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 This book is about temporal and spatial patterns that we  fi nd in the electric  fi elds on 
the scalp (electroencephalogram, EEG) and cerebral cortex (electrocorticogram, 
ECoG) (Lopes da Silva 1993; Basar 1998). The patterns are enigmatic, ephemeral, 
easily dismissed as noise, and by most accounts epiphenomenal (Freeman and Baird 
1989). Yet, some of the patterns are neural correlates of intentional actions, 
speci fi cally the perception and discrimination of sensory stimuli by alert, aroused 
human and animal subjects. For this reason, they have become a focus of our experi-
mental and theoretical investigations. What can they tell us about how brains work? 
What tools do we need to record and analyze them? Which related disciplines of 
science, mathematics, and engineering do we turn to for guidance in simulating 
them with computational models of cortical dynamics? 

 We begin with a brief overview of electroencephalography. Temporal analysis 
 predominated in the  fi rst two decades after the discovery of EEG by Hans Berger 
(1873–1941). Thereafter, two main breakthroughs advanced the analysis of temporal 
signals. The  fi rst was the use of ensemble averaging – that is, the average over several 
stimulus presentations – to better visualize evoked responses (Dawson 1954), and the 
second was the introduction of personal computers in the analysis of EEG signals, 
especially after the implementation of the fast Fourier transform (FFT) by Cooley and 
Tukey (1965), which enabled a rapid and reliable representation of the frequencies in 
EEG signals. More recent advances include the study of time-frequency patterns and 
the introduction of wavelets in the analysis of EEGs and evoked responses (Quian 
Quiroga et al. 2001; Majumdar et al. 2006). Pioneers undertook spatial analysis with 
racks of primitive ampli fi ers. W. Gray Walter (1953) focused on the “toposcopy” of 
alpha waves in the EEG. John Lilly (Lilly 1954) recorded spontaneous and evoked 
potentials in the ECoG. Large, dense electrode arrays for scalp EEG were intro-
duced by Donald W. DeMott (1970), Dietrich Lehmann (1971), M. N. Livanov 
(1977), and Konrad Maurer (1989), mainly to analyze the topography of alpha 
waves. The systematic study of beta and gamma patterns in the ECoG at high 
spatial resolution in the ECoG was introduced by Freeman and Schneider (1982). 
High temporal and spectral resolutions were later achieved by introduction to 
brain studies of the Hilbert transform (Freeman and Rogers 2002). 

   Preface   
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 In this book, we pursue EEG and ECoG patterns as we would study the natural 
history of a new species, like searching for elusive forest animals, trying to catch 
and hold them for description without damaging or distorting them. We ask the 
 following questions: Where are they found in brains? What behaviors are they 
 correlated with and when? How large are they? How long do they last? Can we 
group them into recognizable categories? How often do samples that can be catego-
rized recur? What are their internal structures and textures that constitute their 
 features? What frequencies appear in their temporal and spatial spectra? Beyond 
empirical description, how do they form? Are they transmitted? If so, where do they 
go, by what means, and with what delays? Are they epiphenomenal or do they play 
an active role in the genesis and control of behavior? Do other parts of the brain 
detect and respond to them, and if so, how? Can we  fi nd meanings in the patterns? 
Are the meanings only for objective observers like ourselves or do the patterns 
re fl ect the construction and deployment of subjective meanings within the brains for 
the subjects? 

 In our book, we propose answers to these questions by showing examples of the 
textured patterns both in time and space and the contexts of recording. We describe 
the optimal conditions and methods for their measurement and present hypotheses 
on how they form and why they are signi fi cant. Our results give  fi rst glimpses of 
these patterns, which may already seem primitive but nevertherless provide prescrip-
tions on how our results can be replicated, improved, and extended. What makes the 
work so dif fi cult is that the electric potential differences we observe are samples 
from extracellular  fi elds of very weak electric energy. They are signs of the trans-
membrane electric currents that give shape and texture to great clouds of cortical 
action potentials. The  fi elds emerge because every neuron interacts with many thou-
sand others in the cortical tissue that anatomists call laminar neuropil (from a Greek 
word for  felt ). It is the textured fabric of axons (Gr.,  axis ), dendrites (Gr . ,  tree ), glia 
(Gr.,  glue ), and capillaries (Latin,  hairs ) that generates and regulates its own sponta-
neous background activity. The pulse clouds emerging from the neuropil do the work 
of cortex (Gr.,  tree bark ) by forming vector  fi elds, which are manifested in scalar 
 fi elds of electric potential. We cannot at present record enough pulse trains simulta-
neously to see the textures directly; so we infer them through the potentials that we 
can record, and con fi rm them when we can by simultaneously recording spikes from 
representative single cells in the population (Sect.   3.3.3     and Sect.   4.5     in Freeman 
1975). The mixed activity of axons and dendrites is robust and resilient; yet, it resem-
bles the bubbling of a pan of boiling water. Finding and extracting self-organized 
patterns emerging in such noise is not a trivial undertaking. 

 Laminar neuropil, in other words, is an active medium that embeds the sensory, 
cognitive, and motor systems and serves as a massive axodendritic channel of com-
munication among them. We propose that the spatiotemporal patterns manifest the 
forms taken by  macroscopic  perceptual and cognitive information, carried by dense 
pulse clouds in the neuropil, in parallel with the  microscopic  sensory and motor 
information, carried by sparse pulse trains of neurons singly in local networks. We 
suggest that the large-scale patterns, which are the focus of our book, can convey 
the relevant context and meaning of the information, in a word, the knowledge that 
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the subject has about the received information, because the laminar neuropil pro-
vides the neural mechanisms for constructing and storing knowledge during sensa-
tion, and for mobilizing the knowledge for transmission during perception. It is the 
massive quantity of integrated information that supports our experience and feeling 
of recognition in perception, variously described as “metastable coordination dynam-
ics” (Kelso and Tognoli 2006), “virtual associative networks” (Yu fi k 1998), “mind 
force” (Orsucci 1998, 2009), “holographic brain” (Pribram 1999), “global work 
space” (Baars et al. 2003), and others (Jordan 2008; Koch and Tononi 2008; Tononi 
2008; Seth 2009; Tallon-Baudry 2009). 

 The large-scale patterns from the neuropil, measured using EEG, ECoG, or local 
 fi eld potentials (LFP), constitute the  fi rst method of imaging brain activity in awake 
subjects, going back to Berger in the 1920s (see Chap.   1    ). Our knowledge about 
brain function has been greatly increased by the introduction of single-cell record-
ings in the 1950s, now advanced to high level of sophistication with the identi fi cation 
of  concept cells  (Quian Quiroga 2012) and, more recently, by imaging techniques of 
MEG, PET, fMRI and BOLD (blood oxygen level dependent), and fMRI. Why then 
do we focus on the predecessor of these methods? This is because EEG, ECoG, and 
LFP signals are the most challenging in terms of data processing, and in spite of 
being known for nearly a century, we still learn a lot from their analysis, especially 
when we use advanced signal-processing methods and bold experimental designs. 
Most prior research with EEG signals has been constrained to variations of a couple 
basic paradigms: the study of evoked responses and the study of EEG oscillations 
in given frequency bands in single channels or a judicious sample of channels. In 
our book, we provide some tools to go beyond these standard analyses and experi-
mental designs. In particular, we propose two radical paradigm shifts. First, we 
argue that the ensemble averaging that is typically used to observe evoked responses 
imposes a large loss of information of systematic and nonsystematic changes of the 
trial-by-trial responses (Quian Quiroga 2000; Quian Quiroga and Garcia 2003). 
New powerful signal-processing tools, like wavelet denoising, indeed allow the 
visualization of the single-trial responses, thus opening a window to new types of 
analyses and experiments (Quian Quiroga et al. 2007). In fact, some of the most 
interesting cognitive processes (e.g., learning) are revealed by changes during an 
experimental session. The use of these new techniques requires new experimental 
designs, where trial-by-trial changes are sought in order to study their correlation 
with different cognitive processes, instead of being avoided in order to get cleaner 
averages. It is the tracking of this variability that allows us to study different cogni-
tive processes and merge the spatial and temporal information from fMRI and EEG 
(Eichele et al. 2005; Eichele et al. 2008; Freeman et al. 2009). The second main 
paradigm shift we propose is to study the dynamics and propagation of spatial pat-
terns of  fi eld potentials, as one can study the continuous evolution of waves in 
 fi elds. So far, the information from different EEG or ECoG channels has been stud-
ied independently or at most by the use of topographic plots at precise times. 
However, both the single-channel temporal analysis and the multiple-channel topo-
graphic analysis are too limited because they do not display how spatial patterns of 
brain activity evolve in time. 

http://dx.doi.org/10.1007/978-1-4614-4984-3_1
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 Without getting into deep philosophical issues, we can say that knowledge is an 
immense collection of fragments of information, each fragment being interrelated 
with every other so as to form a pattern. The laminar neuropil provides the dense 
grid of neurons that can store and express the massive information and the connec-
tivity required for each to share it with others in the  fi eld. These operations consti-
tute the exercise of intelligence, which is de fi ned as the ability to acquire and apply 
knowledge and skills. It is noteworthy that the laminar neuropil is most fully devel-
oped in the brains of the most intelligent animals of three phyla: Vertebrata (mam-
mals), Arthropoda (bees), and Mollusca (cuttle fi sh). Intelligent life has emerged and 
evolved independently three times in the earth’s geological history, each branch 
with very different brain architectures but similar neuropil and neural dynamics. 
Clearly, the neuropil is an electrochemical system made of the same atoms as all 
matter. It is also a thermodynamic system that uses metabolic energy to construct 
knowledge from information. By study of cortical temporospatial activity patterns, 
their neural mechanisms of construction and transmission prior to termination, we 
might aspire to better understand human mechanisms of intelligence and brain dis-
orders and, perhaps, even construct intelligent machines that, in some useful sense, 
know what they are doing. 

 We  fi nd it pro fi table to look for concepts and tools in physics, mathematics, and 
engineering that we can use to design our experiments and simulate our observa-
tions of the properties of laminar neuropil. We rely most heavily on techniques for 
digital signal processing, by which we decompose EEG and ECoG time series into 
frequency bands and components (Chap.   2    ). We analyze frequency modulation by 
using time-frequency analysis (Chap.   3    ) and by using wavelets (Chap.   4    ). We adapt 
the  fi lters to single-trial, single-channel evoked potentials in order to avoid ensem-
ble averaging and reveal how trial-by-trial changes correlate with different brain 
processes (Chap.   5    ). 

 We also rely heavily on techniques from systems control theory (Chap.   6    ) and 
from digital imaging (Chap.   7    ). We show that, during normal cognitive operations, 
the cortical neuropil holds itself in a range we can characterize as linear, Gaussian, 
and time-invariant. Having done so, we can then simulate the major dynamic opera-
tions of the neuropil by using matrices of linear differential equations in piecewise 
linear approximations. The solutions of the equations give a family of linear basis 
functions – exponentials, sines, cosines, ramps, etc. – with which to measure the 
evoked potentials and the waves of spontaneous and induced cortical activity. Then 
we can use changes in the parameters and coef fi cients of the equations to represent 
the changes in cortical dynamics caused by intrinsic nonlinearities as well as the 
time-varying state changes that underlie arousal, learning, and the exercise of expe-
rience. We illustrate the categorization of spatiotemporal images with respect to 
behavior in the primitive allocortex in the olfactory system (Chap.   8    ), the more 
complex sensory neocortices (Chap.   9    ), and higher cognitive functions correlated 
with patterns in the ECoG and EEG (Chap.   10    ). We  fi nish with a synthesis of our 
data in the context of the brain viewed as an open thermodynamic system operating 
far from equilibrium (Chap.   11    ), which uses the cortex to extract relevant sensory 
information and condense it into knowledge stored in widespread synaptic 
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modi fi cations that are retrieved for use, as revealed in macroscopic patterns and 
microscopic  fi ring of multiple types of category cells (Chap.   6    ). 

 The greatest value of piecewise linear analysis is in the application of feedback 
control theory to the calculation of the strengths of functional synaptic connectivity. 
We de fi ne the various types of synaptic interaction strengths as the forward and 
feedback gains of the multiple neural loops formed by populations of excitatory and 
inhibitory neurons. The calculations of gain values are based on models of the topol-
ogy of the types of connections in a hierarchy, called Katchalsky sets (K-sets, 
Freeman 1975; Kozma and Freeman 2001; Freeman and Erwin 2008). We evaluate 
the gains from measurements of the frequencies and rates of increase or decrease in 
the envelopes of oscillatory components of the EEG, ECoG, and evoked potentials. 
We use the gains to de fi ne the stable states of cortical neuropil, each with its attrac-
tor, the boundaries of each basin of attraction, and the state transitions that enable 
the temporospatial pattern of each attractor to emerge,  fl ourish, and dissolve. 

 The mathematical details of the digital signal processing and systems control 
theory we use have been described in many textbooks and monographs. In our book, 
we present an overview of the main features and dynamics of spatiotemporal pat-
terns, with only a minimum of the mathematics on which our analyses and conclu-
sions rest. We cite suitable references for readers from clinical and biological 
domains to go beyond our qualitative descriptions. There is also an extensive litera-
ture on the theory of electric potentials and their applications to the study of the 
brain electrophysiological signals, serving particularly to locate the sources and 
sinks of evoked potentials and epileptic spikes in EEGs and ECoGs. In order to 
maintain focus and ensure brevity, we introduce only a bit of this theory in describ-
ing the limits of the spatial resolution of the high-density arrays of electrodes we use 
to reveal the textures of EEG and ECoG. For readers from mathematics, physics, 
and engineering, we also describe brie fl y the main physiology principles involved 
in the generation and interpretation of EEG and ECoG signals. For more details, we 
recommend introductory texts on neurobiology. We refer readers who propose to 
replicate our experimental results to our original reports for technical details. We 
have in mind also readers from psychology, psychiatry, cognitive science, and phi-
losophy, and we hope that we have made a judicious selection of arcane details 
needed by anyone who seriously addresses the mind-body problem. 

 There is still more extensive literature on the interactions of the cortex with sub-
cortical structures: the thalamus, striatum, cerebellum, and the modulatory aminer-
gic and peptidergic nuclei in the brain stem. We refer to these mechanisms whenever 
we  fi nd it necessary to do so, but our focus is on the intracortical mechanisms that 
form and maintain spatiotemporal images, particularly those with frequencies in the 
theta, beta, and gamma ranges. We emphasize that the greater part of our under-
standing of cortical dynamics comes from sampling the  fi elds with electrode arrays 
of unprecedented high density, spaced at intervals one tenth those of conventional 
clinical arrays (Chap.   7    ). 

 Exploration of the properties of high-resolution spatiotemporal images related to 
cognition opens enticing new avenues for the development of new brain theory by 
experts in physics and for the devising of new forms of machine intelligence by 
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experts in robotics. Examples of exploration of the dynamics of very large systems 
are already emerging in other areas of knowledge that are being applied to brain 
imaging, include models of neuropil implemented in VLSI analog hardware 
(Principe et al. 2001); the use of random graph theory (Kozma 2007; Freeman et al. 
2009); the use of many-body physics and quantum  fi eld theory (Vitiello 2001; 
Freeman and Vitiello 2010); and the use of nonequilibrium thermodynamics 
(Freeman et al. 2012), which is especially attractive for the possibility of combining 
EEG/ECoG/LFP imaging with recordings from concept cells and with the several 
measures estimating the oxidative metabolism of brains (Logothetis 2008; Freeman 
et al. 2009) into a uni fi ed science (Chap.   11    ). However enticing these new avenues 
may be, the business at hand is to describe the existence and detailed properties of 
macroscopic neural electrical activity patterns now known in order to acquire new 
data at even higher resolutions in the spatial, temporal, and spectral dimensions.

Berkeley, CA, USA Walter J. Freeman
Leicester, UK Rodrigo Quian Quiroga 
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    1.1   Introduction 

 Our knowledge about brain function increased dramatically in the last decades due 
to the development and re fi nement of several recording techniques. Such advances 
 fl ourished at different levels, ranging from the study of synaptic activity at the micro-
scopic level to the re fi nement of brain imaging techniques at a macroscopic level. 
Modern data acquisition systems and new electrode designs enabled the simultane-
ous recording from dozens of neurons at a larger scale, and powerful computers 
allowed more complex simulations and data analysis, thus giving rise to the  fi eld of 
computational neuroscience. A somewhat less spectacular but also remarkable and 
steady progress has been made at an intermediate mesoscopic level (Freeman  1975, 
  1999  )  in the analysis of electroencephalograms (EEGs). 

 The EEG measures the electrical activity of the brain at different sites of the 
head, typically using electrodes placed on the scalp. Its main advantages over other 
recording techniques are its high temporal resolution and the fact that it can be 
recorded noninvasively (i.e., without the need of a surgery). Due to their relatively 
low cost, EEG recordings are widely used both in clinical settings and research 
laboratories. This makes the EEG a very accessible and useful tool, which is par-
ticularly interesting for the analysis of high-level brain processes that arise from the 
group activity of large cell populations. Such processes can be well localized in time 
or they can be correlated to time varying patterns, like brain oscillations, which 
are beyond the time resolution of imaging techniques as functional magnetic reso-
nance imaging (fMRI). The caveat of noninvasive EEGs is the fact that they re fl ect 
the average activity of a large number of sources far from the recording sites and, 
therefore, they do not have an optimal spatial resolution. 

 Although the way of recording EEG signals did not change as much as in the 
case of microscopic and macroscopic recordings (though in later chapters, we will 
describe basic guidelines for electrode designs that improve the spatial analysis of 
the EEGs), there have been signi fi cant advances in the methodology for analyzing 
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EEG data. In fact, EEG recordings have been an ultimate challenge for most 
methods of signal processing due to their high complexity, low signal to noise ratio, 
nonlinearity, and nonstationarity. As we will describe in this book, the development 
and implementation of new algorithms that are speci fi cally designed for complex 
signals such as the EEGs will allow us to get much more information than has been 
accessible with previous methods and the conventional visual inspection of the 
recordings, as done by trained electroencephalographers. These methods open a 
new window to the study of high-level cognitive processes in humans with noninva-
sive techniques and at no great expense.  

    1.2   Brief History of EEG 

 The history of human EEG recordings goes back to Hans Berger (1873–1941), a 
professor of psychiatry at the University of Jena, Germany. Following the work of 
Richard Caton (1842–1926), a surgeon from Liverpool who successfully recorded 
the electrical activity of exposed cerebral hemispheres from monkeys and rabbits in 
1875, Hans Berger was the  fi rst one able to record electrical activity from the human 
scalp in 1924. After 5 years collecting data and reexamining his results, he  fi nally 
published in 1929 “Über das Elektroenkephalogramm des Menschen.” In this semi-
nal work, Berger already reported the presence of brain oscillations of about 10 
cycles per second, what he called alpha waves, seen with the subject in a relaxed 
state with eyes closed. When opening the eyes, these waves disappeared (alpha 
blocking) and oscillations of higher frequencies (beta waves) were observed 
(Fig.  1.1 ). A similar type of beta oscillations was also observed with eyes closed 
when the subjects performed mental arithmetic tasks.  

 The importance of Berger’s work was not recognized until 1934 when Lord 
Edgar Adrian (1889–1977), at Cambridge, con fi rmed his results. From then on, the 
EEG technique triggered a revolution in the way to study normal and pathological 
brain processes (Fig.  1.2 ). Just to mention some of the major achievements, in the 
30s Grey Walter,  fi rst in London and then at the Burden Neurological Institute in 
Bristol, reported slow oscillations (delta waves) over hemispheric brain tumors and 
introduced the concept of EEG topography to localize brain lesions. Immediately 
after, EEG research spread to the USA. At Harvard, Hallowell Davis, Frederic 
Gibbs, Erna Gibbs, and William Lennox started to study paroxysmal EEG patterns 
related to epilepsy. These abnormal patterns, such as spikes or spike-waves, are still 
used to help the diagnosis of epilepsy. The 1940s saw the beginning of sleep studies. 
At the end of this decade, the  fi rst human intracranial recordings were performed. In 
our days, these types of recordings are mainly used in patients that are candidates to 
epilepsy surgery in order to determine the origin of the seizures. In the 1950s, Wilder 
Pen fi eld and Herbert Jasper, at McGill University in Montreal, used electrical stim-
ulation, with open brain surgeries under local anesthesia, to localize areas involved 
in different brain processes. In the same decade, a major advance in the  fi eld was 
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introduced by George Dawson, in London, who developed a summation technique 
to visualize average EEG responses to stimuli. Later on, a major breakthrough was 
the introduction of computers in the analysis of EEG signals, especially with the use 
of the fast Fourier transform developed by Cooley and Tukey  (  1965  ) .  

 A signi fi cant slowdown in EEG research resulted as a consequence of the intro-
duction of other methodologies for measuring brain activity, such as single neuron 
recordings in the 1950s and especially the emergence of imaging techniques and 
magnetoencephalography in the 1980s. In our days, EEG recordings are generally 
used for clinical diagnoses, like head injuries, brain tumors, and epilepsy. 
Neuroscientists also study different types of EEG activity during controlled behavior 
in human subjects and animals. 

  Fig. 1.1    Hans Berger and his laboratory at the University of Jena ( top ). Berger’s seminal paper 
describing the EEG for the  fi rst time, and one of his recordings of alpha and beta oscillations 
( upper traces ) and the appearance of alpha oscillations when closing the eyes ( lower trace )       

 



4 1 Electroencephalography

 What is the future of electroencephalography given the advances of the new 
recording techniques? There are three main advantages of EEG over other methods: 
(1) it is noninvasive and it is therefore possible to do experiments with normal 
human subjects; (2) it has very high time resolution – of the order of milliseconds 
– which permits to follow up the temporal dynamics of brain processes; and (3) it is 
relatively inexpensive. On top of that, there have been signi fi cant advances in the 
development of methods to study complex signals, and most of them are only start-
ing to be used in EEG recordings. As we will see in later chapters, some of these 
methods offer a new perspective to study EEGs and brain processes in general.  

  Fig. 1.2    Grey Walter ( top ), Lord Edgar Adrian and a picture of his laboratory in Cambridge 
( bottom )       
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    1.3   Recording of EEG Signals 

    1.3.1   Scalp EEG Recordings 

 Scalp EEG recordings are performed using high conductance electrodes (i.e., with 
an impedance of less than 5 kW) placed on top of the head. Electrodes are distrib-
uted at speci fi c locations, typically using the so-called 10–20 system, where 16–20 
electrodes are separated by 10–20% the total distance around the circumference of 
the head (although it is becoming more common to use 32, 64,128, or 256 elec-
trodes; see Sect.   10.5    ). The electrodes are placed on the head with gel in order to 
increase the conductivity with the skull. Electrodes used to be placed manually one-
by-one, but now, they typically come already positioned in a cap, which can be 
easily  fi t around the subject’s head. This is more practical and less time consuming, 
considering the possibilities of modern equipment, which allow the simultaneous 
recording of more than 200 channels. 

 The EEG can be recorded with reference to a common passive electrode – 
monopolar (referential) recordings – or it can be recorded differentially between 
pairs of contiguous electrodes – bipolar recordings. In the later case, there are sev-
eral ways of choosing the electrode pairs according to montages designed to visual-
ize the propagation of activity in different directions. Some particular montages 
may be very useful for visualizing the sources of different EEG patterns. This is the 
case of spikes whose localization, usually given by a polarity inversion of the sig-
nal, may help on the study of epileptic patients. It should be noted, however, that the 
utility of the different montages nowadays is limited to an on-line visualization of 
the data (which used to be stored in paper), since different derivations can be calcu-
lated off-line with the use of computers. 

 EEG signals are recorded with a sampling frequency of 100 Hz or higher. Modern 
acquisition systems can easily deal with high sampling rates, and it is now usual to 
record EEGs with a sampling frequency of 500 Hz or more to enable the study of 
high-frequency oscillations or fast transitions between the different electrodes. 

 Figure  1.3  shows the 10–20 electrode distribution (left side) and a typical monop-
olar recording of a normal subject with eyes open (right side). The reference is the 
common activity of a pair of linked electrodes placed at the earlobes (A 

1
  and A 

2
 ). 

The capital letters denote the different electrode locations, F for frontal, C for cen-
tral, P for parietal, T for temporal, and O for occipital. Odd numbers correspond to 
left sites and even numbers to right sites, with z denoting the midline. Overall, the 
EEG recording has a peak-to-peak amplitude of less than 100 mV, which is rela-
tively small in comparison to other type of physiological recordings. In the posterior 
sites (occipital electrodes, at the bottom of the plot), we observe oscillations of 
about 10 Hz, which constitute the alpha rhythm. Brain oscillations at different fre-
quencies and localizations have been correlated with several functions, stages and 
pathologies of the brain and are one of the main building blocks in the analysis of 
brain activity at the EEG mesoscopic level. In the following sections, we will give 
more details of their analysis and interpretation. But the analysis of EEG signals is 

http://dx.doi.org/10.1007/978-1-4614-4984-3_10
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not limited to brain oscillations. In fact, stereotyped patterns in the EEGs have been 
also widely studied. Typical examples are the appearance of different type of spikes 
in the EEG recordings of epileptic patients, or patterns that are characteristic of dif-
ferent sleep stages.   

    1.3.2   Artifacts 

 Due to their very low amplitude, EEG signals are easily contaminated by external 
sources. These “artifacts,” inherent of scalp EEG recordings, are produced by head 
movements, blinking, electrocardiogram, muscle activity, etc. In Fig.  1.3 , we see 
an artifact produced by blinking. To the naïve eye, this may look like real brain 
activity, but an expert EEG researcher will easily recognize it as a blink artifact due 
to its morphology and spatial localization in the frontal sites. Eye blinks can be 
better identi fi ed by placing electrodes close to the eyes to measure  electrooculo-
grams . Other types of artifacts are given by muscle activity. Muscle artifacts can, 
for example, be generated by a tense posture, which usually correlates with high-
frequency activity. These artifacts can in principle be eliminated by using standard 
digital  fi lters, but unfortunately, in some cases, this is not possible because they 
overlap with the frequencies of interest. Head movements are correlated with low 
frequency activity, and in this case, the EEG typically shows a  fl uctuating baseline. 

  Fig. 1.3    An example of the placement of electrodes according to the 10–20 system ( left ) and a 
10 s EEG recording at these locations. Note the presence of a blink artifact in the anterior locations 
( top ) and alpha oscillations in the posterior ones ( bottom ), marked with the  grey area        
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This activity can be eliminated with a high pass  fi lter (usually set at 1 Hz), but 
again, such  fi ltering is only adequate when low frequencies are of no interest. 

 One important point is that artifacts usually limit the length of EEG recordings 
that can be considered as stationary (i.e., segments in which the main characteristics 
of the signal, such as its mean, variance, and power spectrum do not change; see 
Sect.   6.4    ). Indeed, the relatively short duration of stationary EEG recordings is one 
of the major challenges for their analysis.  

    1.3.3   Intracranial Recordings 

 Scalp EEGs can be recorded noninvasively at a relative low cost and have become a 
standard diagnostic tool in clinical practice. In very particular cases, electrodes are 
placed inside the head to perform intracranial recordings. This is done, for example, 
in patients suffering from epilepsy refractory to medication that are candidates to 
epilepsy surgery. The goal of intracranial recordings in epileptic patients is to local-
ize precisely the area initiating the epileptic seizures in order to evaluate an eventual 
surgical resection of the focus. According to the type of seizure and other clinical 
aspects, two main types of electrodes are used (see Fig.  1.4 ): (1) deep electrodes, 
which are used for recording in deep structures such as the hippocampus (an area that 
is in many cases involved in the generation of the seizures). They are needle-shaped 

  Fig. 1.4    Electrodes for intracranial recordings. From  top  to  bottom : a depth electrode, a strip and 
a subdural grid       
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and have usually seven to ten annular recording contacts distributed on its surface; (2) 
subdural grids, or strips, which are placed on top of the brain and are more suitable 
for an accurate spatial localization in the cortex. Strips have typically four to eight 
contacts distributed linearly, and grids have 32 or 64 contacts equally spaced in a 
rectangular arrangement. The design of grids, particularly in terms of aperture size 
and interelectrode distances for spatial digitizing, is described in Sect.   7.2    .  

 Since intracranial electrodes are closer to the sources of origin of EEG activity, 
they have a better spatial resolution, and moreover, they signi fi cantly diminish the 
contamination of artifacts. The obvious drawback of such recordings is that they 
involve a surgical procedure and are therefore limited to very particular clinical 
cases. Recordings of ECoGs are more readily available from experimental animals 
but with nonverbal cognitive skills (Sect.   10.2    ). The high resolution ECoG in a 
 surgical patient (Sect.   10.4    ) shows promise for yielding neural correlates of higher 
cognitive skills, but the greatest value will come from the informed recording and 
analysis of the EEG (Sect.   10.5    ).  

    1.3.4   Electrocorticography 

 In the previous section, we saw two types of electrodes for intracranial recordings. 
The depth electrodes have the advantage that they can be introduced through rela-
tively small holes drilled in the skull, thus diminishing the risk of infection. The 
implantation of subdural grids requires a craniotomy, that is, exposing the surface of 
the brain on which the grid is placed. This is clearly a more invasive procedure that, 
however, allows the recording from large cortical structures and it is known as elec-
trocorticography (ECoG). ECoG recordings can be done during surgery or chroni-
cally, in which case the epileptic patients have a grid implanted for several days 
(typically between 1 and 2 weeks) in order to record and study the onset and spread 
of spontaneous seizures. When recordings are done during surgery, it is possible to 
move the location of the grid to map epileptogenic activity in different areas. 
Moreover, in patients under local anesthesia, it is possible to use electrical stimula-
tion to map the function of sensory, motor, and speech areas, in conjunction with the 
ECoG recordings. This procedure, championed by Pen fi eld and Jasper  (  1954  ) , has 
an important clinical relevance since it is therefore possible to determine the precise 
location of the epileptogenic activity and how it overlaps (or not) with different 
brain areas, something that it is critical to evaluate the consequences of a surgical 
resection of the focus. The spatial analysis of the ECoGs necessarily requires 
placement of arrays through openings large enough to accommodate the aperture 
of observation. The analysis of the spatial spectrum of the human ECoG shows that 
an optimal sample is provided by a 1 × 1 cm array that can be  fi tted onto a single 
gyrus (Sect.   7.2    ). Similar spatial analyses can be also obtained with EEG record-
ings, but in this case, the spatial patterns may be distorted and degraded by spread 
through the skull and scalp. In order to know what features to look for in spatial 

http://dx.doi.org/10.1007/978-1-4614-4984-3_7
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EEG patterns, it is desirable to  fi rst look for these patterns in ECoG recordings. 
In fact, a major thrust of this book is the description and interpretation of spatial 
patterns in the ECoG and to extend the analysis and interpretation to the EEG. We 
show that the realization of the full value of the EEG as a clinical tool hinges on 
maximizing the resolution of measurements of the EEG in the spatial, temporal, and 
spectral domains.  

    1.3.5   Local Field Potentials 

 We should  fi nally mention the local  fi eld potential (LFP) recordings. In animals, 
microwires are implanted to record the  fi ring of neurons close to the electrode tip. 
The  fi ring of the neurons is recorded extracellularly using a high sampling fre-
quency (typically more than 15 KHz) and low pass  fi ltering of the data. Due to stor-
age constrains, the recording systems use to store just the time of  fi ring of the 
neurons (and the shape of the action potentials, to distinguish the activity from dif-
ferent neurons), discarding the rest of the data. However, researchers studying single 
cell recordings have increasingly recognized the importance of the activity at lower 
frequencies (which constitute the LFP), and more recent acquisition systems allow 
the recording and storage of the whole broadband continuous data in order to obtain 
simultaneous readings of the spiking and LFP activity. We mention the LFPs because 
they are quite similar in nature to the EEGs and are therefore suitable for the type of 
analysis to be described in the rest of the book.   

    1.4   Evoked Potentials 

 In many scienti fi c  fi elds, especially in Physics and Engineering, one very useful 
way to learn about a system is by studying its reactions to perturbations. In brain 
research, it is also a common strategy to see how single neurons or large neuronal 
assemblies, as measured by the EEG, react to different types of stimuli. Evoked 
potentials (EPs) are the changes in the ongoing EEG activity due to stimulation. 
They are also used as well-de fi ned inputs in ECoG studies (Sects.   6.5     and   8.3    ). 
They are time locked to the stimulus and have a characteristic pattern of response 
that is more or less reproducible under similar experimental conditions. They are 
characterized by their polarity and latency, for example, P100 meaning a positive 
de fl ection (P for positive) occurring 100 ms after stimulation. The recording of 
evoked potentials is done in the same way as the EEGs, with the stimulus delivery 
system sending triggers to the acquisition system in order to identify the stimuli 
onsets and offsets. 

 Evoked potentials can be classi fi ed as exogenous and endogenous. Exogenous 
are the ones elicited by the physical characteristics of the external stimulus, which 
is typically visual, auditory, or somatosensory. Endogenous EPs are elicited by 

http://dx.doi.org/10.1007/978-1-4614-4984-3_6
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internal brain processes and respond to the signi fi cance of the stimulus. Endogenous 
EPs can be used to study cognitive processes as discussed in the next section. 

    1.4.1   Visual Evoked Potentials 

 Visual evoked potentials are usually evoked by light  fl ashes or visual patterns such 
as a checkerboard. Figure  1.5  shows the grand-average visual evoked potential of 
ten subjects. Scalp electrodes were placed according to the 10–20 system, with a 
linked earlobes reference. The stimuli were a color reversal of the (black/white) 
checks in a checkerboard pattern. There is a positive de fl ection at about 100 ms after 
stimulus presentation (P100) followed by a negative rebound at 200 ms (N200). 
These peaks are best de fi ned at the occipital electrodes, which are the closest to the 
primary visual area. The P100 is also observed in the central and frontal electrodes 
but not so well de fi ned and appearing later than in the posterior sites. Visual EPs can 
be used in clinical practice to identify lesions in the visual pathway, such as the ones 
caused by optic neuritis and multiple sclerosis (Regan  1989 ; Celesia  1993  ) .   

  Fig. 1.5    Visual evoked potentials at seven scalp locations. Note a positive de fl ection ( positive 
going downwards ) at about 100 ms (the P100), followed by a negative potential at about 200 ms 
(N200). This P100-N200 response is best de fi ned in the posterior locations       
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    1.4.2   Auditory Evoked Potentials 

 Auditory evoked potentials are usually elicited by tones or clicks. According to their 
latency, they are further subdivided into early, middle, and late latency EPs. Early 
EPs comprise (a) the electrocochleogram, which re fl ect responses in the  fi rst 2.5 ms 
from the cochlea and the auditory nerve, and (b) brain stem auditory evoked poten-
tials (BSAEP), which re fl ect responses from the brain stem in the  fi rst 12 ms after 
stimulation and are recorded from the vertex. BSAEP are seen at the scalp due to 
volume conduction. Early auditory EPs are mainly used clinically to study the integ-
rity of the auditory pathway (Celesia and Grigg  1993 ; Picton  1990  ) . They are also 
useful for detecting hearing impairments in children and in subjects that cannot 
cooperate in behavioral audiometric studies. Moreover, the presence of early audi-
tory EPs may be a sign of recovery from coma. 

 Middle latency auditory EPs are a series of positive and negative waves occur-
ring between 12 and 50 ms after stimulation. Clinical applications of these EPs are 
very limited due to the fact that the location of their sources is still controversial 
(Picton  1990 ; Celesia and Grigg  1993  ) . Late auditory EPs occur between 50 and 
250 ms after stimulation and consist of four main peaks labeled P50, N100, P150, 
and N200 according to their polarity and latency. They are of cortical origin and 
have a maximum amplitude at vertex locations. Auditory stimulation can also elicit 
potentials with latencies of more than 200 ms. These are, however, responses to the 
context of the stimulus rather than to its physical characteristics and will be further 
described in the next section.  

    1.4.3   Somatosensory Evoked Potentials 

 Somatosensory EPs are obtained by applying short lasting currents to sensory and 
motor peripheral nerves and are mainly used to identify lesions in the somatosen-
sory pathway (Erwin et al.  1993  ) . In particular, they are used for the diagnosis of 
diseases affecting the white matter, like multiple sclerosis, for noninvasive studies 
of spinal cord traumas and for peripheral nerve disorders. They are also used for 
monitoring the spinal cord during surgery, giving an early warning of a potential 
neurological damage in anesthetized patients (Erwin et al.  1993  ) .   

    1.5   Evoked Potentials and Cognition 

 Typically, the term evoked potentials refers to EEG responses to sensory stimulation. 
Sequences of stimuli can be organized in paradigms and subjects can be asked to 
perform different tasks. Event-related potentials (ERPs) constitute a broader cate-
gory of responses that are elicited by “events,” such as the recognition of a “target” 
stimulus or the lack of a stimulus in a sequence. 
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    1.5.1   Oddball Paradigm and the P300 

 The most common method to elicit ERPs is by using the oddball paradigm. Two 
different stimuli are distributed pseudo-randomly in a sequence: one of them appear-
ing frequently (standard stimulus) and the other one being a target stimulus appearing 
less often and unexpectedly. Standard and target stimuli can be tones of different 
frequencies, or  fi gures of different colors, different shapes, etc. Subjects are usually 
asked to count the number of target appearances in a session or to press a button 
whenever a target stimulus appears. 

 Figure  1.6  shows grand-average (ten subjects) visual evoked potentials elicited 
with an oddball paradigm. The left panel shows the average responses to the fre-
quent (nontarget) stimuli and the right one to the targets. The experiment was the 
same as the one described in Fig.  1.5 , but in this case, target stimuli were pseudo-
randomly distributed within the frequent ones. Frequent stimuli (75%) were color 
reversals of the checks, as in the previous experiment, and target stimuli (25%) were 
also color reversals but with a small displacement of the checkerboard pattern (see 
Quian Quiroga and Schürmann  1999  for details). The subjects had to pay attention 
to the appearance of the target stimuli.  

 The response to the nontarget stimulus is qualitatively similar to the response to 
visual EPs (where there was no task) shown in Fig.  1.5 . As in the case of pattern 
visual EPs, the P100-N200 complex can be observed both upon nontarget and target 
stimulation. These peaks are mainly related to primary sensory processing due to 

  Fig. 1.6    Responses to target and nontarget stimuli using an oddball paradigm. For the target stim-
uli note the appearance of a large positive response ( positive plotted downwards ) at about 300–
500 ms (P300)       
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the fact that they do not depend on the task, they have a relatively short latency 
(100 ms), and they are best de fi ned in the primary visual area (occipital lobe). Target 
stimulation led to a marked positive component, the P300, appearing between 300 
and 500 ms and most marked in the central and posterior locations. 

 While the localization of the P300 in the scalp is well known, the localization of 
the sources of the P300 in the brain is still controversial (for a review see Molnar 
 1994  ) . Since the P300 is task dependent and since it has a relatively long latency, it 
is traditionally related to cognitive processes such as signal matching, recognition, 
decision making, attention, and memory updating (Picton  1992  ) . There have been 
many works using the P300 to study cognitive processes (for reviews, see Pritchard 
 1981 ; Picton  1992  ) . Abnormal P300 responses can re fl ect pathologies where cogni-
tion is impaired, as it has been shown in depression, schizophrenia, dementia, and 
others (Picton  1992 ; Polich  1991  ) . 

 The P300 can also be elicited using a passive oddball paradigm (i.e., an oddball 
sequence without any task). In this case, a P300-like response appears upon target 
stimulation, re fl ecting the novelty of the stimulus rather than the execution of a certain 
task. This response has been named P3a. It is earlier than the classic P300 (also named 
P3b), it is largest in frontal and central areas, and it habituates quickly (Polich  2002  ) .  

    1.5.2   Mismatch Negativity (MMN) 

 Mismatch negativity is a negative potential elicited by auditory stimulation. It 
appears along with any change in some repetitive pattern and peaks between 100 
and 200 ms after stimulation (Naatanen et al.  2001  ) . It is generally elicited by the 
passive (i.e., no task) auditory oddball paradigm, and it is visualized by subtracting 
the frequent stimuli from the deviant one. MMN is generated in the auditory cortex. 
It is known to re fl ect auditory memory (i.e., the memory trace of preceding stimuli) 
and can be elicited even in the absence of attention (Naatanen  2003  ) . It provides an 
index of sound discrimination and has therefore being used to study dyslexia 
(Naatanen  2003  ) . Moreover, it has been proposed as an index for coma prognosis 
(Kane et al.  1993 ; Fischer et al.  1999  ) .  

    1.5.3   Omitted Evoked Potentials 

 Omitted evoked potentials (OEPs) are similar in nature to the P300 and MMN, but 
they are evoked by the omission of a stimulus in a sequence (Simson et al.  1976 ; 
Ruchkin et al.  1981 ; Bullock et al.  1994  ) . The nice feature of these potentials is that 
they are elicited without external stimulation, thus being purely endogenous compo-
nents. Omitted evoked potentials mainly re fl ect expectancy (Jongsma et al.  2005  )  
and are modulated by attention (Bullock et al.  1994  ) . The main problem in recording 
OEPs is the lack of a stimulus trigger. This results in large latency variations from trial 
to trial, and therefore, OEPs may be dif fi cult to visualize after ensemble averaging.  
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    1.5.4   Contingent Negative Variation (CNV) 

 The CNV is a slowly rising negative shift appearing before stimulus onset during 
periods of expectancy and response preparation (Walter et al.  1964  ) . It is usually 
elicited in tasks resembling conditioned learning experiments. A  fi rst stimulus gives 
a preparatory signal for a motor response to be carried out at the time of a second 
stimulus. The CNV re fl ects the contingency or association between the two stimuli. 
It has been useful for the study of aging and different psychopathologies, such as 
depression and schizophrenia (for reviews, see Birbaumer et al.  1990 ; Tecce and 
Cattanach  1993  ) . Similar in nature to the CNVs are the “Bereitschaft” or “readi-
ness” potentials (Kornhuber and Deeke  1965  ) , which are negative potential shifts 
preceding voluntary movements (for a review, see Birbaumer et al.  1990  ) .  

    1.5.5   N400 

 Of particular interest are ERPs showing signs of language processing. Kutas and 
Hillyard  (  1980  )  described a negative de fl ection between 300 and 500 ms after stim-
ulation (N400), correlated with the appearance of semantically anomalous words in 
otherwise meaningful sentences. It re fl ects “semantic memory,” that is, the predict-
ability of a word based on the semantic content of the preceding sentence (Hillyard 
and Kutas  1983  ) .  

    1.5.6   Error-related Negativity (ERN) 

 The ERN is a negative component that appears after negative feedback (Holroyd 
and Coles  2002 ; Nieuwenhuis et al.  2004  ) . It can be elicited by a wide variety of 
reaction time tasks, and it peaks within 100 ms of an error response. It reaches its 
maximum over frontal and central areas, and convergent evidence from source 
localization analyses and imaging studies point toward a generation in the anterior 
cingulate cortex (Holroyd and Coles  2002  ) .   

    1.6   Basic Analysis of Evoked Potentials 

 Figure  1.7  shows 16 single-trial visual ERPs from the left occipital electrode of a 
typical subject. These are responses to target stimuli using the oddball paradigm 
described in the previous section. Note that it is very dif fi cult to distinguish the 
single-trial ERPs due to their low amplitude and their similarity to spontaneous 
 fl uctuations in the EEG. The usual way to improve the visualization of the ERPs is 
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by averaging the responses of several trials. Since evoked potentials are locked to 
the stimulus onset (but of course, with some latency variability), their contribution 
will add, whereas the one of the ongoing EEG will cancel. The bottom plot in 
Fig.  1.7  shows the average evoked potential. Here, it is possible to identify the 
P100, N200, and P300 responses described in the previous section.   

 The main quanti fi cation of the average ERPs is by means of the peak amplitudes 
and latencies. Most research using ERPs compare statistically the distribution of 
peak amplitudes and latencies between groups of subjects, tasks, or conditions. 
Such comparisons can be also used clinically, and in general, pathological cases 
show peaks with long latencies and small amplitudes (Niedermeyer and Lopes da 
Silva  1993 ; Regan  1989  ) . 

  Fig. 1.7    Sixteen single-trial responses to pattern visual stimulation ( top traces ) and the average 
response ( bottom ). Note that in the average response the ERPs can be clearly identi fi ed because the 
ongoing  fl uctuations in the single trials cancel out       
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    1.6.1   Topography and Source Localization 

 Another important aspect of ERPs is their topography. In fact, the abnormal local-
ization of evoked responses can have clinical relevance. The usual way to visualize 
the topography of the ERPs is via contour plots (Vaughan et al.  1968 ; Duffy et al. 
 1979 ; Lehman  1987 ; Gevins  1987 ; Lopes da Silva  1993  ) . These are obtained from 
the interpolation of the ERP amplitudes in nearby electrodes at  fi xed times. There 
are several issues to consider when analyzing topographic plots: (1) the way the 
three-dimensional head is projected onto two dimensions, (2) the choice of the 
reference, (3) the type of interpolation used, and (4) the number of electrodes and 
their separation (Gevins  1987  ) . These choices can indeed bias the topographic 
maps obtained (see also Sects.   8.3    ,   8.4     and   8.5    ). 

 Besides the merit of the topographic representation given by contour plots, the 
 fi nal goal is to get a hint on the sources of the activity seen at the scalp. In other 
words, given a certain distribution of voltages at the scalp, one would like to esti-
mate the location and magnitude of their sources of generation. This is known as the 
inverse problem, and it has no unique solution. For further details, see Pascual-
Marqui et al.  (  2002  )  and references therein describing the use and applications of 
the LORETA software and Scherg and Berg  (  1996  )  and an extensive list of publica-
tions using the BESA software at   http://www.besa.de    ).  

    1.6.2   Event-Related Oscillations 

 Evoked responses appear as single peaks or as oscillations generated by the syn-
chronous activation of a large network (see Sects.   9.2     and   9.3    ). The presence of 
oscillatory activity induced by different types of stimuli has been largely reported in 
animal studies. Bullock  (  1992  )  gives an excellent review of the subject going from 
earlier studies by Adrian  (  1942  )  to results in the 1990s (some of the later studies are 
included in Basar and Bullock  1992  ) . Examples are event-related oscillations of 
15–25 Hz in the retina of  fi sh in response to  fl ashes (Bullock et al.  1991  ) , gamma 
oscillations in the olfactory bulb after odor presentation in cats and rabbits (Freeman 
 1975 ; Freeman and Skarda  1981  ) , and beta oscillations in the olfactory system of 
insects (Laurent and Naragui  2003 ; Laurent et al.  1996  ) . Moreover, it has been pro-
posed that these brain oscillations play a role in information processing (Freeman 
 1975  ) . This idea became very popular after the report of gamma activity correlated 
to the binding of perceptual information in anesthetized cats (Gray et al.  1989  )  and 
humans (Rodriguez et al. 1999). 

 Intracranial event-related oscillations in animals are quite robust and in many 
cases visible by naked eye. In humans, this activity is noisier and localized in time. 
Consequently, more sophisticated time-frequency representations – as the one given 
by the wavelet transform – are needed in order to precisely localize event-related 
oscillations both in time and frequency. We  fi nish this section with a cautionary note 
about event-related oscillations that is particularly important for human studies. 

http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://www.besa.de
http://dx.doi.org/10.1007/978-1-4614-4984-3_9
http://dx.doi.org/10.1007/978-1-4614-4984-3_9
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Since oscillations are usually not clear in the raw data, digital  fi lters are used in order 
to visualize them. However, one should be aware that digital  fi lters can introduce 
“ringing effects” and single peaks in the original signal can look like oscillations 
after  fi ltering. In Fig.  1.8 , we exemplify this effect by showing a delta function (upper 
plot)  fi ltered with a broad-and a narrow-band elliptic  fi lter (middle and lower plot, 
respectively). Note that the original delta function can be mistaken for an oscillation 
after  fi ltering, especially with the narrow-band  fi lter (see also Bullock  1992  ) .       
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    2.1   Introduction 

 Jean Baptiste Joseph Fourier (1768–1830), a brilliant French mathematician, had 
the grace (or disgrace) to live at the time of Napoleon’s conquest of the civilized 
world. He joined Napoleon’s expedition to Egypt as scienti fi c advisor, later becom-
ing an Egyptologist and administrator for Napoleon’s government. It was during his 
time as prefect in Grenoble when he did his major work on heat conduction. It took 
him, however, nearly two decades to publish this work, mainly due to the proposal 
of a novel – and at the time controversial – way to decompose periodic signals into 
weighted sums of sine and cosine functions. This decomposition, in our days known 
as Fourier series, has been his major contribution to science, largely transcending its 
original application to heat conduction. 

 Following Fourier ideas, signals as the ones recorded from scalp EEG surface 
electrodes can be represented in the time domain or alternatively in terms of their 
decomposition into sines and cosines in the frequency domain. Take for example the 
oscillatory signal of Fig.  2.1a  and suppose you want to transmit it to somebody else. 
You could in principle dictate all the time points of the sinusoid one by one, or alter-
natively you can just say that it is a sinusoid with a frequency of 10 Hz (i.e., a cycle 
repeating itself every 100 ms), as represented in the frequency plot of the lower left 
panel. These two views seem analogous, though you may also say that the fre-
quency representation appears to be more compact and simple. Take now the exam-
ple of Fig.  2.1b  on the right hand side. It is quite hard to get an understanding of this 
signal from the time representation in the upper plot. However, the frequency repre-
sentation in the lower plot gives a good grip of its nature: it is just the superposition 
of three sinusoids of different frequencies. This simple example illustrates the idea 
of why we use frequency representations. Basically, we try to get a simpler picture 
of some of the basic characteristics of the signal, which are usually not obvious 
from noisy and complex time representations.  

 The frequency representation of a signal is given by its Fourier Transform, which 
has innumerable applications in different scienti fi c disciplines. In the speci fi c case 
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of EEG signals, it is by far the most used quantitative tool, especially after the intro-
duction of a very ef fi cient and fast algorithm to calculate it, the Fast Fourier 
Transform (FFT; Cooley and Tukey  1965  ) . In the next sections we will describe the 
basic ideas of the Fourier Transform and its implementation to the analysis of EEG 
signals together with some applications.  

    2.2   The Continuous Fourier Transform 

 There are four different types of Fourier Transforms, depending on whether the sig-
nal is continuous or discrete and on whether it is periodic or not. The derivations of 
these four transforms can be found in mathematical textbooks (see e.g., Oppenheim 
and Schaffer  1999  ) . Here we focus on the general case of non-periodic signals, 
starting in this section with the continuous Fourier Transform and its basic 
properties. 

  Fig. 2.1    ( a ) A sinusoidal signal in the time ( upper plot ) and frequency ( bottom plot ) domains. 
( b ) A quasi-periodic signal. In this case, the Fourier Transform gives a simpler representation       
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 The  continuous  Fourier Transform of a function  x(t)  is de fi ned as 1 :

     
+∞ −

−∞
= ∫( ) ( ) j tX x t e dtww    (2.1)  

Where     − = −cos sinj te t j tw w w   are complex exponentials and  w  is the angular fre-
quency related to the linear frequency  f  by  w = 2p ·  f . Equation  2.1  quanti fi es the 
amount of activity at each frequency  w  of the original signal. The inverse Fourier 
Transform is de fi ned as:
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and it gives back the original signal  x(t)  expressed as a sum (or an integral to be 
precise) of sine and cosine functions of different frequencies, weighted by the 
Fourier coef fi cients  X(w).  Note the symmetry of Eqs.  2.1  and  2.2 , in the sense that 
one can exchange  x(t)  by  X(w)  just by changing the sign of the complex exponential 
and adding a normalization factor. 

 The Fourier Transform can be seen as the correlation between the signal  x(t)  and 
the complex sinusoidal functions     − ωj te   :

     
−=( ) ( ), j tX t x t e w

   (2.3)   

 This gives a very intuitive idea of the Fourier Transform. Indeed it is just the 
‘matching’ between the original signal  x(t)  and complex exponentials (or sine and 
cosine functions, if you prefer) of different frequencies.  

    2.3   The Discrete Fourier Transform 

 Digital signals have a  fi nite length and are sampled with a certain sampling fre-
quency. This  fi nite length and sampling introduces several problems that we will 
discuss in this and the following sections. 

 Let us consider a discrete signal  x[n] n = 1,…,N , which has been derived from a 
continuous signal  x(t)  by sampling at equal time intervals  Dt  (i.e. with a sampling 

frequency     =
Δ
1

sf t
  ). Obviously, the length of the signal is  T = N * Dt . Analogous to 

the continuous case (Eqs.  2.1  and  2.2 ), the  discrete  Fourier Transform is de fi ned as:
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   1   To simplify convergences issues (see Mallat 1999; Strang and Nguyen 1997; Chui 1992 for 
details) let us just state that the Fourier transform exists for  absolutely integrable  functions; 
i.e.    < ∞∫ ( )x t dt   , or in mathematical notation    ∈ 1( ) (R)x t L   . For discrete signals we require that 
    < ∞∑ [ ]x n   , which is always ful fi lled by real signals since they have a  fi nite length. We can 
recover the original signal using the inverse Fourier Transform ( 2.2 ) if    ∈ 1( ) (R)X Lw   .  
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and the signal  x[n]  can be reconstructed with the inverse discrete Fourier 
Transform:
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   (2.5)  

The Fourier coef fi cients  X [ k ] are complex numbers that can be represented in 
Cartesian or polar forms, as:

     = + =[ ] [ ] [ ] [ ] ,j
R IX k X k jX k X k e f

   (2.6)  

where  X  
 R 
  and  X  

 I 
  denote the real and imaginary parts in the Cartesian representation, 

and  |X[k]|  and  f  denote the amplitude and phase in the polar representation. If we 
consider only real sequences  x[n] , it can be easily shown that  X[k] = X   *   [N − k]  
(where  *  denotes complex conjugation). Then, the Fourier Transform gives a total 
of  N/2  independent complex coef fi cients; that means  N  independent values. Since 
we can reconstruct a signal of  N  data points from the same number of independent 
Fourier values, the Fourier Transform is non-redundant. 

 From the time series  x[n]  the discrete Fourier Transform gives the activity at 
frequencies  f  

 k 
 , with

     =
Δk

k
f

N t    (2.7)  

Clearly, the frequency resolution will be given by:

     Δ = =
Δ
1 1

f
N t T    (2.8)  

According to the  Shannon Sampling Theorem  (Mallat 1999), the  Nyquist fre-
quency  is de fi ned as the highest frequency that can be resolved with a sampling 
period  Dt :

     = =
Δ
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2 2
s

N

f
f

t    (2.9)  

and it corresponds to  k = N/2  in Eq.  2.7 . 
 Note from Eq.  2.8  that we can increase the frequency resolution by increasing 

the signal length  T . For a given signal length, decreasing the sampling period  Dt  
does not change the frequency resolution, but the Nyquist frequency.  

    2.4   Aliasing 

 Let us illustrate the idea of aliasing with the example of Fig.  2.2 . Suppose we sam-
ple a continuous sinusoidal signal with a relatively large sampling period  Dt . Since 
our sampling is too sparse, we will not be able to resolve the underlying sinusoidal 
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signal and, even worse, we will see a slow oscillation that was not present in the 
original signal (just follow the markers of the digital samples). This effect is called 
aliasing: the introduction of spurious low frequencies due to an inadequate sam-
pling of the signal.  

 Intuitively, to resolve a given oscillation we need at least two data points per 
period or in other words, the sampling frequency should be at least two times the 
frequency of the signal. This is just another way to state the Shannon Sampling 
Theorem and the Nyquist frequency of Eq.  2.9 . 

 In real cases, such as for EEG recordings, we do not have a sinusoid of a given 
frequency for which we can set an appropriate sampling rate. Far from it, we have 
noisy signals with activity in different frequency bands and the sampling rate is set 
by our recording system. Then, in order to avoid aliasing, we have to guarantee that 
the Shannon Sampling Theorem is veri fi ed, namely, that the maximum frequency of 

the signal  f  
 max 

  ful fi lls     < =
Δmax

1

2 2
sff

t
  . This is achieved by using low pass ‘anti-

aliasing’  fi lters. It has to be remarked that anti-aliasing  fi ltering has to be performed 
by hardware before the digitization of the signal. Once the signal has been digitized, 
there is no way to get rid of aliasing!  

    2.5   Fast Fourier Transform 

 The calculation of the discrete Fourier Transform with Eq.  2.4  requires  N   2   complex 
multiplications, because for each of the  N  discrete frequencies  k  we have to calcu-
late a sum of  N  multiplications with complex exponentials. This may take too long 
for large  N  but, fortunately, it is possible to reduce dramatically the computation 
speed by using the Fast Fourier Transform algorithm (FFT; Cooley and Tukey 
 1965  ) . The introduction of the FFT has revolutionized the analysis of digital signals 
and, in particular, it boosted the study of EEGs in the frequency domain. A detailed 
description of the FFT algorithm is outside the scope of this book and can be found 
in most signal processing textbooks (see e.g., Oppenheim and Schaffer  1999  ) . 

  Fig. 2.2    Illustration of aliasing: An inadequate ( sparse ) sampling of the signal introduces spurious 
low frequency oscillations       
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The basic idea is to avoid redundancies given that in Eq.  2.4  we end up calculating 
the same multiplications several times. In particular, the complex exponential of 
Eq.  2.4  is periodic and the permutation of  n  and  k  give the same result. So, it is pos-
sible to reduce the number of calculations to be done. If  N  is a power of 2 (e.g., 64, 
128, 256, …), it can be shown that the original  N -point discrete Fourier Transform 
can be expressed in terms of two  N/2 -point transforms. Since the computing time 
goes as  O(N   2   )  this results in a faster processing time. Even better, each of the two 
 N/2 -point transforms can also be expressed in terms of  N/4 -point transforms and so 
on until we are left with  2 -point sequences. It can then be shown that the computing 
time in this case is of the order  N log  

 2 
   N,  which is clearly faster than  N   2  . The differ-

ence in processing time becomes critical for large datasets. For example, for 64 data 
points the FFT is about ten times faster than the direct calculation of Eq.  2.4 , and for 
a million data points (just about half an hour recording of one channel with a sam-
pling frequency of 500 Hz) the FFT is over 50,000 times faster!  

    2.6   Power Spectrum 

 From the complex Fourier coef fi cients  X[k]  of Eq.  2.4  we can de fi ne the  periodo-
gram  as:

     
⋅= =2 *[ ] [ ] [ ] [ ]xxI k X k X k X k

   (2.10)   

 Considering that the signal is a stationary stochastic process, the periodogram is 
a raw estimation of the  power spectral density  of the signal (the power spectrum). 

 In Sect.   2.3     we stressed that the Fourier Transform is non-redundant. This means 
that if we have a real signal with  N  data points, the Fourier Transform gives  N  inde-
pendent values (or  N/2  complex coef fi cients) from which we can get back the origi-
nal signal. No information is gained or lost. This is true both for linear and nonlinear 
signals. However, it is well known that the Fourier Transform is only suited for 
linear signals and cannot characterize nonlinear patterns. How can this be? 

 Recall Eq.  2.6  where we showed that the Fourier coef fi cients can be written in 
polar form in terms of an amplitude and a phase. A stationary nonlinear signal, say 
a sequence of epileptic spikes, is represented in the Fourier domain as a sum of sinu-
soids, each of them added with a particular phase to reproduce the nonlinear spike 
shapes. But if we disregard the phases, we loose critical information that character-
izes the nonlinear pattern of the original signal (i.e. the spikes). Now look again at 
Eq.  2.10 . It is just the square of the amplitude of the Fourier coef fi cients de fi ned in 
Eq.  2.6 . The problem is that we usually look only at the power spectrum of the signal 
and we disregard the phase. This is the reason why we loose information about non-
linear structures with the Fourier Transform. But even if we keep the phase informa-
tion, the representation of nonlinear patterns as sums of sinusoids at particular phases 
seems quite cumbersome. In practice, we use the Fourier Transform to extract the 
linear characteristics of the signals and we turn to other methods to study nonlinear 
processes.  

http://dx.doi.org/10.1007/978-1-4614-4984-3_3
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    2.7   Leakage and Windowing 

 We mentioned that the periodogram is a raw estimate of the power spectrum. Let us 
illustrate this with the example of Fig.  2.3 . The sinusoid on the left has an exact 
number of cycles in the 0.5 s period of the signal and its periodogram gives a single 
peak at 6 Hz. The sinusoid on the right, on the other hand, has a non-integer number 
of cycles in the period considered and its periodogram gives an activity that is 
spread between 2 and 8 Hz. This smearing of the power spectrum estimation is 
called leakage.  

 To understand where leakage comes from we  fi rst need to realize that every real 
signal has a limited duration and that when we calculate the discrete Fourier 
Transform we make the implicit assumption that the signal repeats itself periodi-
cally outside the time range in which it has been recorded. It will take us too long to 
demonstrate this, but the basic idea is that discretizing the signal (as we do by 
sampling it) imposes that the Fourier Transform will be periodic, and discretizing 

  Fig. 2.3    Example of leakage. The sinusoid in ( a ) has an integer number of cycles and its power 
spectrum gives a single peak at 6 Hz. The sinusoid in ( b ) has a non-integer number of cycles and 
its power spectrum is smeared around 5 Hz       
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the frequencies (as we also have to do, since we cannot get a continuous distribution 
of frequencies for real data) imposes periodicity in the time domain (Oppenheim 
and Schaffer  1999  ) . If we repeat the signal in Fig.  2.3a  over and over again, we will 
have a smooth sinusoid, since the starting point is exactly the continuation of the 
 fi nal one. On the contrary, if we repeat the signal on Fig.  2.3b  we will be introducing 
discontinuities. These discontinuities are the ones causing leakage. In other words, 
if we want to synthesize the signal in Fig.  2.3b , including the discontinuities caused 
by repetition, we will have to use in principle all the components of the spectrum 
and especially those between 2 and 8 Hz. 

 A simple way to avoid this would be to take an integer number of cycles. 
However, real signals have activity at different frequencies and it is in general not 
possible to de fi ne a single periodicity. An alternative approach to avoid these dis-
continuities is by tapering the borders of the signal using an appropriate window 
function. This procedure is known as  windowing . There is, however, a tradeoff when 
windowing because on the one hand, it diminishes leakage effects but on the other 
hand it also decreases the frequency resolution. A precise mathematical formulation 
is outside the scope of this book (see Oppenheim and Schaffer  1999 ; Jenkins and 
Watts  1968  ) , but intuitively we can see that a strong tapering decreases the ‘effec-
tive’ length of the signal in which the different frequencies are de fi ned and, as shown 
in Eq.  2.8 , the length of the signal determines its frequency resolution. Several win-
dows have been proposed to optimize this tradeoff and their advantages and disad-
vantages depend on the application. Among these, the most popular windows are 
the Bartlett, Hanning, Hamming and Blackman, as shown in Fig.  2.4 . For a compre-
hensive review of the properties of these windows we refer to Oppenheim and 
Schaffer  (  1999  )  and Jenkins and Watts  (  1968  ) .   

  Fig. 2.4    Taper windows used to diminish leakage effects       
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    2.8   Variance of the Power Spectrum: Periodogram Averaging 

 It can be shown that, besides the problem of leakage, the periodogram is not a 
statistically consistent estimate of the power spectrum because its variance does not 
approach zero with increasing data length (Oppenheim and Schaffer  1999 ; Dumermuth 
and Molinari  1987  ) . Furthermore, for large data sets the periodogram tends to vary 
rapidly with frequency. These variations arise from the estimation process per se and 
result in a ‘random looking’ power spectrum. To get a smoother estimate, Bartlett 
proposed to average several periodograms (Bartlett  1953  ) . This can be done by divid-
ing the dataset into a number of segments, calculating the periodogram for each seg-
ment and then averaging the periodograms. This method was further developed by 
Welch who showed that better estimates are obtained by using half-overlapping win-
dows (Welch  1967  ) . Periodogram averaging, known as the Bartlett or Welch method, 
makes the power spectrum smother and reduces its variability (which now tends to 
zero for large data). It can also be shown (Oppenheim and Schaffer  1999  )  that this 
averaging procedure is equivalent to a smoothing of the original periodogram with 
a spectral window. Another advantage is that, due to the averaging that is involved, 
it is possible to estimate error bars and con fi dence intervals. 

 Periodogram averaging copes with the problem of variability of the power spec-
trum estimation but, as usual, there is no free lunch! Again we face a tradeoff. On 
the one hand, the more segments we use for averaging the smaller the variability and 
the smoother the power spectrum will look. But on the other hand, the more seg-
ments we use, the less number of data points per segment and, consequently, the 
lower the spectral resolution (see Eq.  2.8 ).  

    2.9   Practical Remarks for Estimating the Power Spectrum 
of EEG Signals 

 From the discussions of the previous sections we may conclude that the design of an 
optimal frequency analysis of EEG signals is more a sort of art than a standardized 
procedure. Indeed there are many tradeoffs and limitations we should be aware of. 
Having said this, there are many common situations we face over and over again when 
doing a frequency analysis of EEG signals. Therefore, we can set some general guide-
lines for its implementation. Let us deal with each problem one at a time:

    • Sampling rate : It should be at least two times the maximum frequency of interest 
in the EEG signal. In our days it is relatively common (and not expensive) to 
have recording systems with sampling frequencies of 500 Hz or higher. With 
500 Hz it is possible to study frequencies of up to 250 Hz, which should be 
enough for most applications. 2   

   2   For cases like the study of fast propagating seizures, the analysis of early evoked potentials, or the 
analysis of fast ripples, a sampling of 1,000 Hz is the minimum admissible given that it is crucial 
to have a resolution of the order of a millisecond or less.  
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   • Aliasing : Ideally it should be dealt with by the acquisition system with a low-
pass ‘anti-aliasing’  fi lter set in the hardware. If this is not possible, the signal 
should be oversampled when recording (e.g., with 1,000 Hz), then low pass 
 fi ltered and decimated.  
   • Power spectrum estimation : In order to reduce the variability of the power spec-
trum and wash out a ‘noisy-looking’ appearance, we can use the periodogram 
averaging method described in Sect.  2.8 . This approach also helps to cope with 
other problems such as stationarity and artifacts as we will see in the next points. 
The number of segments to be used is determined by the length of the dataset and 
it should be in principle more than 10 (ideally 30 or more, depending on the 
application).  
   • Segment length : The length of the segments used for the average periodogram 
determines the frequency resolution. The larger the segments the better the fre-
quency resolution. However, we want to use segments that are not too long, so 
they do not include artifacts, and the signal can be considered stationary to a  fi rst 
approximation. In practice, segments of 2 s seems appropriate, thus giving a fre-
quency resolution of 0.5 Hz (see Eq.  2.8 ). Due to details of the implementation 
of the Fast Fourier Transform algorithm, to increase computational speed it is 
also desirable that the length of the segments is a power of 2 (e.g., 64, 128, 256, 
etc.). In search for spatial images of amplitude and phase in the EEG and ECoG 
(part II of this book) the optimal window duration may be reduced to the range 
of 0.1 s, which gives poor frequency resolution but excellent temporal resolution 
for the calculation of the amplitude and phase. The coarse graining of frequency 
turns out to be an advantage, because it facilitates tracking of EEG and ECoG 
images with frequency modulation (FM).  
   • Leakage : To diminish leakage we can taper each of the segments used for peri-
odogram averaging with e.g., a Hanning window.  
   • Stationarity : One of the main assumptions we make to estimate the power spec-
trum of EEGs is that they can be treated as stationary stochastic signals. If they 
are not stationary, then the spectrum may be meaningless (see Figure 3.1). For 
periodogram averaging we must then assume that all segments correspond to the 
same stochastic process. This can be actually checked by observing the variabil-
ity of the periodograms and any particular trend. An obvious pitfall would be to 
include segments corresponding to different brain states, such as mixing periods 
of normal and epileptic EEG activity or periods of awake and sleep EEG. 
Furthermore, we should also check that the signal can be considered stationary 
within each segment, which imposes a limitation to the segment length.  
   • Artifacts : Due to its large amplitude, artifacts can seriously contaminate the 
power spectrum. For estimating the power spectrum using the Welch method 
(i.e. averaging the periodograms of different segments of the signal), it is there-
fore advisable to select segments that are artifact free. Artifacts can be checked 
either visually or with advanced artifact detection methods, such as Independent 
Component Analysis (Jung et al.  2000  ) .     
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    2.10   Applications of EEG Frequency Analysis 

    2.10.1   EEG Frequency Bands 

 In the  fi rst report of human EEG recordings, Hans Berger already noted the presence 
of different brain oscillations (Berger  1929  ) . In particular, he reported rhythmic 
activity of around ten cycles per second, most pronounced in the occipital elec-
trodes with eyes closed. These oscillations, which he named  alpha rhythms , were 
dramatically decreased by the in fl ux of light with eyes opening. This effect is what 
in our days we call  alpha blocking  and it is one of the most dramatic and simplest 
demonstrations of how the EEG re fl ects brain processes. We de fi ne  reactivity  as the 
ratio of alpha activity with eyes closed and eyes open. The degree of reactivity var-
ies from subject to subject, but it is generally accepted that a lack of reactivity is an 
abnormal  fi nding (Niedermeyer  1993  ) . Berger also described oscillatory activity of 
higher frequencies, which he called the  beta rhythms . They appeared with eyes open 
and to some degree also with eyes closed when the subjects performed mental cal-
culations. Following Berger’s seminal work, different EEG oscillations and their 
correlation to different brain states, functions and pathologies had been thoroughly 
studied, especially after the introduction of digital recordings and the Fast Fourier 
Transform (Cooley and Tukey  1965  ) . Based mainly on their function and localiza-
tion, EEG oscillations have been grouped into frequency bands. Here we just give a 
brief summary of them and we refer to the excellent review of Niedermeyer  (  1993  )  
for more details. 

 Figure  2.5  shows an EEG recording of 20 s and its corresponding power spec-
trum. The vertical lines mark the limits of the standard EEG frequency bands: 

   Alpha rhythms (7.5–12.5 Hz): they appear spontaneously in normal adults dur-• 
ing wakefulness, under relaxation and mental inactivity conditions. They are 
best seen with eyes closed, most pronounced in the occipital locations.  
  Beta rhythms (12.5–30 Hz): they are best de fi ned in central and frontal locations, • 
with less amplitude than alpha waves. They are enhanced upon mental calcula-
tions, expectancy or tension over the entire surface of the scalp (Fig.  2.6  and 
Fig.  10.9    .   
  Theta rhythms (3.5–7.5 Hz): They are typical during deep sleep. They play an • 
important role in infancy and childhood. In the awake adult, high theta activity is 
considered abnormal and related to brain disorders, such as epilepsy.  
  Delta rhythms (0.5–3.5 Hz): They are also characteristic of deep sleep stages. • 
Depending on their morphology, localization and rhythmicity, delta oscillations 
can be normal as in slow wave sleep or pathological as in brain tumors.  
  Low Gamma rhythms (30–60 Hz in human EEG, 30–80 Hz in animal ECoG): Of • 
minor interest until the 1990s, gamma oscillations became very popular after 
they have been proposed to play a major role in linking stimulus features into a 
single perception (binding theory; Gray et al.  1989  ) . Although the validity of the 

http://dx.doi.org/10.1007/978-1-4614-4984-3_10
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  Fig. 2.6    Topographical mapping of the different EEG frequency bands from a normal EEG 
recording taken with eyes closed       

  Fig. 2.5    EEG frequency bands       
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binding theory is still under dispute, several follow up works have shown 
correlations of gamma activity with different sensory and cognitive processes, 
notably during visual, auditory, somatic and olfactory perception (see Chaps.   8     
and   9    ) as well as with attention.  
  High gamma rhythms (variously de fi ned between 80–120+) also called epsilon • 
rhythms have been found in human and animal ECoG in association with 
 chattering action potentials (Ray and Maunsell  2011  )     

 It should be emphasized that not all EEG oscillations of the same frequency have 
the same function. For example, delta oscillations are normal during slow wave 
sleep but are a clear sign of abnormality in awake states, given that 3 Hz spike and 
wave discharges are a characteristic sign of absence seizures. Mu rhythms have a 
frequency similar to that of the occipital alpha rhythm, but they are observed in 
central locations and are related to motor functions. Spindle oscillations have also a 
periodicity of about 10 Hz, but they are characteristic of sleep stage 2. 

 Since EEG patterns are quite variable and complex, visual inspection is still one 
of the preferred ways to analyze EEG recordings by expert electroencephalogra-
phers. This is more an art than an exact science and it requires years of training. 
Clearly, visual inspection is very subjective and a quantitative approach should in 
principle be preferred. However, it must be said that some training in EEG visual 
inspection is particularly useful before embarking in automatic and quantitative 
EEG analysis, at least to have a feeling of what type of patterns and characteristics 
of the raw EEG we are trying to quantify. Most of quantitative electroencephalogra-
phy deals with the analysis of the EEG frequency bands described above. Several 
parameters have been de fi ned to quantify them, such as the relative power between 
bands (being the most used the alpha/theta ratio), reactivity (ratio between eyes 
closed/eyes open alpha activity), asymmetry index (the difference between the left 
and right power), etc. (Nuwer et al.  1994  ) . Moreover, statistical techniques can be 
used in order to establish normal ranges and their deviations with several patholo-
gies (John et al.  1987  ) .  

    2.10.2   Topographic Analysis 

 The information from the different electrodes can be arranged in topographic maps 
(Gotman  1990 ; Gevins  1987 ; Lehmann  1987 ; Lopes da Silva  1993a  ) . These algo-
rithms usually use linear or quadratic interpolations between the 3 or 4 nearest 
recording sites. One critical point is the election of the reference, since the use of 
single electrode references can distort the maps near the reference site (Lehmann 
 1971,   1987  )  (see Fig.   10.9    ). Several suggestions were proposed in order to avoid 
this distortion, among them the use of averaged references and the use of the aver-
age of the derivatives of the EEG signals (Lehmann  1987 ; Lopes da Silva  1993b  ) . 
Another important issue to be considered is how to project a three dimensional head 
into a two dimensional map. 

http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_9
http://dx.doi.org/10.1007/978-1-4614-4984-3_10
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 The use of topographic plots started more than 30 years ago (Walter et al.  1966 ; 
Lehmann  1971  ) , but it was after the introduction of color topographic maps by 
Duffy et al.  (  1979  )  that they became widely accepted and started to be used in sev-
eral medical centers. With these plots it is easy to visualize asymmetries and to 
localize the activity of the different frequency bands. Furthermore, the topographic 
maps complement the quantitative parameters described in the previous sections for 
the characterization of normal EEG patterns and the study and diagnosis of several 
pathologies (Duffy  1986 ; Maurer and Dierks  1991 ; Pfurtscheller and Lopes da 
Silva  1988  ) . 

 Figure  2.6  shows the topographic map of the EEG recording of a normal subject 
with eyes closed. Five different frequency bands are plotted. As expected, the power 
is homogeneously distributed in all the frequency bands, except in alpha, where 
there is a symmetrical increase in the posterior locations. This increase re fl ects the 
presence of the normal spontaneous alpha activity described above. 

 Before leaving this section we stress that topographic maps give a static picture 
of the brain activity. Later we will describe a radically different approach to study 
how EEG activity propagates not only in time but also in space. These are the EEG 
images of the title of our book. In our chapters we will demonstrate the methods by 
which we succeed in extracting  fi nely textured patterns of amplitude from the 
blandly uniform distributions of potential shown in Fig.  2.6  (see Sect.   10.5    ). The 
textured images are formed by amplitude and phase modulation (AM and PM) of 
spatially coherent carrier waves in the beta range. They recur at rates in the theta 
range as brief epochs that resemble cinematic frames. They contain cognitive infor-
mation, because they are classi fi able with respect to sensory stimuli that human 
subjects are perceiving as the patterns  fl y past. Part II of this book is directed to 
describe how to  fi nd these patterns, explain how they are generated, and interpret 
what they contribute to our understanding of human cognitive neurodynamics.   

    2.11   Summary 

 In this chapter we reviewed the basic background of the Fourier Transform and its 
use in the analysis of EEG signals. One important application is the comparison 
between the power at different frequency bands and their topological distribution. 
Normative values have been established and large deviations from them can re fl ect 
pathological cases. Moreover, deviations from background values in subjects who 
are engaged in cognitive tasks may direct us to discover EEG and ECoG correlates 
of cognition. This analysis is already adapted to many commercial systems and 
it is used in several medical centers. Although quantitative parameters are very use-
ful and can be easily extracted from the EEG in an automated way, the visual 
inspection of the recordings should not be left aside, in order to avoid misinterpreta-
tions due to non-stationarity, artifacts, etc. In fact, topographic mapping and quan-
titative values should be considered as a complement and not as a replacement of 
visual inspection of the EEG. 

http://dx.doi.org/10.1007/978-1-4614-4984-3_10
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 The frequency analysis allowed by the Fourier Transform has been by far the 
most useful quanti fi cation of EEG activity. It has, however, three main limitations:

    1.    The Fourier Transform requires stationarity of the signal. For the purpose of 
estimating the power spectrum, the EEGs can be regarded as quasi-stationary 
only on the order of a few seconds (Blanco et al.  1995  ) . Obviously, the Fourier 
Transform is also not well suited for the analysis of transient responses as in the 
case of Evoked potentials.  

    2.    The Fourier Transform is very accurate at characterizing the frequency composi-
tion of a signal, but it gives no time information. In other words, we can very 
well de fi ne the activity at a particular frequency but we can not tell when exactly 
this frequency occurs and how it evolves in time. This is of course related to the 
issue of stationarity. It justi fi es the use of time varying methods, like the short-
time Fourier Transform, Wavelets or the Hilbert transform to be described in the 
next chapters.  

    3.    The Fourier Transform is not optimal to characterize non-linear signals. As we 
described in Sect.  2.6 , non-linear patterns, for example epileptic spikes, are rep-
resented in the Fourier domain as complex combinations of different frequencies 
with precise phase relationships. Since we usually only look at the power spec-
trum and disregard the phase information, the non-linear nature of the signal is 
lost. But even if we decide to keep the phases, describing a spike as a sum of 
sinusoids with a certain phase relationship is very cumbersome and other methods 
such as wavelets (see Chap.   4    ) may be preferred.          
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    3.1   Introduction 

 In the previous chapter we mentioned that one of the main limitations of the Fourier 
transform is that it does not have time resolution. For calculating the Fourier trans-
form, we assume that the signal is stationary and, consequently, that the activity at 
different frequencies is constant throughout the whole signal. In many occasions, 
however, signals have time-varying features that cannot be resolved with the Fourier 
transform. This is the case of music, speech, animal sounds, radar data, and many 
other signals (see examples in Cohen  1995  ) . For EEG signals, this limitation is 
critical when we analyze processes that change in time, such as the response to a 
particular stimulus or the development of an epileptic seizure. 

 To illustrate this, let us consider the linear chirp – i.e., a signal with a steadily 
rising frequency – shown in Fig.  3.1a . Of course, it is not possible to track the vary-
ing frequency of the chirp with the Fourier transform. In fact, the Fourier transform 
integrates the frequency activity along the whole signal, and it gives a broad power 
spectrum (Fig.  3.1b ). This representation is quite misleading because the chirp sig-
nal gives the same power spectrum as the one of a broadband random signal.  

 Intuitively, we can overcome the lack of time resolution of the Fourier transform 
by chopping the data into pieces and then calculating the power spectrum for each 
piece or, even better, by using a time-evolving window to focus at different seg-
ments of data. In order to avoid leakage (see Sect.   2.7    ), we can also taper the win-
dowed data with an appropriate function (Cohen  1995 ; Chui  1992  ) . This procedure 
is called the  short-time Fourier transform  (STFT) or windowed Fourier transform. 
If the window used is a Gaussian, it is called Gabor transform, in honor to Denis 
Gabor, a Hungarian physicist that  fi rst developed these ideas to analyze the fre-
quency variations of sounds (Gabor  1946  ) . 1  With the STFT it is possible to track the 
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   1   Besides this seminal contribution, Gabor is in our days most recognized for being the father of 
holography, an achievement for which he received the Nobel Prize in Physics in 1971.  
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time evolution of the different frequencies and the stationarity requirement is 
satis fi ed by considering that the signals are quasi-stationary within each window 
(Lopes da Silva  1993 ; Blanco et al.  1995  ) . Figure  3.1c  shows the time-frequency 
spectrum of the chirp signal obtained with the STFT. In this case, we used a Gaussian 

  Fig. 3.1    A linear chirp ( a ), its Fourier transform ( b ), and its time-frequency representation 
obtained with the short-time Fourier transform ( c )       
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window of 0.5s length. As expected, the time-frequency plot shows how the fre-
quency of the signal increases linearly with time. 

 In the next sections we will give the basic theoretical background of the STFT, 
and we will illustrate its use in the analysis of scalp EEG recordings during tonic-
clonic seizures.  

    3.2   Short-Time Fourier Transform 

 Let us now formalize the concepts introduced in the previous section. The STFT of 
a signal  x(t)  is de fi ned as

     
+∞ − ′

−∞
= −′ ′ ′∫ *( , ) ( ) ( ) j t

D DG t x t g t t e dtww    (3.1)  

where  *  denotes complex conjugation. Note that     ( , )DG f t   is the same as the Fourier 
transform (Eq.   2.1    ) but with the introduction of the window     ′ −* ( )Dg t t   of width  D  
and center in  t . The STFT quanti fi es the activity of the signal around time  t  and 
frequency  w . As in the case of the Fourier transform, it can also be shown that the 
signal  x(t)  can be reconstructed from the coef fi cients     ( , )DG tw   (Mallat  1999  ) . With 
respect to the particular window  g  

 D 
  to be used, Gabor  (  1946  )  proposed to use a 

Gaussian function:

     
−⎛ ⎞= ⎜ ⎟⎝ ⎠

2
2

1/4

( ) ,tg t e
a

a
a
p    (3.2)  

given that its Fourier transform is also a Gaussian, thus giving a simultaneous local-
ization in time and frequency. The constant  a  determines the width of the Gaussian, 
and it is the main parameter that sets the effective size of the window. Since in the 
following we will only consider Gaussian windows, we will refer indistinctly to the 
length of the window  D  (used in Eq.  3.1 ) or to the width of the Gaussian a. Note that 
Gaussian functions do not have a compact support; i.e., they extend to plus and 
minus in fi nity. However, since they approach asymptotically zero, they can be eas-
ily truncated without introducing any major distortion. 

 The STFT can be expressed as the inner product between the signal  x(t)  and the 
complex sinusoidal functions     − ′j te w   modulated by the Gaussian window     ga   :

     
− ′= −′ ′( , ) ( ), ( ) j tG t x t g t t e w

a aw    (3.3)   

 Then, it can be seen as the “matching” between the original signal  x(t)  and the 
oscillatory functions     − ′= −′( , ) ( ) j tW t g t t e w

a aw   . Figure  3.2  shows the real and imag-
inary part of the function     ( , )W ta w   , called the Gabor or Morlet function.  

 As in the case of the Fourier transform (see Eq.   2.10    ) it is possible to de fi ne an 
estimation of the time-varying power spectrum, the  spectrogram , as

     
⋅= =2 *( , ) ( , ) ( , ) ( , ),I t G t G t G tw w w w

   (3.4)  
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and we can represent the time-resolved frequencies with contour plots as shown in 
Fig.  3.1c . 

 Let us now consider a discrete signal  x[n] (n = 1,…,N) . The  discrete  STFT is 
de fi ned as

     

−−

=

= −∑
21

0

[ , ] [ ] [ ] ,
j k mN

N

m

G k n x m g m n e
p

   (3.5)  

where  n  and  k  denote the discrete time and frequency localizations, respectively. 
The discrete STFT is very redundant because it gives a frequency representation 
for every time point. Indeed, from a discrete signal with  N  values, we get a time-
frequency representation with a total of  NxD  values (with  D  the number of data 
points in the window). In order to decrease this redundancy, a  sampled  STFT can be 
de fi ned by considering only a subset of all the possible time and frequency values. 
This decreases the redundancy and saves computation time. However, the price to 
pay is that the reconstruction of the original signal from the STFT is no longer 
straightforward (Qian and Chen  1996  ) .  

    3.3   Uncertainty Principle 

 We just saw how to get time resolution from the Fourier transform by windowing 
the data. There is still a critical point to be discussed for the implementation of the 
STFT. We have to decide how to choose the size of the window  D , or more 
speci fi cally, the rate of decay of the Gaussian function  a . The bad news is that this 
is not so straightforward and, again, a compromise has to be taken. If the window is 
too narrow, it will give a good time resolution but frequencies will not be well 
resolved (remember from Eq.   2.8     that the frequency resolution is inversely propor-
tional to the data length). On the contrary, if the window is too large we will have a 
good frequency resolution, but the time localization will be lost. There is a trade-off 
between frequency and time resolution. In analogy to Heisenberg’s uncertainty 

  Fig. 3.2    Real ( top ) and 
imaginary ( bottom ) parts of 
the function     ( , )W ta w          
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principle in quantum mechanics, 2  this is called the uncertainty principle of signal 
analysis: frequency and time resolution cannot be made arbitrarily small at the same 
time. In other words, sharp localization in time and frequency are mutually exclu-
sive because we need several data points to de fi ne a frequency. If we denote by  s  

 t 
  

the time uncertainty and by  s  
 w 
  the frequency uncertainty, the uncertainty principle 

can be mathematically expressed as (Cohen  1995 ; Chui  1992 ; Mallat  1999  ) 

     
≥

1

2t ws s
   (3.6)   

 This limitation becomes important when the signal has transient components 
localized in time, as in the case of some EEG activity and evoked potentials. As 
mentioned above, Gabor  (  1946  )  suggested the use of a Gaussian window due to its 
good localization both in time and frequency. In fact, a Gaussian function gives the 
best possible time-frequency localization, and Eq.  3.6  becomes an equality. 

 It is standard to represent the uncertainty principle graphically using  Heisenberg 
boxes . Figure  3.3a  shows the time and frequency resolutions for 2 time-frequency 
pairs  (t  

 1 
  ,w  

 1 
  )  and  (t  

 2 
  ,w  

 2 
  )  using a relatively large window. In this case, we have a small 

frequency uncertainty  s  
 w 
 , but the time uncertainty  s  

 t 
  is too large. Equation  3.6  

means that the areas of the Heisenberg boxes have a minimum value. Note also that 
the boxes have the same shape for the two time-frequency pairs. This is just show-

   2   Heisenberg’s uncertainty principle states that it is not possible to determine with arbitrary accu-
racy the position and velocity of a given particle at the same time.  

  Fig. 3.3    Heisenberg uncertainty boxes with a long ( a ) and a short ( b ) window. A long window has 
good frequency (but not time) localization, and a short window has good time (but not frequency) 
localization. The area of the uncertainty boxes has a minimum value given by Eq.  3.6        
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ing the fact that the window size, and therefore the compromise between time and 
frequency resolution, is the same for all frequencies. Figure  3.3b  shows the time-
frequency resolution with a short window. In this case, the time resolution is 
increased but at the cost of a lower frequency resolution.   

    3.4   Measures Derived from the Spectrograms: 
Spectral Entropies 

 Although the spectrograms give an elegant visual representation of the time evolu-
tion of the different frequencies (e.g., Fig.  3.1c  and Fig.  3.4b ), this information is 
still qualitative. To quantify the frequency distribution at a given time and particu-
larly to see its evolution, we can calculate the entropy of the power spectrum. 
Entropy is a measure of randomness or, in other words, the information content of a 
signal. Random signals are unpredictable and every new data point gives new infor-
mation. On the contrary, with ordered signals new data points can be predicted from 
the previous values and therefore carry less information.  

  Fig. 3.4    ( a ) Three-minute EEG recording with a grand mal (tonic-clonic) seizure and ( b ) its spec-
trogram. The seizure is characterized by oscillatory activity localized at around 10 Hz, which 
slows downs as the seizure progresses       
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 Let us consider a discrete variable  x[n] (n = 1,…,N)  with  K  possible outcomes  x  
 k 
  

 (k = 1,…K) , each one with a normalized probability  p  
 k 
 . 3  The  Shannon entropy  of 

the distribution of outcomes is de fi ned as

     = −∑ 2log ,k k
k

H p p    (3.7)  

which is measured in  bits  if the logarithm is taken with base 2. For example, imag-
ine we generate a series with the outcomes of 100 throws of a dice. Then  N  will be 
100 and the dice has  M = 6  possible outcomes. For a fair dice, each outcome has an 
equal probability  p  

 k 
   = 1/6 , and Eq.  3.7  gives a maximum value of     = 2.58H   bits. 

This means, each dice throw is unpredictable, and once we know the outcome, we 
get a maximum of new information. For a heavily loaded dice, we get always the 
same number which has a probability  p  

 k 
   = 1 , and all other numbers have a probabil-

ity equal 0. In this case, we get  H = 0  bits ,  4  which in other words means that we 
already know the outcome beforehand, and each throw of the dice does not give any 
new information. 

 To quantify the entropy of the power spectrum, in Eq.  3.7  we take  p  
 k 
  as the nor-

malized spectral density  I  for a given frequency  k , at a time  t :

     
=

∑
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I f t
p t
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 The Shannon entropy is equal to 0 for a delta distribution (i.e., a sinusoidal signal) 
and positive otherwise, reaching a maximum of     = 2logH N   for a “ fl at” distribution. 
In terms of the power spectrum, low entropy means that the signal is concentrated 
in a few frequency bands, and high entropy means that the frequency spectrum 
looks like broadband noise. 

 Let us now assume we have two probability distributions (e.g., two different 
power spectra)     { }= kp p    and    { }= kq q   . We can de fi ne the  Kulback-Leibler  or rela-
tive entropy as

     = ∑ 2( | ) log k
k

k k

p
K p q p

q    (3.9)   

 The Kullback-Leibler entropy is positive and equals 0 if     ≡k kp q   . It measures the 
degree of similarity between the two probability distributions  p  and  q : the more dis-
similar the distributions, the larger it gets. This is very useful to compare the power 
spectrum in different states or to analyze how the power spectrum changes with 
time with respect to a reference spectrum  q  

 k 
 , as we will see in Fig.  3.6 .  

   3   The probabilities  p  
 k 
  satisfy     0≥kp    and     

=
=∑ 1

1
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p     

   4   Where     ≡2
.0 log 0 0     
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    3.5   Time-Frequency Analysis of Grand Mal Seizures 

 About 20% of epileptic patients do not respond to antiepileptic drugs, and, depending 
on the type of epilepsy and clinical considerations, they may be candidates for cura-
tive surgery. As part of a comprehensive evaluation, these patients stay in hospital 
for about a week or two, where they are continuously monitored with video cameras 
and scalp EEG recordings. The goal of this procedure is to record spontaneous sei-
zures with these video-EEG recordings to localize the focus of the seizures and 
evaluate the possibility of surgical resection. When the information from noninva-
sive techniques (i.e., scalp EEG, neuropsychological tests, fMRI, and clinical mani-
festations) is not conclusive, these patients may undergo the implantation of 
intracranial electrodes. 

 Figure  3.4a  shows a tonic-clonic (grand mal) seizure recorded from a right cen-
tral (C4) scalp electrode. From the video recording, it was possible to establish that 
the seizure started at second 80 with oral automatisms, followed 20 s later by a 
generalized tonic contraction. In the EEG recording, the starting of the seizure cor-
relates with a burst of slow waves with high frequency activity of lower amplitude 
superposed to it. Afterward, the seizure developed further, and the analysis of the 
EEG becomes more complicated due to muscle artifacts. The clonic phase started 
about 60 s after the beginning of the seizure, and the seizure ended at second 155 
where there is an abrupt decay of the signal. 

 Figure  3.4b  shows the spectrogram of the seizure recording. The pre-ictal activ-
ity was dominated by delta frequencies, and shortly after the seizure onset, there 
was a dramatic change in the spectrogram with the appearance of oscillatory activ-
ity localized at 10 Hz. This frequency gradually decayed as the seizure progressed, 
and it went down to 1 Hz just before the seizure end. Muscle artifacts that contami-
nated the EEG recording are also identi fi able from the spectrogram, as a widespread 
pattern going up to frequencies larger than 30 Hz. However, they did not obscure the 
time-frequency dynamics seen in the spectrogram. The starting of the clonic phase 
was correlated with a localized activity at 3 Hz, which was due to a slowing of the 
10-Hz activity that appeared at the beginning of the seizure. Consequently, it seems 
that clonic contractions were a response to brain activity that could only be estab-
lished when brain oscillations were slow enough to be followed by the muscles. 

 In summary, from the spectrogram we can postulate that tonic-clonic seizures are 
a single process, with frequencies initially localized at about 10 Hz slowing down to 
about 1 Hz at the seizure end (this was the case for over 70% of the seizures studied 
in Quian Quiroga et al.  1997  ) . The tonic and clonic phases, and even the tremors that 
can sometimes be seen between these two phases, are then muscular responses deter-
mined by such frequency evolution (Quian Quiroga et al.  1997 ; Quian Quiroga et al. 
 2002  ) . This pattern was not clear from the scalp EEG recordings due to muscle con-
tamination. The analysis of intracranial recordings without such muscle contamina-
tion showed a similar frequency dynamics (Quian Quiroga et al.  2000  ) . 

 The spectrogram of Fig.  3.4b  was calculated with half-overlapped windows of 
5-s length. In Fig.  3.5 , we show the spectrograms obtained using half-overlapped 
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windows of 20, 10, 5, 2.5, and 1.25 s, respectively. As discussed in Sect.  3.3 , for 
large windows (e.g., 20 s) there is a good frequency resolution, but the patterns of 
the spectrogram are not localized in time. On the contrary, for short windows (e.g., 
1.25 s) there is a better time resolution, but the frequencies are less localized. Note 
that the window of 5 s gives an optimal compromise between time and frequency 
resolution (time resolution: 2.5 s; frequency resolution: 0.2 Hz).  

 Figure  3.6  shows the same tonic-clonic seizure in a compressed form, the rela-
tive intensity ratio (RIR) of the different frequency bands, the Shannon entropy 
(Eq.  3.7 ), and the Kullback-Leibler entropy (Eq.  3.9 ). For the latter one, we took as 
a reference spectrum the one of the  fi rst time window, corresponding to pre-ictal 
activity. In agreement with the time-frequency patterns described in Sect.  3.4 , the 
analysis of the power in the different frequency bands (RIR) shows that pre-seizure 
activity was characterized by a high power in the delta band, which decayed abruptly 
during the seizure given the dominance of theta and alpha frequencies (Quian 
Quiroga et al.  1997  ) . The Shannon entropy showed an increase during the seizure, 

  Fig. 3.5    The tonic-clonic seizure of Fig.  3.3  and its spectrograms using different window sizes       
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but this change was more clearly seen with the Kullback-Leibler entropy, due to the 
difference of the power spectrum in this state compared to the one in pre-seizure 
epoch. As shown in Fig.  3.7 , a similar pattern was also observed with intracranial 
recordings, with the largest entropy change appearing in the electrode closest to the 

  Fig. 3.6    From  top  to  bottom , the tonic-clonic seizure of Fig.  3.3 , the band relative intensity ratio, 
Shannon entropy and Kullback-Leibler entropy       
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seizure focus (Quian Quiroga et al.  2000  ) . Then, the Kullback-Leibler entropy may 
be a potentially useful tool to help to localize the source of the epileptic seizures.   

    3.5.1   Summary 

 In this chapter we showed that with the STFT it is possible to localize in time the 
activity of the different EEG frequencies, and we used this method to track the fre-
quency dynamics during tonic-clonic seizures. We also showed that it is possible to 

  Fig. 3.7    ( a ) Intracranial EEG recording from the electrode contact within the seizure-generating 
area, ( b ) its corresponding power spectrum, ( c ) Shannon entropy, and ( d ) Kullback-Leibler entropy 
taking a pre-seizure reference window       
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de fi ne spectral entropies from the time-varying power obtained with the STFT, which 
showed changes in the spectral composition of the EEG during epileptic seizures. 

 A critical limitation of the STFT, and any time-frequency decomposition, is 
given by the uncertainty principle. Indeed, there is a trade-off between time and 
frequency resolutions which is determined by the window size. The main limitation 
of the STFT is that the window length is  fi xed and it may give an optimal compro-
mise between time and frequency resolution for a given frequency but not for oth-
ers. In the case of the tonic-clonic seizures, most of the interesting activity changed 
slowly and occurred below 10 Hz, and, consequently, a window of 5 s was optimal 
for their analysis. However, for signals with relevant information in different fre-
quency ranges, as in the case of evoked potentials, a single window may not be 
optimal for the whole frequency spectrum. Ideally, we would like to set different 
window sizes for different frequency ranges, and, as we will see in the next chapter, 
this is exactly what wavelets do.       
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    4.1   Introduction: Brief History 

 In the previous chapter, we showed that a key issue with the short-time Fourier 
transform (STFT) is the choice of the window length, given the basic limitation 
imposed by the uncertainty principle of signal analysis. Short windows give good 
time (but bad frequency) resolution, and conversely, long windows give good fre-
quency (but bad time) resolution (see Sect.   3.3    ). In the late 1970s, Jean Morlet, a 
geophysicist working for a French oil company, realized that the STFT was not suit-
able for the study of his seismic data. He observed that a good compromise between 
time and frequency resolution was not possible because high-frequency patterns 
had a shorter duration compared to the low-frequency ones. So, a single window for 
all frequencies would not do. His solution was quite straightforward: he just took 
different window sizes for different frequencies, or more accurately, he took a cosine 
function tapered with a Gaussian (a Gabor function, see Sect.   3.2    ) and compressed 
it or stretched it in time to get the different frequencies (see Fig.  4.1 ). Then, instead 
of always having the same window size, he had the same wave shape at different 
scales, that is, with a variable size. With this simple trick, he created the basis of 
wavelets!  

 In our days, wavelets are recognized as a very powerful signal decomposition 
tool with a large number of applications in different  fi elds, including the analysis of 
brain signals. The development of wavelets signi fi cantly pro fi ted from an interac-
tion between typically disparate disciplines. In particular, mathematicians working 
on wavelets theory pro fi ted from the knowledge on  fi lter banks and its applications 
from the engineering world (for image processing, data compression, denoising, 
etc.), and conversely, engineers in this area pro fi ted from the development of a very 
solid theoretical foundation of wavelets, based on harmonic analysis in mathematics. 
The story of such interactions started in a few cases due to fortuitous events (for a 
beautiful account told by one of the main researchers involved in the development 
of wavelets, see Daubechies  1996  ) . Sensing that his idea for processing the seismic 
data had wider applications, Morlet contacted Alexander Grossmann, a theoretical 
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physicist working on similar formalisms in quantum mechanics, who constructed 
an exact inverse formula to reconstruct the original signal. A pure mathematician, 
Yves Meyer, heard by chance about Morlet and Grossmann’s ideas while waiting in 
line to make some photocopies and ended up playing a key role in putting the 
recently born wavelets into the context of harmonic analysis. Another interesting 
encounter occurred a few years later, when Stefane Mallat, a student working on 
computer vision and image analysis, met an old friend in a French beach who hap-
pened to be a student of Meyer. This encounter was the spark that started Mallat’s 
work linking research on  fi lter banks in the engineering community with harmonic 
analysis and wavelets in mathematics. Mallat’s contribution was not limited to this 
but also to the development of a very powerful and fast algorithm, the multiresolu-
tion decomposition, to calculate the wavelet transform.  

    4.2   Basic Idea 

 There are a few excellent books dedicated exclusively to the description of wavelets 
and their very solid theoretical background (Chui  1992 ; Mallat  1998 ; Strang and 
Nguyen  1996  ) , but the basic idea behind wavelets is very simple and hardly requires 

  Fig. 4.1    Basic idea of wavelets. The Fourier transform is the inner product of the signal and sinu-
soids of different frequencies. To get time resolution, the Gabor (or short-time Fourier) transform 
uses  windowed  sinusoids tapered with a Gaussian function. With wavelets, by stretching or com-
pressing a wavelet function, the size of the window is variable and we therefore obtain an optimal 
compromise between time and frequency resolution for all frequencies       
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the use of any formula to grasp it (see   4.7     for a more formal description). For this, 
let us revisit the Fourier transform. As shown in Eq.   2.3    , the Fourier transform can 
be seen at the matching between a signal, as the one shown on top of Fig.  4.1 , and 
complex exponentials – sine and cosine functions – of different frequencies. The 
main problem of the Fourier transform is the assumption of stationarity and the 
consequent lack of time resolution. For example, in the signal of Fig.  4.1 , we observe 
a transient oscillation marked with a light-red box. This gives a peak in the Fourier 
power spectrum at this particular frequency, but from such decomposition we can’t 
tell when this oscillation happened or whether it was localized in time at all. The 
solution to this problem was presented in the previous chapter: we just chop the data 
into consecutive pieces and calculate the respective Fourier transforms, or even bet-
ter, we calculate successive Fourier transforms using time-localized sinusoids (by 
tapering them with a Gaussian function) that slide through the data. This short-time 
Fourier (or Gabor) transform can be seen as the matching between the original sig-
nal and the time-localized Gabor functions (Eq.   3.3    ). But as described in the previ-
ous chapter, the key issue is the choice of the window length due to the uncertainty 
principle (Sect.   3.3    ). Looking at the high-frequency sinusoid of the Gabor transform 
in Fig.  4.1 , one may say that there are too many oscillations within the window – 
that is, the frequency resolution is very good because there are several cycles of the 
sinusoid that can be matched to the signal – and it may be better to gain more time 
resolution by shortening the window. However, this would be a very bad idea when 
considering the low-frequency sinusoid, because in this case there would be hardly 
one oscillation inside the window, and therefore, the frequency resolution would be 
too low. The key idea of wavelets is to take different window sizes for different 
frequencies, which is done by compressing or stretching the same function, called 
the  mother wavelet . Note also that the function to be used does not necessarily need 
to be a tapered sinusoid. This gives a second advantage: there is a  dictionary  of 
wavelet functions to choose from according to their properties and the application 
in mind. Since we now don’t necessarily have sinusoids of different frequencies but 
functions at different scales, we say that by doing the inner product (i.e., the match-
ing) between the signal and these wavelet functions at different times and scales, we 
get a  time-scale  (instead of time-frequency) decomposition.  

    4.3   Two Common Misconceptions 

 A common mistake is to think that wavelets give a better time-frequency resolution 
compared to, for example, the Gabor transform. This is not the case. In fact, the best 
possible time-frequency resolution is already given by Gabor functions (Cohen 
 1995  ) . In other words, with wavelets the areas of the Heisenberg uncertainty boxes 
of Fig.   3.3     do not get smaller (on the contrary, for most wavelet functions they get a 
bit larger). But the key point is that the shape of the Heisenberg boxes is variable 
and it is optimal for each frequency. As shown in Fig.  4.2 , for high frequencies (w 

1
 ), 

the wavelet has a small time window, thus increasing the time resolution at the cost 

http://dx.doi.org/10.1007/978-1-4614-4984-3_5
http://dx.doi.org/10.1007/978-1-4614-4984-3_2
http://dx.doi.org/10.1007/978-1-4614-4984-3_3
http://dx.doi.org/10.1007/978-1-4614-4984-3_3
http://dx.doi.org/10.1007/978-1-4614-4984-3_3
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of frequency resolution. Conversely, for low frequencies (w 
2
 ), the size of the time win-

dow is large, thus having a better frequency resolution at the cost of a larger time 
uncertainty. As in many other disciplines where wavelets have proven to be extremely 
useful, this is exactly what we typically want for the analysis of EEG signals. For 
example, it is of little relevance whether a gamma oscillation is of 50 Hz or 52 Hz, 
as for these high-frequency oscillations we usually prefer to have a better time reso-
lution (e.g., we may want to determine whether the gamma oscillation appears at 
100 or 110 ms after a given stimulus). Conversely, the same error of 2 Hz but now 
confusing an oscillation of 3 Hz with one of 5 Hz would be too bad, as we would be 
mixing delta and theta oscillations, which have completely different functions (see 
Sect.   2.10    ). Establishing whether a delta oscillation started 100 or 110 ms after 
stimulation is clearly less important because such latency differences can be de fi ned 
less accurately for slow oscillations.  

 Another misconception is to confuse the time-frequency localization of a given 
wavelet function with the time-frequency localization of the function applied to the 
signal. To illustrate this, let us consider the wavelet transform of a delta function. If 
we use a Morlet wavelet (a complex sinusoid tapered with a Gaussian function, see 
Fig.  4.3 ), the wavelet decomposition of the delta function will be spread across 
many scales, because the Fourier transform of a delta function has components all 
over the frequency spectrum. In other words, to generate a delta function, we need 
to add sinusoids of all frequencies. On the contrary, if we use a Haar wavelet – 
which is just a square function (see Fig.  4.3 ) – the decomposition will have a better 
time-frequency localization, in the sense that there will be fewer wavelet coef fi cients 
representing the signal. This is simply because the Haar wavelet matches more natu-
rally the patterns of the delta function. Summarizing, when choosing a mother 

  Fig. 4.2    Heisenberg 
time-frequency boxes for 
wavelets. Compared to the 
STFT (see Fig.   3.3    ), the main 
advantage of wavelets is that 
the shape of the box is 
variable, thus giving an 
optimal compromise between 
time and frequency resolution 
for all frequencies       

 

http://dx.doi.org/10.1007/978-1-4614-4984-3_2
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wavelet we should know that even if a certain wavelet function has an excellent 
time-frequency localization, it may not be optimal for our data. The key point is that 
the wavelet function should look similar to the type of patterns we want to localize, 
so that these are correlated with a few coef fi cients. Having only a few relevant 
coef fi cients simpli fi es the description of the data and any further analysis we may 
want to do, as it will be the case for denoising in the next chapter.   

    4.4   Choice of the Mother Wavelet 

 There are many different functions that can be used as wavelets, 1  each one having 
different characteristics whose importance typically depends on the application in 
mind. Indeed, the possibility of choosing a mother wavelet from a dictionary of pos-
sible functions is one of the main strengths of wavelets. Figure  4.3  displays four 
widely used wavelet functions. 

  Fig. 4.3    Example of wavelet functions       

   1   Simply put, a wavelet is a function with zero average, which implies that the function has to be 
oscillatory or a  wave  (for details see Mallat  1998 ; Chui  1992  ) .  
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 The Haar wavelet is simply a square function with some interesting properties: 
(1) it has compact support, or in other words, it is localized in time; (2) it is orthogonal 
(i.e., the inner product of two different Haar wavelets is zero), although this is 
seldom required for practical applications; (3) it is (anti) symmetric; and (4) it can 
be used both for the continuous and the dyadic wavelet transform. A drawback of 
the Haar wavelet is that it is discontinuous, which could be a disadvantage because 
it tends to give staircase-looking signals when used for  fi ltering or denoising. 
Daubechies wavelets have been also used for several applications. They are smooth, 
orthogonal, and suitable both for the continuous and the dyadic transform (see 
Sect.  4.7.1 ), and they have compact support. Daubechies wavelets are largely non-
symmetric, thus giving different results when analyzing the signal in the forward or 
backward direction. B-spline wavelets have compact support, they are suitable for 
both the continuous and the dyadic transforms, and they are smooth, (anti) symmet-
ric, and not orthogonal. 

 Besides the mathematical properties of the wavelet to choose, a basic require-
ment is that it looks similar to the patterns to be localized in the signal (see Sect.  4.3 ). 
This allows a good localization of the structures of interest in the wavelet domain. 
For the analysis of evoked potentials, B-spline wavelets are in general a good choice 
due to their similarity with the evoked responses. Moreover, B-splines have a nearly 
optimal time-frequency resolution (Chui  1992 ; Unser et al.  1992  ) . 

 Morlet wavelets are complex (i.e., they have a real and an imaginary part) and 
smooth, but they do not have compact support and they can only be used with the 
continuous wavelet transform. Perhaps the most interesting property of Morlet 
wavelets is that they give a complex-valued signal from which it is possible to 
de fi ne an  instantaneous phase . This phase can be then used to detect local features 
of the signal, similar to the approach to be described in the following chapters using 
the Hilbert transform. Interestingly, it has been shown that both approaches to cal-
culate an instantaneous phase, using Morlet wavelets or the Hilbert transform, are 
intrinsically related (Quian Quiroga et al.  2002  ) .  

    4.5   Wavelet Transform in the Analysis of Evoked Potentials 

 There have been a large number of studies applying wavelets to the analysis of 
EEGs and evoked potentials, especially after the development of the multiresolu-
tion decomposition algorithm and the introduction of the wavelet toolbox in matlab. 
It is not our intention to review these works (see Samar and Swartz  1995 ; Samar 
et al.  1999 ; Unser and Aldroubi  1996 ; Quian Quiroga  1998  ) , but rather to give some 
examples illustrating the use of wavelets for this purpose. 

 Before doing any calculation, perhaps the  fi rst question to be asked is whether 
wavelets are really the right tool for a particular data and research question in mind. 
We already showed in the last chapter that with the short-time Fourier transform it 
was possible to get a good characterization of the dynamics of grand mal seizures. 
Would wavelets give a better result for this data? Not really. Actually, the STFT 
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already gives the best possible time-frequency resolution since it uses Gabor functions. 
So, depending on the wavelet function we use, we can get a similar resolution or 
worse. The key point is that the interesting activity in the seizure period had a rela-
tively short frequency span (from about 0 to 10 Hz) and it was therefore possible to 
 fi nd a single window length that was optimal within this range. A different case is the 
one of evoked potentials, where we can have frequencies of interest going from delta 
or theta (less than 10 Hz) to gamma (up to 80 Hz). In this case, we don’t have a single 
window length that is suitable for all frequencies. Of course, we can try setting differ-
ent window lengths by hand, but this was exactly the starting point of Morlet which 
led to wavelets more than 30 years ago. So, we would be just rediscovering the wheel! 
This type of data is indeed the one that cries for a method as wavelets. 

 Figure  4.4  shows a  fi ve-level multiresolution decomposition of an average 
evoked potential (same data as in Fig.   1.7    ). The left part of the  fi gure shows the 
wavelet coef fi cients, and the right part shows the corresponding reconstructed 
waveforms for each scale. The sum of all the reconstructions gives back the original 
signal. Given that the sampling rate of the signal was 250 Hz, the frequency bands 
corresponding to each scale are the following (see Sect.  4.7.2 ): 62–125 Hz for D 

1
 , 

31–62 Hz (gamma) for D 
2
 , 16–31 Hz (beta) for D 

3
 , 8–16 Hz (alpha) for D 

4
 , 4–8 Hz 

(theta) for D 
5
 , and 0.5–4 Hz band (delta) for the last approximation A 

5
 . Note that the 

frequency ranges of the scales approximately match the EEG frequency bands 
described in Sect.   2.10    .  

 Let us now describe event-related oscillations in the alpha band for these evoked 
potentials, recalling that they were obtained with an oddball experiment with 
pattern visual stimulation (see Sect.   1.5    ). For this, we need to band-pass  fi lter the 

  Fig. 4.4    Multiresolution decomposition and reconstruction of an average evoked potential       

 

http://dx.doi.org/10.1007/978-1-4614-4984-3_1
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signal, which is done by keeping only the coef fi cients of one of the scales (level 4 
in Fig.  4.4 ) and then doing the reconstruction. The grand average (across subjects) 
evoked potentials are shown in left side of Fig.  4.5 . The upper plots show the 
responses to nontarget (NT) stimuli and the lower plots to target (T) stimuli. Only 
left electrodes and Cz are shown, given that the responses of the right electrodes 
were qualitatively similar. The P100-N200 complex is clearly visible in all modali-
ties, and it is best de fi ned in occipital locations. Target stimulation led to a marked 
P300 response that is largest in the parietal and occipital electrodes. The middle and 
right plots show the alpha band wavelet coef fi cients and the  fi ltered evoked poten-
tials obtained from these coef fi cients. Amplitude increases after stimulation are 
distributed over the entire scalp for both stimulus types and are most marked in 
the occipital electrode. Moreover, these responses appear  fi rst in the occipital 
electrode, with an increasing delay in the parietal, central, and frontal locations. 
The identi fi cation of these delays is important to establish the presence of a propa-
gating activity rather than a single source appearing in all these electrodes due to 

  Fig. 4.5    Left panels: evoked responses in the F3, Cz, P3, and O1 electrodes (from  top  to  bottom ) 
for the nontarget (NT) and target (T) stimuli. Positive values are plotted downward. Note the P100 
for both types of stimuli and the P300 only for the target stimuli. Middle panels: corresponding 
wavelet decompositions in the alpha band. Right panels: event-related alpha activity obtained by 
reconstructing the signals from the alpha coef fi cients       
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volume conduction. 2  We should remark that the differences in the time onsets would 
have been smeared without the optimal resolution of wavelets. In this respect, it has 
been shown that a Fourier-based digital  fi lter introduced ringing effects (sometimes 
giving event-related oscillations starting before stimulus onset) and was in general 
not suitable to accurately localize this type of activity (Quian Quiroga and Schürmann 
 1999 ; Quian Quiroga et al.  2001  ) .  

 Figure  4.6  gives some examples of single-trial responses to illustrate the advan-
tage of wavelets over a digital  fi lter in the analysis of evoked potentials. The digital 
 fi lter used was an “ideal  fi lter,” obtained by band-pass  fi ltering the signal in the 
Fourier domain. The  fi lter limits were the same as those obtained with the multi-
resolution decomposition for the alpha band. In between the dotted vertical lines in 
sweep #1, a transient with a frequency clearly lower than the range of alpha band is 
observed. The digital  fi ltering does not resolve this transient, and it spuriously inter-
polates alpha oscillations in between the ones that precede and follow the transient. 
On the contrary, the wavelet coef fi cients and the reconstructed waveform from these 
coef fi cients correctly show a decrease in this time segment. At the time marked with 
an arrow in the second sweep, the digital  fi lter (but not wavelets) gives spurious 
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  Fig. 4.6    Example of 3 sweeps showing the better resolution of wavelets compared to an “ideal” 
digital  fi lter       

   2   In the following chapters, we will describe how to analyze this type of propagating activity in 
more detail.  
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alpha oscillations not present in the original signal. In the signal of sweep #3, there 
is a theta oscillation of about 4–6 Hz between the dotted lines and the digital  fi lter 
gives a spurious alpha oscillation not present in the original signal. On the contrary, 
the wavelet coef fi cients and the reconstructed signal correctly show a clear decrease 
in alpha for this time range.  

 One could in principle argue that it should be possible to design a better digital 
 fi lter for the alpha band, but the speci fi cations of this  fi lter (not just the cutoff fre-
quencies) should be optimized again if we want to study the activity in other fre-
quencies. The advantage of wavelets is that we are already getting this optimization 
for free!  

    4.6   Summary: Cautionary Note 

 Several works have shown the utility of wavelets for the analysis of EEGs and 
evoked potentials. Wavelets are particularly useful to analyze time-localized patterns, 
especially if these span a wide frequency range that cannot be optimally covered 
with the short-time Fourier transform. In this respect, we described the use of wave-
lets for the analysis of evoked potentials, which typically have activity in a wide 
frequency range. Wavelets have been also used for the analysis of EEG signals, 
among others, for extracting features of seizure EEG recordings (Schiff et al.  1994a  ) , 
for the automatic detection of spike complexes (Schiff et al.  1994b ; Senhadji et al. 
 1995 ; Clark et al.  1995 ; Sartoretto and Ermani  1999 ; D’attellis et al.  1997  ) , and for 
the automatic classi fi cation of different sleep states (Kiymik et al.  2004  ) . 

 We  fi nish this section with a cautionary note: wavelets are not a “magic bullet” 
that bypasses the limitations imposed by the uncertainty principle of signal analysis 
or the distortions that can be introduced by a digital  fi lter. It is true that wavelets 
give an optimal time-frequency resolution and that they diminish  fi ltering distor-
tions (if a proper wavelet function is used). But it is important to remark that, as 
shown in Fig.   1.8    , the correlation between a single pulse and a wavelet function will 
still typically look like an oscillation, especially if a high-order wavelet (a wavelet 
with several oscillations) is used. This goes back to the discussion of Sect.   1.6     of 
whether evoked responses should be considered as time-locked activity added to 
independent background EEG or as a reorganization of the ongoing EEG due to 
phase locking. In particular, it has been shown that most measures used to demon-
strate the contribution of phase locking of ongoing oscillations to the generation of 
the evoked responses should be revisited and used with care, given that similar results 
were obtained with simulations in which a phasic response was added to independent 
background EEG activity (Yeung et al.  2004  ) . The key point is that the latency of an 
added phasic response translates into the phase of an oscillation obtained after 
 fi ltering. Whereas one prefers to base the analysis on the latencies of the original 
evoked responses or the phases of the  fi ltered signals is a question of personal prefer-
ence. The problem comes with the interpretation, given that an oscillatory-looking 
response after  fi ltering could be just a  fi ltering artifact.       

http://dx.doi.org/10.1007/978-1-4614-4984-3_1
http://dx.doi.org/10.1007/978-1-4614-4984-3_1
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    4.7   Appendices 

    4.7.1   Continuous and Dyadic Wavelet Transforms 

 Having provided an intuitive introduction to wavelets and their main advantages 
over other decompositions, let us now formalize these ideas. The wavelet transform 
gives a time-frequency (or more accurately time-scale) representation that is de fi ned 
as the correlation between the signal  x(t)  and the wavelet functions     , ( )a b ty   .

     ( ) +∞−

−∞

−⎛ ⎞= ≡ ⎜ ⎟⎝ ⎠∫1/2 *, ( ), ( )ab

t b
W X a b x t a x t dt

ay y y    (4.1)  

where  *  denotes complex conjugation and     , ( )a b ty   are scaled and shifted versions of 
a unique mother wavelet     ( )ty   (see Fig.  4.7 ): 

     
− −⎛ ⎞= ⎜ ⎟⎝ ⎠

1

2
, ( )a b

t b
t a

a
y y

   (4.2)  

  Fig. 4.7    A wavelet function     , ( )a b ty   at different scales  a  and times  b        
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where     ∈,a b    R  are the scale and translation parameters, respectively. The wavelet 
transform gives a decomposition that is maximum at those scales and times where 
the wavelet best matches the signal  x(t) . Moreover, Eq.  4.1  can be inverted, thus 
giving the reconstruction of  x(t)  from the wavelet coef fi cients (Grossmann and 
Morlet  1984  )  .  

 The wavelet transform maps a signal of one independent variable  t  onto a function 
of two independent variables  a, b . This representation is overly redundant, and 
without losing any information, it is sometimes more practical to de fi ne the wavelet 
transform only at discrete scales  a  and discrete times  b  by choosing the  dyadic  set 
of parameters     { }= = ∈,2 , 2 , �j j

j j ka b k j k   , as shown in Fig.  4.8 . This dyadic 
sampling gives a nonredundant transform that has many samples for the high fre-
quencies – where we actually want to have high time resolution-and less and more 
spaced samples for the lower frequencies – where high time resolution is not that 
crucial given that precise times are not well de fi ned for low frequencies.  

 Figure  4.9  shows the continuous and the dyadic wavelet transform of an average 
evoked potential. In the average evoked potential, we observe two main compo-
nents: the P100-N200 (a positive peak at about 100 ms followed by a negative peak 
at about 200 ms) and the P300 response (see Sect.   1.5     for details). Note that both 
the continuous and dyadic transforms give essentially the same information: an 
increased activity re fl ecting the P100-N200 complex in the low (i.e., high fre-
quency) scales and an increased activity correlated with the P300 response in the 
higher (low frequency) scales. The continuous plot may look smoother but the main 

  Fig. 4.8    Lattice showing the points at which the dyadic wavelet transform is calculated       
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  Fig. 4.9    The continuous and dyadic wavelet transform of the average evoked potential shown in 
Fig.  4.4        
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advantage of the dyadic transform is computational speed, especially considering 
that this transform can be implemented with a very fast algorithm, as we will see 
in the next section.   

    4.7.2   Multiresolution Decomposition 

 The correlation of the signal  x  with contracted versions of the dyadic wavelets of 
Eq. 4.2 gives the high-frequency components, and the correlation with the dilated 
versions gives the low-frequency ones. These correlations can be arranged in a recur-
sive algorithm called  multiresolution decomposition  (Mallat  1989  ) . The multiresolu-
tion decomposition separates the signal into  details  (high-frequency components) 
and  approximations  (coarser representations of the signal) at different scales. Each 
detail ( D  

 j 
 ) and approximation ( A  

 j 
 ) at a given scale  j  is obtained from the previous 

approximation ( A  
 1 
 ) (see Fig.  4.10 ). This pyramidal scheme makes the multiresolu-

tion decomposition very fast, even faster than the fast Fourier transform: the time 
required for the computation of the multiresolution decomposition is of the order of 
 N  (with  N  the number of data points), whereas for the fast Fourier transform is  N * 
log N  (Mallat  1989  ) .  

 Let us now see the steps for the decomposition and reconstruction of the signal 
following the scheme of Fig.  4.10 . First, the signal  x  is high-pass and low-pass 
 fi ltered using the  fi lters  G  and  H , respectively. Both sets of coef fi cients obtained 
after  fi ltering are decimated by two (one every two data points is deleted), thus giving 
the  fi rst level detail  D  

 1 
 , containing the activity in the upper half of the frequency 

spectrum (i.e., from f 
s
 /4 to f 

s
 /2), 3  and the  fi rst approximation  A  

 1 
 , containing the 

  Fig. 4.10    Implementation of the multiresolution decomposition algorithm       

   3   Remember that in section 3.3 we showed that with a sampling frequency f 
s
 , the maximum frequency 

that can be observed is given by the Nyquist frequency f 
N
  = f 

s
 /2.  
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lower half (from 0 to f 
s
 /4). After decimation, the number of data points of  D  

 1 
  plus 

the ones of  A  
 1 
  is equal to the number of data points of  x , thus obtaining a nonredun-

dant representation. Then, the approximation is further decomposed, and the whole 
procedure is repeated  j  times, where  j  is the number of chosen levels. As a result we 
obtain the signal  x  decomposed into  D  

 1 
  to  D  

 j 
  details and one  fi nal approximation  A  

 j 
 . 

Note that the rescaling of the mother function is given by the decimation of the 
coef fi cients. 

 From this set of coef fi cients (the details and approximations), the reconstruction of 
the signal  x  is done in a similar way using the inverse  fi lters G’ and H’ and upsampling 
the data (i.e., inserting zeros between samples), as shown in the right side of Fig.  4.10 .    
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    5.1   Introduction: Single-Trial Evoked Potentials 

 Evoked potentials are typically very small in comparison with the ongoing 
electroencephalogram and, consequently, they are hardly visible in the individual 
trials. As discussed in Sect.   1.6    , to improve the visualization of the evoked responses, 
it is a common practice to average several presentations of the same stimulus. Then, 
the ongoing EEG activity cancels out and the amplitude of the evoked potentials 
relative to the background EEG increases proportional to the square root of the 
number of trials. From the average responses, it is possible to identify evoked com-
ponents, whose amplitudes, latencies, and topographies have been correlated with 
different sensory and cognitive functions (Regan  1989 ; Niedermeyer and Lopes da 
Silva  1993 ; Quian Quiroga  2006  ) . 

 Although the averaging of individual responses improves the signal-to-noise 
ratio, it assumes that the evoked potentials are an invariant pattern time-locked to 
the stimulus, laying on an independent stationary and stochastic EEG signal. These 
assumptions are in strict sense not valid (see, e.g., Başar  1980  ) . In particular, it has 
been shown that the spectral content of the background EEG at the time of stimula-
tion does have a strong in fl uence on the evoked waveforms (Brandt et al.  1991 ; 
Jongsma et al.  2000  ) . But this is not the major problem. Even if there is some rela-
tionship between the ongoing EEG and the evoked responses, and even if the EEG 
cannot be strictly considered as additive noise, ensemble averaging improves the 
identi fi cation of the evoked potentials. In fact, ensemble averaging has been suc-
cessfully used since the 1950s and there is no doubt about its clinical and scienti fi c 
value. The major problem, illustrated in Fig.  5.1 , is somehow more fundamental in 
nature. In the  bottom  plot of Fig.  5.1 , we can clearly identify the evoked responses 
averaged over 16 trials (a P100, a N200, and a P300; see Sect.   1.5    ), but how do these 
responses change trial-by-trial during the experiment? Averaging implies a loss of 
information that is crucial to study the time course of dynamic cognitive processes. 
Moreover, these variations might affect the reliability of the average evoked 
potentials as a representation of the single-trial responses. For example, the wide 
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P300 peak could have been generated by narrower single-trial responses with a 
variable latency.  

 Growing evidence has shown the important contributions of single-trial analyses 
in cognitive neuroscience (see, e.g., Quian Quiroga et al.  2007  ) . From a physiologi-
cal perspective, one might expect that neural responses are modi fi ed after several 
repetitions of the same stimulation pattern, or that they change during the emer-
gence and consolidation of new brain representations, as it occurs during learning 
processes. Moreover, the identi fi cation of single-trial responses allows better aver-
ages, by eliminating trials with poor responses or by aligning peak latencies, as we 
will see in the next sections. This can have clinical applications because it can 
reduce the number of trials needed for obtaining robust average responses, for 
example, for pain evoked potentials – where the need to reduce the number of trials 
is obvious – or evoked potentials in children, who can typically be engaged in a task 

  Fig. 5.1    16 single-trial ( above ) and average ( below ) evoked potentials upon target stimulation 
using pattern visual stimulation. In the average, we observe a P100, a N200, and a P300. But how 
do these responses change in the single trials?       
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only for a few trials. But if we are able to study single-trial responses – as we will 
show in the next sections by using a denoising method based on the wavelet trans-
form – perhaps the most important application is to do a radical paradigm shift in 
the way we design evoked potential experiments since more than 50 years! Following 
the “classic school,” experimental paradigms typically tend to avoid single-trial 
variations to obtain reliable averages. The new type of paradigms we propose go in 
the opposite direction, given that we will actually try to elicit single-trial changes 
that could be correlated to cognitive processes.  

    5.2   Previous Approaches 

 With the classic evoked potential paradigms, a compromise should be taken when 
deciding the number of trials to be used. On the one hand, it is desirable to have 
several trials to get a good signal-to-noise ratio but, on the other hand, the number 
of trials should not be too large or the averages will be in fl uenced by varying arousal 
levels, degrees of attention, etc. Moreover, in some cases the  fi rst few trials are 
discarded to avoid deviant responses due to, for example, habituation or sensitiza-
tion effects (see Sect.  5.5 ). The problem of variability across an experiment can be 
partially solved by using sub-ensemble averages, which are consecutive averages of 
a few single trials. But this approach is limited, especially when there are few trials 
available or when the evoked responses change from one trial to the next. 

 Several methods have been proposed to  fi lter the average evoked potentials 
(Lopes da Silva  1993  ) . The success of these methods would imply the need of fewer 
trials, potentially leading to single-trial identi fi cation. There have also been attempts 
to directly  fi lter the single-trial traces, in particular using techniques based on the 
Wiener formalism (Walter  1969 ; Doyle  1975  ) . Wiener  fi lters are constructed from 
the power spectrum of the average evoked potentials to  fi lter the frequency activity 
not present in the average responses. However, these  fi lters have the common draw-
back of considering the signal as a stationary process, and, given that the evoked 
potentials are compositions of transient responses with different time and frequency 
localizations, they do not give optimal results (Quian Quiroga and Garcia  2003  ) . 
A natural step forward is then to implement time-varying  fi lters using, for example, 
the wavelet transform. 

 The use of wavelets for  fi ltering average evoked potentials or for visualizing 
single-trial responses was  fi rst reported in the early 1990s (Bartnik et al.  1992 ; 
Bertrand et al.  1994 ; Thakor et al.  1993  ) . However, these works proposed denoising 
implementations based exclusively on the average responses, without considering 
latency variations in the single trials. To overcome this problem, other studies pro-
posed to use latency corrections (Effern et al.  2000a  )  or an embedding of the single-
trial responses in phase space (Effern et al.  2000b  ) . But the caveat of these methods 
is that the former assumes that there is a single evoked response to be corrected 
(which is typically not the case) and the latter assumes that the shape of the evoked 
responses is similar in the different trials, even if appearing at different latencies. 
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This is also not true in general and furthermore, single-trial responses are typically 
not distinguishable from spontaneous EEG patterns. 

 The method we will present in the next section is more straightforward and it 
explicitly uses the knowledge of the time and frequency ranges in which the single-
trial evoked responses are expected to occur (Quian Quiroga  2000 ; Quian Quiroga 
and Garcia  2003  ) . The obvious disadvantage is that it requires heuristic adjustments, 
but once the wavelet coef fi cients are chosen, it does not need to be readjusted for 
different signal-to-noise ratios, number of trials, etc.  

    5.3   Wavelet Denoising 

 In the multiresolution decomposition of the average evoked potential of Fig.  5.2 . 
( gray traces ) the P100–N200 response is mainly correlated with the  fi rst post-stimulus 
coef fi cients in the levels 4 and 5 (details D 

4
 –D 

5
 ), and the P300 is correlated with the 

coef fi cients at about 400–500 ms in the level 6 (A 
5
 ). This correspondence is easily 

identi fi ed because (1) the coef fi cients appear in the same time (and frequency) range 
of the evoked responses, (2) they are relatively larger than the rest due to phase-lock-
ing between trials (i.e., coef fi cients related with background oscillations cancel out in 
the average), and (3) the time-frequency composition of the evoked responses can be 
identi fi ed from the reconstructed waveforms of the right plots. In consequence, a 
straightforward way to  fi lter the  fl uctuations related to the ongoing EEG is just by 
equaling to zero those coef fi cients not correlated with the evoked responses. However, 
the choice of these coef fi cients should not be solely based on the average evoked 
potential and it should also consider the time ranges in which the single-trial evoked 
potentials are expected to occur (i.e., some neighbor coef fi cients may be included to 
allow for latency jitters). In this respect, we can choose the coef fi cients correlated 
with the evoked responses from the average signal and then heuristically adjust this 
set of coef fi cients by comparing the outcomes of the denoised single-trial responses 
with the raw data (Quian Quiroga  2000 ; Quian Quiroga and Garcia  2003  ) .  

 The coef fi cients used to denoise the evoked potentials are shown in  red  in 
Fig.  5.2 . The two upper plots in this  fi gure show the average evoked potentials 
before ( gray ) and after denoising ( red ). Note that in the denoised waveform the 
background EEG oscillations are  fi ltered. This is usually dif fi cult to achieve with a 
standard digital  fi lter due to the different time and frequency localizations of the 
P100-N200 and the P300 responses, and also due to the overlapping frequency 
components of these peaks and the ongoing EEG. In particular, a bandpass  fi lter to 
obtain the P100–N200 would have  fi ltered the P300 and conversely, a low-pass 
 fi lter to extract the P300 would have  fi ltered the P100–N200. 

 Once the coef fi cients of interest are identi fi ed from the average evoked poten-
tials, we can apply the same procedure to the single trials, as shown in Fig.  5.3 . Note 
that after denoising we can distinguish the P100–N200 and the P300 in most of the 
trials. Note also that these responses are not easily identi fi ed in the original signal 
due to their similarity with the ongoing EEG. For an easier visualization, in Fig.  5.4  
we display the single-trial evoked potentials (with and without denoising) using 
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contour plots. In the denoised plot, we observe between 100 and 200 ms a yellow/red 
pattern followed by a blue pattern corresponding to the P100–N200 peaks. The 
more unstable and wider yellow/red pattern at about 400–600 ms corresponds to 
the P300. Noteworthy, all these responses are more dif fi cult to be recognized in the 
original signal.   

 In line with the previous arguments, an analysis with simulated data – where the 
denoising performance could be quanti fi ed and compared to other methods – showed 
that denoising signi fi cantly improved the signal-to-noise ratio as well as the estima-
tion of the amplitude and latency of the single-trial responses. Furthermore, results 

  Fig. 5.2    In gray, multiresolution decomposition and reconstruction of the average evoked poten-
tial of Fig.  5.1 . Note that the evoked responses are correlated with a few wavelet coef fi cients (in 
 red ) in the scales D4, D5, and A5. The  red traces  show the reconstruction of the average evoked 
responses from these coef fi cients       
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were signi fi cantly better than those obtained with Wiener  fi lters, even though these 
are designed to provide optimal  fi ltering in the mean square error sense (Quian 
Quiroga and Garcia  2003  ) . 

 In summary, the wavelet denoising method for obtaining single-trial evoked 
potentials consists of the following steps 1 :

    1.    The activity of the average evoked potential is decomposed using the wavelet 
multiresolution decomposition.  

    2.    The wavelet coef fi cients correlated with the evoked responses are identi fi ed and 
the remaining ones are set to zero. The chosen coef fi cients should cover a time 
range in which the single-trial evoked potentials are expected to occur.  

  Fig. 5.3    Average evoked potential and  fi rst 15 single-trial responses with ( red ) and without ( gray ) 
denoising, corresponding to the data of the previous  fi gure. Note that the single-trial responses are 
much easily identi fi ed after denoising       

   1   A simple implementation of the method in Matlab as well as tutorials, help  fi les, and sample data 
sets can be obtained from   www.le.ac.uk/neuroengineering    .  
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    3.    The inverse transform is applied, thus obtaining a denoised average evoked 
potential.  

    4.    The denoising scheme de fi ned by the previous steps is applied to the single 
trials.  

    5.    The validity of the method can be checked by applying the same procedure to 
ongoing EEG test signals, taking, for example, pre-stimulus data.      

  Fig. 5.4    Average evoked potentials with and without denoising ( top ) and contour plots of the 
single-trial responses ( bottom ) corresponding to the data of Fig.  5.3 . Single-trial responses are 
clearer after denoising. Note the latency and amplitude variability of the P300       
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    5.4   Application to Auditory Evoked Potentials: Selective 
and Latency-Corrected Averages 

 Figure  5.5  shows the average auditory evoked potentials of a typical subject (492) 
obtained from electrode Cz using an oddball paradigm. Nontarget stimuli (75%) 
were tones of 1,000 Hz and target stimuli (25%) were tones of 500 Hz. The  fi gure 
shows the single-trial responses to nontarget stimuli with and without denoising. 
In the denoised plots, we observe a blue pattern at about 100 ms after stimulation 
corresponding to the N100 response, followed by a yellow/red pattern corresponding 
to the P200. As in the case with visual stimulation, in many single trials the evoked 

  Fig. 5.5    Average ( top ) and single-trial ( bottom ) auditory evoked potentials with and without 
denoising. As for the case of visual evoked potentials in the previous  fi gure, denoising improves 
the visualization of the single-trial responses       
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responses are not well de fi ned. Moreover, the latency of the N100 has some vari-
ability. Therefore, two ways of improving the averages are by (1) selecting only 
those trials with good evoked potentials (selective averaging) and (2) correcting for 
latency jitters between trials. For the selective average, we calculated the cross-
correlation between the denoised average and the denoised single trials to select the 
trials with a cross-correlation larger than a certain value (0.4). From these trials, we 
then calculated the jitter-corrected averages by aligning the maximum of the N100 
peaks to the maximum of the average (see Quian Quiroga  2000 ; Quian Quiroga and 
Garcia  2003  ) .  

 Figure  5.6  shows the average evoked potentials, the selective averages, and 
the jitter-corrected averages for three subjects and for a control signal obtained by 
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  Fig. 5.6    Denoised, selective, and jitter-corrected averages for three subjects and control EEG 
data. The data for subject 492 corresponds to the one shown in Fig.  5.5        
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averaging segments of ongoing EEG data. For subject 492, the average is much 
improved when correcting for latency jitters, due to the latency variability shown in 
Fig.  5.5 . For subject 594, the average is mainly improved by the selective average 
and not by the jitter correction (i.e., meaning that the latencies of these single-trial 
responses were more stable compared to subject 492). Note also that the jitter-
corrected averages are sharper than the original evoked potentials. This observation 
brings us back to the point of whether or not an average evoked potential is repre-
sentative of the single-trial responses (see Sect.  5.1 ). The third subject (1558) should 
be treated with more care because no clear evoked potentials are recognizable in the 
average. This can be due to a lack of responses in the single trials or due to a high 
latency jitter. Although both the selective and the latency-corrected averages seem to 
better resolve some components, they also increase background oscillations, mean-
ing that rather than improving the visualization of real evoked responses, we may be 
just aligning ongoing EEG oscillations. This suspicion is con fi rmed by the fact that a 
similar result is obtained when applying the same procedure to the test EEG signal.   

    5.5   Habituation and Sensitization 

 Figure  5.7a  shows the grand average evoked potentials of 13 rats to auditory click 
stimuli of 1 ms duration, measured in the vertex (for details, see Quian Quiroga and 
van Luijtelaar  2002 ; de Bruin et al.  2001  ) . We observe two positive components, at 
13 and 20 ms, and 4 negative ones at 18, 24, 38, and 52 ms, respectively. Besides 
giving the amplitude and latency of these components, there is really not much 
more we can say with this “classic” analysis of average evoked potentials. However, 
we could expect systematic changes in these responses during the recording session 
due to habituation, that is, a response decrease given by the stimulus repetition, 
which can typically be  fi tted by a negative exponential function (Sokolov  1960  ) . 
Moreover, we could have increases of the responses in the  fi rst trials due to sensitiza-
tion processes, that is. the system getting prepared to better process a given stimulus 
(Thompson and Spencer  1966 ; Groves and Thompson  1970  ) .  

 In order to study any possible habituation and sensitization processes, for each of 
the evoked potentials of Fig.  5.7a , we analyzed the single-trial amplitudes in the  fi rst 
100 trials. For each rat, the single-trial amplitudes of each peak were automatically 
de fi ned from the maximum (minimum) value within an appropriate time window 
after wavelet denoising (for details, see Quian Quiroga and van Luijtelaar  2002  ) . 
Figure  5.7b  shows the amplitude variations of the different evoked potentials as a 
function of trial number. There is a clear exponential amplitude decay for the  fi rst 
four peaks with trial number, which stabilizes after 30–40 trials. Moreover, for the 
P13, P20, N24, and most markedly for the N18, the responses to the  fi rst trial were 
smaller than for the following trials, thus showing sensitization. The two late compo-
nents (N38 and N52) did not have a slow exponential decay as the earlier responses. 
However, there was a fast amplitude decay for the  fi rst three trials pointing toward a 
fast habituation process (Quian Quiroga and van Luijtelaar  2002  ) . 
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  Fig. 5.7    Grand average auditory evoked potential for 13 rats ( top ). Amplitude variations with trial 
number for the six evoked potentials observed in the grand average ( bottom ). There are clear 
systematic changes with trial number due to habituation and sensitization processes       

 



76 5 Single-Trial Evoked Potentials: Wavelet Denoising

 The different habituation patterns of the early and late components, and the 
sensitization observed especially for the N18, suggest that these evoked responses 
are related to different functions. We remark that it was not possible to assess this 
information without a single-trial analysis, not even with sub-ensemble averaging 
(de Bruin et al.  2001  ) .  

    5.6   Single-Trial Correlates of Learning in Rats 

 In the previous section, we showed evoked potentials that were related to different 
brain functions, but we did not have any behavioral measure to specify which func-
tions these were. Perhaps one of the most interesting cognitive processes related to 
single-trial changes is learning. This again shows a major departure from “classic” 
evoked potential studies, where learning during an experiment is typically avoided 
because it introduces changes in the evoked responses that are not desirable for 
obtaining good averages. To avoid this variability, in some cases the  fi rst trials are 
discarded, or paradigms are practiced before starting a recording session. Furthermore, 
animals are usually overtrained in a task before the recordings start and even before 
they are surgically implanted with electrodes. The classic approach to study learning 
processes is typically given by the comparison of two blocks where subjects are  fi rst 
naïve and then well trained in the task. Our single-trial approach is completely 
orthogonal to this design because we actually do want to have learning processes 
during a recording session. In fact, the key application of the single-trial analysis is 
to correlate any learning process, assessed with different behavioral measures, to the 
trial-by-trial changes of the evoked responses. 

 Figure  5.8  shows a typical example of a two-block learning paradigm. Rats 
 listened to both frequent and target tones, and only upon the target tones a drop of 

  Fig. 5.8    Grand average evoked responses in the dentate gyrus for the naïve and trained rats upon 
target and nontarget stimuli. Note the appearance of a negative potential at about 100 ms for the 
trained rats for the correct target trials (i.e., with the rat running to the waterspout) (Adapted from 
Talnov et al.  2003  )        
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water was delivered in a waterspout. Learning took hundreds of trials and, following 
the “classic” approach, in Fig.  5.8  we see the comparison of the evoked responses 
in the naïve and trained rats. We observe that only for the trained rats and for the 
correct target trials (i.e., when the rats run to the waterspout) there was a negative 
component at about 100 ms (N100) in the dentate gyrus.  

 From the difference between the naïve and trained rats, it can be inferred that 
the N100 is correlated to the learning of the oddball paradigm. But can we follow 
how this component appeared on a trial-by-trial basis and correlate it to behavioral 
measures of the learning that took place? For this, using wavelet denoising we  fi rst 
identi fi ed the N100 component in the single trials, as shown in Fig.  5.9a . In this 
 fi gure we observe a negative ( blue ) pattern at about 100 ms appearing after trial 200. 
The upper left plot of Fig.  5.9b  shows the grand average (across seven rats) single-
trial peak amplitudes, which were automatically obtained as the minimum value in a 
proper time window. In agreement with the pattern observed in Fig.  5.9a , there is a 
clear amplitude decrease (peak becoming more negative) only for the correct target 
trials ( solid red line ). The appearance of this N100 was correlated to several behav-
ioral measures – response time, task performance, and number of runs – as shown 
in Fig.  5.9b  (see Talnov et al.  2003  for details). After learning, the N100 responses 
could be switched on and off by changing the stimulus probability: the N100 
appeared whenever the target probability was less than ~30%, and disappeared 

  Fig. 5.9     (a ) Single-trial evoked responses to target stimuli for 500 trials in a representative rat. 
Note the appearance of an N100 at about trial 200. ( b ) Grand average amplitudes of the single-trial 
evoked responses for the correct target ( solid red ) and nontarget ( solid blue ) stimuli.  Dotted lines  
correspond to the same analysis performed with pre-stimulus data, as control. The other plots cor-
respond to three different behavioral measures for the target ( red ) and nontarget ( blue ) stimuli 
obtained with a moving average of n = 50 trials. From the behavioral measures, we observe that the 
rats learned the task at about trial 200–300 in agreement with the appearance of the N100 response 
in the single-trial plots (Adapted from Talnov et al.  2003  )        
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whenever the target probability was above 50%. This modulation with stimulus 
probability is very reminiscent of the P300, which is typically found in oddball 
paradigms with human subjects (Duncan-Johnson and Donchin  1977  ) .   

    5.7   The Learning Oddball Paradigm 

 In the previous section we saw how an evoked potential in rats, very reminiscent of 
the P300 in humans, appeared with the learning of an oddball paradigm. In principle, 
it would be interesting to do the same study in humans, but we are way much more 
clever than rats and we immediately learn an oddball paradigm in the  fi rst trial. 
So, there is really no learning curve that we could correlate to single-trial evoked 
potentials. What we need is a paradigm much more complex, where learning takes 
several trials. 

 The P300 amplitude is modulated by target probability (Duncan-Johnson and 
Donchin  1977  )  and also by inter-stimulus and inter-target intervals (Croft et al. 
 2003 ; Fitzgerald and Picton  1981 ; Gonsalvez et al.  1995 ; Gonsalvez and Polich 
 2002  ) . Moreover, sequence (Squires et al.  1976  )  and expectancy effects (Donchin 
 1981 ; Jentzsch and Sommer  2001 ; Jongsma et al.  2005 ; Polich and Kok  1995  )  have 
a strong in fl uence in the evoked responses. In particular, we expect that the P300 will 
increase with the unexpectedness of a target stimulus; that is, the P300 is lower if we 
can predict that there is a target stimulus coming. In a typical oddball experiment, 
infrequent target stimuli (appearing about 25% of the times) are randomly interleaved in 
between standard (nontarget) stimuli. We could then change the stimulus expectancy – 
without changing the mean target probability, inter-stimulus and inter-target intervals 
– by switching from a random oddball sequence to a regular one, where the targets 
appear at regular intervals (e.g., after four nontargets). The predictability of the 
targets in the regular sequence should lead to a decrease of the P300 response, and 
we can then measure the learning of such repeated pattern – which is typically 
unconscious – by tracking the single-trial changes in the P300 amplitude. The 
advantage of this “learning oddball” paradigm is that the learning process is mea-
sured directly from the brain signals, without typical confounds of motor response 
issues, as when pattern learning is measured from reaction times (Seger  1994  ) . 

 Figure  5.10a  shows the grand average auditory evoked responses (24 subjects) to 
the learning oddball paradigm, where in each of six consecutive blocks a random 
oddball sequence with eight targets was switched to a  fi xed sequence with the same 
number of targets. We observe that the random sequence ( dotted lines ) generated a 
larger N200 and P300 components. Another evoked response that depends strongly 
on stimulus expectancy – but with exactly the opposite behavior given that it 
increases with stimulus predictability – is the contingent negative variation (CNV; 
see Sect.   1.5    ), shown in the leftmost plot of Fig.  5.10a . The CNV was higher for the 
regular sequence, where the target stimuli were (at least unconsciously) expected. 
Panels B and C show the amplitude of the CNV and the P3-N2 (the P300 minus the 
N200) for each of the eight random and the eight regular targets, averaged across 

http://dx.doi.org/10.1007/978-1-4614-4984-3_1
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blocks. Amplitudes were obtained from the single-trial responses after wavelet 
denoising. Note that the switch to the regular sequence led to a dramatic change in 
both components, which was correlated to the implicit learning taking place in the 
experiment. These changes could be  fi tted by sigmoid functions. As mentioned 
above, reaction time measurements mix learning and motor effects, and conse-
quently the learning process is not clearly observed from the reaction time curves 
(Fig.  5.10d ). Interestingly, when analyzing each block separately it was observed 
that the onset of the sigmoid learning curves decreased with each block, thus show-
ing a higher order learning effect (Jongsma et al.  2006  ) .   

    5.8   Simultaneous EEG and fMRI Recordings: 
Role of Single-Trial Analysis 

 In the last years, several works reported the use of simultaneous EEG and functional 
magnetic resonance imaging (fMRI) recordings. The basic idea is to combine the 
good temporal (but bad spatial) resolution of the EEG with the good spatial (but bad 

  Fig. 5.10     (a ) Contingent negative variation (CNV) and evoked responses for the random ( dotted 
lines ) and regular ( solid lines ) oddball sequences. ( b ) CNV single-trial amplitudes for the random 
and regular sequences. ( c ) Same for the single-trial P3-N2 responses. Both for the CNV and the 
P3-N2 there is a change in response amplitude when the sequence switches from random to regular. 
This learning effect is not clear from the reaction times ( d ) (Adapted from Jongsma et al.  2006  )        
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temporal) resolution of the fMRI. These simultaneous recordings can be challenging, in 
part due to the large distortions introduced to the EEG signals by the fMRI recording. 
Given that the fMRI distortions are more or less the same, it is possible to  fi lter 
these artifacts using different commercially available algorithms. But even if we 
can deal with these artifacts, the key question is whether it is really necessary to do 
simultaneous recordings or whether the same experiment could be done separately 
with the EEG and the fMRI settings. In most cases, the separate experiments give 
the same information as the simultaneous recordings, and it seems not necessary to 
go through the technical challenge of doing the recordings simultaneously. There is, 
however, a major exception, and this is when single-trial information is used. 
Indeed, if for some reason subjects process a given stimulus differently in different 
trials (e.g., due to learning or varying degrees of attention), this same variability 
cannot be reproduced in a second experiment with the other recording system. The 
only way around this is to do both measurements simultaneously. 

 The idea to join the EEG and fMRI data is to correlate the evoked responses in 
each trial (obtained after wavelet denoising), with the voxel fMRI activity. If either 
the amplitude or latency of the evoked responses covary with certain voxels, then 
we get the spatial localization from these voxels and the time localization from the 
latency of the evoked responses. We only need enough variations in the amplitude 
or latency of the evoked potentials to be able to asses these covariations, but this is 
exactly what we get with the learning oddball paradigm described in the previous 
section. 

 Using the learning oddball paradigm with simultaneous EEG and fMRI record-
ings, it was indeed shown that the P300 elicited activations in the frontal, temporal, 
and parietal regions, mainly in the right hemisphere (Eichele et al.  2005  ) . Other 
evoked components that were modulated by the learning oddball paradigm, the P2 
and N2, had different spatial localizations. Note that these different localizations get 
mixed when considering solely the fMRI data because it has a temporal resolution 
of a few seconds. 

 Perhaps the P300 is not the most interesting evoked response to localize with the 
fMRI data given that it seems to involve many generators (Picton  1992 ; Polich and 
Kok  1995  ) . But the important message here is that the single-trial analysis described 
in this section offers a new opportunity to combine the temporal information of 
evoked responses with the spatial information from the fMRI recordings.  

    5.9   A New Mechanism of Sleep-Induced Learning Revealed 
by Single-Trial Analysis 

 In the previous sections, we described the oddball paradigm, which basically 
involves distinguishing standard from target stimuli. This can take hundreds of tri-
als for rats but such distinction is done from the  fi rst trial by human subjects. To 
make the task more dif fi cult, in order to follow how learning develops trial by trial, 
we used complex sounds that were formed by a sequence of eight consecutive and 
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very fast tones, altogether lasting 365 ms, in which the frequency of the sixth tone 
(225 ms after the  fi rst one) was slightly changed for the target stimuli. Subjects were 
asked to respond to the targets as accurately and quickly as possible and required 
between 3 and 6 blocks of 240 sound presentations (with 36 targets in each block) 
to learn the paradigm (for details, see Atienza et al.  2004  ) . 

 It is already well established that sleep following a training session contributes 
to the consolidation of learning. At this respect, it has been shown that the learning 
of an oddball paradigm with the abovementioned complex sounds was correlated 
with a mismatch negativity component (MMN; see Sect.   1.5    ) that appeared after 
training. This MMN was signi fi cantly lower for subjects that were sleep deprived 
after learning the task compared to control subjects (Atienza et al.  2004  ) . Evoked 
potentials in the sleep-deprived subjects and in the control group were measured 48 
and 72 h after learning to avoid differences in the arousal levels between both 
groups, as corroborated by awareness tests (Atienza et al.  2004  ) . 

 Figure  5.11  shows the grand average MMN in a frontal electrode (Fz) immedi-
ately before and after training, as well as at 48 and 72 h post-training for the control 
and the sleep-deprived subjects. No clear responses are observed before the subjects 
learnt the task, but after training subjects were able to automatically detect the target 
stimuli, something that was correlated with the appearance of the MMN component 
200 ms after the deviant tone in the complex sound (i.e., 425 ms after stimulus 
onset). This MMN has been suggested to re fl ect the triggering of an automatic shift 
of attention toward the deviant sound (Näätänen  1992  ) . Interestingly, for the control 

  Fig. 5.11    Grand average (10 subjects) responses in a frontal-central electrode (Fz) for the sleep-
deprived and the control group. For both groups, a mismatch negativity (MMN) response appeared 
immediately after training and only for the control group it increased further in amplitude in the 
recordings performed 48 and 72 h after training. To visualize the MMN responses, to each target 
stimulus we subtracted the standard stimulus following it, thus stressing the differential responses 
between targets and standards (Adapted from Atienza et al.  2005  )        
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group the MMN showed an additional amplitude increase in the following post-
training sessions. This change was not apparent for the sleep-deprived subjects, thus 
suggesting an in fl uence of sleep for the consolidation of learning.  

 The neural mechanisms underlying the MMN increase for the control group cannot 
be elucidated from the previous analysis of average responses. However, it was 
postulated that the difference between the control and the sleep-deprived subjects 
could be due to a recruitment of more neurons or a strengthening of synchronization 
during sleep rehearsal of the task (Atienza et al.  2004  ) . To get further insights into 
these possible mechanisms, a single-trial analysis with wavelet denoising was 
performed and, surprisingly, none of these explanations were correct! 

 Figure  5.12  shows the contour plots of 200 trials after denoising for one control 
and one sleep-deprived subject, across the different recording sessions. Note that 

  Fig. 5.12    Contour plot of the denoised single-trial target responses for a control and a sleep-deprived 
subject. Only for the control subject there is a clear time locking of the responses in the 48 and 72 h 
post-training sessions (Adapted from Atienza et al.  2005  )        
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for the control subject the MMN (the  red  pattern at about 200 ms) becomes time 
locked (i.e., has a small latency variability) in the recordings performed 48 and 72 h 
after training, an effect that is not present for the sleep-deprived subject.  

 From the previous single-trial analysis, it seems that the difference between the 
control and the sleep-deprived group was not due to a recruitment of more neurons 
or a larger synchronization, but rather due to a reduction in the variability of the 
single-trial MMN latencies (Atienza et al.  2005  ) . To show this, in Fig.  5.13  we dis-
play the denoised grand average responses during the 48- and 72-h post-training 
sessions and the jitter-corrected averages. The latency-jitter correction was done by 
aligning the latencies of the single-trial MMN responses to the one measured for the 
average MMN. The MMN amplitude differences between the two groups clearly 
disappeared after correcting for latency jitters, and we can then conclude that pre-
cise timing, namely, a decrease in the variability of the MMN latency, accounts for 
post-training sleep-dependent enhancements of the auditory MMN. In other words, 
sleep rehearsal induced a reliable and automatic processing of the task that led to 
time-locked responses.   

  Fig. 5.13     (a ) Denoised grand average responses for the control and sleep-deprived groups in the 
48 and 72-h post-training session. ( b ) Same as ( a ) but after correcting for latency jitters. Note that 
after jitter correction, the MMN amplitude difference between the two groups disappeared       
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    5.10   Summary 

 In this chapter we described a method based on the wavelet transform to denoise 
single-trial evoked potentials. The method is very fast (faster than the fast Fourier 
transform), and, due to the optimal time-frequency resolution of wavelets, it gives 
signi fi cant advantages compared to typical digital  fi lters which assume stationarity 
of the signal. 

 With different experiments and types of recordings, we showed that much more 
information can be obtained from a single-trial analysis in comparison to the standard 
study of average evoked potentials. In particular, with auditory evoked potentials we 
showed that selective and jitter-corrected averages gave improvements that may have 
clinical applications in cases where the available number of trials is limited (e.g., for 
evoked potentials triggered by painful somatosensory stimuli). With evoked poten-
tials in rats, we studied habituation and sensitization effects. The varying degrees of 
habituation and sensitization of different evoked responses pointed toward the corre-
lation with diverse functional processes, an information that was not available from 
the average responses. The tracking of single-trial evoked responses in rats allowed 
the correlation of an evoked component with the learning of an oddball paradigm. 
A more complex oddball paradigm, the learning oddball, showed systematic single-
trial changes of evoked responses correlated to the learning of an oddball sequence. 
Such correlation between the evoked potential amplitudes and behavior was not clear 
from the reaction times, which are typically used to measure learning effects. By using 
single-trial analyses, we also showed a sensible approach to merge the time informa-
tion of the EEG with the spatial information of fMRI recordings, a methodology that 
has large potential for further applications. Finally, we showed how a detailed single-
trial analysis of MMN responses demonstrated that the learning of a task through 
sleep consolidation was related to a time locking of the responses, in contrast to what 
was postulated from the analysis of average responses. 

 More than favoring a particular method for denoising single-trial evoked poten-
tials or a particular application, the main goal of this chapter was to introduce a radical 
change in the way experiments are designed and the data is analyzed. Typically, 
single-trial variations are avoided in order to obtain nicer averages. However, these 
variations can carry the most interesting information, as they may be correlated to 
different cognitive processes occurring during the experiment. The possibility of iden-
tifying evoked responses in the single trials, and the correlation of these single-trial 
responses with behavioral measures, then, opens a fresh window to new experimental 
designs and scienti fi c questions.      
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    6.1   Introduction 

 In order to embark on the study of so complex organ as the brain, we select, observe, 
and measure one of the various forms of energy produced and used by the brain—
electric, magnetic, chemical, thermal, and metabolic—and a hierarchical level of 
analysis—microscopic, mesoscopic, and macroscopic—each with its characteristic 
space-time scales. By choosing to read our book, we infer that readers have chosen 
to analyze the electroencephalogram from the scalp (EEG), the electrocorticogram 
from cortical surfaces (ECoG, Fig.  6.1 ), and the local  fi eld potentials from the depth 
of the brain (LFP) in any or all accessible forms and locations (Lopes da Silva  1993 ; 
Basar  1998  ) . Then we characterize and classify the phenomena that we want to 
analyze and understand. We have begun with time series analysis of single channel 
recordings; now we undertake the spatial analysis of signals from arrays of chan-
nels. To that end, we require some basic concepts that we introduce in this chapter, 
with references to detailed treatments in other chapters.  

 Our approach is to regard the recording surfaces of scalp and cortex as screens, 
across which  fl icker the electric potentials we sample as seemingly random dots, 
like the snow of late night television. Yet we know the dots are not wholly random. 
They contain patterns that, when we learn to  fi nd and read their images, will give us 
a rich source of information with which to understand how brains create knowledge 
from sensory information. We conceive cortical input of sensory information and 
output of knowledge as patterns that have spatial dimensions. The existence and 
general locations of cortical patterns are already suggested by various techniques of 
brain imaging that include fMRI, BOLD, EEG, MEG, and intravital optical dyes. In 
the following chapters, our aim is to present high-resolution images that we obtained 
from multichannel EEG and ECoG signals by using electrodes in dense arrays. The 
images display the  spatial textures  of emergent patterns in the ECoG and EEG. We 
postulate that such textures may we carry the subjects’ knowledge about the sen-
sory stimuli, instead of representing the features of the stimuli. 

    Chapter 6   
 Basic Concepts for Spatial Analysis                 
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 We interpret and explain the data by using brain theory. Einstein is reputed to have 
stated, “Make everything as simple as possible, but not simpler.” Our premise is that 
cortical dynamics should not only focus on the level of microscopic neural networks. 
We need to de fi ne a more complex macroscopic level of masses of interactive neu-
rons, into which the sensory networks inject their comparatively few microscopic 
pulses and from which issue macroscopic clouds of organized pulses in the billions. 
Our approach in this book is to record, analyze, and explain the dendritic potentials 
accompanying the synaptic currents that regulate the pulses. Each ECoG and 
EEG signal re fl ects the sum of contributions from an interactive mass of neurons. 
The interactions create neural populations with properties that differ from the  fi ring 
of individual neurons in isolation or in sparse networks such as Hebbian assemblies 
(Sect.   8.4    ) (Freeman and Vitiello  2006  ) . In the simplest description, we conceive 
sensory cortex as a self-regulating, self-stabilized system of neuron populations. 
It modulates and is modulated by other parts of the brain, but it does so on its own 
terms. The aim of EEG and ECoG analysis is to discover what those terms are. 

  Fig. 6.1    ( a ) Examples are shown of some types of ECoG activity recorded from the rabbit olfactory 
system: ( a )  fl at ECoG under deep anesthesia induced by intravenous pentobarbital; ( b ) awake and 
resting; ( c ) respiration recorded with an elastic tube around the chest (a pneumograph); ( d  ) state of 
working; ( e ) complex partial seizure (petit mal epilepsy) induced by intense electric stimulation 
(From Freeman  1987  ) . The spatial image of a seizure spike is shown in Fig.   7.8    , Sect.   7.5    . ( b ) The 
impulse response of the olfactory cortex ( dots ) under deep anesthesia that suppresses oscillations 
( a ) is a multi-neuronal excitatory postsynaptic potential ( EPSP ). The subsequent downward over-
shoot is a dendritic after-potential, which re fl ects the fact that after every dendritic and axonal 
event, the ionic concentrations that have been diminished are restored by dissipation of metabolic 
energy (Chap.   11    ) (From Sect. 2.5.2 in Freeman  1975  )        
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 Whereas cortical neural networks do microscopic dynamics using discrete pulses 
at precise time intervals, populations give rise to macroscopic dynamics imple-
mented by  pulse and wave densities , which we model as continuous state variables 
in space and time (Sect.  6.2 ). The activity densities form vector  fi elds (Sect.   9.4    ) of 
propagating clouds of pulses, which are indirectly manifested in the scalar  fi elds of 
the ECoG and EEG (Fig.   9.10    , Sect.  9.6.1 ). It is not enough to know the amplitude 
and spectral distribution at each point in time and space. We also need to measure 
or infer the gradients and rates of change at each point. While ECoGs usually appear 
nearly random (Sect.  6.3 ), we  fi nd that the oscillations in the beta-gamma range 
(Sect.   3.10    ) occurring in brief epochs have spatial patterns of amplitude that are 
brie fl y steady state (Sect.  6.4 ). In order to locate the patterns more precisely, we 
introduce the Hilbert transform, which gives the high temporal resolution needed to 
display the transitions between successive images (Sects.  6.4.1  and   9.3    ). In those 
stationary images, we show that the two major operations of normal cortical dynam-
ics—dendritic integration of waves and axonal transmission of pulses—are exe-
cuted in near-linear domains (Sect.  6.5 ). Conformance to superposition justi fi es our 
use of the tools of linear analysis. This brings to the fore the necessity for under-
standing the roles in image formation of the state-dependent pulse-wave conversion 
at synapses and the nonlinear wave-pulse conversion at trigger zones (Sect.  6.6 ). 
With this platform we describe the interactive mechanisms that produce the broad-
band oscillations in the ECoG and EEG background activity at rest (Sect.  6.7 ), from 
which images emerge as narrow-band oscillations in cortices at work. The images 
have the form of  fi nely textured spatial patterns of amplitude modulation of  carrier 
waves  in the beta-gamma range (Sect.  6.8 ). We introduce the concept of criticality 
(Sect.  6.9 ), which we use to explore the cognitive process of creating perceptions 
from sensations. We conclude with a summary (Sect.  6.10 ).  

    6.2   State Variables and Their Interrelations: Gains 

    6.2.1   State Variables: Axon Pulses Versus Dendritic Waves 

 The most basic concept is the neural state variable. Most neurons have two forms of 
activity, each with a speci fi c site and function (Fig.  6.2a ). Their axons  transmit  
information by generating trains of action potentials (pulses, “spikes”). Their den-
drites  integrate  information by generating synaptic currents, because synapses act 
like switches that brie fl y turn on a chemical battery. As shown in every basic text of 
neuron physiology, currents always  fl ow in closed loops in and out of neurons 
( dashed lines  in Fig.  6.2 ) because of charge conservation. When the dendritic 
currents  fl ow across the  fi xed resistances of cortex, skull, and scalp, they generate 
voltage potential differences ( V  =  IR ) that we record as the EEG and ECoG (Sect.   7.1    ). 
Fluctuations are solely due to changes in current,  I , and not resistance,  R . Passing a 
 fi xed alternating current at 1 KHz across the cortex while measuring the ECoG 
gives an invariant 1 KHz sine wave, which proves that the fl uctuations of the ECoG 
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are not caused by fl uctuations in cortical specifi c resistance. They are caused by 
fl uctuations in dendritic currents. Moreover, ECoGs are not sums or envelopes of 
action potentials.  

 The axon expresses the information it transmits in short time windows by the 
precise time intervals between the pulses and in long time windows by the average 
interval or pulse frequency. The axon state variable is discrete. Pulses are all-or-
none. An axon cannot add pulses, but it can multiply them by the number of its 
terminal synapses. The pyramidal cortical neurons have only one axon, which forms 
synapses on 10 4  other neurons but none on itself (Braitenberg and Schüz  1998  ) . 
Each synapse converts each pulse it receives to a wave of ionic current. The current 
of excitatory synapses  fl ows in at the synapse and out everywhere else in a closed 
loop of current. The out fl ow at the trigger zone of the axon depolarizes the mem-
brane and increases the tendency to  fi re pulses. The current of inhibitory synapses 
 fl ows in a closed loop out at the synapse and in everywhere else. The in fl ow at the 
trigger zone hyperpolarizes the membrane and reduces the tendency to  fi re pulses. 
The dendritic state variable is the continuous sum of the potential differences (not of 
the ionic currents, which are carried by whatever anions and cations are available). 
The vast surface area of the dendrites supports synapses from on average 10 4  other 

  Fig. 6.2    ( a ) The parts of a neuron are schematized. The  dashed lines  show the currents that always 
 fl ow in closed loops due to charge conservation. Each synapse drives current in at excitatory syn-
apses and out at inhibitory synapses. The synapses transmit to the trigger zone by the loop currents 
and not by pulses along the dendritic shafts. Pulse-wave conversion at synapses is denoted  G  

 d 
 ( p  

in
 ). 

Wave-pulse conversion to output  p  
out

  at trigger zones is denoted G 
a
 ( v ). ( b ) A pulse train of a repre-

sentative neuron was recorded with a microelectrode near the cell body, from which an interval 
histogram was calculated. The ECoG was recorded with a surface macroelectrode with respect to 
a depth electrode (as shown) or to a distant macroelectrode outside the skull. The amplitudes in 
the Gaussian amplitude histogram were expressed in units of the ECoG standard deviation (SD). 
( c ) The pulse counts in each amplitude bin of 0.1 SD were divided by the number occurrences of 
amplitude in that bin to calculate the pulse probability conditional on ECoG amplitude (Sect.  6.6 ) 
(From Fig. 5 in Freeman  2001  )        
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neurons; the competition for space on the surface is intense. The dendritic tree gives 
every synapse direct access to the trigger zone by the  fl ow of its loop current, which 
explains the tree-like structure of dendrites and their function, which is integration 
by summation of innumerable synaptic potentials at the trigger zone. Note that the 
synaptic potentials can sum to zero but not the ionic currents and their cost in meta-
bolic energy (Fig.  6.1b ). The widespread cancelation of excitatory and inhibitory 
synaptic potentials (not energy) is one reason why intelligence (i.e., brain function) 
is so expensive (Raichle and Mintun  2006  ) . 

 State variables are used to describe how each neuron performs four sequential 
operations (Fig.  6.2 ). At the microscopic level, the dendrites transform incoming 
pulses to synaptic potentials. Then they integrate them. At the trigger zone, the axon 
converts the sum of dendritic potentials to a train of pulses. Then it transmits with-
out attenuation but with delay. At the macroscopic level, the synaptic currents of 
neurons in local cortical columns generate extracellular potential differences 
observed as the ECoG, which approximates the amplitude of the wave activity. The 
instantaneous sum of pulses from active neurons in the column determines the den-
dritic wave amplitude, and the wave amplitude at each instant determines the output 
pulse intervals of the train that are sent on average to 10 4  other neurons, some but 
not all of which will  fi re. Two reciprocal conversions are required: pulse-wave con-
version at synapses where afferent axons end and wave-pulse conversion at trigger 
zones where efferent axons begin.  

    6.2.2   State Variables: Microscopic Bits Versus 
Macroscopic Densities 

 The next basic concept is the distinction between the state variables of the neuron 
 versus  the neural population. The neuron is microscopic (Fig.  6.2 ). Its pulse variable 
is pulse frequency measured with a microelectrode placed near the cell body, and its 
wave variable is transmembrane potential measured with a microelectrode in the 
cell body or main dendritic shaft. The population consists of upward 10 4  neurons 
that interact by chemical synapses at long ranges and electrical synapses (e.g., gap 
junctions, electric synapses and ephapsis (Section   11.2    ; Anastassiou et al.  2009 )) at 
short ranges, thereby constraining each other into macroscopic functional popula-
tions (Section   11.2    ). The dendritic state variable of the population is the wave 
amplitude,  v ( t ), with mean  v  

 o 
 . The axonal state variable is a pulse density,  p ( t ), with 

mean density  p  
 o 
 . For example, the density of neurons is 1 × 10 5 /mm 3  of cortical vol-

ume (Braitenberg and Schüz  1998  )  and 3 × 10 5 /mm 2  surface area from a mean neo-
cortical depth of 3 mm. All neurons must generate pulses continually, or they 
atrophy and die. No one knows what the average rate is. If the mean pulse frequency 
were a modest 1/10 s, the pulses would total 3 × 10 4  p/s/mm 2  of cortical surface area, 
with each overlapping pulse lasting ~1 ms. 

 Whereas in a network the pulse and its synaptic potential can be represented by 
a binary digit in a logical device, in the population the element of integration must be 
represented by an increment in wave density,   D v ( t ), and the element of transmission 
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is pulse density,   D p ( t ), in a time interval,   D t . In the construction of a differential 
equation to describe the macroscopic dynamics (Freeman  1975  ) , the time interval is 
allowed to approach zero so that the wave and pulse variables,  v ( t ) and  p ( t ), are 
sequences of in fi nitesimals,  dv ( t ) and  dp ( t ). The conversion of incoming pulse den-
sity to wave density at synapses on dendrites is expressed by a nonlinear function, 
 G  

 d 
 ( p ), and the conversion at trigger zones is given by a nonlinear function,  G  

 a 
 ( v ). 

At each time step,  t , the dimensionless forward gain  k  
j
  of the population (Freeman 

 1979  )  is de fi ned by the product of the two conversions:  k  
 j 
  =  G  

 a 
 ( v ) ·  G  

 d 
 ( p ) (Fig.  6.10 ). 

The forward gain is evaluated by measuring the input and output and calculating the 
ratio,  k  

j
  =  p  

out
 / p  

in
 . The forward gain of an excitatory population is denoted  k  

 e 
 ; that of 

an inhibitory population is  k  
 i 
 . 

 Both the axonal gain,  G  
 a 
 ( v ), and the dendritic (synaptic) gain,  G  

 d 
 ( p ), have small-

signal, near-linear ranges. However, the near-linear range for  G  
 d 
 ( v ) is so much wider 

than that of  G  
 a 
 ( p ) that the conversion can be linearized by replacing  G  

 d 
 ( t ) with a 

coef fi cient,  k  
 e 
  or  k  

 i 
 , which can be modi fi ed to represent changes with the processes 

of learning, arousal, and normalization. This change of functions greatly simpli fi es 
modeling neurodynamics because it leaves only the nonlinear function of the trigger 
zones,  G  

 a 
 ( v ), following dendritic integration and preceding axonal transmission, 

and in piecewise linearization (Freeman  1975  )  the function can be replaced by the 
tangent at an operating point (Fig.  6.10a, b , Sect.  6.5 ). 

 The distinction must be clearly drawn between the microscopic level, at which 
each neuron interacts with a sparse selection of neurons in networks such as in a 
Hebbian assembly (Fig.   8.8    , Sect.   8.4    ; Sect.   11.2    ; Amit  1995  ) , and the macroscopic 
level, at which each neuron interacts with a subpopulation in its column or sur-
round. When an excitatory neuron  fi res, it excites some among 10 4  other neurons. 
When those  fi re they excite some among 10 4  others by feed forward connections. 
The numbers affected subthreshold by percolation (Kozma et al.  2005  )  increase 
geometrically, 10 4 , 10 8 , 10 12 …. Each neuron is embedded in the mass and receives 
feedback from its own action. The feedback path has been modeled by topologically 
dividing each population into a receiving subset from which a transmitting subset is 
continually renewed (K-sets, Chap. 5 in Freeman  1975 ; Freeman and Erwin  2008  ) . 
The two subsets form a feedback loop for which the  loop gain  of the functional con-
nectivity is de fi ned by the dimensionless product of the two forward gains,  k  

 ee 
  =  k  

 e 
  k  

 e 
 , 

and comparably for an inhibitory population which is also modeled as positive feed-
back,  k  

 ii 
  =  k  

 i 
  k  

 i 
 . The interaction of excitatory and inhibitory populations constitutes 

negative feedback with loop gain,  k  
 n 
 , given by the product  k  

 ei 
  k  

 ie 
 . The modal loop 

gain represents quantitatively the intensity of interactions among the neurons creat-
ing and sustaining the population activity. 

 Evaluation of loop gain is not as simple as it is for forward gain. It is evaluated 
in steps:  fi rst, constructing a differential equation modeling the feedback (Chap. 5 
in Freeman  1975  ) ; second, solving the equation for impulse input; third,  fi tting the 
waveform of the impulse response to an evoked potential; and fourth, calculating 
the feedback gain from the characteristic frequencies and decay rates of the popula-
tion (Fig.  6.12 , Sect.  6.7 ; Fig.   8.5a    , Sect.   8.3    ). In the steady state, the loop gain must 
be unity;  p  

out
  =  p  

in
  at every instant. When the functional connectivity is weak, the 
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loop gain is less than unity, and the responses to test input decay exponentially. 
When it exceeds unity, the test responses grow exponentially (Fig.   8.8    , Sect.   8.4    ). 
The difference in the sign of the exponent (Fig.   9.13c    , Sect.   9.7.1    ), which is deter-
mined by the loop gain, underlies the qualitative difference between the micro-
scopic pulse frequency in a network and the macroscopic pulse density of a fully 
interactive cortical population. In summary, with gain <1 the impulse response 
decays; with gain = 1 the steady state prevails; with gain >1 the impulse response 
grows exponentially; and the cortex may transit from sparse activity to high pulse 
density in a state of coherence, which as we will see can be manifested in phase 
locking in the carrier frequency pass band (Sect.   11.2    ). 

 In the weakly interactive, loosely coupled background state, we conceive that 
cortical neurons are receptive to extracortical input. In the strongly interactive, con-
densed state, we conceive that the neurons coordinate their  fi ring by interactions 
with each other. Neurons may form both short and long connections in a power-law 
distribution of functional connection density among cortical neurons (Freeman and 
Breakspear  2007  )  (Sect.  6.6 ) so that every cortical neuron may interact within very 
few synapses, as predicted by random graph theory (Freeman and Kozma  2010  )  
with every other cortical neuron. What we propose is that the immense number of 
neurons, the power-law connectivity, and the continuity of the neural sheet over vast 
areas of cerebral cortex (Sect.   8.1    ) can explain how cortex intermittently sustains 
independent coherent EEG oscillations simultaneously in multiple frequency bands 
over large areas in the ECoG and over the entire extent of the scalp in the EEG 
(Pockett et al.  2009  and Sect.   10.5    ).  

    6.2.3   State Variables: The Order Parameter 

 Textured images related to behavior are found only in the strongly coherent cortical 
states. Here differential equations are not merely a convenient approximation (Chap. 
  6     in Freeman  1975  ) . The equations in pulse and wave density express the funda-
mental nature of cognitive processing in the cerebral cortex, by which microscopic 
information selects macroscopic patterns (Freeman and Vitiello  2010  ) . The pulses 
form a macroscopic vector  fi eld, which is not a mean  fi eld because it is textured. It is 
a collective phenomenon well known in many-body physics (Vitiello  2001  )  by which 
interactions impose a degree of order. When we detect an image and measure its 
emergent pattern, we can de fi ne the feature vector as an  order parameter  (Haken 
 2002  ) , that is, a  fi eld of force by which the neurons in a population impose order 
among themselves by synaptic interactions. The increased order is revealed not by 
the increase in  fi ring rates or signal correlations but by the unique and intrinsic form 
of the sustained texturing that relates to a cognitive event. The (1 ×  n ) feature vector 
that represents the spatial amplitude modulation (AM) pattern of these oscillations, 
where  n  is the number of channels, is a vectorial index of the order parameter, which 
is the closest we have come to numerical evaluation of the total strength of wide-
spread synaptic connections that sustain the AM pattern. In further development 
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below we de fi ne a scalar index of the magnitude of the vectorial order parameter ( H  
 e 
 ( t ), 

Fig.  6.7a , Sect.  6.4.3 ), which we derive as an optimal measure of the order that is 
created during an act of perception (Fig.   11.1    ; Sect.   11.3    ). 

 Owing to the laminar geometry of the layers of neurons in cortex, the local 
amplitude of the ECoG is proportional to the local ionic current density and there-
fore to the local density of the pulse cloud vector  fi eld. We expect that the most 
fruitful outcome of learning to read the EEG and ECoG will be to infer the spa-
tiotemporal  textures  in the pulse densities of the clouds, which were conceived by 
Sir Charles Sherrington  (  1940  )  in his metaphor of “an enchanted loom where mil-
lions of  fl ashing shuttles weave a dissolving pattern, always a meaningful pattern 
though never an abiding one; a shifting harmony of subpatterns of points of light,” 
points which have been handsomely simulated by Izhikevich and Edelman  (  2008  ) . 
The challenge now is to detect, measure, and explain the patterns envisioned by 
Sherrington in the waking states of humans and animals.   

    6.3   Temporal and Spatial Textures: Gaussianity 

 The un fi ltered background ECoG and EEG at rest (Sect.   7.3a    ) is monotonous and 
featureless in appearance (Fig.  6.3a ). Spectral analysis of the ECoG (Sect.   3.4    ) shows 
broad distributions of the frequency components (b). It is useful to show temporal 
 power spectral density  (PSD 

T
 ) in log-log coordinates because it commonly shows a 

power-law, 1/f  a  , form. Below a concave-downward in fl ection in the theta-alpha 
range, the PSD 

T
  is  fl at,   a   = 0 (simulated in Fig.  6.12d, f , Sect.  6.7 ). Above, the log 

10
  

  Fig. 6.3    ( a ) Multichannel recording from a high-density array  fi xed on the auditory cortex of a 
rabbit at rest. ( b ) The power spectral densities in the working ECoG were computed for all 64 
signals and averaged. The power-law trend lines (1/f 0  and 1/f 2.6 ) were drawn by hand to emphasize 
the multiple peaks of power in the theta- and beta-gamma ranges above the line, which were missing 
in the resting ECoG. We propose this graph as giving the canonical form of the PSD of resting EEG 
and ECoG (see simulated PSD 

T
  in Fig.  6.12d, e ) (From Figs. A1.1 and A1.2 in Freeman  2006  )        
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power decreases approximately linearly with increasing log 
10

  frequency in the 
beta-gamma range (12.5–80 Hz) with the exponent   a   between 2 and 4. In slow wave 
sleep the exponent averages near 3 (Freeman and Zhai  2009  ) ; in seizures it can go as 
high as 4 (Sect.   4.5    ). Above 75 Hz the slope either increases (  a   = 4, Kellis et al. 
2009), or it  fl attens (  a   = 0) above a concave-upward, high-frequency in fl ection. The 
two in fl ections are used as criteria for sampling duration and interval (Sect.   7.2    ).  

 The multichannel ECoG at high spatial resolution discloses several important 
properties. The most prominent is that the waveforms are highly correlated but not 
identical; the  fi rst component of PCA (principal components analysis) applied to 64 
signals incorporates 90–95% of the total variance. The signals have the same carrier 
frequency, but signals even from adjacent electrodes can differ strongly in ampli-
tude and systematically in phase, differences that are not revealed by correlation or 
PCA. The differences show that the broad spatial correlation is not solely due to 
volume conduction or to activity at the reference lead electrode. The correlation is 
due instead to high-density coordination by synaptic interaction, which imposes a 
shared carrier frequency that is modulated in amplitude and phase by local varia-
tions of synaptic gains. The modulations are the source of the textures in the spatial 
images of the ECoG and EEG. The pair-wise correlations reveal the long distances 
across which synaptic interactions can sustain the coherence of carrier waves (Sect. 
  9.6    , Table   9.1    ). The high correlation imposed by long-distance synaptic interaction 
often leads to overestimation of the effects of volume conduction and underestima-
tion of the spatial resolution of the ECoG and EEG that can be achieved by array 
recording (Fig.   7.8    , Sect.   7.5    ). 

 The tenfold fall in ECoG amplitude (square root of power) between the theta 
range (3–7 Hz) and the gamma range (30–80 Hz, Sect.  6.5 ) means that high-pass 
 fi ltering is necessary in order to access high-frequency textural details. The presence 
of images emergent from the background activity is indicated by multiple peaks of 
power above the 1/f trend line in the beta-gamma range (arrows in Fig.  6.3b ). 
Each peak re fl ects a brief epoch of narrow-band oscillation (Fig.  6.5a ) in the longer 
segment of the ECoG. The center frequency in successive bursts varies randomly in the 
beta or gamma range (Chap.   9    ). The narrow-band bursts of oscillation can be appro-
priately measured with wavelets on single trials (Chap.   5    ).  

 Each digitized,  fi ltered signal is expressed as a time series of numbers. The set of 
numbers from a recording epoch, for example, 10 s with sampling at 1,000/s giving 
10 4  values, can be assembled into an amplitude histogram (Fig.  6.4 ) with the num-
ber of values in each bin on the ordinate and the range of values on the abscissa. In 
the example a set of 64 signals gives a matrix of 640,000 values. The distributions 
of ECoG and EEG amplitudes at rest conform closely to a Gaussian density distri-
bution (A), but only within approximate limits of ±3 SD, because the tails do not go 
to in fi nity and, in practice, because of insuf fi cient samples within stationary seg-
ments. As the cortex transitions from rest to work, the distributions deviate from 
Gaussian. Two examples are shown. Prolonged narrow-band oscillations usually in 
the gamma or alpha ranges give distributions with low kurtosis (B) that tend toward the 
U-shaped amplitude distribution of cosines. Low-voltage fast EEG and ECoG signals 
that are punctuated by episodic spikes give distributions with high kurtosis (C). 
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 The nearly Gaussian amplitude distribution from resting ECoG implied that 
the source of the spontaneous activity could be modeled with a noise generator. 
This was con fi rmed in a model of background ECoG based on positive feedback 
(mutual excitation) (Sect.  6.7 ) among pyramidal cells (Freeman and Zhai  2009  ) . 
Deviations from Gaussianity and the power-law 1/f PSD (Fig.  6.5 , Sect.  6.4.1 ; 
Sect.   9.3    ) are useful markers indicating the presence of nonrandom structures in 
the EEG and ECoG. Histograms of the envelope of band-pass- fi ltered EEG and 
ECoG give the Rayleigh distribution (d), which is characteristic of narrow band-
pass- fi ltered white noise (Sect.  6.7 ), in which the  fi lter imposes structure. This 
avenue is explored (Sect.   7.3    ) in terms of the spectral properties of types of 1/f  a   
noise (white,   a   = 0; brown,   a   = 2; and black,   a   > 2) and in terms of the Rician (Rice 
1950) and related distributions of extreme values of amplitude (Freyer et al.  2009  ) , 
which may offer sensitive markers distinguishing resting from working ECoG and 
EEG (Sect.   7.4    ).   

  Fig. 6.4    Histograms of olfactory ECoG amplitudes in cat. ( a ) Normal density distribution at rest. 
( b ) Platykurtosis with a burst of high-amplitude gamma activity. ( c ) Leptokurtosis during deep 
anesthesia with intermittent bursts elicited by barbiturate. ( d ) The envelope of band-pass- fi ltered 
ECoG noise (20–80 Hz) was  fi tted with the Rayleigh distribution, which is predicted for band-
pass- fi ltered white noise (Sect.   9.1    ) (From Fig. 3.13, p. 148 in Freeman  1975  )        
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    6.4   Stationarity of Spatial Patterns 

 A system is stationary when its statistical properties do not change. The meaning of 
the term stationarity depends on the context in which the properties are de fi ned. 
It is customary to de fi ne a behavioral state and accept its statistics as the norm. In the 
context of training and testing animal and human subjects in discrimination learn-
ing, we conceive our subjects to be in a working state with two alternating substates. 
In this broad sense when sensory cortex is expecting, accepting, and preprocessing 
new microscopic information delivered to it by the senses, it is in a  receiving  state 
(Chap.   6     in Freeman  1975 ; Beggs  2008  ) . When cortex is sending integrated macro-
scopic perceptual output, it is in a  transmitting  state. When cortex restricts itself to 
rapid switching between two of many possible states, it can be said to be  bistable  
(Freyer et al.  2009  ) . This conception of bistability differs from the concept of 
 metastability  (Kelso  1995 ; Bressler and Kelso  2001  ) , in which cortex courses a 

  Fig. 6.5    ( a ) The PSD 
T
  of the spatial ensemble average for a short segment contained a stationary 

burst of oscillation and for a longer segment contained several bursts. ( b ) The set of 64 ECoG were 
band-pass- fi ltered in the high beta range. We observed epochs with high phase-locked power, 
which were separated by epochs of low power resembling beats in Rayleigh noise (Fig.  6.4d ). 
( c ) The analytic power from the Hilbert transform (Sect.   9.5    ) varied widely in time and between 
the superimposed signals from the 64 channels. ( d ) The analytic phase,  f(t) , and frequency,  w(t) , 
remained steady during bursts, but varied widely between bursts and were brie fl y indeterminate 
between bursts. The arrows mark the locations where SD 

X
 ( t ) of the analytic frequency was mini-

mal (Freeman  2012  )  (Adapted from Fig. 2 in Freeman  2009  )        
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trajectory among a collection of attractors that mold the trajectory but without 
capture into stationary states (Sect.   11.4    ). It differs also from the concept of  chaotic 
itinerancy  (Tsuda  2001  ) , in which each attractor as the trajectory approaches col-
lapses into ruins that in fl uence the trajectory but do not capture it. In accord with the 
bistability of the working state, the cortex alternates between the chaotic state and 
the  fi rm capture and binding by an attractor until the landscape collapses (Fig.  6.14 , 
Sect.  6.9 ). 

 In the search for images in the EEG and ECoG, we  fi rst established an awake, 
working state, in which subjects learned to discriminate conditioned stimuli (CS) in 
reinforcement learning. Then we took samples by digitizing in search of invariant 
properties. A sample consisted of 40 trials with correct conditioned responses (CR) 
to 20 presentations of a reinforced CS+ giving the CR+ and 20 presentations of an 
unreinforced CS− giving the CR−. Each trial lasted 6 s with a 3 s control period and 
a 3 s tests period. Images were sought on the premise that perception occurs in 
frames, such as by sniff, saccade, whisk, and auscultation. By this hypothesis, the 
ECoG and EEG were expected to yield sequences of images, each image having 
relatively invariant carrier frequency, amplitude pattern, and phase distribution, 
alternating with periods of disorder and lack of structure. 

    6.4.1   Invariance of Analytic Frequency: The Hilbert Transform 

 The  fi rst step in searching for images was temporal band-pass  fi ltering in order to 
remove the high-power, low-frequency components (Fig.  6.3b ) and any high-
 frequency white noise. The optimal range for initial search for images was the beta-
gamma range (20–80 Hz) (Sects.   8.5     and   9.6    ) because it was in this spectral range 
(Fig.  6.5a ) that textured patterns in images have been found to have behavioral cor-
relates (Freeman and Viana di Prisco  1986  ) . The ECoG exhibited brief bursts of 
narrow-band oscillations at  fi xed center frequencies varying from each burst to the 
next in this range (Fig.  6.5b ). Because the amplitude, phase, and frequency of the 
 fi ltered ECoG and EEG could change rapidly and unpredictably, the Hilbert trans-
form (Freeman  2007  )  was applied to the signals. The transform reexpressed the 
ECoG as instantaneous  analytic amplitude  (Fig.  6.5c ) and instantaneous  analytic 
phase  at each time step. Without getting into technical details, 1  from each ECoG 
signal we got two time series: the analytic amplitude,  A ( t ), from which to derive AM 
patterns, and the analytic phase,  j ( t ), from which to estimate the carrier frequency, 
  w  ( t ), by dividing each phase step,   D   j ( t ), in radians by the digitizing step,   D t  
(Fig.  6.5d ), in seconds. We found that the Hilbert transform was well suited for EEG 

   1   More details are given, Sect.   9.5     and in Freeman  (  2007  ) . From a real ECoG signal, the Hilbert 
transform basically generates a complex signal. The original (real) signal together with its imagi-
nary counterpart (obtained with the Hilbert transform) forms a complex  analytic signal , in the 
sense that its Fourier transform is strictly positive. Using Euler’s theorem, the analytic signal is 
plotted as a vector (Fig.   9.8c    ) rotating counterclockwise. The length of the vector gives the analytic 
amplitude; the angle from the real axis gives the analytic phase.  
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and ECoG analysis for several reasons. As a linear operator it was suitable for 
describing dendritic integration in its normal self-regulated range of cognitive func-
tion (Sect.  6.5 ). The real and imaginary components in quadrature (Fig.   9.8a    , Sect. 
  9.5    ) adventitiously re fl ected the 90° phase lag between the excitatory and inhibitory 
populations generating the signals (Fig.  6.13 , Sect.  6.8 ). The sum of squares of the 
real and imaginary components gave the analytic power for the combined energy 
dissipation of both neural populations and therefore provided the optimal electro-
physiological correlate for measurements of blood  fl ow using BOLD and fMRI 
(Logothetis  2008 ; Freeman et al.  2009  ) . Most importantly, it gave high spatial reso-
lution (Fig.   7.8d    , Sect.   7.5    ) and high temporal resolution (Fig.   9.2    c, d, Sect.   9.3    ) of 
changes in amplitude and frequency. The temporal resolution of the analytic ampli-
tude, phase, and frequency of individual bursts was improved by searching the 1/f 
PSD 

T
  of the signals in a narrow time window of 0.1 s stepped along the signal in 

search for a spectral peak (Fig.  6.5a , here 20–28 Hz). The  fl at segments of   w   ( t ) in 
Fig.  6.5d  of the 64 superimposed time series of the analytic frequency showed the 
degree of temporal invariance and the degree of spatial phase locking. The arrows 
indicate the minima of the spatial variance of the carrier frequency.  

    6.4.2   Spatial Pattern Invariance of Analytic Amplitude 

 Each EEG-ECoG signal from an electrode array speci fi es a coordinate axis. 
The collection of signals gives a set of axes that de fi nes a state space. The set of 
64 amplitudes speci fi es a point in 64-space. Considering the inde fi nitely large num-
ber of possible state variables and their broad ranges (as in epileptic seizures or 
spikes with extreme amplitudes (Fig.   7.8d    , Sect.   7.5    )), the brain state space is essen-
tially unbounded. The ranges of variations in a set of normal multichannel EEG or 
ECoG signals (Fig.  6.2b ) de fi ne a  fi nite cortical state space. The state space for ECoG 
and EEG amplitudes is centered at zero by high-pass analog  fi ltering in the ampli fi ers. 
The number of channels, here 64, sets the state space dimension,  n . In the search for 
structure in the ECoG and EEG, we focus on a particular narrow frequency band that 
we select by  fi nding a spectral peak (Fig.  6.5a ) in the broad beta-gamma range 
(Fig.  6.3b ). 

 The 64 analytic amplitudes,  A  
 j 
 ( t ), (spatial sites  j  = 1, … ,64) of the  fi ltered signals 

at each digitizing time step,  t , form a 64 × 1 vector,  A ( t ), which is normalized by divi-
sion of the 64 values by the spatial mean amplitude,  A ( t ). The vector speci fi es a point 
in 64-space. Successive steps of the vector form a  trajectory  of points in the state 
space (Fig.  9.6a , Sect.   9.4.1    ). The Euclidean distance between successive points in 
this 64-space,  D  

e
 ( t ), gives a measure of the rate of change in the spatial patterns along 

the trajectory between successive points in 64-space between  A ( t ) and  A ( t  − 1) 
(Fig.  6.6a ). The coincidence of low values of  D  

e
 ( t ) with high values of mean analytic 

amplitude,  A ( t ), shown in Fig.  6.6a , reveals a stationary state given by the persistence 
of a spatial image in the ECoG or EEG.  D  

e
 ( t ) as a measure of pattern invariance 

should be distinguished from a measure of mean pattern amplitude,  A ( t ); the spatial 
standard deviation of amplitude at each time step, SD 

X
 ( t ); or the temporal standard 
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deviation, SD 
T
 ( t ), of the spatial ensemble average of the 64 signals in a moving 

time window centered at time step  t . SD
T
(t) is the average spatial standard deviation 

of the ensemble.   

    6.4.3   Estimating Broad-Spectrum Coherence 

 Narrow-band ECoG oscillations form by increases in synaptic interactions, which 
tend to lock the cortical populations into coherent oscillations. A measure of the 
degree of synchronization (Pikovsky et al.  2001 ) across ECoG signals from an 8 × 8 
electrode array (Fig.  6.6b ) is the ratio of the mean variance to the variance of the 
mean. 2  The ratio,  R  

e
 ( t ) =  SD

T
(t)/SD  

 T 
 ( t ), ranges from unity with perfect correlation of 

all signals to a low value,  n  −0.5 , with perfect lack of correlation depending on the num-
ber of channels. This estimate of synchrony does not require measurement of the 
frequency or phase of the oscillations. They tend to change together. 1/ R  

e
 ( t ) evalu-

ates the temporal covariance;  D  
e
 ( t ) evaluates the rate of change in spatial AM 

pattern. 
 During a stationary epoch the mean power,  A  2 ( t ), of the 64 ECoG signals (the 

mean square of the amplitudes at each digitizing step) is high, and the rate of change, 
 D  

e
 ( t ), is low. The ratio of the power (the rate of energy dissipation) to the rate of 

change in the spatial pattern,  H  
e
 ( t ) =  A  2 ( t )/ D  

e
 ( t ), gives a scalar index of the vectorial 

   2   We band-pass  fi lter the 64 signals in the 20–80-Hz range and compute the spatial ensemble 
average signal  A ( t ). We then construct a window twice the wavelength of the peak frequency in the 
mean PSD 

T
  of each 6 s trial and step it along the 64 signals and the spatial ensemble average at 

intervals of the wavelength. At each step we calculate the mean SD of the 64 standard deviations, 
 SD  

 
T

 
 ( t ), and the SD of the average waveform, SD 

T
 ( t ), in the window.  

  Fig. 6.6    The Euclidean distance, D
e
(t) (gray curve) between successive 64 digitized samples 

reveals epochs of low values that are nearly stationary. (a) During these epochs the 64 ECoG sig-
nals are synchronized, as shown by the reciprocal of the measure of ECoG synchrony, 1/R

e
(t) 

(black curve). (b) During these epochs the measure of analytic amplitude, A(t) (black curve), tends 
to maximal values. (From Fig. 1.3, Freeman  2004a )       
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order parameter,  A   2  ( t ), in a spectral band of the ECoG (Fig.  6.7a, b ). The index is 
called the  pragmatic information ,  H  

e
 ( t ), after Atmanspacher and Scheingraber 

 (  1990  )  (Freeman  2004a  ) . An ECoG segment with values of  H  
e
 ( t ) in excess of an 

empirical threshold (Fig.  6.7c ) forms what we de fi ne as a  frame  as in a sequence of 
cinematic frames (Fig.   9.10    , Sect.   9.6.1    ). An example (Fig.  6.7d ) shows a sequence 
of stationary frames in a set of trials that occurs following delivery at time zero of a 
conditioned stimulus (CS). Examples of the spatial patterns that appear in stationary 
frames are shown, Sects.   8.5    ,   9.2    , and   10.5    . They resemble interference patterns 
seen in holograms (Pribram  1991  )  (Fig. 8.6 from allocortex; Fig. 9.5b from visual 
cortex; Fig. 10.5a from human cortex; Fig. 10.9 from scalp EEG).  

 We emphasize that the four manifestations of stationarity are constancy of the 
carrier frequency, increased  R  

e
 ( t ) implying increased order, reduced  D  

e
 ( t ) revealing 

increased stationarity of the AM pattern, and concomitant increase in the spatial 

  Fig. 6.7    ( a ) The pragmatic information,  H  
 e 
 ( t ) =  A  2 ( t )/ D  

 e 
 ( t ), measures the degree of order in the 

20–80 Hz pass band of the ECoG of a single trial. ( b ) The longer time scale shows brief peaks of 
high order following onset of a conditioned stimulus (CS) at 0. ( c ) The distribution of the scalar 
index has a long tail of infrequent high values. The threshold, here  H  

 e 
 ( t ) = 5, is determined by 

repeating the classi fi cation of a set of AM patterns and constructing a tuning curve (Fig.   9.4a    , Sect. 
  9.3.2    ; Fig.   10.3    a, b, Sect.   10.3a, b    ). ( d ) Classi fi able AM patterns are found in the segments follow-
ing the CS where  H  

 e 
 ( t ) >5 ( black dashes  showing the durations of the segments and their time 

intervals on successive trials) (From Fig. 1.4 in Freeman  2004a  )        
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mean and standard deviation of the  fi xed AM pattern (Fig.   6.5a    , Sect.   6.3    ). That 
combination, explicitly formulated in  H  

e
 ( t ), is the most sensitive index for evaluat-

ing ECoG and EEG images (Sects.   9.6     and   11.3    ). The scalar value of  H  
e
 ( t ) indexes 

the intensity of the massive synaptic interactions by which the stationary AM pat-
terns form and persist. The (1 ×  n ) feature vector,  A  2 ( t ), re fl ects the spatial texturing 
of the synaptic gains. The repetitive increases in  H  

e
 ( t ) following arrival of a CS 

(Fig.  6.7d ) suggest the occurrence of qualitative changes in state from expectancy 
to processing and back again that resemble the condensation and evaporation of a 
raindrop from and to water vapor. If so, we propose to describe the onset of a sta-
tionary frame as a cortical  phase transition  from a noisy, disordered, gas-like receiv-
ing phase of cortex to an orderly, condensed, liquid-like transmitting phase, followed 
by return to the disorganized receiving phase (Sects.   8.4    ,   8.5     and   11.2    ).  

    6.4.4   Spatial AM Pattern Classi fi cation 

 Recognizable spatial AM patterns tend to recur upon repeated presentations of a 
CS. The recurrence is demonstrated by classifying the (1 ×  n ) feature vectors that 
quantify each AM pattern. The local details of the images in themselves are of little 
interest. What gives the AM patterns meaning is their correlation with the CSs, 
which is shown by the clustering of points representing frames (Fig.  6.8 ) with 

  Fig. 6.8    The display of points is by nonlinear mapping (Sammon  1969  ) , which projects the clus-
ters from  n -space into two space after rotating the clusters to give maximal cluster separation while 
preserving the relative distances between points. Classi fi cation is by  fi nding the minimal Euclidean 
distance of each point to the nearest center of gravity. ( a ) Each point represents the geometric mean 
of a stationary frame in the 20–80 Hz pass band of ECoG signals from a rabbit visual cortex that 
were recorded in a control period. ( b ) The frames were extracted from trial sets during discrimina-
tion between two CSs, one reinforced (CS+,  D ), the other not (CS−, �). The  circles  show the 
standard deviation of the points in 2-space after projection from 64-space. The pre-stimulus con-
trol patterns were indistinguishable. The CS+ and CS− patterns recorded during the test period 
differed signi fi cantly (From Fig. 4 in Freeman  2005a  )        
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respect to CSs that humans and animals have learned to discriminate. Frames with 
similar patterns on repeated presentations of a CS give a cluster of points in 
64-space. The background control state also gives a distinctive cluster (Fig.  6.8a ); 
presentations of the CS+ and CS− give overlapping but signi fi cantly different clus-
ters (right). Each cluster is quanti fi ed by its geometric mean and its spatial SD 

X
  in 

the plane of display to which the  n -dimensional clusters are projected by nonlinear 
mapping (Sammon  1969  ) . Examples of the categorization of spatial images with 
respect to cognitive behaviors are given in Chaps.   8    ,   9    , and   10     (Figs.   8.7a    ,   9.9    ,   10.9    ).    

    6.5   Linearity: Additivity and Proportionality 

 Simply put, linear systems give output that is proportional to input, whereas nonlinear 
systems have little or no output in some domains of input yet disproportionately 
large outputs in other domains. Moreover, in linear systems the responses to multi-
ple inputs add by superposition without changes in the responses from interactions. 
In order to test for linearity, we stimulate the cortex with a pulse of electric current. 
The pulse does not excite dendrites directly; it excites intracortical axons. Each 
axon gives an action potential but only for shock intensities above a threshold. 
Above threshold the response is all-or-none, not proportional. A suprathreshold 
shock given within 1–2 ms (the duration of the action potential) gives no response. 
That reveals the absolute refractory period. For 10–20 ms thereafter, the threshold 
returns exponentially to normal in the relative refractory period. The threshold and 
refractory periods show that the dynamics of single axons is nonlinear because the 
property of all-or-none violates the rule of proportionality. 

 However, a shock given to cortex can excite a number of axons in proportion to 
shock intensity. The current delivered by a pair of stimulating electrodes must pene-
trate the axons at one place (hyperpolarizing them near the anode) and exit the axons 
at another place (depolarizing them near the anode). Each increment in stimulus cur-
rent can increase the number of axons that are depolarized beyond threshold. There is 
no interaction or integration among the axons. The most easily controlled input to 
cortex is by electrical stimulation of an afferent bundle, in which the axonal pulses 
elicit dendritic potentials monosynaptically. A stimulus pulse has intensity,  i , and 
duration,  t . The product of time and intensity,  i • t , speci fi es the amount of charge that 
is delivered during the brief  fl ow. We record and measure a microscopic presynaptic 
action potential, and a macroscopic dendritic evoked potential in response to the 
square wave with a duration that is long enough to give both on and off responses. 
Then we decrease the pulse duration and increase the intensity while keeping the 
charge constant. Below some duration the response waveform no longer changes. 
The domain of input, below which the waveform of the evoked potential does not 
vary with duration, de fi nes the range in which the input is an impulse (a Dirac delta 
function,  d (t)). The utility of the impulse is that it puts all frequencies to the cortex 
viewed as a  fi lter (Fig.   1.8    , Sect.   1.6.2    ), and the cortical impulse response reveals all 
the characteristic frequencies of the cortex as it relaxes to its rest state (Fig.  6.9 ).  
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 In order to test whether cortex operates in a linear range, the test pulse must 
exceed the axonal threshold, and the interval between two test pulses must exceed 
the refractory periods of the stimulated axons (here ~15 ms). The examples of testing 
are evoked potentials from the olfactory cortex of a resting cat on stimulation of the 
lateral olfactory tract (LOT, Fig.   8.8a    , Sect.   8.4    ). If the dynamics is linear, then 
when we vary the suprathreshold intensity, the amplitude of the evoked potential 
must vary proportionately but with no change in the waveform. This invariance 
holds (Fig.  6.9a ) only when the peak-to-peak amplitudes of the evoked potentials do 
not exceed the self-regulated peak amplitude of the background ECoG because the 
limits of the background are imposed by nonlinearity (Fig.  6.10 , Sect.  6.6 ). Because 
the evoked test “signal” is less than the background “noise,” ensemble averaging is 
required (Sect.   1.4    ). When we give two or more impulses separated by an interval 
less than the duration of the response to the  fi rst impulse, the two responses must 
add without any change in waveform that would indicate interactions between the 

  Fig. 6.9    Examples are shown of averaged evoked potentials (AEP) of cat olfactory cortex on 
electric stimulation (impulse perturbation) of the lateral olfactory tract ( LOT ) in testing for the 
domain of linearity. ( a )  The dashed curves  show the single-shock control AEP at threshold inten-
sity.  The solid curves  show the AEP when the stimulus intensity is increased in steps and the 
number of repetitions is decreased to give constant initial peak amplitude. ( b ) In paired-shock test-
ing for additivity, the responses are stored to a conditioning shock at time zero and to a test shock 
without conditioning at the designated latency. We record the response to the pair of shocks, sub-
tract the response to the conditioning shock, and superimpose the remainder ( dashed curve ) on the 
conditioning response ( solid curves ) (Adapted from Biedenbach and Freeman  (  1965  ) )       
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two responses. By these two criteria the cortical dynamics is linear within three 
constraints. The intensity of stimulation should be above threshold, the interpulse 
interval should exceed the duration of the refractory periods of the stimulated affer-
ent axons, and the amplitude of the evoked activity should not exceed the range of 
the self-regulated ongoing background ECoG.  

 This test devised by Biedenbach and Freeman  (  1965  )  has been replicated for 
entorhinal cortex (Ahrens and Freeman  2001  )  and should be used for electric stimu-
lation of areas of neocortex because it provides the experimental conditions for 
acquiring data suitable for modeling cortical dynamics with linear differential equa-
tions (Chap. 2 in Freeman  1975  ) . The criterion for linearity is highly signi fi cant 
(Sect.   10.3    ) because it shows that normal dendritic integration is in a near-linear 
domain that is bounded by nonlinear axonal thresholds during excessive inhibition 
and axonal refractory periods upon excessive excitation or inhibition (Sect.  6.6 ). 
The proportionality and additivity of the  fi rst post-stimulus peak with respect to 
input intensity are robust proof that pulse-wave conversion at synapses occurs in a 
linear small-signal range, which justi fi es the modeling of pulse-wave conversion at 
synapses by a weighting coef fi cient that is adapted in learning and arousal but is 
otherwise time invariant. The major bene fi t of identifying the linear and near-linear 
domains is that multi-loop cortical feedback dynamics can be approximated with 
matrices of ordinary linear differential equations (Chap. 6 in Freeman  1975 ; Basar 
 1998  ) . The solutions specify the linear basis functions to be used for measurement 
of evoked and background activity (sums of sines, cosines, exponentials), and the 
measured frequencies can be used to evaluate the feedback gains in the multiple 
types of loops (Fig.   9.13    , Sect.   9.7.1    ). It is from these measured quantities that we 

  Fig. 6.10    The dependence of axonal pulse density output on dendritic wave density (Fig.  6.2 , 
Sect.  6.2.2 ) conformed to an asymmetric sigmoid curve with bilateral saturation. ( a ) The right 
unity gain,  k  

ee
  = 1 ( blue tangent ), was found for a KI 

e
  set. The slopes of two of the tangents ( green, 

red ) were evaluated by  fi tting sums of linear basis functions to impulse responses (Fig.   6.12a, b    ). 
( b ) The left unity gain with  k  

 n 
  = 1 was found for a KII 

ei
  set. The gains were evaluated by  fi tting 

sums of linear basis functions to impulse responses (AEP and PSTH as in Fig.   6.13    ) and plotted as 
tangents at three levels of excitatory bias from periglomerular cells to mitral cells: low ( red ), 
medium ( blue ), and high ( green ). (From Freeman  1979  )        
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can infer the existence of the point and limit cycle attractors (Fig.   9.13    , Sect   9.7.1    ) 
that govern the cortical dynamics (Freeman and Kozma  2010  ) . We postulate that 
after capture of cortical dynamics by an attractor, the sensory cortices rely on linear 
dynamics for the temporal band-pass  fi ltering in feedback loops and the spatial 
transformation (Fig.   8.8    , Sect.   8.4    ) in transmission and summation of AM patterns 
prior to the construction of gestalts (multisensory percepts, Sects.   10.3     and   11.2    ).  

    6.6   Ergodicity, Wave-to-Pulse Conversion, and Static 
Nonlinearity 

 The impulse responses (evoked potentials, Sect.   1.4    ) from electric shocks show 
that three of the four primary macroscopic operations occur within a small-signal, 
near-linear range. The  fi rst three are transmission of afferent pulse density  p  

in
 ( t ) by 

axons, conversion of pulse density to wave density  v ( t ) =  G  
 d 
 [ p ( t )] by synapses, and 

integration of wave density  v ( t ) by dendrites. What keeps these operations within 
this simplifying range in feedback loops is the fourth operation, the conversion of 
wave density to efferent pulse density  p  

out
 ( t ) =  G  

 a 
 [ v ( t )] at trigger zones (Fig.  6.2 ), 

which is nonlinear and asymmetric (Fig.  6.10b ). 
 The experimental data were derived by calculating the pulse probability of single 

neurons conditional on ECoG amplitude (Sect.   3.3.3     in Freeman  1975  ) . The ampli-
tude-dependent sigmoid function was derived in normalized coordinates:

     
[ ]−

=
( )

( ) ,o

o

p t p
q t

p    (6.1)  

where  p  
 o 
  was mean  fi ring rate and, likewise,  v  replaced the ECoG (Fig.  6.2b ). 

The function was a statistical mechanical generalization of the time-dependent 
Hodgkin-Huxley equations (Freeman  1979 , reprinted as Chap. 10, Freeman  2000  ) . 
The function had a single control parameter,  Q  

 m 
 , which was the asymptotic maxi-

mum of  q :

     
( )⎡ ⎤− −

⎢ ⎥=
⎢ ⎥⎣ ⎦

1
exp .

v

m

v e
q

Q    (6.2)  

The forward axonal gain was given by the derivative of  q  with respect to  v .

     
( )⎡ ⎤− −

⎢ ⎥=
⎢ ⎥⎣ ⎦

1
exp .

v

m

edq

dv Q    (6.3)   

 The value of the upper asymptote, here  Q  
 m 
  is 2 or 5, varied with the level of 

behavioral arousal from 2 under light anesthesia and rest (Fig.  6.1d ) to 12 or more 
in a state of high motivation (Fig.  6.1d ). The upper asymptote was set by the abso-
lute and relative refractory periods (Fig.  6.11a ). The lower bound was set by the 
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threshold where  p  = 0 (zero in Fig.  6.11b ). The asymmetry of the function placed 
maximal gain,  k  

max
 , at normalized  v ( t ) =  v  

max
  = ln ( Q  

 m 
 ) to the excitatory side of the 

background steady state. This was due to the property that, when neurons are 
brought close to  fi ring, their sensitivity to further input increases exponentially ( e   v  , 
Hagiwara and Tasaki  1958  ) . The asymmetry gave two values of unity gain. The KI 

e
  

set is stabilized at unity gain (a), because an increase in wave density decreased the 
gain and limited the increase in pulse density output. This effect regulated the 
background activity. The KII 

ei
  set stabilized at unity gain (b), which gave the pos-

sibility of limit cycle activity, because an increase in wave density increased both 
the pulse output and the feedback gain,  k

n
 , in the range, 0 <  v  <  v  

max
 . The hypothesis 

holds that the asymmetry of the input-dependent gain is essential for the KII 
ei
  set 

to undergo phase transition in response to ignition of a Hebbian assembly (Fig. 
  8.8a    , Sect.   8.4    ; Fig.   9.13c    , Sect.   9.7    ).  

 The derivation of this nonlinear function (Chap. 3 in Freeman 1975) is by calcu-
lating the probability of  fi ring a pulse  conditional  on ECoG amplitude in the beta-
gamma range (Fig.  6.2b ). The question is asked at each digitizing time step and 
amplitude whether a pulse has occurred. The cumulative sum of pulses at each 
amplitude is divided by the number of times that amplitude occurred. The ratio is 
normalized by dividing it by the mean pulse rate, giving the normalized conditional 
pulse probability density on amplitude (NCPPD 

A
 ). The S-shaped  sigmoid  function 

has a small-signal, near-linear range but places limits by saturation on both ends of 
the range of the dendritic wave amplitude. The lower limit is imposed by the thresh-
old of the neuron under strong inhibition. The upper limit is imposed by the absolute 
and relative refractory periods (Fig.  6.11a ). The upper limit is far lower than the 
maximal frequency to which the neuron can transiently be driven by excitation, 
because it includes the elapsed time when the neuron is recovering from prior activ-
ity. Whereas the lower limit is a microscopic property, the upper asymptotic limit, 
 Q  

 m 
 , is a macroscopic property. 

  Fig. 6.11    ( a ) The autocovariance of the pulse train reveals the absolute and relative refractory 
periods (no  fi ring followed by exponential recovery) but gives no evidence of gamma oscillation. 
( b ) Calculation of the normalized pulse probability wave of the same pulse train conditional on 
time lag and ECoG amplitude reveals a modulation depth around the normalized mean  fi ring rate 
exceeding 80% (From Sect.   3.3.2     in Freeman  1975  )        
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 Pulse probability conditional on amplitude is extended to include time by further 
asking at each ECoG digitizing step whether a pulse occurred within ±25 ms before 
or after the current wave value. The conditional pulse probability density is normal-
ized with respect to time (NCPPD 

T
 ) by dividing it by the mean, giving an estimate 

of the pulse density oscillation,  p ( t ), in the neighborhood or cortical column 
(Fig  6.11b ). Evidence that the modulating wave,  p ( t ), is macroscopic is provided by 
comparing it with the autocorrelation of the pulse train averaged over the duration 
of the 10 4  pulses in the train (Fig  6.11a ). The absolute and relative refractory periods 
prove that indeed the pulse train is from a single cell, but there is no sign of the 
pulse probability wave demonstrated in (b). Further evidence of the origin of  p ( t ) in 
the population is provided by lowering the threshold for pulse detection so as to 
include pulses from several neurons in the neighborhood of the electrode in a mul-
tiunit record. The same sigmoid and pulse density wave emerges but with a much 
shorter period of observation. 

 The pulse probability wave has a frequency in the gamma range (20–80 Hz), 
whereas the individual neurons contributing have mean  fi ring rates <10 Hz but with 
exponential interval histograms. Each neuron on average  fi res only once in several 
ECoG cycles, often only once in a burst of 3–5 cycles. These facts suggest that the 
neurons in each column of the population are  time multiplexing  in sustaining the 
background activity by randomly rotating their  fi ring. Time multiplexing has sev-
eral advantages. The foremost is decohering the background activity and dispersing 
the glial clean up by minimizing local buildup of potassium ions in the extracellular 
compartment. It extends the range of pulse density by increasing the number of 
neurons involved without requiring that single neurons be driven far outside their 
near-linear range and close to their upper limits. Time multiplexing of units in active 
states with gamma bursts can account for observations from multiunit microelec-
trode recordings showing that the neural  fi rings are statistically phase locked to 
gamma frequencies (Sect.  6.8 ), even though the individual mean pulse  fi ring rates 
are much lower. However, it is important to note that time multiplexing refers only 
to the macroscopic pulse densities in the background activity and in AM patterns. 
It coexists and works in tandem with precision coding in pulse trains at the micro-
scopic level revealed by several types of category cells in perception and beyond: 
single-unit studies of  feature detector  neurons (Singer and Gray  1995  )  and neurons 
with high-level cognitive correlates, including face cells (Gross  2008  ) ,  mirror  neu-
rons (Rizzolatti and Craighero  2004  ) , hippocampal  place  cells showing precise pre-
cession with respect to theta waves in theta-gamma linkage (Buzsaki  2006  ) , and 
 concept  cells (Quian Quiroga  2012  )  (Sect.   11.5    ). 

 In single neurons the microscopic wave-pulse conversion at the axon trigger 
zones from dendritic current amplitude to pulse frequency is well known to be linear 
(proportional and additive) over a range bounded at the lower end by thresholds and 
at the upper end by refractory periods (reviewed in Chap. 3, pp. 101–103, 154–159 
in Freeman  1975  ) . Within this range, wave-pulse conversion is represented by the 
ratio,  D  p / D  v , which is the slope of a tangent line in the graph of  p  as a function of  v . 
The near-linear, small-signal range is about  v  = 0 in Fig.  6.10b . The ratio of output to 
input is a measure of the ampli fi cation, which is the  gain  of the operation (Sect.  6.2.1 ). 

http://dx.doi.org/10.1007/978-1-4614-4984-3_11
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When the gain is the same over a range of amplitudes, the gain in that range is linear. 
In the steady state, the output equals the input, so the gain is unity. The upper steady 
state (Fig.  6.10a ) is absolutely stable because increased wave input increases pulse 
output but decreases gain; the lower steady state (Fig.  6.10b ) is conditionally stable 
because increased wave input increases both pulse output and gain. 

 In populations, the simplest way (though too simple) to conceive how wave den-
sity determines pulse density is that it is smoothed into a sigmoid curve by distribu-
tions of the thresholds and the refractory periods. An empirical way to derive the 
function is to graph the pulse density as a function of wave density. The ECoG gives 
a measure of the wave density because the local transcortical potential difference 
from super fi cial and deep electrodes is determined by the sum of extracellular 
potentials from many local neurons (Fig.  7.7b ). However, as already mentioned 
there is no direct measure of the density of the pulse cloud. Therefore, we invoke the 
ergodic hypothesis. We assume that the time ensemble average of the wave-to-pulse 
relation for a single neuron over a period long enough to yield 10 4  pulses is equal 
to that for the spatial ensemble average of one pulse from each of 10 4  neurons. 
The wave-pulse conversion is evaluated experimentally by calculating the normal-
ized probability of  fi ring conditional on the amplitude of the ECoG (pp. 154–159 in 
Freeman  1975  ) . The  fi tted curve is derived from two properties of neurons (Freeman 
 1979  ) : the probability of  fi ring increases exponentially with increasing depolariza-
tion (wave density), but when a pulse does occur, the probability brie fl y falls to zero 
followed by exponential return to steady-state gain, giving the double exponential 
term in the static nonlinear equation (6.2) for  G  

 a 
 ( v ). 

 The normalized sigmoid function has a single parameter, the asymptotic maxi-
mum in pulse density,  Q  

 m 
  = ( p  

 m 
  −  p  

 o 
 )/ p  

 o 
  (Fig.  6.10b ). The analytic derivative,  dp / dv , 

evaluates the axonal gain,  G  
 a 
 ( v ), which is amplitude dependent and therefore non-

linear. The asymptotic maximum,  Q  
 m 
 , varies with behavioral arousal, which the 

cortex regulates for itself through neurohumoral nuclei in the brain stem (Panksepp 
 1998  ) . Arousal increases cortical sensitivity and reactivity as manifested in the 
maximum of cortical pulse density. At all levels of arousal, any extreme deviation 
of wave density reduces the axonal gain asymptotically to zero by the thresholds 
during strong inhibition and by the refractory periods during strong excitation. Yet 
every level has a small-signal, near-linear range, which is the basis for modeling 
with piecewise linear differential equations. 

 It is important enough to reiterate that the axonal gain curve,  G  
 a 
 ( v ), is asym-

metric. At every level of arousal, the maximal axonal gain is displaced to the excit-
atory side of the steady state. The asymmetry is due to the exponential increase in 
sensitivity of neurons to excitation as they are brought to threshold. As a result, 
there are two values for wave density at which axonal gain is unity. The operating 
point of unity gain above the peak ( v  

max
  = ln· Q  

 m 
 , in Fig.  6.10a ) is the basis for the 

 spontaneous  background ECoG activity, which is robustly and unconditionally 
stable (Fig. 9.13b, Sect. 9.7.1), because any increase in wave density from input 
excitation decreases the gain and therefore the pulse density. Conversely any 
decrease in wave density increases the gain and the pulse density. Therefore, the 
upper operating point of unity gain is homeostatically maintained. 
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 The operating point below  v  
max

  at  v  = 0 is conditionally stable because any increase 
in wave density increases the interaction strength among the excitatory neurons. This 
property is necessary to explain cortical phase transitions (Fig.   9.13c    , Sect.   9.7.1    ) in 
the formation of AM patterns (Fig.   8.7a    ) during perception. Such symmetric sigmoid 
functions as the logistic curve and hyperbolic tangent fail to explain the extremely 
selective sensitization to learned sensory inputs that cortices display in brains, seek-
ing and attending speci fi c information. We propose that the asymmetry of the nonlin-
ear gain function shown in Fig.  6.10  can be a necessary property for focused arousal 
attention and (motivation, Fig.  8.1 ) because the destabilizing increase in feedback 
gain is only invoked by the ampli fi cation exerted by positive feedback in Hebbian 
assemblies that have been ignited by CSs (Fig.   8.8b    , Sect.   8.4    ).  

    6.7   Positive Feedback, Stability, and Point Attractor 

 The background activity of cortex is essential to maintain cortical functions in a 
linear dynamic range. This principle was discovered 80 years ago by Nobel 
Laureate Haldan Keffer Hartline, when he demonstrated that the dynamics of spa-
tial lateral inhibition in the eye of the horseshoe crab created spatial structure in the 
form of Mach bands and that the dynamics was linearized by background excita-
tion, which was provided by illumination of the ommatidia (light receptors, Ratliff 
 1965  ) . The neural dynamics was thereafter proven to be linear in the  fl y’s eye 
(Reichardt  1962  ) , in spinal motor systems (Houk and Rymer  1981  ) , and in linear 
models of cerebral cortical dynamics (e.g., Basar  1998 ; Wright and Liley  1996 ; 
Liley et al.  1999 ; Wright et al.  2003 ; O’Connor and Robinson  2004  ) , leaving 
unanswered the question of the origin of the background excitation in place of 
illumination. 

 Early on, mutual excitation among pyramidal cells was proposed as the basis for 
self-sustained activity, immediately after the discovery of neural networks by Rafael 
Lorente de Nó  (  1934  )  and the recognition of their signi fi cance for behavior by 
Donald Hebb  (  1949  )  in what we now call Hebbian assemblies (Fig.   8.8    , Sect.   8.4    ), 
with follow-up by Daniel Amit  (  1995  )  in proposing reverberation as a mechanism 
for short-term memory, especially where mediated by NMDA receptors (Wang  2001  ) . 
However, there has been widespread aversion to models using positive feedback as 
lacking in stability and reliability, except whereas negative feedback is associated 
with homeostasis and stability. In fact engineers are well aware that positive, regen-
erative feedback systems are not necessarily unstable, while negative, homeostatic 
feedback systems are not always stable. Both can be stable at low feedback gain and 
unstable at high feedback gain, where gain is de fi ned as the ratio of output ampli-
tude to input amplitude (Fig.  6.10b ). The point of transition is where gain is unity. 
Below unity gain, responses to perturbation decay to the pre-stimulus state; above 
unity gain, the oscillatory responses can blow up (Fig.  6.1e ); and the cortex can 
transit to a new state (Sect.   8.5    ). 

http://dx.doi.org/10.1007/978-1-4614-4984-3_8
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 Mutual excitation among excitatory cells persists as an especially attractive 
hypothesis because they comprise ~80% of neocortical neurons and they provide 90% 
of the synapses of cortical origin to each other. During embryological development 
cortical pulse density increases with connection density as neurons sprout axons 
and dendrites and form new synapses and gap junctions. At some threshold of den-
sity, each neuron gets more pulses than it transmits. Like a nuclear reactor the popu-
lation goes  critical  and generates its own background activity, but, unlike a reactor, 
which requires external controls, cortex transits to self-stabilized activity at or near 
criticality (Kitzbichler et al.  2009  )  (Sect.   9.4    ). The transition has been extensively 
studied in simulations of cortex and neural tissue cultures with emergence of spon-
taneous bursting (Beggs  2008  ) . The mechanism of stabilization of the background 
activity by refractory periods can be expected to hold for every population in every 
column of cortex because all neurons have refractory periods, which implies that 
there is no need for central regulation of the background activity other than the 
neuromodulatory control of the steady-state set point in relation to the degree of 
arousal (Freeman  2005b  ) , which is quantitatively expressed in the parameter  Q  

 m 
  

(Fig.  6.10b ). 
 The modeling of wave-pulse conversion gives a de fi nition and measure of gain, 

 dq / dv , where  q ( t ) =  p ( t )/ po  − 1, that enables us to calculate the gain of the excitatory 
feedback and show that in the resting state the gain is at unity. Demonstration of the 
steady state is necessary to postulate stability, but it is not suf fi cient. We must show 
that the system returns (is  attracted to ) its same steady state after perturbation. 
Stability, to reiterate, is predicted by the upward slope of the sigmoid curve and the 
downward slope of the gain curve at unity gain ( right dot , Fig.  6.10b ). Conditional 
stability (and instability) is predicted for unity gain where the sigmoid curve and 
gain curve both slope upwardly with increasing input,  v  ( left dot ). 

 An experimental demonstration of unconditional stability (Fig.  6.12a, b ) shows 
the post-stimulus time histograms (PSTH) of the microscopic pulses from a single 
neuron in an excitatory population 3  to increased intensity of electric shocks. The 
averaging gives the impulse response of the macroscopic population (Sect.  6.6 ), 
which has a rapid rise and an exponential decay to the background  fi ring rate. The 
decay rate, a, is proportional to response amplitude (Fig.   8.4f    , Sect.   8.3    ). When the 
shock strength is decreased to threshold where response amplitude approaches zero, 
the decay rate also approaches zero (Fig.  6.12c ), and the gain approaches unity. 
In dynamical terms, the asymptotic convergence of activity to the background 
after perturbation is evidence that a point attractor (Freeman and Breakspear  2007 ) 
governs the cortical background activity at unity gain (Sect.   5.2    , pp. 285–305 in 
Freeman  1975  ) . An attractor by de fi nition is stable. Stability is demonstrated by the 

   3   Experimental demonstration of the mechanism for stabilization of positive feedback in mutual 
excitation requires use of an excitatory population with no effective inhibitory neurons. The illustra-
tion is from periglomerular interneurons in the outer layer of the olfactory bulb (Section 5.2.3 in 
Freeman  1975  ) . They are GABAergic and therefore mistakenly regarded as inhibitory. In fact they 
have a high intracellular concentration of chloride ions (Siklós et al.  1995  ) . The action of GABA is 
to allow chloride ions to exit the neurons, causing depolarization and therefore excitation.  

http://dx.doi.org/10.1007/978-1-4614-4984-3_9
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_5
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downward sloping gain function with the rising input-output function (Figs.  6.10b  
and  6.12 ).  

 Simulation of mutual excitation is by partitioning the population into a transmit-
ting subset and a receiving subset (Sect.   6.2.2    ). Each subset is continually renewed 
from the other. The interaction is modeled with a positive feedback loop. The for-
ward limb and feedback limb of each loop can each be minimally simulated with a 
second-order differential equation, giving the form of the open loop impulse 
response (Fig.  6.1b ). The closed loop solution of the fourth-order equation for 
impulse input is shown by the black curve  fi tted to the data ( D  in Fig.  6.12a, b ). The 

  Fig. 6.12    ( a ) The symbols  D  show the post-stimulus time histogram ( PSTH ) of a representative 
neuron in response to a weak electric shock, which is  fi tted by nonlinear regression to  fi t the data 
with the solution to a fourth-order linear differential equation approximated by neglecting higher 
order terms with: 

  ( ) ( )-bt -at
op t = p 1+ab e - e⎡ ⎤⎣ ⎦     (6.4)

where  p  
o
  represented the mean pulse density,  a  = 500/s was the rise rate, and  b  = 40/s was the decay 

rate. Evaluation of the differential equation gave the feedback gain,  k  
ee

  = 0.59 (Fig.  6.10a ). At 
steady state with no input,  k  

ee
  = 1.00 with zero decay rate. ( b ) Increased stimulus intensity increased 

the decay rate,  b  = 95/s, and decreased gain to 0.19. ( c ) The decay rate extrapolated to zero at 
threshold (zero amplitude of impulse response). We inferred that the prolonged discharge without 
inhibitory overshoot was reverberation due to mutual excitation (From Figs. 5.13 and 5.16 in 
Freeman  1975  ) . ( d ,  e ) The decay rate, a, determined the in fl ection frequency of the power-law 
PSD 

T
 . The rise rate, b, determined the exponent,  a . The predicted range of the trend lines was 

2 <   a   <4 in 1/f  a  , for a second-order  fi lter, which we adopted as the range of  black noise  (Schroeder 
 1991  ) . We propose that these two segments give the canonical form of the resting cortical PSD 

T
  

(From Figs. 5 and 7 in Freeman and Zhai  2009  )        

 

http://dx.doi.org/10.1007/978-1-4614-4984-3_5
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PSD 
T
  of the simulated background activity (Fig.  6.12d, e ) gives the canonical form 

of the PSD 
T
  of the resting ECoG, which has a  fl at low-frequency segment (1/f 0 ) and 

a downward high-frequency segment (1/f  a  ) separated by a concave-downward 
in fl ection. Simulation has shown that the rise rate determines the exponent   a   of the 
PSD 

T
 , and the decay rate determines the in fl ection frequency (Freeman and Zhai 

 2009  ) . Both rate constants vary simultaneously with changes in the ratio of the 
intensity of the activity evoked by input and the pre-stimulus background  fi ring rate 
(pp. 305–321 in Freeman  1975  ) . The range of the exponent is predicted to be 
2 <   a   < 4 from the  fi t of the solutions of the fourth-order equation to the PSTH. At 
one asymptote   a   = 2 is associated with coherent activity in an awake state, and at the 
other asymptote   a   = 4 is associated with complete disorder and disintegration of 
activity as in sleep and seizure. This range is consistent with experimental evalua-
tion of PSD 

T
  trend lines (Figs.  6.2b ,   7.2     and   9.1    ).  

    6.8   Negative Feedback, Conditional Stability, and Limit 
Cycle Attractor 

 It is important to understand that the stability of ECoG and EEG background activity is 
not due to negative feedback by inhibitory interneurons. On the contrary, the negative 
feedback maintained by interactions among excitatory and inhibitory populations is 
manifested in beta-gamma oscillations, for which the steady-state gain is unity at 
zero normalized wave amplitude (Fig.  6.10b ,  v  = 0), but the slope of the gain curve is 
positive. This means that increases in wave density input not only increase pulse 
density output; they also increase the negative feedback gain. The increase in gain 
causes the impulse response to last longer with more cycles. That enhances the likeli-
hood that the cortex can transit from the background state into an active state, in 
which the amplitude of oscillation  increases  exponentially, and the cortex enters sus-
tained oscillation that is governed by a limit cycle attractor (Fig.   8.8b    , Sect.   8.4    ; Fig. 
  9.13b    , Sect.   9.7.1    ). The transition resembles that of a subcritical Hopf bifurcation 
(Fig. 6.30, p. 388 in Freeman  1975 ; Freeman  1987 ; Skarda and Freeman  1987  ) . 

 The oscillations are intrinsically macroscopic because wide spatial divergence 
and convergence occur at all phases of the cycle (see Fig.   8.8a    , Sect.   8.4    ). The par-
ticipation of individual neurons can best be demonstrated by means of extended 
time averaging (ergodicity, Sect.  6.6 ), which supports the hypothesis of time multi-
plexing of neurons in cortical columns. Interaction strengths (gains) are only a part 
of the story. The chemistry of synapses contributes to the time constants of neurons, 
but that is outside the scope of our work. An insightful description of the cellular 
mechanisms for gamma oscillation at the microscopic level is based on the pharma-
cological properties of the several types of synapses involved (Traub et al.  1996 ; 
Whittington et al.  2000  ) , which might tune the sensitivity of the populations to the 
expected frequencies of input pulse trains. The two levels of description of gamma 
activity are complementary. The microscopic description can be studied with phar-
macological manipulations of the cortical neurons, while the macroscopic description 
can be studied with simulation of the large-scale neurodynamics of perception and 
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higher cognition with solutions to matrices of differential equations. We propose 
that mass interactive dynamics at the macroscopic level governs the generation of 
beta-gamma oscillations and that the microscopic pharmacological properties deter-
mine the receptivity of neurons to beta-gamma input. 

 The populations of excitatory and inhibitory neurons in each part of the olfac-
tory system oscillate at the same frequency. Regardless of frequency the phase of 
the inhibitory output lags the excitatory output on average by a quarter cycle (90°, 
  p  /2 radians), not zero lag synchrony (Traub et al.  1996 ; Whittington et al.  2000  ) . 
The evidence is provided by simultaneous measurement of the impulse responses 
of the interactive populations and invoking the ergodic hypothesis (Sect.  6.4 ; 
Fig.  6.11 ). 

 Two olfactory areas stand in stark contrast. On the one hand, in the prepyriform 
cortex (and the neocortex, Chap.   9    ), the pyramidal cells generate the ECoG and the 
evoked potentials, which provide estimates of the wave density of the excitatory 
cells. Prolonged averages of the pulse trains of representative pyramidal cells pro-
vide estimates of the pulse density. The impulse response conforms to a damped 
cosine for both the evoked potential and the PSTH with on average zero phase lag 
between them (Fig.  6.13a ), as predicted by the Hodgkin-Huxley equation, because 
both functions come from the same population, here  super fi cial pyramidal cells.  

 The quadrature relation also holds for both the bulb and the cortex but with 
notable differences (Chap. 4 in Freeman  1975  ) . In the bulb the deep inhibitory 
interneurons generate the ECoG giving  v  

 i 
 ( t ) because they have the requisite axial 

geometry (Rall et al.  1966  ) . They transmit by dendrodendritic synapses and as non-
spiking neurons have no detectable pulses. The excitatory mitral cells contribute 
only to the deep LFP and not to the surface ECoG because they have radial geometry. 
Their pulse probability waves  p  

 e 
 ( t )  lead  the ECoG (Fig.  6.13a ) by 90°. In the cortex 

the excitatory pyramidal cells generate the ECoG giving  v  
 e 
 ( t ) because they have axial 

geometry. The interneurons generate only LFP in the depth because they have radial 
symmetry, but they do transmit by pulses  p  

 i 
 ( t ) at axodendritic synapses. Their pulse 

probability waves  lag  the ECoG. The ECoGs of both the bulb and the cortex yield 
AM patterns that are classi fi able with respect to CSs (Freeman and Viana Di Prisco 
 1986 ; Barrie et al.  1996  ) . The excitatory and inhibitory populations are locked in 
spatial as well as temporal patterns; the utility of  v  

 e 
 ( t ) and  v  

 i 
 ( t ) for studies in percep-

tion is determined by their geometry, not by their sign of action. 
 In the search for macroscopic ECoG images, the contrasting wave-pulse rela-

tions found between the olfactory bulb and cortex show that description of the feed-
back mechanism of beta and gamma oscillations requires four state variables,  v  

 e 
 ( t ), 

 p  
 e 
 ( t ),  v  

 i 
 ( t ), and  p  

 i 
 ( t ), but only one of the four state variables gives classi fi able images. 

In the olfactory bulb it is the wave density of the inhibitory population,  v  
 i 
 ( t ); in the 

olfactory cortex and neocortex, it is the wave density of the excitatory population, 
 v  

 e 
 ( t ). Despite the average 90° phase difference, ECoG images from both structures 

suf fi ce for spatial AM patterns because of the tight coupling of the forward and 
feedback limbs. Veri fi cation is by time averaging of pulse trains from representative 
neurons and the dendritic potentials (Fig.  6.2 ), which requires stationarity, ergodicity, 
and Gaussianity.  

http://dx.doi.org/10.1007/978-1-4614-4984-3_9
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    6.9   Criticality: Choice by Means of an Attractor Landscape 

 Cerebral cortex manifests a special form of conditional stability, criticality (Sect.   9.4    ), 
which is de fi ned in mathematics and physics as relating to or denoting a condition 
of readiness of a system to transit from one state to another. A widely cited model is 

  Fig. 6.13    ( a ) The mitral cells in the olfactory bulb generate did not contribute to the ECoG or AEP 
in response to electric shocks to the PON axons, because by virtue of their radial symmetry they 
generate a closed fi eld in the bulbar depth that does not extend to the surface (Ch.   4     in Freeman 
 1975 ). They generated pulse trains, which revealed damped cosine oscillation in the PSTH with the 
same frequency and decay rate as the AEP. ( b ) The internal granule inhibitory cells had no detectable 
action potentials but transmitted by dendrodendritic synapses to mitral cells in negative feedback. 
The impulse responses were  fi tted with sums of linear basis functions (cosines and exponentials). 
The inhibitory population oscillated with on average a 90°  phase lag  behind the population (  p  /2 rad) 
in the evoked activity and the spontaneous waves of ECoG (Fig.   5.3    , Sect.   5.4    ) and pulse probabil-
ity waves (Fig.  6.11b ). The two populations can be said to oscillate in quadrature, with deviations 
owing to varying intensities of  k  

ee
  and  k  

ii
  feedback gains (p. 315 and Chap.   6     in Freeman  1975  )        
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self-organized criticality, in which a sand pile in the base of an hourglass is fed by a 
steady stream of sand at the apex (Bak  1996  ) . The pile grows in height and steep-
ness to a critical angle, which is thereafter maintained by avalanches. The size, 
frequency, and duration of the avalanches have power-law distributions, clearly 
suggesting that they are fractal. The cortices like all parts of the brain are open sys-
tems with continuous throughput of energy and information. Some of the metabolic 
energy is used to maintain the background activity, which is self-stabilized at set 
points relating to the level of arousal (Fig.  6.1 ). The ceaseless bombardment by 
sensory input drives the cortices away from their set points. The cortices continually 
relax toward the critical state in brief bursts of activity described as  neural ava-
lanches  (Freeman  2004b ; Plenz and Thiagaran  2007 ; Beggs  2008 ; Petermann et al. 
 2009  ) , in reference to the concept of the sand pile (Sect.   9.4.2    ). The resulting back-
ground activity displays numerous overlapping bursts of activity, having no 
identi fi able spatial AM patterns but having spatial patterns of phase (Figs.   8.6     and 
  9.2c    ) in the form of conic phase gradients (Freeman and Baird  1987 ; Freeman and 
Barrie  2000 ; Freeman  2004b  ) . The locations and signs of the  fi tted cones (Fig.   9.5d    ) 
vary randomly, and the durations have power-law distributions (Figs.   9.3     and   9.4a    ). 
Despite the empirical evidence of conformance to self-stabilized, scale-free dynam-
ics, the sand pile model fails to exhibit true criticality (Kozma et al.  2005 ; Kozma 
et al.  2012  ) . Bonachela et al.  (  2010  )  describe it as “pseudo-critical” and suggest that 
we should “…look for more elaborate (adaptive/evolutionary) explanations, beyond 
simple self-organization, to account for this.” In agreement, the small proportion of 
exceptionally large and long-lasting bursts (Fig.   9.7e    ) that do have classi fi able AM 
patterns (Freeman  2005a,   2006  )  deviate strongly from randomness. The random 
small background avalanches manifest continual adjustments by cortex constantly 
striving for asymptotic approach to criticality, thereby achieving the steady state at 
unity gain (Fig.  6.10b ). A stronger metaphor is visualizing cortical activity as a pan of 
boiling water (Sect.   9.4.2    ) that holds itself at a critical temperature (Freeman et al. 
 2006  ) . It is this complex of multiple overlapping phase cones at differing carrier fre-
quencies in the background activity that causes intractable problems in locating and 
measuring the behaviorally signi fi cant textured images in the EEG and ECoG, result-
ing in the overlap of clusters of feature vectors shown in Fig.  6.8b . 

 From the standpoint of the cognitive function of the olfactory bulb and other 
primary receiving areas, the relevant example of true criticality is the state of expec-
tancy in a subject who is searching for one of several CSs, by which to choose one 
of several courses of action (feed,  fl ight,  fi ght, etc.). As stated earlier the state of 
expectancy is embedded in a hierarchy of states (Fig.   8.1a    ). In deep anesthesia the 
background ECoG is suppressed (a), the feedback gain is zero, and the impulse 
response (evoked potential) is not oscillatory; an exponential rise, a, and decay, b, 
are determined by the synapses and dendrites of the pyramidal cells (Fig.   8.1b    ). 
The cortical dynamics is governed by a point attractor (Fig.  6.14a ). On recovery to 
waking rest the ECoG transitions to broad-spectrum chaotic activity (b), governed 
by a chaotic attractor, when a blue sky bifurcation replaces the point attractor by a 
point repeller (Abraham and Shaw  1983 –1985).  

 On arousal from rest into the expectant state of searching, the chaotic back-
ground is ampli fi ed, and repeated bursts appear (Fig.  6.1d ), which can be modeled 
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as transition by subcritical Hopf bifurcation. We view the olfactory bulb as sustaining 
 in potentia  a set of limit cycle attractors, one for each expected CS and each with its 
basin in an attractor landscape (Fig.  6.14a, b ). The limit cycle attractors can be 
regarded as the implementation of a set of Bayesian priors (Doya et al.  2011  ) , which 
are instructions based in memory from experience for constructing responses to 
expected CSs. The landscape is preselected from the cortical memory store by input 
from the limbic system in a process known as  preafference  (Kay and Freeman 
 1998  ) . The size of each basin of attraction might represent either the breadth of the 
generalization gradient, or the likelihood assigned to each CS, or the degree of impor-
tance as in the sustained qui vive for a predator. The CS determines the choice of 
category for the CS by selecting a Hebbian assembly, which directs the cortical trajec-
tory into a particular basin (Fig.  6.14 ). Convergence to the attractor directs the cortex 
to construct the selected AM pattern (Fig.   8.7    ). After completion of transmission of an 
AM pattern, the entire landscape collapses, releasing the trajectory from capture by 
the attractor, so that it can return to the high-dimensional state of expectancy. We 
conceive the expectant state as maintaining a trajectory through high-dimensional 
cortical state space, hovering over an attractor landscape, like an aircraft searching for 
a suitable  fi eld, with con fi nement to a low-dimensional space upon landing. 

 The landscape includes a basal attractor for the background input (which sig-
nals  no-go ) and an attractor for salient but unidenti fi ed novel stimuli (Fig.   8.3b    , 
Sect.   8.2    ), so the sum of probabilities is unity. In the case of extreme input inten-
sity, the cortex can be driven into a complex partial seizure (Fig.  6.1e ) having high-
intensity chaos (Freeman  1987  ) , by which the limit cycle landscape is temporarily 
obliterated. 

  Fig. 6.14    ( a ) Bifurcation diagram of the hierarchical states of the olfactory bulb: ( e ) point attrac-
tor in deep anesthesia; ( d ) chaotic attractor (the non-convergent basin of attractor surrounding the 
central repeller); ( c ) aroused, expectant, motivated in the receiving state; ( b ) snif fi ng and process-
ing in the transmitting state; ( a ) seizure state. ( b ) Hypothetical basins of attraction visualized in 3D 
(From Freeman  1987  )        

 

http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_8


118 6 Basic Concepts for Spatial Analysis

 Criticality brings with it three properties that are crucial for ECoG and EEG 
image formation and interpretation. First, each sensory cortex maintains itself in a 
state of extreme sensitivity of readiness to condense into the transmission of a coher-
ent pattern, but only upon receipt of sensory information that can direct the cortex 
into the basin of a limit cycle attractor that has been formed by reinforcement learn-
ing. This restriction indicates that exit from the critical state requires a transition 
energy, which we propose is provided by the ignition of a Hebbian assembly (Fig.   8.8    , 
Sect.   8.4    ). 

 Second, the power-law form of the PSD 
T
  and PSD 

X
  (Sect.   7.2    ) indicates that within 

the beta-gamma range, the activity is scale-free (Sect.   8.1    ). As an immediate effect the 
appearance and statistics of the ECoG do not change when the pass band of the  fi lter 
is changed, provided that the length of display and the spatial window of the time 
series are varied in proportion to the wavelength of the center frequency of the  fi lter 
(Freeman et al.  2009  ) . The scale-free property explains the signi fi cance of the random 
variation within the beta-gamma range of narrow-band carrier frequencies in succes-
sive bursts (Figs.  6.1d  and   9.6a    ). The center frequency bears no relation to the cogni-
tive content of the bursts, only to the size, duration, bandwidth, and intervals of bursts. 
It means that the signals from multiple sensory cortices can be integrated regardless 
of their differing carrier frequencies and phase relations (Chap.   10    ) because what is 
delivered to targets of transmission of AM patterns are the pulse densities, which we 
can best estimate from the vectorial analytic amplitude or power of the AM pattern. 

 Third, the correlation distance can be extremely large across which cortical pop-
ulations can complete widespread phase transitions in very few milliseconds, 
regardless of their carrier frequencies (Sect.   10.5    ). This property may help to explain 
how images with beta-gamma carrier frequencies can condense and dissolve several 
times per second across distances that greatly exceed the modal lengths of the den-
drites and most axons of the participating neurons (Table 1 in Freeman  2005a ) and 
can include multiple cortical areas, even the entire scalp (Sect.   10.5    ). This property 
may also help to explain the multisensory integration that is required for Gestalt 
formation, which is a core cognitive property to be described and explained in 
Chaps.   8    ,   9    , and   10    . However, in pursuing the suggestion by Bonachela et al.  (  2010  )  
quoted above, the search for the foundations of criticality in cortex should be 
extended into modern physics, speci fi cally into random graph theory, nonequilib-
rium thermodynamics, and quantum  fi eld theory, as discussed in Chap.   11    .  

    6.10   Summary 

 The potentials recorded in the ECoG are proportional to the sum of dendritic current 
density from active neurons in a cortical neighborhood (column), so they are 
macroscopic signals. Due to the high density of cortical neurons (10 5 /mm 2 ) and 
synapses (10 9 /mm 2 ), the state variable representing a local  fi eld potential is treated 
as a continuous wave density. The pulses by which cortex transmits its output are 
regulated by the wave density,  v ( t ), and collectively form a pulse cloud that is 
represented by a pulse density,  p ( t ). The neurons in the column contribute to the 
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cloud by time multiplexing, that is, by random rotation of  fi ring, so that in the 
absence of a very large sample of units, the ECoG is required to estimate instanta-
neous spatial patterns in the pulse cloud. 

 Evidence for the mutual dependence of pulse density,  p , and wave density,  v , is 
derived by time averaging in computing the probability of  fi ring conditional on 
the ECoG amplitude. The demonstration requires the experimental condition of 
resting, in which cortical dynamics conforms to the assumptions of stationarity and 
ergodicity at the macroscopic level. The four operations of neural masses are 
con fi ned to the self-imposed small-signal, near-linear range: pulse-wave conversion 
by synapses,  G  

 p 
 ( p  

in
 ); integration of v by dendrites; wave-pulse conversion by trigger 

zones,  G  
 a 
 ( v ); and pulse transmission by axons,  p  

out
 . Demonstration of linearity 

justi fi es measurement of ECoGs and evoked potentials (impulse responses) with 
sums of linear basis functions, including sines and cosines from the FFT. 

 In the resting state the background activity is Gaussian. Evidence for departure of 
cortex from resting to working is seen in deviations from Gaussianity by symmetry 
breaking. Peaks appear in the 1/f spectra of ECoG that signify bursts of narrow-band 
oscillations in the beta-gamma range. Bursts carry spatial patterns of amplitude and 
phase modulation (AM and PM) of a  fi xed carrier frequency. Some AM patterns are 
classi fi able with respect to conditioned stimuli (CSs). Most PM patterns conform to 
a cone having no correlation with CSs but giving measures of the location, duration, 
and diameter of AM patterns. The  n -values of instantaneous power at each digitizing 
step from  n -electrodes de fi ne a (  n  × 1) feature vector, which serves as an order 
parameter with which to estimate the strength and form of collective synaptic inter-
actions that cortical populations exhibit in generating the AM patterns. 

 Linearity makes possible the description of the resting dynamics of multiple 
loops in cortical populations by de fi ning feedback gain. The gain is unity in the 
steady state. The model is extended to the nonlinear working state by piecewise 
linear approximation ( fi tting tangents to  G  

 a 
 ( v ) above and below unity axonal gain). 

The extended model serves to identify point, limit cycle, and chaotic attractors that 
govern the cortical dynamics in a hierarchy of states (Chap.   6     in Freeman  1975  ) . 
The working state is characterized as critical by its alternation through phase transi-
tions between a receiving phase governed by a chaotic attractor with a latent land-
scape of limit cycle attractors and a transmitting phase upon capture by a limit cycle 
attractor. The set of limit cycle attractors comprise Bayesian priors invested in 
memories of the knowledge of CSs embedded in each sensory cortex. The selection 
by a CS of one among them mediates the perception of a CS by a subject as its AM 
pattern emerges.      
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    7.1   Introduction 

 The EEG and ECoG consist of collections of time series that are recorded from 
arrays of electrodes placed, respectively, on the scalp or surface of the cortex. Local 
 fi eld potentials, LFP, are recordings from penetrating electrodes deep in cortex and 
the brain. The surface potential differences are caused by  fl ows of dendritic currents 
from cortical neurons that are oriented perpendicularly to the surface of recording. 
The dendritic currents are produced by chemical reactions in synapses that are acti-
vated brie fl y by pulses carried by incoming axons forming the synapses (Fig.   6.2    , 
Sect.   6.2.1    ). The same currents regulate the probability of pulses on outgoing axons 
of the neurons integrating the pulse input. The macroscopic operations of cortex 
transform microscopic spatial patterns of incoming pulses to spatial patterns of out-
going pulse vector  fi elds, which carry patterns that are revealed by images in the 
EEG and ECoG. 

 The spatial patterns of pulses re fl ect a  microscopic format , in which the cortical 
information is expressed in the rates and intervals of pulses from neurons. The input 
activity is patterned in the cortical surface by the topographically organized input 
axons (Fig.   8.8    a, Sect.   8.4    ). The spatial patterns of dendritic electric currents re fl ect 
a  macroscopic format , in which the cortical information is estimated from ECoG 
and EEG potentials. Each sample is the sum of contributions from many thousand 
neurons in the neighborhood of each recording electrode. Accordingly, the dendritic 
potentials in each neighborhood provide an index of the macroscopic current den-
sity in mA/mm 2  (Sect.   6.2.1    ) that determines the local outgoing macroscopic pulse 
density (pulses/s/mm 2 ). When the cortex transmits a percept in a cloud of outgoing 
axonal pulses, we postulate that the information in the percept is carried as a spatial 
pattern of the pulse density, in which the contributions to local pulse density are 
shared among the many thousand local neurons by time multiplexing (Sect.   6.6    ), 
independently of any precisely structured microscopic activity. By our hypothesis, 
every neuron does double duty simultaneously at the microscopic and macroscopic 
levels. Sampling the microscopic pulse trains of a few neurons to represent a local 

    Chapter 7   
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pool of ~10 4  neurons is inadequate to reveal the macroscopic signal on single trials 
(Chap.   5    ), and time averaging is appropriate only in circumstances where stationarity 
and ergodicity may be assumed (Sect.   6.6    ). Among the several available methods 
for measuring macroscopic brain activity (time averaging of pulses, MEG, fMRI, 
BOLD), we focus on the EEG and ECoG. 

 The  fi rst step in testing the hypothesis of macroscopic formatting is to devise 
methods for effective spatial sampling of the textures of cortical and scalp potentials 
(Fig.  7.1 ). How wide should we make our arrays of electrodes that provide our win-
dows of observation, and how closely should we space the electrodes? Texturing is 
familiar in the study of visual inputs, in which coarse patterns employ low spatial 
frequencies and  fi ne textures require high spatial frequencies. It is formally identical 
to the temporal sampling problem that is encountered in the digitization of analog 
time series. The time digitizing interval must be small enough to avoid aliasing 
(Sect.   3.4    ) by undersampling of the high frequencies, yet the sampling windows 
must be long enough to capture the low frequencies. Therefore, spatial spectral 
analysis (Gonzalez and Wintz  1977 ; Freeman et al.  2000,   2003 ; O’Connor and 
Robinson  2004 ; Ramon et al.  2009  )  is needed to specify the optimal aperture size 
and interelectrode spacing of electrode arrays for ECoG and EEG recording in the 
search for images embodying a macroscopic format.  

    7.2   Search for the Spatial Grain of ECoG 

 The de fi ning characteristic of the living brain is its spontaneous background activity 
(Sect.   6.7    ). Every part of the brain ceaselessly generates axonal action potentials 
and dendritic currents that are distributed through time and space and which by their 
extracellular potentials provide signs of the states of the brain and its ongoing cog-
nitive activities. We infer that perceptual activity is minimal in states of rest, sleep, 
and anesthesia and that cognitively related spatial images are best sought in large-
scale departures from the background activity. We begin our search and description 
of the macroscopic images with examination of the spectral properties of the back-
ground activity (Freeman  2004a,   b,   2005,   2006  ) . 

 At the outset, it is essential to keep in mind that the numbers of cortical compo-
nents are very large. While the remarkably thin sheet averages ~3 mm in depth, the 
surface area in humans is ~2 × 10 5  mm 2 , a ratio of nearly 100,000. Each mm 2  overlies 
roughly 3 × 10 5  neurons with a total count of 1.37 ± 1.6 × 10 10  neurons (Braendgaard 
et al.  2000  )  and roughly 10 11  supporting glial cells. With each neuron giving and 
receiving 10 4  synapses, the estimated total number of cortical synapses (~10 14 ) is 
still less than Avogadro’s number (6 × 10 23 ). The high packing density of the neurons 
and synapses and the very low ratio of depth to surface area justify analyzing the 
macroscopic dynamics of the cortex as a continuous two-dimensional sheet. For this 
analysis, our model of the topology of cortex is that of a planar graph (Freeman et al. 
 2009b  ) , in contrast with models of nuclei and reticular networks in 3-D. 

 Sampling begins by placement of a high-density array with spacing much closer 
than the  fi nest texture expected. The rates of change with distance express the 
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coarseness or  fi neness of textures. The rates are expressed as spatial frequencies in 
c/m corresponding to the conventions of time-series analysis of temporal patterns in 
c/s (Hz) (Chaps.   2     and   3    ). A familiar example is an embroidered patchwork quilt, in 
which the low spatial frequency expresses the number of patches/meter and the high 
spatial frequency expresses the number of embroidery stitches/millimeter in each 
patch. In this analogy, the stitches would correspond to the spatial grain of columns 
and the patches to Brodmann areas. High resolution of dendritic potentials at the 
cortical surface is achieved by close spacing of electrodes. This rule contrasts with 
the need to use small tips to record action potentials, because the sources and sinks 
of action currents are very close together and wide electrode tips cannot separate 
them. The diameters of electrodes for resolving  fi ne textures of dendritic potentials 
can be almost as large as the interelectrode distance in order to minimize electrode 
noise, which is proportional to electrode resistance and therefore to electrode size. 
High resolution of low spatial frequencies of the dendritic potentials requires a large 
array, which provides a wide aperture on the cortical or scalp surface. 

 The optimal spacing is determined by spectral analysis. In  temporal analysis,  the 
choices are the sample record length to accommodate the lowest frequency sought 
and the digitizing interval for analog-to-digital conversion to capture the highest 
frequency sought. In  spatial analysis,  the choices are the length or area of the array 
aperture, which is constrained by the size of the cortical surface of interest and its 
surgical accessibility and the interelectrode spacing. In practice, a major constraint is 
the number of available ampli fi ers (here 64), so a one-dimensional curvilinear array 
instead of a conventional two-dimensional surface array serves to span a wide spatial 
spectral range (Fig.  7.1 ). The available length of the contiguous surface of a gyrus 
(about 1–3 cm in human cortex) imposes a limit on array length so that the continuity 
of sampling is not broken by a sulcus. The interelectrode interval for sampling with 

  Fig. 7.1    Examples of human intracranial arrays, each with 64 electrodes, are compared with 
respect to interelectrode distances. The  large array  represents a standard neurosurgical array used 
for epileptic spike localization. The  short line  represents an array for spatial oversampling the 
ECoG. The  small rectangle  represents an optimized array for display of  fi ne structure in ECoG 
(adapted from Menon et al.  1996  )        
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64 electrodes can then be calculated as 0.5 mm a linear array 32 mm long of 64 elec-
trodes), which is 1/20 the interelectrode spacing of conventional neurosurgical 
intracranial arrays (Menon et al.  1996  ) .  

 With a 1-D electrode array, the calculation of the spatial power spectral density 
(PSD 

X
 ) and the temporal power spectral density (PSD 

T
 ) were directly comparable 

(Fig.  7.2 ). The data were acquired from  fi ve neurosurgical patients (Freeman et al. 
 2000  ) , four of them anesthetized and one awake under local anesthesia. A conve-
nient spatiotemporal sample for temporal analysis was  N  

 T 
  = 1,000 points at 200 Hz 

for 5-s duration, which gave a 64 × 1000 matrix of ECoG amplitudes. Each signal 
was extended to the next highest power of 2 for the FFT, and a Hamming window 
was applied (Sect.   3.7    ). The temporal PSD 

T
  was calculated (Fig.  7.2a, b ) for the 

1,000 time steps of each of the 64 signals and for the spatial ensemble average, 
 PSD  

T
  ± SD 

T
 . The spatial PSD 

X
  was calculated (Fig.  7.2c, d ) at each time step, 

 N  
 X 
  = 1,000, and the average  PSD  

X
  ± SD 

X
  was calculated.  

  Fig. 7.2    ECoGs were recorded with a 1-D array placed on the exposed superior temporal gyrus in 
a subject undergoing surgical treatment for epilepsy. ( a ) Power spectral densities (PSD 

T
 ,  solid 

curves ) + SD 
X
  ( dashed curves ) under anesthesia or ( b ) awake with eyes open. ECoGs were recorded 

with a 1-D array placed on the exposed superior temporal gyrus in subjects undergoing surgical 
treatment for epilepsy. ( c ) Power spectral densities (PSD 

X
 ,  solid curves ) + SD 

X
  ( dashed curves ) 

under anesthesia or awake ( d ) with eyes open. Digitizing interval: 5 ms. Interelectrode interval: 
0.5 mm. Temporal Nyquist frequency: 100 Hz. Spatial Nyquist frequency: 1.0 c/mm. The  lower 
curves  show the PSD 

X
  and SD 

X
  of the  fi rst component of PCA of the data, showing more clearly 

the  fl at high-frequency segment. The concave upward infl ection of the curves in d at 0.4 c/mm give 
the spatial Nyquist frequency of 0.8 c/mm and the electrode interval of 1.25 mm. (From Freeman 
et al.  2000  )        
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 The most revealing displays of the PSD 
T
  and PSD 

X
  were in logarithmic 

coordinates: log 
10

  power vs. log 
10

  frequency (Fig.  7.2 ). The canonical form of the 
PSD 

T
  and PSD 

X
  from the ECoG  at rest  (Sect.   6.7    ) could be described in the beta-

gamma range temporal frequency range as power-law between upper and lower fl at 
segments: a linear decrease in log power with increase in log frequency with expo-
nent a (1/f a , giving the slope -a), which was modeled as  fi ltered noise (Freeman and 
Zhai  2009  ) . The search for signals was cast as the search for peaks rising above the 
trend (Fig.   6.3    ). Two such peaks were revealed in the PSD 

T
  of the human ECoG 

(Fig.  7.2 ). One peak was seen during the anesthetized state in the alpha range in two 
of four subjects (A). The other peak was seen in the awake subject in the gamma 
range (B). 

 In temporal spectral analysis (Chap.   2    ), the lowest frequency different from zero 
was set by the duration of the signal and the highest by the sampling rate. Thus, the 
frequency of the PSD 

T
  at the concave-downward in fl ection (typically 8–12 Hz) 

gave an estimate of the optimal duration (83–125 ms) of the window (temporal 
aperture) for FFT decomposition of bursts. The frequency at the concave-upward 
in fl ection in the higher frequency range gave an estimate of the optimal digitizing 
interval (spatial sampling rate). The reasoning was that cortical signals gave sloping 
PSD (1/f a , a > 0), whereas thermal and muscle noises gave  fl at PSD (1/f a , a = 0) com-
parable to featureless white noise. Signals and noises were additive, with signal 
greater than noise for low frequencies below the in fl ection but the reverse for high 
frequencies above the concave-upward in fl ection. Signal enhancement and noise 
abatement shifted the in fl ection to a higher frequency. The assumption was that use-
ful information was available in spectral ranges with a > 0, that sampling resources 
would be wasted in ranges with a = 0, and that valuable information would be missed 
if sampling rates were not raised suf fi ciently to reveal the upper in fl ection. By this 
account, the middle segment gave the optimal range in which to seek temporal 
structure (beta = 13–30 Hz; gamma = 30–80 Hz; epsilon = 80–250 Hz). The sampling 
rate of 200 Hz was too low for reliable exploration of the high gamma and epsilon 
ranges. Future digitizing should routinely be at rates of 2 KHz or higher. 

 We explored the relation between temporal and spatial frequencies by applying 
 fi lter banks with 7-Hz bandwidth to the ECoG before calculating the PSD 

X
 . The 

same canonical form of the PSD 
X
  was seen in all temporal 7-Hz pass bands across 

the temporal PSD 
T
  centered from 5 to 50 Hz (Fig.  7.3 ) in awake and anesthetized 

states (Freeman et al.  2000  ) . Two signi fi cant peaks deviated from the canonical 
form. The alpha band under anesthesia revealed power a full log unit above power 
in the awake state. The alpha peak was blocked in the awake state with eyes open, 
whereas the gamma peak contained greater power in the awake state. Both differ-
ences were consistent with the steeper slope of the PSD 

T
  in the sleeping state than 

in the waking state (Sect.   7.3    ; Freeman et al.  2006b  ) , which re fl ected the greater 
intensity of background activity in arousal compared with rest (Fig.   6.1    ) and the 
remarkable enhancement of power in the gamma range despite the dispersion rela-
tion, that is, the tendency for attenuation of signals by phase dispersion to increase 
in proportion to increasing carrier frequency (Sect.   2.3.3     in Chap.   3    ; Freeman  1975 ; 
Nunez  1981 ; Majumdar et al.  2006 ; Rudrauf et al.  2006  ) .  
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 In summary, we interpreted the spatial PSD 
X
  at rest as approximating a canonical 

form with three segments. The segments at low and high spatial frequencies were 
relatively  fl at and could be modeled as white noise (1/f 0 ). The middle segment was 
approximated by a trend line with slope –a in the range of −2 to −4 (Fig.   6.12    , Sect. 
  6.7    ). It de fi ned the main search range for peaks indicating the presence of spatial 
images (0.04–0.4 c/mm). The concave-downward, low-frequency in fl ection in 
PSD 

X
  corresponded to a minimal desired aperture wavelength (1 cm). The concave-

upward, high-frequency in fl ection gave the optimal interelectrode sampling interval 
(1.25 mm).  

    7.3   Use of Macroscopic PSD T  and PSD X  to De fi ne 
the Rest State 

 Spatial imaging of the background activity showed that when the background PSD 
T
  

of the ECoG closely conformed to 1/f a  with no signi fi cant peaks in the spectra 
(Fig.  7.4a ), there were no recognizable patterns in spatial and temporal displays of 
the ECoG (Freeman et al.  2006a,   b  ) . The ECoG had the same appearance in many 

  Fig. 7.3    The ECoG was  fi ltered through 7-Hz pass bands before calculating the PSD 
X
 .  Solid 

curves  from the awake subject showed more power in the gamma range, whereas the  dashed 
curves  from an anesthetized subject showed greater power in the alpha range. Similar features 
were found on spectral decomposition of the EEG (Fig.  7.12 ). (From Freeman et al.  2000  )        
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locations, successive times, and different spectral pass bands, provided that the time 
base for display of the band-pass- fi ltered ECoG was contracted or expanded 
inversely in proportion to the center frequency of the pass band (Freeman et al. 
 2008  ) . In dynamical terms, the ECoG was invariant on translation in time, space, 
and spectrum; the activity was approximately  scale-free  (Sect.   9.4    ) and  symmetric  
in time, space, and frequency (invariant under translation and rotation and devoid of 
patterns) over the beta and gamma ranges (Freeman and Vitiello  2006  ) . The emer-
gence of structure in the form of recognizable spatial ECoG patterns was accompa-
nied by peaks at one or more frequencies above the 1/f trend line in the PSD 

T
  of the 

ECoG (Figs.   6.2     and  7.4b ). We conceived the transition from formless background 
to structure as  symmetry breaking , so the search for structure and signals was 
focused on deviations from uniformity and Gaussianity (Sect.   6.3    ) as simulated by 
random noise (Sect.   6.7    ) (Freyer et al.  2009  ) .  

  Fig. 7.4    ( a ) The form of the PSD 
T
  (log 

10
  power vs. log 

10
  frequency) in deep slow-wave sleep was 

power-law with exponent a > 3 (black noise, slope <−2, Schroeder  1991 ). The 1/f form revealed 
the absence of peaks above the 1/f trend line. ( B ) Upon arousal (eyes closed), the slope of the 
trend line  fl attened (a decreased), and multiple peaks appeared in the gamma range. It was accom-
panied by a peak in the theta range (3–7 Hz) manifesting theta-gamma linkage (Buzsáki  2006  ) . 
( c ,  d ) The slopes, −a, were estimated by linear regression to  fi t a line to the middle segment of the 
PSD 

T
  with least squares deviation (6 s,  N  = 2,000) (from Fig. 1 in Freeman  (  2006  )  and Fig. 4 in 

Freeman et al.  2006a  )        
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 Estimation of slopes in the beta-gamma segments of the PSD 
T
  was done most 

simply by linear regression. The 1/f a  power-law relation gave estimates of the mean 
value of the exponent, a, (slope = −a) in sleep ECoG close to 3 (Fig.  7.4c ), which 
was fairly precise when the residuals were low. The residuals were found by sub-
tracting the  fi tted line from the data and calculating the SD of the deviations. The 
hypothesis was that the EEG and ECoG at rest conformed to random noise, so the 
spectrum was integrated near-white noise (Freeman and Zhai  2009 ). Peaks in the 
spectrum that deviated above the trend line revealed power that was not random. 
Therefore, the magnitude of the residuals indicated deviations from rest, and more 
meaningful estimates of the slopes were made by drawing trend lines that empha-
sized upward peaks (Fig.  7.4b ), giving estimates of the exponent in the range of 
2 < a < 4 ( black noise , Schroeder  1991  )  that conformed to prediction from a model of 
neural positive feedback (Sect.   6.7     ) . In awake states, ECoG exponents were often 
below 2 (Fig.  7.4d ), but those values were imprecise because the residuals by linear 
regression were large. The non-Gaussian peaks  fl attened the slope of the PSD 

T
  and 

reduced estimates of a below 2 (brown noise, Fig.  7.5a ), as the deviations increased 
the residuals. 

 Black noise is usually considered to result from nonstationarity (Sect.   6.4    ), such 
as the occurrences of rare events: epileptic seizures, epidemics, forest  fi res, etc. 
(Schroeder  1991  ) , but in the case of the resting EEG and ECoG, the cause instead is 
the nonlinearity (Fig.   6.10    ) that is constantly imposed by the refractory periods. 
Refractoriness limits the microscopic  fi ring rates not by an upper boundary but by 
the increased slope of the PSD 

T
  across all frequencies. We propose that whatever the 

slope, the PSD 
T
  can be used as one of the criteria by which to infer that an area of 

cortex is physiologically at rest (Freeman et al.  2009a  )  and not engaged in occult 
recovery from past activity, current maintenance, or prediction of future needs, 
while the subjects’ overt behavior gives the appearance of resting (Raichle and 
Mintun  2006  ) .  

    7.4   Null Spikes Revealed by Probability 
Distribution Function (PDF) 

 The strict 1/f form of the PSD 
T
  may be a necessary condition for the resting state, 

but it is not suf fi cient, because the 1/f form is often seen in ECoGs from animals 
engaged in task performance when the duration of the sample is long (1–6 s). The 
short-time FFT (Chap. 3) from each step of a moving window (about 0.1 s) may 
yield one or more spectral peaks above a 1/f trend line (Fig.   6.3    ), which results from 
shifting of the carrier frequency within the beta-gamma range. We proposed in Sect. 
  6.3     that markers for nonrandom structures in the ECoG would be provided by subtle 
deviations from Gaussianity. In long segments of  neocortical ECoGs, the distribu-
tion of amplitudes tended to appear Gaussian (Fig.   6.4a    ). The distribution of the 
envelope of the un fi ltered ECoG (peak absolute values)  conformed to the probabil-
ity distribution function (PDF) for Rayleigh noise (Fig.   6.4d    ). We have made the 
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case that Gaussian background activities at rest and at work were generated by 
mutual excitation in cortical populations (Fig.   6.12    , Sect.   6.7    ) and that cognitive 
operations could give rise to deviations from normality. The background state was 
revealed form of the exponential PDF of analytic power,  A  2  

 ij 
 ( t ),

     ( ) ( )= −2 2( ) exp ( )ij ijP A t l lA t
   (7.1)  

where  l  was the slope of the PDF in log-log coordinates. When the PSD 
T
  conformed 

to 1/f (Fig.  7.5a ), the PDF from the ECoG conformed to that of black noise (b). 
When peaks appeared in the beta-gamma range (c) of the PSD 

T
 , deviations appeared 

in the PDF as well (d) (Freeman  2009  ) . The same or similar deviations were found in 
the PDF of scalp EEG in the alpha range by Freyer et al.  (  2009  )  with an equivalent 
technique of decomposition using wavelets instead of the short-time FFT. The log-
log PDF called our attention to extremely low values of log analytic power,  A  2  

 ij 
 ( t ) 

  Fig. 7.5    Evidence is shown that neocortical ECoG usually conformed to black noise. ( a ) The 
PSD 

T
  from the expectant and test states were indistinguishable from each other and from the 

canonical PSD 
T
  for simulated black noise (Fig.   6.12    , Sect.   6.7    ). ( b ) The frequency-speci fi c prob-

ability distribution function ( PDF ) of the analytic power (Fig.   6.5c    , Sect.   6.3    ) of the fi ltered ECoG 
in the high beta range is compared with the PDF from simulated black noise. ( c ) Deviations from 
noise gave peaks above the 1/f trend line (Fig.   6.3    , Sect.   6.3    ). ( d ) In those cases, the PDF also devi-
ated from that of noise. Freyer et al.  (  2009  )   fi tted this type of PDF with a double exponential PDF, 
from which they inferred bistability of cortex. (From Freeman  2009  )        
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(Fig.  7.5d ). Although they occurred infrequently, we came to invest them with 
special signi fi cance (Fig.   7.8d    , Sect.   7.5    ; Fig.   9.12    , Sect.   9.6.2    ) as  null spikes .  

 More revealing was the PDF or the frequency density of the time intervals 
between minima (labeled “-v-”, Fig.  7.6a ) in the analytic power,  A  2  

 ij 
 ( t ), of  fi ltered 

ECoG, which were indistinguishable from the PDF of random noise, whether white, 
brown, or black, when the PSD 

T
  conformed to 1/f. They were  fi tted with the func-

tion derived by Rice  (  1950  ) :

     ( ){ } ( )2 2 2 2 2
0( ) / exp / 2 / ,⎡ ⎤= − +⎣ ⎦P x x s x n s I xn s    (7.2)  

where  x  =  A  2  
 ij 
 ( t ),  s  was the SD of the  fi ltered ECoG, and  n  was a parameter that evalu-

ated the deviation from randomness that was imposed on white, brown, or black 
noise by band-pass  fi ltering, either endogenous from burst formation (Fig.   8.8    b, 
Sect.   8.4    ) or imposed in data processing (Fig.  7.6b ). When  n  = 0, the Rice distribution 
(concave upward to the modal value) reverted to the Rayleigh distribution.  

  Fig. 7.6    ( a ) Superimposed PDFs of the time intervals between minima in analytic power of the 
fi ltered visual cortical ECoG and simulated black noise for the pass band 15–25 Hz were indistin-
guishable.  Dashed curves  were from ( 7.2 ). ( b ) Adding a 20-Hz cosine with amplitude 0.5, the SD 
of brown or black noise prolonged the intervals, “-v-”, between the downward peaks of the  fi ltered 
ECoG or noise. ( c ) The three density functions were superimposed. The small diamonds symbol-
ized the modal values. ( d ) The same prolongation of intervals was found in ECoG when the  fi lter 
pass band was centered on the carrier frequency of a burst. Black values were ECoG superimposed 
on black noise ( gray curve ) (Freeman  2009  )        
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 Rice proved that the modal beat frequency in Hz depended only on the width of 
the pass band in Hz by a factor of 0.641 (Rice  1950  ) , which we demonstrated for the 
ECoG (Freeman  2009  )  and EEG (Ruiz et al.  2010  ) . Rice showed that the addition 
of a cosine signal to white noise increased the intervals between beats but only in 
the pass band of the added cosine. Simulations showed that adding a cosine to 
brown and black noise shifted the beat intervals as Rice predicted, but only in the 
center of the pass band (Fig.   7.6d    , Sect.   7.4    ). Placing the pass band at the edges of 
the band shortened the beat intervals (Freeman  2009  ) . The upward shift in modal 
intervals was found experimentally (d) with very narrow pass bands and high order 
of the  fi lter, which decreased the sample size and increased the noise. 

 These  fi ndings are very preliminary and cannot support any conclusions, but 
they are important because they open an avenue to model the emergence of a narrow 
band burst in response to a CS (Fig.   8.8    b, Sect.   8.4    ) as the addition of a cosine to the 
background ECoG noise. The Rice effect may explain the prolongation of bursts 
related to cognition (Fig.   9.7    e, f, Sect.   9.4.2    ), and it may also explain their termina-
tion of a burst by intrinsic decoherence of the population in a beat (Fig.   9.12c    , Sects. 
  9.7.1    ). Rice proposed using his PDF for detecting narrow band oscillations embed-
ded in white noise. The simulations of brown and black noise (Freeman and Zhai 
 2009  )  show that band-pass  fi ltering by itself causes beats to appear in the  fi ltered 
ECoG, which increase the complexity of search for AM patterns. We predict that the 
use of extreme statistics as pioneered also by Freyer et al.  (  2009  )  will become a 
major source of new understanding of cortical dynamics.  

    7.5   Evaluating Spatial Resolution with 
the Point Spread Function (PSF) 

 The ECoG is generated by the  fl ow of synaptic currents from layers of neurons 
packed in high density with their apical dendrites oriented perpendicular to the sur-
face of the cortex (Fig.   6.2    , Sect.   6.2.1    ). An example is presented in Fig.  7.7  of the 
properties of the ECoG generator in the olfactory bulb. Controlled activation is by 
single shock excitation of the lateral olfactory tract, which synaptically excites the 
granule cells in the bulb. During excitation (n1 in Fig.  7.7a ), the synapses formed by 
the excitatory axons act like transmembrane batteries that drive ionic currents into 
the dendrites, creating an extracellular current sink (dashed curve in B). The intrac-
ellular currents converge to the axon at the cell body and  fl ow out across the mem-
brane, thereby causing them to  fi re by depolarization and incidentally creating an 
extracellular source. The extracellular dendritic current  fl ows radially outward from 
the deep source toward the surface and radially converges to the super fi cial sink. 
The current converging to the sink establishes a bell-shaped distribution of negative 
potential on the bulbar surface. The source-sink pair from each neuron creates a 
scalar  dipole  fi eld  of potential that is surface-negative during the activation of excit-
atory synapses on the dendrites (n1 in Fig.  7.7a ). The excited granule cells inhibit 
the mitral cells, which withdraw their background excitation of granule cells. 
Disexcitation reveals background inhibition. During inhibition, the direction of 
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current is reversed, giving a surface-positive dipole  fi eld of potential (p1) with cur-
rent radiating outwardly from the point of intersection of the dipole axis with the 
cortical surface (upper frame in Fig.  7.7c ). The depth pro fi le of the dipole  fi eld 
along its axis is calculated at each instant by expressing the current source-sink 
density as  fi xed charge density, calculating the centers of gravity for source and sink 
and the distance that separates them, and using Coulomb’s law to evaluate the sum 
of potential created by the equivalent pair of +/− charge at each point along the 
dipole axis (solid curve in Fig.  7.7b ).  

 Most cortical events involve co-activation of many dendritic dipoles, which give 
broadly distributed peaks of positive and negative potentials. The relation between 
instantaneous dipole width and peak width can be estimated by describing the dipole 
density as Gaussian and calculating the relation between the half-amplitude width ( x  

 h 
  

in upper frame, Fig.  7.7c ) and the SD of the dipole distribution ( s  
 x 
  in the middle 

frame). The relation is linear for distances on the surface >0.5 mm (lower frame). 
Extrapolation of the simulation to the dipole widths of cortical columns (Mountcastle 
 1998  )  and single dendritic trees (<0.5 mm) shows the limit of spatial resolution that 
is imposed by volume conduction. The width of the surgace peak of dendritic poten-
tial depends on the depth of the dipole layer. The theoretical limit is displayed in 

  Fig. 7.7    ( a ) An example shows the change in evoked potential as the recording electrode is 
inserted into the bulb. Note the reversal in sign (−n1 to +p1) of the  fi rst peak at the turnover. ( b ) 
The  dashed curve  shows the source-sink charge density for the dendrites of the generating neurons 
alighted along the z-axis. The  symbols  show the mean ±SD of 100 summed evoked potentials at 
each step. The curve was calculated for the source-sink charge density in the volume conductor. 
This depth pro fi le holds also for the depth LFP underlying the ECoG at the surface. ( c ) The exam-
ple shows the bell-shaped distribution of surface potential ( upper frame ) for a Gaussian distribu-
tion of charge density ( middle frame ) at the depth of the turnover. The  lower frame  shows that the 
half-amplitude width of potential varies linearly with the SD of the dipole charge density for dis-
tances >0.5 mm. Extrapolation to zero SD gives the limit on spatial resolution of the ECoG 
imposed by volume conduction (from Figs. 4.28, 4.29, and 4.30 in Chap. 4 in Freeman  1975  )        

 



1377.5 Evaluating Spatial Resolution with the Point Spread Function (PSF) 

graphs (Fig.  7.8a, c ) of the surface distribution of potential of two cortical columns, 
which are 4.3 mm apart (three interelectrode steps in an 8 × 8 array). In analogy with 
the distribution of light from a point source, the spread of the peak or trough of 
potential at the surface is designated the  point spread function  (PSF). In the rabbit 
olfactory system, the average depth is 0.8 mm, which is approximately the depth of 
the mitral cell layer in the bulb and layer II of pyramidal cells in the olfactory cortex 
(Freeman  1975  ) . The corresponding depth of layer II in human neocortex is approxi-
mately 1.0 mm (Mitzdorf  1987  ) .  

 The simulation showed that the surface half-amplitude width of the PSF attribut-
able to volume conduction is approximately 0.7 times the dipole depth mm, which 
for human is 0.7 mm and for rabbit is 0.5 mm. By this criterion, the interelectrode 
separations, respectively, of 1.25 and 0.79 mm suf fi ce to resolve local peaks and 
troughs of ECoG activity in single columns separated by 1 mm or more. An example 

  Fig. 7.8    ( a ,  c ) Simulated point spread functions ( PSF ) of two dipoles corresponding to two cortical 
columns or single neurons. The depth of the cortical dipole layer was estimated from measurements 
of the depth from the cortical surface of dipole turnover in human and rabbit. The “separation” refers 
to the distance between centers of gravity of source and sink (Fig.  7.7b ). ( b ) An example of the spatial 
pattern of an epileptic spike like that in Fig.   6.1    , A(e) but from human ECoG (Sect.   10.4    ), is com-
pared with the calculated PSF (A). ( d ) An example of the spatial pattern of the log 

10
  analytic power 

of rabbit ECoG compares the null spike (Sect.   9.6.2    ) with the PSF calculated for rabbit neocortex, 
which has approximately the same depth of generating layer as the olfactory cortex and the same 
waveform (Fig.   6.1e     in Sect.   6.1    ). Such unusual events gave experimental evidence for the capability 
of the arrays illustrated to resolve  fi ne details despite smoothing by volume conduction (from Fig. 2 
in Freeman  2006  )        
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of a localized upward peak (Fig.  7.8b ) is from human temporal lobe ECoG recorded 
during a complex partial seizure, which was comparable to a seizure induced in a 
rabbit olfactory cortex (Fig.   6.1    e, Sect.   6.1    ). An example of a null spike (Fig.  7.8d ) 
is from the visual cortical ECoG (Fig.   9.12b    , Sect.   9.6.1    ). Such extreme spikes 
tended to recur singly or in clusters at theta rates after band-pass  fi ltering in the beta 
or gamma range (Freeman  2009 ). 

 The most important result of the simulation (left frames) is the demonstration that 
the closely spaced arrays resolve spatial differences in amplitude and power of ECoGs 
from closely spaced cortical columns despite high temporal correlation between 
them. The reason for the discrepancy is that the entire array has phase-locked gamma 
oscillations in the same instantaneous frequency range (Fig.   6.3    ) but with amplitude 
modulation (AM). Correlation techniques including PCA (principal components 
analysis) extract the temporal coherence, whereas spatial mapping reveals the local 
textures of amplitude and power. We conclude that the shared frequencies and high 
correlations are mainly due to interactions among cortical neurons and they are not 
solely due to volume conduction or to activity at the reference lead in referential 
recording. Therefore, sampling intervals are chosen in accord with the spatial Nyquist 
frequency that we derive from the PSD 

X
  of ECoG (Sect.   7.2    ).  

    7.6   Search for the Spatial Grain of EEG 

 Ideally, the EEG would be sampled simultaneously at high density over the entire 
head and displayed in the detail afforded by modeling with many thousand point 
sources (Izhikevich and Edelman  2008  ) . Practical considerations constrain the sam-
pling intervals for seeking textures using the PSD 

X
  (Freeman et al.  2003 ; O’Connor 

and Robinson  2004 ; Ramon et al.  2009  ) . At the time the observations described in 
what follows were done, the number of channels simultaneously recorded could not 
exceed 64; the array could not exceed the circumference of the head; the intervals 
had to be small enough to oversample the EEG in search of contributions, if any, 
from the gyri and sulci, owing to variations that they introduced in the distance from 
scalp to cortex and the orientation of the cortical surface with respect to the scalp 
surface (Fig.  7.9 ) (Freeman et al.  2009a  ) . A practical compromise to adjudicate 
these constraints was a curvilinear 1-D array of 64 gold-plated pins (Freeman et al. 
 2003  )  that were glued in a strip of embroidery cloth with spacing of 3 mm between 
holes (rows of dots in Fig.  7.9 ). This interval met the engineering  practical  Nyquist 
criterion (three instead of two samples per gyrus of width 10 mm). The 189 mm 
length of 64 electrodes conveniently covered a substantial fraction of the circumfer-
ence of the scalp in any orientation. The strip was bound to the head without elec-
trode gel in view of the close proximity of the pins so as to avoid shunting of surface 
current by the gel. Broad temporal pass bands (e.g., 20–80 Hz) and the Hilbert 
transform (Sects.   6.4.1     and   9.5    ) were used to track temporal frequency modulation; 
PCA served to extract widespread waveforms on the assumptions of stationarity 
(Sect.   6.4    ) and linearity (Sect.   6.5    ).  
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 Examples of the temporal PSD 
T
  from ten subjects (Fig.  7.10a ) show nearly the 

same canonical form for the EEG as for the ECoG in log-log coordinates: a plateau 
in the delta-theta range and a concave-downward in fl ection to a trend of linear 
decrease in log power with increasing log frequency over the beta-gamma range. 
With eyes closed, there was a prominent peak in the alpha range near the infl ection. 
There was no plateau at high frequencies, indicating that the sampling rate was too 
low (Sect.   7.2    ). The PSD 

T
  from single channels differed in mean power but not in 

form. This was consistent with the  fi nding by Pockett et al.  (  2009  )  of widespread 
intermittent synchrony in all bands (Chap.   10    ). The PSD 

T
  slopes from the EEG 

calculated by linear regression (Sect.   7.3    ) were in the range of 1–2 (pink noise), 

  Fig. 7.9     Above left : photomontage to  fl atten the display of the brain surface as seen from above. 
The 64 × 1 scalp array is symbolized by the rows of dots superimposed in three orientations: fron-
tal, occipital, and right parasagittal. The 64 dots are 3 mm apart.  Above right : the spatial spectrum 
of the photomontage, showing a peak corresponding to the estimated width and length of the gyri. 
 Below : examples of signals from 8/64 contiguous electrodes showing local and regional differ-
ences as well as similarities (from Freeman et al.  2003  )        
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substantially shallower than the slopes from the ECoG. A likely explanation is 
 contamination of the EEG by electromyographic (EMG) potentials (Sect.   7.8    ) con-
tributing power at high frequencies.  

 Examples of the spatial PSD 
X
  from the same subjects (Fig.  7.10b ) showed a non-

linear trend of decrease in log power with increasing log frequency with no linear 
1/f segment. There was no plateau in low spatial frequencies <0.1 c/cm (indicating 
that the array was too short, Sect.   7.2    ), but there was a broad, noisy plateau at high 
spatial frequencies >1.0 c/cm (con fi rming the intended oversampling). The middle 
range 0.1–1.0 c/cm was characterized by an irregular mix of peaks and troughs, sug-
gesting that these are the spectral locations of signi fi cant deviations from random-
ness, possibly cognitively related structure. 

 Comparison of the EEG PSD 
X
  with the ECoG PSD 

X
  (Fig.  7.11 ) revealed the 

effects of four experimental problems that pose major dif fi culties in getting useful 
EEG images: (1) the long distance between the scalp surface and the generating 
cortical surfaces, compounded by the impedance barriers of the cerebrospinal  fl uid, 
skull, and scalp; (2) the lack of any site on the head for reference-free recording; (3) 
gyri fi cation; and (4) muscle noise (electromyographic activity, EMG). 

(1) The effect of the impedance barriers is seen in the leftward shift of the PSD 
X
  

(reduced power at all frequencies) of the EEG from the ECoG due to the combined 
effects of the distances between scalp and cortex and the shunting of dendritic cur-
rents by the low resistance of the scalp and cerebrospinal  fl uid on opposite sides of 
the high resistance of the skull (Ramon et al.  2009  ) .  

 (2) The only bias-free reference for scalp recording is the sum of signals recorded 
densely over the entire body (Sect.   3.10.2    ) (Tucker  1993  ) . Reference sites equidis-
tant from a curvilinear array reduce the bias from incomplete coverage (Junghöfer 
et al.  1999 ) by common-mode rejection. The signals from parasagittal placements 
of the array can be referenced to the contralateral mastoid; exclusively frontal or 
occipital recordings can be referenced, respectively, to the inion and nasion. 

  Fig. 7.10    ( a ) Spatial averages are shown of 64 PSD 
T
  of normalized EEG from ten subjects at rest 

with eyes closed (2 s duration, 2-ms sample interval, 1,000 steps). ( b ) Ensemble average of PSD 
X
  

from 1,000 time steps, 3-mm sample interval, 189-mm 1-D aperture (from Freeman et al.  2003  )        
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Re-referencing is also done by subtracting the spatial ensemble average of the 64 
signals in each frame from each signal, which preserves the AM pattern feature vec-
tors (Sect.   6.4.3    ) but reverses the sign of the phase on every signal where the ampli-
tude is less than the average (Fig.   10.9    b). Once a reference is chosen, the  fi xed bias 
thus imposed has no signi fi cant effect on the textures of the spatial patterns of 
amplitude and their changes with behavior (Ruiz et al. 2009). 

 (3) A contiguous array of electrodes on the surface for the ECoG of a gyrus pro-
vides equal distances to the underlying dendritic generators. For the EEG, the dis-
tances from the electrodes to the cortical surface vary widely, especially over the 
midline sagittal and lateral Sylvian  fi ssures. The variations in distances and orienta-
tions of the cortical surfaces with respect to the scalp surface (Fig.   7.11    ) impose 
 fi xed spatial differences in amplitude at all frequencies in the PSD 

X
 , which are char-

acteristic of each subject and can be related to the individual brain by use of struc-
tural MR images (Ramon et al.  2009  ) . The characteristic ‘signature’ AM pattern 
(Sect.   8.2    ) is modulated by transient deviations that re fl ect behavioral state changes 
with  fi xed arrays. Decomposition of the PSD 

X
  in 7-Hz temporal frequency bands 

shows that a small peak in the PSD 
X
  occurs only in the beta and gamma ranges 

(Fig.  7.12a ) and not in the high power ranges of theta and alpha (Fig.  7.12b ). The 
evidence indicates that in some subjects, locations, and states, especially in the pres-
ence of strong alpha or theta, the spatial resolving power of the EEG extends to the 
spatial frequency range of human gyri and sulci. This inference has been supported 
by Ramon et al.  (  2009  ) , using a 4-shell  fi nite element model with 2,650 dipolar 
sources oriented normal to the local cortical surface. By calculating 51 parasagittal 
MR images, they demonstrated PSD 

X
  peaks within the range of 0.32 to 0.9 cycles/

cm (wavelength 3.125–1.11 cm/cycle). They concluded that “the practical Nyquist 

  Fig. 7.11    Ensemble averages of PSD 
X
  were from noninvasive scalp EEG in subjects at rest and the 

ECoG from the exposed surface (pial membrane) of a neurosurgical patient under local anesthesia. 
 Right inset : the effects of gyri on the scalp EEG might explain peaks in the PSD 

X
  in the middle 

range, on the condition that widely synchronized oscillations occupy a substantial area of cortex 
under the array, as shown by Pockett et al.  (  2009  )  and Ruiz et al.  (  2010  ) . The lack of a  fl at plateau 
by which to demarcate a low-frequency concave-down in fl ection showed that the arrays were not 
long enough to encompass the low spatial frequencies (from Freeman et al.  2003  )        
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frequency for sampling scalp EEGs should be 3.0 c/cm, and an optimal interelectrode 
spacing of about 3 mm is needed for extraction of cortical patterns from scalp EEGs 
in humans” (p. 191).  

 (4) Occult EMG potentials were presumed to be present in all scalp recordings 
(Whitham et al.  2007  ) . For purposes of description and measurement of EMG, sub-
jects were asked to tense their scalp muscles in order to add detectable noise to the 
signals (Fig.  7.13 ). EMG from movements of the eyes, jaw, and neck were treated 
as overt, not occult, and could be prevented by instruction or deleted by editing. The 
effect on the PSD 

T
  and PSD 

X
  was to increase the power not just above 20 Hz 

(Whitham et al.  2007  )  rather across the entirety of both spectra (Fig.  7.13 ). 
We suggest that the basis for the 20-Hz threshold is that the EEG PSD 

T
  tends to i/f 2.5  

exponent, whereas the EMG PSD 
T
  tends to 1/f 0   fl at white noise, so the EMG 

 dominates the high frequencies in the summed spectra.   

    7.7   PSD X  of EEG Plus EMG: Spatial Autocorrelation 
Function (SAF) 

 The broad distribution of power across the spatial spectrum suggests that occult 
EMG power is concentrated in spatial spikes, which are generated by muscle cells 
located under the skin and close to the array electrodes. This inference is supported 
by spatial autocorrelation (Fig.  7.14 ). Each EEG signal from the center 32 electrodes 
is lagged across the 1-D array for ±32 steps of 3 mm and cross-correlated with itself. 
The resulting spatial autocorrelation function (SAF) during sustained EMG has a 
sharp spike at the origin (Fig.  7.14a ) and a decrease in amplitude with increasing 

  Fig. 7.12    The EEG was  fi ltered in 7-Hz pass bands prior to calculating the PSD 
X
 . The set of 

curves at right display the low temporal frequencies. The PSD 
X
  for high temporal frequencies was 

rescaled to compensate for the low power. The notable feature was the spatial peak in the beta-
gamma range, which was most prominent in conditions of high alpha or theta activity. As in the 
olfactory system, the bursts of beta and gamma oscillation recurred at theta and alpha frequencies 
(Fig.   8.3    b, Sect.   8.2    ) (theta-gamma linkage). Similar features were found in the human ECoG 
(displayed from a different perspective, Fig.  7.3 ) (from Freeman et al.  2003  )        
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X
 of EEG Plus EMG: Spatial Autocorrelation Function (SAF) 

  Fig. 7.13    (a) The resting EEG. (b) EEG plus EMG. (c) The temporal PSD 
T
  in successive spatial 

frequency bands at rest. (d) The deliberate induction of EMG activity increased the power in all 
ranges of the PSD 

T
 . In order to enhance the differences in displays, each set of 64,000 EEG ampli-

tudes was normalized to zero mean and unit SD. The adverse overshadowing of EEG by EMG was 
worse at high frequencies, because the EEG spectrum tended to be power-law, while the EMG 
spectrum tended to be fl at (adapted from Freeman et al.  2003  )        

  Fig. 7.14    ( a ) The spatial autocorrelation function ( SAF ) during sustained EMG showed a sharp 
spike at the origin. Subjects with a low center spike in the SAF revealed a convex-upward second-
ary peak on each side ( arrows ). ( b ) The PSD 

X
  showed a decrease to a plateau at high spatial 

 frequencies. When present, the shoulder was accompanied by a prominent secondary peak in the 
mid-range of the PSD 

X
 , here about 0.22 c/cm ( arrow ) (from Freeman et al.  2010  )        
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distance. The SAF of the EEG from subjects at rest with no visible EMG has a much 
smaller spike at zero lag and decreasing amplitude with increasing distance but often 
with a small shoulder with increasing correlation distance (arrows in A). The PSD 

X
  

reveals a secondary peak in the mid-range of spatial frequency (arrow in B) corre-
sponding to the lengths of gyri, which is not found in the PSD 

X
  of the SAF in the 

presence of strong EMG. It follows that the occult EMG cannot be attenuated by 
temporal  fi ltering but that it might be signi fi cantly attenuated by high-pass spatial 
 fi ltering (Gonzalez and Wintz  1977  )  of EEG from ultra-high-density scalp arrays of 
256–1,024 channels (Tucker  1993 ; Junghöfer et al. 2004), taking advantage of the 
property that cutaneous EMG spikes are spatially localized (Ramon et al.  2009  ) . 
What is clear is that EMG poses the greatest dif fi culty in realizing the full potential 
for exploring and using EEG spatial images for scienti fi c and engineering purposes 
such as brain-computer interfacing (Freeman  2006  ) .   

    7.8   Summary 

 The sampling requirements for ECoG and EEG imaging are met in the temporal 
domain by high-speed digitizing and time multiplexing. They are met in the spatial 
domain by high-density arrays to get the textures of ECoG and EEG patterns that 
are correlated with cognition. The limits of the size of the accessible recording sur-
face and the available number of channels force a trade-off between aperture size 
with broad spacing to include all relevant pattern features, narrow spacing to avoid 
aliasing and undersampling, and adaptation of the arrays to the limitations imposed 
by brain anatomy and surgery. 

 A compromise for spatial sampling is by one-dimensional arrays that permit 
close sampling for high frequencies over long distances for low frequencies. The 
1-D FFT of the ECoG in subjects at rest gives canonical forms of the PSD 

T
  and 

PSD 
X
 . In log-log coordinates, they conform to three line segments that are separated 

by two in fl ections. For long segments >1 s, the PSD 
T
  and PSD 

X
  in subjects at rest 

tend to conform to a power-law density distribution, 1/f a , 0 < a < 4. The low- frequency 
and high-frequency segments tend to be  fl at as in white noise, a = 0. 

 The sampling rule is proposed that the optimal temporal or spatial aperture is set 
by the wavelength of the frequency at the lower, concave-downward in fl ection, and 
that the Nyquist sampling frequency is set by twice the high-frequency, concave-
upward in fl ection. Information related to cognition is most likely to be found in 
frequency bands between the in fl ections. 

 The resting ECoG is characterized as Gaussian black noise. Signs of the presence 
of cognitive patterns in the ECoG appear as deviations from Gaussianity. The 
extreme statistics of Rice can help extract and explain singular events in the ECoG. 

 The EEG resembles the ECoG attenuated tenfold by the distance between corti-
cal surfaces and the recording arrays, but with four complicating factors: distance 
and shunting by the intervening tissues and bone, the lack of a reference outside the 
EEG  fi elds of potential, the folding into gyri and sulci, and electromyographic 
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potentials (EMG) added to the EEG. All factors must be incorporated into simulations 
(Freeman  2006 ) of the PSD 

X
 . The log-log PSD 

X
 , point spread function (PSF), and 

spatial autocorrelation (SAF) of the EEG provide the tools needed to show that 
spatial resolution extends to the level of gyri and sulci and that occult EMG contrib-
utes noise to the entire ranges of the PSD 

T
  and PSD 

X
 , not only to the high beta and 

gamma ranges. Success in textural analysis of EEG in the gamma range will depend 
on solving the problem of removing the EMG potentials, using the new tools pro-
vided by high-density EEG recording: PSD 

X
 , PSF, and SAF.      
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    8.1   Introduction 

 The olfactory system is by far the best place to start searching for the neural operations 
by which vertebrate cortices form spatial images. This is so for several reasons 
(Freeman  2001  ) . Its function is clearly to transform sensations of odorant chemicals 
to perceptions of odors. In phylogenetic evolution of brains, olfaction was the  fi rst 
sensory modality to achieve full-scale cortical processing. It pioneered develop-
ment of the vertebrate mechanisms of perception that were adopted and adapted by 
the predictive components of the systems for vision, touch, and hearing, all of which 
receive information from distant sources, thereby availing time for prediction 
(Zelano et al.  2011  ) . A single synaptic layer separates the nasal receptors from input 
to the most intimate organs of the limbic system. The three-layered allocortex of the 
olfactory system is far simpler than six-layered neocortex (Freeman  2001  ) . 
Beginning cortical studies with neocortex may end up being like trying to reverse 
engineer electronics by studies of VLSI instead of breadboard transistor circuits. 
Finally, all sensory and motor systems may have the same basic code in order to 
integrate information from multiple sources. In other words, any algorithm that is 
proposed to explain vertebrate brain function is likely to be compatible with the 
olfactory code for perception. Logically, the place to begin the search for the shared 
code is to explore the dynamics of the primordial archetype (Kozma et al.  2003  ) . 

 Comparative neurologists (Herrick  1948 ; Roth  1987  )  have deduced that the sur-
viving animal with the brain most closely conforming to that of the ancestor of 
vertebrates is the salamander (Fig.  8.1 ). Herrick  (  1948  )  remarked, “… the tiger sala-
mander … is appropriately named, for within the obscurity of its contracted world it 
is a predaceous and voracious terror to all humbler inhabitants” (p.3). The olfactory 
bulb occupies the anterior third of each cerebral hemisphere. The medial third is 
devoted to spatial and temporal orientation provided by the hippocampal formation 
(Buzsaki  2006  ) . The lateral third organizes motor functions (pyriform in Fig.  8.1 ).  

    Chapter 8   
 Allocortical ECoG Images Formed by Learning                  
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 Despite the small size and relative simplicity of the forebrain, the cooperative 
interactions among these three parts have enabled the survival and prevalence of the 
species. The organization of neurons into layers  fi rst appeared by evolution in these 
parts in the form of three-layered allocortex. Cortical processing in other modalities 
began with contributions of visual, auditory, and somatic information through the 
thalamus to a central transitional area (TA). In reptiles, the TA expanded in area into 
three-layered general cortex. The three primordial components formed a ring sur-
rounding the general cortex of each hemisphere. That topology led to the nineteenth-
century concept of the limbic system (Maclean  1969  ) . In Fig.  8.1 , we emphasize the 
anatomical basis for the unity of dynamics among the three parts in the execution 
and modeling of intentional behaviors (Bressler  1988 ; Kozma et al.  2003  ) . The spa-
tial images from the ECoG and EEG in mammalian brains reveal this functional 
unity in widespread spatial coherence (Chap.  10    ). 

 The microscopic structure of cortex is a dense  fi brous tissue containing axons, 
dendrites, capillaries, and the cell bodies of neurons and glia. It is called  neuropil  
(Sect.   6.2.2    ). We  fi nd evidence that the distributions of the lengths of the axons and 
dendrites tend to be power-law (Miller  2002 ; Freeman and Breakspear  2007  ) , which 
supports the scale-free cortical dynamics revealed by the ECoG (Freeman et al. 
 2008  ) . It is likely that the most numerous connections with the shortest distances 

  Fig. 8.1    The salamander brain is the most primitive among living vertebrates. The tissues of the 
head are too delicate for long-term electrophysiological observation, but the brain provides a simple 
model of the functions of the three main parts of each hemisphere (sensory, motor, associational) 
and above all their unity of organization in generating cognitive behavior that is implemented in the 
action-perception cycle (Merleau-Ponty  1942  ) . The three parts are Olfactory Bulb (OB), Prepyriform 
Cortex (PC) and Hippocampus (H). They are elaborated in more advanced brains and become 
known as the limbic system from “limbus” meaning “border” or “belt” in Latin. The transitional 
area (TA) begins as an accessory to the olfactory system. It receives thalamic input from all other 
sensory systems. Its surface area expands in reptiles and birds into three-layered general cortex. In 
mammals, it is further elaborated to six-layered neocortex. From Freeman  (  2001  )        
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are both chemical and electrical (including gap junctions); longer connections are 
by chemical synapses, mainly axodendritic. Because the dendrites tend to align 
themselves in palisades oriented perpendicularly to the surface and the cell bodies 
tend to form layers, cortex is classi fi ed as  laminated neuropil , in contrast to the 
 reticular  neuropil of the central neuraxis of the brain (seemingly random orientation 
of neurons in 3-D) and the  nuclear  neuropil of the basal ganglia (globular clusters 
of neurons in 3-D). 

 The upper layer I (Fig.  8.2 ) of allocortex contains input axons and the dendritic 
trees on which they synapse. The middle layer II has the cell bodies, often with tri-
angular shapes giving the name  pyramidal  cells ( mitral  cells in the bulb). The lower 
layer III has interneurons ( stellate  cells in cortex,  internal granule  cells in the bulb) 
and the output axons with their recurrent side branches (axon  collaterals ) that 
 synapse on interneurons but signi fi cantly on other pyramidal cells. Topologically, 
allocortex is a single synaptic layer containing three kinds of loops. Their complex-
ity is simpli fi ed by de fi ning and using K-sets (Chap. 5 in Freeman  1975  ) , which 
provide a hierarchy of feedback models: excitatory cells (KI 

E
 -sets with mutual exci-

tation, which is positive feedback (Sect.   9.2    )); inhibitory cells (KI 
I
 -sets with mutual 

inhibition (Freeman  1986 ), which is also positive feedback (Freeman  1986 )); and 
excitatory and inhibitory neurons (KII-sets with negative feedback, Sect.   9.7    ). 

  Fig. 8.2    Schematic summary of the transformation of allocortex to neocortex through mesocortex 
(including the entorhinal cortex) by the migration of cells from the  fl oor of the lateral ventricle of 
each hemisphere into layer II of reptilian general cortex. In what became layers II, III, and IV of 
neocortex, they formed the specialized networks that perform the complex operations required for 
visual, auditory, and somatic information processing. The networks are embedded in the global 
sheets of interconnected neurons in layers I, V, and VI. The spatial images from ECoG and EEG 
(Sects.   10.3    ,   10.4    ) illustrate the unity of the scale-free dynamics that is sustained by these embed-
ding layers in both allocortex and neocortex in all vertebrates from mouse to whale (Modi fi ed from 
Miller and Maitra  (  2002 , p. 237) to emphasize the transition from 3 to 6 layers)       
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Higher-order K-sets form a hierarchy of models of cortical populations suf fi cing to 
replicate the properties of evoked potentials, ECoG and EEG (Kozma and Freeman 
 2001 ; Freeman and Erwin  2008  ) .  

 The reptilian allocortex is upgraded in mammals by the massive invasion of 
 neurons from the  fl oor of the lateral ventricle that spread through the neuropil of 
layer II. That invasion creates three new layers giving the six-layered neocortex 
(Schüz and Miller  2002  ) . Axons carrying sensory input from the thalamus organize 
the new layers II, III, and IV into local networks that are specialized to meet the 
unique requirements for extracting and processing sensory information in signal 
energies detected by each of the three neocortical distance sense modalities. 1  At the 
border between allocortex and neocortex is a transitional area often called mesocor-
tex, of which the best known and most important is the entorhinal cortex, which 
serves as a major source of input to the hippocampus and is also its major path of 
output (Sect.   10.5    ). 

 The outer layer I and part of layer II combined with the inner layers V and VI in 
each hemisphere together retain the global structure and function of the allocortex, 
by which they provide a scale-free embedding sheet. This hemispheric sheet, 
roughly 2,000 cm 2  wide and 0.3 cm deep in humans, enabled an evolutionary 
increase in forebrain size with respect to body size by up to two orders of magnitude 
above the size of the rest of the brain. Comparison of mammalian brains with the 
relatively miniscule brains of dinosaurs testi fi es to the extraordinary increase in 
brain size that was made possible by the appearance of neocortex, owing to embed-
ding of innumerable local circuits in the diffuse neuropil derived from allocortical 
neuropil. The dynamics of the mouse and whale brains is essentially the same 
despite the 10,000-fold difference in brain volume. The cortex is said to be  scale-
free  (Sect.   9.4    ), meaning that it works the same way no matter how large or small it 
is. Despite enormous expansion in surface area, the images of ECoG and EEG (Sect. 
  10.5    ) illustrate the unity of global coordination of the diverse functions of the entire 
forebrain that is explicit in Fig.  8.1 . The transcendent dynamic unity in diversity 
implies further that the upper limit of the aperture for imaging the EEG must be the 
entire head. A major aim of this and the next two chapters is to present evidence that 
can support that prediction. 

 The spatial imaging of allocortical ECoG is developed as follows. In Sect.  8.2 , 
we use the temporal structure of allocortical ECoG to introduce the concept of the 

   1   Braitenberg and Schüz  (  1998  )  wrote, “A recent hypothesis by Miller ( 2002 ), based on differences 
in both connectivity patterns and spontaneous activity between upper and lower layers, assigns to 
the upper layers the role of a neuronal ‘library’, storing most of the information encoded by assem-
blies … while the lower layers are assumed to catalyze the process of assembly formation” (p. 150). 
Long cortico-cortical connections are not randomly distributed within the territory that they inner-
vate. Instead they are distributed in patches with high local connection density, with intervening 
regions having few connections (Malach  1994  ) . Kaas  (  1987  )  wrote, “Generalizing from cats and 
monkeys it appears that the evolutionary advance in brain organization is marked by increases in 
the numbers of unimodal sensory  fi elds, not by increases in multimodal association cortex as 
traditionally thought” (p. 147).  
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neural frame as the carrier of macroscopic perceptual patterns. 2  The bulb creates 
them from microscopic sensory information that is carried by pulses from receptors 
in the nose with each inhalation; it transmits the patterns in the form of macroscopic 
clouds of pulses on axons in a divergent-convergent pathway that performs a spatial 
integral transform. In Sect.  8.3 , we display the spatial images of the spatial patterns 
of bulbar impulse responses to electrical stimulation (averaged evoked potentials 
that conform to sums of damped cosine oscillations), which re fl ect mechanisms of 
microscopic sensory processing. Section  8.4  describes the spatial patterns of ampli-
tude of gamma bursts that are induced by inhalation. Section  8.5  focuses on the spa-
tial patterns of phase of gamma bursts that are induced by inhalation, which appear 
as macroscopic oscillations that increment with time rather than decaying. Section  8.6  
describes the mechanism of readout of spatial images by a spatial integral transform 
and not by topographic mapping. Section  8.7  summarizes these points.  

    8.2   The Temporal Structure of the Bulbar 
and Prepyriform ECoG 

 Simultaneous recordings from the olfactory bulb (Fig.  8.3 , OB) and prepyriform 
cortex (PC) con fi rm psychophysical experiments (Murphy et al.  1991  )  that olfaction 
operates by intermittent sampling and batch processing. Inhalation under limbic 
control brings an odorant sample to the nose from the environment with each sniff. 
The impact of the mix of chemicals in the inhaled air initiates a volley of action 
potentials that is delivered to the bulb by axons in the primary olfactory nerve 
(PON). The volley causes a surface-negative respiratory wave with each inhalation 
of the background air in control periods (Figs.   6.1    ,  8.3a ) and the foreground condi-
tioned stimuli in test periods. A brief burst of gamma oscillation begins on the rising 
phase of each cycle of the respiratory wave. The responses of the receiving neurons 
(mitral cells in the OB, pyramidal cells in the PC) reveal increased axonal  fi ring 
rates in proportion to the amplitude of the dendritic wave (Sect.   6.6    ). The mixture of 
chemicals in the inhaled background air is unknown in complete detail, and whether 
a microscopic combinatorial code exists is unclear (Lettvin and Gesteland  1965 ; 
Firestein  2004  ) . The pharmacological aspects of olfaction are not at issue here 
(Freeman  2001  ) . What is important is that the gamma bursts only occur when 
the inhaled air contains a mixture with which the subjects are familiar, including 
odorants to which they are habituated (Fig.  8.3a ). The bursts appear both in the pre-
stimulus control period and in the conditioned stimulus (CS) test period but with 
differing spatial patterns of amplitude. But when a suf fi ciently strong novel stimulus 

   2   There is substantial psychophysical evidence for batch processing and framing in all the cortical 
systems that support distance receptors, coupled with physiological evidence of central rhythms 
(Busch et al.  2009  )  and motor actions that assist in framing, including sniffs, whisks, saccades, and 
speech parsing (Atienza et al.  2002  ) .  

http://dx.doi.org/10.1007/978-1-4614-4984-3_6
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  Fig. 8.3    ( a ) The  upper  and  lower  records respectively show the ECoG of the bulb and cortex. The 
 center  record shows the respiration from a pneumograph around the chest. Beneath is the warning 
odorant (CS) followed by a brief aversive shock to the cheek (an unconditioned stimulus, US). The 
rabbit responded to the CS by snif fi ng and to the US by breath holding. Gamma bursts were seen 
near the crests of the surface-negative theta waves; after training, the bursts had classi fi able spatial 
patterns of amplitude (From Fig. 5 in Freeman and Schneider  1982  ) . ( b ) The upper two records 
show the ECoG of the olfactory bulb and cortex when a novel odor was delivered to a rabbit, which 
elicited an orienting re fl ex (snif fi ng) and suppressed the gamma bursts. We see the chaotic activity 
as necessary for Hebbian learning (Sect.  8.4 ) to form a  new  assembly that is associated with a newly 
learned CS and avoid reinforcing an existing CS (From Fig. 11 in Freeman and Skarda  1985  )        
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is given (B), the gamma bursts fail to appear, and the subjects give an orienting 
response (snif fi ng and searching with ears and eyes; Skarda and Freeman  1987  ) . 
When the novel stimulus is given repeatedly without reinforcement, the burst sup-
pression and orienting diminish and vanish after a few trials. If the novel odorant is 
paired with reinforcement, then gamma bursts reappear within two or three trials, as 
the subjects learn a new conditioned re fl ex (CR), and the bursts carry a new spatial 
pattern not seen before (Sect.  8.4 ). 3    

    8.3   Spatiotemporal Images of Averaged Evoked Potentials 

 The temporal bandwidths of the ECoG waves are much too narrow to carry the 
information that is needed to support olfactory discrimination. Adrian  (  1950  )  pos-
tulated that coding was spatial, not temporal, and that the olfactory information 
would be spatially localized so that, for example, aliphatic compounds might excite 
one part of the bulb and aromatic, another. Therefore, we undertook a test of Adrian’s 
postulate by spatial analysis based on multichannel ECoG recording from closely 
spaced electrodes  fi xed on the surfaces of the olfactory bulb and cortex (Fig.  8.4 , 
OB). We began by determining whether focal electrical stimulation of the olfactory 
receptors in the nose or in the PON displayed topographic mapping from receptors 
to the bulb. We tested by imaging the impulse response (evoked potential, Sect.   1.4    ) 
to focal electrical stimulation of the axons in the primary olfactory nerve (PON) 
from the receptors (Fig.  8.4 ). In order to simulate normal receptor input at low den-
sity, the stimulus intensity of single shocks was kept close to threshold, so that the 
amplitude of the evoked potential (the impulse response to impulse input,  d (t)) did 
not exceed the peak-to-peak range of the ongoing ECoG, and the frequency of the 
evoked oscillation was kept within the gamma range, which constrained the cortex 
to its linear dynamic range (Sect.   6.5    ). The impulse response was extracted by time 
ensemble averaging of suf fi cient single-shock responses (typically 100) to reduce 
the pre-stimulus  fl uctuations to 10% or less the peak amplitude of the peak range of 
the average evoked potential.  

 The array of 64 averaged evoked potentials demonstrated that surface recordings 
of dendritic potentials suf fi ced to resolve spatial pattern localization in the mm 
range. Shifting the focal stimulus site dorsoventrally caused the peak of the spatial 
impulse response to shift in the same way (from right to left in Fig.  8.4 ). Insertion 

   3   The importance of the unpatterned “chaotic”  fl uctuations with novel stimuli (Fig.  8.3b ) should be 
noted. For Hebbian learning to occur, the pair of neurons must  fi re action potentials coincidentally 
(Sect. 6.5), but the spatial patterns of  fi ring must be novel, or else an existing AM pattern would be 
reinforced with no new learning (Uttley  1955  ) . Therefore, the cortex must have a mode of function 
that is described as convergence into the basin of an “I-don’t-know” chaotic attractor (Fig.  6.14 , 
Sect. 6.9), which can provide the unstructured activity needed for trial-and-error associative learn-
ing (Skarda and Freeman  1987  ) .  
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of the stimulating microelectrode in steps of 50  m m into the depth of the PON 
shifted the peak from posterior to anterior in the array (top to bottom). These cor-
relations were in accord with the anatomical topographic organization of the PON 
on the bulbar surface (Freeman  1974a  ) . 

 The grand average of the 64 averaged impulse responses was  fi tted with a 
damped cosine (Sect.   6.5    ) to measure the gamma response by  fi tting sums of linear 
basis functions (Freeman  1974b  )  using nonlinear regression. 4  From these data, 

   4   A function that contains one exponential term can be  fi tted to a neural impulse response by linear 
regression, for example, the passive membrane decay potential on impulse input, by transforming 
to semilog coordinates. Contrariwise  fi tting a function containing cosines or the sum of two or 
more exponential terms requires nonlinear regression, which is a method of successive approxima-
tions that simultaneously adjusts all of the parameters for both signal and nonwhite noise also 
known as  clutter  (Freeman  1979b ; Samar et al.  1999  ) .  

  Fig. 8.4    ( a ) A set of 64 average evoked potentials were the bulbar response to single-shock electric 
stimulation of the primary olfactory nerve (PON) 2 mm anterior to the array (above the  arrow ) 
(number of shocks = 335). The  arrow  indicates the direction of propagation of the afferent volley 
of action potentials preceding the bulbar response. ( b ) The diagram shows the dorsal surface of the 
 left  hemisphere of the rabbit forebrain. The rectangles outline the size and location of an 8 × 8 
recording array  fi xed on the olfactory bulb (OB), prepyriform cortex (PC), somatic cortex (SOM), 
auditory cortex (AUD), visual cortex (VIS), and (in the cat) entorhinal cortex (ENT) (see Sect. 
  10.3    ). The two circles show the mean and 95% inclusion diameters (15 mm and 28 mm) of coher-
ent oscillations in the neocortical gamma ECoG (Fig. 9.5d, Sect.   9.4    ) (Evoked potentials from 
Freeman  (  1975 , p. 221) drawing adapted from Barrie et al. 1996)       
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a linear differential equation was constructed, for which the solution was a sum of 
exponential terms with which to simulate the impulse response (Fig.  8.5a ), includ-
ing the baseline shift corresponding to the respiratory wave (Fig.  8.3 ). Then the 
same equation was  fi tted to each of the 64 responses to get the amplitude of 
the gamma cosine (b) and the amplitude of the baseline shift (c). The frequency of 
the cosine was found to be everywhere nearly the same, so the 64 phase values were 
measured at the mean frequency, revealing an anteroposterior phase gradient (here 
3.5 rad/mm) in the direction of conduction of PON axons (downward arrow). 
Division of the cosine frequency (here 45 Hz = 285 rad/s) by the gradient (rad/m) 
gave an estimate of the conduction velocity of the PON (here ~ 1 m/s). The results 
showed that the spatial amplitude and the phase gradient of the bulbar oscillation 
evoked by the afferent axons were both determined by the location of the input. 
They showed that the array for recording had the spatial and temporal resolution 
needed to test Adrian’s hypothesis using the ECoG (Fig. 7.8, Sect.   7.5    ) that olfac-
tory coding is spatial.   

  Fig. 8.5    ( a ) Grand average evoked potential was  fi tted by nonlinear regression with the sum of 
linear basis functions ( solid curve ): a damped cosine and the sum of three exponential terms 
( dashed curves ). ( b ) Amplitudes of the 64  fi tted cosines were displayed in a contour map. ( c ) A 
contour map showed the 64 amplitudes of the sum of exponential terms  fi tted to the baseline shift. 
( d ) Phase lag was from anterior to posterior across the bulb ( arrow  as in Fig.  8.4 ). ( e ) Contours 
showed the phase of the cosine at the shared frequency. ( f ) Decay rates of the  fi tted damped cosines 
were proportional to peak amplitude as explained in Sect.   6.7     (Fig. 6.12c). (From Fig. 4.32, p. 230 
in Freeman  (  1975  ) )       
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    8.4   Spatial Images of Amplitude Modulation 
(AM Patterns) of ECoG 

 The de fi nitive test of Adrian’s postulate using the ECoG would be to demonstrate 
whether spatially localized peaks in amplitude of the bulbar ECoG are correlated 
with odorant CSs that subjects can discriminate. That was because the hypothesis 
held that odorant information conveyed in PON volleys determined the locations of 
maximal bulbar  fi ring rates and the accompanying ECoG amplitudes from dendritic 
current density (Fig. 6.2, Sect.   6.2.1    ; Fig. 7.7, Sect.   7.5    ). In tests with naïve subjects, 
we found that during the pre-stimulus control state the carrier frequency of the burst 
with each inhalation (Fig.  8.3a ) had a spatial pattern of  amplitude modulation  (AM) 
of the common carrier frequency (Fig.  8.6 ,  left ). This spatial AM pattern was like a 
signature for each subject; it was unique to each subject and yet never twice identi-
cal (set 1, “air”) (cf. human EEG, Fig. 10.9, Sect.   10.4    ).  

  Fig. 8.6    The 64 ECoGs from a single burst show the shared frequency in the gamma range having 
64 values of amplitude that form an AM pattern. The signal at channel 9 (“x”) was recorded from 
the prepyriform cortex, replacing a broken channel. In statistical analysis, bad signals were replaced 
with averages of two neighboring signals. The middle frames show the contour plots of amplitudes 
comparing the mean AM patterns of ten trials after CR acquisition of pre-stimulus control bursts 
(“air”) and teb bursts snif fi ng amyl acetate (“amyl”), a volatile chemical quickly clearing from the 
odorant delivery system. The frames at  right  show the changed AM patterns after 2 weeks of  con-
solidation  after reinforcement at weekly intervals. The conditioned response (CR) was snif fi ng, 
which was a  fi xed motor action that psychologists call an  autoshaped response  (Freeman and 
Viana Di Prisco  1986  )  (From Fig. 7 in Freeman and Schneider  (  1982  ) )       
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 Initial testing by delivering odorants at low concentrations to anesthetized or 
waking subjects had no effect on the ECoG. At easily detectable concentrations, the 
delivery of novel odorants to awake subjects suppressed the control AM pattern 
(Fig.  8.3b , Sect.  8.2 ) and elicited an orienting re fl ex response. When the stimulus 
was unreinforced (CS-), then within a few trials, the chaos and the orienting response 
abated, and the control AM pattern reappeared (CSo) (Emery and Freeman  1969  ) . 
When the stimulus was reinforced (CS+), a new AM pattern emerged (Fig.  8.6 , set 
1, “amyl,” here the odorant amyl acetate). We concluded that the ECoG responded 
to odorants only if the subjects were induced to pay attention by conditioning 
(Freeman and Schneider  1982  ) . 

 In themselves, the AM patterns lacked any recognizable geometry. The mean 
amplitude and carrier frequency were unrelated to odorant type or intensity. The 
AM patterns were best displayed after = normalized to z-scores (zero mean and unit 
variance). Successive AM patterns in each subject were characterized by small 
deviations from the signature amplitude pattern on all channels, which accumulated 
over days, weeks, and months in drift. The spatial variations in shared carrier fre-
quency and phase were so limited that 90–95% of the variance in principal compo-
nents analysis was in the  fi rst component. The 64 amplitudes were derived equally 
well from the  fi rst component of PCA of the AM pattern of each burst, or the ana-
lytic amplitude from the Hilbert transform (Sect.   9.5    ), or the root mean square 
amplitude after band pass  fi ltering in the beta or gamma range. 

 All three methods gave a 64x1 feature vector for each burst that speci fi ed a point 
in 64-space. Sets of AM patterns were represented graphically by projecting the 
feature vector tips into 2-space (Fig.  8.7a ) by linear discriminant analysis (Freeman 
and Viana Di Prisco  1986  ) . Similar AM patterns gave a cluster of points in a multi-
variate Gaussian distribution. Each cluster had a center of gravity (centroid) calcu-
lated as a central point in the graphic display with a circle around it of radius SD 
(Fig. 6.8, Sect.   6.4.4    ). Each cluster corresponded to a CS + or CS- or the control 
input (CSo). Classi fi cation of each burst was by calculating the Euclidean distance 
of its point to every centroid and  fi nding the minimum distance. Signi fi cance of the 
level of classi fi cation was by calculating the binomial probability of linear separa-
tion having occurred by chance.  

 AM pattern categories held only within sessions. The Euclidean distances 
between centroids across sessions exceeded the distances within sessions. This 
re fl ected the irreversible drift of signature AM patterns, in some subjects up to four 
years of array recording. Sessions in which a new CS + was introduced were marked 
by signi fi cant jumps in intersession distances between centroids (Freeman and 
Grajski  1987 , reproduced in Fig. XI, B, p. 268, Freeman  2000  ) . 

 The AM pattern differences shown between “air” and “amyl” appeared at  fi rst to 
con fi rm the Adrian’s postulate because the ECoG seemed to point to the areas in the 
bulb in which neurons were most strongly driven by the CS + or CS- and so could 
serve to direct the search with microelectrodes for the neural representations of the 
CSs in high rates of  fi ring of selected neurons. However, the postulate of CS repre-
sentation by ECoG amplitude failed in two respects. First, learning did not cease 
with reinforcement trials. It continued overnight and through the following week in 
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 consolidation , so that the same stimuli gave different AM patterns in different contexts 
(Fig.  8.6 , trial set 3) and with every change in the experience of the subjects, includ-
ing reversals in reinforcement between CS + and CS-, adding new CSs, or switching 
to new CRs. Second, systematic testing by channel deletion showed that every chan-
nel contributed equally whether high, low, or volatile (Fig.  8.7b ), so the density of the 
classi fi catory information was uniformly distributed over the entire array as in a 
hologram (Pribram  1991  ) . In a metaphoric sense, both light and dark were required 
to make a pattern, and all levels of gray scales were equally informative. 

 The clustering of feature vectors implied the existence of a bulbar mechanism for 
generalization and abstraction. The olfactory system in common with other sensory 
modalities has massive convergence from receptors to cortical projection neurons, 
minimally 10 3  equivalent receptors for each mitral cell. Only a sample is selected on 
each sniff, but it differs on every sniff. The mechanism for generalization is inferred 
to be by formation of a  Hebbian assembly  during training with pair-wise strengthen-
ing of synapses between co-activated neurons (Fig.  8.8a ). Alternating trials with a 
CS- were required with anti-Hebbian learning leading to habituation (Kozma and 
Freeman  2001  ) . The reduction of gain with habituation is reversible; the strengthen-
ing of gain with association is not. Any subset excited thereafter ignites the entire 

  Fig. 8.7    ( a ) Each symbol shows the AM pattern of a burst plotted as a feature vector in 64-space 
and projected into 2-space. Similar patterns of multiple bursts gave a cluster of points around a 
center of gravity (centroid). Each CS+, CS-, or CS0 gave a separate cluster. Classi fi cation of bursts 
was accomplished by calculating the Euclidean distance to every center and  fi nding the closest 
center. Goodness of classi fi cation was expressed as % correct by linear separation (From Freeman 
and Viana Di Prisco  1986  ) . ( b ) The goodness of classi fi cation for 4 subjects was repeatedly calcu-
lated 40 times, each time with deletion of a different set of channels randomly selected in groups of 
8 to 56. The classi fi cation ef fi cacy increased with the number of channels. A running tally was kept 
for each channel of the scores when it was selected. The sum divided by the number of times used 
showed that the classi fi catory information was uniformly distributed; no channel had any more or 
less information than any other. Comparable results have been found for all of the sensory neocor-
tices and for the EEG (Sect.   9.6    ; Figs. 10.3 and 10.8) (From Fig. 16 in Freeman and Baird  (  1987  ) )       
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assembly, which ampli fi es abstracts by deleting information on which neurons were 
excited on each trial, and generalizes to the category of the CS as de fi ned by the 
cumulative sampling. Localization of the modi fi ed synapses to synapses between 
mitral cells was by measuring the averaged evoked potentials of the olfactory bulb 
(Figs.  8.4 ,  8.5 ) and cortex when the subjects were trained to use the evoking shock 
train as a CS (Emery and Freeman  1969  ) . With CR acquisition, the duration of the 
initial negative peak, N1, of the evoked potential was prolonged, and the phase lag 
of the  fi tted cosine (Fig.  8.5a ) increased. Con fi rmation of enhanced mutual excita-
tion was by measuring the second peak of the PSTH during N1 (Freeman 1968; 
Nicoll  1971  )  and modeling its increase in density upon increasing the positive excit-
atory feedback gain, k 

ee
  (Fig.  8.8b ).   

 A signi fi cant secondary effect of the increase in positive feedback gain,  k  
 ee 

 , was 
to increase the negative feedback gain,  k  

 n 
 , between excitatory and inhibitory popu-

lations (Fig.  8.8b ). Notably an increase in synaptic gain of 7% can support a 50-fold 
increase in gamma power. The simulation shows that the Hebbian synapse (Fig.  8.8a ), 
which sustains positive feedback between the excitatory neurons (Amit  1995  ) , is an 
extremely powerful ampli fi er of gamma oscillation, when the excitatory neurons 
are coupled with inhibitory neurons in negative feedback (a KII-set (Freeman and 
Erwin  2008  ) . The Hebbian assembly is major component of the transition of cortex 
from sparse coding to high-density integration. 

  Fig. 8.8    ( a ) Sensation by a sniff begins with selection by a CS of some among equivalent receptors 
(two  black dots ), transduction to action potentials, and transmission to mitral cells in the bulb via 
topographic mapping. Generalization is by excitation ( fi ve  dots ) of a Hebbian assembly, which 
directs bulbar dynamics to a basin of attraction in a landscape of attractors that constitute a sample 
of olfactory memory (Fig. 6.14, Sect.   6.9    ). The resulting AM pattern is transmitted via a divergent-
convergent projection that abstracts the perception by attenuating extraneous details of receptor-
driven activity (Modi fi ed from Fig. 15 on p. 87 in Freeman  2001  ) . ( b ) Simulation has shown that 
the increase in the strength of synapses that sustain mutual excitation greatly enhances the gamma 
oscillations from interactions of excitatory and inhibitory neuron populations (From Fig. 13 on p. 
32 in Freeman  (  1979a  ) )       
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 In summary, the high-resolution images of the allocortical ECoG in olfaction 
revealed the existence of spatial AM patterns in sequential frames, which might be 
likened to the systolic packaging of batches of information for dissemination on the 
Internet. The spatial AM patterns formed only after reception of CSs that were made 
signi fi cant by associative learning under reinforcement, which formed a Hebbian 
assembly for each discriminable class of input. They lacked invariance with respect 
to the CSs because they changed with consolidation in the aftermath of learning and 
then by serial conditioning in which all preexisting AM patterns changed incremen-
tally with training to recognize each new stimulus (Freeman and Schneider  1982 ; 
Freeman and Grajski  1987  ) . Therefore, Adrian’s postulate was partially con fi rmed 
that olfactory coding was indeed spatial, but the classi fi catory information was not 
localized in the bulb, and it lacked invariance with respect to invariant stimuli. We 
concluded that the AM patterns did not represent the stimulus input. It represented 
a memory that was retrieved by the stimulus, which evolved with each recall. 

 The dynamics of the olfactory system is legendary for its sensitivity, acuity, 
speed of operation, and range of comprehension. When modeled by differential 
equations comprising a KIII set (Freeman and Erwin  2008  ) , it has been developed 
and applied to pattern classi fi cation for a broad range of sensory modalities: olfac-
tory (Fu et al.  2007 ; Yang et al.  2006  ) , visual, mechanical (Kozma et al.  2007  ) , 
auditory (Shimoide and Freeman  1995 ; Li et al.  2007  ) , and chemical inputs (Hu 
et al.  2006  ) . Its performance emulates its biological inspiration in learning from a 
few samples (5 to 20 examples of each category), rapid convergence (a single-phase 
transition instead of gradient descent), geometric rather than arithmetic increase in 
number of classes to be categorized with increase in number of nodes, and integra-
tion of multiple modalities of input by linear vector algebra (Kozma et al.  2005 ; Li 
et al.  2006  ) . Its limitation is in the computational burden of solving hundreds of dif-
ferential equations numerically. Facilitation is being sought in analog VLSI (Principe 
et al.  2001  )  and random graph theory (neuropercolation, Kozma et al.  2008  ) .  

    8.5   Spatial Images of Phase Modulation 
(PM Patterns) of ECoG Bursts 

 The retrieval of the memory of an olfactory stimulus at the  fi rst synapse in the olfac-
tory path is a microcosm for elicitation of the mental qualities of stimuli in all pri-
mary sensory cortices (Chap.   9    ). It is of paramount importance to understand how 
recall is done. Multichannel array recording of ECoG bursts on inhalation demon-
strated that each burst had a narrowband carrier frequency that was shared over the 
entire bulb. The oscillation showed spatial modulation in amplitude and also in 
phase (Fig.  8.9 ). The phase modulation (PM) provided a basis for explaining the 
process of memory retrieval. 

 It was immediately apparent that the phase gradient of the carrier wave did not 
conform to the delay, direction, and velocity that were imposed by PON axons com-
ing from the receptors to the bulb ( arrow  Fig.  8.5b, e ). Instead, the gradient across 
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the window of observation remained constant within each burst for its duration 
(Fig.  8.3a ), but it varied randomly in slope and direction from each burst to the next. 
The 8 × 8 phase values on the bulbar surface could not be  fi tted with a plane or a 
bivariate Gaussian envelope (Freeman and Baird  1987  ) , but it could be  fi tted with a 
right cone. An example of the cone is displayed as a set of concentric circles and 
arcs representing isophase contours at intervals of 0.1 rad (5.7°, Fig.  8.9 ). The phase 
modulation (PM) resembled the wave pattern of a stone dropped into a still pond at 
the apex (Fig. 9.11, Sect.   9.6.1    ). The location of the apex of the cone varied ran-
domly with successive bursts over the bulbar surface and so did its sign. There was 
approximately equal incidence of maximal lead at the apex giving the extreme posi-
tive phase as at the point of an explosion or maximal lag giving the extreme nega-
tive phase as at the focus of an implosion. 

  Fig. 8.9    The olfactory bulb of the rabbit is displayed as seen from the lateral view of the surface. 
The square outlines the 3.5 × 3.5-mm array. The roughly spherical bulbar surface is  fl attened into a 
plane, with equal distance from the north pole centered in the array to the south pole at the antipo-
des ( large circle ). Each 8 × 8-valued phase surface was constructed from the phase values at 
the frequency with maximal amplitude by the FFT of the 64 ECoG segments containing a burst. 
A conic surface was  fi tted to the 8 × 8 values in the phase surface by nonlinear regression with least 
squares residuals. Filled dots (•) showed maximal lead and open dots (o) showed maximal lag at 
the apices (From Freeman and Baird  (  1987  ) )       
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 The slope of the phase gradient in rad/m appeared to vary unpredictably from 
each oscillatory burst to the next, but it did so concomitantly with the ECoG fre-
quency in rad/s. The ratio, carrier frequency/phase gradient, gave the phase velocity 
in m/s. The average, 1.89 ± 0.36 m/s, approximated the estimated conduction veloc-
ity of small myelinated axon collaterals of mitral cells radiating in all directions 
parallel to the surface and not the average conduction velocity of the unmyelinated 
PON axons, 0.42 ± 0.08 m/s, running in parallel anteroposteriorly across the bulbar 
surface. The maximal cumulative phase difference of a wave spreading across the 
whole bulb at the depth of the mitral cell layer in the rabbit was calculated to be 
 p /4 rad (45°, cos = 0.707). At that distance, the oscillations began to go out of phase, 
so the strength of interaction that sustained spatial coherence was weakened. The 
reduced feedback gain (Fig. 6.12, Sect.   6.7    ; Fig. 9.11, Sect.   9.6.1    ) set a limit on the 
size of an interactive domain because the phase dispersion reduced the shared power. 
At some distance, the interaction was too weak to recruit more neurons into coher-
ence. We adopted the phase difference of  p /4 as the soft boundary condition of the 
size of the coherent domain, at which the shared power decreased to one half. That 
distance in the bulb corresponded to the circumference of the mitral layer of the 
rabbit bulb (~10 mm). The modal frequencies of bulbar carrier frequencies were 
found to vary inversely with bulbar size from 110 Hz in the mouse down to 25–30 Hz 
in the pig (Bressler and Freeman  1980  ) . The negative correlation suggested that 
evolution adapted the carrier frequency to bulbar surface area so that every trans-
mission of a gamma burst included all subpopulations of transmitting neurons in the 
bulb without degrading the integrated signal by excessive phase or frequency dis-
persion and the resulting interference (cancellation of excitatory and inhibitory 
oscillations by phase lag). 

 Every burst had a carrier frequency that was nearly constant for the duration of 
each burst and had a low but signi fi cant spatial variance (Sect.   6.3    ). The phase cal-
culated at the carrier frequency with respect to the phase of the spatial ensemble 
average in the beta and gamma ranges was distributed in space, not zero lag as pre-
dicted from unit studies (Singer and Gray  1995 ; Roelfsema et al.  1997  ) . Each burst 
was a standing wave, not a traveling wave. This property preserved the AM pattern 
for the duration of the burst, giving the same feature vector at each time step despite 
the rise and fall in mean power (Fig. 6.5, Sect.   6.3    ). The phase cone revealed distri-
butions of the lead or lag at each recording point in onset of the burst. The spatial 
location and sign of the conic apex were  fi xed in each burst within the limit of reso-
lution (the interelectrode distance), but varied randomly from each frame to the 
next. The frequency (rad/s) and phase gradient (rad/m) covaried randomly so that 
the ratio (the phase velocity in m/s) was relatively invariant in conformance with the 
conduction velocity of intrabulbar axons (Freeman and Baird  1987  ) . 

 The difference between the input-dependent, the planar phase gradient of the 
stimulus-driven oscillatory impulse response, and the conic phase gradient of the 
endogenous bulbar response is profoundly signi fi cant. On the one hand, the arti fi cial 
input causes a local subset of the bulbar negative feedback loops to oscillate like the 
ringing of a bell. The time of onset, location, dissemination, and amplitude are all 
determined by the shock input. The response decays exponentially from an early 
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maximum. On the other hand, the burst is triggered, not driven, by inhalation of a 
CS. It begins after brief but random endogenous delay and radiates from or to an 
endogenously determined point at the conic apex, and it covers the entire bulb. The 
amplitude converges exponentially to a maximum and thereafter decays. These 
differences provide evidence that the bulb constructs a complex pattern when it 
receives a CS (Sect.   6.6    ). The pattern may contain far more information than does 
the stimulus that triggers it. Some of that information is in the spatial AM pattern. 
None is in the carrier frequency, cone location, or slope. The phase does provide 
information by revealing the location (Figs.  8.8 ; 9.6a), diameter (Fig. 9.6d, Sect. 
  9.4.1    ), and duration (Fig. 9.7, Sect.   9.4.2    ) of the bursts, both the bursts that are 
initiated by CSs (Fig.  9.7e     ) and the bursts found in the background activity of 
ECoG (Fig.  9.7a ; Fig.  8.3a)  and EEG (Fig.  10.6 ) (See  avalanches , Sect.   6.9    )      . 

 Based on these and related data, we postulate that the elicitation of a memory by 
a stimulus requires a change in cortex from low-density sparse  fi ring of neurons at 
high rates to high-density  fi ring of virtually all cortical neurons at low rates 
(Chap.  11    ). Con fi rmation has been undertaken by systematic correlation of the exci-
tation and inhibition of pulse trains from single neurons (Freeman  1974b  )  with the 
spatial patterns of evoked potentials (Figs.  8.4 ,  8.5 ). The pulse  fi ring evoked by 
electric shocks was sparse and occurred only within a small area of the bulbar sur-
face, to which the stimulus site directed the PON volley. Spreading within that area 
was by small increments in that area with alternating excitation and inhibition in 
each quarter cycle. The evoked  fi ring rates decremented with each time step (Fig. 
4.48 on p. 259 in Freeman  1975  ) . In contrast, the inhalation of a CS initiated 
increases in pulse density (Figs. 6.2, Sect.   6.2.2     and Fig. 6.11, Sect.   6.6    ) that spread 
at high velocity over the entire bulb within a quarter cycle of the carrier frequency. 
The form of spreading was called  anomalous dispersion  (Freeman  1990  )  because 
the macroscopic distance covered (10 mm) exceeded by an order of magnitude the 
average microscopic step size of serial synaptic transmission (0.5 mm, Sect.   4.5     in 
Freeman  1975  ) . 

 We have adopted the term  phase transition  to describe the change (Kozma et al. 
 2005  )  as condensation from randomness to order (Fig. 6.5, Sect.   6.4    ; Sect.   9.4    ) fol-
lowed by evaporation as bursts terminate (Fig. 6.6, Sect.   6.4.2    ; Fig. 9.12, Sect.   9.6.2    ; 
Chap.  11    ). It begins at a point on the 2-dimensional neural surface (the conic apex) 
and radiates as in the formation of a raindrop, or it begins afar and converges to a 
point at the apex. A possible explanation thereby emerges for the random incidence 
of phase lead vs. phase lag at the apex, which is based on anatomical evidence that 
distributions of connection distances among cortical neurons are power-law, not 
exponential (Freeman and Breakspear  2007 ; Freeman and Kozma  2010  ) . That topo-
logical form of connectivity indicates that the dynamics is scale-free (Sect.   9.4    ), so 
that on reaching a threshold of intensity of interaction, the entire interconnected 
mass of neurons can undergo a phase transition, regardless of size (Wang and Chen 
 2003 ; Freeman and Vitiello  2006  ) . If the randomly distributed connection weights 
momentarily favor the local connections, the phase transition is explosive. If they 
favor long connections, the phase transition is implosive (Kozma et al.  2005 ; 
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Freeman et al.  2009  ) . Mathematical modeling of this phenomenon using chaos 
 theory (Skarda and Freeman  1987  )  and many-body physics (Freeman et al.  2009 ; 
Freeman et al.  2012  )  is beyond the scope of this book.  

    8.6   Transmission of Macroscopic Patterns 
to Other Areas of Cortex 

 The next problem faced by the olfactory system is to send the distributed perceptual 
information to all parts of the brain that need it in a form that is compatible with the 
forms of all other sensory modalities. The solution to the problem is shown by the 
topological structure of the output path of the bulb, the lateral olfactory tract (LOT, 
Fig.  8.8a ). Whereas the PON input path is organized topographically, the LOT out-
put path is divergent-convergent. The axon of every transmitting mitral cell forms 
synapses on a wide distribution of target neurons, inside the bulb by axon collateral 
branches and outside the bulb into the basal forebrain by synapses  en passant  as the 
axons extend over the cortical surface. Each target neuron receives synapses from a 
wide distribution of transmitting neurons and sums its dendritic currents at its trig-
ger zone. This one-to-many and many-to-one of the LOT performs a spatiotemporal 
integration on bulbar output, the Gabor transform (Fig.  8.8a , Sect.  8.4 ). The opera-
tion is analogous to that of a lens or a holograph (Pribram  1991  ) . The bulb creates 
the AM pattern by convergence to an attractor with the narrowband carrier, which 
conforms to the properties of coherent light. The Gabor transform delocalizes the 
information expressed in the AM pattern. The operation enhances by coherence of 
the macroscopic perceptual activity that has everywhere the same frequency and 
phase, which the bulb has created in bursts, while it attenuates by smoothing the 
sensory-driven activity that lacks spatial coherence and synchrony. 5  However, cor-
tex is not a holograph because it deletes massive quantities of information in catego-
rizing and abstracting, and it has no inverse, whereas the holograph stores everything 
it receives and can retrieve it (Pribram  1991  ) . 

 The prepyriform cortex and adjacent anterior olfactory nucleus (AON) have 
extensive connections recurrent to the bulb via the medial olfactory tract, forming t. 
Each of the three parts has its characteristic frequency, which is nonharmonic and 
incommensurate with the other frequencies (Kozma and Freeman  2001  ) . The posi-
tive excitatory feedback among them continuously increases the activity, while the 
thresholds and refractory periods continuously curb it, with no convergence to any 
characteristic frequency, so the three-way interaction results in the broad spectrum 

   5   It is noteworthy that this one-to-many and many-to-one topology can explain macroscopic per-
cept transmission, but it is also compatible with transmission of any number of microscopic signals 
to local circuits, which could extend further olfactory sensory information processing deep into the 
forebrain. An example is provided by the functions of the accessory olfactory system in rodents 
devoted to reproductive function (Freeman  2001  ) .  
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1/f background ECoG (Skarda and Freeman  1987  ) .    6  When the prepyriform cortex is 
deprived of bulbar input by cutting or inactivating the LOT, the cortex goes silent, 
while bulbar activity becomes periodic, revealing the characteristic frequency of the 
bulbar limit cycle attractor. We infer that the prepyriform cortex is unlike the bulb, 
in that it lacks the capacity for self-organization and that its AM patterns are not 
emergent but driven by bulbar input. The LOT distributes the knowledge that is 
selected from the memories stored in the bulb over the prepyriform cortical surface. 
The dense neuropil of layers I and II (Fig.  8.2 ), which generates the prepyriform 
ECoG, displays it as classi fi able AM patterns re fl ecting textures in clouds of macro-
scopic pulse densities. But the deep pyramidal cells in layer III, which are relatively 
sparse and have widely radiating basal dendrites, transmit the prepyriform output. 
We conceive that they down-sample the surface AM pattern by integrating over 
local patches, which spatially coarse-grains prepyriform activity and converts it 
from macroscopic pulse densities to microscopic pulse frequencies through many-
to-one convergence. By this operation, the output of the olfactory system is at the 
same microscopic level as its input, but whereas the receptor pulse inputs signify 
sensory information, the prepyriform pulse outputs signify perceptual meaning. We 
conceive the deep pyramidal cells as possible category cells or precursors for  con-
cept cells  (Quian Quiroga  2012  ) , for which the cognitive correlates are not sensa-
tions, but abstract conceptions expressed in equivalent sensory representations 
associated with a concept (Sect.   11.5    ). The conversion and transmission of AM pat-
terns in sparse form completes olfactory perception (Freeman  1991  ) . 

 Because the density of the information in the ECoG that enables the categoriza-
tion of CSs is spatially uniform, each part of the LOT can have the whole signal 
though at reduced resolution, just as a hologram can be broken into pieces with 
every piece retaining the whole. Every fraction of the LOT transmits the same mes-
sage to multiple target areas in the basal forebrain, and each target can tune itself 
whether to accept or reject it in accord with its own state (Traub et al.  1996 ; 
Whittington et al.  2000  )  (Sect.   6.8    ). By this topology, the bulb interfaces between 
the olfactory receptors and the elements of the limbic system, which have differing 
constraints on embryological development of the brain. The integral transform by 
the LOT goes beyond feature binding of various facets of a stimulus. The bulbar 
output of pulse clouds carries also the memory of the stimulus. The bulbar opera-
tions of generalization by the Hebbian assemblies, phase transition to a limit cycle 
attractor, and abstraction by spatiotemporal integration comprise the  fi rst steps in 
the transition from the material sensory domain to the mental perceptual domain 
because the odorant substances are common to all in the world, but the Hebbian 

   6   The interaction of an excitatory population (KI 
E
  set) with an inhibitory population (KI 

I
 -set, gov-

erned by point attractors) forms a KII-set governed by a limit cycle attractor (Freeman and Erwin 
 2008  ) . The interaction of three KII sets (KII 

OB
 , KII 

AON
 , KII 

PPC
 ) forms a KIII set governed by a 

chaotic attractor (Fig. 6.14) (Skarda and Freeman  1987  ) . The interaction of three KIII sets (olfac-
tory, hippocampal, and septoamygdaloid) forms a KIV set that suf fi ces to model the brain of the 
salamander (Fig.  8.1 ) (Kozma et al.  2003 ). KV is reserved for neocortex (Freeman et al.  2009  ) .  
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assembly, the attractor, the pulse cloud vector  fi eld, the AM pattern in the ECoG, 
and the odor exist only in the brain and mind of the individual. Ultimately at the 
level of the motor systems giving the CR the lack of invariance is resolved down-
stream by analogous operations of selection by a perceptual signal of the basin of 
attraction of a response that is invariant with respect to category, but adapted in 
respect to the unique circumstances of responding by taking action. 

 In the primitive vertebrate forebrain (Fig.  8.1 ), the olfactory bulb and the transi-
tional area interact directly with the hippocampus and the pyriform cortex. 7  In mam-
mals, the bulbar transmission directly to the hippocampus is reduced to a rudiment 
dorsal to the corpus callosum. Bulbar transmission is mainly to the parts of the 
prepyriform cortex, with further transmission to the entorhinal cortex (Fig.  8.2 ). 
These are the AON anteriorly, which feeds back to the bulb in regulating bulbar 
output: the periamygdaloid cortex posteriorly, which forms the corticomedial part 
of the amygdaloid nucleus in service to the motor systems (LeDoux  2000  ) ; and 
between them the prepyriform cortex, which displays oscillatory bursts driven by 
the olfactory bulb (Fig.  8.3 ) and by central components of the limbic system 
including the entorhinal cortex (Bressler  1987 ; Kay et al.  1996 ; Kay and Freeman 
 1998  ) . There are as yet no high-resolution array images of gamma ECoG from the 
hippocampus because the cortical layers are complexly folded and compressed. 
Therefore, little can be said at present about the patterns of its macroscopic  fi elds. 
Recordings of action potentials combined with time series analysis of ECoG from 
selected sites have shown that the hippocampus maintains a  cognitive map  (O’Keefe 
and Nadel  1978  )  using  place cells , which are closely related to animal navigation 
through behavioral space. Temporal recordings show the now familiar systolic 
packaging of activity in bursts that is described as theta-gamma linkage (Buzsaki 
 2006  ) , but the spatial images of gamma phase and amplitude within the bursts are 
yet to be measured at high spatial resolution, and the search for phase gradients and 
discontinuities has not yet been undertaken. 

 The most signi fi cant bulbar and prepyriform outputs go to the entorhinal cortex, 
which is a transitional form often called  mesocortex  (Fig.  8.2 ) that receives input 
from all sensory systems and transmits it to the hippocampus. It is strategically 
located for the next step in perception, which is to integrate the macroscopic signal 
from olfaction with the signals from all other sensory modalities into a multisensory 
percept (a gestalt, Köhler  1940 ; Fig. 10.3, Sect.   10.3    ). The combined pattern is 
transmitted to the hippocampus, where the information about the behavioral time 

   7   A hierarchical dynamic model of the primitive forebrain has been constructed from K-sets to 
simulate the performance of the action-perception cycle (the KIV model, Kozma et al.  2003  )  incor-
porating the sensory, motor, and associational lobes seen in Fig.  8.1 . The model has been implanted 
as the controller of a prototype of NASA’s Martian rovers, the SSR2K platform (Kozma et al. 
 2008  ) . The autonomous robot generated repetitive AM patterns of gamma oscillations by phase 
transitions. The AM patterns enabled it to form multisensory gestalts in reinforcement learning by 
creating Hebbian assemblies from pairs of visual and kinesthetic inputs. Thereby, the robot learned 
to identify and avoid hazards in pursuit of its self-sustained goals.  

http://dx.doi.org/10.1007/978-1-4614-4984-3_10
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and place of the subject at the moment of gestalt formation is incorporated. Of direct 
relevance here are recordings of spike trains from neurons in human medial tempo-
ral cortex, entorhinal cortex, and hippocampus (concept cells, Sect.   11.5    ), which 
manifest integration of cognitive information over multiple sensory modalities 
(Tanaka  2003 ; Quian Quiroga et al.  2009 ).  

    8.7   Summary 

 The case is made that the olfactory system provides the optimal model for percep-
tual dynamics in all sensory systems, culminating in hemisphere-wide coherent 
oscillations in the beta-gamma range. 

 Weak electrical shocks of sensory axons to the bulb give oscillatory impulse 
responses with narrowband frequencies in the gamma range. The averaged responses 
carry spatial patterns of amplitude and phase displayed as spatial AM and PM pat-
terns. Evoked response amplitudes rise with short,  fi xed delay, and exponential 
decay from the initial maximum to the pre-stimulus background level. The spatial 
location of the peak and the rate and direction of its motion depend on the location 
of the stimulus site, so the evoked patterns represent the input. 

 Inhalation of conditioned stimuli (CSs) gives gamma bursts with amplitudes that 
increment after onset. Each burst spreads over the entire bulb within a quarter cycle 
of the carrier wave in a conic phase gradient. The directions and velocities conform 
to the conduction velocities of bulbar axon collaterals, not those of the input axons. 
The onset times and durations of bursts vary unpredictably (“jitter”). The spatial AM 
patterns are determined by modi fi ed synapses in the collateral connections, not by the 
locations of activated input axonal synapses. The AM patterns represent memories. 

 These differences in AM patterns and the conic PM patterns show that the bulbar 
ECoG images are self-organized by bulbar neural populations following reinforce-
ment learning. The emergence of a burst with a classi fi able AM pattern requires the 
formation of an attractor by reinforcement learning in two stages. During initial 
learning, the pair-wise excitation of bulbar excitatory neurons creates a Hebbian 
assembly, which forms cumulatively by strengthened synapses on reinforced (CS+) 
trials and weakened synapses on unreinforced (CS-) trials (Emery and Freeman 
 1969  ) . Subsequently, during consolidation, a new attractor forms that integrates the 
assembly with contextual memory and provides a basin of attraction de fi ned by the 
learning set. 

 In perception of a CS, the Hebbian synapse ampli fi es the gamma oscillation and 
assigns the CS to a category by generalization and abstraction; the attractor directs 
formation of an AM pattern that expresses the contextual memory. The bulb sends 
its output as a macroscopic pulse cloud through the LOT. The macroscopic AM pat-
tern is enhanced by transmission through the LOT, which performs a Gabor spa-
tiotemporal integral transformation by virtue of the coherent carrier frequency. The 
LOT also transmits the incoherent microscopic sensory-driven activity for further 
processing. 

http://dx.doi.org/10.1007/978-1-4614-4984-3_11
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 The main targets are the prepyriform cortex and AON. Feedback to the bulb 
through the medial olfactory tract supports the chaotic background activity and the 
coherent bursts of the three components. Neither target displays the capacity for 
self-organization of bursts through phase transitions. We infer that the main task of 
the prepyriform cortex is to spatially spread the knowledge retrieved and transmit-
ted by the bulb, then to down-sample and spatially coarse-grain the display for 
transmission to forebrain targets by microscopic pulse trains. Whereas bulbar input 
consists of pulse trains that carry sensory information, prepyriform output consists 
of pulse trains that carry perceptual meaning.      
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    9.1   Introduction 

 The utility of the EEG and ECoG depends on  fi nding methods of data recording, 
measurement, and analysis that provide reliable and robust neural correlates of ongo-
ing cognitive behaviors (Freeman  1975 ; Basar  1998  ) . The accessible temporal and 
spatial resolutions are in ms to s and mm to cm. The channel information capacity in 
the physiological bandwidth of one or a few cortical signals is too narrow to afford 
correlates for much more than binary-state changes such as wake-sleep, eyes open-
shut, start-stop, and right-left and to type letters at an information rate of about 1 bit/s 
(Gao et al.  2003  ) . The spatial domain in high-density array recording offers far 
greater channel capacity, provided the macroscopic neural formatting of images can 
be understood. 

 A viable hypothesis is that the sensory neocortices have the same sensory and 
perceptual formats as those of the olfactory system because the neocortex origi-
nated by elaborations of the allocortex that adapted them to the unique requirements 
of visual, auditory, and somatic sensory information processing (Fig. 8.2, Sect.   8.1    ). 
Despite the differences in inputs and local processing between modalities, their out-
puts must all have basically the same format in order for them to be integrated rap-
idly and ef fi ciently (Sect.   10.3    ). This hypothesis serves to predict that spatial images 
exist in the neocortical ECoGs of all the sensory cortices, which are compatible with 
the olfactory spatial images. It follows that the entorhinal cortex, to which all sen-
sory cortices contribute, enables the medial temporal cortex to create multimodal 
gestalts by receiving and integrating the feature vectors from all modalities (see 
Fig. 10.3, Sect.   10.3    ). It transmits its compound feature vector to the hippocampus, 
which incorporates information about where the perceiver was located in time and 
space when the perception took place, preparatory to inclusion of the percept into 
the lifetime memory of the subject (Squires  1992  ; Pribram  1991 ) . 

 Speci fi cally, the hypothesis requires that sensory neocortices be found to gener-
ate intermittent gamma bursts during acts of perception. Just as the olfactory system 
is a batch processor of sensory information, each sensory cortex should exhibit a 
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cinematic sequence of frames or ‘microstates’ (Pribram et al.  1998 ; Lehmann et al. 
 2009  )  comparable to those in olfaction. Each burst should have a narrowband car-
rier wave that is modulated in phase and amplitude. A signi fi cant correlation has to 
be shown between the spatial AM patterns and the stimulus categories. Testing the 
hypothesis requires  fi nding the AM patterns in suf fi cient numbers and with suf fi cient 
reliability to perform the statistical tests. The preeminent requirement is for  markers  
in the data by which to locate the gamma bursts in the ongoing ECoG (Sect.   6.3    ). 

 In the olfactory system, the markers are provided by the act of inhalation and the 
accompanying respiratory wave (Fig. 8.3, Sect.   8.2    ), which in small mammals is in 
the theta range. The dif fi culty in pursuing this hypothesis is that, unlike the olfactory 
and the hippocampal ECoGs, the neocortical ECoGs usually lack well-de fi ned theta 
waves that are suf fi ciently reliable to serve as temporal markers (Fig.  9.1a ). The 
coupling of theta waves and gamma bursts ( theta-gamma linkage ) (Buzsáki,  2006 ) 
is well documented in allocortical ECoG (Freeman  1975 ; Fell et al.  2003 ; Lisman 
 2005  ) , neocortical ECoG (Chrobak and Buzsáki  1998 ; Freeman  2005b  ) , and human 
scalp EEG (Schack et al.  2002 ; Freeman et al.  2003 ; Canolty et al  2006  ) , but it is 
seldom strong enough to resolve repeated bursts single trials. It seems obvious that 
gating by motor controls of sensory input should occur, which is comparable to 
snif fi ng in other systems. These motor controls of sensory input include saccades in 
vision, whisking in somesthesis, and middle ear muscle contractions in audition. 
They might parse sensory in fl ows and leave their marks in ECoGs as snif fi ng does. 
However, gating in neocortex appears to be more dependent on internal factors 
(Sect.  9.7 ) than is gating of input by snif fi ng, and there appear to involve multiple 
overlapping bursts of narrowband oscillation that may re fl ect parallel processing in 
neocortex of multiple events in partially overlapping frequency bands. Therefore, 
testing the hypothesis requires  fi nding alternatives to snif fi ng and theta waves as 
markers. 1  Section  9.2  describes proof of the existence of classi fi able AM patterns by 
use of a window moved across multichannel ECoGs in  fi xed steps. Section  9.3  
describes improved temporal resolution of AM patterns by use of the Hilbert trans-
form. Section  9.4  describes phase patterns at high resolution. Section  9.5  focuses on 
the events between bursts that presage emergence of AM and PM patterns. 
Section  9.6  introduces cinematic display of AM and PM patterns. Section  9.7  dis-
cusses the neural mechanisms by which AM and PM patterns form. Section  9.8  
summarizes the concepts.   

    9.2   Initial  fi nding of Classi fi able AM Patterns 
in Neocortical ECoGs 

 The search for neocortical AM patterns related to cognition was begun (Barrie et al. 
 1996  )  by  fi xing 8x8 high-density arrays of electrodes on the visual, auditory, or 
somatic cortices of rabbits (Fig.  9.1 ). The subjects were trained in the same 

   1   Two examples of markers are described in other chapters. One uses recurring minima in spatial 
 variance of phase (Fig. 6.5, Sect.   6.4.2    ; Fig. 10.6, Sect.   10.5    ), and the other uses the recurring maxima 
in burst power (Fig. 6.5c, Sect.   6.4.2    ; Fig. 8.3a, Sect.   8.2    ; Fig. 9.2, Sect.   9.2    ; Fig. 10.4, Sect.   10.4    ).  
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paradigm as for the olfactory CS + and CS- (Sect.   8.5    ; Freeman and Grajski  1987  )  
to discriminate reinforced conditioned stimuli (CS+) from unreinforced (CS-). The 
CSs were simple and easy to learn in a few trials: dim or brighter  fl ash, 500-Hz or 
5000-Hz tone burst, and puff of air to the cheek or rump. Each subject gave 20 

  Fig. 9.1    ( a ) The example shows the spatial ensemble average ( high amplitude ) and SD 
T
  ( low 

amplitude , all positive) of the 64 neocortical ECoGs from an 8 × 8 array of electrodes (5.6 × 5.6-
mm window, Fig.   8.4b    , AUD) on the resting auditory cortex. The analog passband was 1–100 Hz. 
The digitizing step was 2 ms, giving 1500 time steps in each trial. ( b, c ) Temporal and spatial 
power spectral density after time or space ensemble averaging. ( d ) For working ECoG, a CS was 
delivered at 3 s in a 6-s recording trial. A 128-ms window was stepped at intervals along the band-
pass- fi ltered ECoG. The graph is the probability of a difference having occurred by chance at each 
step between the root-mean-square amplitude patterns recorded from the auditory cortex during 
conditioned stimuli with reinforcement (CS+) and without (CS-) (Adapted from Figs. 2, 5 and 9 in 
Barrie et al.  1996  )        
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CS + trials and 20 CS- trials with a total of 40 correct responses in each session, with 
up to nine sessions for each subject, including replications before and after reversal 
of reinforcement between CSs, habituation to both CSs, and introduction of novel 
CSs following recovery from burst suppression (seen in Fig.   8.3b    ). 

 Examination of the ECoG revealed broad-spectrum fl uctuations typical of the 
three neocortices (Fig.  9.1a ), showing neither of the prominent bursts and theta 
waves that served for locating bursts in the olfactory ECoG (Fig.   8.3a    ). The aver-
ages of long-duration (³ 3 s) temporal and spatial power spectral densities (PSD 

T
 , 

PSD 
X
 , Sect.   7.2    ) were power law (1/f) with no reliably recurring local peaks 

(Fig.  9.1b, c ). The same temporal passband (20–80 Hz) that suf fi ced for olfactory 
ECoG (Fig. 6.3, Sect.   6.3    ) was applied to each set of 64 signals in each 6-s trial. The 
search for classi fi able AM patterns in the beta-gamma range was initiated by apply-
ing a 128-ms window that was shifted blindly by a  fi xed step of 64 ms along the set 
of 64 ECoGs in each trial. The 64 root-mean-square (rms) amplitudes were calcu-
lated so as to represent each frame by a 64x1 feature vector (Barrie et al.  1996  ) . 
There were 78 time steps in each record after  fi ltering. The 20 CS + and 20 CS- vec-
tors were divided into training and test subsets of 10 each for multivariate 
classi fi cation. Each subset speci fi ed a cluster of 10 points in 64-space (Fig. 6.8, 
Sect.   6.4    ) with one center of gravity (centroid) for CS + and another for CS-, as in 
olfactory burst classi fi cation (Fig. 8.7, Sect.   8.4    ). At every time step, we calculated 
the binomial probability that linear separation of the two clusters could have 
occurred by chance. The result (Fig.  9.1d ) showed multiple peaks of signi fi cant 
separation (p < .01) of the CS + clusters from the CS- clusters for the three neocorti-
ces in every session. The peaks occurred only in the interval between CS and CR 
onsets and not in the pre-stimulus control period. 

 The classi fi cation of feature vectors was repeated using three other measures of 
the feature vectors in place of rms amplitude: the factor loading  fi rst component of 
principal component analysis (PCA, Sect.   6.3    ), which contained 90–95% of the 
variance of the windowed ECoG; the amplitude at the peak frequency in the PSD 

T
  

from the FFT applied to the 128-ms window; and the analytic power from applying 
the Hilbert transform to the 64 signals (Sect.  9.5 ). The three measures of amplitude 
gave the same degree of classi fi cation. The result con fi rmed the hypothesis that the 
same form of cognitive information as that in the olfactory system would be found 
in the neocortical sensory systems, that is, classi fi catory information would be 
found in the spatial AM pattern of the carrier frequency of cinematic bursts of beta-
gamma oscillation. The result laid the foundation for analyzing and simulating the 
mechanism by which multimodal percepts (gestalts) are synthesized in the limbic 
system (Sect.   10.3    ). In principle, the mechanism has been easily simulated with 
matrix algebra in autonomous robots (Kozma et al.  2003 ; Kozma et al.  2008  ) . The 
multiple simulated feature vectors were concatenated by linear superposition (Sect. 
  6.5    ) and treated as a compound feature vector (Fig.   10.3    ). However, the result gave 
no information about the properties (locations, durations, diameters, frequencies, 
and textures) of the bursts on single trials to compare with the bursts in olfaction. 
For that information, a high-resolution marker was required, which was provided by 
the Hilbert transform for the close study of amplitude and frequency modulation.  
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    9.3   High-Resolution of ECoG Amplitudes 
with the Hilbert Transform 

    9.3.1   Derivation of the Analytic Power, A 2 (t) 

 The ECoG recording at each electrode and each time step gave the amplitude of the 
signal; the local FFT (Chap.   2    ) gave its rate of change. When the rate was constant, 
it was expressed as a frequency. However, ECoG and EEG signals typically showed 
modulation in amplitude (AM), frequency (FM), and phase (PM) in overlapping 
bursts at different center frequencies. Precise measurements of AM, FM, and PM 
was facilitated, when the signals were passed through a  fi lter bank (Chap.   2    ; Fig. 
7.12, Sect.   7.6    ), and the Hilbert transform (Sect.   6.4.1    ) was applied to each band, 
giving two time series for each band (Fig.   6.5    ). One was the analytic amplitude, 
 A ( t ), or its square, the analytic power,  A  2 ( t ), which approximated the envelope of a 
burst dominating a band). The other was the analytic phase,   f  ( t ), or its rate of 
change, the analytic frequency,   w  ( t ) =  D   f  ( t )/ D  t , in rad/s Fig.   6.5d    , Sect.   6.3    . The 
analytic frequency best displayed visually the segments in which cortical activity 
approached maximum order (Sect.   6.2.3    ). The results from the Hilbert transform 
and the FFT converged (Le Van Quyen et al.  2001 ; Quian Quiroga et al.  2002  ) , 
when both transforms were applied to signals having the long durations needed for 
the lowest frequencies sought with the FFT (Chap.   3    ) or with wavelets (Chap.   4    ). 2  
The clinical mode decomposition into customary, relatively narrow passbands 
(delta, theta, alpha, beta, gamma, epsilon, Sect.   2.10.1    ) gave high temporal resolu-
tion needed to follow rapid changes in phase and amplitude for components selected 
as candidates for cognitive correlation by classi fi cation. 

 What was at stake here is illustrated in Fig.  9.2 . Parts a and b show the group 
classi fi cation that could be achieved by comparing CS + and CS- feature vectors in 
128-ms windows locked in 64-ms steps  fi xed with respect to CS onset at t = 0 s 
(Fig.  9.1d ) while separating the passbands for beta and gamma oscillations. Parts c 
and d show the temporal locations and durations of bursts that were located by using 
the analytic amplitudes by after applying the Hilbert transform (Sect.   6.4.1    ) as 
markers. The single gamma peak of classi fi cation (Fig.  9.2a ) was found only in the 
sensory cortex receiving the CS, whereas the two beta peaks were found in all cor-
tices simultaneously (Fig. 10.3, Sect.   10.3    ). The signi fi cance of these three peaks is 
discussed in Sect.   11.5    . Brie fl y, the increase in temporal resolution that was pro-
vided by the Hilbert transform made it worthwhile to learn how to deal with its 
dif fi culties and limitations.   

   2   Empirical mode decomposition (Huang et al.  1998  )  has also been proposed for ECoG and EEG 
decomposition owing to its high spectral resolution. However, the spectral decomposition is not 
appropriate for tracking frequency modulation in ECoGs.  
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    9.3.2   Use of H 
e
 (t) as a Scalar Index of the Order Parameter 

 The construction of a marker with which to locate AM patterns by using the analytic 
power, A 

ij
   2  (t), was in seven steps (Fig.  9.3 ). Step 1 (a): As in all previous assays, the 

ECoG amplitudes were normalized to z-scores by subtracting the global channel 
means and dividing by the global SD. Step 2: A spatial low-pass  fi lter was applied 
to each frame (Fig. 1 in Freeman and Barrie  2000  ) . Step 3: (b) A band-pass temporal 
 fi lter was applied to every signal. Step 4: The Hilbert transform was used to calcu-
late the analytic power of each channel, A 

ij
 (t), at each time step. The 64 values were 

  Fig. 9.2    ( a ) Signi fi cant AM pattern classi fi cation was found in the gamma range between the 
CS + and CS- stimuli but only during the  fi rst 200 ms after CS onset. ( b ) Signi fi cant AM pattern 
differences between CS + and CS- trials for bursts in the beta range in poststimulus time periods of 
100–400 ms and 700–900 ms. The use of a locked-step window did not serve to locate the bursts 
on single trials. ( c ) The use of the index for pragmatic information,  H  

 e 
 ( t ) (Fig. 6.7, Sect.   6.4.3    ), 

which by combining measures of AM pattern power and stability, optimally localized classi fi able 
AM patterns on single trials. Gamma bursts much less often occurred in the pre-stimulus control 
period than in the test period. ( d ) The incidence of beta bursts in the control period was uniform 
than the incidence of gamma bursts. It increased during the  fi rst poststimulus second and declined 
in the next two seconds. (From Figs. 2 and 3 in Freeman  2006b  )        
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divided by the mean power,  A  2 (t), which gave a normalized 64x1 feature vector, 
 A   2  (t), and a point in 64-space at each time step. Step 5: The succession of points 
gave the Euclidean distance, D 

e
 (t) =  A   2   (t) –  A   2   (t-1), taken in 64-space by each digi-

tizing step of the trajectory,  D t (Fig. 6.6, Sect.   6.4.2    ) and similarly for phase 
(Fig.  9.6a ). The tip of the feature vector tended to dwell in a small region of 64-space 
during peaks of A(t) and transit widely in the troughs between peaks. Step 6: (d) 
The mean rate of change in energy dissipation,  A  2 (t), at each time step was divided 
by the rate of change in location of the feature vector, D 

e
 (t), giving an index 

  Fig. 9.3    The algorithms are illustrated that were used to locate each stable spatial frame in which 
to calculate its feature vector for classi fi cation. ( a ) Average ( upper curves ) and SD ( lower curves ) 
of 64 EEGs from one trial in a 500-ms segment extending across CS arrival at 0 ms; Step 1, after 
channel demeaning and amplitude normalization; Step 2, before and after low-pass spatial  fi ltering 
at 0.3 c/mm. ( b ) Upper curve: Step 3, average EEG after temporal band-pass  fi ltering at 20–80 Hz. 
Lower curve: Step 4, spatial average,  A   2  ( t ), of the analytic amplitude squared,  A  

 j 
  2 ( t ), averaged over 

channels,  j  = 1, 64, at each digitizing step,  t . The increase in  A   2  ( t ) was not entirely due to an increase 
in synchrony, which was shown to increase to a sustained level before  A   2  ( t ) began to rise. ( c ) Step 
5: The 64 values of  A  

 j 
  2 ( t ) gave a 64 × 1 feature vector,  A   2  ( t ), that speci fi ed an AM pattern and a 

point in 64-space. The Euclidean distance,  D  
 e 
 , between successive points,  A   2  ( t ) −  A   2  (t−1), gave the 

rate of change in the AM pattern. Successive low values indicated pattern stability. ( d ) Step 6: The 
pragmatic information was given by the ratio  H  

 e 
  =  A   2  ( t )/ D  

 e 
 ( t ). Qualifying segments were identi fi ed 

by the criteria that  H  
 e 
  remained above a threshold, here  t  

 e 
  = 2, longer than a minimal duration, here 

 m  
 e 
  = 10 ms, in segments shown by the bars across the curve representing log 

10
   H  

 e 
 . Step 7: In each 

qualifying segment, the maximum of  A   2  ( t ) and its time of occurrence,  t  
max

 , were calculated (trian-
gles). The 64 × 1 feature vectors used for classi fi cation of the AM patterns were given by the 64 
values of peak instantaneous  H  

 e 
 ( t ) (From Fig. 1 in Freeman  2004a  )        
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(Fig. 6.7, Sect.   6.4.3    ) de fi ned as the  pragmatic information,  H 
e
 (t) =  A  2 (t)/D 

e
 (t) 

(Fig. 6.7a, Sect.   6.4.3    ). 3  The distribution of the values of log 
10

  H 
e
 (t) was close to 

Gaussian (c). The index served as a marker to locate bursts when the trajectory of 
H 

e
 (t) crossed above a threshold magnitude, t 

c
 , and remained there longer than a 

threshold duration, m 
c
 . Values of t 

c
  and m 

c
  were optimized by use of tuning curves. 

Step 7: The feature vectors to be classi fi ed were constructed from the 64 values of 
A 

ij
 (t) at the maximal value of the scalar index, H 

e
 (t), in each identi fi ed segment.  

 The seven-step procedure required evaluation of fi ve coef fi cients: the spatial fre-
quency of the low-pass  fi lter, the lower and upper frequencies of the temporal  fi lter, 
and the two thresholds. Each coef fi cient was evaluated initially in accord with mea-
surements of the PSD 

X
  and PSD 

T
  (Sect.   7.3    ; Fig.  9.1b, c ) of the ECoGs. Following 

initial classi fi cation, the coef fi cients were optimized by repeating the classi fi cation 
while stepping the values across a range to construct tuning curves for each 
coef fi cient (e.g., threshold, t 

e
 , in Fig.  9.4a ; spectral and temporal window durations 

in Fig.   10.3a, b    ) in classi fi er-directed parameter optimization of the % correct 
classi fi cation. The test data used for the optimization consisted of the  fi rst three seg-
ments after the CS onset on each trial (Fig.  9.2c, d ). The control data were the last 
three segments in the pre-stimulus epoch 1–3 s before CS onset. Then each burst was 
expressed as a 64x1 feature vector: C3, C2, and C1 and T1, T2, and T3. The 37–40 
trials from each subject gave 12 clusters of points in 64-space, 6 for control bursts and 
3 each for CS + and CS- bursts. For optimization, the three 64x1 feature vectors for 
T1, T2, and T3 bursts were concatenated into two 192x1 feature vectors, one for 
CS + and one for CS-. The optimized results were displayed by time and trial in a 
raster (Fig.  9.2c, d ) showing their temporal locations and durations and as clusters 
in192-space (Fig.  9.4b ). Then the goodness of classi fi cation was evaluated for the 
three pairs of 1x64 feature vectors in the control pre-stimulus period (c) and the test 
period (d). The results were simulated with artifi cial AM patterns (Freeman  2006a ).  

 The qualifying bursts (Fig  9.2c, d ) were found in the time intervals having high 
probability of the incidence of classi fi able AM patterns with the locked-step method 
(a, b). Bursts in the gamma range (c) were found mainly 40–200 ms following CS 
onset. Bursts in the beta range (d) increased in numbers after 200 ms and declined 
in numbers thereafter. Conditioned responses (the CR was the onset of snif fi ng) 
occurred with start latencies of about 700 ± 500 ms (Barrie et al.  1996  ) . The preci-
sion of measurement was not suf fi cient to correlate the latencies with bursts. In any 
case, the focus of this study was on proof of the existence of AM patterns that were 
classi fi able with respect to learned CS + and CS-. The CR was used to verify the 
capacity of the subjects for discrimination of the CS. 

 Analysis of variance of the blocks of AM patterns in each frequency range 
showed that only two sets of test bursts emerged as differing signi fi cantly from the 
control bursts in every subject and cortex (for statistics, see Table 1 in Freeman 

   3   Atmanspacher and Scheingraber  (  1990  )  described the concept of the ratio of the rate of energy 
dissipation to the rate of order formation as a “fundamental extension of Shannonian information” 
(pp. 731–732). Its use as a measure of the knowledge created from information by cortex as it 
forms a textured burst is described in Sect.   11.5    .  
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 2005a  ) . One set was the  fi rst set of gamma bursts, T1, which started 66 ± 16 ms 
poststimulus and lasted 57.2 ± 5.7 ms (Fig.  9.2a ). The other was the third set of beta 
bursts, T3, which began 490 ± 47 ms poststimulus and lasted 64.7 ± 3.3 ms, ending 
before the mean onset of CR near 700 ms (Fig.  9.2d ). The AM patterns in these two 
sets of bursts differed from each other (CS + vs. CS-) as well as from the control 
bursts, C1–C3, and from the other test bursts. The results con fi rmed predictions of 
the long distances and durations of spatial correlations (Freeman and Vitiello  2006 ; 
Kitzbichler et al.  2009  )  and prior estimates of the exceptionally long durations 
(Fig.  9.7e, f ) and large diameters (Fig.   8.4b    ) of AM patterns related to behaviors. 
The second burst, T2 in the beta range, was notable for its latency (268 ± 19 ms near 
the human P300, Sect.   1.5.1    ), its high power (0.417 ± 0.091 SD), and its lack of 
classi fi cation with respect to CSs. 

  Fig. 9.4    ( a ) An example shows the tuning curve used to optimize the threshold,  t  
 e 
 , by systematically 

stepping the coef fi cient and repeating the classi fi cation test to  fi nd the optimal separation of points. 
( b ) The multidimensional scaling technique of nonlinear mapping (Sammon  1969  )  projected clus-
ters from 192-space into 2-space, optimizing the separation of clusters while preserving the rela-
tive distances between all of the data points. The circles show the standard deviations (SD) of the 
clusters calculated in the display plane. ( c ) The 64 × 1 feature vectors in the 1st frame of the control 
state showed no separation. ( d ) The clusters from the 1st frame of the test period were the best sepa-
rated, as predicted from the results such as in Fig.  9.1d  (From Figs. 2 and 4 in Freeman  2005a  )        
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 A further test was required to determine whether the information in the data that 
served for classi fi cation might be concentrated in any smaller number than the 
whole set of 64 channels instead of being spatially uniform. Initial assays by repeat-
ing the classi fi cation assay after removing channels with the highest amplitude or 
least amplitude or greatest variance or greatest change from control to CS showed 
only assay reductions that depended on the number of channels removed by what-
ever criterion. A global test was conducted by deleting randomly selected channels 
in groups of N = 8, 16, …, 56 and for each group deletion and repeating the assay 40 
times (See Figs. 8.7 and 10.8 for examples), each time with an independent selec-
tion. In a separate tally for every channel, the sum of 40x7 values of goodness of 
classi fi cation was divided by the number of times the channel was used. The ratio-
nale was that if a channel contained classi fi catory information, it could be assigned 
a value of 1 and if not then 0. Any test not having that channel would give a value 
of 0, and any test that included that channel would give a value of 1/N > 0, so like-
wise with two channels and so on. By this test, channels having high and low ampli-
tudes had equal classifi cation effi cacy to within 0.1% of the variance of the assay. In 
other words, pattern classi fi cations required both high and low activity correspond-
ing to light and dark patches. The best classi fi cation rate was achieved by using all 
available channels. The result corroborated similar  fi ndings of non-locality with the 
olfactory ECoG (Fig. 8.7b, Sect.   8.4     from Freeman and Baird  1987  ) , the neocortical 
ECoG (Fig. 13 from Freeman and Barrie  2000  ) , the auditory ECoG (Sect.   10.2     from 
Ohl et al.  2003  ) , multiple sensory cortices, the entorhinal cortex (Fig. 10.3c, from 
Freeman and Burke  2003  )  and the scalp EEG (Fig. 10.8, Sect.   10.5     from Ruiz et al. 
 2010  ) . The hypothesis was strengthened that the perceptual information in neocorti-
cal activity (as distinct from sensory information in pulse trains) was delocalized, 
most likely by a divergent-convergent topology (one-to-many, many-to-one) of 
connections resembling that in the olfactory system (Fig. 8.8, Sect.   8.4    ) and in 
holography using the Gabor transform (Sects.   8.6    ,   10.3    ).   

    9.4   High-Resolution Images of Neocortical Phase Patterns 

    9.4.1   Derivation of the Phase Cones of Classi fi able Bursts 

 The short-term FFT gave the PSD 
T
  of the spatial ensemble average of each  fi ltered 

burst. Each frequency component had values of amplitude and phase. The maximal 
amplitude gave the mean carrier frequency across the frame of measurement. The 
FFT of the 64 signals gave the 64 values at peak power of each channel, which was 
displayed as an AM pattern and represented by a feature vector. The 64 values of 
phase de fi ned an 8 ́ 8 phase surface that usually displayed a spatial pattern of phase 
modulation (PM) (Fig.  9.5c ), which as in the ECoG of the olfactory bulb could be 
 fi tted with a right cone (Fig.  9.5d ). The AM pattern of every classi fi able burst was 
accompanied by a phase cone, which was characterized by the location and sign of 
the apex (maximal lead or lag) and the slope of the cone (Fig. 8 in Freeman and 
Barrie  2000  ) . 
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 The 64 phase values of the PM pattern carrier wave were re-referenced to the 
phase at the frequency of the spatial ensemble average waveform. The phase surface 
from the 8x8 ECoG signals (Fig.  9.5c ) was  fi tted with a phase cone by nonlinear 
regression (Sect.   8.4    ), which gave the location and sign of the apex and the slope of 
the cone (Fig.  9.5d ). Then each burst could be conceived as manifesting a vector 
 fi eld (Sect.   6.2.2    ), in which the density of the activity at each of 64 points in time and 
space could be expressed as a complex number given by the analytic amplitude and 
phase, or more informatively the ECoG amplitude at each point and frequency and 
its rates of change in time (rad/ms) and space (rad/mm) and the velocity (mm/ms). 
The complex number gave the direction and velocity either away from (explosion •) 
or toward (implosion o) the apex (Fig. 8.9, Sect.   8.5    ) (Freeman and Barrie  2000  ) .  

  Fig. 9.5    ( a ) Representative example of one 128-ms EEG segment from visual cortex (Fig.   8.4b    , 
VIS) illustrating amplitude modulation (AM) of the common wave form on 64 channels, tempo-
rally  fi ltered (20–80-Hz band pass). ( b ) Pattern of root-mean-square (RMS) amplitude from ( a ). 
( c ) Spatially  fi ltered (0.03–0.5 cycles/mm band pass) phase distribution at 22 Hz from the FFT of 
( a ) referenced to the phase of the spatial ensemble average. ( d ) Nonlinear regression of a conic 
surface onto the phase distribution in ( c ) indicating a phase gradient of 0.55 rad/mm, a phase 
velocity of 0.25 m/s, and a half-power diameter of 2.9 mm. The isophase contours in ( c, d ) were at 
intervals of 0.2 rad (11.4˚) (From Fig. 3 in Freeman and Barrie  2000  )        
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 The duration of each burst was assessed by shifting the 128-ms window in 2-ms 
steps forward and backward from peak power along the 64 signals and  fi tting a 
phase cone to the phase surface at each digitizing step (Fig.  9.6a ). The successive 
apices occurred in tight clusters, during which the location shifted by less than the 
interelectrode distance (0.79 mm, the limit of the spatial resolution). Between clus-
ters, the apex shifted randomly over the surface (Fig.  9.6c ). The duration of a phase 
cone was de fi ned by the number points falling within a cluster multiplied by 
 D t = 2 ms. The ratio of carrier frequency (in rad/s) divided by the phase gradients 
(in m/rad) gave the phase velocity (in m/s, (Fig.  9.6c ). As in the olfactory bulbar 
ECoG, the distributions of phase velocities were correlated with the conduction 
velocities of axons running parallel to the surface (Freeman and Barrie  2000  ) . 

  Fig. 9.6    ( a ) Calculating the successive phase cones at 2-ms steps revealed the trajectory of the 
neocortical dynamics by the location and sign of the apex. The rectangle shows the outline of the 
array on the cortical surface (Fig. 8.4b, Sect.   8.3    ). Clusters were revealed when the next apex, 2 ms 
later, was < 0.79 mm from the preceding apex and < 1.2 mm from the site of initial detection with no 
change in the sign ( lead  or  lag ). A transition between two clusters was labeled “Segment I” and 
“Segment II.” ( b ) Locations of phase-cone apices were projected on the visual neocortical surface 
with the 64-channel recording array ( square ). Each point represented an apex from one phase cone 
at the peak frequency in a 128-ms moving window. ( c ) The phase velocities in m/s were calculated 
by dividing the carrier frequency in radians/s by the phase gradient in radians/m. ( d ) The half-power 
radii were calculated from the product of the phase velocity in m/s and 1/8 of the duration of the 
carrier wave length in s (± p /4 = ±45° with cos = 0.707) (From Fig. 5 in Freeman and Barrie  2000  )        
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The cone diameter in mm was estimated by the distance from the apex to the 
isophase contour of  p /8, at which the cumulative phase dispersion reduced the 
power, A 2 (t), to one-half (cos   F  ( t ) = 0.707; cos 2    F  ( t ) = 0.500) as in the bulb (Fig. 
8.4b. VIS, Sect.   8.3    ). The results showed that the phase values from the FFT gave 
the burst parameters of carrier frequency, temporal and spatial location, duration, 
and diameter, and that these parameters did not contribute signi fi cantly to the burst 
classi fi cation with respect to CSs.  

 The burst amplitude waxed and waned in temporal modulation as already seen in 
allocortical bursts. The rate of change in spatial AM pattern during the temporal 
modulation was evaluated by calculating the Euclidean distance in 64-space, D 

e
 (t), 

between successive steps of the normalized pattern (zero mean, unit SD, Fig. 6.6, 
Sect.   6.4.2    ) and dividing the change in distance by the step duration, D 

e
 (t) = D 

e
 (t)/ D t. 

Low rates of change showed that the spatial AM patterns were invariant within the 
limits of experimental error over the burst durations despite the wide temporal mod-
ulation of amplitude (Fig. 6.5, Sect.   6.4.2    ). In other words, the ECoG had already 
converged to a stable AM pattern by the time following the discontinuity of a phase 
transition (Sect.   6.4.3    ) that the amplitude had risen suf fi ciently high for the pattern 
to be measured and classi fi ed. This observation is important for an explanation of 
the stubborn fact that the sign of the phase apex of the  fi tted cone varied randomly. 
A cortical pacemaker could explain phase lead at the apex but not phase lag. The 
implication is that the spatial AM pattern is selected at the singular moment of tran-
sition of the cortex from one basin of attraction to another (Fig. 6.14, Sect.   6.9    ) and 
the AM pattern can unfold either from the center or the periphery. An explanatory 
model has been devised using quantum  fi eld theory (Freeman and Vitiello  2006, 
  2008  ) ; it is beyond the scope of this book.  

    9.4.2   Phase Structure of the Background Activity 

 Well before the termination of each burst and phase cone, another overlapping burst 
emerged with differing frequency, conic apex, and amplitude distribution, which 
was not classi fi able. When displayed in pairs of overlapping segments, the phase 
cones in sets of 40 trials appeared to occur at random, although spectral analysis 
showed that cones tended to recur preferentially at frame rates in the theta range 
(Fig. 7 in Freeman and Barrie  2000  ) . More generally, every frequency component 
from the FFT had a phase surface, many but not all of which could be  fi tted with a 
cone. We attempted systematically to extract and chart more than two overlapping 
cones by decreasing the stepped window duration and thereby calculate the mean 
duration and diameter. The number of cones increased, and the means and SDs of 
the durations and diameters decreased in proportion to window duration (Fig.  9.7 ). 
The distributions with shorter windows were power law, and the means and 
SDs changed in proportion to window size, which implied that the phase cones 
were scale-free and perhaps fractal in the sense that the mean values varied in pro-
portion to the window of measurement (Fig.  9.7 ). They manifested the origin of the 
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  Fig. 9.7    ( a, c, e ) Histograms showed the number of cycles in each qualifying cone at the fre-
quency determined by the peak power FFT of ECoG segments. The means and variances of the 
distributions varied with the window duration, which is typical of fractals. The distribution for 
short windows was power law, whereas that for long windows was not. The cones accompanying 
classi fi able AM patterns had signi fi cantly larger durations (Fig. 8.4, Sect.   8.3    ). The short bursts 
were interpreted to be neural avalanches by which the cortex maintained itself at criticality. ( b, d, 
f ) Scatter plots showed the relation between the number of cycles and the frequency. Segments 
were excluded that had durations shorter than the sloping line, for which the units were c/c/s = the 
window duration. The % denoted the proportion of phase cones that had  ³  3 cycles/cone. A prepon-
derance of events exceeded the power-law distribution, showing that they were nonrandom and 
manifested broken symmetry (From Fig. 2.6 in Freeman  2004b  )        
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background ECoG in mutual excitation (Sect.   6.7    ). In other words, the phase cones 
resembled the bubbles in a pan of boiling water holding itself at a critical tempera-
ture (Fig. 11.2, Sect.   11.4    ) or the avalanches (Plenz and Thiagaran  2007  )  of a sand 
pile holding itself at a critical angle in pseudo-criticality (Sect.   6.9    ). The bursts 
showed self-similarity across the beta-gamma frequency range, meaning that the 
selection of the carrier frequency was unconstrained by the CSs. The most signi fi cant 
variable was the number of cycles per cone at whatever carrier frequency. A window 
(32 ms) gave a power-law distribution with only 1% having more than three cycles 
(Fig.  9.7a ). A long window (128 ms) gave relatively few bursts, but 79% of the 
bursts had 3–5 cycles per cone, which was comparable to the range of number of 
cycles found for classi fi able AM patterns in allocortical ECoGs.  

 The search for  fi ne phase structure was extended to the human ECoG from a 
patient undergoing presurgical evaluation for treatment of intractable seizures 
(Freeman et al.  2006a,   b  ) . The electrode array location was the right inferior tempo-
ral lobe (Fig. 10.4, Sect.   10.4    ). The size of the 1x1-cm array of 64 electrodes was 
optimized by spatial spectral analysis to determine the optimal Nyquist frequency 
(Fig. 7.1, Sect.   7.2    ), giving an interelectrode interval of 1.25 mm (vs. 0.79 mm in 
rabbit). The digitizing step was 5 ms (vs. 2 ms). Measurements of carrier frequen-
cies and phase surfaces revealed phase cones both in resting and in working ECoG 
that had the same properties as those in the rabbit ECoG. The only signi fi cant dif-
ferences were those in mean duration and diameter, which were correlated with the 
differences in sampling intervals of time (the digitizing rate) and space (the inter-
electrode spacing). We regarded them as evidence of the scale-free properties of the 
ECoG. In the working ECoG, the beta-gamma bursts carried spatial AM patterns 
that were correlated with higher cognitive function, described in Sect.   10.4    . Hence, 
the comparison across species supported the concept that the neocortex in an expect-
ant state holds itself in criticality (Sect.   6.9    ), giving self-organized, scale-free, self-
similar background activity having myriads of microscopic phase cones. Upon 
initiation of an appropriate task to perform, the cortex springs into action through a 
phase transition (Kozma and Freeman  2002  ) , by which it reorganizes itself from 
disorder to a coherent, ordered, oscillatory pattern, which we conceive as the 
retrieval of a macroscopic memory, which is initiated by the microscopic represen-
tation of a sensory stimulus that is delivered afferent action potentials that were 
evoked by the stimulus.   

    9.5   High-Resolution Images of Analytic Phase Between Bursts 

 Beginning with the respiratory cycle in olfaction (Fig. 8.3, Sect.   8.2    ), we have 
emphasized the cinematic sequences of bursts in frames at theta rates, by which the 
several sensory systems receive and process batches of sensory information. Each 
new burst has its carrier frequency and its AM and PM patterns, all usually though 
not invariably differing from those preceding. Each new frame forms by a macro-
scopic change in ECoG pattern that within a few milliseconds involves a large area, 
ranging from a few cm 2  up to and including the entire scalp (Sect.   10.5    ). The jump 
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cannot be detected by recording action potentials, yet it takes place on the time scale 
of microscopic events. The Hilbert transform (Sect.   6.4.1    ; Freeman  2007  )  is used to 
describe frequency modulation (FM), so we adapted it to the study of ECoGs 
between bursts. We focus on the abrupt emergence of a narrowband burst of oscil-
lation in what usually appears as a switch from one center frequency to another. The 
Hilbert transform can display that jump as a  phase slip  (Pikovsky et al.  2001  ) , that 
is, a discontinuity in the analytic phase,   j  ( t ), that appears as a spike in the analytic 
frequency,   w  ( t ) (Fig. 6.5d, Sect.   6.4    ). 

 An example of repetitive phase slips is shown in Figs.  9.8c  and 9.9. The 64 visual 
cortical ECoGs in a 6-s segment were band pass  fi ltered, and the spatial ensemble 
average was computed, giving the real part (Fig.  9.8a ,  black curve ). The Hilbert 

  Fig. 9.8    ( a ) The spatial ensemble average of the  fi ltered ECoG (real part,  black ) and its transform 
(imaginary part,  gray ) form a complex number which is a vector specifying the analytic signal 
(Chap.   4    ). The two components are in quadrature (Sect.   6.8    ). ( b ) The polar plot is shown of the real 
and imaginary parts. Time is implicit in counterclockwise rotation of the tip of the vector. ( c ) 
Sawtooth shows the analytic phase,   f  ( t ), given by the arctangent of the angle of the vector with the 
real axis. The ramp shows the phase with reference to the arbitrary value at the start of the calcula-
tion 400 ms before the onset of a CS at time = 0. Arrows indicate temporal discontinuities in phase. 
( d ) The problem of cumulative phase slip in multichannel recording is illustrated for very broad-
band  fi ltering (From Fig. A1.3 in Freeman  2004a  )        
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transform gave the imaginary part (a,  gray curve ) in quadrature. The two time series 
were displayed in polar coordinates (b) as the trajectory of a rotating vector. The 
length of the vector gave the analytic amplitude,  A ( t ), from the square root of the 
sum of squares of the two parts. The angle between the vector and the real axis gave 
the analytic phase,   j  ( t ), from the arctangent of the ratio of the imaginary to the real 
part. The raw phase was sawtooth (c). Each small ramp represented the rotation of 
the vector a half cycle counterclockwise about the origin of the polar plot. The 
breaks showed where the vector crossed the imaginary axis. The raw phase values 
were concatenated ( unwrapped ) into an ascending ramp by adding  p  radians at each 
break, when the phase dropped from +   p  /2 to –  p  /2, implementing the typical proce-
dure of adding   p   rad whenever the phase dropped to 0 rad.  

 The slope of the ramp was equal to the peak frequency in rad/s from the FFT of 
the  fi ltered signal of the same segment duration. The overall ramp mainly depended 
on the center frequency of the  fi lter passband. An upward or downward jump of the 
ramp indicated either artifactual  phase slip  or a  phase transition . The challenge was 
to distinguish them. A common cause of artifactual phase slip was leakage of power 
from adjacent passbands (Sect.   2.7    ), which caused interference between multiple 
overlapping signals. It tended to occur when an expected zero crossing failed 
to occur, which prevented a break and dropped the ramp from that time on by  p  rad 

  Fig. 9.9    The raster plot from rabbit neocortical ECoG showed the coordination of phase slip in the 
unwrapped analytic phase,  D    f   

 j 
 ( t ), changing with time ( left abscissa ) and channel ( right abscissa ). 

The phase differences from 8 columns of 8 rows were aligned to show near coincidence of sudden 
jumps and dips given by fast-forward and backward rotation of the vector tip displayed as the trajec-
tory in Fig.  9.8b . Phase slip tended to coincide across the array at minima in the amplitudes of the 
 fi ltered ECoG, except when a phase cone was swept across the array (−300 ms to −250 ms). Similar 
patterns were found in human scalp EEG. (Freeman et al. 2003   ) (From Fig. A1.4 in Freeman  2004a  )        
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(a low-frequency bias) or when jitter caused an extra zero crossing, which abruptly 
raised or lowered the ramp from that time on by  p  rad (high-frequency noise). The 
artifacts were enhanced by broadband  fi ltering of an array of ECoGs (Fig.  9.8d ). 
With the passage of time, the ramp splayed into a comb with the teeth separated by 
  p   radians. 

 The splay was minimized by narrowband  fi ltering but that was only suitable 
when the passband was closely adapted to that of a speci fi c carrier frequency. Since 
the carrier frequency jumped unpredictably between bursts, the passband had to be 
broad enough to encompass the expected range of variation (Freeman  2004a  ) , so 
splay was unavoidable. Band-pass  fi ltering by itself induced splay, whether the 
 fi ltering was imposed by neural negative feedback interactions (Sect.   6.8    ) or by off-
line data processing, regardless of passband width, because  fi ltering imposed beats 
(Fig.  9.8a ) at intervals 0.641 times the width of the passband (Rice  1950 ; Freeman 
 2009 ; Ruiz et al.  2010  ) . During the minima in amplitude, the analytic phase was 
unde fi ned and subject to errors of measurement (Fig.  9.9 ). The spatial variance of 
the analytic phase was also heightened by phase cones because the distribution of 
phase values was swept across each branch point in succession (Fig.  9.9 : −300 ms 
to −250 ms). In order to construct accurate images of analytic phase surfaces and 
track long-term trajectories of multichannel analytic phase, the artifacts had to be 
removed by calculating the analytic phase reference of the spatial ensemble average 
of the multichannel EEG or ECoG and thereafter adding or subtracting  p  rad 
(Freeman  2007  )  to every slope value that lay outside the phase-cone distribution 
(  p  /4 rad) and likewise any jump that deviated from the mean ramp by  a  ±   p   rad 
displacement.   

    9.6   Cinematic Display of Temporal Dynamics 
of AM and PM Patterns 

    9.6.1   Vortices 

 The advent of high-rate digitizing, high-density cortical electrode arrays and high-
speed data processing opened an exciting new frontier for ECoG and EEG imaging: 
cinematic display of  fi ne textures (Kozma and Freeman  2008 ; Freeman and Vitiello 
 2009  ) . The recent improvements in the use of  fi lter banks and the Hilbert transform 
that minimize the artifacts and optimize feature extraction revealed novel spatiotem-
poral structures that were predicted by brain theory (Sect.   6.2.3     in Freeman  1975 ; 
Freeman and Vitiello  2010  ) . Preliminary explorations using movies gave images of 
the  fi ltered ECoG, which in perspective resembled the  fl apping of a  fl ag in the wind. 
Close examination of successive images of  contour plots  of electric potential 
revealed hills ( white ) and valleys ( black , Fig.  9.10 ), which showed propagating 
waves that had been indirectly manifested in phase cones. The sequence of the sym-
bols (“+” for phase lead, “–” for phase lag) near the upper edge of the array showed 
a pulsating oscillatory focus that resembled the action of a jelly fi sh. The sequence 

http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_6


1919.6 Cinematic Display of Temporal Dynamics of AM and PM Patterns 

of symbols near the right edge (“P” for positive = phase lead. “N” for negative = phase 
lag) showed a vortex with its center of rotation near the apex of a phase cone (lower 
right frame). The two events partially overlapped at different frequencies in the beta 
range. The frame intervals (4 ms, every other digitizing step) encompassed approxi-
mately 1.5 cycles from bursts lasting 2 to 3 times that long. The varieties of dynamic 
spatial patterns observed are schematized in Fig.  9.11 . The patterns include rotation 
either clockwise or counterclockwise and pulsation either inwardly or outwardly 
without detectable rotation (Fig. 8.9 in Sect.   8.4    ).   

 On the one hand, the appearance of vortices might manifest optical illusions 
resembling interference patterns (moiré) produced by overlapping phase cones with 
different carrier frequencies and locations of their apices. On the other hand, vorti-
ces are predicted to accompany phase transitions in interactive media (Freeman and 
Vitiello  2010  ) , so these volatile patterns might offer a fresh clue to the locally dense 
dynamics of neuropil mediated by ephapsis, gap junctions and chemical synapses. 
Vortices tend to form stable islets of energy that are embedded in turbulence. 
That property in cortex may help to explain the prolongation of classi fi able bursts 

  Fig. 9.10    Frames from a 5.6 × 5.6-mm (8 × 8) electrode array are shown in time steps of 4 ms of 
ECoG  fi ltered in a passband 20–25 Hz. A stationary focus (+ o − o) oscillated in place with cycle 
duration near 48 ms. Another stationary focus rotated counterclockwise with cycle duration near 
46 ms (P N P N). Each pattern persisted for several cycles, then terminated. Several independent 
phase-locked ECoG patterns commonly overlapped, giving the appearance of a pan of boiling 
water. For cinematic displays, see Freeman  (  2011  )  (From Fig. 4 in Freeman and Vitiello  2009  )        
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(Fig.  9.7e, f ). Both explanations (and possibly others) should be explored further by 
digitizing at much higher spatial and temporal rates in order to locate and track the 
centers of rotation as they drift across the cortex, followed by decomposition using 
temporal wavelets (Brockmeier et al.  2012  )  and arrays of spatial cones (Sect.   8.4    ) 
as templates.  

    9.6.2   Null Spikes 

 Cinematic displays of analytic amplitudes readily showed the smooth waxing and 
waning of the mean amplitudes of  fi xed AM patterns of bursts. Between bursts in 
the  fi ltered ECoG, the analytic power on all channels appeared to approach zero in 
 beats  (Fig. 6.5c; Sect.   7.3    ). The modal values of beats occurred at intervals (Fig. 
7.6, Sect.   7.4    ) that depended solely on the width of the passband (Freeman  2009 ; 
Ruiz et al.  2012  ) , independently of the center frequency as predicted by Rice  (  1950  ) . 
The analytic power did not go to zero but could go to extremely small values (Fig. 
7.5b, d, Sect.   7.4    ). Brief decreases in analytic power called  null spikes  (Freeman 
 2009  )  appeared in the intervals between beats (Fig.  9.12c ), either in clusters or 
singly (Fig.   7.6d    ). The optimal procedures for locating them were to search the 

  Fig. 9.11    The conic phase gradients were either inward ( implosion ) or outward ( explosion ) (Fig. 
8.9, Sect.   8.4    ). They rotated clockwise or counterclockwise or pulsed without rotation. (From Fig. 
5 in Freeman and Vitiello  2009  )        
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short-term FFT of the spatial ensemble average of an array of recordings, using a 
moving window 0.1 s in duration stepped at 0.05-s intervals in search of spectral 
peaks in the beta-gamma range (Fig.  9.12a ), coupled with a peak in the theta range 
near the concave downward in fl ection of the PSD 

T
  (Sect.   7.2    ) suggesting theta-

gamma linkage (Sect.   8.6    ).  
 Initial guesses for the center frequency of a band-pass  fi lter were set at a selected 

peak in the spectrum, and the bandwidth was set by dividing the accompanying theta 
peak frequency by 0.641 (Rice  1950  ) . Initial guesses were improved by use of tun-
ing curves (Fig.  9.4 , Sect.  9.3 a; Fig. 10.3a, b, Sect.   10.3    ). The widths of the isolated 
single spikes conformed to the point spread function (Fig.   7.7c    ) of a dendritic col-
umn in the neocortical ECoG, which indicated that the shape of the spikes was deter-
mined by volume conduction of a point source-sink in the cortex. The magnitude of 
the downward spikes varied widely, ranging downwardly from the local surface by 
as much as 10 -6 . The null spikes were accompanied by localized discontinuities 
in the analytic phase, which were obscured by the loss of amplitude resolution. 
The extremely low values of amplitude of null spikes were predicted by the Rician 
distribution of analytic power (Rice  1950 ; Fig. 7.5b, d, Sect.   7.3    ).   

  Fig. 9.12    ( a ) The long-term PSD 
T
  (6 s) is compared with the short-term PSD 

T
  (0.1 s) using the 

multitaper method (pmtm). ( b ) The 64 ECoGs were band-pass  fi ltered (20–25 Hz). ( c ) The log 
10

  of 
analytic power from the 64 signals revealed a brief downward dip in surface potential that was 
localized to a point in the array (Fig. 7.8d, Sect.   7.5    ). ( d ) The analytic frequency was indeterminate 
at minima in analytic amplitude, leading to the high variance accompanying null spikes. (From 
Fig. 3 in Freeman and Kozma  2010  )        
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    9.7   Mechanisms of AM/PM Pattern Formation and Dissolution 

    9.7.1   Piecewise Linear Approximations for Attractor Dynamics 

 Examination of null spikes has been exploratory, because they occurred at, near, or 
beyond the limits of spatial and temporal resolution of the data imposed by sam-
pling. The temporal and spatial location of null spikes varied randomly, seldom 
coinciding precisely with the location of an electrode or a digitizing step, so the 
variance was due to hit-or-miss search. The inference was drawn that the null spike 
might manifest a singularity in cortical dynamics. There were three other pieces of 
evidence for singularity in cortical dynamics besides the null spike. One was the 
discontinuity in analytic phase seen as phase slip (Fig.  9.8c ). Another was the apex 
of the phase cone (Fig.  9.6a ). Yet another was the center of rotation of a vortex 
(Fig.  9.10 ). In theory, an emergent phase cone should have collocated its apex and 
center of rotation at the site of a preceding null spike and phase discontinuity. They 
seldom coincided. A salient reason was that the measurements are distorted by the 
overlap of multiple events in the volume conductor. The grand challenge now is to 
bring these strands together by improvements in the spatial and temporal sampling 
rates and especially by the design of new basis functions and wave functions as 
templates for informed decomposition of the raw ECoG and EEG e.g., (Brockmeier 
et al.  2012  ) . Decomposition using sophisticated wave functions and spatial templates 
based on learned feature vectors for AM patterns and phase cones for PM patterns 
may suffi ce to test this prediction. 

 What makes singularity important is the possibility of a role in the phase transi-
tion. In a physical model of dissipative cortical dynamics, the phase transition has 
the form of spontaneous breakdown of symmetry (SBS, Freeman and Vitiello  2006  ) . 
The symmetry appears in sensory cortices in the unstructured, random background 
activity of unit and ECoG activity. SBS appears as a change in the cortical response 
to impulse input from decay (to the pre-stimulus background, Fig. 6.12, Sect.   6.7    ) 
to diverging oscillation simulated in 8.8b, Sect.   8.4    ). In an engineering model (KII, 
Sect.   8.1    ) using linear feedback control theory, the SBS is by transfer of cortical 
self-regulation from a chaotic (approximated by a point) attractor to a limit cycle 
attractor (Fig.  9.13 ). 4  Modeling the process of SBS with attractor dynamics required 
the construction and solution of a set of differential equations. The simplest model 
(KII set) that suf fi ced to represent the neurodynamics of SBS was a laminated popu-
lation of excitatory neurons interacting with inhibitory neurons. It was devised to 
model allocortical dynamics (Chap.   6     in Freeman  1975 ; Kozma and Freeman  2001  )  
and may now serve to model neocortical population dynamics as well.  

   4   The stability of the 1/f background noise set by the nonlinear feedback gain of interactions among 
excitatory neurons (Fig. 6.10, Sect.   6.6    ) is governed by a non-convergent attractor (Principe et al. 
 2001  )  sometimes called a strange or chaotic attractor (Skarda and Freeman  1987  ) . The representa-
tion is by use of stochastic differential equations (Kozma and Freeman  2001  ) . In a piecewise linear 
model, the random  fl uctuations are removed by averaging, and modeling is by ordinary differential 
equations. The non-convergent attractor is replaced by a point attractor.  
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 Cortical dynamics was viewed as intrinsically nonlinear owing to the thresholds 
and refractory periods of the axons (Fig. 6.10, Sect.   6.6    ), but in the background 
state, the cortex was conceived as holding itself in a small-signal, near-linear range 
(Sect.   6.5    ). The range was revealed by the amplitude distribution of the ECoG 
(Fig. 6.4, Sect.   6.3    ). In that range, the solutions of the equations for impulse input 
(  Fig. 6.9    ) were obtained by piecewise linear approximation. The impulse responses 
to electrical stimulation (Fig.  9.13a ) were ensemble averages of evoked potentials 
collected by repeated stimulation (typically  N  = 100) suf fi cient to  fl atten the pre-
stimulus baseline in the average. The averaged evoked potentials (AEP) were  fi tted 
with a sum of linear basis functions that included a damped cosine, which evaluated 
the frequency of oscillation,  w , and the exponential rate of change in the envelope, 
 a  (Fig. 6.13, Sect.   6.7    ):

     ( )= +ov t v cos( t )exp( t),ω φ α
   (9.1)  

  Fig. 9.13    This  fi gure is a condensed representation of cortical piecewise linear dynamics. The 
purpose is graphic display of the point and limit cycle attractors that govern the phase transition in 
perception. Full exposition of KII dynamics is in Freeman  (  1975  )  ( a ) Artifi cially increasing the 
cortical background activity by tetanizing the LOT (200 pulses/s, 10–50 v, .01 ms pulse duration) 
increased the frequency and decay rate (w, a) of the impulse response (averaged evoked potential 
(AEP)) to a fi xed test pulse. Tetanizing replicates the sensitizing effect of increased background 
activity with arousal as expressed in Qm (Fig. 6.10, Sect. 6.5). (b) The root loci are shown in the 
upper half of the complex plane, s = a ± jw for three test inputs. (c) The symbols (D) show the 
spontaneous variation of the AEP with fi xed stimulus intensity. The symbols are superimposed on 
curves showing a family of root loci from solutions of the set of differential equations that simulate 
the relation between   w   and   a   with changes in signal-to-noise ratio. The arrow shows the direction 
of decreased negative feedback gain,  k  

 n 
 , with increased amplitude and/or decreased background 

noise. The tick marks show the effects of differing values of forward excitatory or inhibitory loop 
gains,  k  

 ee 
  and  k  

 ii 
 . Displacement of curves to the right with increased arousal ( Q  

 m 
  in Fig. 6.10, Sect. 

  6.6    ) and/or with Hebbian learning (Fig. 8.8, Sect.   8.4    ) forced the root loci into the right half of the 
complex plane with   a   > 0. The root loci imply that it is the null spike (Fig. 7.8d, Sect.   7.5    ) that 
reverses the sign of the decay rate of the impulse response and precipitates a phase transition. 
(From Fig. 6.21a in Chap.   6    , Freeman  1975  )        

 

http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_6


196 9 Neocortical ECoG Images Formed by Learning

where v 
o
  gave the initial amplitude and   j   gave the phase in radians of the cosine 

 fi tted to the AEP by nonlinear regression. The frequencies and decay rates of sets of 
AEP were displayed as experimental root loci (Fig.  9.13b ). 

 In pursuit of SBS, the key property was the spontaneous variation in   w   and   a   
(Fig.  9.13c ), when the intensity of the evoking stimulus was  fi xed at a low level to 
give impulse responses in the linear range. The cluster of   w   and   a   values plotted in 
the complex plane (“ D ”) appeared to be random, but factor analysis of the   w   and   a   
matrix (Freeman  1964  )  gave two main factors that were displayed in a family of 
bow-shaped curves. One factor was the level of arousal, which was expressed by the 
asymptotic maximum of normalized pulse density,  Q  

 m 
  (Fig. 6.10, Sect.   6.6    ). Each 

downward step on a root locus represented the effect of decreasing the negative 
feedback gain,  k  

 n 
 , with reduced   w   and   a  , hence tending toward destabilization. 

Evidence for this interpretation was obtained by reducing the cortical background 
activity with an anesthetic (intravenous pentobarbital) and replacing it by tetanizing 
the input pathway with a high-frequency shock train (Fig.  9.13a ). Increasing the 
arti fi cial background activity replicated the form of the bow-shaped root loci for 
three amplitudes of test shock. The second factor was  fl uctuations in the signal-to-
noise ratio from the beats (Sect.   7.3    ) in the ECoG caused by the distribution of 
characteristic frequencies about the center carrier frequency (Figs. 6.5d;  9.12d ). 

 The rightward shift was replicated by increasing the strength of the Hebbian 
synapse between excitatory neurons that formed a Hebbian assembly. Evidence for 
this interpretation was obtained by measuring the changes in the impulse response 
when the subjects were trained to respond to the test pulse as a conditioned stimulus 
(Emery and Freeman  1969  ) . The training strengthened the re-excitation of coupled 
neurons and sensitized the cortex selectively to the reinforced CS + (here the electric 
shock). By this analysis, a phase transition could occur only if the subject was 
aroused, had a preformed Hebbian assembly, actually received the appropriate CS, 
and was primed by vanishing of the order parameter in a downbeat. These factors 
can be thought of as safeguards that preclude phase transitions precipitated by 
noise.  

    9.7.2   A Possible Role for Singularity in Perception 

 A role for singularity in a phase transition was predicted by extrapolation of the fam-
ily of root loci into the right half of the complex plane, which was inaccessible to 
observation using evoked potentials. Each evoked potential that decayed to the back-
ground level designated an operating point in the left half of the complex plane 
controlled by the point attractor at the origin of the complex plane. Any event with 
its operating point in the right half failed to converge to the point attractor. It diverges 
into an expanding oscillation (Fig. 8.8b, Sect.   8.4    ), after the sign of the exponent 
governing the envelope of the oscillatory impulse response changed from negative 
(decaying) to positive (regenerative). Calculation of the KII root loci predicted that 
the operating point would converge to the imaginary axis, in other words, to a limit 
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cycle attractor. Approach of the operating point to the attractor would give in fi nite 
amplitude, that is, singularity. However, the amplitude was bounded by the refrac-
tory periods (Fig. 6.10, Sect.   6.6    ). The conjecture is proposed instead that it is the 
density that increases geometrically (Sect.   6.2.2    ) resembling condensation of a gas 
to a liquid. The increase in density would engage all neurons in an active focus non-
exclusively in the spectral range of the carrier. At maximal density, the entire body 
of knowledge embedded in the synaptic web of the neuropil might be brought to the 
interactions. In this scenario, it is the high density of activity in the primary sensory 
cortices that can support the rich context that comes with recall and recognition of a 
memory evoked by a stimulus. 

 What is still unresolved is the neural mechanism by which the transmitted neo-
cortical information is further processed. It was proposed in Sect.   8.6     that the 
macroscopic activity pattern of the recalled memory was transmitted from the bulb 
to the prepyriform cortex, where it was down-sampled to the microscopic level 
and transmitted by divergent pathways to diverse targets in the cerebral hemi-
spheres. That interpretation was invoked because the cortical ECoG phase gradi-
ent conformed to the properties of the input path (LOT) with no evidence for 
self-organization. The olfactory precedent suggested that primary sensory neocorti-
ces may transmit perceptual information in nonlocal form by massive clouds of action 
potentials to neighboring cortical or striatal regions, where it might similarly be 
locally integrated for sampling and coarse-graining and returned to the microscopic 
level of single neuron  fi ring. Whether it occurs in unimodal neocortical processing, 
and if so where, remains to be determined. Evidence is presented in Chap.   10     that it 
does occur in multimodal neocortical processing in the entorhinal cortex. The coding 
might be detected in the  fi ring of  concept cells  (Quian Quiroga  2012  )  (Sects.   8.6    , 
  10.3    ,   11.5    ). Testing this will require measurements of ECoG AM and PM patterns in 
conjunction with unit recording, especially the beta and gamma phase gradients. 

 To recapitulate, a perceptual action begins with an act of observation accompa-
nied by activation of an attractor landscape that serves to predict the sensory conse-
quences of the action in the form of Bayesian priors. Reception of a CS ignites the 
relevant Hebbian assembly, which provides the energy needed to increase cortical 
response amplitude and shift the operating point to a positive exponential. The 
reversal of sign shifts control from a point attractor to a limit cycle attractor. In a 
linear model, the point attractor at the center of a non-convergent “chaotic” attractor 
(Footnote 4, Sect.   9.7.1    ) is symbolized by a pole at the origin of the complex plane 
( w  = 0,  a  = 0), and the limit cycle attractor is represented by a complex conjugate 
pair of poles on the imaginary axis (Fig.  9.13c ). The assembly directs the cortex to 
the basin of an attractor, which imposes the AM pattern on the carrier frequency for 
transmission. 

 Thereafter, the termination of the AM pattern requires an exit strategy because 
each current pattern must evaporate in order to make way for the next. The ECoG 
data suggest a simple mechanism: the null spike (Fig.  9.12b ). Simulations show that 
after a downbeat in the sum of outputs of a collection of  independent  oscillators, the 
oscillation resumes with no change in AM and PM patterns. However, we postulate 
that if the oscillation is sustained by interactions among a collection of  coupled  
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oscillators, then the null spike might initiate irreversible erasure of the AM and PM 
patterns. In other words, if as already proposed (Sects.   6.4.3     and   9.3.2    ) the vectorial 
order parameter He(t) and the analytic power,  A  2 (t), both go to zero, then during a 
downbeat the coupling also goes to zero. The AM pattern conceivably evaporates, 
leaving a learned synaptic residue of change and the neurons free for capture in the 
next perceptual event. The termination of every burst is intrinsic by virtue of the 
dispersion of the carrier frequencies within the population (Fig. 6.5d, Sect.   6.4.1    ) 
that create the downbeats by interference. A possible role worthy of exploration is 
that it the null spike accesses a singularity, a nucleus of condensation perhaps com-
parable to a grain of dust in the formation of a raindrop. As already mentioned, the 
supporting evidence would require showing whether the site of the apex of a phase 
cone collocates with the preceding null spike.   

    9.8   Summary 

 As in allocortex, the ECoG evidence shows that spatiotemporal structures emerge in 
the neocortical activity by spontaneous breakdown of symmetry of the random back-
ground activity sustained by mutual excitation among pyramidal cells. The ECoG 
spectrum has the form of black noise, characterized by a power-law relation of log 
power to log frequency that is steeper than expected for random (brown) noise, 
owing to the mechanism of stabilization of the activity by refractory periods. 

 The steady state ECoG contains multiple overlapping bursts of oscillation, each 
with a spatial pattern of phase in the form of a cone. The distributions of cone dura-
tions are power law and fractal, with the exception of the largest and longest lasting 
bursts. These prolonged bursts carry AM patterns that are classi fi able with respect 
to CSs. They serve to distinguish the resting ECoG from the working ECoG. We 
interpret the background bursts as evidence that neocortex maintains itself in a sym-
metric state of self-organized criticality. The myriad small phase cones manifest 
neural avalanches, which we interpret as responses to background noise input to 
neocortex that re fl ect governance by a point attractor. 

 The analytic phase from the Hilbert transform of broadband ECoG con fi rms the 
stationarity of the carrier frequency and the conic phase pattern carried by bursts. 
The analytic amplitude from the Hilbert transform of narrowband ECoG con fi rms 
the stationarity of the classi fi able AM patterns expressed as feature vectors,  A  2 (t). 
The feature vector is adopted as an order parameter. The ratio of mean analytic 
power divided by the rate of change in spatial pattern, H 

e
 (t) =  A  2 (t)/D 

e
 (t), provides a 

scalar index, the pragmatic information, with which to evaluate optimal AM pattern 
classi fi cation. The analytic frequency phase,  j (t), and frequency,  w (t), serve to de fi ne 
the spatial location, size, time of onset, and duration of classi fi able AM patterns. 

 What is most remarkable is that the  fi ne-grain search for neocortical events 
came to focus on two bursts in the CS-CR interval: a gamma burst closely follow-
ing CS onset and a beta burst preceding the CR. The  fi nding suggests that in well-
trained animals a single gamma burst suf fi ces for CS recognition, and a single beta 
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burst suf fi ces for CR selection. The rarity of classi fi able bursts, the variation in 
their carrier frequency, and their embedding in neural avalanches explain the 
dif fi culty of  fi nding them. 

 Re fi nements in calculating the analytic signal of multiple channels made possi-
ble the cinematic display of AM and PM patterns. The method opened investigation 
of the spatiotemporal dynamics by which the patterns form and dissipate. Of special 
interest was the appearance of vortices that suggested  fi eld effects and null spikes 
that suggested singularities in phase transitions. De fi nitive study of these events 
will require up to tenfold increases in spatial and temporal sampling rates of ECoG 
and EEG without sacri fi ce of aperture size.      
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    10.1   Introduction 

 In the preceding two chapters, the challenge has been to understand the transition 
from sensation to perception. The problem and the solution could be remarkably 
similar in all sense modalities. The stimuli are microscopic forms of diverse energies 
in the form of molecules, photons, vibrations, and phonons, which are captured by 
molecular structures embedded in cilia of neurons in the eye, ear, nose, and skin. 
Cilia are macromolecular threads that extend from or through the individual receptor 
neurons. The cilia selectively transduce and amplify the incident energies by supply-
ing their own metabolic energies and expressing them in ionic currents. The receptor 
cells convert the currents to pulse trains and transmit the microscopic information by 
pulse frequency modulation in proportion to transmembrane current density. 

 At the behavioral level, macroscopically the brain samples the  fi elds of energy 
surrounding the body by repetitive actions: the sniff, saccade, whisk, and harkening, 
thereby intermittently offering sensory information to the receptors, which send it to 
the sensory cortices. The macroscopic searching actions parse the sensory input but 
do not provide the spatial structure of the resulting percepts. In this respect, the 
sensory systems resemble the digestive system. Foodstuffs of all kinds are broken 
down into their molecular and ionic components before absorption and then recon-
structed in forms that are at once immunologically unique to each person and yet 
common to other persons in physiological function, hence our metaphors for think-
ing: chew, digest, and ruminate. The microscopic sensory receptors act as point 
processors that disintegrate (“shatter” according to Skarda  1999  )  the sensory input 
into bits. When transmitted to and received by cortex, the bits may ignite a Hebbian 
assembly (Fig.   8.8    ) that directs the cortical trajectory into a basin of attraction (Fig. 
  6.14    ). Convergence to the attractor results in construction of an AM pattern that is 
created by neural interactions through modi fi ed synapses, and that expresses the 
memory elicited by the stimulus information. This basic physiological process is 
obvious in olfaction, in which the desired result of sampling the environment is an 
odor, that is, the knowledge about an odorant and not its molecular features. Is it safe 
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to eat? Does it signal danger? The immediacy and simplicity of this operation of 
convergence to an attractor is good reason why the ECoG in olfaction more readily 
provides an insightful model of human perception than do the other sense modalities 
(Ackerman  1990  ) . 

 Spatial images of the correlates of cortical dendritic activity show that the corti-
ces hold themselves in a domain of self-organized criticality (Sect.   6.9    ), which is 
manifested in their spontaneous background activity. We posit that the critical state 
contains an organized sensitivity that is expressed by a landscape of limit cycle 
attractors (Fig.   6.14    , Sect.   6.9    ), which has been selected by messages sent to the 
cortices including the olfactory bulb from the limbic system (Sect.   8.1    ) by preaffer-
ence (Kay and Freeman  1998     )  and which serves to predict the form of the informa-
tion desired (Zelano et al.  2011  ) . The impact of the receptor action potentials that 
contains the predicted information initiates a phase transition from a gas-like receiv-
ing phase to a liquid-like transmitting phase (Sect.   6.4.3    ) through a substantial 
increase in the intensity of synaptic interactions that resembles that of a condensa-
tion. This provides binding on a grand scale, because every neuron transmits its 
output directly or indirectly to many if not all other neurons in the transmitting cor-
tex and receives from many if not all other neurons for many tens of ms in a burst of 
oscillation. The intracortical matrix of synaptic connections that has been modi fi ed 
during consolidation (Sect.   8.5    ) determines the AM pattern of the carrier, so the 
population output is not a representation of the material stimulus. It is the recollec-
tion of a memory of the stimulus, which is a percept. 

 The core process of realizing perceptual information from sensory information is 
similar in all sense modalities. The similarities between allocortical and neocortical 
dynamics have been obscured by the greater complexity of the neocortical ECoG 
and by the intricate preprocessing of visual, auditory, and somatic information that 
is provided by nuclei in the brain stem and thalamus and by local circuits in the 
middle layers of the neocortex. 

 In this chapter, the challenge is to begin to understand the higher-order phase 
transition from perception to conception. Four experiments are described that illumi-
nate different facets of the process. Section  10.2  describes the macroscopic patterns 
of dendritic potentials from neurons in the auditory cortex that have been thoroughly 
studied in regard to their microscopic processing of sensory information. The authors 
introduce the distinction between generalization by classical and instrumental learn-
ing and categorization by insight learning. The creation of a perceptual category in 
dynamical terms requires formation of a new attractor in an existing landscape, 
which maintains a generalization gradient expressed in its basin of attraction. 
Section  10.3  addresses the problem of multisensory convergence and synthesis of a 
Gestalt by combining feature detectors from multiple sensory cortices. Section  10.4  
extends the study of AM patterns in the ECoG to a small area in the temporal lobe 
that is remote from sensory cortices, for which the cognitive correlates of both ECoG 
patterns are familiar forms of human conceptual activities. Section  10.5  sets the 
upper limit of the scale-free dynamics of neocortex at the whole of both cerebral 
hemispheres by demonstration of the classi fi ability of AM patterns of carrier fre-
quencies in the beta range of the EEG. Section  10.6  summarizes the Chapter.  
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    10.2   Categorization Versus Generalization in Concept 
Formation 

 When called upon to learn a complex task, subjects commonly show a sudden 
increase in performance from chance levels to reliable choice, which is often called 
 insight learning  through an “Aha!” experience. Ohl et al.  (  2001  )  trained four gerbils 
in a shuttle box by instrumental avoidance conditioning to auditory CSs and recorded 
the ECoG from an electrode array on the auditory cortex (Fig.  10.1a ). The gerbils 
readily learned to move in response to a CS+, for example, to a 500-Hz tone and to 
stay in response to a CS-, for example, a 5,000-Hz tone. Thereafter, they easily 
learned to discriminate a 5,000-Hz tone that was frequency modulated (FM) either 
 rising  or  falling  at different rates of FM in what the authors described as 
generalization.  

 Then the task was made complex by randomly changing the center frequency of 
the FM tone on successive trials across a wide spectral range. The gerbils were at 
 fi rst slow to learn the task, but when they did so, they abruptly increased their % 
correct response rate (Fig.  10.1b ). The authors described the process as  category 
learning , by which the subjects learned the abstract concepts of “rising” and “fall-
ing.” The characteristic psychometric functions were replaced by new categories. 
They concluded (Ohl et al.  2005  ) : “In a nutshell, generalization is a general feature 
of learned stimulus-cued behaviors re fl ecting the converse of stimulus speci fi city, 
while categorization is a cognitive process based on the parcellation of the repre-
sented world into equivalence classes of meaning, valid for an individual in a par-
ticular context and in a particular time.” 

 Before training the gerbils, the authors  fi xed a 3 × 6 electrode array on the right 
auditory cortex covering the area in which single-unit responses and averaged local 
 fi eld potentials were previously shown to provide a sensory map of the microscopic 
sensory input (Ohl et al.  2000  ) . The gerbils performed the task despite the inconve-
nience of the cable attached for recording the ECoG during learning. The same 
recording equipment and software used by Barrie et al.  (  1996  )  for the 64 channels of 
rabbit ECoGs (Fig.   8.4b    ) were used to record and analyze the 18 channels of gerbil 
ECoGs. The signals were recorded in 6 s trials and  fi ltered in the 20–80 Hz range. 
A 120-ms window was stepped at 20-ms intervals along the ECoGs from each trial. 
The 18 root mean square amplitudes at the steps gave 300 18 × 1 feature vectors that 
revealed the dynamic trajectory of the AM pattern, A(t), over each trial (Fig.  10.1c ). 

 The mean of a string of feature vectors,  A (t), from the control ECoG ( t  < 0) had 
a center of gravity at time T in midburst,  A (T), and SD radius (Figs.   7.7    a, and   8.9    d) 
that were comparable to those from rabbit ECoG (Fig.   6.8    , Sect.   6.4.4    ). The authors 
reexpressed the AM pattern trajectory as a  dissimilarity function  of time by calculat-
ing the Euclidean distance of the tip of the feature vector from the global center of 
gravity in 18-space. The dissimilarity function had essentially the same rationale as 
the distance measures, D 

e
 (t) and H 

e
 (t), that were used to demonstrate convergence 

to a stable AM pattern within each burst and for classi fi cation of single spatial AM 
patterns with respect to CSs (Fig.   9.2    c, d, Sect.   9.3.1    ). The dissimilarity function as 
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  Fig. 10.1    ( a ) Conditioning to discriminate auditory FM tones was conducted with a 3 × 6 elec-
trode array  fi xed on the auditory cortex ( icv  inferior cerebral vein,  mca  middle cerebral artery). 
( b ) The behavioral transition to categorization was marked by an abrupt increase in % correct CR 
anywhere between the 2nd and 5th block of trials on different subjects. ( c ) Concomitantly with the 
increase in % correct CR the feature vectors from the spatial AM patterns formed two clusters, one 
for each CS ( yellow areas , Wilcoxon’s test,  p  < 0.05), shown in 2-space by projection from 18-space 
(as in Fig.   9.4d     and  10.5b ). ( d, e ) Sample time series of the index of dissimilarity revealed two 
peaks ( arrows ) after the behavioral transition (as in Fig.  9.2b ) for both CSs but not in the naïve 
state and not in the visual cortex (From Ohl et al.  2001  )        
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predicted peaked at stimulus onset but, with the development of learning, showed 
additional peaks in the 4-s interval between the tone presentation (CS) and the 
conditioned response (CR). These additional peaks marked epochs of the ongoing 
ECoG during which cortical states emerged with category learning, called “marked 
states” by the authors. 

 In accord with prior  fi ndings (Fig.   8.7    b, Sect.   8.4    ), the information contained in 
the marked states was uniformly distributed over the AM patterns, regardless of 
local amplitude and variance (Ohl et al.  2003  ) . The microscopic tonotopic informa-
tion, inherent in the activity state marked by the  fi rst (trivially expected) peak of the 
dissimilarity function, was lost in the marked states associated with the later peaks 
in the dissimilarity function (arrows Fig.  10.1d, e ), so that two average spatial AM 
patterns expressed the categories of “rising” and “falling” FM tones. The patterns 
expressed the information required for decision-making and suppressed the irrele-
vant, sensory-speci fi c information that had no value at the level of complexity built 
into the experimental design. In dynamical terms the three centers of gravity of the 
feature vectors (control, “rising,” “falling”) expressed attractors as members of an 
attractor landscape (Sect.   6.9    ), in which the basins of attraction expressed the gen-
eralization gradients that were formed and maintained by repeated sensory sam-
pling during reinforcement learning. In psychometric terms, after a new stimulus 
pair was introduced in a new learning block, learning did not begin with a gradual 
learning curve with zero discrimination performance in the initial training session 
(Fig.  10.1b , blocks 1 and 2 in one representative animal) but with full discrimination 
performance already in the initial session, that is, for the novel stimuli (blocks 3 and 
following). Upon testing the psychometric function in this state, a sigmoid function 
(the so-called curve of categorical perception) was found to have replaced the gen-
eralization gradient. The transition from the “discrimination phase” of learning to 
the “categorization phase” of learning occurred abruptly, at individually different 
points in time in different animals and led to a stable state until the experimental 
conditions were changed (Fig.  10.1b ). The transition can thus be considered a cog-
nitive state transition underlying an “Aha!” experience. While in the early patterns 
maximum information about the stimulus class was contributed by a central patch 
co-localized with the dominant thalamocortical input (topographic representation 
principle), in the later patterns maximum information about the behaviorally rele-
vant category was spatially distributed over the entire recording area (holographic 
representation principle) (Ohl et al.  2003  ) . Both types of spatial organization coex-
isted in the same brain area separated in time.  

    10.3   Convergence of Percepts into Multisensory Gestalts 

 The ECoG evidence thus far supported the hypothesis that the olfactory, visual, audi-
tory, and somatic systems transmitted their perceptual information by spatial ampli-
tude modulation of intermittent clouds of oscillatory pulse density waves. The spatial 
uniformity of the classi fi catory information density (Fig.   8.7    b, Sect.   8.4    ) and the 
large size of the domains of coherent oscillation (Fig.   8.4    , circles in b) implied that 
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each cortex broadcasted its unique perceptual information in the same form from all 
its subareas to every neural population it targeted (Fig.   8.8a    , Sect.   8.3    ). We inferred 
from the AM patterns that the transmitted pulse clouds carried both the stimulus 
features and the memories of the category of stimulus (Sect.   8.7    ). We inferred further 
that the Gabor transform took the transmitted signals out of the spatial domains 
speci fi c to the olfactory, visual, auditory, and somatic input and placed them into a 
spatial frequency domain, such that the feature vectors of two or more cortices could 
be combined by dendritic integration (simulated with matrix concatenation), wher-
ever the transmitted pulse clouds overlapped. We knew that every sensory cortex sent 
part of its output by synaptic relays to the entorhinal cortex, which emerged early in 
mammalian evolution from the transitional area of the amphibian brain (Fig.   8.1    , 
TA). From this background, we predicted that the activity transmitted from a stimu-
lated sensory cortex during an action–perception cycle would be found to be inte-
grated in both time and space with activity in the entorhinal cortex, during the 
extended durations of classi fi able bursts (Fig.   9.7    e, Sect.   9.4    ). More speci fi cally, we 
predicted that bursts would appear in the CS-CR interval, in which sensory and ento-
rhinal cortices would be found to share phase-locked carrier frequencies with high 
temporal correlations. What we found surprised us. All of the observed cortices 
shared the prevailing carrier frequency (Freeman and Rogers  2003  )  and its classi fi able 
AM patterns (Freeman and Burke  2003  ) , not the initial gamma burst (Fig.   9.2a    , Sect. 
  9.3.1    ) but the following beta bursts (Fig.    9.2b    ). 

 To test the prediction, we  fi xed small arrays on the visual (16 electrodes), auditory 
(16), somatic (14), olfactory (2), and entorhinal cortices (16) totaling 64 electrodes. 
The entorhinal cortex of the rabbit was found to be surgically inaccessible, whereas 
the entorhinal cortex of the cat lay on the  fl at surface of the bony tentorium. This 
anatomical feature made it possible to insert a 2 × 8 array between the bone and the 
cortical surface (Fig.   8.4b    , ENT). The 4 × 4 arrays were  fi xed on the surfaces of the 
visual, auditory, and somatic cortices. Two electrodes sampled the olfactory bulb. An 
example of the simultaneously recorded ECoGs (Fig.  10.2 ) shows the similarity of 
the broad-spectrum neocortical ECoGs, in contrast to the prominence of gamma 
activity in the cat olfactory ECoGs (OB). Four cats thus surgically prepared were 
trained to press a bar for water in response to visual or auditory CS+ and to refrain 
with a CS− in a classical appetitive instrumental conditioning paradigm (Freeman 
et al.  2003c  ) .  

 The prediction was tested by searching for episodic AM patterns of oscillations 
in the range of 20–80 Hz over the entire array. For each subject and session, 20 CS+ 
and 20 CS− trials with correct responding were collected. The ECoGs were pro-
cessed in the same manner as in experiments illustrated in Figs.   9.2    ,   9.7     and  10.1 . 
A window of  fi xed duration was stepped along the 63 ECoGs after band-pass 
 fi ltering. A feature vector was constructed from the normalized root mean square 
amplitudes at each step. Classi fi cation of each feature vector was by  fi nding the 
nearest center of gravity and the number correctly classi fi ed. An initial survey 
showed that signi fi cant numbers were correctly classi fi ed in the test period but not 
in the control period (Fig.  10.3a ).  

 An empirical criterion was devised for rapid assessment of the goodness of 
classi fi cation. The number of correctly classi fi ed bursts at each step was divided 
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by the SD of the numbers in the control periods for all subjects and trials in each 
session. This converted the number correct to a deviation in units of SD. Since 
the numbers in the control period were normally distributed, the ratio could be 
 interpreted as a  t -value for assessment of signi fi cance. 1  The test/control (t:c) ratio 
served for classi fi er-directed optimization of the search parameters. The optimal 
window duration was 164–256 ms (A). The step size was half the window length. 

  Fig. 10.2    A sample of 64 ECoGs is shown from a single trial: 16 from the visual ( VI ), auditory 
( AU ), and entorhinal ( EC ) cortices; 14 from the somatic cortex ( SM  ); and 2 from the olfactory bulb 
( OB ) of a cat trained to respond to a tone burst ( vertical lines ). One bad channel ( Ch43 ) was used 
to record the CR (bar press for water). The “x” indicates a bad channel. The “L” indicates the chan-
nel with lowest amplitude, by which to judge the maximal  fl uctuations that could be attributed to 
the monopolar reference electrode (From Freeman et al.  2003c  )        

   1   The question whether episodic synchronization occurred among channels was addressed with an 
index of synchrony between pairs of signals that was developed by Pikovsky et al.  (  2001  )  and 
applied by Tass et al.  (  1999  )  to evaluate coupling between a magnetoencephalographic (MEG) 
signal and an electromyographic (EMG) signal in subjects with Parkinsonian tremor. The index 
was based on normalized Shannon entropy and was modi fi ed to give zero for a uniform distribution 
of phase differences in a moving window and unity for global phase locking. Here the index was 
generalized to the nearly 2,000 channel pairs by combining them into a t-value at each step of the 
window (Freeman and Rogers  2002  ) . The validity of the algorithm was  fi rst tested on 64-channel 
data by replicating the intermittent synchrony of bursts in the several rabbit neocortices. Then it 
was applied to the data from the multicortical ECoGs of cats (Freeman and Rogers  2003  ) . All 
values were signi fi cantly above chance levels, but the salient features were four spikes in syn-
chrony adjacent to the times of the peaks in correct classi fi cation (Fig.  10.3d , arrows in c).  
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The optimal center frequency of the pass band was 44 Hz (B). The optimal width of 
the pass band was 24 Hz (C). From previous experience (Barrie et al.  1996  ) , the 
times of onset of AM patterns were expected to vary across trials between the onsets 
of the CS and CR. Yet the classi fi cation procedure searched across trials in a win-
dow that was stepped across all trials at the same time. The variation in latency of 
evoked potentials was termed “jitter” by Tallon-Baudry et al.  (  1998  )  and Quian 
Quiroga  (  2000  ) , and was dealt with by wavelet denoising (Sect.   5.4    ). For Fig.  10.3a , 
the variation in burst latency was dealt with by searching at every step for an opti-
mally classi fi able AM pattern, which might occur in either of two steps before or 
after the current window. The classi fi cation test was repeated  fi ve times, and the 
trajectories of the six truncated feature vectors were superimposed. The data pooled 
across cats gave three peaks of signi fi cant classi fi cation ( p  < .01) in the CS-CR inter-
val (Fig.  10.3c ), which corresponded to the three peaks in rabbit ECoG of correct 
classifi cation in the same interval see also (Fig.   9.2    , Sect.   9.3.1    ). 

  Fig. 10.3    ( a ) Examples are shown of tuning curves using the classi fi cation measure to optimize 
the parameters used in preprocessing. The grand means of the set of feature vectors counted as 
correct were tallied across sessions and subjects and summed in three groups: the mean in the 
control interval (1.6–2.6 s), the test interval (3.3–4.4 s), and the highest number in the test interval. 
The separation was optimized by varying the duration of the stepped window. The optimal step 
size was half the window duration. ( b ) The choice of center frequency of the pass band was opti-
mized. ( c ) The optimized parameters gave three or four peaks in the interval between the onsets of 
CS and CR onsets ( solid curve ) but none in the  fi rst 250 ms after CS onset.  Dotted curves  show 
reduction of classi fi cation by deletion of channels from the  fi ve cortices (From Freeman and Burke 
 2003  ) . ( d ) The degree of synchrony over all 63 signals was estimated by calculating an index based 
on normalized Shannon entropy adapted from Tass et al.  (  1999  ) , revealing a series of spikes in 
synchrony in the CS-CR interval ( arrows  in C) (From Freeman and Rogers  2003  )        
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 Deletion of the EEG data from each cortical area reduced the classi fi cation assay 
in the test period. It had no signi fi cant effect in the control period. The classi fi cation 
test was repeated  fi ve times, each time removing the channels from one of the  fi ve 
cortical areas. In each instance, the deletions reduced the goodness of classi fi cation 
(dotted curves). The strongest effect was by removal of the two olfactory ECoGs, 
while the least effect was by deletion of the entorhinal ECoGs. The mean test/control 
(t:c) ratios from the control period (1.6–2.4 s) and the test period (3.6–4.4 s), calculated 
after the deletions, were as follows: none, 0.34 vs. 2.71; EC, −0.01 vs. 2.36; VC, 0.01 
vs. 2.17; SM, 0.00 vs. 2.04; AC, 0.01 vs. 1.60; and OB, 0.07 vs. 0.74. We interpreted 
the  fi ndings of intermittent long-range spatial coherence across cortices (Fig.   8.4    b) as 
revealing underlying phase transition in the time period in the action–perception 
cycle at which percepts were assembled into Gestalts. 2  Questions of where, how, and 
exactly when the integration took place are considered in Sect.   11.5    .  

    10.4   Demonstration of Classi fi able AM Patterns 
in Human ECoG 

 Additional support for the hypothesis of macroscopic perceptual coding comes from 
a study by Panagiotides et al.  (  2010  )  of ECoGs in a neurosurgical patient, who was 
undergoing treatment for intractable epilepsy. In addition to conventional scalp and 
intracranial neurosurgical electrode arrays (Fig.  10.4 ), a 10- × 10-mm square array of 
64 electrodes, with informed consent of the patient, was inserted through a temporal 
burr hole and  fi xed on the anterior surface of the right inferior temporal gyrus for 
8 days of continuous recording. The location and duration of recording were deter-
mined solely by the diagnostic needs of the neurosurgeons (Fig.  10.5 ). The 64 
ECoGs were analog  fi ltered (0.5−120 Hz), digitized (200 Hz), and low pass  fi ltered 
(55 Hz). The electrode array (Fig.   7.1    , Sect.   7.2    ) was designed in accordance with an 
evaluation of the ECoG PSD 

X
  (Sect.   7.5    ), which set the optimal interelectrode inter-

val at 1.25 mm and the spatial Nyquist frequency at 0.8 c/mm (Ramon et al.  2009  ) .   
 The radial phase gradients (phase cones) found in animal ECoGs were fully doc-

umented in ECoGs from the human subject (Freeman et al.  2006a  ) , which indicated 
that the spatial resolution afforded by the grid (Fig.   7.8    , Sect.   7.5    ) would be adequate 

   2   The dynamics of Gestalt formation has been modeled using K-sets (Sect.   8.2    ; Freeman and Erwin 
 2008  )  to implement the action–perception cycle in intentional robots (Kozma et al.  2003,   2008  ) . 
The modeling was simpli fi ed by the linearity of the four operations: concatenation of macroscopic 
input feature vectors, spatiotemporal integration following a phase transition, transmission with the 
Gabor transform, down-sampling by local integration over the global AM pattern, and partitioning 
of the output to multiple targets. The operations were simulated with matrix algebra. Owing to lin-
earity, the operations were commutative. The weights of the connections were expressed in matrices 
and adapted by learning in updating the memory bank of limit cycle attractors (Fig.   6.14    ).  

http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_11
http://dx.doi.org/10.1007/978-1-4614-4984-3_7
http://dx.doi.org/10.1007/978-1-4614-4984-3_7
http://dx.doi.org/10.1007/978-1-4614-4984-3_7
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_7
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_6


212 10 ECoG and EEG Images in Higher Cognition

  Fig. 10.4    The radiograph shows where the 1- × 1-cm array was placed on the anterior surface of 
the right inferior temporal gyrus. The ground and reference were Cz and Pz, respectively. A 5-s 
segment of 64 ECoGs is shown exemplifying 8 days of continuous recording. The marker with 
which to locate AM patterns was the spatial standard deviation,  s (t), of the 64 amplitudes at each 
time step. A threshold of 35 mV was used to identify time regions of high spatial variance. Only 
feature vectors at the time points of local maxima in suprathreshold segments of  s (t) were stored 
for further analysis (points marked with  dots ) (From Panagiotides et al.  2010  )        

  Fig. 10.5    ( a ) Spatial patterns of the means of the feature vectors show the AM patterns in the four 
conditions, which are deviations from the characteristic signature pattern of the human subject. 
( b ) Scatter plots show the  fi rst two linear discriminant coef fi cients, y 

kt
 , from voltage measurements. 

All four conditions are clearly distinguished. (From Figs. 6 and 7 in Panagiotides et al.  2010  )        
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for classi fi cation of AM patterns. The means and SDs of the durations and diameters 
were larger in proportion to the digitizing step size (5 vs. 2 ms) and the interelectrode 
interval (1.25 vs. 0.79 mm) (Freeman et al.  2006b  ) , which was attributed (Freeman 
and Breakspear  2007  )  to the power-law distributions of ECoG parameters (Fig.   9.7    , 
Sect.   9.4    ), in which the mean and SD vary with the size of the measuring window. 

 The main problem to be solved was the de fi nition of an appropriate set of behav-
iors. The animal studies (Freeman et al.  2003c  )  were designed to acquire ECoGs 
from sensory and entorhinal cortices. The selections of behavioral correlates and the 
time and space frames in which to search were based on the CSs, the intervals 
between CS and CR, and the cortices to which the CS information was directed. On 
reviewing and citing diverse evidence for involvement of the temporal lobe in human 
behaviors, the authors (Panagiotides et al.  2010  )  concluded: “The temporal pole has 
also been implicated in tasks involving theory of mind (inferences about the inten-
sions, desires and beliefs of others). Functional neuroimaging studies have revealed 
activation during theory of mind tasks such as thinking of other people’s emotions, 
making moral decisions or judging intentionality in viewing geometric shapes that 
move around” (p. 57). This encouraged us to search for classi fi able AM patterns in 
ECoGs from the temporal lobe. The prior demonstration of the independence of 
classi fi cation from ECoG phase and frequency led to adoption of the magnitude of 
the spatial variance of amplitude as the marker of choice for selection of potentially 
classi fi able ECoG segments (Fig.  10.4c ). 

 The authors reviewed the entire set of videos of the patient during the 8 days of 
recording. Behaviors involving sustained visual and auditory interactions were 
sought and identi fi ed. Four recurring behaviors were selected, and the AM feature 
vectors during those behaviors were extracted: (a) face to face interaction with 
another person (5 min, 199 vectors), (b) looking at pictures (27 min, 254 vectors), 
(c) reading a magazine or a book (10 min, 1,347 vectors), and (d) speaking with 
family on the telephone (14 min, 1,138 vectors). The plots of the AM patterns from 
the four conditions (Fig  10.5a ) showed small deviations widely scattered from the 
signature pattern. Scatter plots of the  fi rst three factors in multiple discriminant 
analysis of the principal components (Sect.   8.5    ) showed that the feature vectors 
from the four conditions formed four clusters that were linearly separable. The dem-
onstration con fi rmed the hypothesis of the existence in temporal lobe ECoG of mac-
roscopic AM pattern correlates of higher cognitive functions, which had been 
advanced by Quiroga et al. ( 2009 ) in the basis of recording the microscopic pulse 
trains of concept cells (Sect.   11.5    ). 

 However, the  fi nding of classi fi able AM patterns in the ECoG did not show 
whether they were locally constructed as in the olfactory bulb or imposed from 
another area as in the prepyriform cortex. For the two olfactory areas, the distinction 
was made on the basis of the phase gradients, those in the bulb being conic (Fig.   8.9    ) 
and those in the cortex conforming to the properties of the LOT Ch. 4 in (Freeman 
 1975 ). Conic phase gradients were found in human ECoG (Freeman et al.  2006a,   b  )  
comparable to those found in neocortical areas in animals (Fig.   9.5    ). It is reasonable 
to conjecture that entorhinal ECoG refl ected macroscopic coding in its AM patterns, 
but the patterns could have been generated locally or imposed from other areas 
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nearby. Measurements of phase in search of conic vs. input-dependent gradients 
would help to resolve the issue.    3   

    10.5   Demonstration of Classi fi able AM Patterns 
in Human Scalp EEG 

 We predicted that we would  fi nd signi fi cant AM patterns in scalp EEG because the 
accumulating evidence suggested that the diameters of domains of coherent beta 
and gamma oscillations might be suf fi ciently large to overcome the barriers posed 
by the intervening tissues. The classi fi able AM patterns in ECoGs spanned the ento-
rhinal and sensory cortices following training of the subjects to discriminate visual 
or auditory CSs (Sect.   10.3    ). The power-law distributions of multiple ECoG param-
eters (Sects.   6.9    ,   8.1    ,   8.5    ,   9.2     and   9.4    ) gave evidence for scale-free dynamics arising 
in criticality (Sect.   6.9    ), which carries the implication of the existence of exceed-
ingly long correlation distances (Freeman and Vitiello  2009  ) . Numerous authors 
have reported high correlations among EEG signals  fi ltered in various frequency 
ranges (Sect.   7.3    ). Of particular relevance are the extensive cortical “microstates” 
recurring at rates in the theta range, with the suggestion that they serve as “building 
blocks” in thought processes (Lehmann et al.  2009  ) , the “widespread phase syn-
chrony at all frequencies” reported by Pockett et al.  (  2009  )  and the “large-scale 
networks” in cognition described by Bressler and Menon  (  2010  ) . 

 We sought AM patterns with 64 electrodes in a standard 10–20 montage (Pockett 
et al.  2009  ) . The recordings were referential to a balanced lead in the left occipital 
area. Six normal volunteers learned to press a button in response to a visual CS (red 
or blue light  fl ash) or an auditory CS (faint or soft tone), which were presented at 
random intervals, either alone or in pairs. Their reinforcement was the pleasure of 
success on being noti fi ed of correct responses or the frustration of making a mistake. 
Once trained, the subjects were instructed that a new CS would be given, which they 
had to learn by trial and error. The new CS used the same visual and auditory CSs, 
but it combined them into a multimodal CS, so as to force transcortical integration 
of the sensory information. For example, a response to red-faint would be rewarded 
(CS+) if the button was pressed, whereas a response to blue-soft (CS−) would be 
penalized. One set of blocks of 40 artifact-free trials was acquired without yet 

   3   Measuring spatial phase gradients is an arduous task, requiring identi fi cation of an ECoG segment 
with a prominent spectral peak, band-pass  fi ltering, calculation of a phase surface with respect to the 
frequency of the ensemble average, and  fi tting a conic surface by nonlinear regression (Freeman and 
Barrie 2000). A simpler assay could facilitate preliminary explorations (Ruiz et al. 2009). The ana-
lytic phase difference in rad was calculated between each pair of signals and grouped in accord with 
the distance between them in mm for the duration of an epoch of stable carrier frequency. The group 
averages in rad were plotted with distance in mm and  fi tted with a straight line, giving the gradient in 
rad/mm. This with the carrier frequency gave the phase velocity and half-power radius. The presence 
of a cone might be detected by grouping the phase differences with direction as well as distance.  

http://dx.doi.org/10.1007/978-1-4614-4984-3_10
http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_8
http://dx.doi.org/10.1007/978-1-4614-4984-3_9
http://dx.doi.org/10.1007/978-1-4614-4984-3_9
http://dx.doi.org/10.1007/978-1-4614-4984-3_6
http://dx.doi.org/10.1007/978-1-4614-4984-3_7


21510.5 Demonstration of Classifiable AM Patterns in Human Scalp EEG 

imposing the requirement for multimodal integration. A second set was acquired 
after the change that required the subjects to consider the cross-modal relation. 

 The marker used to locate potentially classi fi able spatial AM patterns in the 
EEGs was provided by the analytic phase,  j (t). Band-pass  fi ltering of the EEG and 
application of the Hilbert transform (Sects.   6.4.1     and   9.5    ; Freeman  2007  )  revealed 
episodes of spatially phase-locked oscillations (Fig.  10.6a ). The epochs were 
quanti fi ed by the spatial standard deviation, SD 

X
 (t), of the analytic phase (B). During 

each episode of spatial coherence, the spatial mean of the analytic power rose to a 
maximum. The 64 peaks in analytic power gave a feature vector for each episode.  

 The search was begun in the beta range (12.5–25 Hz), on the premise that EEG 
bursts tended to recur (Fig.  9.9 ; Fig.  10.6 ) at rates in the theta-alpha range (Freeman 
et al.  2003a ; Freeman  2009  ) . The initial search gave a succession of feature vectors 
from the artifact-free EEGs of 20 reinforced trials (CS+) and 20 unreinforced (CS−) 
trials, which were numbered consecutively forwardly and backwardly from time of 
CS onset at  t  = 0. Following initial classi fi cation results, the full width of the pre-
dicted range was explored by stepwise variation of the center frequency and band-
width of the temporal  fi lter and repeating the classi fi cation test to construct tuning 

  Fig. 10.6    An example is shown of the relations between analytic power and analytic phase differ-
ences. The irregularities are attributed to the multiple small avalanches that maintain criticality. 
( a ) Successive analytic phase differences for each channel are plotted vs. time,  t , in a 2-s segment 
of a trial.  Light areas  represent plateaus of small phase differences producing analytic frequencies 
within the applied temporal pass band.  Dark areas  represent phase jumps, where the value of ana-
lytic frequency was outside the spectral pass band, which implied that the phase and amplitude 
were unde fi ned and indeterminate. ( b ) Successive values of the spatial standard deviation, SD 

X
 (t), 

of the analytic phase differences ( black spiky curve ) and the mean analytic power, normalized to 
the global z-score ( gray dash curve ). CS onset was at 0 ms (From Fig. 1 in Ruiz et al.  2010  )        
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curves (Sect.   6.4.3    ; Fig.   9.4a    , Sect.   9.3.2    ; Fig.  10.3a, b ). The procedure gave an 
optimal bandwidth of 7 Hz (15–22 Hz) about a center frequency (18.5 Hz) for the 
group of subjects. 4  Two other search parameters were then optimized: the thresholds 
for power or amplitude (Fig.   6.7a    , Sect.   6.4.3    ) used to specify burst durations from 
the beginning and ending times of frames (Fig.  10.3b ) and the choice of reference 
for recording and display (Fig.  10.9 ). Once signi fi cant percent-correct classi fi cation 
had been found for one block from a subject, each of these search parameters was 
explored over its range of sensitivity to optimize the degree of correct classi fi cation 
in the data set from other block. The procedure applied to data from each subject 
yielded signi fi cant degrees of separation of the CS+ and CS− clusters (Fig.  10.7 ) for 

   4   Stephen O. Rice (Sect.   9.5    ) proved (Rice  1944  )  that the modal recurrence rate in Hz of beats in 
white noise passed through an ideal  fi lter was proportional solely to the width of the pass band in 
Hz and was independent of the center frequency. We demonstrated that this proportionality held 
for brown and black noise as well. The constant was 0.641, which the pass band of 7 H predicted 
a burst rate of 4.5 Hz.  

  Fig. 10.7    The feature vectors from six subjects and two blocks were numbered consecutively 
forwardly and backwardly from the time of CS onset. The two centers of gravity were determined 
in 64-space for the clusters of feature vectors from 20 reinforced trials (CS+) and 20 unreinforced 
(CS−) trials. Each point representing the feature vector in 64-space of an AM pattern was classi fi ed 
as correct when its Euclidean distance to its own center of gravity was the lesser. Signi fi cance was 
estimated as previously (Barrie et al.  1996  )  by the binomial probability that the cumulative differ-
ences occurred by chance in a set of 40 trials. Signi fi cant separation of AM patterns was achieved 
by classi fi er-directed optimization for all six subjects, but only for the  fi rst three frames in the test 
period in the beta range. The % correct classi fi cation was further improved by applying a  fi lter 
bank to the EEG before using the Hilbert transform (Fig.   9.10    , Sect.   9.6.1    ) and repeating the 
classi fi cation in search of the optimal carrier frequency in each burst. This tuning procedure is 
comparable to optimizing the start time of each burst (Fig.  10.3d ) by replacing each frame with a 
frame one or two window steps before and after the current step and repeating the classi fi cation in 
search of the optimal frame.  I  pretrial period,  C  control period,  T  test period. Trial duration = 6 s 
(From Fig. 3 in Ruiz et al.  2010  )        
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the  fi rst two or three post stimulus frames for all subjects but only in the beta range. 
Further optimization of classi fi cation was achieved by using tuning curves to opti-
mize the center frequency and pass band of each subject.  

 The data were tested to determine whether the classifying information might be 
concentrated in channels overlying the sensory areas. Groups of channels, four at a 
time, were randomly selected and deleted, while the classi fi cation procedure was 
repeated 80 times for each increment of removal. As in prior results with the ECoG 
(Fig.   8.7    b, Sect.   8.4    ; Fig.  10.3c ), the classi fi catory information for the EEG was dis-
tributed across the entire array, irrespective of local amplitude or variance (Fig.  10.8 ).  

 Each subject had a characteristic signature spatial pattern of amplitude that per-
sisted through the duration of the study. The differences in AM pattern related to 
learning had the form of minor deviations widely scattered in the signature pattern 
(Fig.  10.5a ). Re-referencing dramatically altered the appearance of the spatial 
images of analytic power (Fig.  10.9 , left) and analytic phase (right) but had no effect 
on classi fi cation rates. The amplitude was biased toward low values in the vicinity 
of the reference site and high values at the greater distance. Most of the EEGs had 
relatively small deviations from the phase of the spatial ensemble average  fi ltered 
signal. The exceptions were EEGs out of phase with the average, which were at sites 
located nearest the reference. Re-referencing to the ensemble average showed that 
the inverted signals had amplitudes lower than that of the reference, which inverted 
the shared waveform. The data support the conception of cortical neuropil operating 
as a continuous medium with intermittent condensation into spatially coherent nar-
row band oscillations (Pockett et al.  2009 ; Bressler and Menon  2010  ) .  

 The EEG results show that the same form of macroscopic carrier of AM patterns 
holds at all levels from cortical columns to the entire neocortex in both hemispheres 
(Freeman et al.  2008  ) . The methodology opens the way to identify and extract 
high-dimensional feature vectors for use in brain–computer interface technology, 

  Fig. 10.8    The effect is shown of channel deletion on classi fi cation rate. As in all studies this far of 
ECoG, the classifying information in the EEG is spatially nonlocal and distributed with uniform 
density (From Fig. 5 in Ruiz et al.  2010  )        
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for constructing and testing new models using differential equations (Freeman 
et al.  2012  )  and random graph theory ( neuropercolation ) (Kozma et al.  2005 ), and 
for cinematic display of pulsations and vortices in the ECoG (Freeman and Vitiello 
 2010  ) . The spatially uniform density of classi fi catory information means that the 
placement of electrodes is arbitrary, provided that the locations are not changed in 
making comparisons between brain states or behavioral states. 

 The results raise challenges as well as answers. First among them is the absence 
of signi fi cant classi fi cation of bursts in the gamma range. However, recently another 
group of researchers (Brockmeier et al.  2012  )  has tackled the problem using the 
same data from the six subjects but with a better method of signal processing. Using 
a  fi lter bank of wavelets in the gamma range coupled with the Hilbert transform to 
avoid the effects of phase dispersion, they have succeeded in demonstrating in three 
subjects’ classi fi cation in the gamma range even stronger than that in the beta range. 
Yet other dif fi culties remain. One possibility is that occult EMG (Fig.   7.13    , Sect. 
  7.7    ) obscured frequencies above 20 Hz (Whitham et al.  2007  ) . Another is that 
gamma bursts and epsilon bursts may be more local, unlike beta bursts, and that 
higher density of spatial sampling will be necessary to extract them with spatial 
 fi ltering (Sect.   7.7    ; Fig,   9.3    , Sect.   9.3    ). In that case, PCA or ICA might yield good 
results. Yet another is that the temporal sampling rate (here 512 Hz) was too low to 
calculate the analytic signals in frequency ranges above beta. Improvements in sam-
pling (more electrodes at higher spatial and faster digitizing) will materially help 
modeling as well as digital signal processing of EEG and ECoG alike. 

 Spatial imaging illuminates a de fi ciency in studies of the anatomical basis for 
scale-free dynamics. Qualitatively it is clear that layers I, V and VI of neocortex 

  Fig. 10.9    The effects are shown of re-referencing the  fi ltered EEG on the appearances of the AM 
patterns of the analytic power ( left ) and the PM patterns of the analytic phase ( right ) from block 1 of 
subject F.  Above  :  the reference was located over the left occipital lobe adjacent to POz.  Below  :  the 
reference was over the right frontal lobe. Re-referencing revealed a spatial trend (Freeman et al.  2003b ) 
corresponding to the occipitofrontal alpha gradient. The analytic phase was referenced to the spatial 
average. All 64 signals were highly correlated, except for those from a small number of channels 
close to the reference channel, which showed phase reversal, because their signal amplitudes were 
less that the amplitude of activity at the reference channel (From Figs. 6 and 7, Ruiz et al.  2010  )        
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provide small numbers of very long connections that may suf fi ce to explain long-
range correlation distances (Fig.   8.4b    ; Fig.   10.9    ), especially when the cortex is on 
the knife-edge of bifurcation, but the evidence for the essential power-law distribu-
tions of axon lengths and transmission distance is fragmentary (Freeman and 
Breakspear  2007  ) . The critical divergent–convergent topology of the lateral olfac-
tory tract (Fig.   8.8a    ) has been veri fi ed by systematic microelectrode stimulation 
(Chap. 4 in Freeman  1975  ) , but in the effort to document localization of micro-
scopic networks, the statistical distributions of the synapses of large-scale neocorti-
cal projections are still to be fully documented. Further development of spatial 
ECoG and EEG imaging may encourage anatomists to extend the pioneering work 
of Sholl  (  1956  ) , Bok  (  1959  )  and Braitenberg and Schüz  (  1998  )  on neocortical 
macrostatistics.  

    10.6   Summary 

 Low-level cognition involves operations that are closely related to sensory input and 
motor output. Examples are conditioned stimuli and responses in classical and 
instrumental conditioning. Spatial imaging of ECoG opens access to include also 
the operations of searching for desired sensory information by intermittent sam-
pling (snif fi ng, glancing, harkening, touching). The microscopic sensory informa-
tion carried by volleys of action potentials is transformed into macroscopic 
perceptual information carried by bursts of gamma oscillations (Figs.   8.3    b,   9.6    a, c 
and  10.1d, e ), which imply the existence of limit cycle attractor landscapes that are 
initially formed by Hebbian and anti-Hebbian learning with and without reinforce-
ment and modi fi ed thereafter by consolidation (Fig.   8.6    , Sect.   8.4    ). 

 High-level cognition departs progressively from precise measures of input– output 
variables. Spatial imaging gives unprecedented access to the cortical correlates of 
the more complex operations. Four examples are given here: formation and use of 
abstract concepts, fusion of multiple unimodal images into a multimodal image, 
engaging in the use of language by extension of the study to human ECoG and exten-
sion insight learning to the EEG. 

 Spatial imaging makes it possible to correlate concepts with high-dimensional 
feature vectors and to model their formation and readout as macroscopic operations 
of cortical populations. Human neocortex uses the same information carrier as other 
animal cortices do: macroscopic bursts of oscillation that carry conceptual informa-
tion in AM patterns. The bursts are located by maxima in the spatial standard devia-
tion of the power in the wideband ECoG and by episodic high levels of coherence 
by phase locking. 

 The scale-free dynamics of neocortex may extend the macroscopic carrier into 
the spatial range of the EEG up to and including the entire neocortex operating as a 
uni fi ed system. The demonstration of noninvasive methodology for extracting high-
dimensional feature vectors from normal human volunteers as the neural correlates 
of complex cognitive processes opens substantial new avenues for brain research.      
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    11.1   Introduction 

 According to neural network models, all sensory cortices operate on streams of 
incoming pulses, which are generated by sensory receptors distributed in the sur-
faces of the eye, ear, skin, and nose. The delivery of the receptor pulses is by axons 
that are arranged in degrees of topographic order, so that each receptor surface is 
mapped onto the cortical surface. Each stimulus to each cortex provides a packet of 
a particular kind of energy, whether chemical, electromagnetic, mechanical, ther-
mal, etc., in time frames determined by the sources. Each receptor is tuned to a 
speci fi c type and amount of energy. Prevailing theory holds that the energy in the 
stimulus carries a certain quantity of information, which is transduced by the tuned 
sensory receptor into the energy of a  fl ow of receptor current. The axon converts the 
current into a pulse train, which transmits the information expressed in the location 
of the axon terminals and the  fi ring rate. A stimulus given to a distribution of sen-
sory neurons excites the formation of a spatiotemporal pattern of cortical pulses that 
represents the information delivered by the stimulus. The pulse pattern is driven by 
the cortical dendritic currents that are evoked by the afferent barrage. The currents 
also contribute to a local  fi eld potential (LFP) as they  fl ow across the tissue resis-
tance. The networks of neurons in each sensory cortex process the information by 
extracting the features of the stimulus, binding the features into categorical repre-
sentations, and storing them for future recall. 

 This description of the network model of information processing has provided 
the basis for interpretation of the  fi ring patterns of cortical neurons for the past  fi ve 
decades. It also led to the hypothesis that the spatial pattern of the dendritic poten-
tials evoked by a stimulus could be extracted using the techniques that had been 
developed for multichannel EEG recording and analysis (Chap.   1    ). We tested the 
hypothesis by averaging the dendritic potential evoked by electrical stimulation of 
the topographically organized input path of the olfactory bulb (Fig.   8.8    , Sect.   8.4    ). 
We found, as predicted, that the spatial AM and PM patterns were determined by the 
stimulus location. However, when we extended the analysis to potentials evoked by 
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sensory stimuli on single trials without averaging, we failed to con fi rm the hypoth-
esis in three aspects. First, the AM patterns lacked invariance with respect to the 
information speci fi c to  fi xed stimuli. Instead, they changed with changes in the con-
text, history, and experience of the subjects with the stimuli (Fig.   8.6    ). Second, the 
categorizing information was spatially nonlocal; no ECoG signal in an array had 
any more or less value for classi fi cation than any other (Fig.   8.7    ). Third, the time 
course of the cortical activity revealed segmentation into intermittent bursts of oscil-
lation at gating frequencies in the theta and alpha ranges and with carrier frequen-
cies in the beta and gamma ranges (Figs.   6.1     and   8.3    ), a generalization of theta-gamma 
coupling. We inferred that the AM and PM patterns of the carrier wave were deter-
mined not by the stimulus as revealed by averaging but by the properties of the 
cortex (Figs.   8.6     and   8.9    ) that depend on the mechanisms of learning. 

 The  fi ndings left us two options. One was to disregard ECoG evidence as irrel-
evant and epiphenomenal. The other was to construct a population model that would 
build on and extend the network model. We took the second path. We were encour-
aged to undertake the construction of the population model by support from three 
lines of evidence. The  fi rst was  anatomical : the extreme density of neuronal pack-
ing in the neuropil, which can provide the richness of connections needed to store 
not just a representation of the stimulus but the memory that a subject has about a 
stimulus. The second was  physiological : the capacity of cortex for self-organization 
of spatiotemporal patterns by means of exceedingly rapid changes in state, whether 
spontaneous or triggered by sensory input. The third was  phenomenological : the 
subjective experience of immediate apprehension of the meaning of a conditioned 
stimulus through the  fl ood of knowledge it evokes. 

 We base our population model on the nineteenth century conception that brains 
are thermodynamic systems that perform the work of cognition and control. The 
main physical work of cortex (Raichle and Mintun  2006  )  is done by synapses acting 
like chemical batteries that have high internal impedance, which are brie fl y switched 
on by action potentials and which drive ionic currents across the matching high 
transmembrane impedance at the trigger zones of axons (Fig.   6.2    a, Sect.   6.2.1    ). The 
magnitude of energy expenditure in the resting and active states is not readily appar-
ent in the electric and magnetic potentials because the sums of excitatory and inhibi-
tory synaptic potentials subtract from each other and tend to zero. In contrast, the 
energies that the excitatory and inhibitory ionic currents require do not cancel; they 
add (Logothetis  2008  ) . The distinction causes major disparities between the mea-
sures of blood  fl ow or oxygen consumption and the electrical and magnetic mea-
sures of cortical energy dissipation (Freeman et al.  2009a  ) . The disparities contribute 
to the concept of “dark energy” (Raichle  2006  ) . Indeed the voracious appetite of 
brains for energy even at rest is apparent in the fact that the rate of metabolic energy 
dissipation by brains per unit mass is ten times greater than that of any other organ 
including the heart. We may reasonably suppose that constructing AM patterns is 
energy-intensive, so we propose a thermodynamic model of cortical function to 
explain AM pattern formation in cognition. Such a thermodynamic model might 
help to integrate the experimental evidence from the broad range of noninvasive 
measurements of cortical activity, including EEG, MEG, PET, BOLD, and fMRI 
(Freeman et al.  2009a  ) . 
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 The foundation for the science of thermodynamics was laid by a French military 
engineer, Sadi Carnot, who in 1824 published the  fi rst theory describing how steam 
engines do useful work. His formal representation of the transfer of energy from 
heat into work and vice versa, now known as the Carnot cycle, served as a kind of 
Rosetta stone that enabled physicists in the next 30 years to formulate the  fi rst and 
second laws of thermodynamics: the conservation of energy and the inevitable loss 
in every physical system of energy that can do useful work ( free energy ). That loss 
was designated as an increase in  entropy  (Sect.   3.4    ). In 1847 Hermann Helmholtz, 
an army surgeon turned neuroscientist, introduced thermodynamics into brain sci-
ence by showing that the  fi rst law of thermodynamics held for muscle, nerve being 
too small. He proved that the action potential is an electrochemical wave propagat-
ing at a  fi nite velocity. His replacement of the concept of animal spirit with that of 
nerve energy revolutionized neurobiology. The British essayist Herbert Spencer 
 (  1863  )  described the conservation of nerve energy as “an unquestionable truth that, 
at any moment, the existing quantity of liberated nerve-force, which in an inscruta-
ble way produces in us the state we call feeling, must expend itself in some direction 
— must generate an equivalent manifestation of force somewhere.” Charles Darwin 
 (  1872  )  continued: “This involuntary transmission of nerve force may or may not be 
accompanied by consciousness. Why the irritation of nerve-cells should generate or 
liberate nerve force is not known; but that this is the case seems to be the conclusion 
arrived at by all the greatest physiologists such as Mueller, Virchow and Bernard, 
and so on.” Sigmund Freud in 1893 wrote: “[My] approach is derived from clinical 
observations of ‘excessively intense’ ideas in hysteria. … I have in mind the princi-
ple of neuronic inertia” (i.e., the conservation of energy) (Pribram and Gill  1976  ) . 

 By 1900 this scienti fi c foundation had collapsed (Freud  1985  ) , largely due to the 
realization that  nerve energy  is not conserved, because the brain is an open system 
operating far from thermodynamic equilibrium. Neurophysiology remained at an 
impasse for 50 years until the 1950s, when a new foundation was constructed based 
on information theory (Freeman  2007 ; Freeman et al.  2012a  ) . The concept of the 
 fl ow of energy through the receptors into sensory cortices was replaced by the  fl ow 
of information, which could be measured in the rates and intervals of pulse trains of 
neurons by treating the pulses as binary digits. Research based on this foundation 
has  fl ourished both in experiment and theory (Friston  2009  ) , owing to the mutual 
support between microscopic anatomy using the Golgi technique to describe neural 
networks, electrophysiology using the microelectrode to measure pulse trains, and 
Claude Shannon’s information theory, despite Shannon’s  (  1948  )  opposition to the 
use of his theory in semantics: “The fundamental problem of communication is to 
reproduce a message. Frequently the messages have meaning. … These semantic 
aspects are irrelevant to the engineering problem”. 

 Considering that the forms of AM patterns appear more closely related to per-
ceptual meaning than to sensory information, we propose to describe brains as sys-
tems that operate far from equilibrium, using the concepts of the “chemical 
morphogenesis” of spatiotemporal patterns that was pioneered in theoretical chem-
istry by Alan Turing  (  1952  ) ; “dissipative structures” that feed on metabolic free 
energy as introduced in nonequilibrium thermodynamics by Ilya Prigogine  (  1980  ) ; 
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“synergetics,” the self-organization of patterns by circular causality with “order 
parameters” devised in theoretical physics by Hermann Haken  (  1983  ) ; the “sponta-
neous breakdown of symmetry” from quantum  fi eld theory (Vitiello  2001  ) ; and 
“random structures” formed by subcritical Hopf bifurcations in mean  fi eld models 
of probabilistic cellular automata ( neuropercolation , Kozma  2007 ; Freeman et al. 
 2009b ). Accordingly in Sect.  11.1  we introduce the history and basis for the thermo-
dynamic model relying on phase transitions. In Sect.  11.2  we review the evidence 
for the model to explain how percepts form in sensory cortices, as revealed by mac-
roscopic AM patterns. In Sect.  11.3  we apply the Carnot formalism to our experi-
mental observations. In Sect.  11.4  we extend it to the Carnot vapor (Rankine) cycle 
to introduce criticality and phase transition. In Sect.  11.5  we describe the mecha-
nism of readout of AM patterns, which returns the percept to the microscopic level 
of sparse coding for transmission between cortices. We relate the properties of con-
cept cells (Quian Quiroga  2012  )  revealed by single-cell recording to the spatiotem-
poral AM patterns from ECoG recording. There and in Sect.  11.6 , we speculate how 
thermodynamic and network models might be synthesized or exploited separately 
for describing mechanisms of higher cognitive processes.  

    11.2   Sensation to Perception by Phase Transition 

 The principal operation of sensory cortices is to use metabolic free energy to con-
struct knowledge from information through the process of perception (Pribram 
 1991 ; Freeman  2001  ) . We de fi ne information as a delimited set of facts or features 
that is sensed about something or someone, which we can relate to microscopic 
 fi ring of neurons singly or in small networks in conformance with Shannon’s theory. 
We de fi ne knowledge as an understanding of the interrelations of a mass of informa-
tion that has been acquired by experience, which we can relate to macroscopic  fi elds 
of ECoG and EEG oscillations. It is with dif fi culty that we relate knowledge to 
Shannonian information, owing to the unbounded richness of associations (Lucky 
 1989  ) , so for this purpose we have adopted pragmatic information, H 

e
 (t) (Sect. 

  6.4.3    ) as a useful extension (Atmanspacher and Scheingraber  1990  ) . The underlying 
issue that we face, the relation between material and mental variables, is undeniably 
an aspect of the philosophical mind-body problem, but we  fi nesse the issue by rely-
ing on classifying our electrophysiological AM patterns with respect to the proba-
bilities of performing conditioned responses by animal subjects or of reporting by 
human subjects. We do not need to know what our subjects are thinking. Our knowl-
edge of what they are doing gives us already a suf fi cient grip (Merleau-Ponty  1942  )  
to understand the correlation between patterns of EEG activity and behavior. 

 We identify two starkly differing states in sensory cortical macroscopic signals: 
a baseline state, in which its neurons are driven by sensory and centrifugal inputs 
(Gray and Skinner  1988 ), and an active state in which its neurons are driven by each 
other with such intensity that in effect they respond only to each other and not to 
extracortical inputs. Just as axons can be viewed as having baseline and active 
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states, macroscopic signals show bistability in the normal process of cognition 
(Fig.   6.5    ) in having a receiving state with little macroscopic output and a transmit-
ting state with no signi fi cant acceptance of input to the macroscopic pattern. Using 
the thermodynamic formalism, we can describe the baseline state of macroscopic 
signals as chaotic (taking the word chaotic in a broad sense), low-density receiving 
phase, that is sustained by uncorrelated  fi rings of the neurons, and the active state as 
an orderly, high-density transmitting phase, in which the probabilities of  fi ring of all 
of the neurons in a region of cortex are in varying degree phase-locked brie fl y in a 
narrow frequency band (Sect.   6.4.2    ). The pass band and center frequency appear to 
be determined by the same or related processes by which the Hebbian assembly 
selects the basin of attraction (Fig.   6.14    , Sect.   6.9    ) leading to the AM pattern (Fig. 
  8.6    , Sect.   8.4    ). 

 It follows immediately that there are two transitions between the two states of 
cortical signals. The seemingly random  fi ring of neurons in the basal state con-
denses into an AM pattern in the EEG or ECoG, and then the order evaporates. The 
AM pattern suggests that a shimmering  fi lm of cortical activity brie fl y uni fi es a frac-
tion of the variance of millions or even billions of neurons in a narrow spectral band. 
The texturing of such a knowledge-bearing  fi lm would be by sudden binding of the 
features of a stimulus with memories of all prior experience by the subject with that 
stimulus, which are stored in immense numbers of modi fi ed cortical synapses. 

 As discussed in Chap.   8    , the process is seen in its simplest, prototypical form in 
the olfactory ECoG (Figs.   6.12     and   8.3    a) with minimal preprocessing by neural net-
works at the input to the bulb. It begins with an intentional stance for search and an 
inhalation that brings molecules of an expected scent to the vast array of sensory 
receptors in the nose (schematized in Fig.   8.8    a, Sect.   8.4    ). Each nostril has in round 
numbers 10 8  receptors with 10 3  types of receptor giving 10 5  receptors of each type. 
Each inhalation delivers molecules of an expected scent to perhaps 10 2  sensitive 
receptors but with a different subset on every inhalation. The problem for olfaction 
(and all senses) is to categorize the input to the type of receptor. The solution is to 
strengthen the excitatory connections between coexcited bulbar excitatory neurons 
but only during the presence of reinforcement (Sects.   8.4     and   8.5    ). Over a set of tri-
als, the cumulative synaptic changes form a Hebbian assembly, in which excitation 
of any subset ignites the entire assembly by the process of spread that have similari-
ties with what has been described mathematically as  percolation  (Kozma  2007 ; 
Freeman et al.  2009b ). 

 As described in Sect.   8.4    , the Hebbian assembly has multiple functions. It 
ampli fi es the microscopic input by reverberation (Amit  1995  ) , generalizes to the 
category of CS that the input has selected, and abstracts by deleting useless informa-
tion about which among the equivalent receptors actually received input. It converts 
the surge of input from the receptor cells to a burst of gamma oscillation (Fig.   8.3    , 
Sect.   8.2    ; Fig.   8.8    b). The oscillation is due to the negative feedback excitatory neu-
rons that receive the input and the inhibitory interneurons. The tendency for oscilla-
tory impulse responses is characteristic of the bulb (Fig.   8.5    a, Sect.   8.3    ) and the 
prepyriform cortex (Fig.   6.13    , Sect.   6.8    ), showing that they operate in a similar fash-
ion as a narrow band pass  fi lter. When struck by an impulse from background noise 
(or an electric shock), the activity of the loop rings at the characteristic  frequency 
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with an envelope that decays exponentially. However, the response of the bulb to the 
ignition of a Hebbian assembly is not a damped cosine with an exponential decay. The 
ringing at the characteristic frequency has an envelope with an exponential increase. 
The sign of the envelope exponent reverses from negative to positive (Fig.   9.13c    ). 
Simulation shows that the reversal is due to the positive feedback gain, k 

ee
 , in the 

Hebbian assembly (Sect.   6.2.2    ) when the Hebbian synapse is enhanced by reinforce-
ment learning. The small increase in positive feedback gain strongly increases the 
negative feedback gain, k 

n
 , above unity (Fig.   6.10b    , Sect.   6.5    ), when the sensory 

input of a CS ignites a Hebbian assembly (Fig.   8.8    a, b). The result is a burst of 
gamma oscillation with each inhalation manifesting destabilization but only when 
the bulb receives a CS (which includes the accustomed background input). Then the 
singular operation of the assembly, which from sampling considerations we estimate 
comprises on the order of 0.1% of the mitral population, is to ignite the macroscopic 
transition that con fi nes the entire bulb into the basin of the relevant attractor. 

 Formation of an AM pattern of each burst depends on whether the inhaled odor-
ant mixture contains a CS as the key to a Hebbian assembly. The dependence 
requires the prior activation by the limbic system (Fig.   8.1    ) of a landscape of attrac-
tors in the bulbar dynamics (Fig.   6.14    b) having a basin of attraction for each expected 
stimulus that constitutes attention. The landscape must include a basin for the back-
ground odorant mixture to which subjects have habituated, which gives the charac-
teristic signature pattern for each subject (Sect.   8.4    ). The landscape must also 
include a catchall “I-don’t-know” basin for novel odorants. That basin provides the 
unique and irreproducible chaotic activity that is necessary to form a new attractor 
(Skarda and Freeman  1987  )  during the subject’s exploration by means of an orient-
ing response (Fig.   8.3    b, Sect.   8.2    ). 

 Owing to the massive divergence of 1:10 4  from each neuron to others in regenera-
tive feedback (Sect.   6.2.2    ), the feedback gain exceeding unity ampli fi es the signal 
with each reexcitation. Evaluation of the dependence of pulse density on the average 
wave density of the gamma oscillation shows that pulse density cannot increase 
beyond the limit imposed by the refractory periods (Q 

m
 ). What can increase is the 

number of the neurons in each mm 3  that are participating in the oscillation by time 
multiplexing the pulse density (Sects.   6.2.2     and   7.1    ). We postulate that geometric 
intensi fi cation with gain greater than unity results in asymptotic convergence to spa-
tial saturation, in which all or nearly all of the cortical neurons participate in the 
high-density state. The most direct demonstration of low density in the resting state 
is by exhaustive sampling of the spike correlates of evoked potentials in the bulb, 
which show sparse, decaying pulse probabilities (Freeman  1974  ) , compared with the 
ease of  fi nding sustained pulse probability waves in the waking state that are corre-
lated with ECoG bursts of oscillation (Fig.   6.11    , Sect.   6.6    ). The difference between 
the two thermodynamic states is also seen by comparing the linear phase gradient of 
the bulbar evoked potential that is imposed by the extrinsic symmetry breaking from 
an electric shock (Fig.   8.5    ) with the conic phase gradient of the gamma burst result-
ing from spontaneous symmetry breaking (Fig.   8.9    ). 

 The requirements for preprocessing of sensory information are relatively few in the 
olfactory system: range compression, normalization, bias control, and spatial contrast 
enhancement (Freeman  2001  ) . The preprocessing in vision, audition, and somesthesis 
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is far more complex than in olfaction, as shown by the complexity of the neural 
 networks in the six-layered neocortex speci fi c to each modality. The similarities in 
mass action show that, after the sensory information is extracted, the integration by 
phase transition is the same in all sensory cortices in delivering a percept to the limbic 
forebrain. Our measurements of neocortical AM patterns show that each burst of 
coherent oscillation is large enough to encompass the entire extent of each sensory 
cortex (Fig.   8.4    b, Sect.   8.3    ) and that it has the same statistical and spectral properties 
as those in olfaction, so we conclude that the same thermodynamic model holds for 
perception by all sensory cortices after the sensory preprocessing. 

 The destabilization means in dynamic terms that the cortex switches from a non-
convergent attractor that maintains cortex in the region of criticality (Kozma et al. 
 2012  )  governing the background activity (Fig.   6.10    , Sect.   6.7    ) to a limit cycle attrac-
tor (Fig.   9.13    , Sect.   9.7.1    ). In thermodynamic terms, it means switching from a 
low-density state to a high-density state. Now we propose to push the thermody-
namic model further by suggesting that at low density the activity is in a gas-like 
phase, while at high density it enters a liquid-like phase, so that we can model the 
switch as a phase transition. We conceive an energy barrier or threshold for onset of 
high density, above which a major change occurs by the coming into dominance of 
short-range forces among neurons and glia. The known mechanisms include electri-
cal synapses (Bennett  2009  ) , gap junctions (Hameroff  2009  ) , ephapsis 1  (Anastassiou 
et al.  2011 ), and nonsynaptic diffusion neurotransmission (NDN, Bach-y-Rita 
 1995  ) . Additionally, Freeman and Vitiello ( 2009 ) postulate that extremely short-
range Coulomb and van der Waals forces may come into play that do not cause 
phase transitions and classi fi able patterns, which clearly depend on long-range axo-
synaptic transmission, but they may facilitate them. 

 The anatomical basis for the postulate is the extreme packing density of  fi ne 
axonal, dendritic, and glial threads in the cortical neuropil. The physiological basis 
is that the  fi ring rates of most neurons are well below carrier frequencies, so that a 
neural population sustains coherence by time multiplexing (Sect.   6.6    ). The psycho-
logical basis is the richness and intensity of experience in recognition of a stimulus. 
Each neuron may  fi re at random only once in a burst of 3–5 cycles. The disparity in 
rates suggests that short-range forces may facilitate achievement of maximal den-
sity rapidly, in less than 1/4 cycle of the carrier wave, and sustain it thereafter. 2  

   1   Ephapsis denotes the polarization of a neuron exerted by the extracellular ionic loop currents of 
neighboring neurons. Currents penetrating the axon of the neuron hyperpolarize it where they enter 
and depolarize it where they exit. Due to the high resistance of the membrane in comparison to the 
low shunting resistance of the extracellular compartment, the penetrating fraction is on the order 
of 0.1%. However, as cortex brings itself in criticality to the threshold for phase transition, that tiny 
fraction may come to dominate the interactions and precipitate high-density energy dissipation in 
the liquid-like state (‘dark energy’).  
   2   We have not heretofore introduced the role of nonspiking neurons in neural feedback loops, 
owing to the complexity of the mechanisms. The best-studied instance is the dendrodendritic 
reciprocal synapses (Reese and Brightman  1965 ; Rall et al.  1966 ; Rall and Shepherd  1968  )  in the 
olfactory bulb between the mitral and internal granule cells (glutamate vs. GABA), which play a 
major role in the generation of bulbar gamma oscillations by negative feedback. It is the passive 
dendritic time constants (~6.25 ms) of the neurons in the four steps around the loop (25 ms) that 
determine the characteristic frequency of bulbar activity (40 Hz) (Freeman  1991  ) .  
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We suggest that coordination of subthreshold oscillations may be facilitated by neural 
and glial embedding in the local  fi elds of polar molecules (including water mole-
cules, Freeman et al.  2012b  ) . On this basis, we postulate that the liquid-like phase 
of cortical activity in perception differs radically from the gas-like recipient phase 
in sensation. We believe that the difference justi fi es our use of the term  phase transi-
tion  in the thermodynamic sense. We also suppose that this coupling is not easily 
formed and, once it has formed, is not easily broken. For the neural mechanism that 
makes and breaks AM patterns, we appeal to our evidence for singularity in the 
transition to a limit cycle attractor (Fig.   9.13    , Sect.   9.6.1    ) at onset and the action of 
the null spike (Fig.   7.8    d, Sect.   7.5    ) at termination.  

    11.3   Neurodynamics and Thermodynamics: The Carnot Cycle 

 We intend the thermodynamic model as an extension from the network model by 
upscaling to encompass the immense numbers of cortical neurons and their inter-
connections. In doing so, it is essential to identify the main state variables of ther-
modynamics with observable quantities in experimental and theoretical neuroscience. 
A theoretical framework for doing this is given by the Carnot cycle, which two 
centuries ago facilitated understanding how a steam engine worked. It may now 
play a similar role for how perception works. Carnot’s model was an abstraction 
because the insights it yielded depended on  fi xing the four classical thermodynamic 
variables (mass, temperature, pressure, volume). He  fi xed mass and temperature, 
heated or cooled the mass by adding or removing energy, and showed how pressure 
and volume changed along isothermal isoclines. He then  fi xed the energy content 
and allowed the temperature to vary, giving adiabatic 3  isoclines. Two each of these 
isoclines formed a closed loop. His formalism enabled the next generation of physi-
cists to discover and apply the  fi rst and second laws of thermodynamics. It is the 
example of changing one independent variable at a time that we follow in using the 
Carnot formalism to evaluate the brain energy required to create knowledge. 

 The original Carnot cycle was expressed in the relation between pressure and 
volume in an ideal gas. A modern form (Fig.  11.1a ) is represented by a loop, in 
which the temperature in a system replaces pressure and entropy replaces volume. 
Entropy now serves also as an index for increasing disorder, or inversely as measure 
of increasing information (negentropy). An example is the use of chemical energy 
by a diesel engine to do useful work. There are four steps. The cycle can begin at 
any point, say (1) where the temperature is low and the entropy is high. In step 1–2, 
a piston applies mechanical free energy stored in a  fl ywheel that compresses the fuel 

   3   Adiabatic cooling is familiar in the drop of temperature when one ascends from the plains to the 
mountains, as the air expands without change in heat content and as sodium ions expand into the 
interior of an axon, cooling it during an action potential (Abbot  1960  ) .  
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mixture, decreasing the entropy without changing the temperature (isothermal). 
In step  2–3 , an adiabatic process takes place; there is no heat exchange with the 
environment, but the temperature increases to maximum at  fi xed volume (3) with no 
change in entropy. In step 3–4, the mixture ignites, converting some of the chemical 
energy to mechanical energy as the piston volume increases (4) and converting the 
rest of it to heat. In step 4–1, the temperature drops to the starting value (1) and 
cools during an adiabatic process with no change in entropy. The formalism is use-
ful because it separates the steps into four isoclines that form a closed loop, in which 
the area in the loop indexes the amount of work done by the system in a cycle. 
Furthermore, the formalism estimates the ef fi ciency of the process by the ratio of 
the useful work obtained divided by the total energy dissipated in a cycle.  

 In the general terms of energy and entropy, we can introduce the formalism of the 
Carnot cycle into macroscopic cortical dynamics (Fig.  11.1b ) without need for the 
classical state variables of pressure, temperature, volume, and mass, which brains 
closely regulate homeostatically at the macroscopic level, though they  fl uctuate at 
the microscopic level, especially temperature (Abbot  1960 ; Freeman et al.  2012a  ) . 
Since brains operate far from equilibrium, we replace the static variables of energy 
and entropy with their rates of change. We replace temperature with a measured 
variable, which is the mean analytic power of AM patterns,  A  2 (t), and we replace 
entropy with the rate of change in the Euclidean distance, D 

e
 (t), with each digitizing 

step,  D t, between successive normalized feature vectors as a measure of disorder 

  Fig. 11.1    ( a ) An ideal Carnot cycle with four isoclines is illustrated for a heat engine. (b) The 
variables representing temperature and entropy are replaced with indices derived from multichan-
nel ECoG recording. The upper inset illustrates a sequence of three Carnot cycles in the superim-
posed  fi ltered ECoGs from 64 electrodes (Fig.   6.5c    ). We start the cycle (1) at the minimal mean 
power,  A  2 (t), and maximal chaotic disorder, D 

e
 (t). At the other extreme, the power and information 

are maximal (the disorder is minimal (3)). The two states are connected by trajectories through 
intermediary states (2) and (4) that serve as markers for steps to distinguish overlapping processes 
described in the text. We can index the rate of useful work done in mobilizing and transmitting 
knowledge by the product of two variables: mean power,  A  2 (t), times the degree of increase in 
order (negentropy), 1/D 

e
 (t), giving the information increase with each cycle (the area in the rect-

angle). This quantity is the pragmatic information, H 
e
 (t) (Fig.   6.7    , Sect.   6.4.3    ). From Freeman 

et al. ( 2012a )       
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(Fig.   6.6a    , Sect.   6.4.2    ). The introduction of rates of change means that the Carnot 
cycle is actually a helix in time that is projected into the energy-entropy plane, so 
that the order created and transmitted as knowledge is cumulative and irreversible 
over time. 

 Our choice of variables is based on two premises. First, mean power,  A  2 (t), is 
determined by the pulse density of the generating neurons and by the degree of 
phase locking of the pulse probability waves. Both factors require free energy. They 
are partially though not completely separable by use of the synchronization index, 
R 

e
 (t) (Fig.   6.6b    , Sect.   6.4.2    ), which does not require phase, frequency, or correlation 

analysis. Second, a small step size in D 
e
 (t) implies that the cortical population is 

binding itself in a high degree of order during the transmission of an AM pattern; 
hence, it is more speci fi c to AM patterns than R 

e
 (t). Both  A  2 (t) and D 

e
 (t) are derived 

from the ECoG. They differ in that  A  2 (t) is the spatial mean of the analytic power at 
each time step, while D 

e
 (t) is the stepwise temporal difference of the feature vector 

after normalization of each frame (subtracting the frame mean and dividing by the 
spatial standard deviation of frame amplitude,  SD  

X
 ). One variable indexes the rate 

of consumption of free energy, and the other variable indexes the rate of decrease in 
order (increase in entropy). The area in the cycle indexes the rate of work done to 
create the order in each cycle. There is little to be said yet about cortical ef fi ciency, 
other than stating that creating and utilizing knowledge are extraordinarily energy-
intensive processes, and the cancellation of excitatory and inhibitory potentials is 
inherently wasteful. 

 We begin the idealized cycle at minimal power and maximal disorder (1), after a 
prior AM pattern has been quenched and the cortex is returned to its symmetric 
macroscopic baseline state. If a microscopic CS activates a mesoscopic Hebbian 
assembly or has already done so, symmetry is broken and a phase transition is initi-
ated. The onset is often marked by a discontinuity in the analytic phase,  f (t). In the 
 fi rst step (1–2), phase coherence increases as shown by an increase in channel cross-
correlation and observed power, as the assembly directs the cortex into the basin of 
its attractor. The reduction in degrees of freedom expresses the increase in order, 
which takes the particular form of the stable AM pattern (2). The high density of 
intracortical interaction precludes signi fi cant reception of further sensory input in 
the selected pass band. Maintenance of the pattern is assured by the balance between 
the energy drawn from ionic gradients and the energy dissipated by ionic  fl ows, giv-
ing the oscillation a soliton-like stability. The free energy required for these opera-
tions is provided by the transmembrane ionic gradients of the neurons. The free 
energy drives dendritic currents and axonal pulses and is dissipated as heat. The 
sequestration of free energy in the coherence corresponds to a lower energy state, 
into which the cortex is “attracted”. 

 In the second step (2–3), the density of the organized pulse cloud increases. Having 
been increased by phase convergence, the mean power increases by increasing den-
dritic current density to a maximum (3), as the AM pattern is transmitted at maximal 
pulse frequencies in the cortex through the output pathway (Fig.   8.8    a, Sect.   8.4    ), 
which performs a spatial integral transformation (the Gabor transform and discussed 
in Sect.   8.6    ) into a holographic-like image with maximal resolution and classi fi ability 
(Fig.   9.2c, d    , Sect.   9.3    ; Fig.   10.5a    , Sect.   10.3    ), hence maximum information. 
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 In the third and fourth steps (3–4 and 4–1), the analytic power decreases and the 
AM pattern terminates. The two concurrent processes of abatement of power and 
desynchroniation are not fully distinguishable, even with use of the synchronization 
index, R 

e
 (t); pulse sampling is required (Freeman  1974  ) . The refractory periods of the 

axons weaken the interaction (reduce the feedback gain), so the average pulse  fi ring 
rate decreases. The spatial distribution of characteristic frequencies about the central 
carrier frequency causes interference that manifests as beats as seen in Rayleigh noise 
(Fig.   6.4d    ; Sect.   9.3    ) but only in the macroscopic ECoG signals. The time interval 
between beats is solely determined by the width of the frequency distribution (Fig. 
  7.6    , Sect.   7.4    ). Measurements of the spatial variance of the carrier frequencies (Fig. 
  6.5    d, Sect.   6.4.1    ) place the predicted duration of bursts triggered by Hebbian assem-
blies within the range of theta wavelengths (Fig. 8 in Freeman  2009  ) . We infer that 
only when the power in a burst has gone to zero in a null spike (Fig.   7.8    d, Sect.   7.5    ) 
is the AM pattern terminated. This occurs after the cortex is released by the dissolu-
tion of the attractor landscape (Fig.   6.14    ). Following the beat, the same or another 
landscape may emerge, and the cortical populations in a new cycle can be sequestered 
in the same basin or in a differing basin of attraction. 

 The cortical processes of assembly ignition, burst formation, and AM pattern 
transmission all run thermodynamically downhill. The dissipation of free energy 
incurs what physiologists call an  oxygen debt , meaning that the diminished ionic 
concentration gradients must sooner or later be restored (Fig.   6.1B    ). The debt is 
measured by blood oxygen level depletion (BOLD) using fMRI (Logothetis  2008 ; 
Freeman et al.  2009a  ) . At the microscopic level, the energy dissipation during an 
action potential in axons is accompanied by cooling as sodium expands into the 
axoplasm (Abbot  1960  ) . Cooling is overwhelmed after the pulse by heating as glu-
cose is oxidized to provide the ATP that is required to operate the transmembrane 
ionic pumps. We infer that comparable  fl uctuations in temperature occur in the mac-
roscopic cortex and that they are obscured by temporal and spatial smoothing 
(Freeman et al.  2009b  ) . In the absence of direct measurements of temperature and 
thermal energy in respect to AM pattern genesis, what is important is that order is 
constructed in step 1–2 and transmitted in step 2–3 as AM patterns and that entropy 
and waste heat are discarded by the blood circulation in steps 3–4 and 4–1 as the 
oxygen debt is repaid.  

    11.4   Criticality and Phase Transitions: 
The Carnot Vapor (Rankine) Cycle 

 We extend the analogy using a generalization of the Carnot cycle that can include 
phase transitions. There are many variants to choose among; a convenient starting 
point is the conventional phase diagram (pressure vs. temperature) for the three 
main states of water, in which the phase boundary between gas and liquid ends at 
the  critical point . For pressures and temperatures above that point, there is a domain 
of criticality (Sect.   6.9    ), in which gas and liquid states are intermingled in varying 
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degrees. Under a change of variables to the Carnot coordinates (pressure vs. volume), 
the critical domain appears as the shaded area. An example of the vapor cycle 
(Fig.  11.2a ) illustrates the relation of pressure and volume along two isotherms for 
high and low temperatures, T 

H
  and T 

C
 . The four idealized steps of heat exchange 

have been embedded in the critical domain (Baratuci  2011  ) . Beginning at minimal 
temperature and pressure (1), the vapor is condensed with no change in pressure 
(isothermal compression, 1–2), heated with increase in temperature (adiabatic com-
pression, 2–3), evaporated at constant temperature and pressure with increased vol-
ume (isothermal expansion, 3–4), and cooled prior to disposal of waste heat with 
decreased temperature (adiabatic expansion).  

 In the model of cortical dynamics, the rate of energy dissipation as measured by 
the mean analytic power,  A  2 (t), replaces pressure. The rate of change in entropy 
replaces volume and in turn is replaced by the measure of AM pattern change, or 
inversely by the rate of increase in information (negentropy) as measured by 1/D 

e
 (t). 

Temperature is unsuitable as a state variable for cognitive processing because in 
homeothermic animals it is homeostatically regulated. Instead the variable that most 
directly imposes order in the formation of cortical patterns is the intensity of synap-
tic interaction among all participating neurons, hence the order parameter, which is 
indexed by H 

e
 (t) and modeled as negative feedback gain, k 

n
  (Sect.   6.2.2    ). The most 

important determinant of the loop gain is the normalized forward gain at trigger 
zones (Fig.   6.2a    , Sect.   6.2.1    ) given by the function, G 

a
 (v), the sigmoid curve (Fig. 

  6.10    , Sect.   6.6    ). This function has only one parameter, the magnitude of the upper 
asymptote, Q 

m
 , which in the olfactory system is determined by the degree of arousal 

  Fig. 11.2    ( a ) The four steps that comprise the generalized Carnot cycle are shown in a domain of 
criticality maintained by neural avalanches (Sect.   6.9    ). The gas and liquid phases coexist in varying 
degrees. In this formulation, energy is put in by heating in 2–3 and removed as waste heat in cool-
ing 4–1. Adapted from Baratuci ( 2011 ) ( b ) We conceive the operation of cortex as using informa-
tion from step 1 to select, construct, and transmit knowledge in step 3. High density of information 
appears in single neuron pulse trains in Hebbian assemblies selecting an attractor (1–2) and in 
readout neurons down sampling the AM pattern (3–4). The height of the cycle is determined by the 
degree of arousal as indexed by the maximum of axonal gain, Q 

m
  (Fig.   6.10    , Sect.   6.6    ). Free energy 

is derived from oxidative metabolism and is dissipated as heat in all four steps. From Freeman 
et al. ( 2012a )       
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and motivation of intentional action (Fig.   8.1d    ). Inasmuch as arousal is a major 
 factor in perception, we adopt Q 

m
  as a measurable index to replace temperature and 

use it to symbolize the maximal intensity of global synaptic interaction. 
 We conceive that the ignition of a Hebbian assembly precipitates condensation 

into a coherent AM pattern (1–2). Three lines of evidence for condensation by a 
phase transition are the oft-noted phase discontinuity at onset (Fig.   9.8c    , Fig.   9.9    , 
Sect.   9.5    ), the jump to a new carrier frequency and AM pattern, and the accompani-
ment of the AM pattern by a conic phase gradient (Sects.   8.5     and   9.5c    ), for which the 
apex of the cone constitutes a singularity (Fig,   9.13c    ) that we propose may corre-
spond to a site of nucleation (Fig.   8.9    ) (Freeman  1990  ) . Condensation is followed by 
increased mean pulse  fi ring rates (2–3) for the 3–5 cycles required for transmission 
(Fig.   9.7    , Sect.   9.4.2    ). The subsequent fall in analytic power is due to lowering of 
mean  fi ring rates by refractory periods (Fig.   6.11    a, Sect.   6.5    ) and to decoherence 
upon evaporation of the condensed state (Fig.   6.5c    ) eventuating in the null spike 
(Fig.   7.8    d, Sect.   7.5    ). 

 The Carnot formalism serves to organize many of the observed features of spa-
tiotemporal patterns from high-density grid recording, and it provides physical 
meanings and measurable quantities to embody the concepts of free energy and 
entropy that are complementary to the symbolic meanings deriving from informa-
tion theory (Friston  2009  ) . More importantly the model clari fi es and sharpens chal-
lenges for further investigation. The need is now brought into focus for distinguishing 
the contributions to  A  2 (t) of the mean pulse  fi ring rates and the degree of coherence 
from phase locking in pulse probability waves, which is manifested in the modula-
tion depths of statistical averages that ranges from 0% to 100% of the mean rates. 
Reliable statistical sampling methods with multiple microelectrodes are called for 
with which to estimate the pulse cloud density on single trials (Chap.   5    ), avoiding 
time averaging (Fig.   6.10    , Sect.   6.6    ) (Freeman  1974  ) . 

 We have posed the question whether the postulated liquid-like phase truly exists 
(Sect.  11.2 ). On the one hand, the cortical populations may oscillate between low 
and high density without convergence to attractors, as in the metastable state pro-
posed by Kelso and Tognoli  (  2006  )  and chaotic itinerancy proposed by Tsuda  (  2001  )  
(Sect.   6.4    ), which are in accordance with the ideal Carnot cycle in having no phase 
transitions (Fig.  11.1 ), but not with the evidence for discontinuities in the recordings. 
On the other hand, the properties of a liquid-like state that could differentiate it from 
mere high density are yet to be adequately de fi ned. Is energy sequestered in the state 
of oscillation that is comparable to the latent heat of condensation? If so, is it released 
on evaporation similarly to the latent heat of water? Might the condensed phase 
impose some form of viscosity on intracortical communication and transmission? At 
 fi rst glance, the idea seems absurd. On second thought, the concept of internal fric-
tion implies only that energy is dissipated in the induction of synchronized oscilla-
tions, so that the generalized Carnot formalism (Fig.  11.2 ) describing the behavior of 
water might help to explain the appearance of vortices (Fig.   9.10    , Sect.   9.5    ) in cin-
ematic displays (Freeman 2011), often resembling miniature hurricanes (Fig.   9.12    ), 
some rotating clockwise, others counterclockwise, and most pulsing inwardly or 
outwardly for the several cycles of the bursts (Fig.   9.13    ) (Freeman and Kozma  2010  ) . 
The vortices may be optical illusions from interference among overlapping phase 
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gradients of multiple foci creating moiré. However, they are not to be dismissed out 
of hand, because they are consistent with the stationary phase gradients  fi tted with 
cones that accompany AM patterns (Fig.   9.5    c). Moreover, the existence of vortices 
in association with phase transitions is predicted by modeling the cortical activity 
with concepts from many-body physics (Freeman and Vitiello 2009). 

 The role of neural viscosity might optimally be conceived as stabilization of the 
AM pattern within the frequency band set by the Hebbian assembly immersed in 
broadband noise. The prolongation was predicted by Rice  (  1950  )  and veri fi ed exper-
imentally (Fig.   7.6    d, Sect.   7.4    ; Fig.   9.7    e, Sect.   9.5    ). Further speculation along these 
lines must await replication of our results with larger high-density spatial arrays and 
much faster temporal digitizing, because maximal resolution in the temporal, spatial, 
and spectral domains is essential for de fi nitive exploration. The focus of the research 
should be to isolate the carrier of an AM pattern by an appropriate method of decom-
position (Chap.   4    ; Sects.   6.3     and   7.3    ) and determine how close together might be the 
locations of the three manifestations of singularity: the null spike initiating the phase 
transition (Fig.   7.8    , Sect.   7.5    ), the apex of the cone (Fig.   8.9    , Sect.   8.5    ), and the cen-
ter of rotation of the vortex (Fig.   9.10    , Sect.   9.6.1    ). In theory the three points are 
predicted to coincide in space though not in time (Freeman and Kozma  2010  ) . At 
present they usually do not. We propose that this is because we have not adequately 
decomposed overlapping bursts at different frequencies. Adequate tests will require 
substantial improvements in sampling and digital  fi lter design.  

    11.5   Transmission, Reception, and Readout of Bursts 

 Transmission of the olfactory percept is by action potentials propagating on axons 
in the lateral olfactory tract (LOT) to excitatory axodendritic synapses on neurons in 
diverse targets in the basal forebrain, predominantly in the prepyriform or primary 
olfactory cortex (Fig.   8.8    , Sect.   8.4    ). The divergent-convergent pathway performs a 
spatiotemporal integral transformation analogous to the Gabor transform of a lens or 
a holograph (Pribram  1991  ) . The LOT delivers the same bulbar information to all 
targets by its multiple divisions, as in a hologram that can be broken into pieces, 
each piece having the entire output pattern at reduced resolution. The decision 
whether to accept or reject the transmitted data is local in accord with each local 
tuning (Traub et al.  1996  ) . The prepyriform gamma bursts also contain classi fi able 
AM patterns (Barrie et al.  1996  ) , but the phase gradients and velocities of both the 
ECoG bursts and the evoked potentials are determined by the axons in the LOT. 
Maps of the amplitude and latency of the spread of ECoG oscillations (pp. 42–45 in 
Freeman  2000 ; Freeman and Barrie  2000  )  and ECoG phase (Freeman  1978  )  provide 
direct evidence that phase cones do not exist in prepyriform cortex, as they do in the 
olfactory bulb (Fig.   8.6    ) and the primary sensory neocortices (Fig.   9.5c    ). 

 The prepyriform cortex and intervening anterior olfactory nucleus have exten-
sive connections recurrent to the bulb via the medial olfactory tract (Gray and 
Skinner  1988 ). Each of the three parts has its characteristic frequency, which is 
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nonharmonic and incommensurate with the other frequencies (Kozma and Freeman 
 2001 ; Freeman and Erwin  2008  ) . The positive excitatory feedback among them 
continuously increases the activity, while the thresholds and refractory periods con-
tinuously curb it but with no convergence to any characteristic frequency, so the 
three-way interaction results in the broad-spectrum nonconvergent background 
ECoG (Skarda and Freeman  1987  ) . When the prepyriform cortex is deprived of 
bulbar input by cutting or inactivating the LOT, the cortex goes silent, while bulbar 
activity becomes periodic, revealing the characteristic frequency of its limit cycle 
attractor (Gray and Skinner  1988     ) . We infer that the prepyriform cortex lacks the 
capacity for self-organization and that its AM and PM patterns are not emergent but 
driven by bulbar input. 

 The LOT transmits the knowledge that is stored in the bulb to the prepyriform 
cortex in pulse clouds. The dense neuropil of layers I and II (Fig.   8.2    ) sustains the 
knowledge as classi fi able AM patterns in the liquid-like phase of pulse densities. 
The prepyriform output is transmitted by the deep pyramidal cells in layer III, which 
have widely radiating basal dendrites. We conjecture that they sample the cloud of 
layer II pulses that sustain the AM patterns by integrating over local patches, thereby 
spatially coarse-graining, and transducing prepyriform activity from macroscopic 
pulse densities to microscopic pulse frequencies through many-to-one convergence. 
By this operation, the prepyriform cortex returns the output of the olfactory system 
to the same microscopic level of sparse coding as the input to the bulb, but whereas 
bulbar pulse inputs on the PON convey sensory information, pulse outputs from the 
prepyriform to the brain would convey perceptual meanings. 

 It could be expected that the layer III pyramidal cells would project to more spe-
cialized neurons that could read and extract the conceptual meaning of a CS. Such 
neurons have been described in the human hippocampus and surrounding temporal 
cortex and have been named  concept  cells (Quian Quiroga et al.  2005 ; Quian 
Quiroga  2012  ) , whose  fi ring is correlated not with speci fi c sensory stimuli but with 
a variety of stimuli that resemble, suggest, or are associated with a category such as 
a familiar person (e.g., “Jennifer Aniston cells”). In the mass action view, the layer 
III neurons transmitting the prepyriform output would correspond each to a dot in a 
pointillist painting or a pixel in a hologram. Each neuron would have an implicit 
representation of the meaning of a stimulus, but of course, they would not act in 
isolation, as a large portion of layer III would have to provide an adequate sample 
of the active population to convey a particular concept with its full context. 

 In preceding Chapters (Sects.   8.6    ,   9.7    , and   10.3    ), we noted that a major target of 
prepyriform transmission in olfaction is the entorhinal cortex in the medial temporal 
lobe, which is the main gateway to the hippocampus. Concept cells were found in 
both these areas in humans, which also receive projections, through the parahip-
pocampal and perirhinal cortices, from purely visual areas, such as the inferior tem-
poral, auditory, and somatic areas via the cingulum, and the frontal lobe through the 
uncinate fasciculus. In Sect.   10.4     we described AM patterns from the inferotemporal 
ECoG (Fig.   10.5    , Sect.   10.4    ) that were classi fi ed with respect to categories of cogni-
tive behavior. In analogy to the primary sensory cortices, we propose that the special-
ized entorhinal neurons are members of Hebbian assemblies and that the specialization 
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is by synaptic changes due to reinforcement learning by which assemblies form 
(Fig.   8.8    , A, Sect.   8.4    ). Then the vigorous  fi ring of a concept cell would manifest the 
ignition of a Hebbian assembly, which would select an attractor representing a par-
ticular concept. But in contrast to the classic idea of Hebbian assemblies and attrac-
tors, the state of the system is quite dynamic, as it may go from one attractor to 
another, representing different related concepts in sequences resembling “chaotic 
itinerancy” (Tsuda  2001  )  and “metastability” (Kelso and Tognoli  2006 ). 

 The existence of AM patterns involving the cat entorhinal cortex (Figs.   10.3    c, 
Sects.   10.3     and   10.5    , Sect.   10.4    ) indicates that at least in this species the entorhinal 
output is simultaneously microscopic and macroscopic. That inference generates 
two hypotheses for higher cognitive processing. One is that all further processing is 
done at the microscopic level by combinatorial dynamics that is executed by neural 
networks throughout the allocortex and neocortex, culminating in activation of neu-
ral networks in the hippocampus representing concepts and forming new memories 
(Quian Quiroga  2012  )  and in the motor cortex and basal ganglia for implementing 
intentional behaviors. The hypothesis is supported at the microscopic level by the 
 fi nding that concept cells with very different cognitive correlates are found close 
together in entorhinal cortex or hippocampus (Quian Quiroga  2012 ), with no evi-
dence of spatial organization as found in adjacent areas of inferotemporal cortex 
(Tanaka  2003  ) . 

 The other hypothesis is that the transition from microscopic to macroscopic and 
back again occurs with every Rankine cycle in higher cortices. By this hypothesis, 
the action-perception cycle would minimally require three successive Rankine 
cycles (Fig.   9.2    a, b):  fi rst, sensation to perception, second, perception to conception, 
and third, conception to action (Fig.   8.1    ), which may most quickly close the loop of 
the action-perception cycle (Merleau-Ponty  1942  ) . Category cells having high 
information content mediate the transitions between levels in step 1–2 (Hebbian 
neurons) and step 3–4 (readout neurons) of each Rankine cycle. The hypothesis is 
supported at the macroscopic level by classi fi able AM patterns in EC0Gs involving 
multiple cortical areas (Fig.   10.3    ) and in the scalp EEG (Fig.   10.7    ). Further support 
is from simulation of perceptual dynamics in an intentional robot (Kozma et al. 
 2003,   2008  ) .  

    11.6   Future Developments in Cortical Thermodynamics 
of Perception 

 Nonequilibrium thermodynamics can be construed as central in the coordinated sci-
ences that address the biological foundation of the mind. Our description is focused 
on the electric  fi elds of potential generated by axons and dendrites, which draw on a 
virtually in fi nite reservoir of electromotive energy that is universally stored in trans-
membrane ionic gradients. Synapses and trigger zones borrow energy freely by cre-
ating an oxygen debt, and the debt is repaid independently at far slower time scales. 
Our main thrust has been to apply theory and techniques of digital signal processing 
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to optimize the description and interpretation of the spatiotemporal patterns we can 
observe and measure at the surfaces of the cortex and scalp. We have left for others 
the study of pattern correlates with measurements of the oxygen debt (BOLD) and 
its repayment through oxidative metabolism (PET). We have left untapped the 
wealth of information on the pattern correlates with magnetic potentials (MEG), 
which may access cortical areas in sulci beyond the reach of EEG. We have said 
little about the psychological and behavioral correlates of patterns, other than pass-
ing reference to the action-perception cycle of Merleau-Ponty  (  1942  ) . We have 
brie fl y opened new doors to cinematic display of dynamic space-time patterns of 
ECoG and EEG (Freeman 2011) to spectral decomposition of EEG patterns (Ruiz 
et al.  2010 ; Brockmeier et al.  2012  ) , and to further enhanced extraction of informa-
tion regarding pulse-wave relations of unit activity (Fig.   6.11    , Sect.   6.6    ). We have 
laid the foundation for advanced mathematical modeling using volume conductor 
theory (Ramon et al.  2009  ) , random graph theory and neuropercolation (Kozma 
 2007 ; Freeman et al. 2009), many-body physics (Freeman and Vitiello 2009), and 
nonequilibrium thermodynamics (Freeman et al.  2012b  ) . 

 The salient hypothesis arising from this study posits the existence of a liquid-like 
phase of cortical neuropil, which may provide the neural basis for virtually instan-
taneous integration of an enormous quantity of information revealed in the experi-
ence of recall and recognition in memory retrieval. The AM and PM patterns of beta 
and gamma bursts provide the main evidence supporting the hypothesis. The evi-
dence includes descriptions of mechanisms by which the patterns are formed and 
dissolved. The most controversial aspect of the hypothesis may be the existence of 
a singularity in the corticodynamics, which may appear in three forms: the null 
spike in analytic power, the apex of the phase cone, and the center of rotation of 
cortical vortices. The hypothesis requires that these points coincide spatially for 
each new transition from the sparse phase to the dense phase. At present they sel-
dom do, we believe for the reason that the classi fi able patterns are distorted and 
obscured by concomitant background avalanches that support the state of criticality. 
Adequate testing with substantial improvements in ECoG sampling and decomposi-
tion is crucial because the hypothesis will stand or fail depending on the outcome. 

 The experimental evidence for verifying and extending the thermodynamic 
hypothesis from allocortex to neocortex is de fi cient in several respects. There is as 
yet no direct anatomical mapping of divergent-convergent projections comparable to 
the LOT for the output of other sensory cortices, which could perform a Gabor trans-
form. The evidence for power-law distributions of axon lengths needed to mediate 
global phase transitions is scanty (Freeman and Breakspear  2007  ) . There is as yet no 
identi fi cation of the areas of cortex (or of equivalent volumes of neurons in the basal 
ganglia) that would be needed by the primary neocortical sensory areas to imple-
ment the readout mechanism that is provided for the bulb by the prepyriform cortex. 
The lack of evidence does not disprove the hypothesis; rather it attests to the dif fi culty 
of making the necessary anatomical observations and measurements (Sholl  1956 ; 
Bok  1959 ; Braitenberg and Schüz  1998  ) . What is required is investment in the  fi eld 
of macroscopic neuroanatomy focused on evaluation of the degree of conformance 
of the connectivity distributions to the requirements for modeling phase transitions. 
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 Additional anatomical data would be illuminating, along with further re fi nements 
for recording, measuring, and analyzing the scalp EEG. At present using standard 
clinical arrays and digitizing frequencies, we have achieved the  fi rst glimpse (Sect. 
  10.5    ) of the wealth of new data that await harvesting with larger and denser arrays, 
increased sampling rates by an order of magnitude, and new techniques for minimiz-
ing the EMG, which at present virtually precludes systematic investigation of the 
gamma and epsilon activity in the EEG (Whitham et al.  2007  ) . The evidence pro-
vided for global AM patterns in the EEG (Fig.   10.7    ) that is comparable to that from 
the ECoG (Fig.   10.3    ) documents their scale-free nature, but too little is known about 
their other properties, especially their phase gradients, at present to support specula-
tion on how the AM patterns form in EEG, what the range of their cognitive correlates 
might be, how they are read out, and whether they manifest pulse clouds that play an 
active role in objective behavior and subjective experience. Their accessibility for 
noninvasive measurement in normal human subjects engaged in normal cognition 
provides the best reason that we, the authors, have undertaken the task of preparing 
this introduction to spatiotemporal EEG imaging. We hope also that engineers might 
learn how to model perceptual and conceptual dynamics so as to compact electronic 
information into knowledge and retrieve it for use in the way that brains do.  

    11.7   Summary 

 We describe the brain as a thermodynamic system that has evolved to create infor-
mation and store and use it in compact form as knowledge. Using water as an anal-
ogy, we conceive neurons as having two states or phases (possibly more), one sparse 
and gas-like and the other dense and liquid-like. 

 The condensation from sparse phase to dense phase requires the ignition of a 
Hebbian assembly, which provides the transition energy to raise cortical activity 
above a protective barrier that prevents preemption by noise. The following evapo-
ration is predicated on a pervasive tendency to disorder imposed by the distribution 
of feedback gains in the cortical populations that disperses the characteristic fre-
quencies of oscillation of local populations. 

 Recurrence of the two phase transitions at beat frequencies is modeled by the 
Carnot and Rankine cycles. A measure of mean analytic power in the ECoG,  A  2 (t), 
replaces pressure and energy. A measure of the rate of change in the spatial AM 
patterns, D 

e
 (t), replaces volume entropy. The inverse of entropy gives the rate of 

information increase. Temperature is replaced by a measure of the intensity of feed-
back interaction, which is dependent on the degree of arousal. The relations among 
these three variables are expressed in isoclines that form a closed loop. 

 The area in the loop is given by the product of the rate of energy dissipated times 
the rate of information increase, H 

e
 (t), which is the index of the pragmatic informa-

tion that is formed in each cycle and added to the store of knowledge. An index of 
the ef fi ciency of cortical dynamics is given by the ratio of coherent power to total 
power, R 

e
 (t), given by the ratio of the SD 

X
 (t) of the mean ECoG divided by the mean 

 SD  
X
 (t) of the set of  fi ltered ECoGs. 
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 The cortical phase transitions are incorporated by embedding the loop in a 
domain of criticality. The domain is modeled on the vapor cycle of the phase dia-
gram for water, which operates in the area beyond the critical point marking the end 
of the phase boundary between gas and liquid. 

 Creation or recall of a memory by a stimulus occurs in the macroscopic dense 
level; readout is in the microscopic sparse level. The mobilized knowledge is mani-
fested macroscopically in spatial AM patterns from ECoGs of association cortices 
and the scalp EEG and microscopically in the  fi rings of concept cells in networks. 
We conclude that understanding cognition and cogitation requires measurements at 
both levels of dynamics.      
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