies face-up. Where

does the angular velocity vector of the hour hand point?

Solution. The angular velocity of the hand relative to the watch

case is directed downward (because the hand moves clockwise), and

in magnitude, it is double that of Earth’s rotation about its axis

(because the hand rotates once every 12 hours, while Earth rotates

once every 24 hours).

The angular velocity vector of Earth’s rotation points to the

northern pole star (because Earth rotates counterclockwise as viewed

from that star).

The angular velocity of the overall motion is the sum of these

two vectors (the angular velocity of Earth’s motion and the angular

velocity of the hand relative to Earth).

The latitude of St. Petersburg is 60◦; therefore, the components

of a vector of the angular velocity of Earth (of length ω) that are

directed East along a parallel, North along a meridian, and upward
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are (0, ω/2, ω
√

3/2).

The components of the angular velocity vector of the hour hand

with respect to Earth (in the same orthogonal coordinate system)

are (0, 0,−2ω).

Thus, the components of the angular velocity vector of the hand

are (0, ω/2,−ω(4−
√

3)/2): it is coplanar with the meridian but points

in a direction different from that of the pole star (whose angle of

elevation is 60◦ in St. Petersburg), specifically, to a point below the

horizon with angle of elevation arctan(−(4 −
√

3)) ≈ −66◦.

Everyone is taught angular velocity at school, but a few gain the

understanding needed to solve the above problem.

Richard Feynman mentions (in his book Surely, You’re Joking,

Mr. Feynman! ) that education, even university education, gets stu-

dents into “this funny state of self-propagating ‘education’,” in which

a student properly understands nothing but can successfully pass ex-

ams.

For example, according to Feynman, the definition of the moment

of inertia of a point mass with respect to an axis and the squared

distance to the axis makes no sense for students so long as there is

there is no discussion about how much easier it is to push a door open

when you put a heavy weight A near the hinge as compared to when

you put the same weight B on the edge opposite the hinge:
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But, unfortunately, professors confine themselves to the (correct)

statement I =
∑

mr2, and it is this statement that students are

supposed to know at the exam.

At an optics exam, Feynman asked a student what would happen

to the image of an examination program lying under a piece of glass

if he tilted the glass by an angle α. The student, naturally, answered

that the image would turn by 2α (although he had just been answer-

ing about Snell’s law, he did not know the relationship between the

geometry of beams and the position of the visible image). Feynman’s

question as to whether the student had confused a plane-parallel glass

plate with a mirror did not help at all.





Chapter 18

Planetary Rings

Orbiting around the Sun, the planet Uranus obscured a star far from

Earth (for a short time). Astronomers prepared for this event well in

advance, but, on the due night, the star became invisible earlier than

expected. Then it appeared, disappeared again, and there were four

such disappearances observed until Uranus “occulted the disk of the

star.”

After that, the star hid behind Uranus, as predicted by astronomers,

was obscured for the expected time, and appeared again; then, it dis-

appeared four more times (for a short time).

How can these disappearances be explained?

Solution. The most natural guess is that Uranus, like Saturn,

is surrounded by rings. Four concentric rings separated (like those

of Saturn) by gaps must obscure the star four times before and four

times after Uranus passes in front of it. Observations provide the

sizes of the rings and gaps.

Remark. The gaps between Saturn’s rings are explained by the

perturbing influence of the attraction of the ice blocks constituting

the rings by the satellites of this planet. Such perturbations render
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the orbiting of a block unstable if the distance between the orbit and

the planet is such that the rotation on the orbit is in resonance with

the rotation of the satellite (say, the period of rotation is half that of

the satellite: it is the rational ratios of periods that are dangerous for

stability).

The knowledge of the size of the gaps between Uranus’ rings ob-

served during the passage of Uranus in front of the star has enabled

astronomers (A. M. Fridman and others) to predict the radii of the or-

bits of Uranus’ five perturbing satellites, which then were not known

(but were discovered during the subsequent flight of Voyager past

Uranus).

Interestingly, an international astronomical journal rejected the

predictions of Soviet astronomers, motivating this by the fact that

“the journal is published in a country where a different theory of

gaps between Saturn’s rings prevails.”

This “different theory” predicted Uranus’ satellites as well, but

in reality, these predicted satellites were not in their places, and the

American Voyager expedition did not find them.

I believe that Nobel prizes were created for crowning scientific dis-

coveries confirmed by subsequent experiments or observations, such

as the theory of Uranus’ rings described above.

But American astronomers with whom I later discussed this ob-

jected that “their purpose is to support American theories rather than

Russian ones.”

Fortunately, neither Nobel prizes, Fields Medals, nor other similar

distinctions exert substantial influence on the onward development of

the natural sciences, which progress not so much by the decisions of

various academies, as by the curiosity of explorers, to whom I address

this book.

Zel’dovich used to say, chuckling, that he, and I, and Sakharov,

and Kolmogorov—we are all members of the ChVAN (from the verb

“chvanit’sya”1) society, which means literally “Chlen Vsekh Akademii

Nauk”2 But Kolmogorov valued only one such distinction: being in

1[Translator’s note] The Russian verb “chvanit’sya” means “to swagger”.
2[Translator’s note] “Member of All Academies of Sciences”.
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the list of Honorary Members of the London Mathematical Society.

Of course, he was also a member of the London Royal Society (the

Academy of Sciences of England), but he did not value this so highly:

the first Russian member, proposed to that society by the president,

Newton, was Aleksandr Danilovich Menshikov3 (who was illiterate

and signed his own consent to join (written for him by Shafirov) by

four crosses, which were shown to me when the record of my election

as a member was put in the same folder with other Russian members

of the Royal Society).

3[Translator’s note] A.D. Menshikov and P.P. Shafirov, dignitaries at the court
of Peter the Great, were sent on a mission by the Tsar to England.





Chapter 19

Symmetry (and Curie’s
Principle)

Draw a straight line through the center of a homogeneous cube so that

the moment of inertia of the cube with respect to this line is maximal.

Solution. Consider the ellipsoid of inertia of the cube (with

respect to its center). The cube has four axes of symmetry of order 3

(a rotation through 2π/3 about any of the space diagonals takes the

cube to itself).

Therefore, the ellipsoid of inertia of the cube has the same four

axes of symmetry of order 3.

But an ellipsoid has an axis of symmetry of order 3 only if this is

an ellipsoid of revolution (about this axis).

It follows that the ellipsoid of inertia of a homogeneous cube (with

respect to its center) has four axes of revolution and hence is a sphere.

Thus, the moments of inertia of a homogeneous cube with respect

to all straight lines passing through its center are the same.

Remark. Instead of a homogeneous cube, we could take a cube

with any system of masses having the same symmetries. For example,

we could put eight equal masses at its vertices. Thus, the sum of the

eight squared distances from the eight vertices of a cube to a straight

line passing through its center is the same for all such lines.
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In this form, the problem considered above appeared in Quantum

Mechanics by Landau and Lifshits;1 instead of moments of inertia,

they considered self-oscillation axes of symmetric molecules: for a

molecule with the symmetry of a cube, a self-oscillation axis is any

straight line (passing through the center).

Pierre Curie believed that his main discovery was the following

principle (cited today as “Curie’s principle”): The symmetries of con-

sequences reflect the symmetries of causes; thus, observing the for-

mer, one should always inquire into the latter (e.g., observing the

symmetries of a crystal, look for their causes in the structure of the

corresponding molecules).

1[English Translation] L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Vol. 3 of A Course in Theoretical Physics), Pergamon Press, 1965.



Chapter 20

Courant’s Erroneous
Theorems

A platform stands on horizontal rails, on it the horizontal pivot of an

“inverted pendulum” is fixed perpendicularly to the rails. The pendu-

lum can freely swing in the vertical plane parallel to the rails. The

platform moves according to a law x = f(t) (where f is a function of

time smooth in some interval [0, T ]).

Prove the existence of an initial state of the pendulum (α(0) = ϕ,

(dα/dt)(0) = 0) such that the pendulum never hits the platform during

the travel time T .

Solution (Courant’s). If ϕ = 0, then we always have α(t) = 0,

and if ϕ = π, then α(t) = π for all t.

Since a solution of a (smooth) differential equation continuously

depends on the initial condition ϕ, it follows by the intermediate value

theorem that there is a value α(0) = ϕ between the initial conditions

α(0) = 0 and α(0) = π such that α(t) is strictly between 0 and π for
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0 � t � T , so that the pendulum does not fall down.

Remark. Many people disputed this (incorrect) proof, because,

even if a continuous function α( · , T ) of the initial position ϕ were

defined, its difference from 0 and π under the initial condition · = ϕ

would not imply that the angle α differs from 0 and π at all interme-

diate moments of time 0 < t < T .

Probably, there is a reasonable generalization of Courant’s argu-

ment, in which α(ϕ, t) is naturally extended beyond the moments of

hitting the platform (when α(ϕ, t) = 0 or π). But such a generaliza-

tion is missing from the literature, and no rigorous proof of Courant’s

above-stated conjecture is known.

Various objections to various attempts to substantiate Courant’s

conclusion were published by J. Littlewood and other mathematicians

(some of the “counterexamples” to one of such substantiations turned

out to be invalid if the speed df/dt is slower than the speed of light).

But I have not seen a reasonable analysis of this problem with

hits taken into account.

Courant included the above theorem in the remarkable elemen-

tary textbook What is Mathematics? by Courant and Robbins with

a reference to Whitney.

Another erroneous theorem was included by Courant in the fa-

mous book Methods of Mathematical Physics by Courant and Hilbert.

This theorem provides a topological description for the linear com-

binations of the first n eigenfunctions of the Laplace operator: their

zeros split an oscillating manifold into no more than n parts.



20. Courant’s Erroneous Theorems 63

Courant proved this correctly for the nth eigenfunction, but for

its combinations with the preceding eigenfunctions, this is not always

true. In the case of a one-dimensional oscillating body (a string),

Courant’s statement to me is probably correct.

I. M. Gelfand explained the idea of his proof of Courant’s state-

ment. It is based on the replacement of Bose’s Laplace equation by

Fermi’s (for n electrons, say on a fixed circle).

Applying Courant’s theorem on the number of pure eigenfunc-

tions to the first skew-symmetric eigenfunction of this n-dimensional

problem and fixing the positions of all but one electron, Gelfand

promised to obtain, on the fixed circle, any linear combination of

the first n eigenfunctions of the one-dimensional problem.

But nobody has published a complete proof so far.





Chapter 21

Ill-Posed Problems of
Mechanics

Three (weightless) ideal pulleys are joined as shown in the picture.

Find the acceleration of the mass suspended from the bottom pulley.

Solution. Let f denote the tension of the part of the rope be-

tween the central pulley and the ceiling. Then, the tension F of the

part of the rope between the top pulley and the bottom one is F = 2f

because the second part of the rope (between the top pulley and the

central one) pulls the central pulley upward with force f (since this

pulley is ideal).

Similarly, the force with which the rope between the bottom pul-

ley and the top one pulls the former upward is f (because the top

pulley is ideal). Finally, since the bottom pulley is ideal, we have

f = F (the equality of the forces of tension of both parts of the rope

on which this pulley hangs).
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Thus, we have obtained two relations between tension forces, F =

2f and F = f . They imply f = F = 0. This means that the third

pulley is not suspended from anything and falls, together with its load,

with free-fall acceleration g.

Remark. Accounting for the masses of pulleys (and their inertia

of rotation) significantly complicates the problem. We do not justify

here the fact that the acceleration of the bottom pulley tends to

g as the masses of pulleys tend to zero (which is, mathematically

speaking, required for substantiating the “physical” solution of the

problem given above).

The number of similar “ill-posed” problems in diverse applied

areas is enormous, even if I mention only “statically indeterminate”

situations, like the distribution of the weight of a beam between three

pillars supporting this beam.

There are hundreds of papers presenting “algorithms” for solving

such problems, and some of the mathematical theories constructed for

this purpose (e.g., in L. Nirenberg’s recent papers) are very beautiful.

But the question of their practical applicability is quite different.

A. N. Krylov recalled that Volterra gave a rigorous mathematical

proof of the stability of a railway bridge crossed by a train of mass

M with velocity v, provided that M is not too large.

But he points out that the mass M (calculated in practically in-

teresting examples) turns out to be 10 grams: “the theorem is correct,

and so is its proof, but it is entirely beside the point.” He was able

to calculate realistic limits for M above, which the bridge would col-

lapse, but there was no rigorous proof of stability for smaller values

of M .
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Krylov’s student S. Timoshenko designed and calculated many

of (the most famous) bridges in the United States, including the re-

construction of the Tacoma Narrows Bridge, which had collapsed be-

cause of flutter, but he proceeded from a correct understanding of

the essence of the matter rather than from the bounds obtained by

Volterra.





Chapter 22

Rational Fractions of
Flows

A splitter (of a crowd passing through a corridor) sends one person

to the left and the next one to the right, so that the flow splits into

parts of the same intensity going in different directions :

By using several such splitters, it is possible to isolate 1/4 or 3/8

of the flow.

Is it possible to isolate 1/3 of the flow?

Solution. Let us combine two splitters so that the first splits

the entire incoming flow and the second, one of the resulting halves

of the flow. We send one of the two isolated quarters of the flow back
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to the first splitter, so as to include it in the incoming flow:

Suppose that the initial incoming flow in our system was of in-

tensity 1 (say 100 people passing through per minute). Let us denote

the intensity of the returned quarter of the flow passing through the

first splitter by x.

Then, the entire incoming flow (at the first splitter) has intensity

1 + x = 4x;

i.e., x = 1/3, which solves the problem.

Remark. By using a larger number of standard splitters of flows

into two equal parts, it is possible to isolate any rational fraction

(x = p/q) of the initial flow.

These mathematical theorems were discovered by experts in fire-

fighting in search for the optimal use of the subway after a nuclear

bombing.



Chapter 23

Journey to the Center
of the Earth

A stone falls in a well (without initial velocity) passing diametrically

through a whole spherical planet.

Investigate its motion under the action of the gravitational field

(assuming that the planet is homogeneous, i.e., of constant density).

Solution. According to Newton’s theorem, the already passed

(homogeneous) spherical layers do not attract the stone, while the

layers not yet passed attract it as if their mass were concentrated at

the center of the planet.

Let us denote the distance from the stone to the center of the

planet by r. Then, the volume (and, hence, the mass M) of the

layers not yet passed is proportional to r3. According to the law of

universal gravitation, the force of attraction by such a mass located

at the center of the planet decreases with increasing r as M/r2 = r.
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Therefore, the motion of the stone in such a well is governed by

the force field of Hooke’s law:

r̈ = −ω2r, r = R cos(ωt).

Here, the amplitude R is the radius of the planet.

Thus, the stone performs harmonic oscillations about the center

of the planet. It returns to the initial point P after the period T =

2π/ω (and visits the antipodes in the middle of this period).

To avoid the burdensome calculations of the coefficient ω2 in

the equation of Hooke’s field, consider a nearby satellite orbiting the

planet along the great circle passing through P . The orthogonal pro-

jection of the orbit of this satellite on the diameter of the planet

oscillates harmonically with amplitude R. At the point P , the grav-

itational field acting on the stone is the same as that acting on the

satellite (because the stone has not yet passed any spherical layers).

Therefore, the oscillation period T of the stone in the well is equal

to the period during which the nearby satellite makes a full circular

orbit (for planet Earth, this is approximately an hour and a half).

These Newton laws explain the amazing composition of Saturn’s

rings: the size of the blocks of ice from which they are made is 10 to

20 meters on average.

Naturally, the blocks moving randomly along Kepler’s orbits (which

are not quite circular) may collide, and the mean collision velocity is

calculated from the mean size of a block: it depends on the difference

between the speeds of motion along close Keplerian orbits.

The splinters resulting from a collision move faster the higher the

collision speed. Calculations show that, for blocks of size more than

20 m, the speed of the splinters is higher than the escape velocity

(needed to escape far away from the maternal block) so that such

blocks become smaller after collisions.

If the size of a block is less than 10 meters, then the splinters fly

away with slower speeds and return back so that at least one of the

two colliding blocks grows.

It is this dynamic that leads to the occupation of each ring by

blocks that are not too large and not too small (this phenomenon was
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discovered, after the calculations described above were performed,

during the Voyager mission).





Chapter 24

Mean Frequency of
Explosions (according to
Ya. B. Zel’dovich) and
de Sitter’s World

A process involving explosions is described by (Bernoulli’s) evolution

law

dx

dt
= a(t)x2 + b(t)x + c(t).

The example of the equation ẋ = x2 shows that a solution may go

away to infinity in finite time; such a solution describes an explosion:

(∗) x(t) =
x(0)

1 − tx(0)
.

But this solution can be extended beyond the moment of explosion (by

passing round the pole t = 1/x(0) in its complex neighborhood)

Shortly before his death, Ya. B. Zel’dovich stated the following

conclusion of his study of the asymptotic behavior of the above equa-

tion describing explosion processes (primarily, he had in mind cos-

mology) in large time.

Suppose that the coefficients (a, b, c) are periodic smooth functions

of time t. Then the number N of explosions during a long time T

averaged over time is

lim
T→∞

N(T )

T
= N.
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If this mean number of explosions during the period is rational, then

the process is periodic; otherwise, it is not periodic.

Solution. The appropriate phase space {x} is the projective line,

that is, the circle RP1 ≈ S1
x (including the point x = ∞) rather than

the real line R.

For example, relation (∗) means that the phase flow transforma-

tion (which takes x(0) to x(t)) is a projective transformation of the

phase space.

The time axis {t} must be assumed to be a circle as well; this is

the circle R/(TZ) ≈ S1
t of phase variation of the coefficients.

This transforms the differential equation of evolution into a smooth

direction field on the product torus

T 2 = S1
t × S1

x.

Applying Poincaré’s theory (see, e.g., Additional Chapters of the

Theory of ODEs)1 to this dynamical system on the torus, we see that

its Poincaré rotation number is N .

1[Translator’s note] V. I. Arnold, Additional Chapters of the Theory of Ordi-
nary Differential Equations (Nauka, Moscow, 1978) [in Russian]; English translation:
Geometrical Methods in the Theory of Ordinary Differential Equations (Springer-
Verlag, New York–Heidelberg–Berlin, 1983).
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When this number is rational, the system has an attractor, which

is a closed curve on the torus; this curve describes the periodic evo-

lution of the process.

Remark. Ya. B. Zel’dovich solved this problem a week before

his death. He did not know Poincaré’s theory and simply invented it.

But he had no time to publish his theory.

Interestingly, none of the mathematicians had mentioned these

applications of Poincaré theory before. The point is that Zel’dovich’s

theory was based on a daring change of the topological structure of

the phase space: he replaced the affine line R by the projective line

RP1, which is diffeomorphic to the circle.

Mathematicians avoid such changes of models (except, perhaps,

when they pass from the Euclidean to the hyperbolic plane); they

prefer to investigate questions already formulated in precise mathe-

matical terms.

On the contrary, in physics, it has been widely believed for a long

time that “homology and cohomology are the same old physical fields,

only with singularities of a certain form at infinity.”

But let me present, incidentally, an example that even physicists

are not familiar with: the hyperbolic space whose points at infinity

are extended beyond the absolute (of the Cayley–Klein model) is a

(relativistic) de Sitter space.
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1
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1  De Sitter relativistic universe.  2  Time-like directions
3  Hyperbolic plane.   4  Space -like directions.   5  Absolute
6  Directions of light

Each point of the de Sitter space complementing the disk of the

Cayley–Klein model to the projective plane is the intersection of two

tangents to the absolute bounding the hyperbolic space in the model.

These two tangents determine light geodesics of the de Sitter rela-

tivistic space: they separate time-like and space-like directions.

Topologically, this de Sitter space (complementary to the hyper-

bolic plane) is the Möbius strip (which Möbius discovered in precisely

this way, as the complement of a neighborhood of a point in the pro-

jective plane).



Chapter 25

The Bernoulli Fountains
of the Nikologorsky
Bridge

In the bridge near the village Uspenskoe there were (until April 2007)

twelve drainage holes for the outflow of the rain water that may accu-

mulate on the roadway near the sidewalks. In 1980, during a powerful

thunderstorm, a bicycle rider (V.I.A.) crossing that bridge decided to

have a look at one of the holes to observe how water was flowing

out. But nothing was flowing out, on the contrary, from each hole a

fountain was sprouting up to nearly three meters.

How can one explain these twelve fountains?

Solution. The Bernoulli law “more speed = less pressure” ex-

plains what was going on. A strong wind was blowing along the river

above the bridge, but there was practically no wind under it because

the bridge itself blocked the moving air. Thus, the wind speed at the

top A of the hole was greater than that at its bottom B.

The greater pressure at the bottom created the thrust that caused

the fountains to spurt.

Remark 1. The above story was narrated by V.I.A. during a

ride from Nikolina Gora to Novodarino as we passed over the bridge

in a car driven by N. N. Andreev (who initiated the writing of the

present book). A TV interviewer, A. N. Marutyan, was also listening.
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The bridge and the view unfolding from it (actually depicted by

the Russian painter Levitan) were shown in the resulting film, called

Ostrova (Islands) on the TV channel Kul’tura. There one could see

that V.I.A. is explaining something, but the sound at that moment

was turned off so that the undesirable references to the unfamiliar

Bernoulli law were successfully avoided by the TV people.

In 1980 few people believed in the existence of the observed foun-

tains on the bridge (they are visible only during strong gusts of wind

blowing along the river), and now they no longer occur: The holes

were filled up when the bridge was repaired in the spring of 2007.

Remark 2. A few minutes after we crossed the bridge, we ob-

served, to the right of the road, another object, the interesting story

about which that followed was also excluded from the Kul’tura pro-

gram by the TV people.

Namely, a bit above the place where the road crosses the small

river Sleznya, there is a pond in the village Uspenskoe, which at the

time belonged to Sovmin, the Soviet Council of Ministers. Along

its nicely equipped shore, there is a planked walkway where people

like to tan in the sun. The story is this: This is the very walkway

from which Boris Yeltsin fell in the water (although the legend claims
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that “he was thrown into the Moscow river from the high bridge near

Uspenskoe”).

The height of the above-described bridge is about 10 meters, so

the fall would not have been particularly pleasant, whereas there is

less than one meter between the walkway and the water of the Sleznya.

Unfortunately, no picture of that walkway appears in the film

Ostrova. But then Marutyan found (using a map that I had drawn)

the cranberry swamp, located some 15 kilometers from the Sleznya

(near the village Dmitrovskoe, close to the palace where the Patriarch

Alexy resides and the church where Lzhedmitry1 met Marina on her

way from Poland). The ice-age lake in the middle of the swamp, sur-

rounded by shrubs, provides me with several pails of cranberries every

year, and in Marutyan’s film it looks just like a lake from Karelia.

In that swamp, besides cranberry shrubs, there is an abundance of

carnivorous sundew—a kind of swamp grass that feeds on live insects

that stick to its leaves. The leaf then rolls up (like a mousetrap) and

digests the trapped insect.

Some 40 years ago I could share the pleasure of swimming in that

ice-age lake with moose and boars, but now the boars have all been

eaten up, while the moose wait till I ride away on my bicycle with my

pails of cranberries to take their dip in the lake.

1[Translator’s note] Lzhedmitry (False Dmitry) was an usurper (supported by
Poland) of the Russian throne in 1605–1606; Marina Mnishek was a Polish noblewoman
who became his wife.





Chapter 26

Shape Formation in a
Three-Liter Glass Jar

On the surface of a three-liter glass jar filled with water, place a drop

of ink (or India ink) avoiding an initial push (i.e., by carefully “hang-

ing up” the drop at surface level.)

How will the drop drown?

Solution. At first, the “hanging” drop spreads out on the water’s

surface as a small flat disk, “collects” to its center, and then sinks

down a couple of centimeters.

The resistance of the water causes the sinking drop to flatten out

until it becomes a colored torus rotating along its meridian. From

below, the torus is bounded by a thin film of ink, from the center of

which a trace of ink stretches up along the path of the drop.

Then the motion of the sinking torus becomes unstable, and it

loses its symmetry. Usually the symmetric “doughnut” falls apart

into a ring of attached “sausages,” each of which is like the initial
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drop (but continues to rotate).

Soon, some of these six “rotating droplets” sink further down

just as the initial drop did. A kind of “chandelier,” consisting of six

hanging tori, is then formed.

The further evolution of these tori is the same as that of the first

one: The chandelier now has two “stories.”

If all this is done carefully, making sure that the water in the

jar has settled and become quite still, not moving your hands near

the receptacle so as to avoid inducing the motion of water due to the

gradient of temperature, we can then observe, in an ordinary three-

liter glass jar, the formation of a six-story chandelier before hundreds

of tiny tori reach the bottom.

Apparently, the described picture does not yet have a mathemat-

ical proof, but it can be clearly observed in experiments.
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For instance, René Thom, who told me about this, read a de-

scription of these phenomena in D’Arcy Thompson’s ancient book

On Growth and Form (in which these “chandeliers” appear next to a

description of the growth of different corals).1

1[Translator’s note] Actually, D’Arcy Thompson mentions medusas (jellyfish),
not corals (see p.395 of the 1942 edition of On Growth and form).





Chapter 27

Lidov’s Moon Landing
Problem

The technique of mooring a ship to a pier is this: a sailor throws a

cable on the shore, then jumps off the ship, wraps the cable around a

bollard, and hauls in the ship by hand, pulling in a meter or two of

cable.

Explain why such a hand-controlled mooring is due to a unique-

ness theorem, which works against us here.

Solution. The thing is, the integral curves of the differential

equation dx/dt = −x with initial conditions x(0) = 1 and x(0) = 0

obviously intersect on any computer-produced picture: for t = 30 (or

even 10), one cannot even fit an atom between the curves.

The usual principles of the control theory of motion require regu-

lating the speed dx/dt of approach to the shore by the feedback loop;

i.e., to choose the speed in dependence on the remaining distance,

dx/dt = f(x).
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Having this in mind and assuming that the function f is smooth

(or at least Lipschitz), we see that the uniqueness theorem implies

that the time needed for mooring is infinite.

Or, one must maintain a nonzero speed until the ship reaches the

pier and bumps into it (for this reason automobile tires hanging on

the edge of the pier are needed, even in the case when the mooring is

hand-controlled).

Remark. My good friend M. L. Lidov was a leading expert in

ballistics, calculated the orbits of artificial space bodies, sputniks,

lunar expeditions and so on.

Once, around 1960, he told me: “The uniqueness theorem in your

ordinary differential equations course is completely wrong, although it

has a perfectly rigorous proof” (“which”, he added, “I don’t doubt”).

As a confirmation, he communicated the following problem to me.

Lidov knew all about the mooring of ships because he had to

land spaceships on the Moon. The controlled soft landing there also

contradicts the uniqueness theorem. The chosen practical method

consists in damping the final collision by brief oscillations about the

knees of the three “legs” of the rocket.

A number of remarkable achievements in space ballistics are due

to Lidov. For instance, he studied the evolution of “pseudomoons,”

Earth satellites with orbit the size of that of the Moon, under the

condition that the inclination of the orbit to the plane of the ecliptic

(in which Earth rotates around the Sun) is not small (unlike that of
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the Moon, for which it is approximately five degrees), but, on the

contrary, large.

When the inclination is 80◦, Lidov’s analysis led to the conclusion

that such a pseudomoon would fall on Earth in some four years or

so (because of the rapid growth of the orbit’s eccentricity due to the

perturbing influence of the Sun).

1

2

3
4

5

1©, 4© Pseudomoon. 2©, 3© Earth. 5© Keplerian ellipse.

This surprising result of Lidov does not contradict Laplace’s the-

orem about the invariance of the mean distance a of the evolving

trajectory of a perturbed (here, by the Sun) Keplerian ellipse to the

attracting center (here, Earth).

Even when the pseudomoon falls on Earth, its mean distance from

Earth remains the same (a ≈ 380000 km). But the eccentricity of its

Keplerian ellipse increases in four years to such an extent that the

ellipse begins to intersect the earth (which is not a material point,

but has a radius of nearly 6400 km).





Chapter 28

The Advance and
Retreat of Glaciers

According to Lagrange’s theory of secular perturbations of planetary

orbits in the planar problem of n planets, the Laplace vector z, joining

the Sun with the center of the instantaneous Keplerian ellipse of each

planet, is the sum of n uniformly rotating (with angular velocity ωk)

vectors of fixed lengths ak, (r = 1, . . . , n) in the plane of motion:

z =

n∑
k=1

ake
iωkt

(expressed in terms of the complex coordinate z in the plane of motion).

The length of the eccentricity, proportional to |z|, and the direc-

tion to the perigee, ϕ(t) = arg z, vary in a complicated way over time.

Lagrange assumed that there exists a mean value of its motion,

Ω = lim
t→∞

ϕ(t)

t
,

and proposed to calculate the mean value of the angular velocity of the

perigee motion.
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The evolution of the Laplace vector z(t) is one of the causes of the

advance of glaciers because, when the vector is large, the Keplerian

ellipse has a large eccentricity. In that case, the planet spends more

time far from the Sun, and its average temperature drops.

For example, the amount of energy provided by solar rays at

the latitude of Saint Petersburg varies (for a dozen centuries or so)

between the amounts provided on the latitude of Taimyr1 and the

latitude of Kiev.

Remark. If one of the summed vectors is longer than the sum

of the others (i.e., |aj| >
∑

k �=j |ak|), then the mean angular veloc-

ity of the perigee will be the angular velocity of that summand, aj

(Lagrange).

In our real solar system, this turns out to be precisely the case for

most planets. But for Earth and Venus, there are several summands of

approximately the same length, so that the problem already becomes

meaningful for three planets, where the numbers |a1|, |a2|, |a3| are the

lengths of the sides of a triangle:

1[Translator’s note] The Taimyr peninsula is located at 75◦ North latitude.
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In that case, the problem was solved by H. Weyl, and the answer

has the form of a weighted arithmetic mean

(∗) Ω = p1ω1 + p2ω2 + p3ω3

with weights proportional to the angles of the above-mentioned tri-

angle:

pj = αj/π.

This value of the mean angular velocity (which does not depend

on the initial positions of the rotating vectors) is obtained for almost

all (in the sense of Lebesgue measure) values of the angular veloc-

ities ωk (their arithmetic independence suffices; i.e., the absence of

resonances

m1ω1 + m2ω2 + m3ω3 = 0

with integer coefficients m �= 0).

In the presence of resonances, the answer may depend on the

initial conditions, but remains the same (if one averages over initial

positions of the rotating vectors).

When there are more than three not too long summands (i.e., if

|aj | <
∑

k �=j |ak|), the answer is also given by an arithmetic mean

of angular velocities similar to (∗), but the role of the angles of the

triangle is played by the following “generalized angles” pk.

Consider the (n − 1)-dimensional torus Tn−1 with angular coor-

dinates ϕk, k �= j. Let us construct the vector

ξ(ϕ) =
∑
k �=j

ake
iϕk

depending on the point ϕ of the torus.

For some j-dangerous points ϕ, the length of this vector is less

than the number |aj |: |ξ(ϕ)| < |aj |.
The weight pj is the measure of the set of j-dangerous points ϕ

(scaled so that the measure of the entire torus is 1).

In the case n = 3, this definition leads to the weights hj = αj/π,

as one can easily calculate.

The assertion that the sum of weights p1 + · · · + pn equals 1 for

any n is true, but is not immediately obvious (although it suffices to
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take independent angular velocities ωj close to ω to prove the above

identity for the described weights pj).

A detailed solution on the mean motion of the perigees is de-

scribed by H. Weyl in two long articles, and below we only sketch the

idea. For simplicity, we consider the case n = 3.

Consider the three-dimensional torus T 3 with angular coordinates

ϕ1, ϕ2, ϕ3 and on it, the vector field of the rotations with angular

velocities ω1, ω2, ω3:

ϕ̇1 = ω1, ϕ̇2 = ω2, ϕ̇3 = ω3.

To each point of the torus let us assign the complex number

w(ϕ) = a1e
iϕ1 + a2e

iϕ2 + a3e
iϕ3 .

The argument of this complex number is well defined (up to an

integer multiple of 2π) whenever ω(ϕ) �= 0.

The points ϕ of the torus where ω(ϕ) = 0 form a closed curve on

it, bounding a surface S on which the complex number ω is positive

(and where arg ω(ϕ) = 0).

This surface is cooriented (by the direction of increase of the

argument). To each point of the surface S, let us attach the vector of

angular velocities

ω = ω1
∂

∂ϕ1
+ ω2

∂

∂ϕ2
+ ω3

∂

∂ϕ3
.

All these attached vectors form a 3-chain Σ on the torus T 3 (pos-

sibly with self-intersections and non smooth). On the torus T 3, define

a function f whose value at each point ϕ is equal to the number of
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times the chain passes through that point (in the picture, f = 0

everywhere except on the hashed domain, where f = 1).

The mean value Ω is now (up to an integer multiple of 2π) the

mean in time of the function f constructed above along the orbits of

the dynamical system ϕ(t) = ϕ(0) + ωt.

The independence of the frequencies implies that this (Lebesgue

measure preserving) dynamics is ergodic, and so the temporal mean

coincides with the mean in space.

The spatial mean depends of the frequency vector ω that was

used to construct the chain and the averaged function f on the torus.

But the dependence on the vector ω is linear (for example, this

follows from the representation of the integral of f in the form of the

flow of the field ω through the surface S).

Therefore, in order to compute the spatial mean, it suffices to

calculate its value on three basis vectors ω = ∂/∂ϕk (no longer paying

attention to the ergodicity of the flow corresponding to the field).

This last computation is easy; for instance, we can use the fact

that if only one summand is rotating, then the mean rotation of the

sum is 0 provided that this summand is shorter than the sum of the

other two.

Now, if the rotating summand A3 is longer than that sum, then

the mean rotation coincides with the angular velocity ω3 of the ro-

tating summand.

Hence, the mean (over all directions of the motionless summands

A1 and A2) coincides with that fraction of the directions ϕ1 and ϕ2

for which |A1| + |A2| < |A3|), and that fraction is α/π, i.e., the ratio

of the angle opposite to the side |A3| = |a3| of the triangle with sides

|a1|, |a2|, and |a3| to the sum of angles of the triangle.

A remark about ergodic theory

The computation sketched above is carried out by H. Weyl using

ideas of “ergodic theory,” which allow reducing the computation to

finding spatial means of an appropriate function in the phase space

T 3 of the dynamical system ϕ 	→ ϕ + ωt on the torus.
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Spatial means are often easier to compute than temporal means.

All of statistical physics is based on that idea. The coincidence of

temporal means (along the orbits of chaotic dynamical systems) with

spatial means (over the entire phase space) is regarded by physicists

as self-evident, and they have always applied this “ergodic” conjecture

(since the time of L. Boltzmann).

But mathematicians know that this coincidence of different types

of means does not always take place: the system must be “ergodic,”

and even ergodicity does not guarantee the coincidence of the two

means for all initial values of the dynamics (although it ensures it for

almost all the initial conditions).

In the particular case of uniform motion ϕ 	→ ϕ+ωt on the torus

Tn (with independent frequencies ωk), H Weyl proved the coincidence

of the temporal and spatial means for any continuous (or at least

Riemann integrable) function f : Tn → R on the torus of volume 1:

lim
T→∞

(
1

T

∫ T

0

f(ϕ + ωt) dt

)
=

∫
· · ·

∫
Tn

f(ϕ) dϕ.

Example. Let f be the characteristic function of a (Riemann

measurable) domain X on the torus

⎧⎨
⎩

f(ϕ) = 1 for ϕ ∈ X,

f(ϕ) = 0 for ϕ ∈ T n \ X.

Then the integral on the left-hand side expresses the time during

which the segment 0 ≤ t ≤ T of the orbit of the dynamical system

ϕ 	→ ϕ + ωt spends in the domain X.

The limit on the left-hand side is therefore the fraction of time

that the orbit spends in X during the whole infinite period t ≥ 0.

As to the integral on the right-hand side, it is equal, for the

characteristic function of the domain X, to the volume of this domain.

If the whole phase space (T n in our case) is of volume 1, then this

integral also expresses the fraction of the volume of the phase space

occupied by X.
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The coincidence of the temporal means of the characteristic func-

tion (appearing on the left-hand side) with its spatial mean (appear-

ing on the right-hand side) is known as the equidistribution of the

orbits of the dynamical system under study in phase space. If the dy-

namics of the system possesses this property of uniform distribution

(for any Riemann measurable domain X), then the time spent by the

mobile point in various parts of the phase space is proportional to

their volume.

The uniform distribution of the orbits of the dynamical system

in phase space implies the coincidence of the temporal and spatial

means of all (at least Riemann measurable) functions. This follows

from the fact that such a function can be approximated by a linear

combination of characteristic functions of several domains.

Together with the proof of the uniform distribution of the dy-

namical system ϕ 	→ ϕ + ωt, H. Weyl obtained a similar theorem on

the uniform distribution for dynamical systems with discrete time

g : Tn → Tn, g(ϕ) = ϕ + λ.

The orbits of the dynamics are uniformly distributed on the torus

Tn, if the rotation vector λ has the following independence property

of its components: A linear combination with integer coefficients

m1λ1 + . . . + mnλn + m0

vanishes if and only if the vector m ∈ Zn is zero.

Example. For n = 1, the transformation g is a rotation of the

circle, while the independence condition is that the rotation angle

must be incommensurable with the flat angle (i.e., with 2π).





Chapter 29

The Ergodic Theory of
Geometric Progressions

Consider the first digits of the terms of the geometric progression 2t,

t = 0, 1, 2, . . .

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, . . .

What fraction of the first digits of the numbers constituting this

sequence are ones? In the first 10 terms there are three, and we must

find the limit p1 = limT→∞ (number of terms among the first T terms

2t of the progression that begin with the digit 1 ).

Solution. Consider the logarithms to the base 10 of the terms

of the progression: lg 2t = tλ, where λ = lg 2.

The first digit of a positive number z equals k if the number z

lies in the interval k10a � z < (k + 1)10a, where a is an integer. In

other words, a + lg k � lg z < a + lg(k + 1); i.e., the fractional part of

the number lg z lies in the half interval of length

pk = lg(k + 1) − lg k = lg(1 + 1/k).

The number λ = lg 2 is irrational, (otherwise we would have

10p/q = 2; i.e., 10p = 2q, which is impossible for positive p since 2q

is not divisible by 5).

By H. Weyl’s theorem, the sequence {tλ}, t = 0, 1, 2, . . . of points

on the circle of fractional parts R/Z is uniformly distributed. The

fraction of time that the orbit spends in the interval [0, lg 2) of the
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circle of fractional parts is equal to the length p1 = lg 2 ≈ 0.30 of this

interval, because the distribution of orbits is uniform.

And so approximately 30% of the terms 2t of our geometric pro-

gression begin with the digit 1.

Remark. The same argument with spatial means yields the

fraction of twos, p2, the fraction of threes, p3, etc.:

pk = lg(k + 1) − lg k = lg
(
1 +

1

k

)
:

k 1 2 3 4 5 6 7 8 9

100pk 30 18 12 10 8 7 6 5 4

Instead of the geometric progression with common ratio 2, we

can take other geometric progressions, at (say, taking a = 3), the

fraction pk of numbers beginning with k will still be the same as for

the progression 2t. It is only important that the common ratio a

must not equal any rational power of 10: The shift λ = lg a in the

dynamical system on the circle must be an irrational number in order

to ensure the uniformity of the distribution of orbits.

Remark. In the U.S., Weyl’s theorem is usually called “Bed-

ford’s Law” in honor of the physicist who noticed (around 1930) that

the first pages of logarithm tables in libraries are dirtier than the

last ones. He explained this by saying that “random numbers” begin

by “1” more often than by other digits, so that one needs to find

logarithms of numbers from the first pages more often.

But Bedford was wrong: for example, in the statistics of the

lengths of rivers or altitudes of mountains, just as many numbers

begin with a 1 as with a 9.

Here the usual “eponimical principle” works: No discovery bears

the name of its first discoverer, everything is ascribed to friends

of those who give the name (for example, America is not called

Columbia).

The British physicist M. Berry called this eponymic principle

“Arnold’s Principle,” adding a second one to it: “Berry’s Principle.”

Berry’s eponymic principle asserts that “Arnold’s Principle is ap-

plicable to itself” (i.e., it wasn’t Arnold who invented it).



Chapter 30

The Malthusian
Partitioning of the
World

Let us consider all the countries of the world and count in how many

of them the first digit of their population is k.

Justify that the fraction of such countries is pk = lg(1 + 1/k),

just as for the geometric progression 2t and for the table appearing on

p. 100.

Solution. According to Malthus’ law, the numbers expressing

the population of a country in subsequent years form a geometric

progression. Therefore the fraction of these numbers beginning with

k is pk.

According to the ergodic principle, the temporal means (aver-

aging the situation over the years in each country) is equal to the

spatial means (averaging the situation for the present year over all

the countries of the world).

Remark. Replace the numbers expressing the population of

countries by some other sequences, say the altitudes of mountains

or the lengths of rivers, or the number of pages of the books on your

favorite bookshelf.

In those cases all digits appear in the first position with approx-

imately the same frequency p1 = p2 = · · · = p9 = 1/9 (whereas the
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numbers for the population whose first digit is a 1 appear 7–8 times

more often than those beginning with a 9).

The thing is that neither rivers, nor mountains, nor books grow

in geometric progression, while the distribution pk = lg(1 + 1/k) is

characteristic precisely for geometric progressions.

It is amazing that the areas of countries (be they measured in

square kilometers, or square miles, or square inches) also produce the

same distribution of first digits as geometric progressions.

This phenomenon may be explained by the fact that countries

unite from time to time (which leads to an increasing geometric pro-

gression with common ratio 2 when countries of similar size merge),

and split in half from time to time (which creates a decreasing geo-

metric progression, for which the distribution of the fractional parts

of the logarithms is also uniform).

For the simplest models of such partitions of the world, the ap-

pearance of the distribution of first digits described above can be

proved, but computer experiments1 show that they also occur in more

complicated models (e.g., when a country can merge only with neigh-

bors), although no one has proved theorems justifying the appearance

of the distribution pk = lg(1 + 1/k) in such cases.

1Carried out by F. Aicardi in Sistiana (Italy) and M. Khesina in Toronto
(Canada).



Chapter 31

Percolation and the
Hydrodynamics
of the Universe

Consider N points in some domain of Euclidean space (for example,

in the unit cube In ⊂ Rn, say the square in the Euclidean plane).

If r is small enough, then the balls of radius r centered at these

points don’t intersect.

If the radius is larger, not only do some of the balls intersect, but

certain intersecting balls form chains of order 1, along which one can

move from one side of the cube to the opposite side.
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In that situation, we say that percolation has occurred: if the given

domain is filled with the substance of the receptacle having N sources

of faults, and each fault has grown to the size of a spherical hole of

radius r, then, as percolation occurs, the receptacle begins to leak.

The percolation radius of a system of points is the least radius r

of balls centered at these points for which percolation occurs.

The percolation radius depends not only on the number of points

but also on the geometry of their positions.

The problem that will now be discussed is how the percolation

radius r decreases as the number of points grows for different positions

of the percolation centers in the substance of the receptacle.

For a filling of the cube by N points of a regular lattice, the

distance between neighboring points will be of the order of 1/ 3
√

N , so

that the percolation radius is of the order of N−1/3.

This conclusion remains true for less regular positions of the

points, even for those randomly thrown into the cube: the perco-

lation radius of a system of N points in In decreases as N → ∞, as

a rule, like C/N1/n.

Now if the n percolation centers are not chaotically positioned in

the cube I3, but, say, lie along a smooth curve, then the percolation

radius will be much smaller, namely C/N .
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When the n percolation centers are positioned on a smooth sur-

face embedded in the cube I3, the percolation radius will decrease as

N → ∞ at an intermediate level between the two previously described

cases: r ∼ C/N1/2 (for N centers positioned on a k-dimensional sub-

manifold in Ik, the same argument yields a percolation radius of the

order of 1/N1/k).

Rigorous mathematical proofs of all the results listed above are

not easy, mainly because one must define what a “random filling” of

a submanifold by N centers of percolation is, and what submanifolds

are admissible.

But physicists, experts in chemistry, and astronomers bravely

use such a “stochastic geometry” without much care about rigorous

justification—and obtain spectacular nontrivial results.

For example, in cosmology, it is important to understand how

the galaxies are distributed in the Universe: do they tend to position

themselves along some surfaces or lines, or do galaxies accumulate

near separate points, or are they uniformly distributed everywhere,

like the N points randomly thrown into the cube in the previous

example?

The answers to these questions on the accumulation of galaxies

may shed light on the extremely difficult problems of their origin.

The first peculiarity of the distribution of galaxies observed by

astronomers was the presence of huge empty places between them,

holes where no galaxies appear.

These holes led to the idea that for some reason galaxies, in-

stead of placing themselves randomly, prefer being situated along

certain special two-dimensional surfaces or one-dimensional curves

(which can intersect, forming networks).

Astronomers and cosmologists have computed the percolation ra-

dius of the system of thousands of observed galaxies. The dimension

of the manifold along which they accumulate was obtained by com-

paring the percolation radius with the number N of observed galaxies.

The percolation radius turned out to be of the order of magnitude of

C/Nα, where 1/2 < α < 1.
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This means that the manifold is “of dimension one-and-a-half”:

apparently it is a not very smooth surface (dim = 2) near which the

density of the galaxies is higher than in the complementary “empty”

domains; however, on that surface there are lines (dim = 1), where

the density is greater than on the surface (an additional increase of

density near singular points (dim = 0) of these lines is not to be

excluded).

All these consequences of the value of the computed percolation

radius have been borne out by a detailed analysis of the spatial distri-

bution of galaxies (and that of the “hydrodynamical Universe,” which

explains the origin of these density singularities by nonuniformities of

the velocity field in parts of the Universe after the “Big Bang”).

The advantage of the mathematical approach based on the per-

colation radius over the direct viewing of the observed spatial distri-

bution is in that a human being tends to unite objects, accidentally

close to each other, into more convenient structures (for instance,

by dividing the starry sky into subjectively chosen constellations: in

China the seven stars of the Big Dipper had been split long ago into

two constellations—the Horse and the Carriage).

The percolation approach replaces these subjectively determined

structures by objective characteristics of the studied objects, not de-

pending on the investigator’s bias.



Chapter 32

Buffon’s Problem and
Integral Geometry

Let us randomly throw a needle of length 1 on a horizontal piece of

paper lined by parallel lines so that the distance between neighboring

lines is 1.

Repeat this experiment many times (N → ∞). How will the

number M of thrown needles that intersect one of the lines grow with

N?

Solution. The answer is surprising:

lim
N→∞

M

N
=

2

π
,

so that, having thrown the needle a million times, we can obtain a

fairly good approximation to the number π.

The explanation to this surprising answer is as follows. Clearly,

as N → ∞, the number of intersections M(N) is cN (for a certain
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constant c equal to the probability of falling on a line in one throw).

Let us replace the needle of length 1 by one twice as long. Then

the probability of intersection will also double (on the average) be-

cause the additional half of the needle is of length 1 and also falls

randomly so that it will produce as many intersections as did the

original needle of length 1.

There is no need for the needle of length 2 to be straight. We

can bend it at the midpoint in the form of a poker, both halves will

give the same number of intersections, and together, twice as many

as before.

It follows from the above arguments that, throwing any “crooked

needle” of length l, we obtain asymptotically, as N → ∞, the value

cNl for the number of intersections.

In particular, we can throw a circle of diameter 1. The length

of this circle is π. Asymptotically, it will produce cMπ intersection

points after N throws.

But such a circle produces two intersection points, no matter how

it is thrown.

Thus we have shown that

cNπ = 2N ;

i.e., c = 2/pi, as claimed.

The Buffon problem described here gave rise to a whole new

branch of mathematics—so-called integral geometry.
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The source of this science was not the study of consequences

of some axioms, but the desire to understand simple experiments,

invented, one might add, by researchers distant from mathematics.

Today, integral geometry is one of the most active branches of the-

oretical mathematics. But it is constantly applied to other branches

of science, for instance, to study the complicated geometric structures

of crystals, plants, or animals on the basis of the statistics of their

two-dimensional cross-sections or tomograms (including the study of

random projections, shadows produced by randomly placed sources

of light, or the reflections of a light beam randomly falling on the

object under study).





Chapter 33

Average Projected Area

Find the area of the orthogonal projection of a cube with edge length 1

on a random plane.

Solution. Arguing as in Buffon’s problem, we come to the con-

clusion that this mean area of projection does not depend on the

shape of the (convex) projected body, but depends only on the area

of its surface.

Therefore, the average projected area of a cube is as many times

smaller than its surface area as the area of the equatorial section of

a ball is smaller than the area of its surface.

For a ball of radius 1, the area of its equatorial section (which is

a disk of radius 1) is π. The surface of a ball of radius 1 has area 4π.

Therefore, the average projected area of a cube is four times

smaller than its surface area, which is 6. Thus, the average projected

area of the unit cube is 3/2.

Remark. The projection area is minimal (equal to 1) when the

projection is along an edge. The (hexagonal) projections along the
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diagonals of the cube have maximum area.

The diagonals of the cube’s faces perpendicular to the projection

direction retain their lengths under projection: |PAPB| = |AB| =
√

2.

Considering the equilateral triangle OPAPD, we obtain |OPD| =

2(|PAPB|/2)/
√

3 =
√

2/3 (because tan 60◦ =
√

3).

Therefore, the area of this triangle is

1

2
·
√

2

2
·
√

2

3
=

1

2
√

3
.

The area of the entire projection P of the cube is equal to 6/(2
√

3) =√
3.

Thus, the average projected area 11
2

that we have found is con-

tained between the minimum projected area (equal to 1) and the

maximum projected area (equal to
√

3).

This confirms the answer found above in the essay Buffon’s Prob-

lem and Integral Geometry. In physics, such test comparisons of

means with extreme cases are a necessary element of any study, and

mathematicians, too, should remember to carry them out.

Given a smooth boundary of a surface domain in Euclidean space

R
n, consider the k-dimensional volume Sk of its orthogonal projection

on a random k-plane.
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It turns out that this average (over all k-planes, which are consid-

ered equiprobable) value exists; e.g., for any surface in R
3, its average

projected area and average projected length are defined.

These average k-volumes turn out to be equal to the mean values

of symmetric functions of principal curvatures of the surface averaged

over the entire surface.

They also participate in the (surprising) expression for the volume

of an h-neighborhood of a surface:

V (h) = V0 + V1h + V2h
2 + . . . + Vnhn

(here V0 is the volume of the surface, V1 is the (n − 1)-volume of its

boundary, which is proportional to the mean value at 1, and Vk is

proportional to Sk and can be expressed in terms of the mean value

of the product of the k principal curvatures).

In the case of n = 3; i.e., a two-dimensional smooth surface in

three-dimensional Euclidean space, from the principal curvatures k1
and k2 at each point we can produce the mean curvature k1 + k2 and

the Gaussian curvature K = k1k2.

In this case, the volume of an h-neighborhood is

V (h) = V0 + hS + h2V2 + h3V3,

where V2 is proportional to the integral of the mean curvature over the

entire surface and V3 is proportional to the integral of the Gaussian

curvature:

V3 =
4

3
π
(∫∫

K dS
)
.

Thus, for a sphere of radius R, we have

V (h) =
4

3
π(R + h)3 =

4

3
πR3 + h(4πR2) + h2(4πR) +

4

3
πh3.

Here

k1 = k2 = 1/R, k1 + k2 = 2/R, k1k2 = 1/R2,∫∫
(k1 + k2) dS = 8πR,

∫∫
(k1k2) dS = 4π (this is the Gauss–Bonnet formula).
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The coefficient V3 does not depend on details of the surface; it

depends only on the Euler characteristic. The discovery of this fact

led Hermann Weyl to the theory of characteristic classes and charac-

teristic numbers, which generalize the Gauss–Bonnet formula, in his

work On the Volume of Tubes1 dealing with V (h).

1[Translator’s note] H. Weyl,“On the volume of tubes,” Amer. J. of Math. 61
(2), 461–472(1939).



Chapter 34

The Mathematical
Notion of Potential

The mathematical model of physical “material points” and “point

charges” is known as the δ-function.

Physicists say that δ(x) = 0 for any x �= 0, while
∞∫

−∞
δ(x) dx =

1. Certainly, there exist no such functions in mathematics. Math-

ematically, they are understood as follows: if a formula contains

a δ-function, then we must render it meaningful by replacing the

δ-function by its “smoothed version” δε(x), where δε is a smooth non-

negative function vanishing everywhere outside the ε-neighborhood of

the point 0 and having integral 1, and then pass to the limit as ε → 0.

Example. Let f be a continuous function on the real line. Eval-

uate
∞∫

−∞
f(x)δ(x − y) dx.
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Solution. The function δε(x − y) of x is a smoothed δ-function

translated from 0 to y.

The product f(x)δε(x − y) vanishes when |x − y| � ε, so that it

suffices to take the integral over the ε-neighborhood of the point y on

the x-axis. But the function f differs little from the number f(y) in

this neighborhood. Therefore,

lim
ε→0

∫ ∞

−∞
f(x)δε(x − y) dx = f(y)

∫ ∞

−∞
δε(x − y) dx = f(y).

Thus, we have proved the equality

f(y) =

∫ ∞

−∞
f(x)δ(x − y) dx.

Remark. If we were physicists (and identified integrals with

sums), we might read this equality as “any (continuous) function f of

an argument y is a ‘linear combination’ of δ-functions of y translated

to all points x of the y-axis (the translated function of y is δ(x− y)).

The coefficients in this linear combination are the values f(x) at all

points of the function being expanded.

Problem. Calculate the second derivative of the function |x|
of x.

Solution. The first derivative sgn x takes the value 1 at x > 0

and −1 at x < 0. But this is the integral of the second derivative.
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Therefore, the second derivative vanishes at x �= 0, and its integral

(from any a < 0 to any b > 0) is equal to 2 (the increment of sgn x).

Therefore,
d2|x|
dx2

= 2δ(x).

Problem. Is the δ-function homogeneous?

A function f is homogeneous of degree k if

f(cx) = ckf(x) for any c > 0.

Example. The function 1/x is homogeneous of degree k = −1.

Solution of the problem. Consider an approximation δε(2x)

of δ(2x). The graph of this “δ-shaped” function of x is the graph of

the function δε (of x) compressed by a factor of 2:

We see that δ(2x) vanishes at any x �= 0, and the integral of this

function (over the entire real line) is half the integral of the δ-function

(the latter integral is equal to 1).

Therefore,

δ(2x) =
1

2
δ(x), δ(cx) =

1

c
δ(x),

so that the δ-function is homogeneous of degree −1.

Problem. Is the δ-function of n variables (which vanishes ev-

erywhere on R
n except at 0 and has integral 1) homogeneous?

Answer. This function is homogeneous of degree −n.

We can prove this by the same argument as we used above for

n = 1. But we can also apply the useful easy-to-prove identity

δ(x1, x2, . . . , xn) = δ(x1)δ(x2) . . . δ(xn)
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and the fact that the product of homogeneous functions of degrees k

and l is a homogeneous function of degree k + l.

The Laplace operator. Let f be a smooth function on Eu-

clidean space (of dimension n). Consider a sphere of small radius r

centered at x. The mean value of f over this sphere is close to its

value f(x) at the center but does not exactly coincide with it.

Problem. What is the order of the difference between the mean

value and the value at the center as r → 0?

Solution. For n = 1, the mean value is

f̂(r) =
f(x + r) + f(x − r)

2
.

Expanding the function f in the Taylor series f(x + r) = f(x) +

rf ′(x) + r2

2 f ′′(x) + . . ., we obtain

f̂(r) = f(x) +
r2

2
f ′′(x) + o(r2);

therefore, the difference

f̂(r) − f(x) =
r2

2
f ′′(x) + o(r2)

is of the second order of magnitude with respect to the radius r of

the sphere.

For an arbitrary n, the argument is almost the same. The linear

term of the Taylor series averaged over the sphere is 0 because this

term takes opposite values at opposite points of the sphere.

The cubic and higher-degree terms add a small (in comparison

with r2) correction o(r2). Therefore, the difference under examination

is of the second order of smallness:

f̂(r) − f(x) = Kr2 + o(r2).

The coefficient K is called the value (at the central point x) of

the Laplacian, denoted Δf , under an appropriate normalization.

Problem. Express the coefficient K in terms of the second par-

tial derivatives of the function f .
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Solution. We must average the terms of the Taylor series, which

contain different second-degree monomials (in the increments of the

arguments), over a sphere of radius r.

For simplicity, we assume that the sphere is centered at 0 and

denote the Cartesian coordinates of the increment vector by (x, y)

(assuming that n = 2).

The mean values of the functions x2 and y2 on the sphere (circle)

are the same, and the mean value of xy over this sphere is 0 (because

the change of the sign of the x coordinate changes the sign of the

function).

But the mean value of x2 + y2 over the sphere (circle) {x2 + y2 =

r2} is r2. Therefore, the mean values of the functions x2, y2, and xy

over this sphere are r2/2, r2/2, and 0. The Taylor formula gives the

quadratic contribution

∂2f

∂x2

x2

2
+

∂2f

∂y2
y2

2
+

∂2f

∂x ∂y
xy

with mean value

∂2f

∂x2

r2

4
+

∂2f

∂y2
r2

4
,

whence we obtain (for n = 2) the required expression for the coeffi-

cient:

K =
1

4

(∂2f

∂x2
+

∂2f

∂y2

)
.

In the case of an arbitrary number n of Cartesian orthonormal

coordinates (x1, . . . , xn) in Euclidean n-space, the same argument

gives the answer

K =
1

2n

(∂2f

∂x2
1

+
∂2f

∂x2
2

+ . . . +
∂2f

∂x2
n

)

(because the mean value of the function x2
1 over the sphere x2

1 + . . .+

x2
n = r2 is equal to r2/n).

Problem. Find a spherically symmetric solution of the equation

Δu = δ in Euclidean space Rn.
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Solution. Any spherically symmetric function u on R
n \ 0 has

the form

u(x1, . . . , xn) = f(r).

Considering Δu = 0 as an equation for f , we obtain a second-order

ordinary differential equation. This equation has two linearly inde-

pendent solutions; one of them is (obviously) f ≡ 1. As the sec-

ond solution, we shall now find a homogeneous function u for which

Δu = δ.

If a function u is homogeneous of degree k, then Δu is homoge-

neous as well, but of degree k − 2.

Since the δ-function on R
n is homogeneous of degree −n, it follows

that u must be homogeneous of degree 2 − n. Thus, for n �= 2, we

obtain

f(r) = cr2−n.

Let us calculate the constant c. To this end, note that Δu =

div grad u. The gradient of the function r2−n is a spherically sym-

metric field whose components have homogeneity degree 1 − n:

grad r2−n = c1xr−n.

The coefficient c1 is determined by the behavior of this field on the

x1 coordinate axis, on which r2−n = x2−n
1 and

dx2−n
1

dx1
= (2 − n)x1−n

1 = (2 − n)xr−n,

so that c1 = 2 − n.

The flux of the vector field grad r2−n through the sphere x2
1 +

. . . + x2
n = r2 of any radius r is equal to the product of (2 − n)r1−n

by the volume of an (n − 1)-sphere of radius r; thus, this flow is

(2 − n) · ω(n − 1),

where ω(n − 1) is the volume of an (n − 1)-sphere of radius 1:

n 1 2 3

ω(n − 1) 2 2π 4π

By Stokes’ theorem, this flux is equal to the integral of the diver-

gence of the field under consideration over the ball bounded by the

sphere.
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Therefore,∫
Rn

div grad rn−2 dx1 . . . dxn = (2 − n)ω(n − 1).

It follows that, in Rn, we have

Δrn−2 = (2 − n)ω(n − 1)δ.

Thus, the equation Δu = δ in R
n with n �= 2 has the spherically

symmetric solution

u = cr2−n, where c =
1

(2 − n)ω(n − 1)
.

This solution is called the fundamental solution (of the Laplace

equation).

Example. In three-dimensional space (n = 3), the fundamental

solution is

u =
c

r
, where c = − 1

4π
.

This is the law of the gravitational field and of the electrostatic

Coulomb field.

For n = 1, we obtain the fundamental solution u = cr, where

c = 1/2 (that is, u = |x|/2).

Problem. Investigate the fundamental solution of the Laplace

equation Δu = δ in the Euclidean plane.

Solution. If we were physicists, we would say that the function

u = cr2−n, n = 2, must be understood as the limit of the prelimit

functions with n = 2 + ε as ε → 0.

We would obtain

r2−n = e(2−n) ln r = e−ε ln r = 1 − ε ln r + o(ε).

The constant 1 contributes the harmonic function (Δu = 0), and

the ε-linear term contributes the function ln r, which is harmonic in

R2 for r �= 0.
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Arguing as above, we can easily verify that the fundamental so-

lution has the form

u = c ln
1

r
(we leave the determination of the constant c by calculating the di-

vergence of the gradient of this function to the reader).

Remark. More “mathematically,” the above argument consists

in considering solutions of the equation Δu = 0 (for u = f(r)) as

eigenfunctions (corresponding to the eigenvalue 0) of the operator Δ

on a function space.

Of course, the above analysis of fundamental solutions for the

Laplace operator on R
n provides formulas for the potentials of the

corresponding force fields (gravitational and electrostatic).

The very fields (grad u) are of the form, respectively,

F ∼ r1−n ∼ �x

|x|n ,

both for n �= 2 and in the exceptional case n = 2.

In the case n �= 2, this operator has the double eigenvalue 0 with

two eigenvectors (studied above).

But the operator depends on the parameter n so that, for n = 2,

there arises a Jordan block of size 2: the eigenvalue 0 is double, but

the eigendirection is unique.

In this case, the planes spanned by both eigenvectors (correspond-

ing to the case n �= 2 of the operators) tend to a limit position as

n → 2. This limit plane is spanned by an eigenvector and a general-

ized eigenvector of the Jordan block.

It was this generalized eigenvector (ln r) that we calculated in the

“physical” solution given above.

A gravitational (or electrostatic) field in the plane can be ob-

tained from a field in 3-space by considering cylindrically arranged

attracting masses or charges (with density ρ(x, y) not depending on

the orthogonal coordinate z).

In other words, it is required to calculate the attraction of the

points of the homogeneous line x = y = 0 in R
3 by integrating the

forces of attraction of various points on this line.
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We leave this simple calculation to the reader; it is convenient to

use at once the symmetry (x, y, z) 	→ (x, y,−z) and consider the net

attractions of symmetric masses.

Physicists state the theorem proved above concerning the funda-

mental solutions of the Laplace operator on the Euclidean plane in

the form (mathematically erroneous without additional explanations)

of the relation r0 = ln(1/n).

The Dirac δ-function described above is the simplest particular

case of a “generalized function,” whose theory was constructed by

N. M. Gunter in 1916 under the title “theory of functions of domains”:

these “generalized functions” are not defined by their values at points,

but by their integrals over all possible domains.

Gunter constructed this theory in order to prove existence (and

uniqueness) theorems for solutions of the equations of hydrodynam-

ics, Navier–Stokes. Gunter was then accused of producing an “anti-

proletarian” aristocratic theory. To defend himself, he organized a

seminar for communists and Young Communist League members.

One of the participants, Gunter’s pupil S. L. Sobolev, used Gunter’s

method of generalized solutions to study the linear wave equation

(where discontinuous generalized solutions are needed for the prole-

tariat; e.g., in seismology).

Sobolev’s papers were translated from the French to the American

language by L. Schwartz, who constructed, in this way, his “theory of

distributions” for which he was awarded the Fields Medal.
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In 1965 Laurent Schwartz told me that he got the Fields Medal

for correcting errors in Sobolev’s paper. I had read that paper and

found no errors, so I asked Schwartz to point them out to me.

Schwartz answered: “Sobolev published his results in a language

no one understands, in a city where nobody is interested in science,

and also in a journal that nobody reads.”

Although I knew where Sobolev’s paper was published, I asked

Schwartz to name the language, the city, and the journal; Schwartz

answered: “In French, in Paris, in the journal Comptes Rendus de

l’Académie des Sciences.”

After returning in 1966 to Moscow, when I had pulled Sergei

Lvovich Sobolev out from a rut into which he had driven in his

car near the Zvenigorod market (to buy milk), I told him about

Schwartz’s theory.

Sergei Lvovich replied: “Laurent is a wonderful person, and he

likes us both, but he lied to you: in the paper he was given the Fields

Medal for, he not only translated my article, but also added his own

theorems about the Fourier transforms of my generalized solutions,

which I did not know!”

The question of the relationship between the work of Schwartz

and Sobolev was to be settled by Hadamard, who came to Moscow

for that purpose to talk to Sobolev. But in this he did not succeed,

because S. L. Sobolev was then in Los-Arzamas (Sarov) as Kurcha-

tov’s Deputy Director.1 Hadamard sought the advice of Kolmogorov,

who said that to both he prefers the “true author”—Gunter (whose

work on “functions of domains” motivated Kolmogorov’s cohomology

theory).

Dirac introduced his δ-function around 1930. He wrote that the

only right way to create a new physical theory is “to forget about all

the physical considerations, which are actually only a polite pseudo-

nym for the prejudices of previous generations.”

1[Translator’s note]I. V. Kurchatov was the head of the Soviet atomic bomb
(“Manhattan”) project.
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In his own words, one must begin with some meaningful math-

ematical theory: “if it is really beautiful, then its results will find,

today or tomorrow, useful physical applications.”

In his construction of the theory of spins of electrons, Dirac met

with the following difficulty: physicists could not understand why

those spins take two values (+1/2 and −1/2) although they describe

the same “rotation of the electron.”

The essence here is in a meaningful topological theorem: The

fundamental group of the rotation group of three-dimensional space

consists of two elements; i.e., π1(SO(3)) � Z2.

This means that a rotation by 360◦ does not return the corre-

sponding physical characteristic to its initial state. To return to that

state, the rotation must be continued so that angle of rotation be-

comes 720◦, not 360◦.

This difficult theorem was not understood by physicists and led

them to distrust spin theory.

Then Dirac found its consequence (also not at all obvious) in

mathematical braid theory: he constructed a “spherical braid of four

hairs,” which is a second order element in the spherical braid group.

Ordinary braids are “planar,” their group is the fundamental group

of the configuration space of n points in the plane (for braids on n

strands).

In that group of planar braids there are no elements of finite

order: we cannot unravel such a braid by attaching another one just

like it to its end.

But for spherical braids, Dirac was able to demonstrate such an

unraveling to physicists in an experiment (its strands were attached

to three concentric spheres and unraveled when he burned the middle

one).
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To invent this physical experiment, Dirac used the (beautiful and

nontrivial) mathematical theory of elliptic functions, which he under-

stood quite well.

The idea is to consider four distinct points on the Riemann sphere

CP 1. Then the two-fold covering of the sphere branching at these

points is the two-dimensional torus (the Riemann surface of the func-

tion y =
√

x4 + ax2 + bx; i.e., an elliptic curve). This circumstance

determines a representation of the group of spherical braids on four

strands in the automorphism group Z ⊕ Z of the 1-homology of the

elliptic curve.

It is by computing these automorphisms that Dirac found a spher-

ical braid on four strands of order two in the spherical braid group.

If Dirac had not been enamored in that sort of mathematics,

physicists would never have been given the spin theory of electrons.



Chapter 35

Inversion in Cylindrical
Mirrors in the Subway

Everyone has seen his/her reflection in plane mirrors: The reflection

of a left-hander is right-handed, but, otherwise, the image is similar

to the original.

But those who have seen their reflections in a curved mirror know

how funny they are.

For simplicity, consider a cylindrical mirror. How do the reflec-

tions of various objects in it look?

There are many cylindrical mirrors (vertical poles and horizontal

handrails) in each subway car. The images of the surrounding world

in these cylindrical mirrors are quite unusual. What are they like?

Hint. It is easiest to consider the reflection of a single point

source of light. Its reflection in a cylindrical mirror is closely related

to mathematical inversion, that is, the operation taking each point

A of the Euclidean plane (in which a circle of radius r centered at O

is fixed) to the point B “symmetric with respect to this circle”; the

point B belongs to the same ray from O as A, but its distance from

O is larger the closer A is to the center:

|OA| · |OB| = r2.
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Fig. 1. Inversion takes A to B

Fig. 2. Inversion releases the cat from the cage and rounds

out the straight line

Solution. Each ray issuing from A and intersecting the given

circle is reflected from the circle according to the law “the angle of

incidence is equal to the angle of reflection” (see Fig. 3).

1

Fig. 3. The reflection CA′ of the ray AC (the angles α and

α′ are equal) 1© Mirror.
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If the mirror is plane, then all rays from the source A are reflected

as rays whose extensions pass through the same point A∗ behind the

mirror. Thus, the reflected rays form the pencil {A∗A′}, and that is

why we see the reflection of the point A at the point A∗ behind the

mirror (see Fig. 4).

1

Fig. 4. The reflection CA′ of the ray AC in a plane mirror

and the point A∗ behind the mirror. 1© Mirror.

If the mirror is curved, then rectilinear rays reflected at different

points do not necessarily pass through a common point, even when

extended behind the mirror.1 To understand this, it suffices to con-

sider an example, say the reflection in a circular mirror of a pencil of

parallel rays issuing from the same point A at infinity.

The explicit calculation of rays reflected at different points of a

circular mirror is not very hard (for those who knows trigonometry).

But it is even easier to draw these rays (see Fig. 5). The arcs CD

Fig. 5. Construction of a ray CA′ reflected in a circle

1The only exception is that of rays parallel to the axis of a parabolic mirror: after
reflection in the parabola, they meet at one point.
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and CD′ are of the same length (because of the law “the angle of

incidence is equal to the angle of reflection” at the point of reflection

C). This allow us to quickly construct the reflected rays.

Drawing these reflected rays neatly enough, I obtained the fol-

lowing picture (see Fig. 6).

Fig. 6. A family of rays issuing from infinity reflected in a

circle and its envelope

The resulting one-parameter family of reflected straight lines has

an envelope (the heavy line in Fig. 6). This is the curve at whose

points the straight lines from the reflected family of rays intersect the

infinitely close reflected lines from the same family of rays. These lines

(extended reflected rays) are tangent to the envelope. We can also say

that this curve is formed by the “focal points” of the reflected family

of rays (in optics, a focal point is an intersection point of extensions

of infinitely close rays from a family).

The envelope of such a family of rays is called a caustic (“burn-

ing”), because the light carried by the family is concentrated (focused)

on it, and so the energy on this curve is higher than at other places.

According to the legend, it is the caustic of a system of mirrors which

Archimedes used to burn down enemy ships besieging Syracuse.2

2In The Clouds, Aristophanes attributed an even earlier use of caustics for busi-
ness purposes to Socrates, who advised his client to buy a lens in a pharmacy and,
at the court session, choose a sunny spot, wait until his opponent would show his
promissory note to the court, and burn it down by means of a caustic of solar rays.
Aristophanes, however, mentions that it was this applied mathematics which had led
Socrates to the capital sentence pronounced by his fellow citizens.
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In any case, most of the reflected rays travel as if they issue from

points of the caustic, so that the image of our initial point A at infinity

appears to be a line spread over the caustic rather than a point.

However, the matter is even more complicated, because the bright-

ness of the image along the caustic is not at all constant; some parts

of the caustic are brighter (and it is these parts which Archimedes

used for his system of rays).

Namely, the caustic of the family of reflected rays in Fig. 6 is not

a smooth curve: it has a singular point S (it is easy to calculate that

it is the midpoint of the radius).

Near this point, the (extended) rays concentrate even more than

at the other points of the caustic.3 Therefore, although the image of

a shining (infinitely remote) point A is spread over the caustic, the

singular point S is particularly bright (while the other points may

remain unnoticed by a spectator not observant enough).

As a consequence of all this, the image of the point A observed by

an experimenter is, rather than a line, the single point S of maximum

concentration of the reflected rays extended beyond the mirror.

Trigonometric calculations, which I leave to the reader, confirm

these conclusions and their stability: for a light source A at a dif-

ferent location, we again obtain a caustic of rays extending beyond

the mirror with a singular point of return, which is perceived by an

observer as the image A∗ of A in the curved mirror.

This point A∗, as well as the point S in the above example with

an infinitely remote source A, lies on the same ray from the center

O of the mirror as the source A. But the position of this point on

the corresponding radius of the circle depends on the distance of A

from the center (when this distance is infinite, the reflected point

bisects the radius, and when A is on the reflecting circle, the point

A∗ degenerates into A).

3It can be calculated that this singularity is a semicubical return point (in its

neighborhood, the caustic is determined by the equation y2 = x3 in an appropriate
curvilinear coordinate system). Such a singularity is typical (of generic systems of
rays) and stable (it does not disappear under small perturbations of the family), and
it was the one used by Socrates and Archimedes.
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Fig. 7. The intersection of infinitely close straight lines AR

and AC behind the mirror

The calculation of the position of the image A∗ on the ray OA

for a given distance |OA| = X · R is shown in Fig. 7.

The radii of the reflecting circle have the lengths

|OR| = |OC| = R.

The small central angle α determines the legs of triangle OCP :

|OP | = R cosα, |CP | = R sin α.

From the right triangle ACP , we obtain an asymptotic expression for

the small angle ϕ:

tan ϕ =
|CP |
|AP | =

R sin α

R(X − cosα)
∼ α

X − 1
, ϕ ∼ α

X − 1
.

The right triangle OCP yields the expression

γ = (π/2) − (ϕ + 2α), where ϕ + 2α ∼ 2X − 1

X − 1
α,

for the angle PCQ.

The length of the leg opposed to γ in the right triangle CPQ is

|PQ| = |CP | tan γ = |CP | cos(ϕ + 2α)

sin(ϕ + 2α)
.
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The asymptotics for |CP | and ϕ+2α found above determine the

behavior of the distance between P and Q as α → 0, namely,

|PQ| ∼ R sin α
2X−1
X−1

α
→ R

X − 1

2X − 1
.

Thus, the distance between the reflected point Q and the midpoint S

of the radius OR tends to

|QS| = |PS| − |PQ| → R

2
− R

X − 1

2X − 1
=

R

2(2X − 1)
.

The distance between the source A and the midpoint S of OR is

|AS| = |AO| − |SO| = R(X − 1/2) =
2X − 1

2
R.

We conclude that the distances from S to the source A and to its

reflection Q are reciprocal in the sense that

|QS| · |AS| = R2/4.

Thereby, we have obtained the following (amazing) result.

In a cylindrical mirror, an observer sees the inverse of the sur-

rounding world with respect to the cylinder tangent to the axis of the

reflecting cylinder and half as thick (in our plane notation, this is the

inverse with respect to the circle of radius R/2 centered at S).

1

2

3

Fig. 8. A reflection in a cylindrical mirror is the inverse

with respect to a (heavy) circle. 1© Observer. 2© Mirror. 3©
Center of inversion.

One might think that, looking at a cylindrical mirror (e.g., at

handrails in the subway), we see the inverse image of the surrounding

objects.
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That this cannot be so is clear already from the description of

the position of the circle (or cylinder) of inversion with respect to

the reflecting circle in the plane (or the cylindrical mirror in space).

Namely, the cylinder of inversion is shifted off in a certain direction

from the axis of the reflecting cylinder, while, because of the symme-

try of the reflecting cylinder with respect to rotations about its axis,

all directions from the axis of rotation must enjoy equal rights, and

none of them can be preferred.

In reality, the above calculations show that the reflection of each

source of light can be obtained by applying the inversion described

above to the source point only for points of the ray passing through

the center of the reflecting circle and the observer’s eye (in calcula-

tions, this is formalized by the assumption that the angle ϕ is small).

On this central ray of view, the images A∗, B∗, C∗, and D∗ of the

points A, B, C, and D (see Fig. 9) are indeed inverse to the points;

1

2

Fig. 9. The images A∗, B∗, C∗, and D∗ of points A, B, C,

and D on a central ray. 1© Mirror. 2© Observer.

therefore, near the central ray of view, the reflection is approximately

described by an inversion. But as a point moves away from the cen-

tral ray of view, the circle of inversion that describes its reflection

is rotated, so that the whole reflection does not reduce to a single

inversion.
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Appendix: On Properties of Inversions. Here I briefly describe

several remarkable facts, although many readers may already know

about them.

Theorem. An inversion transforms the circles not passing through

its center to circles and those passing through its center to straight

lines (see Fig. 10).

Fig. 10. The inverse of the circle c is the circle c∗, and the

inverse of the circle C is the straight line C∗

The proof of the second assertion is particularly simple when C

intersects the circle of inversion (see Fig. 11).

Fig. 11. The inversion of the circle C passing through the

center O of the (heavy) circle of inversion
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The right triangles OB∗A∗ and OAB are similar; therefore, we

have |OB∗|/|OA∗| = |OA|/|OB|, so that |OA| · |OA∗| = |OB| · |OB∗|.
In the case A = D, we obtain |OB| · |OB∗| = R2. This proves the

coincidence of the inverse of the circle C with the straight line C∗,

which joins the intersection points of C with the circle of inversion.

The case in which the circle C is too small to intersect the circle

of inversion is reduced to the case considered above by applying a

dilation (a homothety centered at O). When C undergoes such a

homothety (is dilated by a factor a), its inverse also undergoes a

homothety centered at O (is contracted by a factor a).

Since the contracted inverse is a straight line, it follows that the

true (noncontracted) inverse is a straight line as well (but does not

intersect the circle of inversion).

The assertion of the theorem about the image of a circle c not

passing through the center of inversion is particularly easy to prove

in the case when the disk enclosed by this circle c does not contain

the center of inversion O (see Fig. 12).

Fig. 12. An inversion of a circle c not enclosing the center of inversion O
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In this case, we can draw two tangents to the circle c from O.

They have equal lengths: |OD| = |OE|. Dilating (or contracting) the

plane by a homothety centered at O, we can transform the circle c into

a homothetic special circle for which the lengths |OD| = |OE| = R

of the tangents coincide with the radius R of the circle of inversion

(so that the special circle intersects the heavy circle of inversion in

points D and E at right angles).

Applying the secant theorem to the secant OA∗A of the special

circle c, we obtain

|OA∗| · |OA| = |OD|2 = R2.

This identity means that the points A and A∗ of the special circle

c are inverse to each other, so that the image of the special circle

coincides with this circle itself.

Returning to the initial circle by contracting the special circle, we

see that the inverse of this contracted (initial) circle is obtained from

the special circle by a homothetic dilation. Therefore, this image c∗

is a circle as well.

In the case when the circle c encloses the center O, the theorem

remains valid. But I do not know a proof which is as simple as that

given above.

Remark. The special circle is orthogonal to the circle of inver-

sion. The inversion takes these circles to themselves and, therefore,

preserves the angle between them.

It turns out that an inversion preserves angles between any curves

(up to sign). This is seen; e.g., from Fig. 13, where a circle C passing

through the center of inversion O intersects the circle of inversion at

the point D (and inverts to the straight line DE).

The normals OD (to the circle of inversion) and OB (to the

inverted curve C∗) at the intersection point O form the angle α =

∠DOB.

The tangents at the points O and D to the circle being inverted

form an isosceles triangle; therefore, angles DOM and ODM are

equal to π/2 − α.
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Fig. 13. Preservation under inversion of the angle with the

circle of inversion

The tangent DB to the circle of inversion at D passes through

the endpoint B of the diameter OB of the circle C being inverted

because angle BDO (between the tangent and a radius of the circle

of inversion) is right.

Therefore, the angle BDN (between the tangents to the circle of

inversion and the circle C at their intersection point D) is equal to

the angle DOB = α between the normals to the circle of inversion

and the inverted curve C∗ (it is equal to π − π/2 − (π/2 − α) = α).

Thus, at the point D, the angle which the circle being inverted

makes with its inverse is equal to the angle which this circle makes

with the circle of inversion.

It follows that inversion preserves the angle between any curves

passing through D and the circle of inversion; hence, it also preserves

the angle between any two curves passing through D.

Of course, the orientation of angles is not preserved: Like an ordi-

nary reflection, an inversion changes the orientation of the plane and

takes “positive” angles to “negative” ones (of the same magnitude).

Our considerations prove the preservation of all (undirected) an-

gles at the points of the circle of inversion. But we can place any
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(different from O) point of the plane on this circle (of radius R) by

applying an appropriate homothety (centered at O).

Homotheties preserve angles; therefore, applying homothetic di-

lations and contractions of the plane, we can derive the preservation

of the angles of intersection of any curves at any point (other than the

center of inversion O) from their preservation at points of the circle

of inversion, which we have already proved.

Transformations which preserve angles are said to be conformal.

Thus, inversion is a conformal transformation of the plane (minus the

point O) changing orientation.

Problem. Let f : C → C be any polynomial treated as a

(self-)map of the Euclidean plane C ≈ R
2 with Cartesian orthonormal

coordinates (every point z = x + iy has coordinates (x, y)).

Prove that the map f is conformal (at any noncritical point of the

polynomial f ; i.e., at any point where the derivative of f is different

from 0).

Solution. Begin with a linear polynomial and use the Taylor

formula to reduce any map to its (linear) differential.

In these terms, an inversion is given by

f(z) =
1

z
,

where z = x − iy, and its conformality follows from differentiability:

d(1/z)

dz
= − 1

z2
.

Problem. Is the map taking z ∈ C to z2 conformal at all points

of the plane?

Solution. The real axis {y = 0} and the imaginary axis {x = 0}
in the plane C = {z}, which are perpendicular straight lines, are

mapped to the half-lines of positive and negative values of z2, which

are not at all orthogonal.
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This violation of conformality strongly distorts shapes of figures

(see Fig. 14).

Fig. 14. Under a nonconformal transformation, the smooth

chin of a cat became nonsmooth

An inversion is a conformal transformation, and the inverted fig-

ures resemble the originals more closely.

Problem. Do the inversion transformations (with various circles

of inversion) form a group?

Solution. Any inversion changes orientation, and there are only

two orientations in the plane. Therefore, the product of two inversions

(which preserves the orientation of the plane) cannot be an inversion.

The orientation-preserving products of inversions (with even num-

ber of multipliers) do form a group. This is the group of linear-

fractional transformations

f(z) =
az + b

cz + d
,

which is fundamental for hyperbolic geometry: all f with real a, b, c,

and d for which ad−bc = 1 form the group of motions in the Poincaré

model.

This is a model of the hyperbolic plane in the upper half-plane

Im z > 0; in this model, in contrast to the Cayley–Klein disk model

discussed above, the role of straight lines is played by all Euclidean
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straight lines and circles perpendicular to the absolute Im z = 0 (see

Fig. 15), rather than by the Euclidean straight lines.

1 3

2

4

Fig. 15. 1©, 3© Hyperbolic line. 2© Absolute. 4© Hyperbolic plane.

The Poincaré model has the remarkable property that the hyper-

bolic angles in this model are equal to the Euclidean angles between

the corresponding curves in the upper half-plane.

It is also amazing that the Poincaré and Cayley–Klein models are

equivalent: these are simply different charts of the same hyperbolic

plane.

Problem. Find a diffeomorphism of the upper half-plane to the

interior of the unit disk which maps the Poincaré model to the Cayley–

Klein model.





Chapter 36

Adiabatic Invariants

The theory of adiabatic invariance is a strange example of a physical

theory that apparently contradicts mathematical facts that seem easy

to verify.

Despite such an unpleasant property, this “theory” has led to

remarkable physical discoveries by those who were not afraid to use

its conclusions (although they were not justified mathematically).

The development of science over a couple of centuries finally led to

an agreement of sorts between mathematicians and physicists: math-

ematicians proved the “theorem on the conservation of adiabatic in-

variants” under certain (precisely specified) assumptions.

Conjectures on the possibility of substantially weakening these

assumptions have also acquired more or less rigorous mathematical

formulations today (but they are still awaiting proofs). The present

essay presents only a few examples, it is hardly exhaustive even for

already proved theorems on adiabatic invariance. (For a review of

these theorems, see the book Additional Chapters of the Theory of

Differential Equations1 §20.)

We will be dealing with systems of differential equations with

coefficients variable in time and depending on a point x in the phase

1[Translator’s note]. English translation: V. I. Arnold, Geometrical Meth-
ods in the Theory of Ordinary Differential Equations (Springer-Verlag, New York–
Heidelberg–Berlin, 1983).
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space M :

(1)
dx

dt
= v(x, t), x ∈ M.

The assertion that some quantity I(x, t) is an adiabatic invariant

means that, although it is not an exact first integral of the equations

of motion (1), its changes are nevertheless small even for large values

of x(t), under the condition that the right-hand side of equation (1)

varies “slowly enough” in “fast time” t.

In order to give a mathematically precise definition of the “slow-

ness” needed here, let us consider, instead of the nonautonomous sys-

tem (1), a family of dynamical systems (with the same phase space

M) depending on a parameter λ (that ranges over some manifold Λ):

dx

dt
= v(x, λ), x ∈ M, λ ∈ Λ.

The condition of slowness of change of the system can now be

stated in terms of the dependence of the parameter λ on time:

λ = f(t).

In order to make the variations in the values of λ small, let us also

consider, together with the “fast time” t, the “slow time” τ = εt

(where ε is a small parameter, which will later tend to 0).

The variation of the parameter λ in time is now regarded as given

by its dependence on slow time,

λ = f(t) = F (τ ), τ = εt,

where F is a fixed dependence of the parameter on slow time.

The adiabatic invariance of the quantity I(x, λ) is defined by the

difference

|I(x(0), λ(0))− I(x(t), λ(t))| < κ

being small for 0 ≤ τ ≤ 1; i.e., during a long interval of fast time

0 ≤ t ≤ 1/ε (as the point in phase space shifts by |x(t) − x(0)| ∼ 1),

provided that the parameter varies slowly enough:

λ = F (εt),

where ε is sufficiently small (ε < ε0(x)).
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The difficulty here is in that the described condition ε < ε0(x)

of smallness in the speed of variation of the parameter (although it

is indeed required) does not always guarantee the smallness in the

change of the quantity I (that physicists still insist on calling an

“adiabatic invariant”) in time 1/ε, which is, you see, quite long.

The way out found today is that, in many cases, only a small

increment of the quantity I can occur if the dependence of F on

slow time is a sufficiently smooth function (say, F ∈ C2). The role

of smoothness here is to replace the physical notion of “absence of

knowledge.”

Physicists say that “the person who changes the value of the

parameter λ at time t should not have any knowledge of the position

of the point x(t) in phase space.”

It is difficult to give a mathematical formulation of the “absence

of knowledge.” But it turns out that it can be replaced by the require-

ment that the function F be smooth. If there is no such smoothness,

then, by choosing appropriate jumps or breaks in the dependence

of λ on time, one can achieve large changes in I, while smoothness

excludes such counterexamples.

Other attempts to give sufficient conditions for adiabatic invari-

ance are based on the following: although the changes in the value of

I(x, t) in large time t ∼ 1/ε may be not be small, they occur rarely

(i.e., are observed only for a small-measure set of low probability ini-

tial points x(0) of the trajectories {x(t)} in phase space).

In what follows I shall use the term “adiabatic invariance” in

the sense specified above and based on the smoothness of the func-

tion F , which leads to the smallness of the changes in the values of

the quantity I along the studied trajectory in time 1/ε for all initial

conditions.

Example 1. The equation of small oscillations of the mathemat-

ical pendulum.

Consider the equation

(2)
d2x

dt2
= −λx, λ > 0.
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For a fixed value of the parameter λ, the phase curve is the ellipse

p2

2
+ λ

q2

2
= E

that comes from the law of conservation of energy

H(p, q; λ) =
p2

2
+ λ

q2

2

(here, as usual, p = dx/dt, q = x, and H is the Hamiltonian of the

system q̇ = ∂H/∂p, ṗ = −∂H/∂q).

The solution of system (2) with constant λ = ω2 is a harmonic

oscillation

q = a sin(ωt), p = ωa cos(ωt).

This elliptic-phase-curve bounds (on the symplectic plane with

coordinates (p, q)) the area S = πa · (ωa) = ω · (πa2). The angular

amplitude a of this oscillation and its energy E = ω2a2 are linked

by the “Planck relation” E = ω
πS. It turns out that the value of the

phase area

I(p, q; ω) =
πH(p, q)

ω
= πa2ω

is an adiabatic invariant of system (2).

The invariance of the product I means, in particular, that if the

length l of the mathematical pendulum (for which we actually have

ω2 = λ = l/g) slowly doubles, then the factor ω increases
√

2 times,

and so the factor a2 in the product I = πa2ω decreases
√

2 times.

In other words, the maximal deviation angle decreases
√

2 times

when the length of the pendulum slowly doubles. And if the length of

the pendulum returns to its initial value, the amplitude of oscillations

also returns to its initial value.

The amazing thing about this theorem is that the result abso-

lutely does not depend on the law according to which the lengthening
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of the pendulum occurred: it is only required that the function F

which determines the change of λ = F (εt) be smooth.

Thus, in the “adiabatic limit”, two physically independent quan-

tities (a and l) become functionally dependent. This unusual physical

phenomenon immediately distinguishes the adiabatic theory among

many others.

The proof of the theorem on the adiabatic invariance of the “ac-

tion variable” S(p, q; λ), which expresses, in terms of the initial point

in phase space, both the value of the parameter λ and the area

bounded by the phase curve

S(p, q; λ) =

∫∫
H(P,Q)�H(p,q)

dP dQ.

can be found in the textbook Mathematical Methods of Classical Me-

chanics2 (for any Hamiltonian system with one degree of freedom), as

well as in Geometric Methods of the Theory of Ordinary Differential

Equations.

The examples below provide other similar cases (where the proof

of adiabatic invariance can be carried out in a similar way)—they

can also be derived from the already considered case of Hamiltonian

system with Hamiltonian function H(p, q; λ) by its appropriate gener-

alization, allowing, say, collisions with rigid walls instead of potential

force fields.

Example 2. Consider a “billiard ball” moving between two par-

allel walls whose distance from each other is x. Denote the velocity of

the ball by v and assume that at the moment of impact the velocity

reverses with respect to the wall.

2[Translator’s note] English translation: V. I. Arnold, Mathematical Methods
of Classical Mechanics, 2nd ed. (Springer, New York, 1989).
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In this case the adiabatic invariant is the product I = x|v| (which

is of course proportional to the area of the corresponding phase curve

for a fixed value of the parameter λ). Adiabatic invariance here means

that the product I = x|v| changes very little (in large time of order

1/ε).

In other words, when the distance between the walls doubles, the

velocity of the ball between them decreases by half (whatever smooth

law x = F (εt) governs how the distance increases in time t ∼ 1/ε):

The fact that moving the walls apart decreases the velocity of

the ball bouncing between them is understandable, but the theory of

adiabatic invariance of the product x|v| provides us with a remarkably

precise description of this decrease.

Remark. Although this theory is applicable only for t ∼ 1/ε, in

the case of an analytic dependence (x = F (τ ), τ = εt) of the distance

between the walls on time, we can even study the increment of the

adiabatic invariant in infinite time

I(x(+∞), |v(+∞)|) − I(x(−∞), |v(−∞)|)

The description of this increment (which turns out to be expo-

nentially small as ε → 0) is obtained by studying the behavior of

the holomorphic function F at complex points τ (it was found by

A. M. Dekhne, Zh. Eksp. Teor. Fiz., 38, No. 2, 1960, 570–578).

Example 3. In three-dimensional Euclidean space, consider a

magnetic field B and a charged particle moving with velocity v. De-

note by v⊥ the velocity component perpendicular to B.

Were the field constant, the particle would move around a straight

line of force along a Larmor spiral, rotating at a fixed distance r from
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the line of force (called the Larmor radius and depending on the

vectors B and v at the initial point of the trajectory).

In this case the adiabatic invariant is v2⊥.

By the adiabatic limit here, we can understand either the limit as

|v| → 0 or as |B| → ∞ (it is only important that the Larmor radius

tend to 0). For a smooth field B, one can prove that the adiabatic

invariant indicated above does not change much in large time.

In particular, all this can be applied to explain Polar Auroras:

charged particles in their spiraling motion around the lines of force

of Earth’s magnetic field near the magnetic poles reach the region of

large values of the tension of the magnetic field |B|. The conservation

of the adiabatic invariant in this case leads to the reflection of the

moving particle from the “magnetic plug,” and the particle returns

along a (different) magnetic line to the second pole (in microseconds).

The particles awaiting reflection accumulate near the plugs, and

it is these “clouds” of charged particles that are observed as auroras.

A mathematically precise description of this situation is rather

long and I do not present it here. In contrast, the next version of a

similar theory is easy to formulate precisely.

Example 4. Consider a smooth surface M with a fixed Rie-

mann metric. On this surface, consider a curve of constant geodesic

curvature κ.

In the case of the Euclidean plane M , the curve will be a closed

(for κ > 0) circle of radius r = 1/κ. Now, if the geodesic curvature

varies along the curve (κ = B(x), x ∈ M), then the function B :

M → R determines “Larmor circles” on the surface M ; i.e., a spiraling
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motion along a varying “Larmor circle” whose center moves along M

and whose radius changes.

Physically this motion can be called motion in M of a charged

particle (in a magnetic field B “perpendicular” to M).

This motion admits an adiabatic description when radii of the

“Larmor circles” are small (physically we can either consider strong

magnetic fields, B → ∞, or small initial velocities, |v| = |dx/dt|.
If the function B is smooth, then the adiabatic invariant is simply

the geodesic curvature of its corresponding Larmor circle of varying

radius (in physical terms, it is |v|2/|B|).
In particular, such a curve with large geodesic curvature depend-

ing on the point of the surface M oscillates between two neighboring

level lines of the nonconstant function B, provided the curvature is

large.

But if the function B is constant, then the corresponding Larmor

circles of large geodesic curvature κ still oscillate in an annulus be-

tween two level lines of the adiabatic invariant, except that instead

of the function B : M → R we must consider the Gaussian curvature

G : M → R.

The difference between these two theories, however, lies in the

fact that when the Larmor radius tends to zero, the small velocity

of motion of the center of the Larmor circle along the annulus be-

tween two level lines of the adiabatic invariant has a different order

of magnitude (for b �=const the velocity is much larger).

In both cases, the adiabatic invariant changes little not only in

time |ε|, but in infinite time as well (this follows from “KAM theory”).

Returning to the pendulum from Example 1, note that the adi-

abatic invariance of the ratio of its energy to its frequency seems to

contradict the possibility of “pumping up” a swing: when the effec-

tive length l of the swing changes with arbitrarily small amplitude, its
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lower position becomes unstable in the case of parametric resonance

(when the period of changes of l is an integer multiple of the own half

periods of oscillation of the unperturbed swing).

This remark provides a “counterexample” to the adiabatic in-

variance of the ratio of energy to frequency because the frequency,

having slowly oscillated, returns to its unperturbed value, while the

amplitude of the oscillating swing has increased.

But there is no contradiction here, because in order to achieve the

increase in the amplitude of swinging, one needs “feedback”; i.e., one

must know whether to increase or decrease the value of the parameter

l at the given moment of the phase of the swing’s own oscillations.

The smoothness of the law F of variation of the parameter λ =

F (εt), assumed in the statement of the theorem on the adiabatic

invariance of the action variable S(p, q; λ) excludes the possibility

of such feedback. But if this smoothness is not assumed, then the

mathematical counterexamples to the physical statement of adiabatic

invariance become possible.

Further generalizations of the theory of adiabatic invariants are

described in the book Geometric Methods in the Theory of Ordinary

Differential Equations, §20, where numerous references to the litera-

ture appear.





Chapter 37

Universality of Hack’s
Exponent for River
Lengths

Encyclopedia articles on many rivers provide both the length l of the

river and the area S of its basin. The question is, how are these two

numbers related?
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Solution. If the basin of a river were a disk centered at the middle of

a straight river, then we would have l = cS1/2 (which is also suggested

by the dimensions).

According to American data, the statistics (over a large number

of rivers, big and small, mountainous and flowing in plains) gives

usually a greater length, namely, l ≈ cSα, where α ≈ 0.58 (“Hack’s

exponent”).

Hack’s exponent α being larger than 1/2 is explained by the frac-

tal tortuosity of a river, because of which the length of the river is

greater than the diameter of its basin.

But why the exponent α is universal and has exactly this value

is not clear (although attempts have been made to derive it from the

Navier–Stokes equations of hydrodynamics, the instability of whose

solutions make rivers wind). The following table contains data for a

dozen rivers in the Moscow area:

River Length (km) Area (km2) α ≈ ln l/ lnS

Moscow 502 17640 0.64

Protva 275 4640 0.66

Vorya 99 1160 0.65

Dubna 165 5474 0.56

Istra 112 2120 0.61

Nara 156 2170 0.65

Pakhra 129 2720 0.62

Skhodnya 47 259 0.69

Volgusha 40 265 0.60

Pekhorka 42 513 0.59

Setun’ 38 187 0.69

Yauza 41 452 0.59

The average value of the 12 exponents α presented here is 0.63.



Chapter 38

Resonances in the
Shukhov Tower, in the
Sobolev Equation, and
in the Tanks of
Spin-Stabilized Rockets

Working on Hilbert’s 13th problem in 1958, I studied a representation

of a function defined on a plane curve in the form of the sum of two

functions, each depending on only one of the coordinates:

u(P ) = f(x) + g(y).

I had succeeded in investigating this problem when the curve is a

tree. For example, let us choose a point P on the tree and decompose
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the known value u(P ) into a sum f(x) + g(y) of any two terms. We

know the value of the term g at the point P ′, and we can find the

value of f because the value of the sum is known as well.

And so, it turned out that any tree can be placed in R3 so that,

for any continuous function u on this tree, a similar method yields

a representation in the form of a sum of three continuous functions,

each of which depends on only one of the coordinates (x, y, z):

u(P ) = f(x) + g(y) + h(z).

Having solved this problem of Hilbert, I decided to generalize the

theorem proved for a tree to any curve. If a curve (in the plane) has

a cycle, then the dynamical system P → Q → R → S → . . . arises on

this cycle.

And it turned out that the existence of the required representa-

tion depends on the properties of this dynamics (a self-map of the

cycle): if this dynamical system has periodic orbits, then such a rep-

resentation does not always exist, and if there are no periodic orbits,

then its existence depends both on the smoothness properties of the

function u to be decomposed and on the arithmetical properties of

Diophantine problems on the given closed curve.

Having proved dozens of theorems in this area (which is equiv-

alent to the study of the Dirichlet problem for the wave equation),

I wrote a paper about this. The referees pointed out to me that

this problem had earlier been tackled by S. L. Sobolev’s students

(R. A. Aleksandryan and N. N. Vakhaniya) and by Sobolev himself

(whose work, however, still remains classified, because he applied his

theorems to study the flight of spin-stabilized projectiles containing

liquid).



38. Resonances 157

Sergei Lvovich Sobolev told me at that very time what was known

and what was not known; here I give a brief account of his narrative.

Already Cauchy considered the rigidity of convex surfaces. For

example, the thin shell of a convex egg persistently retains its shape

as long as it has no cracks. But as soon as its integrity is broken along

even a very short arc, nontrivial deformations become possible.

However, the surfaces bounding planes and rockets are not con-

vex; for instance, attaching wings to the fuselage necessarily requires

hyperbolic transition regions.

Therefore, the rigidity problem in the hyperbolic case is practi-

cally important.

The simplest model (for linear, that is, very small, deformations)

is exactly the Dirichlet problem for the wave equation

∂2u

∂x ∂y
= 0, u(x, y) = f(x) + g(y)

(and its multidimensional generalizations).

The 1943 work of Sobolev was still classified, but his paper on the

so-called Sobolev equation, which generalized this work, had already

appeared, and he procured me a permit to watch the correspond-

ing experiments on the rigidity of hyperbolic surfaces at a classified

department of the Institute of Mechanics.

Such surfaces were cylinders, a kind of can. I have seen hundreds

of thin-wall cylinders with hyperbolic curvature of various sizes; some

of them firmly retain their shape when pressed, while others really

breathe in one’s hands (although the difference, which amounts to

1–2%, is unnoticeable by sight).

It turned out that the following resonances are of importance.

From a point P on the bottom base an asymptotic curve PQ issues

(if the surface is hyperbolic, like the Shukhov tower on Shabolovka,

then this asymptotic line is a straight line segment; in the Shukhov

tower, it is made of steel).
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Starting from the point Q on the top base along the second as-

ymptotic line, we return to the bottom base (at the point R).

The self-map P → R of the bottom base thus arising may have a

periodic point T = P (for the “Shukhov tower,” this corresponds to a

closed polygonal chain PQRST formed by rods of which the tower is

made). It is this “resonance” which leads to instability (namely, the

surface bends in a small neighborhood of the polygonal chain with

the link-characteristics specified above).

The study of such instabilities resembled both my work on the

Dirichlet problem for the wave equation and the study of resonances

in planetary motions, which I took on at that time (for the sake of

investigating the stability of the Solar System, where resonances are



38. Resonances 159

also dangerous and cause, for example, gaps in the rings of Saturn

similar to complementary intervals in the Cantor set).

Sobolev’s works on resonances between oscillations of a liquid fill-

ing the thin-wall tank of a rocket and the natural oscillations of the

rocket’s body allowed B. I. Rabinovich to propose a method for avoid-

ing these resonances to S. P. Korolev (it suffices to place appropriate

obstructions into the fuel cans), and rockets ceased to break down.

Many years have passed since then, and I even received letters

from the U.S. reproaching me for unjust praise of Sobolev (in relation

to these his works on the “Sobolev equation”).

Namely, contemporary American physicists (of Moscow origin,

though) pointed out to me that the “Sobolev equation” was already

published in 1910 by a mathematician who investigated it by the same

method as Sobolev and obtained many interesting results: He wrote

this equation not in connection with oscillations of fuel in the tanks of

spin-stabilized rockets, but in studying meteorological peculiarities of

the atmosphere of Jupiter (where a many-hundred-year-old cyclone

appears as a “red spot”), for which the rotation of Jupiter is one of

the basic factors.

Surprisingly enough, the Sobolev equation had already been stud-

ied by Poincaré.

To construct its theory, Sobolev invented a generalization of the

Hilbert function space L2. In his generalization, the Hermitian form

was not positive definite, as in the Hilbert case; rather, it was rela-

tivistic and had one square of different sign, as for the Lorentz metric.

Investigating this question during his World War II evacuation

to Kazan, Sobolev turned for advice to his neighbor, also evacuated

from Moscow, who helped him. But this helper noticed: “Why such

a preposterous axiom: One square is of different sign? One should

immediately consider any finite number of them!”

When the neighbor wrote a paper about this generalization of the

Hilbert space, he asked Sergei L’vovich to give him a precise reference

to that work (with only one square of different sign), in order to insert

it in his bibliography.
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But Sobolev answered: “By no means, this paper is not only

unpublished, it is also top-secret.”

He told me about this when already fighting for declassifying this

work, and now I can talk about it. But meanwhile, the Sobolev spaces

received the name “Π-spaces” after the neighbor who generalized the

theory of these spaces and published it (without any reference to

Sobolev).

The name “Π-spaces” is after Lev Pontryagin.1

Although all these old studies have become classical today, I shall

mention yet another question from this area; I dreamed of investigat-

ing it in the late 1950s, but, as far as I know, it is still unanswered.

Consider a smooth embedding T 2 ⊂ R3 of the torus in three-

dimensional Euclidean space. Such an embedding is said to be rigid

if any close (isometric) embedding can be obtained from it by a (small)

motion of Euclidean space.

The question is whether there exist nonrigid embeddings (and of

which embeddings there are more, rigid or nonrigid ones).

I have heard that the rigidity of the standard embedding of the

torus of revolution (between two parallel planes tangent to this torus

along circles) has been proved.

But this does not eliminate the nonrigidity of other embeddings

(for instance, knotted in some way): as far as I know, this problem

has not been solved even for infinitesimal deformations.

1[Translator’s note] The first letter of “Pontryagin” in Russian is Π.



Chapter 39

Rotation of Rigid
Bodies and
Hydrodynamics

Eighteenth-century sailors faced the following difficulty in determin-

ing their location on a map: Orientation required measuring the co-

ordinates of stars on the celestial sphere at the moment of location,

and these measurements could be used only if the exact time of mea-

surement was known.

Time signals were not radio broadcast in those years, and time

was kept by using chronometers. But chronometers, especially dur-

ing a long voyage, tended to become very wrong. A lot of factors

counted, including the ship’s roll, Earth’s rotation, variations of the

gravitational field (which affected the natural frequency of pendu-

lum oscillations), and even climatic conditions (tropical heat expands

pendulums, while frost contracts them).

Therefore, the Admiralty of England offered a big prize for anyone

who could determine time accurately. Euler invented a clever solution

of this problem: to use the Moon as a clock.

At that time, people had already tried to use the motion of

Jupiter’s four satellites (discovered by Galileo Galilei) as a timekeeper.

But this required, in addition to a good theory of the far-from-simple
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motion of the satellites, a good telescope, because the “dial” of this

clock is very small: Jupiter is far away, and the satellites are not

always clearly visible.

The Moon is much closer, and it is easy to observe; thus, to

solve the problem, it was sufficient to construct an accurate enough

theory of the Moon’s small oscillations about its center of gravity

(with account of the perturbations, mostly due to Earth and the Sun,

and caused by the complex orbital motions of Earth around the Sun

and the Moon around Earth).

It is this theory that Euler decided to create. In 1765, he pub-

lished a remarkable treatise on this subject, in which he considered

not only the Moon, but also the motion of any solid body around

its center of gravity, mostly due to inertia and also caused by the

perturbing influence of other bodies.

The notable result of Euler’s study was, first of all, a complete

solution of the problem about the inertial motion of any solid body

around its center of gravity. This problem turned out to be a “com-

pletely integrable Hamiltonian system,” and Euler found the required

complete system of first integrals in involution.

It follows from his results, for example, that there exist station-

ary rotations about all of the three axes of the inertia ellipsoid of a

rigid body, but the rotation about the intermediate axis of inertia is

unstable, while both rotations about the long and the short axis of

inertia are stable.

This means that, say, a matchbox thrown while rotating about

the long or short axis will keep rotating, but if it is thrown when

spun about the intermediate axis, then it will chaotically somersault

(I demonstrated this more than once to students during my lectures;

it is better to throw a wrapped book, rather than a brick, and paint

the six faces of the body to be thrown in different colors, in order

that the instability be noticeable right away).
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1
2

3

1© Unstable. 2©, 3© Stable.

Topologically, this difference is caused by the different behaviors

of the intersection lines of the ellipsoid with the spheres centered at

the origin.

Near the endpoint A of the major semi-axis OA of the ellipsoid,

the distance to the center of the ellipsoid is maximal, and the lines

along which this distance is slightly smaller than the length of OA,

are closed curves enclosing the point of maximum A on the surface

ellipsoid. Under a small deviation of the direction of the axis of rota-

tion from OA, the corresponding vector shifts from OA to one of these

closed curves near A and begins to perform small oscillations about

OA, so that the motion, although ceasing to be a steady rotation,

remains close to such a rotation.

Similarly, near the endpoint C of the minor semi-axis OC, the

distance to the center O attains its minimum, and the lines where it

only slightly exceeds the minimum distance |OC| are closed curves

near the point C on the surface of the ellipsoid. The corresponding

perturbed rotation remains close to the steady one.

On the contrary, near the endpoint B of the intermediate semi-

axis, the distance to the center O of the ellipsoid has a saddle point.
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The level set where the distance is exactly |OB| consists of two circles

(intersecting at the point B), and each level set where the distance

is close to |OB| consists of two closed curves going far away from the

point B (which may even nearly reach the opposite endpoint −B of

the intermediate axis). A perturbation of the steady rotation about

the axis OB results in a “somersault” quite dissimilar to this rotation,

and the body may even turn almost upside down.

At present, the Moon safely performs small oscillations, nearly

always keeping the same face turned towards Earth and only slightly

oscillating about this “pendulum” position. On the contrary, Earth’s

artificial satellites can perform all of the motions described by Euler,

depending on how they are controlled, so that Euler’s theory pro-

vides a basis for computations aimed at preventing satellites from

somersaulting even today.

Euler’s theory yields a detailed analysis of the Moon’s oscillations

about its usual position, so that by observing the phase of these os-

cillations, one can use it as a clock hand and find out the moment of

observation.

However, the Admiralty did not reward Euler but rewarded a

watchmaker who solved the time-keeping problem in a fundamentally

different way. Namely, he proposed to suspend the pendulum AD by

a three-link pendant ABCD.

The thermal expansion coefficient of the rods AB and CD is half

that of the rod BC joining them. As a result, the thermal expansion

of the rods AB and CD lowers the load D by the same distance
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as the thermal expansion of the rods BC raises it. Therefore, the

effective length AD of the pendulum, as well as its oscillation period,

is not affected by the thermal expansion of the rods: the chronometer

became insensitive to temperature changes!

Scrutinizing Euler’s treatise on the Moon’s rotation in 1965 on

the occasion of its bicentenary, I noticed that Euler’s arguments prove

much more than Euler stated. Namely, his whole theory carries over,

almost without changes, to the study of geodesic lines on Lie group

manifolds endowed with a left- (or right-) invariant Riemannian met-

ric.

For the group SO(3) of rotations of three-dimensional Euclidean

space, these geodesics are provided by Euler’s study of the motion of

a rigid body relative to its center of gravity. But Euler’s theory can

also be applied to other groups, and the conclusions suggested by its

statements are not at all obvious.

As a very simple example, take the two-dimensional group of

affine transformations x 	→ ax + b of the real line. Assuming the

transformation to be orientation-preserving (a > 0), we can identify

this group with the half-plane {a, b : a > 0}. In this case, the Euler

left-invariant metric

ds2 =
da2 + db2

a2

produces precisely the Poincaré model of hyperbolic geometry, so

that Euler’s theory becomes hyperbolic geometry. The role of Eu-

ler’s steady rotations is played in this case by those straight lines and

circles in the Euclidean half-plane a > 0 (with Cartesian coordinates

(a, b), which are perpendicular to the “absolute” a = 0.

As a much more instructive example of an application of Euler’s

theory of rigid body rotations, consider the group SDiff M of “incom-

pressible” diffeomorphisms of a manifold M (that is, diffeomorphisms

M → M preserving the volume element τ of M). The geodesics of

the right-invariant metric on this group are the (Euler) flows of an

incompressible fluid on the manifold M .
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1

2

3
4

1©, 3© Geodesic. 2© Absolute. 4© The identity element of the group.

Euler’s stability theory of steady motions of rigid bodies becomes

in this case a generalization of Rayleigh’s theorem on the stability of

two-dimensional incompressible flows with velocity profiles having no

inflection points.

1 2

1© Stable flow. 2© Unstable flow.

In the case under consideration, flows with inflection points turn

out to be similar to steady rotations of a solid body around the inter-

mediate axis of inertia: Euler’s general theorem on stability is applied

in the same way in both cases, but under the passage from the three-

dimensional group SO(3) to the infinite-dimensional group SDiff M ,

Euler’s theorem becomes Rayleigh’s (generalized) theorem.

The stability of geodesics on a manifold is strongly affected by

the “sectional curvatures in two-dimensional directions” of this man-

ifold. Namely, the negativity of a curvature causes the scattering of
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geodesics (with close initial conditions) at a rate exponentially de-

pending on time. Euler’s theory makes it possible to calculate these

sectional curvatures (for groups with left- or right-invariant metrics).

Applying these calculations to groups of incompressible diffeo-

morphisms of surfaces, I obtained many two-dimensional directions

of strongly negative curvature. For example, applying these estimates

to two-dimensional hydrodynamics on the surface of a torus (and to

trade-wind type flows), I convinced myself that initially small pertur-

bations of the initial velocity field grow approximately by a factor of

105 (from a one-kilometer-wide (thunder)storm to planetary weather

changes) during a time period on the order of one month.

This means that dynamically forecasting weather for time periods

strongly exceeding one week will forever remain impossible, no matter

how strongly computers, computational methods, and meteorological

sensors recording the initial weather conditions are improved. Indeed,

minute changes in the initial velocities in each cubic kilometer (even

such that the mean velocities over the neighboring dozen cubic kilo-

meters remains the same) yield new initial conditions, which sensors

cannot tell apart from the old ones and which prevent a typhoon

from hitting, in a couple of weeks, New Orleans, as required by the

old scenario, but lead it to, say, Bombay.

It only remains to marvel at how substantial the applications of

Euler’s fundamental theories and ideas are, even in those cases in

which Euler himself confined the exposition to the first informative

case (of the group SO(3) in our example), while all far-reaching gen-

eralizations have been obtained only recently.
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