










Praise	for

For	the	Love	of	Physics
“Fascinating.	 .	 .	 .	 A	 delightful	 scientific	 memoir	 combined	 with	 a	 memorable
introduction	to	physics.”

—Kirkus	Reviews

“MIT’s	Lewin	is	deservedly	popular	for	his	memorable	physics	lectures	(both	live
and	 on	MIT’s	OpenCourseWare	 website	 and	 YouTube),	 and	 this	 quick-paced
autobiography-cum-physics	 intro	 fully	 captures	 his	 candor	 and	 lively	 teaching
style	.	.	.	joyful	.	.	.	[this	text]	glows	with	energy	and	should	please	a	wide	range	of
readers.”

—Publishers	Weekly	(starred	review)

“Lewin	may	be	the	only	physics	professor	in	the	world	who	celebrates	the	beauty
of	Maxwell’s	 equations	 for	 electromagnetic	 fields	 by	passing	out	 flowers	 to	his
delighted	 students.	 As	 the	 hundreds	 of	 thousands	 of	 students	 who	 have
witnessed	 his	 lectures	 in	 person	 or	 online	 can	 attest,	 this	 classroom	 wizard
transforms	textbook	formulas	into	magic.	Lewin’s	rare	creativity	shines	through	.
.	.	a	passport	to	adventure.”

—Booklist	(starred	review)

“Of	 all	 the	 souls	 made	 famous	 by	 YouTube—Justin	 Bieber,	 those	 wedding
entrance	 dancers,	 that	 guy	 who	 loses	 his	 mind	 while	 videotaping	 a	 double-
rainbow—none	 is	 more	 deserving	 than	 MIT	 physics	 professor	 Walter	 Lewin.
The	professor’s	sense	of	wonder	is	on	full	display	in	a	new	book:	For	the	Love	of
Physics:	From	the	End	of	 the	Rainbow	to	 the	Edge	of	Time—A	Journey	Through
the	Wonders	of	Physics.	Why	is	a	rainbow	an	arc	and	not	a	straight	line?	Why	can
we	typically	see	auroras	only	if	we’re	close	to	the	North	or	South	Pole?	If	you’ve
ever	 been	 interested	 in	 learning—	 or	 relearning—the	 answers	 to	 these	 and	 a
hundred	other	fascinating	questions,	Lewin’s	book	is	for	you.”

—The	Boston	Globe

“Everyone	knows	that	rainbows	appear	after	a	storm.	But	in	his	new	book,	Lewin
reveals	 nature’s	 more	 unusual	 rainbows	 hiding	 in	 spray	 kicked	 up	 by	 ocean
waves,	 in	 fog	 swirling	 around	headlights,	 even	 in	 glass	 particles	 floating	 above
construction	 sites.	 After	 more	 than	 thirty	 years	 of	 teaching	 undergraduate
physics	at	MIT,	Lewin	has	honed	a	toolbox	of	clear,	engaging	explanations	that



present	 physics	 as	 a	 way	 of	 uncovering	 the	 world’s	 hidden	 wonders.	 Quirky,
playful,	and	brimming	with	earnestness,	each	chapter	is	a	joyful	sketch	of	a	topic
—from	 Newton’s	 laws	 to	 Lewin’s	 own	 pioneering	 discoveries	 in	 X-ray
astronomy.	Lewin’s	creativity	offers	lessons	both	for	students	and	for	educators.	.
.	.	Throughout	it	all,	his	sense	of	wonder	is	infectious.”

—Science	News

“Walter	Lewin’s	unabashed	passion	for	physics	shines	through	on	every	page	of
this	 colorful,	 largely	 autobiographical	 tour	 of	 science.	 The	 excitement	 of
discovery	is	infectious.”

—Mario	Livio,	author	of	The	Golden	Ratio	and	Is	God	a	Mathematician?

“In	 this	 fun,	 engaging,	 and	 accessible	 book,	Walter	 Lewin,	 a	 superhero	 of	 the
classroom,	uses	his	powers	for	good—ours!	The	authors	share	the	joy	of	learning
that	the	world	is	a	knowable	place.”

—James	Kakalios,	professor	and	author	of	The	Physics	of	Superheroes	and	The
Amazing	Story	of	Quantum	Mechanics
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INTRODUCTION

Six	feet	two	and	lean,	wearing	what	looks	like	a	blue	work	shirt,	sleeves	rolled	to
the	elbows,	khaki	cargo	pants,	sandals	and	white	socks,	the	professor	strides	back
and	 forth	 at	 the	 front	 of	 his	 lecture	 hall,	 declaiming,	 gesturing,	 occasionally
stopping	for	emphasis	between	a	long	series	of	blackboards	and	a	thigh-high	lab
table.	Four	hundred	chairs	 slope	upward	 in	 front	of	him,	occupied	by	students
who	shift	in	their	seats	but	keep	their	eyes	glued	to	their	professor,	who	gives	the
impression	that	he	is	barely	containing	some	powerful	energy	coursing	through
his	body.	With	his	high	forehead,	shock	of	unruly	grey	hair,	glasses,	and	the	trace
of	 some	 unidentifiable	 European	 accent,	 he	 gives	 off	 a	 hint	 of	 Christopher
Lloyd’s	Doc	Brown	in	the	movie	Back	to	the	Future—the	 intense,	otherworldly,
slightly	mad	scientist-inventor.

But	 this	 is	 not	 Doc	 Brown’s	 garage—it’s	 the	 Massachusetts	 Institute	 of
Technology,	 the	 preeminent	 science	 and	 engineering	 university	 in	 the	 United
States,	 perhaps	 even	 the	 world,	 and	 lecturing	 at	 the	 blackboard	 is	 Professor
Walter	 H.	 G.	 Lewin.	 He	 halts	 his	 stride	 and	 turns	 to	 the	 class.	 “Now.	 All
important	 in	 making	measurements,	 which	 is	 always	 ignored	 in	 every	 college
physics	book”—he	throws	his	arms	wide,	fingers	spread—“is	the	uncertainty	in
your	measurements.”	He	pauses,	takes	a	step,	giving	them	time	to	consider,	and
stops	 again:	 “Any	 measurement	 that	 you	 make	 without	 knowledge	 of	 the
uncertainty	 is	 meaningless.”	 And	 the	 hands	 fly	 apart,	 chopping	 the	 air	 for
emphasis.	Another	pause.

“I	will	repeat	this.	I	want	you	to	hear	it	tonight	at	three	o’clock	in	the	morning
when	 you	wake	 up.”	He	 is	 holding	 both	 index	 fingers	 to	 his	 temples,	 twisting
them,	 pretending	 to	 bore	 into	 his	 brain.	 “Any	 measurement	 that	 you	 make
without	 knowledge	 of	 its	 uncertainty	 is	 completely	meaningless.”	 The	 students
stare	at	him,	utterly	rapt.

We’re	just	eleven	minutes	into	the	first	class	of	Physics	8.01,	the	most	famous
introductory	college	physics	course	in	the	world.

The	 New	 York	 Times	 ran	 a	 front-page	 piece	 on	 Walter	 Lewin	 as	 an	 MIT
“webstar”	in	December	2007,	featuring	his	physics	lectures	available	on	the	MIT
OpenCourseWare	site,	as	well	as	on	YouTube,	 iTunes	U,	and	Academic	Earth.
Lewin’s	were	 among	 the	 first	 lectures	 that	MIT	 posted	 on	 the	 Internet,	 and	 it
paid	off	for	MIT.	They	have	been	exceptionally	popular.	The	ninety-four	lectures



—in	 three	 full	 courses,	 plus	 seven	 stand-alones—garner	 about	 three	 thousand
viewers	per	day,	a	million	hits	a	year.	Those	include	quite	a	few	visits	from	none
other	than	Bill	Gates,	who’s	watched	all	of	courses	8.01,	Classical	Mechanics,	and
8.02,	 Electricity	 and	 Magnetism,	 according	 to	 letters	 (snail	 mail!)	 he’s	 sent
Walter,	reporting	that	he	was	looking	forward	to	moving	on	to	8.03,	Vibrations
and	Waves.

“You	have	changed	my	life,”	runs	a	common	subject	line	in	the	emails	Lewin
receives	every	day	 from	people	of	all	ages	and	from	all	over	 the	world.	Steve,	a
florist	from	San	Diego,	wrote,	“I	walk	with	a	new	spring	in	my	step	and	I	look	at
life	 through	 physics-colored	 eyes.”	 Mohamed,	 an	 engineering	 prep	 school
student	 in	 Tunisia	 wrote,	 “Unfortunately,	 here	 in	 my	 country	 my	 professors
don’t	see	any	beauty	 in	physics	as	you	do	see,	and	I’ve	suffered	a	 lot	 from	this.
They	just	want	us	to	learn	how	to	solve	‘typical’	exercises	to	succeed	in	the	exam,
they	 don’t	 look	 beyond	 that	 tiny	 horizon.”	 Seyed,	 an	 Iranian	who	 had	 already
earned	a	couple	of	American	master’s	degrees,	writes,	“I	never	really	enjoy	of	life
until	 I	have	watched	you	 teach	physics.	Professor	Lewin	you	have	changed	my
life	Indeed.	The	way	you	teach	it	is	worth	10	times	the	tuition,	and	make	SOME
not	all	other	teachers	bunch	of	criminals.	It	is	CAPITAL	CRIME	to	teach	bad.”
Or	 Siddharth	 from	 India:	 “I	 could	 feel	 Physics	 beyond	 those	 equations.	 Your
students	will	 always	 remember	 you	 as	 I	will	 always	 remember	 you—as	 a	 very-
very	fine	teacher	who	made	life	and	learning	more	interesting	than	I	thought	was
possible.”

Mohamed	 enthusiastically	 quotes	 Lewin’s	 final	 lecture	 in	 Physics	 8.01	 with
approval:	“Perhaps	you	will	always	remember	from	my	lectures	that	physics	can
be	very	exciting	and	beautiful	and	it’s	everywhere	around	us,	all	the	time,	if	only
you	have	learned	to	see	it	and	appreciate	its	beauty.”	Marjory,	another	fan,	wrote,
“I	watch	you	as	often	as	I	can;	sometimes	five	times	per	week.	I	am	fascinated	by
your	personality,	your	sense	of	humor,	and	above	all	by	your	ability	to	simplify
matters.	I	hated	physics	in	high	school,	but	you	made	me	love	it.”

Lewin	receives	dozens	of	such	emails	every	week,	and	he	answers	each	one.
Walter	 Lewin	 creates	 magic	 when	 he	 introduces	 the	 wonders	 of	 physics.

What’s	his	 secret?	“I	 introduce	people	 to	 their	own	world,”	he	says,	“the	world
they	 live	 in	and	are	 familiar	with,	but	don’t	 approach	 like	a	physicist—yet.	 If	 I
talk	 about	 waves	 on	 water,	 I	 ask	 them	 to	 do	 certain	 experiments	 in	 their
bathtubs;	they	can	relate	to	that.	They	can	relate	to	rainbows.	That’s	one	of	the
things	 I	 love	 about	 physics:	 you	 get	 to	 explain	 anything.	 And	 that	 can	 be	 a
wonderful	 experience—for	 them	 and	 for	 me.	 I	 make	 them	 love	 physics!



Sometimes,	 when	 my	 students	 get	 really	 engaged,	 the	 classes	 almost	 feel	 like
happenings.”

He	might	be	perched	at	the	top	of	a	sixteen-foot	ladder	sucking	cranberry	juice
out	of	a	beaker	on	the	floor	with	a	long	snaking	straw	made	out	of	lab	tubing.	Or
he	could	be	courting	serious	injury	by	putting	his	head	in	the	path	of	a	small	but
quite	 powerful	wrecking	 ball	 that	 swings	 to	within	millimeters	 of	 his	 chin.	He
might	be	firing	a	rifle	into	two	paint	cans	filled	with	water,	or	charging	himself
with	300,000	volts	of	electricity	with	a	 large	contraption	called	a	Van	de	Graaff
generator—like	something	out	of	a	mad	scientist’s	laboratory	in	a	science	fiction
movie—so	that	his	already	wild	hair	stands	straight	out	from	his	skull.	He	uses
his	 body	 as	 a	 piece	 of	 experimental	 equipment.	 As	 he	 says	 often,	 “Science
requires	 sacrifices,	 after	 all.”	 In	 one	 demonstration—captured	 in	 the	 photo	 on
the	jacket	of	this	book—he	sits	on	an	extremely	uncomfortable	metal	ball	at	the
end	of	a	rope	suspended	from	the	lecture	hall’s	ceiling	(what	he	calls	the	mother
of	 all	 pendulums)	 and	 swings	 back	 and	 forth	 while	 his	 students	 chant	 the
number	of	swings,	all	to	prove	that	the	number	of	swings	a	pendulum	makes	in
any	given	time	is	independent	of	the	weight	at	its	end.

His	 son,	 Emanuel	 (Chuck)	 Lewin,	 has	 attended	 some	 of	 these	 lectures	 and
recounts,	 “I	 saw	him	once	 inhale	helium	 to	 change	his	 voice.	To	get	 the	 effect
right—the	 devil	 is	 in	 the	 details—he	 typically	 gets	 pretty	 close	 to	 the	 point	 of
fainting.”	 An	 accomplished	 artist	 of	 the	 blackboard,	 Lewin	 draws	 geometrical
figures,	 vectors,	 graphs,	 astronomical	 phenomena,	 and	 animals	 with	 abandon.
His	 method	 of	 drawing	 dotted	 lines	 so	 entranced	 several	 students	 that	 they
produced	 a	 funny	YouTube	 video	 titled	 “Some	 of	Walter	 Lewin’s	 Best	 Lines,”
consisting	simply	of	lecture	excerpts	showing	Lewin	drawing	his	famous	dotted
lines	on	different	blackboards	during	his	8.01	 lectures.	 (You	can	watch	 it	here:
www.youtube.com/watch?v=raurl4s0pjU.)

A	 commanding,	 charismatic	 presence,	 Lewin	 is	 a	 genuine	 eccentric:	 quirky
and	physics	obsessed.	He	carries	two	devices	called	polarizers	in	his	wallet	at	all
times,	so	that	at	a	moment’s	notice	he	can	see	if	any	source	of	light,	such	as	the
blue	 sky,	 a	 rainbow,	 or	 reflections	 off	 windows,	 is	 polarized,	 and	 whoever	 he
might	be	with	can	see	it	too.

What	about	those	blue	work	shirts	he	wears	to	class?	Not	work	shirts	at	all,	it
turns	out.	Lewin	orders	them,	custom	made	to	his	specifications,	of	high-grade
cotton,	 a	 dozen	 at	 a	 time	 every	 few	 years,	 from	 a	 tailor	 in	 Hong	 Kong.	 The
oversize	pocket	on	the	left	side	Lewin	designed	to	accommodate	his	calendar.	No
pocket	protectors	here—this	physicist-performer-teacher	is	a	man	of	meticulous

http://www.youtube.com/watch?v=raurl4s0pjU


fashion—which	makes	a	person	wonder	why	he	appears	to	be	wearing	the	oddest
brooch	ever	worn	by	a	university	professor:	a	plastic	fried	egg.	“Better,”	he	says,
“to	have	egg	on	my	shirt	than	on	my	face.”

What	is	that	oversize	pink	Lucite	ring	doing	on	his	left	hand?	And	what	is	that
silvery	 thing	 pinching	 his	 shirt	 right	 at	 belly-button	 level,	 which	 he	 keeps
sneaking	looks	at?

Every	morning	as	Lewin	dresses,	he	has	the	choice	of	forty	rings	and	thirty-five
brooches,	 as	well	 as	dozens	of	bracelets	 and	necklaces.	His	 taste	 runs	 from	 the
eclectic	(Kenyan	beaded	bracelets,	a	necklace	of	large	amber	pieces,	plastic	fruit
brooches)	to	the	antique	(a	heavy	silver	Turkmen	cuff	bracelet)	to	designer	and
artist-created	jewelry,	to	the	simply	and	hilariously	outrageous	(a	necklace	of	felt
licorice	candies).	“The	students	started	noticing,”	he	says,	“so	I	began	wearing	a
different	piece	every	lecture.	And	especially	when	I	give	talks	to	kids.	They	love
it.”

And	 that	 thing	 clipped	 to	 his	 shirt	 that	 looks	 like	 an	 oversize	 tie	 clip?	 It’s	 a
specially	designed	watch	(the	gift	of	an	artist	friend)	with	the	face	upside	down,
so	Lewin	can	look	down	at	his	shirt	and	keep	track	of	time.

It	 sometimes	 seems	 to	 others	 that	 Lewin	 is	 distracted,	 perhaps	 a	 classic
absentminded	professor.	But	in	reality,	he	is	usually	deeply	engaged	in	thinking
about	 some	 aspect	 of	 physics.	 As	 his	 wife	 Susan	 Kaufman	 recently	 recalled,
“When	we	go	to	New	York	I	always	drive.	But	recently	I	took	this	map	out,	I’m
not	sure	why,	but	when	I	did	I	noticed	there	were	equations	all	over	the	margins
of	 the	states.	Those	margins	were	done	when	he	was	 last	 lecturing,	and	he	was
bored	when	we	were	driving.	Physics	was	always	on	his	mind.	His	students	and
school	were	with	him	twenty-four	hours	a	day.”

Perhaps	 most	 striking	 of	 all	 about	 Lewin’s	 personality,	 according	 to	 his
longtime	 friend	 the	 architectural	 historian	 Nancy	 Stieber,	 is	 “the	 laser-sharp
intensity	of	his	 interest.	He	seems	always	to	be	maximally	engaged	in	whatever
he	chooses	to	be	involved	in,	and	eliminates	90	percent	of	the	world.	With	that
laserlike	 focus,	 he	 eliminates	 what’s	 inessential	 to	 him,	 getting	 to	 a	 form	 of
engagement	that	is	so	intense,	it	produces	a	remarkable	joie	de	vivre.”

Lewin	is	a	perfectionist;	he	has	an	almost	fanatical	obsession	with	detail.	He	is
not	only	the	world’s	premier	physics	teacher;	he	was	also	a	pioneer	in	the	field	of
X-ray	 astronomy,	 and	 he	 spent	 two	 decades	 building,	 testing,	 and	 observing
subatomic	and	astronomical	phenomena	with	ultrasensitive	equipment	designed
to	measure	X-rays	to	a	remarkable	degree	of	accuracy.	Launching	enormous	and
extremely	delicate	balloons	that	skimmed	the	upper	limit	of	Earth’s	atmosphere,



he	began	to	uncover	an	exotic	menagerie	of	astronomical	phenomena,	such	as	X-
ray	bursters.	The	discoveries	he	 and	his	 colleagues	 in	 the	 field	made	helped	 to
demystify	the	nature	of	the	death	of	stars	in	massive	supernova	explosions	and	to
verify	that	black	holes	really	do	exist.

He	 learned	 to	 test,	 and	 test,	 and	 test	 again—which	not	only	accounts	 for	his
success	as	an	observational	astrophysicist,	but	also	for	the	remarkable	clarity	he
brings	 to	 revealing	 the	 majesty	 of	 Newton’s	 laws,	 why	 the	 strings	 of	 a	 violin
produce	such	beautifully	resonant	notes,	and	why	you	lose	and	gain	weight,	be	it
only	very	briefly,	when	you	ride	in	an	elevator.

For	his	lectures,	he	always	practiced	at	least	three	times	in	an	empty	classroom,
with	the	last	rehearsal	being	at	five	a.m.	on	lecture	day.	“What	makes	his	lectures
work,”	says	astrophysicist	David	Pooley,	a	former	student	who	worked	with	him
in	the	classroom,	“is	the	time	he	puts	into	them.”

When	MIT’s	Physics	Department	nominated	Lewin	for	a	prestigious	teaching
award	in	2002,	a	number	of	his	colleagues	zeroed	in	on	these	exact	qualities.	One
of	 the	 most	 evocative	 descriptions	 of	 the	 experience	 of	 learning	 physics	 from
Lewin	 is	 from	 Steven	 Leeb,	 now	 a	 professor	 of	 electrical	 engineering	 and
computer	 science	 at	 MIT’s	 Laboratory	 for	 Electromagnetic	 and	 Electronic
Systems,	who	took	his	Electricity	and	Magnetism	course	in	1984.	“He	exploded
onto	 the	stage,”	Leeb	recalls,	 “seized	us	by	 the	brains,	and	 took	off	on	a	 roller-
coaster	ride	of	electromagnetics	that	I	can	still	feel	on	the	back	of	my	neck.	He	is
a	genius	in	the	classroom	with	an	unmatched	resourcefulness	for	finding	ways	to
make	concepts	plain.”

Robert	 Hulsizer,	 one	 of	 Lewin’s	 Physics	 Department	 colleagues,	 tried	 to
excerpt	 some	 of	 Lewin’s	 in-class	 demonstrations	 on	 video	 to	 make	 a	 kind	 of
highlight	 film	 for	 other	 universities.	 He	 found	 the	 task	 impossible.	 “The
demonstrations	were	so	well	woven	into	the	development	of	the	ideas,	including
a	buildup	and	denouement,	that	there	was	no	clear	time	when	the	demonstration
started	and	when	it	finished.	To	my	mind,	Walter	had	a	richness	of	presentation
that	could	not	be	sliced	into	bites.”

The	thrill	of	Walter	Lewin’s	approach	to	introducing	the	wonders	of	physics	is
the	 great	 joy	 he	 conveys	 about	 all	 the	 wonders	 of	 our	 world.	 His	 son	 Chuck
fondly	recalls	his	father’s	devotion	to	imparting	that	sense	of	joy	to	him	and	his
siblings:	“He	has	this	ability	to	get	you	to	see	things	and	to	be	overwhelmed	by
how	 beautiful	 they	 are,	 to	 stir	 the	 pot	 in	 you	 of	 joy	 and	 amazement	 and
excitement.	I’m	talking	about	little	unbelievable	windows	he	was	at	the	center	of,
you	 felt	 so	happy	 to	be	alive,	 in	his	presence,	 in	 this	event	 that	he	created.	We



were	 on	 vacation	 in	Maine	 once.	 It	wasn’t	 great	weather,	 I	 recall,	 and	we	 kids
were	 just	hanging	out,	 the	way	kids	do,	bored.	 Somehow	my	 father	 got	 a	 little
ball	and	spontaneously	created	this	strange	little	game,	and	in	a	minute	some	of
the	other	beach	kids	 from	next	door	came	over,	and	suddenly	 there	were	 four,
five,	 six	 of	 us	 throwing,	 catching,	 and	 laughing.	 I	 remember	 being	 so	 utterly
excited	and	joyful.	If	I	look	back	and	think	about	what’s	motivated	me	in	my	life,
having	 those	moments	 of	 pure	 joy,	 having	 a	 vision	of	 how	good	 life	 can	 be,	 a
sense	of	what	life	can	hold—I’ve	gotten	that	from	my	father.”

Walter	used	to	organize	his	children	to	play	a	game	in	the	winter,	testing	the
aerodynamic	 quality	 of	 paper	 airplanes—by	 flying	 them	 into	 the	 family’s	 big
open	living	room	fireplace.	“To	my	mother’s	horror,”	Chuck	recalled,	“we	would
recover	them	from	the	fire—we	were	determined	to	win	the	competition	the	next
time	round!”

When	guests	came	for	dinner,	Walter	would	preside	over	the	game	of	Going	to
the	Moon.	As	Chuck	remembers	it,	“We	would	dim	the	lights,	pound	our	fists	on
the	 table	 making	 a	 drumroll	 kind	 of	 sound,	 simulating	 the	 noise	 of	 a	 rocket
launch.	Some	of	the	kids	would	even	go	under	the	table	and	pound.	Then,	as	we
reached	space,	we	stopped	the	pounding,	and	once	we	landed	on	the	Moon,	all	of
us	 would	 walk	 around	 the	 living	 room	 pretending	 to	 be	 in	 very	 low	 gravity,
taking	crazy	exaggerated	steps.	Meanwhile,	the	guests	must	have	been	thinking,
‘These	people	are	nuts!’	But	for	us	kids,	it	was	fantastic!	Going	to	the	Moon!”

Walter	Lewin	has	been	taking	students	to	the	Moon	since	he	first	walked	into	a
classroom	more	 than	 a	half	 century	 ago.	Perpetually	 entranced	by	 the	mystery
and	 beauty	 of	 the	 natural	 world—from	 rainbows	 to	 neutron	 stars,	 from	 the
femur	of	 a	mouse	 to	 the	 sounds	of	music—and	by	 the	 efforts	of	 scientists	 and
artists	to	explain,	interpret,	and	represent	this	world,	Walter	Lewin	is	one	of	the
most	passionate,	devoted,	and	skillful	scientific	guides	to	that	world	now	alive.	In
the	chapters	that	follow	you	will	be	able	to	experience	that	passion,	devotion,	and
skill	as	he	uncovers	his	lifelong	love	of	physics	and	shares	it	with	you.	Enjoy	the
journey!

—Warren	Goldstein



CHAPTER	1

From	the	Nucleus	to	Deep	Space

It’s	 amazing,	 really.	 My	 mother’s	 father	 was	 illiterate,	 a	 custodian.	 Two
generations	later	I’m	a	full	professor	at	MIT.	I	owe	a	lot	to	the	Dutch	educational
system.	 I	went	 to	graduate	 school	 at	 the	Delft	University	of	Technology	 in	 the
Netherlands,	and	killed	three	birds	with	one	stone.

Right	from	the	start,	I	began	teaching	physics.	To	pay	for	school	I	had	to	take
out	a	loan	from	the	Dutch	government,	and	if	I	taught	full	time,	at	least	twenty
hours	 a	 week,	 each	 year	 the	 government	 would	 forgive	 one-fifth	 of	 my	 loan.
Another	advantage	of	teaching	was	that	I	wouldn’t	have	to	serve	in	the	army.	The
military	would	have	been	the	worst,	an	absolute	disaster	for	me.	I’m	allergic	to	all
forms	of	authority—it’s	just	in	my	personality—and	I	knew	I	would	have	ended
up	mouthing	off	 and	 scrubbing	 floors.	 So	 I	 taught	math	 and	physics	 full	 time,
twenty-two	 contact	 hours	 per	 week,	 at	 the	 Libanon	 Lyceum	 in	 Rotterdam,	 to
sixteen-and	 seventeen-year-olds.	 I	 avoided	 the	 army,	 did	not	 have	 to	 pay	back
my	loan,	and	was	getting	my	PhD,	all	at	the	same	time.

I	 also	 learned	 to	 teach.	 For	me,	 teaching	high	 school	 students,	 being	 able	 to
change	the	minds	of	young	people	in	a	positive	way,	that	was	thrilling.	I	always
tried	 to	make	classes	 interesting	but	also	 fun	 for	 the	 students,	 even	 though	 the
school	 itself	was	quite	strict.	The	classroom	doors	had	transom	windows	at	 the
top,	and	one	of	the	headmasters	would	sometimes	climb	up	on	a	chair	and	spy
on	teachers	through	the	transom.	Can	you	believe	it?

I	wasn’t	caught	up	in	the	school	culture,	and	being	 in	graduate	school,	 I	was
boiling	 over	 with	 enthusiasm.	 My	 goal	 was	 to	 impart	 that	 enthusiasm	 to	 my
students,	to	help	them	see	the	beauty	of	the	world	all	around	them	in	a	new	way,
to	 change	 them	 so	 that	 they	 would	 see	 the	 world	 of	 physics	 as	 beautiful,	 and
would	understand	that	physics	 is	everywhere,	 that	 it	permeates	our	 lives.	What
counts,	I	found,	is	not	what	you	cover,	but	what	you	uncover.	Covering	subjects
in	a	class	can	be	a	boring	exercise,	and	students	 feel	 it.	Uncovering	 the	 laws	of
physics	 and	 making	 them	 see	 through	 the	 equations,	 on	 the	 other	 hand,
demonstrates	the	process	of	discovery,	with	all	its	newness	and	excitement,	and
students	love	being	part	of	it.

I	got	to	do	this	also	in	a	different	way	far	outside	the	classroom.	Every	year	the



school	sponsored	a	week-long	vacation	when	a	teacher	would	take	the	kids	on	a
trip	to	a	fairly	remote	and	primitive	campsite.	My	wife,	Huibertha,	and	I	did	it
once	and	loved	it.	We	all	cooked	together	and	slept	in	tents.	Then,	since	we	were
so	far	from	city	lights,	we	woke	all	the	kids	up	in	the	middle	of	one	night,	gave
them	 hot	 chocolate,	 and	 took	 them	 out	 to	 look	 at	 the	 stars.	 We	 identified
constellations	and	planets	and	they	got	to	see	the	Milky	Way	in	its	full	glory.

I	 wasn’t	 studying	 or	 even	 teaching	 astrophysics—in	 fact,	 I	 was	 designing
experiments	 to	 detect	 some	 of	 the	 smallest	 particles	 in	 the	 universe—but	 I’d
always	been	fascinated	by	astronomy.	The	truth	is	that	just	about	every	physicist
who	walks	the	Earth	has	a	love	for	astronomy.	Many	physicists	I	know	built	their
own	 telescopes	 when	 they	 were	 in	 high	 school.	My	 longtime	 friend	 and	MIT
colleague	 George	 Clark	 ground	 and	 polished	 a	 6-inch	 mirror	 for	 a	 telescope
when	he	was	 in	high	 school.	Why	do	physicists	 love	 astronomy	 so	much?	For
one	thing,	many	advances	in	physics—theories	of	orbital	motion,	for	instance—
have	resulted	from	astronomical	questions,	observations,	and	theories.	But	also,
astronomy	is	physics,	writ	 large	across	 the	night	sky:	eclipses,	comets,	 shooting
stars,	globular	clusters,	neutron	stars,	gamma-ray	bursts,	jets,	planetary	nebulae,
supernovae,	clusters	of	galaxies,	black	holes.

Just	 look	up	 in	 the	sky	and	ask	yourself	 some	obvious	questions:	Why	 is	 the
sky	 blue,	why	 are	 sunsets	 red,	why	 are	 clouds	white?	 Physics	 has	 the	 answers!
The	light	of	the	Sun	is	composed	of	all	the	colors	of	the	rainbow.	But	as	it	makes
its	way	through	the	atmosphere	it	scatters	in	all	directions	off	air	molecules	and
very	 tiny	dust	particles	 (much	smaller	 than	a	micron,	which	 is	1/250,000	of	an
inch).	This	is	called	Rayleigh	scattering.	Blue	light	scatters	the	most	of	all	colors,
about	five	times	more	than	red	light.	Thus	when	you	look	at	the	sky	during	the
day	in	any	direction*,	blue	dominates,	which	is	why	the	sky	is	blue.	If	you	look	at
the	sky	from	the	surface	of	the	Moon	(you	may	have	seen	pictures),	the	sky	is	not
blue—it’s	 black,	 like	 our	 sky	 at	 night.	 Why?	 Because	 the	 Moon	 has	 no
atmosphere.

Why	are	sunsets	red?	For	exactly	the	same	reason	that	the	sky	is	blue.	When
the	Sun	is	at	the	horizon,	its	rays	have	to	travel	through	more	atmosphere,	and
the	green,	blue,	and	violet	light	get	scattered	the	most—filtered	out	of	the	light,
basically.	By	 the	 time	 the	 light	reaches	our	eyes—and	the	clouds	above	us—it’s
made	 up	 largely	 of	 yellow,	 orange,	 and	 especially	 red.	 That’s	 why	 the	 sky
sometimes	almost	appears	to	be	on	fire	at	sunset	and	sunrise.

Why	 are	 clouds	white?	The	water	 drops	 in	 clouds	 are	much	 larger	 than	 the
tiny	 particles	 that	make	 our	 sky	 blue,	 and	 when	 light	 scatters	 off	 these	much



larger	 particles,	 all	 the	 colors	 in	 it	 scatter	 equally.	This	 causes	 the	 light	 to	 stay
white.	 But	 if	 a	 cloud	 is	 very	 thick	 with	 moisture,	 or	 if	 it	 is	 in	 the	 shadow	 of
another	cloud,	then	not	much	light	will	get	through,	and	the	cloud	will	turn	dark.

One	of	the	demonstrations	I	love	to	do	is	to	create	a	patch	of	“blue	sky”	in	my
classes.	I	turn	all	the	lights	off	and	aim	a	very	bright	spotlight	of	white	light	at	the
ceiling	of	the	classroom	near	my	blackboard.	The	spotlight	is	carefully	shielded.
Then	 I	 light	 a	 few	 cigarettes	 and	 hold	 them	 in	 the	 light	 beam.	 The	 smoke
particles	are	small	enough	to	produce	Rayleigh	scattering,	and	because	blue	light
scatters	 the	most,	 the	 students	 see	blue	smoke.	 I	 then	carry	 this	demonstration
one	step	further.	I	inhale	the	smoke	and	keep	it	in	my	lungs	for	a	minute	or	so—
this	 is	not	always	easy,	but	science	occasionally	requires	sacrifices.	I	 then	let	go
and	exhale	the	smoke	into	the	light	beam.	The	students	now	see	white	smoke—I
have	created	a	white	cloud!	The	tiny	smoke	particles	have	grown	in	my	lungs,	as
there	is	a	lot	of	water	vapor	there.	So	now	all	the	colors	scatter	equally,	and	the
scattered	 light	 is	white.	The	color	change	 from	blue	 light	 to	white	 light	 is	 truly
amazing!

With	this	demonstration,	I’m	able	to	answer	two	questions	at	once:	Why	is	the
sky	blue,	and	why	are	clouds	white?	Actually,	there	is	also	a	third	very	interesting
question,	having	to	do	with	the	polarization	of	light.	I’ll	get	to	this	in	chapter	5.

Out	 in	 the	 country	 with	 my	 students	 I	 could	 show	 them	 the	 Andromeda
galaxy,	 the	only	one	 you	 can	 see	with	 the	naked	 eye,	 around	2.5	million	 light-
years	away	(15	million	trillion	miles),	which	is	next	door	as	far	as	astronomical
distances	go.	 It’s	made	up	of	 about	200	billion	 stars.	 Imagine	 that—200	billion
stars,	and	we	could	just	make	it	out	as	a	faint	fuzzy	patch.	We	also	spotted	lots	of
meteorites—most	people	call	them	shooting	stars.	If	you	were	patient,	you’d	see
one	about	every	four	or	five	minutes.	In	those	days	there	were	no	satellites,	but
now	you’d	 see	a	host	of	 those	as	well.	There	are	more	 than	 two	 thousand	now
orbiting	Earth,	and	if	you	can	hold	your	gaze	for	five	minutes	you’ll	almost	surely
see	 one,	 especially	within	 a	 few	hours	 after	 sunset	 or	 before	 sunrise,	when	 the
Sun	hasn’t	yet	set	or	risen	on	the	satellite	itself	and	sunlight	still	reflects	off	it	to
your	eyes.	The	more	distant	the	satellite,	and	therefore	the	greater	the	difference
in	 time	between	 sunset	on	Earth	and	at	 the	 satellite,	 the	 later	you	can	 see	 it	 at
night.	You	recognize	satellites	because	they	move	faster	than	anything	else	in	the
sky	(except	meteors);	if	it	blinks,	believe	me,	it’s	an	airplane.

I	 have	 always	 especially	 liked	 to	 point	 out	 Mercury	 to	 people	 when	 we’re
stargazing.	As	 the	planet	 closest	 to	 the	Sun,	 it’s	 very	difficult	 to	 see	 it	with	 the
naked	eye.	The	conditions	are	best	only	about	two	dozen	evenings	and	mornings



a	 year.	Mercury	 orbits	 the	 Sun	 in	 just	 eighty-eight	 days,	 which	 is	 why	 it	 was
named	for	the	fleet-footed	Roman	messenger	god;	and	the	reason	it’s	so	hard	to
see	is	that	its	orbit	is	so	close	to	the	Sun.	It’s	never	more	than	about	25	degrees
away	from	the	Sun	when	we	look	at	it	from	Earth—that’s	smaller	than	the	angle
between	the	two	hands	of	a	watch	at	eleven	o’clock.	You	can	only	see	it	shortly
after	sunset	and	before	sunrise,	and	when	it’s	farthest	from	the	Sun	as	seen	from
Earth.	In	the	United	States	it’s	always	close	to	the	horizon;	you	almost	have	to	be
in	the	countryside	to	see	it.	How	wonderful	it	is	when	you	actually	find	it!

Stargazing	connects	us	to	the	vastness	of	the	universe.	If	we	keep	staring	up	at
the	night	sky,	and	let	our	eyes	adjust	long	enough,	we	can	see	the	superstructure
of	the	farther	reaches	of	our	own	Milky	Way	galaxy	quite	beautifully—some	100
billion	 to	 200	 billion	 stars,	 clustered	 as	 if	 woven	 into	 a	 diaphanous	 fabric,	 so
delightfully	delicate.	The	 size	of	 the	universe	 is	 incomprehensible,	 but	 you	 can
begin	to	grasp	it	by	first	considering	the	Milky	Way.

Our	current	estimate	is	that	there	may	be	as	many	galaxies	in	the	universe	as
there	 are	 stars	 in	 our	 own	 galaxy.	 In	 fact,	whenever	 a	 telescope	 observes	 deep
space,	what	it	sees	is	mostly	galaxies—it’s	impossible	to	distinguish	single	stars	at
truly	great	distances—and	each	contains	billions	of	stars.	Or	consider	the	recent
discovery	of	the	single	largest	structure	in	the	known	universe,	the	Great	Wall	of
galaxies,	 mapped	 by	 the	 Sloan	 Digital	 Sky	 Survey,	 a	 major	 project	 that	 has
combined	 the	 efforts	 of	 more	 than	 three	 hundred	 astronomers	 and	 engineers
and	 twenty-five	 universities	 and	 research	 institutions.	 The	 dedicated	 Sloan
telescope	 is	 observing	 every	night;	 it	went	 into	operation	 in	 the	 year	 2000	 and
will	 continue	 till	 at	 least	 the	 year	 2014.	The	Great	Wall	 is	more	 than	 a	 billion
light-years	long.	Is	your	head	spinning?	If	not,	then	consider	that	the	observable
universe	 (not	 the	 entire	 universe,	 just	 the	 part	 we	 can	 observe)	 is	 roughly	 90
billion	light-years	across.

This	is	the	power	of	physics;	it	can	tell	us	that	our	observable	universe	is	made
up	of	 some	100	billion	galaxies.	 It	 can	also	 tell	us	 that	of	 all	 the	matter	 in	our
visible	 universe,	 only	 about	 4	 percent	 is	 ordinary	 matter,	 of	 which	 stars	 and
galaxies	(and	you	and	I)	are	made.	About	23	percent	is	what’s	called	dark	matter
(it’s	invisible).	We	know	it	exists,	but	we	don’t	know	what	it	is.	The	remaining	73
percent,	which	 is	 the	bulk	of	 the	 energy	 in	our	universe,	 is	 called	dark	 energy,
which	is	also	invisible.	No	one	has	a	clue	what	that	is	either.	The	bottom	line	is
that	we’re	ignorant	about	96	percent	of	the	mass/energy	in	our	universe.	Physics
has	explained	so	much,	but	we	still	have	many	mysteries	 to	solve,	which	I	 find
very	inspiring.



Physics	 explores	 unimaginable	 immensity,	 but	 at	 the	 same	 time	 it	 can	 dig
down	into	the	very	smallest	realms,	to	the	very	bits	of	matter	such	as	neutrinos,
as	small	as	a	tiny	fraction	of	a	proton.	That	is	where	I	was	spending	most	of	my
time	in	my	early	days	in	the	field,	in	the	realms	of	the	very	small,	measuring	and
mapping	the	release	of	particles	and	radiation	from	radioactive	nuclei.	This	was
nuclear	 physics,	 but	 not	 the	 bomb-making	 variety.	 I	 was	 studying	what	made
matter	tick	at	a	really	basic	level.

You	probably	know	that	almost	all	the	matter	you	can	see	and	touch	is	made
up	of	elements,	such	as	hydrogen,	oxygen,	and	carbon	combined	into	molecules,
and	 that	 the	smallest	unit	of	an	element	 is	an	atom,	made	up	of	a	nucleus	and
electrons.	A	nucleus,	 recall,	 consists	of	protons	 and	neutrons.	The	 lightest	 and
most	 plentiful	 element	 in	 the	 universe,	 hydrogen,	 has	 one	 proton	 and	 one
electron.	But	there	is	a	form	of	hydrogen	that	has	a	neutron	as	well	as	a	proton	in
its	nucleus.	That	is	an	isotope	of	hydrogen,	a	different	form	of	the	same	element;
it’s	 called	 deuterium.	 There’s	 even	 a	 third	 isotope	 of	 hydrogen,	 with	 two
neutrons	joining	the	proton	in	the	nucleus;	that’s	called	tritium.	All	isotopes	of	a
given	 element	 have	 the	 same	 number	 of	 protons,	 but	 a	 different	 number	 of
neutrons,	 and	 elements	 have	 different	 numbers	 of	 isotopes.	 There	 are	 thirteen
isotopes	of	oxygen,	for	instance,	and	thirty-six	isotopes	of	gold.

Now,	 many	 of	 these	 isotopes	 are	 stable—that	 is,	 they	 can	 last	 more	 or	 less
forever.	 But	 most	 are	 unstable,	 which	 is	 another	 way	 of	 saying	 they’re
radioactive,	 and	 radioactive	 isotopes	 decay:	 that	 is	 to	 say,	 sooner	 or	 later	 they
transform	themselves	into	other	elements.	Some	of	the	elements	they	transform
into	are	stable,	and	then	the	radioactive	decay	stops,	but	others	are	unstable,	and
then	the	decay	continues	until	a	stable	state	is	reached.	Of	the	three	isotopes	of
hydrogen,	 only	 one,	 tritium,	 is	 radioactive—it	 decays	 into	 a	 stable	 isotope	 of
helium.	Of	 the	 thirteen	 isotopes	of	oxygen,	 three	are	 stable;	of	gold’s	 thirty-six
isotopes,	only	one	is	stable.

You	will	probably	remember	that	we	measure	how	quickly	radioactive	isotopes
decay	by	their	“half-life”—which	can	range	from	a	microsecond	(one-millionth
of	 a	 second)	 to	 billions	 of	 years.	 If	we	 say	 that	 tritium	has	 a	 half-life	 of	 about
twelve	years,	we	mean	that	in	a	given	sample	of	tritium,	half	of	the	isotopes	will
decay	 in	 twelve	 years	 (only	 one-quarter	 will	 remain	 after	 twenty-four	 years).
Nuclear	decay	 is	one	of	 the	most	 important	processes	by	which	many	different
elements	are	transformed	and	created.	It’s	not	alchemy.	In	fact,	during	my	PhD
research,	 I	 was	 often	 watching	 radioactive	 gold	 isotopes	 decay	 into	 mercury
rather	than	the	other	way	around,	as	the	medieval	alchemists	would	have	liked.



There	are,	however,	many	isotopes	of	mercury,	and	also	of	platinum,	that	decay
into	 gold.	But	 only	 one	platinum	 isotope	 and	only	 one	mercury	 isotope	decay
into	stable	gold,	the	kind	you	can	wear	on	your	finger.

The	work	was	 immensely	exciting;	 I	would	have	radioactive	 isotopes	 literally
decaying	in	my	hands.	And	it	was	very	intense.	The	isotopes	I	was	working	with
typically	had	half-lives	of	only	a	day	or	a	few	days.	Gold-198,	for	instance,	has	a
half-life	of	a	little	over	two	and	a	half	days,	so	I	had	to	work	fast.	I	would	drive
from	Delft	 to	Amsterdam,	where	 they	used	a	cyclotron	to	make	these	 isotopes,
and	rush	back	to	the	lab	at	Delft.	There	I	would	dissolve	the	isotopes	in	an	acid	to
get	 them	 into	 liquid	 form,	 put	 them	 on	 very	 thin	 film,	 and	 place	 them	 into
detectors.

I	was	trying	to	verify	a	theory	about	nuclear	decay,	one	that	predicted	the	ratio
of	 gamma	 ray	 to	 electron	 emissions	 from	 the	 nuclei,	 and	 my	 work	 required
precise	measurements.	This	work	had	 already	 been	done	 for	many	 radioactive
isotopes,	but	some	recent	measurements	had	come	out	that	were	different	from
what	the	theory	predicted.	My	supervisor,	Professor	Aaldert	Wapstra,	suggested
I	 try	 to	determine	whether	 it	was	 the	 theory	or	 the	measurements	 that	were	at
fault.	 It	 was	 enormously	 satisfying,	 like	 working	 on	 a	 fantastically	 intricate
puzzle.	The	challenge	was	that	my	measurements	had	to	be	much	more	precise
than	the	ones	those	other	researchers	had	come	up	with	before	me.

Electrons	 are	 so	 small	 that	 some	 say	 they	have	no	effective	 size—they’re	 less
than	 a	 thousand-trillionth	 of	 a	 centimeter	 across—and	 gamma	 rays	 have	 a
wavelength	of	less	than	a	billionth	of	a	centimeter.	And	yet	physics	had	provided
me	with	the	means	to	detect	and	to	count	them.	That’s	yet	another	thing	that	I
love	about	experimental	physics;	it	lets	us	“touch”	the	invisible.

To	get	the	measurements	I	needed,	I	had	to	milk	the	sample	as	long	as	I	could,
because	the	more	counts	I	had,	the	greater	my	precision	would	be.	I’d	frequently
be	working	for	something	like	60	hours	straight,	often	without	sleeping.	I	became
a	little	obsessed.

For	an	experimental	physicist,	precision	is	key	in	everything.	The	accuracy	is
the	 only	 thing	 that	 matters,	 and	 a	 measurement	 that	 doesn’t	 also	 indicate	 its
degree	 of	 accuracy	 is	 meaningless.	 This	 simple,	 powerful,	 totally	 fundamental
idea	is	almost	always	ignored	in	college	books	about	physics.	Knowing	degrees	of
accuracy	is	critical	to	so	many	things	in	our	lives.

In	my	work	with	radioactive	isotopes,	attaining	the	degree	of	accuracy	I	had	to
achieve	was	very	challenging,	but	over	three	or	four	years	I	got	better	and	better
at	the	measurements.	After	I	improved	some	of	the	detectors,	they	turned	out	to



be	extremely	accurate.	 I	was	confirming	 the	 theory,	 and	publishing	my	results,
and	this	work	ended	up	being	my	PhD	thesis.	What	was	especially	satisfying	to
me	was	that	my	results	were	rather	conclusive,	which	doesn’t	happen	very	often.
Many	times	in	physics,	and	in	science	generally,	results	are	not	always	clear-cut.	I
was	fortunate	to	arrive	at	a	firm	conclusion.	I	had	solved	a	puzzle	and	established
myself	 as	 a	 physicist,	 and	 I	 had	 helped	 to	 chart	 the	 unknown	 territory	 of	 the
subatomic	world.	I	was	twenty-nine	years	old,	and	I	was	thrilled	to	be	making	a
solid	 contribution.	 Not	 all	 of	 us	 are	 destined	 to	 make	 gigantic	 fundamental
discoveries	like	Newton	and	Einstein	did,	but	there’s	an	awful	lot	of	territory	that
is	still	ripe	for	exploration.

I	 was	 also	 fortunate	 that	 at	 the	 time	 I	 got	 my	 degree,	 a	 whole	 new	 era	 of
discovery	about	the	nature	of	the	universe	was	getting	under	way.	Astronomers
were	 making	 discoveries	 at	 an	 amazing	 pace.	 Some	 were	 examining	 the
atmospheres	 of	 Mars	 and	 Venus,	 searching	 for	 water	 vapor.	 Some	 had
discovered	the	belts	of	charged	particles	circling	the	Earth’s	magnetic	field	lines,
which	we	now	 call	 the	Van	Allen	 belts.	Others	 had	 discovered	 huge,	 powerful
sources	 of	 radio	 waves	 known	 as	 quasars	 (quasi-stellar	 radio	 sources).	 The
cosmic	 microwave	 background	 (CMB)	 radiation	 was	 discovered	 in	 1965—the
traces	of	the	energy	released	by	the	big	bang,	powerful	evidence	for	the	big	bang
theory	 of	 the	 universe’s	 origin,	 which	 had	 been	 controversial.	 Shortly	 after,	 in
1967,	 astronomers	 would	 discover	 a	 new	 category	 of	 stars,	 which	 came	 to	 be
called	pulsars.

I	might	have	continued	working	in	nuclear	physics,	as	there	was	a	great	deal	of
discovery	 going	 on	 there	 as	 well.	 This	 work	 was	 mostly	 in	 the	 hunt	 for	 and
discovery	 of	 a	 rapidly	 growing	 zoo	 of	 subatomic	 particles,	 most	 importantly
those	called	quarks,	which	turned	out	 to	be	 the	building	blocks	of	protons	and
neutrons.	Quarks	are	so	odd	in	their	range	of	behaviors	that	in	order	to	classify
them,	 physicists	 assigned	 them	 what	 they	 called	 flavors:	 up,	 down,	 strange,
charm,	 top,	 and	 bottom.	 The	 discovery	 of	 quarks	 was	 one	 of	 those	 beautiful
moments	 in	science	when	a	purely	 theoretical	 idea	 is	confirmed.	Theorists	had
predicted	 quarks,	 and	 then	 experimentalists	managed	 to	 find	 them.	 And	 how
exotic	 they	 were,	 revealing	 that	 matter	 was	 so	 much	 more	 complicated	 in	 its
foundations	 than	 we	 had	 known.	 For	 instance,	 we	 now	 know	 that	 protons
consist	 of	 two	 up	 quarks	 and	 one	 down	 quark,	 held	 together	 by	 the	 strong
nuclear	 force,	 in	 the	 form	 of	 other	 strange	 particles	 called	 gluons.	 Some
theoreticians	have	recently	calculated	that	the	up	quark	seems	to	have	a	mass	of
about	0.2	percent	of	that	of	a	proton,	while	the	down	quark	has	a	mass	of	about



0.5	 percent	 of	 the	mass	 of	 a	 proton.	 This	 was	 not	 your	 grandfather’s	 nucleus
anymore.	The	particle	zoo	would	have	been	a	fascinating	area	of	research	to	go
into,	 I’m	 sure,	 but	 by	 a	 happy	 accident,	 the	 skills	 I’d	 learned	 for	 measuring
radiation	emitted	from	the	nucleus	turned	out	to	be	extremely	useful	for	probing
the	universe.	In	1965,	I	received	an	invitation	from	Professor	Bruno	Rossi	at	MIT
to	work	on	X-ray	astronomy,	which	was	an	entirely	new	field,	 really	 just	a	 few
years	old	at	the	time—Rossi	had	initiated	it	in	1959.

MIT	was	the	best	thing	that	could	ever	have	happened	to	me.	Rossi’s	work	on
cosmic	 rays	 was	 already	 legendary.	 He’d	 headed	 a	 department	 at	 Los	 Alamos
during	 the	 war	 and	 pioneered	 in	 the	measurements	 of	 solar	 wind,	 also	 called
interplanetary	 plasma—a	 stream	 of	 charged	 particles	 ejected	 by	 the	 Sun	 that
causes	our	aurora	borealis	and	“blows”	comet	tails	away	from	the	Sun.	Now	he
had	the	idea	to	search	the	cosmos	for	X-rays.	It	was	completely	exploratory	work;
he	had	no	idea	whether	he’d	find	them	or	not.

Anything	went	at	that	time	at	MIT.	Any	idea	you	had,	 if	you	could	convince
people	 that	 it	 was	 doable,	 you	 could	 work	 on	 it.	What	 a	 difference	 from	 the
Netherlands!	 At	 Delft,	 there	 was	 a	 rigid	 hierarchy,	 and	 the	 graduate	 students
were	treated	like	a	lower	class.	The	professors	were	given	keys	to	the	front	door
of	my	building,	but	as	a	graduate	student	you	only	got	a	key	to	the	door	in	the
basement,	where	the	bicycles	were	kept.	Each	time	you	entered	the	building	you
had	to	pick	your	way	through	the	bicycle	storage	rooms	and	be	reminded	of	the
fact	that	you	were	nothing.

If	you	wanted	to	work	after	five	o’clock	you	had	to	fill	out	a	form,	every	day,	by
four	p.m.,	 justifying	why	you	had	 to	stay	 late,	which	I	had	 to	do	almost	all	 the
time.	The	bureaucracy	was	a	real	nuisance.

The	 three	 professors	 in	 charge	 of	 my	 institute	 had	 reserved	 parking	 places
close	to	the	front	door.	One	of	them,	my	own	supervisor,	worked	in	Amsterdam
and	came	to	Delft	only	once	a	week	on	Tuesdays.	I	asked	him	one	day,	“When
you	are	not	here,	would	you	mind	 if	 I	used	your	parking	 space?”	He	 said,	 “Of
course	not,”	but	then	the	very	first	day	I	parked	there	I	was	called	on	the	public
intercom	and	instructed	in	the	strongest	terms	possible	that	I	was	to	remove	my
car.	Here’s	another	one.	Since	I	had	to	go	to	Amsterdam	to	pick	up	my	isotopes,
I	 was	 allowed	 25	 cents	 for	 a	 cup	 of	 coffee,	 and	 1.25	 guilders	 for	 lunch	 (1.25
guilders	was	 about	one-third	of	 a	U.S.	dollar	 at	 the	 time),	 but	 I	had	 to	 submit
separate	 receipts	 for	 each.	 So	 I	 asked	 if	 I	 could	 add	 the	 25	 cents	 to	 the	 lunch
receipt	 and	 only	 submit	 one	 receipt	 for	 1.50	 guilders.	 The	 department	 chair,
Professor	Blaisse,	wrote	me	a	letter	that	stated	that	if	I	wanted	to	have	gourmet



meals	I	could	do	so—at	my	own	expense.
So	what	a	 joy	 it	was	 to	get	 to	MIT	and	be	 free	 from	all	of	 that;	 I	 felt	 reborn.

Everything	was	done	to	encourage	you.	I	got	a	key	to	the	front	door	and	could
work	in	my	office	day	or	night	just	as	I	wanted.	To	me,	that	key	to	the	building
was	 like	a	key	to	everything.	The	head	of	 the	Physics	Department	offered	me	a
faculty	position	six	months	after	my	arrival,	in	June	of	1966.	I	accepted	and	I’ve
never	left.

Arriving	 at	 MIT	 was	 also	 so	 exhilarating	 because	 I	 had	 lived	 through	 the
devastation	 of	 World	 War	 II.	 The	 Nazis	 had	 murdered	 half	 of	 my	 family,	 a
tragedy	that	I	haven’t	really	digested	yet.	I	do	talk	about	it	sometimes,	but	very
rarely	because	 it’s	 so	very	difficult	 for	me—it	 is	more	 than	sixty-five	years	ago,
and	 it’s	 still	 overwhelming.	When	my	 sister	Bea	 and	 I	 talk	 about	 it,	we	 almost
always	cry.

I	was	born	in	1936,	and	I	was	just	four	years	old	when	the	Germans	attacked
the	Netherlands	on	May	10,	1940.	One	of	my	earliest	memories	is	all	of	us,	my
mother’s	parents,	my	mother	and	father	and	sister	and	I,	hiding	in	the	bathroom
of	our	house	(at	the	Amandelstraat	61	in	The	Hague)	as	the	Nazi	troops	entered
my	 country.	We	were	 holding	wet	 handkerchiefs	 over	 our	 noses,	 as	 there	 had
been	warnings	that	there	would	be	gas	attacks.

The	Dutch	police	snatched	my	Jewish	grandparents,	Gustav	Lewin	and	Emma
Lewin	Gottfeld,	 from	 their	house	 in	1942.	At	about	 the	 same	 time	 they	hauled
out	 my	 father’s	 sister	 Julia,	 her	 husband	 Jacob	 (called	 Jenno),	 and	 her	 three
children—Otto,	 Rudi,	 and	 Emmie—and	 put	 them	 all	 on	 trucks,	 with	 their
suitcases,	 and	 sent	 them	 to	Westerbork,	 the	 transshipment	 camp	 in	 Holland.
More	than	a	hundred	thousand	Jews	passed	through	Westerbork,	on	their	way	to
other	 camps.	 The	 Nazis	 quickly	 sent	 my	 grandparents	 to	 Auschwitz	 and
murdered	 them—gassed	 them—the	 day	 they	 arrived,	 November	 19,	 1942.	My
grandfather	was	seventy-five	and	my	grandmother	sixty-nine,	 so	 they	wouldn’t
have	been	candidates	for	labor	camps.	Westerbork,	by	contrast,	was	so	strange;	it
was	 made	 to	 look	 like	 a	 resort	 for	 Jews.	 There	 were	 ballet	 performances	 and
shops.	My	mother	would	often	bake	potato	pancakes	 that	she	would	then	send
by	mail	to	our	family	in	Westerbork.

Because	my	uncle	Jenno	was	what	the	Dutch	call	“statenloos,”	or	stateless—he
had	no	nationality—he	was	able	to	drag	his	feet	and	stay	at	Westerbork	with	his
family	for	fifteen	months	before	the	Nazis	split	up	the	family	and	shipped	them
to	different	 camps.	They	 sent	my	 aunt	 Julia	 and	my	 cousins	Emmie	 and	Rudi
first	 to	the	women’s	concentration	camp	Ravensbrück	in	Germany	and	then	to



Bergen-Belsen,	 also	 in	 Germany,	 where	 they	 were	 imprisoned	 until	 the	 war
ended.	My	aunt	Julia	died	ten	days	after	the	camp’s	liberation	by	the	Allies,	but
my	 cousins	 survived.	 My	 cousin	 Otto,	 the	 oldest,	 had	 also	 been	 sent	 to
Ravensbrück,	to	the	men’s	camp	there,	and	near	the	end	of	the	war	ended	up	in
the	concentration	camp	in	Sachsenhausen;	he	survived	the	Sachsenhausen	death
march	in	April	1945.	Uncle	Jenno	they	sent	directly	to	Buchenwald,	where	they
murdered	him—along	with	more	than	55,000	others.

Whenever	I	see	a	movie	about	the	Holocaust,	which	I	would	not	do	for	a	really
long	 time,	 I	 project	 it	 immediately	 onto	my	 own	 family.	 That’s	 why	 I	 felt	 the
movie	Life	 Is	Beautiful	was	 terribly	difficult	 to	watch,	even	objectionable.	 I	 just
couldn’t	 imagine	 joking	 about	 something	 that	 was	 so	 serious.	 I	 still	 have
recurring	 nightmares	 about	 being	 chased	 by	 Nazis,	 and	 I	 wake	 up	 sometimes
absolutely	 terrified.	 I	 even	once	 in	my	dreams	witnessed	my	own	execution	by
the	Nazis.

Some	day	I	would	 like	 to	 take	 the	walk,	my	paternal	grandparents’	 last	walk,
from	the	train	station	to	the	gas	chambers	at	Auschwitz.	I	don’t	know	if	I’ll	ever
do	 it,	 but	 it	 seems	 to	 me	 like	 one	 way	 to	 memorialize	 them.	 Against	 such	 a
monstrosity,	maybe	small	gestures	are	all	that	we	have.	That,	and	our	refusal	to
forget:	 I	 never	 talk	 about	my	 family	members	 having	 “died”	 in	 concentration
camps.	 I	 always	 use	 the	 word	 murdered,	 so	 we	 do	 not	 let	 language	 hide	 the
reality.

My	father	was	Jewish	but	my	mother	was	not,	and	as	a	Jew	married	to	a	non-
Jewish	woman,	 he	was	 not	 immediately	 a	 target.	 But	 he	 became	 a	 target	 soon
enough,	in	1943.	I	remember	that	he	had	to	wear	the	yellow	star.	Not	my	mother,
or	sister,	or	I,	but	he	did.	We	didn’t	pay	much	attention	to	it,	at	least	not	at	first.
He	had	it	hidden	a	 little	bit,	under	his	clothes,	which	was	forbidden.	What	was
really	 frightening	 was	 the	 way	 he	 gradually	 accommodated	 to	 the	 Nazi
restrictions,	which	 just	 kept	 getting	worse.	 First,	 he	was	not	 allowed	on	public
transportation.	Then,	he	wasn’t	allowed	in	public	parks.	Then	he	wasn’t	allowed
in	 restaurants;	 he	 became	 persona	 non	 grata	 in	 places	 he	 had	 frequented	 for
years!	And	the	incredible	thing	is	the	ability	of	people	to	adjust.

When	he	could	no	longer	take	public	transportation,	he	would	say,	“Well,	how
often	do	I	make	use	of	public	transportation?”	When	he	wasn’t	allowed	in	public
parks	anymore,	he	would	say,	“Well,	how	often	do	I	go	to	public	parks?”	Then,
when	he	could	not	go	to	a	restaurant,	he	would	say,	“Well,	how	often	do	I	go	to
restaurants?”	 He	 tried	 to	 make	 these	 awful	 things	 seem	 trivial,	 like	 a	 minor
inconvenience,	 perhaps	 for	 his	 children’s	 sake,	 and	 perhaps	 also	 for	 his	 own



peace	of	mind.	I	don’t	know.
It’s	 still	 one	 of	 the	 hardest	 things	 for	me	 to	 talk	 about.	Why	 this	 ability	 to

slowly	 see	 the	water	 rise	 but	not	 recognize	 that	 it	will	 drown	you?	How	could
they	see	it	and	not	see	it	at	the	same	time?	That’s	something	that	I	cannot	cope
with.	Of	course,	in	a	sense	it’s	completely	understandable;	perhaps	that’s	the	only
way	you	can	survive,	for	as	long	as	you	are	able	to	fool	yourself.

Though	the	Nazis	made	public	parks	off-limits	to	Jews,	my	father	was	allowed
to	 walk	 in	 cemeteries.	 Even	 now,	 I	 recall	 many	 walks	 with	 him	 at	 a	 nearby
cemetery.	We	fantasized	about	how	and	why	family	members	died—sometimes
four	 had	 died	 on	 the	 same	 day.	 I	 still	 do	 that	 nowadays	 when	 I	 walk	 in
Cambridge’s	famous	Mount	Auburn	Cemetery.

The	most	 dramatic	 thing	 that	 happened	 to	me	 growing	 up	was	 that	 all	 of	 a
sudden	my	father	disappeared.	I	vividly	remember	the	day	he	left.	I	came	home
from	school	and	sensed	somehow	that	he	was	gone.	My	mother	was	not	home,
so	I	asked	our	nanny,	Lenie,	“Where’s	Dad?”	and	I	got	an	answer	of	some	sort,
meant	to	be	reassuring,	but	somehow	I	knew	that	my	father	had	left.

Bea	saw	him	leaving,	but	she	never	told	me	until	many	years	later.	The	four	of
us	slept	 in	the	same	bedroom	for	security,	and	at	 four	 in	the	morning,	she	saw
him	get	up	and	put	some	clothes	 in	a	bag.	Then	he	kissed	my	mother	and	 left.
My	mother	didn’t	know	where	he	was	going;	 that	knowledge	would	have	been
very	dangerous,	because	the	Germans	might	have	tortured	her	to	find	out	where
my	father	was	and	she	would	have	told	them.	We	now	know	that	the	Resistance
hid	him,	and	eventually	we	got	some	messages	from	him	through	the	Resistance,
but	at	the	time	it	was	absolutely	terrible	not	knowing	where	he	was	or	even	if	he
was	alive.

I	 was	 too	 young	 to	 understand	 how	 profoundly	 his	 absence	 affected	 my
mother.	My	parents	ran	a	school	out	of	our	home—which	no	doubt	had	a	strong
influence	on	my	 love	of	 teaching—and	 she	 struggled	 to	 carry	on	without	him.
She	had	a	tendency	toward	depression	anyway,	but	now	her	husband	was	gone,
and	 she	worried	 that	we	 children	might	 be	 sent	 to	 a	 concentration	 camp.	 She
must	have	been	truly	terrified	for	us	because—as	she	told	me	fifty-five	years	later
—one	night	she	said	to	Bea	and	me	that	we	should	sleep	in	the	kitchen,	and	she
stuffed	 curtains	 and	 blankets	 and	 towels	 under	 the	 doors	 so	 that	 no	 air	 could
escape.	She	was	intending	to	put	the	gas	on	and	let	us	sleep	ourselves	into	death,
but	she	didn’t	go	through	with	it.	Who	can	blame	her	for	thinking	of	it—I	know
that	Bea	and	I	don’t.

I	was	afraid	a	lot.	And	I	know	it	sounds	ridiculous,	but	I	was	the	only	male,	so	I



sort	of	became	the	man	of	the	house,	even	at	age	seven	and	eight.	In	The	Hague,
where	 we	 lived,	 there	 were	 many	 broken-down	 houses	 on	 the	 coast,	 half-
destroyed	by	the	Germans	who	were	building	bunkers	on	our	beaches.	I	would
go	there	and	steal	wood—I	was	going	to	say	“collect,”	but	it	was	stealing—from
those	houses	so	that	we	had	some	fuel	for	cooking	and	for	heat.

To	try	to	stay	warm	in	the	winters	we	wore	this	rough,	scratchy,	poor-quality
wool.	And	I	still	cannot	stand	wool	to	this	day.	My	skin	is	so	sensitive	that	I	sleep
on	eight-hundred-thread-count	cotton	sheets.	That’s	also	why	I	order	very	 fine
cotton	 shirts—ones	 that	do	not	 irritate	my	 skin.	My	daughter	Pauline	 tells	me
that	if	I	see	her	wearing	wool,	I	still	turn	away;	such	is	the	effect	the	war	still	has
on	me.

My	father	returned	while	the	war	was	still	going	on,	in	the	fall	of	1944.	People
in	my	family	disagree	about	 just	how	this	happened,	but	as	near	as	 I	can	tell	 it
seems	that	my	wonderful	aunt	Lauk,	my	mother’s	sister,	was	in	Amsterdam	one
day,	 about	30	miles	 away	 from	The	Hague,	 and	 she	 caught	 sight	of	my	 father!
She	followed	him	from	a	distance	and	saw	him	go	into	a	house.	Later	she	went
back	and	discovered	that	he	was	living	with	a	woman.

My	aunt	told	my	mother,	who	at	first	got	even	more	depressed	and	upset,	but
I’m	told	that	she	collected	herself	and	took	the	boat	to	Amsterdam	(trains	were
no	longer	operating),	marched	right	up	to	the	house,	and	rang	the	bell.	Out	came
the	woman,	and	my	mother	said,	“I	want	to	speak	to	my	husband.”	The	woman
replied,	 “I	 am	 the	 wife	 of	 Mr.	 Lewin.”	 But	 my	 mother	 insisted:	 “I	 want	 my
husband.”	My	father	came	to	the	door,	and	she	said,	“I’ll	give	you	five	minutes	to
pack	up	and	come	back	with	me	or	else	you	can	get	a	divorce	and	you’ll	never	see
your	children	again.”	In	three	minutes	he	came	back	downstairs	with	his	things
and	returned	with	her.

In	some	ways	it	was	much	worse	when	he	was	back,	because	people	knew	that
my	 father,	whose	name	was	 also	Walter	Lewin,	was	 a	 Jew.	The	Resistance	had
given	him	false	identification	papers,	under	the	name	of	Jaap	Horstman,	and	my
sister	 and	 I	 were	 instructed	 to	 call	 him	 Uncle	 Jaap.	 It’s	 a	 total	 miracle,	 and
doesn’t	make	any	sense	to	Bea	and	me	to	this	very	day,	but	no	one	turned	him	in.
A	carpenter	made	a	hatch	in	the	ground	floor	of	our	house.	We	could	lift	 it	up
and	my	father	could	go	down	and	hide	in	the	crawl	space.	Remarkably,	my	father
managed	to	avoid	capture.

He	was	probably	at	home	eight	months	or	so	before	the	war	ended,	including
the	worst	 time	of	 the	war	 for	 us,	 the	winter	 of	 1944	 famine,	 the	hongerwinter.
People	 starved	 to	 death—nearly	 twenty	 thousand	 died.	 For	 heat	 we	 crawled



under	 the	 house	 and	 pulled	 out	 every	 other	 floor	 joist—the	 large	 beams	 that
supported	 the	 ground	 floor—for	 firewood.	 In	 the	 hunger	 winter	 we	 ate	 tulip
bulbs,	 and	 even	 bark.	 People	 could	 have	 turned	 my	 father	 in	 for	 food.	 The
Germans	would	also	pay	money	(I	believe	it	was	fifty	guilders,	which	was	about
fifteen	dollars	at	the	time)	for	every	Jew	they	turned	in.

The	Germans	 did	 come	 to	 our	 house	 one	 day.	 It	 turned	 out	 that	 they	were
collecting	typewriters,	and	they	looked	at	ours,	the	ones	we	used	to	teach	typing,
but	they	thought	they	were	too	old.	The	Germans	in	their	own	way	were	pretty
stupid;	if	you’re	being	told	to	collect	typewriters,	you	don’t	collect	Jews.	It	sounds
like	a	movie,	I	know.	But	it	really	happened.

After	all	of	the	trauma	of	the	war,	I	suppose	the	amazing	thing	is	that	I	had	a
more	 or	 less	 normal	 childhood.	 My	 parents	 kept	 running	 their	 school—the
Haagsch	 Studiehuis—which	 they’d	 done	 before	 and	 during	 the	 war,	 teaching
typing,	shorthand,	languages,	and	business	skills.	I	too	was	a	teacher	there	while	I
was	in	college.

My	 parents	 patronized	 the	 arts,	 and	 I	 began	 to	 learn	 about	 art.	 I	 had	 an
academically	 and	 socially	 wonderful	 time	 in	 college.	 I	 got	 married	 in	 1959,
started	 graduate	 school	 in	 January	 1960,	 and	 my	 first	 daughter,	 Pauline,	 was
born	later	that	year.	My	son	Emanuel	(who	is	now	called	Chuck)	was	born	two
years	after	that,	and	our	second	daughter,	Emma,	came	in	1965.	Our	second	son,
Jakob,	was	born	in	the	United	States	in	1967.

When	 I	 arrived	 at	 MIT,	 luck	 was	 on	 my	 side;	 I	 found	 myself	 right	 in	 the
middle	of	the	explosion	of	discoveries	going	on	at	that	time.	The	expertise	I	had
to	 offer	was	 perfect	 for	 Bruno	Rossi’s	 pioneering	X-ray	 astronomy	 team,	 even
though	I	didn’t	know	anything	about	space	research.

V-2	 rockets	 had	 broken	 the	 bounds	 of	 the	 Earth’s	 atmosphere,	 and	 a	whole
new	vista	of	opportunity	for	discoveries	had	been	opened	up.	Ironically,	the	V-2
had	been	designed	by	Wernher	von	Braun,	who	was	a	Nazi.	He	developed	 the
rockets	 during	 World	 War	 II	 to	 kill	 Allied	 civilians,	 and	 they	 were	 terribly
destructive.	In	Peenemünde	and	in	the	notorious	underground	Mittelwerk	plant
in	 Germany,	 slave	 laborers	 from	 concentration	 camps	 built	 them,	 and	 some
twenty	 thousand	died	 in	 the	 process.	The	 rockets	 themselves	 killed	more	 than
seven	thousand	civilians,	mostly	in	London.	There	was	a	launch	site	about	a	mile
from	my	mother’s	parents’	house	close	to	The	Hague.	I	recall	a	sizzling	noise	as
the	rockets	were	being	fueled	and	the	roaring	noise	at	 launch.	 In	one	bombing
raid	 the	Allies	 tried	 to	destroy	V-2	 equipment,	 but	 they	missed	 and	killed	 five
hundred	 Dutch	 civilians	 instead.	 After	 the	 war	 the	 Americans	 brought	 von



Braun	to	the	United	States	and	he	became	a	hero.	That	has	always	baffled	me.	He
was	a	war	criminal!

For	 fifteen	 years	 von	 Braun	 worked	 with	 the	 U.S.	 Army	 to	 build	 the	 V-2’s
descendants,	the	Redstone	and	Jupiter	missiles,	which	carried	nuclear	warheads.
In	 1960	 he	 joined	 NASA	 and	 directed	 the	 Marshall	 Space	 Flight	 Center	 in
Alabama,	 where	 he	 developed	 the	 Saturn	 rockets	 that	 sent	 astronauts	 to	 the
Moon.	 Descendants	 of	 his	 rockets	 launched	 the	 field	 of	 X-ray	 astronomy,	 so
while	 rockets	 began	 as	weapons,	 at	 least	 they	 also	 got	 used	 for	 a	 great	 deal	 of
science.	In	the	late	1950s	and	early	1960s	they	opened	new	windows	on	the	world
—no,	 on	 the	 universe!—giving	 us	 the	 chance	 to	 peek	 outside	 of	 the	 Earth’s
atmosphere	and	look	around	for	things	we	couldn’t	see	otherwise.

To	discover	X-rays	 from	outer	 space,	Rossi	 had	played	 a	 hunch.	 In	 1959	he
went	to	an	ex-student	of	his	named	Martin	Annis,	who	then	headed	a	research
firm	 in	 Cambridge	 called	 American	 Science	 and	 Engineering,	 and	 said,	 “Let’s
just	see	if	there	are	X-rays	out	there.”	The	ASE	team,	headed	by	future	Nobelist
Riccardo	 Giacconi,	 put	 three	 Geiger-Müller	 counters	 in	 a	 rocket	 that	 they
launched	on	June	18,	1962.	It	spent	just	six	minutes	above	80	kilometers	(about
50	 miles),	 to	 get	 beyond	 the	 Earth’s	 atmosphere—a	 necessity,	 since	 the
atmosphere	absorbs	X-rays.

Sure	enough,	they	detected	X-rays,	and	even	more	important,	they	were	able	to
establish	 that	 the	X-rays	came	 from	a	 source	outside	 the	 solar	 system.	 It	was	a
bombshell	that	changed	all	of	astronomy.	No	one	expected	it,	and	no	one	could
think	 of	 plausible	 reasons	 why	 they	 were	 there;	 no	 one	 really	 understood	 the
finding.	Rossi	had	been	throwing	an	idea	at	the	wall	to	see	if	it	would	stick.	These
are	the	kinds	of	hunches	that	make	a	great	scientist.

I	remember	the	exact	date	I	arrived	at	MIT,	January	11,	1966,	because	one	of
our	kids	got	the	mumps	and	we	had	to	delay	going	to	Boston;	the	KLM	wouldn’t
let	us	 fly,	 as	 the	mumps	 is	contagious.	On	my	 first	day	 I	met	Bruno	Rossi	and
also	George	Clark,	who	in	1964	had	been	the	first	to	fly	a	balloon	at	a	very	high
altitude—about	140,000	feet—to	search	for	X-ray	sources	that	emitted	very	high
energy	X-rays,	the	kind	that	could	penetrate	down	to	that	altitude.	George	said,
“If	 you	want	 to	 join	my	 group	 that	would	 be	 great.”	 I	was	 at	 exactly	 the	 right
place	at	the	right	time.

If	you’re	the	first	to	do	something,	you’re	bound	to	be	successful,	and	our	team
made	one	discovery	after	another.	George	was	very	generous;	after	two	years	he
turned	the	group	completely	over	to	me.	To	be	on	the	cutting	edge	of	the	newest
wave	in	astrophysics	was	just	remarkable.



I	was	incredibly	fortunate	to	find	myself	right	in	the	thick	of	the	most	exciting
work	 going	 on	 in	 astrophysics	 at	 that	 time,	 but	 the	 truth	 is	 that	 all	 areas	 of
physics	 are	 amazing;	 all	 are	 filled	 with	 intriguing	 delights	 and	 are	 revealing
astonishing	 new	 discoveries	 all	 the	 time.	 While	 we	 were	 finding	 new	 X-ray
sources,	particle	physicists	were	finding	ever	more	fundamental	building	blocks
of	the	nucleus,	solving	the	mystery	of	what	holds	nuclei	together,	discovering	the
W	and	Z	bosons,	which	carry	 the	“weak”	nuclear	 interactions,	 and	quarks	and
gluons,	which	carry	the	“strong”	interactions.

Physics	has	allowed	us	to	see	far	back	in	time,	to	the	very	edges	of	the	universe,
and	 to	 make	 the	 astonishing	 image	 known	 as	 the	 Hubble	 Ultra	 Deep	 Field,
revealing	what	seems	an	infinity	of	galaxies.	You	should	not	 finish	this	chapter
without	looking	up	the	Ultra	Deep	Field	online.	I	have	friends	who’ve	made	this
image	their	screen	saver!

The	universe	is	about	13.7	billion	years	old.	However,	due	to	the	fact	that	space
itself	 has	 expanded	 enormously	 since	 the	 big	 bang,	we	 are	 currently	 observing
galaxies	that	were	formed	some	400	to	800	million	years	after	the	big	bang	and
that	 are	 now	 considerably	 farther	 away	 than	 13.7	 billion	 light-years.
Astronomers	now	estimate	that	 the	edge	of	 the	observable	universe	 is	about	47
billion	light-years	away	from	us	in	every	direction.	Because	of	the	expansion	of
space,	many	faraway	galaxies	are	currently	moving	away	from	us	faster	than	the
speed	of	light.	This	may	sound	shocking,	even	impossible,	to	those	of	you	raised
on	 the	 notion	 that,	 as	 Einstein	 postulated	 in	 his	 theory	 of	 special	 relativity,
nothing	can	go	 faster	 than	 the	 speed	of	 light.	However,	according	 to	Einstein’s
theory	of	general	relativity,	there	are	no	limits	on	the	speed	between	two	galaxies
when	space	itself	is	expanding.	There	are	good	reasons	why	scientists	now	think
that	we	are	 living	 in	 the	golden	age	of	cosmology—the	study	of	 the	origin	and
evolution	of	the	entire	universe.

Physics	 has	 explained	 the	 beauty	 and	 fragility	 of	 rainbows,	 the	 existence	 of
black	holes,	why	 the	planets	move	 the	way	 they	do,	what	 goes	 on	when	 a	 star
explodes,	why	a	spinning	ice	skater	speeds	up	when	she	draws	in	her	arms,	why
astronauts	 are	weightless	 in	 space,	 how	 elements	were	 formed	 in	 the	 universe,
when	our	universe	began,	how	a	flute	makes	music,	how	we	generate	electricity
that	drives	our	bodies	as	well	as	our	economy,	and	what	 the	big	bang	sounded
like.	 It	 has	 charted	 the	 smallest	 reaches	 of	 subatomic	 space	 and	 the	 farthest
reaches	of	the	universe.

My	 friend	 and	 colleague	 Victor	 Weisskopf,	 who	 was	 already	 an	 elder
statesman	when	 I	 arrived	 at	MIT,	wrote	 a	book	 called	The	Privilege	 of	Being	 a



Physicist.	That	wonderful	title	captures	the	feelings	I’ve	had	being	smack	in	the
middle	 of	 one	 of	 the	most	 exciting	 periods	 of	 astronomical	 and	 astrophysical
discovery	since	men	and	women	started	 looking	carefully	at	 the	night	sky.	The
people	I’ve	worked	alongside	at	MIT,	sometimes	right	across	the	hall	 from	me,
have	 devised	 astonishingly	 creative	 and	 sophisticated	 techniques	 to	 hammer
away	at	the	most	fundamental	questions	in	all	of	science.	And	it’s	been	my	own
privilege	both	to	help	extend	humankind’s	collective	knowledge	of	the	stars	and
the	universe	and	to	bring	several	generations	of	young	people	to	an	appreciation
and	love	for	this	magnificent	field.

Ever	 since	 those	 early	 days	 of	 holding	 decaying	 isotopes	 in	 the	 palm	 of	my
hand,	I	have	never	ceased	to	be	delighted	by	the	discoveries	of	physics,	both	old
and	 new;	 by	 its	 rich	 history	 and	 ever-moving	 frontiers;	 and	 by	 the	way	 it	 has
opened	 my	 eyes	 to	 unexpected	 wonders	 of	 the	 world	 all	 around	 me.	 For	 me
physics	is	a	way	of	seeing—the	spectacular	and	the	mundane,	the	immense	and
the	minute—as	a	beautiful,	thrillingly	interwoven	whole.

That	is	the	way	I’ve	always	tried	to	make	physics	come	alive	for	my	students.	I
believe	 it’s	 much	 more	 important	 for	 them	 to	 remember	 the	 beauty	 of	 the
discoveries	than	to	focus	on	the	complicated	math—after	all,	most	of	them	aren’t
going	to	become	physicists.	I	have	done	my	utmost	to	help	them	see	the	world	in
a	 different	way;	 to	 ask	 questions	 they’ve	 never	 thought	 to	 ask	 before;	 to	 allow
them	to	see	rainbows	in	a	way	they	have	never	seen	before;	and	to	focus	on	the
exquisite	beauty	of	physics,	rather	than	on	the	minutiae	of	the	mathematics.	That
is	also	the	intention	of	this	book,	to	help	open	your	eyes	to	the	remarkable	ways
in	 which	 physics	 illuminates	 the	 workings	 of	 our	 world	 and	 its	 astonishing
elegance	and	beauty.



CHAPTER	2

Measurements,	Uncertainties,	and	the	Stars

My	Grandmother	and	Galileo	Galilei
Physics	 is	 fundamentally	an	experimental	 science,	and	measurements	and	their
uncertainties	are	at	the	heart	of	every	experiment,	every	discovery.	Even	the	great
theoretical	 breakthroughs	 in	 physics	 come	 in	 the	 form	 of	 predictions	 about
quantities	that	can	be	measured.	Take,	for	example,	Newton’s	second	law,	F	=	ma
(force	 equals	 mass	 times	 acceleration),	 perhaps	 the	 most	 important	 single
equation	in	physics,	or	Einstein’s	E	=	mc2	(energy	equals	mass	times	the	square
of	 the	 speed	 of	 light),	 the	 most	 renowned	 equation	 in	 physics.	 How	 else	 do
physicists	 express	 relationships	 except	 through	 mathematical	 equations	 about
measurable	 quantities	 such	 as	 density,	 weight,	 length,	 charge,	 gravitational
attraction,	temperature,	or	velocity?

I	will	admit	that	I	may	be	a	bit	biased	here,	since	my	PhD	research	consisted	of
measuring	different	kinds	of	nuclear	decay	to	a	high	degree	of	accuracy,	and	that
my	 contributions	 in	 the	 early	 years	 of	 X-ray	 astronomy	 came	 from	 my
measurements	of	high-energy	X-rays	from	tens	of	thousands	of	light-years	away.
But	 there	 simply	 is	 no	 physics	 without	measurements.	 And	 just	 as	 important,
there	are	no	meaningful	measurements	without	their	uncertainties.

You	count	on	reasonable	amounts	of	uncertainty	all	the	time,	without	realizing
it.	When	 your	 bank	 reports	 how	much	money	 you	 have	 in	 your	 account,	 you
expect	an	uncertainty	of	less	than	half	a	penny.	When	you	buy	a	piece	of	clothing
online,	you	expect	its	fit	not	to	vary	more	than	a	very	small	fraction	of	a	size.	A
pair	of	size	34	pants	that	varies	just	3	percent	changes	a	full	inch	in	waist	size;	it
could	end	up	a	35	and	hang	on	your	hips,	or	a	33	and	make	you	wonder	how	you
gained	all	that	weight.

It’s	also	vital	that	measurements	are	expressed	in	the	right	units.	Take	the	case
of	an	eleven-year-long	mission	costing	$125	million—the	Mars	Climate	Orbiter
—which	came	to	a	catastrophic	conclusion	because	of	a	confusion	in	units.	One
engineering	 team	used	metric	 units	while	 another	 used	English	 ones,	 and	 as	 a
result	in	September	1999	the	spacecraft	entered	the	Martian	atmosphere	instead
of	reaching	a	stable	orbit.



In	 this	 book	 I	 use	metric	 units	most	 of	 the	 time	because	most	 scientists	 use
them.	From	time	to	time,	however,	I’ll	use	English	units—inches,	feet,	miles,	and
pounds—when	it	seems	appropriate	for	a	U.S.	audience.	For	temperature,	I’ll	use
the	Celsius	or	Kelvin	(Celsius	plus	273.15)	scales	but	sometimes	Fahrenheit,	even
though	no	physicist	works	in	degrees	Fahrenheit.

My	appreciation	of	the	crucial	role	of	measurements	in	physics	is	one	reason
I’m	skeptical	of	theories	that	can’t	be	verified	by	means	of	measurements.	Take
string	 theory,	 or	 its	 souped-up	 cousin	 superstring	 theory,	 the	 latest	 effort	 of
theoreticians	 to	 come	 up	with	 a	 “theory	 of	 everything.”	 Theoretical	 physicists,
and	there	are	some	brilliant	ones	doing	string	theory,	have	yet	to	come	up	with	a
single	 experiment,	 a	 single	 prediction	 that	 could	 test	 any	 of	 string	 theory’s
propositions.	Nothing	in	string	theory	can	be	experimentally	verified—at	least	so
far.	This	means	 that	string	 theory	has	no	predictive	power,	which	 is	why	some
physicists,	 such	 as	 Sheldon	 Glashow	 at	 Harvard,	 question	 whether	 it’s	 even
physics	at	all.

However,	 string	 theory	 has	 some	 brilliant	 and	 eloquent	 proponents.	 Brian
Greene	 is	 one,	 and	 his	 book	 and	 PBS	 program	 The	 Elegant	 Universe	 (I’m
interviewed	 briefly	 on	 it)	 are	 charming	 and	 beautiful.	 Edward	 Witten’s	 M-
theory,	 which	 unified	 five	 different	 string	 theories	 and	 posits	 that	 there	 are
eleven	 dimensions	 of	 space,	 of	 which	we	 lower-order	 beings	 see	 only	 three,	 is
pretty	wild	stuff	and	is	intriguing	to	contemplate.

But	when	theory	gets	way	out	 there,	 I	am	reminded	of	my	grandmother,	my
mother’s	mother,	a	very	great	lady	who	had	some	wonderful	sayings	and	habits
that	 showed	 her	 to	 be	 quite	 an	 intuitive	 scientist.	 She	 used	 to	 tell	 me,	 for
instance,	that	you	are	shorter	when	standing	up	than	when	lying	down.	I	love	to
teach	my	students	about	this.	On	the	first	day	of	class	I	announce	to	them	that	in
honor	of	my	grandmother,	 I’m	going	 to	bring	 this	outlandish	notion	 to	 a	 test.
They,	 of	 course,	 are	 completely	 bewildered.	 I	 can	 almost	 see	 them	 thinking,
“Shorter	standing	up	than	lying	down?	Impossible!”

Their	disbelief	is	understandable.	Certainly	if	there	is	any	difference	in	length
between	 lying	down	and	standing	up	 it	must	be	quite	 small.	After	all,	 if	 it	was
one	 foot,	 you’d	 know	 it,	 wouldn’t	 you?	 You’d	 get	 out	 of	 bed	 in	 the	morning,
you’d	stand	up	and	go	clunk—you’re	one	foot	shorter.	But	if	the	difference	was
only	 0.1	 centimeters	 (1/25	 of	 an	 inch)	 you	 might	 never	 know.	 That’s	 why	 I
suspect	that	if	my	grandmother	was	right,	then	the	difference	is	probably	only	a
few	centimeters,	maybe	as	much	as	an	inch.

To	 conduct	 my	 experiment,	 I	 of	 course	 first	 need	 to	 convince	 them	 of	 the



uncertainty	 in	 my	measurements.	 So	 I	 begin	 by	measuring	 an	 aluminum	 rod
vertically—it	 comes	 to	 150.0	 centimeters—and	 I	 ask	 them	 to	 agree	 that	 I’m
probably	capable	of	measuring	it	with	an	uncertainty	of	plus	or	minus	one-tenth
of	a	centimeter.	So	that	vertical	measurement	 is	150.0	±	0.1	centimeters.	 I	 then
measure	the	bar	when	it’s	horizontal	and	come	up	with	149.9	±	0.1	centimeters,
which	 is	 in	 agreement—within	 the	uncertainty	of	 the	measurements—with	 the
vertical	measurement.

What	did	I	gain	by	measuring	the	aluminum	rod	in	both	positions?	A	lot!	For
one,	the	two	measurements	demonstrate	that	I	was	able	to	measure	length	to	an
accuracy	of	about	0.1	centimeter	(1	millimeter).	But	at	least	as	important	for	me
is	the	fact	 that	I	want	to	prove	to	the	students	that	I’m	not	playing	games	with
them.	Suppose,	for	example,	that	I	have	prepared	a	specially	“cooked”	meter	stick
for	my	horizontal	measurements—that	would	be	a	terrible,	very	dishonest	thing
to	do.	By	 showing	 that	 the	 length	of	 the	aluminum	rod	 is	 the	 same	 in	 the	 two
measurements,	I	establish	that	my	scientific	integrity	is	beyond	doubt.

I	then	ask	for	a	volunteer,	measure	him	standing	up,	write	that	number	on	the
blackboard—185.2	centimeters	(or	just	over	6	feet),	plus	or	minus	0.1	centimeter
of	course,	to	account	for	the	uncertainty.	Then	I	help	him	lie	down	on	my	desk
in	 my	measuring	 equipment,	 which	 looks	 like	 a	 giant	 Ritz	 Stick,	 the	 wooden
shoe-store	 foot-measuring	 device,	 only	 his	whole	 body	 is	 the	 foot.	 I	 joke	 back
and	 forth	with	 him	 about	 how	 comfortable	 he	 is	 and	 congratulate	 him	on	his
sacrifice	 for	 the	 sake	of	 science,	which	makes	him	 just	 a	wee	bit	uneasy.	What
have	I	got	up	my	sleeve?	I	slide	the	triangular	wooden	block	snug	up	against	his
head,	and	while	he	lies	there,	I	write	the	new	number	on	the	board.	So	we	now
have	 two	measurements,	 each	 uncertain	 by	 about	 0.1	 centimeters.	What’s	 the
result?

Are	 you	 surprised	 to	 learn	 that	 the	 two	 measurements	 differ	 by	 2.5
centimeters,	plus	or	minus	0.2	centimeters	of	course?	I	have	to	conclude	that	he
is	in	fact	at	least	2.3	centimeters	(or	about	0.9	inches)	taller	while	lying	down.	I
go	back	to	my	prone	student,	announce	that	he’s	roughly	an	inch	taller	sleeping
than	 standing	 up,	 and—this	 is	 the	 best	 part—declare,	 “My	 grandmother	 was
right!	She	was	always	right!”

Are	 you	 skeptical?	 Well,	 it	 turns	 out	 that	 my	 grandmother	 was	 a	 better
scientist	 than	most	of	us.	When	we	are	standing,	 the	 tug	of	gravity	compresses
the	soft	 tissue	between	the	vertebrae	of	our	spines,	and	when	we	 lie	down,	our
spines	 expand.	This	may	 seem	obvious	once	 you	know	 it,	 but	would	you	have
predicted	 it?	 In	 fact,	 not	 even	 the	 scientists	 at	NASA	 anticipated	 this	 effect	 in



planning	the	first	space	missions.	The	astronauts	complained	that	their	suits	got
tighter	when	they	were	 in	space.	Studies	done	 later,	during	the	Skylab	mission,
showed	 that	 of	 the	 six	 astronauts	 who	were	measured,	 all	 six	 showed	 about	 3
percent	 growth	 in	 height—a	 little	 over	 2	 inches	 if	 you’re	 6	 feet	 tall.	 Now
astronauts’	suits	are	made	with	extra	room	to	allow	for	this	growth.

See	 how	 revealing	 good	 measurements	 can	 be?	 In	 that	 same	 class	 where	 I
prove	my	grandmother	right,	I	have	a	lot	of	fun	measuring	some	very	odd	items,
all	in	order	to	test	a	suggestion	of	the	great	Galileo	Galilei,	the	father	of	modern
science	 and	 astronomy,	 who	 once	 asked	 himself	 the	 question,	 “Why	 are	 the
largest	mammals	as	large	as	they	are	and	not	much	larger?”	He	answered	himself
by	suggesting	that	if	a	mammal	became	too	heavy,	its	bones	would	break.	When	I
read	 about	 this,	 I	 was	 intrigued	 to	 find	 out	 whether	 or	 not	 he	 was	 right.	 His
answer	seemed	right	intuitively,	but	I	wanted	to	check	it.

I	 knew	 that	 mammals’	 femurs—their	 thighbones—support	 most	 of	 their
weight,	 so	 I	 decided	 to	 make	 some	 comparative	 measurements	 of	 different
mammals’	femur	bones.	If	Galileo	was	right,	then	for	a	super	heavy	mammal,	the
femur	 bone	 would	 not	 be	 strong	 enough	 to	 support	 the	 animal.	 Of	 course,	 I
realized	that	the	strength	of	the	mammal’s	femur	should	depend	on	its	thickness.
Thicker	bones	can	support	more	weight—that’s	intuitive.	The	bigger	the	animal,
the	stronger	the	bones	would	need	to	be.

The	 femur	 would	 also	 get	 longer	 as	 the	 animal	 got	 bigger,	 of	 course,	 and	 I
realized	 that	 by	 comparing	 how	 much	 longer	 versus	 how	 much	 thicker	 the
femurs	 of	 various	 mammals	 get	 as	 the	 animals	 become	 bigger,	 I	 could	 test
Galileo’s	idea.	According	to	the	calculations	I	made,	which	are	more	complicated
than	I	want	to	go	into	here	(I	explain	them	in	appendix	1),	I	determined	that	 if
Galileo	 was	 right,	 then	 as	 mammals	 get	 bigger	 the	 thickness	 of	 their	 femurs
would	have	to	increase	faster	than	their	length.	I	calculated	that,	for	example,	if
one	animal	was	five	times	bigger	than	another—so	the	femur	would	be	five	times
longer—then	 the	 thickness	 of	 its	 femur	 would	 have	 to	 be	 about	 eleven	 times
greater.

This	would	mean	that	at	some	point	the	thicknesses	of	femurs	would	become
the	same	as	their	lengths—or	even	greater—which	would	make	for	some	pretty
impractical	 mammals.	 Such	 an	 animal	 would	 certainly	 not	 be	 the	 fittest	 for
survival,	and	that	would	then	be	the	reason	why	there	is	a	maximum	limit	on	the
size	of	mammals.

So,	I	had	my	prediction	that	thickness	would	increase	faster	than	length.	Now
the	real	fun	began.



I	went	over	 to	Harvard	University,	where	 they	have	 a	beautiful	 collection	of
bones,	and	I	asked	them	for	the	femurs	of	a	raccoon	and	a	horse.	It	turns	out	that
a	horse	 is	about	 four	times	 larger	 than	a	raccoon,	and	sure	enough,	 the	horse’s
femur	(42.0	±	0.5	centimeters)	was	about	three	and	a	half	times	longer	than	the
raccoon’s	(12.4	±	0.3	centimeters).	So	far	so	good.	I	plugged	the	numbers	into	my
formula	 and	 predicted	 that	 the	 horse’s	 femur	 should	 be	 a	 little	more	 than	 six
times	 thicker	 than	 the	 raccoon’s.	 When	 I	 measured	 the	 thicknesses	 (to	 an
uncertainty	of	about	half	a	centimeter	for	the	raccoon	and	2	centimeters	for	the
horse),	 it	 turned	out	 that	 the	horse	bone	was	 five	 times	 thicker,	plus	or	minus
about	 10	 percent.	 So	 it	 looked	 very	 good	 for	 Galileo.	 However,	 I	 decided	 to
expand	the	data	to	include	smaller	as	well	as	larger	mammals.

So	I	went	back	to	Harvard,	and	they	gave	me	three	more	bones,	of	an	antelope,
an	opossum,	and	a	mouse.	Here’s	how	they	all	stacked	up:

Isn’t	 that	 wonderful,	 so	 romantic?	 The	 progression	 of	 shapes	 is	 lovely,	 and
look	at	how	delicate,	how	 tiny	 is	 the	 femur	of	 the	mouse.	Only	a	 teeny	weenie
little	femur	for	a	teeny,	weenie	little	mouse.	Isn’t	that	beautiful?	I	will	never	cease
to	be	amazed	by	the	beauty	in	every	detail	of	our	natural	world.

But	what	about	the	measurements;	how	did	they	fit	into	my	equation?	When	I
did	the	calculations,	I	was	shocked,	really	shocked.	The	horse	femur	is	about	40
times	 longer	 than	 the	 mouse’s,	 and	 my	 calculations	 predicted	 that	 its	 femur
should	 be	 more	 than	 250	 times	 thicker.	 Instead,	 it	 was	 only	 about	 70	 times
thicker.

So	I	said	to	myself,	“Why	didn’t	I	ask	them	for	the	femur	of	an	elephant?	That
might	 settle	 the	 issue	 conclusively.”	 I	 think	 they	 were	 somewhat	 annoyed	 at
Harvard	 when	 I	 came	 back	 again,	 but	 they	 kindly	 gave	 me	 the	 femur	 of	 an



elephant.	By	that	time	I’m	sure	they	just	wanted	to	get	rid	of	me!	Believe	me,	it
was	difficult	carrying	that	bone;	it	was	more	than	a	yard	long	and	weighed	a	ton.
I	couldn’t	wait	to	do	my	measurements;	I	couldn’t	sleep	all	night.

And	 do	 you	 know	 what	 I	 found?	 The	 mouse’s	 femur	 was	 1.1	 ±	 0.05
centimeters	 long	 and	 0.7	 ±	 0.1	 millimeters	 thick—very	 thin	 indeed.	 The
elephant’s	femur	was	101	±	1	centimeters	long,	about	100	times	longer	than	that
of	 the	mouse.	So	how	about	 its	 thickness?	 I	measured	 it	 at	86	±	4	millimeters,
roughly	 120	 times	 the	 diameter	 of	 the	 mouse’s	 femur.	 But	 according	 to	 my
calculations,	 if	Galileo	was	 right,	 the	 femur	 of	 the	 elephant	 should	 be	 roughly
1,000	times	thicker	than	that	of	the	mouse.	In	other	words,	it	should	have	been
about	 70	 centimeters	 thick.	 Instead,	 the	 actual	 thickness	 was	 only	 about	 9
centimeters.	I	concluded,	however	reluctantly,	that	the	great	Galileo	Galilei	was
wrong!

Measuring	Interstellar	Space
One	 of	 the	 areas	 of	 physics	 in	 which	 measurement	 has	 been	 bedeviling	 is
astronomy.	 Measurements	 and	 uncertainties	 are	 enormous	 issues	 for
astronomers,	especially	because	we	deal	with	such	 immense	distances.	How	far
away	are	the	stars?	How	about	our	beautiful	neighbor,	the	Andromeda	Galaxy?
And	what	about	all	 the	galaxies	we	can	see	with	 the	most	powerful	 telescopes?
When	we	see	the	most-distant	objects	in	space,	how	far	are	we	seeing?	How	large
is	the	universe?

These	 are	 some	 of	 the	 most	 fundamental	 and	 profound	 questions	 in	 all	 of
science.	And	the	different	answers	have	turned	our	view	of	the	universe	upside
down.	In	fact,	the	whole	distance	business	has	a	wonderful	history.	You	can	trace
the	evolution	of	astronomy	itself	through	the	changing	techniques	of	calculating
stellar	 distances.	 And	 at	 every	 stage	 these	 are	 dependent	 on	 the	 degree	 of
accuracy	of	measurements,	which	is	to	say	the	equipment	and	the	inventiveness
of	 astronomers.	 Until	 the	 end	 of	 the	 nineteenth	 century,	 the	 only	 way
astronomers	could	make	 these	calculations	was	by	measuring	something	called
parallax.

You	are	all	familiar	with	the	phenomenon	of	parallax	without	even	realizing	it.
Wherever	you	are	sitting,	look	around	and	find	a	stretch	of	wall	with	some	sort
of	 feature	along	 it—a	doorway	or	a	picture	hanging	on	 it—or	 if	you’re	outside
some	feature	of	the	landscape,	like	a	big	tree.	Now	stretch	your	hand	straight	out
in	front	of	you	and	raise	one	finger	so	that	it	 is	to	one	or	the	other	side	of	that



feature.	Now	first	close	your	right	eye	and	then	close	your	left	eye.	You	will	see
that	 your	 finger	 jumped	 from	 left	 to	 right	 relative	 to	 the	 doorway	 or	 the	 tree.
Now,	move	your	 finger	closer	 to	your	eyes	and	do	 it	 again.	Your	 finger	moves
even	more.	The	effect	is	huge!	This	is	parallax.

It	 happens	 because	 of	 the	 switch	 to	 different	 lines	 of	 sight	 in	 observing	 an
object,	so	in	this	case	from	the	line	of	sight	of	your	left	eye	to	that	of	your	right
eye	(your	eyes	are	about	6.5	centimeters	apart).

This	is	the	basic	idea	behind	determining	distances	to	stars.	Except	that	instead
of	 the	approximately	6.5	centimeters	 separation	of	my	eyes	as	our	baseline,	we
now	use	the	diameter	of	the	Earth’s	orbit	(about	300	million	kilometers)	as	our
baseline.	 As	 the	 Earth	moves	 around	 the	 Sun	 in	 one	 year	 (in	 an	 orbit	 with	 a
diameter	 of	 about	 300	million	 kilometers)	 a	 nearby	 star	 will	 move	 in	 the	 sky
relative	to	more	distant	stars.	We	measure	the	angle	in	the	sky	(called	a	parallax
angle)	between	the	two	positions	of	 the	star	measured	six	months	apart.	 If	you
make	many	 sets	 of	measurements	 all	 six	months	 apart,	 you	will	 find	 different
parallax	angles.	 In	 the	 figure	below,	 for	 simplicity,	 I	have	 selected	a	 star	 in	 the
same	plane	of	space	as	Earth,	known	as	the	orbital	plane	(also	called	the	ecliptic
plane).	However,	the	principle	of	parallax	measurements	as	described	here	holds
for	any	star—not	just	for	stars	in	the	ecliptic	plane.

Suppose	you	observe	the	star	when	the	Earth	is	located	at	position	1	in	its	orbit
around	the	Sun.	You	will	then	see	the	star	projected	on	the	background	(very	far
away)	 in	 the	 direction	A1.	 If	 now	 you	 observe	 the	 same	 star	 six	months	 later
(from	position	7),	you	will	see	the	star	in	the	direction	A7.	The	angle	marked	as	α
is	 the	 largest	 possible	 parallax	 angle.	 If	 you	make	 similar	measurements	 from
positions	2	and	8,	3	and	9,	4	and	10,	you	will	then	always	find	parallax	angles	that
are	smaller	than	α.	In	the	hypothetical	case	of	observations	from	points	4	and	10
(hypothetical,	 as	 the	 star	cannot	be	observed	 from	position	10	 since	 the	Sun	 is
then	in	the	way),	the	parallax	angle	would	even	be	zero.	Now	look	at	the	triangle
that	is	formed	by	the	points	1A7.	We	know	that	the	distance	1–7	is	300	million
kilometers,	and	we	know	the	angle	α.	Thus	we	can	now	calculate	the	distance	SA
(with	high	school	math).



Even	 though	 the	 parallax	 angles	 taken	 at	 different	 six-month	 intervals	 vary,
astronomers	talk	about	the	parallax	of	a	star.	What	they	mean	by	that	is	half	the
largest	parallax	angle.	If	the	maximum	parallax	angle	was	2.00	arc	seconds,	then
the	parallax	would	be	1.00	arc	seconds	and	the	distance	to	the	star	would	then	be
3.26	 light-years	 (however,	 there	 is	 no	 star	 that	 close	 to	 us).	 The	 smaller	 the
parallax,	the	greater	the	distance.	If	the	parallax	is	0.10	arc	seconds,	its	distance	is
32.6	light-years.	The	star	nearest	the	Sun	is	Proxima	Centauri.	Its	parallax	is	0.76
arc	seconds;	thus	its	distance	is	about	4.3	light-years.

To	 understand	 just	 how	 small	 the	 changes	 in	 stellar	 positions	 are	 that
astronomers	must	measure,	we	have	to	understand	just	how	small	an	arc	second
is.	Picture	an	enormous	circle	drawn	in	the	night	sky	going	through	the	zenith
(which	is	straight	overhead)	all	the	way	around	the	Earth.	That	circle	of	course
contains	360	degrees.	Now	each	degree	is	divided	into	60	arc	minutes,	and	each
arc	 minute	 is	 divided	 in	 turn	 into	 60	 arc	 seconds.	 So	 there	 are	 1,296,000	 arc
seconds	in	that	full	circle.	You	can	see	that	an	arc	second	is	extremely	small.

Here’s	another	way	to	envision	how	small.	If	you	take	a	dime	and	move	it	2.2
miles	away	from	you,	its	diameter	would	be	one	arc	second.	And	here’s	another.
Every	astronomer	knows	that	the	Moon	is	about	half	a	degree	across,	or	30	arc
minutes.	This	is	called	the	angular	size	of	the	Moon.	If	you	could	cut	the	Moon
into	1,800	equally	thin	slices,	each	one	would	be	an	arc	second	wide.

Since	the	parallax	angles	that	astronomers	must	measure	in	order	to	determine
distances	 are	 so	 very	 small,	 you	may	 appreciate	 how	 important	 the	 degree	 of
uncertainty	in	the	measurements	is	for	them.

As	improvements	in	equipment	have	allowed	astronomers	to	make	more	and
more	accurate	measurements,	 their	estimates	of	 stellar	distances	have	changed,
sometimes	 quite	 dramatically.	 In	 the	 early	 nineteenth	 century	 Thomas
Henderson	measured	the	parallax	of	the	brightest	star	in	the	heavens,	Sirius,	to
be	0.23	arc	seconds,	with	an	uncertainty	of	about	a	quarter	of	an	arc	second.	In
other	words,	he	had	measured	an	upper	limit	for	the	parallax	of	about	half	an	arc



second,	and	that	meant	that	the	star	could	not	be	closer	to	us	than	6.5	light-years.
In	 1839	 this	 was	 a	 very	 important	 result.	 But	 a	 half	 century	 later,	 David	 Gill
measured	 Sirius’s	 parallax	 at	 0.370	 arc	 seconds	with	 an	 uncertainty	 of	 plus	 or
minus	0.010	arc	seconds.	Gill’s	measurements	were	consistent	with	Henderson’s,
but	 Gill’s	 measurements	 were	 highly	 superior	 because	 the	 uncertainty	 was
twenty-five	times	smaller.	At	a	parallax	of	0.370	±	0.010	arc	seconds,	the	distance
to	Sirius	becomes	8.81	±	0.23	 light-years,	which	 is	 indeed	 larger	 than	6.5	 light-
years!

In	 the	 1990s	 Hipparcos,	 the	 High	 Precision	 Parallax	 Collecting	 Satellite	 (I
think	they	fiddled	with	the	name	until	it	matched	the	name	of	a	famous	ancient
Greek	 astronomer),	 measured	 the	 parallaxes	 of	 (and	 hence	 the	 distances	 to)
more	 than	 a	 hundred	 thousand	 stars	 with	 an	 uncertainty	 of	 only	 about	 a
thousandth	of	an	arc	second.	Isn’t	that	incredible?	Remember	how	far	away	that
dime	 had	 to	 be	 to	 represent	 an	 arc	 second?	 To	 cover	 a	 thousandth	 of	 an	 arc
second,	it	would	have	to	be	2,200	miles	away	from	an	observer.

One	of	the	stars	Hipparcos	measured	the	parallax	of	was,	of	course,	Sirius,	and
the	 result	was	0.37921	±	0.00158	arc	 seconds.	This	gives	a	distance	 to	Sirius	of
8.601	±	0.036	light-years.

By	 far	 the	 most	 accurate	 parallax	 measurement	 ever	 made	 was	 by	 radio
astronomers	during	the	years	1995	to	1998	for	a	very	very	special	star	called	Sco
X-1.	I	will	tell	you	all	about	it	in	chapter	10.	They	measured	a	parallax	of	0.00036
±	 0.00004	 arc	 seconds,	 which	 translates	 into	 a	 distance	 of	 9.1	 ±	 0.9	 thousand
light-years.

In	 addition	 to	 the	 uncertainties	 that	 we	 must	 deal	 with	 in	 astronomy	 as	 a
consequence	 of	 the	 limited	 accuracy	 of	 our	 equipment,	 and	 also	 to	 limits	 in
available	 observation	 time,	 there	 are	 the	 astronomers’	 nightmares:	 the
“unknown-hidden”	uncertainties.	Is	there	perhaps	an	error	you	are	making	that
you	don’t	even	know	about	because	you’re	missing	something,	or	because	your
instruments	 are	 calibrated	 incorrectly?	 Suppose	 your	 bathroom	 scale	 is	 set	 to
show	 zero	 at	 10	 pounds	 and	has	 been	 that	way	 since	 you	 bought	 it.	 You	 only
discover	 the	 error	when	you	go	 to	 the	doctor—and	nearly	have	 a	heart	 attack.
We	 call	 that	 a	 systematic	 error,	 and	 it	 scares	 the	 hell	 out	 of	 us.	 I’m	 no	 fan	 of
former	 secretary	 of	 defense	 Donald	 Rumsfeld,	 but	 I	 did	 feel	 a	 tiny	 bit	 of
sympathy	 when	 he	 said,	 in	 a	 2002	 press	 briefing,	 “We	 know	 there	 are	 some
things	we	 do	 not	 know.	 But	 there	 are	 also	 unknown	 unknowns—the	 ones	we
don’t	know	we	don’t	know.”

The	 challenges	of	 the	 limits	 of	 our	 equipment	make	 the	 achievement	of	 one



brilliant	but	mostly	 ignored	 female	astronomer,	Henrietta	Swan	Leavitt,	 all	 the
more	astonishing.	Leavitt	was	working	at	the	Harvard	Observatory	in	a	low-level
staff	position	in	1908	when	she	started	this	work,	which	enabled	a	giant	jump	in
measuring	the	distance	to	stars.

This	 kind	 of	 thing	 has	 happened	 so	 often	 in	 the	 history	 of	 science	 that	 it
should	 be	 considered	 a	 systematic	 error:	 discounting	 the	 talent,	 intellect,	 and
contributions	of	female	scientists.*

Leavitt	noticed,	in	the	course	of	her	job	analyzing	thousands	of	photographic
plates	 of	 the	 Small	Magellanic	Cloud	 (SMC),	 that	with	 a	 certain	 class	 of	 large
pulsating	 stars	 (now	 known	 as	 Cepheid	 variables),	 there	 was	 a	 relationship
between	 the	 star’s	 optical	 brightness	 and	 the	 time	 it	 took	 for	 one	 complete
pulsation,	known	as	the	star’s	period.	She	found	that	the	 longer	the	period,	the
brighter	 the	 star.	 As	we	will	 see,	 this	 discovery	 opened	 the	 door	 to	 accurately
measuring	distances	to	star	clusters	and	galaxies.

To	appreciate	the	discovery,	we	first	must	understand	the	difference	between
brightness	and	luminosity.	Optical	brightness	is	the	amount	of	energy	per	square
meter	 per	 second	 of	 light	we	 receive	 on	Earth.	 This	 is	measured	 using	 optical
telescopes.	Optical	 luminosity,	on	 the	other	hand,	 is	 the	 amount	of	 energy	per
second	radiated	by	an	astronomical	object.

Take	Venus,	 often	 the	 brightest	 object	 in	 the	 entire	 night	 sky,	 even	 brighter
than	Sirius,	which	is	the	brightest	star	in	the	sky.	Venus	is	very	close	to	Earth;	it’s
therefore	 very	 bright,	 but	 it	 has	 virtually	 no	 intrinsic	 luminosity.	 It	 radiates
relatively	 little	 energy	 by	 comparison	 to	 Sirius,	 a	 powerful,	 nuclear-burning
furnace	 twice	 as	massive	 as	 our	 Sun	 and	 about	 twenty-five	 times	 as	 luminous.
Knowing	an	object’s	 luminosity	 tells	 astronomers	a	great	deal	 about	 it,	but	 the
tricky	 thing	 about	 luminosity	 was	 that	 there	 was	 no	 good	 way	 to	measure	 it.
Brightness	is	what	you	measure	because	it’s	what	you	can	see;	you	can’t	measure
luminosity.	To	measure	luminosity	you	have	to	know	both	the	star’s	brightness
and	its	distance.

Using	a	 technique	called	 statistical	parallax,	Ejnar	Hertzsprung,	 in	1913,	 and
Harlow	 Shapley,	 in	 1918,	 were	 able	 to	 convert	 Leavitt’s	 brightness	 values	 into
luminosities.	 And	 by	 assuming	 that	 the	 luminosity	 of	 a	 Cepheid	 with	 a	 given
period	 in	 the	 SMC	 was	 the	 same	 as	 that	 of	 a	 Cepheid	 with	 the	 same	 period
elsewhere,	 they	 had	 a	 way	 to	 calculate	 the	 luminosity	 relationship	 for	 all
Cepheids	(even	those	outside	the	SMC).	I	won’t	elaborate	here	on	this	method,
as	 it	gets	quite	 technical;	 the	 important	 thing	 to	appreciate	 is	 that	working	out
the	 luminosity-period	 relation	 was	 a	 milestone	 in	 measurements	 of	 distances.



Once	 you	 know	 a	 star’s	 luminosity	 and	 its	 brightness,	 you	 can	 calculate	 its
distance.

The	range	in	luminosity,	by	the	way,	is	substantial.	A	Cepheid	with	a	period	of
three	days	has	about	a	thousand	times	the	Sun’s	luminosity.	When	its	period	is
thirty	 days,	 its	 luminosity	 is	 about	 thirteen	 thousand	 times	 greater	 than	 the
Sun’s.

In	 1923,	 the	 great	 astronomer	 Edwin	 Hubble	 found	 Cepheids	 in	 the
Andromeda	Galaxy	(also	known	as	M31),	from	which	he	calculated	its	distance
at	about	1	million	light-years,	a	genuinely	shocking	result	to	many	astronomers.
Many,	 including	 Shapley,	 had	 argued	 that	 our	 own	Milky	Way	 contained	 the
entire	 universe,	 including	 M31,	 and	 Hubble	 demonstrated	 that	 in	 fact	 it	 was
almost	unimaginably	distant	from	us.	But	wait—if	you	google	the	distance	to	the
Andromeda	Galaxy,	you’ll	find	that	it’s	2.5	million	light-years.

This	was	a	case	of	unknown	unknowns.	For	all	his	genius,	Hubble	had	made	a
systematic	error.	He	had	based	his	calculations	on	the	known	luminosity	of	what
later	 came	 to	 be	 known	 as	Type	 II	Cepheids,	when	 in	 fact	 he	was	 observing	 a
kind	of	Cepheid	variable	about	four	times	more	luminous	than	what	he	thought
he	 was	 seeing	 (these	 were	 later	 named	 Type	 I	 Cepheids).	 Astronomers	 only
discovered	 the	 difference	 in	 the	 1950s,	 and	 overnight	 they	 realized	 that	 their
distance	measurements	for	the	previous	thirty	years	were	off	by	a	factor	of	two—
a	large	systematic	error	that	doubled	the	size	of	the	known	universe.

In	 2004,	 still	 using	 the	Cepheid	 variable	method,	 astronomers	measured	 the
distance	 to	 the	 Andromeda	 Galaxy	 at	 2.51	 ±	 0.13	 million	 lightyears.	 In	 2005
another	group	measured	 it	by	using	 the	eclipsing	binary	stars	method,	 to	get	a
result	of	2.52	±	0.14	million	light-years,	about	15	million	trillion	miles.	These	two
measurements	are	in	excellent	agreement	with	each	other.	Yet	the	uncertainty	is
about	 140,000	 light-years	 (about	 8	 ×	 1017	 miles).	 And	 this	 galaxy	 is	 by
astronomical	 standards	 our	 next-door	 neighbor.	 Imagine	 the	 uncertainty	 we
have	about	the	distances	of	so	many	other	galaxies.

You	 can	 see	 why	 astronomers	 are	 always	 on	 the	 hunt	 for	 what	 are	 called
standard	 candles—objects	with	 known	 luminosities.	 They	 allow	 us	 to	 estimate
distances	using	a	range	of	ingenious	ways	of	establishing	reliable	tape	measures
to	the	cosmos.	And	they	have	been	vital	in	establishing	what	we	call	the	cosmic
distance	ladder.

We	use	parallax	to	measure	distances	on	the	first	rung	on	that	ladder.	Thanks
to	Hipparcos’s	fantastically	accurate	parallax	measurements,	we	can	measure	the
distances	of	objects	up	 to	 several	 thousand	 light-years	with	great	precision	 this



way.	 We	 take	 the	 next	 step	 with	 Cepheids,	 which	 allow	 us	 to	 obtain	 good
estimates	 of	 the	 distances	 of	 objects	 up	 to	 a	 hundred	million	 light-years	 away.
For	 the	 next	 rungs	 astronomers	 use	 a	 number	 of	 exotic	 and	 complicated
methods	 too	 technical	 to	 go	 into	 here,	 many	 of	 which	 depend	 on	 standard
candles.

The	distance	measurements	become	more	and	more	tricky	the	farther	out	we
want	 to	 measure.	 This	 is	 partly	 due	 to	 the	 remarkable	 discovery	 in	 1925	 by
Edwin	 Hubble	 that	 all	 galaxies	 in	 the	 universe	 are	 moving	 away	 from	 one
another.	Hubble’s	discovery,	one	of	 the	most	 shocking	and	 significant	 in	all	of
astronomy,	perhaps	in	all	of	science	in	the	past	century,	may	only	be	rivaled	by
Darwin’s	discovery	of	evolution	through	natural	selection.

Hubble	 saw	 that	 the	 light	 emitted	by	galaxies	 showed	a	distinct	 shift	 toward
the	 less	 energetic	 end	 of	 the	 spectrum,	 the	 “red”	 end	 where	 wavelengths	 are
longer.	 This	 is	 called	 redshift.	 The	 larger	 the	 redshift,	 the	 faster	 a	 galaxy	 is
moving	away	from	us.	We	know	this	effect	on	Earth	with	sound	as	the	Doppler
effect;	it	explains	why	we	can	tell	whether	an	ambulance	is	coming	toward	us	or
going	 away	 from	 us,	 since	 the	 notes	 are	 lower	 when	 it’s	 speeding	 away	 and
higher	as	it	speeds	toward	us.	(I	will	discuss	the	Doppler	shift	in	more	detail	in
chapter	13.)

For	 all	 the	 galaxies	 whose	 redshifts	 and	 distance	 he	 could	measure,	 Hubble
found	that	the	farther	away	these	objects	were,	the	faster	they	were	moving	away.
So	the	universe	was	expanding.	What	a	monumental	discovery!	Every	galaxy	in
the	universe	speeding	away	from	every	other	galaxy.

This	can	cause	great	confusion	 in	 the	meaning	of	distance	when	galaxies	are
billions	of	light-years	away.	Do	we	mean	the	distance	when	the	light	was	emitted
(13	billion	years	ago,	for	instance)	or	do	we	mean	the	distance	we	think	it	is	now,
since	the	object	has	substantially	increased	its	distance	from	us	in	those	13	billion
years?	One	 astronomer	may	 report	 that	 the	 distance	 is	 about	 13	 billion	 light-
years	(this	is	called	the	light	travel	time	distance)	whereas	another	may	report	29
billion	light-years	for	the	same	object	(this	is	called	the	co-moving	distance).

Hubble’s	 findings	have	 since	become	known	as	Hubble’s	 law:	 the	 velocity	 at
which	galaxies	move	away	from	us	is	directly	proportional	to	their	distance	from
us.	The	farther	away	a	galaxy	is,	the	faster	it	is	racing	away.

Measuring	 the	 velocities	 of	 the	 galaxies	 was	 relatively	 easy;	 the	 amount	 of
redshift	 immediately	 translates	 into	 the	 speed	 of	 the	 galaxy.	 However,	 to	 get
accurate	distances	was	a	different	matter.	That	was	the	hardest	part.	Remember,
Hubble’s	distance	to	the	Andromeda	Nebula	was	off	by	a	factor	of	2.5.	He	came



up	with	 the	 fairly	 simple	 equation	v	 =	H0D,	where	v	 is	 the	 velocity	 of	 a	 given
galaxy,	D	is	the	distance	of	that	galaxy	from	us,	and	H0	is	a	constant,	now	called
Hubble’s	constant.	Hubble	estimated	the	constant	to	be	about	500,	measured	in
units	 of	 kilometers	 per	 second	 per	 megaparsec	 (1	 megaparsec	 is	 3.26	 million
light-years).	The	uncertainty	 in	his	 constant	was	about	10	percent.	Thus,	 as	an
example,	 according	 to	Hubble,	 if	 a	galaxy	 is	 at	 a	distance	of	5	megaparsecs,	 its
speed	relative	to	us	is	about	2,500	kilometers	per	second	(about	1,600	miles	per
second).

Clearly	 the	universe	 is	 expanding	 fast.	But	 that	wasn’t	 all	Hubble’s	discovery
revealed.	If	you	really	knew	the	value	of	Hubble’s	constant,	then	you	could	turn
the	clock	backward	in	order	to	calculate	the	time	since	the	big	bang,	and	thus	the
age	 of	 the	 universe.	 Hubble	 himself	 estimated	 that	 the	 universe	 was	 about	 2
billion	years	old.	This	calculation	was	in	conflict	with	the	age	of	the	Earth,	which
geologists	 were	 just	measuring	 to	 be	 upward	 of	 3	 billion	 years.	 This	 bothered
Hubble	mightily,	 for	 good	 reason.	Of	 course,	 he	was	 unaware	 of	 a	 number	 of
systematic	errors	he	was	making.	Not	only	was	he	confusing	different	kinds	of
Cepheid	variables	in	some	cases,	but	he	also	mistook	clouds	of	gas	in	which	stars
were	forming	for	bright	stars	in	faraway	galaxies.

One	 way	 of	 looking	 at	 eighty	 years’	 worth	 of	 progress	 in	 measuring	 stellar
distances	is	to	look	at	the	history	of	Hubble’s	constant	itself.	Astronomers	have
been	struggling	to	nail	down	the	value	of	Hubble’s	constant	for	nearly	a	century,
which	 has	 produced	 not	 only	 a	 seven-fold	 reduction	 in	 the	 constant,	 which
dramatically	 increased	 the	 size	of	 the	universe,	but	also	changed	 the	age	of	 the
universe,	from	Hubble’s	original	2	billion	years	to	our	current	estimate	of	nearly
14	 billion	 years—actually	 13.75	 ±	 0.11	 billion	 years.	 Now,	 finally,	 based	 on
observations	in	part	from	the	fabulous	orbiting	telescope	bearing	Hubble’s	name,
we	have	a	consensus	that	Hubble’s	constant	is	70.4	±	1.4	kilometers	per	second
per	megaparsec.	The	uncertainty	is	only	2	percent—which	is	incredible!

Just	 think	 about	 it.	 Parallax	 measurements,	 starting	 in	 1838,	 became	 the
foundation	 for	 developing	 the	 instruments	 and	 mathematical	 tools	 to	 reach
billions	of	light-years	to	the	edge	of	the	observable	universe.

For	all	of	our	remarkable	progress	in	solving	mysteries	such	as	this,	there	are
of	course	a	great	many	mysteries	that	remain.	We	can	measure	the	proportion	of
dark	matter	and	dark	energy	in	the	universe,	but	we	have	no	idea	what	they	are.
We	know	the	age	of	the	universe	but	still	wonder	when	or	if	and	how	it	will	end.
We	 can	 make	 very	 precise	 measurements	 of	 gravitational	 attraction,
electromagnetism,	and	of	the	weak	and	the	strong	nuclear	forces,	but	we	have	no



clue	if	they	will	ever	be	combined	into	one	unified	theory.	Nor	do	we	have	any
idea	what	 the	 chances	 are	of	 other	 intelligent	 life	 existing	 in	our	own	or	 some
other	 galaxy.	 So	we	 have	 a	 long	way	 to	 go.	 But	 the	wonder	 is	 just	 how	many
answers	the	tools	of	physics	have	provided,	to	such	a	remarkably	high	degree	of
accuracy.



CHAPTER	3

Bodies	in	Motion

Here’s	something	fun	to	try.	Stand	on	a	bathroom	scale—not	one	of	those	fancy
ones	at	your	doctor’s	office,	and	not	one	of	those	digital	glass	things	you	have	to
tap	with	your	toes	to	make	it	turn	on,	just	an	everyday	bathroom	scale.	It	doesn’t
matter	 if	 you	 have	 your	 shoes	 on	 (you	 don’t	 have	 to	 impress	 anyone),	 and	 it
doesn’t	 matter	 what	 number	 you	 see,	 and	 whether	 you	 like	 it	 or	 not.	 Now,
quickly	raise	yourself	up	on	your	toes;	then	stop	and	hold	yourself	there.	You’ll
see	 that	 the	 scale	 goes	 a	 little	 crazy.	 You	may	 have	 to	 do	 this	 several	 times	 to
clearly	see	what’s	going	on	because	it	all	happens	pretty	quickly.

First	the	needle	goes	up,	right?	Then	it	goes	way	down	before	it	comes	back	to
your	weight,	where	 it	was	before	you	moved,	 though	depending	on	your	 scale,
the	needle	(or	numbered	disk)	might	still	jiggle	a	bit	before	it	stabilizes.	Then,	as
you	bring	your	heels	down,	especially	if	you	do	so	quickly,	the	needle	first	goes
down,	then	shoots	up	past	your	weight,	before	coming	to	rest	back	at	the	weight
you	may	or	may	not	have	wanted	 to	know.	What	was	 that	all	 about?	After	all,
you	 weigh	 the	 same	 whether	 you	move	 your	 heels	 down	 or	 up	 on	 your	 toes,
right?	Or	do	you?

To	figure	this	out,	we	need,	believe	it	or	not,	Sir	Isaac	Newton,	my	candidate
for	the	greatest	physicist	of	all	time.	Some	of	my	colleagues	disagree,	and	you	can
certainly	make	 a	 case	 for	Albert	 Einstein,	 but	 no	 one	 really	 questions	whether
Einstein	and	Newton	are	 the	 top	 two.	Why	do	 I	vote	 for	Newton?	Because	his
discoveries	were	both	 so	 fundamental	and	so	diverse.	He	studied	 the	nature	of
light	and	developed	a	theory	of	color.	To	study	the	planetary	motions	he	built	the
first	 reflecting	 telescope,	 which	 was	 a	 major	 advance	 over	 the	 refracting
telescopes	of	his	day,	and	even	today	almost	all	 the	major	telescopes	follow	the
basic	principles	of	his	design.	In	studying	the	properties	of	the	motion	of	fluids,
he	pioneered	a	major	area	of	physics,	and	he	managed	to	calculate	the	speed	of
sound	(he	was	only	off	by	about	15	percent).	Newton	even	invented	a	whole	new
branch	of	mathematics:	calculus.	Fortunately,	we	don’t	need	to	resort	to	calculus
to	appreciate	his	most	masterful	achievements,	which	have	come	to	be	known	as
Newton’s	laws.	I	hope	that	in	this	chapter	I	can	show	you	how	far-reaching	these
apparently	simple	laws	really	are.



Newton’s	Three	Laws	of	Motion
The	first	law	holds	that	a	body	at	rest	will	persist	in	its	state	of	being	at	rest,	and	a
body	 in	motion	will	 persist	 in	 its	motion	 in	 the	 same	direction	with	 the	 same
speed—unless,	in	either	case,	a	force	acts	on	it.	Or,	in	Newton’s	own	words,	“A
body	at	 rest	perseveres	 in	 its	 state	of	 rest,	or	of	uniform	motion	 in	a	 right	 line
unless	it	 is	compelled	to	change	that	state	by	forces	impressed	upon	it.”	This	 is
the	law	of	inertia.

The	concept	of	inertia	is	familiar	to	us,	but	if	you	reflect	on	it	for	a	bit,	you	can
appreciate	how	counterintuitive	it	actually	is.	We	take	this	law	for	granted	now,
even	 though	 it	 runs	 clearly	 against	 our	 daily	 experience.	 After	 all,	 things	 that
move	 rarely	 do	 so	 along	 a	 straight	 line.	 And	 they	 certainly	 don’t	 usually	 keep
moving	indefinitely.	We	expect	them	to	come	to	a	stop	at	some	point.	No	golfer
could	have	come	up	with	the	law	of	inertia,	since	so	few	putts	go	in	a	straight	line
and	 so	many	 stop	well	 short	 of	 the	 hole.	What	was	 and	 still	 is	 intuitive	 is	 the
contrary	 idea—that	 things	 naturally	 tend	 toward	 rest—which	 is	 why	 it	 had
dominated	Western	 thinking	 about	 these	matters	 for	 thousands	 of	 years	 until
Newton’s	breakthrough.

Newton	 turned	 our	 understanding	 of	 the	 motion	 of	 objects	 on	 its	 head,
explaining	that	the	reason	a	golf	ball	often	stops	short	of	the	hole	is	that	the	force
of	 friction	 is	 slowing	 it	 down,	 and	 the	 reason	 the	Moon	doesn’t	 shoot	off	 into
space,	 but	 keeps	 circling	 Earth,	 is	 that	 the	 force	 of	 gravitational	 attraction	 is
holding	it	in	orbit.

To	appreciate	the	reality	of	inertia	more	intuitively,	think	about	how	difficult	it
can	be	when	you	are	 ice	skating	to	make	the	 turn	at	 the	end	of	 the	rink—your
body	wants	to	keep	going	straight	and	you	have	to	learn	just	how	much	force	to
apply	 to	 your	 skates	 at	 just	 the	 right	 angle	 to	move	 yourself	 off	 of	 that	 course
without	 flailing	wildly	or	 crashing	 into	 the	wall.	Or	 if	 you	are	a	 skier,	 think	of
how	difficult	 it	can	be	to	change	course	quickly	to	avoid	another	skier	hurtling
into	your	path.	The	reason	we	notice	inertia	so	much	more	in	these	cases	than	we
generally	do	is	that	in	both	cases	there	is	so	little	friction	acting	to	slow	us	down
and	help	us	change	our	motion.	Just	imagine	if	putting	greens	were	made	of	ice;
then	you	would	become	acutely	aware	of	 just	how	much	 the	golf	ball	wants	 to
keep	going	and	going.

Consider	just	how	revolutionary	an	insight	this	was.	Not	only	did	it	overturn
all	previous	understanding;	it	pointed	the	way	to	the	discovery	of	a	host	of	forces
that	are	acting	on	us	all	the	time	but	are	invisible—like	friction,	gravity,	and	the
magnetic	and	electric	 forces.	So	 important	was	his	contribution	 that	 in	physics



the	unit	of	 force	 is	called	a	newton.	But	not	only	did	Newton	allow	us	 to	“see”
these	hidden	forces;	he	also	showed	us	how	to	measure	them.

With	the	second	law	he	provided	a	remarkably	simple	but	powerful	guide	for
calculating	 forces.	 Considered	 by	 some	 the	most	 important	 equation	 in	 all	 of
physics,	the	second	law	is	the	famous	F	=	ma.	 In	words:	the	net	force,	F,	on	an
object	 is	 the	mass	of	 the	object,	m,	multiplied	by	 the	net	acceleration,	a,	 of	 the
object.

To	see	 just	one	way	in	which	this	formula	is	so	useful	 in	our	daily	 lives,	 take
the	case	of	an	X-ray	machine.	Figuring	out	how	to	produce	just	the	right	range	of
energies	 for	the	X-rays	 is	crucial.	Here’s	how	Newton’s	equation	 lets	us	do	 just
that.

One	of	the	major	findings	in	physics—which	we’ll	explore	more	later—is	that
a	charged	particle	(say	an	electron	or	proton	or	ion)	will	experience	a	force	when
it	 is	 placed	 in	 an	 electric	 field.	 If	 we	 know	 the	 charge	 of	 the	 particle	 and	 the
strength	 of	 the	 electric	 field,	 we	 can	 calculate	 the	 electric	 force	 acting	 on	 that
particle.	However,	 once	we	 do	 know	 the	 force,	 using	Newton’s	 second	 law	we
can	calculate	the	acceleration	of	the	particle.*

In	an	X-ray	machine	electrons	are	accelerated	before	they	strike	a	target	inside
the	X-ray	tube.	The	speed	with	which	the	electrons	hit	the	target	determines	the
energy	range	of	the	X-rays	that	are	then	produced.	By	changing	the	strength	of
the	electric	field,	we	can	change	the	acceleration	of	the	electrons.	Thus	the	speed
with	 which	 the	 electrons	 hit	 the	 target	 can	 be	 controlled	 to	 select	 the	 desired
energy	range	of	the	X-rays.

In	order	to	facilitate	making	such	calculations,	physicists	use	as	a	unit	of	force,
the	 newton—1	 newton	 is	 the	 force	 that	 accelerates	 a	mass	 of	 1	 kilogram	 at	 1
meter	per	second	per	second.	Why	do	we	say	“per	second	per	second”?	Because
with	 acceleration,	 the	 velocity	 is	 constantly	 changing;	 so,	 in	 other	 words,	 it
doesn’t	stop	after	 the	first	second.	If	 the	acceleration	is	constant,	 the	velocity	 is
changing	by	the	same	amount	every	second.

To	 see	 this	more	 clearly,	 take	 the	 case	of	 a	bowling	ball	 dropped	 from	a	 tall
building	in	Manhattan—why	not	from	the	observation	deck	of	the	Empire	State
Building?	 It	 is	 known	 that	 the	 acceleration	 of	 objects	 dropped	 on	 Earth	 is
approximately	 9.8	 meters	 per	 second	 per	 second;	 it	 is	 called	 the	 gravitational
acceleration,	represented	in	physics	by	g.	(For	simplicity	I	am	ignoring	air	drag
for	 now;	 more	 about	 this	 later.)	 After	 the	 first	 second	 the	 bowling	 ball	 has	 a
speed	of	9.8	meters	per	second.	By	the	end	of	the	second	second,	it	will	pick	up
an	additional	9.8	meters	per	second	of	speed,	so	it	will	be	moving	at	19.6	meters



per	second.	And	by	 the	end	of	 the	 third	second	 it	will	be	 traveling	29.4	meters
per	 second.	 It	 takes	about	8	 seconds	 for	 the	ball	 to	hit	 the	ground.	 Its	 speed	 is
then	about	8	times	9.8,	which	is	about	78	meters	per	second	(about	175	miles	per
hour).

What	about	the	much	repeated	notion	that	if	you	threw	a	penny	off	the	top	of
the	Empire	State	Building	it	would	kill	someone?	I’ll	again	exclude	the	role	of	air
drag,	which	 I	 emphasize	would	 be	 considerable	 in	 this	 case.	 But	 even	without
that	 factored	 in,	a	penny	hitting	you	with	a	 speed	of	about	175	miles	per	hour
will	probably	not	kill	you.

This	is	a	good	place	to	grapple	with	an	issue	that	will	come	up	over	and	over	in
this	book,	mainly	because	 it	 comes	up	over	and	over	 in	physics:	 the	difference
between	mass	 and	weight.	Note	 that	Newton	used	mass	 in	his	 equation	 rather
than	weight,	and	though	you	might	think	of	 the	two	as	being	the	same,	 they’re
actually	fundamentally	different.	We	commonly	use	the	pound	and	the	kilogram
(the	units	we’ll	use	in	this	book)	as	units	of	weight,	but	the	truth	is	that	they	are
units	of	mass.

The	difference	is	actually	simple.	Your	mass	is	the	same	no	matter	where	you
are	in	the	universe.	That’s	right—on	the	Moon,	in	outer	space,	or	on	the	surface
of	an	asteroid.	It’s	your	weight	that	varies.	So	what	is	weight,	then?	Here’s	where
things	get	a	little	tricky.	Weight	is	the	result	of	gravitational	attraction.	Weight	is
a	 force:	 it	 is	mass	 times	 the	 gravitational	 acceleration	 (F	=	mg).	 So	 our	weight
varies	 depending	 upon	 the	 strength	 of	 gravity	 acting	 on	 us,	 which	 is	 why
astronauts	weigh	less	on	the	Moon.	The	Moon’s	gravity	is	about	a	sixth	as	strong
as	Earth’s,	so	on	the	Moon	astronauts	weigh	about	one-sixth	what	they	weigh	on
Earth.

For	a	given	mass,	the	gravitational	attraction	of	the	Earth	is	about	the	same	no
matter	 where	 you	 are	 on	 it.	 So	 we	 can	 get	 away	 with	 saying,	 “She	 weighs	 a
hundred	 twenty	 pounds”*	 or	 “He	 weighs	 eighty	 kilograms,”*	 even	 though	 by
doing	so	we	are	confusing	these	two	categories	(mass	and	weight).	I	thought	long
and	hard	about	whether	to	use	the	technical	physics	unit	for	force	(thus	weight)
in	this	book	instead	of	kilos	and	pounds,	and	decided	against	it	on	the	grounds
that	 it	would	be	 too	confusing—no	one,	not	even	a	physicist	whose	mass	 is	80
kilograms	would	say,	“I	weigh	seven	hundred	eighty-four	newtons”	(80	×	9.8	=
784).	So	instead	I’ll	ask	you	to	remember	the	distinction—and	we’ll	come	back	to
it	in	just	a	little	while,	when	we	return	to	the	mystery	of	why	a	scale	goes	crazy
when	we	stand	on	our	tiptoes	on	it.

The	 fact	 that	 gravitational	 acceleration	 is	 effectively	 the	 same	 everywhere	on



Earth	 is	 behind	 a	 mystery	 that	 you	 may	 well	 have	 heard	 of:	 that	 objects	 of
different	masses	fall	at	the	same	speed.	A	famous	story	about	Galileo,	which	was
first	told	in	an	early	biography,	recounts	that	he	performed	an	experiment	from
the	 top	 of	 the	 Leaning	 Tower	 of	 Pisa	 in	 which	 he	 threw	 a	 cannonball	 and	 a
smaller	wooden	ball	off	the	tower	at	the	same	time.	His	intent,	reputedly,	was	to
disprove	an	assertion	attributed	to	Aristotle	that	heavier	objects	would	fall	faster
than	 light	 ones.	The	 account	 has	 long	 been	doubted,	 and	 it	 seems	pretty	 clear
now	that	Galileo	never	did	perform	this	experiment,	but	it	still	makes	for	a	good
story—such	a	good	story	 that	 the	commander	of	 the	Apollo	15	Moon	mission,
David	Scott,	 famously	dropped	a	hammer	and	a	falcon	feather	onto	the	surface
of	the	Moon	at	the	same	time	to	see	if	objects	of	different	mass	would	fall	to	the
ground	 at	 the	 same	 rate	 in	 a	 vacuum.	 It’s	 a	 wonderful	 video,	 which	 you	 can
access	here:	http://video.google.com/videoplay?docid=6926891572259784994#.

The	 striking	 thing	 to	me	about	 this	 video	 is	 just	how	 slowly	 they	both	drop.
Without	thinking	about	it,	you	might	expect	them	both	to	drop	quickly,	at	least
surely	 the	 hammer.	 But	 they	 both	 fall	 slowly	 because	 the	 gravitational
acceleration	on	the	Moon	is	about	six	times	less	than	it	is	on	Earth.

Why	was	Galileo	 right	 that	 two	 objects	 of	 different	mass	 would	 land	 at	 the
same	 time?	The	 reason	 is	 that	 the	 gravitational	 acceleration	 is	 the	 same	 for	 all
objects.	According	 to	F	 =	ma,	 the	 larger	 the	mass,	 the	 larger	 the	 gravitational
force,	but	the	acceleration	is	the	same	for	all	objects.	Thus	they	reach	the	ground
with	the	same	speed.	Of	course,	 the	object	with	 the	 larger	mass	will	have	more
energy	and	will	therefore	have	a	greater	impact.

Now	 it’s	 important	 to	note	here	 that	 the	 feather	and	 the	hammer	would	not
land	 at	 the	 same	 time	 if	 you	 performed	 this	 experiment	 on	 Earth.	 This	 is	 the
result	 of	 air	 drag,	 which	 we’ve	 discounted	 until	 now.	 Air	 drag	 is	 a	 force	 that
opposes	the	motion	of	moving	objects.	Also	wind	would	have	much	more	effect
on	the	feather	than	on	the	hammer.

This	brings	us	to	a	very	important	feature	of	the	second	law.	The	word	net	in
the	 equation	 as	 given	 above	 is	 vital,	 as	 nearly	 always	 in	nature	more	 than	one
force	is	acting	on	an	object;	all	have	to	be	taken	into	account.	This	means	that	the
forces	have	to	be	added.	Now,	it’s	not	really	as	simple	as	this,	because	forces	are
what	we	call	vectors,	meaning	that	they	have	a	magnitude	as	well	as	a	direction,
which	 means	 that	 you	 cannot	 really	 make	 a	 calculation	 like	 2	 +	 3	 =	 5	 for
determining	the	net	force.	Suppose	only	two	forces	act	on	a	mass	of	4	kilograms;
one	force	of	3	newtons	is	pointing	upward,	and	another	of	2	newtons	is	pointing
downward.	The	sum	of	these	two	forces	is	then	1	newton	in	the	upward	direction

http://video.google.com/videoplay?docid=6926891572259784994


and,	 according	 to	Newton’s	 second	 law,	 the	 object	 will	 be	 accelerated	 upward
with	an	acceleration	of	0.25	meters	per	second	per	second.

The	sum	of	two	forces	can	even	be	zero.	If	I	place	an	object	of	mass	m	on	my
table,	according	to	Newton’s	second	law,	the	gravitational	force	on	the	object	is
then	mg	(mass	×	gravitational	acceleration)	newtons	in	the	downward	direction.
Since	the	object	is	not	being	accelerated,	the	net	force	on	the	object	must	be	zero.
That	means	that	there	must	be	another	force	of	mg	newtons	upward.	That	is	the
force	with	which	the	table	pushes	upward	on	the	object.	A	force	of	mg	down	and
one	of	mg	up	add	up	to	a	force	of	zero!

This	brings	us	to	Newton’s	third	law:	“To	every	action	there	is	always	an	equal
and	opposite	reaction.”	This	means	that	the	force	that	two	objects	exert	on	each
other	are	always	equal	and	are	directed	in	opposite	directions.	As	I	like	to	put	it,
action	equals	minus	reaction,	or,	as	it’s	known	more	popularly,	“For	every	action
there	is	an	equal	and	opposite	reaction.”

Some	 of	 the	 implications	 of	 this	 law	 are	 intuitive:	 a	 rifle	 recoils	 backward
against	your	shoulder	when	it	fires.	But	consider	also	that	when	you	push	against
a	wall,	it	pushes	back	on	you	in	the	opposite	direction	with	the	exact	same	force.
The	 strawberry	 shortcake	you	had	 for	your	birthday	pushed	down	on	 the	cake
plate,	which	pushed	right	back	at	it	with	an	equal	amount	of	force.	In	fact,	odd	as
the	third	law	is,	we	are	completely	surrounded	by	examples	of	it	in	action.

Have	you	ever	turned	on	the	faucet	connected	to	a	hose	lying	on	the	ground
and	seen	the	hose	snake	all	over	the	place,	maybe	spraying	your	little	brother	if
you	were	 lucky?	Why	does	 that	happen?	Because	as	 the	water	 is	pushed	out	of
the	 hose,	 it	 also	 pushes	 back	 on	 the	 hose,	 and	 the	 result	 is	 that	 the	 hose	 is
whipped	all	around.	Or	surely	you’ve	blown	up	a	balloon	and	then	let	go	of	it	to
see	 it	 fly	 crazily	 around	 the	 room.	 What’s	 happening	 is	 that	 the	 balloon	 is
pushing	 the	air	out,	 and	 the	air	 coming	out	of	 the	balloon	pushes	back	on	 the
balloon,	making	 it	zip	around,	an	airborne	version	of	 the	snaking	garden	hose.
This	is	no	different	from	the	principle	behind	jet	planes	and	rockets.	They	eject
gas	at	a	very	high	speed	and	that	makes	them	move	in	the	opposite	direction.

Now,	to	truly	grasp	just	how	strange	and	profound	an	insight	this	is,	consider
what	Newton’s	 laws	 tell	 us	 is	 happening	 if	we	 throw	 an	 apple	 off	 the	 top	 of	 a
thirty-story	building.	We	know	the	acceleration	will	be	g,	 about	9.8	meters	per
second	 per	 second.	 Now,	 say	 the	 apple	 is	 about	 half	 a	 kilogram	 (about	 1.1
pounds)	in	mass.	Using	the	second	law,	F	=	ma,	we	find	that	 the	Earth	attracts
the	apple	with	a	force	of	0.5	×	9.8	=	4.9	newtons.	So	far	so	good.

But	now	consider	what	the	third	law	demands:	 if	 the	Earth	attracts	the	apple



with	a	force	of	4.9	newtons,	then	the	apple	will	attract	the	Earth	with	a	force	of
4.9	newtons.	Thus,	as	 the	apple	 falls	 to	Earth,	 the	Earth	 falls	 to	 the	apple.	This
seems	 ridiculous,	 right?	 But	 hold	 on.	 Since	 the	mass	 of	 the	 Earth	 is	 so	much
greater	than	that	of	the	apple,	the	numbers	get	pretty	wild.	Since	we	know	that
the	mass	of	the	Earth	is	about	6	×	1024	kilograms,	we	can	calculate	how	far	it	falls
up	toward	the	apple:	about	10–22	meters,	about	one	ten-millionth	of	the	size	of	a
proton,	a	distance	so	small	it	cannot	even	be	measured;	in	fact,	it’s	meaningless.

This	 whole	 idea,	 that	 the	 force	 between	 two	 bodies	 is	 both	 equal	 and	 in
opposite	 directions,	 is	 at	 play	 everywhere	 in	 our	 lives,	 and	 it’s	 the	 key	 to	why
your	scale	goes	berserk	when	you	lift	yourself	up	onto	your	toes	on	it.	This	brings
us	 back	 to	 the	 issue	 of	 just	 what	 weight	 is,	 and	 lets	 us	 understand	 it	 more
precisely.

When	 you	 stand	 on	 a	 bathroom	 scale,	 gravity	 is	 pulling	 down	 on	 you	with
force	mg	 (where	m	 is	 your	mass)	 and	 the	 scale	 is	 pushing	up	on	 you	with	 the
same	force	so	that	the	net	force	on	you	is	zero.	This	force	pushing	up	against	you
is	 what	 the	 scale	 actually	 measures,	 and	 this	 is	 what	 registers	 as	 your	 weight.
Remember,	weight	is	not	the	same	thing	as	mass.	For	your	mass	to	change,	you’d
have	to	go	on	a	diet	(or,	of	course,	you	might	do	the	opposite,	and	eat	more),	but
your	weight	can	change	much	more	readily.

Let’s	say	that	your	mass	(m)	is	55	kilograms	(that’s	about	120	pounds).	When
you	stand	on	a	scale	in	your	bathroom,	you	push	down	on	the	scale	with	a	force
mg,	and	the	scale	will	push	back	on	you	with	the	same	force,	mg.	The	net	force
on	you	is	zero.	The	force	with	which	the	scale	pushes	back	on	you	is	what	you
will	 read	on	 the	 scale.	 Since	your	 scale	may	 indicate	 your	weight	 in	pounds,	 it
will	read	120	pounds.

Let’s	now	weigh	you	in	an	elevator.	While	the	elevator	stands	still	(or	while	the
elevator	 is	moving	at	constant	 speed),	you	are	not	being	accelerated	 (neither	 is
the	elevator)	and	 the	 scale	will	 indicate	 that	you	weigh	120	pounds,	as	was	 the
case	when	you	weighed	yourself	 in	 your	bathroom.	We	enter	 the	 elevator	 (the
elevator	is	at	rest),	you	go	on	the	scale,	and	it	reads	120	pounds.	Now	I	press	the
button	for	the	top	floor,	and	the	elevator	briefly	accelerates	upward	to	get	up	to
speed.	Let’s	assume	that	this	acceleration	is	2	meters	per	second	per	second	and
that	 it	 is	 constant.	 During	 the	 brief	 time	 that	 the	 elevator	 accelerates,	 the	 net
force	on	you	cannot	be	zero.	According	to	Newton’s	second,	the	net	force	Fnet	on
you	must	be	Fnet	=	manet.	Since	 the	net	acceleration	 is	2	meters	per	second	per
second,	the	net	force	on	you	is	m	×	2	upward.	Since	the	force	of	gravity	on	you	is



mg	down,	there	must	be	a	force	of	mg	+	m2,	which	can	also	be	written	as	m(g	+
2),	on	you	in	upward	direction.	Where	does	this	force	come	from?	It	must	come
from	 the	 scale	 (where	 else?).	 The	 scale	 is	 exerting	 a	 force	 m(g	 +	 2)	 on	 you
upward.	But	remember	that	the	weight	that	the	scale	indicates	is	the	force	with
which	it	pushes	upward	on	you.	Thus	the	scale	tells	you	that	your	weight	is	about
144	pounds	(remember,	g	 is	about	10	meters	per	second	per	second).	You	have
gained	quite	a	bit	of	weight!

According	 to	Newton’s	 third,	 if	 the	 scale	 exerts	 a	 force	 of	m(g	 +	 2)	 on	 you
upward,	 then	you	must	 exert	 the	 same	 force	on	 the	 scale	downward.	You	may
now	reason	that	if	the	scale	pushes	on	you	with	the	same	force	that	you	push	on
the	scale,	that	then	the	net	force	on	you	is	zero,	thus	you	cannot	be	accelerated.	If
you	 reason	 this	 way,	 you	 make	 a	 very	 common	 mistake.	 There	 are	 only	 two
forces	acting	on	you:	mg	down	due	to	gravity	and	m(g	+	2)	up	due	to	the	scale,
and	thus	a	net	force	of	2m	is	exerted	on	you	in	an	upward	direction,	which	will
accelerate	you	at	2	meters	per	second	per	second.

The	moment	the	elevator	stops	accelerating,	your	weight	goes	back	to	normal.
Thus	it’s	only	during	the	short	time	of	the	upward	acceleration	that	your	weight
goes	up.

You	should	now	be	able	to	figure	out	on	your	own	that	if	the	elevator	is	being
accelerated	 downward,	 you	 lose	 weight.	 During	 the	 time	 that	 the	 acceleration
downward	 is	 2	meters	 per	 second	 per	 second,	 the	 scale	will	 register	 that	 your
weight	is	m(g	–	2),	which	is	about	96	pounds.	Since	an	elevator	that	goes	up	must
come	to	a	halt,	it	must	be	briefly	accelerated	downward	before	it	comes	to	a	stop.
Thus	 near	 the	 end	 of	 your	 elevator	 ride	 up	 you	 will	 see	 that	 you	 lost	 weight,
which	you	may	enjoy!	However,	shortly	after	that,	when	the	elevator	has	come	to
a	stop,	your	weight	will	again	go	back	to	normal	(120	pounds).

Suppose	now,	someone	who	really,	 really	dislikes	you	cuts	 the	cable	and	you
start	 zooming	down	 the	elevator	 shaft,	going	down	with	an	acceleration	of	g.	 I
realize	 you	 probably	 wouldn’t	 be	 thinking	 about	 physics	 at	 that	 point,	 but	 it
would	make	for	a	(briefly)	interesting	experience.	Your	weight	will	become	m(g	–
g)	 =	 0;	 you	 are	 weightless.	 Because	 the	 scale	 is	 falling	 downward	 at	 the	 same
acceleration	 as	 you,	 it	 no	 longer	 exerts	 a	 force	 on	 you	 upward.	 If	 you	 looked
down	 at	 the	 scale	 it	 would	 register	 zero.	 In	 truth,	 you	 would	 be	 floating,	 and
everything	in	the	elevator	would	be	floating.	If	you	had	a	glass	of	water	you	could
turn	 it	 over	 and	 the	 water	 would	 not	 fall	 out,	 though	 of	 course	 this	 is	 one
experiment	I	urge	you	not	to	try!

This	explains	why	astronauts	float	in	spaceships.	When	a	space	module,	or	the



space	shuttle,	is	in	orbit,	it	is	actually	in	a	state	of	free	fall,	just	like	the	free	fall	of
the	elevator.	What	exactly	is	free	fall?	The	answer	might	surprise	you.	Free	fall	is
when	the	force	acting	upon	you	is	exclusively	gravitational,	and	no	other	forces
act	on	you.	In	orbit,	the	astronauts,	the	spaceship,	and	everything	inside	it	are	all
falling	toward	Earth	in	free	fall.	The	reason	why	the	astronauts	don’t	go	splat	is
because	 the	 Earth	 is	 curved	 and	 the	 astronauts,	 the	 spaceship,	 and	 everything
inside	it	are	moving	so	fast	that	as	they	fall	toward	Earth,	the	surface	of	the	planet
curves	away	from	them,	and	they	will	never	hit	the	Earth’s	surface.

Thus	the	astronauts	in	the	shuttle	are	weightless.	If	you	were	in	the	shuttle,	you
would	 think	 that	 there	 is	 no	 gravity;	 after	 all,	 nothing	 in	 the	 shuttle	 has	 any
weight.	 It’s	 often	 said	 that	 the	 shuttle	 in	 orbit	 is	 a	 zero-gravity	 environment,
since	that’s	the	way	you	perceive	it.	However,	if	there	were	no	gravity,	the	shuttle
would	not	stay	in	orbit.

The	whole	idea	of	changing	weight	is	so	fascinating	that	I	really	wanted	to	be
able	to	demonstrate	this	phenomenon—even	weightlessness—in	class.	What	if	I
climbed	up	on	a	table,	standing	on	a	bathroom	scale	that	was	tied	very	securely
to	 my	 feet?	 I	 thought	 then	 maybe	 I	 could	 somehow	 show	 my	 students—by
rigging	up	a	special	camera—that	for	the	half	second	or	so	that	I	was	in	free	fall
the	 bathroom	 scale	would	 indicate	 zero.	 I	might	 recommend	 that	 you	 try	 this
yourself,	but	don’t	bother;	trust	me,	I	tried	it	many	times	and	only	broke	many
scales.	 The	 problem	 is	 that	 the	 scales	 you	 can	 buy	 commercially	 don’t	 react
nearly	fast	enough,	since	there	 is	 inertia	 in	their	springs.	One	of	Newton’s	 laws
bedeviling	 another!	 If	 you	 could	 jump	 off	 a	 thirty-story	 building,	 you	 would
probably	have	enough	time	(you	would	have	about	4.5	seconds)	to	see	the	effect,
but	of	course	there	would	be	other	problems	with	that	experiment.

So	rather	than	breaking	scales	or	jumping	off	buildings,	here’s	something	you
can	try	in	your	backyard	to	experience	weightlessness,	if	you	have	a	picnic	table
and	good	knees.	I	do	this	from	the	lab	table	in	front	of	my	classroom.	Climb	up
on	 the	 table	 and	hold	a	gallon	or	half-gallon	 jug	of	water	 in	your	outstretched
hands,	just	cradling	it	lightly	on	top	of	them,	not	holding	the	sides	of	the	jug.	It
has	to	be	just	resting	on	your	hands.	Now	jump	off	the	table,	and	while	you	are
in	 the	air	you	will	 see	 the	 jug	 start	 floating	above	your	hands.	 If	 you	can	get	 a
friend	to	make	a	digital	video	of	you	 taking	 the	 jump,	and	play	 it	back	 in	slow
motion,	you	will	very	clearly	see	the	jug	of	water	start	to	float.	Why?	Because	as
you	accelerate	downward	the	force	with	which	you	have	been	pushing	up	on	the
jug,	to	keep	it	in	your	hands,	has	become	zero.	The	jug	will	now	be	accelerated	at
9.8	meters	per	 second	per	 second,	 just	as	you	are.	You	and	 the	 jug	are	both	 in



free	fall.
But	 how	 does	 all	 of	 this	 explain	 why	 your	 scale	 goes	 berserk	 when	 you	 lift

yourself	up	on	your	toes?	As	you	push	yourself	upward	you	accelerate	upward,
and	the	force	of	the	scale	pushing	on	you	increases.	So	you	weigh	more	for	that
brief	time.	But	then,	at	the	top	of	your	toes,	you	decelerate	to	come	to	a	halt,	and
that	means	that	your	weight	goes	down.	Then,	when	you	let	your	heels	down,	the
entire	 process	 is	 reversed,	 and	 you	 have	 just	 demonstrated	 how,	 without
changing	your	mass	at	all,	you	can	make	yourself	weigh	more	or	less	for	fractions
of	a	second.

The	Law	of	Universal	Gravitation:	Newton	and	the	Apple
People	commonly	refer	to	Newton’s	three	laws,	but,	in	fact,	he	formulated	four.
We’ve	all	heard	the	story	of	Newton	observing	an	apple	falling	from	a	tree	one
day	 in	 his	 orchard.	 One	 of	 Newton’s	 early	 biographers	 claimed	 that	 Newton
himself	told	the	story.	“It	was	occasion’d	by	the	fall	of	an	apple,”	wrote	Newton’s
friend	William	Stukeley,	quoting	a	conversation	he	had	with	Newton,	“as	he	sat
in	contemplative	mood.	Why	should	that	apple	always	descend	perpendicularly
to	the	ground,	thought	he	to	himself.”*	But	many	remain	unconvinced	that	the
story	is	true.	After	all,	Newton	only	told	Stukeley	the	story	a	year	before	he	died,
and	he	made	no	mention	of	it	any	other	place	in	his	voluminous	writings.

Still,	what	is	unquestionably	true	is	that	Newton	was	the	first	to	realize	that	the
same	 force	 that	 causes	 an	 apple	 to	 fall	 from	 a	 tree	 governs	 the	motion	 of	 the
Moon,	 the	Earth,	 and	 the	Sun—indeed,	of	 all	 the	objects	 in	 the	universe.	That
was	 an	 extraordinary	 insight,	 but	 once	 again,	 he	didn’t	 stop	 there.	He	 realized
that	 every	 object	 in	 the	 universe	 attracts	 every	 other	 object—and	 he	 came	 up
with	 a	 formula	 for	 calculating	 just	 how	 strong	 the	 attraction	 is,	 known	 as	 his
universal	 law	 of	 gravitation.	 This	 law	 states	 that	 the	 force	 of	 gravitational
attraction	 between	 two	 objects	 is	 directly	 proportional	 to	 the	 product	 of	 the
masses	 of	 the	 objects	 and	 inversely	 proportional	 to	 the	 square	 of	 the	 distance
between	them.

So,	in	other	words,	to	use	a	purely	hypothetical	example,	which	I	stress	has	no
relation	to	reality,	if	Earth	and	Jupiter	were	orbiting	the	Sun	at	the	same	distance,
then	 because	 Jupiter	 is	 about	 318	 times	 more	 massive	 than	 Earth	 the
gravitational	force	between	the	Sun	and	Jupiter	would	be	about	318	times	greater
than	 that	 between	 the	 Sun	 and	Earth.	And	 if	 Jupiter	 and	Earth	were	 the	 same
mass,	but	Jupiter	were	in	its	actual	orbit,	which	is	about	five	times	farther	from



the	Sun	 than	 the	Earth’s	orbit,	 then	because	 the	gravitational	 force	 is	 inversely
proportional	to	the	square	of	the	distance,	it	would	be	twenty-five	times	greater
between	the	Sun	and	Earth	than	between	the	Sun	and	Jupiter.

In	Newton’s	 famous	Philosophiæ	Naturalis	 Principia	Mathematica	published
in	 1687—which	 we	 now	 call	 the	 Principia—he	 did	 not	 use	 an	 equation	 to
introduce	the	law	of	universal	gravitation,	but	that’s	the	way	we	express	it	most
often	in	physics	today:

Here,	Fgrav	is	the	force	of	gravitational	attraction	between	an	object	of	mass	m1
and	one	of	mass	m2,	and	r	is	the	distance	between	them;	the	2	means	“squared.”
What	 is	 G?	 That’s	 what’s	 called	 the	 gravitational	 constant.	 Newton	 knew,	 of
course,	that	such	a	constant	exists,	but	it	is	not	mentioned	in	his	Principia.	From
the	many	measurements	that	have	since	been	done,	we	now	know	that	the	most
accurate	value	for	G	is	6.67428	±	0.00067	×	10–11.*	We	physicists	also	do	believe
that	it’s	the	same	throughout	the	universe,	as	Newton	conjectured.

The	 impact	 of	Newton’s	 laws	was	 gigantic	 and	 cannot	 be	 overestimated;	 his
Principia	 is	 among	 the	most	 important	works	of	 science	ever	written.	His	 laws
changed	all	of	physics	and	astronomy.	His	laws	made	it	possible	to	calculate	the
mass	 of	 the	 Sun	 and	planets.	The	way	 it’s	 done	 is	 immensely	 beautiful.	 If	 you
know	the	orbital	period	of	any	planet	(say,	Jupiter	or	the	Earth)	and	you	know	its
distance	 to	 the	Sun,	 you	can	calculate	 the	mass	of	 the	Sun.	Doesn’t	 this	 sound
like	magic?	We	can	carry	this	one	step	further;	if	you	know	the	orbital	period	of
one	of	Jupiter’s	bright	moons	(discovered	by	Galileo	in	1609)	and	you	know	the
distance	between	Jupiter	and	 that	moon,	you	can	calculate	 the	mass	of	 Jupiter.
Therefore,	 if	 you	 know	 the	 orbital	 period	 of	 the	Moon	 around	 the	 Earth	 (it’s
27.32	days)	and	you	know	the	mean	distance	between	the	Earth	and	the	Moon
(it’s	about	239,000	miles)	then	you	can	calculate	to	a	high	degree	of	accuracy	the
mass	of	the	Earth.	I	show	you	how	this	works	in	appendix	2.	 If	you	can	handle
some	math	you	may	enjoy	it!

But	Newton’s	laws	reach	far	beyond	our	solar	system.	They	dictate	and	explain
the	motion	 of	 stars,	 binary	 stars	 (chapter	 13),	 star	 clusters,	 galaxies,	 and	 even
clusters	of	galaxies,	and	Newton’s	 laws	deserve	credit	 for	 the	 twentieth-century
discovery	of	what	we	call	dark	matter.	 I	will	 tell	you	more	about	 this	 later.	His
laws	 are	 beautiful—breathtakingly	 simple	 and	 incredibly	 powerful	 at	 the	 same
time.	They	explain	so	much,	and	the	range	of	phenomena	they	clarify	 is	mind-
boggling.



By	 bringing	 together	 the	 physics	 of	motion,	 of	 interactions	 between	 objects,
and	 of	 planetary	 movements,	 Newton	 brought	 a	 new	 kind	 of	 order	 to
astronomical	measurements,	showing	how	what	had	been	a	jumble	of	confusing
observations	 made	 through	 the	 centuries	 were	 all	 interconnected.	 Others	 had
had	glimmers	of	his	insights,	but	they	hadn’t	been	able	to	put	them	together	as
he	did.

Galileo,	who	died	the	year	before	Newton	was	born,	had	come	up	with	an	early
version	 of	 Newton’s	 first	 law	 and	 could	 describe	 the	 motion	 of	 many	 objects
mathematically.	He	also	discovered	that	all	objects	will	fall	from	a	given	height	at
the	same	speed	(in	the	absence	of	air	drag).	He	couldn’t,	though,	explain	why	it
was	 true.	 Johannes	Kepler	 had	worked	out	 the	 fundamentals	 of	how	 planetary
orbits	worked,	but	he	had	no	clue	why.	Newton	explained	the	why.	And,	as	we’ve
seen,	 the	 answers,	 and	 many	 of	 the	 conclusions	 they	 lead	 to,	 are	 not	 in	 the
slightest	bit	intuitive.

The	forces	of	motion	are	endlessly	fascinating	to	me.	Gravity	is	always	with	us;
it	 pervades	 the	 universe.	 And	 the	 astounding	 thing	 about	 it—well,	 one
astounding	 thing—is	 that	 it	 acts	 at	 a	distance.	Have	you	ever	 really	 stopped	 to
consider	 that	 our	 planet	 stays	 in	 orbit,	 that	 we	 are	 all	 alive	 because	 of	 the
attractive	force	between	two	objects	93	million	miles	apart?

Pendulums	in	Motion
Even	 though	 gravity	 is	 a	 pervasive	 force	 in	 our	 lives,	 there	 are	many	 ways	 in
which	 the	 effects	 it	 has	 on	 our	 world	 confound	 us.	 I	 use	 a	 pendulum
demonstration	 to	 surprise	 students	 with	 just	 how	 counterintuitively	 gravity
operates.	Here’s	how	it	works.

Many	 of	 you	 may	 think	 that	 if	 you	 swing	 on	 a	 playground	 swing	 next	 to
someone	who	is	much	lighter	than	you	are,	e.g.,	a	toddler,	you’ll	go	much	slower
than	that	person.	But	that	is	not	the	case.	It	may	therefore	come	as	a	surprise	to
you	that	the	amount	of	time	it	takes	to	complete	one	swing	of	a	pendulum,	which
we	call	 the	period	of	the	pendulum,	is	not	affected	by	the	weight	hanging	from
the	 pendulum	 (we	 call	 this	 weight	 the	 bob).	 Note	 that	 here	 I’m	 talking	 about
what’s	 called	 a	 simple	 pendulum,	 which	 means	 that	 it	 meets	 two	 conditions.
First,	the	weight	of	the	bob	must	be	so	much	larger	than	the	weight	of	the	string
that	the	weight	of	the	string	can	be	ignored.	Second,	the	size	of	the	bob	needs	to
be	small	enough	that	we	can	treat	it	as	if	it	were	just	a	point,	which	has	zero	size.*
It’s	 easy	 to	make	 a	 simple	 pendulum	at	 home:	 attach	 an	 apple	 to	 the	 end	of	 a



lightweight	string	that	is	at	least	four	times	longer	than	the	size	of	the	apple.
Using	Newton’s	 laws	of	motion,	 I	derive	 in	 class	 an	 equation	 for	 calculating

the	period	of	a	simple	pendulum,	and	then	I	put	the	equation	to	the	test.	To	do
that	 I	 have	 to	 make	 the	 assumption	 that	 the	 angle	 over	 which	 the	 pendulum
swings	 is	small.	Let	me	be	more	precise	about	what	I	mean	by	 that.	When	you
look	at	your	homemade	pendulum	as	it	swings	back	and	forth,	from	right	to	left
and	from	left	to	right,	you	will	see	that	most	of	the	time	the	pendulum	is	moving,
either	to	the	left	or	to	the	right.	However,	there	are	two	times	during	a	complete
swing	that	the	pendulum	stands	still,	after	which	it	reverses	direction.	When	this
happens	 the	angle	between	 the	 string	and	 the	vertical	has	 reached	a	maximum
value,	which	we	call	the	amplitude	of	the	pendulum.	If	air	drag	(friction)	can	be
ignored,	that	maximum	angle	when	the	pendulum	comes	to	a	halt	at	the	far	left
is	the	same	as	when	the	pendulum	comes	to	a	halt	at	the	far	right.	The	equation
that	 I	 derive	 is	 only	 valid	 for	 small	 angles	 (small	 amplitudes).	We	 call	 such	 a
derivation	 in	 physics	 a	 small-angle	 approximation.	 Students	 always	 ask	 me,
“How	 small	 is	 small?”	 One	 student	 is	 even	 very	 specific;	 she	 asks,	 “Is	 an
amplitude	of	five	degrees	small?	Is	the	equation	still	valid	for	an	amplitude	of	ten
degrees	or	is	ten	degrees	not	small?”	Of	course,	those	are	excellent	questions,	and
I	suggest	that	we	will	bring	this	to	a	test	in	class.

The	equation	that	I	derive	is	quite	simple	and	very	elegant,	though	it	may	look

a	little	daunting	to	those	who	haven’t	been	doing	any	math	lately:	
T	is	the	period	of	the	pendulum	(in	seconds),	L	 is	the	length	of	the	string	(in

meters),	π	is	3.14,	and	g	 is	 the	gravitational	acceleration	(9.8	meters	per	second
per	 second).	 So	 the	 right	 part	 of	 the	 equation	 reads	 two	 π	 multiplied	 by	 the
square	root	of	the	length	of	the	string	divided	by	the	gravitational	acceleration.	I
won’t	go	into	the	details	here	of	why	this	is	the	correct	equation	(you	can	follow
the	derivation	that	I	do	in	my	recorded	lectures	if	you	want	to;	the	website	link	is
on	page	54).

I	am	giving	the	equation	here	so	that	you	can	appreciate	just	how	precisely	my
demonstrations	confirm	it.	The	equation	predicts	that	a	pendulum	1	meter	long
has	a	period	of	about	2	seconds.	I	measure	the	time	it	takes	a	pendulum,	with	a
string	that	long,	to	complete	ten	oscillations,	and	that	comes	to	about	20	seconds.
Dividing	by	10,	we	get	2	seconds	for	the	period.	Then	I	go	to	a	pendulum	with	a
string	that	is	four	times	shorter.	The	equation	predicts	that	the	period	should	be
twice	as	short.	So	I	make	the	string	25	centimeters	long,	and	indeed	it	takes	about
10	seconds	for	ten	oscillations.	So	that	is	all	very	reassuring.



To	bring	 the	 equation	 to	 a	much	more	 careful	 test	 than	what	 I	did	with	 the
handheld	 small	 apple	 pendulum,	 I	 had	 a	 simple	 pendulum	 constructed	 in	my
classroom:	 a	 rope	 5.18	 meters	 (about	 17	 feet)	 long	 with	 a	 spherical	 steel	 bob
weighing	 15	 kilograms	 at	 the	 end	 of	 the	 rope.	 I	 call	 it	 the	 mother	 of	 all
pendulums.	 You	 can	 see	 it	 near	 the	 end	 of	 my	 lecture	 here:
http://ocw.mit.edu/courses/physics/8-01-physics-i-classical-mechanics-fall-
1999/video-lectures/embed10/.

What	 should	 the	 period,	 T,	 of	 this	 pendulum	 be?	 ,	 which	 is	 4.57
seconds.	To	bring	this	to	a	test,	as	I	promised	my	students,	I	measure	the	period
both	for	a	5-degree	and	for	a	10-degree	amplitude.

I	use	a	large	digital	timer	that	the	students	can	see,	and	that	displays	the	time
to	 an	 accuracy	 of	 one-hundredth	 of	 a	 second.	 I’ve	 tested	my	 reaction	 time	 in
turning	the	timer	on	and	off	countless	times	over	the	years,	and	I	know	it’s	about
one-tenth	of	a	second	(on	a	good	day).	This	means	that	if	I	repeat	the	very	same
measurement	a	dozen	times	I	will	get	measurements	for	the	period	that	will	vary
by	as	much	as	0.1	(maybe	0.15)	seconds.	So	whether	I	measure	the	time	it	takes
for	one	oscillation	or	for	ten	oscillations,	my	timing	will	have	an	uncertainty	of
plus	or	minus	0.1	seconds.	I	therefore	let	the	pendulum	swing	ten	times,	as	that
will	give	a	ten	times	more	accurate	value	for	the	period	than	if	I	let	it	swing	only
once.

I	pull	the	bob	out	enough	so	that	the	angle	of	the	rope	with	the	vertical	is	about
5	 degrees	 and	 then	 let	 it	 go	 and	 start	 the	 timer.	 The	 class	 counts	 each	 of	 the
swings	 out	 loud,	 and	 after	 ten	 oscillations	 I	 stop	 the	 timer.	 It’s	 amazing—the
timer	 reads	 45.70	 seconds,	 ten	 times	 my	 estimate	 for	 one	 swing.	 The	 class
applauds	wildly.

Then	I	increase	the	amplitude	to	10	degrees,	let	the	bob	go,	start	the	timer,	get
the	class	counting,	and	right	at	ten,	I	stop	the	timer:	45.75	seconds.	45.75	±	0.1
seconds	 for	 ten	oscillations	 translates	 into	4.575	±	0.01	 seconds	per	oscillation.
The	result	for	the	5-degree	amplitude	is	the	same	as	for	the	10-degree	amplitude
(within	 the	 uncertainty	 of	 the	 measurements).	 So	 my	 equation	 is	 still	 very
accurate.

Then	I	ask	the	class,	Suppose	I	sat	on	the	bob	and	swung	along	with	it—would
we	get	 the	same	period,	or	would	 it	change?	 I	never	 look	 forward	 to	sitting	on
this	thing	(it	really	hurts),	but	for	science,	and	to	get	the	students	laughing	and
involved,	 I	wouldn’t	miss	 the	opportunity.	Of	 course	 I	 can’t	 sit	upright	on	 the
bob	because	that	way	I	will	effectively	shorten	the	rope,	and	reduce	the	period	a
bit.	But	 if	 I	make	my	body	as	horizontal	as	possible	 in	order	 to	be	at	 the	same
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level	as	the	bob,	I	keep	the	rope	length	pretty	much	the	same.	So	I	pull	the	bob
up,	put	it	between	my	legs,	grasp	the	rope,	and	let	myself	go.	You	can	see	this	on
the	jacket	of	this	book!

It’s	not	easy	for	me	to	start	and	stop	the	timer	while	hanging	on	the	pendulum
without	increasing	my	reaction	time.	However,	I’ve	practiced	this	so	many	times
that	I	am	quite	sure	that	I	can	achieve	an	uncertainty	in	my	measurements	of	±
0.1	seconds.	I	swing	ten	times,	with	students	counting	the	swings	out	loud—and
laughing	at	 the	absurdity	of	my	situation	while	 I	complain	and	groan	 loudly—
and	when	after	ten	oscillations	I	turn	off	the	timer,	it	reads	45.61	seconds.	That’s
a	period	of	4.56	±	0.01	seconds.	“Physics	works!”	I	scream,	and	the	students	go
bananas.

Grandmothers	and	Astronauts
Another	tricky	aspect	of	gravity	is	that	we	can	be	fooled	into	perceiving	that	it’s
pulling	from	a	different	direction	than	it	really	is.	Gravity	always	pulls	toward	the
center	of	Earth—on	Earth,	that	is,	not	on	Pluto	of	course.	But	we	can	sometimes
perceive	 that	 gravity	 is	 operating	 horizontally,	 and	 this	 artificial	 or	 perceived
gravity,	as	we	call	it,	can	in	fact	seem	to	defy	gravity	itself.

You	 can	 demonstrate	 this	 artificial	 gravity	 easily	 by	 doing	 something	 my
grandmother	used	to	do	every	time	she	made	a	salad.	My	grandmother	had	such
fantastic	ideas—remember,	she’s	the	one	who	taught	me	that	you’re	longer	when
you’re	lying	down	than	when	you’re	standing	up.	Well,	when	she	made	a	salad,
she	really	had	a	good	time.	She	would	wash	the	 lettuce	 in	a	colander,	and	then
rather	 than	drying	 it	 in	a	cloth	 towel,	which	would	damage	 the	 leaves,	 she	had
invented	her	own	technique:	she	took	the	colander	and	put	a	dish	towel	over	the
top,	holding	it	in	place	with	a	rubber	band,	and	then	she	would	swing	it	around
furiously	in	a	circle—I	mean	really	fast.

That’s	why	when	I	demonstrate	this	in	class,	I	make	sure	to	tell	the	students	in
the	 first	 two	rows	to	close	 their	notebooks	so	 their	pages	don’t	get	wet.	 I	bring
lettuce	into	the	classroom,	wash	it	carefully	in	the	sink	on	my	table,	prepare	it	in
the	colander.	“Get	ready,”	I	tell	them,	and	I	swing	my	arm	vigorously	in	a	vertical
circle.	Water	 drops	 spray	 everywhere!	 Now,	 of	 course,	 we	 have	 boring	 plastic
salad	 spinners	 to	 substitute	 for	my	 grandmother’s	 method—a	 real	 pity	 in	my
book.	So	much	of	modern	life	seems	to	take	the	romance	out	of	things.

This	same	artificial	gravity	is	experienced	by	astronauts	as	they	accelerate	into
orbit	 around	 the	Earth.	A	 friend	and	MIT	colleague	of	mine,	 Jeffrey	Hoffman,



has	 flown	 five	 missions	 in	 the	 space	 shuttle,	 and	 he	 tells	 me	 that	 the	 crew
experiences	 a	 range	 of	 different	 accelerations	 in	 the	 course	 of	 a	 launch,	 from
about	0.5g	initially,	building	to	about	2.5g	at	the	end	of	the	solid	fuel	stage.	Then
it	 drops	 back	 down	 to	 about	 1g	 briefly,	 at	 which	 point	 the	 liquid	 fuel	 starts
burning,	and	acceleration	builds	back	up	to	3g	for	the	last	minute	of	the	launch—
which	 takes	 about	 eight	 and	 a	 half	 minutes	 total	 to	 obtain	 a	 speed	 of	 about
17,000	miles	per	hour.	And	 it’s	not	at	all	 comfortable.	When	 they	 finally	 reach
orbit	they	become	weightless	and	they	perceive	this	as	zero	gravity.

As	you	now	know,	both	the	lettuce,	feeling	the	colander	pushing	against	it,	and
the	astronauts,	feeling	the	seats	pushing	against	them,	are	experiencing	a	kind	of
artificial	gravity.	My	grandmother’s	contraption—and	our	salad	spinners—are	of
course	versions	of	a	centrifuge,	separating	the	lettuce	from	the	water	clinging	to
its	leaves,	which	shoots	out	through	the	colander’s	holes.	You	don’t	have	to	be	an
astronaut	 to	 experience	 this	 perceived	 gravity.	 Think	 of	 the	 fiendish	 ride	 at
amusement	 parks	 called	 the	 Rotor,	 in	 which	 you	 stand	 at	 the	 edge	 of	 a	 large
rotating	 turntable	 with	 your	 back	 against	 a	 metal	 fence.	 As	 it	 starts	 to	 rotate
faster	and	faster,	you	feel	more	and	more	pushed	into	the	fence,	right?	According
to	 Newton’s	 third	 law,	 you	 push	 on	 the	 wall	 with	 the	 same	 force	 as	 the	 wall
pushes	on	you.

This	force	with	which	the	wall	pushes	on	you	is	called	the	centripetal	force.	It
provides	the	necessary	acceleration	for	you	to	go	around;	the	faster	you	go,	the
larger	 is	 the	 centripetal	 force.	Remember,	 if	 you	 go	 around	 in	 a	 circle,	 a	 force
(and	therefore	an	acceleration)	is	required	even	if	the	speed	remains	unchanged.
In	similar	fashion,	gravity	provides	the	centripetal	force	on	planets	to	go	around
the	Sun,	as	I	discuss	in	appendix	2.	The	force	with	which	you	push	on	the	wall	is
often	called	the	centrifugal	force.	The	centripetal	force	and	the	centrifugal	force
have	the	same	magnitude	but	in	opposite	direction.	Do	not	confuse	the	two.	It’s
only	 the	 centripetal	 force	 that	 acts	 on	 you	 (not	 the	 centrifugal	 force),	 and	 it	 is
only	the	centrifugal	force	that	acts	on	the	wall	(not	the	centripetal	force).

Some	Rotors	can	go	so	fast	that	they	can	lower	the	floor	on	which	you	stand
and	you	won’t	slide	down.	Why	won’t	you	slide	down?

Think	about	it.	If	the	Rotor	isn’t	spinning	at	all	the	force	of	gravity	on	you	will
make	you	slide	down	as	the	frictional	force	between	you	and	the	wall	(which	will
be	 upward)	 is	 not	 large	 enough	 to	 balance	 the	 force	 of	 gravity.	 However,	 the
frictional	force,	with	the	floor	lowered,	will	be	higher	when	the	Rotor	spins,	as	it
depends	on	the	centripetal	force.	The	larger	the	centripetal	force	(with	the	floor
lowered),	the	larger	the	frictional	force.	Thus,	if	the	Rotor	spins	fast	enough	with



the	floor	lowered,	the	frictional	force	can	be	large	enough	that	it	will	balance	the
force	of	gravity	and	thus	you	won’t	slide	down.

There	are	lots	of	ways	to	demonstrate	artificial	gravity.	Here’s	one	you	can	try
at	home;	well,	in	your	backyard.	Tie	a	rope	to	the	handle	of	an	empty	paint	can
and	fill	 the	can	with	water—about	half	 full,	 I’d	say,	otherwise	 it	will	be	awfully
heavy	to	spin—and	then	whip	the	can	around	as	hard	as	you	can	up	over	your
head	in	a	circle.	It	might	take	some	practice	to	get	it	going	fast	enough.	Once	you
do,	you’ll	see	that	not	a	drop	of	water	will	fall	out.	I	have	students	do	this	in	my
classes,	 and	 I	must	 say	 it’s	 a	 complete	 riot!	This	 little	 experiment	 also	 explains
why,	with	some	especially	pernicious	versions	of	the	Rotor,	it	will	gradually	turn
over	until	you	are	completely	upside	down	at	one	point,	and	yet	you	don’t	drop
down	to	 the	ground	(of	course,	 for	safety’s	sake,	you	are	also	strapped	 into	 the
thing).

The	force	with	which	a	scale	pushes	on	us	determines	what	the	scale	tells	us	we
weigh;	 it’s	 the	 force	 of	 gravity—not	 the	 lack	 of	 it—that	 makes	 astronauts
weightless;	 and	 when	 an	 apple	 falls	 to	 Earth,	 the	 Earth	 falls	 to	 the	 apple.
Newton’s	 laws	 are	 simple,	 far-reaching,	profound,	 and	utterly	 counterintuitive.
In	working	out	his	 famous	 laws,	Sir	 Isaac	Newton	was	contending	with	a	 truly
mysterious	 universe,	 and	we	 have	 all	 benefited	 enormously	 from	his	 ability	 to
unlock	some	of	these	mysteries	and	to	make	us	see	our	world	in	a	fundamentally
new	way.



CHAPTER	4

The	Magic	of	Drinking	with	a	Straw

One	of	my	favorite	in-class	demonstrations	involves	two	paint	cans	and	a	rifle.	I
fill	one	can	to	the	rim	with	water	and	then	bang	the	top	on	tightly.	Then	I	fill	the
second	can	most	of	the	way,	but	leaving	an	inch	or	so	of	space	below	the	rim,	and
also	seal	that	one.	After	placing	them	one	in	front	of	the	other	on	a	table,	I	walk
over	 to	a	 second	 table	 several	yards	away,	on	which	rests	a	 long	white	wooden
box,	clearly	covering	some	kind	of	contraption.	I	lift	up	the	box,	revealing	a	rifle
fastened	onto	a	stand,	pointing	at	the	paint	cans.	The	students’	eyes	widen—am	I
going	to	fire	a	rifle	in	class?

“If	we	were	to	shoot	a	bullet	through	these	paint	cans,	what	would	happen?”	I
ask	them.	I	don’t	wait	for	answers.	I	bend	down	to	check	the	rifle’s	aim,	usually
fiddling	with	the	bolt	a	little.	This	is	good	for	building	up	tension.	I	blow	some
dust	out	of	the	chamber,	slide	a	bullet	in,	and	announce,	“All	right,	there	goes	the
bullet.	Are	we	ready	for	this?”	Then	standing	alongside	the	rifle,	I	put	my	finger
on	the	trigger,	count	“Three,	two,	one”—and	fire.	One	paint	can’s	top	instantly
pops	way	up	into	the	air,	while	the	other	one	stays	put.	Which	can	do	you	think
loses	its	top?

To	know	the	answer,	you	first	have	to	know	that	air	is	compressible	and	water
isn’t;	 air	 molecules	 can	 be	 squished	 closer	 in	 toward	 one	 another,	 as	 can	 the
molecules	 of	 any	 gas,	 but	 those	 of	 water—and	 of	 any	 liquid	 at	 all—cannot.	 It
takes	 horrendous	 forces	 and	pressures	 to	 change	 the	 density	 of	 a	 liquid.	Now,
when	the	bullet	enters	the	paint	cans,	it	brings	a	great	deal	of	pressure	with	it.	In
the	can	with	the	air	in	it,	the	air	acts	like	a	cushion,	or	a	shock	absorber,	so	the
water	isn’t	disturbed	and	the	can	doesn’t	explode.	But	in	the	can	full	of	water,	the
water	 can’t	 compress.	 So	 the	 extra	 pressure	 the	 bullet	 introduces	 in	 the	 water
exerts	 a	good	deal	of	 force	on	 the	walls	 and	on	 the	 top	of	 the	 can	and	 the	 top
blows	 off.	 As	 you	may	 imagine,	 it’s	 really	 very	 dramatic	 and	my	 students	 are
always	quite	shocked.

Surrounded	by	Air	Pressure
I	 always	 have	 a	 lot	 of	 fun	 with	 pressure	 in	 my	 classes,	 and	 air	 pressure	 is



particularly	 entertaining	 because	 so	 much	 is	 so	 counterintuitive	 about	 it.	 We
don’t	even	realize	we	are	experiencing	air	pressure	until	we	actually	 look	for	 it,
and	 then	 it’s	 just	 astonishing.	 Once	 we	 realize	 it’s	 there—and	 begin	 to
understand	 it—we	 begin	 to	 see	 evidence	 for	 it	 everywhere,	 from	 balloons	 to
barometers,	 to	 why	 a	 drinking	 straw	 works,	 to	 how	 deep	 you	 can	 swim	 and
snorkel	in	the	ocean.

The	 things	 we	 don’t	 see	 at	 first,	 and	 take	 for	 granted,	 like	 gravity	 and	 air
pressure,	 turn	out	 to	be	among	the	most	 fascinating	of	all	phenomena.	 It’s	 like
the	joke	about	two	fish	swimming	along	happily	in	a	river.	One	fish	turns	to	the
other,	 a	 skeptical	 look	 on	 its	 face,	 and	 says,	 “What’s	 all	 this	 new	 talk	 about
‘water’?”

In	 our	 case,	we	 take	 the	weight	 and	 density	 of	 our	 invisible	 atmosphere	 for
granted.	We	 live,	 in	 truth,	 at	 the	bottom	of	 a	 vast	 ocean	of	 air,	which	 exerts	 a
great	deal	of	pressure	on	us	every	second	of	every	day.	Suppose	I	hold	my	hand
out	in	front	of	me,	palm	up.	Now	imagine	a	very	long	piece	of	square	tubing	that
is	1	centimeter	wide	(on	each	side,	of	course)	balanced	on	my	hand	and	rising	all
the	way	 to	 the	 top	of	 the	 atmosphere.	That’s	more	 than	 a	 hundred	miles.	The
weight	of	the	air	alone	in	the	tube—forget	about	the	tubing—would	be	about	1
kilogram,	 or	 about	 2.2	 pounds.*	 That’s	 one	 way	 to	measure	 air	 pressure:	 1.03
kilograms	per	 square	centimeter	of	pressure	 is	 called	 the	 standard	atmosphere.
(You	may	also	know	it	as	about	14.7	pounds	per	square	inch.)

Another	way	to	calculate	air	pressure—and	any	other	kind	of	pressure—is	with
a	 fairly	 simple	 equation,	 one	 so	 simple	 that	 I’ve	 actually	 just	 put	 it	 in	 words
without	saying	it	was	an	equation.	Pressure	is	force	divided	by	area:	P	=	F/A.	So,
air	pressure	at	sea	level	is	about	1	kilogram	per	square	centimeter.	Here’s	another
way	to	visualize	the	relationship	between	force,	pressure,	and	area.

Suppose	 you	 are	 ice-skating	 on	 a	 pond	 and	 someone	 falls	 through.	How	do
you	 approach	 the	 hole—by	 walking	 on	 the	 ice?	 No,	 you	 get	 down	 on	 your
stomach	and	slowly	inch	forward,	distributing	the	force	of	your	body	on	the	ice
over	a	 larger	area,	so	that	you	put	less	pressure	on	the	ice,	making	it	much	less
likely	to	break.	The	difference	in	pressure	on	the	ice	when	standing	versus	lying
down	is	remarkable.

Say	you	weigh	70	kilograms	and	are	standing	on	ice	with	two	feet	planted.	If
your	 two	 feet	have	a	 surface	area	of	about	500	 square	centimeters	 (0.05	 square
meters),	 you	 are	 exerting	 70/0.05	 kilograms	 per	 square	 meter	 of	 pressure,	 or
1,400	kilograms	per	square	meter.	If	you	lift	up	one	foot,	you	will	have	doubled
the	pressure	to	2,800	kilograms	per	square	meter.	If	you	are	about	6	feet	tall,	as	I



am,	and	lie	down	on	the	ice,	what	happens?	Well,	you	spread	the	70	kilograms
over	about	8,000	square	centimeters,	or	about	0.8	square	meters,	and	your	body
exerts	just	87.5	kilograms	per	square	meter	of	pressure,	roughly	thirty-two	times
less	than	while	you	were	standing	on	one	foot.	The	larger	the	area,	the	lower	the
pressure,	 and,	 conversely,	 the	 smaller	 the	 area,	 the	 larger	 the	 pressure.	 Much
about	pressure	is	counterintuitive.

For	example,	pressure	has	no	direction.	However,	the	force	caused	by	pressure
does	have	a	direction;	it’s	perpendicular	to	the	surface	the	pressure	is	acting	on.
Now	stretch	out	your	hand	(palm	up)	and	think	about	the	force	exerted	on	your
hand—no	 more	 tube	 involved.	 The	 area	 of	 my	 hand	 is	 about	 150	 square
centimeters,	so	there	must	be	a	150-kilogram	force,	about	330	pounds,	pushing
down	on	it.	Then	why	am	I	able	to	hold	it	up	so	easily?	After	all,	I’m	no	weight
lifter.	 Indeed,	 if	 this	 were	 the	 only	 force,	 you	would	 not	 be	 able	 to	 carry	 that
weight	 on	 your	 hand.	 But	 there	 is	 more.	 Because	 the	 pressure	 exerted	 by	 air
surrounds	us	on	all	sides,	there	is	also	a	force	of	330	pounds	upward	on	the	back
of	your	hand.	Thus	the	net	force	on	your	hand	is	zero.

But	why	doesn’t	your	hand	get	crushed	if	so	much	force	 is	pressing	in	on	it?
Clearly	the	bones	in	your	hand	are	more	than	strong	enough	not	to	get	crushed.
Take	a	piece	of	wood	of	the	size	of	your	hand;	it’s	certainly	not	getting	crushed
by	the	atmospheric	pressure.

But	 how	 about	my	 chest?	 It	 has	 an	 area	 of	 about	 1,000	 square	 centimeters.
Thus	the	net	 force	exerted	on	it	due	to	air	pressure	 is	about	1,000	kilograms:	1
metric	ton.	The	net	force	on	my	back	would	also	be	about	1	ton.	Why	don’t	my
lungs	 collapse?	 The	 reason	 is	 that	 inside	 my	 lungs	 the	 air	 pressure	 is	 also	 1
atmosphere;	thus,	there	is	no	pressure	difference	between	the	air	inside	my	lungs
and	the	outside	air	pushing	down	on	my	chest.	That’s	why	I	can	breathe	easily.
Take	a	cardboard	or	wooden	or	metal	box	of	similar	dimensions	as	your	chest.
Close	the	box.	The	air	inside	the	box	is	the	air	you	breathe—1	atmosphere.	The
box	does	not	get	crushed	for	the	same	reason	that	your	 lungs	will	not	collapse.
Houses	 do	 not	 collapse	 under	 atmospheric	 pressure	 because	 the	 air	 pressure
inside	 is	 the	 same	 as	 outside;	 we	 call	 this	 pressure	 equilibrium.	 The	 situation
would	be	very	different	if	 the	air	pressure	inside	a	box	(or	a	house)	were	much
lower	than	1	atmosphere;	chances	are	it	would	then	get	crushed,	as	I	demonstrate
in	class.	More	about	this	later.

The	 fact	 that	 we	 don’t	 normally	 notice	 air	 pressure	 doesn’t	 mean	 it’s	 not
important	to	us.	After	all,	weather	forecasts	are	constantly	referring	to	 low-and
high-pressure	systems.	And	we	all	know	that	a	high-pressure	system	will	tend	to



bring	nice	clear	days,	and	a	low-pressure	system	means	some	kind	of	storm	front
is	approaching.	So	measuring	air	pressure	is	something	we	very	much	want	to	do
—but	if	we	can’t	feel	it,	how	do	we	do	that?	You	may	know	that	we	do	it	with	a
barometer,	but	of	course	that	doesn’t	explain	much.

The	Magic	of	Straws
Let’s	begin	with	a	 little	 trick	 that	you’ve	probably	done	dozens	of	 times.	 If	you
put	a	straw	into	a	glass	of	water—or	as	I	like	to	do	in	class,	of	cranberry	juice—it
fills	up	with	 juice.	Then,	 if	you	put	a	 finger	over	 the	 top	of	 the	straw	and	start
pulling	it	out	of	the	glass,	the	juice	stays	in	the	straw;	it’s	almost	like	magic.	Why
is	this?	The	explanation	is	not	so	simple.

In	order	to	explain	how	this	works,	which	will	help	us	get	to	a	barometer,	we
need	 to	understand	pressure	 in	 liquids.	The	pressure	 caused	by	 liquid	 alone	 is
called	hydrostatic	pressure	(“hydrostatic”	is	derived	from	the	Latin	for	“liquid	at
rest”).	Note	that	the	total	pressure	below	the	surface	of	a	liquid—say,	the	ocean—
is	 the	 total	of	 the	atmospheric	pressure	above	 the	water’s	 surface	 (as	with	your
outstretched	hand)	and	the	hydrostatic	pressure.	Now	here’s	a	basic	principle:	In
a	given	liquid	that	is	stationary,	the	pressure	is	the	same	at	the	same	levels.	Thus
the	pressure	is	everywhere	the	same	in	horizontal	planes.

So	if	you	are	in	a	swimming	pool,	and	you	put	your	hand	1	meter	below	the
surface	of	the	pool	at	the	shallow	end,	the	total	pressure	on	your	hand,	which	is
the	 sum	 of	 the	 atmospheric	 pressure	 (1	 atmosphere)	 and	 the	 hydrostatic
pressure,	will	be	identical	to	the	pressure	on	your	friend’s	hand,	also	at	1	meter
below	the	surface,	at	the	deep	end	of	the	pool.	But	if	you	bring	your	hand	down
to	 2	meters	 below	 the	 surface,	 it	 will	 experience	 a	 hydrostatic	 pressure	 that	 is
twice	 as	 high.	 The	 more	 fluid	 there	 is	 above	 a	 given	 level,	 the	 greater	 the
hydrostatic	pressure	at	that	level.

The	same	principle	holds	true	for	air	pressure,	by	the	way.	Sometimes	we	talk
about	 our	 atmosphere	 as	 being	 like	 an	 ocean	 of	 air,	 and	 at	 the	 bottom	of	 this
ocean,	over	most	of	Earth’s	surface,	the	pressure	is	about	1	atmosphere.	But	if	we
were	 on	 top	 of	 a	 very	 tall	mountain,	 there	 would	 be	 less	 air	 above	 us,	 so	 the
atmospheric	 pressure	 would	 be	 less.	 At	 the	 summit	 of	 Mount	 Everest,	 the
atmospheric	pressure	is	only	about	one	third	of	an	atmosphere.

Now,	 if	 for	 some	 reason	 the	 pressure	 is	 not	 the	 same	 in	 a	 horizontal	 plane,
then	 the	 liquid	will	 flow	until	 the	pressure	 in	 the	horizontal	plane	 is	equalized.
Again,	it’s	the	same	with	air,	and	we	know	the	effect	as	wind—it’s	caused	by	air



moving	 from	high	pressure	 to	 low	pressure	 to	 even	 out	 the	 differences,	 and	 it
stops	when	the	pressure	is	equalized.

So	what’s	happening	with	the	straw?	When	you	lower	a	straw	into	liquid—for
now	with	the	straw	open	at	the	top—the	liquid	enters	the	straw	until	its	surface
reaches	the	same	level	as	the	surface	of	the	liquid	in	the	glass	outside	the	straw;
the	pressure	on	both	surfaces	is	the	same:	1	atmosphere.

Now	suppose	I	suck	on	the	straw.	I	will	 take	some	of	 the	air	out	of	 it,	which
lowers	the	pressure	of	the	column	of	air	above	the	liquid	inside	the	straw.	If	the
liquid	 inside	 the	 straw	 remained	where	 it	was,	 then	 the	 pressure	 at	 its	 surface
would	 become	 lower	 than	 1	 atmosphere,	 because	 the	 air	 pressure	 above	 the
liquid	has	decreased.	Thus	the	pressure	on	the	two	surfaces,	 inside	and	outside
the	straw,	which	are	at	the	same	level	(in	the	same	horizontal	plane)	would	differ,
and	 that	 is	 not	 allowed.	 Consequently,	 the	 liquid	 in	 the	 straw	 rises	 until	 the
pressure	in	the	liquid	inside	the	straw	at	the	same	level	as	the	surface	outside	the
straw	again	becomes	1	atmosphere.	If	by	sucking,	I	lower	the	air	pressure	in	the
straw	 by	 1	 percent	 (thus	 from	 1.00	 atmosphere	 to	 0.99	 atmosphere)	 then	 just
about	any	liquid	we	can	think	of	drinking—water	or	cranberry	juice	or	lemonade
or	beer	or	wine—would	rise	about	10	centimeters.	How	do	I	know?

Well,	 the	 liquid	 in	 the	 straw	has	 to	 rise	 to	make	up	 for	 the	0.01-atmosphere
loss	 of	 air	 pressure	 above	 the	 liquid	 in	 the	 straw.	 And	 from	 the	 formula	 for
calculating	 the	 hydrostatic	 pressure	 in	 a	 liquid,	 which	 I	 won’t	 go	 into	 here,	 I
know	 that	 a	 hydrostatic	 pressure	 of	 0.01	 atmosphere	 for	 water	 (or	 for	 any
comparably	dense	liquid)	is	created	by	a	column	of	10	centimeters.

If	 the	 length	of	your	straw	was	20	centimeters,	you	would	have	 to	 suck	hard
enough	to	lower	the	air	pressure	to	0.98	atmosphere	in	order	for	the	juice	to	rise
20	centimeters	and	reach	your	mouth.	Keep	this	in	mind	for	later.	Now	that	you
know	 all	 about	weightlessness	 in	 the	 space	 shuttle	 (chapter	 3)	 and	 about	 how
straws	work	(this	chapter),	I	have	an	interesting	problem	for	you:	A	ball	of	juice
is	 floating	 in	 the	 shuttle.	 A	 glass	 is	 not	 needed	 as	 the	 juice	 is	 weightless.	 An
astronaut	carefully	inserts	a	straw	into	the	ball	of	juice,	and	he	starts	sucking	on
the	straw.	Will	he	be	able	to	drink	the	juice	this	way?	You	may	assume	that	the
air	pressure	in	the	shuttle	is	about	1	atmosphere.

Now	 back	 to	 the	 case	 of	 the	 straw	with	 your	 finger	 on	 top.	 If	 you	 raise	 the
straw	slowly	up,	say	5	centimeters,	or	about	2	inches,	as	long	as	the	straw	is	still
in	 the	 juice,	 the	 juice	will	 not	 run	 out	 of	 the	 straw.	 In	 fact	 it	will	 almost	 (not
quite)	stay	exactly	at	the	mark	where	it	was	before.	You	can	test	this	by	marking
the	side	of	 the	 straw	at	 the	 juice	 line	before	you	 lift	 it.	The	surface	of	 the	 juice



inside	the	straw	will	now	be	about	5	centimeters	higher	than	the	surface	of	 the
juice	in	the	glass.

But	given	our	earlier	sacred	statement	about	the	pressure	equalizing	inside	and
outside	of	the	straw—at	the	same	level—how	can	this	be?	Doesn’t	this	violate	the
rule?	No	it	does	not!	Nature	is	very	clever;	the	air	trapped	by	your	finger	in	the
straw	will	 increase	its	volume	just	enough	so	that	 its	pressure	will	decrease	 just
the	right	amount	(about	0.005	atmosphere)	so	that	the	pressure	in	the	liquid	in
the	straw	at	 the	same	level	of	 the	surface	of	 the	 liquid	 in	the	glass	becomes	the
same:	1	atmosphere.	This	 is	why	 the	 juice	will	not	 rise	precisely	5	 centimeters,
but	rather	just	a	little	less,	maybe	only	1	millimeter	less—just	enough	to	give	the
air	enough	extra	volume	to	lower	its	pressure	to	the	desired	amount.

Can	 you	 guess	 how	 high	 water	 (at	 sea	 level)	 can	 go	 in	 a	 tube	 when	 you’ve
closed	 off	 one	 end	 and	 you	 slowly	 raise	 the	 tube	 upward?	 It	 depends	 on	 how
much	 air	was	 trapped	 inside	 the	 tube	when	 you	 started	 raising	 it.	 If	 there	was
very	 little	air	 in	the	straw,	or	even	better	no	air	at	all,	 the	maximum	height	the
water	could	go	would	be	about	34	feet—a	little	more	than	10	meters.	Of	course,
you	couldn’t	do	this	with	a	small	glass,	but	a	bucket	of	water	might	do.	Does	this
surprise	you?	What	makes	it	even	more	difficult	to	grasp	is	that	the	shape	of	the
tube	doesn’t	matter.	You	could	make	it	twist	and	even	turn	it	into	a	spiral,	and
the	 water	 can	 still	 reach	 a	 vertical	 height	 of	 34	 feet,	 because	 34	 feet	 of	 water
produces	a	hydrostatic	pressure	of	1	atmosphere.

Knowing	 that	 the	 lower	 the	 atmospheric	 pressure,	 the	 lower	 the	 maximum
possible	column	of	water	will	be,	provides	us	with	a	way	to	measure	atmospheric
pressure.	 To	 see	 this,	 we	 could	 drive	 to	 the	 top	 of	Mount	Washington	 (about
6,300	 feet	 high),	where	 the	 atmospheric	 pressure	 is	 about	 0.82	 atmosphere,	 so
this	 means	 that	 the	 pressure	 at	 the	 surface	 outside	 the	 tube	 is	 no	 longer	 1
atmosphere	but	only	about	0.82	atmosphere.	So,	when	I	measure	the	pressure	in
the	water	inside	the	tube	at	the	level	of	the	water	surface	outside	the	tube,	it	must
also	 be	 0.82	 atmosphere,	 and	 thus	 the	maximum	 possible	 height	 of	 the	 water
column	will	be	lower.	The	maximum	height	of	water	in	the	tube	would	then	be
0.82	times	34	feet,	which	is	about	28	feet.

If	 we	 measure	 the	 height	 of	 that	 column	 using	 cranberry	 juice	 by	 marking
meters	and	centimeters	on	the	tube,	we	have	created	a	cranberry	juice	barometer
—which	will	indicate	changes	in	air	pressure.	The	French	scientist	Blaise	Pascal,
by	the	way,	is	said	to	have	made	a	barometer	using	red	wine,	which	is	perhaps	to
be	expected	of	a	Frenchman.	The	man	credited	with	inventing	the	barometer	in
the	mid-seventeenth	century,	 the	 Italian	Evangelista	Torricelli,	who	was	briefly



an	assistant	 to	Galileo,	settled	eventually	on	mercury	 for	his	barometer.	This	 is
because,	 for	a	given	column,	denser	 liquids	produce	more	hydrostatic	pressure
and	 so	 they	 have	 to	 rise	 less	 in	 the	 tube.	About	 13.6	 times	 denser	 than	water,
mercury	made	 the	 length	 of	 the	 tube	much	more	 convenient.	 The	 hydrostatic
pressure	of	a	34-foot	column	of	water	(which	is	1	atmosphere)	is	the	same	as	34
feet	 divided	 by	 13.6	 which	 is	 2.5	 feet	 of	 mercury	 (2.5	 feet	 is	 30	 inches	 or	 76
centimeters).

Torricelli	wasn’t	actually	trying	to	measure	air	pressure	at	first	with	his	device.
He	was	trying	to	find	out	whether	there	was	a	limit	to	how	high	suction	pumps
could	draw	up	a	 column	of	water—a	serious	problem	 in	 irrigation.	He	poured
mercury	to	the	top	of	a	glass	tube	about	1	meter	long,	closed	at	the	bottom.	He
then	sealed	 the	opening	at	 the	rim	with	his	 thumb	and	 turned	 it	upside	down,
into	a	bowl	of	mercury,	 taking	his	thumb	away.	When	he	did	this,	some	of	the
mercury	ran	out	of	the	tube	back	into	the	bowl,	but	the	remaining	column	was
about	76	centimeters	high.	The	empty	space	at	the	top	of	the	tube,	he	argued,	was
a	vacuum,	one	of	the	very	first	vacuums	produced	in	a	laboratory.	He	knew	that
mercury	was	about	13.6	times	denser	than	water,	so	he	could	calculate	that	the
maximum	length	of	a	water	column—which	was	what	he	really	wanted	to	know
—would	be	 about	34	 feet.	While	he	was	working	 this	out,	 as	 a	 side	benefit,	he
noticed	that	the	level	of	the	liquid	rose	and	fell	over	time,	and	he	came	to	believe
that	these	changes	were	due	to	changes	in	atmospheric	pressure.	Quite	brilliant.
And	his	experiment	explains	why	mercury	barometers	always	have	a	little	extra
vacuum	space	at	the	top	of	their	tubes.

Pressure	Under	Water
By	figuring	out	the	maximum	height	of	a	column	of	water,	Torricelli	also	figured
out	 something	you	may	have	 thought	 about	while	 trying	 to	 catch	a	glimpse	of
fish	in	the	ocean.	My	hunch	is	you’ve	probably	tried	snorkeling	at	some	point	in
your	 life.	Well,	 most	 snorkels	 have	 tubes	 no	more	 than	 a	 foot	 long;	 I’m	 sure
you’ve	wanted	 to	go	deeper	at	 times	and	wished	 the	 snorkel	were	 longer.	How
deep	do	you	 think	you	could	go	and	 still	have	 the	 snorkel	work?	Five	 feet,	 ten
feet,	twenty?

I	like	to	find	the	answer	to	this	question	in	class	with	a	simple	device	called	a
manometer;	 it’s	 a	 common	 piece	 of	 lab	 equipment.	 It’s	 very	 simple,	 and	 you
could	easily	make	one	at	home,	as	I’ll	describe	in	just	a	bit.	What	I	really	want	to
find	out	is	how	deep	I	can	be	below	the	surface	and	still	suck	air	into	my	lungs.



In	order	 to	 figure	 this	out,	we	have	 to	measure	 the	hydrostatic	pressure	of	 the
water	bearing	in	on	my	chest,	which	gets	more	powerful	the	deeper	I	go.

The	pressure	surrounding	us,	which	is,	remember,	identical	at	identical	levels,
is	the	sum	of	the	atmospheric	pressure	and	the	hydrostatic	pressure.	If	I	snorkel
below	the	surface	of	 the	water,	I	breathe	 in	air	 from	the	outside.	That	air	has	a
pressure	of	1	atmosphere.	As	a	result,	when	I	take	air	in	through	the	snorkel,	the
pressure	of	the	air	in	my	lungs	becomes	the	same,	1	atmosphere.	But	the	pressure
on	my	chest	 is	 the	atmospheric	pressure	plus	 the	hydrostatic	pressure.	 So	now
the	 pressure	 on	 my	 chest	 is	 higher	 than	 the	 pressure	 inside	 my	 lungs;	 the
difference	 is	 exactly	 the	 hydrostatic	 pressure.	 This	 causes	 no	 problem	 in
exhaling,	but	when	 I	 inhale,	 I	have	 to	expand	my	chest.	And	 if	 the	hydrostatic
pressure	 is	 too	high	because	I’m	too	deep	 in	 the	water,	 I	 simply	don’t	have	 the
muscular	strength	to	overcome	the	pressure	difference,	and	I	can’t	take	in	more
air.	 That’s	 why,	 if	 I	 want	 to	 go	 deeper	 in	 the	 water,	 I	 need	 to	 breathe	 in
pressurized	air	to	overcome	the	hydrostatic	pressure.	But	highly	pressurized	air
is	quite	taxing	on	our	bodies,	which	is	why	there	are	strict	limits	to	the	amount	of
time	for	dives.

Now	to	come	back	to	snorkeling,	how	far	down	can	I	go?	To	figure	this	out,	I
rig	a	manometer	up	on	the	wall	of	the	lecture	hall.	Imagine	a	transparent	plastic
tube	about	4	meters	 long.	 I	 attach	one	end	 to	 the	wall	high	up	on	 the	 left	 and
then	snake	it	into	a	U	shape	on	the	wall.	Each	arm	of	the	U	is	a	little	less	than	2
meters	long.	I	pour	about	2	meters’	worth	of	cranberry	juice	into	the	tube	and	it
naturally	settles	 to	 the	same	 level	on	each	side	of	 the	U	tube.	Now,	by	blowing
into	the	right	end	of	the	tube	I	push	the	cranberry	juice	up	on	the	left	side	of	the
U	tube.	The	vertical	distance	I	can	push	the	juice	up	will	tell	me	how	deep	I	will
be	 able	 to	 snorkel.	Why?	Because	 this	 is	 a	measure	 of	 how	much	pressure	my
lungs	 can	 apply	 to	 overcome	 the	 hydrostatic	 pressure	 of	 the	water—cranberry
juice	 and	 water	 being	 for	 this	 purpose	 equivalent—but	 the	 cranberry	 juice	 is
easier	to	see	for	the	students.

I	lean	over,	exhale	completely,	inhale	to	fill	my	lungs,	take	the	right	end	of	the
tube	in	my	mouth,	and	blow	into	it	as	hard	as	I	can.	My	cheeks	sink	in,	my	eyes
bug	out,	and	the	juice	inches	up	in	the	left	side	of	the	U	tube,	and	just	barely	rises
by—could	you	guess?—50	centimeters.	It	takes	everything	I	have	to	get	it	there,
and	I	can’t	hold	it	for	more	than	a	few	seconds.	So,	I	have	pushed	the	juice	up	50
centimeters	 on	 the	 left	 side,	 which	means	 that	 I	 have	 also	 pushed	 it	 down	 50
centimeters	 on	 the	 right	 side—in	 total,	 I	 have	 displaced	 the	 column	 of	 juice
about	100	centimeters	vertically,	or	one	full	meter	(39	inches).	Of	course	we	are



sucking	air	in	when	we	breathe	through	a	snorkel,	not	blowing	it	out.	So	perhaps
it’s	easier	to	suck	the	air	in?	So,	I	do	the	experiment	again,	but	this	time	I	suck	in
the	juice	as	far	up	the	tube	as	I	can.	The	result,	however,	is	roughly	the	same;	it
only	 rises	 about	 50	 centimeters	 on	 the	 side	 that	 I	 suck—thus	 it	 goes	 down	 50
centimeters	on	the	other	side,	and	I	am	utterly	exhausted.

I	 have	 just	 imitated	 snorkeling	 1	meter	 under	 water,	 the	 equivalent	 of	 one-
tenth	 of	 an	 atmosphere.	 My	 students	 are	 invariably	 surprised	 by	 the
demonstration,	and	they	figure	they	can	do	better	than	their	aging	professor.	So	I
invite	a	big	strong	guy	to	come	up	and	give	it	a	try,	and	after	his	best	effort,	his
face	is	bright	red,	and	he’s	shocked.	He’s	only	been	able	to	do	a	little	bit	better—a
couple	of	centimeters	more—than	I	could.

This,	it	turns	out,	is	just	about	the	upper	limit	of	how	far	down	we	can	go	and
still	breathe	through	a	snorkel—1	lousy	meter	(about	3	feet).	And	we	could	really
only	manage	this	for	a	few	seconds.	That’s	why	most	snorkels	are	much	shorter
than	 1	 meter,	 usually	 only	 about	 a	 foot	 long.	 Try	 making	 yourself	 a	 longer
snorkel—you	can	do	so	with	any	kind	of	tubing—and	see	what	happens.

You	 may	 wonder	 just	 how	 much	 force	 is	 exerted	 on	 your	 chest	 when	 you
submerge	to	do	a	little	snorkeling.	At	1	meter	below	the	surface,	the	hydrostatic
pressure	 amounts	 to	 about	 one-tenth	 of	 an	 atmosphere,	 or	we	 could	 say	 one-
tenth	of	a	kilogram	per	square	centimeter.	Now	the	surface	area	of	your	chest	is
roughly	one	square	foot,	about	1,000	square	centimeters.	Thus	the	force	on	your
chest	is	about	1,100	kilograms,	and	the	force	on	the	inner	wall	of	your	chest	due
to	 the	 air	 pressure	 in	 your	 lungs	 is	 about	 1,000	 kilograms.	 Therefore	 the	 one-
tenth	of	pressure	difference	translates	into	a	difference	in	force	of	100	kilograms
—a	 200-pound	weight!	When	 you	 look	 at	 it	 from	 this	 perspective,	 snorkeling
looks	 a	 lot	 harder,	 right?	 And	 if	 you	 went	 down	 10	 meters,	 the	 hydrostatic
pressure	 would	 be	 1	 full	 atmosphere,	 1	 kilogram	 per	 square	 centimeter	 of
surface,	and	the	force	on	your	poor	chest	would	be	about	1,000	kilograms	(1	ton)
higher	 than	 the	outward	 force	produced	by	 the	1-atmosphere	pressure	 in	your
lungs.

This	is	why	Asian	pearl	divers—some	of	whom	routinely	dove	down	30	meters
—risked	their	 lives	at	such	depths.	Because	 they	could	not	snorkel,	 they	had	to
hold	their	breath,	which	they	could	do	only	for	a	few	minutes,	so	they	had	to	be
quick	about	their	work.

Only	now	can	you	really	appreciate	the	engineering	achievement	represented
by	a	 submarine.	Let’s	 think	about	 a	 submarine	at	 10	meters	down	and	assume
that	 the	air	pressure	 inside	 is	1	atmosphere.	The	hydrostatic	pressure	(which	 is



the	 pressure	 difference	 between	 outside	 and	 inside	 the	 sub)	 is	 about	 10,000
kilograms	per	square	meter,	about	10	tons	per	square	meter,	so	you	can	see	that
even	a	very	small	submarine	has	to	be	very	strong	to	dive	only	10	meters.

This	 is	 what	 makes	 the	 accomplishment	 of	 the	 fellow	 who	 invented	 the
submarine	 in	 the	 early	 seventeenth	 century—Cornelis	 van	 Drebbel,	 who	 was
Dutch,	 I’m	 happy	 to	 say—so	 astonishing.	 He	 could	 only	 operate	 it	 about	 5
meters	 below	 the	 surface	 of	 the	 water,	 but	 even	 so,	 he	 had	 to	 deal	 with	 a
hydrostatic	pressure	of	half	an	atmosphere,	and	he	built	it	of	leather	and	wood!
Accounts	from	the	time	say	that	he	successfully	maneuvered	one	of	his	crafts	at
this	depth	in	trials	on	the	Thames	River,	in	England.	This	model	was	said	to	be
powered	 by	 six	 oarsmen,	 could	 carry	 sixteen	 passengers,	 and	 could	 stay
submerged	for	several	hours.	Floats	held	the	“snorkels”	just	above	the	surface	of
the	water.	The	inventor	was	hoping	to	impress	King	James	I,	trying	to	entice	him
to	order	a	number	of	the	crafts	for	his	navy,	but	alas,	the	king	and	his	admirals
were	 not	 sufficiently	 impressed,	 and	 the	 sub	 was	 never	 used	 in	 combat.	 As	 a
secret	weapon,	perhaps,	van	Drebbel’s	sub	was	underwhelming,	but	as	a	feat	of
engineering	 it	 was	 absolutely	 remarkable.	 You	 can	 find	 out	 more	 about	 Van
Drebbel	 and	 early	 submarines	 at	 this	 website:	 www.dutch
submarines.com/specials/special_drebbel.htm.

Just	how	far	down	modern	navy	submarines	can	dive	is	a	military	secret,	but
the	prevailing	wisdom	 is	 that	 they	can	go	about	1,000	meters	 (3300	 feet)	deep,
where	the	hydrostatic	pressure	is	around	100	atmospheres,	a	million	kilos	(1,000
tons)	per	square	meter.	Not	surprisingly,	U.S.	subs	are	made	of	very	high	grade
steel.	Russian	submarines	are	said	to	be	able	to	go	even	deeper,	because	they’re
made	of	stronger	titanium.

It’s	easy	to	demonstrate	what	would	happen	to	a	submarine	if	its	walls	weren’t
strong	enough,	or	if	it	dove	too	deep.	To	do	this	I	hook	up	a	vacuum	pump	to	a
gallon-size	 paint	 can	 and	 slowly	 pump	 the	 air	 out	 of	 the	 can.	 The	 pressure
difference	between	the	air	outside	and	inside	can	only	be	as	high	as	1	atmosphere
(compare	that	with	the	submarine!).	We	know	that	paint	cans	are	fairly	strong,
but	right	before	our	eyes,	because	of	 the	pressure	difference,	 this	one	crumples
like	 a	 flimsy	 aluminum	 soda	 can.	 It	 appears	 as	 though	 an	 invisible	 giant	 has
taken	hold	of	it	and	squeezed	it	in	its	fist.	We’ve	probably	all	done	essentially	the
same	thing	at	some	point	with	a	plastic	water	bottle,	sucking	a	good	bit	of	the	air
out	of	it	and	making	it	crumple.	Intuitively,	you	may	think	the	bottle	scrunches
up	 because	 of	 the	 power	with	which	 you’ve	 sucked	 on	 the	 bottle.	 But	 the	 real
reason	is	that	when	I	empty	the	air	from	the	paint	can,	or	you	suck	some	of	the
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air	 out	 of	 the	 water	 bottle,	 the	 outside	 air	 pressure	 no	 longer	 has	 enough
competing	pressure	to	push	back	against	it.	That’s	what	the	pressure	of	our	own
atmosphere	is	ready	to	do	at	any	moment.	Absolutely	any	moment.

A	metal	 paint	 can,	 a	 plastic	water	 bottle—these	 are	 totally	mundane	 things,
right?	But	if	we	look	at	them	the	way	a	physicist	does,	we	see	something	entirely
different:	 a	 balance	 of	 fantastically	 powerful	 forces.	 Our	 lives	 would	 not	 be
possible	 without	 these	 balances	 of	 largely	 invisible	 forces,	 forces	 due	 to
atmospheric	and	hydrostatic	pressure,	and	the	inexorable	force	of	gravity.	These
forces	 are	 so	 powerful	 that	 if—or	 when—they	 get	 even	 a	 little	 bit	 out	 of
equilibrium,	they	can	cause	catastrophe.	Suppose	a	leak	develops	in	the	seam	of
an	airplane	fuselage	at	35,000	feet	(where	the	atmospheric	pressure	is	only	about
0.25	 atmospheres)	 while	 the	 plane	 is	 traveling	 at	 550	 miles	 per	 hour?	 Or	 a
hairline	crack	opens	up	 in	 the	 roof	of	 the	Baltimore	Harbor	Tunnel,	50	 feet	 to
100	feet	below	the	surface	of	the	Patapsco	River?

The	next	time	you	walk	down	a	city	street,	try	thinking	like	a	physicist.	What
are	you	really	seeing?	For	one,	you	are	seeing	the	result	of	a	furious	battle	raging
inside	every	single	building,	and	I	don’t	mean	office	politics.	On	one	side	of	the
battlefield,	the	force	of	Earth’s	gravitational	attraction	is	striving	to	pull	all	of	it
down—not	only	the	walls	and	floors	and	ceilings,	but	the	desks,	air-conditioning
ducts,	mail	chutes,	elevators,	secretaries	and	CEOs	alike,	even	the	morning	coffee
and	croissants.	On	the	other	side,	the	combined	force	of	the	steel	and	brick	and
concrete	 and	ultimately	 the	 ground	 itself	 are	 pushing	 the	 building	 up	 into	 the
sky.

One	way	 to	 think	of	 architecture	 and	 construction	 engineering,	 then,	 is	 that
they	are	the	arts	of	battling	the	downward	force	to	a	standstill.	We	may	think	of
certain	 feathery	 skyscrapers	 as	 having	 escaped	 gravity.	 They’ve	 done	 no	 such
thing—they’ve	taken	the	battle	literally	to	new	heights.	If	you	think	about	it	for	a
little	 while,	 you’ll	 see	 that	 the	 stalemate	 is	 only	 temporary.	 Building	materials
corrode,	weaken,	and	decay,	while	the	forces	of	our	natural	world	are	relentless.
It’s	only	a	matter	of	time.

These	balancing	acts	may	be	most	threatening	in	big	cities.	Consider	a	horrible
accident	that	happened	in	New	York	City	in	2007,	when	an	eighty-three-year-old
2-foot-wide	pipe	beneath	the	street	suddenly	could	no	longer	contain	the	highly
pressurized	 steam	 it	 carried.	 The	 resulting	 geyser	 blew	 a	 20-foot	 hole	 in
Lexington	Avenue,	 engulfing	 a	 tow	 truck,	 and	 shot	 up	higher	 than	 the	 nearby
seventy-seven-story	Chrysler	Building.	If	such	potentially	destructive	forces	were
not	held	in	exquisite	balance	nearly	all	of	the	time,	no	one	would	walk	any	city



streets.
These	stalemates	between	immensely	powerful	forces	are	not	all	the	product	of

human	handiwork.	Consider	trees.	Calm,	silent,	immobile,	slow,	uncomplaining
—they	 employ	dozens	of	biological	 strategies	 to	 combat	 the	 force	of	 gravity	 as
well	as	hydrostatic	pressure.	What	an	achievement	to	sprout	new	branches	every
year,	to	continue	putting	new	rings	on	its	trunk,	making	the	tree	stronger	even	as
the	gravitational	attraction	between	the	tree	and	the	earth	grows	more	powerful.
And	still	a	tree	pushes	sap	up	into	its	very	highest	branches.	Isn’t	it	amazing	that
trees	can	be	taller	than	about	10	meters?	After	all,	water	can	only	rise	10	meters
in	my	 straw,	 never	 higher;	 why	 (and	 how)	 would	 water	 be	 able	 to	 rise	much
higher	in	trees?	The	tallest	redwoods	are	more	than	300	feet	tall,	and	somehow
they	pull	water	all	the	way	up	to	their	topmost	leaves.

This	 is	why	I	feel	such	sympathy	for	a	great	tree	broken	after	a	storm.	Fierce
winds,	 or	 ice	 and	heavy	 snow	 accumulating	 on	 its	 branches,	 have	managed	 to
upset	 the	 delicate	 balance	 of	 forces	 the	 tree	 had	 been	 orchestrating.	 Thinking
about	 this	unending	battle,	 I	 find	myself	appreciating	all	 the	more	 that	ancient
day	when	our	ancestors	stood	on	two	legs	rather	than	four	and	began	to	rise	to
the	occasion.

Bernoulli	and	Beyond
There	 may	 be	 no	 more	 awe-inspiring	 human	 achievement	 in	 defying	 the
incessant	 pull	 of	 gravity	 and	mastering	 the	 shifting	winds	 of	 air	 pressure	 than
flight.	How	does	it	work?	You	may	have	heard	that	it	has	to	do	with	Bernoulli’s
principle	and	air	flowing	under	and	over	the	wings.	This	principle	is	named	for
the	mathematician	Daniel	Bernoulli	who	published	what	we	now	call	Bernoulli’s
equation	in	his	book	Hydrodynamica	in	1738.	Simply	put,	the	principle	says	that
for	liquid	and	gas	flows,	when	the	speed	of	a	flow	increases,	the	pressure	in	the
flow	decreases.	That	is	hard	to	wrap	your	mind	around,	but	you	can	see	this	in
action.

Hold	a	single	sheet	of	paper,	say	an	8.5	×	11–inch	standard	sheet,	up	to	your
mouth	(not	 in	your	mouth)	with	the	short	edge	at	your	mouth.	The	paper	will
curl	down	because	of	gravity.	Now	blow	hard	straight	out	across	the	top	of	the
paper,	 and	 watch	 what	 happens.	 You’ll	 see	 the	 paper	 rise.	 And	 depending	 on
how	 hard	 you	 blow,	 you	 can	 make	 the	 paper	 really	 jump	 up.	 You’ve	 just
demonstrated	 Bernoulli’s	 principle,	 and	 this	 simple	 phenomenon	 also	 helps
explain	 how	 airplanes	 fly.	 Though	many	 of	 us	 may	 have	 become	 used	 to	 the



sight,	watching	a	747	take	off,	or	being	strapped	in	a	seat	when	the	thing	lifts	off,
is	a	truly	strange	experience.	Just	watch	the	delight	with	which	little	children	see
their	first	plane	take	off.	A	Boeing	747-8	has	a	maximum	takeoff	weight	of	nearly
a	million	pounds.	How	on	earth	does	it	stay	aloft?

An	 airplane	 wing	 is	 designed	 so	 that	 the	 air	 that	 passes	 above	 it	 speeds	 up
relative	 to	 the	 air	 that	 passes	 underneath	 it.	 Because	 of	 Bernoulli,	 the	 faster
airflow	 on	 top	 of	 the	 wing	 lowers	 the	 air	 pressure	 above	 the	 wing,	 and	 the
resulting	difference	between	that	low	pressure	and	the	higher	pressure	under	the
wing	provides	upward	 lift.	Let’s	call	 this	Bernoulli	 lift.	Many	physics	books	 tell
you	that	Bernoulli	lift	is	entirely	responsible	for	the	upward	lift	of	airplanes—in
fact,	this	idea	is	all	over	the	place.	And	yet,	if	you	think	about	it	for	a	minute	or
two,	you	can	figure	out	that	it	cannot	be	true.	Because	if	it	were	true,	how	would
planes	ever	fly	upside	down?

So	it’s	obvious	that	Bernoulli’s	principle	alone	cannot	be	the	sole	reason	for	the
upward	lift.	In	addition	to	the	Bernoulli	lift	there	is	a	so-called	reaction	lift.	B.	C.
Johnson	 describes	 this	 in	 detail	 in	 his	 delightful	 article	 “Aerodynamic	 Lift,
Bernoulli	 Effect,	 Reaction	 Lift”	 (http://mb-soft.com/public2/lift.html).	 Reaction
lift	 (named	 for	 Newton’s	 third	 law:	 for	 every	 action	 there	 is	 an	 equal	 and
opposite	 reaction)	 comes	 about	 when	 air	 passes	 underneath	 an	 airplane	 wing
angled	 upward.	 That	 air,	 moving	 from	 the	 front	 of	 the	 wing	 to	 the	 back,	 is
pushed	downward	by	the	wing.	That’s	the	“action.”	That	action	must	be	met	by
an	equal	reaction	of	air	pushing	upward,	so	there	is	upward	lift	on	the	wing.	In
the	case	of	a	Boeing	747	(cruising	at	550	miles	per	hour	at	an	altitude	of	about
30,000	 feet)	more	 than	80	percent	of	 the	 lift	 comes	 from	 reaction	 lift,	 and	 less
than	20	percent	from	Bernoulli	lift.

You	 can	 demonstrate	 reaction	 lift	 pretty	 easily	 yourself	 the	 next	 time	 you
travel	in	a	car.	In	fact,	you	may	even	have	done	this	when	you	were	little.	When
the	car	is	moving,	roll	down	the	window,	stick	your	arm	outside,	hold	your	hand
in	the	direction	that	the	car	is	moving,	and	tilt	the	angle	of	your	hand	such	that
your	fingers	are	pointing	upward.	You	will	feel	your	hand	pushed	upward.	Voila!
Reaction	lift.

You	 may	 think	 now	 that	 you	 understand	 why	 some	 planes	 can	 fly	 upside
down.	However,	do	you	realize	that	if	a	plane	rolls	over	180	degrees	that	both	the
Bernoulli	 force	 and	 the	 reaction	 force	 will	 now	 be	 pointing	 downward?
Remember,	 in	normal	flight	the	reaction	force	is	upward	because	the	wings	are
angled	upward,	but	after	a	180-degree	rollover,	they	will	be	angled	downward.

Do	the	experiment	again	to	feel	the	reaction	lift	on	your	hand.	As	long	as	you
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tilt	 your	 fingers	 upward	 you	will	 feel	 an	 upward	 force.	Now	 change	 the	 angle
such	 that	 your	 fingers	 are	 tilted	 downward;	 you	 will	 now	 feel	 a	 force	 in	 the
downward	direction.

Why	 then	 is	 it	possible	 to	 fly	upside	down?	The	required	 lift	must	 somehow
come	 from	an	upward	 reaction	 force,	 since	 that’s	 the	only	game	 in	 town.	This
becomes	 possible	 if	 the	 pilot	 (flying	 upside	 down)	 raises	 the	 front	 end	 of	 the
plane	 enough	 so	 that	 the	wings	 become	 angled	 upward	 again.	 This	 is	 a	 tricky
business	and	only	very	experienced	pilots	can	do	it.	It’s	also	rather	dangerous	to
rely	solely	on	reaction	lift,	since	by	nature	reaction	lift	is	not	very	stable.	You	can
sense	 this	 instability	 doing	 the	 experiment	 with	 your	 hand	 outside	 the	 car
window.	 Your	 hand	 jiggles	 around	 quite	 a	 bit.	 In	 fact,	 it’s	 this	 difficulty	 in
controlling	reaction	lift	that	accounts	for	why	most	airplane	crashes	occur	close
to	takeoff	and	landing.	The	fraction	of	lift	accounted	for	by	reaction	lift	is	higher
at	takeoff	and	landing	than	during	flight	at	normal	altitude.	This	is	why	when	a
big	airliner	lands,	you	can	sometimes	feel	the	plane	wobble.

The	Drink	Thief
The	mysteries	of	pressure	are	 in	truth	almost	endlessly	perplexing.	Come	back,
for	example,	 to	 the	physics	of	drinking	with	a	 straw.	Here	 is	one	 last	puzzle	 to
consider,	a	wonderful	brainteaser.

At	home	one	weekend	I	said	to	myself,	“I	wonder	what	would	be	the	longest
straw	that	I	could	drink	a	glass	of	juice	from.”	We’ve	all	seen	super-long	straws,
often	with	turns	and	twists	in	them,	which	children	love.

We	 saw	 earlier	 that	we	 can	only	 suck	hard	 enough	 to	displace	 juice	 about	 a
maximum	of	1	meter—and	that	only	 for	a	 few	seconds—meaning	that	I	would
not	be	able	to	suck	up	juice	with	a	straw	any	higher	than	1	meter	(about	3	feet).
So	I	decided	to	cut	myself	a	piece	of	thin	plastic	tube	1	meter	long	and	see	if	that
would	work.	No	problem;	I	could	suck	the	juice	up	just	fine.	So	I	decided	to	cut	a
piece	3	meters	long—that’s	almost	10	feet—and	I	got	up	on	a	chair	in	my	kitchen
and	put	a	bucket	of	water	on	the	floor,	and	sure	enough,	I	could	suck	it	up	that
far	too.	Amazing.	Then	I	thought	to	myself,	if	I	were	up	on	the	second	story	of
my	house	and	I	looked	down	at	someone	below,	say	out	on	a	deck	having	a	great
big	 tumbler	 of	 juice,	 wine,	 or	 whatever—let’s	 say	 a	 very	 large	 cranberry	 and
vodka—could	 I	 steal	 that	drink	by	 sucking	 it	 up	 if	 I	 had	 a	 really	 long	 straw?	 I
decided	 to	 find	 out,	 and	 this	 led	 to	 one	 of	 the	 demonstrations	 I	 love	 to	 do	 in
class.	It	never	ceases	to	amaze	the	students.



I	pull	out	a	long	length	of	coiled-up	clear	plastic	tubing	and	I	ask	for	a	front-
row	volunteer.	I	place	a	large	glass	beaker	of	cranberry	juice—no	vodka—on	the
floor	in	the	classroom	for	all	students	to	see.	Holding	the	tubing,	I	begin	to	climb
a	tall	ladder;	it	reaches	about	16	feet	off	the	floor—almost	5	meters!

“Okay,	here’s	my	straw,”	I	say,	dropping	one	end	of	the	tubing	to	the	student.
She	holds	 the	 end	 in	 the	 beaker,	 and	 I	 can	 feel	 the	 students’	 anticipation.	The
class	can’t	quite	believe	I’m	up	there.	Remember,	they	were	witnesses	to	the	fact
that	I	could	only	displace	the	cranberry	juice	about	1	meter,	or	about	3	feet.	Now
I’m	about	16	feet	off	the	ground.	How	could	I	possibly	do	it?

I	begin	sucking,	grunting	a	bit	as	the	juice	rises	slowly	inside	the	tube:	first	1
meter,	then	2,	and	then	3.	Then	the	level	dips	a	little,	but	soon	the	juice	resumes
climbing	very	slowly	again	until	 it	reaches	my	mouth.	I	say	a	 loud	“Mmmmm”
and	the	class	erupts	in	applause.	What	has	been	going	on	here?	Why	could	I	suck
the	juice	up	so	high?

Frankly,	I	cheat.	Not	that	it	matters,	since	there	are	no	rules	in	the	game.	Every
time	after	sucking,	when	I	can’t	take	any	more	air	in,	I	put	my	tongue	over	the
end	of	the	tube.	In	other	words	I	close	the	tube	off,	and	as	we	saw	earlier,	this	will
keep	the	juice	up	in	the	tube.	I	then	exhale	and	I	start	sucking	again,	and	repeat
that	scenario	many	times.	My	mouth	becomes	a	kind	of	suction	pump	and	my
tongue	a	kind	of	stop	valve.

To	make	the	juice	rise	those	16	feet,	I	have	to	lower	the	pressure	of	the	air	in
the	tube	to	about	half	an	atmosphere.	And	yes,	if	you’re	wondering,	I	could	have
used	the	same	trick	with	the	manometer,	and	I	would	have	been	able	to	suck	up	a
much	longer	column	of	cranberry	juice.	Does	that	mean	that	I	could	also	snorkel
much	farther	down	beneath	the	surface	of	a	lake	or	the	sea?

What	do	you	think?	If	you	know	the	answer,	drop	me	a	note!



CHAPTER	5

Over	and	Under—Outside	and	Inside—the	Rainbow

So	 many	 of	 the	 little	 wonders	 of	 the	 everyday	 world—which	 can	 be	 truly
spectacular—go	unobserved	most	 of	 the	 time	 because	we	 haven’t	 been	 trained
how	to	see	 them.	I	 remember	one	morning,	 four	or	 five	years	ago,	when	I	was
drinking	my	morning	espresso	 in	my	 favorite	 red	and	blue	Rietveld	chair,	 and
suddenly	 I	 noticed	 this	 beautiful	 pattern	 of	 round	 spots	 of	 light	 on	 the	 wall,
amidst	 the	 flickering	 of	 shadows	 thrown	 by	 the	 leaves	 of	 a	 tree	 outside	 the
window.	 I	was	 so	delighted	 to	have	 spotted	 them	that	my	eyes	 lit	up.	Not	 sure
what	had	happened,	but	with	her	usual	astuteness,	my	wife,	Susan,	wondered	if
something	was	the	matter.

“Do	you	know	what	that	is?”	I	responded,	pointing	to	the	light	circles.	“Do	you
understand	why	that’s	happening?”	Then	I	explained.	You	might	expect	the	light
to	make	lots	of	little	shimmerings	on	the	wall	rather	than	circles,	right?	But	each
of	the	many	small	openings	between	the	leaves	was	acting	like	a	camera	obscura,
a	pinhole	camera,	and	such	a	camera	reproduces	the	image	of	the	light	source—
in	this	case	the	Sun.	No	matter	what	the	shapes	of	the	openings	through	which
the	light	is	streaming,	as	 long	as	the	opening	is	small,	 it’s	the	shape	of	the	light
source	itself	that’s	re-created	on	the	wall.

So	 during	 a	 partial	 solar	 eclipse,	 sunlight	 pouring	 through	 my	 window
wouldn’t	 make	 circles	 on	my	 wall	 anymore—all	 the	 circles	 would	 have	 a	 bite
taken	out	of	 them,	because	 that	would	be	 the	shape	of	 the	Sun.	Aristotle	knew
this	more	than	two	thousand	years	ago!	It	was	fantastic	to	see	those	light	spots,
right	 there	 on	my	 bedroom	 wall,	 demonstrating	 the	 remarkable	 properties	 of
light.

Secrets	of	the	Rainbow
In	 truth,	 the	marvelous	 effects	 of	 the	 physics	 of	 light	 are	 everywhere	we	 look,
sometimes	 in	 the	most	 ordinary	 sights,	 and	 at	 other	 times	 in	 some	of	nature’s
most	 beautiful	 creations.	 Take	 rainbows,	 for	 example:	 fantastic,	 wonderful
phenomena.	 And	 they’re	 everywhere.	 Great	 scientists—Ibn	 al-Haytham,	 the
eleventh-century	 Muslim	 scientist	 and	 mathematician	 known	 as	 the	 father	 of



optics,	 the	 French	 philosopher,	 mathematician,	 and	 physicist	 René	 Descartes;
and	 Sir	 Isaac	 Newton	 himself—found	 them	 captivating	 and	 tried	 to	 explain
them.	Yet	most	physics	teachers	ignore	rainbows	in	their	classes.	I	can’t	believe
this;	in	fact,	I	think	it’s	criminal.

Not	that	the	physics	of	rainbows	is	simple.	But	so	what?	How	can	we	refuse	to
tackle	something	that	pulls	so	powerfully	on	our	imaginations?	How	can	we	not
want	 to	 understand	 the	 mystery	 behind	 the	 intrinsic	 beauty	 of	 these	 glorious
creations?	I	have	always	loved	lecturing	about	them,	and	I	tell	my	students,	“At
the	end	of	this	lecture,	your	life	will	never	be	the	same	again,	never.”	The	same
goes	for	you.

Former	students	and	others	who’ve	watched	my	lectures	on	the	web	have	been
mailing	and	emailing	me	wonderful	 images	of	rainbows	and	other	atmospheric
phenomena	 for	 decades.	 I	 feel	 as	 though	 I	 have	 a	 network	 of	 rainbow	 scouts
spread	across	the	world.	Some	of	these	shots	are	extraordinary—especially	those
from	 Niagara	 Falls,	 which	 has	 so	 much	 spray	 that	 the	 bows	 are	 spectacular.
Maybe	you	will	want	to	send	me	pictures	too.	Feel	free!

I’m	sure	you’ve	seen	at	least	dozens,	if	not	hundreds,	of	rainbows	in	your	life.
If	you’ve	spent	time	in	Florida	or	Hawaii,	or	other	tropical	locations	where	there
are	frequent	rain	showers	while	the	Sun	shines,	you’ve	seen	even	more.	If	you’ve
watered	 your	 garden	with	 a	 hose	 or	 sprinkler	when	 the	 Sun	 is	 shining,	 you’ve
probably	created	rainbows.

Most	of	us	have	 looked	at	many	 rainbows,	 yet	 very	 few	of	 us	have	 ever	 seen
rainbows.	 Ancient	mythologies	 have	 called	 them	 gods’	 bows,	 bridges	 or	 paths
between	 the	 homes	 of	 mortals	 and	 the	 gods.	Most	 famously	 in	 the	West,	 the
rainbow	represented	God’s	promise	in	the	Hebrew	Bible	never	again	to	bring	an
all-destroying	flood	to	the	earth:	“I	do	set	my	bow	in	the	clouds.”

Part	 of	 the	 charm	 of	 rainbows	 is	 that	 they	 are	 so	 expansive,	 spreading
majestically,	and	so	ephemerally,	across	the	entire	sky.	But,	as	is	so	often	true	in
physics,	 their	 origins	 lie	 in	 extraordinarily	 large	 numbers	 of	 something
exceptionally	 minute:	 tiny	 spherical	 balls	 of	 water,	 sometimes	 less	 than	 1
millimeter	(1/25	of	an	inch)	across,	floating	in	the	sky.

While	scientists	have	been	trying	to	explain	the	origins	of	rainbows	for	at	least
a	 millennium,	 it	 was	 Isaac	 Newton	 who	 offered	 the	 first	 truly	 convincing
explanation	in	his	1704	work	Opticks.	Newton	understood	several	things	at	once,
all	 of	 which	 are	 essential	 for	 producing	 rainbows.	 First,	 he	 demonstrated	 that
normal	white	light	was	composed	of	all	the	colors	(I	was	going	to	say	of	“all	the
colors	 of	 the	 rainbow,”	 but	 that	 would	 be	 getting	 ahead	 of	 ourselves).	 By



refracting	 (bending)	 light	 through	 a	 glass	 prism,	 he	 separated	 it	 into	 its
component	 colors.	 Then,	 by	 sending	 the	 refracted	 light	 back	 through	 another
prism,	 he	 combined	 the	 colored	 light	 back	 into	 white	 light,	 proving	 that	 the
prism	itself	wasn’t	creating	the	colors	in	some	way.	He	also	figured	out	that	many
different	materials	could	refract	light,	including	water.	And	this	is	how	he	came
to	 understand	 that	 raindrops	 refracting	 and	 reflecting	 light	 were	 the	 key	 to
producing	a	rainbow.

A	 rainbow	 in	 the	 sky,	 Newton	 concluded	 correctly,	 is	 a	 successful
collaboration	between	the	Sun,	zillions	of	raindrops,	and	your	eyes,	which	must
be	observing	those	raindrops	at	just	the	right	angles.	In	order	to	understand	just
how	 a	 rainbow	 is	 produced,	 we	 need	 to	 zero	 in	 on	 what	 happens	 when	 light
enters	a	raindrop.	But	remember,	everything	I’m	going	 to	say	about	 this	 single
raindrop	in	reality	applies	to	the	countless	drops	that	make	up	the	rainbow.

For	you	to	see	a	rainbow,	three	conditions	need	to	be	met.	First,	the	Sun	needs
to	be	behind	you.	Second,	there	must	be	raindrops	in	the	sky	in	front	of	you—
this	could	be	miles	or	just	a	few	hundred	yards	away.	Third,	the	sunlight	must	be
able	to	reach	the	raindrops	without	any	obstruction,	such	as	clouds.

When	a	 ray	of	 light	enters	a	 raindrop	and	refracts,	 it	 separates	 into	all	of	 its
component	 colors.	 Red	 light	 refracts,	 or	 bends,	 the	 least,	 while	 violet	 light
refracts	 the	most.	All	 of	 these	 different-colored	 rays	 continue	 traveling	 toward
the	back	of	 the	raindrop.	Some	of	 the	 light	keeps	going	and	exits	 the	raindrop,
but	 some	 of	 it	 bounces	 back,	 or	 reflects,	 at	 an	 angle,	 toward	 the	 front	 of	 the
raindrop.	 In	 fact,	 some	 of	 the	 light	 reflects	 more	 than	 once,	 but	 that	 only
becomes	important	later.	For	the	time	being,	we	are	only	interested	in	the	light
that	 reflects	 just	 once.	When	 the	 light	 exits	 the	 front	 of	 the	 drop,	 some	of	 the
light	again	refracts,	separating	the	different	colored	rays	still	further.

After	these	rays	of	sunlight	refract,	reflect,	and	refract	again	on	their	way	out	of
the	 raindrop,	 they	 have	 pretty	 much	 reversed	 direction.	 Key	 to	 why	 we	 see
rainbows	is	that	red	light	exits	the	raindrop	at	angles	that	are	always	smaller	than
about	42	degrees	 from	 the	original	direction	of	 the	 sunlight	 entering	 the	drop.
And	this	is	the	same	for	all	raindrops,	because	the	Sun	for	all	practical	purposes
is	 infinitely	 far	 away.	 The	 angle	 at	 which	 the	 red	 light	 exits	 can	 be	 anything
between	 0	 degrees	 and	 42	 degrees	 but	 never	 more	 than	 42	 degrees,	 and	 this
maximum	angle	is	different	for	each	of	the	different	colors.	For	violet	light,	the
maximum	angle	 is	about	40	degrees.	These	different	maximum	angles	 for	each
color	account	for	the	stripes	of	colors	in	the	rainbow.



There	is	an	easy	way	to	spot	a	rainbow	when	conditions	are	right.	As	seen	in
the	following	figure,	if	I	trace	a	line	from	the	Sun	through	my	head	to	the	far	end
of	my	shadow	on	the	ground,	that	line	is	precisely	parallel	to	the	direction	from
the	Sun	to	the	raindrops.	The	higher	the	Sun	in	the	sky,	the	steeper	this	line	will
be,	and	the	shorter	my	shadow.	The	converse	is	also	the	case.	This	line,	from	the
Sun,	through	my	head,	to	the	shadow	of	my	head	on	the	ground,	we	will	call	the
imaginary	line.	This	line	is	very	important	as	it	will	tell	you	where	in	the	sky	you
should	look	to	see	the	rainbow.

All	 raindrops	 at	 42	 degrees	 from	 the	 “imaginary	 line”	 will	 be	 red.	 Those	 at	 40	 degrees	 will	 be	 blue.
raindrops	at	angles	smaller	than	40	degrees	will	be	white	(like	the	sunlight).	We	will	see	no	light	from
drops	at	angles	larger	than	42	degrees	(see	text).

If	you	look	about	42	degrees	away	from	that	imaginary	line—it	doesn’t	matter
whether	it’s	straight	up,	to	the	right,	or	to	the	left—that’s	where	you	will	see	the
red	band	of	the	rainbow.	At	about	40	degrees	away	from	it—up,	right,	or	left—
you	will	see	the	violet	band	of	the	rainbow.	But	the	truth	is	that	violet	is	hard	to
see	in	a	rainbow,	so	you’ll	see	the	blue	much	more	easily.	Therefore	we’ll	just	say
blue	 from	 now	 on.	 Aren’t	 these	 the	 same	 angles	 I	 mentioned	 earlier,	 talking
about	 the	maximum	 angles	 of	 the	 light	 leaving	 the	 raindrop?	 Yes,	 and	 it’s	 no
accident.	Look	again	at	the	figure.



What	about	the	blue	band	in	the	rainbow?	Well,	remember	its	magic	number
is	 just	 about	40	degrees,	 2	degrees	 less	 than	 the	 red	band.	So	blue	 light	 can	be
found	 refracting,	 reflecting,	 and	 refracting	 out	 of	 different	 raindrops	 at	 a
maximum	angle	of	40	degrees.	Thus	we	see	blue	light	40	degrees	away	from	the
imaginary	line.	Since	the	40-degree	band	is	closer	to	the	imaginary	line	than	the
42-degree	band,	the	blue	band	will	always	be	on	the	inside	of	the	red	band	of	the
rainbow.	 The	 other	 colors	 making	 up	 the	 bow—orange,	 yellow,	 green—are
found	between	the	red	and	blue	bands.	For	more	about	this	you	can	take	a	look
at	 my	 lecture	 on	 rainbows	 online,	 at	 http://ocw.mit.edu/courses/physics/8-03-
physics-iii-vibrations-and-waves-fall-2004/video-lectures/lecture-22/.

Now	you	might	wonder,	 at	 the	maximum	angle	 for	blue	 light,	 are	we	 seeing
only	blue	light?	After	all,	red	light	can	also	emerge	at	40	degrees,	as	it	is	smaller
than	 42	degrees.	 If	 you’ve	 asked	 this	 question,	more	power	 to	 you—it’s	 a	 very
astute	one.	The	 answer	 is	 that	 at	 the	maximum	angle	 for	 any	given	 color,	 that
color	 dominates	 all	 other	 colors.	 With	 red,	 though,	 because	 its	 angle	 is	 the
highest,	it	is	the	only	color.

Why	is	the	rainbow	a	bow	and	not	a	straight	line?	Go	back	to	that	imaginary
line	 from	 your	 eyes	 to	 the	 shadow	 of	 your	 head,	 and	 the	 magic	 number	 42
degrees.	 When	 you	 measure	 42	 degrees—in	 all	 directions—away	 from	 the
imaginary	 line,	 you	 are	 tracing	 an	 arc	 of	 color.	 But	 you	 know	 that	 not	 all
rainbows	are	full	arcs—some	are	just	little	pieces	in	the	sky.	That	happens	when
there	aren’t	enough	raindrops	in	all	directions	in	the	sky	or	when	certain	parts	of
the	rainbow	are	in	the	shadow	of	obstructing	clouds.

There’s	 another	 important	 aspect	 to	 this	 collaboration	 between	 the	 Sun,	 the
raindrops,	and	your	eyes,	and	once	you	see	it,	you’ll	understand	lots	more	about
why	rainbows—natural	as	well	as	artificial—are	 the	way	 they	are.	For	example,
why	are	some	rainbows	enormous,	while	others	just	hug	the	horizon?	And	what
accounts	for	the	rainbows	you	sometimes	see	in	pounding	surf,	or	in	fountains,
waterfalls,	or	the	spray	of	your	garden	hose?

Let’s	go	back	to	the	imaginary	line	that	runs	from	your	eyes	to	the	shadow	of
your	head.	This	 line	 starts	 at	 the	 Sun,	behind	you,	 and	 extends	 to	 the	 ground.
However,	in	your	mind,	you	can	extend	this	line	as	far	as	you	want,	even	much
farther	than	the	shadow	of	your	head.	This	imaginary	line	is	very	useful,	as	you
can	imagine	it	going	through	the	center	(called	the	antisolar	point)	of	a	circle,	on
the	 circumference	 of	 which	 is	 the	 rainbow.	 This	 circle	 represents	 where	 the
rainbow	would	form	if	the	surface	of	Earth	didn’t	get	in	its	way.	Depending	upon
how	high	in	the	sky	the	Sun	is,	a	rainbow	will	also	be	lower	or	higher	above	the
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horizon.	When	the	Sun	is	very	high,	 the	rainbow	may	only	 just	peek	above	the
horizon,	whereas	late	in	the	afternoon	just	before	sunset,	or	early	in	the	morning
just	 around	 sunrise,	when	 the	 Sun	 is	 low	 in	 the	 sky	 and	when	your	 shadow	 is
long,	then	a	rainbow	may	be	enormous,	reaching	halfway	up	into	the	sky.	Why
halfway?	Because	the	maximum	angle	it	can	be	over	the	horizon	is	42	degrees,	or
close	to	45	degrees,	which	is	half	of	the	90	degrees	that	would	be	right	overhead.

So	 how	 can	 you	 go	 rainbow	 hunting?	 First	 of	 all,	 trust	 your	 instincts	 about
when	a	rainbow	might	 form.	Most	of	us	 tend	to	have	a	good	 intuitive	sense	of
that:	 those	 times	 when	 the	 Sun	 is	 shining	 just	 before	 a	 rainstorm,	 or	 when	 it
comes	out	right	after	one.	Or	when	there’s	a	 light	shower	and	the	sunlight	can
still	reach	the	raindrops.

When	you	feel	one	coming	on,	here’s	what	you	do.	First,	turn	your	back	to	the
Sun.	 Then	 locate	 the	 shadow	 of	 your	 head,	 and	 look	 about	 42	 degrees	 in	 any
direction	away	from	the	 imaginary	 line.	If	 there’s	enough	sunlight,	and	if	 there
are	 enough	 raindrops,	 the	 collaboration	 will	 work	 and	 you	 will	 see	 a	 colorful
bow.

Suppose	 you	 cannot	 see	 the	 Sun	 at	 all—it’s	 somehow	 hidden	 by	 clouds	 or
buildings,	but	it’s	clearly	shining.	As	long	as	there	are	no	clouds	between	the	Sun
and	the	raindrops,	you	still	ought	to	be	able	to	see	a	rainbow.	I	can	see	rainbows
in	the	late	afternoon	from	my	living	room	facing	east	when	I	cannot	see	the	Sun
that	 is	 in	 the	west.	 Indeed,	most	of	 the	 time	you	don’t	need	 the	 imaginary	 line
and	the	42-degree	trick	to	spot	a	rainbow,	but	there	is	one	situation	where	paying
attention	 to	 both	 can	make	 a	 big	 difference.	 I	 love	 to	 walk	 on	 the	 beaches	 of
Plum	Island	off	the	Massachusetts	coast.	Late	in	the	afternoon	the	sun	is	in	the
west	and	the	ocean	is	to	the	east.	If	the	waves	are	high	enough	and	if	they	make
lots	of	small	water	drops,	these	droplets	act	 like	raindrops	and	you	can	see	two
small	 pieces	 of	 the	 rainbow:	 one	 piece	 at	 about	 42	 degrees	 to	 the	 left	 of	 the
imaginary	line	and	a	second	piece	about	42	degrees	to	the	right.	These	rainbows
only	last	for	a	split	second,	so	it’s	a	huge	help	in	spotting	them	if	you	know	where
to	 look	 in	advance.	Since	 there	are	always	more	waves	coming,	you	will	always
succeed	if	you	can	be	patient	enough.	More	about	this	later	in	this	chapter.

Here	is	another	thing	you	can	try	to	look	for,	the	next	time	you	spot	a	rainbow.
Remember	 our	 discussion	 of	 the	 maximum	 angle	 at	 which	 certain	 light	 can
refract	out	of	the	raindrop?	Well,	even	though	you	will	see	blue,	or	red,	or	green
from	certain	raindrops,	raindrops	themselves	cannot	be	so	choosy:	they	refract,
reflect,	and	refract	lots	of	light	at	 less	 than	a	40-degree	angle	too.	This	light	is	a
mixture	of	 all	 the	different	 colors	 at	 roughly	 equal	 intensities,	which	we	 see	 as



white	light.	That’s	why,	inside	the	blue	band	of	a	rainbow,	the	sky	is	very	bright
and	white.	At	the	same	time,	none	of	the	light	that	refracts,	reflects,	and	refracts
again	can	exit	raindrops	beyond	the	42-degree	angle,	so	the	sky	just	outside	the
bow	is	darker	than	inside	the	bow.	This	effect	is	most	visible	if	you	compare	the
brightness	 of	 the	 sky	 on	 either	 side	 of	 the	 rainbow.	 If	 you’re	 not	 specifically
looking	 for	 it,	you	probably	won’t	even	notice	 it.	There	are	excellent	 images	of
rainbows	in	which	you	can	see	this	effect	on	the	Atmospheric	Optics	website,	at
www.atoptics.co.uk.

Once	 I	began	explaining	 rainbows	 to	my	 students,	 I	 realized	 just	how	 rich	a
subject	 they	 are—and	 how	much	more	 I	 had	 to	 learn.	 Take	 double	 rainbows,
which	you’ve	probably	seen	 from	time	to	 time.	 In	 fact,	 there	are	almost	always
two	rainbows	in	the	sky:	the	so-called	primary	bow,	the	one	I’ve	been	discussing,
and	what	we	call	the	secondary	bow.

If	 you’ve	 seen	a	double	 rainbow,	you’ve	probably	noticed	 that	 the	 secondary
bow	 is	 much	 fainter	 than	 the	 primary	 bow.	 You	 probably	 haven’t	 noticed,
though,	that	the	order	of	colors	in	the	secondary	bow	is	blue	on	the	outside	and
red	 on	 the	 inside,	 the	 reverse	 of	 that	 in	 the	 primary.	 There	 is	 an	 excellent
photograph	of	a	double	rainbow	in	this	book’s	photo	insert.

In	order	to	understand	the	origin	of	the	secondary	bow,	we	have	to	go	back	to
our	ideal	raindrop—remember,	of	course,	that	it	actually	takes	zillions	of	drops
to	make	 up	 a	 secondary	 rainbow	 as	 well.	 Some	 of	 the	 light	 rays	 entering	 the
drops	 reflect	 just	 once;	 others	 reflect	 twice	 before	 exiting.	 While	 light	 rays
entering	any	given	raindrop	can	reflect	many	times	inside	it,	the	primary	bow	is
only	created	by	those	that	reflect	once.	The	secondary	bow,	on	the	other	hand,	is
created	only	by	 those	 that	reflect	 twice	 inside	before	 refracting	on	 the	way	out.
This	extra	bounce	inside	the	raindrop	is	the	reason	the	colors	are	reversed	in	the
secondary	bow.

The	reason	the	secondary	bow	is	in	a	different	position	from	the	primary	bow
—always	outside	it—is	that	twice-reflected	red	rays	exit	the	drop	at	angles	always
larger	(yes,	larger)	than	about	50	degrees,	and	the	twice-reflected	blue	rays	come
out	at	angles	always	larger	than	about	53	degrees.	You	therefore	need	to	look	for
the	 secondary	bow	about	10	degrees	outside	 the	primary	bow.	The	 reason	 that
the	 secondary	bow	 is	much	 fainter	 is	 that	 so	much	 less	 light	 reflects	 inside	 the
raindrops	twice	than	reflects	once,	so	there’s	less	light	to	make	the	bow.	This	is,
of	course,	why	it	can	be	hard	to	see	the	secondary	bow,	but	now	that	you	know
they	 often	 accompany	 primary	 rainbows,	 and	 where	 to	 look	 for	 them,	 I’m
confident	you’ll	see	lots	more.	I	also	suggest	that	you	spend	a	few	minutes	on	the
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Atmospheric	Optics	website.
Now	 that	 you	 know	 what	makes	 rainbows,	 you	 can	 perform	 a	 little	 optical

magic	in	your	own	backyard	or	on	your	driveway	or	even	on	the	sidewalk,	with
just	a	garden	hose.	But	because	you	can	manipulate	the	raindrops,	and	they	are
physically	close	to	you,	there	are	a	couple	of	big	differences.	For	one	thing,	you
can	make	a	rainbow	even	when	the	Sun	is	high	in	the	sky.	Why?	Because	you	can
make	 raindrops	between	you	and	your	 shadow	on	 the	ground,	 something	 that
rarely	 happens	 naturally.	 As	 long	 as	 there	 are	 raindrops	 that	 the	 sunlight	 can
reach,	there	can	be	rainbows.	You	may	have	done	this	already,	but	perhaps	not	as
purposefully.

If	 you	have	 a	nozzle	 on	 the	 end	of	 the	hose,	 adjust	 it	 to	 a	 fine	 spray,	 so	 the
droplets	are	quite	 small,	 and	when	 the	Sun	 is	high	 in	 the	 sky,	point	 the	nozzle
toward	the	ground	and	start	spraying.	You	cannot	see	the	entire	circle	all	at	once,
but	you	will	see	pieces	of	the	rainbow.	As	you	continue	moving	the	nozzle	in	a
circle,	piece	by	piece	you	will	 see	 the	entire	circle	of	 the	rainbow.	Why	do	you
have	to	do	it	this	way?	Because	you	don’t	have	eyes	in	the	back	of	your	head!

You	will	see	red	at	about	42	degrees	from	the	imaginary	line,	the	inside	edge	of
the	circular	bow	will	be	blue,	and	inside	the	bow	you	will	see	white	light.	I	love
performing	this	little	act	of	creation	while	watering	my	garden,	and	it’s	especially
satisfying	to	be	able	to	turn	all	the	way	around	and	make	a	complete	360-degree
rainbow.	(The	Sun,	of	course,	will	then	not	always	be	behind	you.)

One	cold	winter	day	in	1972	I	was	so	determined	to	get	some	good	photos	of
these	homemade	 rainbows	 for	my	 class	 that	 I	made	my	poor	daughter	Emma,
who	was	just	seven,	hold	the	hose	in	my	yard,	squirting	the	water	high	in	the	air,
while	I	snapped	away	with	the	camera.	But	I	guess	when	you’re	the	daughter	of	a



scientist	you	have	to	suffer	a	little	bit	for	the	sake	of	science.	And	I	did	get	some
great	 pictures;	 I	 even	 managed	 to	 photograph	 the	 secondary	 bow,	 using	 my
contrasting	 blacktop	 driveway	 as	 the	 background.	 You	 can	 see	 the	 picture	 of
Emma	in	the	insert.

I	hope	you’ll	try	this	experiment—but	do	it	in	the	summer.	And	don’t	be	too
disappointed	if	you	don’t	see	the	secondary	bow—it	may	be	too	faint	to	show	up
if	your	driveway	isn’t	dark	enough.

From	now	on,	with	 this	 understanding	 of	 how	 to	 spot	 rainbows,	 you’ll	 find
yourself	 compelled	 to	 look	 for	 them	more	and	more.	 I	often	can’t	help	myself.
The	other	day	as	Susan	and	I	were	driving	home,	it	started	to	rain,	but	we	were
driving	 directly	 west,	 into	 the	 Sun.	 So	 I	 pulled	 over,	 even	 though	 there	 was	 a
good	deal	of	 traffic;	 I	got	out	of	 the	car	and	turned	around,	and	there	 it	was,	a
real	beauty!

I	confess	that	whenever	I	walk	by	a	fountain	when	the	sun	is	shining,	I	position
myself	so	I	can	search	for	the	rainbow	I	know	will	be	there.	If	you’re	passing	by	a
fountain	on	a	sunny	day,	give	 it	a	 try.	Stand	between	the	Sun	and	the	fountain
with	your	back	to	the	Sun,	and	remember	that	the	spray	of	a	fountain	works	just
like	 raindrops	 suspended	 in	 the	 sky.	 Find	 the	 shadow	 of	 your	 head—that
establishes	the	imaginary	line.	Then	look	42	degrees	away	from	that	line.	If	there
are	 enough	 raindrops	 in	 that	direction,	 you’ll	 spy	 the	 red	band	of	 the	 rainbow
and	then	the	rest	of	the	bow	will	come	immediately	into	view.	It’s	rare	that	you
see	a	 full	semicircular	arc	 in	a	 fountain—the	only	way	you	can	see	one	 is	 to	be
very	close	to	the	fountain—but	the	sight	is	so	beautiful,	it’s	always	worth	trying.

Once	you’ve	 found	 it,	 I	warn	you	 that	you	may	 just	 feel	 the	urge	 to	 let	your
fellow	pedestrians	know	it’s	 there.	 I	often	point	 these	 fountain	rainbows	out	 to
passersby,	 and	 I’m	 sure	 some	 of	 them	 think	 I’m	 weird.	 But	 as	 far	 as	 I’m
concerned,	 why	 should	 I	 be	 the	 only	 one	 to	 enjoy	 such	 hidden	 wonders?	 Of
course	I	show	them	to	people.	If	you	know	a	rainbow	could	be	right	in	front	of
you,	why	not	look	for	it,	and	why	not	make	sure	others	see	it	too?	They	are	just
so	beautiful.

Students	often	ask	me	whether	there	is	also	a	tertiary	bow.	The	answer	is	yes
and	 no.	 The	 tertiary	 bow	 results,	 as	 you	 might	 have	 guessed,	 from	 three
reflections	 inside	 the	 raindrop.	 This	 bow	 is	 centered	 on	 the	 Sun	 and,	 like	 the
primary	 bow,	 which	 is	 centered	 on	 the	 antisolar	 point,	 it	 also	 has	 a	 radius	 of
about	42	degrees	and	red	is	on	the	outside.	Thus	you	have	to	look	toward	the	Sun
to	see	 it	and	it	has	to	rain	between	you	and	the	Sun.	But	when	that	 is	 the	case,
you	 will	 almost	 never	 see	 the	 Sun.	 There	 are	 additional	 problems:	 a	 lot	 of



sunlight	will	go	through	the	raindrops	without	reflecting	at	all	and	that	produces
a	 very	 bright	 and	 very	 large	 glow	 around	 the	 Sun	 which	 makes	 it	 effectively
impossible	 to	 see	 the	 tertiary	 bow.	 The	 tertiary	 bow	 is	 even	 fainter	 than	 the
secondary.	It	is	also	much	broader	than	the	primary	and	the	secondary	bow;	thus
the	already	faint	light	of	the	bow	is	spread	out	even	more	over	the	sky	and	that
makes	 it	 even	more	difficult	 to	 see	 it.	As	 far	 as	 I	 know,	no	pictures	 of	 tertiary
bows	exist,	and	I	do	not	know	of	anyone	who	has	ever	seen	a	tertiary	bow.	Yet
there	are	some	reports	of	sightings.

Inevitably,	people	want	 to	know	 if	 rainbows	are	 real.	Maybe	 they’re	mirages,
they	wonder,	receding	endlessly	as	we	approach	them.	After	all,	why	can’t	we	see
the	 end	 of	 the	 rainbow?	 If	 this	 thought	 has	 been	 at	 the	 back	 of	 your	 mind,
breathe	easy.	Rainbows	are	 real,	 the	 result	of	 real	 sunlight	 interacting	with	real
raindrops	and	your	real	eyes.	But	since	they	result	 from	a	precise	collaboration
between	your	eyes,	the	Sun,	and	the	raindrops,	you	will	see	a	different	rainbow
from	the	person	across	the	street.	Equally	real,	but	different.

The	reasons	we	usually	cannot	see	the	end	of	the	rainbow	touching	the	Earth
are	 not	 because	 it	 doesn’t	 exist,	 but	 because	 it’s	 too	 far	 away,	 or	 hidden	 by
buildings	or	trees	or	mountains,	or	because	there	are	fewer	raindrops	in	the	air
there	and	the	bow	is	too	faint.	But	if	you	can	get	close	enough	to	a	rainbow,	you
can	even	 touch	 it,	which	you	should	be	able	 to	do	with	 the	 rainbow	you	make
with	your	garden	hose.

I	 have	 even	 taken	 to	 holding	 rainbows	 in	 my	 hand	 while	 I	 shower.	 I
accidentally	discovered	this	one	day.	When	I	faced	the	shower	spray,	I	suddenly
saw	two	(yes	two!)	bright	primary	rainbows	inside	my	shower,	each	one	about	a
foot	long	and	an	inch	wide.	This	was	so	exciting,	so	beautiful;	it	was	like	a	dream.
I	reached	out	and	held	them	in	my	hands.	Such	a	feeling!	I’d	been	lecturing	on
rainbows	 for	 forty	 years,	 and	 never	 before	 had	 I	 seen	 two	 primary	 rainbows
within	arm’s	reach.

Here’s	 what	 had	 happened.	 A	 sliver	 of	 sunlight	 had	 shone	 into	my	 shower
through	the	bathroom	window.	In	a	way,	it	was	as	though	I	was	standing	not	in
front	of	a	 fountain,	but	 inside	 the	 fountain.	Since	 the	water	was	so	close	 to	me
and	 since	my	 eyes	 are	 about	 three	 inches	 apart,	 each	 eye	 had	 its	 own,	 distinct
imaginary	 line.	The	 angles	were	 just	 right,	 the	 amount	of	water	was	 just	 right,
and	each	of	my	eyes	saw	its	own	primary	rainbow.	When	I	closed	one	eye,	one	of
the	 rainbows	 would	 disappear;	 when	 I	 closed	 the	 other	 eye,	 the	 other	 bow
vanished.	I	would	have	loved	to	photograph	this	astonishing	sight,	but	I	couldn’t
because	my	camera	has	only	one	“eye.”



Being	 so	close	 to	 those	 rainbows	 that	day	made	me	appreciate	 in	a	new	way
just	how	real	they	were.	When	I	moved	my	head,	they	too	moved,	but	as	long	as
my	head	stayed	where	it	was,	so	did	they.

Occasionally	 I	 time	 my	 morning	 showers	 whenever	 possible	 to	 catch	 these
rainbows.	The	Sun	has	to	be	at	the	right	location	in	the	sky	to	peek	through	my
bathroom	window	 at	 the	 right	 angle	 and	 this	 only	 happens	 between	mid-May
and	mid-July.	You	probably	know	that	 the	Sun	rises	earlier	and	goes	higher	 in
the	sky	in	certain	months,	and	that	in	the	Northern	Hemisphere	it	rises	more	to
the	south	(of	east)	than	in	the	winter	months,	and	more	to	the	north	(of	east)	in
summer.

My	bathroom	window	 faces	 south,	 and	 there’s	 a	 building	 on	 the	 south	 side,
making	sure	that	light	can	never	enter	from	due	south.	So	sunlight	only	comes	in
roughly	from	the	southeast.	The	time	I	first	saw	the	shower	bows	was	while	I	was
taking	a	very	 late	shower,	around	ten	o’clock.	 In	order	 to	see	rainbows	 in	your
own	shower	you	will	need	a	bathroom	window	through	which	sunlight	can	reach
the	 spray.	 In	 fact,	 if	 you	 can	never	 see	 the	 Sun	by	 looking	out	 your	 bathroom
window,	 there’s	no	point	 in	 looking	for	shower	bows—there	 just	won’t	be	any.
The	 sunlight	must	 be	 able	 to	 actually	 reach	 your	 shower.	 And	 even	 if	 it	 does
come	 directly	 in,	 that’s	 no	 guarantee,	 because	 many	 water	 drops	 have	 to	 be
present	at	42	degrees	from	your	imaginary	line,	and	that	may	not	be	the	case.

These	are	probably	difficult	conditions	 to	meet,	but	why	not	 try?	And	 if	you
discover	 that	 the	 Sun	 enters	 your	 shower	 just	 right	 late	 in	 the	 afternoon,	well,
then,	you	could	always	think	about	changing	your	shower	schedule.

Why	Sailors	Wear	Sunglasses
Whenever	 you	 do	 decide	 to	 go	 rainbow	 hunting,	 be	 sure	 to	 take	 off	 your
sunglasses	 if	 they	are	 the	kind	we	call	polarized,	or	you	might	miss	out	on	 the
show.	I	had	a	funny	experience	with	this	one	day.	As	I	said,	I	love	to	take	walks
along	the	beaches	of	Plum	Island.	And	I’ve	explained	how	you	can	see	little	bows
in	the	spray	of	the	waves.	Years	ago	I	was	walking	along	the	beach.	The	sun	was
bright	 and	 the	wind	was	 blowing,	 and	when	 the	waves	 rolled	 over	 as	 they	 got
close	 to	 the	 beach,	 there	 was	 lots	 of	 spray—so	 I	 was	 frequently	 seeing	 small
pieces	of	bows	as	I	mentioned	earlier	in	this	chapter.	I	started	pointing	them	out
to	my	friend,	who	said	he	couldn’t	see	what	I	was	talking	about.	We	must	have
gone	back	and	 forth	half	a	dozen	 times	 like	 this.	 “There’s	one,”	 I	would	 shout,
somewhat	annoyed.	“I	don’t	see	anything!”	he	would	shout	back.	But	then	I	had



a	bright	moment	and	I	asked	him	to	take	off	his	sunglasses,	which	I	looked	at—
sure	enough,	 they	were	polarized	sunglasses.	Without	his	 sunglasses	he	did	see
the	bows,	and	he	even	started	to	point	them	out	to	me!	What	was	going	on?

Rainbows	are	something	of	an	oddity	in	nature	because	almost	all	of	their	light
is	 polarized.	Now	 you	 probably	 know	 the	 term	 “polarized”	 as	 a	 description	 of
sunglasses.	 The	 term	 is	 not	 quite	 technically	 correct,	 but	 let	me	 explain	 about
polarized	light—then	we’ll	get	to	the	sunglasses	and	rainbows.

Waves	are	produced	by	vibrations	of	“something.”	A	vibrating	tuning	fork	or
violin	string	produces	sound	waves,	which	I	talk	about	in	the	next	chapter.	Light
waves	are	produced	by	vibrating	electrons.	Now,	when	the	vibrations	are	all	 in
one	direction	and	are	perpendicular	to	the	direction	of	 the	wave’s	propagation,
we	call	the	waves	linearly	polarized.	For	simplicity	I	will	drop	the	term	“linearly”
in	what	follows	as	I	am	only	talking	in	this	chapter	about	this	kind	of	polarized
light.

Sound	 waves	 can	 never	 be	 polarized,	 because	 they	 always	 propagate	 in	 the
same	 direction	 as	 the	 oscillating	 air	 molecules	 in	 the	 pressure	 waves;	 like	 the
waves	you	can	generate	in	a	Slinky.	Light,	however,	can	be	polarized.	Sunlight	or
light	 from	 lightbulbs	 in	 your	 home	 is	 not	 polarized.	 However,	 we	 can	 easily
convert	 nonpolarized	 light	 into	 polarized	 light.	 One	 way	 is	 to	 buy	 what	 are
known	as	polarized	sunglasses.	You	now	know	why	their	name	isn’t	quite	right.
They	 are	 really	 polarizing	 sunglasses.	 Another	 is	 to	 buy	 a	 linear	 polarizer
(invented	by	Edwin	Land,	founder	of	the	Polaroid	Corporation)	and	look	at	the
world	through	it.	Land’s	polarizers	are	typically	1	millimeter	thick	and	they	come
in	all	 sizes.	Almost	all	 the	 light	 that	passes	 through	such	a	polarizer	 (including
polarizing	sunglasses)	has	become	polarized.

If	you	put	two	rectangular	polarizers	on	top	of	each	other	(I	hand	out	two	of
them	 to	each	of	my	 students,	 so	 they	can	experiment	with	 them	at	home)	and
you	turn	them	90	degrees	to	each	other,	no	light	will	pass	through.

Nature	 produces	 lots	 of	 polarized	 light	 without	 the	 help	 of	 one	 of	 Land’s
polarizers.	Light	from	the	blue	sky	90	degrees	away	from	the	direction	of	the	Sun
is	 nearly	 completely	 polarized.	 How	 can	 we	 tell?	 You	 look	 at	 the	 blue	 sky
(anywhere	 at	 90	 degrees	 away	 from	 the	 Sun)	 through	one	 linear	 polarizer	 and
rotate	 it	 slowly	while	 looking	 through	 it.	You	will	notice	 that	 the	brightness	of
the	 sky	 will	 change.	When	 the	 sky	 becomes	 almost	 completely	 dark,	 the	 light
from	 that	 part	 of	 the	 sky	 is	 nearly	 completely	 polarized.	 Thus,	 to	 recognize
polarized	 light,	 all	 you	 need	 is	 one	 polarizer	 (but	 it’s	much	more	 fun	 to	 have
two).



In	the	first	chapter	I	described	how	in	class	I	“create”	blue	light	by	scattering
white	 light	off	 cigarette	 smoke.	 I	 arrange	 this	 in	 such	a	way	 that	 the	blue	 light
that	scatters	into	the	lecture	hall	has	scattered	over	an	angle	of	about	90	degrees;
it	 too	 is	 nearly	 completely	 polarized.	The	 students	 can	 see	 this	with	 their	 own
polarizers,	which	they	always	bring	with	them	to	lectures.

Sunlight	 that	 has	 been	 reflected	 off	 water	 or	 glass	 can	 also	 become	 nearly
completely	polarized	if	the	sunlight	(or	light	from	a	lightbulb)	strikes	the	water
or	glass	surface	at	 just	 the	right	angle,	which	we	call	 the	Brewster	angle.	That’s
why	boaters	and	sailors	wear	polarizing	sunglasses—they	block	much	of	the	light
reflecting	 off	 the	 water’s	 surface.	 (David	 Brewster	 was	 a	 nineteenth-century
Scottish	physicist	who	did	a	lot	of	research	in	optics.)

I	always	carry	at	least	one	polarizer	with	me	in	my	wallet—yes,	always—and	I
urge	my	students	to	do	the	same.

Why	 am	 I	 telling	 you	 all	 this	 about	 polarized	 light?	 Because	 the	 light	 from
rainbows	is	nearly	completely	polarized.	The	polarization	occurs	as	the	sunlight
inside	the	water	drops	reflects,	which,	as	you	now	know,	is	a	necessary	condition
for	rainbows	to	be	formed.

I	make	 a	 special	 kind	 of	 rainbow	 in	my	 classes	 (using	 a	 single,	 though	 very
large,	water	drop)	and	I	am	able	to	demonstrate	that	(1)	red	is	on	the	outside	of
the	bow,	(2)	blue	is	on	the	inside,	(3)	inside	the	bow	the	light	is	bright	and	white,
which	is	not	the	case	outside	the	bow,	and	(4)	the	light	from	the	bow	is	polarized.
The	polarization	of	the	bows	for	me	is	very	fascinating	(one	reason	why	I	always
carry	polarizers	on	me).	You	can	see	this	wonderful	demonstration	in	my	lecture
at	 http://ocw.mit.edu/courses/physics/8-03-physics-iii-vibrations-and-waves-
fall-2004/video-lectures/lecture-22/.

Beyond	the	Rainbow
Rainbows	are	the	best	known	and	most	colorful	atmospheric	creations,	but	they
are	far	from	alone.	There	is	an	entire	host	of	atmospheric	phenomena,	some	of
them	 really	 quite	 strange	 and	 striking,	 others	 deeply	mysterious.	 But	 let’s	 stay
with	rainbows	for	a	bit	and	see	where	they	take	us.

When	you	look	carefully	at	a	very	bright	rainbow,	on	its	inner	edge	you	may
sometimes	see	a	series	of	alternating	bright-colored	and	dark	bands—which	are
called	supernumerary	bows.	You	can	see	one	in	the	insert.	To	explain	these	we
must	 abandon	 Newton’s	 explanation	 of	 light	 rays.	 He	 thought	 that	 light	 was
composed	 of	 particles,	 so	 when	 he	 imagined	 individual	 rays	 of	 light	 entering,
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bouncing	around	in,	and	exiting	raindrops,	he	assumed	that	these	rays	acted	as
though	they	were	little	particles.	But	in	order	to	explain	supernumerary	bows	we
need	 to	 think	 of	 light	 as	 consisting	 of	 waves.	 And	 in	 order	 to	 make	 a
supernumerary	bow,	light	waves	must	go	through	raindrops	that	are	really	small,
smaller	than	a	millimeter	across.

One	of	the	most	important	experiments	in	all	of	physics	(generally	referred	to
as	the	double-slit	experiment)	demonstrated	that	light	is	made	of	waves.	In	this
famous	 experiment	 performed	 around	 1801–03,	 the	 English	 scientist	 Thomas
Young	split	a	narrow	beam	of	sunlight	into	two	beams	and	observed	on	a	screen
a	pattern	(the	sum	of	the	two	beams)	that	could	only	be	explained	if	light	consists
of	waves.	Later	 in	 time	this	experiment	was	done	differently	actually	using	two
slits	(or	two	pinholes).	I	will	proceed	here	assuming	that	a	narrow	beam	of	light
strikes	 two	 very	 small	 pinholes	 (close	 together)	 made	 in	 a	 thin	 piece	 of
cardboard.	 The	 light	 passes	 through	 the	 pinholes	 and	 then	 strikes	 a	 screen.	 If
light	was	made	of	particles,	a	given	particle	would	either	go	through	one	pinhole
or	 through	 the	other	 (it	 cannot	 go	 through	both)	 and	 thus	 you	would	 see	 two
bright	 spots	 on	 the	 screen.	However,	 the	 pattern	 observed	 is	 very	 different.	 It
precisely	mimics	what	you’d	expect	 if	 two	waves	had	hit	 the	 screen—one	wave
coming	 from	one	pinhole	and	simultaneously	one	 identical	wave	coming	 from
the	other.	Adding	 two	waves	 is	 subject	 to	what	we	call	 interference.	When	 the
crests	of	the	waves	from	one	pinhole	line	up	with	the	valleys	of	waves	from	the
other,	the	waves	cancel	each	other,	which	is	called	destructive	interference,	and
the	 locations	 on	 the	 screen	where	 that	 happens	 (and	 there	 are	 several)	 remain
dark.	Isn’t	that	amazing—light	plus	light	turns	into	darkness!	On	the	other	hand,
at	 other	 locations	 on	 the	 screen	 where	 the	 two	 waves	 are	 in	 sync	 with	 one
another,	cresting	and	falling	with	one	another,	we	have	constructive	interference
and	we	end	up	with	bright	spots	(and	there	will	be	several).	Thus	we	will	see	a
spread	out	pattern	on	the	screen	consisting	of	alternating	dark	and	bright	spots,
and	that	is	precisely	what	Young	observed	with	his	split-beam	experiment.



I	demonstrate	this	in	my	classes	using	red	laser	light	and	also	with	green	laser
light.	It’s	 truly	spectacular.	Students	notice	that	the	pattern	of	the	green	light	 is
very	similar	to	that	of	the	red	light	except	that	the	separation	between	the	dark
and	 the	 bright	 spots	 is	 somewhat	 smaller	 for	 the	 green	 light.	 This	 separation
depends	on	the	color	(thus	wavelength)	of	 light	(more	about	wavelength	in	the
next	chapter).

Scientists	 had	 been	 battling	 for	 centuries	 over	 whether	 light	 consisted	 of
particles	 or	 waves,	 and	 this	 experiment	 led	 to	 the	 stunning	 and	 indisputable
conclusion	that	light	is	a	wave.	We	now	know	that	light	can	act	both	as	a	particle
and	as	a	wave,	but	that	astounding	conclusion	had	to	wait	another	century,	 for
the	development	of	quantum	mechanics.	We	don’t	need	to	go	further	into	that	at
the	moment.

Going	back	to	supernumerary	bows,	interference	of	light	waves	is	what	creates
the	 dark	 and	 bright	 bands.	 This	 phenomenon	 is	 very	 pronounced	 when	 the
diameter	 of	 the	 drops	 is	 near	 0.5	 millimeters.	 You	 can	 see	 some	 images	 of
supernumerary	bows	at	www.atoptics.co.uk/rainbows/supdrsz.htm.

The	 effects	 of	 interference	 (often	 called	 diffraction)	 become	 even	 more
dramatic	when	the	diameters	of	the	droplets	are	smaller	than	about	40	microns
(0.04	millimeters,	or	1/635	of	an	inch).	When	that	happens,	the	colors	spread	out
so	much	that	the	waves	of	different	colors	completely	overlap;	the	colors	mix	and
the	rainbow	becomes	white.	White	rainbows	often	show	one	or	two	dark	bands
(supernumerary	bows).	They	are	very	rare	and	I	have	never	seen	one.	A	student
of	mine,	Carl	Wales,	sent	me	pictures	in	the	mid-1970s	of	several	beautiful	white
rainbows.	He	had	taken	the	pictures	 in	the	summer	at	 two	a.m.	(yes,	 two	a.m.)
from	Fletcher	Ice	Island,	which	is	a	large	drifting	iceberg	(about	3	×	7	miles).	At
the	time,	it	was	about	300	miles	from	the	North	Pole.	You	can	see	a	nice	picture
of	a	white	rainbow	in	the	insert.

http://www.atoptics.co.uk/rainbows/supdrsz.htm


These	white	bows	can	also	be	seen	in	fog,	which	consists	of	exceptionally	tiny
water	 droplets.	White	 fogbows	 can	 be	 hard	 to	 spot;	 you	may	 have	 seen	 them
many	times	without	realizing	 it.	They	are	 likely	 to	appear	whenever	 fog	 is	 thin
enough	for	sunlight	to	shine	through	it.	When	I’m	on	a	riverbank	or	in	a	harbor
in	the	early	morning,	when	the	Sun	is	low	in	the	sky,	and	where	fog	is	common,	I
hunt	for	them	and	I	have	seen	many.

Sometimes	 you	 can	 even	 create	 a	 fogbow	with	 your	 car	headlights.	 If	 you’re
driving	and	the	night	fog	rolls	in	around	you,	see	if	you	can	find	a	safe	place	to
park.	Or,	if	you’re	at	home	and	the	fog	comes,	face	your	car	toward	the	fog	and
turn	 on	 your	 headlights.	 Then	 walk	 away	 from	 your	 car	 and	 look	 at	 the	 fog
where	 your	 headlight	 beams	 are.	 If	 you’re	 lucky,	 you	 might	 be	 able	 to	 see	 a
fogbow.	They	make	 the	gloom	of	a	 foggy	night	even	spookier.	You	can	see	 the
results	of	a	fellow	stumbling	across	fogbows	that	he	made	with	his	car	headlights
at	www.extremeinstability.com/08-9-9.htm.	Did	you	notice	the	dark	bands	in	the
white	bows?

The	size	of	water	droplets	and	the	wave	nature	of	light	also	explain	another	of
the	most	beautiful	phenomena	that	grace	the	skies:	glories.	They	can	best	be	seen
when	flying	over	clouds.	Trust	me,	it’s	worth	trying	to	find	them.	In	order	to	do
so,	 you	must,	 of	 course,	 be	 in	 a	window	 seat—and	 not	 over	 the	wings,	 which
block	your	view	down.	You	want	to	make	certain	that	the	Sun	is	on	the	side	of
the	plane	opposite	your	 seat,	 so	you’ll	have	 to	pay	attention	 to	 the	 time	of	day
and	 the	 direction	 of	 the	 flight.	 If	 you	 can	 see	 the	 Sun	 out	 your	 window,	 the
experiment	is	over.	(I	have	to	ask	you	to	trust	me	here;	a	convincing	explanation
requires	a	lot	of	very	complicated	math.)	If	these	conditions	are	met,	then	try	to
figure	 out	 where	 the	 antisolar	 point	 is	 and	 look	 down	 at	 it.	 If	 you’ve	 hit	 the
jackpot	you	may	see	colorful	rings	 in	 the	clouds	and	 if	your	plane	 is	 flying	not
too	far	above	the	clouds,	you	may	even	see	the	glory	circling	the	shadow	of	the
plane—glories	 have	 diameters	 that	 can	 vary	 from	 a	 few	 degrees	 to	 about	 20
degrees.	The	smaller	the	drops,	the	larger	the	glories.

I	have	taken	many	pictures	of	glories,	including	some	where	the	shadow	of	my
plane	was	clearly	visible	and	the	really	fun	part	is	that	the	position	of	my	seat	is	at
the	center	of	the	glory,	which	is	the	antisolar	point.	One	of	these	pictures	is	in	the
insert.

You	can	find	glories	in	all	kinds	of	places,	not	just	from	airplanes.	Hikers	often
see	them	when	they	have	the	Sun	to	their	backs	and	look	down	into	misty	valleys.
In	 these	 cases,	 a	 quite	 spooky	 effect	 happens.	 They	 see	 their	 own	 shadow
projected	 onto	 the	 mist,	 surrounded	 by	 the	 glory,	 sometimes	 several	 colorful
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rings	of	it,	and	it	looks	positively	ghostly.	This	phenomenon	is	also	known	as	the
Brocken	spectre	(also	called	Brocken	bow),	named	for	a	high	peak	in	Germany
where	sightings	of	glories	are	common.	In	fact,	glories	around	people’s	shadows
look	so	much	like	saintly	halos,	and	the	figures	themselves	look	so	otherworldly,
that	you	will	not	be	surprised	to	learn	that	glory	 is	actually	an	old	word	for	 the
circle	of	light	around	the	heads	of	various	saints.	In	China,	glories	are	known	as
Buddha’s	light.

I	once	took	a	marvelous	photo	of	my	own	shadow	surrounded	by	a	glory	that	I
refer	 to	as	 the	 image	of	Saint	Walter.	A	good	many	years	 ago	 I	was	 invited	by
some	 of	 my	 Russian	 astronomer	 friends	 to	 their	 6-meter	 telescope	 in	 the
Caucasus	 Mountains.	 This	 was	 the	 world’s	 largest	 telescope	 at	 the	 time.	 The
weather	was	just	awful	for	observing.	Every	day	I	was	there,	at	about	five	thirty	in
the	 afternoon	a	wall	of	 fog	would	 come	 rolling	up	out	of	 the	valley	below	and
completely	 engulf	 the	 telescope.	 I	 mean	 totally;	 we	 couldn’t	 make	 any
observations	at	all	during	my	visit.	A	picture	of	the	fog	ascending	is	shown	in	the
insert.	In	talking	to	the	astronomers,	I	learned	that	the	fog	was	very	common.	So
I	 asked,	 “Why	 then	 was	 this	 telescope	 built	 here?”	 They	 told	 me	 that	 the
telescope	was	built	on	that	site	because	the	wife	of	a	Party	official	wanted	it	right
there,	and	that	was	that.	I	almost	fell	off	my	chair.

Anyway,	after	a	few	days,	I	got	the	idea	that	I	might	be	able	to	take	a	fantastic
photo.	The	Sun	was	still	strong	in	the	west	every	day	when	the	fog	came	up	from
the	valley,	which	was	to	the	east,	the	perfect	setup	for	glories.	So	the	next	day	I
brought	my	 camera	 to	 the	 observatory,	 and	 I	was	 getting	nervous	 that	 the	 fog
might	not	 cooperate.	But	 sure	enough,	 the	wall	of	 fog	 swelled	up,	 and	 the	Sun
was	 still	 shining,	 and	my	back	was	 to	 it.	 I	waited	 and	waited	 and	 then,	 boom,
there	was	the	glory	around	my	shadow	and	I	snapped.	I	couldn’t	wait	to	develop
the	 film—this	was	 in	 the	pre-digital	 age—and	 there	 it	was!	My	 shadow	 is	 long
and	 ghostly,	 and	 the	 shadow	 of	 my	 camera	 is	 at	 the	 center	 of	 the	 rings	 of	 a
gorgeous	glory.	You	can	see	the	picture	in	the	insert.

You	don’t	need	to	be	in	such	an	exotic	location	to	see	a	halo	around	your	head.
On	a	sunlit	early	morning	if	you	look	at	your	shadow	on	a	patch	of	dewy	grass
(of	course	with	the	Sun	right	behind	you),	you	can	often	see	what	in	German	is
called	Heiligenschein,	 or	 “holy	 light”:	 a	 glow	 around	 the	 shadow	of	 your	 head.
(It’s	not	multicolored;	it’s	not	a	glory.)	Dewdrops	on	the	grass	reflect	the	sunlight
and	create	this	effect.	If	you	try	this—and	I	hope	you	will—they’re	easier	to	find
than	glories.	You	will	see	that	since	it’s	early	morning	and	the	Sun	is	 low,	your
shadow	will	be	quite	 long,	and	you	appear	much	like	the	elongated	and	haloed



saints	of	medieval	art.
The	 many	 different	 types	 of	 bows	 and	 halos	 can	 surprise	 you	 in	 the	 most

unexpected	places.	My	favorite	sighting	happened	one	sunny	day	in	June	2004—
I	 remember	 it	 was	 the	 summer	 solstice,	 June	 21—when	 I	 was	 visiting	 the
deCordova	Museum	in	Lincoln,	Massachusetts,	with	Susan	(who	was	not	yet	my
wife	at	the	time),	my	son,	and	his	girlfriend.	We	were	walking	across	the	grounds
toward	the	entrance	when	my	son	called	out	to	me.	There	in	front	of	us,	on	the
ground,	was	a	stunning,	colorful,	nearly	circular	bow.	(Because	it	was	the	solstice,
the	 Sun	 was	 as	 high	 as	 it	 ever	 gets	 in	 Boston,	 about	 70	 degrees	 above	 the
horizon.)	It	was	breathtaking!

I	pulled	out	my	camera	and	snapped	a	bunch	of	photos	as	quickly	as	I	could.
How	 unexpected.	 There	 were	 no	water	 droplets	 on	 the	 ground,	 and	 I	 quickly
realized	 the	 bow	 could	 not	 have	 been	 made	 from	 water	 drops	 in	 any	 event
because	 the	 radius	 of	 the	 bow	 was	much	 smaller	 than	 42	 degrees.	 And	 yet	 it
looked	just	like	a	rainbow:	the	red	was	on	the	outside,	the	blue	was	on	the	inside,
and	 there	was	 bright	white	 light	 inside	 the	 bow.	What	 could	have	 caused	 it?	 I
realized	 that	 it	 must	 have	 been	 made	 by	 transparent,	 spherical	 particles	 of
something,	but	what	could	they	be?

One	of	my	photographs	of	the	bow,	which	you	can	see	in	the	insert,	turned	out
so	well	 that	 it	became	NASA’s	astronomical	mystery	picture	of	 the	day,	posted
on	the	web	on	September	13,	2004.*	(This,	by	the	way,	is	a	terrific	website,	and
you	 should	 look	 at	 it	 every	 day	 at	 http://apod.nasa.gov/apod/astropix.html.)	 I
received	 about	 three	 thousand	 guesses	 as	 to	what	 it	was.	My	 favorite	 response
was	 a	 handwritten	 note	 from	Benjamin	Geisler,	 age	 four,	 who	wrote,	 “I	 think
your	mystery	photo	is	made	by	light,	crayons,	markers	and	colored	pencils.”	It’s
posted	on	the	bulletin	board	outside	my	office	at	MIT.	Of	all	the	answers,	about
thirty	were	on	the	right	track,	but	only	five	were	dead	on.

The	best	clue	to	this	puzzle	is	that	there	was	a	good	bit	of	construction	going
on	 at	 the	 museum	 when	 we	 visited.	 In	 particular,	 there	 had	 been	 a	 lot	 of
sandblasting	of	 the	museum’s	walls.	Markos	Hankin,	who	was	 in	charge	of	 the
physics	demonstrations	at	MIT	and	with	whom	I	have	worked	for	many	years,
told	me—I	 didn’t	 know	 this	 at	 the	 time—that	 some	 kinds	 of	 sandblasting	 use
glass	beads.	And	 there	were	 lots	of	 tiny	glass	beads	 lying	on	 the	ground.	 I	had
taken	 a	 few	 spoonfuls	 of	 the	 beads	 home.	What	 we	 had	 seen	was	 a	 glassbow,
which	has	now	become	an	official	category	of	bow,	a	bow	formed	by	glass	beads;
it	has	a	 radius	of	about	28	degrees,	but	 the	exact	value	depends	on	 the	kind	of
glass.

http://apod.nasa.gov/apod/astropix.html


Markos	 and	 I	 couldn’t	wait	 to	 see	 if	we	 could	make	one	of	 our	own	 for	my
lectures.	We	bought	several	pounds	of	glass	beads,	glued	them	on	big	sheets	of
black	paper,	and	attached	the	paper	to	a	blackboard	in	the	lecture	hall.	Then,	at
the	end	of	my	lecture	on	rainbows,	we	aimed	a	spotlight	on	the	paper	from	the
back	of	the	lecture	hall.	It	worked!	I	invited	the	students	to	come,	one	by	one,	to
the	 front	 of	 the	 class,	 where	 they	 stood	 before	 the	 blackboard	 and	 cast	 their
shadow	smack	in	the	middle	of	their	own	private	glassbow.

This	was	such	a	thrilling	experience	for	the	students	that	you	might	want	to	try
it	at	home;	making	a	glassbow	is	not	too	difficult.	It	does	depend	on	what	your
objectives	are.	If	you	just	want	to	see	the	colors	of	the	bow,	it’s	quite	easy.	If	you
want	to	see	the	entire	bow	encircling	your	head	it’s	more	work.

To	 see	 a	 small	 piece	 of	 the	 bow,	 all	 you	 need	 is	 a	 piece	 of	 black	 cardboard
about	 one	 foot	 square,	 some	 clear	 spray	 adhesive	 (we	used	 3M’s	 Spray	Mount
Artist’s	 Adhesive,	 but	 any	 clear	 spray	 glue	 will	 do),	 and	 transparent	 spherical
glass	beads.	They	must	be	transparent	and	spherical.	We	used	“coarse	glass	bead
blast	media,”	with	diameters	 ranging	 from	150	 to	250	microns,	which	you	can
find	here:	http://tinyurl.com/glassbeads4rainbow.

Spray	glue	on	your	cardboard,	and	then	sprinkle	the	beads	on	it.	The	average
distance	between	the	beads	isn’t	critical,	but	the	closer	the	beads	are,	the	better.
Be	careful	with	these	beads—you	probably	want	to	do	this	outside	so	you	don’t
spill	beads	all	over	your	floor.	Let	the	glue	dry,	and	if	you	have	a	sunny	day,	go
outside.

Establish	 the	 imaginary	 line	 (from	 your	 head	 to	 the	 shadow	 of	 your	 head).
Place	the	cardboard	somewhere	on	that	line;	thus	you	will	see	the	shadow	of	your
head	on	the	cardboard	(if	the	Sun	is	low	in	the	sky,	you	could	put	the	cardboard
on	 a	 chair;	 if	 the	 Sun	 is	 high	 in	 the	 sky	 you	 could	 put	 it	 on	 the	 ground—
remember	 the	glass	beads	at	 the	deCordova	museum	were	also	on	 the	ground.
You	may	 select	 how	 far	 away	 from	 your	 head	 you	 place	 the	 cardboard.	 Let’s
assume	 that	 you	 place	 it	 1.2	 meters	 (about	 4	 feet)	 away.	 Then	 move	 the
cardboard	about	0.6	meters	(2	feet)	away	from	the	imaginary	line	in	a	direction
perpendicular	 to	 the	 line.	 You	 may	 do	 that	 in	 any	 direction	 (left,	 right,	 up,
down)!	You	will	 then	 see	 the	 colors	of	 the	glassbow.	 If	 you	prefer	 to	place	 the
cardboard	 farther	 away,	 say	 1.5	 meters	 (5	 feet),	 then	 you	 have	 to	 move	 the
cardboard	 about	 0.75	meters	 (2.5	 feet)	 to	 see	 the	 colors	 of	 the	 bow.	 You	may
wonder	 how	 I	 arrived	 at	 these	 numbers.	 The	 reason	 is	 simple,	 the	 radius	 of	 a
glassbow	is	about	28	degrees.

Once	you	 see	 the	colors,	 you	can	move	 the	cardboard	 in	a	 circle	around	 the

http://tinyurl.com/glassbeads4rainbow


imaginary	line	to	search	for	other	parts	of	the	bow.	By	so	doing,	you	are	mapping
out	the	entire	circular	bow	in	portions,	just	as	you	did	with	the	garden	hose.

If	you	want	to	see	the	entire	bow	around	your	shadow	all	at	once,	you’ll	need	a
bigger	piece	of	black	cardboard—one	 full	 square	meter	will	do—and	with	a	 lot
more	glass	beads	glued	to	it.	Place	the	shadow	of	your	head	near	the	center	of	the
cardboard.	 If	 the	 distance	 from	 the	 cardboard	 to	 your	 head	 is	 about	 80
centimeters	(about	2.5	feet),	you	will	immediately	see	the	entire	glass	bow.	If	you
bring	the	cardboard	too	far	out,	e.g.,	1.2	meters	(4.0	feet),	you	will	not	be	able	to
see	the	entire	bow.	The	choice	is	yours;	have	fun!

If	it’s	not	a	sunny	day,	you	can	try	the	experiment	indoors,	as	I	did	in	lectures,
by	aiming	a	very	strong	light—like	a	spotlight—at	a	wall,	on	which	you’ve	taped
or	 hung	 the	 cardboard.	 Position	 yourself	 so	 the	 light	 is	 behind	 you,	 and	 the
shadow	of	your	head	is	in	the	center	of	the	one	square	meter	cardboard.	If	you
stand	80	centimeters	away	from	the	board,	you	should	be	able	to	see	the	entire
bow	circling	your	shadow.	Welcome	to	the	glass	bow!

We	don’t	need	to	understand	why	a	rainbow	or	fogbow	or	glassbow	is	formed
in	 order	 to	 appreciate	 its	 beauty,	 of	 course,	 but	 understanding	 the	 physics	 of
rainbows	does	give	us	a	new	set	of	eyes	(I	call	this	the	beauty	of	knowledge).	We
become	more	alert	to	the	little	wonders	we	might	just	be	able	to	spot	on	a	foggy
morning,	or	in	the	shower,	or	when	walking	by	a	fountain,	or	peeking	out	of	an
airplane	window	when	 everyone	 else	 is	watching	movies.	 I	 hope	 you	will	 find
yourself	turning	your	back	to	the	Sun	the	next	time	you	feel	a	rainbow	coming
on,	looking	about	42	degrees	away	from	the	imaginary	line	and	spotting	the	red
upper	rim	of	a	glorious	rainbow	across	the	sky.

Here’s	my	prediction.	The	next	time	you	see	a	rainbow,	you’ll	check	to	make
sure	 that	 red	 is	 on	 the	 outside,	 blue	 is	 on	 the	 inside;	 you’ll	 try	 to	 find	 the
secondary	bow	and	will	confirm	that	 the	colors	are	reversed;	you’ll	see	that	 the
sky	 is	bright	 inside	 the	primary	bow	and	much	darker	outside	of	 it;	and	 if	you
carry	a	linear	polarizer	on	you	(as	you	always	should),	you	will	confirm	that	both
bows	are	strongly	polarized.	You	won’t	be	able	to	resist	it.	It’s	a	disease	that	will
haunt	you	for	the	rest	of	your	life.	It’s	my	fault,	but	I	will	not	be	able	to	cure	you,
and	I’m	not	even	sorry	for	that,	not	at	all!



CHAPTER	6

The	Harmonies	of	Strings	and	Winds

I	 took	violin	 lessons	as	a	 ten-year-old,	but	 I	was	a	disaster	and	stopped	after	a
year.	Then	in	my	twenties	I	took	piano	lessons,	and	I	was	a	disaster	again.	I	still
cannot	 understand	 how	 people	 can	 read	 notes	 and	 convert	 them	 into	 music
using	ten	fingers	on	different	hands.	I	do	appreciate	music	a	lot,	however,	and	in
addition	to	having	an	emotional	connection	with	it,	I	have	come	to	understand	it
through	physics.	In	fact,	I	love	the	physics	of	music,	which	starts,	of	course,	with
the	physics	of	sound.

You	probably	know	that	sound	begins	with	one	or	more	very	rapid	vibrations
of	 an	 object,	 like	 a	 drum	 surface	 or	 a	 tuning	 fork	 or	 a	 violin	 string.	 These
vibrations	 are	 pretty	 obvious,	 right?	 What	 is	 actually	 happening	 when	 these
things	vibrate,	however,	is	not	so	obvious,	because	it	is	usually	invisible.

The	 back	 and	 forth	motion	 of	 a	 tuning	 fork	 first	 compresses	 the	 air	 that	 is
closest	to	it.	Then,	when	it	moves	the	other	way,	it	decompresses	the	nearby	air.
This	 alternate	 pushing	 and	 pulling	 creates	 a	 wave	 in	 the	 air,	 a	 pressure	 wave,
which	we	call	a	sound	wave.	This	wave	reaches	our	ears	very	quickly,	at	what	we
call	 the	 speed	 of	 sound:	 about	 340	 meters	 per	 second	 (about	 a	 mile	 in	 five
seconds,	 or	 a	 kilometer	 in	 three).	 This	 is	 the	 speed	 of	 sound	 in	 air	 at	 room
temperature.	 It	 can	differ	 a	 great	deal,	depending	on	 the	medium	 it’s	 traveling
through.	The	speed	of	sound	is	four	times	faster	in	water	and	fifteen	times	faster
in	iron	than	in	air.

The	speed	of	 light	(and	all	electromagnetic	radiation)	 in	vacuum	is	a	 famous
constant,	 known	 as	 c,	 about	 300,000	 kilometers	 per	 second	 (you	 may	 have
learned	it	as	186,000	miles	per	second),	but	 the	speed	of	visible	 light	 is	about	a
third	slower	in	water.

Now	to	get	back	to	the	tuning	fork.	When	the	wave	it	produces	hits	our	ears,	it
pushes	 our	 eardrums	 in	 and	 out	 at	 exactly	 the	 same	 rate	 of	 oscillations	 as	 the
tuning	 fork	 presses	 on	 the	 air.	 Then,	 through	 an	 almost	 absurdly	 complicated
process,	the	eardrum	vibrates	the	bones	of	the	middle	ear,	known	wonderfully	as
the	hammer,	anvil,	and	stirrup,	and	they	in	turn	produce	waves	in	the	fluid	in	the
inner	ear.	These	waves	are	then	converted	into	electric	nerve	impulses	sent	to	the
brain,	and	your	brain	interprets	these	signals	as	sound.	Quite	a	process.



Sound	 waves—in	 fact	 all	 waves—have	 three	 fundamental	 characteristics:
frequency,	 wavelength,	 and	 amplitude.	 Frequency	 is	 the	 number	 of	 waves
passing	a	given	point	in	a	given	period	of	time.	If	you	are	watching	waves	in	the
ocean	from	a	boat	or	a	cruise	ship,	you	may	notice	that,	say,	ten	waves	go	by	in	a
minute,	so	we	might	say	they	have	a	frequency	of	ten	per	minute.	But	we	actually
often	measure	frequency	in	oscillations	per	second,	also	known	as	hertz,	or	Hz;
200	oscillations	per	second	is	200	hertz.

As	 for	 wavelength,	 this	 is	 the	 distance	 between	 two	 wave	 crests—or	 also
between	two	wave	valleys.	One	of	the	fundamental	characteristics	of	waves	is	that
the	greater	the	frequency	of	a	wave,	the	shorter	its	wavelength	is;	and	the	longer
the	 wavelength,	 the	 lower	 its	 frequency.	 Here	 we’ve	 reached	 a	 terrifically
important	 set	 of	 relationships	 in	 physics,	 those	 between	 the	 speed,	 frequency,
and	wavelength	of	waves.	The	wavelength	of	 a	wave	 is	 its	 speed	divided	by	 its
frequency.	This	holds	 for	 electromagnetic	waves	 (X-rays,	 visible	 light,	 infrared,
and	radio	waves)	as	well	as	sound	waves	in	a	bathtub	and	waves	in	the	ocean.	As
an	example,	the	wavelength	in	air	of	a	440	hertz	tone	(middle	A	on	the	piano)	is
340	divided	by	440,	which	is	0.77	meters	(about	30	inches).

If	you	think	about	this	for	a	minute,	you’ll	see	that	it	makes	perfect	sense.	Since
the	 speed	of	 sound	 is	 constant	 in	any	given	medium	(except	 in	gases,	where	 it
depends	on	temperature),	 the	more	sound	waves	 there	are	 in	a	given	period	of
time,	 the	 shorter	 the	waves	have	 to	 be	 to	 fit	 into	 that	 time.	And	 the	 reverse	 is
clearly	also	 true:	 the	 fewer	 the	waves	 in	 the	same	time	the	 longer	each	of	 them
has	 to	be.	For	wavelength,	we	have	different	measurements	 for	different	kinds.
For	example,	while	we	measure	wavelengths	of	sound	in	meters,	we	measure	the
wavelengths	of	light	in	nanometers	(one	nanometer	is	a	billionth	of	a	meter).

Now	what	about	amplitude?	Think	again	about	watching	the	waves	out	in	the
ocean	 from	 a	 boat.	You	will	 see	 that	 some	waves	 are	 higher	 than	 others,	 even
though	 they	may	 have	 the	 same	wavelength.	 This	 characteristic	 of	 the	wave	 is
known	as	its	amplitude.	The	amplitude	of	a	sound	wave	determines	how	loud	or
soft	the	sound	will	be:	the	greater	its	amplitude,	the	louder	it	 is,	and	vice	versa.
This	is	because	the	larger	the	amplitude,	the	more	energy	a	wave	is	carrying.	As
any	surfer	can	tell	you,	the	taller	an	ocean	wave,	the	more	energy	it	packs.	When
you	 strum	 guitar	 strings	 more	 vigorously,	 you	 are	 imparting	 more	 energy	 to
them	 and	 you	 produce	 a	 louder	 sound.	 We	 measure	 the	 amplitude	 of	 water
waves	in	meters	and	centimeters.	The	amplitude	of	a	sound	wave	in	air	would	be
the	distance	over	which	 the	air	molecules	move	back	and	 forth	 in	 the	pressure
wave,	 but	 we	 never	 express	 it	 that	 way.	 Instead,	 we	 measure	 the	 intensity	 of



sound,	 which	 is	 expressed	 in	 decibels.	 The	 decibel	 scale	 turns	 out	 to	 be	 quite
complicated;	fortunately,	you	don’t	need	to	know	about	it.

The	pitch	of	a	sound,	meaning	how	high	or	low	it	is	on	the	musical	scale,	is,	on
the	 other	 hand,	 determined	 by	 the	 frequency.	 The	 higher	 the	 frequency,	 the
higher	its	pitch;	the	lower	the	frequency,	the	lower	its	pitch.	In	making	music,	we
change	the	frequency	(thus	the	pitch)	all	the	time.

The	 human	 ear	 can	 hear	 a	 tremendous	 range	 of	 frequencies,	 from	 about	 20
hertz	 (the	 lowest	note	on	a	piano	 is	27.5	hertz)	 all	 the	way	up	 to	about	20,000
hertz.	 I	 have	 a	 great	 demonstration	 in	 my	 classes,	 in	 which	 I	 run	 a	 sound-
producing	machine,	 an	 audiometer,	 which	 can	 broadcast	 different	 frequencies
and	at	different	intensities.	I	ask	students	to	hold	their	hands	up	as	long	as	they
can	hear	the	sound.	I	gradually	increase	the	frequency.	When	we	get	older,	most
of	us	lose	our	ability	to	hear	high	frequencies.	My	own	high-frequency	cutoff	is
near	 4,000	 hertz,	 four	 octaves	 above	 middle	 C,	 at	 the	 very	 end	 of	 the	 piano
keyboard.	But	long	after	I’m	hearing	nothing,	my	students	can	hear	much	higher
notes.	I	move	the	dial	upward	and	still	upward,	to	10,000	and	15,000	hertz,	and
some	hands	start	to	drop.	At	20,000	hertz,	only	about	half	of	the	hands	are	still
up.	Then	 I	 go	more	 slowly:	 21,000,	 22,000,	 23,000.	By	 the	 time	 I	 get	 to	 24,000
hertz,	 there	are	usually	 just	a	 few	hands	still	raised.	At	that	point,	I	play	a	 little
joke	on	them;	I	turn	the	machine	off	but	pretend	to	be	raising	the	frequency	even
higher,	to	27,000	hertz.	One	or	two	brave	souls	claim	to	be	hearing	these	super
high	notes—until	I	gently	puncture	that	balloon.	It’s	all	in	good	fun.

Now	think	about	how	a	tuning	fork	works.	If	you	hit	a	tuning	fork	harder,	the
number	 of	 vibrations	 per	 second	 of	 its	 prongs	 remains	 the	 same—so	 the
frequency	of	 the	sound	waves	 it	produces	stays	 the	same.	This	 is	why	 it	always
plays	the	same	note.	However,	the	amplitude	of	the	oscillation	of	its	prongs	does
increase	when	you	hit	it	harder.	You	could	see	this	if	you	were	to	film	the	tuning
fork	 as	 you	hit	 it	 and	 then	 replay	 the	 film	 in	 slow	motion.	You	would	 see	 the
prongs	of	the	fork	move	back	and	forth,	and	they	would	move	farther	the	harder
you	hit	them.	Since	the	amplitude	is	increased,	the	note	produced	will	be	louder,
but	since	 the	prongs	continue	to	oscillate	at	 the	same	frequency,	 the	note	stays
the	same.	Isn’t	that	weird?	If	you	think	about	it	for	a	bit,	you’ll	see	that	it’s	exactly
like	 the	 pendulum	 (chapter	 3),	 where	 the	 period	 (the	 time	 to	 complete	 one
oscillation)	is	independent	of	the	amplitude	of	its	swings.

Sound	Waves	in	Space?



Do	 these	 relationships	of	 sound	hold	 true	beyond	Earth?	Have	you	ever	heard
that	 there	 is	 no	 sound	 in	 space?	 This	 would	 mean	 that	 no	 matter	 how
energetically	you	play	a	piano	on	the	surface	of	 the	Moon,	 it	wouldn’t	produce
any	sound.	Can	this	be	right?	Yes,	the	Moon	has	no	atmosphere;	it	is	basically	a
vacuum.	 So	 you	 might	 conclude,	 perhaps	 sadly,	 that	 yes,	 even	 the	 most
spectacular	explosions	of	stars	or	galaxies	colliding	with	each	other	occur	in	utter
silence.	We	might	even	suppose	that	the	big	bang	itself,	the	primordial	explosion
that	 created	 our	 universe	 nearly	 14	 billion	 years	 ago,	 took	 place	 entirely	 in
silence.	But	hold	on	a	minute.	Space,	 like	much	of	 life,	 is	 considerably	messier
and	more	complicated	than	we	thought	even	a	few	decades	ago.

Even	though	any	of	us	would	quickly	perish	from	a	lack	of	oxygen	if	we	tried
to	breathe	in	space,	the	truth	is	that	outer	space,	even	deep	space,	is	not	a	perfect
vacuum.	 Such	 terms	 are	 all	 relative.	 Interstellar	 and	 intergalactic	 space	 are
millions	 of	 times	 closer	 to	 a	 vacuum	 than	 the	 best	 vacuum	 we	 can	 make	 on
Earth.	 Still,	 the	 fact	 is	 that	 the	 matter	 that	 does	 float	 around	 in	 space	 has
important	and	identifiable	characteristics.

Most	of	this	matter	is	called	plasma:	ionized	gases—gases	partly	or	completely
made	up	of	charged	particles,	such	as	hydrogen	nuclei	(protons)	and	electrons—
of	widely	varying	density.	Plasma	is	present	in	our	solar	system,	where	we	usually
call	it	the	solar	wind,	streaming	outward	from	the	Sun	(the	phenomenon	Bruno
Rossi	did	so	much	to	advance	our	knowledge	of).	Plasmas	are	also	found	in	stars,
as	well	as	between	stars	in	galaxies	(where	we	call	it	the	interstellar	medium),	and
even	 between	 galaxies	 (where	 we	 call	 it	 the	 intergalactic	 medium).	 Most
astrophysicists	believe	that	more	than	99.9	percent	of	all	observable	matter	in	the
universe	is	plasma.

Think	about	 it.	Wherever	matter	 exists,	pressure	waves	 (thus,	 sound)	can	be
produced	and	they	will	propagate.	And	because	there	are	plasmas	everywhere	in
space	 (also	 in	 our	 solar	 system),	 there	 are	 lots	 of	 sound	waves	 out	 there,	 even
though	we	can’t	possibly	hear	them.	Our	poor	ears	can	hear	a	pretty	wide	range
of	 frequencies—more	 than	 three	 orders	 of	 magnitude,	 in	 fact—but	 we	 aren’t
outfitted	to	hear	the	music	of	the	heavenly	spheres.

Let	me	give	you	one	example.	Back	in	2003	physicists	discovered	ripples	in	the
superhot	gas	(plasma)	surrounding	a	supermassive	black	hole	at	the	center	of	a
galaxy	 in	 the	Perseus	cluster	of	galaxies,	 a	 large	group	of	 thousands	of	galaxies
about	250	million	 light-years	 from	Earth.	These	ripples	clearly	 indicated	sound
waves,	 caused	 by	 the	 release	 of	 large	 amounts	 of	 energy	 when	 matter	 was
swallowed	up	by	the	black	hole.	(I’ll	get	into	black	holes	in	more	detail	in	chapter



12.)	Physicists	calculated	the	frequency	of	the	waves	and	came	up	with	a	pitch	of
B	 flat,	 but	 a	 B	 flat	 so	 low	 that	 it	 is	 57	 octaves	 (about	 a	 factor	 of	 1017)	 below
middle	C,	whose	frequency	is	about	262	hertz!	You	can	see	these	cosmic	ripples
at	 http://science.nasa.gov/science-news/science-at-
nasa/2003/09sep_blackholesounds/.

Now	let’s	go	back	to	the	big	bang.	If	the	primordial	explosion	that	birthed	our
universe	 created	 pressure	 waves	 in	 the	 earliest	 matter—matter	 that	 then
expanded	and	then	cooled,	creating	galaxies,	stars,	and	eventually	planets—then
we	ought	 to	be	able	 to	see	 the	remnants	of	 those	sound	waves.	Well,	physicists
have	calculated	how	 far	apart	 the	 ripples	 in	 the	early	plasma	should	have	been
(about	 500,000	 light-years)	 and	 how	 far	 apart	 they	 should	 be	 now,	 after	 the
universe	has	been	expanding	 for	more	 than	13	billion	years.	The	distance	 they
came	up	with	is	about	500	million	light-years.

There	 are	 two	 enormous	 galaxy-mapping	 projects	 going	 on	 right	 now—the
Sloan	Digital	Sky	Survey	(SDSS)	in	New	Mexico	and	the	Two-degree	Field	(2dF)
Galaxy	Redshift	Survey	in	Australia.	They	have	both	looked	for	these	ripples	in
the	distribution	of	 galaxies	 and	have	 independently	 found…	guess	what?	They
found	 “that	 galaxies	 are	 currently	 slightly	more	 likely	 to	 be	 500	million	 light-
years	 apart	 than	 any	 other	 distance.”	 So	 the	 big	 bang	 produced	 a	 bass	 gong
sound	 that	now	has	a	wavelength	of	about	500	million	 light-years,	 a	 frequency
about	 fifty	 octaves	 (a	 factor	 of	 1015)	 below	 anything	 our	 ears	 can	 hear.	 The
astronomer	Mark	Whittle	has	played	around	a	good	bit	with	what	he	 calls	big
bang	 acoustics,	 and	 you	 can	 too,	 by	 accessing	 his	 website:
www.astro.virginia.edu/~dmw8f/BBA_web/index_frames.html.	On	 the	 site,	 you
can	 see	 and	 hear	 how	 he	 has	 simultaneously	 compressed	 time	 (turning	 100
million	 years	 into	 10	 seconds)	 and	 artificially	 raised	 the	 pitch	 of	 the	 early
universe	fifty	octaves,	so	you	can	listen	to	the	“music”	created	by	the	big	bang.

The	Wonders	of	Resonance
The	phenomenon	we	call	resonance	makes	a	huge	number	of	things	possible	that
either	could	not	exist	at	all	or	would	be	a	whole	lot	less	interesting	without	it:	not
only	 music,	 but	 radios,	 watches,	 trampolines,	 playground	 swings,	 computers,
train	whistles,	church	bells,	and	the	MRI	you	may	have	gotten	on	your	knee	or
shoulder	(did	you	know	that	the	“R”	stands	for	“resonance”?).

What	exactly	is	resonance?	You	can	get	a	good	feeling	for	this	by	thinking	of
pushing	 a	 child	on	 a	 swing.	You	know,	 intuitively,	 that	 you	 can	produce	 large
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amplitudes	 of	 the	 swing	 with	 very	 little	 effort.	 Because	 the	 swing,	 which	 is	 a
pendulum,	has	a	uniquely	defined	frequency	(chapter	3),	 if	you	accurately	 time
your	pushes	to	be	in	sync	with	that	frequency,	small	amounts	of	additional	push
have	a	large	cumulative	impact	on	how	high	the	swing	goes.	You	can	push	your
child	higher	and	higher	with	just	light	touches	of	only	a	couple	of	fingers.

When	 you	 do	 this,	 you	 are	 taking	 advantage	 of	 resonance.	 Resonance,	 in
physics,	 is	 the	 tendency	 of	 something—whether	 a	 pendulum,	 a	 tuning	 fork,	 a
violin	 string,	 a	 wineglass,	 a	 drum	 skin,	 a	 steel	 beam,	 an	 atom,	 an	 electron,	 a
nucleus,	 or	 even	 a	 column	 of	 air—to	 vibrate	 more	 powerfully	 at	 certain
frequencies	 than	 at	 others.	 These	 we	 call	 resonance	 frequencies	 (or	 natural
frequencies).

A	 tuning	 fork,	 for	 instance,	 is	 constructed	 to	 always	 vibrate	 at	 its	 resonance
frequency.	If	it	does	so	at	440	hertz,	then	it	makes	the	note	known	as	concert	A,
the	 A	 above	 middle	 C	 on	 the	 piano.	 Pretty	 much	 no	 matter	 how	 you	 get	 it
vibrating,	its	prongs	will	oscillate,	or	move	back	and	forth,	440	times	per	second.

All	 materials	 have	 resonance	 frequencies,	 and	 if	 you	 can	 add	 energy	 to	 a
system	or	 an	 object	 it	may	 start	 to	 vibrate	 at	 these	 frequencies,	where	 it	 takes
relatively	 little	 energy	 input	 to	 have	 a	 very	 significant	 result.	When	 you	 tap	 a
delicate	empty	wineglass	gently	with	a	spoon,	for	example,	or	rub	the	rim	with	a
wet	 finger,	 it	 will	 ring	 with	 a	 particular	 tone—that	 is	 a	 resonance	 frequency.
Resonance	is	not	a	free	lunch,	though	at	times	it	looks	like	one.	But	at	resonance
frequencies,	objects	make	the	most	efficient	use	of	the	energy	you	put	into	them.

A	 jump	 rope	works	on	 the	 same	principle.	 If	 you’ve	 ever	held	one	 end,	 you
know	that	it	takes	a	while	to	get	the	rope	swinging	in	a	nice	arc—and	while	you
may	have	circled	your	hand	around	with	the	end	to	get	that	arc,	the	key	part	of
that	motion	is	that	you	are	going	up	and	down	or	back	and	forth,	oscillating	the
rope.	At	a	certain	point,	 the	rope	starts	 swinging	around	happily	 in	a	beautiful
arc;	you	barely	have	 to	move	your	hand	 to	keep	 it	going,	and	your	 friends	can
start	 jumping	 in	 the	 middle	 of	 the	 arc,	 intuitively	 timing	 their	 jumps	 to	 the
resonant	frequency	of	the	rope.

You	may	not	have	known	this	on	the	playground,	but	only	one	person	has	to
move	her	hand—the	other	one	can	simply	hold	on	to	the	other	end,	and	it	works
just	fine.	The	key	is	that	between	the	two	of	you,	you’ve	reached	the	rope’s	lowest
resonance	frequency,	also	called	the	fundamental.	If	it	weren’t	for	this,	the	game
we	 know	 as	 double-dutch,	 in	 which	 two	 people	 swing	 two	 ropes	 in	 opposite
directions,	would	be	just	about	impossible.	What	makes	it	possible	for	two	ropes
to	be	going	in	opposite	directions,	and	be	held	by	the	same	people,	is	that	each



one	requires	very	little	energy	to	keep	it	going.	Since	your	hands	are	the	driving
force	here,	 the	 jump	rope	becomes	what	we	call	a	driven	oscillator.	You	know,
intuitively,	once	you	 reach	 this	 resonance	of	 the	 rope,	 that	you	want	 to	 stay	at
that	frequency,	so	you	don’t	move	your	hand	any	faster.

If	you	did,	the	beautiful	rotating	arc	would	break	up	into	rope	squiggles,	and
the	jumper	would	quickly	get	annoyed.	But	if	you	had	a	long	enough	rope,	and
could	vibrate	your	end	more	quickly,	you	would	find	that	pretty	soon	the	rope
would	 create	 two	 arcs,	 one	 going	 down	 while	 the	 other	 went	 up,	 and	 the
midpoint	of	the	rope	would	stay	stationary.	We	call	that	midpoint	a	node.	At	that
point	two	of	your	friends	could	jump,	one	in	each	arc.	You	may	have	seen	this	in
circuses.	 What	 is	 going	 on	 here?	 You	 have	 achieved	 a	 second	 resonance
frequency.	 Just	 about	 everything	 that	 can	 vibrate	 has	 multiple	 resonance
frequencies,	which	I’ll	discuss	more	in	just	a	minute.	Your	jump	rope	has	higher
resonance	frequencies	too,	which	I	can	show	you.

I	 use	 a	 jump	 rope	 to	 show	 multiple	 resonance	 frequencies	 in	 my	 class	 by
suspending	a	single	rope,	about	ten	feet	long,	between	two	vertical	rods.	When	I
move	one	end	of	the	rope	up	and	down	(only	an	inch	or	so),	oscillating	it	on	a
rod,	using	a	little	motor	whose	frequency	I	can	change,	soon	it	will	hit	its	lowest
resonance	 frequency,	 which	 we	 call	 the	 first	 harmonic	 (it	 is	 also	 called	 the
fundamental),	and	make	one	arc	like	the	jump	rope.	When	I	oscillate	the	end	of
the	rope	more	rapidly,	we	soon	see	two	arcs,	mirror	images	of	each	other.	We	call
this	the	second	harmonic,	and	it	will	come	when	we	are	oscillating	the	string	at
twice	 the	 rate	 of	 the	 first	 harmonic.	 So	 if	 the	 first	 harmonic	 is	 at	 2	 hertz,	 two
vibrations	per	second,	the	second	is	at	4	hertz.	If	we	oscillate	the	end	still	faster,
when	we	 reach	 three	 times	 the	 frequency	 of	 the	 first	 harmonic,	 in	 this	 case	 6
hertz,	we’ll	reach	the	third	harmonic.	We	see	the	string	divide	equally	into	thirds
with	two	points	of	the	string	(nodes)	that	do	not	move,	with	the	arcs	alternating
up	and	down	as	the	end	goes	up	and	down	six	times	per	second.

Remember	 I	 said	 that	 the	 lowest	 note	we	 can	hear	 is	 about	 20	hertz?	That’s
why	you	don’t	hear	any	music	 from	a	playground	 jump	rope—its	 frequency	 is
way	 too	 low.	But	 if	we	play	with	a	different	kind	of	 string—one	on	a	violin	or
cello,	say—something	else	entirely	happens.	Take	a	violin.	You	don’t	want	me	to
take	it,	believe	me—I	haven’t	improved	in	the	past	sixty	years.

In	order	for	you	to	hear	one	long,	beautiful,	mournful	note	on	a	violin,	there’s
an	 enormous	 amount	 of	 physics	 that	 has	 already	 happened.	 The	 sound	 of	 a
violin,	 or	 cello,	 or	 harp,	 or	 guitar	 string—of	 any	 string	 or	 rope—depends	 on
three	 factors:	 its	 length,	 its	 tension,	 and	 its	 weight.	 The	 longer	 the	 string,	 the



lower	the	tension,	and	the	heavier	the	string,	the	lower	the	pitch.	And,	of	course,
the	 converse:	 the	 shorter	 the	 string,	 the	higher	 the	 tension,	 and	 the	 lighter	 the
string,	the	higher	the	pitch.	Whenever	string	musicians	pick	up	their	instruments
after	a	while,	they	have	to	adjust	the	tension	of	their	strings	so	they	will	produce
the	right	frequencies,	or	notes.

But	 here’s	 the	magic.	When	 the	 violinist	 rubs	 the	 string	 with	 a	 bow,	 she	 is
imparting	 energy	 to	 the	 string,	 which	 somehow	 picks	 out	 its	 own	 resonance
frequencies	(from	all	the	vibrations	possible),	and—here’s	the	even	more	mind-
blowing	part—even	though	we	cannot	see	it,	it	vibrates	simultaneously	in	several
different	 resonance	 frequencies	 (several	 harmonics).	 It’s	 not	 like	 a	 tuning	 fork,
which	can	only	vibrate	at	a	single	frequency.

These	 additional	 harmonics	 (with	 frequencies	 higher	 than	 the	 fundamental)
are	often	called	overtones.	The	interplay	of	the	varied	resonant	frequencies,	some
stronger,	some	weaker—the	cocktail	of	harmonics—is	what	gives	a	violin	or	cello
note	what	is	known	technically	as	its	color	or	timbre,	but	what	we	recognize	as
its	distinctive	sound.	That’s	the	difference	between	the	sound	made	by	the	single
frequency	of	the	tuning	fork	or	audiometer	or	emergency	broadcast	message	on
the	radio	and	the	far	more	complex	sound	of	musical	instruments,	which	vibrate
at	 several	 harmonic	 frequencies	 simultaneously.	The	 characteristic	 sounds	 of	 a
trumpet,	oboe,	banjo,	piano,	or	violin	are	due	to	the	distinct	cocktail	of	harmonic
frequencies	 that	 each	 instrument	 produces.	 I	 love	 the	 image	 of	 an	 invisible
cosmic	 bartender,	 expert	 in	 creating	 hundreds	 of	 different	 harmonic	 cocktails,
who	can	serve	up	a	banjo	to	this	customer,	a	kettledrum	to	the	next,	and	an	erhu
or	a	trombone	to	the	one	after	that.

Those	who	developed	the	first	musical	instruments	were	ingenious	in	crafting
another	vital	feature	of	instruments	that	allows	us	to	enjoy	their	sound.	In	order
to	hear	music,	the	sound	waves	not	only	have	to	be	within	the	frequency	range
you	can	hear,	but	 they	also	must	be	 loud	enough	for	you	to	hear	them.	Simply
plucking	a	 string,	 for	 instance,	doesn’t	produce	enough	sound	 to	be	heard	at	a
distance.	You	can	impart	more	energy	to	a	string	(and	hence	to	the	sound	waves
it	produces)	by	plucking	 it	harder,	but	you	still	may	not	produce	a	very	robust
sound.	 Fortunately,	 a	 great	 many	 years	 ago,	 millennia	 at	 least,	 human	 beings
figured	out	how	 to	make	 string	 instruments	 loud	 enough	 to	 be	heard	 across	 a
clearing	or	room.

You	can	reproduce	the	precise	problem	our	ancestors	faced—and	then	solve	it.
Take	a	foot-long	piece	of	string,	tie	one	end	to	a	doorknob	or	drawer	handle,	pull
on	 the	 other	 end	 until	 it’s	 tight,	 and	 then	 pluck	 it	 with	 your	 other	 hand.	Not



much	happens,	right?	You	can	hear	it,	and	depending	on	the	length	of	the	string,
how	 thick	 it	 is,	 and	 how	 tight	 you	 hold	 it,	 you	 might	 be	 able	 to	 make	 a
recognizable	note.	But	the	sound	isn’t	very	strong,	right?	No	one	would	hear	it	in
the	next	room.	Now,	if	you	take	a	plastic	cup	and	run	the	string	through	the	cup,
hold	the	string	up	at	an	angle	away	from	the	knob	or	handle	(so	it	doesn’t	slide
toward	your	hand),	and	pluck	the	string,	you’ll	hear	more	sound.	Why?	Because
the	string	transmits	some	of	its	energy	to	the	cup,	which	now	vibrates	at	the	same
frequency,	only	 it’s	got	a	much	 larger	 surface	area	 through	which	 to	 impart	 its
vibrations	to	the	air.	As	a	result,	you	hear	louder	sound.

With	 your	 cup	 you	 have	 demonstrated	 the	 principle	 of	 a	 sounding	 board—
which	 is	 absolutely	 essential	 to	 all	 stringed	 instruments,	 from	guitars	 and	 bass
fiddles	to	violins	and	the	piano.	They’re	usually	made	of	wood,	and	they	pick	up
the	 vibrations	 of	 the	 strings	 and	 transmit	 these	 frequencies	 to	 the	 air,	 greatly
amplifying	the	sound	of	the	strings.

The	sounding	boards	are	easy	to	see	in	guitars	and	violins.	On	a	grand	piano,
the	sounding	board	is	flat,	horizontal,	and	located	underneath	the	strings,	which
are	mounted	on	the	sounding	board;	it	stands	vertically	behind	the	strings	on	an
upright.	On	a	harp,	the	sounding	board	is	usually	the	base	where	the	strings	are
attached.

In	class	I	demonstrate	the	workings	of	a	sounding	board	in	different	ways.	In
one	 demonstration	 I	 use	 a	 musical	 instrument	 my	 daughter	 Emma	 made	 in
kindergarten.	 It’s	 one	 ordinary	 string	 attached	 to	 a	 Kentucky	 Fried	 Chicken
cardboard	box.	You	can	change	the	tension	in	the	string	using	a	piece	of	wood.
It’s	really	great	fun;	as	I	increase	the	tension	the	pitch	goes	up.	The	KFC	box	is	a
perfect	 sounding	 board,	 and	 my	 students	 can	 hear	 the	 plucking	 of	 the	 string
from	quite	far	away.	Another	one	of	my	favorite	demos	is	with	a	music	box	that	I
bought	many	years	ago	in	Austria;	it’s	no	bigger	than	a	matchbox	and	it	has	no
sounding	 board	 attached	 to	 it.	 When	 you	 turn	 the	 crank,	 it	 makes	 music
produced	by	vibrating	prongs.	I	 turn	the	crank	in	class	and	no	one	can	hear	it,
not	 even	 I!	 Then	 I	 place	 it	 on	my	 lab	 table	 and	 turn	 the	 crank	 again.	 All	 the
students	can	now	hear	it,	even	those	way	in	the	back	of	my	large	lecture	hall.	It
always	amazes	me	how	very	effective	even	a	very	simple	sounding	board	can	be.

That	doesn’t	mean	that	they’re	not	sometimes	works	of	real	art.	There	is	a	lot
of	secrecy	about	building	high-quality	musical	instruments,	and	Steinway	&	Sons
are	 not	 likely	 to	 tell	 you	 how	 they	 build	 the	 sounding	 boards	 of	 their	 world-
famous	 pianos!	 You	may	 have	 heard	 of	 the	 famous	 Stradivarius	 family	 in	 the
seventeenth	 and	 eighteenth	 centuries	 who	 built	 the	 most	 fantastic	 and	 most



desirable	violins.	Only	about	540	Stradivarius	violins	are	known	to	exist;	one	was
sold	in	2006	for	$3.5	million.	Several	physicists	have	done	extensive	research	on
these	violins	 in	 an	effort	 to	uncover	 the	 “Stradivarius	 secrets”	 in	 the	hope	 that
they	would	be	 able	 to	build	 cheap	violins	with	 the	 same	magic	 voice.	You	 can
read	 about	 some	 of	 this	 research	 at
www.sciencedaily.com/releases/2009/01/090122141228.htm.

A	good	deal	of	what	makes	certain	combinations	of	notes	sound	more	or	less
pleasing	to	us	has	to	do	with	frequencies	and	harmonics.	The	best-known	type	of
note	pairing,	at	least	in	Western	music,	is	of	notes	where	one	is	exactly	twice	the
frequency	of	the	other.	We	say	that	these	notes	are	separated	by	an	octave.	But
there	are	many	other	pleasing	combinations	as	well:	chords,	thirds,	fifths,	and	so
on.

Mathematicians	 and	 “natural	 philosophers”	 have	 been	 fascinated	 by	 the
beautiful	numerical	relationships	between	different	frequencies	since	the	time	of
Pythagoras	 in	 ancient	 Greece.	 Historians	 disagree	 over	 just	 how	 much
Pythagoras	figured	out,	how	much	he	borrowed	from	the	Babylonians,	and	how
much	his	followers	discovered,	but	he	seems	to	get	the	credit	for	figuring	out	that
strings	of	different	lengths	and	tensions	produce	different	pitches	in	predictable
and	pleasing	 ratios.	Many	physicists	 delight	 in	 calling	him	 the	 very	 first	 string
theorist.

Instrument	makers	 have	made	 brilliant	 use	 of	 this	 knowledge.	 The	 different
strings	on	 a	 violin,	 for	 example,	 all	 have	different	weights	 and	 tensions,	which
enable	 them	 to	 produce	 higher	 and	 lower	 frequencies	 and	 harmonics	 even
though	they	all	have	about	the	same	length.	Violinists	change	the	length	of	their
strings	by	moving	their	fingers	up	and	down	the	violin	neck.	When	their	fingers
walk	toward	their	chins,	 they	shorten	the	 length	of	any	given	string,	 increasing
the	 frequency	 (thus	 the	 pitch)	 of	 the	 first	 harmonic	 as	 well	 as	 all	 the	 higher
harmonics.	 This	 can	 get	 quite	 complex.	 Some	 stringed	 instruments,	 like	 the
Indian	sitar,	have	what	are	called	sympathetic	strings,	extra	strings	alongside	or
underneath	 the	 playing	 strings	 that	 vibrate	 at	 their	 own	 resonance	 frequencies
when	the	instrument	is	being	played.

It’s	difficult	if	not	impossible	to	see	the	multiple	harmonic	frequencies	on	the
strings	 of	 an	 instrument,	 but	 I	 can	 show	 them	 dramatically	 by	 connecting	 a
microphone	 to	an	oscilloscope,	which	you	have	probably	seen	on	TV,	 if	not	 in
person.	 An	 oscilloscope	 shows	 a	 vibration—or	 oscillation—over	 time,	 on	 a
screen,	 in	 the	 form	 of	 a	 line	 going	 up	 and	 down,	 above	 and	 below	 a	 central
horizontal	 line.	 Intensive	care	units	and	emergency	 rooms	are	 filled	with	 them
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for	measuring	patients’	heartbeats.
I	always	invite	my	students	to	bring	their	musical	instruments	to	class	so	that

we	can	see	the	various	cocktails	of	harmonics	that	each	produces.
When	 I	 hold	 a	 tuning	 fork	 for	 concert	A	 up	 to	 the	microphone,	 the	 screen

shows	a	simple	sine	curve	of	440	hertz.	The	 line	 is	clean	and	extremely	regular
because,	as	we’ve	seen,	the	tuning	fork	produces	just	one	frequency.	But	when	I
invite	 a	 student	who	 brought	 her	 violin	 to	 play	 the	 same	A,	 the	 screen	 gets	 a
whole	lot	more	interesting.	The	fundamental	is	still	there—you	can	see	it	on	the
screen	as	 the	dominant	 sine	 curve—but	 the	 curve	 is	now	much	more	 complex
due	 to	 the	 higher	 harmonics,	 and	 it’s	 different	 again	when	 a	 student	 plays	 his
cello.	Imagine	what	happens	when	a	violinist	plays	two	notes	at	once!

When	 singers	 start	 demonstrating	 the	 physics	 of	 resonance	 by	 sending	 air
through	 their	 vocal	 cords	 (“vocal	 folds”	 would	 be	 a	 more	 descriptive	 term),
membranes	vibrate	and	create	sound	waves.	I	ask	a	student	to	sing	too,	and	the
oscilloscope	tells	 the	same	story,	as	similarly	complicated	curves	pile	up	on	the
screen.

When	you	play	the	piano,	the	key	that	you	press	makes	a	hammer	hit	a	string
—a	wire—whose	length,	weight,	and	tension	have	been	set	to	oscillate	at	a	given
first	harmonic	frequency.	But	somehow,	just	like	violin	strings	and	vocal	cords,
the	piano	strings	also	vibrate	simultaneously	at	higher	harmonics.

Now	 take	a	 tremendous	 thought-leap	 into	 the	 subatomic	world	and	 imagine
super-tiny	violinlike	 strings,	much,	much	 smaller	 than	 an	 atomic	nucleus,	 that
oscillate	 at	 different	 frequencies	 and	 different	 harmonics.	 In	 other	 words,
consider	the	possibility	that	the	fundamental	building	blocks	of	matter	are	these
tiny	vibrating	strings,	which	produce	all	the	so-called	elementary	particles—such
as	 quarks,	 gluons,	 neutrinos,	 electrons—by	 vibrating	 at	 different	 harmonic
frequencies,	and	in	many	dimensions.	If	you’ve	managed	to	take	this	step,	you’ve
just	 grasped	 the	 fundamental	proposition	of	 string	 theory,	 the	 catchall	 term	 to
describe	the	efforts	of	theoretical	physicists	over	the	past	forty	years	to	come	up
with	a	single	theory	accounting	for	all	elementary	particles	and	all	the	forces	in
the	universe.	In	a	way,	it’s	a	theory	of	“everything.”

No	one	has	the	slightest	idea	whether	string	theory	will	succeed,	and	the	Nobel
laureate	 Sheldon	Glashow	has	wondered	whether	 it’s	 “a	 theory	of	 physics	 or	 a
philosophy.”	 But	 if	 it’s	 true	 that	 the	 most	 basic	 units	 of	 the	 universe	 are	 the
different	resonance	levels	of	unimaginably	tiny	strings,	then	the	universe,	and	its
forces	 and	 elementary	 particles,	 may	 resemble	 a	 cosmic	 version	 of	 Mozart’s
wonderful,	increasingly	complex	variations	on	“Twinkle,	Twinkle	Little	Star.”



All	 objects	 have	 resonant	 frequencies,	 from	 the	 bottle	 of	 ketchup	 in	 your
refrigerator	 to	 the	 tallest	 building	 in	 the	world;	many	 are	mysterious	 and	 very
hard	to	predict.	If	you	have	a	car,	you’ve	heard	resonances,	and	they	didn’t	make
you	 happy.	 Surely	 you’ve	 had	 the	 experience	 of	 hearing	 a	 noise	while	 driving,
and	hearing	it	disappear	when	you	go	faster.

On	 my	 last	 car	 the	 dashboard	 seemed	 to	 hit	 its	 fundamental	 frequency
whenever	I	idled	at	a	traffic	light.	If	I	hit	the	gas,	speeding	up	the	engine,	even	if	I
wasn’t	moving,	 I	 changed	 the	 frequency	 of	 the	 car’s	 vibrations,	 and	 the	 noise
disappeared.	Sometimes	I	would	hear	a	new	noise	for	a	while,	which	usually	went
away	when	I	drove	faster	or	slower.	At	different	speeds,	which	is	to	say	different
vibrating	 frequencies,	 the	 car—and	 its	 thousands	of	parts,	 some	of	which	were
loose,	 alas—hit	 a	 resonant	 frequency	 of,	 say,	 its	 loose	muffler	 or	 deteriorating
motor	mounts,	and	they	talked	to	me.	They	all	said	the	same	thing—“Take	me	to
the	 mechanic;	 take	 me	 to	 the	 mechanic”—which	 I	 too	 often	 ignored,	 only	 to
discover	 later	 the	damage	 that	 these	 resonances	had	done.	When	I	 finally	 took
the	car	in,	I	could	not	reproduce	the	awful	sounds	and	I	felt	kind	of	stupid.

I	remember	when	I	was	a	student,	when	we	had	an	after-dinner	speaker	in	my
fraternity	we	didn’t	like,	we	would	take	our	wineglasses	and	run	our	wet	fingers
around	 the	 rim,	 something	 you	 can	 do	 at	 home	 easily,	 and	 generate	 a	 sound.
This	was	the	fundamental	frequency	of	our	wineglasses.	When	we	got	a	hundred
students	doing	it	at	once,	it	was	very	annoying,	to	be	sure	(this	was	a	fraternity,
after	all)—but	it	was	also	very	effective,	and	the	speakers	got	the	message.

Everyone	has	heard	 that	 an	opera	 singer	 singing	 the	 right	note	 loud	 enough
can	 break	 a	 wineglass.	 Now	 that	 you	 know	 about	 resonance,	 how	 could	 that
happen?	It’s	simple,	at	 least	 in	theory,	right?	If	you	took	a	wineglass,	measured
the	frequency	of	its	fundamental,	and	then	generated	a	sound	at	that	frequency,
what	would	happen?	Well,	most	of	the	time,	in	my	experience,	nothing	at	all.	I’ve
never	seen	an	opera	singer	do	it.	I	therefore	don’t	use	an	opera	singer	in	my	class.
I	 select	 a	wineglass,	 tap	 on	 it,	 and	measure	 its	 fundamental	 frequency	with	 an
oscilloscope—of	course	it	varies	from	glass	to	glass,	but	for	the	glasses	I	use	it’s
always	somewhere	in	the	range	of	440	to	480	hertz.	I	then	generate	electronically
a	sound	with	the	exact	same	frequency	of	the	fundamental	of	the	wineglass	(well
exact,	of	course,	 is	never	possible,	but	I	try	to	get	very	close).	I	connect	it	to	an
amplifier,	 and	 slowly	crank	up	 the	volume.	Why	 increase	 the	volume?	Because
the	louder	the	sound,	the	more	energy	in	the	sound	wave	will	be	beating	against
the	glass.	And	 the	greater	 the	 amplitude	of	 the	vibrations	 in	 the	wineglass,	 the
more	and	more	the	glass	will	bend	in	and	out,	until	it	breaks	(we	hope).



In	 order	 to	 show	 the	 glass	 vibrating,	 I	 zoom	 in	 on	 it	 with	 a	 camera	 and
illuminate	 it	 with	 a	 strobe	 light,	 set	 to	 a	 slightly	 different	 frequency	 than	 the
sound.	It’s	fantastic!	You	see	the	bowl	of	the	wineglass	beginning	to	vibrate;	the
two	 opposite	 sides	 first	 contract,	 then	 push	 apart,	 and	 the	 distance	 they	move
grows	and	grows	as	I	increase	the	volume	of	the	speaker,	and	sometimes	I	have
to	tweak	the	frequency	slightly	and	then—poof!—the	glass	shatters.	That’s	always
the	best	part	for	the	students;	they	can’t	wait	for	the	glass	to	break.	(You	can	see
this	 online	 about	 six	minutes	 into	 lecture	 27	 of	my	Electricity	 and	Magnetism
course,	 8.02,	 at:	 http://ocw.mit.edu/courses/physics/8-02-electricity-and-
magnetism-spring-2002/video-lectures/lecture-27-resonance-and-destructive-
resonance/.)

I	 also	 love	 to	 show	 students	 something	 called	 Chladni	 plates,	 which
demonstrate,	 in	 the	 oddest	 and	most	 beautiful	 ways,	 the	 effects	 of	 resonance.
These	metal	plates	are	about	a	foot	across,	and	they	can	be	square,	rectangular,	or
even	circular,	but	the	best	are	square.	They	are	fastened	to	a	rod	or	a	base	at	their
centers.	We	sprinkle	 some	 fine	powder	on	 the	plate	and	 then	rub	a	violin	bow
along	 one	 of	 the	 sides,	 the	 whole	 length	 of	 the	 bow.	 The	 plate	 will	 start	 to
oscillate	in	one	or	more	of	its	resonance	frequencies.	At	the	peaks	and	valleys	of
the	vibrating	waves	on	the	plate,	the	powder	will	shake	off	and	leave	bare	metal;
it	will	accumulate	at	 the	nodes,	where	 the	plate	does	not	vibrate	at	all.	 (Strings
have	 nodal	 points,	 but	 two-dimensional	 objects,	 like	 the	 Chladini	 plate,	 have
nodal	lines.)

Depending	on	how	and	where	you	“play”	the	plate	by	rubbing	it	with	the	bow,
you	will	 excite	 different	 resonance	 frequencies	 and	make	 amazing,	 completely
unpredictable	patterns	on	its	surface.	In	class	I	use	a	more	efficient—but	far	less
romantic—technique	 and	 hook	 the	 plate	 up	 to	 a	 vibrator.	 By	 changing	 the
frequency	of	the	vibrator,	we	see	the	most	remarkable	patterns	come	and	go.	You
can	 see	 what	 I	 mean	 here,	 on	 YouTube:	 www.youtube.com/watch?
v=6wmFAwqQB0g.	Just	try	to	imagine	the	math	behind	these	patterns!

In	the	public	 lectures	I	do	for	kids	and	families,	I	 invite	the	little	ones	to	rub
the	plate	edges	with	 the	bow—they	 love	making	such	beautiful	and	mysterious
patterns.	That’s	what	I’m	trying	to	get	across	about	physics.

The	Music	of	the	Winds
But	we’ve	 left	 out	half	 the	orchestra!	How	about	 a	 flute	or	oboe	or	 trombone?
After	 all,	 they	 don’t	 have	 a	 string	 to	 vibrate,	 or	 a	 soundboard	 to	 project	 their
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sound.	Even	though	they	are	ancient—I	saw	a	photograph	of	a	35,000-year-old
flute	 carved	 out	 of	 vulture	 bone	 in	 the	 newspaper	 a	 little	 while	 ago—wind
instruments	 are	 a	 little	 more	 mysterious	 than	 strings,	 partly	 because	 their
mechanism	is	invisible.

There	are	different	kinds	of	winds,	of	course.	Some,	like	flutes	and	recorders,
are	open	at	both	ends,	while	clarinets	and	oboes	and	trombones	are	closed	at	one
end	(even	though	they	have	openings	for	someone	to	blow	in).	But	all	of	 them
make	music	when	an	infusion	of	air,	usually	from	your	mouth,	causes	a	vibration
of	the	air	column	inside	the	instrument.

When	you	blow	or	force	air	inside	a	wind	instrument	it’s	like	plucking	a	guitar
string	 or	 exciting	 a	 violin	 string	 with	 a	 bow—by	 imparting	 energy	 to	 the	 air
column,	you	are	dumping	a	whole	spectrum	of	 frequencies	 into	 that	air	cavity,
and	 the	 air	 column	 itself	 chooses	 the	 frequency	 at	which	 it	wants	 to	 resonate,
depending	mostly	on	its	length.	In	a	way	that	is	hard	to	imagine,	but	with	a	result
that’s	relatively	easy	to	calculate,	the	air	column	inside	the	instrument	will	pick
out	 its	 fundamental	 frequency,	 and	 some	of	 the	higher	harmonics	 as	well,	 and
start	 vibrating	 at	 those	 frequencies.	 Once	 the	 air	 column	 starts	 vibrating,	 it
pushes	and	pulls	on	the	air,	just	like	vibrating	tuning	fork	prongs,	sending	sound
waves	toward	the	ears	of	the	listeners.

With	 oboes,	 clarinets,	 and	 saxophones,	 you	 blow	 on	 a	 reed,	which	 transfers
energy	 to	 the	 air	 column	 and	 makes	 it	 resonate.	 For	 flutes	 and	 piccolos	 and
recorders,	 it’s	 the	way	the	player	blows	across	a	hole	or	 into	a	mouthpiece	that
creates	 the	 resonance.	 And	 for	 brass	 instruments,	 you	 have	 to	 put	 your	 lips
together	tightly	and	blow	a	kind	of	buzz	into	the	instrument—if	you	haven’t	been
trained	to	do	it,	it’s	all	but	impossible.	I	end	up	just	spitting	into	the	damn	thing!

If	 the	 instrument	 is	open	at	both	ends,	 like	a	flute	or	piccolo,	 the	air	column
can	 vibrate	 at	 its	 harmonics,	 each	 of	 which	 is	 a	 multiple	 of	 the	 fundamental
frequency,	as	was	the	case	with	the	strings.		For	woodwind	instruments	that	are
closed	at	one	end	and	open	at	the	other,	the	shape	of	the	tube	matters.	If	the	bore
is	 conical,	 such	 as	 the	 oboe	 or	 saxophone,	 the	 instruments	 will	 produce	 all
harmonics	like	the	flute.	However,	if	the	bore	is	cylindrical,	such	as	the	clarinet,
the	 air	 column	 will	 only	 resonate	 at	 the	 odd-number	 multiples	 of	 the
fundamental:	 three	 times,	 five	 times,	 seven	 times,	 and	 so	 on.	 For	 complicated
reasons,	all	brass	instruments	resonate	at	all	harmonics,	like	the	flute.

What’s	 more	 intuitive	 is	 that	 the	 longer	 the	 air	 column	 is,	 the	 lower	 the
frequency	and	the	lower	the	pitch	of	the	sound	produced.	If	the	length	of	a	tube
is	halved,	the	frequency	of	the	first	harmonic	will	double.	That’s	why	the	piccolo



plays	such	high	notes,	a	bassoon	plays	such	low	ones.	This	general	principle	also
explains	why	 a	pipe	organ	has	 such	 a	 range	of	 pipe	 lengths—some	organs	 can
produce	 sounds	 across	 nine	 octaves.	 It	 takes	 an	 enormous	 tube—64	 feet	 long
(19.5	meters	 long,	 open	on	both	 sides)	 to	produce	 a	 fundamental	 of	 about	 8.7
hertz,	 literally	 below	 what	 the	 human	 ear	 can	 hear,	 though	 you	 can	 feel	 the
vibrations.	There	are	 just	 two	of	 these	enormous	pipes	 in	 the	world,	since	 they
aren’t	very	practical	at	all.	A	tube	ten	times	shorter	will	produce	a	fundamental
ten	 times	higher,	 thus	87	hertz.	A	 tube	a	hundred	 times	shorter	will	produce	a
fundamental	of	about	870	hertz.

Wind	instrumentalists	don’t	just	blow	into	their	instruments.	They	also	close
or	open	holes	 in	 their	 instruments	 that	 serve	 to	effectively	 shorten	or	 lengthen
the	 air	 column,	 thereby	 raising	 or	 lowering	 the	 frequency	 it	 produces.	 That’s
why,	when	you	play	around	with	a	 child’s	whistle,	 the	 lower	 tones	 come	when
you	put	 your	 fingers	 over	 all	 the	 holes,	 lengthening	 the	 air	 column.	The	 same
principle	holds	for	brass	instruments.	The	longer	the	air	column,	even	if	it	has	to
go	 around	 in	 circles,	 the	 lower	 the	 pitch,	 which	 is	 to	 say,	 the	 lower	 the
frequencies	of	all	the	harmonies.	The	lowest-pitched	tuba,	known	as	the	B-flat	or
BB-flat	 tuba,	 has	 an	 18-foot-long	 tube	 with	 a	 fundamental	 of	 about	 30	 hertz;
additional,	so-called	rotary	valves	can	lower	the	tone	to	20	hertz;	the	tube	of	a	B-
flat	trumpet	is	just	4.5	feet	long.	The	buttons	on	a	trumpet	or	tuba	open	or	close
additional	tubes,	changing	the	pitch	of	the	resonant	frequencies.	The	trombone
is	the	simplest	to	grasp	visually.	Pulling	the	slide	out	increases	the	length	of	the
air	column,	lowering	its	resonant	frequencies.

I	play	“Jingle	Bells”	on	a	wooden	slide	trombone	in	my	class,	and	the	students
love	it—I	never	tell	them	it’s	the	only	tune	I	can	play.	In	fact,	I’m	so	challenged	as
a	musician	that	no	matter	how	many	times	I’ve	given	the	lecture,	I	still	have	to
practice	 beforehand.	 I’ve	 even	 made	 marks	 on	 the	 slide—notes,	 really—
numbered	 1,	 2,	 3,	 and	 so	 forth;	 I	 can’t	 even	 read	musical	 notes.	 But	 as	 I	 said
before,	my	complete	lack	of	musical	talent	hasn’t	stopped	me	from	appreciating
music’s	beauty,	or	from	having	lots	of	fun	experimenting	with	it.

While	 I’m	 writing	 this,	 I’m	 having	 some	 fun	 experimenting	 with	 the	 air
column	 inside	 a	 one-liter	 plastic	 seltzer	 bottle.	 It’s	 not	 at	 all	 a	 perfect	 column,
since	 the	 bottleneck	 gradually	 widens	 to	 the	 full	 diameter	 of	 the	 bottle.	 The
physics	of	a	bottleneck	can	get	really	complicated,	as	you	might	imagine.	But	the
basic	principle	of	wind	instrument	music—the	longer	the	air	column,	the	lower
the	resonant	frequencies—still	holds.	You	can	try	this	easily.

Fill	 up	 an	 empty	 soda	or	wine	bottle	nearly	 to	 the	 top	 (with	water!)	 and	 try



blowing	across	the	top.	It	takes	some	practice,	but	pretty	soon	you	will	get	the	air
column	to	vibrate	at	its	resonance	frequencies.	The	sound	will	be	high	pitched	at
first,	 but	 the	more	 you	 drink	 (you	 see	 why	 I	 suggested	 water),	 the	 longer	 the
column	of	air	becomes,	and	the	pitch	of	the	fundamental	goes	down.	I	also	find
that	the	longer	I	make	the	air	column,	the	more	pleasing	the	sound	is.	The	lower
the	 frequency	 of	 the	 first	 harmonic,	 the	 more	 likely	 it	 is	 that	 I	 will	 generate
additional	 harmonics	 at	 higher	 frequencies,	 and	 the	 sound	 will	 have	 a	 more
complex	timbre.

You	might	be	thinking	that	it’s	the	bottle	vibrating,	just	as	the	string	did,	that
makes	 the	 sound,	and	you	do	 in	 fact	 feel	 the	bottle	vibrating,	 just	 the	way	you
might	 feel	 a	 saxophone	 vibrate.	 But	 again,	 it’s	 the	 air	 column	 inside	 that
resonates.	 To	 drive	 home	 this	 point,	 consider	 this	 puzzle.	 If	 you	 take	 two
identical	wineglasses,	one	empty	and	one	half	full,	and	excite	the	first	harmonic
of	each	by	 tapping	each	glass	 lightly	with	a	spoon	or	by	rubbing	 its	 rim	with	a
wet	finger,	which	frequency	will	be	higher,	and	why?	It’s	not	fair	of	me	to	ask	this
question	 as	 I	 have	 been	 setting	 you	 up	 to	 give	 the	 wrong	 answer—sorry!	 But
perhaps	you’ll	work	it	out.

The	 same	 principle	 is	 at	 play	with	 those	 30-inch	 flexible	 corrugated	 colored
plastic	tubes,	called	whirling	tubes	or	something	similar,	which	you’ve	probably
seen	 or	 played	 with.	 Do	 you	 remember	 how	 they	 work?	 When	 you	 start	 by
whirling	one	around	your	head,	you	first	hear	a	low-frequency	tone.	Of	course,
you	expect	this	 to	be	the	first	harmonic,	 just	 like	I	did	when	I	 first	played	with
this	 toy.	 However,	 somehow	 I	 have	 never	 succeeded	 in	 exciting	 the	 first
harmonic.	It’s	always	the	second	that	I	hear	first.	As	you	go	faster,	you	can	excite
higher	 and	 higher	 harmonics.	 Advertisements	 online	 claim	 you	 can	 get	 four
tones	from	these	tubes,	but	you	may	only	get	three—the	fourth	tone,	which	is	the
fifth	harmonic,	takes	some	really,	really	fast	whirling.	I	calculated	the	frequencies
of	the	first	five	harmonics	for	a	tube	length	of	30	inches	and	find	223	hertz	(I’ve
never	gotten	this	one),	446	hertz,	669	hertz,	892	hertz,	and	1,115	hertz.	The	pitch
gets	pretty	high	pretty	quickly.

Dangerous	Resonance
The	physics	of	 resonance	reaches	 far	beyond	classroom	demonstrations.	Think
of	the	different	moods	that	music	can	produce	with	these	different	instruments.
Musical	 resonance	 speaks	 to	 our	 emotions,	 bringing	 us	 gaiety,	 anxiety,	 calm,
awe,	fear,	 joy,	sorrow,	and	more.	No	wonder	we	talk	of	experiencing	emotional



resonance,	which	 can	 create	 a	 relationship	 filled	with	 richness	 and	 depth,	 and
overtones	of	understanding	and	tenderness	and	desire.	It’s	hardly	accidental	that
we	want	to	be	“in	tune”	with	someone	else.	And	how	painful	when	we	lose	that
resonance,	 either	 temporarily	or	 forever,	 and	what	had	 felt	 like	harmony	 turns
into	discordant	interference	and	emotional	noise.	Think	of	the	characters	George
and	 Martha	 in	 Edward	 Albee’s	 Who’s	 Afraid	 of	 Virginia	 Woolf?	 They	 fight
atrociously.	When	the	fight	is	one	on	one,	they	create	heat,	and	they	remain	just
a	show	for	their	guests.	They’re	much	more	dangerous	when	they	join	forces	to
play	get	the	guest.

Resonance	 can	 become	 powerfully	 destructive	 in	 physics	 too.	 The	 most
spectacular	 example	 of	 destructive	 resonance	 in	 recent	 history	 occurred	 in
November	 1940,	when	 a	 crosswind	hit	 the	main	 span	of	 the	Tacoma	Narrows
Bridge	 just	 right.	 This	 engineering	 marvel	 (which	 had	 become	 known	 as
Galloping	Gertie	for	its	oscillations	up	and	down)	started	to	resonate	powerfully.
As	the	crosswind	increased	the	amplitude	of	the	bridge	oscillations,	the	structure
began	to	vibrate	and	twist,	and	as	the	twisting	grew	more	and	more	extreme,	the
span	tore	apart,	crashing	into	the	water.	You	can	watch	this	spectacular	collapse
at	www.youtube.com/watch?v=j-zczJXSxnw.

Ninety	 years	 earlier,	 in	Angers,	 France,	 a	 suspension	 bridge	 over	 the	Maine
River	collapsed	when	478	soldiers	crossed	it	in	military	formation,	marching	 in
step.	 Their	 marching	 excited	 a	 resonance	 in	 the	 bridge,	 which	 snapped	 some
corroded	cables;	more	than	200	soldiers	died	when	they	fell	into	the	river	below.
The	disaster	 stopped	suspension	bridge	building	 in	France	 for	 twenty	years.	 In
1831,	British	 troops	marching	 in	 step	 across	 the	Broughton	Suspension	Bridge
caused	the	bridge	deck	to	resonate,	pull	out	a	bolt	at	one	end	of	the	bridge,	and
collapse.	No	one	was	killed,	but	 the	British	army	 instructed	all	 troops	crossing
bridges	from	then	on	to	do	so	by	breaking	their	marching	step.

The	Millennium	Bridge	 in	 London	opened	 in	 2000,	 and	many	 thousands	 of
pedestrians	 discovered	 that	 it	 wobbled	 a	 good	 bit	 (it	 had	 what	 engineers	 call
lateral	 resonance);	 after	 just	 a	 few	 days	 authorities	 closed	 the	 bridge	 for	 two
embarrassing	 years	 while	 they	 installed	 dampers	 to	 control	 the	 movement
generated	by	pedestrian	footsteps.	Even	the	great	Brooklyn	Bridge	in	New	York
City	 frightened	 pedestrians	 who	 packed	 the	 bridge	 during	 a	 2003	 electrical
blackout	and	felt	a	lateral	swaying	in	the	deck	that	made	some	of	them	sick.

In	such	situations	pedestrians	put	more	weight	on	a	bridge	than	the	cars	that
are	usually	crossing	them,	and	the	combined	motion	of	their	feet,	even	if	they	are
not	 in	step,	can	start	 to	excite	a	resonance	vibration—a	wobble—on	the	bridge
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deck.	When	 the	 bridge	 goes	 one	 way,	 they	 compensate	 by	 stepping	 the	 other
way,	magnifying	the	amplitude	of	 the	wobble.	Even	engineers	admit	 they	don’t
know	 enough	 about	 the	 effects	 crowds	 can	 have	 on	 bridges.	 Fortunately,	 they
know	 a	 lot	 about	 building	 skyscrapers	 that	 can	 resist	 the	 high	 winds	 and
earthquakes	 that	 threaten	 to	generate	 resonance	 frequencies	 that	 could	destroy
their	creations.	Imagine—the	same	principles	that	produced	the	plaintive	sound
of	 our	 ancestors’	 35,000-year-old	 flute	 could	 threaten	 the	mighty	 and	massive
Brooklyn	Bridge	and	the	tallest	buildings	in	the	world.



CHAPTER	7

The	Wonders	of	Electricity

This	works	best	in	the	winter,	when	the	air	is	very	dry.	Make	sure	you’re	wearing
a	polyester	 shirt	or	 sweater,	 then	stand	 in	 front	of	a	mirror	when	 it’s	dark	and
start	 taking	your	shirt	or	sweater	off.	You	will	have	anticipated	that	you’ll	hear
crackling	noises,	just	like	when	you	pull	laundry	out	of	the	dryer	(unless	you	use
one	of	those	unromantic	dryer	sheets	designed	to	reduce	all	that	electricity).	But
now	you	will	also	see	the	glow	of	dozens	of	teeny-weeny	little	sparks.	I	love	doing
this	because	it	reminds	me	just	how	close	physics	is	to	our	everyday	experience,
if	only	we	know	how	to	look	for	it.	And,	as	I	like	to	point	out	to	my	students,	the
truth	is,	this	little	demonstration	is	even	more	fun	if	you	do	it	with	a	friend.

You	 know	 that	 whenever	 you	 walk	 across	 a	 rug	 in	 winter	 and	 reach	 for	 a
doorknob—are	you	wincing?—you	may	get	a	shock,	and	you	know	that	it’s	from
static	electricity.	You’ve	probably	even	shocked	a	friend	by	shaking	her	hand,	or
felt	a	shock	when	you’ve	handed	your	overcoat	to	a	coat	checker.	Frankly,	it	feels
like	 static	 electricity	 is	 everywhere	 in	 wintertime.	 You	 can	 feel	 your	 hair
separating	when	you	brush	it,	and	sometimes	 it	stands	up	on	its	own	after	you
take	your	hat	off.	What	is	it	about	winter,	and	why	are	so	many	sparks	flying?

The	answer	to	all	these	questions	begins	with	the	ancient	Greeks,	who	were	the
first	to	name	and	make	a	written	record	of	the	phenomenon	we’ve	come	to	know
as	 electricity.	Well	 over	 two	 thousand	 years	 ago,	 the	 Greeks	 knew	 that	 if	 you
rubbed	 amber—the	 fossilized	 resin	 that	 they	 and	 the	 Egyptians	 made	 into
jewelry—on	a	cloth,	 the	amber	could	attract	pieces	of	dry	 leaves.	After	enough
rubbing,	it	could	even	produce	a	jolt.

I’ve	read	stories	claiming	that	when	Greeks	were	bored	at	parties,	the	women
would	rub	their	amber	jewelry	on	their	clothing	and	touch	the	jewelry	to	frogs.
The	frogs	would	jump,	of	course,	desperately	trying	to	escape	the	crazy	partiers,
which	apparently	made	 for	great	 fun	among	 the	ancients.	Nothing	about	 these
stories	makes	any	sense.	First	off,	how	many	parties	can	you	imagine	where	there
are	lots	of	frogs	waiting	around	to	be	shocked	by	drunken	revelers?	Secondly,	for
reasons	 I’ll	 explain	 in	 a	 bit,	 static	 electricity	 doesn’t	 work	 so	 well	 during	 the
months	 when	 you’re	 more	 likely	 to	 see	 frogs,	 and	 when	 the	 air	 is	 humid—
especially	in	Greece.	Whatever	the	truth	of	this	story,	what	is	undeniable	is	that



the	Greek	word	for	“amber”	 is	electron,	 so	 it	was	really	 the	Greeks	who	named
electricity,	along	with	so	much	else	of	the	universe,	both	large	and	small.

The	 European	 physicists	 of	 the	 sixteenth	 and	 seventeenth	 centuries,	 when
physics	was	known	as	natural	philosophy,	didn’t	know	anything	about	atoms	or
their	components,	but	they	were	terrific	observers,	experimenters,	and	inventors,
and	some	were	fantastic	theorists	as	well.	You	had	Tycho	Brahe,	Galileo	Galilei,
Johannes	Kepler,	Isaac	Newton,	René	Descartes,	Blaise	Pascal,	Robert	Hooke	and
Robert	 Boyle,	 Gottfried	 Leibniz,	 Christiaan	 Huygens—all	 making	 discoveries,
writing	books,	disputing	one	another,	and	turning	medieval	scholasticism	upside
down.

By	the	1730s,	genuine	scientific	study	of	electricity	(as	opposed	to	putting	on
parlor	 tricks)	 was	 well	 under	 way	 in	 England,	 France,	 and,	 of	 course,
Philadelphia.	 All	 of	 these	 experimenters	 had	 figured	 out	 that	 if	 they	 rubbed	 a
glass	rod	with	a	piece	of	silk	it	would	gain	a	charge	of	some	kind	(let’s	call	it	A)—
but	if	they	rubbed	amber	or	rubber	in	the	same	way	it	would	acquire	a	different
charge	(let’s	call	it	B	for	now).	They	knew	that	the	charges	were	different	because
when	they	took	two	glass	rods	that	they’d	rubbed	with	silk,	both	charged	with	A,
and	put	them	near	each	other,	they	would	repel	each	other,	by	some	completely
invisible	but	nevertheless	palpable	 force.	 Similar	objects	 that	had	been	charged
with	charge	B	also	repelled	each	other.	And	yet	differently	charged	objects,	say	a
charged	glass	 rod	 (A)	 and	a	 charged	 rubber	 rod	 (B),	would	 attract	 rather	 than
repel	each	other.

Charging	 objects	 by	 rubbing	 them	 is	 a	 truly	 intriguing	 phenomenon,	 and	 it
even	has	a	wonderful	name,	 the	“triboelectric”	effect,	 from	the	Greek	word	 for
“rubbing.”	 It	 feels	 as	 though	 the	 friction	 between	 the	 two	 objects	 is	 what
produces	 the	 charge,	 but	 that’s	 not	 the	 case.	 It	 turns	 out	 that	 some	materials
greedily	 attract	 charge	 B,	 while	 other	 materials	 can’t	 wait	 to	 lose	 it,	 thereby
creating	 charge	 A.	 Rubbing	 works	 because	 it	 increases	 the	 number	 of	 contact
points	between	substances,	 facilitating	the	 transfer	of	charge.	There	 is	a	ranked
list	 of	 many	materials	 that	 make	 up	 the	 “triboelectric	 series”	 (you	 can	 find	 it
easily	 online),	 and	 the	 farther	 apart	 two	 materials	 are	 on	 the	 scale,	 the	 more
easily	they	can	charge	each	other.

Take	plastic	or	hard	rubber	that	combs	are	typically	made	of.	They	are	pretty
far	 away	 from	 human	 hair	 in	 the	 triboelectric	 series,	 which	 accounts	 for	 how
easily	your	hair	can	spark	and	stand	up	when	you	comb	it	in	winter—especially
my	hair.	And	think	about	it:	not	only	does	it	spark,	since	by	vigorously	combing
my	hair	I	am	charging	both	the	comb	and	my	hair;	but	since	the	hair	all	picks	up



the	 same	 charge,	 whichever	 it	 is,	 each	 charged	 hair	 repels	 all	 the	 other	 like-
charged	hairs,	and	I	start	to	resemble	a	mad	scientist.	When	you	scuff	your	shoes
on	a	carpet,	you	charge	yourself	with	A	or	B,	depending	on	the	material	of	your
shoe	soles	and	the	carpet.	When	you	get	shocked	by	the	nearest	doorknob,	your
hand	 is	 either	 receiving	 charge	 from	 the	doorknob	or	 shooting	 charge	 to	 it.	 It
doesn’t	matter	to	you	which	charge	you	have;	either	way,	you	feel	the	shock!

It	was	Benjamin	Franklin—diplomat,	statesman,	editor,	political	philosopher,
inventor	 of	 bifocals,	 swim	 fins,	 the	 odometer,	 and	 the	 Franklin	 stove—who
introduced	 the	 idea	 that	 all	 substances	 are	 penetrated	 with	 what	 he	 called
“electric	 fluid,”	or	“electric	 fire.”	Because	 it	seemed	to	explain	the	experimental
results	of	his	fellow	natural	philosophers,	this	theory	proved	very	persuasive.	The
Englishman	 Stephen	 Gray,	 for	 instance,	 had	 shown	 that	 electricity	 could	 be
conducted	over	distances	in	metal	wire,	so	the	idea	of	a	usually	invisible	fluid	or
fire	(after	all,	sparks	do	resemble	fire)	made	good	sense.

Franklin	 argued	 that	 if	 you	 get	 too	 much	 of	 the	 fire	 then	 you’re	 positively
charged,	and	if	you	have	a	deficiency	of	it	then	you’re	negatively	charged.	He	also
introduced	the	convention	of	using	positive	and	negative	signs	and	decided	that
if	you	rub	glass	with	a	piece	of	wool	or	silk	(producing	the	A	charge)	you	give	it
an	excess	of	fire,	and	therefore	it	should	be	called	positive.

Franklin	didn’t	know	what	caused	electricity,	but	his	idea	of	an	electrical	fluid
was	brilliant	as	well	as	useful,	even	if	not	exactly	correct.	He	maintained	that	 if
you	take	 the	 fluid	and	bring	 it	 from	one	substance	 to	another,	 the	one	with	an
excess	becomes	positively	charged	and,	at	the	same	time,	the	one	from	which	you
take	 the	 fluid	 becomes	 negatively	 charged.	 Franklin	 had	 discovered	 the	 law	 of
conservation	of	electric	charge,	which	states	 that	you	cannot	 truly	create	or	get
rid	 of	 charge.	 If	 you	 create	 a	 certain	 amount	 of	 positive	 charge,	 then	 you
automatically	 create	 the	 same	 amount	 of	 negative	 charge.	 Electric	 charge	 is	 a
zero-sum	game—as	physicists	would	say,	charge	is	conserved.

Franklin	understood,	as	we	do	today,	 that	 like	charges	(positive	and	positive,
negative	and	negative)	repel	each	other,	and	that	opposite	charges	(positive	and
negative)	 attract.	His	 experiments	 showed	 him	 that	 the	more	 fire	 objects	 had,
and	 the	 closer	 they	 were	 to	 each	 other,	 the	 stronger	 the	 forces,	 whether	 of
attraction	 or	 repulsion.	 He	 also	 figured	 out,	 like	 Gray	 and	 others	 around	 the
same	 time,	 that	 some	 substances	 conduct	 the	 fluid	 or	 fire—we	 now	 call	 those
substances	 conductors—and	 others	 do	 not,	 and	 are	 therefore	 called
nonconductors,	or	insulators.

What	Franklin	had	not	figured	out	is	what	the	fire	really	consists	of.	If	it’s	not



fire	or	fluid,	what	is	it?	And	why	does	there	seem	to	be	so	much	more	of	it	in	the
winter—at	least	where	I	live,	in	the	northeastern	United	States,	shocking	us	right
and	left?

Before	we	take	a	look	inside	the	atom	to	grapple	with	the	nature	of	electric	fire,
we	need	to	see	that	electricity	pervades	our	world	far	more	than	Franklin	knew—
and	far	more	than	most	of	us	realize.	It	not	only	holds	together	most	of	what	we
experience	on	a	daily	basis;	 it	 also	makes	possible	everything	we	 see	and	know
and	 do.	 We	 can	 only	 think	 and	 feel	 and	 muse	 and	 wonder	 because	 electric
charges	 jump	between	uncountable	millions	 of	 the	 roughly	 100	 billion	 cells	 in
our	 brains.	 At	 the	 same	 time,	 we	 can	 only	 breathe	 because	 electric	 impulses
generated	by	nerves	cause	different	muscles	of	our	chest	to	contract	and	relax	in
a	complicated	symphony	of	movements.	For	example,	and	most	simply,	as	your
diaphragm	 contracts	 and	 drops	 in	 your	 thorax,	 it	 enlarges	 the	 chest	 cavity,
drawing	air	into	the	lungs.	As	it	relaxes	and	expands	upward	again,	it	pushes	air
out	of	the	lungs.	None	of	these	motions	would	be	possible	without	countless	tiny
electric	impulses	constantly	sending	messages	throughout	your	body,	in	this	case
telling	muscles	to	contract	and	then	to	stop	contracting	while	others	take	up	the
work.	Back	and	forth,	back	and	forth,	for	as	long	as	you	live.

Our	eyes	see	because	the	tiny	cells	of	our	retinas,	the	rods	and	cones	that	pick
up	black-white	and	colors,	 respectively,	get	 stimulated	by	what	 they	detect	and
shoot	off	electric	signals	through	the	optic	nerves	to	our	brains.	Our	brains	then
figure	out	whether	we’re	looking	at	a	fruit	stand	or	a	skyscraper.	Most	of	our	cars
run	on	gasoline,	though	hybrids	use	increasing	amounts	of	electricity,	but	there
would	be	no	gasoline	used	in	any	engine	without	the	electricity	running	from	the
battery	 through	 the	 ignition	 to	 the	 cylinders,	 where	 electric	 sparks	 ignite
controlled	explosions,	thousands	of	them	per	minute.	Since	molecules	form	due
to	electric	forces	that	bind	atoms	together,	chemical	reactions—such	as	gasoline
burning—would	be	impossible	without	electricity.

Because	 of	 electricity,	 horses	 run,	 dogs	 pant,	 and	 cats	 stretch.	 Because	 of
electricity,	Saran	Wrap	crumples,	packing	tape	attracts	itself,	and	the	cellophane
wrapping	 never	 seems	 to	want	 to	 come	 off	 of	 a	 box	 of	 chocolates.	 This	 list	 is
hardly	exhaustive,	but	there’s	really	nothing	that	we	can	imagine	existing	without
electricity;	we	could	not	even	think	without	electricity.

That	 holds	 true	 when	 we	 turn	 our	 focus	 to	 things	 even	 smaller	 than	 the
microscopic	cells	 in	our	bodies.	Every	bit	of	matter	on	Earth	consists	of	atoms,
and	 to	 really	 understand	 electricity	we	 have	 to	 go	 inside	 the	 atom	 and	 briefly
look	at	 its	parts:	not	all	of	 them	now,	because	 that	gets	 incredibly	complicated,



but	just	the	parts	we	need.
Atoms	 themselves	 are	 so	 tiny	 that	 only	 the	 most	 powerful	 and	 ingenious

instruments—scanning	 tunneling	 microscopes,	 atomic	 force	 microscopes,	 and
transmission	electron	microscopes—can	see	them.	(There	are	some	astonishing
images	 from	 these	 instruments	 on	 the	 web.	 You	 can	 see	 some	 at	 this	 link:
www.almaden.ibm.com/vis/stm/gallery.html.)

If	I	were	to	take	6.5	billion	atoms,	roughly	the	same	as	the	number	of	people
on	Earth,	and	line	them	up	in	a	row,	touching	one	another,	I	would	have	a	line
about	2	 feet	 long.	But	even	smaller	 than	every	atom,	about	 ten	 thousand	 times
smaller,	 is	 its	nucleus,	which	contains	positively	charged	protons	and	neutrons.
The	 latter,	as	you	might	 imagine	 from	their	name,	are	electrically	neutral;	 they
have	no	charge	at	all.	Protons	(Greek	for	“first	one”)	have	about	the	same	mass	as
the	neutrons—the	inconceivably	small	two-billionths	of	a	billionth	of	a	billionth
(2	×	10–27)	of	a	kilogram,	approximately.	So	no	matter	how	many	protons	and
neutrons	a	nucleus	has—and	some	have	more	than	two	hundred—it	remains	a
real	lightweight.	And	tiny:	just	about	a	trillionth	of	a	centimeter	in	diameter.

Most	important	for	understanding	electricity,	however,	is	that	the	proton	has	a
positive	charge.	There’s	no	intrinsic	reason	for	it	to	be	called	positive,	but	since
Franklin,	 physicists	 have	 called	 the	 charge	 left	 on	 a	 glass	 rod	 after	 it’s	 been
rubbed	with	silk	positive,	so	protons	are	positive.

Even	more	important,	it	turns	out,	is	the	remainder	of	the	atom,	consisting	of
electrons—negatively	 charged	 particles	 that	 swarm	 around	 the	 nucleus	 in	 a
cloud,	at	 some	distance	by	 subatomic	 standards.	 If	you	hold	a	baseball	 in	your
hand,	 representing	 an	 atomic	 nucleus,	 the	 cloud	 of	 electrons	 around	 it	 would
range	as	far	as	half	a	mile	away.	Clearly,	most	of	the	atom	is	empty	space.

The	negative	charge	of	an	electron	is	equal	in	strength	to	the	positive	charge	of
the	 proton.	 As	 a	 result,	 atoms	 and	 molecules	 that	 have	 the	 same	 number	 of
protons	and	electrons	are	electrically	neutral.	When	they	are	not	neutral,	when
they	have	either	an	excess	or	deficit	of	electrons,	we	call	them	ions.	Plasmas,	as
we	discussed	in	chapter	6,	are	gases	partially	or	fully	ionized.	Most	of	the	atoms
and	molecules	we	 deal	 with	 on	 Earth	 are	 electrically	 neutral.	 In	 pure	water	 at
room	temperature	only	1	in	10	million	molecules	are	ionized.

As	 a	 consequence	 of	 Franklin’s	 convention,	 when	 some	 objects	 have	 an
overabundance	of	electrons,	we	say	 that	 they	are	negatively	charged,	and	when
they	have	a	deficit	of	electrons,	we	say	they	have	a	positive	charge.	When	you	rub
glass	with	a	piece	of	silk	you	“rub	off”	(sort	of)	lots	of	electrons,	so	the	glass	ends
up	with	a	positive	charge.	When	you	rub	amber	or	hard	rubber	with	 the	 same
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piece	of	silk,	they	collect	electrons	and	develop	a	negative	charge.
In	most	metals	large	numbers	of	electrons	have	escaped	their	atoms	altogether

and	are	more	or	less	freely	wandering	around	between	atoms.	These	electrons	are
particularly	 susceptible	 to	 an	 external	 charge,	 either	 positive	 or	 negative,	 and
when	such	a	charge	is	applied,	they	move	toward	or	away	from	it—thus	creating
electric	current.	I	have	a	lot	more	to	say	about	current,	but	for	the	time	being	I’ll
just	 point	 out	 that	 we	 call	 these	 materials	 conductors,	 because	 they	 easily
conduct	 (allow	 the	movement	 of)	 charged	 particles,	 which	 in	 this	 case	means
electrons.	(Ions	can	also	create	electric	currents	but	not	in	solids,	and	thus	not	in
metals.)

I	love	the	idea	of	electrons	just	ready	to	play,	ready	to	move,	ready	to	respond
to	positive	or	negative	charges.	In	nonconductors,	there’s	very	little	action	of	this
sort;	 all	 the	 electrons	 are	well	 fixed	 to	 their	 individual	 atoms.	But	 that	 doesn’t
mean	 we	 can’t	 have	 some	 fun	 with	 nonconductors—especially	 your	 garden-
variety,	rubber,	nonconducting	balloon.

You	can	demonstrate	everything	I’m	talking	about	here	by	supplying	yourself
with	a	little	pack	of	uninflated	rubber	balloons	(thinner	ones	work	better,	like	the
ones	you	can	twist	into	animals).	Since	most	of	you	don’t	have	glass	rods	sitting
around,	I	had	hoped	that	a	water	glass	or	wine	bottle	or	even	a	lightbulb	might
substitute,	but	despite	my	best	efforts,	they	don’t.	So	why	not	try	a	large	plastic	or
hard	rubber	comb?	It	will	also	be	helpful	to	have	a	piece	of	silk,	maybe	an	old	tie
or	scarf,	or	a	Hawaiian	shirt	your	significant	other	has	been	trying	to	get	you	to
throw	 out.	 But	 if	 you	 don’t	 mind	 getting	 your	 hair	mussed—for	 the	 cause	 of
science,	who	would	mind?—you	can	make	use	of	your	own	hair.	And	you’ll	need
to	 tear	up	some	paper	 into,	 say,	a	 few	dozen	or	 so	pieces.	The	number	doesn’t
matter,	but	they	should	be	small,	about	the	size	of	a	dime	or	penny.

Like	all	 static	electricity	experiments,	 these	work	a	 lot	better	 in	winter	 (or	 in
afternoon	desert	 air),	when	 the	 air	 is	 dry	 rather	 than	moist.	Why?	Because	 air
itself	is	not	a	conductor—in	fact,	it’s	a	pretty	good	insulator.	However,	if	there	is
water	in	the	air,	charge	can	bleed	away	for	complicated	reasons	which	we	will	not
discuss.	 Instead	of	allowing	charge	to	build	up	on	a	rod	or	cloth	or	balloon,	or
your	hair,	humid	air	gradually	bleeds	charge	away.	That’s	why	you	only	have	a
problem	getting	shocked	on	doorknobs	when	the	air	is	really	dry.

Invisible	Induction
Assemble	all	your	materials,	and	get	ready	to	experience	some	of	the	wonders	of



electricity.	First	charge	up	your	comb	by	rubbing	 it	hard	on	your	hair,	making
sure	your	hair	is	very	dry,	or	rubbing	it	with	the	piece	of	silk.	We	know	from	the
triboelectric	 series	 that	 the	comb	will	pick	up	negative	charge.	Now,	 stop	 for	a
moment	and	think	about	what’s	going	to	happen	as	you	bring	the	comb	close	to
the	pile	of	paper	bits,	and	why.	I	could	certainly	understand	if	you	say	“nothing
at	all.”

Then	 put	 the	 comb	 a	 few	 inches	 above	 your	 little	 mound	 of	 paper	 pieces.
Slowly	lower	the	comb	and	watch	what	happens.	Amazing,	isn’t	it?	Try	it	again—
it’s	no	accident.	Some	of	the	bits	of	paper	jump	up	to	your	comb,	some	stick	to	it
for	a	bit	and	fall	back	down,	and	some	stay	fast.	In	fact,	if	you	play	around	with
the	comb	and	the	paper	a	bit,	you	can	make	the	pieces	of	paper	stand	on	edge,
and	even	dance	on	the	surface.	What	on	earth	is	going	on?	Why	do	some	pieces
of	 paper	 stick	 to	 the	 comb,	 while	 others	 jump	 up,	 touch,	 and	 fall	 right	 back
down?

These	 are	 excellent	 questions,	with	 very	 cool	 answers.	Here’s	what	 happens.
The	negative	charge	on	the	comb	repels	the	electrons	in	the	paper	atoms	so	that,
even	though	they’re	not	free,	they	spend	just	a	little	more	time	on	the	far	side	of
their	atoms.	When	they	do	so,	the	sides	of	the	atoms	nearest	the	comb	are	just	a
tiny	 bit	 more	 positively	 charged	 than	 they	 had	 been	 before.	 So,	 the	 positive-
leaning	edge	or	side	of	the	paper	is	attracted	to	the	negative	charge	on	the	comb,
and	 the	 very	 lightweight	 paper	 jumps	 up	 toward	 the	 comb.	 Why	 does	 their
attractive	 force	 win	 out	 over	 the	 repulsive	 force	 between	 the	 comb’s	 negative
charge	 and	 the	 electrons	 in	 the	 paper?	 It’s	 because	 the	 strength	 of	 electrical
repulsion—and	 attraction—is	 proportional	 to	 the	 strength	 of	 the	 charges,	 but
inversely	proportional	 to	 the	 square	of	 the	distance	between	 them.	We	call	 this
Coulomb’s	law,	named	after	the	French	physicist	Charles-Augustin	de	Coulomb,
who	made	this	important	discovery,	and	you	will	notice	its	astonishing	similarity
to	Newton’s	law	of	universal	gravitation.	Note	that	we	also	call	the	basic	unit	of
charge	 the	 coulomb,	 and	 the	positive	unit	of	 charge	 is	+1	 coulomb	 (about	6	×
1018	protons),	while	the	negative	charge	is	–1	coulomb	(about	6	×	1018	electrons).

Coulomb’s	 law	 tells	 us	 that	 even	 a	 very	 small	 difference	 in	 the	 distance
between	the	positive	charges	and	the	negative	charges	can	have	a	large	effect.	Or
put	differently,	the	attractive	force	of	the	nearer	charges	overpowers	the	repelling
force	of	the	more	distant	charges.

We	call	this	entire	process	induction,	since	what	we	are	doing	when	we	bring	a
charged	object	toward	a	neutral	one	is	inducing	charge	on	the	near	and	far	sides
of	the	neutral	object,	creating	a	kind	of	charge	polarization	in	the	pieces	of	paper.



You	can	 see	 several	 versions	of	 this	 little	demonstration	 in	my	 lecture	 for	kids
and	 their	 parents	 called	 “The	Wonders	 of	Electricity	 and	Magnetism”	on	MIT
World,	which	you	can	find	here:	http://mitworld.mit.edu/video/319.

As	for	why	some	bits	of	paper	fall	right	back	down	while	some	stay	stuck,	this
is	also	interesting.	When	a	piece	of	paper	touches	the	comb,	some	of	the	excess
electrons	on	the	comb	move	to	the	paper.	When	that	happens,	there	still	may	be
an	attractive	electric	force	between	the	comb	and	the	piece	of	paper,	but	it	may
not	be	large	enough	anymore	to	counter	the	force	of	gravity,	and	thus	the	piece
of	paper	will	fall	down.	If	the	charge	transfer	is	high,	the	electric	force	may	even
become	repelling,	 in	which	case	both	 the	 force	of	gravity	and	 the	electric	 force
will	accelerate	the	piece	of	paper	downward.

Now	blow	up	a	balloon,	knot	the	end	so	it	stays	blown	up,	and	tie	a	string	to
the	end.	Find	a	place	in	your	house	where	you	can	hang	the	balloon	freely.	From
a	hanging	lamp,	perhaps.	Or	you	can	put	a	weight	of	some	kind	on	the	string	and
let	 the	balloon	hang	down	 from	your	kitchen	 table,	 about	 six	 inches	 to	 a	 foot.
Charge	the	comb	again	by	rubbing	it	vigorously	with	the	silk	or	on	your	hair—
remember,	more	 rubbing	 produces	 a	 stronger	 charge.	Very	 slowly,	 bring	 your
comb	close	to	the	balloon.	What	do	you	think	is	going	to	happen?

Now	try	it.	Also	pretty	weird,	right?	The	balloon	moves	toward	the	comb.	Just
like	with	the	paper,	your	comb	produced	some	kind	of	separation	of	charge	on
the	balloon	(induction!).	So	what	will	happen	when	you	move	the	comb	farther
away—and	why?	You	know,	intuitively,	that	the	balloon	will	return	to	its	vertical
position.	But	now	you	know	why,	right?	When	the	external	influence	disappears,
the	electrons	no	longer	have	any	reason	to	hang	out	a	little	more	on	the	far	side
of	their	respective	atoms.	Look	what	we	were	able	to	deduce	just	from	this	little
bit	 of	 rubbing	 a	 comb	 and	 playing	with	 little	 pieces	 of	 paper	 and	 a	 drugstore
balloon!

Now	blow	up	 some	more	of	 the	balloons.	What	happens	when	you	 rub	one
vigorously	on	your	hair?	That’s	right.	Your	hair	starts	to	do	weird	things.	Why?
Because	 in	 the	 triboelectric	 series	human	hair	 is	way	at	 the	positive	end,	and	a
rubber	balloon	is	on	the	seriously	negative	side.	In	other	words,	rubber	picks	up
a	lot	of	the	electrons	from	your	hair,	leaving	your	hair	charged	positively.	Since
like	 charges	 repel,	what	 else	 can	 your	hair	 do	when	 each	 strand	has	 a	 positive
charge	and	wants	to	get	away	from	all	the	other	like-charged	hairs?	Your	strands
of	hair	are	repelling	one	another,	making	them	stand	up.	This	 is	of	course	also
what	happens	when	you	pull	 a	knit	hat	off	of	 your	head	 in	winter.	 In	 rubbing
your	hair,	 the	hat	 takes	 lots	of	 electrons	away,	 leaving	 the	 strands	of	 your	hair
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positively	charged	and	aching	to	stand	up.
Back	to	the	balloons.	So	you’ve	rubbed	one	vigorously	on	your	hair	(rubbing	it

on	your	polyester	shirt	may	work	even	better).	I	think	you	know	what	I’m	going
to	 suggest,	 right?	 Put	 the	 balloon	 against	 the	wall,	 or	 on	 your	 friend’s	 shirt.	 It
sticks.	Why?	Here’s	the	key.	When	you	rub	the	balloon,	you	charge	it.	When	you
hold	the	balloon	against	the	wall,	which	is	not	much	of	a	conductor,	the	electrons
orbiting	 the	 atoms	 in	 the	wall	 feel	 the	 repulsive	 force	of	 the	balloon’s	negative
charge	and	spend	just	a	wee	bit	more	time	on	the	side	of	the	atom	farthest	away
from	 the	 balloon	 and	 a	 little	 bit	 less	 on	 the	 side	 closest	 to	 the	 balloon—that’s
induction!

The	surface	of	the	wall,	in	other	words,	right	where	the	balloon	is	touching	it,
will	become	slightly	positively	charged,	and	the	negatively	charged	balloon	will
be	attracted.	This	is	a	pretty	amazing	result.	But	why	don’t	the	two	charges—the
positive	 and	 negative	 charges—just	 neutralize	 each	 other,	 with	 charges
transferring,	making	the	balloon	immediately	fall	off?	It’s	a	very	good	question.
For	one	thing	the	rubber	balloon	has	picked	up	some	extra	electrons.	They	don’t
move	around	very	easily	in	a	nonconductor	like	rubber,	so	charges	tend	to	stay
put.	Not	only	that,	you’re	not	rubbing	the	balloon	against	the	wall,	making	lots
and	 lots	of	contact.	 It’s	 just	 sitting	 there,	doing	 its	attractive	 thing.	But	 it’s	also
held	there	by	friction.	Remember	the	Rotor	carnival	ride	back	in	chapter	3?	Here
the	electric	force	plays	the	role	played	by	the	centripetal	force	of	the	Rotor.	And
the	balloon	can	stay	on	the	wall	 for	some	time,	until	 the	charge	gradually	 leaks
off	the	balloon,	generally	onto	moisture	in	the	air.	(If	your	balloons	don’t	stick,
the	air	is	either	too	humid,	making	the	air	a	better	conductor,	or	your	balloons
might	be	too	heavy—I	suggested	thin	ones	for	just	this	reason.)

I	have	a	ball	 sticking	balloons	on	the	kids	who	come	to	my	public	 lectures.	 I
have	done	this	for	years	at	kids’	birthday	parties,	and	you	can	have	great	fun	with
it	too!

Induction	works	for	all	kinds	of	objects,	conductors	as	well	as	insulators.	You
could	do	the	comb	experiment	with	one	of	those	helium-filled	Aluminized	Mylar
balloons	you	can	buy	in	grocery	or	dollar	stores.	As	you	bring	the	comb	near	the
balloon,	its	free	electrons	tend	to	move	away	from	the	negatively	charged	comb,
leaving	positively	charged	ions	nearer	the	comb,	which	then	attract	the	balloon
toward	it.

Even	 though	we	can	charge	rubber	balloons	by	rubbing	 them	on	our	hair	or
shirt,	 rubber	 is,	 in	 fact,	 a	nearly	 ideal	 insulator—which	 is	why	 it’s	used	 to	coat
conducting	wires.	 The	 rubber	 keeps	 charge	 from	 leaking	 out	 of	 the	wires	 into



moist	 air	 or	 jumping	 to	 a	 nearby	 object—making	 sparks.	 After	 all,	 you	 don’t
want	sparks	jumping	around	in	flammable	environments,	like	the	walls	of	your
house.	 Rubber	 can	 and	 does	 protect	 us	 from	 electricity	 all	 the	 time.	 What	 it
cannot	 do,	 however,	 is	 protect	 us	 from	 the	 most	 powerful	 form	 of	 static
electricity	you	know:	lightning.	For	some	reason	people	keep	repeating	the	myth
that	rubber	sneakers	or	rubber	tires	can	protect	us	from	lightning.	I’m	not	sure
why	 these	 ideas	 still	 have	 any	 currency,	 but	 you’re	 best	 off	 forgetting	 them
immediately!	A	lightning	bolt	is	so	powerful	that	it	doesn’t	care	one	bit	about	a
little	bit	of	rubber.	Now	you	may	be	safe	if	lightning	hits	your	car—probably	not,
in	reality—but	it	doesn’t	have	anything	to	do	with	the	rubber	tires.	I’ll	get	to	that
a	little	later.

Electric	Fields	and	Sparks
I	said	before	that	 lightning	was	just	a	big	spark,	a	complicated	spark,	but	still	a
spark.	 But	 then	 what,	 you	may	 ask,	 are	 sparks?	OK,	 to	 understand	 sparks	 we
need	to	understand	something	really	important	about	electric	charge.	All	electric
charges	 produce	 invisible	 electric	 fields,	 just	 as	 all	 masses	 produce	 invisible
gravitational	 fields.	You	can	sense	 the	electric	 fields	when	you	bring	oppositely
charged	objects	close	to	each	other	and	you	see	the	attraction	between	them.	Or,
when	you	bring	 like-charged	objects	 close	and	see	 the	 repelling	 force—you	are
seeing	the	effects	of	the	electric	field	between	the	objects.

We	measure	the	strength	of	that	field	in	units	of	volts	per	meter.	Frankly,	it’s
not	easy	to	explain	what	a	volt	 is,	 let	alone	volts	per	meter,	but	I’ll	give	it	a	try.
The	voltage	of	an	object	 is	a	measure	of	what’s	 called	 its	 electric	potential.	We
will	assign	a	zero	electric	potential	to	the	Earth.	Thus	the	Earth	has	zero	voltage.
The	voltage	of	a	positively	charged	object	is	positive;	it’s	defined	as	the	amount	of
energy	 I	 have	 to	 produce	 to	 bring	 the	 positive	 unit	 of	 charge	 (+1	 coulomb—
which	 is	 the	 charge	 of	 about	 6	 ×	 1018	 protons)	 from	 Earth	 or	 from	 any
conducting	 object	 connected	 with	 the	 Earth	 (e.g.,	 the	 water	 faucets	 in	 your
house)	 to	 that	 object.	Why	 do	 I	 have	 to	 produce	 energy	 to	move	 that	 unit	 of
charge?	 Well,	 recall	 that	 if	 that	 object	 is	 positively	 charged,	 it	 will	 repel	 the
positive	unit	charge.	Thus	I	have	to	generate	energy	(in	physics	we	say	I	have	to
do	work)	 to	overcome	 that	 repelling	 force.	The	unit	of	 energy	 is	 the	 joule.	 If	 I
have	 to	 generate	 1	 joule’s	 worth	 of	 energy,	 then	 the	 electric	 potential	 of	 that
object	is	+1	volt.	If	I	have	to	generate	1,000	joules,	then	the	electric	potential	 is
+1,000	volts.	(For	the	definition	of	1	joule,	see	chapter	9.)



What	if	the	object	is	negatively	charged?	Then	its	electric	potential	is	negative
and	 it	 is	 defined	 as	 the	 energy	 I	have	 to	produce	 to	move	 the	negative	unit	 of
charge	(–1	coulomb—about	6	×	1018	electrons)	from	the	Earth	to	that	object.	If
that	amount	of	energy	is	150	joules,	then	the	electric	potential	of	the	object	is	–
150	volts.

The	volt	is	therefore	the	unit	of	electric	potential.	It	is	named	after	the	Italian
physicist	Alessandro	Volta,	who	 in	1800	developed	 the	 first	 electric	 cell,	which
we	now	call	a	battery.	Note	that	a	volt	is	not	a	unit	of	energy;	it	is	a	unit	of	energy
per	unit	charge	(joules/coulomb).

An	 electric	 current	 runs	 from	 a	 high	 electric	 potential	 to	 a	 lower	 one.	How
strong	this	current	is	depends	on	the	difference	in	electric	potential	and	on	the
electric	resistance	between	the	two	objects.	Insulators	have	a	very	high	resistance;
metals	have	a	low	resistance.	The	higher	the	voltage	difference	and	the	lower	the
resistance,	 the	 higher	 the	 resulting	 electric	 current.	 The	 potential	 difference
between	the	two	small	slots	in	the	electric	wall	outlets	in	the	United	States	is	120
volts	(it’s	220	volts	in	Europe);	however,	that	current	is	also	alternating	(we’ll	get
to	 the	 matter	 of	 alternating	 current	 in	 the	 next	 chapter).	We	 call	 the	 unit	 of
current	the	ampere	(amp),	named	after	the	French	mathematician	and	physicist
André-Marie	Ampère.	If	a	current	in	a	wire	is	1	amp,	it	means	that	everywhere
through	the	wire	a	charge	of	1	coulomb	passes	per	second.

So	what	about	sparks?	How	does	all	of	this	explain	them?	If	you	have	scuffed
your	 shoes	 a	 lot	 on	 the	 carpet,	 you	 may	 have	 built	 up	 an	 electric	 potential
difference	as	high	as	about	30,000	volts	between	you	and	the	Earth,	or	between
you	and	the	doorknob	of	a	metal	door	6	meters	away	from	you.	This	 is	30,000
volts	over	a	distance	of	6	meters,	or	5,000	volts	per	meter.	 If	you	approach	 the
doorknob,	 the	 potential	 difference	 between	 you	 and	 the	 doorknob	 will	 not
change,	 but	 the	 distance	 will	 get	 smaller,	 thus	 the	 electric	 field	 strength	 will
increase.	 Soon,	 as	 you	are	 about	 to	 touch	 the	doorknob,	 it	will	 be	30,000	volts
over	a	distance	of	about	1	centimeter.	That’s	about	3	million	volts	per	meter.

At	this	high	value	of	the	electric	field	(in	dry	air	at	1	atmosphere)	there	will	be
what	we	call	an	electric	breakdown.	Electrons	will	spontaneously	jump	into	the
1-centimeter	gap,	and	in	doing	so	will	 ionize	the	air.	This	 in	turn	creates	more
electrons	making	the	leap,	resulting	in	an	avalanche,	causing	a	spark!	The	electric
current	shoots	through	the	air	to	your	finger	before	you	can	touch	the	doorknob.
I’ll	bet	you’re	cringing	a	bit,	remembering	the	last	time	you	felt	such	a	lovely	little
shock.	The	pain	you	feel	from	a	spark	occurs	because	the	electric	current	causes
your	nerves	to	contract,	quickly	and	unpleasantly.



What	makes	 the	 noise,	 the	 crackle,	 when	 you	 get	 a	 shock?	 That’s	 easy.	 The
electric	current	heats	the	air	super	quickly,	which	produces	a	little	pressure	wave,
a	 sound	 wave,	 and	 that’s	 what	 we	 hear.	 But	 sparks	 also	 produce	 light—even
though	you	may	not	see	the	light	during	the	day,	though	sometimes	you	do.	How
the	light	is	produced	is	a	little	more	complicated.	It	results	when	the	ions	created
in	 the	 air	 recombine	 with	 electrons	 in	 the	 air	 and	 emit	 some	 of	 the	 available
energy	as	light.	Even	if	you	cannot	see	the	light	from	sparks	(because	you	aren’t
in	 front	 of	 a	 mirror	 in	 a	 dark	 room),	 when	 you	 brush	 your	 hair	 in	 very	 dry
weather	you	can	hear	the	crackling	noise	they	make.

Just	think,	without	even	trying	very	hard,	by	brushing	your	hair	or	taking	off
that	polyester	shirt,	you	have	created,	at	the	ends	of	your	hair,	and	on	the	surface
of	your	shirt,	electric	fields	of	about	3	million	volts	per	meter.	So,	if	you	reach	for
a	doorknob	and	feel	a	spark	at,	say,	3	millimeters,	 then	the	potential	difference
between	you	and	the	knob	was	of	the	order	of	10,000	volts.

That	may	 sound	 like	 a	 lot,	 but	 most	 static	 electricity	 isn’t	 dangerous	 at	 all,
mainly	because	even	with	very	high	voltage,	the	current	(the	number	of	charges
going	through	you	in	a	given	period	of	time)	is	tiny.	If	you	don’t	mind	little	jolts,
you	can	experiment	with	shocks	and	have	some	fun—and	demonstrate	physics	at
the	 same	 time.	 However,	 never	 stick	 any	metal	 in	 the	 electric	 outlets	 in	 your
house.	That	can	be	very	very	dangerous—even	life	threatening!

Try	charging	yourself	up	by	rubbing	your	skin	with	polyester	(while	wearing
rubber-soled	shoes	or	flip-flops,	so	the	charge	doesn’t	leak	to	the	floor).	Turn	off
the	light	and	then	slowly	move	your	finger	closer	and	closer	to	a	metal	lamp	or
doorknob.	 Before	 they	 touch	 you	 ought	 to	 see	 a	 spark	 jump	 across	 the	 air
between	the	metal	and	your	finger.	The	more	you	charge	yourself	up,	the	greater
the	 voltage	 difference	 you’ll	 create	 between	 you	 and	 the	 doorknob,	 so	 the
stronger	the	spark	will	be,	and	the	louder	the	noise.

One	of	my	students	was	charging	himself	up	all	the	time	without	meaning	to.
He	 reported	 that	 he	 had	 a	 polyester	 bathrobe	 that	 he	 only	 wore	 in	 the
wintertime.	This	turned	out	to	be	an	unfortunate	choice,	because	every	time	he
took	the	robe	off,	he	charged	himself	up	and	then	got	a	shock	when	he	turned	off
his	 bedside	 lamp.	 It	 turns	 out	 that	 human	 skin	 is	 one	 of	 the	 most	 positive
materials	 in	 the	 triboelectric	 series,	 and	 polyester	 is	 one	 of	 the	most	 negative.
This	is	why	it’s	best	to	wear	a	polyester	shirt	if	you	want	to	see	the	sparks	flying
in	front	of	a	mirror	in	a	dark	room,	but	not	a	polyester	bathrobe.

To	demonstrate	in	a	rather	dramatic	(and	very	funny)	way	how	people	can	get
charged,	 I	 invite	 a	 student	who	 is	wearing	 a	polyester	 jacket	 to	 sit	 on	 a	plastic



chair	in	front	of	the	class	(plastic	is	an	excellent	insulator).	Then,	while	standing
on	a	glass	plate	to	insulate	myself	from	the	floor,	I	start	beating	the	student	with
cat	fur.	Amid	loud	laughter	of	the	students,	the	beating	goes	on	for	about	half	a
minute.	 Because	 of	 the	 conservation	 of	 charge,	 the	 student	 and	 I	 will	 get
oppositely	charged,	and	an	electric	potential	difference	will	build	up	between	us.
I	show	my	class	that	I	have	one	end	of	a	neon	flash	tube	in	my	hand.	We	then
turn	 off	 the	 lights	 in	 the	 lecture	 hall,	 and	 in	 complete	 darkness	 I	 touch	 the
student	with	the	other	end	of	the	tube,	and	there	is	a	light	flash	(we	both	feel	an
electric	shock)!	The	potential	difference	between	the	student	and	me	must	have
been	at	 least	30,000	volts.	The	current	flowing	through	the	neon	flash	tube	and
through	 us	 discharged	 both	 of	 us.	 The	 demonstration	 is	 hilarious	 and	 very
effective.

“Professor	Beats	Student”	on	YouTube	shows	 the	beating	part	of	my	 lecture:
www.organic-chemistry.com/videos-professor-beats-student-%5BP4XZ-
hMHNuc%5D.cfm.

To	further	explore	the	mysteries	of	electric	potential	I	use	a	wonderful	device
known	 as	 the	 Van	 de	 Graaff	 generator,	 which	 appears	 to	 be	 a	 simple	 metal
sphere	mounted	 on	 a	 cylindrical	 column.	 In	 fact,	 it’s	 an	 ingenious	 device	 for
producing	enormous	electric	potentials.	The	one	in	my	classroom	generally	tops
out	at	about	300,000	volts—but	they	can	go	much	higher.	If	you	look	at	the	first
six	 lectures	on	the	web	in	my	electricity	and	magnetism	course	(8.02),	you	will
see	some	of	the	hilarious	demonstrations	I	can	do	with	the	Van	de	Graaff.	You’ll
see	me	create	electric	field	breakdown—huge	sparks	between	the	large	dome	of
the	Van	de	Graaff	and	a	smaller	grounded	ball	(thus	connected	with	the	Earth).
You’ll	see	the	power	of	an	invisible	electric	field	to	light	a	fluorescent	tube,	and
you’ll	see	that	when	the	tube	turns	perpendicular	to	the	field	it	turns	“off.”	You’ll
even	see	that	in	complete	darkness	I	(briefly)	touch	one	end	of	the	tube,	making
a	circuit	with	the	ground,	and	the	light	glows	even	more	strongly.	I	cry	out	a	little
bit,	 because	 the	 shock	 is	 actually	pretty	 substantial,	 even	 though	 it’s	not	 in	 the
least	bit	dangerous.	And	if	you	want	a	real	surprise	(along	with	my	students),	see
what	happens	at	the	end	of	lecture	6,	as	I	demonstrate	Napoleon’s	truly	shocking
method	 of	 testing	 for	 swamp	 gas.	 The	 URL	 is:
http://ocw.mit.edu/courses/physics/8-02-electricity-and-magnetism-spring-
2002/video-lectures/.

Fortunately,	high	voltage	alone	won’t	kill	or	even	 injure	you.	What	counts	 is
the	 current	 that	 goes	 through	your	body.	Current	 is	 the	 amount	of	 charge	per
unit	of	time,	and	as	said	before,	we	measure	it	 in	amperes.	It’s	current	that	can
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really	hurt	 or	 kill	 you,	 especially	 if	 it’s	 continuous.	Why	 is	 current	dangerous?
Most	simply,	because	charges	moving	through	your	body	cause	your	muscles	to
contract.	 At	 extremely	 low	 levels,	 electric	 currents	 make	 it	 possible	 for	 your
muscles	to	contract,	or	“fire,”	which	is	vital	to	getting	around	in	life.	But	at	high
levels,	 it	 causes	 your	muscles	 and	nerves	 to	 contract	 so	much	 that	 they	 twitch
uncontrollably,	and	painfully.	At	even	higher	levels,	it	causes	your	heart	to	stop
beating.

It	 is	 for	these	reasons	that	one	of	the	darker	sides	of	 the	history	of	electricity
and	 the	 human	 body	 is	 the	 use	 of	 electricity	 for	 torture—since	 it	 can	 cause
unbearable	pain—and	death,	of	course,	in	the	case	of	the	electric	chair.	If	you’ve
seen	 the	 movie	 Slumdog	Millionaire,	 you	 may	 remember	 the	 horrible	 torture
scenes	 in	the	police	station,	 in	which	the	brutish	police	attach	electrodes	to	the
young	Jamal,	causing	his	body	to	twitch	wildly.

At	 lower	 levels,	 current	 can	 actually	 be	 healthy.	 If	 you’ve	 ever	 had	 physical
therapy	for	your	back	or	shoulder,	you	may	have	had	the	experience	of	what	the
therapists	call	“electrical	stimulation”—stim	for	short.	They	put	conducting	pads
connected	 to	 an	 electrical	 power	 source	 on	 the	 affected	muscle	 and	 gradually
increase	the	current.	You	have	the	odd	sensation	of	feeling	your	muscles	contract
and	release	without	your	doing	anything	at	all.

Electricity	is	also	used	in	more	dramatic	healing	efforts.	You’ve	all	seen	the	TV
shows	where	 someone	 uses	 the	 electric	 pads,	 known	 as	 defibrillators,	 to	 try	 to
regularize	the	heartbeat	of	a	patient	in	cardiac	distress.	At	one	point	in	my	own
heart	 surgery	 last	 year,	 when	 I	 went	 into	 cardiac	 arrest,	 the	 doctors	 used
defibrillators	 to	 get	 my	 heart	 beating	 again—and	 it	 worked!	 Without
defibrillators,	For	the	Love	of	Physics	would	never	have	seen	the	light	of	day.

People	 disagree	 about	 the	 exact	 amount	 of	 current	 that’s	 lethal,	 for	 obvious
reasons:	there’s	not	too	much	experimenting	with	dangerous	levels.	And	there’s	a
big	difference	as	 to	whether	 the	current	passes	 through	one	of	your	hands,	 for
instance,	or	whether	it	goes	through	your	brain	or	heart.	Your	hand	might	just
burn.	But	 pretty	much	 everyone	 agrees	 that	 anything	more	 than	 a	 tenth	 of	 an
ampere,	 even	 for	 less	 than	a	 second,	 can	be	 fatal	 if	 it	 goes	 through	your	heart.
Electric	chairs	used	varied	amounts,	apparently;	around	2,000	volts	and	from	5
to	12	amperes.

Remember	when	you	were	told	as	a	kid	not	to	put	a	fork	or	knife	into	a	toaster
in	order	 to	pull	a	piece	of	 toast	out,	because	you	might	electrocute	yourself?	 Is
that	really	true?	Well,	I	just	looked	at	the	ratings	of	three	appliances	in	my	house:
a	radio	(0.5	amp),	my	toaster	(7	amps),	and	my	espresso	machine	(7	amps).	You



can	find	these	on	a	label	on	the	bottom	of	most	appliances.	Some	don’t	have	the
amperage,	but	you	can	always	calculate	it	by	dividing	the	wattage,	the	appliance’s
power,	 by	 the	 voltage,	 usually	 120	 in	 the	 United	 States.	 Most	 of	 the	 circuit
breakers	in	my	home	are	rated	at	between	15	and	20	amps.	Whether	your	120-
volt	 appliances	draw	1	or	 10	 amps	 is	 not	 really	what	matters.	What	matters	 is
that	you	have	to	stay	away	from	accidentally	causing	a	short	circuit	and,	above
all,	 from	accidentally	touching	with	a	metal	object	the	120	volts;	 if	you	did	this
shortly	 after	 you	 had	 taken	 a	 shower,	 it	 could	 kill	 you.	 So	 what	 does	 all	 this
information	add	up	to?	Just	this:	when	your	mother	told	you	not	to	put	a	knife
into	a	toaster	while	it	was	plugged	in,	she	was	right.	If	you	ever	want	to	repair	any
of	your	electric	appliances,	make	sure	you	unplug	 them	first.	Never	 forget	 that
current	can	be	very	dangerous.

Divine	Sparks
Of	course,	one	of	the	most	dangerous	kinds	of	current	is	lightning,	which	is	also
one	 of	 the	 most	 remarkable	 of	 all	 electrical	 phenomena.	 It’s	 powerful,	 not
completely	 predictable,	 much	 misunderstood,	 and	 mysterious,	 all	 at	 once.	 In
mythologies	 from	 the	 Greek	 to	 the	 Mayan,	 lightning	 bolts	 have	 been	 either
symbols	 of	 divine	 beings	 or	 weapons	 wielded	 by	 them.	 And	 no	 wonder.	 On
average,	 there	 are	 about	 16	million	 thunderstorms	 on	 Earth	 every	 year,	 more
than	43,000	every	day,	roughly	1,800	every	hour	of	the	day,	producing	about	100
lightning	flashes	every	second,	or	more	than	8	million	lightning	flashes	every	day,
scattered	around	our	planet.

Lightning	happens	when	thunderclouds	become	charged.	Generally	the	top	of
the	 cloud	becomes	positively	 charged,	 and	 the	bottom	becomes	negative.	Why
this	 is	 the	 case	 is	 not	 yet	 completely	 understood.	 There’s	 a	 lot	 of	 atmospheric
physics,	believe	 it	or	not,	 that	we	are	 still	 learning.	For	now,	we’ll	 simplify	and
imagine	a	cloud	with	its	negative	charge	on	the	side	closest	to	the	Earth.	Because
of	 induction,	 the	 ground	 nearest	 the	 cloud	 will	 become	 positively	 charged,
generating	an	electrical	field	between	the	Earth	and	the	cloud.

The	physics	of	a	lightning	strike	is	pretty	complicated,	but	in	essence	a	flash	of
lightning	 (electric	 breakdown)	 occurs	 when	 the	 electric	 potential	 between	 the
cloud	and	Earth	reaches	tens	of	millions	of	volts.	And	though	we	think	of	a	bolt
as	shooting	from	a	cloud	down	to	Earth,	in	truth	they	flow	both	from	the	cloud
to	the	ground	and	from	the	ground	back	up	to	the	cloud.	Electric	currents	during
an	average	lightning	bolt	are	about	50,000	amps	(though	they	can	be	as	high	as	a



few	hundred	thousand	amps).	The	maximum	power	during	an	average	lightning
stroke	is	about	a	trillion	(1012)	watts.	However,	this	lasts	only	for	about	a	few	tens
of	microseconds.	 The	 total	 energy	 released	 per	 strike	 is	 therefore	 rarely	more
than	a	 few	hundred	million	 joules.	This	 is	 equivalent	 to	 the	energy	 that	a	100-
watt	 light	 bulb	 would	 consume	 in	 a	 month.	 Harvesting	 lightning	 energy	 is
therefore	not	only	impractical	but	also	not	too	useful.

Most	 of	 us	 know	 that	we	 can	 tell	 how	 far	 away	 a	 lightning	 strike	 is	 by	 how
much	 time	 elapses	 between	 seeing	 the	 bolt	 and	 hearing	 the	 thunder.	 But	 the
reason	why	 this	 is	 true	gives	us	a	glimpse	of	 the	powerful	 forces	at	play.	 It	has
nothing	 to	 do	 with	 the	 explanation	 I	 heard	 from	 a	 student	 once:	 that	 the
lightning	makes	a	 low	pressure	area	of	some	sort,	and	the	thunder	results	from
air	rushing	into	the	breach	and	colliding	with	the	air	from	the	other	side.	In	fact,
it’s	almost	exactly	the	reverse.	The	energy	of	the	bolt	heats	the	air	to	about	20,000
degrees	Celsius,	more	than	three	times	the	surface	temperature	of	the	Sun.	This
superheated	 air	 then	 creates	 a	 powerful	 pressure	 wave	 that	 slams	 against	 the
cooler	air	around	it,	making	sound	waves	that	travel	through	the	air.	Since	sound
waves	in	air	travel	about	a	mile	in	five	seconds,	by	counting	off	the	seconds	you
can	figure	out	fairly	easily	how	far	away	a	lightning	strike	was.

The	 fact	 that	 lightning	 bolts	 heat	 the	 air	 so	 dramatically	 explains	 another
phenomenon	 you	 may	 have	 experienced	 in	 lightning	 storms.	 Have	 you	 ever
noticed	the	special	smell	in	the	air	after	a	thunderstorm	in	the	country,	a	kind	of
freshness,	almost	as	if	the	storm	had	washed	the	air	clean?	It’s	hard	to	smell	it	in
the	city,	because	there’s	always	so	much	exhaust	from	cars.	But	even	if	you	have
experienced	that	wonderful	fragrance—and	if	you	haven’t	I	recommend	you	try
to	make	note	of	it	the	next	time	you’re	outdoors	right	after	a	lightning	storm—
I’ll	bet	you	didn’t	know	that	it’s	the	smell	of	ozone,	an	oxygen	molecule	made	up
of	 three	oxygen	atoms.	Normal	odorless	oxygen	molecules	are	made	up	of	 two
oxygen	atoms,	and	we	call	these	O2.	But	the	terrific	heat	of	lightning	discharges
blows	normal	oxygen	molecules	 apart—not	 all	 of	 them,	but	 enough	 to	matter.
And	 these	 individual	 oxygen	 atoms	 are	 unstable	 by	 themselves,	 so	 they	 attach
themselves	to	normal	O2	molecules,	making	O3—ozone.

While	ozone	smells	lovely	in	small	amounts,	at	higher	concentrations	it’s	less
pleasant.	You	can	often	find	it	underneath	high-voltage	transmission	lines.	If	you
hear	 a	 buzzing	 sound	 from	 the	 lines,	 it	 generally	 means	 that	 there	 is	 some
sparking,	 what	 we	 call	 corona	 discharge,	 and	 therefore	 some	 ozone	 is	 being
created.	If	the	air	is	calm,	you	should	be	able	to	smell	it.

Now	let’s	consider	again	the	idea	that	you	could	survive	a	 lightning	strike	by



wearing	 sneakers.	 A	 lightning	 bolt	 of	 50,000	 to	 100,000	 amperes,	 capable	 of
heating	air	to	more	than	three	times	the	surface	temperature	of	the	Sun,	would
almost	surely	burn	you	to	a	crisp,	convulse	you	with	electric	shock,	or	explode
you	by	converting	all	the	water	in	your	body	instantaneously	to	superhot	steam,
sneakers	or	not.	That’s	what	happens	 to	 trees:	 the	 sap	bursts	and	blows	off	 the
tree’s	bark.	One	hundred	million	joules	of	energy—the	equivalent	of	about	fifty
pounds	of	dynamite—that’s	no	small	matter.

And	 what	 about	 whether	 you	 are	 safe	 inside	 a	 car	 when	 lightning	 strikes
because	of	the	rubber	tires?	You	might	be	safe—no	guarantees!—but	for	a	very
different	 reason.	 Electric	 current	 runs	 on	 the	 outside	 of	 a	 conductor,	 in	 a
phenomenon	 called	 skin	 effect,	 and	 in	 a	 car	 you	 are	 effectively	 sitting	 inside	 a
metal	 box,	 a	 good	 conductor.	 You	 might	 even	 touch	 the	 inside	 of	 your
dashboard	air	duct	and	not	get	hurt.	However,	I	strongly	urge	you	not	to	try	this;
it	 is	very	dangerous	as	most	cars	nowadays	have	 fiberglass	parts,	and	fiberglass
has	no	skin	effect.	 In	other	words,	 if	 lightning	 strikes	your	car,	you—and	your
car—could	be	in	for	an	exceedingly	unpleasant	time.	You	might	want	to	take	a
look	at	 the	short	video	of	 lightning	striking	a	car	and	the	photos	of	a	van	after
having	 been	 hit	 by	 lightning	 at	 these	 sites:
www.weatherimagery.com/blog/rubber-tires-protect-lightning/and
www.prazen.com/cori/van.html.	 Clearly,	 this	 is	 not	 something	 to	 play	 around
with!

Fortunately	 for	 all	 of	 us,	 the	 situation	 is	 very	 different	 with	 commercial
airplanes.	They	are	struck	by	lightning	on	average	more	than	once	per	year,	but
they	 happily	 survive	 because	 of	 the	 skin	 effect.	 Watch	 this	 video	 at
www.youtube.com/watch?v=036hpBvjoQw.

Another	thing	not	to	try	in	regards	to	lightning	is	the	experiment	so	famously
attributed	to	Benjamin	Franklin:	flying	a	kite	with	a	key	attached	to	it	during	a
thunderstorm.	 Supposedly,	 Franklin	 wanted	 to	 test	 the	 hypothesis	 that
thunderclouds	 were	 creating	 electric	 fire.	 If	 lightning	 was	 truly	 a	 source	 of
electricity,	he	reasoned,	then	once	his	kite	string	got	wet	from	the	rain,	it	should
also	 become	 a	 good	 conductor	 of	 that	 electricity	 (though	 he	 didn’t	 use	 that
word),	which	would	 travel	down	 to	 the	key	 tied	at	 the	base	of	 the	 string.	 If	he
moved	 his	 knuckle	 close	 to	 the	 key,	 he	 should	 feel	 a	 spark.	 Now,	 as	 with
Newton’s	claim	late	in	life	to	have	been	inspired	by	an	apple	falling	to	the	ground
out	of	 a	 tree,	 there	 is	 no	 contemporary	 evidence	 that	 Franklin	 ever	performed
this	 experiment,	 only	 an	 account	 in	 a	 letter	 he	 sent	 to	 the	 Royal	 Society	 in
England,	 and	 another	 one	 written	 fifteen	 years	 later	 by	 his	 friend	 Joseph
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Priestley,	discoverer	of	oxygen.
Whether	or	not	Franklin	performed	the	experiment—which	would	have	been

fantastically	 dangerous,	 and	 very	 likely	 lethal—he	 did	 publish	 a	 description	 of
another	experiment	designed	to	bring	lightning	down	to	earth,	by	placing	a	long
iron	 rod	 at	 the	 top	 of	 a	 tower	 or	 steeple.	 A	 few	 years	 later,	 the	 Frenchman
Thomas-François	Dalibard,	who	had	met	 Franklin	 and	 translated	 his	 proposal
into	French,	undertook	a	slightly	different	version	of	the	experiment,	and	lived	to
tell	the	tale.	He	mounted	a	40-foot-long	iron	rod	pointing	up	into	the	sky,	and	he
was	able	to	observe	sparks	at	the	base	of	the	rod,	which	was	not	grounded.

Professor	 Georg	 Wilhelm	 Richmann,	 an	 eminent	 scientist	 born	 in	 Estonia
then	living	in	St.	Petersburg,	Russia,	a	member	of	the	St.	Petersburg	Academy	of
Sciences	 who	 had	 studied	 electrical	 phenomena	 a	 good	 deal,	 was	 evidently
inspired	by	Dalibard’s	experiment,	and	determined	to	give	it	a	try.	According	to
Michael	Brian	 Schiffer’s	 fascinating	 book	Draw	 the	 Lightning	Down:	 Benjamin
Franklin	and	Electrical	Technology	 in	 the	Age	of	Enlightenment,	 he	 attached	an
iron	 rod	 to	 the	 roof	 of	 his	 house,	 and	 ran	 a	 brass	 chain	 from	 the	 rod	 to	 an
electrical	measuring	device	in	his	laboratory	on	the	first	floor.

As	luck—or	fate—would	have	it,	during	a	meeting	of	the	Academy	of	Sciences
in	August	 1753,	 a	 thunderstorm	 developed.	 Richmann	 rushed	 home,	 bringing
along	 the	 artist	 who	 was	 going	 to	 illustrate	 Richmann’s	 new	 book.	 While
Richmann	was	observing	his	equipment,	lightning	struck,	traveled	down	the	rod
and	 chain,	 jumped	 about	 a	 foot	 to	 Rich-mann’s	 head,	 electrocuted	 him	 and
threw	him	across	 the	room,	while	also	striking	 the	artist	unconscious.	You	can
see	 several	 illustrations	 of	 the	 scene	 online,	 though	 it’s	 not	 clear	whether	 they
were	the	creations	of	the	artist	in	question.

Franklin	was	 to	 invent	a	 similar	 contraption,	but	 this	one	was	grounded;	we
know	it	today	as	the	lightning	rod.	It	works	well	to	ground	lightning	strikes,	but
not	 for	 the	 reason	 Franklin	 surmised.	 He	 thought	 that	 a	 lightning	 rod	 would
induce	 a	 continuous	 discharge	 between	 a	 charged	 cloud	 and	 a	 building,	 thus
keeping	the	potential	difference	low	and	eliminating	the	danger	of	lightning.	So
confident	was	he	 in	his	 idea	 that	he	advised	King	George	 II	 to	put	 these	 sharp
points	 on	 the	 royal	 palace	 and	 on	 ammunition	 storage	 depots.	 Franklin’s
opponents	 argued	 that	 the	 lightning	 rod	would	only	attract	 lightning,	 and	 that
the	 effect	 of	 the	 discharge,	 lowering	 the	 electric	 potential	 difference	 between	 a
building	 and	 the	 thunderclouds,	would	be	 insignificant.	The	king,	 so	 the	 story
goes,	trusted	Franklin	and	installed	the	lightning	rods.

Not	 long	 thereafter	 a	 lightning	 bolt	 hit	 one	 of	 the	 ammunition	 depots,	 and



there	was	very	 little	damage.	 So	 the	 rod	worked,	but	 for	 completely	 the	wrong
reasons.	Franklin’s	critics	were	right:	lightning	rods	do	attract	lightning,	and	the
discharge	of	the	rod	is	indeed	insignificant	compared	to	the	enormous	charge	on
the	 thundercloud.	 But	 the	 rod	 really	 works	 because,	 if	 it	 is	 thick	 enough	 to
handle	10,000	to	100,000	amperes,	then	the	current	will	stay	confined	to	the	rod,
and	the	charge	will	be	transferred	to	the	earth.	Franklin	was	not	only	brilliant—
he	was	also	lucky!

Isn’t	it	remarkable	how	by	understanding	the	little	crackle	when	we	take	off	a
sweater	 in	 winter,	 we	 can	 also	 come	 to	 some	 kind	 of	 understanding	 of	 the
massive	 lightning	 storms	 that	 can	 light	 up	 the	 entire	 night	 sky,	 as	 well	 as	 the
origin	of	one	of	the	loudest,	most	terrifying	sounds	in	all	of	nature?

In	 some	 ways	 we’re	 still	 latter-day	 versions	 of	 Benjamin	 Franklin,	 trying	 to
figure	 out	 things	 beyond	 our	 understanding.	 In	 the	 late	 1980s	 scientists	 first
photographed	forms	of	lightning	that	occur	way,	way	above	the	clouds.	One	kind
is	called	red	sprites	and	consists	of	reddish	orange	electrical	discharges,	50	to	90
kilometers	 above	 the	 earth.	 And	 there	 are	 blue	 jets	 as	 well,	 much	 larger,
sometimes	as	much	as	70	kilometers	long,	shooting	into	the	upper	atmosphere.
Since	we’ve	only	known	about	them	for	a	little	more	than	twenty	years,	there	is
an	awful	lot	we	don’t	yet	know	about	what	causes	these	remarkable	phenomena.
Even	with	all	we	know	about	 electricity,	 there	 are	genuine	mysteries	on	 top	of
every	thunderstorm,	about	45,000	times	a	day.



CHAPTER	8

The	Mysteries	of	Magnetism

For	most	of	us	magnets	are	just	fun,	partly	because	they	exert	forces	that	we	can
feel	 and	 play	with,	 and	 at	 the	 same	 time	 those	 forces	 are	 completely	 invisible.
When	we	bring	two	magnets	close	together,	they	will	either	attract	or	repel	each
other,	 much	 as	 electrically	 charged	 objects	 do.	 Most	 of	 us	 have	 a	 sense	 that
magnetism	 is	 deeply	 connected	 to	 electricity—nearly	 everyone	 interested	 in
science	knows	the	word	electromagnetic,	for	instance—but	by	the	same	token	we
can’t	exactly	explain	why	or	how	they’re	related.	It’s	a	huge	subject,	and	I	spend
an	 entire	 introductory	 course	 on	 it,	 so	 we’re	 just	 going	 to	 scratch	 the	 surface
here.	Even	so,	the	physics	of	magnetism	can	lead	us	pretty	quickly	to	some	eye-
popping	effects	and	profound	understandings.

Wonders	of	Magnetic	Fields
If	 you	 take	 a	magnet	 and	 put	 it	 in	 front	 of	 an	 older,	 pre-flat-screen	 television
when	 it’s	 turned	 on,	 you’ll	 see	 some	 very	 cool	 patterns	 and	 colors	 across	 the
screen.	 In	 the	 days	 before	 liquid	 crystal	 display	 (LCD)	 or	 plasma	 flat	 screens,
beams	of	electrons	shooting	from	the	back	of	the	TV	toward	the	screen	activated
the	colors,	effectively	painting	the	image	on	the	screen.	When	you	take	a	strong
magnet	to	one	of	these	screens,	as	I	do	in	class,	it	will	make	almost	psychedelic
patterns.	These	 are	 so	 compelling	 that	 even	 four-and	 five-year-olds	 love	 them.
(You	can	easily	find	images	of	these	patterns	online.)

In	 fact,	 children	 seem	 to	 discover	 this	 on	 their	 own	 all	 the	 time.	 Anxious
parents	are	all	over	the	web,	pleading	for	help	in	restoring	their	TVs	after	their
children	have	run	refrigerator	magnets	across	the	screens.	Fortunately,	most	TVs
come	 with	 a	 degaussing	 device	 that	 demagnetizes	 screens,	 and	 usually	 the
problem	goes	away	after	a	few	days	or	a	few	weeks.	But	if	it	doesn’t,	you’ll	need	a
technician	to	fix	the	problem.	So	I	don’t	recommend	you	put	a	magnet	near	your
home	TV	 screen	 (or	 computer	monitor),	 unless	 it’s	 an	 ancient	TV	or	monitor
that	 you	don’t	 care	 about.	Then	 you	might	 have	 some	 fun.	The	world-famous
Korean	artist	Nam	June	Paik	has	created	many	works	of	art	with	video	distortion
in	roughly	the	same	way.	In	my	class	I	turn	on	the	TV	and	pick	out	a	particularly



awful	 program—commercials	 are	 great	 for	 this	 demonstration—and	 everyone
loves	the	way	the	magnet	completely	distorts	the	picture.

Just	as	with	electricity,	magnetism’s	history	goes	back	to	ancient	times.	More
than	two	thousand	years	ago	the	Greeks,	the	Indians,	and	the	Chinese	apparently
all	 knew	 that	 particular	 rocks—which	 became	 known	 as	 lodestones—attracted
small	 pieces	 of	 iron	 (just	 as	 the	 Greeks	 had	 found	 that	 rubbed	 amber	 would
collect	 bits	 of	 leaves).	 Nowadays	 we	 call	 that	 substance	magnetite,	 a	 naturally
occurring	 magnetic	 mineral,	 in	 fact	 the	 most	 magnetic	 naturally	 occurring
material	on	Earth.	Magnetite	is	a	combination	of	iron	and	oxygen	(Fe3O4)	and	so
is	known	as	an	iron	oxide.

But	there	are	 lots	of	different	kinds	of	magnets,	not	only	magnetite.	Iron	has
played	 such	 a	 big	 role	 in	 the	 history	 of	 magnetism,	 and	 remains	 such	 a	 key
ingredient	of	many	magnetically	sensitive	materials,	that	those	materials	that	are
most	attracted	to	magnets	are	called	ferromagnetic	(“ferro”	is	a	prefix	indicating
iron).	These	tend	to	be	metals	or	metal	compounds:	iron	itself,	of	course,	but	also
cobalt,	 nickel,	 and	 chromium	 dioxide	 (once	 used	 heavily	 in	 magnetic	 tapes).
Some	 of	 these	 can	 be	 magnetized	 permanently	 by	 bringing	 them	 within	 a
magnetic	 field.	 Other	 materials	 called	 paramagnetic	 become	 weakly	 magnetic
when	 they’re	placed	 in	 such	a	 field	 and	 revert	 to	being	nonmagnetic	when	 the
field	disappears.	These	materials	include	aluminum,	tungsten,	magnesium,	and,
believe	 it	 or	 not,	 oxygen.	 And	 some	 materials,	 called	 diamagnetic	 materials,
develop	fairly	weak	opposing	magnetic	fields	in	the	presence	of	a	magnetic	field.
This	category	includes	bismuth,	copper,	gold,	mercury,	hydrogen,	and	table	salt,
as	well	as	wood,	plastics,	alcohol,	air,	and	water.	(What	makes	certain	materials
ferromagnetic	 and	 some	 paramagnetic	 and	 others	 diamagnetic	 has	 to	 do	with
how	the	electrons	are	distributed	around	the	nucleus—it’s	much	too	complicated
to	go	into	in	detail.)

There	 are	 even	 liquid	magnets,	 which	 are	 not	 exactly	 ferromagnetic	 liquids,
but	rather	solutions	of	ferromagnetic	substances	that	respond	to	magnets	in	very
beautiful	 and	 striking	 ways.	 You	 can	make	 one	 of	 these	 liquid	magnets	 fairly
easily;	 here’s	 a	 link	 to	 a	 set	 of	 instructions:
http://chemistry.about.com/od/demonstrationsexperiments/ss/liquidmagnet.htm
If	you	put	this	solution,	which	is	fairly	thick,	on	a	piece	of	glass	and	put	a	magnet
underneath,	get	ready	for	some	remarkable	results—a	lot	more	interesting	than
watching	iron	filings	line	up	along	magnetic	field	lines	as	you	may	have	seen	in
middle	school.

In	 the	 eleventh	 century,	 the	 Chinese	 seem	 to	 have	 magnetized	 needles	 by
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touching	them	to	magnetite	and	then	suspending	them	from	a	silk	thread.	The
needles	 would	 align	 themselves	 in	 the	 north-south	 direction;	 they	 aligned
themselves	with	the	magnetic	 field	 lines	of	 the	Earth.	By	the	following	century,
compasses	were	being	used	for	navigation	both	in	China	and	as	far	away	as	the
English	Channel.	These	compasses	consisted	of	a	magnetized	needle	floating	in	a
bowl	 of	 water.	 Ingenious,	 wasn’t	 it?	 No	 matter	 which	 way	 the	 boat	 or	 ship
turned,	 the	 bowl	 would	 turn	 but	 the	 needle	 would	 keep	 pointing	 north	 and
south.

Nature	is	even	more	ingenious.	We	now	know	that	migrating	birds	have	tiny
bits	of	magnetite	in	their	bodies	that	they	apparently	use	as	internal	compasses,
helping	to	guide	them	along	their	migration	routes.	Some	biologists	even	think
that	the	Earth’s	magnetic	field	stimulates	optical	centers	in	some	birds	and	other
animals,	 like	 salamanders,	 suggesting	 that	 in	 some	 important	 sense,	 these
animals	can	“see”	the	Earth’s	magnetic	field.	How	cool	is	that?

In	1600,	the	remarkable	physician	and	scientist	William	Gilbert—not	just	any
doctor,	 but	 physician	 to	 Queen	 Elizabeth	 I—published	 his	 book	De	Magnete,
Magneticisque	 Corporibus,	 et	 de	 Magno	 Magnete	 Tellure	 (On	 the	 Magnet	 and
Magnetic	Bodies,	and	on	That	Great	Magnet	 the	Earth),	 arguing	 that	 the	Earth
itself	was	a	magnet,	a	result	of	his	experiments	with	a	terrella,	a	small	magnetite
sphere	 meant	 to	 be	 a	 model	 of	 the	 Earth.	 It	 was	 maybe	 a	 little	 larger	 than	 a
grapefruit,	and	small	compasses	placed	on	 it	 responded	 just	as	 they	did	on	 the
surface	 of	 the	 Earth.	 Gilbert	 claimed	 that	 compasses	 point	 north	 because	 the
Earth	was	a	magnet,	not,	as	some	thought,	because	there	were	magnetic	islands
at	 the	North	and	South	Poles,	or	 that	compasses	were	pointing	 toward	Polaris,
the	North	Star.

Not	only	was	Gilbert	absolutely	correct	that	the	Earth	has	a	magnetic	field,	but
it	even	has	magnetic	poles	(just	like	the	poles	in	a	refrigerator	magnet),	which	do
not	quite	coincide	with	the	geographic	north	and	south	poles.	Not	only	that,	but
these	magnetic	poles	wander	a	bit,	around	15	kilometers	or	so	every	year.	So	in
some	ways	the	Earth	does	act	like	a	simple	bar	magnet—an	ordinary	rectangular
magnetized	piece	of	metal	that	you	can	buy	in	a	hobby	shop—but	in	other	ways
it’s	completely	different.	It	has	taken	scientists	a	very	long	time	even	to	come	up
with	a	viable	theory	of	why	the	Earth	has	a	magnetic	field.	The	fact	that	there’s	a
lot	of	iron	in	the	Earth’s	core	isn’t	enough,	since	above	a	certain	temperature	(we
call	it	the	Curie	temperature)	bodies	lose	their	ferromagnetic	quality,	and	iron	is
no	exception;	its	Curie	temperature	is	about	770°	Celsius,	and	we	know	that	the
core	is	a	whole	lot	hotter	than	that!



The	 theory	 is	 pretty	 involved,	 and	 has	 to	 do	 with	 the	 electric	 currents
circulating	in	the	Earth’s	core	and	the	fact	that	the	Earth	is	rotating—physicists
call	this	a	dynamo	effect.	(Astrophysicists	use	the	theory	of	these	dynamo	effects
to	 explain	 magnetic	 fields	 in	 stars,	 including	 that	 of	 our	 own	 Sun,	 whose
magnetic	 field	 completely	 reverses	 about	 every	 eleven	 years.)	 It	 may	 seem
amazing	to	you,	but	scientists	are	still	working	on	a	full	mathematical	model	of
the	Earth	and	 its	magnetic	 field;	 that’s	how	complex	 the	 field	 is.	Their	work	 is
made	even	 thornier	by	 the	 fact	 that	 there’s	geological	 evidence	 that	 the	Earth’s
magnetic	 field	 has	 changed	 dramatically	 over	 the	 millennia:	 the	 poles	 have
traveled	much	more	 than	 their	 annual	 stroll,	 and	 it	 appears	 that	 the	magnetic
field	has	also	reversed	itself—more	than	150	times	over	the	last	70	million	years
alone.	Wild	stuff,	isn’t	it?

We	 are	 able	 to	 chart	 the	 Earth’s	 magnetic	 field	 with	 some	 exactness	 now,
thanks	to	satellites	(such	as	the	Danish	Ørsted	satellite)	equipped	with	sensitive
magnetometers.	From	this	we	know	that	the	magnetic	field	reaches	more	than	a
million	 kilometers	 out	 into	 space.	 We	 also	 know	 that	 closer	 to	 Earth,	 the
magnetic	 field	 produces	 one	 of	 the	more	 beautiful	 natural	 phenomena	 in	 our
atmosphere.

The	Sun,	you	may	remember,	emits	a	huge	stream	of	charged	particles,	mostly
protons	 and	 electrons,	 known	 as	 the	 solar	wind.	 Earth’s	magnetic	 field	 directs
some	of	those	particles	down	into	our	atmosphere	at	the	magnetic	poles.	When
these	 fast-moving	 particles,	 with	 average	 speeds	 of	 about	 400	 kilometers	 per
second,	 bang	 into	 atmospheric	 oxygen	 and	 nitrogen	molecules,	 some	 of	 their
kinetic	energy	(energy	of	motion)	gets	transformed	into	electromagnetic	energy
in	 the	 form	 of	 light—oxygen	 releases	 green	 or	 red	 and	 nitrogen	 blue	 or	 red.
You’re	 probably	 guessing	where	 I’m	 going—that’s	 right:	 this	 is	 what	 produces
the	spectacular	 light	show	known	as	the	aurora	borealis,	 the	northern	 lights,	 in
the	 Northern	 Hemisphere	 and	 the	 aurora	 australis,	 or	 southern	 lights,	 in	 the
Southern	Hemisphere.	Why	do	you	only	see	 these	 lights	when	you	are	very	 far
north	or	very	far	south?	Because	the	solar	wind	predominantly	enters	the	Earth’s
atmosphere	near	 the	magnetic	poles,	where	 the	magnetic	 field	 is	 the	 strongest.
The	reason	the	effects	are	stronger	on	some	nights	than	others	is	that	whenever
there	are	solar	eruptions,	there	are	more	particles	to	make	the	light	show.	When
there	 are	 huge	 solar	 flares,	 these	 effects	 can	 be	massive,	 causing	 what	 we	 call
geomagnetic	 storms,	 producing	 auroras	 far	 outside	 the	 normal	 areas	 and
sometimes	 interfering	with	 radio	 transmissions,	 computer	 functioning,	 satellite
operations,	and	even	causing	power	outages.



If	you	don’t	live	near	the	Arctic	(or	Antarctic)	Circle,	you	won’t	see	these	lights
very	 often.	 That’s	 why,	 if	 you	 ever	 take	 an	 evening	 flight	 to	 Europe	 from	 the
northeastern	United	States	(and	most	flights	are	in	the	evening),	you	might	want
to	try	to	get	a	seat	on	the	left	side	of	the	plane.	Since	you’ll	be	seven	miles	up	in
the	atmosphere,	you	might	see	some	northern	lights	out	your	window,	especially
if	 the	Sun	has	been	particularly	active	 recently,	which	you	can	 find	out	online.
I’ve	seen	it	many	times	in	just	that	way,	so	whenever	I	can,	I	sit	on	the	left	side	of
the	plane.	I	figure	I	can	watch	movies	whenever	I	want	to	at	home.	On	planes	I
look	for	the	northern	lights	at	night	and	glories	during	the	day.

We	are	truly	indebted	to	Earth’s	magnetic	field,	because	without	it,	we	might
have	 suffered	 some	 serious	 consequences	 from	 the	 constant	 stream	of	 charged
particles	 bombarding	 our	 atmosphere.	The	 solar	wind	might	well	 have	 blasted
away	our	atmosphere	and	water	millions	of	years	ago,	 creating	conditions	 that
would	 make	 the	 development	 of	 life	 much	 more	 difficult,	 if	 not	 impossible.
Scientists	 theorize	 that	 just	 such	 a	 pounding	 by	 the	 solar	 wind	 due	 to	Mars’s
weak	magnetic	 field	 is	what	accounts	 for	the	Red	Planet’s	 thin	atmosphere	and
comparative	lack	of	water,	an	environment	that	human	beings	could	inhabit	only
with	the	aid	of	powerful	life	support	systems.

The	Mystery	of	Electromagnetism
In	the	eighteenth	century,	a	number	of	scientists	began	to	suspect	that	electricity
and	 magnetism	 were	 related	 in	 some	 way—even	 while	 others,	 such	 as	 the
Englishman	 Thomas	 Young	 and	 the	 French	 scientist	 André-Marie	 Ampère,
thought	 they	had	nothing	 to	do	with	 each	other.	William	Gilbert	 thought	 that
electricity	 and	 magnetism	 were	 completely	 separate	 phenomena,	 but	 he
nevertheless	 studied	 both	 simultaneously	 and	 wrote	 about	 electricity	 in	 De
Magnete	 as	 well.	 He	 called	 the	 attractive	 force	 of	 rubbed	 amber	 the	 “electric
force”	 (remember,	 the	 Greek	 word	 for	 amber	 was	 “electron”).	 And	 he	 even
invented	 a	 version	 of	 the	 electroscope,	 the	 simplest	 way	 to	 measure	 and
demonstrate	 the	 existence	of	 static	 electricity.	 (An	electroscope	has	 a	bunch	of
tinsel	strips	at	the	end	of	a	metal	rod.	As	soon	as	it	is	charged,	the	strips	stand	out
away	from	one	another:	the	laboratory	equivalent	of	hat	hair.)

The	Bavarian	Academy	of	Sciences	invited	essays	on	the	relationship	between
electricity	 and	magnetism	 in	1776	and	1777.	People	had	known	 for	 some	 time
that	lightning	discharges	could	make	compasses	go	haywire,	and	none	other	than
Benjamin	Franklin	himself	had	magnetized	needles	by	using	them	to	discharge



Leyden	jars.	(Invented	in	the	Netherlands	at	mid-century,	 the	Leyden	jar	could
store	electric	charges.	 It	was	an	early	version	of	 the	device	we	call	a	capacitor.)
But	while	studies	of	electricity	were	exploding	in	the	early	nineteenth	century,	no
scientist	 clearly	 linked	electric	 current	 to	magnetism	until	 the	Danish	physicist
Hans	 Christian	 Ørsted	 (born	 in	 1777)	 made	 the	 absolutely	 crucial	 discovery
bringing	 electricity	 and	magnetism	 together.	 According	 to	 historian	 Frederick
Gregory,	 this	was	probably	the	only	time	in	the	history	of	modern	physics	 that
such	an	enormous	discovery	was	made	in	front	of	a	class	of	students.

Ørsted	noticed,	 in	 1820,	 that	 an	 electric	 current	 flowing	 through	a	wire	 that
was	 connected	 to	 a	 battery	 affected	 a	 nearby	 compass	 needle,	 turning	 it	 in	 a
direction	perpendicular	 to	 the	wire	 and	 away	 from	magnetic	 north	 and	 south.
When	he	disconnected	the	wire,	cutting	the	current	flow,	the	needle	returned	to
normal.	 It’s	 not	 entirely	 clear	 whether	 Ørsted	 was	 conducting	 his	 experiment
intentionally	as	part	of	a	lecture,	or	whether	the	compass	happened	to	be	right	at
hand	and	he	simply	observed	the	astounding	effect.	His	own	accounts	differ—as
we’ve	seen	more	than	once	in	the	history	of	physics.

Whether	 it	 was	 an	 accident	 or	 purposeful,	 this	 may	 have	 been	 the	 most
important	 experiment	 (let’s	 call	 it	 that)	 ever	 carried	 out	 by	 a	 physicist.	 He
concluded	 reasonably	 that	 the	 electric	 current	 through	 the	 wire	 produced	 a
magnetic	field,	and	that	the	magnetic	needle	in	the	compass	moved	in	response
to	 that	 magnetic	 field.	 This	 magnificent	 discovery	 unleashed	 an	 explosion	 of
research	into	electricity	and	magnetism	in	the	nineteenth	century,	most	notably
by	André-Marie	Ampère,	Michael	Faraday,	Carl	Friedrich	Gauss,	and	finally	 in
the	towering	theoretical	work	of	James	Clerk	Maxwell.

Since	current	consisted	of	moving	electric	charges,	Ørsted	had	demonstrated
that	moving	 electric	 charges	 create	 a	magnetic	 field.	 In	 1831	Michael	 Faraday
discovered	that	when	he	moved	a	magnet	through	a	conducting	coil	of	wire,	he
produced	an	electrical	current	in	the	coil.	In	effect,	he	showed	that	what	Ørsted
had	 demonstrated—that	 electric	 currents	 produce	 a	 magnetic	 field—could	 be
turned	on	its	head:	a	moving	magnetic	field	also	produces	electric	currents.	But
neither	 Ørsted’s	 nor	 Faraday’s	 results	 make	 any	 intuitive	 sense,	 right?	 If	 you
move	a	magnet	near	a	conducting	coil—copper	works	great	because	it’s	so	highly
conductive—why	 on	 earth	 should	 you	 generate	 current	 in	 that	 coil?	 It	 wasn’t
clear	at	first	what	the	importance	of	this	discovery	was.	Soon	afterward,	the	story
goes,	a	dubious	politician	asked	Faraday	if	his	discovery	had	any	practical	value,
and	Faraday	is	supposed	to	have	responded,	“Sir,	I	do	not	know	what	it	is	good
for.	However,	of	one	thing	I	am	quite	certain;	some	day	you	will	tax	it.”



This	simple	phenomenon,	which	you	can	easily	demonstrate	at	home,	may	not
make	any	sense	at	all,	but	without	exaggeration,	it	runs	our	entire	economy	and
the	 entire	 human-made	 world.	Without	 this	 phenomenon	 we	 would	 still	 live
more	or	less	like	our	ancestors	in	the	seventeenth	and	eighteenth	centuries.	We
would	 have	 candlelight,	 no	 radio,	 no	 television,	 no	 telephones,	 and	 no
computers.

How	do	we	get	all	this	electricity	that	we	use	today?	By	and	large	we	get	it	from
power	 stations,	which	produce	 it	with	electric	generators.	Most	 fundamentally,
what	generators	do	is	move	copper	coils	through	magnetic	fields;	we	no	longer
move	 the	magnets.	Michael	Faraday’s	 first	generator	was	a	copper	disk	 that	he
turned	with	a	crank	between	 the	 two	arms	of	a	horseshoe	magnet.	A	brush	on
the	outer	edge	of	the	disk	ran	to	one	wire,	and	a	brush	on	the	central	shaft	of	the
turning	disk	ran	to	a	second	wire.	If	he	hooked	the	two	wires	up	to	an	ammeter,
it	would	measure	 the	 current	 being	 generated.	The	 energy	 (muscle	 power!)	 he
put	 into	 the	 system	was	 converted	 by	 his	 contraption	 into	 electricity.	 But	 this
generator	wasn’t	very	efficient	for	a	variety	of	reasons,	not	the	least	of	which	was
that	he	had	to	turn	the	copper	disk	with	his	hand.	In	some	ways	we	ought	to	call
generators	 energy	 converters.	 All	 they	 are	 doing	 is	 converting	 one	 kind	 of
energy,	in	this	case	kinetic	energy,	into	electric	energy.	There	is,	in	other	words,
no	 free	energy	 lunch.	 (I	discuss	 the	conversion	of	energy	 in	more	depth	 in	 the
next	chapter.)

Electricity	into	Motion
Now	that	we’ve	learned	how	to	convert	motion	into	electricity,	let’s	think	about
how	to	go	in	the	other	direction,	converting	electricity	into	motion.	At	long	last,
car	companies	are	spending	billions	of	dollars	developing	electric	cars	to	do	just
that.	 They	 are	 all	 trying	 to	 invent	 efficient,	 powerful	 electric	motors	 for	 these
cars.	And	what	are	motors?	Motors	are	devices	that	convert	electric	energy	into
motion.	They	all	rely	on	a	seemingly	simple	principle	that’s	pretty	complicated	in
reality:	if	you	put	a	conducting	coil	of	wire	(through	which	a	current	is	running)
in	the	presence	of	a	magnetic	field,	then	the	coil	will	tend	to	rotate.	How	fast	it
rotates	depends	on	a	variety	of	factors:	the	strength	of	the	current,	the	strength	of
the	 magnetic	 field,	 the	 shape	 of	 the	 coil,	 and	 the	 like.	 Physicists	 say	 that	 a
magnetic	 field	exerts	a	 torque	on	a	conducting	coil.	 “Torque”	 is	 the	 term	 for	a
force	that	makes	things	rotate.

You	can	visualize	 torque	easily	 if	 you’ve	 ever	 changed	a	 tire.	You	know	 that



one	of	the	most	difficult	parts	of	the	operation	is	loosening	the	lug	nuts	holding
the	wheel	onto	the	axle.	Because	these	nuts	are	usually	very	tight,	and	sometimes
they	 feel	 frozen,	you	have	 to	exert	 tremendous	 force	on	 the	 tire	 iron	 that	grips
the	 nuts.	 The	 longer	 the	 handle	 of	 the	 tire	 iron,	 the	 larger	 the	 torque.	 If	 the
handle	is	exceptionally	long,	you	may	get	away	with	only	a	small	effort	to	loosen
the	bolts.	You	exert	 torque	 in	 the	opposite	direction	when	you	want	 to	 tighten
the	nuts	after	you’ve	replaced	the	flat	tire	with	your	spare.

Sometimes,	of	course,	no	matter	how	hard	you	push	or	pull,	you	can’t	budge
the	nut.	In	that	case	you	either	apply	some	WD-40	(and	you	should	always	carry
WD-40	in	your	trunk,	 for	this	and	many	other	reasons)	and	wait	a	bit	 for	 it	 to
loosen,	or	you	can	try	hitting	the	arm	of	the	tire	iron	with	a	hammer	(something
else	you	should	always	travel	with!).

We	don’t	have	to	go	into	the	complexities	of	torque	here.	All	you	have	to	know
is	that	if	you	run	a	current	through	a	coil	(you	could	use	a	battery),	and	you	place
that	coil	in	a	magnetic	field,	a	torque	will	be	exerted	on	the	coil,	and	it	will	want
to	rotate.	The	higher	the	current	and	the	stronger	the	magnetic	field,	the	larger
the	 torque.	This	 is	 the	principle	 behind	 a	direct	 current	 (DC)	motor,	 a	 simple
version	of	which	is	quite	easy	to	make.

What	exactly	is	the	difference	between	direct	current	and	alternating	current?
The	 polarity	 of	 the	 plus	 and	 minus	 sides	 of	 a	 battery	 does	 not	 change	 (plus
remains	 plus	 and	 minus	 remains	 minus).	 Thus	 if	 you	 connect	 a	 battery	 to	 a
conducting	wire,	a	current	will	always	flow	in	one	direction,	and	this	is	what	we
call	 direct	 current.	 At	 home	 (in	 the	 United	 States),	 however,	 the	 potential
difference	between	 the	 two	openings	of	an	electrical	outlet	alternate	with	a	60-
hertz	 frequency.	 In	 the	 Netherlands	 and	 most	 of	 Europe	 the	 frequency	 is	 50
hertz.	If	you	connect	a	wire,	say	an	incandescent	lightbulb	or	a	heating	coil,	to	an
outlet	in	your	home,	the	current	will	oscillate	(from	one	direction	to	the	opposite
direction)	with	a	60-hertz	frequency	(thus	reversing	120	times	per	second).	This
is	called	alternating	current,	or	AC.

Every	 year	 in	my	 electricity	 and	magnetism	 class	 we	 have	 a	 motor	 contest.
(This	contest	was	first	done	several	years	before	me	by	my	colleagues	and	friends
Professors	Wit	Busza	and	Victor	Weisskopf.)	Each	student	receives	an	envelope
with	these	simple	materials:	two	meters	of	insulated	copper	wire,	two	paper	clips,
two	thumbtacks,	two	magnets,	and	a	small	block	of	wood.	They	have	to	supply	a
1.5-volt	 AA	 battery.	 They	may	 use	 any	 tool,	 they	may	 cut	 the	 wood	 and	 drill
holes,	 but	 the	motor	must	be	built	 only	of	 the	material	 that	 is	 in	 the	 envelope
(tape	or	glue	is	not	allowed).	The	assignment	is	to	build	a	motor	that	runs	as	fast



as	possible	 (produces	 the	highest	number	of	 revolutions	per	minute,	or	RPMs)
from	these	simple	ingredients.	The	paper	clips	are	meant	to	be	the	supports	for
the	rotating	coil,	 the	wire	 is	needed	to	make	the	coil,	and	the	magnets	must	be
placed	 so	 as	 to	 exert	 a	 torque	 on	 the	 coil	when	 current	 from	 the	 battery	 goes
through	it.

Let’s	assume	you	want	to	enter	the	contest,	and	that	as	soon	as	you	connect	the
battery	to	your	coil	it	starts	to	rotate	in	a	clockwise	direction.	So	far	so	good.	But
perhaps	much	 to	 your	 surprise,	 your	 coil	 doesn’t	 keep	 rotating.	 The	 reason	 is
that	 every	 half	 rotation,	 the	 torque	 exerted	 on	 your	 coil	 reverses	 direction.
Torque	reversal	will	oppose	 the	clockwise	 rotation;	your	coil	may	even	start	 to
briefly	rotate	in	the	counterclockwise	direction.	Clearly,	that’s	not	what	we	want
from	 a	 motor.	 We	 want	 continuous	 rotation	 in	 one	 direction	 only	 (be	 it
clockwise	 or	 counterclockwise).	 This	 problem	 can	 be	 solved	 by	 reversing	 the
direction	of	the	current	through	the	coil	after	every	half	rotation.	In	this	way	the
torque	on	the	coil	will	always	be	exerted	in	the	same	direction,	and	thus	the	coil
will	continue	to	rotate	in	that	one	direction.

In	building	their	motors,	my	students	have	to	cope	with	the	inevitable	problem
of	torque	reversal,	and	a	few	students	manage	to	build	a	so-called	commutator,	a
device	 that	 reverses	 the	 current	 after	 every	 half	 rotation.	 But	 it’s	 complicated.
Luckily	there	is	a	very	clever	and	easy	solution	to	the	problem	without	reversing
the	current.	If	you	can	make	the	current	(thus	the	torque)	go	to	zero	after	every
half	 rotation,	 then	 the	 coil	 experiences	 no	 torque	 at	 all	 during	 half	 of	 each
rotation,	and	a	torque	that	is	always	in	the	same	direction	during	the	other	half
of	each	rotation.	The	net	result	is	that	the	coil	keeps	rotating.

I	give	a	point	 for	every	hundred	rotations	per	minute	 that	a	 student’s	motor
produces,	 up	 to	 a	maximum	 of	 twenty	 points.	 Students	 love	 this	 project,	 and
because	 they	are	MIT	students,	 they	have	come	up	with	some	amazing	designs
over	 the	 years.	You	may	want	 to	 take	 a	 shot	 at	 this	 yourself.	You	 can	 find	 the
directions	 by	 clicking	 on	 the	 pdf	 link	 to	 my	 notes	 for	 lecture	 11	 at
http://ocw.mit.edu/courses/physics/8-02-electricity-and-magnetism-spring-
2002/lecture-notes/.

Almost	all	students	can	make	a	motor	that	turns	about	400	RPM	fairly	easily.
How	do	they	keep	 the	coil	 turning	 in	 the	same	direction?	First	of	all,	 since	 the
wire	is	completely	insulated,	they	have	to	scrape	the	insulation	off	one	end	of	the
wire	coil	so	that	it	always	makes	contact	with	one	side	of	the	battery—of	course,
it	 does	not	matter	which	 end	 they	 choose.	 It’s	 the	 other	 end	of	 the	wire	 that’s
considerably	trickier.	Students	only	want	the	current	to	flow	through	the	coil	for
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half	 of	 its	 rotation—in	 other	 words,	 they	 want	 to	 break	 the	 circuit	 halfway
through.	So	 they	scrape	half	of	 the	 insulation	off	of	 that	other	end	of	 the	wire.
This	means	there’s	bare	wire	for	half	of	the	circumference	of	the	wire.	During	the
times	that	the	current	stops	(every	half	rotation),	the	coil	continues	to	rotate	even
though	 there	 is	no	 torque	on	 it	 (there	 isn’t	 enough	 friction	 to	 stop	 it	 in	half	 a
rotation).	It	takes	experimentation	to	get	the	scraping	just	right	and	to	figure	out
which	half	of	the	wire	should	be	bare—but	as	I	said,	nearly	anyone	can	get	it	to
400	RPM.	And	 that’s	what	 I	did—but	 I	 could	never	get	much	higher	 than	400
RPM	myself.

Then	 some	 students	 told	 me	 what	 my	 problem	 was.	 Once	 the	 coil	 starts
turning	more	than	a	 few	hundred	RPM,	 it	starts	 to	vibrate	on	its	supports	(the
paper	 clips),	 breaking	 the	 circuit	 frequently,	 and	 therefore	 interrupting	 the
torque.	So	the	sharper	students	had	figured	out	how	to	take	two	pieces	of	wire	to
hold	the	ends	of	the	coil	down	on	the	paper	clips	at	either	end	while	still	allowing
it	 to	rotate	with	 little	 friction.	And	that	 little	adjustment	got	 them,	believe	 it	or
not,	to	4,000	RPM!

These	students	are	so	imaginative.	In	almost	all	motors,	the	axis	of	rotation	of
the	coil	is	horizontal.	But	one	student	built	a	motor	where	the	axis	of	rotation	of
the	 coil	 was	 vertical.	 The	 best	 one	 ever	 got	 up	 to	 5,200	 RPM—powered,
remember	by	one	 little	 1.5-volt	 battery!	 I	 remember	 the	 student	who	won.	He
was	a	freshman,	and	the	young	man	said,	as	he	stood	with	me	after	class	in	front
of	the	classroom,	“Oh,	Professor	Lewin,	this	is	easy.	I	can	build	you	a	4,000	RPM
motor	 in	 about	 ten	minutes.”	And	he	proceeded	 to	do	 it,	 right	 in	 front	 of	my
eyes.

But	you	don’t	need	to	try	to	create	one	of	these.	There’s	an	even	simpler	motor
that	 you	 can	make	 in	 a	 few	minutes,	with	 even	 fewer	 components:	 an	 alkaline
battery,	a	small	piece	of	copper	wire,	a	drywall	screw	(or	a	nail),	and	a	small	disc
magnet.	It’s	called	a	homopolar	motor.	There’s	a	step-by-step	description	of	how
to	make	one,	and	a	video	of	one	in	action	right	here	(drop	me	a	line	if	yours	goes
faster	 than	 5,000	 RPM):
www.evilmadscientist.com/article.php/HomopolarMotor.

Just	 as	much	 fun	 as	 the	motor	 contest,	 in	 a	 totally	 different	way,	 is	 another
demonstration	 I	 perform	 in	 class	 with	 a	 1-foot-diameter	 electric	 coil	 and	 a
conducting	 plate.	 An	 electric	 current	 going	 through	 a	 coil	 will	 produce	 a
magnetic	field,	as	you	now	know.	An	alternating	electric	current	(AC)	in	a	coil
will	produce	an	alternating	magnetic	field.	(Recall	 that	the	current	created	by	a
battery	 is	 a	direct	 current.)	 Since	 the	 frequency	of	 the	 electricity	 in	my	 lecture
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hall	is	60	hertz	of	alternating	current,	as	it	is	everywhere	in	the	United	States,	the
current	in	my	coil	reverses	every	1/120	second.	If	I	place	such	a	coil	just	above	a
metal	plate,	 the	changing	magnetic	 field	(I	call	 this	 the	external	magnetic	 field)
will	 penetrate	 the	 conducting	 plate.	According	 to	 Faraday’s	 law,	 this	 changing
magnetic	 field	will	cause	currents	 to	 flow	in	 the	metal	plate;	we	call	 these	eddy
currents.	The	eddy	currents	 in	 turn	will	produce	 their	own	changing	magnetic
fields.	Thus	there	will	be	two	magnetic	fields:	the	external	magnetic	field	and	the
magnetic	field	produced	by	the	eddy	currents.

During	about	half	 the	 time	 in	 the	1/60-second	cycle,	 the	 two	magnetic	 fields
are	 in	opposite	directions	 and	 the	 coil	will	 be	 repelled	by	 the	plate;	during	 the
other	half	 the	magnetic	 fields	will	be	 in	 the	same	direction	and	 the	coil	will	be
attracted	 by	 the	 plate.	 For	 reasons	 that	 are	 rather	 subtle,	 and	 too	 technical	 to
discuss	here,	there	is	a	net	repelling	force	on	the	coil,	which	is	strong	enough	to
make	the	coil	 levitate.	You	can	see	 this	 in	 the	video	for	course	8.02,	 lecture	19:
http://videolectures.net/mit802s02_lewin_lec19/.	Look	about	44	minutes	and	20
seconds	into	the	lecture.

I	 figured	we	ought	 to	be	able	 to	harness	 this	 force	 to	 levitate	a	person,	and	I
decided	 that	 I	 would	 levitate	 a	 woman	 in	my	 class,	 just	 like	magicians	 do,	 by
creating	 a	 giant	 coil,	 having	 her	 lie	 on	 top,	 and	 levitating	 her.	 So	 my	 friends
Markos	 Hankin	 and	 Bil	 Sanford	 (of	 the	 physics	 demonstration	 group)	 and	 I
worked	 hard	 to	 get	 enough	 current	 going	 through	 our	 coils,	 but	we	 ended	 up
blowing	the	circuit	breakers	every	time.	So	we	called	up	the	MIT	Department	of
Facilities	and	told	them	what	we	needed—a	few	thousand	amps	of	current—and
they	 laughed.	“We’d	have	to	redesign	MIT	to	get	you	that	much	current!”	 they
told	 us.	 It	 was	 too	 bad,	 since	 a	 number	 of	 women	 had	 already	 emailed	 me,
offering	to	be	levitated.	I	had	to	write	them	all	back	with	regrets.	But	that	didn’t
stop	us,	as	you	can	see	by	logging	on	to	the	lecture	at	about	471/2	minutes	in.	I
made	good	on	my	promise;	the	woman	just	turned	out	to	be	much	lighter	than
I’d	originally	planned.

Electromagnetism	to	the	Rescue
Levitating	 a	woman	makes	 for	 a	 pretty	 good—and	 funny—demonstration,	 but
magnetic	 levitation	 has	 a	 host	 of	 more	 amazing	 and	 much	 more	 useful
applications.	It	is	the	foundation	of	new	technologies	responsible	for	some	of	the
coolest,	fastest,	least	polluting	transportation	mechanisms	in	the	world.

You’ve	 probably	 heard	 of	 high-speed	maglev	 trains.	Many	 people	 find	 them
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utterly	 fascinating,	 since	 they	seem	to	combine	 the	magic	of	 invisible	magnetic
forces	with	the	sleekest	of	modern	aerodynamic	design,	all	moving	at	extremely
high	 speeds.	 You	 may	 not	 have	 known	 that	 “maglev”	 stands	 for	 “magnetic
levitation.”	But	you	do	know	that	when	you	hold	magnetic	poles	close	together,
they	 either	 attract	 or	 repel	 each	 other.	 The	 wonderful	 insight	 behind	maglev-
trains	is	that	if	you	could	find	a	way	to	control	that	attractive	or	repulsive	force,
you	ought	to	be	able	to	levitate	a	train	above	tracks	and	then	either	pull	or	push	it
at	high	speed.	For	one	kind	of	train,	which	works	by	electromagnetic	suspension
(known	as	EMS),	electromagnets	on	the	train	lift	it	by	magnetic	attraction.	The
trains	have	a	C-shaped	arm	coming	down	from	them;	the	upper	part	of	the	arm
is	attached	to	the	train,	while	the	lower	arm,	below	the	track,	has	magnets	on	its
upper	surface	that	lift	the	train	toward	the	rails,	which	are	made	of	ferromagnetic
material.

Since	you	don’t	want	the	train	to	latch	on	to	the	rails,	and	since	the	attractive
force	 is	 inherently	 unstable,	 a	 complicated	 feedback	 system	 is	 needed	 to	make
sure	 the	 trains	 remain	 just	 the	 right	distance	away	 from	 the	 rails,	which	 is	 less
than	 an	 inch!	 A	 separate	 system	 of	 electromagnets	 that	 switch	 on	 and	 off	 in
synchronized	 fashion	 provide	 the	 train’s	 propulsion,	 by	 “pulling”	 the	 train
forward.

The	 other	 main	 type	 of	 maglev	 train	 system,	 known	 as	 electro-dynamic
suspension	(EDS),	relies	on	magnetic	repulsion,	using	remarkable	devices	called
superconductors.	A	superconductor	is	a	substance	that,	when	kept	very	cold,	has
no	 electric	 resistance.	 As	 a	 result,	 a	 supercooled	 coil	 made	 out	 of
superconducting	 material	 takes	 very	 little	 electrical	 power	 to	 generate	 a	 very
strong	magnetic	 field.	 Even	more	 amazing,	 a	 superconducting	magnet	 can	 act
like	 a	 magnetic	 trap.	 If	 a	 magnet	 is	 pushed	 close	 to	 it,	 the	 interplay	 between
gravity	and	 the	 superconductor	holds	 the	magnet	at	a	particular	distance.	As	a
result,	maglevs	 that	 use	 superconductors	 are	 naturally	much	more	 stable	 than
EMS	systems.	If	you	try	to	push	the	superconductor	and	the	magnet	together	or
pull	them	apart,	you’ll	find	it	quite	hard	to	do.	The	two	will	want	to	stay	the	same
distance	from	each	other.	(There’s	a	wonderful	little	video	that	demonstrates	the
relationship	 between	 a	 magnet	 and	 a	 superconductor:
http://www.youtube.com/watch?v=nWTSzBWEsms.)

If	 the	 train,	 which	 has	 magnets	 on	 the	 bottom,	 gets	 too	 close	 to	 the	 track,
which	has	superconductors	in	it,	the	increased	force	of	repulsion	pushes	it	away.
If	it	gets	too	far	away,	gravity	pulls	it	back	and	causes	the	train	to	move	toward
the	 track.	 As	 a	 result,	 the	 train	 car	 levitates	 in	 equilibrium.	Moving	 the	 train

http://www.youtube.com/watch?v=nWTSzBWEsms


forward,	which	also	uses	mostly	repulsive	force,	is	simpler	than	in	EMS	systems.
Both	methods	have	pluses	 and	minuses,	but	both	have	 effectively	 eliminated

the	 problem	 of	 friction	 on	 conventional	 train	 wheels—a	major	 component	 of
wear	and	tear—while	producing	a	far	smoother,	quieter,	and	above	all	faster	ride.
(They	 still	have	 to	 cope	with	 the	problems	of	 air	drag,	which	 increases	 rapidly
with	 the	 speed	 of	 the	 train.	 That’s	 why	 they	 are	 designed	 to	 be	 so
aerodynamically	 sleek.)	The	Shanghai	Maglev	Train,	which	works	by	means	of
electromagnetic	suspension	and	opened	in	2004,	takes	about	8	minutes	to	travel
the	 19	miles	 from	 the	 city	 to	 the	 airport,	 at	 an	 average	 speed	 (as	 of	 2008)	 of
between	139	and	156	miles	per	hour—though	it’s	capable	of	a	top	speed	of	268
miles	per	hour,	 faster	 than	any	other	high-speed	railway	 in	 the	world.	You	can
see	 a	 short	 video	 of	 the	 Shanghai	 train	 here,	 made	 by	 its	 manufacturers:
www.youtube.com/watch?v=weWmTldrOyo.	 The	 highest	 speed	 ever	 recorded
on	a	maglev	train	belong	to	a	Japanese	test	track,	where	the	JR-Maglev	train	hit
361	 miles	 per	 hour.	 Here’s	 a	 short	 piece	 on	 the	 Japanese	 train:
www.youtube.com/watch?v=VuSrLvCVoVk&feature=related.

There	are	 lots	of	hilarious	and	informative	YouTube	videos	featuring	maglev
technology.	This	one,	in	which	a	boy	levitates	a	spinning	pencil	with	six	magnets
and	a	little	modeling	clay,	features	a	demonstration	you	can	reproduce	easily	at
home:	 www.youtube.com/watch?v=rrRG38WpkTQ&feature=related.	 But	 also
have	a	look	at	this	one,	using	a	superconductor	design.	It	shows	a	model	train	car
zipping	 around	 a	 track—and	 even	 has	 a	 little	 animated	 explanatory	 section:
www.youtube.com/watch?v=GHtAwQXVsuk&feature=related.

My	 favorite	Maglev	demonstration,	however,	 is	 the	wonderful	 little	 spinning
top	known	as	the	Levitron.	You	can	see	different	versions	at	www.levitron.com.	I
have	an	early	one	in	my	office	that	has	delighted	hundreds	of	visitors.

Maglev	 train	 systems	 have	 genuine	 environmental	 advantages—they	 use
electricity	 relatively	efficiently	and	don’t	emit	greenhouse	gases	 in	exhaust.	But
maglev	trains	don’t	produce	something	for	nothing.	Because	most	maglev	tracks
are	not	 compatible	with	 existing	 rail	 lines,	maglev	 systems	 require	 a	 lot	 of	up-
front	 capital,	which	has	worked	 against	 them	being	 in	widespread	 commercial
use	 so	 far.	Even	so,	developing	more	efficient	and	cleaner	mass	 transit	 systems
than	what	we	use	today	is	absolutely	essential	for	our	future	if	we’re	not	going	to
cook	our	own	planet.

Maxwell’s	Extraordinary	Achievement
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Many	physicists	think	that	James	Clerk	Maxwell	was	one	of	the	most	important
physicists	of	all	time,	perhaps	right	behind	Newton	and	Einstein.	He	contributed
to	an	incredible	range	of	fields	in	physics,	from	an	analysis	of	Saturn’s	rings,	to
exploring	 the	behavior	of	 gases,	 thermodynamics,	 and	 the	 theory	of	 color.	But
his	most	dazzling	achievement	was	developing	the	four	equations	describing	and
linking	 electricity	 and	 magnetism	 that	 have	 become	 known	 as	 Maxwell’s
equations.	 These	 four	 equations	 only	 appear	 simple;	 the	math	 behind	 them	 is
pretty	 complicated.	 But	 if	 you’re	 comfortable	 with	 integrals	 and	 differential
equations,	please	take	a	 look	at	my	 lectures	or	surf	around	on	the	web	to	 learn
about	them.	For	our	purposes,	here’s	what	Maxwell	did	in	simpler	terms.

Above	all,	Maxwell	unified	the	theory	of	electricity	and	magnetism	by	showing
these	 two	 phenomena	 to	 be	 just	 one	 phenomenon—electromagnetism—with
different	manifestations.	With	one	very	important	exception,	the	four	equations
are	 not	 his	 “laws”	 or	 inventions;	 they	 already	 existed	 in	 one	 form	 or	 another.
What	Maxwell	did,	however,	was	bring	them	together	in	what	we	call	a	complete
field	theory.

The	 first	 of	 these	 equations	 is	Gauss’s	 law	 for	 electricity,	which	 explains	 the
relationship	 between	 electric	 charges	 and	 the	 strength	 and	 distribution	 of	 the
electric	fields	they	create.	The	second	equation,	Gauss’s	law	for	magnetism,	is	the
simplest	of	the	four	and	says	several	things	at	once.	It	says	that	there	are	no	such
things	as	magnetic	monopoles.	Magnets	always	have	a	north	and	south	pole	(we
call	 them	dipoles)	as	opposed	to	electricity	which	allows	for	electric	monopoles
(a	monopole	is	either	a	positively	charged	particle	or	a	negatively	charged	one).	If
you	break	one	of	your	magnets	(I	have	many	on	my	refrigerator)	in	two	pieces,
each	piece	has	a	north	and	a	south	pole,	and	if	you	break	 it	 into	10,000	pieces,
each	has	a	north	pole	and	a	south	pole.	There	is	no	way	 that	you	could	end	up
with	only	a	magnetic	north	pole	in	one	hand	and	only	a	magnetic	south	pole	in
the	other	hand.	However,	if	you	have	an	object	which	is	electrically	charged	(say,
positively	charged)	and	you	break	it	into	two	pieces,	both	pieces	can	be	positively
charged.

Then	things	get	really	 interesting.	The	third	equation	is	Faraday’s	 law,	which
describes	how	changing	magnetic	fields	produce	electric	fields.	You	can	see	how
this	 equation	 serves	 as	 the	 theoretical	 foundation	 of	 the	 electric	 generators	 I
talked	about	earlier.	The	last	equation	is	Ampère’s	law,	which	Maxwell	modified
in	 important	 ways.	 Ampère’s	 original	 law	 showed	 that	 an	 electric	 current
generated	 a	magnetic	 field.	 But	 by	 the	 time	he	was	 done	with	 it,	Maxwell	 had
added	a	refinement,	that	a	changing	electric	field	creates	a	magnetic	field.



By	playing	around	with	the	four	equations,	Maxwell	predicted	the	existence	of
electromagnetic	 waves	 traveling	 through	 empty	 space.	What’s	 more,	 he	 could
even	calculate	the	speed	of	these	waves.	The	truly	shocking	result	was	that	their
speed	was	the	same	as	the	speed	of	light.	In	other	words,	he	concluded,	light	itself
had	to	be	an	electromagnetic	wave!

These	 scientists—Ampère,	 Faraday,	 and	 Maxwell—knew	 they	 were	 on	 the
brink	of	a	total	revolution.	Researchers	had	been	trying	to	understand	electricity
in	a	serious	way	for	a	century,	but	now	these	guys	were	constantly	breaking	new
ground.	I	sometimes	wonder	how	they	managed	to	sleep	at	night.

Maxwell’s	 equations,	 because	 of	 what	 they	 brought	 together	 in	 1861,	 were
really	 the	 crowning	 achievement	 of	 nineteenth-century	 physics,	most	 certainly
for	all	physics	between	Newton	and	Einstein.	And	like	all	profound	discoveries,
they	 pointed	 the	 way	 for	 further	 efforts	 to	 try	 to	 unify	 fundamental	 scientific
theories.

Ever	since	Maxwell,	physicists	have	spent	incalculable	efforts	trying	to	develop
a	single	unified	theory	of	nature’s	four	fundamental	forces:	the	electromagnetic,
strong	nuclear,	weak	nuclear,	and	gravitational	forces.	Albert	Einstein	spent	the
last	 thirty	 years	 of	 his	 life	 in	 a	 failed	 effort	 to	 combine	 electromagnetism	 and
gravity	in	what	became	known	as	a	unified	field	theory.

The	 search	 for	 unification	 goes	 on.	 Abdus	 Salam,	 Sheldon	 Glashow,	 and
Steven	Weinberg	 won	 the	 Nobel	 Prize	 in	 1979	 for	 unifying	 electromagnetism
and	the	weak	nuclear	 force	 into	what’s	known	as	 the	electro-weak	 force.	Many
physicists	are	trying	to	unify	the	electroweak	force	and	the	strong	nuclear	force
into	what	is	called	a	grand	unified	theory,	or	GUT,	for	short.	Achieving	that	level
of	unification	would	be	a	staggering	accomplishment,	on	a	par	with	Maxwell’s.
And	if,	somehow,	somewhere,	a	physicist	ever	manages	to	combine	gravity	with
GUT	 to	 create	 what	 many	 call	 a	 theory	 of	 everything—well,	 that	 will	 be	 the
holiest	of	Holy	Grails	in	physics.	Unification	is	a	powerful	dream.

That’s	why,	in	my	Electricity	and	Magnetism	course,	when	we	finally	see	all	of
Maxwell’s	equations	in	their	full	glory	and	simplicity,	I	project	them	all	around
in	the	lecture	hall	and	I	celebrate	this	important	milestone	with	the	students	by
handing	out	flowers.	If	you	can	handle	a	little	suspense,	you	will	read	more	about
this	in	chapter	15.



CHAPTER	9

Energy	Conservation—Plus	ça	change…

One	of	 the	most	popular	demonstrations	I’ve	done	 through	the	years	 involves
risking	my	life	by	putting	my	head	directly	in	the	path	of	a	wrecking	ball—a	mini
version	of	 a	wrecking	ball,	 it	must	 be	 said,	 but	 one	 that	 could	 easily	 kill	me,	 I
assure	you.	Whereas	the	wrecking	balls	used	by	demolition	crews	might	be	made
from	a	bob,	or	spherical	weight,	of	about	a	thousand	kilos,	I	construct	mine	with
a	15-kilo	bob—about	33	pounds.	Standing	at	one	side	of	the	lecture	hall,	with	my
head	backed	up	against	the	wall,	I	hold	the	bob	in	my	hands,	snug	up	to	my	chin.
When	releasing	it	I	must	be	extremely	careful	not	to	give	it	any	kind	of	a	push,
not	even	a	tiny	little	bit	of	a	shove.	Any	push	at	all	and	it	will	surely	injure	me—
or,	as	I	say,	possibly	even	kill	me.	I	ask	my	students	not	to	distract	me,	to	make
no	noise,	and	even	to	stop	breathing	for	a	while—if	not,	I	say,	this	could	be	my
last	lecture.

I	 have	 to	 confess	 that	 every	 time	 I	 perform	 this	 demonstration,	 I	 feel	 an
adrenaline	rush	as	the	ball	comes	swinging	back	my	way;	as	sure	as	I	am	that	the
physics	will	save	me,	it	is	always	unnerving	to	stand	there	while	it	comes	flying
up	to	within	a	whisker	of	my	chin.	Instinctively	I	clench	my	teeth.	And	the	truth
is,	I	always	close	my	eyes	too!	What,	you	may	ask,	what	possesses	me	to	perform
this	demonstration?	My	utter	confidence	in	one	of	the	most	important	concepts
in	all	of	physics—the	law	of	the	conservation	of	energy.

One	of	the	most	remarkable	features	of	our	world	is	that	one	form	of	energy
can	 be	 converted	 into	 another	 form,	 and	 then	 into	 another	 and	 another,	 and
even	converted	back	 to	 the	original.	Energy	can	be	 transformed	but	never	 lost,
and	 never	 gained.	 In	 fact,	 this	 transformation	 happens	 all	 the	 time.	 All
civilizations,	 not	 only	 ours	 but	 even	 the	 least	 technologically	 sophisticated,
depend	on	this	process,	in	many	variations.	This	is,	most	obviously,	what	eating
does	for	us;	converting	the	chemical	energy	of	food,	mostly	stored	in	carbon,	into
a	compound	called	adenosine	 triphosphate	 (ATP),	which	stores	 the	energy	our
cells	 can	use	 to	do	different	 kinds	 of	work.	 It’s	what	happens	when	we	 light	 a
campfire,	converting	the	chemical	energy	stored	in	wood	or	charcoal	(the	carbon
in	each	combines	with	oxygen)	into	heat	and	carbon	dioxide.

It’s	 what	 drives	 an	 arrow	 through	 the	 air	 once	 it’s	 been	 shot	 from	 a	 bow,



converting	the	potential	energy,	built	up	when	you	pull	the	bowstring	back	into
kinetic	 energy,	 propelling	 the	 arrow	 forward.	 In	 a	 gun,	 it’s	 the	 conversion	 of
chemical	 energy	 from	 the	 gunpowder	 into	 the	 kinetic	 energy	 of	 rapidly
expanding	gas	that	propels	bullets	out	of	the	barrel.	When	you	ride	a	bicycle,	the
energy	that	pushes	the	pedals	began	as	the	chemical	energy	of	your	breakfast	or
lunch,	 which	 your	 body	 converted	 into	 a	 different	 form	 of	 chemical	 energy
(ATP).	Your	muscles	then	use	that	chemical	energy,	converting	some	of	 it	 into
mechanical	energy,	in	order	to	contract	and	release	your	muscles,	enabling	you
to	push	the	pedals.	The	chemical	energy	stored	in	your	car	battery	is	converted	to
electric	energy	when	you	turn	the	ignition	key.	Some	electric	energy	goes	to	the
cylinders,	 where	 it	 ignites	 the	 gasoline	mixture,	 releasing	 the	 chemical	 energy
released	 by	 the	 gasoline	 as	 it	 burns.	 That	 energy	 is	 then	 converted	 into	 heat,
which	increases	the	pressure	of	the	gas	in	the	cylinder,	which	in	turn	pushes	the
pistons.	These	turn	the	crankshaft,	and	the	transmission	sends	the	energy	to	the
wheels,	making	them	turn.	Through	this	remarkable	process	the	chemical	energy
of	the	gasoline	is	harnessed	to	allow	us	to	drive.

Hybrid	cars	rely	 in	part	on	this	process	 in	reverse.	They	convert	some	of	 the
kinetic	energy	of	a	car—when	you	step	on	the	brakes—into	electric	energy	that	is
stored	 in	 a	 battery	 and	 can	 run	 an	 electric	motor.	 In	 an	 oil-fired	 furnace,	 the
chemical	energy	of	the	oil	is	converted	into	heat,	which	raises	the	temperature	of
water	 in	 the	 heating	 system,	 which	 a	 pump	 then	 forces	 through	 radiators.	 In
neon	 lights,	 the	 kinetic	 energy	 of	 electric	 charges	moving	 through	 a	 neon	 gas
tube	is	converted	into	visible	light.

The	 applications	 are	 seemingly	 limitless.	 In	 nuclear	 reactors,	 the	 nuclear
energy	 that	 is	 stored	 in	 uranium	 or	 plutonium	 nuclei	 is	 converted	 into	 heat,
which	 turns	 water	 into	 steam,	 which	 turns	 turbines,	 which	 create	 electricity.
Chemical	 energy	 stored	 in	 fossil	 fuels—not	 only	 oil	 and	 gasoline	 but	 also	 coal
and	 natural	 gas—is	 converted	 into	 heat,	 and,	 in	 the	 case	 of	 a	 power	 plant,	 is
ultimately	converted	to	electrical	energy.

You	can	witness	the	wonders	of	energy	conversion	easily	by	making	a	battery.
There	are	lots	of	different	kinds	of	batteries,	from	those	in	your	conventional	or
hybrid	 car	 to	 those	 powering	 your	 wireless	 computer	 mouse	 and	 cell	 phone.
Believe	it	or	not,	but	you	can	make	a	battery	from	a	potato,	a	penny,	a	galvanized
nail,	and	two	pieces	of	copper	wire	(each	about	6	inches	long,	with	a	half-inch	of
insulation	scraped	off	at	each	end).	Put	the	nail	most	of	the	way	into	the	potato	at
one	end,	cut	a	slit	at	the	other	end	for	the	penny,	and	put	the	penny	into	the	slit.
Hold	the	end	of	one	piece	of	wire	on	the	nail	(or	wrap	it	around	the	nail	head);



hold	the	other	piece	of	wire	on	the	penny	or	slide	it	into	the	slit	so	it	touches	the
penny.	Then	touch	the	free	ends	of	the	wires	to	the	little	leads	of	a	Christmas	tree
light.	 It	 should	 flicker	a	 little	bit.	Congratulations!	You	can	see	dozens	of	 these
contraptions	on	YouTube—why	not	give	it	a	try?

Clearly,	conversions	of	energy	are	going	on	around	us	all	of	the	time,	but	some
of	them	are	more	obvious	than	others.	One	of	the	most	counterintuitive	types	is
that	 of	what	we	 call	 gravitational	 potential	 energy.	 Though	we	 don’t	 generally
think	of	static	objects	as	having	energy,	 they	do;	 in	some	cases	quite	a	bit	of	 it.
Because	 gravity	 is	 always	 trying	 to	 pull	 objects	 down	 toward	 the	 center	 of	 the
Earth,	 every	 object	 that	 you	 drop	 from	 a	 certain	 height	will	 pick	 up	 speed.	 In
doing	so,	it	will	lose	gravitational	potential	energy	but	it	will	gain	kinetic	energy
—no	energy	was	lost	and	none	was	created;	it’s	a	zero	sum	game!	If	an	object	of
mass	m	falls	down	over	a	vertical	distance	h,	its	potential	energy	decreases	by	an
amount	mgh	 (g	 is	 the	 gravitational	 acceleration,	which	 is	 about	 9.8	meters	 per
second	per	 second),	but	 its	kinetic	energy	will	 increase	by	 the	same	amount.	 If
you	move	the	object	upward	over	a	vertical	distance	h,	its	gravitational	potential
energy	will	increase	by	an	amount	mgh,	and	you	will	have	to	produce	that	energy
(you	will	have	to	do	work).

If	a	book	with	a	mass	of	1	kilogram	(2.2	pounds)	is	on	a	shelf	2	meters	(about
6.5	feet)	above	the	floor,	then,	when	it	falls	to	the	floor,	its	gravitational	potential
energy	will	decrease	by	1	×	9.8	×	2	=	19.6	joules	but	its	kinetic	energy	will	be	19.6
joules	when	it	hits	the	floor.

I	think	the	name	gravitational	potential	energy	is	an	excellent	name.	Think	of	it
this	way.	 If	 I	pick	 the	book	up	from	the	 floor	and	place	 it	on	the	shelf,	 it	 takes
19.6	joules	of	my	energy	to	do	so.	Is	this	energy	lost?	No!	Now	that	the	book	is	2
meters	above	the	floor,	it	has	the	“potential”	of	returning	that	energy	back	to	me
in	the	form	of	kinetic	energy—whenever	I	drop	it	on	the	floor,	be	it	the	next	day
or	 the	 next	 year!	 The	 higher	 the	 book	 is	 above	 the	 floor,	 the	 more	 energy	 is
“potentially”	available,	but,	of	course	I	have	to	provide	that	extra	energy	to	place
the	book	higher.

In	a	similar	way,	it	takes	energy	to	pull	the	string	of	a	bow	back	when	you	want
to	 shoot	 an	 arrow.	 That	 energy	 is	 stored	 in	 the	 bow	 and	 it	 is	 “potentially”
available,	at	a	time	of	your	chosing,	to	convert	that	potential	energy	into	kinetic
energy,	which	gives	the	arrow	its	speed.

Now,	 there	 is	 a	 simple	 equation	 I	 can	 use	 to	 show	 you	 something	 quite
wonderful.	 If	 you	 bear	with	me	 for	 just	 a	 bit	 of	math,	 you’ll	 see	why	Galileo’s
most	 famous	 (non)experiment	works.	Recall	 that	 he	was	 said	 to	have	dropped



balls	of	different	mass	(thus	different	weight)	from	the	Leaning	Tower	of	Pisa	to
show	 that	 their	 rate	 of	 falling	 was	 independent	 of	 their	mass.	 It	 follows	 from
Newton’s	 laws	 of	 motion	 that	 the	 kinetic	 energy	 (KE)	 of	 a	 moving	 object	 is
proportional	both	 to	 the	mass	of	 the	object	 and	 to	 the	 square	of	 its	 speed;	 the
equation	 for	 that	 is	 KE	 =	 1/2	 mv2.	 And	 since	 we	 know	 that	 the	 change	 in
gravitational	potential	 energy	of	 the	object	 is	 converted	 to	kinetic	 energy,	 then
we	can	say	that	mgh	equals	1/2	mv2,	so	you	have	the	equation	mgh	=	1/2mv2.	If
you	divide	both	 sides	by	m,	m	 disappears	 from	 the	 equation	 entirely,	 and	 you
have	gh	 =	 1/2v2.	 Then	 to	 get	 rid	 of	 the	 fraction	we	multiply	 both	 sides	 of	 the
equation	by	2,	to	get	2gh	=	v2.	This	means	that	v,	the	speed,	which	is	what	Galileo
was	 testing	 for,	 equals	 the	 square	 root	 of	 2gh.*	 And	 note	 that	 mass	 has
completely	disappeared	from	the	equation!	It	is	literally	not	a	factor—the	speed
does	not	depend	on	the	mass.	To	take	a	specific	example,	 if	we	drop	a	rock	(of
any	mass)	from	a	height	of	100	meters,	 in	the	absence	of	air	drag	it	will	hit	the
ground	with	a	speed	of	about	45	meters	per	second,	or	about	100	miles	per	hour.

Imagine	a	rock	(of	any	mass)	falling	from	a	few	hundred	thousand	miles	away
to	 the	 Earth.	 With	 what	 speed	 would	 it	 enter	 the	 Earth’s	 atmosphere?
Unfortunately,	 we	 cannot	 use	 the	 above	 simple	 equation	 that	 the	 speed	 is	 the
square	root	of	2gh	because	the	gravitational	acceleration	depends	strongly	on	the
distance	 to	 Earth.	 At	 the	 distance	 of	 the	 Moon	 (about	 240,000	 miles),	 the
gravitational	acceleration	due	to	Earth	is	about	3,600	times	smaller	than	what	it
is	close	to	the	surface	of	the	Earth.	Without	showing	you	the	math,	take	my	word
for	it,	the	speed	would	be	about	25,000	miles	per	hour!

Perhaps	 you	 can	 now	 understand	 how	 important	 gravitational	 potential
energy	is	in	astronomy.	As	I	will	discuss	in	chapter	13,	when	matter	falls	from	a
large	distance	onto	a	neutron	star,	it	crashes	onto	the	neutron	star	with	a	speed
of	roughly	100,000	miles	per	second,	yes,	per	second!	If	 the	rock	had	a	mass	of
only	1	kilogram,	its	kinetic	energy	would	then	be	about	13	thousand	trillion	(13
×	1015)	 joules,	which	 is	 roughly	 the	amount	of	energy	 that	a	 large	(1,000	MW)
power	plant	produces	in	about	half	a	year.

The	fact	that	different	types	of	energy	can	be	converted	into	one	another	and
then	back	again	is	remarkable	enough,	but	what	is	even	more	spectacular	is	that
there	is	never	any	net	loss	of	energy.	Never.	Amazing.	This	is	why	the	wrecking
ball	has	never	killed	me.

When	 I	pull	 the	15	kilogram	ball	up	 to	my	chin	over	a	vertical	distance	h,	 I
increase	its	gravitational	potential	energy	by	mgh.	When	I	drop	the	ball,	it	begins



to	swing	across	the	room	due	to	the	force	of	gravity,	and	mgh	is	converted	into
kinetic	energy.	Here,	h	 is	 the	vertical	distance	between	my	chin	and	 the	 lowest
position	of	the	bob	at	the	end	of	the	string.	As	the	ball	reaches	its	lowest	point	in
the	swing,	its	kinetic	energy	will	be	mgh.	As	the	ball	completes	its	arc	and	reaches
the	upper	limit	of	its	swing,	that	kinetic	energy	is	converted	back	into	potential
energy—which	is	why,	at	the	very	height	of	a	pendulum	swing,	the	ball	stops	for
a	moment.	If	there’s	no	kinetic	energy,	there’s	no	movement.	But	that	is	for	just
the	slightest	moment,	because	then	the	ball	goes	back	down	again,	on	its	reverse
swing,	and	potential	energy	 is	converted	again	 into	kinetic	energy.	The	sum	of
kinetic	 energy	 and	 potential	 energy	 is	 called	 mechanical	 energy,	 and	 in	 the
absence	of	friction	(in	this	case	air	drag	on	the	bob),	the	total	mechanical	energy
does	not	change—it	is	conserved.

This	means	 that	 the	ball	 can	go	no	higher	 than	 the	exact	 spot	 from	which	 it
was	 released—as	 long	 as	 no	 extra	 energy	 is	 imparted	 to	 it	 anywhere	 along	 the
way.	 Air	 drag	 is	 my	 safety	 cushion.	 A	 very	 small	 amount	 of	 the	 mechanical
energy	of	the	pendulum	is	sucked	away	by	air	drag	and	converted	into	heat.	As	a
result,	the	bob	stops	just	one-eighth	of	an	inch	from	my	chin,	as	you	can	see	in
the	 video	 of	 lecture	 11	 from	 course	 8.01.	 Susan	 has	 seen	 me	 do	 the
demonstration	three	times—she	shivers	each	time.	Someone	once	asked	me	if	I
practiced	 a	 lot,	 and	 I	 always	 answer	 with	 what	 is	 true:	 that	 I	 do	 not	 have	 to
practice	as	I	trust	the	conservation	of	energy,	100	percent.

But	if	I	were	to	give	the	ball	the	slightest	little	push	when	I	let	it	go—say	I	had
coughed	 just	 then	 and	 that	 caused	me	 to	 give	 the	 ball	 some	 thrust—it	 would
swing	back	to	a	spot	a	little	higher	than	where	I	released	it	from,	smashing	into
my	chin.

The	conservation	of	energy	was	discovered	largely	due	to	the	work	of	a	mid-
nineteenth-century	English	brewer’s	son,	James	Joule.	So	important	was	his	work
to	 understanding	 the	 nature	 of	 energy	 that	 the	 international	 unit	 by	 which
energy	is	measured,	the	joule,	was	named	after	him.	His	father	had	sent	him	and
his	brother	to	study	with	the	famous	experimental	scientist	John	Dalton.	Clearly
Dalton	taught	Joule	well.	After	Joule	inherited	his	father’s	brewery,	he	performed
a	 host	 of	 innovative	 experiments	 in	 the	 brewery’s	 basement,	 probing	 in
ingenious	 ways	 into	 the	 characteristics	 of	 electricity,	 heat,	 and	 mechanical
energy.	 One	 of	 his	 discoveries	 was	 that	 electric	 current	 produces	 heat	 in	 a
conductor,	 which	 he	 found	 by	 putting	 coils	 of	 different	 kinds	 of	 metal	 with
current	running	through	them	into	jars	of	water	and	measuring	their	changes	in
temperature.



Joule	had	the	fundamental	insight	that	heat	is	a	form	of	energy,	which	refuted
what	had	been	the	widely	accepted	understanding	of	heat	for	many	years.	Heat,	it
was	 thought,	 was	 a	 kind	 of	 fluid,	 which	 was	 called	 caloric—from	 which	 our
contemporary	word	calorie	derives—and	the	belief	at	the	time	was	that	this	fluid
heat	flowed	from	areas	of	high	concentration	to	low,	and	that	caloric	could	never
be	either	created	or	destroyed.	Joule	made	note,	though,	that	heat	was	produced
in	many	ways	that	suggested	it	was	of	a	different	nature.	For	example,	he	studied
waterfalls	and	determined	that	the	water	at	the	bottom	was	warmer	than	that	at
the	 top,	 and	 he	 concluded	 that	 the	 gravitational	 potential	 energy	 difference
between	 the	 top	 and	 bottom	of	 the	waterfall	was	 converted	 into	 heat.	He	 also
observed	 that	 when	 a	 paddle	 wheel	 was	 stirring	 water—a	 very	 famous
experiment	that	Joule	performed—it	raised	the	temperature	of	the	water,	and	in
1881	 he	 came	 up	 with	 remarkably	 accurate	 results	 for	 the	 conversion	 of	 the
kinetic	energy	of	the	paddle	wheel	into	heat.

In	this	experiment	Joule	connected	a	set	of	paddles	in	a	container	of	water	to	a
pulley	and	a	 string	 from	which	he	 suspended	a	weight.	As	 the	weight	 lowered,
the	string	turned	the	shaft	of	the	paddles,	rotating	them	in	the	water	container.
More	 technically,	 he	 lowered	 a	 mass,	 m,	 on	 a	 string	 over	 a	 distance,	 h.	 The
change	 in	potential	 energy	was	mgh,	which	 the	 contraption	converted	 into	 the
rotational	(kinetic)	energy	of	the	paddle,	which	then	heated	the	water.	Here	is	an
illustration	of	the	device:

What	made	 the	experiment	so	brilliant	 is	 that	 Joule	was	able	 to	calculate	 the
exact	 amount	of	 energy	he	was	 transferring	 to	 the	water—which	 equaled	mgh.
The	 weight	 came	 down	 slowly,	 because	 the	 water	 prevented	 the	 paddle	 from
rotating	 fast.	 Therefore	 the	weight	 hit	 the	 ground	with	 a	 negligible	 amount	 of
kinetic	 energy.	 Thus	 all	 the	 available	 gravitational	 potential	 energy	 was



transferred	to	the	water.
How	much	 is	 a	 joule?	Well,	 if	 you	 drop	 a	 1-kilogram	 object	 0.1	meters	 (10

centimeters),	 the	 kinetic	 energy	 of	 that	 object	 has	 increased	 by	mgh,	 which	 is
about	 1	 joule.	 That	 may	 not	 sound	 like	 much,	 but	 joules	 can	 add	 up	 quite
quickly.	 In	 order	 to	 throw	 a	 baseball	 just	 under	 100	miles	 per	 hour,	 a	Major
League	Baseball	pitcher	requires	about	140	 joules	of	energy,	which	 is	about	 the
same	amount	of	energy	required	to	 lift	a	bushel	of	140	hundred-gram	apples	1
full	meter.*

One	hundred	forty	joules	of	kinetic	energy	hitting	you	could	be	enough	to	kill
you,	as	long	as	that	energy	is	released	quickly,	and	in	a	concentrated	fashion.	If	it
were	spread	out	over	an	hour	or	two,	you	wouldn’t	even	notice	it.	And	if	all	those
joules	 were	 released	 in	 a	 pillow	 hitting	 you	 hard,	 it	 wouldn’t	 kill	 you.	 But
concentrated	 in	 a	 bullet,	 say,	 or	 a	 rock	 or	 a	 baseball,	 in	 a	 tiny	 fraction	 of	 a
second?	A	very	different	story.

Which	brings	us	back	to	wrecking	balls.	Suppose	you	had	1,000-kilogram	(1-
ton)	wrecking	ball,	which	you	drop	over	 a	vertical	distance	of	5	meters.	 It	will
convert	 about	 50,000	 joules	 of	 potential	 energy	 (mgh	 =	 1,000	 ×	 10	 ×	 5)	 into
kinetic	 energy.	 That’s	 quite	 a	 wallop,	 especially	 if	 it’s	 released	 in	 a	 very	 short
time.	Using	 the	equation	 for	kinetic	energy,	we	can	solve	 for	 speed	 too.	At	 the
bottom	of	its	swing	the	ball	would	be	moving	at	a	speed	of	10	meters	per	second
(about	22	miles	per	hour),	which	 is	a	pretty	high	speed	for	a	1-ton	ball.	To	see
this	 kind	of	 energy	 in	 action,	 you	 can	 check	out	 an	 amazing	video	online	of	 a
wrecking	ball	hitting	a	minivan	that	had	strayed	into	a	Manhattan	construction
zone,	 knocking	 the	 van	 over	 as	 though	 it	 were	 a	 toy	 car:
www.lionsdenu.com/wrecking-ball-vs-dodge-mini-van/.

How	Much	Food	Energy	Do	We	Need?
We	can	come	to	appreciate	the	amazing	feats	of	conversion	of	energy	that	keep

our	 civilization	 running	 by	 considering	 the	 amount	 of	 joules	 involved	 in	 the
most	basic	of	our	life	processes.	Consider,	for	example,	that	in	one	day	a	human
body	 generates	 about	 10	million	 joules	 of	 body	 heat.	Unless	 you’re	 running	 a
fever,	 your	body	 runs	 roughly	 at	 a	 temperature	of	 98.6	degrees	Fahrenheit	 (37
degrees	Celsius),	and	radiates	heat	 in	the	form	of	 infrared	radiation	at	the	rate,
on	average,	of	about	100	joules	per	second;	very	roughly	about	10	million	joules
per	 day.	 However,	 this	 does	 depend	 on	 air	 temperature	 and	 the	 size	 of	 the
human	being.	The	 larger	the	person,	 the	more	energy	s/he	radiates	per	second.

http://www.lionsdenu.com/wrecking-ball-vs-dodge-mini-van/


You	can	compare	that	to	the	energy	radiated	by	a	lightbulb;	1	watt	is	equivalent
to	 the	 expenditure	 of	 1	 joule	 per	 second,	 so	 100	 joules	 per	 second	 equals	 100
watts,	which	means	that	on	average,	people	radiate	at	roughly	the	same	level	as	a
100-watt	 lightbulb.	 You	 don’t	 feel	 as	 hot	 as	 a	 lightbulb	 because	 your	 heat	 is
distributed	over	a	much	larger	area.	When	you	think	that	an	electric	blanket	only
produces	50	watts,	you	now	understand	why,	as	 I’m	sure	you	already	know,	 in
winter	 it’s	much	nicer	 to	have	a	human	being	with	you	 in	bed	 than	an	electric
blanket.

There	 are	 dozens	 of	 different	 units	 for	 energy:	 BTUs	 for	 air	 conditioners;
kilowatt-hours	 for	 electricity;	 electron	 volts	 for	 atomic	 physics;	 ergs	 for
astronomers.	A	BTU	 is	 about	1,055	 joules;	 a	kilowatt-hour	 is	 the	 equivalent	of
3.6	×	106	 joules;	 an	electron	volt	 is	1.6	×	10–19	 joules;	1	 erg	 is	10–7	 joules.	One
very	important	unit	of	energy	we	are	all	familiar	with	is	the	calorie.	A	calorie	is
close	to	4.2	joules.	So,	as	our	bodies	generate	roughly	10	million	joules	every	day,
we	 are	 expending	 a	 little	 over	 2	million	 calories.	 But	 how	 can	 that	 be?	We’re
supposed	to	eat	only	about	2,000	calories	a	day.	Well,	when	you	read	calorie	on
food	 packages,	 what	 the	 label	 writers	 really	 mean	 is	 kilocalorie,	 a	 thousand
calories,	sometimes	indicated	by	spelling	the	word	calorie	with	a	capital	C.	This	is
done	for	convenience,	because	a	single	calorie	is	a	very	small	unit:	the	amount	of
energy	required	to	raise	the	temperature	of	1	gram	of	water	1	degree	Celsius.	So,
in	 order	 to	 radiate	 10	 million	 joules	 per	 day,	 you	 have	 to	 eat	 roughly	 2,400
kilocalories	(or	Calories)	of	food	a	day.	And	if	you	eat	a	lot	more	than	that,	well,
you	pay	a	price	sooner	or	later.	The	math	here	is	pretty	unforgiving,	as	too	many
of	us	know	but	try	to	ignore.

What	about	all	of	the	physical	activity	we	do	in	a	day?	Don’t	we	also	have	to
eat	to	fuel	that?	Going	up	and	down	stairs,	say,	or	puttering	around	the	house,	or
running	 the	 vacuum	 cleaner?	 Housework	 can	 be	 exhausting,	 so	 we	 must	 be
expending	a	 lot	of	energy,	 right?	Well,	 I’m	afraid	I	have	a	surprise	 for	you.	 It’s
really	very	disappointing.	The	kind	of	activity	that	you	and	I	do	in	one	day	uses
so	embarrassingly	little	energy	that	you	can	completely	neglect	it	if	you	expect	to
balance	out	food	intake,	unless	you	go	to	the	gym	for	a	really	hard	workout.

Suppose	 you	 take	 the	 stairs	 to	 climb	 three	 floors	 to	 your	 office	 instead	 of
taking	 the	 elevator.	 I	 know	 plenty	 of	 people	 who	 feel	 virtuous	 for	 taking	 the
stairs,	but	do	the	math.	Say	those	three	floors	cover	a	height	of	about	10	meters,
and	you	walk	up	them	three	times	per	day.	Since	I	don’t	know	you,	let’s	give	you
a	mass	 of	 about	 70	 kilograms—154	pounds.	How	much	 energy	does	 it	 take	 to
walk	up	those	stairs	three	times?	Let’s	be	really	virtuous—how	about	five	times	a



day?	Let’s	assume	you	really	go	out	of	your	way.	Five	times	a	day,	three	floors	up.
The	energy	you	would	have	to	produce	is	mgh,	where	h	is	the	difference	in	height
between	the	first	and	the	fourth	floor.	We	multiply	the	70	kilograms	(m)	by	10
meters	per	second	per	second	(g)	by	10	meters	(h)	by	5,	since	you	do	it	five	times
a	 day,	 and	 here’s	 what	 we	 get:	 35,000	 joules.	 Compare	 that	 to	 the	 10	 million
joules	per	day	that	your	body	radiates.	You	think	you	have	to	eat	a	little	bit	more
for	these	lousy	35,000	joules?	Forget	it.	It’s	nothing:	just	one-third	of	1	percent	of
the	 total.	 But	 that	 doesn’t	 stop	 marketers	 from	 making	 absurd	 claims	 about
calorie-burning	equipment.	I	just	opened	a	mail-order	catalog	this	morning	that
features	high-end	gadgets	and	found	an	ad	for	“wearable	weights”	 that	provide
“extra	calorie	burning	during	normal	daily	activity.”	You	might	enjoy	the	feeling
of	 your	 arms	 and	 legs	 being	 heavier	 (though	 I’m	 not	 sure	 why),	 and	 wearing
them	will	build	up	muscle,	but	don’t	expect	to	lose	significant	weight	by	this	kind
of	punishment!

Now	a	 clever	 reader	will	 note	 that	 of	 course	we	 cannot	 go	up	 the	 stairs	 five
times	a	day	without	coming	down.	When	you	come	down,	 those	35,000	 joules
will	be	released,	in	the	form	of	heat	in	your	muscles,	your	shoes,	and	the	floor.	If
you	were	to	jump,	all	of	the	gravitational	potential	energy	you	built	up	climbing
the	 stairs	 would	 be	 converted	 to	 the	 kinetic	 energy	 of	 your	 body—and	 you’d
probably	 break	 a	 bone	 or	 two.	 So	 while	 you	 had	 to	 come	 up	 with	 the	 35,000
joules	 to	 get	 there,	 you	 don’t	 get	 them	back	 in	 a	 usable	 form	when	 you	 come
down,	unless	you	can	rig	up	a	very	clever	device	to	take	your	kinetic	energy	and
convert	it	to,	say,	electricity—which	is	exactly	what	hybrid	cars	do.

Look	at	it	another	way.	Say	you	spread	that	stair	climbing	out	over	ten	hours
in	a	day,	maybe	once	or	twice	in	the	morning,	twice	in	the	afternoon,	and	a	final
time	 in	 the	 early	 evening.	 In	 those	 ten	 hours,	 36,000	 seconds,	 you	 generated
about	35,000	 joules.	This	 is,	 to	be	blunt,	 absurdly	 little—an	average	of	 about	1
watt.	Compare	that	with	your	body,	which	radiates	on	average	about	100	joules
per	 second,	 or	 100	 watts.	 So,	 you	 can	 see,	 the	 energy	 burned	 by	 your	 stair
climbing	is	completely	negligible.	It	won’t	do	anything	for	your	waistline.

However,	suppose	you	climb	a	5,000-foot	mountain	instead?	To	do	that,	you
would	have	 to	generate	and	use	a	million	 joules	on	top	of	your	regular	output.
And	a	million	is	no	longer	negligible	compared	to	10	million.	After	climbing	that
mountain	you	feel	legitimately	hungry,	and	now	you	really	do	need	more	food.	If
you	 walk	 up	 that	 mountain	 in	 four	 hours,	 the	 average	 power	 that	 you	 have
generated	 (power	 is	 joules	 per	 second)	 is	 substantial,	 an	 average	 of	 70	 watts
during	 those	 four	 hours,	 of	 course.	 And	 so	 now	 the	 body	 sends	 an	 emphatic



message	to	your	brain:	“I	need	to	eat	more.”
You	might	 think	 that	 since	 you’ve	 used	 10	 percent	 more	 energy	 over	 your

normal	10	million	joules	that	you	would	only	have	to	eat	10	percent	more	(thus
240	 Calories	 more)	 than	 you	 normally	 eat,	 because	 it’s	 pretty	 obvious	 that	 a
million	 is	 only	 10	 percent	 of	 10	million.	 But	 that’s	 not	 quite	 true,	 which	 you
probably	knew	intuitively.	You	have	to	eat	a	good	bit	more	than	normal,	because
the	 body’s	 food-to-energy	 conversion	 system	 is	 not	 particularly	 efficient—in
physics	terms.	The	best	human	beings	do,	on	average,	is	40	percent—that	is,	we
convert	at	most	40	percent	of	our	caloric	intake	to	usable	energy.	The	rest	is	lost
as	 heat.	 It	 has	 to	 go	 somewhere,	 since	 energy	 is	 conserved.	 So	 to	 generate	 an
extra	million	joules	of	energy	to	feed	your	mountain-climbing	habit,	you’ll	have
to	eat	about	600	additional	Calories,	 the	rough	equivalent	of	an	extra	meal	per
day.

Where	Are	We	Going	to	Get	What	We	Need?
The	amount	of	energy	required	for	our	everyday	 life	activities	 is	astonishing	to
me.	Suppose	I	wanted	to	take	a	bath,	and	I	want	to	calculate	how	much	energy	it
takes	 to	 heat	 the	water.	 The	 equation	 is	 very	 simple;	 the	 amount	 of	 energy	 in
kilocalories	required	is	the	mass	in	kilograms	of	the	water	times	the	temperature
change	 in	Celsius.	 So	 since	 a	 bath	 holds	 about	 100	 kilograms	 of	water—that’s
about	 26	 gallons—and	 if	we	 assume	 that	 the	 temperature	 increase	 is	 about	 50
degrees	Celsius,	it	takes	roughly	5,000	kilocalories,	or	20	million	joules,	of	energy
to	produce	a	hot	bath.	Baths	are	lovely,	but	they	require	quite	a	bit	of	energy.	The
remarkable	thing	is	that	energy	is	still	so	cheap	in	the	United	States,	that	the	bath
will	only	cost	about	$1.50.	Two	hundred	years	ago,	bathwater	was	heated	with	a
wood	fire.	Firewood	contains	about	15	million	 joules	per	kilogram,	so	a	 family
would	have	 to	get	all	 the	energy	out	of	a	kilo	of	wood	 for	a	 single	bath.	While
modern	woodstoves	can	burn	at	70	percent	efficiency,	an	open	fire	or	the	stoves
of	200	years	 ago	convert	wood	 to	heat	much	 less	 efficiently,	 and	over	 a	 longer
period	of	time,	so	it	would	probably	take	5	to	10	kilos	of	wood	to	heat	that	26-
gallon	bathtub.	No	wonder	our	ancestors	bathed	a	lot	less	frequently	than	we	do,
and	an	entire	family	used	the	same	bathwater.

Here	are	some	figures	to	give	you	a	sense	of	household	energy	usage.	A	space
heater	uses	roughly	1,000	watts,	which	means	that	in	the	course	of	an	hour,	you
expend	 about	 3.6	 million	 joules,	 or,	 to	 use	 the	 common	 term	 for	 measuring
electricity,	1	kilowatt-hour.	An	electric	furnace	in	a	cold	climate	can	use	roughly



2,500	watts.	 A	window-unit	 air-conditioner	 typically	 uses	 1,500	 watts,	 while	 a
central-air	system	will	use	about	5	to	20	kilowatts.	At	350	degrees	Fahrenheit,	an
electric	oven	will	use	2	kilowatts,	while	a	dishwasher	will	use	about	3.5	kilowatts.
Here’s	 an	 interesting	 comparison	 for	 you.	A	desktop	 computer	with	 a	 17-inch
cathode-ray-tube	monitor	uses	between	150	and	350	watts,	while	a	computer	and
monitor	in	sleep	mode	only	uses	20	watts	or	less.	On	the	really	low	end,	a	clock
radio	 uses	 just	 4	 watts.	 Since	 a	 9-volt	 alkaline	 battery	 stores	 a	 total	 of	 about
18,000	joules,	or	about	5	watt-hours,	one	battery	would	power	your	clock-radio
for	a	little	more	than	an	hour.

There	are	more	than	6.5	billion	people	living	on	Earth,	and	we	are	using	about
5	×	1020	 joules	of	 energy	per	year.	Forty	years	after	 the	OPEC	oil	 embargo,	85
percent	still	comes	from	fossil	fuels:	coal,	oil,	and	natural	gas.	The	United	States,
with	 only	 a	 little	more	 than	 300	million	 residents,	 one-twentieth	 of	 the	world
population,	is	responsible	for	one-fifth	of	world	energy	usage.	There’s	no	way	to
get	around	this:	we	are	energy	spoilers,	big	energy	spoilers.	That’s	one	reason	I
was	so	happy	that	President	Obama	appointed	a	Nobel	Prize–winning	physicist,
Steven	 Chu,	 as	 his	 secretary	 of	 energy.	 If	 we’re	 going	 to	 solve	 our	 energy
problems,	we’re	going	to	need	to	pay	attention	to	the	physics	of	energy.

For	example,	there	is	much	hope	being	placed	in	the	potential	for	solar	energy,
and	I	am	all	for	developing	it	vigorously.	But	we	must	beware	of	the	limitations
we	 are	 up	 against.	 There	 is	 no	 question	 that	 the	 Sun	 is	 a	wonderful	 source	 of
energy.	It	produces	4	×	1026	watts—4	×	1026	 joules	per	second—of	power,	most
of	it	in	visible	light	and	in	the	infrared	part	of	the	spectrum.	Since	we	know	the
distance	 between	 the	 Earth	 and	 the	 Sun	 (150	 million	 kilometers),	 we	 can
calculate	how	much	of	that	power	reaches	the	Earth.	It’s	about	1.7	×	1017	watts,
or	about	5	×	1024	joules	per	year.	If	you	point	a	one-square-meter	panel	directly
at	 the	 Sun	 (no	 clouds!),	 that	 panel	 would	 receive	 roughly	 1,200	 watts	 (I	 have
assumed	 here	 that	 about	 15	 percent	 of	 the	 incoming	 power	 is	 reflected	 and
absorbed	 by	 the	 Earth’s	 atmosphere).	 An	 easy	 number	 to	 work	 with	 is	 1,000
watts	(1	kilowatt)	per	square	meter	pointed	directly	at	the	Sun	 in	the	absence	of
clouds.

The	potential	for	solar	power	would	seem	tremendous.	It	would	take	about	2	×
1010	square	meters	to	harvest	enough	solar	energy	for	the	world’s	energy	needs.
That’s	 about	 five	 times	 the	 area	of	my	home	country,	Holland—not	a	very	big
country	at	all.

However,	there	is	a	catch.	There	are	day	and	night,	which	we	haven’t	allowed



for	yet.	We	 just	 assumed	 that	 the	Sun	was	always	 there.	There	are	 clouds,	 too.
And	if	your	solar	panels	are	not	movable,	then	they	cannot	remain	pointed	at	the
Sun	all	the	time.	Where	you	are	situated	on	the	Earth	also	matters.	Countries	at
the	equator	receive	more	energy	(they	are	hotter,	after	all)	 than	more	northern
countries	(in	the	Northern	Hemisphere)	or	more	southern	ones	(in	the	Southern
Hemisphere).

Then	we	need	to	take	into	account	the	efficiency	of	the	units	with	which	you
capture	 the	 solar	 energy.	 There	 are	 lots	 of	 different	 technologies,	more	 all	 the
time,	but	 the	maximum	efficiency	of	practical	 silicon	solar	cells	 (as	opposed	 to
those	made	with	expensive	materials)	is	about	18	percent.	If	you	use	solar	energy
to	 directly	 heat	 water	 (without	 first	 converting	 it	 to	 electric	 energy),	 the
efficiency	 is	much	higher.	An	oil-fired	 furnace,	by	comparison,	even	one	 that’s
not	so	new,	can	easily	reach	an	efficiency	of	75	to	80	percent.	So	if	you	take	all
those	limiting	factors	into	account,	you	would	need	an	area	more	like	a	trillion
square	meters,	 roughly	 400,000	 square	miles,	 an	 area	 about	 three	 times	 larger
than	Germany.	And	we	haven’t	even	considered	the	cost	of	building	the	arrays	to
collect	 and	 convert	 all	 that	 solar	 power	 to	 electricity.	 At	 the	 moment	 it	 costs
about	 twice	 as	much	 to	 extract	 electricity	 from	 the	 Sun	 as	 it	 does	 to	 extract	 it
from	 fossil	 fuels.	 Not	 only	 would	 the	 cost	 of	 converting	 to	 solar	 power	 be
staggering,	such	a	project	 is	simply	beyond	our	present	technological	capability
or	political	will.	That’s	why	solar	power	will	play	a	growing	but	relatively	small
role	in	the	world	economy	for	some	time.

On	 the	other	hand,	 if	we	 start	now,	we	 could	make	 enormous	 strides	 in	 the
next	 four	 decades.	 Greenpeace	 International	 and	 the	 International	 Energy
Agency	estimated	in	2009	that	with	very	substantial	government	subsidies,	solar
power	could	meet	“up	to	7	percent	of	the	world’s	power	needs	by	2030	and	fully
one-quarter	by	2050.”	Scientific	American	magazine	argued	several	years	ago	that
a	crash	program	and	more	than	$400	billion	in	subsidies	over	the	next	forty	years
could	result	in	solar	power	providing	69	percent	of	the	United	States’	electricity,
and	35	percent	of	its	total	energy	needs.

What	 about	 wind	 power?	 After	 all,	 wind	 power	 has	 been	 used	 as	 long	 as
humans	have	put	 sails	 into	 the	wind.	Windmills	have	been	around	way	 longer
than	electric	power,	maybe	even	a	 thousand	years	 longer.	And	 the	principle	of
getting	energy	from	nature	and	converting	it	into	a	different	kind	of	energy	for
human	 use	 was	 exactly	 the	 same,	 whether	 it	 was	 in	 thirteenth-century	 China,
even	 more	 ancient	 Iran,	 or	 twelfth-century	 Europe.	 In	 all	 of	 these	 places
windmills	helped	do	 some	of	 the	hardest	 chores	human	beings	 took	on:	 lifting



water	for	drinking	or	crop	irrigation,	or	grinding	grains	between	large	stones	in
order	to	make	flour.	It	takes	wind	energy	to	power	a	windmill,	whether	or	not	it’s
making	electricity.

As	a	producer	of	electricity,	wind	energy	is	readily	available,	utterly	renewable,
and	 produces	 no	 greenhouse	 gas	 emission.	 In	 2009,	 wind	 energy	 production
worldwide	was	 340	 terawatt-hours	 (a	 terawatt-hour	 is	 one	 trillion	watt-hours),
which	is	about	2	percent	of	the	world’s	electric	consumption.	And	it	is	growing
rapidly;	 in	 fact,	 electricity	production	 from	wind	has	doubled	 in	 the	past	 three
years.

What	about	nuclear	energy?	Nuclear	energy	 is	much	more	plentiful	 than	we
are	generally	aware.	It	is,	in	fact,	all	around	us,	every	day.	Window	glass	contains
radioactive	 potassium-40,	which	has	 a	 half-life	 of	 1.2	 billion	 years,	 and	 energy
produced	 by	 its	 decay	 helps	 to	 heat	 the	 Earth’s	 core.	 All	 the	 helium	 in	 the
atmosphere	 was	 produced	 by	 the	 radioactive	 decay	 of	 naturally	 occurring
isotopes	in	the	Earth.	What	we	call	alpha	decay	is	in	fact	the	emission	of	a	helium
nucleus	from	a	larger	unstable	nucleus.

I	 have	 a	 very	 special,	 very	 large	 collection	 of	 Fiestaware,	which	 is	American
tableware—dishes,	 bowls,	 saucers,	 and	 cups—designed	 and	 manufactured
starting	 in	 the	 1930s.	 I	 love	 to	 bring	 a	 few	 of	 these	 plates	 into	 class	 and	 show
them	 to	my	 students.	 The	 orange	 ones,	 in	 particular,	 which	 are	 called	 “Fiesta
red,”	have	uranium	oxide	in	them,	since	it	was	a	common	ingredients	in	ceramic
glazes.	 I	hold	a	plate	near	a	Geiger	 counter,	 and	 it	begins	 to	beep	 rapidly.	The
uranium	in	the	plate	emits	gamma	rays	as	a	result	of	the	process	we	call	fission,
which	is	the	same	process	that	drives	nuclear	reactors.	After	this	demonstration,
I	always	invite	students	to	come	to	dinner	at	my	home,	but	strangely	I	have	never
gotten	any	takers.

Fission,	 or	 splitting	 of	 heavy	 nuclei,	 generates	 large	 amounts	 of	 energy,
whether	in	a	nuclear	reactor,	in	which	the	chain	reactions	splitting	uranium-235
nuclei	 are	 controlled,	 or	 in	 an	 atomic	 bomb,	 in	which	 the	 chain	 reactions	 are
uncontrolled	and	produce	 tremendous	destruction.	A	nuclear	power	plant	 that
produces	 about	 a	 billion	 joules	 per	 second	 (109	 watts,	 or	 1,000	 megawatts)
consumes	about	1027	uranium-235	nuclei	in	a	year,	which	amounts	to	only	about
400	kilograms	of	uranium-235.

However,	only	0.7	percent	of	natural	uranium	consists	of	uranium	235	(99.3
percent	is	uranium-238).	Therefore,	nuclear	power	plants	use	enriched	uranium;
the	degree	of	enrichment	varies,	but	a	 typical	number	 is	5	percent.	This	means
that	 instead	 of	 0.7	 percent	 uranium-235,	 their	 uranium	 fuel	 rods	 contain	 5



percent	 uranium-235.	 Thus	 a	 1,000-megawatt	 nuclear	 reactor	 will	 consume
about	 8,000	 kilograms	 of	 uranium	 per	 year,	 of	 which	 about	 400	 kilograms	 is
uranium-235.	 In	 comparison,	 a	 1,000-megawatt	 fossil-fuel	 power	 plant	 will
consume	about	5	billion	kilograms	of	coal	per	year.

The	enrichment	of	uranium	is	costly;	it’s	done	with	thousands	of	centrifuges.
Weapons-grade	uranium	is	enriched	to	at	least	85	percent	uranium-235.	Perhaps
you	now	understand	why	the	world	is	very	worried	about	countries	that	enrich
uranium	to	an	unspecified	degree	that	cannot	be	verified!

In	nuclear	power	plants,	 the	heat	produced	by	the	controlled	chain	reactions
turns	water	into	steam,	which	then	drives	a	steam	turbine,	producing	electricity.
A	nuclear	 power	 plant’s	 efficiency	 converting	 nuclear	 energy	 into	 electricity	 is
about	 35	 percent.	 If	 you	 read	 that	 a	 nuclear	 power	 plant	 produces	 1,000
megawatts,	you	do	not	know	whether	it	is	1,000	megawatts	total	power	(of	which
1/3	is	converted	to	electrical	energy	and	of	which	2/3	is	lost	as	heat),	or	whether
it’s	 all	 electric	 power	 in	 which	 case	 the	 total	 plant’s	 power	 is	 about	 3,000
megawatts.	 It	makes	 a	 big	 difference!	 I	 read	 yesterday	 in	 the	news	 that	 Iran	 is
shortly	 going	 to	 put	 on	 line	 a	 nuclear	 power	 plant	 that	 will	 produce	 1,000
megawatts	of	electricity	(that’s	clear	language!).

As	 concern	about	global	warming	has	 increased	dramatically	 in	 the	past	 few
years,	 the	 nuclear	 energy	 option	 is	 coming	 back	 into	 fashion—unlike	 power
plants	 burning	 fossil	 fuels,	 nuclear	 plants	 don’t	 emit	 much	 in	 the	 way	 of
greenhouse	gases.	There	are	already	more	than	a	hundred	nuclear	power	plants
in	the	United	States,	producing	about	20	percent	of	the	energy	we	consume.	In
France	this	number	is	about	75	percent.	Worldwide,	about	15	percent	of	the	total
electric	energy	consumed	is	produced	in	nuclear	plants.	Different	countries	have
different	policies	regarding	nuclear	power,	but	building	more	plants	will	require
a	 great	 deal	 of	 political	 persuasion	 due	 to	 the	 fear	 generated	 by	 the	 infamous
nuclear	accidents	at	Three	Mile	Island	and	Chernobyl.	The	plants	are	also	very
expensive:	estimates	range	from	$5	to	$10	billion	per	plant	in	the	United	States,
and	 around	 $2	 billion	 in	 China.	 Finally,	 storing	 the	 radioactive	 waste	 from
nuclear	plants	remains	an	enormous	technological	and	political	problem.

Of	 course,	we	 still	 have	massive	 amounts	 of	 fossil	 fuel	 on	Earth,	 but	we	 are
using	 it	 up	 much,	 much	 faster	 than	 nature	 can	 create	 it.	 And	 the	 world
population	continues	to	grow,	while	energy-intensive	development	is	proceeding
at	an	extremely	rapid	clip	in	many	of	the	largest	growth	countries,	like	China	and
India.	So	there	really	is	no	way	around	it.	We	have	a	very	serious	energy	crisis.
What	should	we	do	about	it?



Well,	one	important	thing	is	to	become	more	aware	of	just	how	much	energy
we	use	every	day,	and	to	use	less.	My	own	energy	consumption	is	quite	modest,	I
think,	although	since	I	live	in	the	United	States,	I’m	sure	I	also	consume	four	or
five	times	more	than	the	average	person	in	the	world.	I	use	electricity;	I	heat	my
house	and	water	with	gas,	and	I	cook	with	gas.	I	use	my	car—not	very	much,	but
I	do	use	some	gasoline.	When	I	add	that	all	up,	I	think	I	consumed	(in	2009)	on
average	about	100	million	joules	(30	kilowatt-hours)	per	day,	of	which	about	half
was	electrical	energy.	This	is	the	energy	equivalent	of	having	about	two	hundred
slaves	working	for	me	like	dogs	twelve	hours	a	day.	Think	about	that.	In	ancient
times	only	the	richest	royalty	lived	like	this.	What	luxurious,	incredible	times	we
live	in.	Two	hundred	slaves	are	working	for	me	every	single	day,	twelve	hours	a
day	without	stopping,	all	so	that	I	can	live	the	way	I	live.	For	1	kilowatt-hour	of
electricity,	which	is	3.6	million	joules,	I	pay	a	mere	25	cents.	So	my	entire	energy
bill	 (I	 included	 gas	 and	 gasoline,	 as	 their	 price	 per	 unit	 energy	 is	 not	 very
different)	 for	 those	 two	 hundred	 slaves	was,	 on	 average,	 about	 $225	 a	month;
that’s	 about	$1	per	 slave	per	month!	So	a	 change	of	 consciousness	 is	 vital.	But
that	will	only	get	us	so	far.

Changing	 habits	 to	 use	 more	 energy-conserving	 devices,	 such	 as	 compact
fluorescent	 lights	 (CFLs)	 instead	 of	 incandescent	 lights,	 can	 make	 a	 large
difference.	I	got	to	see	the	change	I	could	make	in	quite	a	dramatic	fashion.	My
electric	 consumption	 at	 my	 home	 in	 Cambridge	 was	 8,860	 kilowatt-hours	 in
2005	and	8,317	kilowatt-hours	 in	2006.	This	was	 for	 lighting,	 air-conditioning,
my	 washing	 machine,	 and	 the	 dryer	 (I	 use	 gas	 for	 hot	 water,	 cooking,	 and
heating).	In	mid-December	of	2006,	my	son,	Chuck	(who	is	the	founder	of	New
Generation	 Energy),	 gave	 me	 a	 wonderful	 present.	 He	 replaced	 all	 the
incandescent	 lightbulbs	 (a	 total	 of	 seventy-five)	 in	 my	 house	 with	 fluorescent
bulbs.	 My	 electricity	 consumption	 dropped	 dramatically	 in	 2007	 to	 5,251
kilowatt-hours,	5,184	kilowatt-hours	in	2008,	and	5,226	kilowatt-hours	in	2009.
This	40	percent	reduction	 in	my	electricity	consumption	 lowered	my	yearly	bill
by	 about	 $850.	 Since	 lighting	 alone	 accounts	 for	 about	 12	 percent	 of	 U.S.
residential	electric	energy	use	and	25	percent	of	commercial	use,	 it’s	clearly	the
way	to	go!

Following	a	similar	path,	the	Australian	government	started	to	make	plans	in
2007	to	replace	all	incandescent	lightbulbs	in	the	country	with	fluorescent	ones.
This	 would	 not	 only	 substantially	 reduce	Australia’s	 greenhouse	 gas	 emission,
but	it	would	also	reduce	energy	bills	in	every	household	(as	it	did	in	mine).	We
still	need	to	do	more,	though.



I	 think	 the	 only	way	 that	we	might	 survive	while	 keeping	 anything	 like	 our
current	quality	of	life	is	by	developing	nuclear	fusion	as	a	reliable,	serious	energy
source.	 Not	 fission—whereby	 uranium	 and	 plutonium	 nuclei	 break	 up	 into
pieces	 and	 emit	 energy,	 which	 powers	 nuclear	 reactors—but	 fusion,	 in	 which
hydrogen	atoms	merge	together	to	create	helium,	releasing	energy.	Fusion	is	the
process	 that	 powers	 stars—and	 thermonuclear	 bombs.	 Fusion	 is	 the	 most
powerful	 energy-producing	 process	 per	 unit	 of	 mass	 we	 know	 of—except	 for
matter	and	antimatter	colliding	(which	has	no	potential	for	energy	generation).

For	 reasons	 that	 are	 quite	 complicated,	 only	 certain	 types	 of	 hydrogen
(deuterium	and	 tritium)	 are	well	 suited	 for	 fusion	 reactors.	Deuterium	 (whose
nucleus	 contains	one	neutron	as	well	 as	one	proton)	 is	 readily	 available;	 about
one	in	every	six	thousand	hydrogen	atoms	on	Earth	is	deuterium.	Since	we	have
about	a	billion	cubic	kilometers	of	water	in	our	oceans,	the	supply	of	deuterium
is	pretty	much	unlimited.	There	is	no	naturally	occurring	tritium	on	Earth	(it’s
radioactive	 with	 a	 half	 life	 of	 about	 twelve	 years),	 but	 it	 is	 easily	 produced	 in
nuclear	reactors.

The	 real	 problem	 is	 how	 to	 create	 a	 functioning,	 practical,	 controlled	 fusion
reactor.	It’s	not	at	all	clear	that	we	will	ever	succeed	in	doing	so.	In	order	to	get
hydrogen	nuclei	 to	 fuse,	we	need	 to	 create,	here	on	Earth,	 temperatures	 in	 the
100-million-degree	range,	approximating	the	temperature	at	the	core	of	stars.

Scientists	have	been	working	hard	on	fusion	for	many	years—and	I	think	they
are	working	harder	on	it	now	that	more	and	more	governments	seem	genuinely
convinced	 that	 the	energy	crisis	 is	 real.	 It’s	a	big	problem,	 for	 sure.	But	 I’m	an
optimist.	After	all,	in	my	professional	lifetime	I’ve	seen	changes	in	my	field	that
have	been	absolutely	mind-blowing,	turning	our	notions	of	the	universe	upside
down.	Cosmology,	for	instance,	which	used	to	be	mostly	speculation	and	a	little
bit	of	science,	has	now	become	a	genuine	experimental	science,	and	we	know	an
enormous	amount	about	the	origins	of	our	universe.	In	fact,	we	now	live	in	what
many	call	the	golden	age	of	cosmology.

When	I	began	to	do	research	in	X-ray	astronomy,	we	knew	of	about	a	dozen
X-ray	 sources	 in	 deep	 space.	 Now	 we	 know	 of	many	 tens	 of	 thousands.	 Fifty
years	ago	the	computing	capacity	 in	your	 four-pound	 laptop	would	have	 taken
up	 most	 of	 the	 building	 at	 MIT	 where	 I	 have	 my	 office.	 Fifty	 years	 ago
astronomers	 relied	 on	 ground-based	 optical	 and	 radio	 telescopes—that	was	 it!
Now	we	not	only	have	 the	Hubble	Space	Telecope,	we’ve	had	a	string	of	X-ray
satellite	 observatories,	 gamma	 ray	 observatories,	 and	we’re	 using	 and	 building
new	neutrino	observatories!	Fifty	years	ago	even	 the	 likelihood	of	 the	big	bang



was	not	a	settled	issue.	Now	we	not	only	think	we	know	what	the	universe	looked
like	 in	 the	 first	 one-millionth	 of	 a	 second	 after	 the	 big	 bang—we	 confidently
study	astronomical	objects	more	than	13	billion	years	old,	objects	formed	in	the
first	500	million	years	after	the	explosion	that	created	our	universe.	Against	the
backdrop	of	these	immense	discoveries	and	transformations,	how	can	I	not	think
scientists	will	 solve	 the	problem	of	 controlled	 fusion?	 I	don’t	want	 to	 trivialize
the	difficulties,	or	 the	 importance	of	doing	so	 soon,	but	 I	do	believe	 it’s	only	a
question	of	time.



CHAPTER	10

X-rays	from	Outer	Space!

The	 heavens	 have	 always	 provided	 a	 daily	 and	 nightly	 challenge	 to	 human
beings	seeking	to	understand	the	world	around	us,	which	is	one	reason	physicists
have	always	been	entranced	by	astronomy.	“What	is	the	Sun?”	we	wonder.	“Why
does	 it	 move?”	 And	 what	 about	 the	Moon,	 the	 planets,	 and	 the	 stars?	 Think
about	what	it	took	for	our	ancestors	to	figure	out	that	the	planets	were	different
from	the	stars;	that	they	orbited	the	Sun;	and	that	those	orbits	could	be	observed,
charted,	 explained,	 and	predicted.	Many	of	 the	 greatest	 scientific	minds	 of	 the
sixteenth	and	seventeenth	centuries—among	them	Nicolaus	Copernicus,	Galileo
Galilei,	Tycho	Brahe,	 Johannes	Kepler,	 Isaac	Newton—were	 compelled	 to	 turn
their	gaze	to	the	heavens	to	unlock	these	nightly	mysteries.	Imagine	how	exciting
it	must	have	been	for	Galileo	when	he	turned	his	telescope	toward	Jupiter,	barely
more	than	a	point	of	 light,	and	discovered	four	 little	moons	 in	orbit	around	it!
And,	at	the	very	same	time,	how	frustrating	it	must	have	been	to	them	to	know
so	little	about	the	stars	that	came	out	night	after	night.	Remarkably,	the	ancient
Greek	Democritus	as	well	as	the	sixteenth-century	astronomer	Giordano	Bruno
proposed	that	the	stars	are	like	our	own	Sun,	but	there	was	no	evidence	to	prove
them	right.	What	could	they	be?	What	held	them	in	the	sky?	How	far	away	were
they?	Why	were	some	brighter	than	others?	Why	did	they	have	different	colors?
And	what	was	that	wide	band	of	light	reaching	from	one	horizon	to	the	other	on
a	clear	night?

The	story	of	astronomy	and	astrophysics	since	those	days	has	been	the	quest	to
answer	those	questions,	and	the	additional	questions	that	arose	when	we	started
to	 come	 up	 with	 some	 answers.	 For	 the	 last	 four	 hundred	 years	 or	 so,	 what
astronomers	have	been	 able	 to	 see,	 of	 course,	 has	depended	on	 the	power	 and
sensitivity	of	their	telescopes.	The	great	exception	was	Tycho	Brahe,	who	made
very	detailed	observations	with	the	naked	eye,	using	very	simple	equipment,	that
allowed	Kepler	to	arrive	at	three	major	discoveries,	now	known	as	Kepler’s	laws.

For	most	of	 that	 time	all	we	had	were	optical	 telescopes.	 I	know	that	sounds
odd	to	a	non-astronomer.	When	you	hear	“telescope,”	you	think,	automatically,
“tube	with	lenses	and	mirrors	that	you	peer	into,”	right?	How	could	a	telescope
not	be	optical?	When	President	Obama	hosted	an	astronomy	night	 in	October



2009,	 there	 were	 a	 bunch	 of	 telescopes	 set	 up	 on	 the	White	House	 lawn,	 and
every	single	one	of	them	was	an	optical	telescope.

But	 ever	 since	 the	 1930s,	 when	 Karl	 Jansky	 discovered	 radio	 waves	 coming
from	 the	Milky	Way,	 astronomers	 have	 been	 seeking	 to	 broaden	 the	 range	 of
electromagnetic	 radiation	 through	which	 they	observe	 the	universe.	They	have
hunted	for	(and	discovered)	microwave	radiation	(high-frequency	radio	waves),
infrared	 and	 ultraviolet	 radiation	 (with	 frequencies	 just	 below	 and	 just	 above
those	of	visible	light),	X-rays,	and	gamma	rays.	In	order	to	detect	this	radiation,
we’ve	developed	a	host	of	specially	designed	telescopes—some	of	them	X-ray	and
gamma	 ray	 satellites—enabling	 us	 to	 see	 more	 deeply	 and	 broadly	 into	 the
universe.	There	are	even	neutrino	 telescopes	underground,	 including	one	being
built	right	now	at	the	South	Pole,	called,	appropriately	enough,	IceCube.

For	the	last	forty-five	years—my	life	in	astrophysics—I	have	been	working	in
the	 field	 of	 X-ray	 astronomy:	 discovering	 new	 X-ray	 sources	 and	 developing
explanations	 for	 the	many	different	phenomena	we	observe.	As	I	wrote	earlier,
the	beginning	of	my	career	coincided	with	the	heady	and	exciting	early	years	of
the	 field,	 and	 I	 was	 in	 the	 thick	 of	 things	 for	 the	 next	 four	 decades.	 X-ray
astronomy	 changed	 my	 life,	 but	 more	 important,	 it	 changed	 the	 face	 of
astronomy	itself.	This	chapter	and	the	four	that	follow	will	take	you	on	a	tour	of
the	X-ray	universe,	from	the	standpoint	of	someone	who’s	worked	and	lived	in
that	universe	for	his	entire	scientific	career.	Let’s	start	with	X-rays	themselves.

What	Are	X-rays?
X-rays	 have	 an	 exotic-sounding	 name,	 which	 they	 received	 because	 they	were
“unknown”	 (like	 the	 x	 in	 an	 equation),	 but	 they	 are	 simply	 photons—
electromagnetic	 radiation—making	 up	 the	 portion	 of	 the	 electromagnetic
spectrum	that	we	cannot	see	between	ultraviolet	light	and	gamma	rays.	In	Dutch
and	 in	 German	 they	 are	 not	 called	 X-rays;	 instead	 they	 are	 named	 after	 the
German	 physicist,	 Wilhelm	 Röntgen,	 who	 discovered	 them	 in	 1895.	 We
distinguish	them	the	same	way	we	identify	other	inhabitants	of	that	spectrum,	in
three	 different	 but	 connected	 ways:	 by	 frequency	 (the	 number	 of	 cycles	 per
second,	expressed	in	hertz),	by	wavelength	(the	length	of	an	individual	wave,	in
meters,	 in	 this	 case	 nanometers),	 or	 by	 energy	 (in	 electron	 volts,	 eV,	 or
thousands	of	electron	volts,	keV).

Here	 are	 some	quick	points	 of	 comparison.	Green	 light	 has	 a	wavelength	 of
about	500	billionths	of	a	meter,	or	500	nanometers,	and	an	energy	of	about	2.5



electron	volts.	The	lowest-energy	X-ray	photon	is	about	100	eV,	forty	times	the
energy	 of	 a	 photon	 of	 green	 light,	with	 a	wavelength	 of	 about	 12	 nanometers.
The	highest-energy	X-rays	are	about	100	keV,	with	wavelengths	of	about	0.012
nanometers.	(Your	dentist	uses	X-rays	up	to	about	50	keV.)	At	the	other	end	of
the	 electromagnetic	 spectrum,	 in	 the	United	States,	 radio	 stations	broadcast	 in
the	AM	band	between	520	kilohertz	(wavelength	577	meters—about	a	third	of	a
mile)	and	1,710	kilohertz	(wavelength	175	meters—nearly	 twice	 the	 length	of	a
football	field).	Their	energy	is	a	billion	times	less	than	green	light,	and	a	trillion
times	less	than	X-rays.

Nature	creates	X-rays	 in	a	number	of	different	ways.	Most	radioactive	atoms
emit	them	naturally	during	nuclear	decay.	What	happens	is	that	electrons	jump
down	from	a	higher	energy	state	to	a	lower	one;	the	difference	in	energy	can	be
emitted	 as	 an	X-ray	 photon.	 These	 photons	 have	 very	 discrete	 energies	 as	 the
energy	 levels	of	 the	electrons	are	quantized.	Or,	when	electrons	pass	by	atomic
nuclei	at	high	speeds,	they	change	direction	and	emit	some	of	their	energy	in	the
form	of	X-rays.	We	call	 this	kind	of	X-ray	emission,	which	 is	very	common	 in
astronomy	as	well	as	in	any	medical	or	dental	X-ray	machine,	a	difficult	German
name,	 bremsstrahlung,	 which	 literally	 means	 “braking	 radiation.”	 There	 are
some	 helpful	 animated	 versions	 of	 bremsstrahlung	 X-ray	 production	 here:
www.youtube.com/watch?v=3fe6rHnhkuY.	X-rays	 of	 discrete	 energies	 can	 also
be	produced	in	some	medical	X-ray	machines,	but	in	general	the	bremsstrahlung
(which	 produces	 a	 continuous	X-ray	 spectrum)	 dominates.	When	 high-energy
electrons	spiral	around	magnetic	field	lines,	the	direction	of	their	speed	changes
all	the	time	and	they	will	therefore	also	radiate	some	of	their	energy	in	the	form
of	 X-rays;	 we	 call	 this	 synchrotron	 radiation,	 but	 it’s	 also	 called	 magnetic
bremsstrahlung	(this	is	what	is	happening	in	the	Crab	Nebula—see	below).

Nature	 also	 creates	 X-rays	 when	 it	 heats	 dense	 matter	 to	 very,	 very	 high
temperatures,	millions	 of	 degrees	 kelvin.	We	 call	 this	 blackbody	 radiation	 (see
chapter	14).	Matter	only	gets	 this	hot	 in	pretty	extreme	circumstances,	 such	as
supernova	explosions—the	spectacular	death	explosions	of	some	massive	stars—
or	when	gas	falls	at	very	high	speeds	toward	a	black	hole	or	neutron	star	(more
on	 that	 in	 chapter	13,	 promise!).	 The	 Sun,	 for	 instance,	with	 a	 temperature	 of
about	 6,000	 kelvin	 at	 its	 surface,	 radiates	 a	 little	 less	 than	 half	 its	 energy	 (46
percent)	 in	 visible	 light.	 Most	 of	 the	 rest	 is	 in	 infrared	 (49	 percent)	 and
ultraviolet	 (5	 percent)	 radiation.	 It’s	 nowhere	near	hot	 enough	 to	 emit	X-rays.
The	Sun	does	emit	some	X-rays,	the	physics	of	which	is	not	fully	understood,	but
the	 energy	 emitted	 in	X-rays	 is	 only	 about	 one-millionth	of	 the	 total	 energy	 it

http://www.youtube.com/watch?v=3fe6rHnhkuY


emits.	 Your	 own	 body	 emits	 infrared	 radiation	 (see	 chapter	 9);	 it’s	 not	 hot
enough	to	emit	visible	light.

One	 of	 the	 most	 interesting—and	 useful—aspects	 of	 X-rays	 is	 that	 certain
kinds	 of	 matter,	 like	 bones,	 absorb	 X-rays	 more	 than	 others,	 like	 soft	 tissue,
which	explains	why	an	X-ray	image	of	your	mouth	or	hand	shows	light	and	dark
areas.	 If	 you’ve	 had	 an	X-ray,	 you’ve	 also	 had	 the	 experience	 of	 being	 draped
with	a	lead	apron	to	protect	the	rest	of	your	body,	since	exposure	to	X-rays	can
also	increase	your	risk	of	getting	cancer.	Which	is	why	it’s	mostly	a	good	thing
that	 our	 atmosphere	 is	 such	 a	 good	 absorber	 of	 X-rays.	 At	 sea	 level	 about	 99
percent	of	low-energy	X-rays	(at	1	keV)	are	absorbed	by	just	1	centimeter	of	air.
For	 X-rays	 at	 5	 keV,	 it	 takes	 about	 80	 centimeters	 of	 air,	 nearly	 three	 feet,	 to
absorb	99	percent	of	the	X-rays.	For	high-energy	X-rays	at	25	keV,	it	takes	about
80	meters	of	air	to	absorb	the	same	proportion.

The	Birth	of	X-ray	Astronomy
Now	you	understand	why,	back	 in	1959,	when	Bruno	Rossi	had	 the	 idea	 to	go
looking	for	X-rays	 from	outer	space,	he	proposed	using	a	rocket	 that	could	get
completely	 outside	 the	 atmosphere.	 But	 his	 idea	 about	 looking	 for	X-rays	was
wild.	There	really	were	no	sound	theoretical	reasons	to	think	there	were	X-rays
coming	from	outside	the	solar	system.	But	Rossi	was	Rossi,	and	he	convinced	his
former	student	Martin	Annis	at	American	Science	and	Engineering	(AS&E)	and
one	member	of	his	staff,	Riccardo	Giacconi,	that	the	idea	was	worth	pursuing.

Giacconi	 and	 his	 co-worker	 Frank	 Paolini	 developed	 special	 Geiger-Müller
tubes	that	could	detect	X-rays	and	fit	into	the	nose	cone	of	a	rocket.	In	fact,	they
put	three	of	them	in	one	rocket.	They	called	them	large-area	detectors,	but	large
in	 those	days	meant	 the	size	of	a	credit	card.	The	AS&E	guys	went	 looking	 for
funding	to	underwrite	this	experiment,	and	NASA	turned	their	proposal	down.

Giacconi	 then	 changed	 the	 proposal	 by	 including	 the	Moon	 as	 a	 target	 and
resubmitted	it	to	the	Air	Force	Cambridge	Research	Laboratories	(AFCRL).	The
argument	 was	 that	 the	 solar	 X-rays	 should	 produce	 so-called	 fluorescent
emission	from	the	lunar	surface	and	that	this	would	facilitate	chemical	analysis
of	 the	 lunar	surface.	They	also	expected	bremsstrahlung	from	the	 lunar	surface
due	 to	 the	 impact	of	 electrons	present	 in	 the	 solar	wind.	Since	 the	Moon	 is	 so
close,	 X-rays	might	 be	 detectable.	 This	 was	 a	 very	 smart	 move,	 as	 AS&E	 had
already	received	support	from	the	Air	Force	for	several	other	projects	(some	of
which	were	classified),	and	they	may	have	known	that	the	agency	was	interested



in	the	Moon.	In	any	event,	this	time	the	proposal	was	approved.
After	 two	 rocket	 failures	 in	 1960	 and	 1961,	 the	 launch	 one	 minute	 before

midnight	on	June	18,	1962,	had	the	stated	mission	of	trying	to	detect	X-rays	from
the	Moon	and	to	search	for	X-ray	sources	beyond	the	solar	system.	The	rocket
spent	just	six	minutes	above	the	80-kilometer	mark	(over	250,000	feet	up),	where
the	Geiger-Müller	tubes	could	detect	X-rays	in	the	range	from	about	1.5–6	keV
without	 atmospheric	 interference.	 That’s	 the	 way	 you	 observed	 in	 space	 with
rockets	 in	 those	 days.	You	 sent	 the	 rockets	 out	 of	 the	 atmosphere,	where	 they
scanned	the	skies	for	only	five	or	six	minutes,	then	they	came	back	down.

The	 truly	amazing	 thing	 is	 that	 right	 away	 they	 found	X-rays—not	 from	 the
Moon,	but	from	someplace	outside	the	solar	system.

X-rays	 from	 deep	 space?	Why?	No	 one	 understood	 the	 finding.	 Before	 that
flight	we	had	known	of	exactly	one	star	that	emitted	X-rays,	our	own	Sun.	And	if
the	Sun	had	been	10	light-years	away,	say,	which	is	really	just	around	the	corner
in	astronomical	 terms,	 the	equipment	 in	that	historic	 flight	was	a	million	times
too	insensitive	to	detect	its	X-rays.	Everyone	knew	this.	So	wherever	this	source
was	 located,	 it	had	to	emit	at	 least	a	million	times	more	X-rays	 than	the	Sun—
and	that	was	only	if	it	was	really	close	by.	Astronomical	objects	that	produced	(at
least)	a	million	or	a	billion	times	more	X-rays	than	the	Sun	were	literally	unheard
of.	And	there	was	no	physics	to	describe	such	an	object.	In	other	words,	it	had	to
be	a	brand	new	kind	of	phenomenon	in	the	heavens.

A	whole	new	 field	of	 science	was	born	 the	night	of	 June	18–19,	 1962:	X-ray
astronomy.

Astrophysicists	began	sending	up	lots	of	rockets	fitted	with	detectors	to	figure
out	precisely	where	 the	 source	was	 located	and	whether	 there	were	any	others.
There	is	always	uncertainty	in	measuring	the	position	of	objects	in	the	heavens,
so	astronomers	talk	about	an	“error	box,”	an	imaginary	box	pasted	on	the	dome
of	the	sky	whose	sides	are	measured	in	degrees,	or	arc	minutes,	or	arc	seconds.
They	make	the	box	big	enough	so	there	is	a	90	percent	chance	that	the	object	is
really	 inside	 it.	Astronomers	obsess	about	error	boxes,	 for	obvious	reasons;	 the
smaller	 the	box,	 the	more	accurate	 the	position	of	 the	object.	This	 is	especially
important	 in	X-ray	astronomy,	where	 the	 smaller	 the	box,	 the	more	 likely	 it	 is
that	you	will	be	able	to	find	the	source’s	optical	counterpart.	So	making	the	box
really,	really	small	is	a	major	achievement.

Professor	Andy	Lawrence	at	the	University	of	Edinburgh	writes	an	astronomy
blog	 called	 The	 e-Astronomer	 on	 which	 he	 once	 posted	 a	 reminiscence	 of
working	 on	 his	 thesis,	 staring	 at	 hundreds	 of	 position	 plots	 of	 X-ray	 sources.



“One	night	I	dreamt	I	was	an	error	box,	and	couldn’t	find	the	X-ray	source	I	was
supposed	to	enclose.	I	woke	up	sweating.”	You	can	understand	why!

The	size	of	the	error	box	of	the	X-ray	source	discovered	by	Riccardo	Giacconi,
Herb	Gursky,	Frank	Paolini,	and	Bruno	Rossi	was	about	10	degrees	×	10	degrees,
or	100	square	degrees.	Now	keep	in	mind	that	the	Sun	is	half	a	degree	across.	The
uncertainty	 in	figuring	out	where	the	source	was	consisted	of	a	box	the	area	of
which	was	 the	 equivalent	 of	 500	 of	 our	 Suns!	The	 error	 box	 included	 parts	 of
constellations	Scorpio	and	Norma,	and	it	touched	the	border	of	the	constellation
Ara.	So	clearly	they	were	unable	to	determine	in	which	constellation	the	source
was	located.

In	April	1963	Herbert	Friedman’s	group	at	the	Naval	Research	Laboratory	in
Washington,	D.C.	 improved	substantially	on	 the	 source’s	position.	They	 found
that	 it	 was	 located	 in	 the	 constellation	 Scorpio.	 That’s	 why	 the	 source	 is	 now
known	as	Sco	X-1.	The	X	stands	for	“X-rays,”	and	the	1	indicates	that	it	was	the
first	 X-ray	 source	 discovered	 in	 the	 constellation	 Scorpio.	 It	 is	 of	 historical
interest,	 though	 never	 mentioned,	 that	 the	 position	 of	 Sco	 X-1	 is	 about	 25
degrees	away	from	the	center	of	the	error	box	given	in	the	Giacconi	et	al.	paper
that	marked	 the	birth	of	X-ray	 astronomy.	When	astronomers	discovered	new
sources	in	the	constellation	Cygnus	(the	Swan),	they	received	the	names	Cygnus
X-1	(or	Cyg	X-1	for	short),	Cyg	X-2,	and	so	on;	the	first	source	discovered	in	the
constellation	Hercules	was	Her	X-1;	in	Centaurus	Cen	X-1.	Over	the	next	three
years	 about	 a	 dozen	 new	 sources	 were	 discovered	 using	 rockets,	 but	 with	 one
important	 exception,	 namely	 Tau	X-1,	 located	 in	 the	 constellation	 Taurus,	 no
one	had	 any	 idea	what	 they	were,	 or	how	 they	were	producing	X-rays	 in	 such
huge	quantities	that	we	could	detect	them	thousands	of	light-years	away.

The	 exception	 was	 one	 of	 the	 more	 unusual	 objects	 in	 the	 sky:	 the	 Crab
Nebula.	If	you	don’t	know	about	the	Crab	Nebula,	it’s	worth	turning	to	the	photo
insert	 to	 look	 at	 the	 image	 of	 it	 there	 now—I	 suspect	 you’ll	 recognize	 it	 right
away.	There	are	also	many	photos	of	it	on	the	web.	It’s	a	truly	remarkable	object
about	6,000	light-years	away—the	stunning	remains	of	a	supernova	explosion	in
the	 year	 1054	 recorded	 by	 Chinese	 astronomers	 (and	 quite	 possibly	 in	 native
American	 pictographs—take	 a	 look	 here:
http://seds.org/messier/more/m001_sn.html#collins1999)	as	a	superbright	star	in
the	 heavens	 that	 suddenly	 appeared,	 more	 or	 less	 out	 of	 nowhere,	 in	 the
constellation	Taurus.	(There	is	some	disagreement	about	the	exact	date,	though
many	claim	July	4.)	That	month	it	was	the	brightest	object	in	the	sky	other	than
the	Moon;	it	was	even	visible	during	the	day	for	several	weeks,	and	you	could	still
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see	it	at	night	for	another	two	years.
Once	 it	 faded,	 however,	 scientists	 apparently	 forgot	 about	 it	 until	 the

eighteenth	 century,	 when	 two	 astronomers,	 John	 Bevis	 and	 Charles	 Messier,
found	it	independently	of	each	other.	By	this	time,	the	remains	of	the	supernova
(called	a	supernova	remnant)	had	become	a	nebular	(cloudlike)	object.	Messier
developed	an	important	astronomical	catalog	of	objects	like	comets,	nebulae,	and
star	 clusters—the	 Crab	 Nebula	 is	 the	 first	 object	 in	 his	 catalog,	M-1.	 In	 1939
Nicholas	Mayall	from	Lick	Observatory	(in	Northern	California)	figured	out	that
M-1	is	the	remnant	of	the	supernova	of	1054.	Today,	a	thousand	years	after	the
explosion,	there	is	still	such	wonderful	stuff	going	on	inside	the	Crab	Nebula	that
some	astronomers	devote	entire	careers	to	studying	it.

Herb	Friedman’s	group	realized	that	the	Moon	was	going	to	pass	right	in	front
of	 the	 Crab	 Nebula	 on	 July	 7,	 1964,	 and	 block	 it	 from	 view.	 The	 term
astronomers	 use	 for	 this	 blocking	 out	 is	 “occultation”—that	 is,	 the	Moon	was
going	to	occult	the	Crab	Nebula.	Not	only	did	Friedman	want	to	confirm	that	the
Crab	 Nebula	 was	 indeed	 an	 X-ray	 source,	 but	 he	 also	 was	 hoping	 he	 could
demonstrate	something	else—something	even	more	important.

By	 1964	 a	 renewed	 interest	 had	 emerged	 among	 astronomers	 in	 a	 type	 of
stellar	object	whose	existence	was	first	postulated	during	the	1930s	but	that	had
never	been	detected:	neutron	stars.	These	strange	objects,	which	I	discuss	more
fully	in	chapter	12,	had	been	conjectured	to	be	one	of	the	final	stages	in	a	star’s
life,	 possibly	 born	 during	 a	 supernova	 explosion	 and	 composed	 mostly	 of
neutrons.	If	they	existed,	they	would	be	of	such	great	density	that	a	neutron	star
with	the	mass	of	our	Sun	would	only	be	about	10	kilometers	in	diameter—about
12	miles	all	the	way	across,	if	you	can	imagine	such	a	thing.	In	1934	(two	years
after	the	discovery	of	neutrons),	Walter	Baade	and	Fritz	Zwicky	had	coined	the
term	 “supernova”	 and	 proposed	 that	 neutron	 stars	 might	 be	 formed	 in
supernova	 explosions.	 Friedman	 thought	 that	 the	 X-ray	 source	 in	 the	 Crab
Nebula	might	be	just	such	a	neutron	star.	If	he	was	right,	the	X-ray	emission	he
was	seeing	would	disappear	abruptly	when	the	Moon	passed	in	front	of	it.

He	decided	to	fly	a	series	of	rockets,	one	after	the	other,	right	as	the	Moon	was
going	in	front	of	the	Crab	Nebula.	Since	they	knew	the	Moon’s	exact	position	in
the	 sky	as	 it	moved,	and	could	point	 the	counters	 in	 that	direction,	 they	could
“watch”	for	a	decline	in	X-rays	as	the	Crab	Nebula	disappeared.	As	it	happened,
their	detectors	did	 indeed	pick	up	 a	decline,	 and	 this	 observation	was	 the	 first
conclusive	 optical	 identification	 of	 an	 X-ray	 source.	 This	 was	 a	 major	 result,
since	 once	 we	 had	made	 an	 optical	 identification,	 we	 were	 optimistic	 that	 we



would	soon	discover	the	mechanism	behind	these	enigmatic	and	powerful	X-ray
sources.

Friedman,	however,	was	disappointed.	Instead	of	“winking	out”	as	the	Moon
passed	over	 the	Crab	Nebula,	 the	X-rays	disappeared	gradually,	 indicating	 that
they	came	from	the	nebula	as	a	whole	and	not	from	a	single	small	object.	So	he
hadn’t	found	a	neutron	star.	However,	there	is	a	very	special	neutron	star	in	the
Crab	 Nebula,	 and	 it	 does	 emit	 X-rays;	 the	 neutron	 star	 rotates	 about	 its	 axis
about	thirty	times	per	second!	If	you	want	a	real	treat,	go	to	the	Chandra	X-Ray
Observatory	 website	 (http://chandra.harvard.edu/)	 and	 call	 up	 images	 of	 the
Crab	Nebula.	I	promise	you,	they	are	stunning.	But	forty-five	years	ago	we	had
no	 orbiting	 imaging	 X-ray	 telescopes	 in	 space,	 so	 we	 had	 to	 be	 much	 more
inventive.	 (After	 the	 1967	 discovery	 of	 radio	 pulsars	 by	 Jocelyn	 Bell,	 in	 1968
Friedman’s	 group	 finally	detected	X-ray	pulsations—about	 thirty	per	 second—
from	the	neutron	star	in	the	Crab	Nebula.)

Just	as	Friedman	was	observing	the	occultation	of	the	Crab,	my	friend	(to	be)
George	Clark	 at	MIT	was	 in	Texas	preparing	 for	 a	high-altitude	balloon	night
flight	to	search	for	high-energy	X-rays	from	Sco	X-1.	But	when	he	heard	about
Friedman’s	 results—even	 without	 the	 Internet,	 news	 traveled	 fast—he
completely	changed	his	plans	and	switched	to	a	day	flight	in	search	of	X-rays	in
excess	of	about	15	keV	from	the	Crab	Nebula.	And	he	found	them	too!

It’s	hard	to	put	into	words	just	how	exciting	all	this	was.	We	were	at	the	dawn
of	a	new	era	in	scientific	exploration.	We	felt	we	were	lifting	a	curtain	that	had
been	 hiding	 these	 amazing	 realms	 of	 the	 universe.	 In	 reality,	 by	 getting	 our
detectors	 up	 so	 high,	 by	 getting	 into	 space,	 by	 getting	 to	 the	 top	 of	 the
atmosphere	 where	 X-rays	 could	 penetrate	 without	 being	 absorbed	 by	 air,	 we
were	 removing	 blinding	 filters	 that	 had	 been	 on	 our	 eyes	 for	 all	 of	 human
history.	We	were	operating	in	a	whole	new	spectral	domain.

That	has	happened	often	 in	 the	history	of	astronomy.	Every	time	we	 learned
that	objects	in	the	heavens	emitted	new	or	different	kinds	of	radiation,	we	had	to
change	what	we	thought	we	knew	about	stars,	about	 their	 life	cycles	(how	they
are	 born,	 how	 they	 live,	 and	how	and	why	 they	die),	 about	 the	 formation	 and
evolution	of	clusters	of	stars,	about	galaxies,	and	even	about	clusters	of	galaxies.
Radio	astronomy,	 for	 instance,	 showed	us	 that	 the	centers	of	galaxies	can	emit
jets	 hundreds	 of	 thousands	 of	 light-years	 long;	 it	 has	 also	 discovered	 pulsars,
quasars,	 and	 radio	 galaxies	 and	 is	 responsible	 for	 the	 discovery	 of	 cosmic
microwave	background	radiation,	which	radically	changed	our	views	of	the	early
universe.	Gamma-ray	astronomy	has	discovered	some	of	the	most	powerful	and
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(fortunately)	 distant	 explosions	 in	 the	 universe,	 known	 as	 gamma-ray	 bursts,
which	emit	afterglows	in	X-rays	and	visible	light	all	the	way	down	to	radio	waves.

We	 knew	 that	 the	 discovery	 of	 X-rays	 in	 space	 was	 going	 to	 change	 our
understanding	of	the	universe.	We	just	didn’t	know	how.	Everywhere	we	looked
with	 our	 new	 equipment,	 we	 saw	 new	 things.	 That’s	 not	 surprising,	 perhaps.
When	 optical	 astronomers	 started	 getting	 images	 from	 the	 Hubble	 Space
Telescope,	 they	 were	 thrilled,	 awestruck,	 and—maybe	 this	 isn’t	 so	 obvious—
hungry	for	more.	But	they	were	basically	extending	the	reach	of	a	centuries-old
instrument,	 in	 a	 field	 dating	 back	 millennia.	 As	 X-ray	 astronomers,	 we	 were
experiencing	the	dawn	of	a	whole	new	scientific	field.	Who	knew	where	it	would
lead,	or	what	we	would	discover?	We	surely	didn’t!

How	 fortunate	 for	me	 that	Bruno	Rossi	 invited	me	 to	MIT	 in	 January	1966,
just	 as	 this	 field	 was	 taking	 off,	 and	 that	 I	 immediately	 joined	George	 Clark’s
group.	 George	 was	 a	 very,	 very	 smart	 physicist,	 a	 really	 impressive	 guy	 with
whom	I	became	friends	for	the	rest	of	my	life.	Even	now,	I	can	hardly	believe	my
good	luck—a	great	friend	and	a	new	career,	both	in	the	same	month.



CHAPTER	11

X-ray	Ballooning,	the	Early	Days

When	 I	 arrived	 at	 MIT,	 there	 were	 five	 active	 balloon	 groups	 in	 the	 world:
George	Clark	at	MIT,	Ken	McCracken	at	the	University	of	Adelaide	in	Australia,
Jim	Overbeck	at	MIT,	Larry	Peterson	at	UC	San	Diego,	and	Bob	Haymes	at	Rice
University.	 This	 chapter	 is	 largely	 about	 my	 own	 experiences	 with	 X-ray
ballooning,	which	was	at	the	center	of	my	research	in	the	decade	between	1966
and	1976.	During	 these	years	 I	made	observations	 from	Palestine,	Texas;	Page,
Arizona;	Calgary,	Canada;	and	Australia.

Our	balloons	carried	our	X-ray	detectors	 to	an	altitude	of	about	145,000	feet
(about	30	miles),	where	the	atmospheric	pressure	is	only	0.3	percent	of	that	at	sea
level.	When	the	atmosphere	is	this	thin,	a	good	fraction	of	X-rays	with	energies
above	15	keV	get	through.

Our	 balloon	 observations	 complemented	 the	 rocket	 observations.	 Rocket-
borne	detectors	typically	observed	X-rays	in	the	range	from	1	to	10	keV	and	only
for	about	five	minutes	during	an	entire	flight.	Balloon	observations	could	last	for
hours	(my	longest	flight	was	twenty-six	hours)	and	my	detectors	observed	X-rays
in	the	range	above	15	keV.

Not	all	sources	that	were	detected	during	rocket	observations	were	detectable
during	balloon	observations,	since	the	sources	often	emitted	most	of	their	energy
at	low-energy	X-rays.	On	the	other	hand,	we	were	able	to	detect	sources	emitting
largely	high-energy	X-rays	 invisible	during	rocket	observations.	Thus,	not	only
did	we	discover	new	 sources	 and	 extend	 the	 spectra	of	 known	 sources	 to	high
energies,	but	we	also	were	capable	of	detecting	variability	in	the	X-ray	luminosity
of	 sources	 on	 time	 scales	 of	 minutes	 to	 hours,	 which	 was	 not	 possible	 with
rockets.	This	was	one	of	the	early	successes	of	my	research	in	astrophysics.

In	1967	we	discovered	an	X-ray	flare	from	Sco	X-1—that	was	a	real	shocker—
I’ll	tell	you	all	about	this	later	in	this	chapter.	My	group	also	discovered	three	X-
ray	sources,	GX	301-2,	GX	304-1,	and	GX	1+4,	never	seen	before	during	rocket
observations,	 and	 all	 of	 them	 showed	 changes	 in	 their	X-ray	 intensity	 on	 time
scales	 of	 minutes.	 GX	 1+4	 even	 showed	 periodic	 variability	 with	 a	 period	 of
about	2.3	minutes.	At	the	time	we	had	no	idea	what	could	be	the	cause	of	such
rapid	changes	in	the	X-ray	intensity,	let	alone	the	2.3-minute	periodicity,	but	we



knew	we	were	breaking	new	ground—uncovering	new	territory.
For	some	astronomers,	though,	even	in	the	late	1960s,	the	significance	of	X-ray

astronomy	hadn’t	yet	sunk	in.	In	1968,	I	met	the	Dutch	astronomer	Jan	Oort	at
Bruno	Rossi’s	home.	Oort	was	one	of	the	most	famous	astronomers.	He	had	been
an	 incredible	 visionary;	 right	 after	 World	 War	 II,	 he	 started	 a	 whole	 radio
astronomy	 program	 in	 the	 Netherlands.	 When	 he	 came	 to	 MIT	 that	 year,	 I
showed	him	the	balloon	data	from	our	flights	 in	1966	and	1967.	But	he	said	to
me—and	 I’ll	 always	 remember	 this—“X-ray	 astronomy	 is	 just	 not	 very
important.”	Can	you	believe	it?	“Just	not	very	important.”	He	couldn’t	have	been
more	wrong.	This	was	one	of	 the	 greatest	 astronomers	of	 all	 time,	 and	he	was
completely	blind	to	its	significance.	Maybe	because	I	was	younger,	and	hungrier
—to	 be	 fair,	 he	 was	 sixty-eight	 by	 then—it	 was	 obvious	 to	 me	 that	 we	 were
harvesting	pure	gold,	and	we	were	only	just	scratching	the	surface.

I	remember	in	the	1960s	and	1970s	I	would	read	every	single	paper	that	came
out	on	X-ray	astronomy.	In	1974	I	gave	five	lectures	in	Leiden	(Oort	was	in	my
audience),	and	I	was	able	to	cover	all	of	X-ray	astronomy.	Nowadays	thousands
of	 papers	 on	 X-ray	 astronomy	 are	 published	 every	 year,	 in	 a	 multitude	 of
subfields,	 and	 no	 one	 can	 grasp	 the	 entire	 field.	Many	 researchers	 spend	 their
entire	careers	on	one	of	dozens	of	 specific	 topics	such	as	single	stars,	accretion
disks,	X-ray	binaries,	globular	clusters,	white	dwarfs,	neutron	stars,	black	holes,
supernovae	 remnants,	 X-ray	 bursts,	 X-ray	 jets,	 galactic	 nuclei,	 and	 clusters	 of
galaxies.	 The	 early	 years	were	 the	most	 fantastic	 years	 for	me.	 They	were	 also
demanding,	 in	 just	 about	 every	way:	 intellectually,	 physically,	 even	 logistically.
Launching	 balloons	 was	 so	 complicated	 and	 expensive,	 time-consuming,	 and
tension	producing,	I	can	hardly	describe	it.	I’ll	try,	though.

Getting	Aloft:	Balloons,	X-ray	Detectors,	and	the	Launch
Before	 a	 physicist	 can	 do	 anything	 (unless,	 that	 is,	 you’re	 a	 theorist,	who	may
need	only	a	piece	of	paper	or	a	computer	screen),	you	have	to	get	the	money	to
build	equipment	and	pay	students	and	sometimes	to	travel	very	far.	Lots	of	what
scientists	 really	do	 is	write	grant	proposals,	 in	highly	 competitive	programs,	 to
get	supported	 to	do	research.	 I	know	it’s	not	sexy	or	romantic,	but	believe	me,
nothing	happens	without	it.	Nothing.

You	could	have	a	wonderful	idea	for	an	experiment	or	an	observation,	and	if
you	don’t	know	how	to	 transform	 it	 into	a	winning	proposal,	 it	goes	nowhere.
We	were	 always	 competing	 against	 the	best	 in	 the	world,	 so	 it	was	 a	 cutthroat



business.	It	still	is,	for	just	about	any	scientist	in	any	field.	Whenever	you	look	at
a	 successful	 experimental	 scientist—in	 biology,	 chemistry,	 physics,	 computer
science,	 economics,	 or	 astronomy,	 it	 doesn’t	 matter—you	 are	 also	 looking	 at
someone	who’s	 figured	 out	 how	 to	 beat	 the	 competition	 over	 and	 over	 again.
That	does	not	make	for	warm	and	fuzzy	personalities,	for	the	most	part.	It’s	why
my	wife,	Susan,	who’s	worked	at	MIT	for	ten	years,	is	fond	of	saying,	“There	are
no	small	egos	at	MIT.”

Suppose	we	got	the	funding,	which	we	usually	did	(I	was	generously	supported
by	the	National	Science	Foundation	and	NASA).	To	send	a	balloon	up	nearly	30
miles,	carrying	a	2,000-pound	X-ray	telescope	(connected	to	a	parachute),	which
you	had	to	recover	intact,	was	a	very	complex	process.	You	had	to	have	reliably
calm	weather	at	launch,	because	the	balloons	were	so	delicate	that	a	gust	of	wind
could	sink	the	whole	mission.	You	needed	to	have	some	infrastructure—launch
sites,	 launch	 vehicles,	 and	 the	 like—to	 help	 get	 the	 balloons	 way	 up	 into	 the
atmosphere	and	to	track	them.	Since	I	wanted	to	observe	in	the	general	direction
of	the	center	of	the	Milky	Way,	which	we	call	the	galactic	center,	where	many	X-
ray	sources	were	located,	I	needed	to	observe	from	the	Southern	Hemisphere.	I
chose	to	launch	from	Mildura	and	Alice	Springs,	Australia.	I	was	very	far	away
from	my	home	and	family—I	had	four	children	by	then—usually	for	a	couple	of
months	at	a	time.

Everything	 about	 the	 launches	was	 expensive.	The	 balloons	 themselves	were
enormous.	The	largest	one	I	flew	(which	at	the	time	was	the	largest	balloon	ever
flown,	and	it	may	well	still	be	the	largest	ever)	had	a	volume	of	52	million	cubic
feet;	when	 fully	 inflated	 and	 flying	 at	 145,000	 feet,	 its	 diameter	was	 about	 235
feet.	The	balloons	were	made	of	very	lightweight	polyethylene—one-half	of	one-
thousandth	of	an	inch	thick,	thinner	than	Saran	Wrap	or	cigarette	paper.	If	they
ever	 touched	 the	 ground	 during	 launch,	 they	 would	 tear.	 These	 gigantic,
beautiful	 balloons	 weighed	 about	 700	 pounds.	 We	 usually	 traveled	 with	 a
backup,	and	each	one	cost	$100,000—forty	years	ago,	when	that	was	real	money.

They	had	to	be	made	in	immense	plants.	The	gores,	the	sections	of	the	balloon
that	 look	 like	 tangerine	 skin	 segments,	 were	 made	 separately	 and	 then	 put
together	by	heat	sealing.	The	manufacturer	only	trusted	women	to	do	the	sealing;
they	 said	 it	was	well	 known	 that	men	were	 too	 impatient	 and	made	 too	many
mistakes.	Then	we	had	to	ship	 the	helium	to	 inflate	 the	balloons	all	 the	way	to
Australia.	The	helium	alone	 cost	 about	 $80,000	per	 balloon.	 In	 current	 dollars
that	was	more	 than	$700,000	 for	 just	one	balloon	and	 its	helium,	without	even
considering	the	backup	balloon,	our	transportation,	lodging,	or	food.	That’s	right



—here	we	were	trying	to	ferret	out	the	secrets	of	deep	space,	living	in	the	middle
of	 the	Australian	desert,	utterly	dependent	on	 the	weather.	And	 I	haven’t	 even
told	you	about	Jack.	I’ll	get	to	Jack	in	a	bit.

But	 the	 balloons	were	 cheap	 compared	 to	 the	 telescopes.	 Each	 telescope,	 an
extremely	complicated	machine	weighing	about	a	ton,	took	roughly	two	years	to
build	and	cost	$1	million—$4	million	 in	 today’s	dollars.	We	never	had	enough
money	for	two	telescopes	at	a	time.	So	if	we	lost	our	telescope—which	happened
twice—we	were	out	of	luck	for	at	least	two	years.	We	couldn’t	even	start	building
a	new	one	until	we’d	gotten	the	funding.	So	it	was	a	catastrophe	if	we	lost	one.

And	not	just	for	me,	not	at	all.	This	would	cause	a	major	delay	for	my	graduate
students,	 who	 were	 all	 deeply	 involved	 in	 building	 the	 telescopes,	 and	 whose
PhD	theses	were	about	the	instruments	and	the	results	of	the	observations.	Their
degrees	went	up	in	the	air	with	the	balloons.

We	needed	the	cooperation	of	the	weather,	too.	There	are	intense	winds	in	the
stratosphere,	 flowing	 east	 to	 west	 at	 about	 100	 miles	 per	 hour	 for	 about	 six
months	of	the	year,	and	west	to	east	the	other	half	of	the	year.	Twice	a	year	these
winds	 reverse	 direction—we	 call	 it	 the	 turnaround—and	 as	 they	 do,	 the	 wind
speeds	 at	 145,000	 feet	 become	 very	 low,	 which	 would	 allow	 us	 to	 make
observations	 for	 many	 hours.	 So	 we	 needed	 to	 be	 in	 a	 place	 where	 we	 could
measure	these	winds	and	could	launch	during	the	turnaround.	We	probed	every
other	day	with	weather	balloons	that	we	tracked	by	radar.	Most	of	the	time	they
would	make	it	to	about	125,000	feet,	about	24	miles	up,	before	they	popped.	But
predicting	the	atmosphere	isn’t	like	pushing	ball	bearings	down	a	track	in	a	lab
demonstration.	 The	 atmosphere	 is	 so	 much	 more	 complex,	 so	 much	 less
predictable,	and	yet	everything	we	did	depended	on	making	good	forecasts.

There	 was	 more.	 At	 an	 altitude	 between	 about	 30,000	 and	 60,000	 feet	 the
atmosphere	 is	 called	 the	 tropopause,	 where	 it’s	 very,	 very	 cold—minus	 50
degrees	Celsius	(–58°F)—and	our	balloons	would	get	very	brittle.	There	were	jet
stream	winds	too,	and	they	beat	on	the	balloon,	which	could	then	burst.	So	many
things	could	go	wrong.	Once	my	balloon	blew	out	to	sea—end	of	telescope.	The
payload	was	found	nine	months	later	on	a	beach	in	New	Zealand.	Miraculously,
with	the	help	of	Kodak,	we	were	able	to	retrieve	the	data,	which	were	recorded
on	film	on	board.

We	prepared	over	and	over	and	over	for	these	launches,	and	yet	I	always	said
that	even	though	we	prepared	like	crazy,	we	still	needed	a	little	luck.	Sometimes	a
lot	of	 luck.	We	would	bring	the	equipment	to	this	remote	station.	Then	we	did
tests	 on	 the	 telescope,	 calibrating	 the	 instruments	 and	making	 sure	 everything



was	working.	We	would	go	through	the	rigging	connecting	the	telescope	to	the
parachute,	which	would	eventually	connect	to	the	balloon	as	well.	It	could	take
us	about	three	weeks	to	do	all	the	tests	at	the	balloon	launching	site	and	be	flight
ready,	and	then	the	weather	might	not	cooperate.	And	we	had	nothing	else	to	do
then	except	to	sit	there	and	wait	and	keep	the	batteries	charged.	It’s	a	good	thing
Alice	 Springs	 was	 so	 beautiful:	 a	 fantastic	 desert	 town	 right	 in	 the	 heart	 of
Australia.	 It	 really	 felt	 like	 it	was	 in	 the	middle	of	nowhere,	but	 the	 skies	were
clear	and	the	early	mornings	when	we	tried	to	launch	were	spectacular:	the	night
sky	had	turned	its	predawn	deep	blue,	and	as	the	Sun	rose	it	painted	the	sky	and
the	desert	in	brilliant	pinks	and	oranges.

Once	we	were	ready	to	go,	we	needed	to	have	winds	under	3	miles	per	hour	in
a	steady	direction	 for	 three	or	 four	hours,	which	 is	how	 long	 it	 took	 to	get	 the
balloon	 off	 the	 ground	 (the	 inflation	 alone	 took	 two	 hours).	 That’s	 why	 we
mostly	launched	at	dawn,	when	there	was	the	least	amount	of	wind.	But	it	could
happen	that	our	forecast	was	wrong,	and	we	just	had	to	wait,	and	wait,	and	wait
some	more,	until	the	weather	cooperated.

We	were	 in	 the	middle	 of	 a	 launch	 one	 time	 in	Mildura—we	 had	 not	 even
started	inflation—and	the	wind	came	up,	contrary	to	the	weatherman’s	forecast.
The	balloon	was	destroyed,	but	 thank	goodness	 the	 telescope	was	safe!	All	 that
preparation,	 and	 $200,000—gone	 in	 a	 few	 seconds.	 Talk	 about	 painful.	All	we
could	do	was	wait	for	better	weather	and	try	again	with	our	spare	balloon.

The	failures	stick	with	you.	On	my	last	expedition	to	Alice	Springs	we	lost	two
balloons	 in	 a	 row	 right	 at	 launch,	 because	 the	 launch	 crew	made	 some	 tragic
mistakes.	 Our	 expedition	 was	 a	 complete	 failure—but	 at	 least	 our	 telescope
wasn’t	 damaged.	 It	 never	 left	 the	 ground.	On	my	 last	 expedition	 (in	 1980),	 in
Palestine,	 Texas,	 the	 eight-hour	 flight	was	 successful,	 but	when	we	 terminated
the	flight	by	radio	command,	we	lost	our	telescope;	the	parachute	never	opened.

Even	today,	balloon	launches	are	far	from	a	sure	thing.	In	an	attempted	NASA
launch	from	Alice	Springs	in	April	2010,	something	went	wrong	and	the	balloon
crashed	 while	 trying	 to	 take	 off,	 destroying	 millions	 of	 dollars	 worth	 of
equipment	 and	 nearly	 injuring	 onlookers.	 You	 can	 see	 the	 story	 here:
www.physorg.com/news191742850.html.

Over	 the	 years	 I	must	 have	 launched	 about	 twenty	 balloons.	 I	 had	 only	 five
that	 failed	during	 launch	or	didn’t	 get	 to	 altitude	 (they	may	have	been	 leaking
helium).	That	was	considered	a	good	success	rate	(75	percent).	In	the	insert	you
can	see	a	picture	of	the	inflation	(with	helium)	of	a	balloon	and	also	a	picture	of	a
balloon	launch.

http://www.physorg.com/news191742850.html


Months	before	going	to	the	launch	site,	we	would	test	the	payload	at	a	firm	in
Wilmington,	Massachusetts.	We	put	 the	 telescope	 into	a	vacuum	chamber	and
brought	the	air	pressure	down	to	the	same	we’d	have	way	up	high,	about	three-
thousandths	 of	 an	 atmosphere.	 Then	 we	 cooled	 it	 down	 to	minus	 50	 degrees
Celsius	 (–58°F)	 and	 ran	 it—turning	on	 all	 the	X-ray	detectors	 and	monitoring
for	 ten	 seconds	 every	 twenty	 minutes	 X-rays	 from	 a	 radioactive	 source	 for
twenty-four	hours	straight.	Some	of	our	competitors’	telescopes—yes,	we	did	feel
like	 the	 other	 teams	 doing	 the	 same	 kinds	 of	 things	 were	 our	 competition—
would	 fail	 sometimes	 because	 their	 batteries	 would	 lose	 power	 at	 low
temperatures	 or	 quit	 altogether.	 That	 never	 happened	 to	 us	 because	 we	 had
tested	them	so	thoroughly.	If	we	saw	in	the	testing	period	that	our	batteries	were
going	to	lose	power,	we	figured	out	how	to	heat	them	up	if	necessary	and	keep
the	power	going.

Or	 take	 the	problem	of	corona	discharge—sparking	 from	high-voltage	wires.
Some	 of	 our	 equipment	 ran	 on	 high	 voltage,	 and	 very	 thin	 air,	 where	 the
pressure	is	very	low,	is	an	ideal	environment	for	sparks,	from	wires	into	the	open
air.	Remember	the	buzz	around	transmission	lines	I	mentioned	back	in	chapter
7?	That’s	 corona	discharge.	Every	 experimental	physicist	who	works	with	high
voltage	knows	you	can	get	corona	discharge.	I	show	examples	of	these	sparks	in
my	classes.	There,	corona	discharge	is	fun.	At	145,000	feet,	it’s	a	catastrophe.

In	lay	terms,	the	equipment	would	start	to	sputter,	and	you	would	get	so	much
electronic	noise	that	you	couldn’t	pick	out	the	X-ray	photons.	How	big	a	disaster
would	this	be?	Total	and	complete:	you	would	get	no	usable	data	at	all	on	a	flight.
The	 solution	was	 to	 coat	 all	 of	 our	high-voltage	wires	 in	 silicon	 rubber.	Other
folks	 did	 the	 same	 thing	 and	 still	 got	 corona	 discharge.	 Our	 testing	 and
preparation	paid	off.	We	never	had	corona	discharge.	This	was	just	one	of	dozens
of	 complex	 engineering	 issues	 involved	 in	 building	 these	 intricate	 telescopes—
that’s	why	they	took	so	long	to	build,	and	cost	so	much	money.

So,	once	we	got	the	telescope	high	up	into	the	atmosphere,	how	did	we	detect
X-rays?	The	 answer	 to	 this	 question	 is	 not	 simple,	 so	 please	 bear	with	me.	To
begin	with,	we	used	a	special	kind	of	detector	(sodium	iodide	crystals),	not	 the
proportional	counters	(filled	with	gas)	the	rockets	used,	but	something	that	was
able	to	detect	X-rays	with	energies	higher	than	15	keV.	When	an	X-ray	photon
penetrates	one	of	these	crystals	it	can	kick	an	electron	out	of	its	orbit	and	transfer
its	 X-ray	 energy	 to	 that	 electron	 (this	 is	 called	 photoelectric	 absorption).	 This
electron	 in	 turn	will	produce	a	 track	of	 ions	 in	 the	crystal	before	 it	 comes	 to	a
stop.	When	these	ions	get	neutralized,	they	release	energy	mostly	in	the	form	of



visible	light;	thus	a	flash	of	light	is	produced—the	energy	of	the	X-ray	photon	is
converted	into	a	light	flash.	The	higher	the	energy	of	the	X-rays,	the	stronger	the
light	 flashes.	We	 used	 photomultipliers	 to	 detect	 the	 light	 flashes	 and	 convert
them	into	electric	pulses:	the	brighter	the	light	flash,	the	higher	the	voltage	of	a
pulse.

We	 then	 amplified	 these	 pulses	 and	 sent	 them	 to	 a	 discriminator,	 which
measured	 the	 voltage	 of	 the	 electric	 pulses	 and	 sorted	 them	 according	 to
magnitude—which	indicated	the	energy	levels	of	the	X-rays.	In	the	early	days	we
recorded	the	X-rays	at	only	five	different	energy	levels.

So	that	we	would	have	a	record	of	the	detections	after	the	balloon	flight,	in	the
early	days	we	recorded	 them	on	board,	by	energy	 level	and	 the	 time	 they	were
detected.	 We	 wired	 the	 discriminator	 to	 send	 these	 sorted	 impulses	 to	 light-
emitting	diodes,	which	created	a	pattern	of	 flashing	 lights	at	 those	 five	distinct
energy	levels.	Then	we	photographed	those	flashing	lights	with	a	camera	running
continuous	film.

If	a	light	was	on,	it	would	make	a	track	on	the	film.	All	together,	the	film	of	an
observation	would	look	like	a	series	of	dashes	and	lines,	lines	and	dashes.	Back	at
MIT	we	would	 “read”	 the	 film	with	a	 special	 reader	designed	by	George	Clark
that	 converted	 the	 lines	 and	dashes	 to	punch	 tape:	paper	 tape	with	holes	 in	 it.
Then	we	read	the	punch	tape	with	light	sensitive	diodes	and	recorded	the	data	on
magnetic	 tape.	 We	 had	 written	 a	 program	 on	 computer	 cards	 in	 Fortran	 (I
realize	 this	 sounds	 prehistoric)	 and	 used	 it	 to	 read	 the	magnetic	 tape	 into	 the
memory	of	the	computer,	which—finally!—gave	us	X-ray	counts	as	a	function	of
time	in	the	five	different	energy	channels.

I	know	it	sounds	like	a	Rube	Goldberg	machine.	But	think	about	what	we	were
trying	to	do.	We	were	trying	to	measure	the	counting	rate	(the	number	of	X-rays
per	 second)	 and	 energy	 levels	 of	 X-ray	 photons,	 as	well	 as	 the	 location	 of	 the
source	that	had	emitted	them—photons	that	had	been	traveling	for	thousands	of
years	 at	 the	 speed	 of	 light,	 spreading	 through	 the	 galaxy	 and	 thinning	 out
continuously	 by	 the	 square	 of	 the	 distance	 they	 traveled.	 And	 unlike	 a	 stable
mountaintop	 optical	 telescope	 whose	 control	 system	 can	 keep	 the	 telescope
trained	on	the	same	spot	for	many	hours	and	can	return	to	the	same	spot	night
after	night,	we	had	to	make	use	of	whatever	time	we	had	(at	most	once	per	year)
—always	measured	 in	hours—while	a	 fragile	balloon	carried	our	 thousand-kilo
telescope	145,000	feet	above	the	Earth.

When	a	balloon	was	in	flight	I	followed	it	in	a	small	plane,	usually	keeping	it	in
sight	 (in	 the	daytime,	 that	 is—not	 at	night),	 flying	 at	 just	 5,000	or	 10,000	 feet.



You	can	 imagine	what	 that	was	 like,	 for	many	hours	at	a	 time.	 I’m	not	a	small
man.	It	was	easy,	all	too	easy,	to	get	sick	in	these	little	four-seater	planes,	flying
for	 eight,	 ten,	 twelve	 hours	 at	 a	 time.	 Plus,	 I	 was	 nervous	 the	 whole	 time	 the
balloon	was	up.	The	only	time	you	could	relax	was	after	the	recovery,	when	you
had	the	data	in	hand.

The	 balloon	 was	 so	 enormous	 that	 even	 though	 it	 was	 nearly	 30	 miles	 up,
when	sunlight	hit	it,	you	could	see	it	very	clearly.	With	radar,	we	could	follow	it	a
long	way	from	the	launching	station	until	the	curvature	of	the	Earth	would	make
that	impossible.	That’s	why	we	outfitted	the	balloon	with	a	radio	transmitter,	and
at	night	we	had	to	switch	exclusively	to	tracking	the	balloon	by	radio	beacon.	No
matter	 how	hard	we	worked	 getting	 articles	 in	 the	 local	 newspapers	 about	 the
launch,	 the	 balloons	 could	 drift	 hundreds	 of	 miles,	 and	 when	 they	 were	 aloft
we’d	get	 all	 kinds	of	 reports	of	UFOs.	 It	was	 funny,	but	 it	made	perfect	 sense,
really.	What	else	were	people	supposed	to	think	when	they	caught	a	glimpse	of	a
mysterious	entity	in	the	sky	of	indeterminate	size	and	distance?	To	them	it	really
was	an	unidentified	flying	object.	You	can	see	a	picture	taken	with	a	telescope	of
a	balloon	at	145,000	feet	in	the	insert.

Even	with	all	our	planning,	and	weather	forecasts,	and	even	in	turnaround,	the
winds	at	145,000	feet	altitude	could	turn	out	to	be	unreliable.	Once,	in	Australia,
we	had	expected	the	balloon	to	head	north	from	Alice	Springs,	but	instead	it	took
off	 straight	 south.	We	 followed	 it	 visually	 until	 sunset	 and	 kept	 radio	 contact
with	it	through	the	night.	By	morning	it	was	getting	too	close	to	Melbourne,	and
we	were	not	allowed	to	enter	the	air	space	between	Sydney	and	Melbourne.	No
one	 was	 going	 to	 shoot	 it	 down,	 but	 we	 had	 to	 do	 something.	 So	 when	 our
wayward	balloon	was	just	about	to	reach	forbidden	air	space,	we	reluctantly	gave
the	radio	command	that	cut	the	payload	loose.	Separating	the	telescope	from	the
balloon	would	shatter	 the	balloon—it	could	not	 survive	 the	 shock	wave	caused
by	 the	sudden	release	of	 the	payload—and	the	 telescope	would	start	 to	 fall,	 the
parachute	 would	 open	 (except	 in	 1980)	 and	 slowly	 float	 down,	 bringing	 the
telescope	 safely	 back	 to	 Earth.	 Huge	 pieces	 of	 the	 balloon	 would	 also	 hit	 the
ground,	usually	spread	out	over	an	acre	or	more.	This	occurred	sooner	or	later	in
every	balloon	flight,	and	it	was	always	a	sad	moment	(even	though	it	was	always
necessary),	because	we	were	terminating	the	mission—cutting	off	the	data	flow.
We	wanted	the	telescope	to	be	aloft	as	long	as	possible.	We	were	so	hungry	for
data	in	those	days—that	was	the	whole	point.

Recovery	in	the	Outback:	Kangaroo	Jack



We	put	cardboard	crash	pads	on	the	bottom	of	the	telescope	to	soften	its	landing.
If	it	was	during	the	day,	and	we	had	visual	contact	with	the	balloon	(which	would
suddenly	disappear	when	we	sent	the	cut-down	command),	we	would	soon	spot
the	parachute;	we	did	our	best	 to	 follow	 it	 all	 the	way	down,	 circling	 it	 in	our
little	airplane.	Once	it	landed	we	would	mark	its	location	on	a	very	detailed	map
as	accurately	as	possible.

Then	the	really	bizarre	part	started:	because	here	we	were,	in	an	airplane,	and
our	payload,	with	all	our	data,	the	culmination	of	years	of	work,	was	lying	on	the
ground,	almost	within	reach,	but	we	couldn’t	just	land	in	the	middle	of	the	desert
and	get	it!	What	we	had	to	do	was	to	draw	the	attention	of	local	people,	and	the
way	we	 usually	 did	 this	 was	 by	 flying	 a	 plane	 low	 over	 a	 house.	Houses	 were
pretty	 far	 apart	 in	 the	desert.	Residents	knew	what	 the	 low-flying	plane	meant
and	usually	came	out	of	the	house	and	made	contact	by	waving.	Then	we	would
land	at	the	nearest	airstrip	(not	to	be	confused	with	an	airport)	in	the	desert	and
wait	for	them	to	show	up.

During	one	flight,	there	were	so	few	houses	in	the	area	that	we	had	to	hunt	for
a	while.	Eventually	we	found	this	guy	Jack	living	in	the	desert	50	miles	away	from
his	 nearest	 neighbor.	He	was	 drunk	 and	 pretty	 crazy.	We	 didn’t	 know	 that	 at
first,	of	 course.	But	we	made	contact	 from	the	air	and	 then	 flew	 to	 the	airstrip
and	waited;	 after	 about	 15	 hours	 he	 showed	 up	with	 his	 truck,	 a	 battered	 old
jeep-like	 thing	with	 no	windshield,	 just	 a	 roof	 on	 its	 cab,	 and	 an	 open	 bay	 in
back.	 Jack	 liked	 to	 tear	 around	 the	 desert	 at	 60	 miles	 an	 hour,	 chasing	 and
shooting	kangaroos.

I	 stayed	with	 Jack	and	the	 truck	and	one	of	my	graduate	students,	while	our
tracking	 airplane	 directed	 us	 to	 the	 payload.	 The	 truck	 needed	 to	 go	 across
unmarked	terrain.	We	kept	in	radio	contact	with	the	plane.	We	were	lucky	with
Jack.	From	all	that	kangaroo	hunting	he	really	knew	where	he	could	drive.

He	also	had	this	awful	game	I	hated,	but	we	were	already	depending	on	him,	so
there	wasn’t	much	I	could	do;	he	gave	me	a	demonstration	just	once.	He	put	his
dog	on	the	roof	of	the	jeep,	accelerated	up	to	60	miles	an	hour,	then	slammed	on
the	brakes,	 and	 the	dog	 catapulted	 through	 the	 air	 onto	 the	 ground.	The	poor
dog!	 Jack	 laughed	 and	 laughed	 and	 then	 delivered	 his	 punch	 line:	 “You	 can’t
teach	an	old	dog	new	tricks.”

It	took	us	half	a	day	to	reach	the	payload,	which	was	being	guarded	by	a	six-
foot-long	iguana—a	really	nasty-looking	creature.	To	tell	the	truth,	it	scared	the
hell	out	of	me.	But	of	course	I	didn’t	want	to	show	that,	so	I	said	to	my	graduate
student,	“There’s	no	problem.	These	animals	are	harmless.	You	go	first.”	And	he



did,	and	it	turns	out	that	they	are	harmless,	and	during	the	entire	four	hours	it
took	 us	 to	 recover	 the	 payload	 and	 get	 it	 on	 Jack’s	 truck,	 this	 animal	 never
moved.

The	Balloon	Professor
Then	we	went	back	to	Alice	Springs,	and	of	course	we	were	on	the	front	page	of
the	 Centralian	 Advocate	 with	 a	 great	 photograph	 of	 the	 balloon	 launch.	 The
headline	 read	 START	 OF	 SPACE	 PROBE	 and	 the	 article	 talked	 about	 the	 “balloon
professor”	having	returned.	I	had	become	a	sort	of	local	celebrity	and	gave	talks
to	 the	 Rotary	 Club	 and	 for	 students	 at	 the	 high	 school,	 even	 once	 in	 a	 steak
house,	which	earned	me	dinner	for	my	crew.	What	we	really	wanted	to	do	was
take	our	film	back	home	as	quickly	as	possible,	develop	and	analyze	 it,	and	see
what	we’d	found.	So	after	a	few	days’	cleanup	we	were	on	our	way.	You	can	see
just	 how	 demanding	 this	 kind	 of	 research	 was.	 I	 was	 away	 from	 home	 for
something	like	two	months	at	least	every	other	year	(sometimes	every	year).	And
there’s	no	question	about	it	that	my	first	marriage	suffered	a	lot	because	of	it.

At	the	same	time,	despite	all	the	nervousness	and	tension,	it	was	exciting	and
great	fun	and	I	was	proud	of	my	graduate	students,	notably	Jeff	McClintock	and
George	 Ricker.	 Jeff	 is	 now	 senior	 astrophysicist	 at	 the	 Harvard-Smithsonian
Center	 for	Astrophysics	and	won	the	2009	Rossi	Prize	(named	for	guess	who?)
for	his	work	measuring	 the	masses	of	black	holes	 in	X-ray	binary	star	 systems.
(We’ll	get	to	that	in	chapter	13.)	George,	I’m	happy	to	say,	still	works	at	MIT.	He
is	 brilliant	 at	 designing	 and	 developing	 innovative	 new	 instrumentation.	He	 is
best	known	for	his	research	in	gamma-ray	bursts.

Ballooning	 was	 very	 romantic	 in	 its	 way.	 To	 be	 up	 at	 four	 o’clock	 in	 the
morning,	 drive	 out	 to	 the	 airport,	 and	 see	 the	 sunrise	 and	 see	 the	 spectacular
inflation	of	 the	 balloon—this	 beautiful	 desert,	 under	 the	 sky,	 just	 stars	 at	 first,
and	then	slowly	seeing	the	Sun	come	up.	Then,	as	the	balloon	was	released	and
pulled	 itself	 into	 the	 sky,	 it	 shimmered	 silver	 and	 gold	 in	 the	 dawn.	 And	 you
knew	 just	 how	many	 little	 things	 had	 to	 go	 just	 right,	 so	 all	 your	 nerves	were
jangling	the	entire	time.	My	goodness.	And	if	it	seemed	to	be	a	good	launch,	in
which	 the	 myriad	 details	 (each	 one	 of	 which	 was	 the	 source	 of	 a	 potential
disaster)	seemed	to	fall	into	place	one	after	another—what	an	incredible	feeling!

We	really	were	on	the	cutting	edge	in	those	days.	To	think	that	success	partly
depended	on	the	generosity	of	a	drunken	Australian	kangaroo	hunter.



An	X-ray	Flare	from	Sco	X-1
No	discovery	we	made	in	those	years	was	more	thrilling	for	me	than	the	totally
unexpected	 finding	 that	 some	 X-ray	 sources	 have	 remarkable	 flare-ups	 in	 the
amount	of	X-rays	they	emit.	The	idea	that	the	X-ray	intensity	from	some	sources
varies	was	 in	 the	 air	 as	 early	 as	 the	mid-1960s.	 Philip	 Fisher	 and	 his	 group	 at
Lockheed	Missiles	and	Space	Company	compared	the	X-ray	intensities	of	seven
X-ray	sources	detected	during	their	rocket	flight	on	October	1,	1964,	with	those
of	a	rocket	flight	by	Friedman’s	group	on	June	16,	1964.	They	found	that	the	X-
ray	intensity	(which	we	call	X-ray	flux)	for	the	source	Cyg	XR-1	(now	called	Cyg
X-1)	was	five	times	lower	on	October	1	than	on	June	14.	But	whether	or	not	this
observation	demonstrated	real	variability	was	unclear.	Fisher’s	group	pointed	out
that	 the	detectors	used	by	Friedman’s	group	were	much	more	sensitive	 to	 low-
energy	X-rays	 than	the	detectors	 they	had	used	and	that	 this	might	explain	 the
difference.

The	issue	was	settled	in	1967	when	Friedman’s	group	compared	the	X-ray	flux
of	 thirty	 sources	 over	 the	 prior	 two	 years	 and	 determined	 that	 many	 sources
really	did	vary	in	intensity.	Particularly	striking	was	the	variability	of	Cyg	X-1.

In	 April	 1967,	 Ken	McCracken’s	 group	 in	 Australia	 launched	 a	 rocket	 and
discovered	 a	 source	nearly	 as	bright	 as	 Sco	X-1	 (the	brightest	X-ray	 source	we
knew	of),	which	had	not	shown	up	when	detectors	had	observed	the	same	spot	a
year	and	a	half	earlier.	Two	days	after	the	announcement	of	this	“X-ray	nova”	(as
it	 was	 called)	 during	 the	 spring	 meeting	 of	 the	 American	 Physical	 Society	 in
Washington	D.C.,	I	was	on	the	phone	with	one	of	the	most	eminent	pioneers	in
X-ray	astronomy,	and	he	said	to	me,	“Do	you	believe	that	nonsense?”

Its	 intensity	went	down	 in	a	 few	weeks	by	a	 factor	of	 three,	and	 five	months
later	 its	 intensity	had	diminished	by	at	 least	a	 factor	of	 fifty.	Nowadays,	we	call
these	sources	by	the	pedestrian	name	“X-ray	transients.”

McCracken’s	 group	 had	 located	 the	 source	 in	 the	 constellation	Crux,	which
you	may	know	better	as	the	Southern	Cross.	They	were	very	excited	about	this,
and	 it	 became	 something	 of	 an	 emotional	 thing	 for	 them,	 since	 that	 very
constellation	 is	 in	 the	 Australian	 flag.	 When	 it	 turned	 out	 that	 the	 source’s
location	was	just	outside	the	Southern	Cross,	 in	Centaurus	instead,	the	original
name	 Crux	 X-1	 was	 changed	 to	 Cen	 X-2,	 and	 the	 Aussies	 were	 very
disappointed.	Scientists	can	get	very	emotional	about	our	discoveries.

On	 October	 15,	 1967,	 George	 Clark	 and	 I	 observed	 Sco	 X-1	 in	 a	 ten-hour
balloon	flight	launched	from	Mildura,	Australia,	and	we	made	a	major	discovery.
This	 discovery	 wasn’t	 anything	 like	 you	 see	 in	 pictures	 of	 the	 NASA	 Space



Center	in	Houston,	where	they	all	cheer	and	hug	one	another	when	they	have	a
success.	 They	 are	 seeing	 things	 happen	 in	 real	 time.	During	 our	 observing	we
had	no	access	 to	 the	data;	we	were	 just	hoping	 that	 the	balloon	would	 last	and
that	 our	 equipment	would	work	 flawlessly.	And,	 of	 course,	we	 always	worried
about	how	to	get	the	telescope	and	the	data	back.	That’s	where	all	the	nerves	and
the	excitement	were.

We	analyzed	our	data	months	later,	back	home	at	MIT.	I	was	in	the	computer
room	one	night,	assisted	by	Terry	Thorsos.	We	had	very	large	computers	at	MIT
in	 those	 days.	 The	 rooms	 had	 to	 be	 air-conditioned	 because	 the	 computers
generated	 so	 much	 heat.	 I	 remember	 that	 it	 was	 around	 eleven	 p.m.	 If	 you
wanted	 to	 get	 some	 computer	 runs,	 the	 evening	 was	 a	 good	 time	 to	 sneak	 in
some	jobs.	In	those	days	you	always	needed	to	have	a	computer	operator	to	run
your	programs.	I	got	into	a	queue	and	waited	patiently.

So	here	 I	was,	 looking	 at	 the	balloon	data,	 and	 all	 of	 a	 sudden	 I	 saw	 a	 large
increase	in	the	X-ray	flux	from	Sco	X-1.	Right	there,	on	the	printout,	the	X-ray
flux	went	 up	 by	 a	 factor	 of	 four	 in	 about	 ten	minutes,	 lasted	 for	 nearly	 thirty
minutes,	and	then	subsided.	We	had	observed	an	X-ray	flare	from	Sco	X-1,	and	it
was	 enormous.	 This	 had	 never	 been	 observed	 before.	 Normally,	 you’d	 say	 to
yourself,	“Is	this	flare	something	that	could	be	explained	in	a	different	way?	Was
it	perhaps	caused	by	a	malfunctioning	detector?”	In	this	case,	there	was	no	doubt
in	my	mind.	I	knew	the	instrument	inside	and	out.	I	trusted	all	our	preparation
and	testing,	and	throughout	the	flight	we	had	checked	the	detector	continuously
and	 had	 measured	 the	 X-ray	 spectrum	 of	 a	 known	 radioactive	 source	 every
twenty	minutes	as	a	control—the	instruments	were	working	flawlessly.	I	trusted
the	data	100	percent.	Looking	at	the	printout	I	could	see	that	the	X-ray	flux	went
up	and	down;	of	all	the	sources	we	observed	in	that	ten-hour	flight,	only	one	shot
up	and	down,	and	that	was	Sco	X-1.	It	was	real!

The	next	morning	I	showed	George	Clark	the	results,	and	he	nearly	fell	off	his
chair.	We	both	knew	the	field	well;	we	were	overjoyed!	No	one	had	anticipated,
let	alone	observed,	a	change	in	the	flux	of	an	X-ray	source	on	a	time	scale	of	ten
minutes.	 The	 flux	 from	 Cen	 X-2	 decreased	 by	 a	 factor	 of	 three	 within	 a	 few
weeks	 after	 the	 first	 detection,	 but	 here	 we	 had	 variability	 by	 a	 factor	 of	 four
within	ten	minutes—about	three	thousand	times	faster.

We	knew	that	Sco	X-1	emitted	99.9	percent	of	its	energy	in	the	form	of	X-rays,
and	that	its	X-ray	luminosity	was	about	10,000	times	the	total	luminosity	of	our
Sun	and	about	10	billion	times	the	X-ray	luminosity	of	the	Sun.	For	Sco	X-1	to
change	 its	 luminosity	by	 a	 factor	of	 four	on	a	 time	 scale	of	 ten	minutes—well,



there	was	 simply	no	physics	 to	understand	 it.	How	would	you	explain	 it	 if	our
Sun	would	become	four	times	brighter	in	ten	minutes?	It	would	scare	the	hell	out
of	me.

The	 discovery	 of	 variability	 on	 this	 time	 scale	 may	 have	 been	 the	 most
important	discovery	in	X-ray	astronomy	made	from	balloons.	As	I	mentioned	in
this	chapter,	we	also	discovered	X-ray	sources	that	the	rockets	couldn’t	see,	and
those	were	important	discoveries	as	well.	But	nothing	else	had	the	impact	of	Sco
X-1’s	ten-minute	variability.

It	was	so	unexpected	at	the	time	that	many	scientists	couldn’t	believe	it.	Even
scientists	 have	 powerful	 expectations	 that	 can	 be	 difficult	 to	 challenge.	 The
legendary	editor	of	the	Astrophysical	Journal	Letters,	S.	Chandrasekhar,	sent	our
Sco	X-1	article	to	a	referee,	and	the	referee	didn’t	believe	our	finding	at	all.	I	still
remember	this,	more	than	forty	years	later.	He	wrote,	“This	must	be	nonsense,	as
we	know	 that	 these	powerful	X-ray	 sources	 cannot	 vary	on	 a	 time	 scale	of	 ten
minutes.”

We	had	to	talk	our	way	into	the	journal.	Rossi	had	had	to	do	exactly	the	same
thing	 back	 in	 1962.	 The	 editor	 of	 Physical	 Review	 Letters,	 Samuel	 Goudsmit,
accepted	the	article	founding	X-ray	astronomy	because	Rossi	was	Rossi	and	was
willing,	as	he	wrote	later,	to	assume	“personal	responsibility”	for	the	contents	of
the	paper.

Nowadays,	because	we	have	instruments	and	telescopes	that	are	so	much	more
sensitive,	we	know	that	many	X-ray	sources	vary	on	any	timescale,	meaning	that
if	you	observe	a	source	continuously	day	by	day,	 its	 flux	will	be	different	every
day.	If	you	observe	it	second	by	second	it	will	change	as	well.	Even	if	you	analyze
your	data	millisecond	by	millisecond	you	may	 find	variability	 in	some	sources.
But	at	the	time,	the	ten-minute	variability	was	new	and	unexpected.

I	gave	a	talk	about	this	discovery	at	MIT	in	February	1968,	and	I	was	thrilled	to
see	 Riccardo	 Giacconi	 and	 Herb	 Gursky	 in	 the	 audience.	 I	 felt	 as	 though	 I’d
arrived,	that	I	had	been	accepted	into	the	cutting	edge	of	my	field.

In	the	next	few	chapters	I’ll	introduce	you	to	the	host	of	mysteries	that	X-ray
astronomy	solved,	as	well	as	to	some	we	astrophysicists	are	still	struggling	to	find
answers	 for.	We’ll	 travel	 to	 neutron	 stars	 and	 plunge	 into	 the	 depths	 of	 black
holes.	Hold	on	to	your	hats.



CHAPTER	12

Cosmic	Catastrophes,	Neutron	Stars,	and	Black
Holes

Neutron	 stars	 are	 smack	 dab	 at	 the	 center	 of	 the	 history	 of	X-ray	 astronomy.
And	they	are	really,	really	cool.	Not	in	terms	of	temperature,	not	at	all:	they	can
frequently	 have	 surface	 temperatures	 upward	 of	 a	million	 kelvin.	More	 than	 a
hundred	times	hotter	than	the	surface	of	our	Sun.

James	Chadwick	 discovered	 the	 neutron	 in	 1932	 (for	 which	 he	 received	 the
Nobel	Prize	in	Physics	in	1935).	After	this	extraordinary	discovery,	which	many
physicists	thought	had	completed	the	picture	of	atomic	structure,	Walter	Baade
and	 Fritz	 Zwicky	 hypothesized	 that	 neutron	 stars	 were	 formed	 in	 supernova
explosions.	It	turns	out	that	they	were	right	on	the	money.	Neutron	stars	come
into	being	through	truly	cataclysmic	events	at	the	end	of	a	massive	star’s	lifetime,
one	of	the	quickest,	most	spectacular,	and	most	violent	occurrences	in	the	known
universe—a	core-collapse	supernova.

A	neutron	star	doesn’t	begin	with	a	star	like	our	Sun,	but	rather	with	a	star	at
least	eight	times	more	massive.	There	are	probably	more	than	a	billion	such	stars
in	our	galaxy,	but	there	are	so	many	stars	of	all	kinds	in	our	galaxy	that	even	with
so	many,	these	giants	must	still	be	considered	rare.	Like	so	many	objects	in	our
world—and	universe—stars	 can	only	 “live”	by	 virtue	of	 their	 ability	 to	 strike	 a
rough	 balance	 between	 immensely	 powerful	 forces.	 Nuclear-burning	 stars
generate	 pressure	 from	 their	 cores	 where	 thermonuclear	 reactions	 at
temperatures	 of	 tens	 of	 millions	 of	 degrees	 kelvin	 generate	 huge	 amounts	 of
energy.	The	temperature	at	the	core	of	our	own	Sun	is	about	15	million	kelvin,
and	 it	 produces	 energy	 at	 a	 rate	 equivalent	 to	 more	 than	 a	 billion	 hydrogen
bombs	per	second.

In	a	stable	star,	this	pressure	is	pretty	well	balanced	by	the	gravity	generated	by
the	 huge	 mass	 of	 the	 star.	 If	 these	 two	 forces—the	 outward	 thrust	 of	 the
thermonuclear	 furnace	 and	 the	 inward-pulling	 grip	 of	 gravity—didn’t	 balance
each	other,	 then	a	 star	wouldn’t	be	 stable.	We	know	our	Sun,	 for	example,	has
already	 had	 about	 5	 billion	 years	 of	 life	 and	 should	 continue	 on	 that	 path	 for
another	5	billion	years.	When	stars	are	about	 to	die,	 they	really	change,	and	 in



spectacular	 ways.	 When	 stars	 have	 used	 up	 most	 of	 the	 nuclear	 fuel	 in	 their
cores,	many	 approach	 the	 final	 stages	 of	 their	 lives	 by	 first	 putting	 on	 a	 fiery
show.	This	is	especially	true	for	massive	stars.	In	a	way,	supernovae	resemble	the
tragic	heroes	of	 theater,	who	usually	end	 their	overlarge	 lives	 in	a	paroxysm	of
cathartic	 emotion,	 sometimes	 fiery,	 often	 loud,	 evoking,	 as	 Aristotle	 said,	 pity
and	terror	in	the	audience.

The	most	extravagant	stellar	demise	of	all	is	that	of	a	core-collapse	supernova,
one	of	the	most	energetic	phenomena	in	the	universe.	I’ll	try	to	do	it	justice.	As
the	nuclear	furnace	at	the	core	of	one	of	these	massive	stars	begins	to	wind	down
—no	fuel	can	last	 forever!—and	the	pressure	it	generates	begins	to	weaken,	the
relentless,	everlasting	gravitational	attraction	of	the	remaining	mass	overwhelms
it.

This	 process	 of	 exhausting	 fuel	 is	 actually	 rather	 complicated,	 but	 it’s	 also
fascinating.	Like	most	stars,	the	really	massive	ones	begin	by	burning	hydrogen
and	 creating	 helium.	 Stars	 are	 powered	 by	 nuclear	 energy—not	 fission,	 but
fusion:	four	hydrogen	nuclei	(protons)	are	fused	together	into	a	helium	nucleus
at	extremely	high	temperatures,	and	this	produces	heat.	When	these	stars	run	out
of	hydrogen,	 their	cores	 shrink	 (because	of	 the	gravitational	pull),	which	raises
the	 temperature	 high	 enough	 that	 they	 can	 start	 fusing	 helium	 to	 carbon.	 For
stars	with	masses	more	 than	about	 ten	 times	 the	mass	of	 the	Sun,	after	carbon
burning	 they	 go	 through	 oxygen	 burning,	 neon	 burning,	 silicon	 burning,	 and
ultimately	form	an	iron	core.

After	 each	burning	 cycle	 the	 core	 shrinks,	 its	 temperature	 increases,	 and	 the
next	 cycle	 starts.	 Each	 cycle	 produces	 less	 energy	 than	 the	 previous	 cycle	 and
each	 cycle	 is	 shorter	 than	 the	previous	 one.	As	 an	 example	 (depending	on	 the
exact	mass	of	the	star),	the	hydrogen-burning	cycle	may	last	10	million	years	at	a
temperature	of	about	35	million	kelvin,	but	the	last	cycle,	the	silicon	cycle,	may
only	last	a	few	days	at	a	temperature	of	about	3	billion	kelvin!	During	each	cycle
the	stars	burn	most	of	the	products	of	the	previous	cycle.	Talk	about	recycling!

The	end	of	 the	 line	 comes	when	 silicon	 fusion	produces	 iron,	which	has	 the
most	stable	nucleus	of	all	the	elements	in	the	periodic	table.	Fusion	of	iron	to	still
heavier	 nuclei	 doesn’t	 produce	 energy;	 it	 requires	 energy,	 so	 the	 energy-
producing	furnace	stops	there.	The	iron	core	quickly	grows	as	the	star	produces
more	and	more	iron.

When	this	iron	core	reaches	a	mass	of	about	1.4	solar	masses,	it	has	reached	a
magic	 limit	of	 sorts,	known	as	 the	Chandrasekhar	 limit	 (named	after	 the	great
Chandra	himself).	At	this	point	the	pressure	in	the	core	can	no	longer	hold	out



against	 the	powerful	pressure	due	 to	gravity,	 and	 the	core	 collapses	onto	 itself,
causing	an	outward	supernova	explosion.

Imagine	a	vast	army	besieging	a	once	proud	castle,	and	the	outer	walls	begin	to
crumble.	 (Some	 of	 the	 battle	 scenes	 in	 the	 Lord	 of	 the	 Rings	movies	 come	 to
mind,	when	the	apparently	limitless	armies	of	Orcs	break	through	the	walls.)	The
core	 collapses	 in	milliseconds,	 and	 the	matter	 falling	 in—it	 actually	 races	 in	 at
fantastic	 speeds,	 nearly	 a	 quarter	 the	 speed	 of	 light—raises	 the	 temperature
inside	 to	 an	 unimaginable	 100	 billion	 kelvin,	 about	 ten	 thousand	 times	 hotter
than	the	core	of	our	Sun.

If	a	single	star	is	less	massive	than	about	twenty-five	times	the	mass	of	the	Sun
(but	more	than	about	ten	times	the	mass	of	the	Sun),	the	collapse	creates	a	brand
new	kind	of	object	at	its	center:	a	neutron	star.	Single	stars	with	a	mass	between
eight	and	about	ten	times	the	mass	of	the	Sun	also	end	up	as	neutron	stars,	but
their	nuclear	 evolution	 in	 the	 core	 (not	discussed	here)	differs	 from	 the	 above
scenario.

At	 the	 high	 density	 of	 the	 collapsing	 core,	 electrons	 and	 protons	merge.	An
individual	electron’s	negative	charge	cancels	out	a	proton’s	positive	charge,	and
they	unite	to	create	a	neutron	and	a	neutrino.	Individual	nuclei	no	longer	exist;
they	 have	 disappeared	 into	 a	 mass	 of	 what	 is	 known	 as	 degenerate	 neutron
matter.	 (Finally,	 some	 juicy	 names!)	 I	 love	 the	 name	 of	 the	 countervailing
pressure:	neutron	degeneracy	pressure.	If	this	would-be	neutron	star	grows	more
massive	 than	 about	 3	 solar	 masses,	 which	 is	 the	 case	 if	 the	 single	 star’s	 mass
(called	the	progenitor)	is	larger	than	about	twenty-five	times	the	mass	of	the	Sun,
then	gravity	overpowers	even	the	neutron	degeneracy	pressure,	and	what	do	you
think	will	happen	then?	Take	a	guess.

That’s	right.	I	figured	you	guessed	it.	What	else	could	it	be	but	a	black	hole,	a
place	where	matter	can	no	longer	exist	in	any	form	we	can	understand;	where,	if
you	get	close,	gravity	is	so	powerful	that	no	radiation	can	escape:	no	light,	no	X-
rays,	no	gamma	rays,	no	neutrinos,	no	anything.	The	evolution	in	binary	systems
(see	the	next	chapter)	can	be	very	different	because	in	a	binary	the	envelope	of
the	massive	star	may	be	removed	at	an	early	stage,	and	the	core	mass	may	not	be
able	 to	grow	as	much	as	 in	a	single	star.	 In	 that	case	even	a	star	 that	originally
was	forty	times	more	massive	than	the	Sun	may	still	leave	a	neutron	star.

I’d	like	to	stress	that	the	dividing	line	between	progenitors	that	form	neutron
stars	 and	black	holes	 is	not	 clear	 cut;	 it	depends	on	many	variables	other	 than
just	the	mass	of	the	progenitor;	stellar	rotation,	for	instance,	is	also	important.

But	 black	holes	 do	 exist—they	 aren’t	 the	 invention	of	 feverish	 scientists	 and



science	 fiction	 writers—and	 they	 are	 incredibly	 fascinating.	 They	 are	 deeply
involved	in	the	X-ray	universe,	and	I’ll	come	back	to	them—I	promise.	For	the
moment,	 I’ll	 just	 say	 this:	 not	 only	 are	 they	 real—they	 probably	make	 up	 the
nucleus	of	every	reasonably	massive	galaxy	in	the	universe.

Let’s	 go	 back	 to	 the	 core	 collapse.	Once	 the	neutron	 star	 forms—remember,
we’re	 talking	 milliseconds	 here—the	 stellar	 matter	 still	 trying	 to	 race	 into	 it
literally	 bounces	 off,	 forming	 an	 outward-going	 shock	 wave,	 which	 will
eventually	 stall	 due	 to	 energy	 being	 consumed	 by	 the	 breaking	 apart	 of	 the
remaining	 iron	nuclei.	 (Remember	 that	 energy	 is	 released	when	 light	 elements
fuse	 to	 form	 an	 iron	 nucleus,	 therefore	 breaking	 an	 iron	 nucleus	 apart	 will
consume	 energy.)	When	 electrons	 and	 protons	merge	 during	 core	 collapse	 to
become	 neutrons,	 neutrinos	 are	 also	 produced.	 In	 addition,	 at	 the	 high	 core
temperature	 of	 about	 100	 billion	 kelvin,	 so-called	 thermal	 neutrinos	 are
produced.	The	neutrinos	carry	about	99	percent	(which	is	about	1046	 joules)	of
all	energy	released	in	the	core	collapse.	The	remaining	1	percent	(1044	 joules)	is
largely	in	the	form	of	kinetic	energy	of	the	star’s	ejected	matter.

The	 nearly	massless	 and	 neutral	 neutrinos	 ordinarily	 sail	 through	 nearly	 all
matter,	 and	most	 do	 escape	 the	 core.	However,	 because	 of	 the	 extremely	 high
density	of	the	surrounding	matter,	they	transfer	about	1	percent	of	their	energy
to	the	matter,	which	is	then	blasted	away	at	speeds	up	to	20,000	kilometers	per
second.	 Some	 of	 this	 matter	 can	 be	 seen	 for	 thousands	 of	 years	 after	 the
explosion—we	call	this	a	supernova	remnant	(like	the	Crab	Nebula).

The	 supernova	 explosion	 is	 dazzling;	 the	 optical	 luminosity	 at	 maximum
brightness	 is	 about	 1035	 joules	 per	 second.	 This	 is	 300	 million	 times	 the
luminosity	 of	 our	 Sun,	 providing	 one	 of	 the	 great	 sights	 in	 the	 heavens	when
such	 a	 supernova	 occurs	 in	 our	 galaxy	 (which	 happens	 on	 average	 only	 about
twice	per	century).	Nowadays,	with	the	use	of	fully	automated	robotic	telescopes,
many	hundreds	to	a	thousand	supernovae	are	discovered	each	year	in	the	large
zoo	of	relatively	nearby	galaxies.

A	core-collapse	 supernova	emits	 two	hundred	 times	 the	energy	 that	our	Sun
has	produced	in	the	past	5	billion	years,	and	all	that	energy	is	released	in	roughly
1	second—and	99	percent	comes	out	in	neutrinos!

That’s	 what	 happened	 in	 the	 year	 1054,	 and	 the	 explosion	 produced	 the
brightest	 star	 in	 our	heavens	 in	 the	past	 thousand	 years—so	bright	 that	 it	was
visible	in	the	daytime	sky	for	weeks.	A	true	cosmic	flash	in	the	interstellar	pan,
the	supernova	 fades	within	a	 few	years,	as	 the	gas	cools	and	disperses.	The	gas
doesn’t	disappear,	 though.	That	explosion	in	1054	not	only	produced	a	solitary



neutron	star;	it	also	produced	the	Crab	Nebula,	one	of	the	more	remarkable	and
still-changing	objects	in	the	entire	sky,	and	a	nearly	endless	source	of	new	data,
extraordinary	images,	and	observational	discoveries.	Since	so	much	astronomical
activity	 takes	 place	 on	 an	 immense	 time	 scale,	 one	we	more	 often	 think	 of	 as
geological—millions	and	billions	of	years—it’s	especially	exciting	when	we	find
something	 that	 happens	 really	 fast,	 on	 a	 scale	 of	 seconds	 or	 minutes	 or	 even
years.	 Parts	 of	 the	Crab	Nebula	 change	 shape	 every	 few	 days,	 and	 the	Hubble
Space	 Telescope	 and	 the	 Chandra	 X-Ray	 Observatory	 have	 found	 that	 the
remnant	 of	 Supernova	 1987A	 (located	 in	 the	 Large	 Magellanic	 Cloud)	 also
changes	shape	in	ways	we	can	see.

Three	 different	 neutrino	 observatories	 on	 Earth	 picked	 up	 simultaneous
neutrino	 bursts	 from	 Supernova	 1987A,	 the	 light	 from	 which	 reached	 us	 on
February	23,	1987.	Neutrinos	are	so	hard	to	detect	that	between	them,	these	three
instruments	 detected	 a	 total	 of	 just	 twenty-five	 in	 thirteen	 seconds,	 out	 of	 the
roughly	 300	 trillion	 (3	 ×	 1014)	 neutrinos	 showering	 down	 in	 those	 thirteen
seconds	 on	 every	 square	 meter	 of	 the	 Earth’s	 surface	 directly	 facing	 the
supernova.	 The	 supernova	 originally	 ejected	 something	 on	 the	 order	 of	 1058

neutrinos,	 an	 almost	 unimaginably	 high	 number—but	 given	 its	 large	 distance
from	 the	 Earth	 (about	 170,000	 light-years),	 “only”	 about	 4	 ×	 1028	 neutrinos—
thirty	 orders	 of	 magnitude	 fewer—actually	 reached	 the	 Earth.	 More	 than
99.9999999	 percent	 go	 straight	 through	 the	 Earth;	 it	 would	 take	 a	 light-year
(about	1013	kilometers)	of	lead	to	stop	about	half	the	neutrinos.

The	progenitor	of	Supernova	1987A	had	thrown	off	a	shell	of	gas	about	twenty
thousand	 years	 earlier	 that	 had	 made	 rings	 around	 the	 star,	 and	 the	 rings
remained	 invisible	 until	 about	 8	 months	 after	 the	 supernova	 explosion.	 The
speed	 of	 the	 expelled	 gas	 was	 relatively	 slow—only	 around	 8	 kilometers	 per
second—but	 over	 the	 years	 the	 shell’s	 radius	 had	 reached	 a	 distance	 of	 about
two-thirds	of	a	light-year,	about	8	light-months.

So	the	supernova	went	off,	and	about	eight	months	later	ultraviolet	light	from
the	explosion	(traveling	at	the	speed	of	light,	of	course)	caught	up	with	the	ring
of	matter	and	turned	it	on,	so	to	speak—and	the	ring	started	to	emit	visible	light.
You	can	see	a	picture	of	SN	1987A	in	the	insert.

But	there’s	more,	and	it	involves	X-rays.	The	gas	expelled	by	the	supernova	in
the	 explosion	 traveled	 at	 roughly	 20,000	 kilometers	 per	 second,	 only	 about
fifteen	times	slower	than	the	speed	of	light.	Since	we	knew	how	far	away	the	ring
was	by	now,	we	could	also	predict	when,	approximately,	the	expelled	matter	was



going	 to	hit	 the	 ring,	which	 it	did	a	 little	over	eleven	years	 later,	producing	X-
rays.	Of	course,	we	always	have	to	remember	that	even	though	we	talk	about	it	as
though	it	happened	in	the	 last	 few	decades,	 in	reality,	since	SN	1987A	is	 in	the
Large	Magellanic	Cloud,	it	all	happened	about	170,000	years	ago.

No	neutron	star	has	been	detected	to	date	in	the	remnant	of	SN	1987A.	Some
astrophysicists	believe	that	a	black	hole	was	formed	during	core	collapse	after	the
initial	formation	of	a	neutron	star.	In	1990	I	made	a	bet	with	Stan	Woosley	of	the
University	 of	 California,	 Santa	 Cruz;	 he	 is	 one	 of	 the	 world’s	 experts	 on
supernovae.	We	made	a	bet	whether	or	not	a	neutron	star	would	be	found	within
five	years.	I	lost	the	hundred-dollar	bet.

There’s	 more	 that	 these	 remarkable	 phenomena	 produce.	 In	 the	 superhot
furnace	of	the	supernova,	higher	orders	of	nuclear	fusion	slam	nuclei	together	to
create	 elements	 far	 heavier	 than	 iron	 that	 end	 up	 in	 gas	 clouds	 that	 may
eventually	coalesce	and	collapse	into	new	stars	and	planets.	We	humans	and	all
animals	 are	made	 of	 elements	 that	were	 cooked	 in	 stars.	Without	 these	 stellar
kilns,	and	without	these	stunningly	violent	explosions,	the	first	of	which	was	the
big	bang	itself,	we	would	never	have	the	richness	of	elements	that	you	see	in	the
periodic	table.	So	maybe	we	can	think	of	a	core-collapse	supernova	as	resembling
a	celestial	forest	fire	(a	small	one,	to	be	sure),	that	in	burning	out	one	star	creates
the	conditions	for	the	birth	of	new	stars	and	planets.

By	any	measure	neutron	stars	are	extreme	objects.	They	are	only	a	dozen	miles
across	 (smaller	 than	 some	asteroids	orbiting	between	Mars	 and	 Jupiter),	 about
hundred	 thousand	 times	smaller	 than	 the	Sun,	and	 thus	about	300	billion	(3	×
1014)	 times	 more	 dense	 than	 the	 average	 density	 of	 the	 Sun.	 A	 teaspoon	 of
neutron	star	matter	would	weigh	100	million	tons	on	Earth.

One	of	 the	 things	 I	 love	about	neutron	 stars	 is	 that	 simply	 saying	or	writing
their	name	pulls	together	the	two	extremes	of	physics,	the	tiny	and	the	immense,
things	 so	 small	we	will	 never	 see	 them,	 in	bodies	 so	dense	 that	 they	 strain	 the
capacity	of	our	brains.

Neutron	stars	rotate,	some	of	them	at	astonishing	rates,	especially	when	they
first	 come	 into	 being.	Why?	 For	 the	 same	 reason	 that	 an	 ice	 skater	 spinning
around	with	her	arms	out	spins	more	rapidly	when	she	pulls	them	in.	Physicists
describe	this	by	saying	that	angular	momentum	is	conserved.	Explaining	angular
momentum	in	detail	is	a	bit	complicated,	but	the	idea	is	simple	to	grasp.

What	 does	 this	 have	 to	 do	with	 neutron	 stars?	 Just	 this:	 Every	 object	 in	 the
universe	rotates.	So	the	star	that	collapsed	into	the	neutron	star	was	rotating.	It
threw	 off	most	 of	 its	matter	 in	 the	 explosion	 but	 held	 on	 to	 one	 or	 two	 solar



masses,	now	concentrated	in	an	object	a	few	thousand	times	smaller	than	the	size
of	 the	 core	 before	 collapse.	 Because	 angular	momentum	 is	 conserved,	 neutron
stars’	rotational	frequency	therefore	has	to	go	up	by	at	least	a	factor	of	a	million.

The	first	two	neutron	stars	discovered	by	Jocelyn	Bell	(see	below)	rotate	about
their	 axes	 in	 about	 1.3	 seconds.	 The	 neutron	 star	 in	 the	 Crab	 Nebula	 rotates
about	 30	 times	 per	 second,	 while	 the	 fastest	 one	 that	 has	 been	 found	 so	 far
rotates	 an	 astonishing	716	 times	per	 second!	That	means	 that	 the	 speed	 at	 the
star’s	equator	is	about	15	percent	of	the	speed	of	light!

The	fact	that	all	neutron	stars	rotate,	and	that	many	have	substantial	magnetic
fields,	 gives	 rise	 to	 an	 important	 stellar	 phenomenon	known	 as	 pulsars—short
for	 “pulsating	 stars.”	 Pulsars	 are	neutron	 stars	 that	 emit	 beams	of	 radio	waves
from	 their	 magnetic	 poles,	 which	 are,	 as	 in	 the	 case	 of	 the	 Earth,	 noticeably
different	 from	 the	 geographic	 poles—the	 points	 at	 the	 end	 of	 the	 axis	 around
which	the	star	rotates.	The	pulsar’s	radio	beam	sweeps	across	the	heavens	as	the
star	 rotates.	To	 an	 observer	 in	 the	 path	 of	 the	 beam,	 the	 star	 pulses	 at	 regular
intervals,	 with	 the	 observer	 only	 seeing	 the	 beam	 for	 a	 brief	 moment.
Astronomers	sometimes	call	this	the	lighthouse	effect,	for	obvious	reasons.	There
are	 half	 a	 dozen	 known	 single	 neutron	 stars,	 not	 to	 be	 confused	with	 neutron
stars	 in	 binaries,	 which	 pulse	 over	 an	 extremely	 large	 range	 of	 the
electromagnetic	 spectrum,	 including	 radio	 waves,	 visible	 light,	 X-rays,	 and
gamma	rays.	The	pulsar	in	the	Crab	Nebula	is	one	of	them.

Jocelyn	 Bell	 discovered	 the	 first	 pulsar	 in	 1967	 when	 she	 was	 a	 graduate
student	in	Cambridge,	England.	She	and	her	supervisor,	Antony	Hewish,	at	first
didn’t	 know	what	 to	make	of	 the	 regularity	 of	 the	pulsations,	which	 lasted	 for
only	about	0.04	seconds	and	were	about	1.3373	seconds	apart	(this	is	called	the
pulsar	period).	They	 initially	 called	 the	pulsar	LGM-1,	 for	 “Little	Green	Men,”
hinting	 that	 the	 regular	 pulsations	 might	 have	 been	 the	 product	 of
extraterrestrial	life.	A	second	LGM	was	soon	discovered	by	Bell	with	a	period	of
about	 1.2	 seconds,	 and	 it	 became	 clear	 that	 the	 pulses	 were	 not	 produced	 by
extraterrestrial	 life—why	 would	 two	 completely	 different	 civilizations	 send
signals	 to	 Earth	 with	 about	 the	 same	 period?	 Shortly	 after	 Bell	 and	 Hewish
published	their	results,	it	was	recognized	by	Thomas	Gold	at	Cornell	University
that	pulsars	were	rotating	neutron	stars.

Black	Holes
I	told	you	we’d	get	here.	It	is	finally	time	to	look	directly	at	these	bizarre	objects.	I



understand	why	people	might	 be	 afraid	of	 them—if	 you	 spend	 a	 little	 time	on
YouTube,	you’ll	see	dozens	of	“re-creations”	of	what	black	holes	might	look	like,
and	most	 of	 them	 fall	 in	 the	 category	 of	 “death	 stars”	 or	 “star	 eaters.”	 In	 the
popular	 imagination	black	holes	are	 super-powerful	cosmic	 sinkholes,	destined
to	suck	everything	into	their	insatiable	maws.

But	the	notion	that	even	a	supermassive	black	hole	swallows	up	everything	in
its	 vicinity	 is	 a	 complete	 fallacy.	All	 kinds	 of	 objects,	 chiefly	 stars,	will	 orbit	 a
stellar	mass	 black	 hole	 or	 even	 a	 supermassive	 black	 hole	 with	 great	 stability.
Otherwise,	our	own	Milky	Way	would	have	disappeared	 into	 the	 enormous	4-
million-solar-mass	black	hole	at	its	center.

So	 what	 do	 we	 know	 about	 these	 strange	 beasts?	 A	 neutron	 star	 can	 only
contain	 up	 to	 about	 3	 solar	masses	 before	 the	 gravitational	 pull	 collapses	 it	 to
form	a	black	hole.	If	 the	original	single	nuclear-burning	star	was	more	massive
than	 about	 twenty-five	 times	 the	mass	 of	 the	 Sun,	 at	 core	 collapse	 the	matter
would	 continue	 to	 collapse	 rather	 than	 stopping	at	 the	neutron	 star	 stage.	The
result?	A	black	hole.

If	black	holes	have	companion	stars	 in	binary	systems,	we	can	measure	 their
gravitational	effect	on	their	visible	partners,	and	in	some	rare	cases	we	can	even
determine	their	masses.	(I	talk	about	these	systems	in	the	next	chapter.)

Instead	of	a	surface,	a	black	hole	has	what	astronomers	call	an	event	horizon,
the	spatial	boundary	at	which	the	black	hole’s	gravitational	power	is	so	great	that
nothing,	not	even	electromagnetic	radiation,	can	escape	the	gravitational	field.	I
realize	this	doesn’t	make	much	sense,	so	try	to	imagine	that	the	black	hole	is	like
a	heavy	ball	resting	 in	the	middle	of	a	rubber	sheet.	 It	causes	 the	center	 to	sag,
right?	If	you	don’t	have	a	rubber	sheet	handy,	try	using	an	old	stocking,	or	a	pair
of	discarded	pantyhose.	Cut	out	as	large	a	square	as	you	can	and	put	a	stone	in
the	middle.	 Then	 lift	 the	 square	 from	 the	 sides.	 You	 see	 immediately	 that	 the
stone	creates	a	funnel-like	depression	resembling	a	tornado	spout.	Well,	you’ve
just	 created	 a	 three-dimensional	 version	of	what	 happens	 in	 spacetime	 in	 four
dimensions.	 Physicists	 call	 the	 depression	 a	 gravity	well	 because	 it	mimics	 the
effect	gravity	has	on	spacetime.	If	you	replace	the	stone	with	a	larger	rock,	you’ll
have	 made	 a	 deeper	 well,	 suggesting	 that	 a	 more	 massive	 object	 distorts
spacetime	even	more.

Because	we	can	only	think	in	three	spatial	dimensions,	we	can’t	really	visualize
what	it	would	mean	for	a	massive	star	to	make	a	funnel	out	of	four-dimensional
spacetime.	 It	was	Albert	 Einstein	who	 taught	 us	 to	 think	 about	 gravity	 in	 this
way,	 as	 the	 curvature	of	 spacetime.	Einstein	 converted	gravity	 into	 a	matter	of



geometry,	though	not	the	geometry	you	learned	in	high	school.
The	pantyhose	experiment	is	not	 ideal—I’m	sure	that	will	come	as	a	relief	 to

many	of	you—for	a	number	of	reasons,	but	the	main	one	is	that	you	can’t	really
imagine	a	marble	in	a	stable	orbit	around	a	rock-generated	gravity	well.	In	real
astronomical	 life,	 however,	many	 objects	 achieve	 stable	 orbits	 around	massive
bodies	for	many	millions,	even	billions	of	years.	Think	of	our	Moon	orbiting	the
Earth,	 the	 Earth	 orbiting	 the	 Sun,	 and	 the	 Sun	 and	 another	 100	 billion	 stars
orbiting	in	our	own	galaxy.

On	the	other	hand,	the	demonstration	does	help	us	visualize	a	black	hole.	We
can,	 for	 instance,	see	 that	 the	more	massive	 the	object,	 the	deeper	 the	well	and
the	steeper	the	sides,	and	thus	the	more	energy	it	takes	to	climb	out	of	the	well.
Even	electromagnetic	radiation	escaping	from	the	gravity	of	a	massive	star	has	its
energy	 reduced,	 which	 means	 its	 frequency	 decreases	 and	 its	 wavelengths
become	longer.	You	already	know	that	we	call	a	shift	to	the	less	energetic	end	of
the	electromagnetic	spectrum	a	redshift.	 In	the	case	of	a	compact	star	(massive
and	 small),	 there	 is	 a	 redshift	 caused	 by	 gravity,	 which	we	 call	 a	 gravitational
redshift	 (which	should	not	be	confused	with	redshift	due	to	Doppler	shift—see
chapter	2	and	the	next	chapter).

To	escape	from	the	surface	of	a	planet	or	star,	you	need	a	minimum	speed	to
make	 sure	 that	 you	 never	 fall	 back.	We	 call	 this	 the	 escape	 velocity,	 which	 is
about	 11	 kilometers	 per	 second	 (about	 25,000	 miles	 per	 hour)	 for	 the	 Earth.
Therefore,	 all	 satellites	 bound	 to	 Earth	 can	 never	 have	 a	 speed	 larger	 than	 11
kilometers	 per	 second.	 The	 higher	 the	 escape	 velocity,	 the	 higher	 the	 energy
needed	to	escape,	since	this	depends	both	on	the	escape	velocity	and	on	the	mass,
m,	of	the	objects	that	want	to	escape	(the	required	kinetic	energy	is	1/2	mv2).

Perhaps	you	can	imagine	that	if	the	gravity	well	becomes	very,	very	deep,	the
escape	velocity	from	the	bottom	of	the	well	could	become	greater	than	the	speed
of	light.	Since	this	is	not	possible,	it	means	that	nothing	can	escape	that	very	deep
gravity	well,	not	even	electromagnetic	radiation.

A	physicist	named	Karl	 Schwarzschild	 solved	Einstein’s	 equations	of	 general
relativity	and	calculated	what	the	radius	of	a	sphere	with	a	given	mass	would	be
that	would	create	a	well	so	deep	that	nothing	could	escape	it—a	black	hole.	That
radius	is	known	as	the	Schwarzschild	radius,	and	its	size	depends	on	the	mass	of
the	object.	This	is	the	radius	of	what	we	call	the	event	horizon.

The	equation	itself	is	breathtakingly	simple,	but	it	is	only	valid	for	nonrotating
black	 holes,	 often	 referred	 to	 as	 Schwarzschild	 black	 holes.*	 The	 equation
involves	well-known	 constants	 and	 the	 radius	works	 out	 to	 just	 a	 little	 bit	 less



than	3	kilometers	per	solar	mass.	That’s	how	we	can	calculate	the	size—that	is	to
say,	 the	 radius	 of	 the	 event	 horizon—of	 a	 black	 hole	 of,	 for	 example,	 10	 solar
masses,	 is	 about	30	kilometers.	We	could	also	 calculate	 the	 radius	of	 the	 event
horizon	of	a	black	hole	with	the	mass	of	the	Earth—it	would	be	a	little	less	than	1
centimeter—but	there’s	no	evidence	that	such	black	holes	exist.	So	if	the	mass	of
our	Sun	were	concentrated	into	a	sphere	about	6	kilometers	across,	would	it	be
like	 a	 neutron	 star?	No—under	 the	 gravitational	 attraction	 of	 that	much	mass
packed	 into	 such	a	 small	 sphere,	 the	Sun’s	matter	would	have	 collapsed	 into	 a
black	hole.

Long	 before	 Einstein,	 in	 1748,	 the	 English	 philosopher	 and	 geologist	 John
Michell	showed	that	there	could	be	stars	whose	gravitational	pull	is	so	great	that
light	 could	 not	 escape.	 He	 used	 simple	 Newtonian	 mechanics	 (any	 of	 my
freshmen	 can	 do	 this	 now	 in	 thirty	 seconds)	 and	 he	 ended	 up	 with	 the	 same
result	as	Schwarzschild:	if	a	star	has	a	mass	N	times	the	mass	of	our	Sun,	and	if	its
radius	 is	 less	 than	 3N	 kilometers,	 light	 cannot	 escape.	 It	 is	 a	 remarkable
coincidence	that	Einstein’s	theory	of	general	relativity	gives	the	same	result	as	a
simple	Newtonian	approach.

At	 the	 center	 of	 the	 spherical	 event	 horizon	 lies	 what	 physicists	 call	 a
singularity,	a	point	with	zero	volume	and	infinite	density,	something	bizarre	that
only	 represents	 the	 solution	 to	 equations,	 not	 anything	we	 can	 grasp.	What	 a
singularity	is	really	like,	no	one	has	any	idea,	despite	some	fantasizing.	There	is
no	physics	(yet)	that	can	handle	singularities.

All	over	the	web	you	can	see	animated	videos	of	black	holes,	most	of	them	at
once	beautiful	 and	menacing,	 but	nearly	 all	 immense	beyond	belief,	 hinting	 at
destruction	 on	 a	 cosmic	 scale.	 So	 when	 journalists	 began	 writing	 about	 the
possibility	 that	 the	 world’s	 largest	 accelerator,	 CERN’s	 Large	 Hadron	 Collider
(LHC),	near	Geneva,	might	be	able	to	create	a	black	hole,	 they	managed	to	stir
up	a	good	deal	of	concern	among	nonscientists	that	these	physicists	were	rolling
dice	with	the	future	of	the	planet.

But	 were	 they	 really?	 Suppose	 they	 had	 accidentally	 created	 a	 black	 hole—
would	it	have	started	eating	up	the	Earth?	We	can	figure	this	out	fairly	easily.	The
energy	level	at	which	opposing	proton	beams	collided	in	the	LHC	on	March	30,
2010,	 was	 7	 teraelectron	 volts	 (TeV),	 7	 trillion	 electron	 volts,	 3.5	 trillion	 per
beam.	 Ultimately,	 the	 LHC	 scientists	 plan	 to	 reach	 collisions	 of	 14	 TeV,	 far
beyond	anything	possible	today.	The	mass	of	a	proton	is	about	1.6	×	10–24	grams.
Physicists	often	say	that	the	mass,	m,	of	a	proton	is	about	1	billion	electron	volts,
1	GeV.	Of	course,	GeV	is	energy	and	not	mass,	but	since	E	=	mc2	 (c	being	 the



speed	 of	 light),	 E	 is	 often	 referred	 to	 as	 “the	 mass.”	 On	 the	 Massachusetts
Turnpike	there	are	signs:	“Call	511	for	Travel	Information.”	Every	time	I	see	one
I	think	about	electrons,	as	an	electron’s	mass	is	511	keV.

Assuming	that	all	the	energy	of	the	14	TeV	collision	went	into	creating	a	black
hole,	it	would	have	a	mass	of	about	14,000	times	that	of	a	proton,	or	about	2	×
10–20	 grams.	 Boatloads	 of	 physicists	 and	 review	 committees	 evaluated	 a
mountain	 of	 literature	 on	 the	 question,	 published	 their	 results,	 and	 concluded
that	there	was	simply	nothing	to	worry	about.	You	want	to	know	why,	right?	Fair
enough.	OK,	here’s	how	the	arguments	go.

First,	 scenarios	 in	which	 the	LHC	would	have	 enough	 energy	 to	 create	 such
tiny	 black	 holes	 (known	 as	 micro	 black	 holes)	 depend	 on	 the	 theory	 of
something	 called	 large	 extra	 dimensions,	 which	 remains	 highly	 speculative,	 to
say	 the	 least.	The	 theory	goes	well	 beyond	anything	 that’s	been	 experimentally
confirmed.	So	the	likelihood	even	of	creating	micro	black	holes	is,	to	begin	with,
exceptionally	slim.

Clearly,	the	concern	would	be	that	these	micro	black	holes	would	somehow	be
stable	“accretors”—objects	that	could	gather	matter,	pull	it	into	themselves,	and
grow—and	 start	 gobbling	 up	 nearby	 matter	 and,	 eventually,	 the	 Earth.	 But	 if
there	were	such	things	as	stable	micro	black	holes,	they	would	already	have	been
created	 by	 enormously	 energetic	 cosmic	 rays	 (which	 do	 exist)	 smacking	 into
neutron	stars	and	white	dwarfs—where	they	would	have	taken	up	residence.	And
since	white	dwarfs	and	neutron	stars	appear	stable	on	a	time	scale	of	hundreds	of
millions,	 if	 not	 billions	 of	 years,	 there	 don’t	 seem	 to	 be	 any	 tiny	 black	 holes
eating	them	up	from	within.	In	other	words,	stable	micro	black	holes	appear	to
pose	zero	threat.

On	the	other	hand,	without	the	theory	of	extra	dimensions,	black	holes	with	a
mass	 smaller	 than	 2	 ×	 10–5	 grams	 (called	 the	 Planck	mass)	 could	 not	 even	 be
created.	That	is	to	say,	there	is	no	physics	(yet)	that	can	deal	with	black	holes	of
such	 small	 mass;	 we	 would	 need	 a	 theory	 of	 quantum	 gravity,	 which	 doesn’t
exist.	Thus	the	question	of	what	the	Schwarzschild	radius	would	be	for	a	2	×	10–

20	gram	micro	black	hole	is	also	meaningless.
Stephen	Hawking	 has	 shown	 that	 black	 holes	 can	 evaporate.	 The	 lower	 the

mass	of	a	black	hole,	the	faster	it	will	evaporate.	A	black	hole	of	30	solar	masses
would	evaporate	in	about	1071	years.	A	supermassive	black	hole	of	1	billion	solar
masses	would	last	about	1093	years!	So	you	may	ask,	how	long	would	it	take	for	a
micro	black	hole	of	mass	2	×	10–20	grams	to	evaporate?	It’s	an	excellent	question,



but	no	one	knows	the	answer—Hawking’s	theory	does	not	work	in	the	domain
of	black	hole	masses	lower	than	the	Planck	mass.	But,	just	for	curiosity’s	sake,	the
lifetime	of	a	black	hole	of	2	×	10–5	grams	is	about	10–39	seconds.	So	it	seems	that
they	evaporate	faster	than	the	time	it	takes	to	produce	them.	In	other	words,	they
cannot	even	be	produced.

It	 clearly	 seems	 unnecessary	 to	 worry	 about	 possible	 2	 ×	 10–20	 gram	 LHC
micro	black	holes.

I	 realize	 that	 this	 didn’t	 stop	 people	 from	 suing	 to	 prevent	 the	 LHC	 from
starting	 operations.	 It	 makes	 me	 worry,	 however,	 about	 the	 distance	 between
scientists	and	the	rest	of	humanity	and	what	a	lousy	job	we	scientists	have	done
of	 explaining	what	we	do.	Even	when	 some	of	 the	best	physicists	 in	 the	world
studied	 the	 issue	and	explained	why	 it	wouldn’t	pose	any	problems,	 journalists
and	politicians	invented	scenarios	and	fanned	public	fears	on	the	basis	of	almost
nothing.	Science	fiction	at	some	level	appears	more	powerful	than	science.

There’s	nothing	more	bizarre	than	a	black	hole,	I	 think.	At	 least	a	neutron	star
makes	itself	known	by	its	surface.	A	neutron	star	says,	in	a	way,	“Here	I	am,	and	I
can	 show	 you	 that	 I	 have	 a	 surface.”	 A	 black	 hole	 has	 no	 surface	 and	 emits
nothing	at	all	(apart	from	Hawking	radiation,	which	has	never	been	observed).

Why	 some	black	holes,	 surrounded	by	 a	 flattish	 ring	of	matter	known	as	 an
accretion	 disk	 (see	 the	 next	 chapter),	 shoot	 out	 extremely	 high	 energy	 jets	 of
particles	perpendicular	to	the	plane	of	the	accretion	disk,	though	not	from	inside
the	 event	 horizon,	 is	 one	 of	 the	 great	 unsolved	mysteries.	 Take	 a	 look	 at	 this
image:	www.wired.com/wiredscience/2009/01/spectacular-new/.

Everything	about	the	interior	of	a	black	hole,	inside	the	event	horizon,	we	have
to	 derive	 mathematically.	 After	 all,	 nothing	 can	 come	 out,	 so	 we	 receive	 no
information	 from	 inside	 the	 black	 hole—what	 some	 physicists	with	 a	 sense	 of
humor	 call	 “cosmic	 censorship.”	The	 black	hole	 is	 hidden	 inside	 its	 own	 cave.
Once	you	fall	through	the	event	horizon,	you	can	never	get	out—you	can’t	even
send	a	 signal	out.	 If	 you’ve	 fallen	 through	 the	event	horizon	of	 a	 supermassive
black	 hole,	 you	 wouldn’t	 even	 know	 that	 you’ve	 passed	 the	 event	 horizon.	 It
doesn’t	have	a	ditch,	or	a	wall,	or	a	ledge	you	need	to	walk	over.	Nothing	in	your
local	environment	changes	abruptly	when	you	cross	the	horizon.	Despite	all	the
relativistic	physics	involved,	if	you	are	looking	at	your	wristwatch	you	wouldn’t
see	it	stop,	or	appear	to	go	faster	or	slower.

For	 someone	 watching	 you	 from	 a	 distance,	 the	 situation	 is	 very	 different.
What	 they	 see	 is	not	you;	 their	 eyes	are	 receiving	 the	 images	 of	 you	carried	by
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light	that	leaves	your	body	and	climbs	its	way	out	of	the	black	hole’s	gravity	well.
As	you	get	closer	and	closer	to	the	horizon,	the	well	gets	deeper	and	deeper.	Light
has	to	expend	more	of	its	energy	climbing	out	of	the	well,	and	experiences	more
and	more	 gravitational	 redshift.	All	 emitted	 electromagnetic	 radiation	 shifts	 to
longer	and	longer	wavelengths	(lower	frequencies).	You	would	look	redder	and
redder,	and	then	you	would	disappear	as	your	emissions	would	move	into	longer
and	longer	wavelengths,	such	as	infrared	light	and	then	longer	and	longer	radio
waves	and	all	wavelengths	would	become	infinity	as	you	cross	the	event	horizon.
So	even	before	you	crossed	the	threshold,	to	the	distant	observer	you	would	have
effectively	disappeared.

The	distant	 observer	 also	measures	 a	 really	unanticipated	 thing:	 light	 travels
slower	when	it	comes	from	a	region	close	to	the	black	hole!	Now,	this	does	not
violate	 any	 postulates	 of	 relativity:	 local	 observers	 near	 the	 black	 hole	 always
measure	light	traveling	at	the	same	speed	c	(about	186,000	miles	per	second).	But
distant	observers	measure	the	speed	of	light	to	be	less	than	c.	The	images	of	you
carried	by	the	light	you	emitted	toward	your	distant	observer	take	longer	to	get
to	 her	 than	 they	 would	 if	 you	 were	 not	 near	 a	 black	 hole.	 This	 has	 a	 very
interesting	consequence:	 the	observer	 sees	you	slow	down	as	you	approach	 the
horizon!	In	fact,	the	images	of	you	are	taking	longer	and	longer	to	get	to	her,	so
everything	 about	 you	 seems	 in	 slow	 motion.	 To	 an	 observer	 on	 Earth,	 your
speed,	 your	 movements,	 your	 watch,	 even	 your	 heartbeat	 slows	 down	 as	 you
approach	the	event	horizon,	and	will	stop	completely	by	the	time	you	reach	it.	If
it	weren’t	for	the	fact	that	the	light	you	emit	near	the	horizon	becomes	invisible
due	 to	 the	 gravitational	 redshift,	 an	 observer	 would	 see	 you	 “frozen”	 on	 the
horizon’s	surface	for	all	eternity.

For	simplicity	I	have	been	ignoring	the	Doppler	shift,	which	will	be	enormous
because	of	your	ever-increasing	speed	as	you	approach	the	event	horizon.	In	fact,
as	you	cross	the	event	horizon,	you	will	be	moving	with	the	speed	of	light.	(For
an	observer	on	Earth,	the	effects	of	this	Doppler	shift	will	be	similar	to	the	effects
of	the	gravitational	redshift.)

After	 you	 have	 crossed	 the	 event	 horizon,	 when	 you	 can	 no	 longer
communicate	 with	 the	 outside	 world,	 you	 will	 still	 be	 able	 to	 see	 out.	 Light
coming	from	outside	the	event	horizon	would	be	gravitationally	shifted	to	higher
frequency	and	shorter	wavelength,	so	you	would	see	a	blueshifted	universe.	(That
would	also	be	the	case	if	you	could	stand	on	the	surface	of	a	neutron	star	as	well,
for	the	same	reason.)	However,	since	you	are	falling	in	at	great	speed,	the	outside
world	will	 be	moving	 away	 from	you,	 and	 thus	 the	 outside	world	will	 become



redshifted	as	well	 (as	a	result	of	 the	Doppler	effect).	So	what	will	be	the	result?
Will	the	blueshift	win	or	will	the	redshift	win?	Or	will	neither	win?

I	asked	Andrew	Hamilton	at	the	University	of	Colorado,	JILA,	who	is	a	world
authority	 on	 black	 holes	 and,	 as	 I	 expected,	 the	 answer	 is	 not	 so	 simple.	 The
blueshift	and	redshift	more	or	less	cancel	for	a	free	faller,	but	the	outside	world
looks	 redshifted	 above,	 redshifted	 below,	 and	 blue-shifted	 in	 horizontal
directions.	 (You	may	 enjoy	 looking	 at	 his	 “Journey	 into	 a	 Schwarzschild	 black
hole”	 movies	 to	 see	 what	 it’s	 like	 to	 be	 an	 object	 falling	 into	 a	 black	 hole:
http://jila.colorado.edu/~ajsh/insidebh/schw.html.)

There	wouldn’t	be	anyplace	to	stand,	however,	since	there’s	no	surface.	All	the
matter	that	created	the	black	hole	has	collapsed	into	a	point,	a	singularity.	What
about	the	tidal	forces—wouldn’t	you	be	torn	to	bits	by	the	fact	that	there	will	be	a
difference	between	the	gravitational	force	on	your	head	and	your	toes?	(It’s	 the
same	 effect	 as	 the	 side	 of	 the	 Earth	 facing	 the	 Moon	 experiencing	 a	 larger
attractive	force	than	the	side	of	the	Earth	that	is	farther	away	from	the	Moon;	this
causes	tides	on	Earth.)

Indeed,	you	would	be	torn	to	bits;	a	Schwarzschild	black	hole	of	3	solar	masses
would	 rip	 you	 apart	 0.15	 seconds	 before	 you	 crossed	 the	 event	 horizon.	 This
phenomenon	is	very	graphically	called	spaghettification	and	involves	your	body
being	stretched	beyond	imagining.	Once	you	have	crossed	the	event	horizon,	the
various	pieces	of	your	body	will	reach	the	singularity	in	about	0.00001	seconds,
at	which	time	you	will	be	crushed	into	a	point	of	infinite	density.	For	a	4-million-
solar-mass	black	hole,	like	the	one	at	the	center	of	our	galaxy,	you	would	safely
cross	the	event	horizon	without	having	any	problems	at	all,	at	 least	at	 first,	but
sooner	 or	 later	 you	 will	 be	 shredded	 spaghetti	 style!	 (Believe	 me,	 it	 will	 be
“sooner,”	because	you	have	only	about	13	seconds	 left	before	that	happens	and
then,	0.15	seconds	later,	you	will	reach	the	singularity.)

The	whole	 idea	of	black	holes	 is	 truly	bizarre	 for	everyone,	but	especially	 for
the	 many	 astrophysicists	 who	 observe	 them	 (such	 as	 my	 former	 graduate
students	 Jeffrey	McClintock	 and	 Jon	Miller).	We	 know	 that	 stellar-mass	 black
holes	 exist.	 They	 were	 discovered	 in	 1971	 when	 optical	 astronomers
demonstrated	that	Cyg	X-1	is	a	binary	star	system	and	that	one	of	the	two	stars	is
a	black	hole!	I	will	tell	you	all	about	this	in	the	next	chapter.	Ready?
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CHAPTER	13

Celestial	Ballet

It	will	come	as	no	surprise	to	you	by	now	that	many	of	the	stars	you	see	in	the
heavens,	with	or	without	a	telescope	of	any	kind,	are	a	lot	more	complicated	than
distant	versions	of	our	own	familiar	Sun.	You	may	not	know	that	about	a	third	of
what	you	see	aren’t	even	single	stars	at	all,	but	rather	what	we	call	binaries:	pairs
of	 stars	 that	 are	 gravitationally	 bound	 together,	 orbiting	 each	 other.	 In	 other
words,	when	you	look	up	at	the	night	sky	about	a	third	of	the	stars	you	see	are
binary	systems—even	though	they	appear	to	you	as	a	single	star.	There	are	even
triple	star	systems—three	stars	orbiting	one	another—out	there	as	well,	 though
they	are	not	nearly	as	common.	Because	many	of	the	bright	X-ray	sources	in	our
galaxy	turned	out	to	be	binary	systems,	I	had	many	dealings	with	them.	They	are
fascinating.

Each	star	in	a	binary	system	travels	around	what	we	call	the	center	of	mass	of
the	 binary,	 a	 point	 located	 between	 the	 two	 stars.	 If	 the	 two	 stars	 have	 equal
mass,	then	the	center	of	mass	is	at	equal	distance	from	the	center	of	both	stars.	If
the	masses	are	not	the	same,	then	the	center	of	mass	is	closer	to	the	more	massive
star.	Since	both	complete	an	orbit	in	exactly	the	same	amount	of	time,	the	more
massive	star	must	have	a	lower	orbital	speed	than	the	less	massive	one.

To	visualize	this	principle,	imagine	a	dumbbell	with	a	bar	connecting	two	ends
of	 equal	mass,	 rotating	 around	 its	midpoint.	Now	 imagine	 a	 new	 dumbbell,	 2
pounds	on	one	end,	10	pounds	on	the	other.	The	center	of	mass	of	this	dumbbell
is	quite	 close	 to	 the	heavier	 end,	 so	when	 it	 rotates	 you	can	 see	 that	 the	 larger
mass	has	a	smaller	orbit,	and	that	the	smaller	mass	has	farther	to	go	in	the	same
time.	If	these	are	stars	instead	of	weighted	ends,	you	can	see	that	the	lower-mass
star	 zooms	 around	 its	 orbit	 at	 five	 times	 the	 speed	 of	 its	 larger,	 clunkier
companion.

If	 one	 of	 the	 stars	 is	much	more	massive	 than	 its	 companion,	 the	 center	 of
mass	of	the	system	can	even	lie	within	the	more	massive	star.	In	the	case	of	the
Earth	 and	Moon	 (which	 is	 a	 binary	 system),	 the	 center	 of	mass	 is	 about	 1,700
kilometers	 (a	 little	 more	 than	 a	 thousand	miles)	 below	 the	 Earth’s	 surface.	 (I
mention	this	in	appendix	2.)

Sirius,	 the	brightest	 star	 in	 the	 sky	 (at	 a	distance	 from	us	of	 about	 8.6	 light-



years),	is	a	binary	system	made	up	of	two	stars	known	as	Sirius	A	and	Sirius	B.
They	orbit	their	common	center	of	mass	about	once	every	fifty	years	(we	call	this
the	orbital	period).

How	can	we	tell	 that	we’re	 looking	at	a	binary	system?	We	can’t	see	binaries
separately	with	the	naked	eye.	Depending	on	the	distance	of	the	system	and	the
power	of	the	telescopes	we’re	using,	we	can	sometimes	get	visual	confirmation	by
seeing	the	two	stars	as	separate.

The	famous	German	mathematician	and	astronomer	Friedrich	Wilhelm	Bessel
predicted	that	the	brightest	star	in	the	sky,	Sirius,	was	a	binary	system,	consisting
of	 a	 visible	 and	 an	 invisible	 star.	 He	 had	 concluded	 this	 based	 on	 his	 precise
astronomical	 observations—he	 was	 the	 first	 in	 1838	 to	 make	 parallax
observations	(he	narrowly	beat	Henderson—see	chapter	2).	 In	1844	he	wrote	a
famous	 letter	 to	Alexander	von	Humboldt:	“I	adhere	 to	 the	conviction	that	 the
star	Sirius	is	a	binary	system	consisting	of	a	visible	and	an	invisible	star.	There	is
no	 reason	 to	 suppose	 that	 luminosity	 is	 an	 essential	 quality	 of	 cosmic	 bodies.
Visibility	 of	 countless	 stars	 is	 no	 argument	 against	 the	 invisibility	 of	 countless
others.”	 This	 is	 a	 statement	 of	 profound	 depth;	 what	 we	 can’t	 see,	 we	 usually
don’t	believe.	Bessel	started	what	we	now	call	the	astronomy	of	the	invisible.

No	 one	 actually	 saw	 the	 “invisible”	 companion	 (called	 Sirius	 B)	 until	 1862,
when	Alvan	Clark	was	testing	a	brand	new	18.5-inch	telescope	(the	largest	one	at
the	 time,	 made	 by	 his	 father’s	 company)	 in	 my	 hometown,	 Cambridge,
Massachusetts.	 He	 turned	 the	 telescope	 on	 Sirius	 as	 it	 was	 rising	 above	 the
Boston	 skyline,	 for	 a	 test,	 and	 discovered	 Sirius	 B	 (it	 was	 ten	 thousand	 times
fainter	than	Sirius	A).

Thank	Goodness	for	Stellar	Spectroscopy:	Blueshifts	and	Redshifts
By	far	the	most	common	method	of	figuring	out	that	stars	are	binaries,	especially
if	 they’re	distant,	 is	by	using	 spectroscopy	and	measuring	what’s	known	as	 the
Doppler	 shift.	 There	 may	 be	 no	 more	 powerful	 astrophysical	 tool	 than
spectroscopy,	and	no	more	important	discovery	in	astronomy	in	the	past	several
centuries	than	the	Doppler	shift.

You	already	know	that	when	objects	are	hot	enough	they	will	emit	visible	light
(blackbody	 radiation).	 By	 decomposing	 sunlight	 in	 the	 way	 a	 prism	 does,	 the
raindrops	that	make	up	a	rainbow	(chapter	5)	show	you	a	continuum	of	colors
from	red	at	one	end	to	violet	at	the	other,	called	a	spectrum.	If	you	decompose
the	 light	 from	a	 star,	 you	will	 also	 see	 a	 spectrum,	 but	 it	may	not	 have	 all	 the



colors	 in	 equal	 strengths.	 The	 cooler	 the	 star,	 for	 example,	 the	 redder	 the	 star
(and	 its	 spectrum)	will	 be.	The	 temperature	 of	Betelgeuse	 (in	 the	 constellation
Orion)	 is	 only	 2,000	 kelvin;	 it’s	 among	 the	 reddest	 stars	 in	 the	 sky.	 The
temperature	of	Bellatrix,	on	 the	other	hand,	also	 in	Orion,	 is	28,000	kelvin;	 it’s
among	the	bluest	and	brightest	stars	 in	 the	sky	and	 is	often	called	the	Amazon
Star.

A	close	look	at	stellar	spectra	shows	narrow	gaps	where	colors	are	reduced	or
even	completely	absent,	which	we	call	absorption	lines.	The	spectrum	of	the	Sun
shows	 thousands	 of	 such	 absorption	 lines.	 These	 are	 caused	 by	 the	 many
different	elements	in	the	atmospheres	of	the	stars.	Atoms,	as	you	know,	are	made
of	 nuclei	 and	 electrons.	 The	 electrons	 cannot	 just	 have	 any	 energy;	 they	 have
discrete	energy	levels—they	cannot	have	energies	in	between	these	distinct	levels.
Their	energies,	 in	other	words,	are	“quantized”—the	 term	that	gives	rise	 to	 the
field	of	quantum	mechanics.

Neutral	hydrogen	has	one	electron.	If	it	is	bombarded	with	light,	this	electron
can	jump	from	one	energy	level	to	a	higher	energy	level	by	absorbing	the	energy
of	 a	 light	 photon.	 But	 because	 of	 the	 quantization	 of	 the	 energy	 levels	 of	 the
electron,	 this	 cannot	 happen	 with	 photons	 of	 just	 any	 energy.	 Only	 those
photons	 that	 have	 just	 the	 right	 energy	 (thus	 exactly	 the	 right	 frequency	 and
wavelength)	 for	 the	 electron	 to	 make	 the	 quantum	 jump	 from	 one	 level	 to
another	will	 do.	This	process	 (called	 resonance	 absorption)	kills	 these	photons
and	creates	an	absence	at	that	frequency	in	the	continuum	spectrum,	which	we
call	an	absorption	line.

Hydrogen	can	produce	four	absorption	lines	(at	precisely	known	wavelengths,
or	 colors)	 in	 the	 visible	part	 of	 a	 stellar	 spectrum.	Most	 elements	 can	produce
many	more	lines,	because	they	have	lots	more	electrons	than	hydrogen.	In	fact,
each	 element	 has	 its	 own	 unique	 combination	 of	 absorption	 lines,	 which
amounts	to	a	fingerprint.	We	know	these	very	well	from	studying	and	measuring
them	 in	 the	 laboratory.	 A	 careful	 study	 of	 the	 absorption	 lines	 in	 a	 stellar
spectrum	 can	 therefore	 tell	 us	 which	 elements	 are	 present	 in	 the	 star’s
atmosphere.

However,	when	 a	 star	moves	 away	 from	us,	 the	 phenomenon	 known	 as	 the
Doppler	shift	causes	the	star’s	entire	spectrum	(including	the	absorption	lines)	to
shift	 toward	 the	red	part	of	 the	spectrum	(we	call	 this	 redshift).	 If,	by	contrast,
the	spectrum	is	blueshifted,	we	know	the	star	is	moving	toward	us.	By	carefully
measuring	the	amount	of	shift	in	the	wavelength	of	a	star’s	absorption	lines,	we
can	calculate	the	speed	with	which	the	star	is	moving	relative	to	us.



If	we	observe	a	binary	system,	for	example,	each	star	will	move	toward	us	for
half	of	 its	orbit	and	away	 from	us	during	 the	other	half.	 Its	 companion	will	be
doing	exactly	the	opposite.	If	both	stars	are	bright	enough,	we	will	see	redshifted
and	blueshifted	absorption	lines	in	the	spectrum.	That	would	tell	us	that	we	are
looking	 at	 a	 binary	 system.	 But	 the	 absorption	 lines	will	 be	moving	 along	 the
spectrum	 due	 to	 the	 orbital	motion	 of	 the	 stars.	 As	 an	 example,	 if	 the	 orbital
period	 is	 twenty	years,	 each	absorption	 line	will	make	a	 complete	 excursion	 in
twenty	years	(ten	years	of	redshift	and	ten	years	of	blueshift).

If	 we	 can	 see	 only	 redshifted	 (or	 only	 blueshifted)	 absorption	 lines,	 we	 still
know	it	is	a	binary	system	if	we	see	the	absorption	lines	move	back	and	forth	in
the	spectrum;	a	measurement	of	the	time	it	takes	for	a	full	cycle	of	the	lines	will
tell	us	the	orbital	period	of	the	star.	When	would	this	happen?	In	the	event	that
one	star	is	too	faint	to	be	seen	from	Earth	in	optical	light.

Let’s	now	return	to	our	X-ray	sources.

Shklovsky	and	Beyond
Way	back	in	1967,	the	Russian	physicist	Joseph	Shklovsky	had	proposed	a	model
for	Sco	X-1.	“By	all	its	characteristics,	this	model	corresponds	to	a	neutron	star	in
a	 state	 of	 accretion…	 the	 natural	 and	 very	 efficient	 supply	 of	 gas	 for	 such	 an
accretion	is	a	stream	of	gas	which	flows	from	a	secondary	component	of	a	close
binary	system	toward	the	primary	component	which	is	a	neutron	star.”

I	 realize	 these	 lines	may	 not	 strike	 you	 as	 earthshaking.	 It	 doesn’t	 help	 that
they	are	written	 in	 the	 rather	dry	 technical	 language	of	astrophysics.	But	 that’s
the	way	professionals	in	just	about	any	field	talk	to	one	another.	My	purpose	in
the	classroom,	and	the	main	reason	I’ve	written	this	book,	is	to	translate	the	truly
astounding,	 groundbreaking,	 sometimes	 even	 revolutionary	 discoveries	 of	 my
fellow	 physicists	 into	 concepts	 and	 language	 intelligent,	 curious	 laypeople	 can
really	get	hold	of—to	make	a	bridge	between	the	world	of	professional	scientists
and	 your	world.	Too	many	of	 us	 seem	 to	prefer	 talking	only	 to	 our	peers	 and
make	 it	 awfully	 difficult	 for	 most	 people—even	 those	 who	 really	 want	 to
understand	science—to	enter	our	world.

So	 let’s	 take	 Shklovsky’s	 idea	 and	 see	 what	 he	 was	 proposing:	 a	 binary	 star
system	 composed	 of	 a	 neutron	 star	 and	 a	 companion	 from	which	matter	 was
flowing	 to	 the	 neutron	 star.	 The	 neutron	 star	 would	 then	 be	 “in	 a	 state	 of
accretion”—in	 other	words,	 it	 would	 be	 accreting	matter	 from	 its	 companion,
the	donor	star.	What	a	bizarre	idea,	right?



Shklovsky	 turned	 out	 to	 be	 right.	 But	 here’s	 the	 funny	 thing.	 He	 was	 only
talking	 about	 Sco	 X-1	 at	 the	 time,	 and	 most	 of	 us	 didn’t	 take	 his	 idea	 too
seriously.	But	that’s	often	the	case	with	theory.	I	don’t	think	I	would	be	offending
any	of	my	theoretician	colleagues	by	saying	that	the	great	majority	of	theory	in
astrophysics	 turns	 out	 to	 be	 wrong.	 So	 of	 course	many	 of	 us	 in	 observational
astrophysics	don’t	pay	much	attention	to	most	of	it.

It	turns	out	that	accreting	neutron	stars	are	in	fact	the	perfect	environments	to
produce	X-rays.	How	did	we	find	out	that	Shklovsky	was	right?

It	took	until	the	early	seventies	for	astronomers	to	nail	down	the	binary	nature
of	some	X-ray	sources—but	that	didn’t	necessarily	mean	that	they	were	accreting
neutron	 stars.	 The	 very	 first	 source	 to	 reveal	 its	 secrets	 was	 Cyg	 X-1,	 and	 it
turned	out	to	be	one	of	the	most	important	in	all	of	X-ray	astronomy.	Discovered
during	a	rocket	flight	in	1964,	it	is	a	very	bright	and	powerful	source	of	X-rays,	so
it	has	attracted	the	attention	of	X-ray	astronomers	ever	since.

Radio	astronomers	then	discovered	radio	waves	from	Cyg	X-1	in	1971.	Their
radio	telescopes	pinpointed	Cyg	X-1’s	position	to	a	region	(an	error	box)	in	the
sky	of	about	350	square	arc	seconds,	about	twenty	times	smaller	than	had	been
possible	by	tracking	its	X-rays.	They	went	looking	for	its	optical	counterpart.	In
other	words,	they	wanted	to	see,	in	visible	light,	the	star	that	was	generating	the
mysterious	X-rays.

There	was	 a	 very	bright	blue	 supergiant	known	as	HDE	226868	 in	 the	 radio
error	box.	Given	 the	kind	of	 star	 it	was,	 astronomers	could	make	comparisons
with	 other	 very	 similar	 stars	 to	make	 a	 pretty	 good	 estimate	 of	 its	mass.	 Five
astronomers,	 including	 the	world-famous	Allan	 Sandage,	 concluded	 that	HDE
226868	 was	 just	 a	 “normal	 B0	 supergiant,	 with	 no	 peculiarities,”	 and	 they
dismissed	 the	 fact	 that	 it	was	 the	optical	counterpart	of	Cyg	X-1.	Other	 (at	 the
time	less	famous)	optical	astronomers	examined	the	star	more	closely	and	made
some	earthshaking	discoveries.

They	discovered	that	the	star	was	a	member	of	a	binary	system	with	an	orbital
period	 of	 5.6	 days.	 They	 argued	 correctly	 that	 the	 strong	X-ray	 flux	 from	 this
binary	system	was	due	to	the	accretion	of	gas	from	the	optical	star	(the	donor)	to
a	 very	 small—compact—object.	Only	 a	 gas	 flow	onto	 a	massive	but	 very	 small
object	could	explain	the	copious	X-ray	flux.

They	made	Doppler-shift	measurements	of	absorption	lines	in	the	spectrum	of
the	donor	 star	 as	 it	moved	around	 in	 its	orbit	 (remember,	 as	 it	moved	 toward
Earth,	 the	 spectra	 would	 shift	 toward	 the	 blue	 end,	 and	 as	 it	 moved	 away,	 it
would	shift	toward	the	red)	and	concluded	that	the	X-ray-generating	companion



star	 was	 too	 massive	 to	 be	 either	 a	 neutron	 star	 or	 a	 white	 dwarf	 (another
compact,	very	dense	star,	like	Sirius	B).	Well,	if	it	couldn’t	be	either	of	those,	and
it	was	even	more	massive	than	a	neutron	star,	what	else	could	it	be?	Of	course—a
black	hole!	And	that’s	what	they	proposed.

As	 observational	 scientists,	 however,	 they	 stated	 their	 conclusions	 more
circumspectly.	Louise	Webster	and	Paul	Murdin,	whose	discovery	ran	in	Nature
on	January	7,	1972,	put	it	this	way:	“The	mass	of	the	companion	being	probably
larger	 than	 2	 solar	masses,	 it	 is	 inevitable	 that	we	 should	 also	 speculate	 that	 it
might	be	a	black	hole.”	Here’s	what	Tom	Bolton	wrote	a	month	later	in	Nature:
“This	 raises	 the	 distinct	 possibility	 that	 the	 secondary	 [the	 accretor]	 is	 a	 black
hole.”	A	picture	of	an	artistic	impression	of	Cyg	X-1	can	be	seen	in	the	insert.

So	these	wonderful	astronomers,	Webster	and	Murdin	in	England	and	Bolton
in	 Toronto,	 shared	 the	 discovery	 of	 X-ray	 binaries	 and	 finding	 the	 first	 black
hole	in	our	galaxy.	(Bolton	was	so	proud,	he	had	the	license	plate	Cyg	X-1	for	a
number	of	years.)

I’ve	always	thought	it	was	odd	that	they	never	received	a	major	prize	for	their
absolutely	phenomenal	discovery.	After	all,	they	hit	the	field	at	its	heart,	and	they
were	 first!	 They	 nailed	 the	 first	 X-ray	 binary	 system.	 And	 they	 said	 that	 the
accretor	was	probably	a	black	hole.	What	a	piece	of	work!

In	 1975	 none	 other	 than	 Stephen	Hawking	 bet	 his	 friend,	 fellow	 theoretical
physicist	Kip	Thorne,	that	Cyg	X-1	wasn’t	a	black	hole	at	all—even	though	most
astronomers	thought	it	was	by	then.	He	eventually	conceded	the	bet,	fifteen	years
later,	I	think	to	his	own	delight,	since	so	much	of	his	work	has	revolved	around
black	 holes.	 The	 most	 recent	 (soon	 to	 be	 published)	 and	 most	 accurate
measurement	of	the	mass	of	the	black	hole	in	Cyg	X-1	is	about	15	solar	masses
(private	 communication	 from	 Jerry	 Orosz	 and	 my	 former	 student	 Jeff
McClintock).

If	you’re	sharp,	I	know	you’re	already	thinking,	“Hold	it!	You	just	said	black
holes	don’t	emit	anything,	that	nothing	can	escape	their	gravitational	field—how
can	they	emit	X-rays?”	Terrific	question,	which	I	promise	to	answer	eventually,
but	here’s	a	preview:	the	X-rays	emitted	by	a	black	hole	do	not	come	from	inside
the	 event	 horizon—they’re	 emitted	 by	matter	 on	 the	 way	 into	 the	 black	 hole.
While	a	black	hole	explained	our	observations	of	Cyg	X-1,	 it	could	not	explain
what	was	 seen	 in	 terms	of	X-ray	emission	 from	other	binary	stars.	For	 that	we
needed	neutron	star	binaries,	which	were	discovered	with	the	wonderful	satellite
Uhuru.

The	field	of	X-ray	astronomy	dramatically	changed	 in	December	1970,	when



the	first	satellite	totally	dedicated	to	X-ray	astronomy	went	into	orbit.	Launched
from	Kenya	 on	 the	 seventh	 anniversary	 of	 Kenyan	 independence,	 the	 satellite
was	named	Uhuru,	Swahili	for	“freedom.”

Uhuru	began	a	revolution	that	hasn’t	stopped	to	this	day.	Think	about	what	a
satellite	could	do.	Observations	365	days	a	year,	twenty-four	hours	a	day,	with	no
atmosphere	 at	 all!	 Uhuru	 was	 able	 to	 observe	 in	 ways	 we	 could	 only	 have
dreamed	about	a	half	dozen	years	earlier.	 In	 just	a	 little	over	 two	years,	Uhuru
mapped	 the	 X-ray	 sky	 with	 counters	 that	 could	 pick	 up	 sources	 five	 hundred
times	fainter	than	the	Crab	Nebula,	ten	thousand	times	fainter	than	Sco	X-1.	It
found	339	of	them	(we’d	only	found	several	dozen	before	that)	and	provided	the
first	X-ray	map	of	the	entire	sky.

Freeing	 us	 at	 last	 from	 atmospheric	 shackles,	 satellite	 observatories	 have
reshaped	 our	 view	 of	 the	 universe,	 as	 we	 learned	 to	 see	 deep	 space—and	 the
astonishing	 objects	 it	 contains—through	 every	 area	 of	 the	 electromagnetic
spectrum.	 The	 Hubble	 Space	 Telescope	 expanded	 our	 view	 of	 the	 optical
universe,	 while	 a	 series	 of	 X-ray	 observatories	 did	 the	 same	 for	 the	 X-ray
universe.	 Gamma-ray	 observatories	 are	 now	 observing	 the	 universe	 at	 even
higher	energies.

In	 1971	 Uhuru	 discovered	 4.84-second	 pulsations	 from	 Cen	 X-3	 (in	 the
constellation	Centaurus).	During	a	one-day	interval	Uhuru	observed	a	change	in
the	X-ray	flux	by	a	factor	of	ten	in	about	one	hour.	The	period	of	the	pulsations
first	decreased	and	then	increased	by	about	0.02	and	0.04	percent,	each	change	of
period	 occurring	 in	 about	 an	 hour.	 All	 this	 was	 very	 exciting	 but	 also	 very
puzzling.	The	pulsations	couldn’t	be	the	result	of	a	spinning	neutron	star;	 their
rotation	periods	were	known	to	be	steady	like	a	rock.	None	of	the	known	pulsars
could	possibly	change	their	period	by	0.04	percent	in	an	hour.

The	 entire	 picture	 came	 together	 beautifully	 when	 the	 Uhuru	 group	 later
discovered	that	Cen	X-3	was	a	binary	system	with	an	orbital	period	of	2.09	days.
The	 4.84-second	 pulsations	 were	 due	 to	 the	 rotation	 of	 the	 accreting	 neutron
star.	The	 evidence	was	overwhelming.	 First,	 they	 clearly	 saw	 repetitive	 eclipses
(every	2.09	days)	when	the	neutron	star	hides	behind	the	donor	star,	blocking	the
X-rays	emissions.	And	second,	they	were	able	to	measure	the	Doppler	shift	in	the
periods	 of	 the	 pulsations.	 When	 the	 neutron	 star	 is	 moving	 toward	 us,	 the
pulsation	 period	 is	 a	 little	 shorter,	 a	 little	 longer	 when	 moving	 away.	 These
earthshaking	results	were	published	in	March	1972.	All	this	naturally	explained
the	 phenomena	 that	 seemed	 so	 puzzling	 in	 the	 1971	 paper.	 It	 was	 just	 as
Shklovsky	had	predicted	for	Sco	X-1:	a	binary	system	with	a	donor	star	and	an



accreting	neutron	star.
Later	that	very	same	year,	Giacconi’s	group	found	yet	another	source,	Hercules

X-1	(or	Her	X-1,	as	we	like	to	say),	with	pulsations	and	eclipses.	Another	neutron
star	X-ray	binary!

These	were	absolutely	stunning	discoveries	that	transformed	X-ray	astronomy,
dominating	the	field	for	decades	to	come.	X-ray	binaries	are	very	rare;	perhaps
only	one	in	a	hundred	million	binary	stars	in	our	galaxy	is	an	X-ray	binary.	Even
so,	we	now	know	that	there	are	several	hundred	X-ray	binaries	in	our	galaxy.	In
most	cases	 the	compact	object,	 the	accretor,	 is	a	white	dwarf	or	a	neutron	star,
but	there	are	at	least	two	dozen	known	systems	in	which	the	accretor	is	a	black
hole.

Remember	 the	 2.3-minute	 periodicity	 that	 my	 group	 discovered	 in	 1970
(before	 the	 launch	of	Uhuru)?	At	 the	 time	we	had	no	clue	what	 these	periodic
changes	meant.	Well,	we	now	know	that	GX	1+4	is	an	X-ray	binary	system	with
an	orbital	period	of	about	304	days,	and	the	accreting	neutron	star	spins	around
in	about	2.3	minutes.

X-ray	Binaries:	How	They	Work
When	a	neutron	star	pairs	up	with	the	right-size	donor	star	at	the	right	distance,
it	can	create	some	amazing	fireworks.	There,	in	the	reaches	of	space,	stars	Isaac
Newton	could	never	even	have	imagined	perform	a	beautiful	dance,	all	the	while
utterly	 bound	 by	 the	 laws	 of	 classical	 mechanics	 any	 undergraduate	 science
major	can	grasp.

To	understand	this	better,	 let’s	start	close	to	home.	The	Earth	and	the	Moon
are	a	binary	system.	If	you	draw	a	line	from	the	center	of	the	Earth	to	the	center
of	the	Moon,	there	is	a	point	on	that	line	where	the	gravitational	force	toward	the
Moon	is	equal	but	opposite	to	the	gravitational	force	toward	Earth.	If	you	were
there,	the	net	force	on	you	would	be	zero.	If	you	were	on	one	side	of	that	point
you	would	fall	to	Earth;	if	you	were	on	the	other	side	you	would	fall	toward	the
Moon.	That	point	has	a	name;	we	call	it	the	inner	Lagrangian	point.	Of	course,	it
lies	 very	 close	 to	 the	 moon,	 because	 the	 Moon’s	 mass	 is	 about	 eighty	 times
smaller	than	that	of	the	Earth.

Let’s	now	return	to	X-ray	binaries	consisting	of	an	accreting	neutron	star	and	a
much	 larger	donor	 star.	 If	 the	 two	 stars	 are	very	 close	 to	 each	other,	 the	 inner
Lagrangian	point	can	lie	below	the	surface	of	the	donor	star.	If	 that	 is	 the	case,
some	of	the	matter	of	the	donor	star	will	experience	a	gravitational	force	toward



the	neutron	 star	 that	 is	 larger	 than	 the	gravitational	 force	 toward	 the	center	of
the	 donor	 star.	 Consequently	 matter—hot	 hydrogen	 gas—will	 flow	 from	 the
donor	star	to	the	neutron	star.

Since	 the	 stars	 are	orbiting	 their	 common	center	of	mass,	 the	matter	 cannot
fall	directly	toward	the	neutron	star.	Before	it	reaches	the	surface,	the	matter	falls
into	an	orbit	around	the	neutron	star,	creating	a	spinning	disk	of	hot	gas	that	we
call	 an	accretion	disk.	Some	of	 the	gas	on	 the	 inner	 ring	of	 the	disk	ultimately
finds	its	way	down	to	the	surface	of	the	neutron	star.

Now	an	interesting	piece	of	physics	gets	involved	that	you	are	already	familiar
with	 in	 another	 context.	 Since	 the	 gas	 is	 very	 hot,	 it	 is	 ionized,	 consisting	 of
positively	 charged	 protons	 and	 negatively	 charged	 electrons.	 But	 since	 the
neutron	stars	have	very	strong	magnetic	fields,	these	charged	particles	are	forced
to	 follow	 the	 star’s	magnetic	 field	 lines,	 so	most	 of	 this	 plasma	 ends	 up	 at	 the
magnetic	 poles	 of	 the	 neutron	 star,	 like	 the	 aurora	 borealis	 on	 Earth.	 The
neutron	 star’s	 magnetic	 poles	 (where	 matter	 crashes	 onto	 the	 neutron	 star)
become	hot	 spots	with	 temperatures	 of	millions	 of	 degrees	 kelvin,	 emitting	X-
rays.	And	as	magnetic	poles	generally	do	not	coincide	with	the	poles	of	the	axis
of	rotation	(see	chapter	12),	we	on	Earth	will	only	receive	a	high	X-ray	flux	when
a	hot	spot	is	facing	us.	Since	the	neutron	star	rotates,	it	appears	to	pulsate.

Every	X-ray	binary	has	an	accretion	disk	orbiting	the	accretor,	be	it	a	neutron
star,	a	white	dwarf	or,	as	in	Cyg	X-1,	a	black	hole.	Accretion	disks	are	among	the
most	 extraordinary	 objects	 in	 the	 universe,	 and	 almost	 no	 one	 except
professional	astronomers	has	ever	even	heard	of	them.

There	are	accretion	disks	around	all	black	hole	X-ray	binaries.	There	are	even
accretion	disks	orbiting	supermassive	black	holes	at	the	center	of	many	galaxies,
though	probably	not,	as	it	turns	out,	around	the	supermassive	black	hole	at	the
center	of	our	own	galaxy.

The	study	of	accretion	disks	is	now	an	entire	field	of	astrophysics.	You	can	see
some	 wonderful	 images	 of	 them	 here:	 www.google.com/images?
hl=en&q=xray+binaries&um=1&ie=UTF.	There	is	still	lots	about	accretion	disks
that	we	don’t	know.	One	of	the	most	embarrassing	problems	is	that	we	still	don’t
understand	 well	 how	 the	 matter	 in	 the	 accretion	 disks	 finds	 its	 way	 to	 the
compact	 object.	 Another	 remaining	 problem	 is	 our	 lack	 of	 understanding	 of
instabilities	in	the	accretion	disks,	which	give	rise	to	variability	in	the	matter	flow
onto	 the	 compact	 object,	 and	 the	 variability	 in	 X-ray	 luminosity.	 Our
understanding	of	radio	jets	present	in	several	X-ray	binaries	is	also	very	poor.

A	donor	star	can	transfer	up	to	about	1018	grams	per	second	to	the	accreting
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neutron	star.	It	sounds	like	a	lot,	but	even	at	that	rate	it	would	take	two	hundred
years	to	transfer	an	amount	of	matter	equal	to	the	Earth’s	mass.	Matter	from	the
disk	flows	toward	the	accretor	in	the	grip	of	its	intense	gravitational	field,	which
accelerates	 the	gas	 to	 an	extremely	high	 speed:	 about	one	 third	 to	one	half	 the
speed	of	light.	Gravitational	potential	energy	released	by	this	matter	is	converted
into	kinetic	energy	(roughly	5	×	1030	watts)	and	heats	the	racing	hydrogen	gas	to
a	temperature	of	millions	of	degrees.

You	 know	 that	 when	 matter	 is	 heated	 it	 gives	 off	 blackbody	 radiation	 (see
chapter	 14).	 The	 higher	 the	 temperature,	 the	 more	 energetic	 the	 radiation,
making	shorter	wavelengths	and	higher	frequencies.	When	matter	reaches	10	to
100	million	kelvin,	the	radiation	it	generates	is	mostly	in	X-rays.	Almost	all	5	×
1030	 watts	 are	 released	 in	 the	 form	 of	 X-rays;	 compare	 that	 with	 the	 total
luminosity	of	our	Sun	(4	×	1026	watts)	of	which	only	about	1020	watts	 is	 in	 the
form	 of	 X-rays.	 Our	 Sun’s	 surface	 temperature	 is	 a	 veritable	 ice	 cube	 in
comparison.

The	neutron	stars	themselves	are	much	too	small	to	be	seen	optically—but	we
can	 see	 the	 much	 larger	 donor	 stars	 and	 the	 accretion	 disks	 with	 optical
telescopes.	The	disks	 themselves	 can	 radiate	quite	 a	bit	of	 light	partly	due	 to	 a
process	 called	X-ray	 heating.	When	 the	matter	 from	 the	 disk	 crashes	 onto	 the
surface	of	the	neutron	star,	the	resultant	X-rays	go	off	in	all	directions	and	thus
also	slam	into	the	disk	itself,	heating	it	to	even	higher	temperatures.	I	will	tell	you
more	about	that	in	the	next	chapter,	on	X-ray	bursts.

The	discovery	of	X-ray	binaries	 solved	 the	 first	mystery	of	 extrasolar	X-rays.
We	now	understand	why	 the	X-ray	 luminosity	 of	 a	 source	 like	 Sco	X-1	 is	 ten
thousand	 times	 greater	 than	 its	 optical	 luminosity.	 The	X-rays	 come	 from	 the
very	 hot	 neutron	 star	 (with	 temperatures	 of	 tens	 of	 millions	 kelvin),	 and	 the
optical	light	comes	from	the	much	cooler	donor	star	and	the	accretion	disk.

When	 we	 thought	 that	 we	 had	 a	 fair	 understanding	 of	 how	 X-ray	 binaries
work,	nature	had	another	surprise	in	store	for	us.	The	X-ray	astronomers	began
making	observational	discoveries	that	were	outstripping	the	theoretical	models.

In	 1975,	 the	 discovery	 of	 something	 truly	 bizarre	 led	 to	 a	 high	 point	 of	my
scientific	career.	 I	became	completely	 immersed	 in	 the	effort	 to	observe,	 study,
and	explain	these	remarkable	and	mysterious	phenomena:	X-ray	bursts.

Part	 of	 the	 story	 about	 X-ray	 bursts	 includes	 a	 battle	 I	 had	 with	 Russian
scientists	who	 completely	misinterpreted	 their	 data	 and	 also	with	 some	 of	my
colleagues	 at	 Harvard	 who	 believed	 that	 X-ray	 bursts	 were	 produced	 by	 very
massive	 black	 holes	 (poor	 black	 holes,	 they	 have	 been	 unjustly	 blamed	 for	 so



much).	Believe	it	or	not,	I	was	even	called	(more	than	once)	to	not	publish	some
data	on	bursts	for	reasons	of	national	security.



CHAPTER	14

X-ray	Bursters!

Nature	 is	always	full	of	surprises,	and	in	1975	it	rocked	the	X-ray	community.
Things	became	so	intense	that	emotions	at	times	got	out	of	control,	and	I	was	in
the	middle	of	it	all.	For	years	I	was	arguing	with	a	colleague	of	mine	at	Harvard
(who	would	not	 listen),	but	 I	had	more	 luck	with	my	Russian	colleagues	 (who
did	listen).	Because	of	my	central	role	in	all	of	this	it	may	be	very	difficult	for	me
to	be	objective,	but	I’ll	try!

The	new	thing	was	X-ray	bursts.	They	were	discovered	independently	in	1975
by	Grindlay	 and	Heise	using	data	 from	 the	Astronomical	Netherlands	Satellite
(ANS)	and	by	Belian,	Conner,	and	Evans,	using	data	from	the	United	States’	two
Vela-5	 spy	 satellites	 designed	 to	 detect	 nuclear	 tests.	 X-ray	 bursts	 were	 a
completely	 different	 animal	 from	 the	 variability	 we	 discovered	 from	 Sco	 X-1,
which	had	a	flare-up	by	a	factor	of	four	over	a	ten-minute	period	that	lasted	tens
of	minutes.	X-ray	bursts	were	much	faster,	much	brighter,	and	they	lasted	only
tens	of	seconds.

At	MIT	we	had	our	own	satellite	(launched	in	May	1975)	known	as	the	Third
Small	Astronomy	Satellite,	 or	 SAS-3.	 Its	 name	wasn’t	 as	 romantic	 as	 “Uhuru,”
but	 the	 work	 was	 the	 most	 absorbing	 of	 my	 entire	 life.	We	 had	 heard	 about
bursters	and	began	looking	for	them	in	January	1976;	by	March	we’d	found	five
of	 our	 own.	 By	 the	 end	 of	 the	 year	 we’d	 found	 a	 total	 of	 ten.	 Because	 of	 the
sensitivity	of	SAS-3,	and	the	way	it	was	configured,	it	turned	out	to	be	the	ideal
instrument	 to	 discover	 burst	 sources	 and	 to	 study	 them.	 Of	 course,	 it	 wasn’t
specially	designed	to	detect	X-ray	bursts;	so	in	a	way	it	was	a	bit	of	luck.	You	see
what	a	 leading	role	Lady	Luck	has	played	 in	my	 life!	We	were	getting	amazing
data—a	bit	of	gold	pouring	out	of	the	sky	every	day,	twenty-four	hours	a	day—
and	I	worked	around	the	clock.	I	was	dedicated,	but	also	obsessed.	It	was	a	once
in	 a	 lifetime	 opportunity	 to	 have	 an	 X-ray	 observatory	 you	 can	 point	 in	 any
direction	you	want	to	and	get	data	of	high	quality.

The	 truth	 is	 that	 we	 all	 caught	 “burst	 fever”—undergraduates	 and	 graduate
students,	 support	 staff	 and	postdocs	 and	 faculty—and	 I	 can	 still	 remember	 the
feeling,	 like	 a	 glow.	We	 ended	 up	 in	 different	 observing	 groups,	 which	meant
that	we	got	competitive,	even	with	one	another.	Some	of	us	didn’t	like	that,	but	I



have	 to	 say	 that	 I	 think	 it	 pushed	us	 to	 do	more	 and	better,	 and	 the	 scientific
results	were	just	fantastic.

That	 level	of	obsession	was	not	good	 for	my	marriage,	 and	not	good	 for	my
family	 life	 either.	 My	 scientific	 life	 was	 immeasurably	 enhanced,	 but	 my	 first
marriage	dissolved.	Of	course	it	was	my	fault.	For	years	I’d	been	going	away	for
months	at	a	time	to	fly	balloons	halfway	around	the	globe.	Now	that	we	had	our
own	satellite,	I	might	as	well	still	have	been	in	Australia.

The	burst	sources	became	a	kind	of	substitute	family.	After	all,	we	lived	with
them	and	 slept	with	 them	and	 learned	 them	 inside	out.	 Like	 friends,	 each	one
was	 unique,	with	 its	 own	 idiosyncrasies.	 Even	 now,	 I	 recognize	many	 of	 these
telltale	burst	profiles.

Most	of	these	sources	were	about	25,000	light-years	away,	which	allowed	us	to
calculate	that	the	total	X-ray	energy	in	a	burst	(emitted	in	less	than	a	minute)	was
about	1032	 joules,	a	number	that’s	almost	 impossible	to	grasp.	So	look	at	 it	 this
way:	 it	 takes	 our	 Sun	 about	 three	 days	 to	 emit	 1032	 joules	 of	 energy	 in	 all
wavelengths.

Some	of	these	bursts	came	with	nearly	clocklike	regularity,	such	as	the	bursts
from	MXB	1659-29,	which	 produced	 bursts	 at	 2.4-hour	 intervals,	while	 others
changed	their	burst	intervals	from	hours	to	days,	and	some	showed	no	bursts	at
all	for	several	months.	The	M	in	MXB	stands	for	MIT,	the	X	for	X-rays,	and	the
B	 for	burster.	The	numbers	 indicate	 the	source’s	celestial	coordinates	 in	what’s
known	as	the	equatorial	coordinate	system.	For	the	amateur	astronomers	among
you,	this	will	be	familiar.

The	 key	 question,	 of	 course,	 was	 what	 caused	 these	 bursts?	 Two	 of	 my
colleagues	 at	 Harvard	 (including	 Josh	 Grindlay,	 who	 was	 one	 of	 the
codiscoverers	of	X-ray	bursts)	 got	 carried	 away	 and	proposed	 in	1976	 that	 the
bursts	were	produced	by	black	holes	with	a	mass	greater	 than	 several	hundred
times	the	mass	of	the	Sun.

We	soon	discovered	that	the	spectra	during	X-ray	bursts	resemble	the	spectra
from	 a	 cooling	 black	 body.	 A	 black	 body	 is	 not	 a	 black	 hole.	 It’s	 an	 ideal
construct	 to	 stand	 in	 for	 an	object	 that	 absorbs	 all	 the	 radiation	 that	 strikes	 it,
rather	 than	 reflecting	 any	 of	 it.	 (As	 you	 know,	 black	 absorbs	 radiation,	 while
white	reflects	 it—which	 is	why	 in	summer	 in	Miami	a	black	car	 left	 in	a	beach
parking	lot	will	always	be	hotter	inside	than	a	white	one.)	The	other	thing	about
an	ideal	black	body	is	that	since	it	reflects	nothing,	the	only	radiation	it	can	emit
is	the	result	of	its	own	temperature.	Think	about	a	heating	element	in	an	electric
stove.	When	 it	 reaches	 a	 cooking	 temperature,	 it	 begins	 to	 glow	 red,	 emitting



low-frequency	 red	 light.	 As	 it	 gets	 hotter	 it	 reaches	 orange,	 then	 yellow,	 and
usually	not	much	more.	When	you	turn	off	the	electricity,	the	element	cools,	and
the	 radiation	 it	 emits	has	a	profile	more	or	 less	 like	 the	 tail	 end	of	bursts.	The
spectra	of	black	bodies	are	so	well	known	that	if	you	measure	the	spectrum	over
time,	you	can	calculate	the	temperature	as	it	cools.

Since	black	bodies	are	very	well	understood,	we	can	deduce	a	great	deal	about
bursts	 based	 on	 elementary	 physics,	 which	 is	 quite	 amazing.	 Here	 we	 were,
analyzing	X-ray	 emission	 spectra	 of	 unknown	 sources	 25,000	 light-years	 away,
and	 we	 made	 breakthroughs	 using	 the	 same	 physics	 that	 first-year	 college
students	learn	at	MIT!

We	 know	 that	 the	 total	 luminosity	 of	 a	 black	 body	 (how	much	 energy	 per
second	it	radiates)	is	proportional	to	the	fourth	power	of	its	temperature	(this	is
by	no	means	intuitive),	and	it	is	proportional	to	its	surface	area	(that’s	intuitive—
the	 larger	 the	area,	 the	more	energy	can	get	out).	 So,	 if	we	have	 two	 spheres	a
meter	in	diameter,	and	one	is	twice	as	hot	as	the	other,	the	hotter	one	will	emit
sixteen	times	(24)	more	energy	per	second.	Since	the	surface	area	of	a	sphere	is
proportional	 to	 the	 square	 of	 its	 radius,	 we	 also	 know	 that	 if	 an	 object’s
temperature	stays	the	same	but	triples	in	size,	it	will	emit	nine	times	more	energy
per	second.

The	X-ray	spectrum	at	any	moment	in	time	of	the	burst	tells	us	the	blackbody
temperature	of	the	emitting	object.	During	a	burst,	the	temperature	quickly	rises
to	about	30	million	kelvin	and	decreases	slowly	thereafter.	But	since	we	knew	the
approximate	distance	to	these	bursters,	we	could	also	calculate	the	luminosity	of
the	 source	 at	 any	 moment	 during	 the	 burst.	 But	 once	 you	 know	 both	 the
blackbody	 temperature	 and	 the	 luminosity,	 you	 can	 calculate	 the	 radius	 of	 the
emitting	 object,	 and	 that	 too	 can	 be	 done	 for	 any	moment	 in	 time	during	 the
burst.	The	person	who	did	this	first	was	Jean	Swank	of	NASA’s	Goddard	Space
Flight	Center;	we	at	MIT	 followed	quickly	and	concluded	 that	 the	bursts	 came
from	 a	 cooling	 object	 with	 a	 radius	 of	 about	 10	 kilometers.	 This	 was	 strong
evidence	that	the	burst	sources	were	neutron	stars,	not	very	massive	black	holes.
And	if	they	were	neutron	stars,	they	were	probably	X-ray	binaries.

The	Italian	astronomer	Laura	Maraschi	was	visiting	MIT	in	1976,	and	one	day
in	 February	 she	walked	 into	my	 office	 and	 suggested	 that	 the	 bursts	 were	 the
result	of	thermonuclear	flashes,	huge	thermonuclear	explosions	on	the	surface	of
accreting	 neutron	 stars.	 When	 hydrogen	 accretes	 onto	 a	 neutron	 star,
gravitational	potential	energy	is	converted	to	such	tremendous	heat	that	X-rays
are	 emitted	 (see	previous	 chapter).	But	 as	 this	 accreted	matter	 accumulates	 on



the	 surface	 of	 the	 neutron	 star,	Maraschi	 suggested,	 it	might	 undergo	 nuclear
fusion	in	a	runaway	process	(like	in	a	hydrogen	bomb)	and	that	might	cause	an
X-ray	burst.	The	next	explosion	might	go	off	a	few	hours	later	when	enough	new
nuclear	 fuel	had	been	accreted	 to	 ignite.	Maraschi	demonstrated	with	a	 simple
calculation	on	my	blackboard	that	matter	racing	at	roughly	half	the	speed	of	light
to	the	surface	of	a	neutron	star	releases	much	more	energy	than	what	is	released
during	the	thermonuclear	explosions,	and	that	is	what	the	data	showed.

I	 was	 impressed—this	 explanation	 made	 sense	 to	 me.	 Thermonuclear
explosions	fit	the	bill.	The	cooling	pattern	we’d	observed	during	the	bursts	also
made	 sense	 if	what	we	were	 seeing	was	a	massive	explosion	on	a	neutron	 star.
And	her	model	explained	 the	 interval	between	bursts	well	 since	 the	amount	of
matter	required	for	an	explosion	had	to	build	up	over	time.	At	the	normal	rate	of
accretion,	 it	 should	 take	a	 few	hours	 to	build	up	a	critical	mass,	which	was	 the
kind	of	interval	we	found	in	many	burst	sources.

I	keep	a	funny	kind	of	radio	in	my	office	that	always	unsettles	visitors.	It’s	got	a
solar-powered	 battery	 inside,	 and	 it	 works	 only	 when	 the	 battery	 has	 enough
juice.	As	the	radio	sits	there	soaking	up	sunlight,	it	slowly	fills	up	with	juice	(a	lot
more	slowly	 in	 the	winter),	 then	every	 ten	minutes	or	 so—sometimes	 longer	 if
the	weather’s	rotten—it	suddenly	starts	playing,	but	only	for	a	couple	of	seconds,
as	it	quickly	exhausts	its	supply	of	electricity.	You	see?	The	buildup	in	its	battery
is	just	like	the	buildup	of	accreted	matter	on	the	neutron	star:	when	it	gets	to	the
right	amount,	the	explosion	goes	off,	and	then	fades	away.

Then,	several	weeks	after	Maraschi’s	visit,	on	March	2,	1976,	in	the	middle	of
burst	fever,	we	discovered	an	X-ray	source	that	I	named	MXB	1730-335	that	was
producing	a	few	thousand	bursts	per	day.	The	bursts	came	like	machine-gun	fire
—many	were	only	6	seconds	apart!	I	don’t	know	if	I	can	completely	convey	just
how	bizarre	this	seemed	to	us.	This	source	(now	called	the	Rapid	Burster)	was	a
complete	outlier,	and	it	immediately	killed	Maraschi’s	idea.	First,	there	is	no	way
that	 a	 sufficient	 amount	 of	 nuclear	 fuel	 could	 build	 up	 in	 six	 seconds	 on	 the
surface	of	a	neutron	star	 to	produce	a	 thermonuclear	explosion.	Not	only	 that,
but	if	the	bursts	were	a	by-product	of	accretion,	we	should	see	a	strong	X-ray	flux
due	 to	 accretion	 alone	 (release	of	 gravitational	potential	 energy),	 far	 exceeding
the	energy	present	in	the	bursts,	but	that	was	not	the	case.	So	it	seemed	in	early
March	1976	that	Maraschi’s	wonderful	thermonuclear	model	for	the	bursts	was
as	 dead	 as	 the	 proverbial	 doornail.	 In	 our	 publication	 on	MXB	 1730-335,	 we
suggested	 that	 the	 bursts	 are	 caused	 by	 “spasmodic	 accretion”	 onto	 a	 neutron
star.	In	other	words,	what	in	most	X-ray	binaries	is	a	steady	flow	of	hot	matter



from	the	accretion	disk	onto	the	neutron	star	is	very	irregular	in	the	case	of	the
Rapid	Burster.

When	we	measured	the	bursts	over	time,	we	found	that	 the	bigger	the	burst,
the	longer	the	wait	before	the	next	one.	The	waiting	time	to	the	next	burst	could
be	as	short	as	six	seconds	and	as	long	as	eight	minutes.	Lightning	does	something
similar.	 When	 there’s	 a	 particularly	 large	 lightning	 bolt,	 the	 large	 discharge
means	 that	 the	 wait	 needs	 to	 be	 longer	 for	 the	 electric	 field	 to	 build	 up	 its
potential	to	the	point	that	it	can	discharge	again.

Later	 that	 year	 a	 translation	 of	 a	 1975	 Russian	 paper	 about	 X-ray	 bursts
surfaced	 out	 of	 nowhere;	 it	 had	 been	 reporting	 burst	 detections	made	 in	 1971
with	the	Kosmos	428	satellite.	We	were	stunned;	the	Russians	had	discovered	X-
ray	bursts,	and	they	had	beaten	the	West!	However,	as	I	heard	more	and	more
about	 these	bursts,	 I	 became	very	 skeptical.	Their	bursts	behaved	 so	very,	 very
differently	from	the	many	bursts	that	I	had	detected	with	SAS-3	that	I	began	to
seriously	doubt	whether	the	Russian	bursts	were	real.	I	suspected	that	they	were
either	man-made	 or	 produced	 near	 Earth	 in	 some	 odd,	 bizarre	way.	 The	 iron
curtain	made	it	difficult	to	pursue	this;	there	was	no	way	to	find	out.	However,	I
had	the	good	fortune	to	be	invited	to	attend	a	high-level	conference	in	the	Soviet
Union	 in	 the	 summer	 of	 1977.	 Only	 twelve	 Russians	 and	 twelve	 U.S.
astrophysicists	had	been	invited.	That’s	where	I	met	for	the	first	time	the	world
famous	 scientists	 Joseph	 Shklovsky,	 Roald	 Sagdeev,	 Yakov	 Zel’dovich,	 and
Rashid	Sunyaev.

I	gave	a	talk	on—you	guessed	it—X-ray	bursts,	and	I	got	to	meet	the	authors	of
the	Russian	burst	paper.	They	generously	showed	me	data	of	many	bursts,	way
more	than	they	had	published	in	1975.	It	was	immediately	obvious	to	me	that	all
this	was	nonsense,	but	I	did	not	tell	them	that,	at	least	not	at	first.	I	first	went	to
see	 their	 boss,	 Roald	 Sagdeev,	 who	 at	 the	 time	 was	 the	 director	 of	 the	 Space
Research	Institute	of	the	USSR	Academy	of	Sciences	in	Moscow.	I	told	him	that	I
wanted	 to	discuss	something	rather	delicate	with	him.	He	suggested	we	not	do
that	in	his	office	(bugs	were	all	over	the	place),	so	we	went	outside.	I	gave	him	my
reasons	why	their	bursts	were	not	what	they	thought	they	were—he	immediately
understood.	 I	 told	 him	 that	 I	 was	 afraid	 that	 my	 telling	 the	 world	 about	 this
might	get	these	guys	into	deep	trouble	under	the	Soviet	regime.	He	assured	me
that	 that	would	not	be	 the	case,	and	he	encouraged	me	to	meet	with	 them	and
tell	 them	 exactly	what	 I	 had	 told	 him.	 So	 I	 did,	 and	 that	was	 the	 last	we	 ever
heard	of	the	Russian	X-ray	bursts.	I’d	like	to	add	that	we	are	still	friends!

You	may	be	curious	to	know	what	caused	these	Russian	bursts.	At	the	time	I



had	no	idea,	but	now	I	know;	they	were	man-made,	and	guess	who	made	them—
the	Russians!	I’ll	solve	this	mystery	in	a	bit.

For	 now	 let’s	 return	 to	 the	 real	 X-ray	 bursts,	 which	 we	 were	 still	 trying	 to
figure	out.	When	the	X-rays	of	 the	bursts	plow	 into	 the	accretion	disk	(or	 into
the	donor	star)	of	an	X-ray	binary,	the	disk	and	the	star	get	hotter	and	light	up
briefly	 in	 the	optical	part	of	 the	spectrum.	Since	 the	X-rays	would	 first	have	 to
travel	to	the	disk	and	donor	star,	we	expected	that	any	optical	flash	from	the	disk
would	 reach	 us	 seconds	 after	 the	 X-ray	 burst.	 So	 we	 went	 hunting	 for
coordinated	 X-ray	 and	 optical	 bursts.	 My	 former	 graduate	 student	 Jeff
McClintock	and	his	co-workers	had	made	the	first	two	optical	identifications	of
burst	 sources	 (MXB	 1636-53	 and	 MXB	 1735-44)	 in	 1977.	 These	 two	 sources
became	our	targets.

You	 see	 how	 science	 works?	 If	 a	 model	 is	 correct,	 then	 it	 ought	 to	 have
observable	consequences.	In	the	summer	of	1977	my	colleague	and	friend	Jeffrey
Hoffman	 and	 I	 organized	 a	worldwide	 simultaneous	X-ray,	 radio,	 optical,	 and
infrared	“burst	watch.”

This	was	an	amazing	adventure	all	by	itself.	We	had	to	convince	astronomers
at	 forty-four	 observatories	 in	 fourteen	 countries	 to	 devote	 precious	 observing
time	during	the	most	favorable	hours	(known	as	“dark	time,”	when	the	Moon	is
absent)	staring	at	one	faint	star—that	might	do	nothing.	That	they	were	willing
to	 participate	 shows	 you	 just	 how	 significant	 astronomers	 considered	 the
mystery	of	X-ray	bursts.	Over	thirty-five	days,	with	SAS-3,	we	detected	120	X-ray
bursts	 from	 the	 burst	 source	 MXB	 1636-53	 but	 absolutely	 no	 bursts	 were
observed	with	the	telescopes	on	the	ground.	What	a	disappointment!

You	 might	 imagine	 that	 we	 had	 to	 apologize	 to	 our	 colleagues	 around	 the
world,	but	the	truth	is	that	none	saw	it	as	a	problem.	This	is	what	science	is	all
about.

So	we	tried	again	the	following	year	using	only	large	ground-based	telescopes.
Jeff	 Hoffman	 had	 left	 for	 Houston	 to	 become	 an	 astronaut,	 but	 my	 graduate
student	Lynn	Cominsky	and	 the	Dutch	astronomer	 Jan	van	Paradijs	 (who	had
come	to	MIT	in	September	1977)	joined	me	in	the	1978	burst	watch.*	This	time
we	 selected	MXB	 1735–44.	 On	 the	 night	 of	 June	 2,	 1978,	 we	 succeeded!	 Josh
Grindlay	 and	 his	 co-workers	 (including	McClintock)	 detected	 an	 optical	 burst
with	the	1.5-meter	telescope	at	Cerro	Tololo	in	Chile	a	few	seconds	after	we,	at
MIT,	 detected	 an	 X-ray	 burst	 with	 SAS-3.	 We	 made	 it	 to	 the	 front	 page	 of
Nature,	which	was	quite	an	honor.	This	work	further	supported	our	conviction
that	X-ray	bursts	come	from	X-ray	binaries.



What	was	very	puzzling	 to	us	was	why	all	 burst	 sources	 except	one	produce
only	a	handful	of	bursts	in	a	day	and	why	the	Rapid	Burster	was	so	very	different.
The	answer	 lay	with	 the	most	wonderful—and	most	bewildering—discovery	of
my	career.

The	Rapid	Burster	is	what	we	call	a	transient.	Cen	X-2	is	also	a	transient	(see
chapter	11).	However,	the	Rapid	Burster	is	what	we	call	a	recurrent	transient.	In
the	 1970s	 it	 became	 burst-active	 about	 every	 six	months,	 but	 only	 for	 several
weeks,	after	which	it	would	go	off	the	air.

About	 a	 year	 and	 a	 half	 after	 we	 discovered	 the	 Rapid	 Burster,	 we	 noticed
something	 about	 its	 burst	 profiles	 that	 transformed	 this	mystery	 source	 into	 a
Rosetta	Stone	of	X-ray	bursters.	In	the	fall	of	1977,	when	the	Rapid	Burster	was
active	again,	my	undergraduate	student	Herman	Marshall	looked	very	closely	at
the	X-ray	burst	profiles	and	discovered	a	different	kind	of	burst	among	the	very
rapid	bursts,	one	that	came	far	 less	frequently,	about	every	three	or	four	hours.
These	special	bursts,	as	we	called	them	at	 first,	exhibited	the	same	black	body–
like	cooling	profile	 that	 characterized	all	 the	bursts	 from	 the	many	other	burst
sources.	 In	other	words,	perhaps	what	we	were	calling	special	bursts—we	soon
called	 them	Type	 I	bursts,	 and	gave	 the	 rapid	bursts	 the	designation	Type	 II—
weren’t	so	special	at	all.	The	Type	II	bursts	were	clearly	the	result	of	spasmodic
accretion—there	was	never	any	doubt	about	that—but	maybe	the	common	Type
I	bursts	were	due	 to	 thermonuclear	 flashes	after	all.	 I’ll	 tell	you	shortly	how	we
figured	that	out—just	bear	with	me.

In	 the	 fall	 of	 1978	 my	 colleague	 Paul	 Joss	 at	 MIT	 had	 made	 some	 careful
calculations	about	the	nature	of	thermonuclear	flashes	on	the	surface	of	neutron
stars.	He	concluded	that	the	accumulated	hydrogen	first	quietly	fuses	to	helium,
but	 that	 the	helium,	once	 it	 reaches	 a	 critical	mass,	pressure,	 and	 temperature,
can	 then	 violently	 explode	 and	 produce	 a	 thermonuclear	 flash	 (thus	 a	 Type	 I
burst).	 This	 led	 to	 a	 prediction	 that	 the	 X-ray	 energy	 released	 in	 the	 steady
accretion	should	be	roughly	a	hundred	times	larger	than	the	energy	released	in
the	 thermonuclear	 bursts.	 In	 other	 words,	 the	 available	 gravitational	 potential
energy	was	roughly	a	hundred	times	larger	than	the	available	nuclear	energy.



X-ray	 bursts	 from	 the	 Rapid	 Burster	 detected	 with	 SAS-3	 in	 the	 fall	 of	 1977.	 The	 height	 of	 the	 line
represents	the	number	of	detected	X-rays	in	about	one	second,	while	the	horizontal	axis	represents	time.
each	 panel	 shows	 about	 300	 seconds	 of	 data.	 The	 rapidly	 repetitive	 Type	 II	 bursts	 are	 numbered
sequentially.	One	“Special	Burst”	is	visible	in	each	panel;	they	have	different	numbers.	They	are	the	Type
I	bursts	(thermonuclear	flashes).	This	figure	is	from	Hoffman,	Marshall,	and	Lewin,	nature,	16	Feb.	1978.

We	measured	 the	 total	 amount	 of	 energy	 emitted	 in	X-rays	 from	 the	Rapid
Burster	 during	 the	 five-and-a-half	 days	 of	 our	 fall	 1977	 observations,	 and	 we
found	that	about	120	times	more	energy	was	emitted	in	the	Type	II	bursts	than
in	the	“special”	Type	I	bursts.	That	was	the	clincher!	At	that	point	we	knew	that
the	Rapid	Burster	was	an	X-ray	binary	and	that	Type	I	bursts	were	the	result	of
thermonuclear	 flashes	on	 the	 surface	of	 an	 accreting	neutron	 star	 and	 that	 the
Type	II	bursts	were	 the	result	of	 the	release	of	gravitational	potential	energy	of
the	matter	flowing	from	the	donor	star	to	the	neutron	star.	There	simply	was	no
doubt	 about	 this	 anymore;	 from	 that	 time	 on,	 we	 knew	 that	 all	 Type	 I	 burst
sources	were	neutron	star	X-ray	binaries.	At	the	same	time	we	knew	conclusively
that	 black	 holes	 could	 not	 be	 the	 source	 of	 the	 bursts.	 Black	 holes	 have	 no
surface,	so	they	cannot	produce	thermonuclear	flashes.

Even	 though	 it	 was	 already	 crystal	 clear	 to	 most	 of	 us	 by	 1978	 that	 burst
sources	were	accreting	neutron	star	binaries,	Grindlay	at	Harvard	continued	to
insist	 that	 the	 bursts	 were	 in	 fact	 produced	 by	 massive	 black	 holes.	 He	 even
published	 a	 paper	 in	 1978	 in	 which	 he	 tried	 to	 explain	 how	 the	 bursts	 are
produced	by	very	massive	black	holes.	 I	 told	you	scientists	can	get	emotionally
attached	 to	 their	 theories.	 The	 Real	 Paper	 in	 Cambridge	 ran	 a	 long	 story,
“Harvard	and	MIT	at	the	Brink,”	featuring	pictures	of	Grindlay	and	me.

Evidence	for	the	binary	nature	of	burst	sources	came	in	1981	when	my	Danish
friend	Holger	Pederson,	 Jan	van	Paradijs,	and	I	discovered	the	3.8-hour	orbital
period	of	the	burst	source	MXB	1636–53.	Yet,	it	was	not	until	1984	that	Grindlay
finally	conceded.

So	it	was	the	weirdest	X-ray	source,	the	Rapid	Burster,	that	helped	confirm	the



theory	of	normal	(Type	I)	X-ray	bursts,	which	had	been	mystifying	in	their	own
right.	 The	 irony	 is	 that	 for	 all	 it	 explained,	 the	 Rapid	 Burster	 has	 remained
mostly	a	mystery.	Not	so	much	for	observers,	but	for	theoreticians	it	remains	an
embarrassment.	The	best	we	could	do,	and	in	some	ways	the	best	we’ve	ever	been
able	to	do,	is	come	up	with	the	explanation	of	“spasmodic	accretion”—I	know,	it
sounds	like	something	you	could	catch	on	an	exotic	vacation.	And	the	truth	is,
it’s	 words,	 not	 physics.	 Somehow,	 the	 matter	 headed	 for	 the	 neutron	 star	 is
temporarily	held	up	in	the	disk	before	a	blob	or	a	ring	of	matter	is	released	from
the	 disk	 and	 spurts	 down	 to	 the	 surface	 of	 the	 star,	 releasing	 gravitational
potential	energy	 in	bursts.	We	call	 this	 release	a	disk	 instability,	but	 that	 too	 is
just	words;	no	one	has	a	clue	why	and	how	it	works.

Frankly,	 we	 also	 do	 not	 understand	 what	 the	 mechanism	 is	 behind	 the
recurrent	transient	behavior	of	X-ray	sources.	Why	do	they	turn	on	and	off	and
on	 and	 off?	 We	 just	 don’t	 know.	 Once	 in	 1977	 we	 started	 to	 pick	 up	 bursts
simultaneously	 in	 all	 of	 SAS-3’s	 detectors.	 This	 was	 bizarre,	 since	 they	 were
viewing	 the	 sky	 in	 totally	different	directions.	The	only	 reasonable	 explanation
we	could	come	up	with	was	that	very-high-energy	gamma	rays	were	penetrating
the	 entire	 spacecraft	 (something	 that	 X-rays	 cannot	 do)	 and	 leaving	 signals
behind.	 Since	 all	 detectors	 “fired”	 at	 the	 same	 time,	 we	 had	 no	 clue	 what
direction	 these	 gamma	 rays	 were	 coming	 from.	 After	 we	 had	 observed	 a	 few
dozen	 of	 these	 episodes	 over	 a	 period	 of	 several	 months,	 they	 stopped.	 But
thirteen	months	later	they	started	up	again.	No	one	at	MIT	had	a	clue.

With	 the	 help	 of	 one	 of	my	 undergraduate	 students,	 Christiane	 Tellefson,	 I
started	to	catalog	these	bursts,	and	we	even	classified	them	as	bursts	A,	B,	and	C,
depending	on	their	profiles.	I	stored	them	all	in	a	file	that	I	labeled	SHIT	BURSTS.

I	remember	giving	a	presentation	to	some	people	from	NASA	(who	would	visit
us	 yearly),	 telling	 them	 our	 latest	 exciting	 news	 on	 X-ray	 bursts	 and	 showing
them	some	of	these	bizarre	bursts.	I	explained	my	reluctance	to	publish;	they	just
didn’t	look	kosher	to	me.	However,	they	encouraged	me	not	to	delay	publishing.
So	Christiane	and	I	started	to	write	a	paper.

Then	 one	 day,	 completely	 out	 of	 the	 blue,	 I	 received	 a	 call	 from	my	 former
student	 Bob	 Scarlett,	 who	 was	 doing	 classified	 research	 at	 the	 Los	 Alamos
National	Laboratory.	He	asked	me	not	to	publish	these	weird	bursts.	I	wanted	an
explanation,	 but	 he	was	not	 allowed	 to	 tell	me	why.	He	 asked	me	 to	 give	 him
some	of	the	times	that	these	bursts	had	occurred,	which	I	did.	Two	days	later	he
called	 again	 and	 this	 time	 he	urged	me	 not	 to	 publish	 for	 reasons	 of	 national
security.	 I	 nearly	 fell	 off	 my	 chair.	 I	 immediately	 called	 my	 friend	 France



Córdova,	who	had	once	worked	with	me	at	MIT	but	who	at	 that	time	was	also
working	in	Los	Alamos.	I	told	her	about	my	conversations	with	Bob	and	hoped
that	she	could	cast	some	light	on	what	was	going	on.	She	must	have	discussed	it
with	Bob,	because	a	few	days	later	she	too	called	and	urged	me	not	to	publish.	To
put	my	mind	at	rest,	she	assured	me	that	these	bursts	were	of	zero	astronomical
interest.	To	make	a	long	story	short,	I	did	not	publish.

Many	 years	 later	 I	 learned	 what	 had	 happened:	 the	 “shit	 bursts”	 had	 been
produced	 by	 several	 Russian	 satellites	 that	 were	 powered	 by	 nuclear	 electrical
generators,	which	contain	extremely	strong	radioactive	sources.	Whenever	SAS-
3	came	near	any	of	the	Russian	satellites,	they	would	shower	our	detectors	with
gamma	 rays	 emitted	 by	 the	 radioactive	 sources.	 Now,	 remember	 those	 weird
bursts	detected	by	the	Russians	back	in	1971?	I’m	now	quite	certain	these	were
also	caused	by	the	Russians’	own	satellites…	what	irony!

This	 period	 of	my	 life,	 beginning	 in	 the	 late	 1970s	 and	 going	 through	 1995,
was	 incredibly	 intense.	X-ray	 astronomy	was	 the	 cutting	 edge	 of	 observational
astrophysics	then.	My	involvement	with	X-ray	bursts	pushed	me	to	the	pinnacle
of	 my	 scientific	 career.	 I	 probably	 gave	 a	 dozen	 colloquia	 yearly	 all	 over	 the
world,	 in	 Eastern	 and	 Western	 Europe,	 Australia,	 Asia,	 Latin	 America,	 the
Middle	East,	and	throughout	the	United	States.	I	got	invited	to	give	talks	at	many
international	astrophysics	conferences	and	was	the	chief	editor	of	three	books	on
X-ray	astronomy,	 the	 last	one,	Compact	Stellar	X-ray	Sources,	 in	2006.	 It	was	a
heady,	wonderful	time.

And	yet,	despite	the	amazing	advances	we	made,	the	Rapid	Burster	has	resisted
all	attempts	to	unlock	its	deepest	mysteries.	Someone	will	figure	it	out	some	day,
I’m	sure.	And	they	in	turn	will	be	confronted	with	something	equally	perplexing.
That’s	what	I	 love	about	physics.	And	why	I	keep	a	poster-size	reproduction	of
the	 Rapid	 Burster’s	 burst	 profiles	 prominently	 displayed	 in	 my	 MIT	 office.
Whether	 it’s	 in	 the	 Large	 Hadron	 Collider	 or	 at	 the	 farthest	 reaches	 of	 the
Hubble	Ultra	Deep	Field,	physicists	are	getting	more	and	more	data,	and	coming
up	with	more	 and	more	 ingenious	 theories.	The	one	 thing	 I	 know	 is	whatever
they	 find,	 and	 propose,	 and	 theorize,	 they’ll	 uncover	 yet	 more	 mysteries.	 In
physics,	more	answers	lead	to	even	more	questions.



CHAPTER	15

Ways	of	Seeing

Most	high	school	and	college	students	hate	taking	physics	because	it	is	usually
taught	as	a	complicated	set	of	mathematical	formulas.	That	is	not	the	approach	I
use	at	MIT,	and	it	is	not	the	approach	I	use	in	this	book.	I	present	physics	as	a
way	of	seeing	our	world,	revealing	territories	that	would	otherwise	be	hidden	to
us—from	the	tiniest	subatomic	particles	to	the	vastness	of	our	universe.	Physics
allows	 us	 to	 see	 the	 invisible	 forces	 at	 play	 all	 around	 us,	 from	 gravity	 to
electromagnetism,	and	to	be	on	the	alert	not	only	for	where	and	when	we’ll	find
rainbows,	but	also	halos,	fogbows,	and	glories,	and	maybe	even	glassbows.

Each	 pioneering	 physicist	 changed	 the	 way	 we	 look	 at	 the	 world.	 After
Newton,	 we	 could	 understand	 and	 predict	 the	 movements	 of	 the	 entire	 solar
system,	and	we	had	the	mathematics—calculus—to	do	so.	After	Newton,	no	one
could	claim	that	sunlight	was	not	made	up	of	colors,	or	that	rainbows	came	from
anything	 but	 sunlight	 refracting	 and	 reflecting	 in	 raindrops.	 After	 Maxwell,
electricity	 and	 magnetism	 were	 forever	 linked:	 it	 was	 even	 hard	 for	 me	 to
separate	them	into	different	chapters	in	this	book.

This	is	why	I	see	a	fascinating	relationship	between	physics	and	art;	pioneering
art	is	also	a	new	way	of	seeing,	a	new	way	of	looking	at	the	world.	You	might	be
surprised	 to	 learn	 that	 for	much	 of	my	 life	 I’ve	 been	 almost	 as	 obsessed	 with
modern	art	as	I	have	been	with	physics;	I	have	a	love	relationship	with	both!	I’ve
already	 mentioned	 my	 large	 collection	 of	 Fiestaware.	 I’ve	 also	 collected	 more
than	a	hundred	works	of	art—paintings,	collages,	sculptures,	rugs,	chairs,	tables,
puppets,	masks—since	the	mid-sixties,	and	I	no	longer	have	enough	wall	or	floor
space	in	my	home	to	display	them	all.

In	my	office	at	MIT,	physics	dominates,	though	I	have	two	great	works	of	art
on	 loan	 from	 the	 university.	 But	 at	 home	 I	 probably	 only	 have	 about	 a	 dozen
physics	books—and	about	250	art	books.	I	was	fortunate	in	being	initiated	into	a
love	of	art	early.

My	parents	 collected	 art,	 though	 they	 knew	very	 little	 about	 it	 intellectually.
They	 simply	went	by	what	 they	 liked,	which	 can	 lead	down	 some	blind	 alleys.
Sometimes	they	picked	some	great	works,	and	sometimes	some	not	so	great,	or
at	 least	 so	 it	 appears	 with	 the	 benefit	 of	 hindsight.	 One	 painting	 that	made	 a



strong	 impression	on	me	 is	a	portrait	of	my	 father,	which	 I	now	have	hanging
over	my	 fireplace	 in	Cambridge.	 It	 is	 really	 very	 striking.	My	 father	was	 a	 real
character—and	like	me,	he	was	very	opinionated.	The	artist,	who	knew	him	very
well,	caught	him	superbly,	 from	the	waist	up,	with	his	 large,	bald,	oblong	head
sitting	 between	 his	 powerful	 square	 shoulders,	 his	 small	 mouth	 set	 in	 a	 self-
satisfied	 smile.	 But	 it’s	 his	 glasses	 that	 truly	 stand	 out:	 thick,	 black,	 outlining
invisible	 eyes,	 they	 follow	 you	 around	 the	 room,	while	 his	 left	 eyebrow	 arches
quizzically	over	the	frame.	That	was	his	entire	personality:	penetrating.

My	 father	 took	me	 to	art	 galleries	 and	museums	when	 I	was	 in	high	 school,
and	 it	was	 then	 that	 I	 really	began	 to	 fall	 in	 love	with	art,	 as	 it	 taught	me	new
ways	of	seeing.	I	loved	that	in	galleries	and	museums,	as	opposed	to	school,	you
proceed	 according	 to	 your	 own	 interests,	 stopping	 when	 you	 wish,	 staying	 as
long	 as	 you	 like,	 moving	 on	 when	 it	 suits	 you.	 You	 develop	 your	 own
relationship	to	art.	I	soon	started	going	to	museums	on	my	own,	and	before	long,
I	had	acquired	a	bit	of	knowledge.	I	plunged	into	van	Gogh.	(You	know	his	name
is	 really	 pronounced	 van	 Chocch—it’s	 all	 but	 unpronounceable	 if	 you’re	 not
Dutch,	two	gutturals	barely	separated	by	a	short	O	sound.)	I	ended	up	giving	a
lecture	 about	 van	Gogh	 to	my	 class	 when	 I	 was	 fifteen.	 I	 would	 also	 take	my
friends	 on	 tours	 to	museums	 sometimes.	 So	 it	 was	 really	 art	 that	 got	me	 into
teaching.

This	 is	when	I	 first	 learned	what	a	wonderful	 feeling	it	 is	 to	teach	others—of
any	age—to	expand	their	minds	 into	new	realms.	 It’s	a	 real	 shame	that	art	can
seem	as	obscure	and	difficult	 as	 so	much	of	physics	does	 to	 so	many	who	had
poor	physics	teachers.	This	is	one	reason	that	for	the	past	eight	years	I’ve	enjoyed
putting	an	art	quiz	on	my	MIT	bulletin	board	every	week—an	image	I	print	off
the	web,	with	the	question	“Who	is	the	artist?”	I	give	prizes—some	very	nice	art
books—to	 the	 three	 contestants	 who	 have	 the	 most	 correct	 answers	 over	 the
course	of	the	year.	Some	regulars	spend	hours	scouring	the	web	and	in	doing	so,
they	learn	about	art!	I	had	so	much	fun	with	the	weekly	quiz	that	I’ve	now	put	up
a	biweekly	one	on	my	Facebook	page.	You	can	try	it	yourself	if	you	like.

I’ve	 also	 been	 lucky	 enough	 to	 have	 had	 some	 wonderful	 chances	 to
collaborate	with	some	amazing,	cutting-edge	artists	in	my	life.	In	the	late	1960s
the	German	 “sky	 artist”	Otto	Piene	 came	 to	MIT	 as	 a	 fellow	 at	 the	Center	 for
Advanced	 Visual	 Studies,	 and	 later	 ended	 up	 directing	 it	 for	 two	 decades.
Because	 I	 had	 already	been	 flying	 some	of	my	 giant	 balloons	 by	 then,	 I	 got	 to
help	Otto	make	some	of	his	sky	art.	The	very	first	project	we	worked	on	together
was	 called	 the	 Light	 Line	 Experiment,	 and	 consisted	 of	 four	 250-foot-long



polyethylene	 tubes	 filled	with	helium	 that,	when	held	down	at	 each	end,	made
elegant	 arcs	 in	 the	 spring	 breezes	 at	 the	 MIT	 athletic	 fields.	We	 tied	 all	 four
together	to	make	a	thousand-foot-long	balloon	and	let	one	end	float	up	into	the
sky.	At	night	we	brought	out	spotlights	that	lit	up	parts	of	the	snakelike	balloons
as	 they	 twisted	 and	 waved	 in	 the	 most	 amazing,	 constantly	 changing	 shapes,
hundreds	of	feet	in	the	air.	It	was	fabulous!

My	 job	 in	 these	 projects	 was	 usually	 technical:	 figuring	 out	 whether	 Otto’s
ideas	for	the	sizes	and	shapes	of	the	balloons	would	be	feasible.	How	thick	should
the	polyethylene	be,	 for	 example?	We	wanted	 it	 to	be	 light	 enough	 to	 rise,	but
strong	enough	 to	 stand	up	under	windy	conditions.	At	a	1974	event	 in	Aspen,
Colorado,	we	hung	multifaceted	glass	beads	from	the	tether	lines	of	a	“light	tent.”
I	made	many	calculations	regarding	the	different	balloon	sizes	and	bead	weights
in	order	to	get	to	a	workable	solution	in	terms	of	physics	and	aesthetics.	I	loved
doing	the	physics	to	make	Otto’s	artistic	ideas	a	reality.

I	 got	 really	 involved	 with	 the	 immense,	 five-color	 Rainbow	 balloon	 he
designed	 for	 the	 closing	 ceremonies	 of	 the	 1972	 Olympics	 in	Munich.	We	 of
course	 had	 no	 idea	 that	 the	 Olympics	 would	 end	 so	 disastrously,	 with	 the
massacre	of	the	Israeli	athletes,	so	our	1,500-foot	Rainbow,	which	arched	nearly
five	hundred	feet	high	over	the	Olympic	sea,	became	a	symbol	of	hope	in	the	face
of	catastrophe.	A	picture	of	the	Rainbow	balloon	can	be	seen	in	the	insert.	When
I	 began	 flying	 balloons	 to	 look	 at	 the	 universe,	 it	 never	 occurred	 to	me	 that	 I
could	be	involved	in	such	projects.

Otto	introduced	me	to	the	Dutch	artist	Peter	Struycken,	whose	art	I	knew	well
because	my	parents	had	collected	his	works	 in	the	Netherlands.	Otto	called	me
up	one	day	at	MIT	and	said,	“There’s	this	Dutch	artist	 in	my	office;	would	you
like	 to	 meet	 him?”	 People	 always	 assume	 that	 if	 we’re	 from	 the	 same	 little
country	we’d	like	to	chat,	but	more	often	than	not,	I	don’t	want	to.	I	told	Otto,
“Why	should	I,	what’s	his	name?”	When	Otto	said	“Peter	Struycken,”	of	course	I
agreed,	but	in	order	to	play	it	safe,	I	told	Otto	that	I	could	only	meet	for	half	an
hour	(which	was	not	true).	So	Peter	came	over	to	my	office;	we	talked	for	almost
five	 hours	 (yes,	 five	 hours!)	 and	 I	 invited	 him	 for	 oysters	 at	 Legal	 Sea	 Foods
afterward!	We	clicked	right	from	the	start,	and	Peter	became	one	of	my	closest
friends	for	more	than	twenty	years.	This	visit	changed	my	life	forever!

During	 that	 first	 discussion	 I	 was	 able	 to	 make	 Peter	 “see”	 why	 his	 major
problem/question—“When	 is	 something	 different	 from	 something	 else?”—all
depends	on	one’s	definition	of	difference.	For	 some,	 a	 square	may	be	different
from	 a	 triangle	 and	 different	 from	 a	 circle.	 However,	 if	 you	 define	 geometric



lines	that	close	onto	themselves	as	the	same—well,	then	these	three	shapes	are	all
the	same.

Peter	 showed	 me	 a	 dozen	 computer	 drawings,	 all	 made	 with	 the	 same
program,	 and	 he	 said,	 “They	 are	 all	 the	 same.”	 To	 me	 they	 looked	 all	 very
different.	 It	 all	 depends	 on	one’s	 definition	of	 “the	 same.”	 I	 added	 that	 if	 they
were	all	the	same	to	him,	perhaps	he	would	like	to	leave	me	one.	He	did	and	he
wrote	on	it,	in	Dutch,	“Met	dank	voor	een	gesprek”	(literally,	“With	thanks	for	a
discussion”).	 This	 was	 typical	 Peter:	 very	 very	 low	 key.	 Frankly,	 of	 the	 many
Struyckens	I	have,	this	small	drawing	is	my	very	favorite.

Peter	had	found	in	me	a	physicist	who	was	not	only	very	interested	in	art,	but
who	could	help	him	with	his	work.	He	is	one	of	the	world’s	pioneers	in	computer
art.	In	1979	Peter	(with	Lien	and	Daniel	Dekkers)	came	for	a	year	to	MIT,	and
we	started	working	together	very	closely.	We	met	almost	daily,	and	I	had	dinner
at	his	place	two	or	three	times	a	week.	Before	Peter	I	“looked”	at	art—Peter	made
me	“see”	art.

Without	 him,	 I	 think	 I	 never	 would	 have	 learned	 to	 focus	 on	 pioneering
works,	 to	 see	 how	 they	 can	 fundamentally	 transform	 our	 ways	 of	 seeing	 the
world.	 I	 learned	 that	 art	 is	 not	 only,	 or	 even	mostly,	 about	 beauty;	 it	 is	 about
discovery,	and	this	is	where	art	and	physics	come	together	for	me.

From	that	time	on,	I	began	to	look	at	art	very	differently.	What	I	“liked”	was
no	longer	important	to	me.	What	counted	was	the	artistic	quality,	the	new	way	of
looking	 at	 the	 world,	 and	 that	 can	 only	 be	 appreciated	 if	 you	 really	 know
something	about	art.	I	began	to	look	closely	at	the	years	that	works	were	made.
Malevich’s	 pioneering	works	 of	 art	 from	 1915	 to	 1920	 are	 fascinating.	 Similar
paintings	made	 by	 others	 in	 the	 1930s	 are	 of	 no	 interest	 to	me.	 “Art	 is	 either
plagiarism	 or	 revolution,”	 said	 Paul	Gauguin,	with	 typical	Gauguin	 arrogance,
but	there	is	some	truth	in	it.

I	was	fascinated	by	the	evolution	that	led	to	pioneering	works.	As	an	example,
soon	 I	 was	 able	 to	 accurately	 tell	 the	 year	 that	 a	 Mondrian	 was	 made—his
development	between	1900	and	1925	was	staggering—and	my	daughter	Pauline
can	 do	 that	 now	 too.	 Over	 the	 years	 I	 have	 noticed	 more	 than	 once	 that
museums	sometimes	list	the	wrong	date	for	a	painting.	When	I	point	this	out	(as
I	always	do),	curators	are	sometimes	embarrassed,	but	they	always	change	it.

I	worked	with	Peter	on	a	dozen	of	his	ideas.	Our	first	project	was	“16th	Space,”
art	 in	 sixteen	dimensions	 (we	beat	 string	 theory	with	 its	 eleven	dimensions).	 I
also	recall	Peter’s	Shift	series.	He	had	developed	a	mathematical	underpinning	to
a	 computer	 program	 that	 generated	 very	 complex	 and	 interesting	 art.	 But



because	 he	 didn’t	 know	 much	 math,	 his	 equations	 were	 bizarre—really
ridiculous.	He	wanted	the	math	to	be	beautiful	but	didn’t	know	how	to	do	it.

I	was	 able	 to	 come	 up	with	 a	 solution,	 not	 so	 complicated	 in	 physics	 at	 all:
traveling	 waves	 in	 three	 dimensions.	 You	 can	 set	 the	 wavelength;	 you	 can
determine	the	speed	of	the	waves;	and	you	can	indicate	their	directions.	And	if
you	want	three	waves	going	through	one	another,	you	can	do	that.	You	start	with
a	beginning	condition	and	 then	you	 let	 the	waves	go	 through	one	another	and
add	them	up.	This	produces	very	interesting	interference	patterns.

The	underlying	math	was	beautiful,	 and	 that	was	very	 important	 for	Peter.	 I
don’t	mean	 to	boast—he	would	 tell	 you	 the	 same	 thing.	This	 is	 the	 role	 that	 I
have	mostly	played	in	his	life:	to	show	him	how	to	make	things	mathematically
beautiful	and	easy	to	understand.	He	very	kindly	always	let	me	choose	one	work
of	art	from	each	series.	Lucky	me,	I	have	about	thirteen	Struyckens!

As	a	result	of	my	collaboration	with	Peter,	I	was	invited	by	the	director	of	the
Boijmans	 van	 Beuningen	 Museum	 in	 Rotterdam	 to	 give	 the	 first	 Mondrian
Lecture	in	1979	under	the	vast	dome	of	Amsterdam’s	Koepelkerk.	It	was	packed;
there	 were	 about	 nine	 hundred	 people	 in	 my	 audience.	 This	 very	 prestigious
lecture	 is	 now	 given	 every	 other	 year.	 The	 lecturer	 in	 1981	was	Umberto	Eco,
Donald	Judd	in	1993,	Rem	Koolhaas	in	1995,	and	Charles	Jencks	in	2010.

My	collaborations	with	Otto	and	Peter	have	not	been	my	only	involvement	in
making	art;	I	once	tried	(in	jest)	to	make	a	bit	of	conceptual	art	myself.	When	I
gave	my	lecture	“Looking	at	20th-Century	Art	Through	the	Eyes	of	a	Physicist”
(http://mitworld.mit.edu/speaker/view/55),	I	explained	that	at	home	I	have	about
a	 dozen	 books	 on	physics	 but	 at	 least	 two	hundred	 fifty	 on	 art,	 so	 the	 ratio	 is
about	twenty	to	one.	I	placed	ten	art	books	on	the	desk	and	invited	the	audience
to	look	through	them	at	the	intermission.	In	order	to	keep	the	proper	balance,	I
announced,	 I’d	 brought	 half	 a	 book	 on	 physics.	 That	 morning	 I	 had	 sliced	 a
physics	text	in	two,	right	down	the	middle	of	the	spine.	So	I	held	it	up,	pointing
out	 that	 I’d	 cut	 it	 very	 carefully—it	 was	 really	 half	 a	 book.	 “For	 those	 of	 you
uninterested	in	art,”	I	said—dropping	it	loudly	on	the	table—“here	you	are!”	I’m
afraid	no	one	got	it.

If	we	look	back	at	the	days	of	Renaissance	art	up	to	the	present,	then	there	is	a
clear	trend.	The	artists	are	gradually	removing	the	constraints	that	were	put	on
them	by	prevailing	traditions:	constraints	of	subject	matter,	of	form,	of	materials,
of	perspective,	of	technique,	and	of	color.	By	the	end	of	the	nineteenth	century,
artists	 completely	 abandoned	 the	 idea	 of	 art	 as	 a	 representation	 of	 the	 natural
world.

http://mitworld.mit.edu/speaker/view/55


The	truth	is	that	we	now	find	many	of	these	pioneering	works	magnificent,	but
the	intention	of	the	artists	was	quite	something	else.	They	wanted	to	introduce	a
new	way	 of	 looking	 at	 the	world.	Many	 of	 the	works	 that	we	 admire	 today	 as
iconic	 and	 beautiful	 creations—van	 Gogh’s	 Starry	 Night,	 for	 example,	 or
Matisse’s	The	Green	Stripe	(a	portrait	of	his	wife)	received	ridicule	and	hostility
at	 the	 time.	Today’s	beloved	 Impressionists—Monet,	Degas,	Pissarro,	Renoir—
among	the	most	popular	artists	in	any	museum	today,	also	faced	derision	when
they	began	showing	their	paintings.

The	fact	that	most	of	us	find	their	works	beautiful	now	shows	that	the	artists
triumphed	over	 their	age:	 their	new	way	of	 seeing,	 their	new	way	of	 looking	at
the	world,	has	become	our	world,	our	way	of	seeing.	What	was	just	plain	ugly	a
hundred	years	ago	can	now	be	beautiful.	I	love	the	fact	that	a	contemporary	critic
called	 Matisse	 the	 apostle	 of	 ugliness.	 The	 collector	 Leo	 Stein	 referred	 to	 his
painting	of	Madame	Matisse,	Woman	with	a	Hat,	as	“the	nastiest	 smear	I	have
ever	seen”—but	he	bought	the	painting!

In	the	twentieth	century	artists	used	found	objects—sometimes	shocking	ones,
like	Marcel	Duchamp’s	urinal	 (which	he	called	“fountain”)	and	his	Mona	Lisa,
on	which	he	wrote	 the	provocative	 letters	 L.H.O.O.Q.	Duchamp	was	 the	 great
liberator;	after	Duchamp	anything	goes!	He	wanted	to	shake	up	the	way	we	look
at	art.

No	one	can	look	at	color	 in	the	same	way	after	van	Gogh,	Gauguin,	Matisse,
and	 Derain.	 Nor	 can	 anyone	 look	 at	 a	 Campbell’s	 soup	 can	 or	 an	 image	 of
Marilyn	Monroe	in	the	same	way	after	Andy	Warhol.

Pioneering	 works	 of	 art	 can	 be	 beautiful,	 even	 stunning,	 but	 most	 often—
certainly	at	 first—they	are	baffling,	and	may	even	be	ugly.	The	real	beauty	of	a
pioneering	work	 of	 art,	 no	matter	 how	 ugly,	 is	 in	 its	meaning.	 A	 new	way	 of
looking	at	 the	world	 is	never	 the	 familiar	warm	bed;	 it’s	 always	 a	 chilling	 cold
shower.	I	find	that	shower	invigorating,	bracing,	liberating.

I	think	about	pioneering	work	in	physics	 in	this	same	way.	Once	physics	has
taken	 another	 of	 its	 wonderfully	 revelatory	 steps	 into	 previously	 invisible	 or
murky	terrain,	we	can	never	see	the	world	quite	the	same	way	again.

The	many	stunning	discoveries	I’ve	introduced	through	this	book	were	deeply
perplexing	 at	 the	 time	 they	 were	 made.	 If	 we	 have	 to	 learn	 the	 mathematics
behind	 those	 discoveries,	 it	 can	 be	 truly	 daunting.	 But	 I	 hope	 that	 my
introduction	of	 some	of	 the	biggest	breakthroughs	has	brought	 to	 life	 just	how
exciting	 and	 beautiful	 they	 are.	 Just	 as	 Cézanne,	 Monet,	 van	 Gogh,	 Picasso,
Matisse,	 Mondrian,	 Malevich,	 Kandinsky,	 Brancusi,	 Duchamp,	 Pollock,	 and



Warhol	 forged	 new	 trails	 that	 challenged	 the	 art	 world,	Newton	 and	 all	 those
who	have	followed	him	gave	us	new	vision.

The	pioneers	in	physics	of	the	early	twentieth	century—among	them	Antoine
Henri	Becquerel,	Marie	Curie,	Niels	Bohr,	Max	Planck,	Albert	Einstein,	Louis	de
Broglie,	 Erwin	 Schrödinger,	 Wolfgang	 Pauli,	 Werner	 Heisenberg,	 Paul	 Dirac,
Enrico	 Fermi—proposed	 ideas	 that	 completely	 undermined	 the	 way	 scientists
had	 thought	 about	 reality	 for	 centuries,	 if	 not	 millennia.	 Before	 quantum
mechanics	we	believed	 that	a	particle	 is	 a	particle,	obeying	Newton’s	 laws,	 and
that	a	wave	is	a	wave	obeying	different	physics.	We	now	know	that	all	particles
can	 behave	 like	 waves	 and	 all	 waves	 can	 behave	 like	 particles.	 Thus	 the
eighteenth-century	issue,	whether	light	is	a	particle	or	a	wave	(which	seemed	to
be	 settled	 in	 1801	 by	 Thomas	 Young	 in	 favor	 of	 a	 wave—see	 chapter	 5),	 is
nowadays	a	non-issue	as	it	is	both.

Before	 quantum	mechanics	 it	was	 believed	 that	 physics	was	 deterministic	 in
the	sense	that	 if	you	do	the	same	experiment	a	hundred	times,	you	will	get	 the
exact	 same	 outcome	 a	 hundred	 times.	 We	 now	 know	 that	 that	 is	 not	 true.
Quantum	 mechanics	 deals	 with	 probabilities—not	 certainties.	 This	 was	 so
shocking	 that	even	Einstein	never	accepted	 it.	 “God	does	not	 throw	dice”	were
his	famous	words.	Well,	Einstein	was	wrong!

Before	quantum	mechanics	we	believed	that	 the	position	of	a	particle	and	its
momentum	(which	is	the	product	of	its	mass	and	its	velocity)	could,	in	principle,
simultaneously	be	determined	to	any	degree	of	accuracy.	That’s	what	Newton’s
laws	taught	us.	We	now	know	that	that	is	not	the	case.	Nonintuitive	as	this	may
be,	 the	more	 accurately	 you	 can	determine	 its	 position,	 the	 less	 accurately	 can
you	 determine	 its	 momentum;	 this	 is	 known	 as	 Heisenberg’s	 uncertainty
principle.

Einstein	 argued	 in	 his	 theory	 of	 special	 relativity	 that	 space	 and	 time
constituted	one	four-dimensional	reality,	spacetime.	He	postulated	that	the	speed
of	 light	 was	 constant	 (300,000	 kilometers	 per	 second).	 Even	 if	 a	 person	 were
approaching	 you	on	 a	 superfast	 train	 going	 at	 50	 percent	 of	 the	 speed	of	 light
(150,000	 kilometers	 per	 second),	 shining	 a	 headlight	 in	 your	 face,	 you	 and	 he
would	 come	 up	 with	 the	 same	 figure	 for	 the	 speed	 of	 light.	 This	 is	 very
nonintuitive,	 as	 you	 would	 think	 that	 since	 the	 train	 is	 approaching	 you,	 you
who	are	observing	the	light	aimed	at	you	would	have	to	add	300,000	and	150,000,
which	would	 lead	 to	 450,000	kilometers	per	 second.	But	 that	 is	not	 the	 case—
according	to	Einstein,	300,000	plus	150,000	is	still	300,000!	His	theory	of	general
relativity	 was	 perhaps	 even	 more	 mind-boggling,	 offering	 a	 complete



reinterpretation	of	the	force	holding	the	astronomical	universe	together,	arguing
that	gravity	functioned	by	distorting	the	fabric	of	spacetime	itself,	pushing	bodies
into	 orbit	 through	 geometry,	 even	 forcing	 light	 to	 bend	 through	 the	 same
distorted	spacetime.	Einstein	showed	that	Newtonian	physics	needed	important
revisions,	 and	 he	 opened	 the	 way	 to	 modern	 cosmology:	 the	 big	 bang,	 the
expanding	universe,	and	black	holes.

When	I	began	lecturing	at	MIT	in	the	1970s,	it	was	part	of	my	personality	to
put	more	emphasis	on	the	beauty	and	the	excitement	rather	than	the	details	that
would	 be	 lost	 on	 the	 students	 anyway.	 In	 every	 subject	 I	 taught	 I	 always	 tried
where	possible	to	relate	the	material	to	the	students’	own	world—and	make	them
see	things	they’d	never	thought	of	but	were	within	reach	of	touching.	Whenever
students	ask	a	question,	I	always	say,	“that’s	an	excellent	question.”	The	absolute
last	thing	you	want	to	do	is	make	them	feel	they’re	stupid	and	you’re	smart.

There’s	 a	 moment	 in	 my	 course	 on	 electricity	 and	 magnetism	 that’s	 very
precious	 to	me.	For	most	of	 the	 term	we’ve	been	 sneaking	up,	one	by	one,	 on
Maxwell’s	 equations,	 the	 stunningly	 elegant	descriptions	of	how	electricity	 and
magnetism	 are	 related—different	 aspects	 of	 the	 same	 phenomenon,
electromagnetism.	There’s	an	intrinsic	beauty	in	the	way	these	equations	talk	to
one	another	 that	 is	unbelievable.	You	can’t	 separate	 them;	 together	 they’re	one
unified	field	theory.

So	I	project	these	four	beautiful	equations	on	different	screens	on	all	the	walls
of	the	lecture	hall.	“Look	at	them,”	I	say.	“Inhale	them.	Let	them	penetrate	your
brains.	Only	once	in	your	life	will	you	see	all	four	of	Maxwell’s	equations	for	the
first	 time	 in	 a	 way	 that	 you	 can	 appreciate	 them,	 complete	 and	 beautiful	 and
talking	to	each	other.	This	will	never	happen	again.	You	will	never	be	the	same.
You	have	lost	your	virginity.”	In	honor	of	this	momentous	day	in	the	lives	of	the
students,	as	a	way	of	celebrating	the	intellectual	summit	they’ve	reached,	I	bring
in	six	hundred	daffodils,	one	for	each	student.

Students	 write	 me	 many	 years	 afterward,	 long	 after	 they’ve	 forgotten	 the
details	of	Maxwell’s	equations,	that	they	remember	the	day	of	the	daffodils,	 the
day	I	marked	their	new	way	of	seeing	with	flowers.	To	me	this	is	teaching	at	the
highest	 level.	It’s	so	much	more	important	to	me	for	students	to	remember	the
beauty	 of	 what	 they	 have	 seen	 than	 whether	 they	 can	 reproduce	 what	 you’ve
written	 on	 the	 blackboard.	What	 counts	 is	 not	 what	 you	 cover,	 but	 what	 you
uncover!

My	goal	is	to	make	them	love	physics	and	to	make	them	look	at	the	world	in	a
different	way,	and	that	is	for	life!	You	broaden	their	horizon,	which	allows	them



to	ask	questions	they	have	never	asked	before.	The	point	is	to	unlock	the	world
of	physics	in	such	a	way	that	it	connects	to	the	genuine	interest	students	have	in
the	world.	That’s	why	I	always	try	to	show	my	students	the	forests,	rather	than
take	them	up	and	down	every	single	tree.	That	is	also	what	I	have	tried	to	do	in
this	book	for	you.	I	hope	you	have	enjoyed	the	journey.
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APPENDIX	1

Mammal	Femurs

It’s	 reasonable	 to	 assume	 that	 the	 mass	 of	 a	 mammal	 is	 proportional	 to	 its
volume.	 Let’s	 take	 a	 puppy	 and	 compare	 it	 with	 a	 full-grown	 dog	 that	 is	 four
times	bigger.	I	am	assuming	that	all	linear	dimensions	of	the	bigger	dog	are	four
times	 larger	 than	 that	 of	 the	 puppy—its	 height,	 its	 length,	 the	 length	 and	 the
thickness	of	its	legs,	the	width	of	its	head,	everything.	If	that	is	the	case,	then	the
volume	(and	thus	the	mass)	of	the	bigger	dog	is	about	sixty-four	times	that	of	the
puppy.

One	way	to	see	this	 is	by	taking	a	cube	with	sides	a,	b,	and	c.	The	volume	of
this	 cube	 is	a	 ×	b	 ×	 c.	When	 you	make	 all	 sides	 four	 times	 larger,	 the	 volume
becomes	 4a	 ×	 4b	 ×	 4c,	 which	 is	 64abc.	 If	 we	 express	 this	 a	 bit	 more
mathematically,	we	 can	 say	 that	 the	 volume	 (thus	 the	mass)	of	 the	mammal	 is
proportional	to	its	length	to	the	third	power.	If	the	bigger	dog	is	four	times	larger
than	the	puppy,	then	its	volume	should	be	about	4	cubed	(43)	times	larger,	which
is	64.	So,	if	we	call	the	length	of	the	femur	“l,”	then	by	comparing	mammals	of
different	size,	their	mass	should	be	roughly	proportional	to	l	cubed	(l3).

Okay,	 that’s	mass.	Now,	 the	 strength	 of	 the	mammal’s	 femur	 supporting	 all
that	 weight	 has	 to	 be	 proportional	 to	 its	 thickness,	 right?	 Thicker	 bones	 can
support	more	weight—that’s	 intuitive.	 If	we	translate	 that	 idea	to	mathematics,
the	strength	of	the	femur	should	be	proportional	to	the	area	of	the	cross	section
of	the	bone.	That	cross	section	is	roughly	a	circle,	and	we	know	that	the	area	of	a
circle	is	πr2,	where	r	is	the	radius	of	the	circle.	Thus,	the	area	is	proportional	to	d2

if	d	is	the	diameter	of	the	circle.
Let’s	 call	 the	 thickness	 of	 the	 femur	 “d”	 (for	 diameter).	 Then,	 following

Galileo’s	idea,	the	mass	of	the	mammal	would	be	proportional	to	d2

(so	 that	 the	 bones	 can	 carry	 the	 weight	 of	 the	 mammal),	 but	 it	 is	 also
proportional	to	l3	(that	is	always	the	case,	independent	of	Galileo’s	idea).	Thus,	if
Galileo’s	 idea	 is	 correct,	d2	 should	 be	 proportional	 to	 l3,	 which	 is	 the	 same	 as
stating	that	d	is	proportional	to	l3/2.

If	 I	compare	 two	mammals	and	one	 is	 five	 times	bigger	 than	 the	other	 (thus
the	 length	 l	 of	 its	 femur	 is	 about	 five	 times	 larger	 than	 that	 of	 the	 smaller



mammal),	I	may	expect	that	the	thickness,	d,	of	its	femur	is	about	53/2	=	11	times
greater	 than	 the	 thickness	 of	 the	 smaller	 animal’s	 femur.	 In	 lectures	 I	 showed
that	the	length	l	of	the	femur	of	an	elephant	was	about	100	times	larger	than	the
length	 of	 the	 femur	 of	 a	 mouse;	 we	 may	 therefore	 expect,	 if	 Galileo’s	 idea	 is
correct,	 that	 the	 thickness,	 d,	 of	 the	 elephant’s	 femur	 is	 about	 1003/2	 =	 1,000
times	thicker	than	that	of	the	mouse.

Thus	at	some	point,	for	very	heavy	mammals,	the	thickness	of	the	bones	would
have	 to	 be	 the	 same	 as	 their	 lengths—or	 even	 greater—which	would	make	 for
some	pretty	impractical	mammals,	and	that	would	then	be	the	reason	why	there
is	a	maximum	limit	on	the	size	of	mammals.



APPENDIX	2

Newton’s	Laws	at	Work

Newton’s	law	of	universal	gravitation	can	be	written	as

Here,	Fgrav	 is	 the	force	of	gravitational	attraction	between	an	object	of	mass	m1
and	 one	 of	 mass	 m2,	 and	 r	 is	 the	 distance	 between	 them.	 G	 is	 called	 the
gravitational	constant.

Newton’s	 laws	made	 it	possible	 to	calculate,	at	 least	 in	principle,	 the	mass	of
the	Sun	and	some	planets.

Let’s	see	how	this	works.	I’ll	start	with	the	Sun.	Suppose	m1	is	the	mass	of	the
Sun,	 and	 that	m2	 is	 the	 mass	 of	 a	 planet	 (any	 planet).	 I	 will	 assume	 that	 the
planetary	orbit	is	a	circle	of	radius	r	and	let	the	orbital	period	of	the	planet	be	T
(T	is	365.25	days	for	the	Earth,	88	days	for	Mercury,	and	almost	twelve	years	for
Jupiter).

If	the	orbit	is	circular	or	nearly	so	(which	is	the	case	for	five	of	the	six	planets
known	in	the	seventeenth	century),	the	speed	of	a	planet	in	orbit	is	constant,	but
the	direction	of	its	velocity	is	always	changing.	However,	whenever	the	direction
of	 the	velocity	of	any	object	changes,	even	 if	 there	 is	no	change	 in	speed,	 there
must	be	an	acceleration,	and	thus,	according	to	Newton’s	second	law,	there	must
be	a	force	to	provide	that	acceleration.

It’s	 called	 the	 centripetal	 force	 (Fc),	 and	 it	 is	 always	 exactly	 in	 the	 direction
from	the	moving	planet	toward	the	Sun.	Of	course,	since	Newton	was	Newton,
he	knew	exactly	how	to	calculate	this	force	(I	derive	the	equation	in	my	lectures).
The	magnitude	of	this	force	is

Here	v	is	the	speed	of	the	planet	in	orbit.	But	this	speed	is	the	circumference	of
the	orbit,	2πr,	divided	by	the	time,	T,	it	takes	to	make	one	revolution	around	the
Sun.	Thus	we	can	also	write:



Where	does	this	force	come	from?	What	on	earth	(no	pun	implied)	is	the	origin
of	this	force?	Newton	realized	that	it	must	be	the	gravitational	attraction	by	the
Sun.	Thus	the	two	forces	in	the	above	equations	are	one	and	the	same	force;	they
are	equal	to	each	other:

If	we	massage	this	a	bit	further	by	rearranging	the	variables	(this	is	your	chance
to	brush	up	on	your	high	school	algebra),	we	find	that	the	mass	of	the	Sun	is

Notice	that	the	mass	of	the	planet	(m2)	is	no	longer	present	in	equation	5;	it	does
not	enter	 into	 the	picture;	all	we	need	 is	 the	planet’s	mean	distance	 to	 the	Sun
and	 its	orbital	period	(T).	Doesn’t	 that	 surprise	you?	After	 all,	m2	 shows	up	 in
equation	1	and	also	in	equation	2.	But	the	fact	that	it	is	present	in	both	equations
is	 the	 very	 reason	 that	m2	 is	 eliminated	 by	 setting	Fgrav	 equal	 to	Fc.	That’s	 the
beauty	of	this	method,	and	we	owe	all	this	to	Sir	Isaac!

Equation	5	 indicates	 that	 	 is	 the	 same	 for	 all	 planets.	Even	 though	 they	 all

have	very	different	distances	 to	 the	Sun	and	very	different	orbital	periods,	 	 is
the	 same	 for	all.	The	German	astronomer	and	mathematician	 Johannes	Kepler
had	already	discovered	this	amazing	result	in	1619,	long	before	Newton.	But	why
this	ratio—between	the	cube	of	the	radius	and	square	of	the	orbital	period—was
constant	was	not	understood	at	all.	It	was	the	genius	Newton	who	showed	sixty-
eight	years	later	that	it	is	the	natural	consequence	of	his	laws.

In	summary,	equation	5	tells	us	that	if	we	know	the	distance	from	any	planet
to	 the	Sun	(r),	 the	orbital	period	of	 the	planet	 (T),	and	G,	we	can	calculate	 the
mass	of	the	Sun	(m1).

Orbital	 periods	 were	 known	 to	 a	 high	 degree	 of	 accuracy	 long	 before	 the
seventeenth	 century.	The	 distances	 between	 the	 Sun	 and	 the	 planets	were	 also
known	to	a	high	degree	of	accuracy	long	before	the	seventeenth	century	but	only
on	a	relative	scale.	In	other	words,	astronomers	knew	that	Venus’s	mean	distance
to	the	Sun	was	72.4	percent	of	Earth’s	and	that	Jupiter’s	mean	distance	was	5.200
times	larger	than	Earth’s.	However,	the	absolute	values	of	these	distances	were	an
entirely	different	story.	 In	 the	sixteenth	century,	 in	 the	day	of	 the	great	Danish
astronomer	Tycho	Brahe,	astronomers	believed	that	the	distance	from	the	Earth
to	the	Sun	was	twenty	times	smaller	than	what	it	actually	is	(close	to	150	million
kilometers,	 about	 93	 million	 miles).	 In	 the	 early	 seventeenth	 century	 Kepler



came	up	with	a	more	accurate	distance	to	the	Sun,	but	still	seven	times	smaller
than	what	it	is.

Since	 equation	 5	 indicates	 that	 the	 mass	 of	 the	 Sun	 is	 proportional	 to	 the
distance	(to	a	planet)	cubed,	if	the	distance	r	is	too	low	by	a	factor	of	seven,	then
the	mass	 of	 the	 Sun	will	 be	 too	 low	 by	 a	 factor	 of	 73,	 which	 is	 343—not	 very
useful	at	all.

A	 breakthrough	 came	 in	 1672	 when	 the	 Italian	 scientist	 Giovanni	 Cassini
measured	 the	 distance	 from	 the	 Earth	 to	 the	 Sun	 to	 an	 accuracy	 of	 about	 7
percent	(impressive	for	those	days),	which	meant	that	the	uncertainty	in	r3	was
only	about	22	percent.	The	uncertainty	in	G	was	probably	at	least	30	percent.	So
my	guess	is	that	by	the	end	of	the	seventeenth	century	the	mass	of	the	Sun	may
have	been	known	to	an	accuracy	no	better	than	50	percent.

Since	the	relative	distances	from	the	Sun	to	the	planets	were	known	to	a	high
degree	of	accuracy,	knowing	the	absolute	distance	from	the	Sun	to	the	Earth	to	7
percent	accuracy	meant	 that	 the	absolute	distances	 to	 the	Sun	of	 the	other	 five
known	planets	 could	also	be	calculated	 to	 that	 same	7	percent	accuracy	by	 the
end	of	the	seventeenth	century.

The	above	method	to	calculate	the	mass	of	the	Sun	can	also	be	used	to	measure
the	mass	of	Jupiter,	Saturn,	and	the	Earth.	All	three	planets	had	known	moons	in
orbit;	in	1610	Galileo	Galilei	discovered	four	moons	of	Jupiter,	now	known	as	the
Galilean	 moons.	 If	m1	 is	 the	 mass	 of	 Jupiter,	 and	 m2	 the	 mass	 of	 one	 of	 its
moons,	then	we	can	calculate	the	mass	of	Jupiter,	using	equation	5,	in	the	same
way	that	we	can	calculate	the	mass	of	the	Sun,	except	that	now	r	 is	the	distance
between	Jupiter	and	its	moon,	and	T	 is	 the	orbital	period	of	that	moon	around
Jupiter.	The	 four	Galilean	moons	 (Jupiter	has	 sixty-three	moons!)	 have	orbital
periods	of	1.77	days,	3.55	days,	7.15	days,	and	16.69	days.

Accuracies	 in	 distances	 and	 in	 G	 have	 greatly	 improved	 over	 time.	 By	 the
nineteenth	century	G	was	known	to	about	1	percent	accuracy.	It	is	now	known	to
an	accuracy	of	about	0.01	percent.

Let	 me	 show	 you	 a	 numerical	 example.	 Using	 equation	 5,	 let’s	 calculate
together	the	mass	of	the	Earth	(m1)	by	using	the	orbit	of	our	Moon	(with	mass
m2).	 To	 use	 equation	 5	 properly,	 the	 distance,	 r,	 should	 be	 in	 meters,	 and	 T
should	 be	 in	 seconds.	 If	 we	 then	 use	 6.673	 ×	 10–11	 for	G,	 we	 get	 the	mass	 in
kilograms.

The	mean	 distance	 to	 the	Moon	 (r)	 is	 3.8440	 ×	 108	 meters	 (about	 239,000
miles);	its	orbital	period	(T)	is	2.3606	×	106	seconds	(27.32	days).	If	we	plug	these



numbers	 into	 equation	 5,	 we	 find	 that	 the	 mass	 of	 the	 Earth	 is	 6.030	 ×	 1024

kilograms.	 The	 best	 current	 value	 of	 Earth’s	 mass	 is	 close	 to	 5.974	 ×	 1024

kilograms,	 which	 is	 only	 1	 percent	 lower	 than	 what	 I	 calculated!	 Why	 the
difference?	One	 reason	 is	 that	 the	 equation	we	 used	 assumed	 that	 the	Moon’s
orbit	 is	circular,	when	in	fact	 it	 is	elongated,	what	we	call	elliptical.	As	a	result,
the	 smallest	 distance	 to	 the	Moon	 is	 about	 224,000	miles;	 the	 largest	 is	 about
252,000	miles.	Of	course,	Newton’s	laws	can	also	easily	deal	with	elliptical	orbits,
but	the	math	may	blow	your	mind.	Perhaps	it	already	has!

There	is	another	reason	why	our	result	for	the	mass	of	the	Earth	is	a	little	off.
We	assumed	that	the	Moon	circles	around	the	Earth	and	that	the	center	of	that
circle	is	the	center	of	the	Earth.	Thus	in	equations	1	and	3,	we	assumed	that	r	is
the	 distance	 between	 the	 Earth	 and	 the	Moon.	 That	 is	 correct	 in	 equation	 1;
however,	 as	 I	 discuss	 in	 more	 detail	 in	 chapter	 13,	 the	 Moon	 and	 the	 Earth
actually	 each	 orbit	 the	 center	 of	 mass	 of	 the	Moon-Earth	 system,	 and	 that	 is
about	a	thousand	miles	below	the	Earth’s	surface.	Thus	r,	in	equation	3,	is	a	little
less	than	r	in	equation	1.

Since	 we	 live	 on	 Earth,	 there	 are	 other	 ways	 of	 calculating	 the	mass	 of	 our
home	planet.	One	is	by	measuring	the	gravitational	acceleration	near	the	surface.
When	dropped,	any	object	of	mass	m	(m	can	have	any	value)	will	be	accelerated
with	 an	 acceleration,	 g,	 close	 to	 9.82	 meters	 per	 second	 per	 second.*	 Earth’s
average	radius	is	close	to	6.371	×	106	meters	(about	3,960	miles).

Now	 let’s	 revisit	Newton’s	 equation	1.	 Since	F	=	ma	 (Newton’s	 second	 law),
then

Here,	r	 is	 the	radius	of	 the	Earth.	With	G	=	6.673	×	10–11,	g	=	9.82	meters	per
second	 per	 second,	 and	 r	 =	 6.371	 ×	 106	 meters,	 we	 can	 calculate	 mearth	 in
kilograms	(you	try	it!).	If	we	simplify	equation	6	somewhat,	we	get

I	find	that	mearth	is	5.973	×	1024	kilograms	(impressive,	right?).
Notice	 that	 the	 mass,	 m,	 of	 the	 object	 we	 dropped	 does	 not	 show	 up	 in

equation	 7!	 That	 should	 not	 surprise	 you,	 as	 the	mass	 of	 the	 Earth	 could	 not
possibly	depend	on	the	mass	of	the	object	that	you	drop.

You	might	also	be	interested	in	knowing	that	Newton	believed	that	the	average
density	 of	 the	 Earth	 was	 between	 5,000	 and	 6,000	 kilograms	 per	 cubic	meter.



This	 was	 not	 based	 on	 any	 astronomical	 information;	 it	 was	 completely
independent	 of	 any	 of	 his	 laws.	 It	 was	 his	 best	 “educated”	 guess.	 The	 average
density	of	the	Earth	is,	in	fact,	5,540	kilograms	per	cubic	meter.	If	you	allow	me
to	 write	 Newton’s	 guess	 as	 5,500	 ±	 500	 kilograms	 per	 cubic	 meter,	 his
uncertainty	was	only	10	percent	(amazing!).

I	 do	 not	 know	 if	 Newton’s	 guess	 was	 ever	 taken	 seriously	 in	 his	 day,	 but
suppose	it	was.	Since	Earth’s	radius	was	well	known	in	the	seventeenth	century,
its	mass	could	have	been	calculated	to	an	accuracy	of	10	percent	(mass	is	volume
times	density).	Equation	7	could	then	be	used	to	calculate	G	also	to	an	accuracy
of	 10	 percent.	 I	 am	 telling	 you	 this	 because	 it	 intrigues	 me	 that,	 accepting
Newton’s	guess	for	the	mean	density	of	the	Earth,	at	the	end	of	the	seventeenth
century	 the	 gravitational	 constant,	 G,	 could	 already	 have	 been	 known	 to	 an
accuracy	of	10	percent!
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*	Be	careful—never	look	at	the	Sun.



*	It	happened	to	Lise	Meitner,	who	helped	discover	nuclear	fission;	Rosalind	Franklin,	who	helped	discover
the	structure	of	DNA;	and	to	Jocelyn	Bell,	who	discovered	pulsars	and	who	should	have	shared	in	the	1974
Nobel	Prize	given	to	her	supervisor,	Antony	Hewish,	for	“his	decisive	role	in	the	discovery	of	pulsars.”



*	I	have	assumed	here	that	the	force	on	the	charged	particle	due	to	gravity	is	so	small	that	it	can	be	ignored.



*	1	kilogram	is	about	2.2	pounds.



*	The	Royal	Society	recently	posted	a	digital	image	of	Stukeley’s	manuscript	online,	which	you	can	find	here:
http://royalsociety.org/turning-the-pages/.

http://royalsociety.org/turning-the-pages/


*	If	you	ever	want	to	use	this	value,	make	sure	that	your	masses	are	in	kilograms	and	that	the	distance,	r,	is
in	meters.	The	gravitational	force	will	then	be	in	newtons.



*	If	the	mass	of	the	string	cannot	be	ignored,	and/or	if	the	size	of	the	bob	cannot	be	treated	as	a	point	mass,
then	it	is	no	longer	a	simple	pendulum.	We	call	it	a	physical	pendulum	and	it	behaves	differently.



*	 Remember,	 all	 you	 scientists,	 I’m	 using	 common	 rather	 than	 technical	 language	 here.	 Even	 though	 a
kilogram	is	in	fact	a	unit	of	mass,	not	weight,	it’s	often	used	for	both,	and	that’s	what	I’m	doing	here.



*	If	you	want	to	see	my	photo	online,	click	on	the	website’s	Archive	and	go	to	2004	September	13.	See	text
above	for	the	general	URL.



*	If	you	want	to	use	this	equation	at	home,	use	9.8	for	g	and	give	h	in	meters;	v	is	then	in	meters	per	second.
If	h	is	3	meters	(above	the	floor),	the	object	will	hit	the	floor	at	about	5.4	meters	per	second	which	is	about
12	miles	per	hour.



*	For	simplicity	I	have	used	10	meters	per	second	for	g;	we	do	that	often	in	physics.



*	For	rotating	black	holes	the	event	horizon	is	oblate—fatter	at	the	equator—not	spherical.



*	Little	did	I	know	at	the	time	that	Jan	and	I	would	become	very	close	friends	and	that	we	would	coauthor
about	150	scientific	publications	before	his	untimely	death	in	1999.



*	This	acceleration,	by	the	way,	is	0.18	percent	lower	at	the	equator	than	at	the	poles—because	Earth	is	not	a
perfect	 sphere.	Objects	 at	 the	 equator	 are	 about	 20	 kilometers	 farther	 away	 from	 the	Earth’s	 center	 than
objects	at	the	poles,	so	at	the	equator	g	is	lower.	The	9.82	is	an	average	value.
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