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Preface

Since the appearance of the first edition in 1999, this book has been used as a text-
book or reference for graduate-level "Accelerator Physics" courses. I have benefited
from questions, criticism and suggestions from colleagues and students. As a re-
sponse to these suggestions, the revised edition is intended to provide easier learning
explanations and illustrations.

Accelerator Physics studies the interaction between the charged particles and elec-
tromagnetic field. The applications of accelerators include all branches of sciences and
technologies, medical treatment, and industrial processing. Accelerator scientists in-
vent many innovative technologies to produce beams with qualities required for each
application.

This textbook is intended for graduate students who have completed their gradu-
ate core-courses including classical mechanics, electrodynamics, quantum mechanics,
and statistical mechanics. I have tried to emphasize the fundamental physics behind
each innovative idea with least amount of mathematical complication. The textbook
may also be used by undergraduate seniors who have completed courses on classical
mechanics and electromagnetism. For beginners in accelerator physics, one begins
with Sees. 2.1-2.4 in Chapter 2, and follows by Sees. 3.1-3.2 for the basic beta-
tron and synchrotron motion. The study continues onto Sees. 2.5, 2.8, and 3.7 for
chromatic aberration and collective beam instabilities. After these basic topics, the
rf technology and basic physics of linac are covered in Sees. 3.5, 3.6, 3.8 in Chapter
3. The basic accelerator physics course ends with physics of electron storage rings in
Chapter 4.

I have chosen the Frenet-Serret coordinate-system of (x, s, z) for the transverse
radially-outward, longitudinally-forward, and vertical unit base-vectors with the right-
hand rule: z = x x I. I have also chosen positive-charge to derive the equations of
betatron motion for all sections of the Chapter 2, except a discussion of ±-signs in
Eq. (2.29). The sign of some terms in Hill's equation should be reversed if you solve
the equation of motion for electrons in accelerators.

The convention of the rf-phase differs in linac and synchrotron communities by
4>\mac = ŝynchrotron — (TT/2) • To be consistent with the synchrotron motion in Chapter
3, I have chosen the rf-phase convention of the synchrotron community to describe
the synchrotron equation of motion for linac in Sec. 3.8.

In this revised edition, I include two special topics: free electron laser (FEL)
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viii PREFACE

and beam-beam interaction in Chapter 5. In 2000, several self-amplified spontaneous
emission (SASE) FEL experiments have been successfully demonstrated. Many light
source laboratories are proposing the fourth generation light source using high gain
FEL based on the concept of SASE and high-gain harmonic generation (HGHG).
Similarly, the success of high luminosity B-factories indicates that beam-beam in-
teraction remains very important to the basic accelerator physics. These activities
justify the addition of two introductory topics to the accelerator physics text.

Finally, the homework is designed to solve a particular problem by providing
step-by-step procedures to minimize frustrations. The answer is usually listed at the
end of each homework problem so that the result can be used in practical design of
accelerator systems. I would appreciate very much to receive comments and criticism
to this revised edition.

S.Y. Lee
Bloomington, Indiana, U.S.A.
November, 2004



Preface to the first edition

The development of high energy accelerators began in 1911 when Rutherford discov-
ered the atomic nuclei inside the atom. Since then, high voltage DC and rf acceler-
ators have been developed, high-field magnets with excellent field quality have been
achieved, transverse and longitudinal beam focusing principles have been discovered,
high power rf sources have been invented, high vacuum technology has been improved,
high brightness (polarized/unpolarized) electron/ion sources have been attained, and
beam dynamics and beam manipulation schemes such as beam injection, accumula-
tion, slow and fast extraction, beam damping and beam cooling, instability feedback,
etc. have been advanced. The impacts of the accelerator development are evidenced
by many ground-breaking discoveries in particle and nuclear physics, atomic and
molecular physics, condensed-matter physics, biomedical physics, medicine, biology,
and industrial processing.

Accelerator physics and technology is an evolving branch of science. As the tech-
nology progresses, research in the physics of beams propels advancement in accelerator
performance. The advancement in type II superconducting material led to the devel-
opment of high-field magnets. The invention of the collider concept initiated research
and development in single and multi-particle beam dynamics. Accelerator develop-
ment has been impressive. High energy was measured in MeV's in the 1930's, GeV's
in the 1950's, and multi-TeV's in the 1990's. In the coming decades, the center of
mass energy will reach 10-100 TeV. High intensity was 109 particles per pulse in the
1950's. Now, the AGS has achieved 6 x 1013 protons per pulse. We are looking for
1014 protons per bunch for many applications. The brilliance of synchrotron radiation
was about 1012 [photons/s mm2 mrad2 0.1% (AA/A)] from the first-generation light
sources in the 1970's. Now, it reaches 1021, and efforts are being made to reach a
brilliance of 1029 - 1034 in many FEL research projects.

This textbook deals with basic accelerator physics. It is based on my lecture notes
for the accelerator physics graduate course at Indiana University and two courses
in the U.S. Particle Accelerator School. It has been used as preparatory course
material for graduate accelerator physics students doing thesis research at Indiana
University. The book has four chapters. The first describes historical accelerator
development. The second deals with transverse betatron motion. The third chapter
concerns synchrotron motion and provides an introduction to linear accelerators. The
fourth deals with synchrotron radiation phenomena and the basic design principles
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x PREFACE TO THE FIRST EDITION

of low-emittance electron storage rings. Since this is a textbook on basic accelerator
physics, topics such as nonlinear beam dynamics, collective beam instabilities, etc.,
are mentioned only briefly, in Chapters 2 and 3.

Attention is paid to deriving the action-angle variables of the phase space coor-
dinates because the transformation is basic and the concept is important in under-
standing the phenomena of collective instability and nonlinear beam dynamics. In
the design of synchrotrons, the dispersion function plays an important role in par-
ticle stability, beam performance, and beam transport. An extensive section on the
dispersion function is provided in Chapter 2. This function is also important in the
design of low-emittance electron storage ring lattices.

The SI units are used throughout this book. I have also chosen the engineer's
convention of j = —i for the imaginary number. The exercises in each section are
designed to have the student apply a specific technique in solving an accelerator
physics problem. By following the steps provided in the homework, each exercise can
be easily solved.

The field of accelerator physics and technology is multi-disciplinary. Many related
subjects are not extensively discussed in this book: linear accelerators, induction
linacs, high brightness beams, collective instabilities, nonlinear dynamics, beam cool-
ing physics and technology, linear collider physics, free-electron lasers, electron and
ion sources, neutron spallation sources, muon colliders, high intensity beams, vacuum
technology, superconductivity, magnet technology, instrumentation, etc. Neverthe-
less, the book should provide the understanding of basic accelerator physics that is
indispensable in accelerator physics and technology research.

S.Y. Lee
Bloomington, Indiana, U.S.A.
January, 1998
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Chapter 1

Introduction

The first accelerator dates back to prehistoric-historic times, when men built bows
and arrows for hunting. The race to build modern particle accelerators began in 1911
when Rutherford discovered the nucleus by scattering a-particles off Aluminum foil.
The physics and technology of accelerators and storage rings involves many branches
of science. These include electromagnetism, solid-state properties of materials, atomic
physics, superconductivity,1 nonlinear mechanics, spin dynamics, plasma physics, and
quantum physics. In recent years, accelerators have found many applications: they
are used in nuclear and particle physics research, in industrial applications such as
ion implantation and lithography, in biological and medical research with synchrotron
light sources, in material science and medical research with spallation neutron sources,
etc. Accelerators have also been used for radiotherapy, food sterilization, waste treat-
ment, etc.

A major application of particle accelerators is experimental nuclear and particle
physics research. Advances in technology have allowed remarkable increases in energy
and luminosity2 for fundamental physics research. High energy was measured in
MeV's in the 1930's, and is measured in TeV's in the 1990's. The beam intensity
was about 109 particles per pulse (ppp) in the 1950's, and is about 1014 ppp in the
1990's. Since 1970, high energy and high luminosity colliders have become basic tools
in nuclear and particle physics research. As physicists probe deeper into the inner
structure of matter, high energy provides new territory for potential discoveries, and
indeed new energy frontiers usually lead to new physics discoveries. The evolution of

1 Superconductivity was discovered by Heike Kamerlingh Onnes in 1911. The Meissner effect
was discovered in 1933. Understanding of the microscopic basis of superconductivity was achieved
by John Bardeen, Leon Cooper, and Robert Schrieffer in 1957. High temperature superconductor
was discovered by K.A. Mueller and J.G. Bednorz in 1986. Fine meshed superconducting wires are
usually used in high-field magnets. Superconducting thin films deposited on the cavity surface are
used for superconducting cavities.

2 The luminosity C is denned as the probability of particle encountering rate per unit area in a
collision process (see Exercise 1.7). The commonly used dimension is cm"2 s"1. The counting rate
in a detector is given by £u, where a is the cross-section of a reaction process.

1



2 CHAPTER! INTRODUCTION

accelerator development can be summarized by the Livingston chart shown in Fig. 1.1,
where the equivalent fixed target proton energy, KE = s/(2mpc2) (see Exercise 1.6),
is plotted as a function of time.
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= l o l 2 _ I | ĵf jrfp „»"'" — * n a ' ; innovative ideas provide
£ | o | -^--^rfi substantial jump in beam en-
B y 2 o» 'CPQ_—&-^P Electron lin a c PTP"V T T l P HflsTlpH llTIP m
I - ° « J P j ^ T ^ H«*ron Synchrotron (strong focusing) - el&y- - 1 - I l e U d 4 I l e U 1 1 I l e l b

S 109 _1 S .^ygtf—® g Proton lln.c — drawn to guide the trend,
s . | .^fLe—^=_Ji c'°1°"°"- "ctor '°cu"d . which is beam energy dou-
| - fi^&$rf~~~'**' n"*""u""! ••»•"«" . bling in every two years.
< 1 Q 6 ^ ° Rectifier generator

J c v i T i . . . . i . . . . i . . . . i . . . . i . .
1940 1960 1980 2000 2020 2040

year

In recent years, high-brilliance photon beams from high-brightness electron beams
in storage rings3 have been extensively used in biomedical and condensed-matter
physics research. Figure 1.2 shows the peak photon brilliance (number of photons/(mm2

mrad2 s (0.1% Aw/w)) as a function of photon beam energy from storage rings and
linacs.
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Besides being used for fundamental material science research, high-intensity neu-

3The brightness of a beam is denned as the beam's intensity divided by its phase-space volume.
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tron sources driven by powerful proton beam sources may provide energy amplifica-
tion for future global energy needs. High intensity heavy-ion beams have also been
actively pursued for inertial fusion evaluation.

Frontiers in accelerator physics and technology research

Accelerator physics is a branch of applied science. Innovations in technology give
rise to new frontiers in beam physics research. Since higher energy leads to new
discoveries, and higher luminosity leads to higher precision in experimental results,
the frontiers of accelerator physics research are classified into the frontiers of high
energy and high brightness. Some of these topics in beam physics are as follows.

• High energy: For high energy hadron accelerators such as the Tevatron at Fer-
milab, the Large Hadron Collider (LHC) at CERN, and the contemplated Very
Large Hadron Collider (VLHC), high-field superconducting magnets and the
stability of high-brightness beams are important issues. For lepton colliders,
high acceleration gradient structures, wakefields, and high power rf sources are
important. Some proposed e+e~ colliders are the Next Linear Collider (NLC),
the Japan Linear Collider (JLC), the CERN Linear Collider (CLIC), and the
TeV Superconducting Linear Accelerator (TESLA), which employs supercon-
ducting rf cavities. Current research topics include high rf power sources, high
acceleration gradients, wakefield control, etc.

• High luminosity: To provide a detailed understanding of CP violation and other
fundamental symmetry principles of interactions, dedicated meson factories such
as the $-factory at Frascati National Laboratory in Italy and the B-factories at
SLAC and Cornell in the U.S. and at KEK in Japan were built in the 1990's,
and the Tau-Charm factory is being contemplated in Beijing, China. Since
the neutron flux from spallation neutron sources is proportional to the proton
beam power, physics and technology for high-intensity low-loss proton sources
are important.4 Furthermore, a high-intensity proton source can be used to
drive secondary beams such as kaons, pions, and muons. With high-intensity yu
beams, /J,+/J,~ collider studies are also of current interest.

• High-brightness beams: Beam-cooling techniques have been extensively used in
attaining high-brightness hadron beams. Stochastic cooling has been success-
fully applied to accumulate anti-protons. This led to the discovery of W and
Z bosons, and b and t quarks. Electron cooling and laser cooling have been
applied to many low energy storage rings used in atomic and nuclear physics re-
search. Ionization cooling is needed for muon beams in fi+fJ,~ colliders. Taking
advantage of radiation cooling, synchrotron light sources with high-brightness
electron beams are used in medical, biological, and condensed-matter physics

4See e.g., the National Spallation Neutron Source Design Report (Oak Ridge, 1997).
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research. Sub-picosecond photon beams would be important to time-resolved
experiments. A high power tunable free-electron laser would be useful for chem-
ical and technical applications.

• Accelerator applications: The medical use of accelerators for radiation treat-
ment,5 isotope production, sterilization of medical tools, etc., requires safety,
reliability, and ease in operation. Higher beam power density with minimum
beam loss can optimize safety in industrial applications such as ion implanta-
tion, electron-beam welding, material testing, food sterilization, etc.

Recent research topics in accelerator physics include beam cooling, nonlinear beam
dynamics, beam-beam interactions, collective beam instability, beam manipulation
techniques, ion sources, space-charge effects, beam instrumentation development,
novel acceleration techniques, etc. Accelerator technology research areas include su-
perconducting materials, high power rf sources, high gradient accelerating structures,
etc. This book deals only with the fundamental aspects of accelerator physics. It
serves as an introduction to more advanced topics such as collective beam instabili-
ties, nonlinear beam dynamics, beam-cooling physics and technologies, rf physics and
technology, magnet technology, etc. First, the technical achievements in accelerator
physics of past decades will be described.

I Historical Developments

A charged particle with charge q and velocity v in the electromagnetic fields (E, B)
is exerted by the Lorentz's force F:

F = q(E + vxB). (1.1)

The charge particle can only gain or lose its energy by its interaction with the electric
field E. Since the magnetic force is perpendicular to both v and B, the charged
particle will move on a circular arc. In particular, when the magnetic flux density is
perpendicular to v, the bending radius is

where m and p = mv are the mass and momentum of the particle. The momentum
rigidity of the charged particle is

Bp [T-m] = ? = ^ x 3.33564 x p [GeV/c/u], (1.3)
q Z

5See e.g., P.L. Petti and A.J. Lennox, ARNS 44, 155 (1994).



I. HISTORICAL DEVELOPMENTS 5

where Bp is measured in Tesla-meter, and the momentum is measured in GeV/c per
amu, and A and Ze are the atomic mass number and charge of the particle.

Accelerators are composed of ion sources, cavity and magnet components that can
generate and maintain electromagnetic fields for beam acceleration and manipulation,
devices to detect beam motion, high vacuum components for attaining excellent beam
lifetime, undulators and wigglers to produce high brilliance photon beam, targets for
producing secondary beams, etc. Accelerators can be classified as linear or circular,
electrostatic or radio frequency, continuous (CW, DC or coasting beam) or bunched
and pulsed. They are designed to accelerate electrons (leptons) or hadrons, stable
or radioactive ions. Accelerators are classified as follows, in no specific chronological
order.

I.I Natural Accelerators

Radioactive accelerators

In 1911, Rutherford employed a particles escaping the Coulomb barrier of Ra and Th
nuclei to investigate the inner structure of atoms.6 He demonstrated, to the surprise
of many physicists, the existence of a positively charged nucleus with a diameter
less than 10"11 cm. This led to the introduction of Bohr's atomic model, and the
revolution of quantum mechanics in the early 20th century. In 1919, Rutherford
also used a particles to induce the first artificial nuclear reaction, a + 14N —> 17O
+ H. This discovery created an era of search for high-voltage sources for particle
acceleration that can produce high-intensity high-energy particles for the study of
nuclear transmutation.

Cosmic rays

Cosmic rays arise from galactic source accelerators. Nuclei range from n and H to
Ni; heavy elements have been measured with energies up to 3 x 1020 eV.7 Muons
were discovered in cosmic-ray emulsion experiments in 1936 by CD. Anderson, S.H.
Neddermeyer, and others. Pions were discovered in 1947 in emulsion experiments.
Interest in the relativistic heavy ion collider (RHIC) was amplified by the cosmic ray
emulsion experiments.

6The kinetic energy of a particles that tunnel through the Coulomb barrier to escape the nuclear
force is typically about 6 MeV.

7See J.A. Simpson, Ann. Rev. Nucl. Sci. 33, 323 (1983) and R. Barnett et al, Phys. Rev.
(Particle Data Group) D54, 1 (1996). An event with energy 3 x 1020 eV had been recorded in 1991
by the Fly's Eye atmospheric-fluorescence detector in Utah (see Physics Today, p. 19, Feb. 1997;
p. 31, Jan. 1998).
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1.2 Electrostatic Accelerators

X-ray tubes

William David Coolidge in 1926 achieved 900-keV electron beam energy by using
three X-ray tubes in series. The cascade type of X-ray tube is called the Coolidge
tubes.

Cockcroft-Walton electrostatic accelerator

In 1930, John Douglas Cockcroft and Ernst Thomas Sinton Walton developed a high-
voltage source by using high-voltage rectifier units. In 1932, they reached 400-kV
terminal voltage to achieve the first man-made nuclear transmutation: p + Li —»
2 He.8 The maximum achievable voltage was limited to about 1 MV because of
sparking in air. Since then, Cockcroft-Walton accelerators have been widely used in
first-stage ion-beam acceleration. More recently, they are being replaced by more
compact, economical, and reliable radio frequency quadrupole (RFQ) accelerators.

Van de Graaff and tandam accelerators

In 1931, R.J. Van de Graaff developed the electrostatic charging accelerator.9 In the
Van de Graaff accelerator, the rectifier units are replaced by an electrostatic charging
belt, and the high-voltage terminal and the acceleration tube are placed in a common
tank with compressed gas for insulation, which increases the peak acceleration voltage.
Placement of the high-voltage terminal at the center of the tank and use of the charge-
exchange process in the tandem accelerator can increase the beam energy for nuclei.10

Today the voltage attained in tandem accelerators is about 25 MV. When the Van de
Graaff accelerator is used for electron acceleration, it has the brand name Pelletron.

1.3 Induction Accelerators

According to Faraday's law of induction, when the magnetic flux changes, the induc-
tion electric field along a beam path is given by

ie-ds = $, $= f B-dS. (1.4)
J Js

Here £ is the induced electric field, $ is the total magnetic flux, ds*is the differential
for the line integral that surrounds the surface area, dS is the differential for the

8J.D. Cockcroft and E.T.S. Walton, Proc. Roy. Soc. A136, 619 (1932); A137, 229 (1932); A144,
704 (1934). Cockcroft and Walton shared 1951 Nobel Prize in physics.

9R.J. Van de Graaff, J.G. Trump, and W.W. Buechner, Rep. Prog. Phys. 11, 1 (1946).
10R.J. Van de Graaff, Nucl. Inst. Methods 8, 195 (1960).
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surface integral, and B is the "magnetic field"11 enclosed by the contour C. The
induced electric field can be used for beam acceleration.

A: Induction linac

The induction linac was invented by N.C. Christofilos in the 50's for the acceleration
of high-intensity beams.12 A linear induction accelerator (LIA) employs a ferrite core
arranged in a cylindrically symmetric configuration to produce an inductive load to a
voltage gap. Each LIA module can be viewed as a low-Q 1:1 pulse transformer. When
an external current source is discharged through the circuit, the electric field at the
voltage gap along the beam axis is used to accelerate the beam. A properly pulsed
stack of LIA modules can be used to accelerate high-intensity short-pulse beams with
a gradient of about 1 MeV/m and a power efficiency of about 50%.13 Table 1.1 lists
the achievements of some LIA projects.

Table 1.1: Induction linac projects and achievements
Project Laboratory / (kA) E (MeV) Beam width Repetition

(ns) rate (Hz)
ETA II LLNL 3 70 50 I
ETA III LLNL 2 6 50 2000
ATA | LLNL | 10 | 50 | 50 | 1000

B: Betatron

Let p be the mean radius of the beam pipe in a basic magnet configuration of a
betatron. If the total magnetic flux enclosed by the beam circumference is ramped
up by a time-dependent magnetic flux density, the induced electric field along the
beam axis is given, according to Faraday's law of induction, by

<b £ • ds = 2np£ = np2Bm, or £ =-Bwp. (1.5)
J Zi

11 We will use magnetic field as a synonym for magnetic flux density.
12See e.g., J.W. Beal, N.C. Christofilos and R.E. Hester, IEEE Trans. Nucl. Sci. NS 16, 294

(1958) and references therein; Simon Yu, Review of new developments in the field of induction
accelerators, in Proc. LINAC96 (1996).

13See e.g., R.B. Miller, in Proc. NATO ASI on High Brightness Transport in Linear Induction
Accelerators, A.K. Hyder, M.F. Rose, and A.H. Guenther, Eds. (Plenum Press, 1988); R.J. Briggs,
Phys. Rev. Lett. 54, 2588 (1985); D.S. Prono, IEEE Trans. Nucl. Sci. NS32, 3144 (1985); G.J.
Caporaso, et al, Phys. Rev. Lett. 57, 1591 (1986); R.B. Miller, IEEE Trans. Nucl. Sci. NS32,
3149 (1985); G.J. Caporaso, W.A. Barletta, and V.K. Neil, Part. Accel. 11, 71 (1980).
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Here £ is the induced electric field, and Bm is the average magnetic flux density inside
the circumference of the beam radius. The final particle momentum can be obtained
by integrating Newton's law, p = e£, i.e.

p=-eBmp = eBgp, or Bg = -Bm. (1.6)

The betatron principle that the guide field Bg is equal to 1/2 of the average field Bm,
was first stated by R. Wiederoe in 1928.u Figure 1.3 is a schematic drawing of a
betatron, where particles circulate in the vacuum chamber with a guide field Bg, and
the average flux density enclosed by the orbiting particle is £?av.

Figure 1.3: Schematic drawing of a betatron. The guide field for beam particles is jBg, and
the average flux density enclosed by the orbiting path is Bav.

It took many years to understand the stability of transverse motion. This problem
was solved in 1941 by D. Kerst and R. Serber.15 When the magnetic field is shaped
according to

B, = £>„(*)" , (1.7)

where R is the reference orbit radius, r is the beam radius, and n is the index of
focusing given by (see Exercise 1.14)

R fdBA . .

Let x = r — R and z be small radial and vertical displacements from a reference orbit,
then the equations of motion become

— +cj2nz = 0, -—+L)2{l-n)x = 0. (1.9)

14In 1922, Joseph Slepian patented the principle of applying induction electric field for electron
beam acceleration in the U.S. patent 1645304.

15D. Kerst and R. Serber, Phys. Rev. 60, 53 (1941). See also Exercise 1.14. Since then, the
transverse particle motion in all types of accelerators has been called betatron motion.
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Thus the motion is stable if 0 < n < 1. The resulting frequencies of harmonic
oscillations are fx = foy/1 — n and fz = foy/n, where /0 = W/2TT is the revolution
frequency.

In 1940 D. Kerst was the first to operate a betatron to achieve 2.3 MeV. In
1949 he constructed a 315-MeV betatron16 at the University of Chicago with the
parameters p = 1.22 m, B% = 9.2 kG, Einj = 80 - 135 keV, /inj = 13 A. The magnet
weighed about 275 tons and the repetition rate was about 6 Hz. The limitations of
the betatron principle are (1) synchrotron radiation loss (see Chapter 4) and (2) the
transverse beam size limit due to the intrinsic weak-focusing force.

1.4 Radio-Frequency (RF) Accelerators

Since the high-voltage source can induce arcs and corona discharges, it is difficult to
attain very high voltage in a single acceleration gap. It would be more economical
to make the charged particles pass through the acceleration gap many times. This
concept leads to many different rf accelerators,17 which can be classified as linear
(RFQ, linac) and cyclic (cyclotron, microtron, and synchrotron). Accelerators using
an rf field for particle acceleration are described in the following subsections.

Wideroe Linac RF source
<u S~\

i I—- I - i r ^
o

g->czi c—i c—i i——i i i i i -+

Figure 1.4: Schematic drawing of the Wiederoe rf LINAC structure. Wideroe used a
1-MHz, 25-kV oscillator to make 50-kV potassium ions.

A. LINAC

In 1925 G. Ising pointed out that particle acceleration can be achieved by using an
alternating radio-frequency field. In 1928 R. Wiederoe reported the first working rf
accelerator, using a 1-MHz, 25-kV oscillator to produce 50-kV potassium ions (see
Fig. 1.4). In 1931 D.H. Sloan and E.O. Lawrence built a linear accelerator using a
10-MHz, 45 kV oscillator to produce 1.26 MV Hg+ ion.18 An important milestone

16D.W. Kerst et. a!., Phys. Rev. T8, 297 (1950).
17The rf sources are classified into VHF, UHF, microwave, and millimeter waves bands. The

microwave bands are classified as follows: L band, 1.12-1.7 GHz; S band, 2.6-3.95 GHz; C band,
3.95-5.85 GHz; X band, 8.2-12.4 GHz; K band, 18.0-26.5 GHz; millimeter wave band, 30-300 GHz.
See also Exercise 1.2.

18D.H. Sloan and E.O. Lawrence, Phys. Rev. 38, 2021 (1931).
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in rf acceleration is the discovery of the phase-focusing principle by E. M. McMillan
and V. Veksler in 1945 (see Ref. [17] and Chap. 2, Sec. IV.3).

Since the length of drift tubes is proportional to J3X/2, it would save space by
employing higher frequency rf sources. However, the problem associated with a high
frequency structure is that it radiates rf energy at a rate of

P = UriCVl (1.10)

where w,f is the rf frequency, C is the gap capacitance, and VT{ is the rf voltage. The
rf radiation power loss increases with the rf frequency. To eliminate rf power loss, the
drift tube can be placed in a cavity so that the electromagnetic energy is stored in the
form of a magnetic field (inductive load). At the same time, the resonant frequency
of the cavity can be tuned to coincide with that of the accelerating field.

In 1948 Louis Alvarez and W.K.H. Panofsky constructed the first 32-MV drift-
tube linac (DTL or Alvarez linac) for protons.19 Operational drift-tube linacs for
protons are the 200-MeV linacs at BNL and Fermilab, and the 50-MeV linacs at
KEK and CERN. In the 1970's Los Alamos constructed the first side-coupled cavity
linac (CCL), reaching 800 MeV. Fermilab upgraded part of its linac with the CCL to
reach 400 MeV kinetic energy in 1995. The coupled cavity drift tube linac (CCDTL)
that combines CCL and DTL has been shown to be efficient in accelerating high
intensity low energy proton beams.

After World War II, rf technology had advanced far enough to make magnetron
and klystron20 amplifiers that could provide rf power of about 1 MW at 3 GHz (S
band). Today, the highest energy linac has achieved 50-GeV electron energy operating
at S band (around 2.856 GHz) at SLAC, and has achieved an acceleration gradient
of about 20 MV/m, fed by klystrons with a peak power of 40 MW in a l-/xs pulse
length. To achieve 100 MV/m, about 25 times the rf power would be needed.

The next linear collider (NLC), proposed by SLAC and KEK, at a center-of-mass
energy of 500 GeV to 2 TeV beam energy, calls for X band with an acceleration
gradient of 50 MV/m or more. The required klystron peak power is about 50 MW
in a pulse duration is about 1.5 us. The peak power is further enhanced by pulse
compression schemes.

19L. Alvarez, Phys. Rev. 70, 799 (1946).
20The klystron, invented by Varian brothers in 1937, is a narrow-band high-gain rf amplifier. The

operation of a high power klystron is as follows. A beam of electrons is drawn by the induced
voltage across the cathode and anode by a modulator. The electrons are accelerated to about 400
kV with a current of about 500 A. As the beam enters the input cavity, a small amount of rf power
(< 1 kW) is applied to modulate the beam. The subsequent gain cavities resonantly excite and
induce micro-bunching of the electron beam. The subsequent drift region and penultimate cavity
are designed to produce highly bunched electrons. The rf energy is then extracted at the output
cavity, which is designed to decelerate the beam. The rf power is then transported by rf waveguides.
The wasted electrons are collected at a water-cooled collector. If the efficiency were 50%, a klystron
with the above parameters would produce 100 MW of rf power. See also E.L. Ginzton, "The $100
idea", IEEE Spectrum, 12, 30 (1975).
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Superconducting cavities have also become popular in recent years. At the Contin-
uous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National
Accelerator Laboratory in Virginia, about 160 m of superconducting cavity was in-
stalled for attaining a beam energy up to 4 GeV in 5 paths using 338 five-kW CW
klystrons. During the LEP-II upgrade more than 300 m of superconducting rf cav-
ity was installed for attaining an almost 100-GeV beam energy. Many accelerator
laboratories, such as Cornell and Fermilab in the U.S. and DESY in Germany, are
collaborating in the effort to achieve a high-gradient superconducting cavity for a
linear collider design called the TeV Superconducting Linear Accelerator (TESLA).
Normally, a superconducting cavity operates at about 5-10 MV/m. After extensive
cavity wall conditioning, single-cell cavities have reached beyond 25 MV/m.21

B: RFQ

In 1970,1.M. Kapchinskij and V.A. Teplyakov invented a low energy radio-frequency
quadrupole (RFQ) accelerator - a new type of low energy accelerator. Applying an
rf electric field to the four-vane quadrupole-like longitudinally modulated structure,
a longitudinal rf electric field for particle acceleration and a transverse quadrupole
field for focusing can be generated simultaneously. Thus the RFQs are especially
useful for accelerating high-current low-energy beams. Since then many laboratories,
particularly Los Alamos National Laboratory (LANL), Lawrence Berkeley National
Laboratory (LBNL), and CERN, have perfected the design and construction of RFQ's,
which are replacing Cockcroft-Walton accelerators as injectors to linac and cyclic
accelerators.

C: Cyclotron

The synchrotron frequency for a non-relativistic particle in a constant magnetic field
is nearly independent of the particle velocity, i.e.,

e-Bo eB0
wsyn = « wcyc = , (1-11)

7m * m

where 7 « 1 for non-relativistic particles, Bo is the magnetic field, and m is the
particle mass. In 1929 E.O. Lawrence combined the idea of a constant revolution
frequency and Ising's idea of the rf accelerator (see Sec. I.4A of Wiederoe linac), he
invented the cyclotron.22 Historical remarks in E.O. Lawrence's Nobel lecture are

21See e.g., J. Garber, Proc. PAC95, p. 1478 (IEEE, New York 1996). Single-cell cavities routinely
reach 30 MV/m and beyond.

22E.O. Lawrence and N.E. Edlefsen, Science, 72, 376 (1930). See e.g. E.M. McMillan, Early
Days in the Lawrence Laboratory (1931-1940), in New directions in physics, eds. N. Metropolis,
D.M. Kerr, Gian-Carlo Rota, (Academic Press, Inc., New York, 1987). The cyclotron was coined by
Malcolm Henderson, popularized by newspaper reporters; see M.S. Livingston, Particle Accelerators:
A Brief History, (Harvard, 1969).
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reproduced below:

One evening early in 1929 as I was glancing over current periodicals in the
University library, I came across an article in a German electrical engineering
journal by Wideroe on the multiple acceleration of positive ions. . . . This new
idea immediately impressed me as the real answer which I had been looking
for to the technical problem of accelerating positive ions, . . . Again a little
analysis of the problem showed that a uniform magnetic field had just the right
properties - that the angular velocity of the ion circulating in the field would
be independent of their energy so that they would circulate back and forth
between suitable hollow electrodes in resonance with an oscillating electric field
of a certain frequency which has come to be known as the cyclotron frequency.

Now this occasion affords me a felicitous opportunity in some measure to correct
an error and an injustice. For at that time I did not carefully read Wiederoe's
article and note that he had gotten the idea of multiple acceleration of ions from
one of your distinguished colleagues, Professor G. Ising, who in 1924 published
this important principle. It was several years had passed that I became aware
of Professor Ising's prime contribution. I should like to take this opportunity
to pay tribute to his work for he surely is the father of the developments of the
methods of multiple acceleration.

If two D plates (dees) in a constant magnetic field are connected to an rf electric
voltage generator, particles can be accelerated by repeated passage through the rf
gap, provided that the rf frequency is an integer multiple of the cyclotron frequency,
a/rf = huj0. On January 2, 1931 M.S. Livingston demonstrated the cyclotron principle
by accelerating protons to 80 keV in a 4.5-inch cyclotron, where the rf potential
applied across the the accelerating gap was only 1000 V. In 1932 Lawrence's 11-
inch cyclotron reached 1.25-MeV proton kinetic energy that was used to split atoms,
just a few months after this was accomplished by the Cockcroft-Walton electrostatic
accelerator. Since then, many cyclotrons were designed and built in Universities.23

Figure 1.5 shows a schematic drawing of a classical cyclotron.
The momentum p and kinetic energy T of the extracted particle are p = rwyPc

and T = mc2(7 - 1) = p2/[(j + l)m]. Using Eq. (1.3), we obtain the kinetic energy
per amu as

A-( 7 + l )m u UJ = K { A ) ' (L12)

where BoRo = Bp is the magnetic rigidity, Z and A are the charge and atomic mass
numbers of the particle, mu is the atomic mass unit, and K is called the K-value or
bending limit of a cyclotron. In the non-relativistic limit, the /{"-value is equal to the
proton kinetic energy T in MeV, e.g. K200 cyclotron can deliver protons with 200
MeV kinetic energy.

23M.S. Livingston, J. Appl. Phys, 15, 2 (1944); 15, 128 (1944); W.B. Mann, The Cyclotron,
(Wiley, 1953); M.E. Rose, Phys. Rev., 53, 392 (1938); R.R. Wilson, Phys. Rev., 53, 408 (1938);
Am. J. Phys., 11, 781 (1940); B.L. Cohen, Rev. Sci. Instr., 25, 562 (1954).
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F j ; I I • • i \ \ \ '. ', i \ Figure 1.5: Schematic drawing of a classical
(~)rf n i l i .' CD i i ; i ! cyclotron. Note that the radial distance be-

|"̂  \\ \ \ \ \ \ ion source ,' ; ; ; I tween adjacent revolutions becomes smaller
\ \ \ \ \ \ ^ , .•'','•!'/ as the turn number increases [see Eq. (1.13)].

septum

The iron saturates at a field of about 1.8 T (depending slightly on the quality of
iron and magnet design). The total volume of iron-core is proportional to the cubic
power of the beam rigidity Bp. Thus the weight of iron-core increases rapidly with
its K-value: Weight of iron = W ~ K15 ~ (Bp)3, where Bp is the beam rigidity.
Typically, the magnet for a K-100 cyclotron weighs about 160 tons. The weight
problem can be alleviated by using superconducting cyclotrons.24

The design of beam extraction systems in cyclotrons is challenging. Let VQ be the
energy gain per revolution. The kinetic energy at ./V revolutions is K^ = eiVVo =
e2B2r2/2m, where e is the charge, m is the mass, B is the magnetic field, and r is the
beam radius at the ./V-th revolution. The radius r of the beam at the iV-th revolution
becomes

r =I (^) "V*. (U3)

i.e. the orbiting radius increases with the square root of the revolution number N.
The beam orbit separation in successive revolutions may becomes small, and thus the
septum thickness becomes a challenging design problem.

Two key difficulties associated with classical cyclotrons are the orbit stability and
the relativistic mass effect. The orbit stability problem was partially solved in 1945 by
D. Kerst and R. Serber (see Exercise 1.14). The maximum kinetic energy was limited
by the kinetic mass effect. Because the relativistic mass effect can destroy particle
synchronism [see Eq. (1.11)], the upper limit of proton kinetic energy attainable in
a cyclotron is about 12 MeV (See Exercise 1.4.).25 Two ideas proposed to solve the
dilemma are the isochronous cyclotron and the synchrocyclotron.

24See H. Blosser, in Proc. 9th Int. Conf. on Cyclotrons and Applications, p. 147 (1985).
25H. Bethe and M. Rose, Phys. Rev. 52, 1254 (1937).



14 CHAPTER 1. INTRODUCTION

Isochronous cyclotron

In 1938 R.H. Thomas pointed out that, by using an azimuthal varying field, the
orbit stability can be retained while maintaining the isochronism. The isochronous
cyclotron is also called the azimuthal varying field (AVF) cyclotron. From the cy-
clotron principle, we observe that

where Eo = me2 and ui is the angular revolution frequency. Thus, to maintain
isochronism with constant w, the B field must be shaped according to

Bz = ^ = ^E{p) = ^\l-mY/2. (1.15)
e ec* ec2 [ V c / J

When the magnetic flux density is shaped according to Eq. (1.15), the focusing index
becomes n < 0, and the vertical orbit is unstable.

Orbit stability can be restored by shaping the magnetic pole-face. In 1938 L.H.
Thomas introduced pole plates with hills and valleys in an isochronous cyclotron to
achieve vertical orbit stability.26 Such isochronous cyclotrons are also called AVF
cyclotrons. The success of sector-focused cyclotron led by J.R. Richardson et al. led
to the proliferation of the separate sector cyclotron, or ring cyclotron in the 1960's.27

It gives stronger "edge" focusing for attaining vertical orbit stability. Ring cyclotrons
are composed of three, four, or many sectors. Many universities and laboratories built
ring cyclotrons in the 1960's.

Synchrocyclotron

Alternatively, synchronization between cyclotron frequency and rf frequency can be
achieved by using rf frequency modulation (FM). FM cyclotrons can reach 1-GeV
proton kinetic energy.28 The synchrocyclotron uses the same magnet geometry as the
weak-focusing cyclotrons. Synchronism between the particle and the rf accelerating
voltage is achieved by ramping the rf frequency. Because the rf field is cycled, i.e.
the rf frequency synchronizes with the revolution frequency as the energy is varied,
synchrocyclotrons generate pulsed beam bunches. Thus the average intensity is low.
The synchrocyclotron is limited by the rf frequency detuning range, the strength of
the magnet flux density, etc. Currently two synchrocyclotrons are in operation, at
CERN and at LBL.

26L.H. Thomas, Phys. Rev. 54, 580 (1938).
27H.A. Willax, Proc. Int. Cyclotron Conj. 386 (1963).
28For a review, see R. Richardson, Proc. 10th Int. Conj. on Cyclotrons and Their Applications,

IEEE CH-1996-3, p. 617 (1984).
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D: Microtron

As accelerating rf cavities are expensive, it would be economical to use the rf structure
repetitively: microtrons, originally proposed by V. Veksler in 1944, are designed to do
this. Repetitive use requires synchronization between the orbiting and the rf periods.
For example, if the energy gain per turn is exactly equal to the rest mass of the
electron, the cyclotron frequency at the n — 1 passage is given by

<4.-i = — , (1-16)
nm0

i.e., the orbit period is an integral multiple of the fundamental cyclotron period. Thus,
if the rf frequency tuTf is an integral multiple of the fundamental cyclotron frequency,
the particle acceleration will be synchronized. Such a scheme or its variation was
invented by V. Veksler in 1945.

The synchronization concept can be generalized to include many variations of
magnet layout, e.g. the race track microtron (RTM), the bicyclotron, and the hexa-
tron. The resonance condition for the RTM with electrons traveling at the speed of
light is given by

A W
nArf = 2 T T — , (1.17)

ecB
where AE is the energy gain per passage through the rf cavity, B is the bending dipole
field, Arf is the rf wavelength, and n is an integer. This resonance condition simply
states that the increase in path length is an integral multiple of the rf wavelength.

Some operational microtrons are the three-stage MAMI microtron at Mainz, Ger-
many,29 and the 175-MeV microtron at Moscow State University. Several commercial
models have been designed and built by Scanditron. The weight of the microtron also
increases with the cubic power of beam energy.

E: Synchrotrons, weak and strong focusing

After E.M. McMillan and V. Veksler discovered the phase focusing principle of the
rf acceleration field in 1945, a natural evolution of the cyclotron was to confine the
particle orbit in a well-defined path while tuning the rf system and magnetic field
to synchronize particle revolution frequency.30 The first weak-focusing proton syn-
chrotron, with focusing index 0 < n < 1, was the 3-GeV Cosmotron in 1952 at BNL.

29see e.g., H. Herminghaus, in Proc. 1992 EPAC, p. 247 (Edition Frontieres, 1992).
30Prank Goward and D.E. Barnes converted a betatron at Telecommunication Research Labora-

tory into a synchrotron in August 1946. A few months earlier, J.R. Richardson, K. MacKenzie, B.
Peters, F. Schmidt, and B. Wright had converted the fixed frequency 37-inch cyclotron at Berkeley
to a synchro-cyclotron for a proof of synchrotron principle. A research team at General Electric Co.
at Schenectady built a 70 MeV electron synchrotron to observe synchrotron radiation in October
1946. See also E.J.N. Wilson, 50 years of synchrotrons, Proc. of the EPAC96 (1996).
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A 6-GeV Bevatron constructed at LBNL in 1954, led to the discovery of antiprotons
in 1955.

An important breakthrough in the design of synchrotron came in 1952 with the
discovery of the strong-focusing or the alternating-gradient (AG) focusing principle
by E.D. Courant, H.S. Snyder and M.S. Livingston.31 Immediately, J. Blewett in-
vented the electric quadrupole and applied the alternating-gradient-focusing concept
to linac32 solving difficult beam focusing problems in early day rf linacs. Here is Some
Recollection on the Early History of Strong Focusing in the publication BNL 51377
(1980) by E.D. Courant:

Came the summer of 1952. We have succeeded in building the Cosmotron,
the world's first accelerator above one billion volts. We heard that a group
of European countries were contemplating a new high-energy physics lab with
a Cosmotron-like accelerator (only bigger) as its centerpiece, and that some
physicists would come to visit us to learn more about the Cosmotron. . . .

Stan (Livingston) suggested one particular improvement: In the Cosmotron,
the magnets all faced outward. This made it easy to get negative secondary
beam from a target in the machine, but much harder to get positive ones. Why
not have some magnets face inward so that positive secondaries could have a
clear path to experimental apparatus inside the ring?

. . . I did the calculation and found to my surprise that the focusing would be
strengthened simultaneously for both vertical and horizontal motion. . . . Soon
we tried to make the gradients stronger and saw that there was no theoretical
limit - provided the alterations were made more frequent as the gradient went
up. Thus it seemed that aperture could be made as small as one or two inches -
against 8 x 24 inches in the Cosmotron, 12 x 48 in the Bevatron, and even bigger
energy machines as we then imagined them. With these slimmer magnets, it
seemed one could now afford to string them out over a much bigger circles, and
thus go to 30 or even 100 billion volts.

The first strong-focusing 1.2 GeV electron accelerator was built by R. Wilson at
Cornell University. Two strong-focusing or alternating-gradient (AG) proton syn-
chrotrons, the 28-GeV CERN PS (CPS) and the 33-GeV BNL AGS, were com-
pleted in 1959 and 1960 respectively. The early strong-focusing accelerators used
combined-function magnets, i.e., the pole-tips of dipoles were shaped to attain a
strong quadrupole field. For example, the bending radius and quadrupole field gradi-
ents of AGS magnets are respectively p = 85.4 m, and Bx = (dB/dx) = ±4.75 T/m
at B — 1.15 T. This corresponds to a focusing index of n = ±352. The strengths of
a string of alternating focusing and defocussing lenses were adjusted to produce net
strong focusing effects in both planes.

The strong focusing idea was patented by a U.S. engineer, N.C. Christofilos,33

31E.D. Courant, H.S. Snyder and M.S. Livingston, Phys. Rev. 88, 1188 (1952).
3 2J. Blewett, Phys. Rev. 88, 1197 (1952).
33N.C. Christofilos, Focusing system for ions and electrons, U.S. Patent No. 2736799 (issued

1956). Reprinted in The Development of High Energy Accelerators, M.S. Livingston, ed. (Dover,
New York, 1966).
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living in Athens, Greece. Since then, the strong-focusing (AG) principle and a cascade
of AG synchrotrons, proposed by M. Sands,34 has become a standard design concept
of high energy accelerators.

Since the saturation properties of quadrupole and dipole fields in a combined
function magnet are different, there is advantage in machine tuning with separate
quadrupole and dipole magnets. The Fermilab Main Ring was the first separate
function accelerator.35 Most present-day accelerators are separate-function machines.
For conventional magnets, the maximum dipole field strength is about 1.5 T and the
maximum field gradient is approximately I/a [T/m] (see Exercise 1.12), where o is the
aperture of the quadrupole in meters. For superconducting magnets, the maximum
field and field gradient depends on superconducting coil geometry, superconducting
coil material, and magnet aperture.

1.5 Colliders and Storage Rings

The total center-of-mass energy obtainable by having an energized particle smash
onto a stationary particle is limited by the kinematic transformation (see Exercise
1.6). To boost the available center-of-mass energy, two beams are accelerated to high
energy and made to collide at interaction points.36 Since the lifetime of a particle
beam depends on the vacuum pressure in the beam pipe, stability of the power supply,
intrabeam Coulomb scattering, Touschek scattering, quantum fluctuations, collective
instabilities, nonlinear resonances, etc., accelerator physics issues have to be evaluated
in the design, construction, and operation of colliders. Beam manipulation techniques
such as beam stacking, bunch rotation, stochastic beam cooling, invented by S. Van
de Meer,37 electron beam cooling, invented by Budker in 1966,38 etc., are essential in
making the collider a reality.

The first proton-proton collider was the intersecting storage rings (ISR) at CERN
completed in 1969. ISR was the test bed for physics ideas such as stochastic beam
cooling, high vacuum, collective instabilities, beam stacking, phase displacement ac-
celeration, nonlinear beam-beam force, etc. It reached 57 A of single beam current
at 30 GeV. It stopped operation in 1981.

The first electron storage ring (200 MeV) was built by B. Touschek et al. in 1960

34M. Sands, A proton synchrotron for 300 GeV, MURA Report 465 (1959).
35The Fermi National Accelerator Laboratory was established in 1967. The design team adopted

a cascade of accelerators including proton linac, rapid cycling booster synchrotron, and a separate
function Main Ring.

36A.M. Sessler, The Development of Colliders, LBNL-40116, (1997). The collider concept was
patented by R. Wiederoe in 1943. The first collider concept based on "storage rings" was proposed
by G.K. O'Neill in Phys. Rev. Lett. 102, 1418 (1956).

3 7S. Van de Meer, Stochastic Damping of Betatron Oscillations in the ISR, CERN internal report
CERN/ISR-PO/72-31 (1972).

38See e.g., H. Poth, Phys. Rep. 196, 135 (1990) and references therein.



18 CHAPTER 1. INTRODUCTION

in Rome. It had only one beam line and an internal target to produce positrons,
and it was necessary to flip the entire ring by 180° to fill both beams. Since the
Laboratoire de l'Accelerateur Lineaire (LAL) in Orsay had a linac, the storage ring
was transported to Orsay in 1961 to become the first e+e~ collider. The Stanford-
Princeton electron-electron storage ring was proposed in 1956 but completed only in
1966. The e~e" collider moved from Moscow to Novosibirsk in 1962 began its beam
collision in 1965. Since the 1960's, many e+e~ colliders have been built. Experience in
the operation of high energy colliders has led to an understanding of beam dynamics
problems such as beam-beam interactions, nonlinear resonances, collective (coherent)
beam instability, wakefield and impedance, intrabeam scattering, etc.

Some e+e~ colliders now in operation are CESR at Cornell, SLC and PEP at
SLAC, PETRA and DORIS at DESY, VEPP's at Novosibirsk, TRISTAN at KEK,
and LEP at CERN. The drive to reach higher energy provided the incentive for the
high power klystron. The power compression method SLED (SLAC Energy Devel-
opment), originated by P. Wilson, D. Farkas, H. Hogg, et al., paved the way to the
SLAC Linear Collider (SLC). High energy lepton colliders such as NLC, JLC, and
CLIC are expanding linear accelerator technology. On the luminosity frontier, the
^-factory at Frascati and B-factories such as PEP-II at SLAC and TRISTAN-II at
KEK aim to reach 1033"34 crn"2 s""1.

Proton-antiproton colliders include the Tevatron at Fermilab and SppS at CERN.
The discovery of type-II superconductors39 led to the successful development of su-
perconducting magnets, which have been successfully used in the Tevatron to attain
2-TeV cm. energy, and in HERA to attain 820-GeV proton beam energy. At present,
the CERN LHC (14-TeV cm. energy) and the BNL RHIC (200-GeV/u heavy ion
cm. energy) are under construction. The (40-TeV) SSC proton collider in Texas was
canceled in October 1993. Physicists are contemplating a very large hadron collider
with about 60-100 TeV beam energy.

1.6 Synchrotron Radiation Storage Rings

Since the discovery of synchrotron light from a then high energy (80-MeV) electron
synchrotron in 1947, the synchrotron light source has become an indispensable tool
in basic atomic and molecular physics, condensed-matter physics, material science,
biological, chemical, and medical research, and material processing. Worldwide, about
70 light sources are in operation or being designed or built.

Specially designed high-brightness synchrotron radiation storage rings are clas-
sified into generations. Those in the first generation operate in the parasitic mode

39Type II superconductors allow partial magnetic flux penetration into the superconducting ma-
terial so that they have two critical fields BC\(T) and BC2(T) in the phase transition, where T is
the temperature. The high critical field makes them useful for technical applications. Most type II
superconductors are compounds or alloys of niobium; commonly used alloys are NbTi and NbaSn.
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from existing high energy e+e~ colliders. The second generation comprises dedicated
low-emittance light sources. Third-generation light sources produce high-brilliance
photon beams from insertion devices using dedicated high-brightness electron beams.
These include the advanced photon source (APS) at Argonne National Laboratory,
the advanced light source (ALS) at Lawrence Berkeley National Laboratory, the Euro-
pean synchrotron radiation facility (ESRF), the Japan synchrotron radiation facility
(JSRF), etc. There are research efforts toward fourth generation light sources based
on free electron laser from a long undulator.

II Layout and Components of Accelerators

A high energy accelerator complex is composed of ion sources, buncher/debuncher,
chopper, pre-accelerators such as the high-voltage source or RFQ, drift-tube linac
(DTL), booster synchrotrons, storage rings, and colliders. Figure 1.6 is a schematic
drawing of a small accelerator complex at the Indiana University Cyclotron Facility.
Particle beams are produced from ion sources, where charged ions are extracted by a
high-voltage source to form a beam. Before injection into various types of accelerators,
the beam pulse is usually prebunched and chopped into appropriate sizes. The beam
can be accelerated by a DC accelerator or RFQ to attain the proper velocity needed
for a drift-tube linac. The beams can be injected into a chain of synchrotrons to
reach high energy. Some basic accelerator components are described in the following
subsections.

II. 1 Acceleration Cavities

The electric fields used for beam acceleration are of two types: the DC acceleration
column and the rf cavity.40 The DC acceleration column is usually used in low energy
accelerators such as the Cockcroft-Walton, Van de Graaff, etc.

The rf acceleration cavity provides a longitudinal electric field at an rf frequency
that ranges from a few hundred kHz to 10-30 GHz. For a particle with charge e, the
energy gain/loss per passage through a cavity gap is

AE = eAV, (1.18)

where AV = VQ sin(wrft + </>) is the effective gap voltage, wrf is the rf frequency, Vo

is the effective peak accelerating voltage, and 4> is the phase angle. Low frequency rf
cavities are usually used to accelerate hadron beams, and high frequency rf cavities
to accelerate electron beams.

40In recent years, new acceleration schemes such as inverse free-electron laser acceleration, laser
plasma wakefield acceleration, etc., have been proposed for high-gradient accelerators. See e.g.,
Advanced Accelerator Concepts, AIP Conf. Proc. No. 398, S. Chattopadhyay, et al., Eds. (1996)
and reference therein.
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Figure 1.6: A small accelerator, the Cooler Injector Synchrotron (CIS) at the Indiana
University Cyclotron Facility. The source, RPQ, DTL, debuncher, chopper, the CIS syn-
chrotron with 4 dipoles, and a transfer line are shown to illustrate the basic structure of an
accelerator system. The circumference is 17.36 m.

Acceleration of the bunch of charged particles to high energies requires synchro-
nization and phase focusing. The synchronization is achieved by matching the rf
frequency with particle velocity, and the phase focusing is achieved by choosing a
proper phase angle between the rf wave and the beam bunch.

II.2 Accelerator Magnets

Accelerator magnets requires stringent field uniformity condition in order to minimize
un-controllable beam orbit distortion and beam loss. Accelerator magnets are clas-
sified into field type of dipole magnets for beam orbit control, quadrupole magnets
for beam size control, sextupole and higher-order multipole magnets for the control
of chromatic and geometric aberrations.

Accelerator magnets are also classified into conventional iron magnets and su-
perconducting magnets. The conventional magnets employ iron or silicon-steel with
OFHC copper conductors. The superconducting magnets employ superconducting
coils to produce high field magnets.
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Dipoles

Dipole magnets are used to guide charged particle beams along a desired orbit. From
the Lorentz force law, the bending angle 6 is given by

.9 = - / Bdl = -— Bdl, (1.19)
Po Jsi Bp Jsi

where po is the momentum of the beam, and Bp = po/e is the momentum rigidity
of the beam. The total bending angle for a circular accelerator is 2TT, and the total
integrated dipole field is

I Bdl = 2-rrpo/e = 2nBp. (1.20)

The conventional dipole magnets are made of laminated silicon-steel plates for the
return magnetic flux for minimizing eddy current loss and hysteresis loss. Solid block
of high permeability soft-iron can also be used for magnets in the transport line or
cyclotrons, that requires DC magnetic field. A gap between the iron yoke is used to
shape dipole field. The iron plate can be C-shaped for a C-dipole (see Exercise 1.10
and the left plot of Fig. 1.7), or H-shaped for H-dipole. Since iron saturates at about
1.7 T magnet flux, the maximum attainable field for iron magnet is about 1.8 T. To
attain a higher dipole field, superconducting coils can be used. These magnets are
called superconducting magnets.

Figure 1.7: The cross-sections of a C-shaped conventional dipole magnet (left, courtesy of
G. Berg at IUCF) and an SSC superconducting dipole magnet (right, courtesy of R. Gupta
at LBNL). For conventional magnets, the pole shape is designed to attain uniform field in
the gap. The rectangular blocks shown in the left plot are oxygen free high conductivity
(OFHC) copper coils. For superconducting magnets, the superconducting coils are arranged
to simulate the cosine-theta like distribution.
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Superconducting magnets that use iron to enhance the attainable magnetic field
is also called superferric magnets. For high field magnets, e.g. 5-12 T, blocks of
superconducting coils are used to simulate the cosine-theta current distribution (see
Exercise 1.9). The right plot of Fig. 1.7 shows the cross-section of the high field SSC
dipole magnets.

Quadrupoles

A stack of laminated iron plates with a hyperbolical profile can be used to pro-
duce quadrupole magnet (see Exercise 1.12), where the magnetic field of an ideal
quadrupole is given by

B = B1(zx + xz), (1.21)

where B\ = dBz/dx evaluated at the center of the quadrupole, and x, s, and z are
the unit vectors in the horizontal, azimuthal, and vertical directions. For a charged
particle passing through the center of a quadrupole, the magnetic field and the Lorentz
force are zero. At a displacement (a;, z) from the center, the Lorentz force for a particle
with charge e and velocity v along the J direction is given by

F = evBi§ x {zx + xz) = —evB\ZZ + evB\XX. (1.22)

The equations of motion become

1 d^_eB L Lil-.^LZ (123)
vl at1 jmv vl at1 jmv

Thus a focusing quadrupole in the horizontal plane is also a defocussing quadrupole
in the vertical plane and vice versa. Defining the focusing index as

„ = * ; * * « « • , (1.24)

77m; Bp ox

we obtain
d2x n d?z n

in a quadrupole, where s — vt is the longitudinal distance along the s direction.

II.3 Other Important Components

Other important components in accelerators are ion sources;41 monitors for beam
position, beam current and beam loss; beam dump; emittance meters; vacuum ports

4 1B. Wolf, ed., Handbook of Ion Sources (CRC Press, New York, 1995); R. Geller, Electron Cy-
clotron Resonance Ion Sources and ECR Plasma (Inst. of Phys. Pub., Bristol, 1996).
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and pumps; beam orbit and stopband correctors; skew quadrupoles, sextupoles, oc-
tupoles, and other nonlinear magnets for nonlinear stopband correction; orbit bumps,
kickers, and septum; power supplies, etc. For high energy experiments, sophisticated
particle detectors are the essential sources of discovery. For synchrotron radiation
applications in electron storage rings, wigglers and undulators are used to enhance
the photon beam quality.

The timing and operation of all accelerator components (including experimental
devices) are controlled by computers. Computer control software retrieves beam sig-
nals, and sets proper operational conditions for accelerator components. The advance
in computer hardware and software provides advanced beam manipulation schemes
such as slow beam extraction, beam stacking accumulation, stochastic beam cooling,
etc.

Ill Accelerator Applications

III.l High Energy and Nuclear Physics

To probe into the inner structure of the fundamental constituents of particles, high
energy accelerators are needed. Historical advancement in particle and nuclear physics
has always been linked to advancement in accelerators. High energy accelerators have
provided essential tools in the discovery of p, f2, J/^, Z°, W*1 • • •, etc. Observation of
a parton-like structure inside a proton provided proof of the existence of elementary
constituents known as quarks. The IUCF cyclotron has provided the opportunity to
understand the giant Ml resonances in nuclei. The Tevatron at Fermilab facilitated
the discovery of the top quark in 1995. Radioactive beams may provide nuclear
reactions that will lead to understanding of the nucleo-synthesis of elements in the
early universe.

High energy colliders such as HERA (30-GeV electrons and 820-GeV protons),
Tevatron (1-TeV on 1-TeV proton-antiproton collider), SLC (50-GeV on 50-GeV e+e"
collider), LEP (50-100-GeV on 50-100-GeV e+e~ collider) led the way in high energy
physics in the 1990's. High luminosity colliders, such as the B-factories at SLAC
and KEK and the ̂ -factory at DA$NE, will provide dedicated experiments for un-
derstanding the symmetry of the fundamental interactions. The RHIC (100-GeV/u
on 100-GeV/u heavy ion collider) will provide important information on the phase
transitions of quark-gluon plasma. The CEBAF 4-6-GeV continuous electron beams
allow high resolution (0.1 fm) studies of the electromagnetic properties of nuclei. The
LHC (7-TeV on 7-TeV proton-proton collider) at CERN will lead high energy physics
research at the beginning of the 21st century.
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III.2 Solid-State and Condensed-Matter Physics

Ion implantation,42 synchrotron radiation sources, and neutron back-scattering have
provided important tools for solid-state and condensed-matter physics research. Neu-
tron sources have been important sources for research aimed at understanding the
properties of metals, semiconductors, and insulators. Free-electron lasers with short
pulses and high brightness in a wide spectrum of frequency ranges have been used
extensively in medical physics, solid-state physics, biology, and biochemistry.

III. 3 Other Applications

Electron beams can be used to preserve and sterilize agricultural products. Beam
lithography is used in industrial processing. Radiation has been used in the manu-
facture of polymers, radiation hardening for material processing, etc. Particle beams
have been used to detect defects and metal fatigue of airplanes, ships, and strategic
equipment.

Since the discovery of X-ray in 1895, radiation has been used in medical imaging,
diagnosis, and radiation treatments. Radiation can be used to terminate unwanted
tumor growth with electron, proton, or ion beams. In particular, proton and heavy-
ion beams have become popular in cancer radiation therapy because these beam
particles deposit most of their energy near the end of their path. By controlling
the beam energy, most of the beam energy can be deposited in the cancerous tumor
with little damage to surrounding healthy cells. Beams have been used in radiation
sterilization, isotope production for radionuclide therapy,43 etc.

Exercise 1: Basics
1. Show that the magnet rigidity Bp is related to the particle momentum p by

R \rp i _ P _ \ 3.3357 p [GeV/c] for singly charged particles
&P Limj - — - | 3^57 p j G e V / , c ] for particles with charge Ze '

where B is the magnetic flux density, p is the bending radius, p is the beam momen-
tum, and Ze is the charge of the particle.

(a) Estimate the magnetic rigidity of proton beams at the IUCF Cooler Ring (ki-
netic energy 500 MeV), RHIC (momentum 250 GeV/c), Tevatron (momentum
1 TeV/c) and SSC (momentum 20 TeV/c).

(b) If the maximum magnetic flux density for a conventional dipole is 1.7 Tesla,
what is the total length of dipole needed for each of these accelerators?

42The ion implantation, invented by W. Shockley in 1954 (U.S. Patent 2787564), has become an
indispensable tool in the semiconductor industry.

43see e.g. Bert M. Coursey and R. Nath, Phys. Today, p. 25, April 2000.
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(c) If superconducting magnets are used with magnetic fields B = 3.5 T (R.HIC),
5 T (Tevatron) and 6.6 T (SSC), what is the total length of dipoles needed in
each accelerator?

2. The resonance frequency of a LC circuit is / r = l/2-Ky/LC. Assuming that you can
build a capacitor with a minimum capacitance of C = 1 pF, what value of inductance
L is needed to attain 3 GHz resonance frequency? What is your conclusion from this
exercise? Can you use a conventional LC circuit for microwave tuning?44

3. Consider a uniform cylindrical beam with N particles per unit length in a beam of
radius o; show that a test charged particle traveling along at the same velocity as the
beam, v, experiences a repulsive space-charge force,

f e2JV ,
o—n.r r - a

o 6 2 2r r> a
( 2^607" 7

where 7 = l / \ / l - / 3 2 and e is the charge of the beam particle.

(a) Estimate the space-charge force for the SSC low energy booster at injection with
kinetic energy 800 MeV and NQ = 1010 particles per bunch, with rms bunch
length as = 2 m and beam diameter 4 mm. Here the number of particles per
unit length is N = NB/(\/2nas).

(b) What happens if the test charged particle travels in the opposite direction in the
head-on collision process? Estimate the space-charge force for the e+e~ colliding
beam at SLC, where the beam parameters are E = 47 GeV and NB = 2 x 1010,
the rms bunch length is as = 0.6 mm, and the beam size is 3 /jm. If this force
is exerted by a quadrupole, what is the equivalent field gradient?

4. In a cyclotron, the synchronous frequency is cj = eB/ym = UJQ/J, where WQ = eB/m
is the cyclotron frequency, and 7 is the relativistic energy factor. Use the following
steps, in the uniform acceleration approximation, to prove that, if a sinusoidal voltage
Vrt — t^costt/pt is applied to the dees, the maximum attainable kinetic energy is
\/2eVmc2/n, where e and m are the charge and mass of the particle.

(a) Let ip be the rf phase of the particle. Show that the equation of motion in a
uniform acceleration approximation is dip/dt = (7"1 - l)uio, dy2/dt — acostp,
where a = 2u>oeV/irmc2.

(b) Denning a variable q = acos^>, show that the equation of motion becomes
{q/\/a2 — q2)dq = (27 — 2)UIQ dj. Integrate this equation and show that the
maximum kinetic energy attainable is \j2eVmc'1- /w.

5. The total power radiated by an accelerated charged particle is given by Larmor's
formula:

1 2e2t>2 _ 1 2e2 dp^ dp,,
~ 47re0 3c3 ~~ 4TT€0 3m2c3 ( dr ' dr '

"See V.F.C. Veley, Modern Microwave Technology (Prentice Hall, Englewood Cliffs, NJ, 1987).
For an order of magnitude estimation, a 5-cm-radius single loop with wire 0.5 mm thick will yield
an inductance of about 3 x 10~7 H.
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where dr = dt/y is the proper time and pM is the four-momentum.45

(a) In a linear accelerator, the motion is along a straight path. The power radiated

= 1 2e2 dp 2 = 1 2e2 dE 2

47reo3m2c3Mr 47re0 3m2c31 dx ' '

where dE/dx is the rate of energy change per unit distance. The ratio of radi-
ation power loss to power supply from an external accelerating source is

P _ 1 2e2 dE _ 2 re dE
dE/dt ~ 47reo3m2c3«;(rf^) ~ S m c 2 ^ ' 1

where re = 2.82 x 10~15 m is the classical radius of the electron. Assuming
that electrons gain energy from 1 GeV to 47 GeV in 3 km at SLC, what is the
ratio of power loss to power supply? In the Next Linear Collider (NLC), the
gradient of the accelerating cavities will increase by a factor of 10. What will
be the ratio of radiation power loss to power supply? What is your conclusion
from this exercise?

(b) In a circular accelerator, p changes direction while the change in energy per
revolution is small, i.e.

dp _ 1 dE

where w = j3c/p, and p is the bending radius. The radiated power becomes

where ro is the classical radius of the particle, m is the mass, and

= 4nr0 = f 8.85 x l(r5[m/(GeV)3] for electrons,
7 3(mc2)3 1 7.78 x l(T18[m/(GeV)3] for protons.

The radiative energy loss per revolution of an isomagnetic storage ring becomes

Uo = ^CyE^/p.

i. Calculate the energy dissipation per revolution for electrons at energy E =
50 GeV and 100 GeV in LEP, where p = 3096.175 m and the circumference
is 26658.853 m.

ii. Find the energy loss per turn for protons in SSC, where the magnetic field is
6.6 Tesla at 20 TeV, the circumference is 87120 m, and the bending radius
is 10187 m.

iii. Show that the power radiated per unit length in dipoles for a beam is

where Ug is the energy loss per revolution, I is the total beam current, and
p is the radius of curvature in the dipole. Find the synchrotron radiation
power loss per unit length in LEP and SSC, where the circulating beam
currents are respectively 3 mA and 70 mA.

45See J.D. Jackson, Classical Electrodynamics, 2nd ed., p. 468 (1975).
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6. Show that the total energy for a head-on collision of two beams at an energy of
7cmmc2 each is equivalent to a fixed target collision at the laboratory energy of 7771c2

with 7 = 27c2m - 1.

7. The luminosity, L [cm~2s~1], is a measure of the probability (rate) of particle en-
counters per unit area in a collision process. Thus the total counting rate of a physics
event is it = (TphysA where <Tphys is the cross-section of a physics process.

(a) In fixed target experiments, the luminosity is given by C = (dNB/dt)retarget,
where dNB/dt is the number of beam particles per second on target, and ntarget
is the target thickness measuring the number of atoms per cm2. The average
luminosity is given by (C) = (dNB/dt)ntATget, where (dNB/dt) = NBf. Here NB

is the number of particles per pulse (bunch) and / is the pulse repetition rate.
Consider a fixed target experiment, where the beam repetition rate is 0.4 Hz,
beam particle per pulse is 1013, the beam pulse length is 150 ns, and the target
thickness is 4 mg/cm2 Au foil. Find the instantaneous and average luminosities
of the fixed target experiment. What is the advantage of stretching the beam
pulse length to 1 s in this experiment?

(b) When two beams collide head-on, the luminosity is

£ = 2fNiN2[ pi(z, z, si)p2{x, z, s2)dxdzdsd{fict),

where si = s + fict, s2 = s — fict, f is the encountering frequency, Ni and JV2 are
the numbers of particles, and p\ and pi are the normalized distribution functions
for these two bunches. Using a Gaussian bunch distribution,

1 f x2 z2 s2 \

p ( w ) = (2*)^axazas ^ { " ^ f " &f " 2 f̂) '

where crx,a2, and CTS are respectively the horizontal and vertical rms bunch
widths and the rms bunch length, show that the luminosity for two bunches
with identical distribution profiles is

£=fN1N1

4naxaz

Show that when two beams are offset by a horizontal distance 6, the luminosity
is reduced by a factor exp{—b2/4a2}.

8. Show that the magnetic field on the axis of a circular cylindrical winding of uniform
cross-section is

o ^ M L , „ 6+(62 + [l-s]2)i/2 , 1 6 +(b2 + s2)V2\
Hs) = — {(t-°n»a+ia2 + [e_s]2)m+^a+{a2+s2)y2)

where I is the length of the solenoid, J is the current density, a, b are the inner and
outer cylindrical radii respectively, and s is the distance from one end of the solenoid.



28 CHAPTER 1. INTRODUCTION

(a) For an ideal solenoid, show that the magnetic field becomes46

where n is the number of turns per unit length, and / is the current in each
turn.

(b) For an ideal solenoid, show that the inductance is

L = non2(S = non2 x volume of the solenoid,

where S is the cross-section area of the solenoid. Note that the total energy
stored in the magnet is given by the magnetic energy.

9. From elementary physics, the field at a distance r from a long straight wire carrying
current / is

B = ^oI/2-nr

along a direction tangential to a circle with radius r around the wire.

(a) Show that the 2D magnetic field at location y = x + jz for a long straight wire
is

Bz(x,z)+jBx(x,z) = I*1

where j is an imaginary number, the current / is positive if it points out of
paper, and yo = xo + JZQ is the position of the current filament.47

(b) If the current per unit area of an infinitely long circular current sheet is

X(r, <j>) = ( / i /2o) cos <f> 5{r - a),

where I\ is the total dipole current and (r, <j>) are the cylindrical coordinates
with x = r cos <j> and z = r sin <j>, show that the magnetic field inside the current
sheet is

Bz = -ti0Ii/4a, Bx = 0.

This is the cosine-theta current distribution for a dipole. High-field supercon-
ducting dipoles are normally made of current blocks that simulate the cosine-
theta distribution.

(c) The Beth current sheet theorem states that the magnetic fields in the immediate
neighborhood of a two-dimensional current sheet are

B(y+) - B(y_) = jMdl/dy),

where y+ and y_ are the complex coordinates y = x + jz at an infinitesimal
distance from the current sheet, and dl/dy is the current per unit length. Apply
this theorem to show that the cosine-theta current distribution on a circular
cylinder gives rise to a pure dipole field inside the cylinder.

46Set s = 1/2,6 -> a.
47See R.A. Beth, J. Appl. Phys. 37, 2568 (1966); 38, 4689 (1967).
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10. Show that the magnetic field at the coordinate y = x + jz, due to a thin current
wire located at coordinates yo = XQ + jzo, between two sheets of parallel plates with
infinite permeability is48

Bz + jBx = Of tanh E i l l l + coth to!) 1,

where g is the gap between two parallel plates. The current flows in the xxz direction.

11. Show that the dipole field of a window-frame dipole with two sheets of parallel plates
having infinite permeability is given by

B = fioNI/g = HQUI,

where N is the number of turns, I is the current in each turn, g is the gap between
two iron plates, and n = N/g is the number of turns per unit gap length. Show that
the inductance is

L = /j,oN2(.w/g = nan2 x volume of the dipole,

where I and w are the length and width of the dipole. The total power dissipation is
P = [NI)2R, where R = pi/A is the resistance, A as the cross-sectional area of the
conductor, and p is the resistivity of the coil.

12. Following Maxwell's equation, V x B = 0 in the current-free region, and the mag-
netic field can be derived from a magnetic potential, <&m, with B = —V$m. For
a quadrupole field with Bz = Kx, Bx = Kz, show that the magnetic potential is
<&m = —Kxz. The equipotential curve is xz = constant. Thus the pole shapes of
quadrupoles are hyperbolic curves with xz = o2/2. The pole-tip field is jBpoie tip =
Ka. To avoid the magnetic field saturation in iron, the pole-tip field in a quadrupole
is normally designed to be less than 0.9 Tesla. The achievable gradient is B\ =
Bv0\e tip/a- Show that the gradient field is

Bx = 2naNI/a2,

where NI is the number of ampere-turns per pole, and a is the half-aperture of the
quadrupole. The inductance in an ideal quadrupole is

_ 8M0iV2l 2 o4 8noN2e 2

a2 (Xc 12x? j R i a2 X"

where xc is the distance of the conductor from the center of the quadrupole. In reality,
x2 should be replaced by x\ + xcwc, where wc is the width of the pole.

48S.Y. Lee, Nucl. Inst. Meth. A300, 151 (1991). Use the following identities:

iry _ 4y ^ 1 Try _ 2 4y ^—^ 1
t a n h _ _ _ ^ _ _ _ _ _ _ _ c o t h _ _ _ + _ ^ _ _ _ _ .
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13. Consider a pair of conductors with cross-sections independent of the azimuthal coor-
dinate s, and surrounded by isotropic and homogeneous medium with permittivity e
and permeability [i. Maxwell's equations are

on
V-(eE) = 0, VxE = - ~ ,

where the external charge and current are zero. Let x, z and s form the basis of an
orthonormal coordinate system. For a transverse guided field propagating in the +s
direction, we assume

E{r,t) = Ex{x,z)e-^ks-ut\
H(f, t) = Hx(x, z)e-^ks-ut\ B± = tfj_,

where fields are all transverse with phase velocity up = u/k.

(a) Show that the frequency ui and the wave number k of the electromagnetic wave
satisfy the dispersion relation UJ — fc/^/e/J. Show that the transverse electromag-
netic fields satisfy the static electromagnetic field equation,

and the transverse plane wave obeys the relation H = ^ sxEj_, where Z = \fJTjl
is the intrinsic impedance of the medium.

(b) Show that, because of the transverse nature of the electromagnetic field, the
electric field can be represented by

£ ( Z , Z ) = - V _ L # E , Z ) ,

where <f> is the electric potential, and Vj_ is the transverse gradient with respect
to the transverse coordinates. By definition, the capacitance per unit length is
C = X/V, where V = cj>i — <j>2 is the potential difference between two conductors,
and A is the charge per unit length on conductors. Using Ampere's law, show
that

lH-dr = X/eZ = Xvp,

where / = Xvp is the current per unit length, and df= dxx + dzz.

(c) Similarly, the inductance per unit length is

where the integral is carried out between two conductors. Show that there is a
general relation:

C L = /ie = 1/«|.

The characteristic impedance of the transmission line is given by Rc = y/L/C =
V/I, where C and L are the capacitance and the inductance per unit length.
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(d) Show that the capacitance and the inductance per unit length of a coaxial cable
with inner and outer radii r\ and r-i are

r 2ne T P 1 r 2

^ = n—/—v> L = 7rln~ •
In(r2/ri) 2vr r\

Fill out the following table for some commonly used coaxial cables.

Type Diameter Capacitance Inductance Rc Delay time
[cm] [pF/m] LuH/m] [Q] [ns/m]

RG58/U 0.307 93.5 50
RG174/U 0.152 98.4 50
RG218/U I 1.73 I 96.8 | | 50 |

14. Derive the transverse equations of motion for electrons in a betatron49 by the following
procedures. In the cylindrical coordinate system, the equation of motion for electrons
is

at at

where f,z are respectively the radially outward and vertically upward directions,
Br,Bz are the radial and vertical components of the magnetic flux density, 6 is the
azimuthal angle, and 9 = v/r is the angular velocity.

(a) Assume that the vertical component of the magnetic flux density is

B . = f l 0 ( l ) - « B b ( l - B 4 ^ + ...)>

where n is the field index. Show that the radial magnetic field with BT = 0 at
z = 0 is

(dBz\ nB0

V dr ) T = R R

(b) Using
i = (r-R)/R and ( = z/R,

show that the equations of motion become

£ + wg(l-n)£ = 0, C + wg< = 0,

where UJQ = v/R = eBo/jm is the angular velocity of the orbiting particle. Show
that the stability of betatron motion requires 0 < n < 1.

15. Ion sources are indispensable to all applications in accelerators. For electron beams,
there are thermionic sources, rf gun sources, laser-driven electron sources, etc. For
charged ion beams, there are many different configurations for generating plasma

49See D. Kerst and R. Serber, Phys. Rev. 60, 53 (1941). Because of this seminal work, the
transverse oscillations of charged particles in linear or circular accelerators are generally called
betatron oscillations.
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sources for beam extraction.50 Charged ion beams are usually drawn from a space-
charge ion source at zero initial velocity. The flow of charged ions is assumed to be
laminar. In the space-charge dominated limit, the electric field between the anode and
the cathode is maximally shielded by the beam charge. The maximum beam current
occurs when the electric field becomes zero at the emitter. Assume a simplified geom-
etry of two infinite parallel plates so that the the motion of ions is one-dimensional.
Let s be the distance coordinate between the parallel plates with a = 0 at the emitter,
and s = o at the anode. The Poisson equation becomes

d?V _ p

where V is the electric potential, p is the ion density in the parallel plate, and eo is
the permittivity.

(a) In the non-relativistic limit with laminar flow, show that the Poisson equation
becomes

ds2 e0 \2e)

where J = pv is the current density, e and m are the charge and mass of the
ion, and v is the velocity of the ion.

(b) For a space-charge dominated beam, the condition of maximum space-charge
shielding is equivalent to V = 0 and dV/ds = 0 at s = 0. Show that the
maximum current is

J = X^o3/V.
where Vo is the extraction voltage at the anode, and

is the perveance of the ion source. The relation of the current to the extraction
voltage is called Child's law.51

(c) Show that the space-charge perveance parameters for electron, proton, deuteron,
He+, N+, and Ar+ ion sources are given by the following table. Here the micro-
perveance is defined as 1 fj,P = 1 x 10"6 A/V3/2.

1 e I p I D+ I He+ I N+ I A+
X (fJ,P) 2.334 0.0545 | 0.0385 ~0.0272 | 0.0146 [ 0.00861

16. The Paraxial Ray Equation: In the free space, the electric potential obeys the
Laplace equation V2V = 0. Using the basis vectors (f, 0, s) for the cylindrical coordi-
nates in paraxial geometry, where r is the radial distance from the axis of symmetry,
(j> is the azimuthal coordinate, and s is the longitudinal coordinate, we expand the

50See e.g. Proc. Int. Symp. on Electron Beam Ion Sources, AIP Conf. Proc. No. 188 (1988);
Production and Neutralization of Negative Ions and Beams, AIP Conf. Proc. No. 210 (1990).

51C.D. Child, Phys. Rev. 32, 492 (1911); I. Langmuir, Phys. Rev. 32, 450 (1913). See also A.T.
Forrester, Large Ion Beams (Wiley, New York, 1988).
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position vector as R = rr + ss. Let VQ(S) be the electric potential on the axis of sym-
metry. Show that the electric potential V(r, s) and the electric field E = Err + Ess
are

VW y(4)
V(r,s)=V0(s)-^rr*-^rri + ---,

, , 1/(3) T/(5)

where VJj correspond to nth-derivative of Vb with respect to s. The equation of

motion for a non-relativistic particle in the electric field is mR = eE, where the
overdot represents the time derivative. Show that the equation of motion for the
radial coordinate, known as the paraxial ray equation, becomes

Vr" + \v'r> + -V"r = 0,

where V replaces Vo for simplicity and the prime is the derivative with respective to s.
The paraxial ray equation can be used to analyze the beam envelope in electrostatic
accelerators.52

17. Consider a line charge inside an infinitely long circular conducting cylinder with radius
b. The line-charge density per unit length is A, and the coordinates of the line charge
are a = (a cos <j>, a sin <f>), where a is the distance from the center of the cylinder, and
(j> is the phase angle with respect to the x axis. Show that the induced surface charge
density on the cylinder is53

(b 6 \ A b2 - c?

a( '<Pvl) 2nb b2 + a2- 2ba cos(<£w - 4>)

A f °° /a\n 1
= -5S[1 + 2 SU) cosn<*-"4

where <̂ w is the angular coordinate of the cylindrical wall surface. This result is the
basis of beam position monitor design.

52V.K. Zworykin et al., Electron Optics and the Electron Microscope, (Wiley, 1945); J.R. Pierce,
Theory and Design of Electron Beams, (Van Nostrand, 1949); V.E. Cosslett, Introduction to Electron
Optics, (Oxford, 1950); F. Terman, Radio Engineers' Handbook, (McGraw-Hill, 1943).

53Let the image charge be located at c = (ccos<£, csin<£), then the electric potential for infinite
line charges at f is

$(r) = In \r — a -I In r — cl.

The electric field is E = —V$. Using the condition EQ = 0 on the conducting wall surface in the
cylindrical coordinate, we obtain c = b2/a and Ai = —A. The induced surface charge density is
a = eoEr. The multipole expansion can be obtained by using the identity cosn<? + jsinn9 = e^nB.





Chapter 2

Transverse Motion

In an accelerator, the transverse particle motion is divided into a closed orbit1 and
a small-amplitude betatron motion around the closed orbit. The terminology of
betatron motion is derived from the seminal work of D. Kerst and R. Serber on the
transverse particle motion in a betatron. It is now used for transverse motion in all
types of accelerators.

In synchrotrons, bending magnets are needed to provide complete revolution of
the particle beam. This defines a closed orbit. Betatron motion around the closed
orbit is determined by an arrangement of quadrupoles, called the accelerator lattice.
In actual accelerators, magnetic field errors are unavoidable; therefore the closed or-
bit and the betatron motion will be perturbed. Lattice design has to take these field
errors into account. In particular, since the bending angle of a dipole depends on
the particle momentum, the resulting closed orbits will also depend on the particle
momentum. In the first-order approximation, the deviation of the closed orbit is
proportional to the fractional off-momentum deviation (p — Po)/Po, where p0 is the
momentum of a reference particle. The dispersion function, defined as the deriva-
tive of the closed orbit with respect to the fractional off-momentum variable, and
the chromatic aberration of the betatron motion play a major role in the acceler-
ator's performance. Furthermore, high-intensity and high-brightness beams require
measurement and correction of linear and nonlinear resonances, and measurement,
control and feedback-correction of collective beam instabilities.

Various aspects of transverse particle motion in synchrotrons will be discussed
in this chapter.2 In Sec. I, we derive the particle Hamiltonian in the Frenet-Serret
coordinate system. In Sec. II, we examine the properties of linear betatron motion.
We discuss the Floquet transformation to action-angle variables, beam distribution,

1A closed orbit in a synchrotron is defined as a particle trajectory that closes on itself after a
complete revolution. A closed orbit in a linac is the orbit with zero betatron oscillation amplitude.
Particle motion with a small deviation from the closed orbit will oscillate around the closed orbit.

2In principle, the method discussed in this chapter can also be applied to a linac or a transport
line, where the betatron motion is equivalent to an initial value problem.

35
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beam emittance, and properties of the envelope function. In Sec. Ill, we study the
effects of linear magnetic imperfections (dipole and quadrupole field errors) and their
application in beam manipulation. Section IV deals with the off-momentum closed
orbit and its implications for longitudinal synchrotron motion, and also with the
lattice design strategies for variable 7T and minimum dispersion action. Section V
describes the chromatic aberration and its correction, and Section VI describes linear
betatron coupling. In Sec. VII, we examine the effects of low-order nonlinear reso-
nances. Section VIII introduces the basic concept of transverse collective instabilities
and Landau damping. Section IX lays out a general framework for the synchrotron-
betatron coupling Hamiltonian.

I Hamiltonian for Particle Motion in Accelerators

The motion of a charged particle in electromagnetic field E and B is governed by the
Lorentz force,

^=F = e(E + vxB), (2.1)
at

where p = ymv is the relativistic kinetic momentum, v = df/dt is the velocity, m is
the mass, e is the charge, and 7 = l / \ / l — v2/c2 is the relativistic Lorentz factor. The
energy and momentum of the particle can be expressed as E = ymc2 = mc2dt/dT
and p = rwyv' = mdf/dr, where r is the proper time with dt/dr = 7. Thus Eq. (2.1)
can be derived from Lagrange's equation

d_ (dL\ _d£_()

where the Lagrangian is L = —mc2Jl — v2/c2 — e$+ev-A. The electric and magnetic

fields are related to the vector potential A and the scalar potential $ by

E = -V$ - dA/dt, B = V x A. (2.2)

The canonical momentum P = dL/dv = p + eA, and p is the mechanical momentum.
The Hamiltonian for particle motion is given by

H = P-v-L = c[m2c2 + {P- eA)2}1'2 + e$, (2.3)

and Hamilton's equations of motion are

dH p_JJI
X~WX' Px~ dx' e ' {2A)

where the overdot is the derivative with respect to time t, and (x, Px), • • • pairs are
conjugate phase-space coordinates.
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Figure 2.1: Curvilinear coordinate
system for particle motion in syn-
chrotrons. ?o(s) is the reference orbit,
x, s and i form the basis of the curvi-
linear coordinate system. Any point
in the phase space can be expressed
by r = TQ + xx + zz. Here x and z are
betatron coordinates.

I.I Hamiltonian in Frenet-Serret Coordinate System

Let fo(s) be the reference orbit (see Fig. 2.1), where s is the arc length measured
along the closed orbit from a reference initial point. The tangent unit vector to the
closed orbit is given by

i(s) = d*&. (2.5)

The unit vector perpendicular to the tangent vector and on the tangential plane is3

x{s) = ~p(s)^ , (2.6)

where p(s) defines the radius of curvature. The unit vector orthogonal to the tangen-
tial plane is given by

z(s) = x{s) x s{s) . (2.7)

The vectors x, s and z form the orthonormal basis for the right-handed Frenet-Serret
curvilinear coordinate system with

x'{s) = -priis) + T{S)Z{S), Z'(S) = -T(S)X{S) , (2.8)
P(s)

where the prime denotes differentiation with respect to s, and T(S) is the torsion
of the curve. For simplicity, we discuss only plane geometry, where r(s) = 0. The
particle trajectory around the reference orbit can be expressed as

r(s) = fo(s) + xx(s) + zz(s) . (2.9)

3Using Eq. (2.5), we find acentripetai = \d2r0/dt2\ = {ds/dt)2\(d/ds)(df0/ds)\ = v21(ds/ds)|, where
v = ds/dt is the tangential velocity. The magnitude of the bending radius is p = ^2/acentripetal =
\ds/ds\.
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To express the equation of motion in terms of the reference orbit coordinate system
(x, s, z), we perform a canonical transformation by using the generating function

F3(P; x, s, z) = -P- [fo(s) + xx(s) + zz{s)\ , (2.10)

where P is the momentum in the Cartesian coordinate system. The conjugate mo-
menta for the coordinates (x, s, z) are (see Appendix A)

ps = -d-~ = {l+xlp)P-s, Px = - ^ 1 = P.X, Px = -?h = p.z. (2.11)
us ox oz

The new Hamiltonian becomes

{ (n - PA \2 ~\ 1 / 2

m2c2 + ^ + lyjp + (p, - eAxf + (p, - eAzfj , (2.12)
where AS,AX and Az are obtained by substituting the vector A in Eq. (2.11), i.e.

A s = (l + x/p) A - s , A x = A - x , A z = A - z . (2.13)

Note that As and ps are not simply the projections of vectors A and P in the s
direction. In the new coordinate system, Hamilton's equation becomes

. dH . dH . dH . dH . dH . dH ,
s= ^—,ps = --^-; x = —,px = -—-; z = — , p 2 = - — . (2.14)

ops os opx ox opz oz

The next step is to use s as the independent variable instead of time t [16]. Using
the relation dH = (dH/dpx)dpx + {dH/dps)dps — 0 or

ds s \apx) \dpsj dpx

where the prime denotes differentiation with respect to s, we find

, _ ap, dp^ _ dp, _ ap, dps_ , _dp1 .
1 ~ a tr ' ~ KTi x ~ a >Px ~ ^ ' z ~ a 'Pz ~ 13~- 1/.1OJ

dH at opx ox opz oz
This is Hamilton's equations of motion with s as the independent variable, — ps as
the new Hamiltonian, and the conjugate phase-space coordinates given by

x,px; z,pz; t,-H. (2.17)

When the scalar and vector potentials 4> and A are independent of time, the new
Hamiltonian —ps is also time independent. The transformation reduces the degrees
of freedom from three to two. But the price to pay is that the new Hamiltonian
depends on the new variable s. Because of the repetitive nature of the accelerator,
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the dependence of the new Hamiltonian on s is periodic. The periodic nature of the
new Hamiltonian can be fruitfully exploited in the analysis of linear and nonlinear
betatron motion. The new Hamiltonian H = -ps is then given by

k=- {l+f) [ ( g T ^ ) 2 -mV -{p* ~eA*)2 -{pz - eA>)2]V2 - eA°> (2-l8)
where the phase-space coordinates are (x,px, z,pz, t, -H). The total energy and mo-
mentum of the particle are E = H — e<j) and p = JE2/c2 — m2c2. Since the trans-
verse momenta px and pz are much smaller than the total momentum, we expand the
Hamiltonian up to second order in px and pz

H « -p ( l + ^ + i ± ^ [(px - eAxf + (Pz - eAzf) - eAs. (2.19)

1.2 Magnetic Field in Frenet-Serret Coordinate System

In the Frenet-Serret coordinate system, (x, s, z), the scale factor becomes

hx = l, hs = 1 + - , hz = 1. (2.20)

We have

9$ 1 d$ 3$
V$ = —X + ——S + —Z,

ox hs os dz
V.A = ! \d(hsA1) | 8A2 | d(hsA3)l

hs dx ds dz J '

vy v A - 1 [^3 _ d(hsA2)] . \dA, 8A3 1 [dfoAa) 9AJ .
v fts [ ds dz \x+[dz dx s + hs [~dx~~~~ds~\ z'

/is [dx dx ds hs ds dz dz J

where ^ = A • x, /I2 = A • 5, and A3 = A- z. In accelerator applications, we consider
only the case with zero electric potential with $ = 0, furthermore, for an accelerator
with transverse magnetic fields, we can assume Ax = Az = 0. The two-dimensional
magnetic field can be expressed as

B = Bx(x,z)x + Bz{x,z)z, (2.21)

where

_ 1 d(h,A2) _ 1 dAs _ 1 d{hsA2) 1 dAs

hs dz ~ hs dz' °z~ hs dx ~ hsdx' KZ-1 >
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with As = hsA2. Using Maxwell's equation V x B = 0, we have

d i d A d i d A s _
o~I—5 <"5~T—3~ u- \i.2,6)
oz hs oz ox hs ox

General solutions of BX,BZ and As can be obtained through power series expansion
(see Exercise 2.1.3).

For straight geometry with hs = 1, we obtain V\AS = 0, and As can be expanded
in power series as

As = Sosft g *££{* + j z r 1 ] , (2.24)

where j is the imaginary number, 5ft[...] represents the real part, and Bz = ^ and
Bx = ~"^1- Normally the normalization constant Bo is chosen as the main dipole
field strength such that bo — I. Thus we have Bobo = —[Bp]/p, where Bp is the
momentum rigidity of the beam, p is the bending radius, and bo = 1. The resulting
magnetic flux density is given by4

oo

Bz + jBx = Bo £ ( b n + jan){x + jz)n (2.25)
71=0

with

bn - Bon! 3x- x=z=o n ~ Bon\ dx" B = l = 0 ' ( b )

where bn,an are called 2(n + l)th multipole coefficients with dipole 6o, dipole roll
do, quadrupole 6i, skew quadrupole ai, sextupole 62, skew sextupole 02, etc.5 The
effective multipole field on the beams becomes

1 -I 00

— (Bz + jBx) = T - E ( ^ +io») (̂  + ^ ) n , (2-27)

where, in our coordinate system, the — and + signs are used for particles with positive
and negative charges respectively. The complex 2D magnetic field representation in
Bz + jBx is called the Beth representation (see Exercise 1.10).

4The multipole expansion of the magnetic field is usually rescaled to obtain

Bz + jBx = BQ ^(bn+JanX^^r,
n=O Vb

where r^ is a reference radius. For high energy accelerators such as the SSC and LHC, n> = 1 cm,
and for RHIC and Tevatron, r\> = 2.54 cm. The resulting bn and an coefficients are dimensionless.

5Note that the multipole convention used in Europe differs from that in the U.S. In Europe,
physicists use 61, ai for dipole and dipole roll, 62,02 for quadrupole and skew quadrupole, etc.
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Since V x B = 0 in the current free region, the magnetic field can also be derived
from a scalar magnetic potential $m, i.e. B = - V $ m (see Exercise 2.1.3). The scalar
magnetic potential is

*m = -Bo3 [ £ bj~^YL(^ + J * H - (2-28)
Ln=0 J

where 3[...] represents the imaginary part of the expression.

1.3 Equation of Betatron Motion

Disregarding the effect of synchrotron motion (see Sec. IX), Hamilton's equations of
betatron motion are given by

,_dH_ ,__dH_ ,_dH_ , _ dH
opx ox opz az

With the transverse magnetic fields of Eq. (2.22), the betatron equations of motion
become

Pl , B P \ \ P) (2-29)

I Bpp y p)

where we neglect higher-order terms, the upper and lower signs correspond to the
positive and negative charged particle respectively, p is the momentum of the particle,
Po is the momentum of a reference particle, Bp = po/e is the magnetic rigidity, and
e is the charge of a particle. The sign convention is chosen such that Bp is positive.
Alternatively, Eq. (2.29) can be derived through Newton's law of acceleration (see
Exercise 2.1.2). The equations of motion are given by

TU ~ 7 m ~ ± B p ' Z~^ B p '

which can be transformed into Eq. (2.29) by changing the time variable to the coor-
dinate of orbital distance s, i.e. x" = f/v2s.

1.4 Particle Motion in Dipole and Quadrupole Magnets

We consider a on-momentum particle with p = Po, expand the magnetic field up to
first order in x and z, i.e.

Bz = -Bo + -—^x = ̂ Bo + BlX, Bx = —^z = BlZ, (2.30)
ox ox
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where Bo/Bp = 1/p signifies the dipole field in defining a closed orbit, and the
quadrupole gradient function B\ = dBz/dx is evaluated at the closed orbit. The
betatron equation of motion, Eq. (2.29), becomes

x" + Kx(s)x = 0, Kx = l/p2^Kl{s), (2.31)

z" + Kz(s)z = 0, Kz = ±/fi(s), (2.32)

where Ki(s) = Bi(s)/Bp is the effective focusing function, and the upper and lower
signs correspond respectively to the positive and negative charged particles. The
focusing index is given by n(s) = p2 Ki(s). A weak focusing accelerator requires
0 < n(s) < 1. For a strong-focusing accelerator, \n\ 3> 1, e.g. n(s) ss ±350 for the
AGS. Some observations about the linear betatron equations (2.31) and (2.32) are
given below.

\ / e/2/K JKj/Z
\ , / \ / \
\ / \ /
\ / \ e '
\ 1 \ /

(a) sector dipole (b) rectangular dipole
Figure 2.2: Schematic drawing of the particle trajectory in a sector dipole and in a rect-
angular dipole. Note that the particle orbit is perpendicular to the pole-faces of the sector
dipole magnet, and makes an angle 9/2 with the pole-faces in the rectangular dipole.

• In a quadrupole, where 1/p = 0, we have Kx = —Kz. This means that a
horizontally focusing quadrupole is also a vertically defocussing quadrupole and
vice versa.

• A horizontal bending dipole has a focusing function Kx = 1/p2, and Kz = 0.
Such a dipole is called a sector dipole with perpendicular entrance and exit
angles to the edge of the dipole field (see Fig. 2.2a). For non-sector type dipoles,
where the entrance and exit angles of particle trajectories are not perpendicular
to the dipole edge, there is an edge focusing/defocussing effect (see Exercise
2.2.2).

• The focusing functions Kx, Kz are periodic functions of the longitudinal coordi-
nate s. Thus Eqs. (2.31) and (2.32) are Hill's equations with periodic boundary
conditions. The solution of Hill's equation satisfies the Floquet theorem, to be
discussed in next section.
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Exercise 2.1
1. In the Prenet-Serret coordinate system (x,s,z), transverse magnetic fields are

o = ?_^£ o 1 dA.
1 + x/p dz ' z 1 + z/p & '

Derive Eq. (2.29) from the Hamiltonian of Eq. (2.19).

2. Derive Eq. (2.29) through the following geometric argument. Let (x,S,z) be local
polar coordinates inside a dipole. The particle coordinate is

r — (p + x)x + zz,

where p is the bending radius. The momentum of the particle is p = ymr, where j
is constant in the static magnetic field, and the overdot corresponds to the derivative
with respect to time t. Similarly, dp/dt = ymr.

(a) Using Eq.(2.8), show that

f = xx + (p + x)9s + zz,

f=[x-(p + x)82]x + [2x9 + (p + x)9]s + zz,

where 6 = s/p is the angle associated with the reference orbit, i.e. ds = pd9.

(b) Using dp/dt = ev x B, with B = Bxx + Bzz, show that

'-»+•*-%. ' - %

where Bp = ymvs/e is the momentum rigidity and vs is the longitudinal velocity.

(c) Transform the time coordinate to the longitudinal distance s with ds — pd9,
where d9 = vsdt/(p + x), and show that

P2 - Bp{l+ p> ' Z ~ W 1 + p> '

where the prime is the derivative with respect to s.

3. Inside the vacuum chamber of an accelerator, we have V x B = 0 and V x E = 0.
Thus the electric field and magnetic field can be expanded by scalar potentials with
B = - V $ m , E = - V $ e , where both scalar potentials satisfy the Laplace equation
with V 2 $ , where $ stands for either $ m or <&e = 0. In the curvilinear coordinates
(x, s,z), we then have

_2-. 1 d ... , . 3 * . 92$ 1 5 , 1 <9$N

v * = T T W [ 1 + h x ] ^ ] + a? + TTTx^rnrx &) =0-
where h = 1/p, and p is the radius of curvature. Expressing the scalar potential in
power series of particle coordinates,

* V- A xizi

* = E ^jv
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show that Aij satisfies the following iteration relation:

Aij+2 = -A'lj - ihA'Uj + ih'A'^j - Ai+2j - (3i + l)hAi+1J

-3ihAi-ld+2 - i(3i - l)h2Aid - 3i(i - l)h2Ai_2:j+2

-i{i - l)2h3Ai-u - i(i - l)(t - 2)h3Ai-.3tj+2,

where the prime is the derivative with respect to s. Assuming yloo = 0,Aig = 0,
and AQI — —Boo i n a rectangular coordinate system with h = h' = 0, show that the
magnetic potential, up to the fourth order with i + j< < 4, is6

$ = -Booz+±A2o{x2-z2) + Anxz+l-A3o{x3-3xz2) + \B'oW

+\A2lx2z + UB'0'0 - A21)z3 + ^-A40(x4 - 6x2z2 + z4)

+±A2'0(-3x2z2 + z") + \A31(x*z - xz3) - \A[IXZ\

4. The field components in the current-free region of an axial symmetric solenoid are

00 OO OO

Bx = xJ2b2k+l(x2 + z2)k, Bz = z-£b2k+i(x2 + z2)k, Bs = Y2hk(x2 + z2)k.
k=0 k=0 k=0

(a) Show that the coefficients are

b2k+1 = 2(feTi)*"' b2k+2 = W^)h'2k+l'

where the prime is the derivative with respect to s. Show that the vector
potential is

In a cylindrical coordinate system, where r = xx + zz, r = \jx2 + z2, and
(j> = (—zx + xz)/r, show that the vector potential can be expressed as

A=-[lrbo(s)-±rHo'(S) + --j 4>.

(b) The Hamiltonian of Eq. (2.19) for the particle motion in the solenoid is

H = -p+ ^-[(p» - eAxf + {pz- eAz)2}.

6A word of caution: the magnetic potential obtained here can not be used as the potential in the
Hamiltonian of Eq. (2.18). In particular, the potential for a quadrupole is given by the ^4n term
and the skew quadrupole arises from the A20 term, etc. However, this serves as a general method
for deriving the magnetic field map.
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Show that the lineaxized equation of motion is (see also Exercise 2.6.2)

x" + 2gz' + g'z = 0,
z" - 2gx' - g'x = 0,

where g = ebo/2p = eB^/2p is the strength of the solenoid. The linearized
equation can be solved analytically. Letting y = x + jz, show that the coupled
equation of motion becomes

y"-j2gy'-jg'y = 0.

Transforming the coordinates into the rotating frame with

y = ye-je{s)^ w h e r e g = fs rf

Jo
show that the system is decoupled, and the decoupled equation of motion be-
comes

y" + g2y = 0.

Thus the solenoidal field, in the rotating frame, provides both horizontal and
vertical focusing, independent of the direction of the solenoidal field. Note also
that the effects of the ends of a solenoid, included in the g' terms, have been
included to obtain this Hill's equation in the rotating frame.

(c) Up to third order, show that the equation of motion is

x" + 2gz'+g'z = ^z'(x2 + z2) + ^-z(x2 + z \

z"-2gx'-g'x = -^-x'(x2 + z2) - ^-x(x2 + z2).
Z o

5. Consider the transverse magnetic field in the Prenet-Serret coordinate system.7 For
normal multipoles with mid-plane symmetry with

Bz{z) = Bx(-z), Bx(z) = -Bx(-z), Bs(z) = -Bs{-z),

the most general form of expansion is

OO OO OO

Bz = £ b^z2", Bx = zJ2 ^z2\ Bs = z £ «#****,
i,k=0 i,k=0 i,k=O

where a, b, c can be determined from Maxwell's equations: V x B = 0 and V • B = 0.
Show that Maxwell's equations give the following relations:

ai'k = WTibi+1*' Ci'k + p Ci-1>*= 2 T T 1 6 ^ '

7See K. Steffen, CERN 85-19, p. 25 (1985).
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where the prime is the derivative with respect to s. Assuming that we can measure
the Bz at the mid-plane as a function of x, s, i.e.

B z ( z = 0 ) = B o f i + B l f l x + B 2 f i x 2 + B 3 f l x 3 + •••,

where S^o are functions of s, show that the field map is

Bz = Bo,o + Blfix + B2iOx2-(B2fi + ^ + ^)z2 + B3,ox3

, , n . 2B2,0 1 / n , B h 0 , B 0 , 0 \ , l r r , n (B'°<°Vnn-r2J-
-{SB3yo H (-D2,o + -g 1" —2~) + 21.-°i,0 ~ ^~^~' *> "* '

1 OR

Bx = Bloz + 2B2,oxz + 3Bs,ox2z--{3B3,o + — ^
3 p

~p(B2'° + 1 7 + —] + 2[Bl'° " ( ~ } 1} ''''

Bs = BjiOz + ( J B i , o - ^ > ) ^ + ( ^ , o - ^ + ^ ) a ; 2 ,

1 D R'"

Show that in a pure multipole magnet, where p —> oo, the magnetic field can be
expanded as

Bz+jBx = YJBn»{x + 3 z T - ^ + ^{x+iz)z2 + ---,
n=0 ^ l

where j is the complex number. Thus for a finite length quadrupole with B[ 0 ^ 0,
the end field has an octupole-like magnetic multipole field.
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II Linear Betatron Motion

Particle motion around a closed orbit is called betatron motion. Since the amplitude
of betatron motion is small, we study, in this section, the linearized betatron equation
of motion governed by Hill's equation

x" + Kx{s)x = 0, z" + Kz{s)z = 0, (2.33)

where Kx = 1/p2 - Bi{s)/Bp, Kz(s) = B^/Bp, and B^s) = dBz/dx evaluated at
the closed orbit.8 The focusing functions are periodic with Kx<z(s + L) = KXyZ(s), and
L is the length of a periodic structure in an accelerator. For example, Fig. 2.3 shows
a schematic drawing of the Fermilab booster lattice, where four combined function
magnets are arranged to form a basic focusing-defocussing periodic (FODO) cell.
Exploiting the periodic nature, we can apply the Floquet theorem (see Appendix A,
Sec. 1.5) to facilitate the design of an accelerator lattice, In this section we study
linear betatron motion, Floquet transformation, the Courant-Snyder invariant and
emittance, betatron tune, and the envelope equation.

B F B F B D BD

] • • • • BE
s = 0 s = L

Figure 2.3: A schematic drawing of the Fermilab booster lattice. It consists of four
combined-function magnets of length 2.889612 m and focusing function Kp = 0.0244817
m~2 and Ku = -0.0208186 m~2. A small trim focusing quadrupole is used to change the
betatron tune. The total length of a repetitive cell is 19.7588448 m. The accelerator is
made of 24 such FODO cells, and thus the superperiod of the machine is 24. The nominal
betatron tunes are ux = 6.7 and vz = 6.8.

II. 1 Transfer Matrix and Stability of Betatron Motion

Because accelerator components usually have uniform or nearly uniform magnetic
fields, the focusing functions KXtZ(s) are piecewise constant. Let y, y' represent either
horizontal or vertical phase-space coordinates, then Eq. (2.33) becomes

y" + Ky(s)y = 0, (2.34)

8The focusing functions are Kx = l/p2 + B1(s)/Bp and Kz(s) = -B1{s)/Bp for negative charged
particles.
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with the periodic condition Ky(s + L) = Ky{s). The solutions of Hill's equation with
constant Ky are9

!

a cos{y/Ks + b), K> 0,
as + b, K = 0, (2.35)

acoshiyf^Ks + b), K < 0.
Since K is finite, y and j / must be continuous, and the integration constants a and 6
are determined by the initial values of y0 and y'o.

Letting

*(.)-(*>) IW
be the betatron state-vector, we can express the solution of Eq. (2.34) as

y(a) = M{s\so)y{so), (2.37)

where M(S\SQ) is the betatron transfer matrix. For any two linearly independent
solutions 2/1,2/2 of Hill's equation, the Wronskian is independent of time, i.e.

dW
W(yi,y2, s) = yiy'2 - y[y2, -£• = 0. (2.38)

Since the Wronskian obeys W(s) — [det M]W(so), we obtain detM = 1.
The transfer matrix for a constant focusing function K is

[I cos^KE -fesinVKe\ „ n t .
.— .— ,— K > 0: focusing quad.

M(s\sQ) = < ( 1 i ) ff = 0: drift space

/ cosh J\K\£ -j=sinh J\K\£\
v v 1*1 Jl_ K < 0: defocussing quad.

{ V v W n h y ^ cosh^f^ J
where £ = s — SQ. In thin-lens approximation with £ —> 0, the transfer matrix for a
quadrupole reduces to

• ^ f o c u s i n g — [ _ - i I f i J > ^ d e f o c u s s i n g = ( 1 / y i ) ' ( 2 . 3 9 )

where / is the focal length given by10

9To simplify our notation, we neglect the subscript y hereafter.
10The convention for the transfer matrix of a thin-lens quadrupole is

M q u a d = ( _ 1 1 / / J J ,
where / > 0 for a focusing quadrupole and / < 0 for a defocussing quadrupole. In this case,
f = \imt^ol/(Ke).
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Similarly, the transfer matrix for a pure sector dipole with Kx = 1/p2 is

«.<«> = (->* '*«')• ( 2 4 0 )

where 6 = £/p is the orbiting angle and p is the bending radius. In the small-angle
approximation, the transfer matrix becomes

M s ( S > s 0 ) = ( J I ) , (2-41)

where £ is the length of the dipole. This means that the effect of a dipole with a small
bending angle is equivalent to that of a drift space.

The transfer matrix for any intervals made up of subintervals is just the product
of the transfer matrices of the subintervals, e.g.

M(s2|s0) = M{s2\Sl)M(Sl\so). (2.42)

Using these matrices, particle motion can be tracked through accelerator elements.
Combining all segments, the solution of a second-order differential equation can be
expressed as

y(s) = C(s,so)yo + S(s,so)y'o, y'(s) = C'(s,so)yo + S'{s,so)y'o, (2.43)

where C and S" are the derivatives of C and 5 with respect to s, and yo and y'o
are the initial phase-space coordinates at SQ. The solutions C(s,So) an<i S(S,SQ) are
respectively called the cosine-like and sine-like solutions with boundary conditions

C(s0, s0) = 1, S(s0, so) = 0, C"(s0, s0) = 0, S'{s0, s0) = 1. (2.44)

Thus the solution of Eq. (2.33) can be expressed in terms of the transfer matrix as11

yW = MWeoMo), M{SM = ( ^ j J£.*>) , (2.45)

where {yo,y'o) and {y,y') are the particle phase-space coordinates at the entrance
and exit of accelerator elements, and, using the Wronskian of Eq. (2.44), we obtain
detM(s|s0) = W(C,S,s) = 1. The 2x2 matrix M depends only on the function
K(s) between s and s0.

uThe transfer matrix for the uncoupled betatron motion can be expressed as

/x\ /x\
\ x' \ fMx(s2]Sl) 0 \ I x'\
I * V ° M2(s2\Sl)J \ z '
\z'/2 \z'/1

where the M's are the 2x2 transfer matrices.
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An accelerator is usually constructed with repetitive modules. Let L be the length
of a module with K(s + L) = K{s). The number of identical modules that form a
complete accelerator is called the superperiod P. For example, the Fermilab booster
shown in Fig. 2.3 has 24 superperiods, the AGS at BNL has 12, and the LEP at
CERN has 8. The transfer matrix M of one repetitive period composed of n elements
is a periodic function of s with a period L, i.e.

M(s) = M(s + L\s) = Mn---M2Mu (2.46)

where the Mi's are the transfer matrices of the constituent elements.
Using the periodicity condition, we obtain

M{s2 + L\Sl) = M(s2)M(s2\Sl) = M(s2\Sl)M(Sl). (2.47)

Thus M(s2) and M(si) are related by a similarity transformation:

M(s2) = M(s2\s1)M{s1)[M{83\s1)]-1. (2.48)

This implies that the transfer matrix of a periodic section has identical eigenvalues.
The transfer matrix for passing through P superperiods is M(s + PL\s) = [M(s)]P,
and for passing through m revolutions becomes [M(s)]mP.

The necessary and sufficient condition for stable orbital motion is that all matrix
elements of the matrix [M(s)]m remain bounded as m increases. Let Ai, A2 be the
eigenvalues and V\, v2 be the corresponding eigenvectors of the matrix M. Since M has
a unit determinant, the eigenvalues are the reciprocals of each other, i.e. Ai = 1/A2,
and Ai + \2 = Trace(M). The eigenvalue satisfies the equation

A2 - Trace(M)A + 1 = 0.

Let Trace(M) = 2cos($). We find that $ is real if Trace(M) < 2, and $ is complex
if Trace (M) > 2. The eigenvalues are

Ai=eJ*, A2 = e-J'*, (2.49)

where 3> is the betatron phase advance of a periodic cell.
Expressing the initial condition of beam coordinates (yoi2/o) a s a l i n e a r superpo-

sition of the eigenvectors, i.e.

(y°)=av1+bv2, (2.50)

where V\ and v2 are the eigenvectors associated with eigenvalues Ai and X2 respec-
tively, we find that the particle coordinate after the mth revolution becomes

(Vj) = Mm (Vj) = aX^+bX^v,. (2.51)

The stability of particle motion requires that Â " and \™ not grow with m. Thus a
necessary condition for orbit stability is to have a real betatron phase advance <£, or

|Trace(M)| < 2. (2.52)
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II. 2 Courant-Snyder Parametrization
The most general form for matrix M with unit modulus can be parametrized as

,_ / cos $ + a sin $ /?sin$ \ T , T . ,. ,„,„,M = . . .T . , = Icos$ +Jsin$, (2.53)
\ —7 sin <P cos <J> — a sin $ J

where a, /3 and 7 are Courant-Snyder parameters,12 $ is the phase advance, I is the
unit matrix, and

3 = (- - ) ' w i t h T r a c e ( J ) = °> J2 = - I or ^7 = 1 + a2. (2.54)

The ambiguity in the sign of sin<& can be resolved by requiring /? to be a positive
definite number if |Trace(M)| < 2, and by requiring Im(sin$)>0 if |Trace(M)| > 2.
The definition of the phase factor $ is still ambiguous up to an integral multiple of
2TT. This ambiguity will be resolved when the matrix is tracked along the accelerator
elements. Using the property of matrix J, we obtain the De Moivere's theorem:

Mk = (I cos $ + J sin $)* = I cos fc"J> + J sin fc$,

M"1 = I cos $ - J sin $. (2.55)

Using the similarity transformation of Eq. (2.48), the values of the Courant-Snyder
parameters 02,^2,72 at S2 are related to Qi,/?i,7i at S\ by

(P\ ( Mf, -2MnM12 M\2 \ (0\
a = - M n M a i MUM22 + M12M21 -M12M22 \\a , (2.56)

V 7 / 2 V Ml -2M2 1M2 2 Ml A T A

where My are the matrix elements of M(s2\si). The evolution of betatron functions
is shown in the following examples.

1. The evolution of the betatron amplitude function in a drift space is

&=i+1l(s_-y=/s.+(i^)!,
7i V 7 i / P*

afa = a i - 7 i « = -(«-s*)/ /5*. (2-57)
72 = 7i = l/£*.

We note that 7 is constant in a drift space, and s* = Q1/71 is the location for
an extremum of the betatron amplitude function with a(s*) = 0.

12The a, f), and 7 parameters have nothing to do with the relativistic Lorentz factor.
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2. Passing through a thin-lens quadrupole, the evolution of betatron function is
given by

ft = ft,
a2 = <*i + A / / , (2.58)
7 2 = 7 l + 2a 1 / / + /3 1 / / 2 ,

where / is the focal length of the quadrupole. Thus a thin-lens quadrupole gives
rise to an angular kick to the betatron amplitude function without changing its
magnitude.

II.3 Floquet Transformation

Since the focusing function K(s) is a periodic function, Eq. (2.34) can be solved by
using the Floquet transformation:

y(s) = s w ( s ) ^ w , y*(s) = owfs je"* ' , (2.59)

where a is a constant, and w and ip are the amplitude and phase functions. Since
K{s) is real, the amplitude and phase functions satisfy

w" + Kw - 4r = 0, (2.60)

4,> = ̂ 2. (2.61)

Here, Eq. (2.60) is called the betatron envelope equation, Eq. (2.61) is the betatron
phase equation, and we have chosen a normalization for the amplitude and phase
functions.

Any solution of Eq. (2.34) is a linear superposition of the linearly independent
solutions y and y*. Thus the mapping matrix M(s2\si) can be obtained easily as

/ ^ cos ip - w2w'1 sin ip wiw2smip \

V - ' 2 smtp - ( - 1 Mcos'iA ^ c o s f i + wiwismip/

where w\ = w(si),w2 = w{s2),^ = ipfa) -ip(si), w[ — w'(si),w'2 — w'(s2), and the
prime is the derivative with respect to s.

Let s2 — S\ = L be the length of a periodic beam line, where the focusing function
K(s) satisfies K(s) = K(s+L). Using the Floquet theorem (see Appendix A, Sec 1.5),
we set the periodic boundary conditions to the amplitude and phase functions:

u>i = w2 = w, w[ = w'2 = w', tp(si + L) — tp(si) = $ .
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Equating the matrix M of a complete period in Eq. (2.62) to Eq. (2.53), we obtain

w2 = 0, (2.63)

a = ~ww' = -P/2. (2.64)

Thus the amplitude of the betatron motion is proportional to the square root of the
Courant-Snyder parameter /3(s), which will be referred to as the betatron amplitude
function. The Courant-Snyder parameter a is related to the slope of the betatron
amplitude function. The betatron phase advance is

-Cm (265)
Here the amplitude function j3(s) is also the local wave number of betatron oscil-
lations. In the smooth approximation, we have $ = L/{P), or (/?) = L/$. The
betatron wavelength is Â  = 2TT(/?}. Substituting /? = w2 back into Eq. (2.60), we
obtain

i^» + ^ - l [ l + ( | )2j=0 ) or a' = Kf3-±(l + a2). (2.66)

The transfer matrix from S\ to s2 in any beam transport line becomes

( y^(cos ip + ai sin ip) \/P\h sin i> \

( v% 0 \ / cos^ s i n V \ / ^ 7 ° ^

= B(s2)( C 0 S ^ ^ ^ B " 1 ^ ) , (2-67)

where A, «i, 71, and ft) <*2, 2̂ are values of betatron amplitude functions at si and s2

respectively, ^ = •0(s2) — V'(si), and we have defined the betatron amplitude matrix
B(s) and its inverse as

We note, from Eq. (2.67), that the linear betatron motion becomes coordinate rotation
after the normalization of the phase-space coordinates with the B"1 matrix. Applying
Floquet theorem to a repetitive period, where s2 = S\ + L with Kfa) = K(si), we
obtain ft = ft>, ax = a2, and the transfer matrix of Eq. (2.67) reduces to the Courant-
Snyder parametrization of Eq. (2.53).
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Betatron tune

We consider an accelerator of circumference C = PL with P identical superperiods.
The phase change per revolution is P$. The betatron tune vy, or Qy, defined as the
number of betatron oscillations in one revolution, is

•fc-^-s/ WY (269)
The betatron oscillation frequency is vyfo, where /o is the revolution frequency. The
general solution of Eq. (2.34) becomes

y(s) = aJfWJcoa[il>y{8)+ty] with %{s) = f -r-f^, (2.70)
JO Py(S)

where a, fy are constants to be determined from initial conditions. This is a pseudo-
harmonic oscillation with varying amplitude /J*/2(s). The local betatron wavelength
is A = 2irPv{s).

We define new variables r/ and </>y:13

""f; w-kfm (2J1)
The phase function <j>y increases by 2n in one revolution, and its derivative is periodic.
Hill's equation can be transformed to

0 + ̂  = 0. (2.72)

Thus the linear be ta t ron motion is in fact a simple harmonic motion.

FODO CELL Figure 2.4: A schematic plot of a
FODO cell, where the transfer ma-

«F/S B « D B «F/2 trix for the dipoles (B) can be ap-
| | I . . EH proximated by drift spaces, and QF

I 1 and QD indicate the focusing and de-
focussing quadrupoles.

Example 1: FODO cell in thin-lens approximation

A FODO cell (Fig. 2.4) is made of a pair of focusing and defocussing quadrupoles
with or without dipoles in between, i.e.

{̂ QF 0 QD 0 ^QF},

13This transformation, from y(s) to the amplitude and phase functions /3s(s) and <j>y(s), is called
Floquet transformation.
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where O represents either a dipole or a drift space. FODO cells are usually repetitively
used for beam transport in arcs and transport lines.14 The transfer matrix for the
horizontal betatron motion, in the thin-lens approximation, is15

- - U !)(!?)(! !)(!?)(-*!)
= / l - $ 2L1(l + ^ ) \

V-^(l- |?) 1 - $ )
where / is the magnitude of the focal lengths for the focusing and defocussing
quadrupoles, and L\ is the drift length between quadrupoles.

Because of the repetitive nature of FODO cells, the transfer matrix can be iden-
tified with the Courant-Snyder parametrization of Eq. (2.53) to obtain

cos$=^Trace(M) = l - ^ | or s i n f = ^ - (2-73)

2 M l + sin(*/2)) 0. ( 2 . 7 4 )

sin$
The parameter $ is the phase advance per cell, and (3F and aF are values of the
betatron amplitude functions at the center of the focusing quadrupole. The betatron
tune for a machine with N FODO cells is v = N$/2TT. The above procedure can
be performed at any position of the FODO cell, and the corresponding Courant-
Snyder parameters are values of the betatron amplitude functions at that position.
For example, we have

2Lt (1 - sin($/2))
PD = sin^ ' Q D = ° ( 2 J 5 )

at the center of the defocussing quadrupole, and

Arid, point = — ^ (2 - Sin2 - J , "mid. point = ± c o s ( $ / 2 ) (2™)

at the midpoint between the QF and the QD. We can also use the transfer matrix of
Eq. (2.67) to find the betatron amplitude functions at other locations (see Exercise
2.2.8).

The accelerator lattice is usually divided into arcs and insertions. Arcs are curved sections that
transport beams for a complete revolution. Insertions (or straight sections) are usually used for
physics experiments, rf cavities, injection and extraction systems, etc.

15The transfer matrices of dipoles are represented by those of drift spaces, where we neglect the
effect of 1/p2 focusing and edge focusing. The transfer matrix for vertical motion can be obtained
by reversing focusing and defocussing elements.
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Figure 2.5: The betatron ampli-
tude functions for one superperiod
of the AGS lattice, which made of
20 combined-function magnets. The
upper plot shows fix (solid line) and
@z (dashed line). The middle plot
shows the dispersion function Dx.
The lower plot shows schematically
the placement of combined-function
magnets. Note that the superperiod
can be well approximated by five reg-
ular FODO cells. The phase advance
of each FODO cell is about 52.8°.

The solid and dashed lines in the upper plot of Fig. 2.5 show the betatron am-
plitude functions /3x(s) and fiz(s) for the AGS. The middle plot shows the dispersion
function D(s), to be discussed in Sec. IV. The AGS lattice has 12 superperiods, each
composed of 20 combined-function dipoles, shown schematically in the bottom plot of
Fig. 2.5. The AGS lattice can be well approximated by 60 FODO cells with a phase
advance of 52.8° for a betatron tune of 8.8, and a half-cell length of L\ = 6.726 m for
a complete circumference of 807.12 m.

Example 2: Doublet cells

The values of the horizontal and vertical betatron functions in FODO cells alternate
in magnitude, i.e.

Px 1 + sin $/2 , 1 - sin $/2
. I~^J ' j i n n - —

ft ~ l - s i n $ / 2 ' l + s in$/2 '
at the focusing and defocussing quadrupoles respectively. The beam size variation
increases with the phase advance of the FODO cell. In some applications, a paraxial
beam transport system provides a simpler geometrical beam matching solution. Some
examples of paraxial beam transport beam lines are the doublet, the triplet, and the
solenoidal transport systems. In the following example, we consider a doublet beam
line, shown schematically in Fig. 2.6.

The phase advance of a doublet cell, in thin-lens approximation, is

sinf = ^ , (2.77)

where we have assumed equal focusing strength for the focusing and the defocussing
quadrupoles, / is the focal length of the quadrupoles, and Ll and L2 are the lengths
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DOUBLET CELLS Figure 2.6: A schematic plot of
a doublet transport line, where

QD Qf <® W <K> QF two quadrupoles are separa ted
| | T~| T~] by a distance L\, and the

Q Q] i P] ^ long drift space Li between two
1 , ' . ' quadrupoles can be filled with

L2 L l dipoles.

of the drift spaces shown in Fig. 2.6. The maximum and minimum values of the
beta t ron ampli tude function are (see Exercise 2.2.13)

/ U t ~ ~ sin* ( 2 7 8 )

Anin = 7 - ^ $ . (2.79)

If Li <C ^2; the horizontal and vertical betatron amplitude functions are nearly
identical along the transport line. Thus the doublet can be considered as an example
of the paraxial transport system. Other paraxial transport systems are triplets and
solenoidal focusing channels (see Exercise 2.2.12).

II.4 Action-Angle Variable and Floquet Transformation
The Hill equation, y" + K{s)y = 0, can be derived from a pseudo-Hamiltonian

H=l-y'2+1-K(s)y2, (2.80)

where (y, y') are conjugate phase-space coordinates. We observe that Eq. (2.70) is a
solution of Hill's equation, provided that P satisfies Eq. (2.66). Thus we obtain

y' = -^ ( t anV-f ) , (2.81)

where ip is the phase factor. This suggests a generating function

F ^ V) = [y'dy = -|g(tanV> - y ) , (2.82)

where y' = dFi/dy is verified easily, and the conjugate action variable is

3 = ~ f r = tp se°2 * = h[y2 + {N+ayn (2'83)
Applying the canonical transformation and using Eq. (2.66), we find the new

Hamiltonian

*=*+lK- (2-84)
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Hamilton's equation gives if)' = dH/dJ = l//3(s), which recovers Eq. (2.61). Since the
new Hamiltonian is independent of the phase coordinate ip, the action J is invariant,

T--%-*• <2 8 5>

ds dip

Using Eq. (2.83), we obtain
/ /2T

y = \l2f3J cos-0, y'=-J-— [smip + acosi>], (2.86)

where a = —/3'/2- Now it is easy to verify that the action J is16

J=^[ dy'dy=±<fy'dy. (2.87)
Z7T ./torus Z7T J

The phase space area enclosed by the invariant torus is equal to 2n J.

Figure 2.7: The horizontal
and vertical betatron ellipses
for a particle with actions
Jx = Jz = 0.57T mm-mrad
at the end of the first dipole
(left plots) and the end of the
fourth dipole of the AGS lat-
tice (see Fig. 2.5). The scale
for the ordinate x or z is in
mm, and that for the coor-
dinate x' or z' is in mrad.
For the left plots, the beta-
tron amplitude functions are
Px = 17.0 m, ax = 2.02,
A = 14.7 m, and az = -1.84.
For the right plots they are
/3X = 21.7 m, ax = -0.33,
fiz = 10.9 m, and az = 0.29.

Figure 2.7 shows the phase-space ellipses (x, x') and (z, z') for a particle with
actions Jx = Jz = 0.5TT mm-mrad at the ends of the first and the fourth dipoles of
the AGS lattice (see Fig. 2.5). Such a phase-space ellipse is also called the Poincare
map, where the particle phase-space coordinates are plotted in each revolution. The
consecutive phase-space points can be obtained by multiplying the transfer matrices,

16The Jacobian of the transformation from (y,y') to {J,ip) is equal to 1.
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where Mx and Mz are the transfer matrices of one complete revolution. The Poincare
map of betatron motion at a fixed azimuth s is also called the Poincare surface of
section. If the betatron tune is not a rational number, the consecutive phase-space
points of the particle trajectory will trace out the entire ellipse. The areas enclosed
by the horizontal and vertical ellipses are equal to 2-irJx and 2-KJZ respectively. As
the particle travels in the accelerator, the shape of the phase-space ellipse may vary
but the area enclosed by the ellipse is invariant.

A. Normalized phase space coordinates

We define the normalized conjugate phase-space coordinate Vy as

Vy = py' + ay = -JzpJs\ni>. (2.89)

A particle trajectory in the normalized phase-space coordinates (y, — Vy) is a circle
with radius \/2/3J. The shape of the normalized phase-space ellipse is independent
of the location s. In terms of the betatron amplitude matrix of Eq. (2.68), the
normalized phase space coordinates are expressed as

B. Using the orbital angle 9 as the independent variable

The Hamiltonian H of Eq. (2.84) depends on the independent variable s. Because
/3(s) is not a constant, the phase advance is modulated along the accelerator orbital
trajectory. Sometimes it is useful to obtain a global Fourier expansion of particle
motion by using the generating function

F2(r/,,J)=(^-^j + u9JJ (2.91)

to compensate the modulated phase-advance function. Here 6 — s/R is the orbiting
angle of the reference orbit. The new conjugate coordinates (T/S, J) are

$ = if>- f ' ^ + v6, J = J, (2.92)
Jo p

and the new Hamiltonian becomes H = vJ/R. Changing the time coordinate from s
to 9, the new Hamiltonian is re-scaled and becomes

H = RH = vJ. (2.93)
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The transformation from betatron phase-space coordinates to action-angle variables
is

y= fifij cos (i> + x{s)-vO), (2.94)

Vv = py' + ay= - ^ S J s i n ( ^ + x(s) - vff), (2.95)

where x = /oS ds/0 and (V>, J) are conjugate phase-space coordinates. The transfor-
mation is useful in expressing a general betatron Hamiltonian in action-angle variables
for obtaining a global Fourier expansion in the nonlinear resonance analysis. Here-
after, the notation (•ip, J) will be simplified to (ip, J).

II. 5 Courant-Snyder Invariant and Emittance

Using the general solution y(s) of Eq. (2.70), we obtain

Py' + ay= -a/31/2(s) sin (i/0(s) + 6). (2.96)

The Courant-Snyder invariant defined by

C(y, y') = ^[v2 + H + Py')2] = iv2 + 2 W + Py'2 (2.97)

is equal to twice the action, which is independent of s. The trajectory of particle
motion with initial condition (yo, y'o) follows an ellipse described by C(y, y') = e. The
phase space enclosed by (y, y') of Eq. (2.97) is equal to 7re (see Fig. 2.8).

Figure 2.8: The Courant-Snyder
invariant ellipse. The area en-
closed by the ellipse is equal to
7re, where e is twice the betatron
action; a,/3 and 7 are betatron
amplitude functions. The maxi-
mum amplitude of betatron mo-
tion is i/Pe, and the maximum di-
vergence (angle) of the betatron
motion is y/ye.

A. The emittance of a beam

A beam is usually composed of particles distributed in the phase space. Depending on
the initial beam preparation, we approximate a realistic beam distribution function
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by some simple analytic formula. Neglecting dissipation and diffusion processes, each
particle in the distribution function has its invariant Courant-Snyder ellipse.

Given a normalized distribution function p(y,y') with / p(y,y')dydy' = 1, the
moments of the beam distribution are

(y) = I Vp(y, y')dydy', (y1) = J y'p(y, y')dydy', (2.98)

°l = f(y - (v))2p(y, vVydy1, <# = /(</ ' - {y')?p{y, yVydy', (2.99)

°m/ = J(y - (y)W - (y'))p(y> y')dydv' = r w , (2-10°)

where ay and ayi are the rms beam widths, oyyi is the correlation, and r is the
correlation coefficient. The rms beam emittance is then defined as

€rms = \jo2yO2y, _ a2yyl = OyOy, Vl ~ r2. (2.101)

If the accelerator is composed of linear elements such as dipoles and quadrupoles,
the emittance defined in Eq. (2.101) is invariant. The rms emittance is equal to
the phase-space area enclosed by the Courant-Snyder ellipse of the rms particle (see
Exercise 2.2.14).

Although incorrect, the term "emittance" is often loosely used as twice the action
variable of betatron oscillations. The betatron oscillations of "a particle" with an
"emittance" e is

y(s) = JJe cos [v^){s) + 8}. (2.102)

Figure 2.8 shows a Courant-Snyder invariant ellipse for a given emittance of a beam.
For a beam with rms emittance 7re,17 the rms beam width is y/3(s)e, and the beam

rms divergence y' is ^Jry(s)e. Since 7 = (1 + a2)/j3, the transverse beam divergence is
smaller at a location with a large /3(s) value, i.e. all particles travel in parallel paths.
In accelerator design, a proper f3(s) value is therefore important for achieving many
desirable properties.

B. The cr-matrix

The a-matnx of a beam distribution is defined as

"ill ZXt :f) = «y-W»-M)'). (2,03)
where y is the betatron state-vector of Eq. (2.36), y+ — {y,y') is the transpose of
y, and (y) is the first moment. The rms emittance denned by Eq. (2.101) is the

17The accelerator scientists commonly use 7r-mm-mrad for the unit of emittance. However, the
factor 7T is often omitted. In beam width calculation, we get cry = ^KCy/ly/ir. The synchrotron
light source community also uses nano-meter (nm) as the unit for emittance. In fact, the factor n is
implied and omitted in the literature.
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determinant of the cr-matrix, i.e. erms = \/det<7 (see also Exercise 2.2.14). Using the
transfer matrix of Eq. (2.37), we obtain

a(s2) = M(s2\s1)a{s1)M(s2\siy. (2.104)

It is easy to verify that y^(J~1y is invariant under linear betatron motion, thus the
invariant beam distribution is

p(y,y') = piv^-'y)- (2.105)

C. Emittance measurement

The emittance can be obtained by measuring the cr-matrix. The beam profile of
protons and ions is usually measured by using wire scanners or ionization profile
monitors. Synchrotron light monitors are commonly used in electron storage rings.
More recently, laser light has been used to measure electron beam size in the sub-
micron range. Using the rms beam size and Courant-Snyder parameters, we can
deduce the emittance of the beam. Two methods commonly used to measure the rms
emittance are discussed below.

Cl. Quadrupole tuning method

Using Eq. (2.104), we find the rms beam radius R2 at a drift-distance L downstream
of a quadrupole:18

an(s2) = R22 = an(s1)(l + ̂ ^ - - L g ] + ^ - L 2 , (2.106)
V cm(si) / o-ii(si)

where g = Bi£q/Bp is the effective quadrupole field strength, L is the distance be-
tween the quadrupole and the beam profile monitor, and <7y(si)'s are elements of the
a matrix at the entrance of the quadrupole with ej?ms = (Ji\O22 — a\2, and crn(s2) is the
11-element of the cr-matrix at the profile monitor location s2 (see Exercise 2.2.14(d)
for an equation with thick quadrupole lens).

The R\ data measured with varying quadrupole strength g can be used to fit a
parabola. The rms emittance erms can be obtained from the fitted parameters. This
method is commonly used at the end of a transport line, where a fluorescence screen
or a wire detector (harp) is used to measure the rms beam size.

18If the transfer matrix between the tuning quadrupole at si and the profile monitor at S2 is m,
we obtain cru = an [mu + (cumu/iTu) - "Ji2ff]2 + (7ni2erms)/crii> where <Jn is the 11-element
of the cr-matrix at s2, oy's are elements of the cr-matrix at si, my's are elements of the transfer
matrix, and g = BiEq/Bp is the effective focusing strength of the quadrupole.
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C2. Moving screen method

Using a movable fluorescence screen, the beam size at three spots can be used to
determine the emittance. Employing the transfer matrix of drift space, the rms beam
radii at the second and third positions are

[ i?2 = an + 2L1<7i2 + L-^a^, /r, i n 7 \
\ R2 = an + 2{U + L2)a12 + (L, + L2)2a22, {Z'W'>

where an = R\, on and 022 are elements of the a matrix at the first screen location,
and L\ and L2 are respectively drift distances between screens 1 and 2 and between
screens 2 and 3. The solution an and <722 of Eq. (2.107) can be used to obtain the
rms beam emittance: erms = yan<?22 ~ a\i-

If screen 2 is located at the waist, i.e. dR\jdLx = 0, then the emittance can be
determined from rms beam size measurements of screens 1 and 2 alone. The resulting
emittance is

e2 = (R\Rl - Rl) /L\. (2.108)

This method is commonly used to measure the electron emittance in a transfer line.

D. The Gaussian distribution function

The equilibrium beam distribution in the linearized betatron phase space may be any
function of the invariant action. However, the Gaussian distribution function

P{y,v') =-^exp(——-(<T222/2-2(Ti22/2/'+ crU2/'2)) (2.109)
\ z det a /

is commonly used to evaluate the beam properties. Expressing the normalized Gaus-
sian distribution in the normalized phase space, we obtain

p(y^y) = ^e-(y2+^2"2y, (2.110)

where (y2) = (p2) = a* = f3yerms with an rms emittance erms. Transforming (y, Vv)
into the action-angle variables (J, ip) with

y = ^2/3yJcos^, Vy = -sj2^Jsmi), (2.111)

where the Jacobian of the transformation is

the distribution function becomes

p{J) = —e-J'*-, p(e) = -^—e-^™, (2.113)
'rms £€rms
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Table 2.1: Percentage of particles in the confined phase-space volume

e/erms 12 14 I 6 I 8
Percentage in ID [%] 63 86 95 98
Percentage in 2D [%] 40 74 90 96

where e = 2J. The percentage of particles contained within e = nerms is 1 - e""/2,
shown in Table 2.1.

The maximum phase-space area that particles can survive in an accelerator is
called the admittance, or the dynamical aperture. The admittance is determined
by the vacuum chamber size, the kicker aperture, and nonlinear magnetic fields.
To achieve good performance of an accelerator, the emittance should be kept much
smaller than the admittance. Note that some publications assume 95% emittance,
i.e. the phase-space area contains 95% of the beam particles, eg5% « 6erms for a
Gaussian distribution. For superconducting accelerators, a dynamical aperture of 6<r
or more is normally assumed for magnet quench protection. For electron storage
rings, quantum fluctuations due to synchrotron radiation are important; the machine
acceptance usually requires about 10cr for good quantum lifetime.

Accelerator scientists in Europe use e = 4erm3 to define the beam emittance. This
convention arises from the KV distribution, where the rms beam emittance is equal
to 1/4 of the total emittance [see Eq. (2.131)].

E. Adiabatic damping and the normalized emittance

The Courant-Snyder invariant of Eq. (2.97), derived from the phase-space coordinate
y, y', is not invariant when the energy is changed. To obtain the Liouville invariant
phase-space area, we should use the conjugate phase-space coordinates {y,py) of the
Hamiltonian in Eq. (2.18). Since py = py' = mcP'yy', where m is the particle's mass,
p is its momentum, and Pj is the Lorentz relativistic factor, the normalized emittance
defined by

en = $fe (2.114)

is invariant. Thus the beam emittance decreases with increasing beam momentum,
i.e. e = €n//?7- This is called adiabatic damping. The adiabatic phase-space damping
of the beam can be visualized as follows. Because the transverse velocity of a particle
does not change during acceleration, the transverse angle y' = py/p becomes smaller as
the momentum of the particle increases, and the beam emittance e — en//?7 becomes
smaller.

It is worth pointing out that the beam emittance in electron storage rings increases
with energy as j 2 because of the quantum fluctuation to be discussed in Chap. 4. The
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corresponding normalized emittance is proportional to 73, where 7 is the relativistic
Lorentz factor. On the other hand, the beam emittance in electron linac will be
adiabatically damped at high energies.

II.6 Stability of Betatron Motion: A FODO Cell Example

In this section, we illustrate the stability of betatron motion using a FODO cell
example. We consider a FODO cell with quadrupole focal length /1 and - / 2 , where
the ± signs designates the focusing and defocussing quadrupoles respectively. The
transfer matrix of {§QFi O QD2 O |QFX} is

_ / 1 O W l L A / 1 (A / I Lt\( 1 0 \

_ ( 1 + ^ - 7 ^ - 2 & 2Ll(l + ^ ) \

\ h h hh + 2/f + i!ih> + h h V2 I

where L\ is the drift length between quadrupoles. Identifying the transfer matrix
with the Courant-Snyder parametrization, we obtain

co8«, = l + £-£--£y, (2-116)

C 0 S $ z = 1 _ ^ + ^ l _ J L . (2.117)

The stability condition, Eq. (2.52), of the betatron motion is equivalent to the fol-
lowing conditions:

| 1 + 2 X 2 - 2 X 1 - 2 X 1 X 2 | < 1 and |1 - 2X2 + 2XX - 2X^X2\ < 1, (2.118)

where Xx = Z-i/2/i and X2 = Li/2/2. The solution of Eq. (2.118) is shown in Fig. 2.9,
which is usually called the necktie diagram. The lower and the upper boundaries of
the shaded area correspond to $x,z = 0 or -K respectively. Since the stable region is
limited by X1]2 < 1, the focal length should be larger than one-fourth of the full cell
length.

The stability condition of the above FODO cell example seems to suggest that the
phase advances $x and $z of a repetitive module should be less than TT.19 However,
this is not a necessary condition. The phase advances of a complex repetitive lattice-
module can be larger than TT. For example, the phase advance of a flexible momentum
compaction (FMC) module is about 3TT/2 (see Sec. IV.8 and Exercise 2.4.17) and the
phase advance of a minimum emittance double-bend achromat module is about 2.4?r

19The phase advance $x of a double-bend achromat is larger than 7r (see Sec. IV.5). Thus a simple
FODO cell working as double-bend achromat is unstable.
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(see Sec. III.l; Chap. 4). In general, the stability of betatron motion is described by
ICOS^JI < 1 and |cos$2| < 1 for any type of accelerator lattice or repetitive transport
line.

Figure 2.9: Stability diagram of a
FODO cell lattice. The lower and up-
per boundaries correspond to <&I]Z =
0 or 180° respectively.

II.7 Symplectic Condition

The 2x2 transfer matrix M with detM = 1 satisfies MJM = J, where M is the

transpose of the matrix M, and J = I _ J. In general, the transfer matrix of a

Hamiltonian flow of n degrees of freedom satisfies

MJM = J, (2.119)

where M is the transpose of the matrix M, and

J = ( - I o ) ' W i t h j 2 = " 7 ' J = ~J< J~l = -J (2-120)

with / as the n x n unit matrix. A 2n x 2n matrix, M, is said to be symplectic if it
satisfies Eq. (2.119). The matrices / and J are symplectic.

If the matrix M is symplectic, then M~l is also symplectic and detM = 1 . If
M and ./V are symplectic, then MN is also symplectic. Since the set of symplectic
matrices satisfies the properties that (1) the unit matrix I is symplectic, (2) if M is
symplectic then M~x is symplectic, and (3) if M and iV are symplectic, then MN is
also symplectic, the set of symplectic matrices form a group denoted by Sp(2n). The
properties of real symplectic matrices are described below.
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• The eigenvalues of symplectic matrix M must be real or must occur in complex
conjugate pairs, i.e. A and A*. The eigenvalues of a real matrix M or the roots
of the characteristic polynomial P(X) = \M — \I\ = 0 have real coefficients.

• Since \M\ = 1, zero can not be an eigenvalue of a symplectic matrix.

• If A is an eigenvalue of a real symplectic matrix M, then I/A must also be an
eigenvalue. They should occur at the same multiplicity. Thus eigenvalues of a
symplectic matrix are pairs of reciprocal numbers. For a symplectic matrix, we
have

K~\M - XI) K = M~x -XI= -XM~X{M - A"1/) (2.121)

or

P(A) = X2nP{\) (2.122)
A

If we define Q(X) = X~nP{X), then

Q(X) = Q(\). (2.123)

II.8 Effect of Space-Charge Force on Betatron Motion

The betatron amplitude function w — Jpy of the Floquet transformation satisfies
Eq. (2.60). Defining the envelope radius of a beam as

Ry = yffay, (2.124)

where ty is the emittance, the envelope equation becomes

^ ' + ^ - - ^ = 0, (2.125)

where the prime corresponds to the derivative with respect to s. Based on the Floquet
theorem, if Ky is a periodic function of s, i.e. Ky(s) = Ky(s + L), where L is the
length of a repetitive period, the solution of the envelope equation can be imposed
with a periodic condition, Ry(s) = Ry(s + L). The periodic envelope solution, aside
from a multiplicative constant, is equal to the betatron amplitude function. The
envelope function of an emittance dominated beam is equal to \lpyty. What happens
to the beam envelope when the space-charge force dominates the beam dynamics?
Here we discuss some effects of the space-charge force on betatron motion.
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A. The Kapchinskij-Vladimirskij Distribution

It is known that the Coulomb mean-field from an arbitrary beam distribution is likely
to be nonlinear. In 1959, Kapchinskij and Vladimirskij (KV) discovered an ellipsoid
beam distribution that leads to a perfect linear space-charge force within the beam
radius. This distribution function is called the KV distribution.20

Particles, in the KV distribution, are uniformly distributed on a constant total
emittance surface of the 4-dimensional phase space, i.e.

**> V~ *• ?-) = J^5 G? (*2 + ^ ) + h 02 + *?) - l) . (2-126)
where N is the number of particles per unit length, e is the particle's charge, a and
b are envelope radii of the beam, x and z are the transverse phase-space coordinates,
and Vx — R'x, and Vz = R'z are the corresponding normalized conjugate phase-space
coordinates. Some properties of the KV distribution are as follows.

1. With the phase-space coordinates transformed into action-angle variables, the
KV distribution function becomes

rfJ,,7,) = ^ ( ^ + ^ - l ) (2.127)

Thus beam particles are uniformly distributed along an action line

3j-+Jy = \ (2.128)
f-x € z ^

where ex and ez are the horizontal and vertical emittances. The envelope radii
are

a = y[KZ, b = JpJ;. (2.129)
2. Integrating the conjugate momenta, the distribution function becomes

^ - s H ' - S - i f ) (2i3o)
where the 9(^) function is equal to 1 if f > 0, and 0 if £ < 0. In fact, the
KV particles are uniformly distributed in any two-dimensional projection of the
four-dimensional phase space.

3. The rms emittances of the KV beam are

_(x^_e _<f!)_!i (2m)

Thus the rms envelope radii are equal to half of the beam radii in the KV beam.

20I.M. Kapchinskij and V.V. Vladimirskij, Proc. Int. Conf. on High Energy Accelerators, p. 274
(CERN, Geneva, 1959).
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B. The Coulomb mean-field due to all beam particles

The next task is to calculate the effect of the average space-charge force. Neglecting
the longitudinal variations, beam particles can be viewed as a charge distribution in
an infinite long wire with a line-charge density given by Eq. (2.130). The electric field
at the spatial point (x, z) is

i?/ A Ne f f j - j ^ n x'2 z'2(x-x')x + (z-z')z
E{x>z) = 2^abJJdxdz @{l-^-¥\x-xiy + {z-z>y

2ne0 \a(a + b) b(a + b) ) v ;

where eo is the vacuum permittivity. A noteworthy feature of the KV distribution
function is that the resulting mean-field inside the beam envelope radii is linear!
If the external focusing force is also linear, the KV distribution is a self-consistent
distribution function. Including the mean-magnetic-field, the force on the particle at
(x, z) is

F(x,z) = ^-(-~^—-x+—^-rz), (2.133)
v ' 27reo72 \a(a + b) b(a + b) J v '

where 7 is the relativistic energy factor. Thus Hill's equations of motion become

H*-W-^)I = 0' (2'134)
z" + {K^-wfvyjz = Q' (2-135>

where the prime is a derivative with respect to the longitudinal coordinate s, and Kx

is the "normalized" space-charge perveance parameter given by

*« = ^ f , (2.136)

where r0 = e2/4-n:eomc2 is the classical radius of the particle, and N is the number
of particles per unit length. Performing Floquet transformation of the linear KV-Hill
equation

x = wxe?*' and z = wzeji>', (2.137)

we obtain

< + (K* ~ " T ^ M ) W- + A = 0. < = 4 - (2-138)
\ a(a + b)J w% w 2 v

<+ (K> ~ 7T^) Wz + —3=Q, i>l = —. (2.139)
\ b(a + b)J w* w2 x
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Multiplying Eq. (2.138) by JTX and Eq. (2.139) by ^e j , and identifying a = wxJTx

and b = wzy/e^, we obtain the KV envelope equations, or simply the KV equations:

OK f2

a!' + Kxa-^--% = Q, (2.140)
a + b a6

OK c2

b" + Kzb-^-% = Q. (2.141)
Solving the KV envelope equation is equivalent to finding the betatron amplitude
function in the presence of the space-charge force. The usefulness of the KV equation
has been further extended to arbitrary ellipsoid distribution functions provided that
the envelope functions a and b are equal to twice the rms envelope radii, and the
emittances ex and ez are equal to four times the rms emittances.21

If the external force is periodic, i.e. Kx(s) = Kx(s + L), the KV equation can be
solved by imposing the periodic boundary (closed orbit) condition (Floquet theorem)

a(s) = a(s + L), b{s)=b{s + L). (2.142)

A numerical integrator or differential equation solvers can be used to find the envelope
function of the space-charge dominated beams. The matched beam envelope solution
can be obtained by a proper closed orbit condition of Eq. (2.142).

For beams with an initial mismatched envelope, the envelope equation can be
solved by using the initial value problem to find the behavior of the mismatched
beams. For space-charge dominated beams, the envelope solution can vary widely
depending on the external focusing function, the space-charge parameter, and the
beam emittance. To understand the physics of the mismatched envelope, it is ad-
vantageous to extend the envelope equation to Hamiltonian dynamics as discussed
below.

C. Hamiltonian formalism of the envelope equation

Introducing the pseudo-envelope momenta as

Pa = a', Pb = b', (2.143)

we can derive the KV equations (2.140) and (2.141) from the envelope Hamiltonian:

ffenv = \(pl+pl + Kxa2 + Kzb2) - 2KSC ln(o + 6) + ^ + ^ . (2.144)

With the envelope potential defined as

Vem(a, b) = ~(Kxa2 + Kzb2) - 2KSC ln(a + b) + ̂  + ̂ , (2.145)

21P.M. Lapostolle, IEEE Trans. Nncl. Sci. NS-18, 1101 (1971); F.J. Sacherer, ibid. 1105 (1971);
J.D. Lawson, P.M. Lapostolle, and R.L. Gluckstern, Part. Accel. 5, 61 (1973); E.P. Lee and R.K.
Cooper, ibid. 7, 83 (1976).
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the matched beam envelope can be easily understood as the equilibrium solution of
the envelope Hamiltonian. For example, if we start from the condition with envelope
momenta pa = pb = 0, the matched envelope radii are located at the minimum
potential energy location, i.e.

- ^ - ( a m , bm) = - ^ - ( a m , bm) = 0, (2.146)

where am and bm are the matched envelope radii. The envelope oscillations of a mis-
matched beam can be determined by the perturbation around the matched solution

V 1 0 Kenv / \o , -L C Kenv / . , \9 • rn -t A>-J\

env = 2~d^T^ ~ ^ + 2 ~ 9 6 ^ ( " m ) + ' ' ' • ( ^
Using the second-order derivatives, we can obtain the tune of the envelope oscillation.

D. An example of a uniform focusing paraxial system

First we consider a beam in a uniform paraxial focusing system, where the focusing
function is

Kx = (2TT/L)2 .

Here L is the betatron wavelength, and the betatron amplitude function is equal to
L/2-K. With a = b in Eq. (2.140), the envelope Hamiltonian is

#env = \vl + \ ( f )2«2 - ^sclna+ A = \V\ + Venv(a). (2.148)

When the space-charge force is negligible, the matched envelope solution is

amo = \JtxL/2-K = ^expx.

The second-order derivative at the matched radius becomes

The tune of the mismatched envelope oscillation is twice the tune of betatron motion
(see also Exercise 2.2.15) independent of the envelope-oscillation amplitude.

Now, we consider the effect of space charge on the envelope function. The matched
envelope radius is obtained from the solution of dVem/da = 0, i.e.

a2m=(^)[K + V^l\, (2.150)

where
_ K^L __ -ft^tot (9 Tin
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is the effective space-charge parameter, and Ltot and $tot are the total length and total
phase advance of a transport system.22 Equation (2.150) indicates that the betatron
amplitude function increases by a factor K + %/«;2 + 1 due to the space-charge force.

Next we evaluate the second-order derivative of the potential at the matched
radius, and obtain

which is the phase advance per unit length of small amplitude envelope oscillation in
the presence of the Coulomb potential. When the space-charge perveance parameter
is zero, the phase advance of the envelope oscillation is twice of that of the betatron
oscillation, and when the space-charge force is large, as K —> oo, the phase advance of
the small-amplitude envelope oscillations can maximally be depressed to 2\/2 TT/L.
There is a large envelope detuning from 2/z to \/2/i, where /j. is the betatron phase
advance. A nonlinear envelope resonance can be excited when perturbation exists
and a resonance condition is satisfied.23

Figure 2.10: The phase advance
of the envelope oscillations di-
vided by the original betatron
phase advance for a high space
charge beam with Ksc = 10, n =
2.28175. The ordinate R is the
normalized maximum envelope
radius of the beam. The matched
radius is RQ — am^/2Tr/(fj,exL) =
1.4199 in this example. See
Eq. (2.150) for the matched en-
velope radius.

Figure 2.10 shows the envelope tune of a space charge dominated beam with
Ksc = 10 and a phase advance of /x = 2.2817 radian (or v = fj,/2ir for the un-
perturbed betatron tune) as a function of the maximum amplitude of the envelope
oscillation amplitude. At a large envelope amplitude, the envelope tune approaches

22The Laslett (linear) space-charge tune shift is related to the space-charge perveance parameter
by £sc = Ai/sc = KscLtot/4iWex = KV, where v is the tune.

23S.Y. Lee and A. Riabko, Phys. Rev. E 51, 1609 (1995); A. Riabko et al., Phys. Rev. E 51,
3529 (1995); C. Chen and R.C. Davidson, Phys. Rev. E49, 5679 (1994); Phys. Rev. Lett. 72, 2195
(1994). See also Ref. [4] for an exploration of the space-charge dynamics.
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twice the unperturbed betatron tune. Near the matched envelope radius (or small
amplitude envelope oscillations), the envelope tune approaches y/2 times the unper-
turbed betatron tune.

Effect of space charge force on particle motion

The single particle betatron phase advance per unit length is obtained by substituting
Eq. (2.150) into Eq. (2.135), i.e.

2TT
$* = -J-(VK2 + 1 - K). (2.153)

Lt

When the space charge parameter n is small, the incoherent space-charge (Laslett)
tune shift is equal to A;/sc = fsc = KV, where v = $tot/(27r) is the tune of the
accelerator. When the space charge parameter K is large, the betatron tune can be
depressed to zero.

Exercise 2.2
1. The focusing function K(s) for most accelerator magnets can be assumed to be piece-

wise constant. Show that

K(s) = 0, M(S2\Sl)=(l J ) ,

( cos \fRs -4T sin \/TCs \

-VKsmvKs cos VKs )

K(s)=K<0, M(S2|Sl)= , _ V F̂ Z- ),
\J\K\smhyf\K\s cosh^\K\s )

with s = S2 - s\. Show that the mapping matrix M for a short quadrupole of length
i, in the thin-lens approximation, is

- ( - } : )
where / = l i m ^ o ^ ^ ) " 1 ! is the focal length of a quadrupole. For a focusing quad,
/ > 0; and for a defocussing quad, / < 0.

2. When a particle enters a dipole at an angle S with respect to the normal edge of a
dipole (see drawing below), there is a quadrupole effect. This phenomenon is usually
referred to as edge focusing.24 We use the convention that 5 > 0 if the particle
trajectory is closer to the center of the bending radius. Show that the transfer matrices
for the horizontal and vertical betatron motion due to the edge focusing are

24Using edge focusing, the zero-gradient synchrotron (ZGS) was designed and constructed in the
1960's at Argonne National Laboratory. The ZGS was made of 8 dipoles with a circumference of
172 m attaining the energy of 12.5 GeV. Its first proton beam was commissioned on Sept. 18, 1963.
See L. Greenbaum, A Special Interest (Univ. of Michigan Press, Ann Arbor, 1971).
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A*z = I tan* i M* = t a n i 5 ^ - ^
\~J~ 1 / V—— lJ / ^ ^ \

where 8 is the entrance or the exit angle \ ^^~ "~~\̂  j
of the particle with respect to the normal \ / ^__ \ 7

direction of t he dipole edge. T h u s t he - - ' / \ / ' ^ ^ ^ \ / \ ~ -
edge effect with S > 0 gives rise to hori- "i / v V \ ^
zontal defocussing and vertical focusing. /

3. The particle orbit enters and exits a sector dipole magnet perpendicular to the dipole
edges. Assuming that the gradient function of the dipole is zero, i.e. dBz/dx = 0,
show that the transfer matrix is

, . /cos0 psin0\ . . fl i \

where 0 is the bending angle, p is the bending radius, and (. is the length of the dipole.
Note that a sector magnet gives rise to horizontal focusing.

4. The entrance and exit edge angles of a rectangular dipole are 5\ = 0/2 and 82 = 6/2,
where 9 is the bending angle. Find the horizontal and vertical transfer matrices for
a rectangular dipole (Fig. 2.2b).

5. For a weak-focusing accelerator, Kz{s) = n/p2 = constant and Kx = (1 — n)/p2,
where p is the radius of the accelerator. The focusing index n is

p(s) dBz(s,x,0)
( ' Bz{s,Q,0) dx x=o'

where we have chosen the coordinate system shown in Fig. 2.1. Solve the following
problems by using the uniform focusing approximation with constant n.

(a) Show that the horizontal and vertical transfer matrices are

yr _ ( cos(\/l — n s/p) (p/Vl — n) sin(-\/l — n s/p) \
x \ —(%/! ~ n/p) sin(\/l — n s/p) cos(\/l — n s/p) ) '

M _ ( cos(Vn s/p) (p/Vn) sin(^/n s/p) \
Z V —(y/n/p) sin(Vl — n s/p) cos(-v/n s/p) ) '

(b) Show that the betatron tunes are vx = (1 —n)1//2 and vz = n1/2, and the stability
condition is 0 < n < 1.

(c) If N equally spaced straight sections, with Kx = Kz = 0, are introduced into
the accelerator lattice adjacent to each combined-function dipole, calculate the
mapping matrix for the basic period and discuss the stability condition.

6. The path length for a particle orbit in an accelerator is

C = j ^[l + {x/p)f + xl2 + z^ds.
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Show that the average orbit length of the particle with a vertical betatron action Jz

is longer by
A C _ 1 A + a2

where az and j3z are betatron amplitude functions. In the smooth approximation,
the betatron amplitude function is approximated by (f3z) = R/vz, and the betatron
oscillations can be expressed as

where R, vz and z are the average radius, the vertical betatron tune, and the ver-
tical betatron amplitude respectively, and Xz is an arbitrary betatron phase angle
of the particle. Show that the average orbit length of a particle executing betatron
oscillations is longer by

C \R? '
Thus the orbit length depends quadratically on the betatron amplitude.

7. In a strong-focusing synchrotron, the art (or science) of magnet arrangement is called
lattice design. The basic building blocks of a lattice are usually FODO cells. A
FODO cell is composed of QF 0 0 QD 0 0 , where QF is a focusing quadrupole,
OO represents either a drift space or bending dipoles of length L\, and QD is a
defocussing quadrupole. The length of a FODO cell is L = 1L\. Using the thin-lens
approximation,

(a) Find the mapping matrix and the phase advance of the FODO cell and discuss
the stability condition.

(b) Find the parameters /3, a at the quadrupoles and at the center of the drift space
as a function of L\ and $.

(c) Verify that /3' = — la numerically at the center of the drift space.25

(d) Find the phase advance $ that minimizes the betatron amplitude function at
the focusing quadrupole location.

8. Using Eq. (2.66), show that p'" + 4/3'K + 2/3K' = 0. Solve this equation for a drift
space and a quadrupole respectively, and show that the solution of this equation must
be one of the following forms:

( 0 = a + bs + es2, drift space
< fi = a cos 2y/l(s + b sm2^/Ks + c, focusing quadrupole
I /9 = acosh2^\K\s + bsmh.2^/\K\s + c, defocussing quadrupole.

(a) Express a, 6, and c in terms of parameters c*o, /?o and 70 at the beginning of the
element.

(b) In a drift space, where there are no quadrupoles, show that the betatron ampli-
tude function is

25Find /?'s at Si = So - As and s? = s0 + As, and calculate the derivative from these numbers.
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where P* is the betatron function at the symmetry point s = s* with P' = 0.
Show also that 7 = (1 + Q2)/P is equal to 1/P*, i.e. 7 is constant in a drift
space.

(c) Using the similarity transformation Eq. (2.48), show that the Courant-Snyder
parameters a2, p2,72 at s2 are related to ai ,A>7i at s\ by

fp2\ I M\x -2MnM12 M\2 WAX
\ a2 = -M11M21 M11M22 + M12M21 -M12M22 I I a i ,
V72/ V M22! -2M2 1M2 2 Mf2 / \ 7 1 /

where My are the matrix elements of M(s2\si). Use these equations to verify
your solution to part (a).

9. Use the transfer matrix M(s2\si) of Eq. (2.67) to show that, when a particle is kicked
at si by an angle 9, the displacement at a downstream location is

Ax2 = dy/Pifhsmij),

where fii and p2 are values of betatron functions at si and s2 respectively, and
if> = ip(s2) — ip(si) is the betatron phase advance between s\ and S2- The quantity
^PiP2sim/> is usually called the kicker arm. To minimize the kicker magnet strength
9, the injection or extraction kickers are located at a high /9 locations with a 90°
phase advance.

10. Transforming the betatron phase-space coordinates onto the normalized coordinates
with

Y = TPV' v^TP{ay+fi^
or

show that the betatron transfer matrix in normalized coordinates becomes

Cri 1 N I cosV" sin^NM(s2 \si) = . , , ,

i.e. the betatron transfer matrix becomes coordinate rotation with rotation angle
equal to the betatron phase advance. Show that the transfer matrix of Eq. (2.67)
becomes M(s2\si) = I^MBj"1, where B 2 and Bi are the betatron amplitude matrices
at s = s2 and s\ respectively.

11. Show that the Floquet transformation of Eq. (2.94) transforms the Hamiltonian of
Eq. (2.80) into Eq. (2.93).

12. Often a solenoidal field has been used to provide both the horizontal and the verti-
cal beam focusing for the production of secondary beams from a target (see Exer-
cise 2.1.4). The focusing channel can be considered as a focusing-focusing (FOFO)
channel. We consider a FOFO focusing channel where the focusing elements are sep-
arated by a distance L. Use the thin-lens approximation to evaluate beam transport
properties of a periodic FOFO channel.
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(a) Show that the phase advance of a FOFO cell is

$ 1 [I
Sin2=2V7'

where / is the focal length given by f~l = g2i = ®2/£, £ is the length of the
solenoid, g = Bu/2Bp is the effective solenoid strength, B\\ is the solenoid field,
and @ = g£ is the solenoid rotation angle.

(b) Show that the maximum and minimum values of the betatron amplitude func-
tion are

Anax = i/sin $, /3min = / sin $.

13. The doublet configuration consists of a focusing and defocussing quadrupole pair sepa-
rated by a small distance L\ as a beam focusing unit. The doublet pairs are repeated
at intervals L2 2> L\ for beam transport (Fig. 2.6). These quadrupole doublets
can be used to maintain round beam configuration during beam transport. Using
the thin-lens approximation with equal focal length for the focusing and defocussing
quadrupoles, describe the properties of betatron motion in a doublet transport line.

(a) Show that the betatron phase advance in a doublet cell is

•0 = i>x,z = arcsin (yfLiLz/Zf] ,

where / is the focal length of the quadrupoles.
(b) Show that the maximum betatron amplitude function is approximately

/?max = (£l +L2 + LiL2/f)/smif).

(c) Show that the minimum betatron amplitude function is

|8* = ^/ii(4/2-LiLa)/4L2.

(d) Sketch the betatron amplitude functions and compare your results with that of
the FODO cell transport line.

14. Statistical definition of beam emittance:26 We consider a statistical distribution of
N non-interacting particles in phase space (x,x'). Let p{x,x') be the distribution
function with

fp{x,x')dxdx' = l.

The first and second moments of beam distribution are
1 r I r.

^ = JfY,xi = j xp(x,x')dxdx', (x1) = -fiY,x'i = J x'p(x,x')dxdx',

°l = jf £ t e - (*»2> 4 = }f £(*; - <*'»2.
Oxx' = jf £ ( z i - {x))(x'i - (x1)) = roxax,.

26See P. Lapostolle, IEEE Trans. Nucl. Sci. NS-18, 1101 (1971), and J. Buon, CERN 91-04, 30
(1991). The statistical definition of beam emittance is applicable to all phase space coordinates.
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Here ax and ax> are rms beam widths, and r is the correlation coefficient. The rms
emittance is defined as

£rms = PxVx' Vl - r2.

(a) Assuming that particles are uniformly distributed in an ellipse

x2/a2 + xl2/b2 = l,

show that the total phase-space area is A = nab = 47rerms. The factor 4 has
often been used in the definition of the full emittance, i.e. e = 4erms, to ensure
that the phase-space area of such an ellipse is Tre.

(b) Show that the rms emittance defined above is invariant under a coordinate
rotation

X = a: cos 0 +a;'sin 0, X' = -x sin 0 + x' cos 0,

and show that the correlation coefficient R = aYV,/ara , is zero if we choose
A A ' A X

the rotation angle to be
tan 20= , * % .

Show that ax and ax, reach extrema at this rotation angle.

(c) In accelerators, particles are distributed in the Courant-Snyder ellipse:

I(x, x') = jx'2 + 2axx' + fix2,

where a, ft, 7 are betatron amplitude functions. Use the coordinate rotation to
show that

9 9ai at, a
t r m s — Q — 1 ' — /75—5

0 7 VPi
or

( a2x axx,\_ ( 13 -a\

Show that

x}<7~lx = (7X2 + 2axx' + ftx12).
erms

(d) Show that the a matrix is transformed, in the linear betatron motion, according

{?'. y) =MM«)(f*. y) (̂-si-i)*.
\ axx' ax' / 2 \ axx' ax' / 1

where M+ is the transpose of the matrix M. Use this result to show that x ^ r ^ x
of Eq. (2.105) is invariant under betatron motion and thus an invariant beam
distribution function is a function of xla~lx.. The transport equation for the a-
matrix can be used to measure the cr-matrix elements and derive the rms beam
emittance. For a thick quadrupole lens, show that Eq. (2.106) becomes

a2x(s2) = ox(Sl) (cos VK£q - Ly/KsinVKlq + gaf(ai) f-j= sinV#lq

+L cos VKia) )2 + - I r^ r [-4= sin \fiCL + L cos -JKI} ,
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where K = B\/Bp and tq and the focusing function and the length of the
quadrupole, and L is the length of the drift space between the quadrupole and
the profile monitor.

(e) Particle motion in synchrotrons obeys Hamiltonian dynamics with

, _ dx dx' _ dH
da ' ds dx

Show that

de2 n , , , ,dH, . ,K,dHxs „ , . dH. . ..dH..
•dJ = -2o^x &F>" ^ X a* » + 2 " - ' « * e* >" <*><&•»•

For a linear Hamiltonian, we have dH/dx = Kx, where K(s) is the focus-
ing function. Show that the rms emittance is conserved. What would your
conclusion be if the Hamiltonian were nonlinear?

15. Consider a beam of noninteracting particles in an accelerator with focusing function
Ky(s), where the particle betatron coordinate obeys Hill's equation

y" + Ky(s)y = 0.

Let Y be the envelope radius of the beam with emittance e, i.e. Y(s) = ^/3(s)e.

(a) Show that the envelope equation of motion is

Y" + Ky(s)Y-^ = 0.

(b) Show that the envelope equation can be derived from the envelope Hamiltonian27

tfenv = \P2 + \Ky{s)Y2 + ~ ,

where (P, Y) are conjugate envelope phase-space coordinates with P = Y'. The
"potential energy" of the envelope Hamiltonian is

V - 1 K Y2 4- t
venv — g A V r + 2Y3'

In a smooth focusing approximation, Ky(s) = (2n/L)2, where L is the wave-
length of the betatron oscillations.28 The equivalent betatron amplitude func-
tion is Py = L/2TT. The matched beam radius is given by dVenv/dY = 0, i.e.
Ym = \jLej2n. Show that the betatron motion is

Le 2-KS .

27See S.Y. Lee and A. Riabko, Phys. Rev. E51, 1609 (1995); A. Riabko et al, Phys. Rev. E51,
3529 (1995).

28Using the smooth approximation, we have (Ky) = (2nQy/C)2 obtained from Floquet trans-
formation to Hill's equation, where C is the circumference, and Qy is the betatron tune. The
corresponding average betatron wavelength is C/Qy, and the average betatron amplitude function
is (/?j,) = R/Qy, where R is the average radius.
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and the solution of the envelope equation is

y2 = /^I i7 + A c o s ( 2 ? F + x ) '
where the parameters A and x Sire determined by the initial beam conditions.
Thus the envelope of a mis-injected beam bunch will oscillate at twice the be-
tatron oscillation frequency (the quadrupole mode).

(c) Let us make Floquet transformation to the envelope equation in part (a) with

B - J l • _ 1 f ds

where /? is the betatron amplitude function, and v is the betatron tune. Show
that the normalized envelope R satisfies the equation:

Using (R, PR = dR/d(f>) as the conjugate phase space coordinates, we obtain the
envelope Hamiltonian as H = \P^ + Venv(R), where the envelope potential is

Venv - -v R + — .

Show that the exact solution of the envelope equation is

R2 = y/l +a2 +acos{2i/(f> + x),

where a is the envelope mismatch amplitude. Note: if the square of the rms
beam width is plotted as a function of revolution turns, the resulting oscillation
will be sinusoidal. The envelope Hamiltonian is, in fact, linear.

16. The Courant-Snyder phase-space ellipse of a synchrotron is yy2 + 2ayy' + j3y'2 = e,
where a, fi and 7 are the Courant—Snyder parameters. If the injection optics is
mis-matched with 71J/2 + 2ot\yy' + /3\y'2 = e, find the emittance growth factor.29

(a) Transform the injection ellipse into the normalized coordinates of the ring lattice,
and show that the injection ellipse becomes

(P (axp-fila)2\ 2 arf-aP! ft 2 _
U + M ) + 0 YP + T ~e'

where

Y = Tpy' P = j?to + M.
29The easiest way to estimate the emittance growth is to transform the injection ellipse into the

normalized coordinates of the ring optics. The deviation of the injection ellipse from a circle in the
normalized phase space corresponds to the emittance growth.
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(b) Transform the ellipse to the upright orientation, and show that the major and
minor axes of the ellipse are

/ , \l/2 / , \l/2

F+={Xmm + JX2im-l) , F-=\Xam-y/Xlm-l) ,

where the mismatch factor Xmm is (see Exercise 2.2.14)

*mm = I (7i/3 + 017 ~ 2aia) = —!— {/3a2x, + -ya2x + 2aaxx.).

Note that the rms quantities ax,ax> and axx> can be measured from the injected
beam. What happens to the beam if the beam is injected into a perfect linear
machine where there is no betatron tune spread? Show that the tune of the
envelope oscillations is twice the betatron tune (see Exercise 2.2.15).

(c) In general, nonlinear betatron detuning arises from space-charge forces, non-
linear magnetic fields, chromaticities, etc. Because the betatron tune depends
on the betatron amplitude, the phase-space area of the mis-injected beam will
decohere and grow. Show that the emittance growth factor is

Fi=(xmm+y/x^iy

(d) Let the betatron amplitude function at the injection point be fix = 17.0 m and
ax = 2.02. The injection ellipse of a beam with emittance 5TT mm-mrad is given
by x2fa2 + x'2/b2 = 1, where a = 5.00 mm and 6 = 1.00 mrad. Find the final
beam emittance after nonlinear decoherence.

17. At an interaction point (IP) of a collider, or at a symmetry point in a storage ring,
the lattice betatron functions are usually designed to an appropriate (3* z value with
symmetry condition: axz = 0 . The resulting betatron amplitude functions in the
straight section become f)XtZ = (3* z + s2/0x>z (see Exercise 2.2.8). The luminosity, C,
measuring the probability of particle encounters in a head on collision of two beams,

iS f
C = 2fNlN2 I pi(x,z,si)p2(x,z,s2)dxdzdsd(fict),

where s\ = s 4- Pet and s2 = s — Pet.

(a) Assuming Gaussian bunch distribution with

i ^ - 1 / *2 *2 s2 I
P[X'Z' S> ~ (2*)V2axoz*s 6 X P \ 2 ^ " 2 ^ " 2 ^ / '

where ax = VPx^x, oz = VPz^z, <*s are respectively the rms beam sizes in x, z, s
directions, show that the luminosity, in a short bunch condition with as <S (3XZ,

K bvoxo*z

where R is the reduction factor, and ax = \/P%ex and a* = v//3je2 are rms beam
size at the IP.
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(b) Because of finite bunch-length as, show that the luminosity reduction factor for
two identical Gaussian distributions is

R(A ^]- 2 f ^
H{Ax,Az) ^J A l + {C2/Ai)){1 + {C2/Ai])

where AXtZ = /?* z/crs is a measure of the betatron amplitude variation at the
interaction point. In a short bunch approximation with Ax ^> 1 and Az 3> 1,
we obtain R(AX,AZ) ss 1. Most colliders operate at a condition Ax,z « 1. The
luminosity reduction due to finite bunch-length is called the hour-glass effect.

(c) For a round beam with A = Ax = Az, show that (see Section 7.1.3. in Ref. [25])

D / ^ i-A A' C , A ^ y/ZA(l+ 0.2836.4 + 0.07703A2)
R(A) = ^AeA erfc(A) » ( 1 + 0,47047^)3 '

where the latter approximate identity is valid up to about A < 2.5. Asymptot-
ically, we have R{A) —>• 1 for A —)• oo. Plot R(A) as a function of A and show
that the actual luminosity is

C = R(A)C0 = {NlN2 v^V2 erfc(A)
47re^<rs

for a given as, where ej_ = ex = ez. Plot £ as a function of A. Does the
luminosity decrease at A < 1?

(d) For a flat beam with [5% > as, i.e. Ax > 1, show that the reduction factor
becomes

R=2Azre^£=A^e4A1

where KQ is the modified Bessel function. Calculate the reduction factor as a
function of Az and show that the luminosity is (use 3.364.3 of Ref. [26])

C = R(AZ)CO = ™ * V l A 0 ( f ) ,
4^Vpxex€zpz V7r 2

18. Focusing of atomic beams:30 There are now two types of polarized ion sources:
the atomic-beam polarized ion source (ABS), and the optically pumped polarized ion
source (OPPIS) producing mainly hydrogen and deuterium ions.31 The principle of
the ABS is to form atomic beams in a discharge tube called a dissociator. As the beam
travels through the beam tube, the spin states of the atoms are selected in a separation
magnet, which is a quadrupole or a sextupole.32 The non-uniform magnetic field
preferentially selects one spin state (Stern-Gerlach effect). This exercise illustrates

30See e.g., W. Haberli, Ann. Rev. Nucl. Sri., 17, 373 (1967).
31The ABS has produced polarized H~ ions with about 75% polarization at a peak current of 150

fik. with 100 us duration and 5 Hz repetition rate. Similarly, OPPIS has been able to produce a
polarized H~ ion source up to 400 /iA with 80% polarization at a normalized emittance near 1 7r
mm-mrad.

32H. Priedburg, and W. Paul, Naturwiss. 38, 159 (1951); H.G. Bennewitz and W. Paul, Z. Phys.
139, 489 (1954).
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the focusing effect due to a sextupole field. Let ft = gfj.B J be the magnetic moment
of the atomic beam, where g is the Lande ^-factor, /j.B = 5.788 x 10~5eV/T is the
Bohr magneton, and / is the angular momentum of the atom. The magnetic energy
of the atomic beam in the magnetic field B is

W = -p-B.

Thus the force acting on the hydrogen atom is

F = V(jl-B) = ±^aV\B\

for two quantized spin 1/2 states of the hydrogen atom, i.e. the electron spin is
quantized along the B direction, and /j,a « \iB for the hydrogen-like atom.

(a) Show that the sextupole field focuses the spin state of the atomic beam with
lower magnetic dipole energy; in other words, it defocuses the spin state with
higher magnetic dipole energy. The atoms not contained in the beam pipe will
be pumped away. It is worth pointing out that there is no preferred direction
of the spin projection inside the sextupole. The electron spin is quantized with
respect to the magnetic field. The selected atoms, which have a preferential
one-spin state, will pass through the transition region. Here the the magnetic
field is slowly changed to align all atomic polarization into the uniform field
ionizer region, where in the high-field regime the nuclear spin can be flipped by
rf field, the polarized ions are formed by the bombardment of electron beams,
and the polarized ions are drawn by the electric field to form a polarized ion
beam.

(b) When a quadrupole is used to replace the sextupole magnet, show that the
effective force on the atom is a dipole field.

(c) If the temperature of the dissociator is 60 K, what is the velocity spread of the
atomic beam? Discuss the effect of velocity spread of the atomic beam.

19. A paraxial focusing system (lithium lens): A strong paraxial focusing system
can greatly increase the yield of the secondary beams. To this end, the lithium lens
or a strong solenoid has been used. The Li lens was first used at Novosibirsk for
focusing the e+e" beams. It became the essential tool for anti-proton collection at
Fermilab.33 A cylindrical lithium rod carrying a uniform current pulse can create a
large magnetic field. The magnetic flux density is

where / is the current, r is the distance from the center of the rod, ro is the radius of
the Li conductor, and JJ, w no = 4TT X 10~7 Tm/A is the permeability.

(a) Find the focusing function for the 8-GeV kinetic energy antiprotons if / = 500
kA, ro = 10 mm, and the length is 15 cm. What is the focal length?

33B.F. Bayanov, et al, Nucl. Inst. Methods. 190, 9 (1981).
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(b) The total nuclear reaction cross-section between the antiprotons and the Li
nucleus is given by the geometric cross-section, i.e. CTPIA = vr(rp + R\), where
rp = 0.8 fm, JRA = 1.3 x A1!3 fm, and A is the atomic mass number. The atomic
weight is 6.941 g, and the density is 0.5 g/cm3, show that the nuclear reaction
length is about 1 m. To minimize the beam loss, choose the length of the Li
lens to be less than 10% of the nuclear reaction length.

(c) Find the magnetic pressure P = B2/2fio that acts to compress the Li cylinder
in units of atmospheric pressure (1 atm = 1.013 x 105 N/m).

20. Low energy synchrotrons often rely on the bending radius Kx = 1/p2 for horizontal
focusing and edge angles in dipoles for vertical focusing. Find the lattice property of
the low energy synchrotron described by the following input data file (MAD). What
is the effects of changing the edge angle and dipole length? Discuss the stability limit
of the lattice.

TITLE,"CIS BOOSTER (1/5 Cooler), OOdegDIP)"
! CIS =1/5 of Cooler circumference =86.82m / 5 =17.364m
! I t accelerates protons from 7 MeV to 200 MeV in 1-5 Hz.
LCELL:=4.341 ! ce l l length 17.364m/4
Ll:= 2.0 ! dipole length
L2:=LCELL-L1 ! s t raight section length
RH0:=1.27324
EANG:=12.*TW0PI/360 ! use rad . f o r edge angle
ANG := TWOPI/4
00 : DRIFT,L=L2
BD : SBEND,L=L1, ANGLE=ANG, E1=EANG,E2=EANG, K2=0.
SUP: LINE=(BD,00) ! a s u p e r p e r i o d
USE,SUP,SUPER=4
PRINT,#S/E
TWISS,DELTAP=0.0,TAPE
STOP
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III Effect of Linear Magnet Imperfections

In the presence of magnetic field errors, Hill's equations are

x" + Kx(s)x = ^ - , z" + Kz(s)z = - ^ , (2.154)

where the perturbing fields ABZ and ABX, similar to Eq. (2.25), can be represented
by

oo

ABZ +jABx = Bo £ > „ +jan) (x+jz)n.
n=0

Here j is an imaginary number, Bo is the main dipole field, b0 and bx are respectively
the dipole and quadrupole field errors, hi is the sextupole field error, etc. The a's are
skew magnetic field errors. This section addresses the linear betatron perturbations
resulting from the dipole and quadrupole field errors, and illustrates possible beam
manipulation by using the perturbing fields.

Based on our study of the betatron motion in Sec. II, we will show that linear
magnet imperfections have two major effects: (1) closed-orbit distortion due to dipole
field error, and (2) betatron amplitude function distortion due to quadrupole field
error. The effect of linear betatron coupling due to the skew quadrupole term, ai,
and the solenoid will be discussed in Sec. VI.

III.l Closed-Orbit Distortion due to Dipole Field Errors

Up to now, we have assumed perfect dipole magnets with an ideal reference closed
orbit that passes through the center of all quadrupoles. In reality, dipole field errors
may arise from errors in dipole length or power supply, dipole roll giving rise to a
horizontal dipole field, a closed orbit not centered in the quadrupoles, and feed-down
from higher-order multipoles.

A. The perturbed closed orbit and Green's function

First, we consider a single thin dipole field error at a location s = So with a kick-angle
8 = ABdt/Bp in an otherwise ideal accelerator, where ABdt is the integrated dipole
field error and Bp = po/e is the momentum rigidity of the beam. Let

v _ ( W> A v _ (Vo\
y-~\y'o-o)' y+~{y'o)

be the phase-space coordinates of the closed orbit just before and just after the kick
element located at s0- The closed-orbit condition becomes

M(5)-(«- . )• < 2 1 5 5 )
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where M is the one-turn transfer matrix of Eq. (2.53) for an ideal accelerator. The
resulting closed orbit at SQ is

on a

yo = 2 ^ ; C O S 7 n y ' y'°= 2iirT^;(sin7ri/ - a ° c o s ™ ) ' (2-156)

where v is the betatron tune and ao, Po a r e the values of the betatron amplitude
functions at kick dipole location s0.

Figure 2.11: The left plot shows schematically the closed-orbit error of the AGS booster
resulting from a horizontal kicker with kick-angle 9 = 6.82 mr at the location marked by
a straight vertical line. Since the betatron tune of 4.82 is close to the integer 5, the closed
orbit is dominated by the fifth error harmonic. The right plot shows the same closed orbit
as a function of the longitudinal distance.

The closed orbit at other location s in the accelerator can be obtained from the
propagation of betatron oscillations, i.e.

Using Eq. (2.67), we obtain

yco(s)=G(s,s0)9(s0), (2.158)

where

G(s, s0) = V S ) / ? ( S o ) cos(W - \iP(s) - ^(so)|) (2.159)
2 sin TTU

is the Green function of Hill's equation. The orbit response arising from a dipole field
error is given by the product of the Green function and the kick angle. The right plot
of Fig. 2.11 shows the closed-orbit perturbation in the AGS booster due to a dipole
field error of 6.82 mr. The left plot is a schematic drawing of the resulting closed
orbit around an ideal orbit. Since the betatron tune of the AGS booster is 4.82, the
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closed-orbit perturbation is dominated by the n = 5 harmonic, showing 5 complete
oscillations in Fig. 2.11.

Equation (2.159) shows that the closed orbit becomes infinite when the condition
SHITTY = 0 is encountered. The orbit kicks in every turn due to a dipole error co-
herently add up, making the closed orbit unstable. The left plot of Fig. 2.12 shows
schematically the evolution of a phase-space trajectory (y, y') in the presence of a
dipole error when the betatron tune is an integer. Since the angular kick Ay' = 9,
where 9 is the kick angle of the error dipole, is in the same direction in each revolu-
tion, the closed orbit does not exist. This is why the betatron tunes are designed to
avoid an integer value. In other words, if the betatron tune is near an integer, the
closed orbit becomes very sensitive to dipole field error.

Figure 2.12: Left, a schematic
plot of the closed-orbit perturba-
tion due to an error dipole kick
when the betatron tune is an in-
teger. Here Ay' = 8, where 6 is
the dipole kick angle. Right, a
schematic plot of the particle tra-
jectory resulting from a dipole kick
when the betatron tune is a half-
integer; here the angular kicks from
two consecutive orbital revolutions
cancel each other.

On the other hand, if the betatron tune is a half-integer, the angular kicks of two
consecutive revolutions cancel each other (see right plot of Fig. 2.12). For the closed
orbit, it is better to choose a betatron tune closer to a half-integer. However, we will
show later that the quadrupole field error will produce betatron amplitude instability
at a half integer tune. Thus the betatron tunes should also avoid half integers.

B. Distributed dipole field error

In reality, dipole field errors are distributed around the accelerator. Since Hill's
equation with dipole field errors, A9(t) = (AB(t)/Bp)dt, is linear, the closed orbit
can be obtained by a linear superposition of dipole kicks, i.e.

JP(s) rs+c , AB(t)
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where <j>(s) = (l/i/) /05 dt//3(t), and ip(s) = v<j>{s). It is easy to verify that Eq. (2.160)
is the closed-orbit solution of the inhomogeneous Hill equation

where AS = ABZ for horizontal motion and AB — —ABX for vertical motion. The
orbit response of the inhomogeneous Hill equation is

yco(s) = fS+CG(s, t) ^ | ^ d t , (2.162)
Js Bp

where the Green function is given by Eq. (2.159).

C. The integer stopband integrals

Since square bracketed term in the integrand of Eq. (2.160) is a periodic function of
2n, we expand it in a Fourier series:

f(<l>)=f?l\4>)^®= £ fke^, (2.163)
"P k=-oo

where the Fourier amplitude /& is the integer stopband integral given by

with /_* = f%. In Fourier harmonics, the closed-orbit displacement yco(s) becomes

Vcois) = y/W) £ -P^e**, (2.165)

which has simple poles at all integer harmonics. The presence of sin -KV in the denom-
inator of Eq. (2.160) shows that the closed orbit may not exist at all if the betatron
tune is an integer. The simple pole structure in Eq. (2.165) indicates that the closed
orbit is most sensitive to the error harmonics closest to the betatron tune. The re-
sulting closed orbit is usually dominated by a few harmonics near [u], which is an
integer nearest to the betatron tune. In a single stopband approximation, the closed
orbit can be approximated by

y/ffOQH/Ml COs([t/]0 + x)
Vco{S) " 2 [y - [„])
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D. Statistical estimation of closed-orbit errors

In practice, the perturbing field error AB/Bp, due mainly to random construction
errors in the dipole magnets and misalignment errors in the quadrupoles, is not known
a priori. During the design stage of an accelerator, a statistical argument is usually
used to estimate the rms closed orbit,

?/co,rms * ^-J^ VNOm*, (2.166)
2v2| SHITTY

where /?av, N, and 0ims are respectively the average ^-function, the number of dipoles
with field errors, and the rms angular kick angle.

Now we consider the dipole field error generated by quadrupole misalignment.
When quadrupole magnets are misaligned by a distance Ay, the effective angular
kick is

e = l£Ay = T> (2167)
where B\ = dBz/dx is the quadrupole gradient, and / is the focal length. Substituting
Eq. (2.167) into Eq. (2.166), we obtain

Wms « ( 9 ^ / " TV^Q} A2/"ns, (2.168)
|k2v/2/av|sin7rz/| v J

where Nq is the number of quadrupoles and /av is the average focal length. The
coefficient in curly brackets is called a sensitivity factor for quadrupole misalignment.
For example, if the sensitivity factor is 20, an rms quadrupole misalignment of 0.1 mm
will result in a rms closed-orbit distortion of 2 mm. The sensitivity factor increases
with the size of an accelerator.

E. Closed-orbit correction

Closed-orbit correction is an important task in accelerator commissioning. If the
closed orbit is large, the beam lifetime and dynamical aperture can be severely re-
duced. First, any major known source of dipole error should be corrected. The
remaining closed orbit can generally be corrected by the stopband correction scheme,
the harmonic correction scheme, or the x2-minimization method.

With a few dipole correctors, the stopband near k = [v] is

/M = 2^E^e-'W <. (2-169)

where 0t is the angular kick of the zth corrector. Placing these correctors at high-/?
locations with a phase advance between correctors of [v\<t>i « n/2, one can adjust the
real and imaginary parts independently.
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The harmonic closed-orbit correction method uses distributed dipole correctors
powered with a few harmonics nearest the betatron tune to minimize a set of stopband
integrals fk- For example, if Nc dipole correctors are powered with

9, = — w ( a k c o s kcj>i + bk s i n kfa), (i = 1 , - - - , N C ) ,
VPi

where ft and <f>i are the betatron amplitude function and the betatron phase at
the ith kicker location, the fcth stopband can be corrected by adjusting the ak and
bk coefficients. A few harmonics can be superimposed to eliminate all dangerous
stopbands.

Another orbit correction method is the ^-minimization procedure. Let Nm be the
number of BPMs and Nc the number of correctors. Let yi<co and A* be the closed-orbit
deviation and BPM resolution of the ith BPM.34 The aim is to minimize

N-> hi- I2

x ~k A?

by varying 61,62,... of Nc correctors.
These orbit correction schemes minimize only the errors in harmonics nearest the

betatron tune. Because the closed orbit is not sensitive to errors in harmonics far from
the betatron tune, these harmonics can hardly be changed by closed-orbit correction
schemes.

In many beam manipulation applications such as injection, extraction, manipula-
tion with an internal target, etc., local closed-orbit bumps are often used. Possible
schemes of local orbit bumps are the "four-bump method" discussed in Sec. III.3 and
the "three-bump method" (see Exercise 2.3.4).

F. Effects of dipole field error on orbit length

The path length of a circulating particle is

C = j y/(l + x/pf + x'2 + z'2 d s « Co + j - d s + ---, (2.170)

where Co is the orbit length of the unperturbed orbit, and higher order terms asso-
ciated with betatron motion are neglected. Since a dipole field error gives rise to a
closed-orbit distortion, the circumference of the closed orbit may be changed as well.

34The BPM resolution depends on the stability of the machine and on the number of bits and
the effective width of the pickup electrode (PUE). For example, the BPM resolution for the data
acquisition system with a 12-bit ADC and a 40-mm effective width PUE is about 10 fim. If an 8-bit
ADC is used, the resolution is reduced by a factor of 16. The BPM resolution for proton storage
rings is about 10 to 100 /im.
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We consider the closed-orbit change due to a single dipole kick at s = s0 with kick
angle 90. Using Eq. (2.162), we find the change in circumference as

AC = C-C0 = 80 <f G*(s>s°) ds = D(s0) 0o, (2.171)
J p

where

D(8o) = f^lfAds
J P

= yliS0) / ^ ^ cos (Try, - |V,(a) - ^(so)|)<fa (2.172)
2 sin TT Ĵ; J p

is the value of the dispersion function at s0 (see Sec. IV). Thus the change in orbit
length due to a dipole field error is equal to the dispersion function times the orbital
kick angle. When dipole field errors are distributed in a ring, the change in the total
path length becomes

AC = <£ D(s)^%^-ds. (2.173)
J Bp

In many cases, the dipole field errors are generated by power supply ripple, ground
vibration, traffic and mechanical vibration, tidal action, etc., and thus the circumfer-
ence is modulated at some modulation frequencies. The modulation frequency from
ground vibration is typically less than 10 Hz, the power supply ripple can produce
modulation frequency at some harmonics of 50 or 60 Hz, and the frequency generated
by mechanical vibrations is usually of the order of kHz. Normally, particle motion
in an accelerator will not be affected by a small-amplitude modulation provided that
the modulation frequencies do not induce betatron or synchrotron resonances. How-
ever, if the modulation frequency is equal to the betatron or synchrotron frequency,
particle motion will be strongly perturbed. For example, an rf dipole field operating
at a betatron sideband35 can kick the beam out of the vacuum chamber; this is called
rf knock-out. This method can be used to measure the betatron tune.

III.2 Extended Matrix Method for the Closed Orbit

The inhomogeneous differential equation (2.154) for the closed orbit of the betatron
oscillation can be solved by the extended 3x3 transfer matrix method. For example,
the equation of motion for a dipole field error in a constant-focusing quadrupole is

x" + Kx = ̂ . (2.174)
Bp

36The FFT spectra of a transverse phase-space coordinate display rotational harmonics at integer
multiples of the revolution frequency and the betatron lines next to the rotation harmonics. These
betatron frequency lines are called the betatron sidebands. See Sec. III.7 for details.
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The betatron phase-space coordinates before and after the focusing quadrupole can
be obtained from the extended transfer matrix by

/x\ / cosVKe jg sin VKI %ff?(l-cosVKe)\ /x\
\x'\ =\-y/K sin y/Kl cosVKt £%sany/Ke U ' > ( 2 1 7 5 )
W 2 V 0 0 ^ 1 A W :

where I = s2 — s\. In thin lens approximation, Eq. (2.175) becomes

/ I 0 0\
M(s2|Sl) = - 1 / / 1 d , (2.176)

V o o i y

where 6 = ABZ£/Bp and / = 1/JW are respectively the dipole kick angle and the
focal length of the perturbing element. The dipole field error can also arise from
quadrupole misalignments. Let Aj/q be the quadrupole misalignment. The resulting
extended transfer matrix in the thin-lens approximation is

/ 1 0 0 \
Mquad = - 1 / / 1 Ayjf . (2.177)

V 0 0 1 )

The 3x3 extended transfer matrix can be used to obtain the closed orbit of beta-
tron motion. For example, the closed-orbit equation (2.155) is equivalent to

/j/b\ (I 0 0 \ /Afn Mi2 0 \ (yo\
\ y ' o = 0 1 9 \ \ M 2 1 M22 0 ] \ y ' o \, (2.178)
\ i / Vo o i ) \ o o i ) \ \ )

where the M's are matrix elements of the 2x2 one-turn transfer matrix for an ideal
machine, and 9 is the dipole kick angle. Similarly, the 3x3 extended transfer matrix
can be used to analyze the sensitivity of the closed orbit to quadrupole misalignment
by multiplying the extended matrices along the transport line.36

III.3 Application of Dipole Field Error

Sometime, we create imperfections in an otherwise perfect accelerator for beam ma-
nipulation. Examples are the local-orbit bump, one-turn kicker for fast extraction, rf
knock-out, etc.

36S.Y. Lee, S. Tepikian, Proc. IEEE PAC Con}., p. 1639, (IEEE, Piscataway, N.J., 1991).
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A. Orbit bumps

To facilitate injection, extraction, or special-purpose beam manipulation,37 the orbit
of the beam can be bumped to a desired transverse position at specified locations. In
this example, we discuss the four-bump method facilitated by four thin dipoles with
kick angles Q{ (i = 1,2,3,4). Using Eq. (2.160), we obtain

Vco(s) = ̂ f ^ - E JK 0i cosfri/ - \i> - ^ | ) , (2.179)
2 sin 7T v ~[ v

where 9t = (ABAs)i/Bp and (ABAs); are the kick-angle and the integrated dipole
field strength of the i-th kicker. The conditions that the closed orbit is zero outside
these four dipoles are VCO{SA) = 0, y'co(si) = 0, or

i/9i#i cosliru-ipn] + \fW162 c o s ^ i / - ^ ] + \fW%®% coslnv—ipte] + \fW$n COSTTJ/ — 0,

V^^isinfTr^-^i] + i / S ^ s i n ^ - i / ^ ] + V ^ ^ s i n ^ - - ^ ] + v^^sinTrv = 0,

where xpji = ipj—ifii is the phase advance from s, to Sj. Expressing 63 and 64 in terms
of 6\ and 62, we obtain

/ \ /Ms = -{\[K.0\ sinipn + \JJ182 sin^42)/ sin^43, (0 1 s n^
I I I I \ *-**J)

[ sjPtfi = {yjPxOiSYMpn + y'&^sin^M/sinvW
The orbit displacement inside the region of the orbit bump can be obtained by apply-
ing the transfer matrix to the initial coordinates. Using four bumps, we can adjust the
orbit displacement and the orbit angle to facilitate ease of injection and extraction,
to avoid unwanted collisions, and to avoid the limiting-aperture in the accelerator.

The three-bump method (see Exercise 2.3.4) has also been used for local orbit
bumps. Although the slope of the bumped particle orbit can not be controlled in the
three-bump method, this method is usually used for the local orbit correction because
of its simplicity. Occasionally, the two-bump method has been used at favorable
phase-advance locations in accelerators. Figure 2.13 shows an example of a local
orbit bump using three dipoles. Since the two outer bumps happen to be nearly 180°
apart in the betatron phase advance, the middle bump dipole has negligible field
strength.

B. Fast kick for beam extraction

To extract a beam bunch from the accelerator, a fast kicker magnet is usually powered
in about 20-100 ns rise and fall times in order to bump beam bunches into the ex-

37Other examples are orbit bump at the aperture restricted area, internal target area, avoiding
unwanted collisions in colliders, etc. For example, the counter-circulating e+ and e~ beams, or the
p and p beams in a collider can be made to avoid crossing each other in a common vacuum chamber
with electrostatic separators.
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Figure 2.13: A simple orbit bump in
the AGS booster lattice. The sym-
bol X marks the three dipole kicker
locations. Since the first and third
kickers are nearly 180° apart in the
betatron phase advance, the local or-
bit bump is essentially accomplished
with these outer two kickers. In this
example, there are 3 focusing and 2
defocussing quadrupoles between two
outer bump dipoles.

traction channel, where a septum is located.38 With the transfer matrix of Eq. (2.67),
the transverse displacement of the beam is

AzCo(s) = ypx{sk)/3x(s)sm(A<t>x(s))}ek, (2.181)

where 6y = f B^ds/Bp is the kicker strength (angle), B^ is the kicker dipole field,
Px{sy) is the betatron amplitude function evaluated at the kicker location, flx(s) is
the amplitude function at location s, and A<f>x(s) is the phase advance from s^ of the
kicker to location s. The quantity in curly brackets in Eq. (2.181) is called the kicker
lever arm.

To achieve a minimum kicker angle, the septum is located about 90° phase advance
from the kicker, and the values of the betatron amplitude function at the septum and
kicker locations are also optimized to obtain the largest kicker lever arm. Similar
constraints apply to the kicker in the transverse feedback system, the kicker array for
stochastic cooling, etc.

Figure 2.14 shows a schematic drawing of the cross-section of a Lambertson septum
magnet. A beam is bumped from the center orbit xc to a bumped orbit x^. At the
time of fast extraction, a kicker kicks the beam from the bumped orbit to the the
extraction channel at x\, where the uniform dipole field bends the beam into the
extraction channel. The iron in the Lambertson magnet is shaped to minimize the
field leakage into the field-free region and the septum thickness, that is of the order
of 4-10 mm depending on the required magnetic field strength.

38The kicker is an electric or magnetic device that provides an angular deflection to the charged
particle beam in fast rise and fall times so that it can selectively deflect beam bunches. The electric
kicker applies the traveling wave to a stripline type waveguide. The magnetic kicker employs ferrite
material to minimize eddy-current effects. The rise and fall times of the kickers range from 10 ns to
100's ns. The septum is a device with an aperture divided into a field-free region and a uniform-
field region, where the former will not affect the circulating beams, and the latter can direct the
beam into an extraction or injection channels. Depending on the application, one can choose among
different types of septum, such as wire septum, current sheet septum, Lambertson septum, etc.
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Figure 2.14: A schematic drawing of
the central orbit xc, bumped orbit x\>,
and kicked orbit x^ in a Lambertson
septum magnet. The blocks marked
with X are conductor-coils, The ellipses
marked beam ellipses with closed or-
bits xc, Xf,, and x^. The arrows in-
dicated a possible magnetic field di-
rection for directing the kicked beams
downward or upward.

C. Effects of rf dipole field, rf knock-out

In the presence of a localized rf dipole, Hill's equation is

cPv °°
-r^ + K{s)y = 6asinumt £ 6(s-nC), (2.182)
" S n=-oo

where 9a = AB£/Bp and uim are respectively the kick angle and the angular frequency
of the rf dipole, C is the circumference, and t = s//3c is the time coordinate. The
periodic delta function reflects the fact that the beam particles encounter the kicker
field only once per revolution.

Performing the Floquet transformation to Eq. (2.182) with

y 1 r» ds

VPo v Jo P

Hill's equation becomes

where vm = wm/w0 is the modulation tune, /30 is the value of the betatron amplitude
function at the rf dipole location, and Wo is the orbital angular frequency. The solution
of the inhomogeneous Hill's equation is

r] = Acosi>(j) + Bsinis(j) + r}co, (2.184)

where A and B are the amplitude of betatron motion determined by the initial con-
ditions, and the particular solution rjco is the coherent time dependent closed orbit,

°° v2B3^9

^ = J L 2*R[v>-\n'+Vm)*) Sln(n + ^ " (2"185)

Note that the discrete nature of the localized kicker generates error harmonics
n + vm for all n € ( -oo, oo). For example, if the betatron tune is 8.8, large betatron
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oscillations can be generated by an rf dipole at any of the following modulation tunes:
vm — 0.2,0.8,1.2,1.8,— The localized repetitive kicks generate sidebands around
the revolution lines.

Now we examine the coherent betatron motion of the beam in the presence of an
rf dipole at i/m « v (modulo 1) with initial condition y — y' = 0. The solution is

y(S> = —9^R— ^ 1A—(„,,. 2̂ r S l n ( n + ^rn)0 - v(n + i/m) sin v<j>\
Z7r-K n=-oo " ~ \n + ^W

where the last approximate identity is obtained by expanding the term in the sum
with n + vm sa u, and retaining only the dominant term. Equation (2.186) indicates
that the beam is driven coherently by the rf dipole, and the amplitude of betatron
motion grows linearly with time.39

Figure 2.15 shows the measured betatron coordinate (lower curve) at a beam
position monitor (BPM) after applying rf knock-out kicks to the beam in the IUCF
Cooler Ring, and the fractional part of the betatron tune (upper curve), that, in this
experiment, is equal to the knockout tune. The rf dipole was on from 1024 to 1536
revolutions starting from the triggering time. At revolution number 2048, the beam
was imparted a transverse kick. Note the linear growth of the betatron amplitude
during the rf dipole-on time. Had the rf dipole stayed on longer, the beam would have
been driven out of the vacuum chamber. Thus the method is called the "rf knock
out."

The fractional betatron tune, shown in the upper trace, is measured by averaging
the phase advance from the Poincare map (see Sec. III.5), where data from two BPMs
are used. This two-kick method can be used to provide a more accurate measurement
of the dependence of the betatron tune on the betatron amplitude.40

The rf dipole can be adiabatically turned on to induce coherent betatron oscil-
lations for betatron tune measurement without causing serious emittance dilution.41

39It is worth pointing out that the coherent growth time of the betatron oscillation is inversely
proportional to \vm - u\ (mod 1). Beyond the coherent time, the beam motion is out of phase
with the external force and leads to damping. This process is related to the Landau damping to be
discussed in Sec. VIII.4.

40The power supply ripple at the IUCF cooler ring gives rise to a betatron tune modulation of the
order of 2 x 10~3 at 60 Hz and its harmonics. On the other hand, the dependence of the betatron
tune on the betatron action is typically 10~4 per lir mm-mrad. To measure this small effect in
the environment of the existing power supply ripple, the two-kick method was used to measure the
instantaneous betatron tune change at the moment of the second kick. See M. Ellison et a/., Phys.
Rev. £50, 4051 (1994).

41M. Bai et al, Phys. Rev. E56, 6002 (1997); Phys. Rev. Lett. 80, 4673 (1998); Ph.D. Thesis,
Indiana University (1999).
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Figure 2.15: The lower curve shows
the measured vertical betatron os-
cillations of the beam of one BPM at
the IUCF cooler ring resulting from
an rf dipole kicker at the betatron
frequency. The rf dipole was turned
on for 512 revolutions. After an-
other 512 revolutions, the beam was
imparted by a one-turn kicker. Note
the linear growth of the betatron
amplitude during the rf knockout-
on time. The upper curve shows
the fractional part of the betatron
tune obtained by counting the phase
advance in the phase-space map,
where data from two BPMs are
used.

Figure 2.16 shows the vertical beam profile measured at the AGS during the adia-
batic turn-on/off of an rf dipole. When the rf dipole was on, the beam profile became
larger because the beam was executing coherent betatron oscillations, and the profile
was obtained from the integration of many coherent betatron oscillations. As the rf
dipole is adiabatically turned off, the beam profile restored to its original shape.

The induced coherent betatron motion can be used to overcome the intrinsic spin
resonances during polarized beam acceleration. Furthermore, the measurement of
the coherent betatron tune shift as a function of the beam current can be used to
measure the real and imaginary parts of the transverse impedance (see Sec. VIII).
This method is usually referred to as the beam transfer function (BTF).

Figure 2.16: The beam profile
measured from an ionization pro-
file monitor (IPM) at the AGS dur-
ing the adiabatic turn-on/off of an
rf dipole. The beam profile ap-
peared to be much larger during the
time that the rf dipole was on be-
cause the profile was an integration
of many coherent synchrotron os-
cillations. After the rf dipole was
adiabatically turned off, the beam
profile restored back to its original
shape.
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D. Orbit response matrix for accelerator modeling

Equation (2.162) shows that the beam closed orbit in a synchrotron is equal to the
propagation of the dipole field error through the Green's function that is an intrinsic
property of the betatron motion. If the closed-orbit response to a small dipole field
perturbation can be accurately measured, the Green's function of Hill's equation
can be modeled. The orbit response matrix (ORM) method measures the closed-
orbit response induced by a known dipole field perturbation. The resulting response
functions can be used to calibrate quadrupole strengths, BPM gains, quadrupole
misalignments, quadrupole roll, dipole field integral, sextupole field strength, etc.
The ORM method has been successfully used to model many electron storage rings.42

We consider a set of small dipole perturbation given by Oj, j = 1,..., N^, where iVj,
is the number of dipole kickers. The measured closed orbit from the dipole pertur-
bation is yi, i = 1,..., Nm, where JVm is the number of beam position monitors. The
response matrix R, defined as

yi = R t j 9 j , j = l,...,Nh i = l,...,Nm, (2.187)

is equal to Green's function Ry = Gy(si, Sj) of the actual machine, where y stands
for either x or z. It is worth mentioning that iVb is not necessarily equal to Nm. Ex-
perimentally, we measure Ry (i = 1, • • •, iVm) vs the dipole kick at Oj (j = 1, • • •, Nb).
The full set of the measured response matrix R can be employed to model the dipole
and quadrupole field errors, the calibration of the BPM gain factor, sextupole mis-
alignment, etc. The outcome of response matrix modeling depends on the BPM
resolution, the number of BPMs and kickers, and the machine stability during the
experimental measurement.

The ORM method minimizes the difference between the measured and model
matrices Rexp a nd Rmodei- Let

Wk = IR™»M«-B«P«I /2_18g)

be the difference between the closed-orbit data measured and those derived from a
model, where <7; is the rms error of ith measurements. Here the number of index
k is Nh x Nm, and the model response matrix can be calculated from MAD[19],
SYNCH[20], or C0MF0RT[21] programs. The measured response matrix needs cal-
ibration in the kicker angle and BPM gain, i.e.

K e X P « - fj9i '
42See J. Safranek and M.J. Lee, Proc. Orbit Correction and Analysis in Circular Accelerators,

AIP Conf. Proc. No. 315, 128 (1994); J. Safranek and M.J. Lee, Proc. 1994 European Part. Accel.
Con}. 1027 (1997). J. Safranek, Proc. 1995 IEEE Part. Accel. Con}., 2817 (1995).
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where / , is the calibration factor of the jth kicker, and gt is the gain factor of the ith
BPM. The ORM accelerator modeling is to minimize the error of the vector W by
minimizing the %-square (x2) defined as

^=5vnr£w2. (2-189)

We consider sets of parameters wm's that are relevant to accelerator model and or-
bit measurement. Some of these parameters are kicker angle calibration factor, the
BPM gain factor, the dipole angle and dipole roll, the quadrupole strength and roll,
sextupole strength, etc. The ORM modeling is to find a new set of ium-parameters
such that

||W(«»m)|| = 0. (2.190)

First, we begin with parameters wm and evaluate W(ium). The idea is to find a
new set of parameters wm + Awm that satisfies Eq. (2.190), i.e.

Wk(wm + Awm) « Wk(wm) + ̂ A w m = 0. (2.191)

To evaluate Awm, we invert matrix W = ^ t , which has the dimension of is (Nb •
Nm) x Np. Here, Np is the number of parameters. In our application to accelerator
physics, {Nb • Nm) » Np.

The singular value decomposition (SVD) algorithm decomposes the matrix W into

w = o v V k = U A v T ( 2 1 9 2 )

dwm

where V T is a real orthonormal Np x Np matrix with VVT = VTV = 1, A is a
diagonal Np x Np matrix with elements An = \f\l > A22 = y/X^--- > 0, and
U = AVA"1 is a {Nm • Nb) x Np matrix with UTU = I.43 Here Ai, A2, • • • are
eigenvalues of the matrix WTVV, and V is composed of orthonormal eigenvectors of
WTW, i.e. WTW = VA2VT. The SVD-method sets all eigenvalues A* < Ac, (i > r)
to A, = 0, (i > r), where Ac is called the tolerance level and r is called the rank of
the matrix W. Setting all A, = 0 (i > r) is equivalent setting Aw* = 0 for i > r.
This means that these dynamical parameters have no relevance to the measured data.
Once the SVD of matrix W is obtained, one finds Awm as

Awm = - (VA-1^) W(wn), (2.193)

where A" 1 is a diagonal matrix with AJ"/ = l/\f\[, • • •, A^.1 = l/\fK and 0 for
all remaining diagonal elements with i > r. The iterative procedure continues until
I Awm| or the change of x2 are small.

43The SVD decomposition ofamxn matrix W in Eq. (2.192) can also be carried out in such a way
that U and V are respectively orthonormal real mxm and nxn matrices with UTU = UUT = 1
and VTV = W T = 1, and A i samxn diagonal matrix.
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The response matrix modeling has been successfully implemented in many electron
storage rings, where the BPM resolution is about l~10 /zm. The method has been
used to calibrate kicker angle, BPM gain, quadrupole strength and roll, sextupole mis-
alignment, dipole and quadrupole power supplies, etc. The method is also applicable
to proton synchrotrons, where the BPM resolution is usually of the order of 100 fim.44

In accelerator modeling, the dimension of the matrix W, (Nm • Nb) x Np, can be
large. The inversion of a very large matrix may become time consuming. It is advan-
tageous to model accelerator parameters in sequences, e.g., (1) kicker angle calibration
fj, (2) BPM gain <?,, (3) quadrupole strength AKi, (4) dipole angle calibration, (5)
dipole roll, etc. These steps are sometimes essential in attaining a reliable set of
model parameters.

Figure 2.17: Left, digitized betatron oscillation data of one BPM are used to derive betatron
amplitude, phase and tune, and closed orbit offset. Right, top plot shows the closed orbit
data compared with Green's function of Eq. (eq23green) at a calibrated vertical steerer
angle. The bottom right plot shows a similar comparison after ORM modeling.

For high-power synchrotrons, beam particles are injected, accelerated and ex-
tracted in a short time duration. For example, the proton storage ring (PSR) at
Los Alamos National Laboratory accumulates protons for 3000 turns and the beam
bunch is extracted after accumulation for high-intensity short-pulse neutron produc-
tion. The closed orbit data can be obtained by averaging betatron oscillations in a
single turn injection. The betatron oscillations of each BPM can be used to obtain
the betatron amplitude, phase and tune, and the closed orbit (see the left plot of
Fig. 2.17). These information can be used in the ORM analysis for accelerator mod-
eling.45 The right plots of Fig. 2.17 shows an example of typical fit in ORM modeling.

44C.M. Chu, et al., "First Test of Orbit Response Matrix in Proton Storage Ring", Proceedings
of PAC 1997, p. 1481 (1997).

45X. Huang et al, Analysis of the Orbit Response Matrix Measurement for PSR, Technote: PSR-
03-001 (2003).
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The success of accelerator modeling depends critically on the orbit and tune stability,
the number of BPMs and orbit steerers, proper set of experimental data for attaining
relevant parameters.

E. Model Independent Analysis

Using turn-by-turn BPM data excited by resonant pinger discussed in Sec. III.3C, one
can also carry out response matrix analysis for accelerator modeling, called Model In-
dependent Analysis (MIA). This method has been successfully applied to SLC linac,
PEP-II and Advanced Photon Source.46 For the application of MIA in a storage
ring, one uses an rf dipole pinger to excite coherent betatron oscillation and mea-
sures the response function with turn-by-turn BPM digitizing system (See Sec. II, in
Appendix B).

III.4 Quadrupole Field (Gradient) Errors
The betatron amplitude function discussed in Sec. II depends on the distribution
of quadrupole strengths. What happens to the betatron motion if some quadrupole
strengths deviate from their ideal design values? We found in Sec. III.l that the effect
of dipole field error on the closed orbit would be minimized if the betatron tune was
a half-integer. Why don't we choose a half-integer betatron tune?

This section addresses the effect of quadrupole field errors that can arise from vari-
ation in the lengths of quadrupoles, from errors in the quadrupole power supply, from
the horizontal closed-orbit deviation in sextupoles,47 etc. These errors correspond to
the bi term in Eq. (2.25).

A. Betatron tune shift

Including the gradient error, Hill's equation for the perturbed betatron motion about
a closed orbit is

1 l + [K0(s) + k(s)}y = 0, (2.194)

where K0(s) is the focusing function of the ideal machine discussed in Sec. II, and k(s)
is a small perturbation. The perturbed focusing function K(s) = K0(s)+k(s) satisfies

4 6J. Irwin, C.X. Wang, and Y.T. Yan, Phys. Rev. Lett. 82, 1684 (1999); C.X. Wang, Ph.D.
Thesis, Stanford University (1999); J. Irwin and Y.T. Yan, Proceedings of EPAC 2000, p. 151
(2000); C.X. Wang, Vadim Sajaev, and C.Y. Yao, Phys. Rev. ST Accel. Beams 6, 104001 (2003).

47Substituting x = xco + x@ and z = zp into the sextupole field of Eq. (2.25), we obtain

ABZ = -B2(xeo + 2zCoZ/3 + x% - z}), ABX = B2(xcoz0 + x0zg),

where B2 = d2Bz/dx2. Thus an off-center horizontal orbit in a sextupole generates a dipole field
^B2xl0, and a quadrupole field gradient B2a;co. This process is called feed-down.
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a weaker superperiod condition K(s + C) — K(s), where C is the circumference. Let
Mo be the one-turn transfer matrix of the ideal machine, i.e.

M0(s) = /cos$ 0 + Js in$ 0 ,

where $o = 27r̂ o is the unperturbed betatron phase advance in one complete revolu-
tion, v0 is the unperturbed betatron tune, / is the 2x2 unit matrix, and

\ - 7 ( s ) -a(s)J

Here a(s), /3(s), and 7(s) are betatron amplitude functions of the unperturbed ma-
chine. We consider now the gradient perturbation with an infinitesimal length ds\ at
Si. The transfer matrix of this infinitesimal localized perturbing quadrupole error is

The one-turn transfer matrix M(si) = Mo(si)m(si) becomes

A/re \—( c o s ^ o + Qisin$0 -/?i^(si)rfsisin$0 /?isin$0 \
\— ji sin$0 — [cos$o + aisin$0]^(si)^si cos $o — ai sin $0 / '

where ot\ = a(si), A = P(si), and 71 = 7(si). The phase advance of the perturbed
machine can be obtained from the trace of M, i.e.

cos<3> — cos$o = —y8(si)fc(si)dsisin$0) o r A$ «-/3(s1)A;(si)rfs1,z z

where A$ = $ — $0, and the betatron tune shift is Aẑ  = -^f3(si)k(sx)dsi. Here the
betatron tune shift depends on the product of the gradient error and the betatron
amplitude function at the error quadrupole; it is positive for a focusing quadrupole,
and negative for a defocussing quadrupole.

For a distributed gradient error, the tune shift is

Au = ~ f p(Sl)k(Sl)dSl. (2.196)

The betatron tunes are particularly sensitive to gradient errors at high-/3 locations.
Thus the power supply for high-/3 quadrupoles should be properly regulated in high
energy colliders, and high-brightness storage rings.

B. Betatron amplitude function modulation (beta-beat)

To evaluate the effect of the gradient error on the betatron amplitude function, we
again consider an infinitesimal quadrupole kick at s\ of Eq. (2.195). The one-turn
transfer matrix at s2 is

M(sj) = M{s2 +C|5i) m(«i) M(Sl\s2).
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Using Eq. (2.67), we find the change of the off-diagonal matrix element as

A[M(s2)]i2 = -Msi/Sif t s\n[vo(<j>i - fa)} sin[zvo(27r + fa - fa)],

where ft = /?(si),/32 = /2(s2) fa = V)(si)/t'o> a n d fa = ̂ (^V^o are the values of the
unperturbed betatron functions. Since Mi 2 = J32 sin $, where fi2 = P{S2) is the value
of the perturbed betatron function and $ is the perturbed betatron phase advance,
we obtain

(A/?2) sin $0 = AM12 - /?2 cos $0 A$

= - ^ M s i A f t c o s p i ^ T r - & + &)], (2.197)

where A/32 = ft - /32 and A$ = $ - $0-
Removing the subscript 2 in Eq. (2.197) and integrating over the distributed

gradient errors, we obtain

llr = -^r^ms^os^+^fa)]^

= -TT^f- k(fa)p2(fa)cos[2v0(n + <f>-fa)}dfa, (2.198)

where (j> = (l/^o) Jo ds/p. It is easy to verify that Ap/p satisfies (see Exercise 2.3.10)

C. The half-integer stopband integrals

In a manner similar to the closed-orbit analysis, the gradient error function i/o/32k(s),
which is a periodic function of s, can be expanded in a Fourier series

vof32k(s)= £ Jpe^, (2.200)
p=—oo

where

JP = 7T'1>P Hs) er^ ds (2.201)
2TT J

is the pth harmonic half-integer stopband integral. We note that the tune shift of
Eq. (2.196) is equal to the zero harmonic of the stopband integral, i.e. Av = Jo/2.
The solution of Eq. (2.199) becomes

WW "A f V f 2 2 02)
K.) -'2j^^-(p/2r (2-202)
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This indicates that the betatron amplitude function is most sensitive to those error
harmonics of P2k(s) nearest 2v0. The amplitude function becomes infinite when 2v0

approaches an integer; this is called a half-integer resonance. When the betatron tune
is a half-integer, a quadrupole error can generate coherent additive phase-space kicks
every revolution. The "closed orbit" of the betatron amplitude function will cease to
exist, as shown in the left plot of Fig. 2.18. Therefore the betatron tune should not
be a half-integer.

Figure 2.18: Left, schematic plot of
a particle trajectory at a half-integer
betatron tune resulting from a defo-
cussing error quadrupole kick Ay' =
—y/f- Since the quadrupole kick is
proportional to the displacement y,
which changes sign in each consecu-
tive revolution at a half-integer beta-
tron tune, the coherent addition of the
kick angle in each revolution gives rise
to the unstable particle motion. The
right plot shows the effect of zero tune
shift 7r-doublets, that produce a local
perturbation to betatron motion.

The evolution of phase-space coordinates resulting from a quadrupole kick is [using
Eq. (2.195)] Ay = 0 and Ay' = -k(si)ydsl = -y/f, where / = l / (Ms i ) is the focal
length of the error quadrupole, and y is the displacement from the center of the closed
orbit. The change of the slope y' is proportional to the displacement y. The left plot
of Fig. 2.18 shows the behavior of a quadrupole kick at a half-integer tune, where
the quadrupole kicks are coherently additive. This will lead to an ever increasing
betatron amplitude. Thus the half-integer stopband gives rise to unstable betatron
motion. When the betatron tune is an integer, quadrupole kicks will resemble the
left plot in Fig. 2.12. Thus an integer betatron tune is also a half-integer resonance.
The right plot shows the effect of zero tune shift 7r-doublets, which give rise only to
local betatron perturbation.

The leading term of Eq. (2.199) is

JW (2 , 0 -p) > (2-203)

where \ ls a phase angle, and p is the integer nearest 2^o. The stopband width is
defined by 5vp ~ \JP\ such that |A/3(s)//?(s)|max « 1 at v0 ss | ± \5vp. This means
that the betatron tune should differ from a half-integer by at least the stopband
width. When the betatron tunes are inside the stopband, the beam size will increase
by at least a factor of \/2, and beam loss may occur.
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D. Statistical estimation of stopband integrals

Again, in the design stage of an accelerator, if we do not know a priori the gradient
error, the stopband integral can be estimated by statistical argument as

47TJav \ -K /rms

where P&v,fsv,Nq, and (AK/K)ims are respectively the average /3 value, the average
focal length, the number of quadrupoles, and the rms relative gradient error.

E. Effect of a zero tune shift 7r-doublet quadrupole pair

A zero tune shift 7r-doublet (or the zero tune shift half-wave doublet) is composed of
two quadrupoles separated by 180° in betatron phase advance with zero tune shift.
Using the zero tune shift condition, we obtain

AAtfiALi + /32AK2AL2 = 0, (2.205)

where /3ir2 are betatron amplitude functions at quadrupole pair locations, and AKiALi
is the integrated field strength of the iih quadrupole. The zero tune shift condition
of Eq. (2.205) also produces a zero stopband integral at p = [2v], i.e.

J[2v] — 0-

Since the stopband integral J[2v] of a zero tune shift 7r-doublet is zero, the doublet has
little effect on the global betatron perturbation shown in the right plot of Fig. 2.18,
where the betatron perturbation due to the first quadrupole is canceled by the second
quadrupole. Zero tune shift 7r-doublets can be used to change the dispersion function
and the transition energy (to be discussed in Sec. IV.8).

F. Zero tune shift half-integer stopband correctors

We find that the zero tune shift ?r-doublet produces a zero stopband width. On the
other hand, a zero tune shift quarter-wave quadrupole pair produces a maximum
contribution to the half-integer stopband. Employing such modules, we can correct
half-integer betatron stopbands.

III.5 Basic Beam Observation of Transverse Motion

Measurements of beam properties are important in improving the performance of a
synchrotron. In this section we discuss some basic beam diagnosis tools. Further
detailed discussions can be found in the literature.48

48R. Littauer, AIP Conf. Proc. 105, 869 (1983); R. Shafer, IEEE Trans. Nucl. Sci. NS32,
1933 (1985); J.L. Pellegrin, SLAC PUB-2522 (1980), and Proc. 11th Int. Conf. on High Energy
Accelerators, p. 459 (1980); H. Koziol, CERN 89-05, p. 63 (1989); M. Serio, CERN 91-04, p. 136
(1991); P. Strehl, CERN 87-10, p. 99 (1987); J. Boer, R. Jung, CERN 84-15, p. 385 (1984).
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Figure 2.19: A schematic drawing of electric beam position monitors. The split-can type
BPM has the advantage of linear response; the strip-line type has a larger transfer function.

A. Beam position monitor (BPM)

Transverse beam position monitors (BPMs) or pickup electrodes (PUEs) are usually
composed of two or four conductor plates or various button-like geometries. Fig-
ure 2.19 shows a sketch of some simple electric BPM geometries used mainly in
proton synchrotrons. The button BPMs are used mainly in electron storage rings,
where the bunch length is small. As the beam passes by, the induced image electric
charges on the plates can be transmitted into a low impedance circuit, or the induced
voltage can be measured on a high impedance port such as the capacitance between
the electrode and the surrounding vacuum chamber.

The BPM can have an electrostatic, e.g. split electrodes and buttons, or a
magneto-static, e.g. small secondary loop winding, configurations. An electrostatic
monitor is equivalent to a current generator, where the image charge is detected by
the shunt capacitance of the electrode to ground. Similarly, a magnetic loop monitor
is equivalent to a voltage generator with a series inductor, which is the self-inductance
of the loop. The voltage is proportional to the rate of variation of the magnetic flux
associated with the beam current linked to the loop.

In general, the beam position is

w U+-U- w A
y * 2 WTTT = 2 E ' (2-206)

where U+ and C/_ are either the current or the voltage signals from the right (up) and
left (down) plates, A = U+ - U- is called the difference signal or the A-signal, E =
U+ + [/_ is the sum signal, and w/2 is the effective width of the PUE. Depending on
the geometry of the PUE, the relation Eq. (2.206) may require nonlinear calibration.
Measurements of the normalized difference signal with proper calibration provide
information about the beam transverse coordinates. If we digitize beam centroid
positions turn by turn, we can measure the betatron motion. On the other hand,
sampling the position data at a slower rate, we can obtain the closed-orbit information
from the DC component.
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Figure 2.20: The measured beta-
tron coordinates at two horizontal
BPMs, after the beam is imparted
a magnetic kick, vs the revolution
number. The solid line is drawn
to guide the eye. The FFT spec-
trum of the BPM data (middle plot)
shows the fractional part of the hor-
izontal betatron tune. Here a to-
tal of 385 data points are used in
the FFT calculation. The fractional
part of the horizontal betatron tune
is ux = 0.242 ± 0.002. The observed
vertical betatron tune at vz = 0.317
may result from linear coupling or
from a tilted horizontal kicker.

B. Measurements of betatron tune and phase-space ellipse

If the betatron oscillations from the BPM systems can be digitized turn by turn, the
betatron tune can be determined from the FFT of the transverse oscillations (see
Appendix B). Figure 2.20 shows the data for the horizontal betatron oscillation of a
beam after a transverse kick at the IUCF cooler ring. The top plot shows the digitized
data at two BPM positions (xi and x2). The lower plot shows the FFT spectrum of
the Xi data. From the FFT spectrum, we find that the horizontal and vertical tunes
of this experiment were ux = 3.758 and vz = 4.683 respectively.

The phase-space trajectory can be optimally derived from the measured betatron
coordinates at two locations with a phase advance of an odd multiple of 90°. Using
Eq. (2.62), we obtain

, _ c s c ^ 2 i (coty>2i+Qi) , .

l~vmX2~ A Xu (2-207)
where tp21 = "4>2 — ipi is the betatron phase advance between two BPMs, /3i and p2

are the values of betatron amplitude function at two BPMs, and a\ = —P[/2 at the
first BPM. The invariant phase-space ellipse becomes

o ( IK \2
x\+ «/£• esc fci2- cot V>2i Zi = 2 A J , (2.208)

VV P2 j

where the area enclosed by the (z2>zi) ellipse is 27iV/?i/32 |sin^2i|<A and J is the
betatron action. Dots in the left plot of Fig. 2.21 shows the measured (x2,a;i) ellipse,
where the solid line is obtained from Eq. (2.208) by fitting y/Si/ft and ip2i parameters
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Figure 2.21: The left plot shows the phase-space ellipse (x2,x{) of Fig. 2.20. The area
enclosed by the ellipse is 27iVft/?2 I sin •jfel | J. The solid line shows the ellipse of Eq. (2.208)
with y/falPi = 1-4, ihi = 80°, and 2ft J = 8 x 10"6 m2. If ft is independently measured,
the action of the betatron orbit can be obtained. The right plot shows a poor man's phase-
space ellipse, obtained by plotting betatron coordinates of successive revolutions of single
digitized BPM data. Because the betatron tune is nearly 3.75 (see Fig. 2.20), the phase space
is an upright circle. The area enclosed by this nearly circular ellipse is 27rft| sin2irux\J.

for the orientation, and ft ^ for the size of the ellipse. If the betatron amplitude
function ft is independently measured, the action of the ellipse can be determined.

Two BPMs separated by about 90° in phase advance are useful for obtaining
a nearly upright transverse phase-space ellipse. The turn by turn digitized data
require a high bandwidth digitizer and a large memory transient recorder. However,
if available hardware is limited, the phase-space ellipse can be obtained by using
digitized data of successive turns of a single BPM. The right plot of Fig. 2.21 shows
ii.n+i vs ii i B. Because the horizontal tune in this example is 3.758, the phase-space
ellipse of (a:i,n,£i,n+i) is nearly a circle. The area enclosed is 27rft| sm2ni/x\J.

III.6 Application of quadrupole field error

By using the quadrupole field error, the optical properties of the lattice can be altered,
measured, or manipulated. Examples of ^-function measurement and the betatron
tune jump are described below. Other applications, such as ?r-doublets for dispersion
function manipulation, will be discussed in Sec. IV.8.

A. ft-Function measurement

Using Eq. (2.196), we can derive the betatron amplitude function by measuring the
betatron tune as a function of the quadrupole strength. The average betatron ampli-
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Figure 2.22: An example of be-
tatron amplitude function measure-
ments, where the horizontal and ver-
tical tunes are determined from the
FFT spectrum of the betatron oscil-
lations. The slope of the betatron
tune vs the quadrupole field varia-
tion is used to determine the beta-
tron amplitude functions. Because
the fractional parts of betatron tunes
are qx — 4 — vx and qz = 5 — uz, the
fractional horizontal tune is seen to
increase with the strength of the hor-
izontal defocussing quadrupole.

tude function (px,z) at a quadrupole becomes

where AKl is the change in the integrated quadrupole strength. Figure 2.22 shows
an example of the measured fractional part of the betatron tune vs the strength of a
quadrupole at the IUCF cooler ring. The "average" betatron amplitude function at
the quadrupole can be derived from the slopes of the betatron tunes. In this example,
the slope of the horizontal betatron tune is larger than that of the vertical, and thus
the horizontal betatron function is larger than the vertical one. Since the fractional
part of the horizontal tune increases with the defocussing quadrupole strength, the
actual horizontal tune is below an integer. For the IUCF cooler ring, we have i/x =
4 — qx and vz = 5 — qz, where qx and qz are the fractional parts of the betatron tunes.

B. Tune jump

The vector polarization of a polarized beam is defined as the percent of particles
whose spins lie along a quantization axis, e.g. the polarization of a proton beam is
P = (N+ - N-)/(N+ + AL), where iV± are the numbers of particles with their spin
projection lying along and against the quantization axis. For polarized beams in a
planar accelerator, the quantization axis can be conveniently chosen to lie along the
vertical direction that coincides with the vertical guide field.

According to the Thomas-BMT equation, the polarization vector precesses about
the vertical axis at Gj turns per revolution, where G = (g - 2)/2 is the anomalous g-
factor and 7 is the Lorentz relativistic factor.49 Thus G7 is called the spin tune. Since
the spin tune increases with the beam energy, acceleration of a polarized beam may
encounter spin depolarization resonances [22], where the "imperfection resonance"

49G = 1.79284739 for protons, and 0.0011596522 for electrons.
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arises from the vertical closed-orbit error, and the "intrinsic resonance" is produced
by the vertical betatron motion. The imperfection resonance can be corrected by
vertical orbit correctors to achieve proper spin harmonic matching. The AGS had 96
closed-orbit correctors for imperfection resonance harmonics.50

The intrinsic resonance in low/medium energy synchrotrons can be overcome by
the tune jump method. When the G7 value reaches an intrinsic spin resonance, the
betatron tune is suddenly changed to avoid the resonance. This betatron tune jump
can be achieved by using a set of ferrite quadrupoles with a very fast rise time. The
AGS had 10 fast ferrite quadrupoles to produce a tune jump of about 0.3 in about
2.5 jus.

The amount of tune change is

Al/* = h f ^ds> (2-209)
where ABi is the quadrupole gradient of tune jump quadrupoles. Because of the
integer and half-integer stopbands, the magnitude of tune jump is limited to about
Avz « 0.3. With a large tune jump, beam dynamics issues such as non-adiabatic be-
tatron amplitude function mismatch, linear betatron coupling, nonlinear resonances,
non-adiabatic closed-orbit distortion, etc., should be carefully evaluated. Since the
betatron tune of AGS is about 8.8, the important half-integer stopbands are located
at p = 17 and 18. Placement of tune jump quadrupoles to minimize the stopband
integral can reduce non-adiabatic perturbation to the betatron motion. Similarly,
the non-adiabatic closed-orbit perturbation due to the misalignment of tune jump
quadrupoles can also be analyzed.51

III.7 Transverse Spectra

A. Transverse spectra of a particle

A circulating particle passes through the pickup electrode (PUE) at fixed time inter-
vals To, where To = 2-KR/jic is the revolution period, R is the average radius, and @c
is the speed. The current of the orbiting charged particle observed at the PUE52 is

00

/(t) = e£<J(t-nT0), (2.210)
—00

50At AGS, a 5% partial snake has recently been used to overcome all imperfection resonances.
See, e.g., H. Huang et al, Phys. Rev. Lett. 73, 2982 (1994).

51 An rf dipole has recently been used to overcome these intrinsic spin resonances. See, e.g., M.
Bai et al, Phys. Rev. Lett. 80, 4673 (1998). A 20 G-m rf dipole was used to replace 10 ferrite
quadrupoles with an integrated field strength of f Bids = 15 T.

52We assume that the bandwidth of PUEs is much larger than the revolution frequency. In fact,
the bandwidth of PUEs is normally from 100's MHz to a few GHz.
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where e is the charge of the particle, and S(t) is the Dirac 5-function. Expressing the
periodic delta function in Fourier series, we obtain

I(t) = f £ e***' = ̂  + 2 f £ cosnWoi, (2.211)
J 0 n=-oo 1f> i 0 n=i

where j is the complex number, and Wo = f5c/R = 2ftfo is the angular frequency.
Note that the periodic occurrence of current pulses is equivalent to equally spaced
Fourier harmonics.

The top plot of Fig. 2.23 shows the periodic time domain current pulses. The
middle plot shows the frequency spectra of the particles occurring at all "rotation
harmonics." Passing the signal into a spectrum analyzer for fast Fourier transform
(FFT), we observe a series of power spectra at integral multiples of the revolution
frequency nfo, shown in the bottom plot. The DC current is e/T0, and the rf current is
2e/To- Because the negative frequency components are added to their corresponding
positive frequency components, the rf current is twice the DC current.

Figure 2.23: A schematic drawing of current pulses in the time domain (upper plot), in
the frequency domain (middle plot), and observed in a spectrum analyzer (bottom plot).
The rf current is twice the DC current because negative frequency components are added
to their corresponding positive frequency components.

If we apply a transverse impulse (kick) to the beam bunch, the beam will be-
gin betatron oscillations about the closed orbit. The BPM measures the transverse
coordinates of the centroid of the beam charge distribution (dipole moment), given
by

d{t) = I(t)y{t) = I(t) [y0 + ycosuj?t}, (2.212)

where y0 is the offset due to the closed-orbit error or the BPM misalignment, y is
the amplitude of the betatron oscillation, and up = Qyuio is the betatron angular
frequency with betatron tune Qy.

The DC component of the dipole moment can be obtained by applying a low-pass
filter to the measured BPM signal, i.e.

(d(t)) = (I(t))y0, (2.213)
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where the betatron oscillation can effectively be removed. On the other hand, by
employing a band-pass filter, the betatron oscillation can be measured. Expanding
the dipole moment in Fourier harmonics, we obtain

dp = ~ y T (e>(»-+Qv)»ot + ei(n-Q,)uot\ ( 2 2 1 4 )

In the frequency domain, the betatron oscillations obtained from the BPM signals
contain sidebands around the revolution frequency lines, i.e. / = (n ± Qj,)/o with
integer n. Naturally, the betatron tune can be measured by measuring the frequency
of betatron sidebands.53

B. Fourier spectra of a single beam with finite time span

We note that a periodic 5-function current pulse in time gives rise to equally spaced
Fourier spectra at all revolution harmonics. We ask what happens if the beam distri-
bution has a finite time span with

00

I{t) = Nae Y. p(t-nT0), (2.215)
n=—oo

where the density distribution is normalized according to

/•To/2

/ p(t - nT0)dt = I. (2.216)
J-To/2

There are many possible forms of beam distribution. We discuss two simple examples
as follows.

1. If the beam is confined by a sinusoidal rf cavity to form a bunch, the distribution
can be a cosine-like function. If the beam is confined by a barrier rf wave or a
double rf system, the beam distribution can be approximated by the rectangular
distribution:

p( t -nT 0 ) = {; /2 A i f - A < * - n T 0 < A ,
10 otherwise, v '

where A is the bunch width in time. The Fourier transform of the rectangular
current pulse becomes

1 r°°
!(«>) = f" / We-**dt

l~K J-oo

[ALewosinwAl ^2,

= Hr-^-\^J^-n^- (2-218)
53The sidebands are classified into fast wave, backward wave, and slow wave. This topic is impor-

tant to collective instabilities, to be discussed briefly in Sec. VIII.



III. EFFECT OF LINEAR MAGNET IMPERFECTIONS 113

2. The beam distribution for electrons in storage rings is usually described by a
Gaussian distribution due to the quantum fluctuation

p(t - nT0) = _L-e- ( ' - " T ° ) 2 / 2 " ' . (2.219)

The Fourier transform of the current pulse can be carried out easily to obtain

/ H = [^e-w2*<2/2] £ *(« - «*)• (2-220)

Figure 2.24: The form factors for the Fourier spectra of a Gaussian bunch and a rectangular
bunch with rms bunch length at = 1 ns. The form factor serves as the envelope of the
revolution comb shown in Fig. 2.23. Note that the coherent signal of a rectangular bunch
can extend beyond the Gaussian cut-off frequency.

Figure 2.24 shows the envelope factor for Gaussian and rectangular beam distri-
butions with an rms bunch length of 1 ns. In the frequency domain, the spectrum of
the beam pulse is truncated by a form factor that depends on the time domain distri-
bution function. In general, if the beam has a time width at, the Fourier spectra can
extend to about l/at- The frequency spectra of a long bunch, e.g. 1 m bunch length
(3.3 ns), will have coherent spectra limited by a few hundred MHz. Since all particles
in the bunch are assumed to have an identical revolution frequency, the Fourier spec-
tra of Eqs. (2.218) and (2.220) are (̂ -function pulses bounded by the envelope factors.
If there is a revolution frequency spread, the 5-function pulses are replaced by pulses
with finite frequency width.

C. Fourier spectra of many particles and Schottky noise

We consider N charged particles evenly distributed in the ring. The beam current
observed at a PUE is

°O 7 1 AT- OO

I(t)=e £ 5{t-n^) = ̂  £ <**"**». (2.221)
n = - o o •'" - '0 n=—oo



114 CHAPTER 2. TRANSVERSE MOTION

Note that the first Fourier harmonic is located at Nw0, and the spacing of Fourier
harmonics is also Nco0.54 If the number of particles is large, e.g. N > 108, the
frequency spectrum is practically outside the bandwidth of PUEs, and the spectrum
is simply invisible. This means that the beam appears to have no rf signal. The beam
that fills the accelerator is called a "DC beam," or a "coasting beam."

Similarly, the frequency spectra of the transverse dipole moment of N equally
spaced particles give rise to a betatron sideband around the coherent orbital harmon-
ics Nui0 ± uip. When N is a very large number, e.g. N > 108, the coherent betatron
frequency becomes too high to be visible to PUEs.

It is important to realize that particles are not uniformly distributed in a circular
accelerator. The longitudinal signal of N particles in a PUE is

I(t) = eJ2 £ Sit-U-nT,)
i=\ n=-oo

oo N

= 2ixe E Z > * e W t ~ e i )

n=-ooi=l
cc N

« Are/o + 2e /oEE c o s ( n a ; o i + A0i(i)). (2.222)
n=lt=l

The beam signal arising from random phase in charged particle distribution is called
the Schottky noise. The power spectrum at each revolution harmonic from a low
noise PUE is proportional to the number of particles.

Similarly, the dipole moment of the «th particle is
oo

di(t) = ej)i cos(u0it + Xi) E S(t ~ nTi ~ *oi)
n——oo

pit °°

= ^cos(cj0it + Xi) E e^ ( - f "> . (2.223)
1i n=-oo

The dipole moment of the beam becomes

d(*) = E ^ T «*(<"/«*+ *) £ e ^ - W . (2.224)
i=l 1* n=-oo

Normally, the coherent betatron sidebands of a nearly uniform distribution are beyond
the bandwidth of PUEs. However, the average power of the dipole moment can be
measured. This is called the Schottky noise signal. If the particles are randomly
distributed, the average power of the dipole moment is

P^ = ^[T\d2{t)\dt, (2.225)

54The analysis of equally spaced short bunches in the ring has identical Fourier spectra, i.e. if
there are B bunches in the ring, the first coherent Fourier harmonic is Bu0.
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where 2T is the sampling time. For practical consideration, T is of the order of min-
utes, this means that dipole moments of particles with frequencies within T~l m 10~2

Hz may interfere with one another. The resulting Schottky power can be contami-
nated by particle-to-particle correlation. Measurements with varying sampling times
can be used to minimize the effect of particle correlation.

Since the phases u)itOi and xi are random and uncorrelated, the Schottky power is
proportional to the number of particles, i.e.

pav = E ^ at u = n(uo) ± (w/j). (2.226)
«=i 4 J t

The power spectrum resembles the single-particle frequency spectra located at nuo ±
up, i.e. betatron sidebands around all rotation harmonics. The Schottky signal
can be used to monitor betatron and synchrotron tunes, frequency and phase space
distributions, etc. It is the essential tool used for stochastic beam cooling.

III.8 Beam Injection and Extraction
A. Beam injection and extraction

Electrons generated from a thermionic gun or photocathode are accelerated by a high
voltage gap to form a beam. The beam is captured in a linac or a microtron and
accelerated to a higher energy for injection into other machines. Similarly, ions are
produced from a source, e.g. a duoplasmatron, and extracted by a voltage gap to
form a beam. The beam is accelerated by a DC accelerator or an RFQ for injection
into a linac (DTL). The medium energy beam is then injected into various stage of
synchrotrons.

Al. The strip or charge-exchange injection scheme

There are many schemes for beam injection into a synchrotron. The charge exchange
injection involves H~ or H^ ions, where a stripping foil with a thickness of a few
/zg/cm2 to a few mg/cm2 is used to strip electrons. The injection procedure is as
follows. The closed orbit of the circulating beam is bumped onto the injection orbit
of the H~ or Hj beam by a closed-orbit bump and a set of chicane magnets, as
shown in Fig. 2.25a.5S Since the injection orbit coincides with the closed orbit of the
circulating protons without violating Liouville's theorem, the resulting phase-space
area will be minimized. The injected beam can be painted in phase space by changing
the closed orbit during the injection. The injection efficiency for this injection scheme
is high, except that we must take into account the effect of emittance blow-up through
multiple Coulomb scattering due to the stripping foil (see Exercise 2.3.12).

55 The chicane magnet may sometimes be replaced by punching a hole through the iron of a main
dipole magnet provided that the saturation effect at high field is properly compensated.
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Although the intensity of the H~ source is an order of magnitude lower than that
of the H+ source, a higher capture efficiency and a simpler injection scenario more
than compensate the loss in source intensity. Most modern booster synchrotrons and
some cyclotrons employ a H~ source. However, since the last electron in H~ has only
about 0.7 eV binding energy, it can easily be stripped by a strong magnetic field at
high energy.

Figure 2.25: (a) A schematic drawing of a chicane magnet that merges the H~ and H+

orbits onto the stripper, (b) The process of betatron phase-space accumulation. During the
injection, the closed orbit is bumped near the septum (dashed ellipse) so that the injected
beam marked (1) is captured within the dynamical aperture. Because of the betatron
motion, the injected beam can avoid the septum in the succeeding revolutions marked (2)
and (3), etc. As the bumped orbit is moved during the injection time, the phase space is
painted and the injected beam is accumulated.

A2. Betatron phase-space painting, cooling, radiation damping

The injection of protons or heavy ions into a synchrotron needs careful phase-space
manipulation. The procedure is to bump the closed orbit of the circulating beam near
the injection septum. The stable phase-space ellipse is shown as the dashed line in
Fig. 2.25b. If the betatron tune and the orbit bump amplitude are properly adjusted,
the particle distribution in betatron phase space can be optimized. This procedure is
called phase-space painting. The injection efficiency is usually lower. The efficiency
may be enhanced by employing betatron resonances.

Injection of the electron beam is similar to that of proton or ion beams except that
the injected electrons damp to the center of the phase space because of the synchrotron
radiation damping (see Chap. 4). At the time of injection pulse, the closed-orbit of
circulating beams is bumped (kicked) close to a septum magnet so that the injection
beam bunch is within the dynamical aperture of the synchrotron. At the completion
of the injection procedure, the bump is removed, and the injected beamlet will damp
and merge with the circulating beam bunch. The combination of phase-space painting
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and damping accumulation can be used to provide high-brightness electron beams in
storage rings.

A3. Other injection methods

A method that has been successfully applied at the ISR is momentum phase-space
stacking. This requires an understanding of the momentum closed orbit or the dis-
persion function, and of rf phase displacement acceleration. The method will be
discussed in Chap. 3. This method is also commonly used in low energy cooler rings
for cooling, and stacking accumulation of proton or polarized proton beams.

B. Beam extraction

Bl. Fast single turn extraction and box-car injection

When a beam bunch is ready for extraction, orbit bump is usually excited. A fast
kicker is fired to take the beam into the extraction channel of a septum magnet
(see Sec. III.3). The extracted beam can be delivered to experimental areas, or be
transferred into a another synchrotrons, called the box-car injection scheme.

B2. Slow extraction

Slow (beam) extraction by peeling-off high intensity beams can provide a higher duty
factor56 for many applications such as high reaction rate nuclear and particle physics
experiments, medical treatment, etc. Slow extraction employs nonlinear magnets to
drive a small fraction of the beam particles onto a betatron resonance.

The slow extraction using the third order resonance will be discussed in Sec. VII.1.
Similarly, beam particles can be slowly extracted by employing the half integer reso-
nance (see Exercise 3.3.3). Large-amplitude particles moving along the separatrix are
intercepted by a thin (wire) septum that takes the particles to another septum on the
extraction channel. The efficiency depends on the thin-septum thickness, the value of
the betatron amplitude function at the septum location, betatron phase advance be-
tween the nonlinear magnet and the septum location, etc. More recently, efforts have
been made to improve the uniformity of the extracted beam by stochastic excitation
of the beam with noise; this is called stochastic slow extraction.

III.9 Mechanisms of emittance dilution and diffusion
A. Emittance diffusion resulting from random scattering processes

In actual accelerators, noise may arise from various sources such as power supply
ripple, ground vibration, intrabeam scattering, residual gas scattering, etc. This

56The duty factor is defined as the ratio of beam usage time to cycle time.
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can induce emittance dilution and beam lifetime degradation. Our understanding of
betatron motion provides us with a tool to evaluate the effect of noise on emittance
dilution.

If the betatron angle y' is instantaneously changed by an angular kick 9, the
resulting change in the betatron action is

A / = I(y, y' + O)- I(y, y') = 0{ay + (3y') + ^B2. (2.227)

If the angular kicks are uncorrelated, and the beam is composed of particles with many
different betatron phases, the increase in emittance due to the random scattering
processes is obtained by averaging betatron oscillations and kick angles, i.e.

Aerms = 2(A/) = {pe2) « (/3X)(92). (2.228)

Random angular kicks to the beam particles arise from dipole field errors, non-
resonant and non-adiabatic ground vibration, injection and extraction kicker noises,
intrabeam Coulomb scattering, and multiple Coulomb scattering from gas molecules.
Multiple scattering from gas molecules inside the vacuum chamber can cause beam
emittance dilution, particularly at high /3x-function locations. This effect can also be
important in the strip-injection of the H" and Hj ion sources from the stripping foil.
The emittance growth rate can be obtained from the well-known multiple Coulomb
scattering. Exercise 2.3.12 gives an example of estimating the emittance growth rate.

Other effects are due to the angular kicks from synchrotron radiation, quantum
fluctuation resulting from energy loss, diffusion processes caused by rf noise, etc.;
these will be addressed in Chaps. 3 and 4.

Al. Beam Lifetime

The single beam lifetime is determined by nuclear scattering on residual gas in the
beam pipe, multiple scattering on the residual gas, ion or electron trapping due to
residual gas scattering, photo desorption, intrabeam Coulomb scattering, Touschek
effect (to be discussed in Chap.4 II.8), lifetime effect due to nonlinear resonances (see
Sec. VII), etc. In a collider, beam lifetime is further reduced by beam-beam effects,
particle loss due to beam-beam collisions, beam aperture limitation, etc.

B. Space charge effects

The repulsive Coulomb mean-field field of a beam can generate defocussing force to
reduce the effective external focusing. The space-charge effect is characterized by an
incoherent Laslett tune shift parameter £sc = Avsc (see Exercise 2.3.2). The tune
shift parameter for low energy linacs at the ion source can be large, i.e. the betatron
tune can be detuned to a value nearly 0 (see Sec. II.8). The incoherent space-charge
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tune shift for low energy synchrotron has a typical value of 0.2 - 0.6, which is about
10% or less of the betatron tunes. Yet, almost all low energy synchrotrons suffer
space-charge induced emittance growth. We try to illustrate possible mechanisms.

Bl. The coherent envelope oscillations due to space-charge force

We consider a simple KV model of ID paraxial system (see Sec. II.8, where Hill's and
the envelope equations are

\y"+(k(s)-4r))y = o, \y\<Rb(s)
I V p(s)/ (2.229)

y" + k(s)y - ^ = 0, \y\> Rh(s)
*• y

Rb + k(s)Rb - i l - ^ = 0. (2.230)

Here y stands for either the particle's horizontal or vertical betatron coordinate, k(s)
is the focusing function, Ksc is the space-charge perveance parameter, defined in
Eq. (2.136), e = 4erms is the KV beam emittance, Rb = J/3(s)e is the KV beam
envelope radius, and /3(s) is the betatron amplitude function. For a KV beam, all
particles are within the envelope radius. Making Floquet transformation with

we transform Hill's and envelope equations into

J7 + A - ' / 2 ^ % = 0 (y<Rb), (2.232)

R + SR-^-^ii^ = 0, (2.233)

where v is the betatron tune, and the over-dots are derivative with respect to the
independent variable (time-coordinate) 4>.

For synchrotrons, the space-charge terms in Hill's and envelope equations can be
considered as a small perturbation unless a resonance condition is encountered. We
expand the envelope radius around the unperturbed closed orbit with R = 1 + r + A,
where A is a ^-independent constant shift in the equilibrium radius and r is the
independent term depending on the dynamics of the machine. We expand the space-
charge factor:

vP{a)KK = k / + g ^ C Q S M + A ( 2 2 3 4 )
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in Fourier series, where

U~^t - ^ T ~ # =^t \MsWds' (2'235)

ZscQn = - j ^ | sc cos{n<j> + Xn)d<t>. (2.236)

The parameter £sc is the Laslett (incoherent) linear space-charge tune shift param-
eter and £Sc<7n and Xn a r e the Fourier amplitude and phase of the n-th harmonic.
Substituting Eq. (2.234) into Eq. (2.233), we obtain A = £sc/2i/ and

OO

r + {4v2 - 4i/fsc)r « 2 ^ s c E In cos{n<j) + Xn). (2.237)
n=l

The space-charge force plays two roles in the envelope equation. It decreases the
envelope tune from j / e n v = 2v to venv = 2v — £sc, and it generates a perturbation
term, where the Fourier harmonic in the intrinsic betatron amplitude function serves
as a harmonic perturbation to the envelope equation. The envelope radius, or the
perturbed betatron amplitude function, is resonantly excited by the harmonic n « vem

with

^-n^l^^rs^+Xn)- (2-238)
Figure 2.26 shows the space-charge perturbed vertical betatron amplitude function
(solid line), the original betatron amplitude function (dashed line), and the normalized
envelope radius R (dotted line), obtained from a PIC simulation calculation for the
Proton Storage Ring (PSR) at Los Alamos National Laboratory.57 The PSR is a fixed
energy synchrotron with 90.26 m circumference, vx = 3.19 and vz = 2.19. It serves
as a compressor to compress 1.16 ms (3214 turns in PSR) of proton pulse from the
800 MeV Linac into a high intensity proton pulse of about 180 ns. Since the vertical
betatron tune of the PSR is about 2.19, the dominant perturbing harmonic in the
envelope equation is 4. The reduced envelope radius R shown in Fig. 2.26 clearly
shows 4 oscillations in one circumference.

Substituting Eq. (2.234) into Hill's equation (2.232), we obtain

V + A - 2jRr- U + E In cos(n^ + xn) J T) = 0. (2.239)

The particle tune is vp « v - £sc- Rightfully, fsc is called the linear space-charge tune
shift parameter. One speculates that a large envelope oscillation shown in Eq. (2.238)
may cause a large particle oscillation at n — 2{v — £sc) for the Mathieu instability.
However, after a closer inspection by substituting R = 1 + A + r into Eq. (2.239),

5 7S. Cousineau, Ph.D. thesis, Indiana University, 2002.
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Figure 2.26: The square root
of the perturbed vertical beta-
tron amplitude function (solid
line), for a beam with high in-
tensity (4.37 x 1013 particles) in
the PSR at LANL, is compared
with the square root of the in-
trinsic betatron amplitude func-
tion (dashed line). The ratio
of these two betatron amplitude
function, shown as dotted line,
is the reduced envelope radius R
defined in Eq. (2.231). Note that
the average of R is slightly larger
than 1.

we find that the resonance strength is actually zero, i.e. the envelope oscillation of a
beam can not affect particle motion inside the envelope.

If particle motion inside the beam core is not affected by the envelope oscillation,
what is the mechanism for emittance dilution? In the following, we illustrate a possible
emittance dilution mechanism. We consider a stable beam orbiting in a synchrotron
with space-charge tune shift parameter £sc at an equilibrium beam radius Rb{s).
When new particles are injected into the beam core, the space-charge parameter £sc

increases, the envelope tune is pushed toward an integer stopband venv —>• n. If the
stopband width fscgn is not zero, the envelope radius will be resonantly excited as
shown in Eq. (2.238). This causes a mismatch in the betatron phase-space ellipses
for all particles inside and near the beam envelope radius and results in emittance
dilution due to phase space mismatch.

We note that the envelope stopband can arise from the harmonic content of the
intrinsic betatron amplitude function. No artificial quadrupole error is needed in
generating the envelope stopband. In reality, the harmonic content of the betatron
amplitude function arises from the distribution of the focusing function. For example,
if an accelerator has a 12-superperiod symmetry in its focusing function, its stopbands
will only occur at the betatron tune values of 0, 6, 12, 18, • • •. The Fourier compo-
nents of its betatron amplitude functions will be zero except harmonics 0, 6, 12, 18,
• • -. Likewise, the envelope equation of Eq. (2.238) will not be resonantly excited
if the envelope tune is chosen to be far away from these stopbands. We speculate
that the emittance dilution for space charge dominated beams can be minimized by
correcting some half-integer harmonics of betatron amplitude functions. However,
this difficult experiment has not been successfully demonstrated. Detailed theoretical
and numerical nalyses of 2D Hill's and envelope equations (including the effect of
off-momentum particles) would be very valuable.
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Exercise 2.3

1. Particle motion in the presence of dipole errors is (Sect. II.2)

where the error field A.B for vertical and radial betatron motion is given, respectively,
by AB = -ABX and A S = ABZ.

(a) Defining a new coordinate r\ = y/y/fi with <p = {1/v) /os ds//3 as the independent
variable, show that the equation of motion becomes

Show that Eq. (2.160) is a solution of the above equation.

(b) Show that the Green function G(4>,<j>i) in

i ~ + u2\G{<t>,<l>x) = S{<j>-<!>{)

is G(<j>,(j>i) = [COSÎ (TT — \(f> — 0i|)]/2^sin7ri/. Use the Green function to verify
the solution given by Eq. (2.160).

(c) Expanding /33/2AB/Bp in Fourier series

^ = l j ^ with A = - L / ^ e - ^ ,

where fk are integer stopband integrals, show that the closed orbit arising from
the dipole error is

yco(s) = y/m £ ^*»-
k—-oo

(d) Using a single stopband approximation, and limiting the closed-orbit deviation
to less than 20% of the rms beam size, show that the integer stopband width !?[„]
is given by r^] w 5v\f[v}\/V€r™s< w n e r e fy\ is the integer nearest the betatron
tune.

2. From Exercise 1.3, we find that a particle at a distance r from a uniformly distributed
paraxial beam bunch experiences a space-charge defocussing force

- 2mc2Nr0 _
~ a272 r'

where 7 is the relativistic Lorentz factor, a is the radius of the beam bunch, ro is
the classical radius of the particle, N is the number of particles per unit length, and
f = xx + zz. In a Gaussian bunch, we should replace N by N = JVB/-V/27T<TS, where
NB is the number of particles per bunch and crs is the bunch length.
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(a) Using the result of Sec. 1.3, show that the space-charge force is equivalent to a
defocussing quadrupole with strength

R7.\ - 2Nr° - * «
\ f 9 00 ^ 9 >

where ATSC = 2Nro/(l32j3) is the normalized space-charge perveance parameter
used frequently in the transport of space-charge-dominated beams in linacs, and
/3 and 7 are Lorentz's relativistic factors.

(b) The rms beam radius is a2 = (py)eN/p''y, where {/3y) is the average betatron
amplitude function and eN is the rms normalized emittance. Show that the
betatron (Laslett) tune shift induced by the space-charge force is given by58

__ FBNBro ^ 2irRKsc

"sc ~ 27reNj872 ~ 47re '

where F& = Jjp* is the bunching factor and e = eN //3*y is the emittance of the
beam.

(c) The Fermilab booster synchrotron is operating at 15 Hz with a circumference of
474.2 m. The rms bunch length at injection is about 1 m. Find the space-charge
tune shift by using the data shown in the figure below. Draw a line in the figure
for emittance vs the number of particles per bunch for a space-charge tune shift
of 0.4.

In estimating the space-charge tune
shift for an actual accelerators, the for-
mula for the space-charge tune shift
should be adjusted by a beam distribu-
tion form factor Fdjst, i.e.

For a round Gaussian distribution, we
have FGauss. = (1 - e"1) « 0.632, i.e.
the fraction of particles within la of a
round Gaussian beam is 1 - e - 1 .

3. Using r] = yJsfWy and p , = dr]/d(j> with <j> = {l/fy) /os ds//3y as conjugate phase-space
coordinates, and <j> as time variable, show that Eq. (2.161) can be derived from the

58This formula is derived on the basis of uniform beam distribution. When you are applying this
formula to an actual accelerator, where the beam distribution is not uniform, a factor that depends
on the distribution function should be used to estimate the space-charge tune shift [see part (c) of
this Exercise]. This is called the Laslett space-charge tune shift. It is in fact a tune spread. The
Laslett tune shift is the betatron tune shift for particles with small betatron amplitudes. Particles
with large betatron amplitudes have a small space-charge tune shift. Thus the Laslett space-charge
tune shift is also called the incoherent space-charge tune shift. The beam intensity in low energy
synchrotrons is usually limited by the space-charge tune shift.
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Hamiltonian

H=±<p*, + viTi2)+AH(T,),

AH = -S r^g(r,')dr,', g(r,) = ^-.
Jo op

(a) Letting r) = y/2J/u cos tp and dtp/d<j> = v, show that the Hamiltonian becomes

H = vJ+ (AHiJ,^))^ + [AH - (AH(J,tf)),>],

where

<Aff(J,tf))* = ~f* {£P3/29(v')dv'] di>.
Show that the betatron tune is shifted by the perturbation Av — d(AH)^,/dJ.

(b) We consider a cylindrical Gaussian bunch distribution

p(x,s,z) = NBp(r)p(s),

where N& is the number of particles in a bunch, and

P(r) = ̂ e-(*2+*W, pis) = -jL-e^M,
2X<7? V27T<7S

are respectively the transverse and longitudinal Gaussian distributions with rms
width aT and as. Assuming as 3> o>, show that the Lorentz force for a particle
at distance r from the center of the bunch is

^s)^{l-e-^)p{s),

where TQ = e2/A-Kê rru? is the classical radius of the particle. Replacing r
by yjifijjv cos ip, evaluate the space-charge tune shift as a function of the
amplitude r.

4. The closed orbit can be locally corrected by using steering dipoles. A commonly used
algorithm is based on the "three-bumps" method, where three steering dipoles are
used to adjust local-orbit distortion. Let 61,62, and 63 be the three bump angles.
Show that these angles must be related by

0 --6 / ^ ~ s i n ^ 3 1 6-6 / ^ ~ s i n ^ 2 1

Y /?2 Sin ̂ 32 ' V ^3 S m ^32 '

where ft is the ̂ -function at the ith steering magnet, ijjji = ipj - fi is the phase
advance from the ith to the j th steering dipoles, and the orbit distortion is localized
between the first and third steering magnets. Obviously, a local orbit bump can be
attained by two steering dipoles 6\ and 63 if and only if ^31 = nv, where the phase
advance is an integer multiple of IT.

5. The AGS is composed of 12 superperiods with 5 nearly identical FODO cells per
superperiod, i.e. it can be considered as a lattice made of 60 FODO cells with
betatron tunes vz = 8.8 and vx = 8.6. The circumference is 807.12 m.
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(a) Estimate the closed orbit sensitivity factor of Eq. (2.168).

(b) Estimate the the rms half-integer stopband width of Eq. (2.202) for the AGS.

(c) During the polarized beam acceleration at AGS, a set of 10 ferrite quadrupoles
located at high-/^ locations are powered to change the vertical tune by At>z =
—0.25 in about 2.5 fj,s. This means that each quadrupole changes the betatron
tune by -0.025.

i. What is the effect of these tune jump quadrupoles on the horizontal tune?
ii. What are the stopband integrals due to these tune jump quadrupoles?

iii. What are the favorable configurations for these quadrupoles from the beam
dynamics point of view?

iv. Are there advantages to installing 12 quadrupoles? What are they?

6. In the H~ or H^ strip injection process, the closed orbit is bumped onto the stripper
location during the injection pulse. The injection beam and the circulating beam
merge at the same phase-space point. We assume that the values of the betatron
amplitude functions are fix = /3Z = 10 m, the emittances are ex = ez = 2.5TT mm-
mrad for the injection beam, and ex = ez = 40TT mm-mrad for the circulating beam.
Where should the stripper be located with respect to the center of the circulating
beam? What is the minimum width of the stripper? Sketch a possible injection
system scenario including local orbit bumps.

7. Multi-turn injection of heavy ion beams requires intricate phase-space painting tech-
niques. The injection beam arrives through the center of a septum while the cir-
culating beam closed orbit is bumped near the septum position. During the beam
accumulation process, the orbit bump is reduced to avoid beam loss through the sep-
tum. We assume that the 95% emittances are 50 ir mm-mrad for the stored beam
and 2.5 n mm-mrad for the injection beam, the betatron amplitude functions are
Ar = Pz = 10 m, and the thickness of the wire septum is 1 mm. How far from the
closed orbit of the circulating beam should the septum be located? What effect, if
any, does the betatron tune have on the beam-accumulation efficiency?

8. At extraction, the 95% emittance of the beam is adiabatically damped to 5 7r mm-
mrad at Bp = 10 Tm. The extraction septum is located 40 mm from the center
of the closed orbit of the circulating beam. At the septum location, the betatron
functions are f}x = 10 m, /3Z = 8 m. The septum (current sheet) thickness is 7 mm. A
ferrite one-turn kicker is located upstream with $x = 10 m and pz = 8 m. The phase
advance between the septum and the kicker is 60°. Discuss a scenario for efficient
single-bunch extraction. What is the kicker angle required for single-turn extraction?
Assuming that the maximum magnetic flux density for a kicker is 0.1 T, what is the
minimum length of the kicker? What advantage, if any, does an orbit bump provide?

9. Particle motion in the presence of closed-orbit error is

X = Xco + Xp,

where xc0 is the closed orbit and xp is the betatron displacement.

(a) Show that an off-center horizontal closed orbit in quadrupoles gives rise to ver-
tical dipole field error, and a vertical one to horizontal dipole field error.
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(b) The magnetic field of a nonlinear sextupole is

ABZ + jABx = Bf-(x2-z2 + 2jxz),

where B? = &iB2/dx2\x_0z_0. Show that a horizontal closed-orbit error in
a normal sextupole produces quadrupole field error. Show that the effective
quadrupole gradient is dBz/dx\eS = xC0B2-

10. In the presence of gradient error, the betatron amplitude functions and the betatron
tunes are modified. This exercise provides an alternative derivation of Eq. (2.199).59

We define the betatron amplitude deviation functions A and B as

_ aiffp - apPx „ _ ffi - A)

-/Mi ' vm'
where /3o and fi\ are respectively the unperturbed and the perturbed betatron am-
plitude functions associated with the gradient functions KQ and K\, and oto and ai
are related to the derivatives of the betatron amplitude functions. Thus Pa and fix
satisfy the Floquet equation:

P'o = -2a 0 , a'o = KopQ - 7 o , # 0 / d s = 1/A>,
P[ = - 2 t t l , a i = Kxpx - 7 l , d^/ds = l//3i,

where il>o and ipi are the unperturbed and the perturbed betatron phase functions.

(a) Show that

where Aif = Kx - Ko.

(b) In a region with no gradient error, show that A2 + B2 = constant, i.e. the
phase-space trajectory of A vs B is a circle.

(c) In thin-lens approximation, show that the change of A at a quadrupole with
gradient error is

AA = j VWi AX ds » (P0)g,

where g = + / Aif ds is the integrated gradient strength of the error quadrupole,
and (Po) is the averaged value of betatron function in the quadrupole.

(d) In thin-lens approximation, show that the change of A in a sextupole is

A A ss Pogeg,

where geff = {B2As/Bp)xC0 is the effective quadrupole strength, (jE^As/Bp) is
the integrated sextupole strength, and xco is the closed-orbit deviation from the
center of the sextupole.

69See also H. Zgngier, LAL report 77-35, 1977; B.W. Montague, CERN 87-03, 75-90 (1987).
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(e) If we define the average betatron phase function as

- 1 f* ( 1 1 \ ,

^ M A + AJ*1
where

1 rsa+C / i n

show that the function B satisfies

0 + 4 ^ = -4p2^A*.
d(j>2 Po + Pi

Show that this equation reduces to Eq. (2.199) in the limit of small gradient
error.

11. Show that the half-integer stopband integral Jp is approximately zero at p = [2v]
for two quadrupole kickers separated by 180° in betatron phase advance with zero
betatron tune shift. Such a zero tune shift it-doublet can be used to change 7T with
minimum effects on betatron motion (see Sec. IV.8.A.3).

12. Multiple scattering from gas molecules inside the vacuum chamber can cause beam
emittance dilution, particularly at high-/? locations. This effect can also be important
in the strip-injection process. This exercise estimates the emittance dilution rate
based on the multiple scattering formula (see the particle properties data) for the
rms scattering angle

fl2_2g2^J13.6[MeV]zp\2 x

6 - 2 e » ~ \ ^ ) TO>
where p, /3c and zp are momentum, velocity, and charge number of the beam particles,
XQ is the radiation length, and x is the target thickness. The radiation length is

716.4,4 . . 2l

where Z and A are the atomic charge and the mass number of the medium.

(a) Using the ideal gas law, PV = nRT, where P is the pressure, V is the volume,
n is the number of moles, T is the temperature, and R = 8.314 [J (°K mol)"1],
show that the equivalent target thickness in [g/cm2/s] at room temperature is

x = 1.641 x Kr6j9-Pg[ntorr]4g [g/cm2/s],

where /3c is the velocity of the beam, Pg is the equivalent partial pressure of a
gas at room temperature T = 293 °K, and Ag is the gram molecular weight of a
gas. Show that the emittance growth rate is

1 _ 1r f e _ o , 1 5 7(fli) M / zp yP, [nTorr].4g ,
re edt ' PeN [irmmmrad] \pc[GeV]J XOg [g/cm2] l J>

where (/?j_) is the average transverse betatron amplitude function in the accel-
erator, Xog is the radiation length of the gas, 7 is the Lorentz relativistic factor,
zp is the charge of the projectile, and p is the momentum of the beam. Because
the emittance growth is proportional to the betatron function, better vacuum
at high-/3x location is useful in minimizing the multiple scattering effects.



128 CHAPTER 2. TRANSVERSE MOTION

(b) During the H~ strip-injection process, the H~ passes through a thin foil of
thickness tfon [/ig/cm2]. Show that the emittance growth per passage is

A I T ? O #i,foji tf0ii[^g/cm2]
Ac = 117.8 —T7— ' L —57- Trmmmrad ,

P2{pc[MeV})2 X0[g/cm2] L "
where /3j_,foii is the betatron amplitude function at the stripper location, p is
the momentum of the injected beam, /3c is the velocity of the beam, and Xg is
the radiation length. Estimate the emittance growth rate per passage through
carbon foil with H~ beams at an injection energy of 7 MeV if /3j_ fOii = 2 m and
tfoii = 4 [^g/cm2].60

60If the stripping foil is too thin, the efficiency of charge exchange is small, and the proton yield is
little. If the foil is too thick, the beam emittance will increase because of multiple Coulomb scattering.
A compromise between various processes is needed in the design of accelerator components.
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IV Off-Momentum Orbit
In Sec. Ill, we discussed the closed orbit for a reference particle with momentum
Po, including dipole field errors and quadrupole misalignment. By using closed-orbit
correctors, we can achieve an optimized closed orbit that essentially passes through
the center of all accelerator components. This closed orbit is called the "golden orbit,"
and a particle with momentum po is called a synchronous particle.61

However, a beam is made of particles with momenta distributed around the syn-
chronous momentum po- What happens to particles with momenta different from p0?
Here we study the effect of off-momentum on the closed orbit. Its effect on betatron
motion will be addressed in Sec V.

For a particle with momentum p, the momentum deviation is Ap ~ p — po and the
fractional momentum deviation is 5 = Ap/po- The fractional momentum deviation
6 = Ap/p is typically small, e.g. |<5| < 10"4 for SSC, < 5-10"3 for RHIC, < 3-10"2 for
anti-proton accumulators, < 10"4 for the IUCF Cooler Ring, and < 2 • 10"2 for typical
electron storage rings. Since 5 is small, we can study the motion of off-momentum
particles perturbatively. In Sec. IV.1, we will find that the off-momentum closed orbit
is proportional to 5 in the first-order approximation, and the dispersion function is
defined as the derivative of the off-momentum closed orbit with respect to 5. We
will discuss the properties of the dispersion function; in particular, the integral repre-
sentation, the dispersion action, and the %-function will be introduced in Sec. IV.2.
The momentum compaction factor and transition energy are discussed in Sec. IV.3,
where we introduce the phase focusing principle of synchrotron motion. In Sec. IV.4,
we examine the method of dispersion suppression in a beam line. In Sec. IV.5 we
discuss the achromat transport system, and in Sec. IV.6 we introduce the standard
transport notation. In Sec. IV.7 we describe methods of dispersion measurements and
correction, and in Sec. IV.8 methods of transition energy manipulation. Minimum
(H) lattices are discussed in Sec. IV.9.

IV. 1 Dispersion Function

Expanding Eq. (2.29) to first order in x/p, we obtain

/ 1-5 K(.)\ 6

X+{P>(I + 6) {i + 6))x-p(i + 5y (2-240)

where K(s) = B\/Bp is the quadrupole gradient function with Bi = dBz/dx evalu-
ated at the closed orbit. Solutions of Eq. (2.240) for 5 = 0 were discussed in Sec. II.

61 The revolution frequency of a synchronous particle is defined as the revolution frequency of
the beam. The frequency of the radio-frequency (rf) cavities has to be an integer multiple of the
revolution frequency of the beam, i.e. a synchronous particle synchronizes with the rf electric
field applied to the beam. The name "synchrotron" for circular accelerators is derived from the
synchronism between the orbiting particles and the rf field.
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For an off-momentum particle with 5 ^ 0, the solution of the linearized inhomoge-
neous equation (2.240) can be expressed as a linear superposition of the particular
solution and the solution of the homogeneous equation:62

x = xp(s) + D{s)6, (2.241)

where xp(s) and D(s) satisfy the equations

x"p + (Kx(s) + AKx)xfi = 0, (2.242)

D" + (Kx{s)+AKx)D = - + O(S), (2.243)

with

Kx = ±-K(s), AKx = [-^ + K(s)}5 + O(S2).

In this section, we will neglect the chromatic perturbation term AKx(s). The solution
of the inhomogeneous equation is called the dispersion function, where D(s)S is the
off-momentum closed orbit Aside from the chromatic perturbation AKX, the solution
of the homogeneous equation Xp is the betatron motion around the off-momentum
closed orbit.

To the lowest order in 5, the dispersion function obeys the inhomogeneous equation

D" + Kx(s)D = l/p. (2.244)

Since Kx(s) and p(s) are periodic functions of s, the closed-orbit condition is imposed
on the dispersion function63

D(s + L) = D(s), D\s + L) = D\s), (2.245)

where L is the length of a repetitive period. Since Kx{s) and p(s) are usually piecewise
constant for accelerator components, the inhomogeneous equation can easily be solved
by the matrix method. The solution of a linear inhomogeneous dispersion equation
is a sum of the particular solution and the solution of the homogeneous equation:

(^) = "<*>O + (i). «.m
62Including the dipole field error, the displacement x is x = xco(s) + xp(s) + D(s)6, where i c o is

the closed-orbit error discussed in Sec. III.
63The closed-orbit condition for the dispersion function is strictly required only for one complete

revolution D(s) = D(s + C) and D'(s) = D'(s + C), where C is the circumference. The local
closed-orbit condition of Eq. (2.245) for repetitive cells is not a necessary condition. However, this
local periodic closed-orbit condition facilitates accelerator lattice design.
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where the 2 x 2 matrix M(s2\si) is the transfer matrix for the homogeneous equation,
and d and dl are the particular solution. Let d be shorthand notation for the two-
component dispersion vector with d) = (d, d'). The transfer matrix in Eq. (2.246) can
be expressed by the 3 x 3 matrix

For a magnet with constant dipole field and field gradient, we obtain

V ^ks i n^s )

^ ^ s i n h ^ S J l f ^ < 0 -
k \ /O-y'l-fCil v /

The transfer matrix for a pure sector dipole, where Kx = 1/p2, is

( cos0 psin9 p(l—cos#)\
-{l/p)sin6 cosfl sinl? , (2.249)

0 0 1 J
where p is the bending radius, and 9 is the bending angle. In the small angle approx-
imation, the transfer matrix of a sector dipole becomes

/ I t \M\
M = 0 1 9 \,

VO 0 1 J

where £ = p9 is the length of the dipole.

Example 1: Dispersion function of a FODO cell in thin-lens approximation

A FODO cell with dipole, as shown in Fig. 2.4, is represented by

C = {^QF B QD B ^QF},

where QF and QD are focusing and defocussing quadrupoles, and B represents bend-
ing dipole(s). Using thin-lens approximation, we obtain

(I 0 0\ (I L \L9\ (I 0 0\ (I L \L0\ ( 1 0 0\
M= - i 1 0 0 1 9 U 1 0 0 1 9 - £ 1 0 ,

V o o i / \o o i / \o o i / \o o i / V ° ° !/
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where L is the half cell length, 6 is the bending angle of a half cell, and / is the focal
length of the quadrupoles.

The closed-orbit condition of Eq. (2.245) becomes

(D\ ( 1 - $ 21(1+ i ) 2L0(1 + ^ ) \(D\

{") = [-&+& l~fi 2 ^ - f - £ ) J m - (225o)
Note that D and D' in Eq. (2.250) are values of the dispersion function and its deriva-
tive at the focusing quadrupole location. Using the Courant-Snyder parameterization
for the 2x2 matrix, we obtain

S i n * - A o _.2£(l + sm(g/2))

where $ is the phase advance per cell. The dispersion function at the focusing
quadrupole location becomes

The dispersion function at other locations in the accelerator can be obtained by the
matrix propagation method, Eq. (2.247). The dispersion function at the defocussing
quadrupole location is

£g( l - l8 in(* /2) )
UD~ sin2($/2) ' D°-°- ( 2 -2 5 3 )

The middle plot of Fig. 2.5 shows the dispersion function of the AGS lattice, which can
be approximated by a lattice made of 60 FODO cells. We list here some characteristic
properties of the dispersion function of FODO cells.

• The dispersion function at the focusing quadrupole is larger than that at the
defocussing quadrupole by a factor (2+sin(§/2))/(2-sin($/2)), which is about
2 at $ = 90°.

• The dispersion function is proportional to L6, the product of the cell length
and the bending angle of a FODO cell, and it is smaller with shorter cell length
and smaller bending angle.

• When the phase advance is small, the dispersion function is proportional to the
inverse quadratic power of the phase advance.
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Example 2: Dispersion function in terms of transfer matrix

In general, the transfer matrix of a periodic cell can be expressed as

(Mu Mu M13\
M = M21 M22 M23 , (2.254)

V 0 0 1 )

where Mu, Mu, M2i and M22 are given by Eq. (2.53). Using the closed-orbit condition
of Eq. (2.245), we obtain

_ Mi3(l - M22) + Mi2M23 _ M13(l - c o s $ + asin$) + M23,flsin$
u ~ 2 - M u - M 2 2 " 2(1-cos $) ' [2-2i3b)

_ MnM2i + (1 - Afn)M23 _ -M137 sin $ + M23(l - cos $ - a sin $)
^ " 2 - M u - M 2 2 " 2(1-cos $) , l ^ W J

where $ is the horizontal betatron phase advance of the periodic cell, a, p and
7 = (l+a2)/f3 are the Courant-Snyder parameters for the horizontal betatron motion
at a periodic-cell location s, and D and D' are the value of the dispersion function
and its derivative at the same location.

Solving M13 and M23 as functions of D and D', the 3x3 transfer matrix is

( cos $ + a sin $ /?sin<I> (1 - cos$ - as in$) D - /3sin$ D'\

—7sin$ cos$ — asin<3> 7s in$ D + (1 — cos$ + asin<I>) D' \.
0 0 1 )

(2.257)
This representation of the transfer matrix is sometimes useful in studying the general
properties of repetitive accelerator sections.
IV.2 ^-Function, Action, and Integral Representation
The dispersion %-function is defined as

n(D, D') = jxD2 + 2axDD' + /3XD'2 = -j-[D2 + (&£>' + axD)2\. (2.258)
Px

Since the dispersion function satisfies the homogeneous betatron equation of motion
in regions with no dipole (1/p = 0), the 'H-function is invariant, but in regions
with dipoles, it is not invariant. For a FODO cell, the dispersion %-function at the
defocussing quadrupole is larger than that at the focusing quadrupole, i.e. 'HF < 7iD,
where

_ ^ S i n $ ( l + I s in f ) 2 _ L 0 2 s i n c f r ( l - I s i n f ) 2

2(1 +sin | ) sin4 f ' D ~ 2(1 - sin f ) sin4 f ' l '
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and the dispersion H-function is proportional to the inverse cubic power of the phase
advance.

Now we define the normalized dispersion phase-space coordinates as

{ Xd = - = £ > = y ^ c o s S d ,
Y* (2.260)

PA = JPxD1 + -^D = -p Jd sin $d,

where the dispersion action is given by

Jd = ^n{D,D'). (2.261)

In a straight section, Jd is invariant and $d, aside from a constant, is identical to the
betatron phase advance. In a region with dipoles, Jd is not constant. The change of
the dispersion function across a thin dipole is AD = 0 and AD1 = 6, i.e.

AXd = 0, APd = y[px AD' = Jfx9 (2.262)
where 0 is the bending angle of the dipole, and the change in dispersion action is
AJd = (PXD' + axD)0.

For FODO-cell lattice shown in Sec. IV.1 Example 1, the normalized dispersion
coordinate Xd is nearly constant, i.e. D ~ \fWx, and Pd is small. Figure 2.27 shows the
normalized dispersion phase-space coordinates in one superperiod of AGS lattice (see
Fig. 2.5) that is approximately made of 5 FODO cells. Note that Xd is indeed nearly
constant, and (Pd, Xd) propagate in a very small region of the dispersion phase-space
(see also Fig. 2.34).

Figure 2.27: Left: Normal-
ized dispersion phase-space
coordinates Xd and Pd are
plotted in a superperiod of
the AGS lattice. Right: the
coordinates are shown in Xd

vs Pd. The scales for both Xd

and Pd are m1/2.

In contrast, the normalized dispersion phase-space coordinates for the double-bend
achromat (DBA) lattice (see Sec. IV.5.A) shows different behavior. Figure 2.28 shows
the normalized dispersion coordinates for the IUCF Cooler Ring, which is composed
of 3 achromat straight-sections for electron cooling, rf cavities, etc., and 3 dispersive-
sections for injection, momentum stacking, etc. The machine is made of six 60°-bends
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Figure 2.28: Left: Nor-
malized dispersion phase-
space coordinates X& and
Pd of the IUCF Cooler lat-
tice are plotted. Right:
The coordinates are shown
in Xd vs Pd at the end of
each lattice elements. The
scales for both X,i and Pd
are m1/2.

forming a 3 similar double-bend achromat modules, where the dispersion function is
shown in Fig. 2.31.

Note that the achromat sections are described by a single point at origin with
Xd = Pd = 0. Inside dipoles, the normalized dispersion coordinates increase in
magnitude. In dispersion matching sections, the normalized dispersion coordinates
are located on invariant circles, that are nearly half-circles as shown in Fig. 2.28.
Thus the dispersion phase $d advances nearly n in the dispersion matching section.
Since the dispersion phase-advance is equal to the horizontal betatron phase-advance
in a straight section, the horizontal betatron phase-advance is also nearly n.

It is worth pointing out that the lattice function and the dispersion phase-space
coordinates of the IUCF Cooler Ring differ substantially from the low emittance DBA
lattice to be shown in Figs. 2.38 and 2.39. For an ion storage ring, the minimization
of (H) plays no important role in beam dynamics. Instead, a minimum fiz inside
dipole will provide a criterion for the magnet gap g. Since the power required in
the operation of a storage ring is proportional to g2, it is preferable to design a
machine with a minimum j3z inside dipoles. Thus the corresponding (3X will be large
in dipole. The resulting dispersion phase-space coordinates are much larger than
those of minimum emittance DBA lattices shown in Fig. 2.38.

Integral representation of the dispersion function

The dispersion function can also be derived from the dipole field error resulting from
the momentum deviation. The angular kick due to the off-momentum deviation is
given by

9 = 4 5 * . (2.263)
Po P

where p is the bending radius, and ds is the infinitesimal length of the dipole. With
the substitutions

AB Ap 1 n , .Ap
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in Eq. (2.160), the dispersion function becomes

jBJs) rs+c \/Px(t)

where C is the circumference, vx is the betatron tune, Bx is the betatron amplitude
function, ipx is the betatron phase function, and Gx(s,t) is the Green function of the
horizontal Hill equation. The normalized dispersion functions can then be expressed
as

1 rs+c JPx{t)
xd{s) = 7T-- / cos{tpx{t) - 4ix(s) - iri/x)dt

2 sin rcvx Js p ^ 265)
1 fs+c \lPx{t)

. Pd(s ) = 2 l i n ^ I. p S i n (^ ( t ) ~ ̂ ( S ) " *"')dt-
IV.3 Momentum Compaction Factor

Since the synchronization of particle motion in a synchrotron depends critically on
the total path length, it is important to evaluate the effect of the off-momentum
closed orbit on path length. Since the change in path length due to betatron motion
is proportional to the square of the betatron amplitude [see Eq. (2.170)], the effect is
small. On the other hand, the deviation of the total path length for an off-momentum
particle from that of the on-momentum closed orbit is given by

AC = j -ds = U ^-ds] 6, (2.266)

which depends linearly on the dispersion function D(s). Since D(s) is normally
positive, the total path length for a higher momentum particle is longer.

The momentum compaction factor is then denned by

where {D)i and 6j are the average dispersion function and the bending angle of the ith
dipole, and the last approximate identity uses thin-lens approximation. For example,
the momentum compaction factor for a FODO lattice is given by

(£>F + DD)8 62 l_
Q c ~ 2L ~sin2($/2) ~ ^ 2 >

where L and 9 are the length and the bending angle of one half-cell, $ is the phase
advance of a FODO cell, and vx is the betatron tune (see Exercise 2.4.2).
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A. Transition energy and the phase-slip factor

The importance of the momentum compaction factor will be fully realized when
we discuss synchrotron motion in Chap. 3. In the meantime, we discuss the phase
stability of synchrotron motion discovered by McMillan and Veksler [17].

Particles with different momenta travel along different paths in an accelerator.
Since the revolution period is T = C/v, where C is the circumference, and v is the
speed of the circulating particle, the fractional difference of the revolution periods
between the off-momentum and on-momentum particles is

AT AC AD , l . A p . .

or equivalently, A / / / o = -1)5, where / is the revolution frequency, To = l / / 0 is
the revolution period of a synchronous particle, and 6 = Ap/p0 is the fractional
momentum deviation. The phase-slip factor r) is

^ = Q c - ^ = ^ - ^ . (2.269)

Here jT = J\/ac is called the transition-7, and 7Tmc2 or simply 7T is the transition
energy. For FODO cell lattices, 7T « vx.

Below the transition energy, with 7 < 7T and 77 < 0, a higher momentum particle
will have a revolution period shorter than that of the synchronous particle. Because
a high energy particle travels faster, its speed compensates its longer path length in
the accelerator, so that a higher energy particle will arrive at a fixed location earlier
than a synchronous particle. Above the transition energy, with 7 > j T , the converse
is true. Without a longitudinal electric field, the time slippage between a higher or
lower energy particle and a synchronous particle is TQT)5 per revolution.

At 7 = 7T the revolution period is independent of the particle momentum. All
particles at different momenta travel rigidly around the accelerator with equal revo-
lution frequencies. This is the isochronous condition, which is the operating principle
of AVF isochronous cyclotrons.

B. Phase stability of the bunched beam acceleration

Let V(t) = Vo sin(hojot + <f>) be the gap voltage of the rf cavity (see Fig. 2.29), where
Vo is the amplitude, <j> is an arbitrary phase angle, h is an integer called the harmonic
number, Wo = 2TT/O is the angular revolution frequency, and /o is the revolution
frequency of a synchronous particle. A synchronous particle is denned as an ideal
particle that arrives at the rf cavity at a constant phase angle <j> = fa, where fa is the
synchronous phase angle. The acceleration voltage at the rf gap and the acceleration
rate for a synchronous particle are respectively given by

Vs = Vo sin fa, Eo = foeVo sin fa, (2.270)
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where e is the charge, Eo is the energy of the synchronous particle, and the overdot
indicates the derivative with respect to time t.

Figure 2.29: Schematic drawing of an rf
wave, and the rf phase angles of a syn-
chronous particle, and the higher and lower
energy particles. For a stable synchrotron
motion, the phase focusing principle requires
0 < <j>s < TT/2 for 77 < 0, and n/2 < (j>s < -K
for 77 > 0. (Courtesy of D. Li, LBNL).

A non-synchronous particle will arrive at the rf cavity at a phase angle <f> with
respect to the rf field, where 4> can vary with time. At phase angle (f>, the acceleration
rate is E = feVo sin 4>, where / is the revolution frequency. The rate of change of the
energy deviation is (see Chap. 3, Sec. I)

l (^ ) = ^ ( s i n ^ S i n ^ ' ^
where AE = E — EQ is the energy difference between the non-synchronous and
the synchronous particles. Similarly, the equation of motion for the rf phase angle
<fr = —h9, where 0 is the actual angular position of the particle in a synchrotron, is

±U - *) = -hfiu, = ̂  = hV^ = *M**. (2.272)
at Jo Po P £>o UQ

Equations (2.271) and (2.272) form the basic synchrotron equation of motion for
conjugate phase-space coordinates <f> and AE/OJQ- This is the equation of motion for
a biased physical pendulum system. It is usually called synchrotron motion. The
differential equation for the small amplitude phase oscillation is

~ ^ - = ^ ^ ( s m 0 - W s ) * toPE* ( ^ " ̂  (2'273)

Thus the phase stability condition is given by T?COS0S < 0, i.e.

f 0 < 4>s < TT/2 if 7 < 7T or rj < 0,
\ TT/2 < <t>s < -K if 7 > 7T or rj > 0.
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Below the transition energy, with 0 < 0S < TT/2, a higher energy particle arrives at
the rf gap earlier and receives less energy from the rf cavity (see Fig. 2.29). Thus the
energy of the particle will becomes smaller than that of the synchronous particle. On
the other hand, a lower energy particle arrives later and gains more energy from the
cavity. This process gives rise to the phase stability of synchrotron motion. Similarly,
the synchronous phase angle should be TT/2 < <f>s < n at 7 > j r . The synchrotron
frequency of small-amplitude phase oscillations is given by

I heV0\rj cos <j)s

q » . = < * V 2 . / ? ^ • (2-274)

Particles are accelerated through the transition energy in many medium energy
synchrotrons such as the AGS, the Fermilab booster and main injector, the CERN
PS, and the KEK PS. The synchronous angle has to be shifted from (j>s ton — (j>s across
the transition energy within 10 to 100 fis. Fortunately, synchrotron motion around
the transition energy region is very slow, i.e. u)syn —> 0 as 7 —> 7T. A sudden change
in the synchronous phase angle of the rf wave will not cause much beam dilution.

However, when the beam is accelerated through the transition energy, beam loss
and serious beam phase-space dilution can result from space-charge-induced mis-
match, nonlinear synchrotron motion, microwave instability due to wakefields, etc.
An accelerator lattice with a negative momentum compaction factor, where the tran-
sition 7T is an imaginary number, offers an attractive solution to these problems.
Such a lattice is called an imaginary 7T lattice. Particle motion in an imaginary 7T

lattice is always below transition energy, thus the transition energy problems can be
eliminated. Attaining an imaginary 7T lattice requires a negative horizontal disper-
sion in most dipoles, i.e. Y,i{D)i9i < 0. Methods of achieving a negative compaction
lattice will be addressed in Sec. IV.8.

IV.4 Dispersion Suppression and Dispersion Matching

Since bending dipoles are needed for beam transport in arc sections, the dispersion
function can not be zero there. If the arc is composed of modular cells, such as FODO
cells, etc., the dispersion function is usually constrained by the periodicity condition,
Eq. (2.245), which simplifies lattice design. In many applications, the dispersion
function should be properly matched in straight sections for optimal operation.64 We
discuss here the general strategy for dispersion suppression.

64The curved transport line is usually called the arc, and the straight section that connects arcs
is usually called the insertion, needed for injection, extraction, rf cavities, internal targets, insertion
devices, and interaction regions for colliders. If the betatron and synchrotron motions are indepen-
dent of each other, the rms horizontal beam size is given by CT2(S) = /3i(s)e:t)1.ms + £>2(s) ((Ap/po)2>,
where ex,rms is the rms emittance. Thus the beam size of a collider at the interaction point can be
minimized by designing a zero dispersion straight section. A zero dispersion function in the rf cavity
region can also be important to minimize the effect of synchro-betatron coupling resonances.
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First-order achromat theorem

The first-order achromat theorem states that a lattice of n repetitive cells is achro-
matic to first order if and only if Mn = I or each cell is achromatic.65 Here M is the
2 x 2 transfer matrix of each cell, and / is a 2 x 2 unit matrix. The proof of this
theorem is given as follows.

Let the 3x3 transfer matrix of a basic cell be

where M is the 2 x 2 transfer matrix for betatron motion, and d is the dispersion
vector. The transfer matrix of n cells is

R l = ^ (M-+M- + . + l)J^M» wy (2276)

where w = (Mn — I)(M — I)'1^. Thus the achromat condition w = 0 can be attained
if and only if Mn = I or d = 0. An achromat section matches any zero dispersion
function modules. A unit matrix achromat works like a transparent transport section
for any dispersion functions.

Dispersion suppression

Applying the first-order achromat theorem, a strategy for dispersion function sup-
pression can be derived. We consider a curved (dipole) achromatic section such that
Mn = I. We note that one half of this achromatic section can generally be expressed
as

Using the closed-orbit condition, Eq. (2.245), the dispersion function of the repetitive
half achromat is

D = d/2, D' = d'/2.

If the dipole bending strength of the adjoining —I section is halved, the transfer
matrix becomes _

«» = (-.' f)-
and the dispersion function will be matched to zero value in the straight section, i.e.

(d/2\ ! - /0\

(? ) - ( • • ) ( ; ) •
65See K. Brown and R Servranckx, p. 121 in Ref. [12].
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Thus we reach the conclusion that the matched dispersion function is equal to the
dispersion function of the matched arc. When edge focusing is included, a small
modification in the quadrupole strengths is needed for dispersion suppression. This
is usually called the missing dipole dispersion suppressor (see Exercise 2.4.3c). The
reduced bending strength scheme for dispersion suppression is usually expensive be-
cause of the wasted space in the cells. A possible variant uses —I sections with full
bending angles for dispersion suppression by varying the quadrupole strengths in the
—I sections. With use of computer programs such as MAD and SYNCH, the fitting
procedure is straightforward.

Is the dispersion function unique?

A trivial corollary of the first-order achromat theorem is that a dispersion function
of arbitrary value can be transported through a unit achromat transfer matrix, i.e. a
3 x 3 unit matrix.

Now we consider the case of an accelerator or transport line with many repetitive
modules, which however do not form a unit transfer matrix. Is the dispersion func-
tion obtained unique? This question is easily answered by the closed-orbit condition
Eq. (2.245) for the entire ring. The transport matrix of n identical modules is

R"=(M; (M» -D(M - iy>dy (2278)

where M is the transfer matrix of the basic module with dispersion vector d. Using
the closed-orbit condition, Eq. (2.245), we easily find that the dispersion function of
the transport channel is uniquely determined by the basic module unless the transport
matrix is a unit matrix, i.e. Mn = I. In the case of unit transport, any arbitrary
value of dispersion function can be matched in the unit achromat. Since the machine
tune can not be an integer because of the integer stopbands, the dispersion function
of an accelerator lattice is uniquely determined.

IV.5 Achromat Transport Systems

If the dispersion function is not zero in a transport line, the beam closed orbit depends
on particle momentum. However, it is possible to design a transport system such that
the beam positions do not depend on beam momentum at both ends of the transport
line. Such a beam transport system is called an achromat. The achromat theorem of
Sec. IV.4 offers an example of an achromat.

A. The double-bend achromat

A double-bend achromat (DBA) or Chasman-Green lattice is a basic lattice cell fre-
quently used in the design of low emittance synchrotron radiation storage rings. A



142 CHAPTER 2. TRANSVERSE MOTION

DBA cell consists of two dipoles and a dispersion-matching section such that the
dispersion function outside the DBA cell is zero. It is represented schematically by

[00] B {0 QF 0 } B [00],

where [00] is the zero dispersion straight section and {0 QF 0} is the dispersion
matching section. The top plot of Fig. 2.30 shows a basic DBA cell.

Figure 2.30: Schematic plots of DBA
cells. Upper plot: standard DBA cell,
where O and 0 0 can contain doublets
or triplets for optical match. Lower plot:
triplet DBA, where the quadrupole triplet
is arranged to attain betatron and disper-
sion function match of the entire module.

We consider a simple DBA cell with a single quadrupole in the middle. In thin-lens
approximation, the dispersion matching condition is (see Exercise 2.4.13)

[Dc\ ( 1 0 OWl Lx 0\ (I L L9/2\ /0 \
0 = -1/ (2/ ) 1 0 0 1 0 0 1 0 0 , (2.279)

V i ) \ o o i A o o i / \ o o i M i /
where / is the focal length of the quadrupole, 9 and L are the bending angle and
length of the dipole, and L\ is the distance from the end of the dipole to the center of
the quadrupole. The zero dispersion value at the entrance to the dipole is matched to
a symmetric condition D'c = 0 at the center of the focusing quadrupole. The required
focal length and the resulting dispersion function become

f = \{Ll + \ L ) ' D<=(Li + \ L ) e - (2-28°)
Note that the focal length needed in the dispersion function matching condition is
independent of the dipole bending angle in thin-lens approximation, and it can easily
be obtained from the geometric argument. The dispersion function at the symmetry
point is proportional to the product of the effective length of the DBA cell and the
bending angle.

Although this simple example shows that a single focusing quadrupole can attain
dispersion matching, the betatron function depends on the magnet arrangement in
the [00] section, and possible other quadrupoles in the dispersion matching section.
The dispersion matching condition of Eq. (2.280) renders a horizontal betatron phase
advance $ x larger than n in the dispersion matching section (from the beginning of
the dipole to the other end of the other dipole). The stability condition of betatron
motion (see Sec. II.6) indicates that betatron function matching section [00] can not
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be made of a simple defocussing quadrupole. A quadrupole doublet, or a triplet, is
usually used in the [00] section. Such DBA lattice modules have been widely applied
in the design of electron storage rings.

A simple DBA cell is the triplet DBA (lower plot of Fig. 2.30), where a quadrupole
triplet is located symmetrically inside two dipoles. This compact lattice was used for
the SOR ring in Tokyo. Some properties of the triplet DBA storage ring can be found
in Exercise 4.3.6.

B. Other achromat modules

The beam transport system in a synchrotron or a storage ring requires proper dis-
persion function matching. The design strategy is to use achromatic subsystems. An
example of achromatic subsystem is the unit matrix module (see Sec. IV.4 on the first
order achromat theorem). A unit matrix module can be made of FODO or other basic
cells such that the total phase advance of the entire module is equal to an integer
multiple of 2TT. Achromatic modules can be optically matched with straight sections
to form an accelerator lattice.

The achromatic transport modules are also important in the transport beamlines
(see Exercises 2.4.13 to 2.4.16). The achromatic transport system find applications in
high energy and nuclear physics experiments, medical radiation treatment, and other
beam delivering systems.

IV.6 Transport Notation
In many applications, the particle coordinates in an accelerator can be characterized
by a state vector

fWA ( x \
W2 x'

W= Z\ = I, , (2.281)
W5 PcAt

\wj \ 6 J
where /3c is the speed of the particle, /3cAi is the path length difference with respect
to the reference orbit, and 5 = Ap/p0 is the fractional momentum deviation of a
particle.

The transport of the state vector in linear approximation is given by

Wiis2) = '£Rij{82\a1)Wj{81), ( M = 1 , - - - , 6 ) . (2.282)
j=i

Note that the 2x2 diagonal matrices for the indices 1,2, and 3,4 are respectively the
horizontal and vertical M matrices. The Ru, R23 Ru, R24 elements describe the linear
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betatron coupling. The Ri6,R26 elements are the dispersion vector dot Eq. (2.275).
Without synchrotron motion, we have R55 = Re6 = 1. All other elements of the R
matrix are zero.

In general, the nonlinear dependence of the state vector can be expanded as

Wi(s2) = J2RijWj(s1) + J:J2TijkWj(s1)Wk(sl)
3=1 3=1k=l

+ E E E ^yH^(ai)W*(«i)Wi(«i) + • • • • (2.283)
3=1 k=l 1=1

For example, particle transport through a thin quadrupole is given by

, x x x5 xS2

, z z z5 zS2

and we obtain

R - l T - + 1 11 - l

•n-21 — —~c, -1216 — + 7 , (̂ 2166 — ~ 7 i

-^43 = +"7i ^436 = — T J ^4366 = + T -

Similarly, particle transport through a thin sextupole is given by

AT' - S (r2 - 72\

A. ' _ S „ ,

where 5 = —B^tjBp is the integrated sextupole strength. Here we used the conven-
tion that 5 > 0 corresponds to a focusing sextupole. The corresponding transport
matrix elements are

Q c
Ti U rp ^ rp Q

2 1 1 — — 7 T , J 2 3 3 — X ) J - i l i — i>, •••.

Tracing the transport in one complete revolution, we get the momentum compaction
factor as ac = R56. The program TRANSPORT66 has often been used to calculate
the transport coefficients in transport lines.

66K.L. Brown, D.C. Carey, Ch. Iselin and F. Rothacker, CERN 80-04 (1980); D.C. Carey, FNAL
Report TM-1046 (1981); D.C. Carey et al, SLAC-R-530, Fermilab-Pub-98-310 (1998).
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IV.7 Experimental Measurements of Dispersion Function

Digitized BPM turn by turn data can be used to measure the betatron motion. On the
other hand, if the BPM signals are sampled at a longer time scale, the fast betatron
oscillations are averaged to zero. The DC output provides the closed orbit of the
beam. The dispersion function can be measured from the derivative of the closed
orbit with respect to the off-momentum of the beam, i.e.

dxco dxco OQA\

D = d[K^)=~rik^ (2'284)

where a;co is the closed orbit, /0 is the revolution frequency, r\ is the phase-slip factor,
and the momentum of the beam is varied by changing the rf frequency.

Figure 2.31: The upper plot
shows the closed orbit at a BPM
vs the rf frequency for the IUCF
Cooler Ring. The slope of this
measurement is used to obtain
the "measured" dispersion function.
The lower plot compares the mea-
sured dispersion function (rectan-
gles) with that obtained from the
MAD program (solid line).

The upper plot of Fig. 2.31 shows the closed orbit at a BPM location vs the rf
frequency at the IUCF Cooler Ring. Using Eq. (2.284), we can deduce the dispersion
function at the BPM location. In the lower plot of Fig. 2.31 the "measured" dispersion
functions of the IUCF Cooler Ring is compared with that obtained from the MAD
program [19].67 The accuracy of the dispersion function measurement depends on
the precision of the BPM system, and also on the effects of power supply ripple.
To improve the accuracy of the dispersion function measurement, we can induce
frequency modulation to the rf frequency shift. The resulting closed orbit will have the
characteristic modulation frequency. Fitting the resulting closed orbit with the known
modulation frequency, we can determine the dispersion function more accurately.

67Note here that the IUCF Cooler Ring lattice belongs generally to the class of double-bend
achromats (see Exercise 2.4.13). A high dispersion straight section is used for momentum-stacking
injection and zero dispersion straight sections are used for rf and electron cooling.
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IV.8 Transition Energy Manipulation

Medium energy accelerators often encounter problems during transition energy cross-
ing, such as longitudinal microwave instability and nonlinear synchrotron motion.
These problems can be avoided by an accelerator having a negative momentum com-
paction factor. The revolution period deviation AT for an off-momentum particle
Ap = p — p0 is given by Eq. (2.268). The accelerator becomes isochronous at the
transition energy (7 = 7T).

There are many unfavorable effects on the particle motion near the transition
energy. For example, the momentum spread of a bunch around transition can become
so large that it exceeds the available momentum aperture, causing beam loss (see
Chap. 3, Sec. IV). Since the frequency spread of the beam Aw = —T]u)(Ap/p0)
vanishes at the transition energy, there is little or no Landau damping of microwave
instability near transition (see Chap. 3, Sec. VII). As a result, the bunch area may
grow because of collective instabilities. Furthermore, particles with different momenta
may cross transition at different times, which leads to unstable longitudinal motion
resulting in serious beam loss.

To avoid all the above unfavorable effects, it is appealing to eliminate transition
crossing. The jT jump schemes have been used successfully to ease beam dynam-
ics problems associated with the transition energy crossing; in these schemes some
quadrupoles are pulsed so that the transition energy is lowered or raised in order to
enhance the acceleration rate at the transition energy crossing. This has become a
routine operation at the CERN Proton Synchrotron (PS).

Alternatively, one can design an accelerator lattice such that the momentum com-
paction factor ac is negative, and thus the beam never encounters transition energy.
This is called the "negative momentum compaction" or the "imaginary j T " lattice.
All modern medium energy synchrotrons can be designed this way to avoid transition
energy. We discuss below the methods of ac manipulation, the transition energy jump
scheme, and the design principle of the imaginary 7T lattices.

A. 7T jump schemes

In many existing low to medium energy synchrotrons, particle acceleration through
the transition energy is unavoidable. Finding a suitable 7T jump scheme can provide
beam acceleration through transition energy without much emittance dilution and
beam loss. Here we examine the strategy of 7T jump schemes pioneered by the
CERN PS group.68

68W. Hardt, Proc. 9th Int. Con}, on High Energy Accelerators (USAEC, Washington, DC, 1974).
See also T. Risselada, Proc. CERN Accelerator School, CERN-91-04, p. 161, 1991.
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In the presence of dipole field error, the closed orbit is

rs+C /\B
Axco(s) = Js Gx(s,so)—dso « £Gs(s, si)Ki, (2-285)

where 9^ is the dipole angular kick in thin-lens approximation, and GX(S,SQ) is the
Green's function of Eq. (2.159). Similarly, the dispersion function is given by

D(s0) = [C Gxi"'"o)ds « £ Gx(sh 30)9,, (2.264)
Jo p(s) t

where 0, is the dipole angle. Note here that the kick angle 9t from quadrupoles at
nonzero-dispersion function locations can be used to perturb the dispersion function
and change the orbit length for off-momentum particles.

A.I The effect of quadrupole field errors on the closed orbit

Consider TV quadrupoles for the 7T jump. We would like to evaluate the change of
orbit length for off-momentum particles due to the 7T jump quadrupoles. From Hill's
equation, the angular kick resulting from the ith 7T jump quadrupole is given by

9t = -Ki \xC0{Sl) + D*5], (2.286)

where Ki = —Bii/Bp is the strength of the zth 7T jump quadrupole, assumed positive
for a focusing quadrupole, and D* is the perturbed dispersion function at s = Si. Thus
the change of the orbit length for the off-momentum particle is given by

AC « £ DA « - fe KiDtD^J 5, (2.287)

where A is the unperturbed dispersion function, and we neglect higher-order terms
in 5. Equation (2.287) indicates that quadrupoles at nonzero dispersion locations can
be used to adjust the momentum compaction factor.

If N 7T-jump quadrupoles are used to change the momentum compaction factor,
we obtain

N

C0Aac = -*£ KiD'Di. (2.288)

Note that the change in momentum compaction (called jT jump) depends on the
unperturbed and perturbed dispersion functions at kick-quadrupole locations. An
important constraint is that the betatron tunes should be maintained constant during
the 7T jump in order to avoid nonlinear betatron resonances, i.e.

A(2s = 7 - £ / M ^ = °, AQ, = --?-][Xitfi = 0. (2-289)

Thus we usually employ zero tune shift quadrupole pairs for the 7T jump.
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A.2 The perturbed dispersion function

The change in the closed orbit resulting from the quadrupole kicks can be obtained
by substituting Eq. (2.286) into Eq. (2.285):

[D*{s) - D{s)} 5 = - £ Gx(s, s^KiD* 6. (2.290)
i

Thus the closed orbit solution is

Di=Dj + '£FjiB'i, (2-291)
i

where Fji = —Gx(sj,Si)Ki. The perturbed dispersion function at these quadrupole
locations can be solved to obtain

D* = (1 - F)~XQ = (1+ F + F2 + F3 + ...)D. (2.292)

The resulting change in momentum compaction becomes

N

C0Aac = -*£Ki(l + F + F2 + ...)yI>iA. (2-293)
ij

A.3 7T jump using zero tune shift 7r-doublets

When zero tune shift pairs of quadrupoles separated by IT in the betatron phase
advance are used to produce a jT jump, the matrix F satisfies

Fn = 0 for n > 2. (2.294)

This result can be easily proved by using the zero tune shift condition: /3XtkKk +
Ar.fc+ijKWi = 0 and the -K phase advance condition:

COS(7TZ/X - \tpk - 1pj\) = - C O S ^ - \ipk+i - 1pj\),

cos{nvx - \ipi - ipk\) = - cos(7T!/a. - \ipi - ipk+1\).

Using the 7r-doublets, the perturbed dispersion function becomes

DT^il + F^Dj, (2.295)

and the change in the momentum compaction factor is given by

C0Aac = - £ KiD\ + £ KiKjGx(si, sjDiDj. (2.296)
i ij

Here three points are worth mentioning:
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1. The change in the dispersion function is linear in K, i.e.

AA = D* - A = -<?,(*, s ; ) ^ %

2. The change in the momentum compaction factor contains a linear and a quadratic
term in K. If the 7T jump quadrupole pairs are located in the arc, where the
unperturbed dispersion function is dominated by the zeroth harmonic in the
Fourier decomposition, the term linear in Ki vanishes because of the zero tune
shift condition.69 The resulting change in the momentum compaction factor is
a quadratic function of Ki.

3. Since the stopband integral of Eq. (2.201) at p = [2vx] due to the tune jump
quadrupole pair is zero because of the zero tune shift condition, the 7r-doublet
does not produce a large perturbation in the betatron amplitude function.

Thus if all quadrupoles used for 7T jump are located in FODO cells, the amount
of tune jump is second order in the quadrupole strength. On the other hand, 7T jump
using quadrupoles in straight sections can be made linear in quadrupole strength.

B. Flexible momentum compaction (FMC) lattices

Alternatively, a lattice having a very small or even negative momentum compaction
factor can also be designed. Vladimirskij and Tarasov70 introduced reverse bends in
an accelerator lattice and succeeded in getting a negative orbit-length increase with
momentum, thus making a negative momentum compaction factor. Another method
of designing an FMC lattice is called the harmonic approach.71 In this method a sys-
tematic closed-orbit stopband is created near the betatron tune to induce dispersion-
wave oscillations resulting in a high 7T or an imaginary 7T. However, the resulting
lattice is less tunable and the dispersion functions can be large. Thus the dynamical
aperture may be reduced accordingly.

In 1972, Teng proposed an innovative scheme using negative dispersion at dipole
locations, where the dispersion function can be matched by a straight section with
a phase advance of TT to yield little or no contribution to positive orbit-length incre-
ment.72 This concept is the basis for flexible momentum compaction (FMC) lattices,
which require parts of the lattice to have negative dispersion functions.

69This statement can be expressed mathematically as follows. If the zeroth harmonic term domi-
nates, we have D\ oc ft, and thus £ 4 KiDf <x J \ Kifii = 0 because of the zero tune shift condition.

70V.V. Vladimirski and E.K. Tarasov, Theoretical Problems of the Ring Accelerators (USSR
Academy of Sciences, Moscow, 1955).

71R. Gupta and J.I.M. Botman, IEEE Trans. Nucl. Sci. NS-32, 2308 (1985); T. Collins, Beta
Theory, Technical Memo, Fermilab (1988); G. Guignard, Proc. 1989 IEEE PAC, p. 915 (1989);
E.D. Courant, A.A. Garren, and U. Wienands, Proc. 1991 IEEE PAC, p. 2829 (1991).

72L.C. Teng, Part. Accel. 4, 81 (1972).
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Recently, Trbojevic et al.73 re-introduced a modular approach for the FMC lattice
with a prescribed dispersion function. The dispersion phase-space maps are carefully
matched to attain a lattice with a pre-assigned 7T value. The module forms the
basic building blocks for a ring with a negative momentum compaction factor or an
imaginary j T . The module can be made very compact without much unwanted empty
space and, at the same time, the maximum value of the dispersion function can be
optimized to less than that of the FODO lattice.

For attaining proper dispersion function matching, the normalized dispersion co-
ordinates Xi and Pi of Eq. (2.260) are handy, i.e.

X = -L.D = y2JdCos</;d, P = Jfciy +-?£=D =-yfiTiSiniii.

In the thin-element approximation, Eq. (2.244) indicates that AD = 0 and AD' = 6
in passing through a thin dipole with bending angle 9. Therefore, in normalized Pd-X^
space, the normalized dispersion vector changes by AP = \fp\B and AX = 0. Outside
the dipole (p = oo), the dispersion function satisfies the homogeneous equation, and
the dispersion action J^ is invariant, i.e. P,i and X^ lie on a circle P2 + X2 = 2Jd-
The phase angle ipd of the normalized coordinates is equal to the betatron phase
advance. This dispersion phase-space plot can be helpful in the design of lattices and
beam-transfer lines. It has also been used to lower the dispersion excursion during a
fast 7T jump at RHIC.74

FODO CELL Dispersion Matching Section FODO CELL

QF/2 B QD B Q r l QD2 B QD B QF/2

n i I i i r n m i i i i n
I 11 l i I n i i l l n i l I

i i i
i i i

Ma Mb Mc

Figure 2.32: A schematic drawing of a basic module made of two FODO cells and an
optical matching section.

B.I The basic module and design strategy

A basic FMC module has two parts: (1) the FODO or DOFO cell, where the negative
dispersion function in dipoles provides a negative momentum compaction factor, and

73D. Trbojevic, D. Finley, R. Gerig, and S. Holmes, Proc. 1990 EPAC, p. 1536 (1990); K.Y. Ng,
D. Trbojevic, and S.Y. Lee, Proc. 1991 PAC, p. 159 (1991); S.Y. Lee, K.Y. Ng, and D. Trbojevic,
Fermilab Internal Report FN-595 (1992); S.Y. Lee, K.Y. Ng, and D. Trbojevic, Phys. Rev. E48,
3040 (1993).

74D. Trbojevic, S. Peggs, and S. Tepikian, Proc. 1993 IEEE Part. Accel. Conf. p. 168 (1993).
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(2) a matching section that matches the optical functions. We also assume reflection
symmetry for all Courant-Snyder functions at symmetric points of the module. Al-
though not strictly necessary, reflection symmetry considerably simplifies the analysis
and optical matching procedure. For example, we consider a basic module composed
of two FODO cells and a dispersion matching section shown schematically in Fig. 2.32:

Ma j - Q F B QD B -QF j Mb {QFl Oi QD2 O2} MC + reflection symmetry ,

where Majb,c are marker locations, Q's are quadrupoles, O's are drift spaces, and S's
stand for dipoles. The horizontal betatron transfer matrix of the FODO cell from the
marker Ma to the marker Mb is given by [see Eq. (2.257) and Exercise 2.4.3]

( cos$ /3Fsin$ D F ( l - c o s $ ) \
- ^ s i n $ cos$ | f sin $ , (2.297)

0 0 I )
where, for simplicity, we have chosen <&x = $ z = $ for the betatron phase advance
of the FODO cell, /3p and D? are respectively the betatron amplitude and dispersion
functions at the center of the focusing quadrupole for the regular FODO cell, and a
symmetry condition /?F = 0 and D'F = 0 is assumed to simplify our transfer matrix
in Eq. (2.297).

The procedure of betatron amplitude function matching is given as follows. First,
the desired value Da of the dispersion function at the marker Ma is chosen; the
dispersion function is propagated through FODO cell to obtained a dispersion vector
at the marker Mj. Then, the dispersion function is matched in the matching section.
Figure 2.33 shows the betatron amplitude functions for a matched FMC basic module
with an added dipole in dispersion matching section in order to increase the packing
factor.75 Because the dispersion function inside dipoles in FODO cells is mostly
negative, the resulting momentum compaction factor can become negative. Adjusting
the initial dispersion function value Da, the momentum compaction factor of the
accelerator can be varied.

Figure 2.34 shows an example of dispersion function matching for an FMC module
by plotting the normalized dispersion phase-space coordinates X& vsPj . A negative-
momentum-compaction module requires X& < 0 in dipoles as demonstrated in the
left plot of Fig. 2.34. The right plot shows a similar plot in thin-lens approximation.
Although they look slightly different, the thin-element approximation can provide
essential insight in the preliminary design where dispersion matching is required.
Since there is no dipole in this example shown in Fig. 2.32, the dispersion phase-
space coordinates are located on a circle as shown in Fig. 2.34. If the lattice has a
reflection symmetry at the marker Mc, the matched dispersion phase-space coordinate
is Pd = 0. Detailed matching process is given in following subsections.

75The packing factor is defined as the fraction of the circumference of an accelerator that is
occupied by magnets.
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Figure 2.33: The lattice func-
tion of an FMC basic module. In
this example, a dipole is added in
the middle of dispersion match-
ing section in order to increase
the machine packing factor. Al-
though the dipole in the match-
ing section will contribute a pos-
itive value to the momentum
compaction. The overall com-
paction factor can still be ad-
justed by a properly chosen Da.

B.2 Dispersion matching

The dispersion function at the beginning of the FODO cell is prescribed to have
a negative value of Z?a with D'& = 0. As we shall see, the choice of Da essentially
determines the dispersion excursion and the 7T value of the module. Using the transfer
matrix in Eq. (2.297), we find the dispersion function at marker Mb to be

Db = DF~ (DF - £>a) cos $ , D'h = DF~D* sin <E> , (2.298)
Pb

where /?b is the betatron amplitude function at marker Mb with /3b = /3F. Now we
assume that there is no dipole in the matching section, and the dispersion action is
invariant in this region, i.e.

Jd,c = J*,b = \ ^ + foDb ] = Jdj?[l - 2(1 - C) cos $ + (1 - C)2] , (2.299)

where £ = L>a/Dp is the ratio of the desired dispersion at marker Ma to the dispersion
function of the regular FODO cell, Jd,b, Jd,c are dispersion actions at markers Mb

and Mc, and J^p is the dispersion action of the regular FODO cell at the focusing
quadrupole location, given in thin-lens approximation by

v4k c o 3 E:j s i 1 f i - <2'»>
2 [ sin3 f (1 + sinf) J

Figure 2.35 shows \/Jdtb/Jd,F as a function of ( for various values of phase advance
per cell. The ratio of the dispersion action has a minimum at ( = 1 — cos $, and it
increases when the initial dispersion £>a at marker Ma is chosen to be more negative.
It is preferable to have a smaller dispersion action in the matching section in order
to minimize the dispersion function of the module.
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Figure 2.34: Left: an example of dispersion matching for a basic FMC module, where the
normalized dispersion phase-space coordinates X& = Z)/\/S v s Pd = {otx/VPx)D + yffi^D'
are shown. The normalized dispersion phase-space coordinates for periodic FODO cells
are marked "FODO CELLS." The corresponding thin-lens approximation for the FMC is
shown in the right plot, where horizontal steps are associated with a dipole that is divided
into three segments. There is no dipole in the matching section and thus the normalized
phase-space contour is a perfect circle in the matching section.

One might conclude from Fig. 2.35 that a smaller phase advance in the FODO cell
would be preferred. This can be true if we compare the dispersion of the basic module
with that of the regular FODO lattice with the same phase advance. However, the
dispersion amplitude i/2Jd F in Eq. (2.300) is inversely proportional to (sin($/2))3/2,
and thus we should choose a larger phase advance for the FODO cell in order to
obtain a smaller overall v/2Jd,c- A compromise choice for the phase advance of the
FODO cell is between 60° and 75°.

The dispersion functions and other Courant-Snyder parameters are then matched
at the symmetry point at marker Mc with a doublet (or triplet). The betatron transfer
matrix for the matching section is

/ y ^ c o s ^ V^ScSinV 0 \

M6_>c= —ri=sinV> ^/¥cosip 0 , (2.301)

V o 0 1 /
where /3b and /3C are values of the betatron amplitude function at markers Mb and
Mc, ij; is the betatron phase advance between Mb and Mc, and we have assumed the
symmetry conditions /3b = 0 and /3'c = 0 for the Courant-Snyder parameters.

The dispersion matching condition at marker Mc is D'c = 0. Using Eq. (2.298),
we obtain

1 - (1 -C)cos$ v '
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Figure 2.35: Ratio of dispersion
actions Jd,b/Jd,F as a function of
£ = £>a/DF for various values of
phase advance $ in the FODO
cell.

This means that the phase advance of the matching section is not a free parameter,
but is determined completely by the initial dispersion value _Da at marker Ma and
the phase advance of the FODO cell. This condition is independent of whether we
use a FODO-type insertion, or a low-beta insertion with doublets or triplets for the
matching section. Furthermore, the phase advance ip and the quadrupole strengths in
the dispersion matching section are constrained by the stability condition of betatron
motion (see Sec. II.6 and Exercise 2.4.17). Figure 2.36 shows the required betatron
phase advance 2ip (in unit of 2n) in the matching section as a function of phase
advance $ of the FODO cell for various values of C = D^/D^.

The total phase advance of the whole basic module is then given by 2($ + ip),
which is a function only of the desired dispersion function at marker Ma and the
phase advance $ in the FODO cell. Figure 2.36 shows the total phase advance of the
whole module as a function of the phase advance of the FODO cell for £ = —0.3 to
—0.6. Quadrupoles QFI and QD2 m the matching section can be adjusted to attain the
required phase advance if] given by Eq. (2.302) and to produce low betatron amplitude
functions at marker Mc. To achieve a |TT phase advance for a quarter-wave module,
C « -0.3 ~ -0.4 and a phase advance per FODO cell of $ = 60° to 75° can be used.

B.3 Evaluation of momentum compaction factor

In small-angle approximation, the values of the dispersion function at the midpoints
of dipoles in the FODO cell are given by
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Figure 2.36: Left: Phase advance in the matching section as a function of phase advance
$ in the FODO cell for various values of C = D&/DF. Right: The total phase advance of a
FMC module as a function of the phase Advance $ in the FODO cell for various values of
<: = DJDF.

The momentum compaction becomes

where 9 is the bending angle of each dipole and Lm is the length of the half-module. In
comparison with the momentum compaction factor of a lattice made of conventional
FODO cells, we obtain

qc _2LU-2S- 652 - 2S3 52(5 + 25) 1
^ ^ - L^ [ 4-2S-S2 C + 4 -2S-H ' ( 2 - 3 ° 5 )

where S = sin($/2). Note that the momentum compaction factor of the module is
determined entirely by the choice of £>a, the phase advance of the FODO cell, and
the ratio of the lengths of the FODO cell and the module. When the length of the
module is constant, the momentum compaction factor depends linearly on the initial
dispersion function £>a. If the horizontal phase advance <&x of the FODO cell differs
from its vertical phase advance <£z, Eqs. (2.303) should be modified as follows:

DBl = £>, [l - ^(y/Sl+8S+ + S_)] + l-L6,

< DB2 = D* [l - ^(y/Sl + 8S+ + SI) + j ( v t e + 8S+ - S.) - |^+] (2.306)

+1* [| +1(^/5!+8S+-S_)],

where S± = sin2 ^$x ± sin2 | $ z . The momentum compaction factor should be modi-
fied accordingly.
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C. Other similar FMC modules

The above analysis can be applied to a basic FMC module composed of two DOFO
cells and a dispersion matching section (see Exercise 2.4.17). Because the dispersion
value at the defocussing quadrupole location is smaller than that at the focusing
quadrupole location, a slightly smaller |£| can be used to minimize the magnitude of
the dispersion function in the module.

To design a lattice with a higher packing factor,76 one may use a DOFODO in
place of the FODO cell, i.e. three FODO cells instead of two are placed inside a basic
module. The betatron transfer matrix in the DOFODO cell becomes

' V^c o sf* y[hh,iAn\* DF-DD^ cos^

Ma^b= _ i s i n | $ ./fcosf* -fl-ft-sinf* ' (2-307)
V o o i )

where <3> is the phase advance of a FODO cell, and /3F, j3D, DF, DD are the betatron
amplitudes and dispersion values at the focusing and defocussing quadrupoles of the
FODO cell. A similar analysis with a different number of FODO cells can be easily
done. In general, the result will be a larger total dispersion value.

D. FMC in double-bend (DB) lattices

A double-bend module (Fig. 2.30) is made of two dipoles located symmetrically with
respect to the center of the basic module given by

/ Triplet \
Ma or B {dispersion matching section} Mc + {reflection symmetry}.

V Doublet/

A triplet or doublet matching section on the left side of the dipole B is the betatron
amplitude matching section. If the achromat condition is imposed, the module is
called a double-bend achromat (DBA). The zero dispersion region is usually used for
insertion devices such as the undulator, the wiggler, and rf cavities. The dispersion
matching section on the right side of the dipole can be made of a single quadrupole,
a doublet, or a triplet.

The dispersion function inside a sector dipole is given by

D(s) = p(l - cos <£) + Do cos <f> + pD'o sin 0, (2.308)

D'{s) = s i n < £ - — s i n <1> + D'O c o s <j>, (2.309)

76 The packing factor of a lattice is defined as the ratio of the total dipole length to the circumfer-
ence.
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where p is the bending radius of the dipole, <t> = s/p is the bend angle, and Do a n d
D'o are respectively the values of the dispersion function and its derivative at s = 0.
For a matched double-bend module, the momentum compaction is given by

ac = -f-\e-sin9+— sin 8 + D'0{l- cosl?)
Lm I p J

where Lm is the length of one half of the double-bend module, 8 = L/p, and L is the
length of the dipole. Note here that the momentum compaction factor depends on
the initial dispersion function at the entrance of the dipole.

In small-angle approximation, the condition for negative momentum compaction
is given by

6do + 3 d ' o < - l , (2.311)

where d0 = D0/L0, and d'o = D'o/8. The dispersion function in the rest of the module
can be matched by quadrupole settings.

Since the DBA module has Do = 0 and D'Q = 0, the momentum compaction in
small dipole angle approximation becomes

acDBA « ^ (2.312)

where R is the average radius of the storage ring. The momentum compaction factor
of a DBA lattice is independent of the betatron tune.

Finally, a reverse-bend dipole placed at the high dispersion straight section can
also be used to adjust the momentum compaction factor of a DBA lattice. Such
a lattice can provide a small-emittance negative momentum compaction lattice for
synchrotron radiation sources.

IV.9 Minimum {H) Modules

In electron storage rings, the natural (horizontal) emittance of the beam is determined
by the average of the ^-function in the dipoles (see Chap. 4). In this section, the
strategy of minimizing {%} inside dipoles will be discussed. To simplify our discus-
sion, we will consider a single dipole lattice unit where the dispersion and betatron
amplitude functions can be independently controlled.

The evolution of the "H-function in a sector dipole is given by (see Exercise 2.4.11)

H = n0+2(a0D0+/3oD'Q)sin(f>-2(jQD0 + aoD'0)p(l-cos(l>)

+A)Sin20 + 7op2(l -coscp)2 - 2aopsin0(l -cos0) , (2.313)
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where "Ho = jaD^ + 2a0D0D'0 + PoD'o> a0, /?0, j 0 , Do and D'o are the Courant-Snyder
parameters and dispersion functions at s = 0; and <f> = s/p is the coordinate of the
bending angle inside the dipole. The average H-function in the dipole becomes77

{%) = n0 + (a0D0 + poD'0)02E(e)-l-(y0D0 + a0D'0)pe2F(9)

+^<PA(0) - ^ B ( J ) + ^ C ( » ) > (2-314)

where 6 is the bend angle of the dipole, and

Fm 2(1-cos 0) 6(fl-sinfl) 6fl-3sin2fl

6-8cos0 + 2cos20 30^ - 40sin0 + 5sin20
B(9) = gi ' C W = p •

In the small-angle limit, A ^ 1,B -t 1,C -t 1,E -> 1, and F ->• 1.
With the normalized scaling parameters

do = % d'o = ^ , Po = ^, 7o = 7o^, ao=ao, (2.315)

where L = p9 is the length of the dipole, the average %-function becomes

(-H) = p63i[jQdl + 2aodod'o + Pod2 + (aoE-^F)do

+0OE - |F)4 + kA-^B + | c j . (2.316)

Note that (H) obeys a scaling law, i.e. (H) ~ p93.

A. Minimum (^)-function with achromat condition

In the special case with the achromat condition d0 = 0 and d'o — 0, the average
^-function is

{U) = p9*^A-^B + ^c}. (2.317)

Using the condition /3o7o = (1 + do), we obtain

(H)min,A = -S^P°3> (2-318)

77 The average of the ti function is given by

(H) = j f n(4>)ds = \ j H(4>)d4>.
Li JO <> Jo
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Figure 2.37: The minimum (H)
factors G = V16AC - 15B2_ for
the DBA (lower curve) and G =
VlSAC - 15B2 for the ME (upper
curve) lattices are plotted as a func-
tion of the bending angle 0. The ME
lattice data are for minimum (U)
without the achromat constraint.
Note that (W) is slightly smaller in
a long dipole because of the 1/p2 fo-
cusing effect of the sector dipole.

where G = V16AC - 15B2, /?0 = Vl2 CJy/EG and a0 = &B/G. The factor
G = \/16AC — 15B2 (see Fig. 2.37) decreases slowly with increasing dipole bending
angle 6 because of the horizontal focusing of the bending radius. The evolution of
the betatron amplitude function in the dipole can be obtained from Eq. (2.56). In
the small-angle approximation, the minimum betatron amplitude and its location are
given by

S- - - ^ - L s* - 3 L
Pmin,A - 4 v / 6 Q ^ ' Smin,A - g ^ -

Figure 2.38 shows the betatron amplitude functions of a low-emittance DBA-
lattice at the advanced photon source (APS) in Argonne National Laboratory. Here,
Px is minimum inside a dipole in order to attain a minimum (H). In the APS lattice,
the dispersion matching quadrupole at the center is also split into two in order to
leave space for a sextupole.

Figure 2.38: The low emit-
tance lattice functions for a su-
perperiod of APS. The APS
lattice has 40 superperiods so
that the circumference is 1104
m. The tunes of this lat-
tice are Qx = 35.219, Qz =
14.298. The momentum com-
paction factor is QC = 2.28 x
10~4 in agreement with that of
Eq. (2.312).

To study the behavior of the lattice dispersion function, we show the normalized
dispersion coordinates (Fd, XA) in Fig. 2.39, where the dipole has been split into 10
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slices in order to show the propagation of the normalized dispersion coordinates inside
a dipole. Since the lattice is designed to minimize (H) inside dipole, the normalized
dispersion coordinates are small (to be compared with that shown in Fig. 2.28). Note
that the achromat section of the DBA lattice is located at the origin Xd = Pd = 0.
In the dispersion matching straight section, the normalized dispersion phase-space
coordinates are located on a circle with the center at the origin.

Figure 2.39: The normal-
ized dispersion coordinates
for the low emittance APS
lattice is shown in one su-
perperiod. See Fig. 2.38
for the corresponding lat-
tice functions.

Many third generation high-brilliance light sources such as the ESRF, JSRF, APS,
ELETTRA, etc. employ low emittance DBA-lattice for their storage ring. Since we
emphasize the dispersion function in this section, the details of emittance minimiza-
tion procedure will be addressed in Chapter 4, Sec. III.

B. Minimum (%) without achromat constraint

Without the achromat constraint, minimization of the ^-function can be achieved
through the following steps. First, (H) can be minimized by finding the optimal
dispersion functions with

dd0 ' dd'o

to obtain
dOMa = ^F, d'0,min = - - £ . (2.319)

The resulting (H) becomes

(H) = ^ (fa* - a0B + ^6) , (2.320)

where A = 4A-3E2,B = W-2EF,C = \C-\F2. Using the relation $,7o = 1+djj,
we obtain the minimum (H) as

{nUn=iimp93' (2'321)



EXERCISE 2.4 161

where G = y/l6AC - 15B2 (see Fig. 2.37). Thus the minimum (H) without achro-
matic constraint is a factor of 3 smaller than that with the achromat condition. The
betatron amplitude function at the minimum (%) is

The waist of the optimal betatron amplitude function for the minimum (7i) is located
at the middle of the dipole, i.e. s* — L/2. The corresponding minimum betatron am-
plitude function at the waist location is /^ i n = L/\/60 in small-angle approximation
with 9 < 1.

Even though the minimum (7i) is one third of that with the achromat condition,
the required minimum betatron amplitude function is less stringent, i.e.

R* = - / ? *
"min o^rnii^A"

The corresponding maximum betatron amplitude function will be reduced accord-
ingly. We have discussed the minimum (H) only in sector dipoles. In actual machine
design, combined-function magnets with defocussing field may be used (see Exercise
2.4.18), where we will find that (H)min is actually larger than for a separate function
lattice. Computer codes such as MAD [19] and SYNCH [20] can be used to optimize
{%).

Exercise 2.4
1. The dispersion function in a combined-function dipole satisfies the equation D" +

KXD = 1/p .

(a) Show that the solution for constant Kx = K > 0 is

D = a cos VKs + 6 sin VKs + ijpK.

Let DQ and D'Q be the dispersion function and its derivative at s = 0. Show
that the solution can be expressed as

fD(s)\ (Do\

(?) ""(?)•
where the transfer matrix is

( cos VKs -^ sin VKs ^ (1 - cos VKs) \
- V ^ s i n v ^ s cos y/Ks ^sin^s .

o o I )
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(b) Show that the transfer matrix for constant Kx = K < 0 is

/ coshv/JK|s -J=SmhJ\K\s ^ ( _ l + Cosh7iK|5)\

Af=L/[FfsinhvPT'S cosh ̂ /\K~\s —L- sinh v/LKTs •
V 0 0 1 )

(c) Show that the transfer matrix of a sector magnet is given by Eq. (2.249).

(d) For a rectangular magnet, show that the horizontal transfer matrix is (see Ex-
ercise 2.2.3)

/ I psinfl p ( l -cos f l ) \
Mrectanguiar dipoie = 1 0 1 2 tan(6>/2) ,

\ 0 0 1 /

where p and 9 are the bending radius and the bending angle.

(e) In thin-lens (small-angle) approximation, show that the transfer matrices M for
quadrupoles and dipoles become

/ i o o\ /i e ee/2\
M q u a d = - I f f 1 0 , M d i p o i e = 0 1 8 ,

V o o 1 / Vo o i /

where / is the focal length, and £ and 9 are the length and bending angle of the
dipoie.

2. The bending arc of an accelerator lattice is usually composed of FODO cells. Each
FODO cell is given by [iQF B QD B ±QF], where QF and QD are the focusing and
defocussing quadrupoles with focal length f\ and — fa respectively, and B is a dipoie
with bending angle 9. Let L be the half cell length.

(a) Using thin-lens approximation, show that the dispersion function and the beta-
tron amplitude functions are given by

R L Z 1 ^ ft L l^-T+
Px'F s in ($ x /2 )Vl -T + ' Px'D sin($x/2) V 1 + T_ '

where

5± = sin2-^±sin2-^, T± = ±(y/Sl+&S+±sS),

and $ x and $ z are the horizontal and vertical betatron phase advance per cell.

(b) Simplify your result in part (a) with $ x = $ z = $ and calculate the dispersion
actions Jd(QF), Ja(QD) as a function of the phase advance per cell <&. Plot
Jd(QF)/Jd(QD) as a function of $.

(c) Part of the SYNCH program input deck for the TEVATRON (1988) is given
below. Use the thin-lens approximation to find the phase advance per cell and
the betatron and dispersion functions at the focusing quadrupole.
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TEV RUN DOUBLER LATTICE
C DOUBLER l a t t i c e using two s h e l l normal quads and s p e c i a l
C length matching quads. a l l quads run a t same e x c i t a t i o n as the
C 35 t u r n , 21 foot d i p o l e s .
C All q u a n t i t i e s i n u n i t s of m, kG, kG/m, kG-m.
BRHO = 33387.702
BZ = 44.27664
GF = 760.32056
GD = -760.32056
BL = 6.1214
QL = 1.67894
0 DRF 0.2794
00 DRF 2.14028
000 DRF 0.60038
C magnet de c l a r e : length gradient brho dipole type
B MAG BL 0. BRHO BZ $
QF MAG QL GF BRHO
QD MAG QL GD BRHO

C beam line declaration for a CELL
HC BML 00 B 0 B 0 B 0 B 000
CELL BML QD HC QF HC

(d) Use the data in the table below to estimate the dispersion function of AGS,
RHIC and SSC lattices in thin-lens approximation. Estimate the momentum
beam size vs the betatron beam size in the arc.

I AGS I RHIC I Tevatron I SSC 1 LHC
Lceii (m) 13.45 29.6 180 97.96
$ (deg) 52.5 90 90 90
Energy (GeV) 25 250 1000 20000 8000
eN(w/j.m) 30 30 30 10 15
(Ap/po)rms I .005 I 0.003 | 0.001 | 0.0001 | 0.0001

(e) A collider lattice is usually made of arcs and insertions. The arc section is
composed of regular FODO cells with bends, and the straight insertion section
is composed of quadrupoles without dipoles. The dispersion suppressor matches
the dispersion function in the arc to a zero dispersion value in the straight
section. Show that the momentum compaction factor of such a lattice is given
by

1

a C ^ a 2 r c ( l + £ a / £ a ) '

where 27ri>arc is the total accumulated phase advance in the arcs, and Ls and La

are the length of the straight section and the arc.

3. Show that the 3x3 transfer matrix of a repetitive cell is generally given by Eq. (2.257).
Show that the transfer matrix of repetitive FODO cell is

/ cos* /3psin$ 2£>psin2($/2)\
M = I - 7 F s i n $ cos$ 7FDFsin$ ,

V 0 0 1 /
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where the symmetry conditions aF = 0 and D'F = 0 are used, $ is the phase advance
per cell, j3F and 7F are the Courant-Snyder parameters, and £>F is the dispersion
function at the center of the quadrupole.

(a) Show that

/ - I 0 2DF\ / I 0 0 \
M|=90o = 0 - 1 0 , M|=90o = 0 1 0 .

V 0 0 1 / \ 0 0 1 /

(b) Show that two FODO cells, each with 90° phase advance, match a zero dispersion
region to a final dispersion of D = 2Z)F and D' = 0.

(c) To match the dispersion function from a regular FODO cell in the arc to a
zero value at the straight section, we need a dispersion suppressor. Adjoining
the regular arc, the dispersion suppressor is composed of two reduced bending
FODO cells, with bending angle #2 a n d 9\ for each dipole.78 Show that the
conditions for zero dispersion after the dispersion suppressor are

j = W^ry and ei+d2 = e'
where 6 is the bending angle of each dipole in the regular cell, and $ is the
phase advance of the FODO cell. At $ = TT/2, these two FODO cells form the
- / unit. The theorem of dispersion suppression of Section IV.4 is thus verified.

(d) This exercise shows the effect of dispersion mismatch. Assuming that the accel-
erator lattice is made of n FODO cells, where (n - 1) FODO cells are [§QF B
QD B | Q F ] with dipoles, and the bending magnets in the last FODO cell are
replaced by drift spaces, show that the dispersion function at the entrance of
the first FODO cell with a dipole is

1 — cos n<& + cos $ — cos(n — 1)$

1 = 2 ( 1 - c o s n $ ) F I

, _ sin$ - s inn$+ sin(n - 1)$
1 = 2(1-cos n$) 7 F '

where DF is the dispersion function of the regular FODO cell at the center of
the focusing quadrupole and $ is the phase advance per cell. The resulting
mismatched dispersion function can be very large at n$ w 0 (mod 2TT), which
is related to the integer stopband.

4. Using thin-lens approximation, show that the momentum compaction factor ac of an
accelerator made of N FODO cells is given by

1 fDx ( 2TT \ 2 1

ac~2irRf pdS-{2Nsin%) ~ vV

78A reduced bending cell can be represented by the following matrix with fi = Q\jQ:

( cos$ /SFsin* £ IDF(1 - cos$)\
~7j?sin$ cos$ SI7F£>Fsin* I .

0 0 1 )
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where -R is the average radius of the accelerator, $ is the phase advance per cell, and
vx is the horizontal betatron tune.

5. Consider a weak-focusing synchrotron (Exercise 2.2.5) with a constant focusing index
0 < n < 1. Show that the lattice and dispersion functions are j3x = p/y/1 - n,
Pz = p/y/n, D = p/( l - n), and the transition energy is 7T = VI —n.

6. Using the Floquet transformation, show that Eq. (2.244) can be transformed to

d2jt +Sx-v2pm

where X = D/y/fi, and <f> = /o ds/u/3.

(a) Using the Fourier expansion,

^ k=-oo

show that

Note here that Z)(s) can be approximated by ao^/P{s) in a regular FODO lattice,
where the zeroth harmonic ao dominates.

(b) Using Eq. (2.266), show that

A:=—oo

where R = C/2-rr is the mean radius. In most accelerator design, the ao harmonic
dominates. Assuming p w constant for all magnets, show that

i / / J 1 / 2 , (V3)
2TTP J p v

Since v = f ds/27r/3 w fl/<^>, show that ac « l/v2.

7. Show that the integral representation of the dispersion function in Eq. (2.264) satisfies
Eq. (2.243). Substituting the betatron coordinate into Eq. (2.266), show that the
path-length change due to the betatron motion is79

rs+C x
AL = / -ds

Js p
= [sin 2irvxXd - (1 - cos 2nux)Pd]Xp + [(1 - cos 2irvx)Xd + sin2irvxPd}P0

where Xp = x /V3i and Pp = (axx + f5xx')ly/]5x a r e normalized betatron coordi-
nates, and Xd,P<j are the normalized dispersion function phase-space coordinates of
Eq. (2.265). Since the time average of the betatron motion is zero, (Xp) = {Pp) = 0,
the path length depends on the betatron amplitude quadratically.

79Use the integral representation of Eq. (2.265).
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8. The closed orbit of a horizontal dipole field kicker at location so in a synchrotron is
given by (see Sec. Ill)

xco(s) = Vyf l)&(8°) e0 cos (™s - \i>x(s) - ^(»0)|),

where #o is the kick angle, and ipx is the phase advance function. Show that the effect
of the dipole kicker on the orbit length is

AC = j> —ds = D{so)6Q.

The change of orbit length due to a dipole error is the product of the dipole kick
angle and the dispersion function at the kicker location.

9. In the presence of a skew quadrupole field with ABX = (dBx/dx)x, Hill's equation
for the vertical closed orbit is80

z» + Kz(s)Z=-L^Dx6,
Bp ox

where Bp = po/e is the momentum rigidity, and Dx is the horizontal dispersion
function at the skew quadrupole location. Show that the vertical dispersion function

k=—oo z

where

The vertical dispersion function can sometimes be approximated by a simple pole

Dz « vzypz(s) ,

where k = [vz] is the integer nearest the vertical betatron tune and (, is the phase of
/*•

10. In a straight section of an accelerator, M13 = 0 and M23 = 0. The values of the
dispersion function at two locations in the beam line are related by

D2 = AfnDi + M12D[, D'2 = M21Di + M22D[.

Show that H = jD2 + 2aDD' + fiD12 is invariant in the straight section.

11. In general, the dispersion function transfer matrix is given by Eq. (2.254). Show that
the evolution of the 'H-function is

U = Ho + 2(a0Do + /3oD'0)[M23Mn-M13M2i}

+2(7oA) + a0D'0)[MuM22 - M23M12] + po[MuM2i - M23Mu}2

+7o[Mi3M22 - M23M12]2 - 2ao[Mi3M2i - M23Mii][M\3M22 - M23Mi2]

80This exercise demonstrates that residual vertical dispersion can be generated by skew
quadrupoles. Vertical dispersion can also be induced by vertical closed-orbit error in quadrupoles,
dipole rolls, feed-down from magnetic multipoles, etc.
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where %Q = 70.D0 + 1<XODQDQ +POD'Q\ Mij is a matrix element of the transfer matrix;
and cto,po, and 70 are Courant-Snyder parameters at the initial location.

(a) Using the My of Eq. (2.249), show that % in a sector dipole is given by
Eq. (2.313).

(b) Find ~H in a rectangular dipole (use the result of Exercise 2.4.1).

12. Using the beam position data (in mm) in the table below at three different revolution
frequencies (in MHz) at the IUCF cooler ring, calculate the horizontal and vertical
dispersion function at two horizontal and two vertical BPM locations. The parameters
for this experiment were (1) proton kinetic energy = 45 MeV, (2) circumference =
86.82 m, (3) reference orbit frequency = 1.03168 MHz, and (4) transition energy
7 r =4 .6 .

Table: Some Beam Positions xco or zco (mm) vs /o (MHz) of the IUCF Cooler.

/o (MHz) 1 1.03268 I 1.03168 I 1.03068 I I 1.03268 I 1.03168 I 1.03068
H.BPM Ico -Tco 3:co V.BPM Zco Zco £co_
PHI 0.5 -5.4 -12.3
PH12 -0.7 -5.3 -10.3 PV12 0.6 0.9 1.2
PH14 2.2 2.1 0.6 PV14 -2.4 -4.0 -4.6
PHT 1.3 4.1 5.5 PVT -1.0 -2.8 -3.7

PV26 3.9 6.7 8.0
PH24 I -0.4 I 0.0 I 0.8 | PV24 | 0.9 | 1.4 | 1.6

13. Double-Bend Achromat: Consider an achromatic bending system with two sector
magnets and a focusing quadrupole midway between two dipoles, i.e.

B[p,9] O[l] QF[K,lq] O[l] B[p,9].

Here K and lq represent the focusing strength function and the length of the quadrupole.
Show that the dispersion matching condition is given by

. 0 , 1 .VKlq
ptan —h I = —F= cot - ,

2 JK 2

and that, in thin-lens approximation, the matching condition reduces to Eq. (2.280).
This basic achromat is also called a Chasman-Green lattice cell. The double-bend
achromat (DBA) is commonly used in the design of low emittance storage rings,
where quadrupole configurations are arranged to minimize {H) in the dipole. Other
achromat modules are

(a) the triple-bend achromat (TBA)

B[p,0o] O[ii] QF[tf,fq] O[h] B[p,6c] O[l2] QF[K,lq] O[/] B[p,e0]

which has been used in many synchrotron radiation light sources such as the
ALS (Berkeley), TLS (Taiwan), KLS (Korea), and BESSY (Berlin), and

(b) the reverse-bend DBA

B[p,0] O[h] QF[JC,Jq] O[/2] B[-p,-er] O\h] QF[JT,Iq] O[/] B[p,9]

where the reverse bend angle 9r < S can be used to adjust the desired momen-
tum compaction factor.
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14. Achromatic translating system: Show that the transport line with two sector
dipoles given by B[p,0] O[h] QF[K,Q O[lc] QF[#,Zq] O[h] B[-p,-6] is achromatic
if the following condition is satisfied:81

0 lc cos \fKlq + -L sin VKL
psin- + li = —== , VK -^^ .

2 lcy/K sin VKlq - 2 cos VKlq

Show that, in thin-lens approximation,

. <C(<1+*B)
/ q 4 + 24 + £B'

where /q is the focal length of the quadrupole and £Q is the length of the dipole.

15. Show the three sector dipole system B[p,0] O[l] B[p,0] O[l] B[p,0] is achromatic if
the following condition is satisfied:

I _ 2cosS + l
p sin#

16. A set of four rectangular dipoles with zero net bending angle

B[p,e] O[k] B[-p,-6] O[/a] B[-p,-0\ O[h] B[p,6]

has many applications. It can be used as a beam translation (chicane) unit to facilitate
injection, extraction, internal target operation, etc. It can also be used as one unit
of the wiggler magnet for modifying electron beam characteristics or for producing
synchrotron radiation.

(a) Show that the rectangular magnet beam translation unit is achromatic to all
orders, and show that the R^e element of the transport matrix, in small angle
approximation, is

Rm = 202(<?i + \p»)-

( pw. e) (-P w,-26) ( Pw, e)

; s
0 L w 2LW 3LW 4L W

(b) A simplified compact geometry with lx = l2 = 0 (shown in the figure above) is
often used as a unit of the wiggler magnet in electron storage rings. Assuming
that DQ = D'D = 0, show that the dispersion function created by the wiggler
magnet is82

, , f-(l-cos</>), 0 < s < L w

—i^- = I (1 - cos (j>) - (1 - cos 9) cos <t>
P w { -[sin0 + 2 tan 0(1 - cos 0)] sin <f>, Lw < s < 2LW

81 At the symmetry point of the antisymmetric bending section D = 0.
82Be sure to take the edge focusing into account.
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where <j> = s/pw and (j> = (s - L w ) / p w , and

{
- sin (j>, 0 < s < L

- s i n # - 2tan0(l - cos6), s = i w +

sin 0 + (1 - cos 0) sin 4>
-[sin0 + 2tan0(l - cos 0)] cos 0, LW < s < 2LW.

Show that
D(s = 2Lv,) = 2pv,1~C°*e, D'(s = 2K) = 0.

COS0
Since D' = 0 at the symmetry point, the wiggler is an achromat. In small
bending-angle approximation, show that the dispersion function becomes

D(.) = / -s2/2pw, 0 < s < i w

V ; I -(2Ll - (2LW - s)2)/2pw, Lw < s < 2LW,
£,'(SN = { -s/Pw, 0 < s < Lw

v ; \ -(2LW - s)/pw, Lw < s < 2LW.
17. An FMC basic module can also be made of two DOFO cells with a dispersion matching

section (shown schematically below).

DOFO CELL Dispersion Matching Section DOFO CELL

QD/2 B QF B Q m QF2 B QF B QD/2
I 11—11 I m I I n I I

i n II hn T i 111 I I In
i i i
i i i

Ma Mb Mo

Use the following notations
<&: phase advance of the FODO cell,
PD> 7D = 1 / / ^ D : values of betatron functions at the center of QD.
2L: length of the DOFO cell,
6: bending angle of a half DOFO cell,
DD dispersion function at the defocussing quadrupole,
-Da: prescribed dispersion function at marker Ma with C = DA/DD.
Lc: half length of the matching section from Mb to Mc.
Lm: length of half a complete module,
/ i : focal length of QDI ,
f2'- focal length of QF2I
i'xi'i'z'- betatron phase advances of one half of the dispersion matching section.

(a) Show that the phase advance of the dispersion matching section is determined
completely by the prescribed dispersion function Z>a and the phase advance of
the DOFO cell,

(1 - C ) s i n $
tan ibx = —

1 - cos $ + C cos $
(b) In thin-lens approximation, show that

-M'+£)('-&)' »2*4-7f)(i+i)'
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Show that the stability of the betatron motion is a necktie region bounded by
four lines:

Lc < » ic ^ LQ_ Lc/fi Lc Lc/fi
2/2 - ' /1 - ' 2 / 2 - 1 - L e / / ! 1 2 / 2 - l + L c / / i "

Plot the necktie diagram of Lc/f2 vs Lc/f\. Since V"i is determined by param-
eters $ and £, the parameter £c//2 is a function of Lc//i> i-e-

Lc _ 2 cos2 V>x
/a ~ 1 + i c / / i '

Draw the line Lc//2 vs Lcjf\ for constant ^x, e.g. ^ = 7r/4. This means
that the dispersion matching section is a one-parameter lattice. Once Lc//i is
chosen, Lc//2 and ̂  are determined. Furthermore, show that the length of the
matching section is

_ /8IiDsini/'iCos^3;

c " 1 - Lc/2f2 '

where /J^D is the horizontal betatron amplitude function at the center of QD.
(c) Show that the values of the betatron amplitude functions at Mc are

a o (1 + W / i ) 2 a o (1 - Lc/fl)2
Px,c = Pi,a o~i j Pz,c = Pz,a 9—; •

COS^ 1px COS2 1pz

(d) Show that the dispersion action in the matching section is

Jb = Jc = JD (l - 2(1 - C) cos * + (1 - C)2) •

(e) Show that the dispersion function at the middle of the dipole is

/ 1 * \ L6

Show that the momentum compaction is

Doe\( . $ . , $ \ , sin2f /5 1 *\1

18. To simplify the design of a DBA in a synchrotron storage ring, combined-function
dipole magnets have often been used, e.g. in ELETTRA in Trieste and in the UVU
and X-ray rings in the National Synchrotron Light Source (NSLS) at BNL. The
dispersion function in the combined-function dipole satisfies D" + KXD = \/p, where
Kx = 1/p2 + (l/Bp)(dBz/dx) is the effective defocussing strength function and p is
the bending radius of the dipole.83

83Because the electron has a negative charge, the gradient term in Kx has a sign opposite that in
Eq. (2.31).
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(a) Show that

<W)=p03[|^)-^B(g) + gC(g)],
where

. . . 3(sinh2g-2g) „. . 6 - 8 cosh g + 2 cosh 2g

A{q) = — v — ' (9) = ? '
_,, . 30g-40sinhg + 5sinh2<j
C(9) = tf '

with q = y/\Kx\L, J30 = /30/L, a0 = a0, and 70 = -y0L.

(b) Show that the minimum of (H) is

<W>min = 4 7 l 5 ^ 3 '

where G = V16AC - 15B2. Plot G = V16AC - 15B2 vs the quadrupole
strength and show that V16AC — 15B2 > 1, i.e. the combined-function DBA
gives rise to a larger (H). In Chapter 4 the effect of damping partition number
on the natural emittance of electron beams will be discussed.

(c) Use thin-lens approximation to verify the strength of matching quadrupole Q4
of the NSLS lattice input data (MAD) file (shown below) for the achromat
condition. Note that the dipole is declared as RBEND for a rectangular mag-
net, where in principle, we should take into account the edge focusing of the
dipole magnet. Neglecting the edge focusing, however, discuss the effect of the
combined-function dipole on (H).

TITLE, "NSLS X-ray RING"
Ql :QUADRUPOLE,L=.45,Kl=-1.50186576
Q2 :QUADRUPOLE,L=.8,Kl=l.33731236
Q3 :QUADRUPOLE,L=.4132,Kl=-1.4018946
Q4 :QUADRUPOLE,L=.225,Kl=l.29943942
B : RBEND,L=2.7,Kl=-.026848954,ANGLE=.39269908
SF :SEXTUPOLE,L=0.,K2=0.
SD :SEXTUPOLE,L=0.,K2=0.
Dl :DRIFT,L=2.25
D2 :DRIFT,L=.685
D3 :DRIFT,L=.3484
D4 :DRIFT,L=.70825
D5 :DRIFT,L=.9
D6 :DRIFT,L=.25
HSUP :LINE=(D1,Q1,D2)Q2,D3,Q3,D4,B,D5,SD,D5,SF,D6,Q4)
USE,HSUP,SYMM,SUPER=8
PRINT,#S/E
TWISS
STOP
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V Chromatic Aberration

A particle with momentum p executes betatron oscillations around an off-momentum
closed orbit xco(s)+D(s)5, where xco is the closed orbit for the on-momentum particle,
D is the dispersion function, and S = (p-po)/Po is the fractional momentum deviation
from the on-momentum po- Equation (2.242) is Hill's equation of the horizontal
betatron motion. A higher energy particle with 5 > 0 has a larger momentum rigidity
and thus a weaker effective focusing strength; a lower energy particle with d < 0 has a
smaller momentum rigidity and a stronger effective focusing strength. This is reflected
in the gradient error AKX in Eq. (2.242). Similar gradient error exists in the vertical
betatron motion. The resulting gradient errors AKX and AKZ are given by84

| A * - [ - £ + *<•)] * + <>«•)—IM (2323)

[ AKZ = -K(s)S + O(S2) « -KXS,

where K = B^Bp and Bx = dBz/dx.
Note, in particular, that the chromatic gradient error is essentially equal to the

product of the momentum deviation 5 and the main focusing functions —Kx and — Kz.
The dependence of the focusing strength on the momentum of a circulating particle
is called "chromatic aberration." Furthermore, the gradient error arising from the
chromatic aberration is proportional to the designed focusing functions Kx and Kz,
and thus the chromatic gradient error is a "systematic" error that can cause major
perturbation in the designed betatron amplitude functions and reduce the dynamical
aperture for off-momentum particles. The effects of chromatic aberration include the
chromaticity, the "beta-beat" associated with the half-integer stopbands, etc.

In this section we study the effects of systematic chromatic aberration and its
correction. In Sec. V.I we define chromaticity and discuss its measurement and
correction; in Sec. V.2 we examine the nonlinear perturbation due to chromatic sex-

84Including the effect of off-momentum orbits, the chromatic gradient error should include the
effects of dispersion functions, fringe fields, etc. Some of these terms are includes below:

AKx = \ * + K + 2° (± - K ) - (I)' D' + ^ D ] {8 -62 + •••) +•••,
[ p2 p \p2 ) \p) 0xp J v '

AKZ= 1-K+-D+ ( ± ) ' D ' + 1 * - D \ {8-82 + -••)+•••,

where K = B\ jBp is the gradient function of quadrupoles. Note that the higher-order gradient error
depends on the betatron amplitude and dispersion functions. We will neglect all chromatic effects
arising from the dispersion function and fringe fields of magnets. For details see, e.g., K. Steffen,
High Energy Beam Optics (Wiley, New York, 1965); S. Guiducci, Proc. CERN Accelerator School,
CERN 91-04, p. 53, 1991.
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tupoles; in Sec. V.3 we study systematic half-integer stopbands and their effects on
higher-order chromaticity; and in Sec. V.4 we outline basic machine design strategy.

V.I Chromaticity Measurement and Correction

In Sec. III.4, we find that the gradient error can induce betatron tune shift and
betatron amplitude function perturbation. Since the chromatic effect of Eq. (2.323)
gives rise to a systematic gradient error, the resulting betatron tune shift, given by
Eq. (2.196), is

f Avx = -?- hxAKxds « (^ l(5xKxds) 5,
4 7 r / U n T ' (2.324)

\^ = VJ P*AK*dS * ( 4^ / t'K-*8) 6-
The chromaticity, Cx or Cz, defined as the derivative of the betatron tunes vs frac-
tional momentum deviation, is

Cy = ^ , (2.325)

where the subscript y stands for either x or z. The chromaticity arising solely from
quadrupoles is called the "natural chromaticity,"

Cy^tK^fpyKvds. (2.326)

Because the focusing function is weaker for higher energy particles, the betatron tune
decreases with particle momentum, and the natural chromaticity is negative.85

The magnitude of the natural chromaticity Cy,nat depends on the lattice design.
The natural chromaticity of a FODO lattice is given by (see Exercise 2.5.3)

f-rFODO 1 N (flnax Anin \ _ tan($y/2)

where N is the number of cells, / is the focal length, <£y is the phase advance per cell,
and vy = N$y/2n is the betatron tune of the machine. The "specific chromaticity,"
defined as £,y = Cy/vy, is nearly equal to - 1 for a FODO lattice. On the other hand,
for a collider lattice or a low-emittance lattice, the specific natural chromaticity can
be as large as —3.

A beam is composed of particles with different momenta. The momentum spread
of the beam is typically of the order of as ~ 10~5 —10~2 depending on the application
and the type of accelerator. Because of the chromaticity, the momentum spread gives

85In mathematical language, since the betatron amplitude function is always larger at a focusing
location where Ky > 0, the integral § /3yKyds > 0, and Cy < 0.
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rise to tune spread in the beam. If the chromaticity and the momentum spread of
the beam become large enough that the betatron tunes overlap a low-order nonlinear
resonance, particle loss may imminently occur. Furthermore, the growth of transverse
head-tail instabilities depends on the sign of the chromaticity (see Sec. VIII and
Ref. [3]).

A. Chromaticity measurement

Machine chromaticities can be derived from measurements of betatron tunes vs beam
momentum. Since beam momentum is related to rf frequency, the chromaticity can
be obtained from measurements of betatron tune vs rf frequency, i.e.

*-$—»•& <2-328>

where r\ is the phase-slip factor, and wrf is the angular frequency of the rf system (see
Exercise 2.5.8).

Figure 2.40 shows the "measured specific" chromaticities of the AGS.86 Note that
the vertical chromaticity becomes positive above about 22 GeV, but the horizontal
chromaticity becomes more negative. The dashed line shows the value of — ̂ t a n *
of Eq. (2.327), where $ as 53.8° is the phase advance of an AGS FODO cell. From
the experimental data, we find that

1 2 $

Figure 2.40: The measured chro-
maticities divided by the betatron
tunes of the AGS vs the beam
momentum. The dashed straight
line shows the theoretical expected
value. The solid curved line is ob-
tained by modeling the sextupole
field in the dipoles, as discussed in
subsection C.

86E. Bleser, AGS Tech Note No. 288 (1987); E. Auerbach, E. Bleser, R. Them, AGS Tech Note
No. 276 (1987).
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B. Chromatic correction

The natural chromaticity of a high-luminosity collider with low-/?* insertions is usually
large. For example, the natural chromaticity for the Superconducting Super Collider
(SSC) was expected to be about Cy,nat ~ -250, which can lead to a natural tune
spread of about Av « 0.1 for a beam with an rms spread of 8 = ±2 x 10~4. Similarly,
the natural chromaticity for the RHIC injection lattice is about C^nat ~ —50, and
the resulting tune spread will be Av « 0.5 with a beam momentum spread of 6 =
±5 x 10~3. Since a circulating beam with such a large tune spread does not have a
long storage lifetime, chromatic correction is needed to ensure good performance of a
storage ring. This requires a magnet whose focusing function increases linearly with
momentum in order to compensate the loss of focusing in quadrupoles.

First we examine the possibility of using sextupole magnets for chromaticity cor-
rection. The magnetic flux density of a sextupole magnet is

ABZ B2 2 2 ABX B2

-W=2B-P{X ~Z)> -W=BpXZ> ( 2 3 2 9 )

where B2 = d2Bz/dx2\x=z=0. Substituting the transverse displacement of an off-
momentum particle,

x = Xp{s) + D(s)S, (2.330)

where xp is the betatron displacement and D(s)5 is the off-momentum closed orbit,
into Eq. (2.329), we obtain

\ZP 2 2 ( 2 3 3 1 )

[ -^f = -[S(s)D(s)5]z0 - S(s)xpzp,

where S(s) = —B2/Bp is the effective sextupole strength. Note that the first term
of Eq. (2.331) depends linearly on the transverse betatron displacement. Since the
effective quadrupole focusing functions

AKX = S(s)D(s)6, AKZ = -S(s)D(s)S (2.332)

depend linearly on the off-momentum deviation, sextupoles can be used for chro-
maticity correction.87

Including the contribution of sextupoles, the chromaticity becomes

Cx = ^ f P*[K*(S) - S(s)D(s)]ds, (2.333)

Cz = ^ l pz[Kz(s) + S{s)D{s)}ds. (2.334)
4TT J

87It is also worth pointing out that the second term of Eq. (2.331) can produce nonlinear pertur-
bation in betatron motion, called geometric aberration, to be discussed in Sec. VII, where we will
find that the placement of sextupoles is important in minimizing nonlinear resonance strengths.
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This shows that sextupoles located at nonzero dispersion function locations can be
used to correct chromaticity; they are called chromatic sextupoles. Generally, two
families of sextupoles are needed to correct horizontal and vertical chromaticities.
Rules for their placement are as follows.

• In order to minimize their strength, the chromatic sextupoles should be located
near quadrupoles, where (3XDX and /3ZDX are maximum.

• A large ratio of px/pz for the focusing sextupole and a large ratio of /3z/f3x

for the defocussing sextupole are needed for optimal independent chromaticity
control.

• The families of sextupoles should be arranged to minimize the the systematic
half-integer stopbands and the third-order betatron resonance strengths.

For example, we consider a lattice of N repetitive FODO cells, where sextupoles
are located near the focusing and defocussing quadrupoles. Let Sp = —B2{F)la[/Bp
and So = —i?2(D)4d/Sp be the integrated sextupole strengths at QF and QD re-
spectively, where 4f, 4d, and B2(F), 52(D) are the length and the sextupole field
strength at QF and QD. The sextupole strength needed to obtain zero chromaticity
is (see Exercise 2.5.3)

_ 1 sinf 1 sinf
5 F ~ 2 / ^ ( 1 + Isinf)' bD~ 2/20(1-I sinf)' [ }

where / is the focal length, $ the phase advance per cell, and 9 the bending angle
per half-cell.

For colliders or low-emittance storage rings, chromatic sextupoles are also arranged
in families, located in the arcs, which consist mainly of FODO cells or DBA/TBA
type cells. Since the low-/?* values in these lattices give rise to a large chromaticity,
strong sextupoles are needed to correct it. If the intrinsic systematic half-integer
stopband widths are large, the simple chromatic correction scheme using two families
of sextupoles may not be sufficient to correct the higher-order chromatic effects.

Figure 2.41 shows an example of chromatic correction with two families of sex-
tupoles in RHIC. Note that the second-order chromaticity Afx>2 ~ C^2) S2 can cause
substantial tune spread in a beam with a large momentum spread. In Sec. V.3, we
will show that the chromatic gradient error can also create a large betatron am-
plitude function modulation (betabeat), which in turn induces a large second-order
chromaticity. The second-order chromaticity and the betabeat can be simultaneously
corrected by a proper chromatic stopband correction.

C. Nonlinear modeling from chromaticity measurement

The measurements of chromaticities can be used to model nonlinear sextupole fields
in an accelerator. For example, we discuss the nonlinear sextupole modeling of the
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Figure 2.41: Variation of the beta-
tron tune vs Ap/p after chromatic
correction with two and four families
of sextupoles in RHIC.

AGS based on the measured chromaticities shown in Fig. 2.40. Since CX]data < Ci.fodo,
Cz,data > Cz,fodo. and C^data + C2]data = CXtfodo + Cz.fodo, the horizontally defocussing
sextupoles must be located in dipoles, where px « fiz. To model the AGS, we assume
that the sextupole fields arise from systematic error at the ends of each dipole, the
eddy current sextupole due to the vacuum chamber wall, and the iron saturation
sextupole at high field. The systematic error is independent of the beam momentum;
the eddy current sextupole field depends inversely on the beam momentum; and the
saturation sextupole field depends on a higher power of the beam momentum. The
solid lines in Fig. 2.40 represent theoretical calculations with the integrated sextupole
strengths

5b = -5.2 x 10~4 + 5.8 x W~2/p

-(3.6 x 10~4p - 7.0 x 1 0 - V + 2.8 x 10"V) (m"2),

5e = -0.017 (nr2) ,

for the body and the ends of the short AGS bending magnets (2.0066 m) respectively.
Here p is the beam momentum in unit of (GeV/c), 5b is the integrated sextupole
field in each dipole distributed in the whole dipole, and 5e is the integrated sextupole
field distributed only at the end of each dipole. 5e and the first term in 5b may be
considered as the systematic error in dipoles, and they are momentum independent.
The second term in 5b is due to the eddy current on the vacuum chamber wall,
which is inversely proportional to the beam momentum, and proportional to B, where
5 = 2 T/s in this experiment. The saturation term is nonlinear with respect to the
momentum p. For the long magnets (2.3876 m) in the AGS, the integrated sextupole
strength of the 5b term is assumed to be proportional to their length.

A chromaticity of about —Zvx does not appear to cause difficulties in the AGS
operation, which has recently attained an intensity of 6 x 1013 protons per pulse.
Many low energy synchrotrons do not use chromatic correction sextupoles. However,
chromaticity correction is absolutely essential in high energy synchrotrons and storage
rings.
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V.2 Nonlinear Effects of Chromatic Sextupoles

The Hamiltonian including sextupole nonlinearity is

H = | (x'j + Kxxj + 4 + Kzz2) + ^ ( ^ - 3s^ ) . (2.336)

This Hamiltonian can drive third-order and higher-order nonlinear resonances at
3ux = £, vx ± 2vz = £,..., where £ is an integer. However, the nonlinear resonance
strength can be minimized by properly arranged sextupole families. In Sec. VII, we
will show that if chromatic sextupoles are separated by an odd multiple of 180° in the
betatron phase advance, their contributions to the third-order stopband width cancel
each other in the first-order perturbation theory. Thus, four families of sextupoles can
be arranged in a lattice with 90° phase advance per cell, and six families of sextupoles
can be used in a lattice with 60° phase advance per cell. Such arrangements can also
be used to correct the systematic half-integer stopband discussed in the next section.

V.3 Chromatic Aberration and Correction

The systematic chromatic gradient error can produce a large perturbation in the
betatron amplitude functions for all off-momentum particles. Defining the betatron
amplitude difference functions A and B as (see Exercise 2.3.10)

, _ aiPo - aojdi B _ Pi - A>

we obtain

where AK = K\— Ko is the gradient error; the betatron amplitude functions /?o and
Pi satisfy the Floquet equation

P'Q = -2a0, a'o = KoPo - To, d^0/ds = 1/A»

/3'1 = -2a1 , ai = ffi0i-7i, drl>1/d8 = l/fa,

and ipo and ipi are the unperturbed and perturbed betatron phase functions.
From Eq. (2.337), we find that A2 + B2 = constant in regions where AK = 0. In

thin-lens approximation, the change of A across a quadrupole is given by

AA= [Jp^AKds^-^-^-,
J v / Po

where / is the focal length of the quadrupole. Similarly, the change of A across a
sextupole is given by

Av
A A « - f t &ff —,

Po
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where ge$ = (B2As/Bp)D is the effective gradient error, (B2As/Bp) is the integrated
sextupole strength, and D is the dispersion function. Since the phase of A or B
propagates at twice the betatron phase advance (see Exercise 2.3.10), two identical
quadrupoles (sextupoles) separated by odd multiples of 90° in betatron phase advance
cancel each other. Similarly, two identical quadrupoles (sextupoles) separated by an
integer multiple of 180° in betatron phase advance will produce additive coherent
kicks. By using sextupole families, the global chromatic perturbation function of the
lattice can be minimized. The treatment is identical to the stopband integral to be
discussed next.

A. Systematic chromatic half-integer stopband width

We have found that the perturbation of betatron function is most sensitive to stop-
band integrals near p ss [2v] harmonics (see Sec. III.4). Here we investigate the effect
of systematic chromatic stopband integrals. We will show that systematic stopbands
can generate a sizable second-order chromaticity.

The effect of systematic chromatic gradient error on betatron amplitude modula-
tion can be analyzed by using the chromatic stopband integrals of Eq. (2.201):

\jp,x = ^-hxAKxe-^ds,
I llX J (2.338)
[jp,z = —fpzAKze-^ds.

We consider a lattice made of P superperiods, where L is the length of a superperiod
with K(s + L) = K(s), 0(s + L) = /3(s). Let C = PL be the circumference of the
accelerator. The integral of Eq. (2.338) becomes

JP,y = ~{^[PyKye-^ds\ [l + e-*¥ + e"^* + e^3p* + • • •]

= ~{^[PyKye-^ds^ CP(js)e-j*pE^, (2.339)

where y stands for either x or z, and the diffracting function CP (u) is given by

Note that the diffracting structure function £P -» P as u -> integer. Note that

Jp<y = 0, unless p = 0 (Mod P).

At p — 0 (Mod P), the half-integer stopband integral increases by a factor of P, i.e.
each superperiod contributes additively to the chromatic stopband integral.
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Since the perturbation of betatron functions is most sensitive to the chromatic
stopbands near p w [2ux] and [2vz], a basic design principle of strong-focusing syn-
chrotrons is to avoid important systematic chromatic stopbands. This can be achieved
by choosing the betatron tunes such that [2vx] and [2vz] are not divisible by the su-
perperiod P. For example, the AGS lattice has P = 12, and the betatron tune should
avoid a value of 6, 12, 18, etc. The actual betatron tunes at vx/z = 8.8 are indeed far
from systematic half-integer stopbands at p = 6 and 12, and the resulting chromatic
perturbation is small. In fact, the AGS lattice can be approximated by a lattice made
of 60 FODO cells. The important stopbands are located at p = 30,60,90 • • •, which
are far from the betatron tunes. Similarly, the TEVATRON has a super-periodicity
of P = 6, and the betatron tune should avoid 18, 24, 30, etc.88

Generally, it is beneficial to design an accelerator with high super-periodicity so
that the betatron tunes can be located far from the important chromatic stopbands.
Some examples of high superperiod machines are P = 12 for the ALS, P = 40 for
the APS, P = 16 for the ESRF, and P = 22 for the SPRING-8 at JSRF. However,
a high energy accelerator or storage ring with large super-periodicity is costly. Thus
the goal is to design an accelerator such that the chromatic stopband integral of each
module is zero, or the stopband integrals of two modules cancel each other.

B. Chromatic stopband integrals of FODO cells

Now we examine the chromatic stopband integral of the arc, which is composed of JV
FODO cells. The chromatic stopband integral in thin-lens approximation is given by

Jp = ~ ( £ p - ^ p e - ^ ) [l + e-** + e-^i + e-t*>i + • • •]

= y (s in-cosy-+js in^- Cw(f—)e~J—or-, 2.341
Trcosf \ 2 4u \.v I 2-nv

where $ is the phase advance per cell, /3max and /3m;n are values of the betatron ampli-
tude function at the focusing and defocussing quadrupoles respectively, / is the focal
length of each quadrupole, and the diffracting function (N(u) is given by Eq. (2.340).
If p^/2iri/ = 0 (Mod N), the diffracting function is equal to N. This means that
each FODO cell contributes additively to the stopband integral. Fortunately, since
$/27r is normally about 1/4 (90° phase advance) so that p<&/2-Ki> « p/4v ss 1/2, the
chromatic stopband integral at p s» 2v due to ,/V FODO cells is small. In particular,
if N<& = integer XTT, the chromatic stopband of the arc adds up to zero at harmonics
p w 2u, i.e. the stopband integrals a t p « [2i/] resulting from iV FODO cells in the
arcs is small if the total phase advance of these FODO cells is iV$ = integer x 7r,

88The stopbands in a collider can also be minimized by local cancellation of various beam line
modules, to be discussed in the next subsection.
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where the transfer matrix of the arc becomes a unit matrix / o r a half-unit matrix
-I.

C. The chromatic stopband integral of insertions

Because of its small /?* value, the insertion may contribute a substantial amount
to the chromatic stopband integral. Since it is difficult to design an insertion with
zero chromatic half-integer stopband width,89 cancellation of the chromatic stopband
integrals between two adjacent insertions would be desirable.

Let 3>lns and J™s be respectively the phase advance and the chromatic stopband
integral of an insertion. The total contribution of two adjacent insertions becomes

Jp = j;n s[l + e x p ( j ^ ) ] . (2.342)

At the harmonic p « [2v], we obtain Jp = 0 if $lns = (2n+l)ir/2. Thus, if the insertion
is a quarter-wave module, the chromatic stopband integrals of two adjacent insertions
cancel each other. This cancellation principle remains valid when two insertions are
separated by a unit transfer matrix. Such a procedure was extensively used in the
design of the RHIC lattice90 and the SSC lattice.91

D. Effect of the chromatic stopbands on chromaticity

The chromatic stopband integrals for large colliders, such as the SSC and RHIC, re-
main important even after careful manipulation of piecewise cancellation, particularly
when the beam momentum spread is large. They give rise to a large betatron ampli-
tude modulation, called betabeat, and second-order chromaticity for off-momentum
particles. The following example illustrates the effect of betatron amplitude function
modulation on chromaticity.

We consider a lattice dominated by a single p harmonic half-integer chromatic
stopband. The betatron modulation of the lattice is given by

A / 3 _ |JPlcos(p0 + x) , .
T 2(u-p/2) ' ( 2 ' 3 4 3 )

where the chromatic stopband integral Jp is given by Eq. (2.338), and is proportional
to 5. Substituting /3 = A>(1 + A/3/A0 into Eq. (2.324), we obtain

Auy = C^5 + C^52 + ---, (2.344)

89In fact, high-/? triplets or doublets on both sides of the IP contribute additively to the systematic
half-integer stopband near p « 2vx/z.

90S.Y. Lee, J. Claus, E.D. Courant, H. Hahn, G. Parzen, IEEE Trans. Nud. Sci. NS-32, 1626
(1985).

91 A. Garren, private communications. See also the SSC report.
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where y stands for either x or z, and C^ and C£2) are the first- and second-order
chromaticities

c»1} = ~h / &(*» ~ 5̂ )rfSi (2-345)

If the first-order chromaticity is corrected, then C 1̂̂  = 0. The remaining second-order
tune shift C^62 can arise from the chromatic stopband integral. Figure 2.41 shows an
example of the second-order chromatic tune shift with 8.92 The stopband correction
that minimizes the /3-modulation also minimizes the second-order chromaticity. We
next discuss the half-integer chromatic stopband correction using sextupole families.

E. Effect of sextupoles on the chromatic stopband integrals

The chromatic sextupoles also contribute to the systematic chromatic stopbands.
Here we present an example of chromatic correction for a collider lattice.

First we evaluate the stopband integral due to the chromatic sextupoles. Let S?
and SD be the integrated sextupole strength at QF and QD of FODO cells in the arc.
The p-th harmonic stopband integral from these chromatic sextupoles is

JP,sext = £- C {Jr-) [fcSFDF + pDSDDDe-^2"} e-;W-Dp*/2", (2.347)

where N is the number of cells, and the diffraction function £N is given by Eq. (2.340).
As in Eq. (2.339), the stopband integral is zero or small if N$/n = integer, i.e.
the chromatic sextupole does not contribute significantly to the chromatic stopband
integral if the transfer matrix of the arc is / or —/.

To obtain a nonzero chromatic stopband integral, sextupoles are organized in
families. We consider an example of a four-family scheme with

{SFI = Sp + Ap, Sox = SQ + AD, SF2 = Sp — Ap, D^ = Su — AD},

that is commonly used in FODO cells with 90° phase advance. Here the parameters
5F and So are determined from the first-order chromaticity correction, Since /3(s)
and D{s) are periodic functions of s in the repetitive FODO cells, the parameters
AF, AD will not affect the first-order chromaticity, which is proportional to the zeroth
harmonic of the stopband integral. However, the chromatic stopband integrals due
to the parameters Ap and AD are given by

AJp,sext = ^ C v ( | ^ - \) [/3FAFZ?P + / ? D A D Z W * / 4 " ] e - ^ - D K r W - a / ^ .

(2.348)

92S.Y. Lee, G.F. Dell, H. Hahn, G. Parzen, Proc 1987 Part. Accel. Conf., p. 1328, (1987).
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At p « [2i/] and $/2TT W 1/4 (90° phase advance), we have (w -> JV, i.e. every FODO
cell contributes additively to the chromatic stopband. The resulting stopband width
is proportional to Ap and AD parameters. By adjusting Ap and AD parameters, the
betabeat and the second-order chromaticity can be minimized. The scheme works best
for a nearly 90° phase advance per cell with N$ — integer x TT, where the third-order
resonance-driving term vanishes also for the four-family sextupole scheme. Fig. 2.41
shows an example of chromatic correction with four families of sextupoles in RHIC,
where the second-order chromaticity and the betatron amplitude modulation can be
simultaneously corrected.

Similarly, the six-family sextupole scheme works for 60° phase advance FODO
cells, where the six-family scheme

{Spi, SDI, 5F2, Dm, SF3,5D3} (2.349)

has two additional parameters.

V.4 Lattice Design Strategy

Based on our study of linear betatron motion, the lattice design of accelerator can be
summarized as follows. The lattice is generally classified into three categories: low
energy booster, collider lattice, and low-emittance lattice storage rings.

• The betatron tunes should be chosen to avoid systematic integer and half-integer
stopbands and systematic low-order nonlinear resonances; otherwise, the stop-
band width should be corrected.

• The chromatic sextupoles should be located at high dispersion function loca-
tions. The focusing and defocussing sextupole families should be located in
regions where /3X 3> /3Z, and px <C Pz respectively in order to gain independent
control of the chromaticities.

• The betatron amplitude function and the betatron phase advance between the
kicker and the septum should be optimized to minimize the kicker angle and
maximize the injection or extraction efficiency. Local orbit bumps can be used
to alleviate the demand for a large kicker angle. Furthermore, the injection
line and the synchrotron optics should be properly "matched" or "mismatched"
to optimize the emittance control. To improve the slow extraction efficiency,
the j3 value at the (wire) septum location should be optimized. The /3X and j3z

values at the injection area, particularly in the strip injection scheme, should be
adjusted to minimize emittance blow-up due to multiple Coulomb scattering.
The local vacuum pressure at the high-/? value locations should be minimized
to minimize the effect of beam gas scattering.
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• It is advisable to avoid the transition energy for low to medium energy syn-
chrotrons in order to minimize the beam dynamics problems during accelera-
tion.

• Experience with low energy synchrotrons indicates that the Laslett space-charge
tune shift should be limited to about 0.3 (see Exercise 2.3.2). This criterion
usually determines beam emittance and intensity.

Besides these design issues, problems regarding the dynamical aperture, nonlinear
betatron detuning, collective beam instabilities, rf system, vacuum requirement, beam
lifetime, etc., should be addressed. Some of these issues will be addressed in this
introductory textbook. The design of minimum emittance electron storage rings will
be discussed in Chap. 4, Sec. III.

Exercise 2.5
1. Show that the chromaticity of an accelerator consisting of N FODO cells in thin-lens

approximation is
F 0 D 0 _ tan($/2)

Onat - ^ — ^ ,

where $ is the phase advance per cell and v = N$/2n is the betatron tune.

2. A set of three quadrupoles ({QFI QD2 QF3} or {QDI QF2 QD3}), called a low-/3
triplet, is commonly used in insertion regions to provide horizontal and vertical low-/3
squeeze.

(a) Show that the low-beta triplets contribute about

__2As___J_ //3max

4TT/8* ~ 2n\j /3*

units of natural chromaticity, where As is the effective distance between the
triplet and the interaction point (IP), /3* is the value of the betatron amplitude
function at IP, and /3max is the maximum betatron amplitude function at the
triplet.

(b) If /9max > jS*, show that the betatron phase advance between the triplet and IP
is 7r/2.

(c) Show that the triplets on both sides of IP contribute additively to the stopband
integral at p w 2u, where v is the betatron tune.

3. Show that the strengths of two sextupole families used to correct the chromaticities
of FODO cells are

1 sin($/2) = 1 sin($/2)
F 2/20(l + isin($/2))' D 2/26>(l-I sin($/2))'

where / is the focal length of the quadrupole in the FODO cell, 9 is the dipole bending
angle of a half FODO cell, and $ is the phase advance of the FODO cell. Note that
the required sextupole strength is larger at the defocussing quadrupole.
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4. Show that the chromatic stopband integrals for a lattice made of JV FODO cells in
thin-lens approximation are

JPiX = -i. ( ^ 1 - MEle-W*) ^(JLje-W-i)/^

where $ x , $ z , and vx, vz are the phase advances per cell and the betatron tunes,
Px,Pz axe betatron amplitude functions, / F and /D are focal lengths for focusing and
defocussing quadrupoles, and the diffraction function C,N{u) is given by Eq. (2.340).
Assuming / F = fD with $ T = $ z = $ = 2nu/N, show that the chromatic stopband
integral is

j" - -Jit h ?cos s+'si° 5} f -w 1 ""-"
5. Verify Eq. (2.347) and Eq. (2.348).

6. The AGS is composed of 12 superperiods with 5 nearly identical FODO cells per
superperiod. The betatron tunes are vz = 8.8 and vx = 8.7. Calculate the systematic
stopband widths for harmonics 17 and 18 respectively. What region of betatron tunes
should be avoided to minimize the effect of systematic stopbands?

7. The Fermilab booster is a combined function synchrotron. The lattice is made of 24
cells, as shown below.

FNALBSTCELL : LINE = (BF S120 BF S050 BD S600 BD S050)
BF : SBEND L = 2.889612 Kl = 0.0542203 ANGLE = 0.070742407
BD : SBEND L = 2.889612 Kl = -0.0577073 ANGLE = 0.060157561
Sabc : DRIFT L = a.bc

Find the systematic stopband width and discuss the choice of the betatron tunes.

8. Use the experimental data below to calculate the chromaticity of the IUCF cooler
ring, where 7T = 4.6 and C = 86.82 m, at 45 MeV proton kinetic energy.

Betatron tunes vs revolution frequencies of the cooler

Frequency [MHz] I 1.032680 I 1.031680 I 1.030680
Qx 3.7156 3.7243 3.7364

_Qz | 4.6790 1 4.6913 | 4.7080
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VI Linear Coupling

We have discussed uncoupled linear betatron motion, but in reality betatron motions
are coupled through solenoidal and skew-quadrupole fields. The solenoidal field exists
in electron cooling storage rings, and in high-energy detectors at the interaction point
(IP). The skew-quadrupole field arises from quadrupole rolls, vertical closed-orbit
error in sextupoles or horizontal closed-orbit error in skew sextupoles, fringe field of
a Lambertson septum, and feed-downs from higher-order multipoles.

Linear betatron coupling is both a nuisance and a benefit in the operation of
synchrotrons: the available dynamical aperture for particle motion may be reduced,
but the vertical emittance of electron beams in storage rings can be adjusted, and
the Touschek lifetime limitation can be alleviated by linear coupling.

Here we discuss the beam dynamics associated with linear betatron coupling aris-
ing from skew quadrupoles and solenoids. The effective linear coupling Hamiltonian
and resonance strength will be derived based on perturbation approximation. Here
we find that the linear coupling can induce amplitude exchange between horizontal
and vertical betatron motions.93 Measurement and correction of linear coupling will
also be discussed.

VI. 1 The Linear Coupling Hamiltonian

The vector potentials for skew quadrupoles and solenoids are given by

Ax = Az = 0, As = -(-^- —zr—)x z , f°r skew quadrupoles,

x 21dz dx (2.350)
Ax = ̂ Bl\(s)z, Ag = --B\\(s)x, As = 0, for solenoids,

where \ir§£- — ^-f) and B\\(s) are skew-quadrupole gradient94 and solenoid field
strength. Substituting the components of the vector potential in Eq. (2.350) into the
Hamiltonian in Eq. (2.19), we obtain the linearized Hamiltonian for particle motion
in accelerators as (see Exercise 2.6.3):

x" + Kx(s)x + 2gz' -(q- g')z = 0,

z" + Kz{s)z + 2gx' -(q + g')x = 0, (2.351)

93In Sec. IV, we show that a skew quadrupole at a high horizontal dispersion location can produce
vertical dispersion, which can generate vertical emittance for electron beams and result in lower
luminosity for colliders (see Exercise 2.4.10).

94 The skew quadrupole can also arise from "feed-down" of an off-centered vertical closed orbit in
sextupoles. Let zco be the closed orbit at a sextupole with sextupole strength B? = d2Bz/dx2. The
effective skew quadrupole strength becomes q = B2Zco/Bp.
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where the primes are derivatives with respect to the independent variable s, Kx and
Kz are quadrupole-like focusing functions, and

are effective solenoid and skew quadrupole strengths.
Let (x,px/p;z,pz/p) be the conjugate phase space coordinates. The betatron

motion of Eq. (2.351) can be derived from the following linearized Hamiltonian:

-q{s)xz - g{s) \^z - ^ J . (2.353)

Here the linear coupling potential is

Vlc = -qxz - s i " - * " - * 1 • (2-354)
[P P J

Using Floquet transformation of Eq. (2.94) for the uncoupled Hamiltonian, we
obtain the coupling-potential:

Vic = (^2JxJ,)1/2|[-Q + fffe-^][cos(^ + $2)+cos($x-$z)]

+9 (jx ~ j ^ sin($x + $,) + g (J- + j^j sin(*s - *,) J , (2.355)

where
rs f^Q

®x = <t>x+ Xx{s) ~ VXB, Xx= ^ - ,
JO Px

$z = <i>z+ Xz (s) - vz9, Xz= Jo j - ,

and (Jx, <j>x) and (Jz, <j>z) are pairs of conjugate phase-space coordinates. Since V\c{s)
is a periodic function of s, it can be expanded in Fourier harmonics as

VXc{9) = ̂ 5 £ {( G l ,_ M e^-^ + *-> + c.c) + (G l ,we**-"--"^ + c.c)} ,

(2.356)
where R is the average radius of the accelerator, £ is an integer. The Fourier co-
efficients of the difference and sum resonances, G\ ^neJX~ and G\\ie3XJr, are given
by

Gl'™ *** = h f V ^ ^ s ) eSbc^X'-f^-Wda. (2.357)
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Here vx, vz are betatron tunes, Xx = So ds/@x, %z = So ds/Pz are betatron phases, and
the linear coupling kernel ^4ic^(s) are

A^{s) = - ^ + g(s)(f - Hi) + jg(s)(~ ± h , (2.358)
P Px Pz Px Pz

obtained from the linear coupling potential of Eq. (2.355). Both skew quadrupoles
and solenoids can drive the sum and difference linear coupling resonances. Table VI. 1
lists the corresponding driving terms.

Table 2.2: Linear coupling resonances and their driving terms
Resonance Driving phase Amplitude- Classification

dependent factor
vx + Vi=l ($x + $z) ji/2ji/2 sum resonance
vx - v2 = £ ($x - $z) J]j2 J\l2 difference resonance

The linear coupling potential has been decomposed into terms of the difference
and sum resonances located respectively at vx — vz = £ and vx -\- vz = £', where £ and
£' are integers. In general, the coupling betatron sum-resonances are dangerous to
the stable betatron motion,95 the optics of the betatron motion is normally designed
to avoid sum resonances.

If the linear coupling kernel A\CT satisfies a periodic condition similar to that in
a synchrotron with P superperiods, the resonance coupling coefficient GiiTi^ will
be zero unless £ is an integer multiple of P. If £ is an integer multiple of P, each
superperiod contributes additively to the linear coupling resonance strength. This
is called the systematic linear coupling resonance. For example, since the super-
periodicity of the LEP lattice is 8, the difference between the integer part of the
horizontal and vertical betatron tunes should not be 0, 8, 16, • • -, to minimize the
effect of the systematic linear coupling resonance. The strength of the linear coupling
resonance due to random errors such as quadrupole roll and vertical closed orbit in
sextupoles is smaller. It occurs at all integer £.

Near a difference linear coupling resonance, the horizontal and vertical betatron
motions are coupled. The coupling resonance can cause beam size increase and de-
crease the beam lifetime. Thus the linear-coupling resonance-strength should be
minimized, and the resonance strength is usually small. Thus the effective Hamilto-
nian for betatron tunes near an isolated coupling resonance will be discussed in the
following sections.

95We will show, in Sec. VII, that the horizontal and vertical betatron amplitudes can grow without
bound near a betatron sum resonance.



VI. LINEAR COUPLING 189

VI. 2 Effects of an isolated Linear Coupling Resonance

Since the betatron tunes are normally near the linear coupling line, this section studies
the effects of an isolated coupling resonance on betatron motion.

A. Effective Hamiltonian for a Single Linear Coupling Resonance

Near an isolated coupling resonance vx - vz = I, the Hamiltonian Eq. (2.353), in
action-angle phase space coordinates, can be approximated by

H a* vxjx + i>zJz + Gi-lttJj^Jzcos{<l>x -<pz-ie + x), (2.359)

where the Fourier amplitude Gi,_i,£ and the phase factor \- a r e given by Eq. (2.357).
The Hamiltonian Eq. (2.359) corresponds to two coupled linear oscillators, which

can be expanded in terms of two normal modes with tunes (see Exercise 2.6.5)

V\,± = l£yx + vz + l)±-^\, u2,± =-(vx + vz - £) ±-X (2.360)

where
A = yl(vx -v,- If + |Gi,_M|2. (2.361)

This means that the betatron tunes are separated by A, and the minimum separation
between the normal mode tunes is |Glj_lj^|. Figure 2.42 shows an example of measured
betatron tunes vs quadrupole strength at the IUCF cooler ring. As the strength of
a quadrupole is varied across the linear coupling resonance vx — vz + 1 « 0 (I = — 1
for the IUCF Cooler), the betatron tunes of normal modes approach each other,
reaching a minimum value of tune separation, |(?i,--i,£| as demonstrated in Fig. 2.42.
This method has been commonly applied to measure the linear coupling strength,
and provide linear coupling correction.

Figure 2.42: The measured be-
tatron normal mode tunes vs
the strength of an IUCF cooler
quadrupole, showing that the hor-
izontal and vertical motion are
coupled. The minimum distance
between two normal modes is
equal to the coupling coefficient
jd?iT_i |̂. The vertical axis is
the fractional part of the betatron
tunes, and the horizontal axis is
the digital to analog conversion
(DAC) unit of a COMBO power
supply for a set of horizontally fo-
cusing quadrupoles.
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B. Resonance precessing frame and Poincare surface of section

We transform the Hamiltonian Eq. (2.359) into the "resonant precessing frame" by
using the generating function

F2{<j)x, <t>z, J\, h) = ((t>x -<t>z-£0 + X)J\ + <t>zJ2,

where the new action-angle variables are

</>l = <t>x - <t>z - 26 + X, 02 = 4>z, J\ = Jx, J i = Jx + Jz-

The new Hamiltonian is

H = HiiJufa, J2) + H2{J2),

Hx = 6^ + G i ,_ v > / J i ( J2 - Ji) cos <fc, (2.362)
H2(J2) = vzj2,

where Si =vx — vz—l'vs the resonance proximity parameter. The system is integrable
with two invariants J2 and H\ = E±. Since J2 is invariant, we obtain

Jx + Jz = J2 = constant. (2.363)

The horizontal and vertical betatron motions exchange their actions while the sum
of actions is conserved.

Hamilton's equations of motion are

Ji = G i , - W J i ( J 2 - J i ) s i n < ^ (2-364)

0! = 5!+Gi_ 1 £ —. 2 l cos0x. (2.365)
' '2y/Ji(J2-Ji)

For a given J2, all tori can be described by a single parameter Ei that is determined
from the initial condition. The particle motion in the resonant precessing frame is
determined completely by the condition of a constant J2 and a constant Hamiltonian
value Hi(Ju <j>u J2) = Ex.

C. Initial horizontal orbit

We first consider the simple orbit with "energy" E\ = SiJ2, which corresponds to an
initial horizontal betatron oscillation with Jiimax = J2. The particle trajectory that
satisfies Hi = 61J2 is

P2 + Q2 = 2J2, (2.366)

Q̂  + | F 2 = 26p2, (2.367)
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where A = JS{ + IGI,-!^!2 , and the normalized coordinates Q, P are

Q = fehcosfa, P^-^/zhsinfa. (2.368)

Figure 2.43 shows a schematic plot of the Courant-Snyder circle and the coupling
ellipse of Eqs (2.366) and (2.367). The phase coordinate fa of Eq. (2.365) changes
rapidly on the Courant-Snyder circle, where Ji = J2.

Figure 2.43: Schematic drawing of the Courant-
Snyder circle of Eq. (2.366) and the coupling el-
lipse of (2.367) with 5i = X/s/2. The size of the
ellipses depends on the initial condition. If there
is no other noise source, particle motion will fol-
low the path of solid (or dashed) lines. Based on
the equations of motion (2.364) and (2.365), the
phase (f>i rapidly varies on the Courant-Snyder
circle (see the top right plot of Fig. 2.47).

When the particle trajectory moves along the Courant-Snyder circle shown in
Eq. (2.366), the phase fa varies very rapidly. As the betatron oscillation reaches
Q = 0,P = sfiT-i, the particle follows the coupling ellipse, Eq. (2.367), which is
inside the Courant-Snyder circle. The minimum horizontal amplitude is

Qmin = %fih. (2.369)
A

If S\ 3> |Gi,_i^|, then Qmm ~ V^h and the betatron coupling is negligible. If 6i = 0,
the coupling ellipse becomes a straight line cutting through the origin Q = 0 and
P = 0. This means that the horizontal action can be fully converted to vertical
action and vice versa.

D. General linear coupling solution

The fixed points of the Hamiltonian are determined by the conditions j \ = 0 and
fa = 0. They are located at fa = 0 or TT with

S1 ± Gx,-M / 2 ~ 2 J l = 0. (2.370)
2 / M J 2 - . / 1 )
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The stable fixed points (SFPs) of the Hamiltonian are

J (2 "" °i/AA)J2' ( 0 1 - 0 ) -fr . n

[ \ (5 + <*i/2A) J2, (0i = TT)

At SFPs, the horizontal and vertical betatron motions are correlated in phase without
exchange in betatron amplitudes. Figure 2.44 shows 6 Poincare surfaces of section
in the resonance rotating frame with a given value of J2 = Jx + Jz. The results
are obtained from simple tracking calculations of particle motion in a synchrotron
with perfect linear decoupled betatron motion everywhere except a localized skew
quadrupole kick, where the betatron tunes are vx = 4.820, vz = 4.825 and the strength
of the skew quadrupole is a\/p = 0.00628 m"1. The values of betatron amplitude
functions are /3X = 10 m and f}z = 10 m at the skew quadrupole location. Thus the
effective resonance strength is about G\t-ifi = 0.01.

Figure 2.44: Phase space ellipses of P vs
Q given by Eq. (2.368) in the resonance ro-
tating frame obtained from numerical simula-
tions of particle motion in a synchrotron with
linear betatron motion and a localized skew
quadrupole kick. The values of the betatron
amplitude functions at the skew quadrupole
location is fix = 10 m, and j3z = 10 m; the
betatron tunes of the machine are vx = 4.82
and vz = 4.825; the skew quadrupole strength
is a\/p = 0.00628 m"1. These ellipses corre-
spond to various initial J\ and (pi values with
J2 = 90TT mm-mrad. Note that the structure
of the phase space ellipses remains the same
if J2 is varied.

With the coupling ellipse Eq. (2.367) rewritten as G\t-\/ \fT\ cos 4>\ — &\y/7^—~J[,
the Courant-Snyder ellipse Eq. (2.366) is divided into two halves (see Figs. 2.43 and
2.44). Using Hamilton's equations [Eqs. (2.364) and (2.365)], we obtain

Ji + X2Ji = A2 J, (2.372)

where
J = (2Ji£ + Gl_litJ2)/2\2

with a Hamiltonian value E = 5\J\ + Gi^iti^Ji(J2 - Ji) cos</>i. Thus the evolution
of the action coordinate at a linear coupling resonance is given by

h = /72-(£/A)2cos[A0 + <p] + J, (2.373)
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where \E\ < XJ, and tp is an initial phase factor. The SFPs of Eq. (2.371) correspond
to the orbit with E — ±AJ = i A J ^ p . Note that the tune of the linear coupling
motion is independent of betatron amplitude.96

If particles in a given bunch distribution have identical betatron tunes, linear
coupling can cause bunch shape oscillations; the bunch will resume its original shape
after A"1 revolutions. But, if particles have different betatron tunes, they will orbit
around different fixed points at different island tunes, and the motion will decohere
after some oscillation periods.

Figure 2.45: The measured coherent betatron oscil-
lations excited by a horizontal kicker. The linear cou-
pling gives rise to beating between the horizontal and
vertical betatron oscillations. The tune of beating
is equal to A = yj(vx - uz)2 + |Gi,_i,*|2. The beat
period were measured to be about 120 revolutions,
which corresponds to A ss 0.0083.

VI.3 Experimental Measurement of Linear Coupling
To measure the effect of linear coupling, the horizontal and vertical betatron tunes
are tuned to the linear coupling resonance line at vx — vz = t. In the following, we
discuss an experimental study of linear coupling at the IUCF cooler ring. The cooler
is a proton storage ring with electron cooling. The circumference is about 86.82 m,
and the betatron tunes for this experiment were chosen to be vx = 3.826, vz = 4.817
with ux — vz ss —1.

The experiment started with a single bunch of about 5 x 108 protons with kinetic
energy of 45 MeV at the Indiana University Cyclotron Facility cooler ring. The cycle
time was 10 s, and the injected beam was electron-cooled for about 3 s before the
measurement, producing a full-width at half-maximum bunch length of about 9 m

96The motion about SFPs of a nonlinear Hamiltonian resembles islands in the phase space and is
thus called island motion. Stable islands are separated by the separatrix orbit that passes through un-
stable fixed points (UFPs). However, there is no UFP for the linear coupling Hamiltonian Eq. (2.362).
The number of complete island motions in one revolution is called the "island tune." Here we find
that the island tune of coupling motion around SFPs is equal to A, which is independent of the
betatron amplitude.
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Figure 2.46: The betatron oscillations of
Fig. 2.45 are transformed to the Poincare
map in the normalized coordinates (x,Vx)-
The amplitude modulation of betatron mo-
tion is translated into breathing motion in the
Poincare map. The vertical map (z,Vz) is out
of phase with that of the horizontal map.

(or 100 ns) depending on the rf voltage. The rf system used in the experiment was
operating at harmonic number h = 1 with frequency 1.0309 MHz. Since the emittance
of the beam in the cooler is small (0.05 7r-mm-mrad), the motion of the beam can be
visualized as a macro-particle.

The coherent betatron oscillation of the beam was excited by a single-turn trans-
verse dipole kicker. For the IUCF cooler ring, we used a kicker with rise and fall times
at 100 ns and a 600 ns flat top. This is sufficient for a single bunch with a bunch length
less than 100 ns at 1.0309 MHz revolution frequency. The subsequent bunch trans-
verse oscillations from a BPM are detected and recorded. Figure 2.45 shows a typical
example of the beating oscillations due to the linear betatron coupling following a
horizontal kick.

The beat period were measured to be about 120 revolutions, which corresponds
to A « 0.0083. The linear coupling in the IUCF cooler ring arose mainly from the
solenoid at the electron cooling section, and possibly also from quadrupole roll and
vertical closed-orbit deviations in sextupoles. The Lambertson septum magnet at the
injection area also contributed a certain amount of skew quadrupole field, which was
locally corrected.

Note that the betatron beating between the x and z betatron motion gives rise
to energy (action) exchange between the horizontal and vertical betatron oscillations.
In the presence of linear coupling, the measured betatron tunes correspond to normal
modes of the betatron oscillations. The tune separation between these two normal
modes is equal to A of Eq. (2.360). Figure 2.42 shows the normal-mode tune vs
quadrupole combo.97 The minimum tune splitting of these two normal modes is
equal to the magnitude of the linear coupling constant, IGi^j^.

97 A tune combo is a combination of power supply to a set of quadrupoles for achieving independent
horizontal or vertical tune change.
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Figure 2.47: The top left shows the actions Jz vs Jx near a linear betatron resonance.
The Poincare surface of section in the resonant processing frame derived from (x, x') and
(z,z') is shown in the top right plot, where Q = yJ2J\Pxcos(j>i, P = -,J2Ji(}xsm<l>i, and
f)x = 7.55 m. The resonance phase was fitted to obtain an upright torus. The bottom plots
show the action Ji (left) in [Tr-mm-mrad] and its time derivative, dJ\/dN (right) in [7r-mm-
mrad/turn]. The solid line in the bottom left plot shows a five-point running average. The
solid line in the bottom right plot shows a fit by using Eq. (2.364) to obtain the coupling
strength Git-ite = 0.0078 and the coupling phase x = 1-59 rad.

Measurement of linear coupling phase

To measure the linear coupling phase x, we can transform the horizontal and the
vertical Poincare maps into the resonant precessing frame discussed in Sec. II. Fig-
ure 2.46 shows the normalized phase space x, Vx (a similar plot can be obtained for
z, Vz) of the data shown in Fig. 2.45. Because of linear coupling, the horizontal and
vertical phase-space maps were completely smeared. Transforming the phase space
into the resonant precessing frame, the torus of the 2D Hamiltonian is shown in the
upper right plot in Fig. 2.47, where the particle motion follows the solid line of the
Courant-Snyder invariant circle and the coupling ellipse shown in Fig. 2.43. The
orientation of the resonant line was used to determine the coupling phase x = 1-59
rad, where the relative betatron phase advances at the locations of the horizontal and
vertical BPMs were included.
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Measurement of coupling strength Git-ij

The measured action J\ as a function of time and its time derivative dJi/dN = 2irJi
are plotted in the bottom plots of Fig. 2.47, where a five-point moving average of Ji
is used to obtain a better behaved time derivative of the action Ji. The data of the
time derivative dJi/dN are fitted with Eq. (2.364) to obtain Gh-he = 0.0078 ±0.0006
and x — 1-59 rad, shown as a solid line in the lower graph of Fig. 2.47.98

The Poincare map derived from experimental data at a 2D linear coupling reso-
nance shows invariant tori of the Hamiltonian flow (see Fig. 2.47, top right plot and
the solid line in Fig. 2.43). Using these invariant tori and Hamilton's equations of
motion, we can determine the magnitude and the phase of the linear betatron cou-
pling. The magnitude of the linear coupling obtained from the invariant tori agrees
well with that obtained by the traditional method of finding the minimum separa-
tion of the betatron tunes with combos of quadrupole strengths. In a single digitized
measurement, we can obtain the magnitude and phase of the linear coupling. Such
a correction method can be used for on-line diagnosis to make the choice of skew
quadrupole correction families more efficient.

Knowing the dynamics of the linear coupling of a single-particle motion may also
help unravel questions concerning the dynamical evolution of the bunch distribution
when the betatron tunes ramp through a coupling resonance. Such a problem is
important for polarized proton acceleration in a low to medium energy synchrotron,
where the vertical betatron tune jump method is used to overcome intrinsic depo-
larizing resonances. When the betatron tunes cross each other adiabatically after
the tune jump, the increase in vertical emittance due to linear coupling may cause
difficulty in later stages of polarized proton acceleration.

VI.4 Linear Coupling Correction with Skew Quadrupoles

The linear coupling resonance is usually corrected by maximizing the beat period
of the transverse betatron oscillations using a pair, or at least two families, of skew
quadrupoles. Figure 2.48 shows the output from a spectrum analyzer using the A-
signal of a horizontal beam position monitor (BPM) as the input." The spectrum
analyzer was tuned to a horizontal betatron sideband and was triggered 1.5 ms before
the beam was coherently excited by a horizontal kicker. The beat period shown in
Fig. 2.45 corresponds to the time interval between the dips of Fig. 2.48. The procedure
for linear coupling correction is as follows

98Note that the coupling line shown in the Poincare surface section (upper left) plot of Fig. 2.47
has a small curvature. This implies a smaller nonlinear betatron detuning for the IUCF cooler ring.

"The difference signal or a A-signal from BPMs carries the information of betatron oscillations
around the closed orbit. A spectrum analyzer operating at zero span mode is a tuned receiver that
measures the power of betatron motion.
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1. Maximize the peak to valley ratio in the spectrum by using quadrupole combos.
This is equivalent to setting Si = 0 for attaining 100% coupling.

2. Maximize the time interval between dips (or peaks) of the spectrum by using
families of skew quadrupoles. This reduces the coupling strength Gi,-i/.

Repeated iteration of the above steps can efficiently correct the linear coupling pro-
vided that the skew quadrupole families have proper phase relations. This procedure
is however hindered by the betatron decoherence and by the 60 Hz power supply
ripple, which is evident in Fig. 2.48. Other possible complications are closed-orbit
changes due to off-center orbits in the quadrupoles and skew quadrupoles. However,
the most important issue is that there is no guarantee a priori that the set of skew
quadrupoles can properly correct the magnitude and phase of the linear coupling.
Thus measurement of the coupling phase is also important.

Figure 2.48: The spectrum of the
A-signal from a horizontal BPM
from a spectrum analyzer tuned to
a betatron sideband frequency with
resolution bandwidth 30 kHz and
video bandwidth 30 kHz triggered
1.5 ms before a coherent horizontal
kick. Note that (1) the time interval
between these dips corresponded to
the beat period of Fig. 2.45, (2) the
decay of the power spectrum cor-
responded to betatron decoherence,
and (3) the characteristic change in
features at a 17 ms interval corre-
sponded to a strong 60 Hz ripple,
which altered betatron tunes.

VI.5 Linear Coupling Using Transfer Matrix Formalism

So far, our analysis of linear coupling has been based on single-resonance approx-
imation in perturbation approach. The transfer matrix method of Sec. II can be
expanded into 4x4 matrix by using transfer matrices for skew quadrupoles (Exercise
2.6.1) and solenoids (Exercise 2.6.2).

The 4x4 transfer matrix in one complete revolution can be diagonalized to obtain
normal-mode betatron amplitude functions, and the coupling angle at each position
in the ring.100 This procedure has been implemented in MAD [19] and SYNCH [20]
programs (see Exercise 2.6.6).

100D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. NS20, 855 (1973); F. Willeke and
G. Ripken, p. 758 in Ref. [11] (1988); J.P. Gourber et al, Proc. 1990 EPAC, p. 1429 (1990); G.
Guignard, et o(., ibid. p. 1432 (1990).
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Exercise 2.6
1. This exercise derives the linear transfer matrix for a skew quadrupole, where the

magnetic field is

Bl = -Boalz, Bx = BoalX, Bs = 0; with B0oi = \ (^ - ~ )
2 \ dx dz Jx=z=0

where Bo is the main dipole field strength, and oi is the skew quadrupole coefficient
in multipole expansion of Eq. (2.25). Apparently, the skew quadrupole field satisfies
Maxwell's equation dBz/dz + dBx/dx = 0. The vector potential is

As = -BQCLIXZ, AX = 0, Az = 0.

(a) Show that the equation of motion in a skew quadrupole is

x" + qz = 0, z" + qx = 0, where q = - — ̂  = —.

Bp dz p

(b) Show that the transfer matrix of a skew quadrupole is

/ C+ S+/Jq C_ 5_/V9\
-JqS- C+ -JqS+ C_

C_ 5_/V? C+ S+/^q\
\-y/qS+ C_ -y/qS- C+ I

where
cos 6 + cosh 6 cos 6 — cosh 0

C + = 2 ' ° - = 2̂  '
_ s i n # + sinh# sin^ — sinhS

5 + = 2 ' 5 - = 2 '

0 = ̂ fqL, and £ is the length of the skew quadrupole.

(c) The coordinate rotation from {x, z) to (x, z) by an angle tj> is

(
i \ / a: \ / cos (̂  0 sin (j> 0 \

£' I p/j,\ I ^ p/j-v f 0 C0Sl^ 0 s i n 0 I
. = W ) ^ , RW=\ sin(j) 0 c o s ^ 0 •

5 ' / \z'/ V 0 - s in^ 0 cos(f>J

Show that the transfer matrix of a skew quadrupole is

Mskew quad = -R(-45°)Mquadi?(45°),
where Mqua<j is the transfer matrix of a quadrupole. This means that a skew
quadrupole is equivalent to a quadrupole rotated by 45°.

(d) In the thin-lens limit, i.e. L —> 0 and qL —> 1 / / , where / is the focal length,
show that the 4x4 coupling transfer matrix reduces to

"-1 + T»- v - d »)• " < ' 2)-
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2. Linear transfer Matrix of a Solenoid: The particle equation of motion in an ideal
solenoidal field is

x" + 2gz' + g'z - 0, z" - 2gx' - g'x = 0,

where the solenoidal field strength is g = —2p •

(a) Show that the coupled equation of motion becomes

y" - jtgy' - jg'y = o,

where y = x + jz, and j is the complex imaginary number.

(b) Transforming coordinates into rotating frame with

y = y e ~ ^ " \ w h e r e 9 = 1 g d s ,
Jo

show that the system is decoupled, and the equation of motion becomes

y" + g2y = 0.

Thus both horizontal and vertical planes are focused by the solenoid.

(c) Show that the transfer matrix in the rotating frame is

(
cosS j s in0 0 0 \

-gsmO cos0 0 0 |
0 0 cos6> i s i n t f l '
0 0 -gsin9 cosfl /

where 9 = gs.101

(d) Transforming the coordinate system back to the original frame, i.e. y = e? y,
show that the transfer matrix for the solenoid becomes

( cos20 isinflcosfl -sin0cos6> - i s i n 2 0 \

—g sin 9 cos 9 cos2 9 gs'm92 — sin 9 cos 9
s'm9 cos 0 i s in 2 0 cos20 is in^cos^
—psin2^ sin 9 cos 9 —gsin9cos9 cos2 9 )

3. Show that Hamilton's equations of motion for the Hamiltonian (2.353) in the presence
of skew quadrupoles and solenoids are

x" + Kx(s)x + 2gz'-(q-g')z = 0,
z" + Kz(s)z + 2gx'-(q + g')x = 0.

where g = B\\(s)/2Bp and q = -{dBz/dz)/Bp = ax/p.
I01Note here that the solenoid, in the rotating frame, acts as a quadrupole in both planes. The

focusing function is equal to g2. In small rotating angle approximation, the corresponding focal
length is f~x = g2L = 0 2 / I , where L is the length of the solenoid, and 0 = gL is the rotating
angle of the solenoid.
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(a) Show that the perturbation potential due to skew quadrupoles and solenoids is

V]c = -^Xz + g{s)(^x-^z).
P \P P )

(b) Expand the perturbation potential in Fourier series and show that the coupling
coefficient Gi:-i,i for the ^-th harmonic is given by Eq. (2.357).

(c) If the accelerator lattice has P superperiods, show that G\ _i i = 0 unless ( = 0
(Mod P).

4. Using the generating function

F2(<t>x,<f>zJi,h) = (<£* -4>z-id + X)h + 4>zh,

show that the linear coupling equation of motion for the Hamiltonian (2.359) can be
transformed into the Hamiltonian (2.362) in resonance rotating frame.

(a) Show that the new conjugate phase-space variables are

h = Jx, h = Jx + Jz, fa = <t>x ~ 4>z ~ 10 + x, <h = 4>z-

(b) Find the invariants of the Hamiltonian (2.359).

(c) Show that the equation of motion for I\ is

/ i + A271 = S151+72G?j_M/2,

where the overdot corresponds to the derivative with respect to orbiting angle

6, 8\ = vx — vz — t is the resonance proximity parameter, A = JS\ + G\ _x e,

and Ei = <5i/i + G\t-\tiy/I\{l2 — Ii) cosrj)i is a constant of motion.

(d) Discuss the solution in the resonance rotating frame.102

5. The Hamiltonian

H = uxjx + vzjz + Git-ite\/JxJzcos((t>x ~4>z + x)

for a single linear coupling resonance can be transformed to the normalized phase-
space coordinates by

(X = %/2Jx~cos(<l>x + Xx), Px =-V^sin((j)x+Xx),
\Z = v / 2^cos(^ z + Xz), Pz = -^/2Tzsm{j>z + Xz),

where Xx ~ Xz = X 1S a constant linear coupling phase (Mod 2TT) that depends on the
location in the ring.

(a) Show that the Hamiltonian in the new phase-space coordinates is

H = \vx(X2 + Pi) + \vz{Z2 + P2Z) + \GX^{XZ + PXPZ).

102For a general discussion on linear coupling with nonlinear detuning, see J.Y. Liu et al., Phys.
Rev. E 49, 2347 (1994).
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(b) Show that the eigen-frequency of the Hamiltonian is

v± = \{vx + vt)±^\ A = y/(ux - v2f + |Gx,_wp.

(c) Solve X and Z in terms of the normal modes, and show that

{ X = A+ cos(v+ip + £+) ~ J^T£A- COS(I/_<^ + £_),

Z = T^]f\A+ cos(l/+f + *+) + A~ ""("-V + ?-)-

where ^4±,̂ ± are obtained from the initial conditions. Particularly, we note
that the "horizontal" and "vertical" betatron oscillations carry both normal-
mode frequencies.

6. Analyze the linear stability of the simple tracking model shown in Fig. 2.44, i.e. the
particle motion in a synchrotron with linear betatron motion and a localized skew
quadrupole kick. Show that the condition of linear stability for betatron motion is

VM~* < M i n ( 2 /(I + " » * » ) ( ! + « » $ , ) 2 /(l-C06&a)(l-C0Bg,) 1
f ~ I V I sin $3; sin $z I ' ]j | sin^sin^zl j '

where / is the focal length of the skew quadrupole, /3X and /3Z are values of betatron
amplitude functions at the skew quadrupole location, and §x and $2 are betatron
phase advances of the machine without the skew quadrupole. Based on your study
of this problem, can you find the stability limit of a linearly coupled machine with
superperiod P?
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VII Nonlinear Resonances

Our discussion in Sec. V shows that chromaticity correction in particle accelerators
is essential for attaining particle beam stability. Since sextupole and higher order
multipole magnets are needed in chromaticity correction, they are an integral part
of accelerator lattice design, and thus the nonlinear geometric aberration due to
sextupoles and higher order multipoles needs to be addressed.

More generally, modern high energy storage rings usually use high field (super-
conducting) magnets that inherently possess systematic and random multipole fields.
Although the nonlinearity is normally of the order of 10~3 — 10~4 relative to that of
the linear component, the nonlinear magnetic field can give rise to geometric aberra-
tion in the beam ellipse if a resonance condition is encountered. Careful analysis of
the nonlinear beam dynamics is instrumental in determining the dynamical aperture.
This section provides an introduction to this important subject, but is limited to
first-order perturbation treatment.

VII. 1 Nonlinear Resonances Driven by Sextupoles

The vector potential for a sextupole magnet is

Ax = Az = 0, As = § ( x 3 - 3xz2), (2.374)
0

where B2 = d2Bz/dx2\x_z_0 . Including the sextupole field, the betatron Hamiltonian
is

H=l- [x12 + Kxx2 + z12 + Kzz2\ + V3(x, z, s), (2.375)

where Vz(x,z,s) = ^S(s)(x3 — 3xz2) is the nonlinear perturbation potential with
S(s) = —B2/BP. For off-momentum particles, the sextupole strength S(s) should be
replaced by B2/KI + S)Bp], where 5 — Ap/po-

A. Tracking methods

In the presence of sextupole magnetic field, Hill's equation of motion becomes

x" + Kx{s)x = -^S{s)(x2 - z2), z" + Kz(s)z = +S{s)xz. (2.376)

The evolution of phase space coordinates of orbiting particles can be obtained by
tracking the equation of motion. Since the sextupole magnets used in accelerator
are usually short, thin lens approximation has often be used in particle tracking.
Let S = J S(s)ds be the integrated sextupole strength. The changes of phase space
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coordinates at the sextupole magnet are103

Ax' = -\§(x2 - z2), Az' = Sxz. (2.377)

The propagation of phase space coordinates outside the sextupole magnet is given
by the mapping equation (2.45). Figure 2.49 shows the Poincare maps with one
sextupole in an otherwise perfectly linear accelerator near a third order resonance.
The topology of the phase space maps rotates 120° when the tune moves across the
third integer resonance. The region of stability decreases as the tune approaches the
third order resonance.

Figure 2.49: The Poincare maps for the betatron motion perturbed by a single sextupole
magnet at a tune below (left) and above (right) a third order resonance. The integrated
sextupole strength is S = 0.5 m~2.

B. The leading order resonances driven by sextupoles

In order to analyze the third order resonance analytically, we perform Floquet trans-
formation to the Hamiltonian (2.375). With Eq. (2.94) for coordinate transformation,
the nonlinear perturbing potential V3(x, z, s) becomes

Vs = -^Ji / 2Jz /3y2^5(S)[2cos$I + cos($:c + 2$2)+cos($I-2$z)]

+^Jll2Pl'2S{s)[cos 3$x + 3 cos $x], (2.378)

103In this mapping equation for betatron motion, we disregard the effect of sextupoles on orbit
length. Using Eq. (2.170), we find AC = (xAx' + zAz').
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where

$x = <l>x + xx{s) - vxe, xx= -5-,
Jo p x

, , , . . f ds
§z = <l>z + Xz{s)-Vz6, Xz= -5-.

Jo pz

Here (Jx, <j)x) and (J2,02) are pairs of conjugate phase-space coordinates. Since V3 is a
periodic function of s, it can be expanded in Fourier harmonics.104 The Hamiltonian
(2.375) expressed in action-angle variables becomes

H = vxJx + VzJz + J2 G3,o,iJl'2 cos(30x - £6 + £3,0,£)
e

+ £ GwHwJl'2J, cos(0s + 2cj>z -M + 6,2,i)

+ J2 Gi,-2,^i,-2,^I1/V, 008(0, - 20, - id + &,_w) + • • •, (2.379)
1

where £ is an integer, G3,o,£, G\2,i, Gi,_2,£ are Fourier amplitudes, 3̂,o,«, G,2,«, ^i,-2,£
are the phase of the Fourier components, and • • • describes the remaining resonance
driving terms at vx = integers. The Fourier amplitude Gz$,i drives the third order
resonance at 3 ^ = £, and similarly, G\^,i and G\,-2,i drive vxJr2vz — £ and ux—2uz = £
resonances.

Table VII. 1 lists nonlinear resonances that can be excited by sextupoles in first-
order perturbation theory. Other higher-order resonances, such as 4vx = £, 2vx±2vz =
£, etc., can also be excited by strong sextupole fields through second- or higher-order
perturbation expansion. We discuss below a ID third-order resonance at 2>vx = £.

Table 2.3: Resonances due to sextupoles and their driving terms
Resonance Driving term Lattice Amplitude Classification
vx + 2i/z = £ cos($I + 2$z) Pll2Pz Jx/2Jz sum resonance
ux -2vz=£ cos($j; - 2$z) Pl/2p~z Jx/2Jz difference resonance
ux = £ cos$x Pl/2PZ] P'^2 Jx^2Jz, Jl12 parametric resonance
3vx = £ cos 3$x Pl/2 Jjj/z parametric resonance

C. Third order resonance at 3^x = £

Near a third-order resonance at 2>yx = £, the Hamiltonian (2.379) can be approximated
by

H w vxjx + G3fiil fj2 cos (30X -£9 + 0, (2-380)

104G. Guignard, p. 822 in Ref. [10] (1988); G. Guignard, CERN 76-06, (1976).
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where Jx, (f>x are conjugate phase-space coordinates, 9 is the orbiting angle serving
the time coordinate, vx is the horizontal betatron tune, and the Fourier amplitude
G3,o,« and the phase f = £3io,< are

G3i0/ & = ^ f Pi'2 S(s) e*Px.M-(3*-Mds. (2.381)

The betatron phase space of the Hamiltonian (2.380) is distorted by the nonlinear
resonance, i.e. the sextupole can cause "geometric aberration" to the betatron motion.
The magnitude of the geometric aberration is proportional to the resonance strength
G3,o,e-

We note that if the accelerator has a superperiod P and the sextupole field sat-
isfies a similar periodic condition, the resonance strength Gz$,i is zero unless £ is an
integer multiple of P (see Exercise 2.7.1). For example, the systematic third-order
resonance strength for the AGS will be zero except for £ = 12,24, etc. Thus the
nonlinear resonances are classified into systematic and random resonances. System-
atic nonlinear resonances are located at £ = Px integer. At a systematic resonance,
the contribution of each superperiod is coherently additive to the resonance strength.
Since the chromatic sextupoles are usually arranged according to the superperiod of
the machine, one should pay great attention to the systematic sextupolar nonlinear
resonances. Random sextupole fields induce nonlinear resonances at all integer £, and
their resonance strengths are usually weak. Nevertheless, the betatron tunes should
avoid low-order nonlinear resonances.

Using the generating function

F2 = (4>x-i-e+^)J, (2.382)

where the new phase-space coordinates are

the Hamiltonian Eq. (2.380) becomes

H = 5J + G3,o,eJ3/2 cos 30. (2.383)

Here S — vx — £/3 is the resonance proximity parameter. Since the Hamiltonian
(2.383) is autonomous, the "Hamiltonian" is invariant. Particle motion in the phase
space follows the contour of a constant Hamiltonian. Using Hamilton's equations of
motion

0 = 5 +\G3,Q/J112 cos 30, J = 3G3,o,£J3/2sin30, (2.384)

we obtain

3 + 9623 - YG10/32 = 96E, (2.385)
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where E is the Hamiltonian value, and the overdot indicates the derivative with re-
spect to the orbiting angle 9. When the amplitude is small, the tune, in the resonance
rotating frame, of the third-order resonance is 35 because the betatron amplitude re-
peats three times in every revolution.

Figure 2.50: The dashed line shows
the UFP, J^l/G^i vs 6/GJM, of
the third-order betatron resonance in
the zero detuning limit. The solid line
shows aJ^/Gzja^i vs aS/G^0<l for
the case a = axx > 0 and 03,0/ > 0,
where FP stands for both stable and
unstable fixed points. The SFP sec-
tion and the UFP section are marked.
Bifurcation of the third-order reso-
nance occurs at a8/G\Ql = 9/16
marked by the rectangular symbol.

Stable and unstable fixed points

The Hamiltonian Eq. (2.383) has three unstable fixed points (UFPs)105 with

de ' de~
These UFPs are located at

ji/2__2S_ w i t h U F P = 0, ±2^/3, i f «5 /G w <0 ,
UFP " 3G3,o,* I 0FP = dbr/3, TT, if S/GW > 0. ( 2"3 8 6 )

At the fixed point, the Hamiltonian assumes the value

* - - ! ( «£ ; ) ' • <2-»
These unstable fixed points can be easily verified as follows. Let K = J — JUFP and
E = EUFP. The equation of motion becomes

K - 352K - 6-^—K2 = 0. (2.388)

105Fixed points of a Hamiltonian are phase-space loci with zero velocity field. Thus a particle can
stay indefinitely at a fixed point. The fixed points are characterized as stable or elliptical fixed
points (SFPs) and unstable or hyperbolic fixed points (UFPs). Small-amplitude motion around a
SFP is a bounded ellipse; around an UFP it is hyperbolic.
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Thus the motion near the fixed point is hyperbolic. Because of the nonlinear term in
Eq. (2.388), the amplitude is seen to grow faster than an exponential.

Without a nonlinear detuning term, the third-order resonance appears at all values
of S. The stable motion is bounded by the curve of J^P(S) shown in Fig. 2.50. For
a given aperture J, the width of the third-order betatron resonance is then

Hwidth = 3G3,o,£J1/2/2- (2.389)

Separatrix

The separatrix is the Hamiltonian torus that passes through the UFP. For the third-
order resonance in the zero detuning limit, the separatrix can be obtained from
Eq. (2.383) with the condition H = EVFP. With X and P defined as

X = J-—cos(/>, P = -J-—sin<t>, (2.390)
V "MJFP V "AjFP

the equation for the separatrix orbit becomes

[2X - 1] [ P - ±(X + 1)] [p + -^(X + 1)] = 0 (2.391)

for the case of 5/Gz,o,i > 0. Thus the separatrix is given by three intersecting straight
lines, and (X, P)VFP is given by the intersection of these three lines:

(X,P)UFP = (-l,0), ( i ^ ) , i\,~).

Three straight lines X = 1/2, P = ±(X + 1), and P = -^{X + 1) divide
the phase space into stable region and unstable regions. The dynamical aperture is
defined as the maximum phase-space area for stable betatron motion. Near a third-
order resonance, the stable phase-space area in (x, x') is equal to %/3<J/2|G3io,̂ |. Beam
loss may occur when particles wander beyond the separatrix.

The third-order resonance can be applied to extract beam particles slowly from a
synchrotron. Note that the stable phase-space area is proportional to the resonance
proximity parameter <52 (see Eq. (2.386)). If the betatron tune vx ramps slowly
through a third-order resonance, beam particles can be slowly squeezed out of the
stable area and extracted to achieve high duty cycle for nuclear and high energy
physics experiments.

Effect of nonlinear detuning

In fact, nonlinear magnetic multipoles also generate nonlinear betatron detuning, i.e.
the betatron tunes depend on the betatron actions. Including the effect of nonlinear
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betatron detuning, the Hamiltonian for the third-order resonance is

H = SJ+ -aj2 + G3,0,« J3/2 cos 3<£, (2.392)

where a = axx is the nonlinear detuning parameter. With nonlinear detuning, stable
fixed points appear. The fixed points of the Hamiltonian for a > 0 and G3fi,t > 0 are

aJi/2 f - 3 / 4 + (3 /4 ) 0 : ^ ( 1 6 ^ 7 9 0 1 ^ ) , <A = 0 , ± 2 7 r / 3 5<0

J ^ - = I +3/4 + (3/4) y/l - (I6a5/9G2M), 4> = w,±ir/3 6 < 9G^ /16a
^-^3,0,c I i

[ +3 /4 - (3/4) y/1 - (16aaS/9Gjji(W), cj> = TT, ±TT/3 0 < 5 < 9G§p(W/16or

' (2.393)

The bifurcation of third-order resonance islands occurs at I6a5 < §G\ 01. Figure 2.50
shows aJ^F2p/\G3fi/\ vs a5/G\fil for the bifurcation of third-order resonance. A sim-
ilar analysis can be carried out for a < 0 or Gsfi,e < 0.

D. Experimental measurement of a Zvx = £ resonance

Because beam particles may be unstable at a nonlinear resonance, experimental mea-
surements are generally difficult. It is easy to observe degradation of beam intensity
and lifetime near a resonance. Measurements of Poincare maps near a third-order res-
onance have been successful at SPEAR, TEVATRON, Aladdin, and the IUCF cooler
ring. Figure 2.51 shows a Poincare map obtained from a nonlinear beam dynamics
experiment at the IUCF cooler ring. Converting into action-angle variables, we can fit
these data by the Hamiltonian (2.392) to obtain parameters G^o^ and £, and obtain
the parameter S by measuring the betatron tune at a small betatron amplitude. Using
these measured nonlinear resonance parameters, we can model sextupole strengths of
the storage ring.106

E. Other 3rd-order resonances driven by sextupoles

Besides the third-order integer resonance, sextupoles contribute importantly to the
nonlinear coupling resonances at vx ± 2vz = t with integer Lim The third-order
resonance strength can generally be obtained by taking the Fourier transform of
Eq. (2.378). The difference resonance at vx - 2vz = I induce betatron coupling, while
the sum resonance can cause beam emittance blow-up in both horizontal and vertical
planes and leads to beam loss. Experimental measurements of nonlinear resonances
are usually difficult because of short lifetime at the resonance condition.

106D.D. Caussyn, et at., Phys. Rev. A 46, 7942 (1992).
107See M. Ellison et al, Phys. Rev. E50, 4051 (1994) for the vx - 2vz = I resonance, and J.

Budnick et al, Nucl. Inst. Methods A368, 572 (1996) for the vx +2vz= t resonance at the IUCF
cooler ring.
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Figure 2.51: Left: The measured Poincare map of the normalized phase-space coordinates
(x,px) of betatron motion near a third-order resonance 3wx = 11 at the IUCF cooler ring.
Note that particles outside the separatrix survive only about 100 turns. Tori for particles
inside the separatrix are distorted by the third order resonance. The orientation of the
Poincare map, determined by sextupoles, rotates at a rate of betatron phase advance along
the ring. The right plot shows the Poincare map in action-angle variables (J, <j>). The solid
lines are Hamiltonian tori of Eq. (2.392).

VII.2 Higher-Order Resonances

It appears from Eq. (2.378) that sextupoles will not produce resonances higher than
the third order ones listed in Table VII.1. However, strong sextupoles are usually
needed to correct chromatic aberration. The concatenation of strong sextupoles can
generate high-order resonances such as \vx, 2i/x ± 1vz, Avz, 5vx,..., etc. Figure 2.52
shows the Poincare maps of the single sextupole model of Fig. 2.49 at vx = 3.7496.
Note that a single sextupole can also drive the fourth and higher order resonances.

Employing strong sextupoles, nonlinear beam dynamics experiments at Fermilab
Tevatron were used to study the concept of smear, nonlinear detuning, decoherence,
and dynamical aperture.108 Similarly, nonlinear beam dynamics studies at the IUCF
cooler ring show the importance of nonlinear resonances. Nonlinear beam dynamics is
beyond the scope of this book. Here we give an example of the fourth-order parametric
resonance at 4vx = 15.109

108A. Chao, et al, Phys. Rev. Lett. 61 , 2752 (1988); N. Merminga, et al., Proc. EPAC p. 791
(1988); T. Satogata, et al, Phys. Rev. Lett. 68, 1838 (1992); T. Chen et al, Phys. Rev. Lett. 68,
33 (1992).

109S.Y. Lee, et al., Phys. Rev. Lett. 67, 3768 (1991); M. Ellison et al., AIP Conf. Proc. No. 292,
p. 170 (1992); Y. Wang, et al, Phys. Rev. E49 , 5697 (1994).
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Figure 2.52: The Poincare maps for
the same sextupole model shown in
Fig. 2.49 at vx = 3.7496 show the ef-
fect of the fourth order resonance.

Near a fourth-order ID resonance, the Hamiltonian can be approximated by

H = vx3x + ±axxJ2x + GWJ2X cos{4i>x -M + X), (2-394)

where the resonance strength G^o,/ can be obtained from the Fourier transformation
of the effective particle Hamiltonian in the synchrotron. The Poincare map near
a fourth-order resonance Avx = 15 measured at the IUCF cooler ring is shown in
Fig. 2.53, where the left plot shows the Poincare map in the normalized (x, Ps) phase
space and the right plot shows the Poincare map in action-angle variables. The solid
lines shows the Hamiltonian tori of Eq. (2.394). Note that when the betatron tune is
exactly 15/4, the betatron motion will be located at fixed points of the fourth-order
resonance island. Small deviations from the fixed points will execute motion around
the stable fixed points (SFP) shown in Fig. 2.53. The tune of motion around SFP
of an island is called island tune. In this example, the fourth-order resonance islands
are enclosed by stable invariant tori.

Systematic experimental measurements of nonlinear resonances can be used to
derive the resonance parameters, and thus the Hamiltonian for particle motion in the
accelerator can be modeled. Accelerator operators are keen to avoid low order strong
resonances because of visibly short beam lifetime. Accelerator physicists are eager to
apply their skill to correct or compensate the resonances for minimizing their effects
on the beams.

In order to overcome nonlinear resonances, a few nonlinear magnets (usually up
to octupole) are powered to eliminate the Fourier components of the nonlinear res-
onance near the machine operation condition. The chromatic sextupoles located in
the ring can also be powered to eliminate the un-wanted nonlinear resonance Fourier
components. The topic is beyond this introductory text.
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Figure 2.53: Left: The measured betatron Poincare map (surface of section) (x, Px) of
normalized phase space near a fourth-order resonance 4ux = 15 at the IUCF cooler ring.
Note that the phase-space ellipse is distorted into four island when the betatron tune sits
exactly on resonance. The right plot shows the Poincare map in action-angle variables
(J = Jx,<j> = ipx). The solid lines are the Hamiltonian tori of Eq. (2.394).

VII. 3 Nonlinear Detuning from Sextupoles

Because the potential resulting from sextupole fields is an odd function of the beta-
tron coordinates, the sextupoles will not, in linear approximation, contribute to the
betatron amplitude detuning. Because sextupole strengths are large in high energy
collider and storage rings, concatenation of sextupole perturbation to the betatron
motion can induce substantial nonlinear betatron detuning. The dependence of the
betatron tunes on the betatron amplitude can be approximated by

Qx = vx + axxJx + axzjz, (2.395)

Qz = vz + axzJx + azzjz. (2.396)

The detuning coefficients axx,axz, and azz can be obtained from the phase average
of the concatenated one-turn Hamiltonian in a storage ring. These coefficients are

„ _ 1 V o o q3/2o3/2 [cos3(7ri/J - | ^ - [ ) cos(7ri/g - | ^ | ) ]
64?r ~ . ' '' [ sin ZTTVX sin -KVX J

n - l i V<? <7 B^B^R R l"cos[2(7rt/z - \$tM\) + nux - \1>x#\]
ax* ~ ^\IJS^P^P*JP^J[ S i n 7 r (2^ + ̂ )

COS[2(7TI^ - \ipZtjj\) - (KVX ~ IV'x.ijD]!

sin7r(2j/2 - vx) J

- 2 1 , SiS&j PX:j PzJ — - j ,
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n _ ! V ? ? /91/2/91/2/9 ft [cos[2(7r^ - 1 ^ 1 ) + nvx - }ijjXiij\]
a" ~ 64^ jj SiS'P" P'* P'>iP*<* [ sin7r(2i/, + ^ )

| COS[2(TT^ - \jiz,jj\) - {TTVX - \ipx,jj\)] ^COS(TTVX - \tpXij - ip^D'i

sinir(2i/z-vx) sin in>x J '

where

il>X,ij = il>X,i - Ipxj, 4>Z,ij = tl>2,i ~ Ad

are betatron phase advances from Sj to s,. Since the tune depends on the zeroth
harmonic of a perturbed quadrupole field, the nonlinear detuning parameter is pro-
portional to the superperiod of the accelerator. These coefficients can be evaluated
from sextupole strengths distributed in one superperiod.

VII.4 Betatron Tunes and Nonlinear Resonances

The betatron tunes should avoid the linear betatron resonances at vx = m or vz = n,
where m, n are integers, and half-integer integer betatron resonances at 2vx = m o r
2vz — n due to the linear imperfections discussed in Sec. III. Similarly, the betatron
tunes should avoid linear coupling resonances at vx ± vz = £ due to skew quadrupoles
and solenoids. The left plot of Fig. 2.54 shows linear betatron resonances for the
fractional parts of betatron tunes.

Figure 2.54: Left: the linear resonance lines, where mxvx +mzuz = I with \mx\ < 1 and
\mz\ < 1 and £ is an integer. Right: the resonance lines up to the fourth order coupling
resonances, i.e mxvx + mzvz = £, where \mx\ + \mz\ < 4. The solid lines corresponds to
resonance lines associated with normal multipoles, and the dashed lines are those associated
with skew multipoles. The symbol qx and qz are the fractional parts of betatron tunes vx

and vz.

We have shown that sextupoles and higher multipoles are important to beam
stability in Sec. V. Unfortunately, higher order multipoles can drive higher order
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resonances discussed in this section. The right plot of Fig. 2.54 shows the betatron
resonances up to the 4th order, where the solid lines correspond to resonances due to
normal multipoles, while the dashed lines arise from skew multipoles. Note that the
available resonance free tune space becomes small. When the betatron tune spread of
the beam becomes large,110 resonance (stopband) correction becomes important for
attaining beam stability.

The lifetime of beams in many storage rings and colliders may suffer if the betatron
tunes sit near a higher order betatron resonance. Lifetime degradation has been
observed near the 7th order resonance at the SPPS driven by beam-beam interaction
with linear beam-beam tune shift parameter of ^ = 3.3 x 10~3 per crossing (see
Eq. (4.10) in Chap. 4 ) . m Figure 2.55 shows betatron resonances up to the 8th order.
The tune space that is free from high order resonances becomes very small. Betatron
tune stability has becomes an important issue for successful operation of storage rings.

Figure 2.55: Resonance lines up to the
8th order, where mxvx + mzvz = (, with
\mx\ + \mz\ < 8 and integer £, are shown
in this figure. The solid lines corresponds to
resonance lines associated with normal mul-
tipoles, and the dashed lines are those as-
sociated with skew multipoles. Resonance-
free tune space becomes very small in stor-
age rings, where higher order betatron reso-
nances can decrease the beam lifetime. In
particular, the beam-beam interaction can
cause higher order_ resonance observed very
early on at the SPPS, and many e+e~ collid-
ers.

Exercise 2.7
1. Show that the 3vx = I resonance strength is given by Eq. (2.381) in the first-order

perturbation approximation.

(a) Show that, for systematic resonances, G3,o/ = 0 if (• ^ 0 (Mod P), where P is
the superperiodicity of the machine.

110The betatron tune spread of a beam may arise from the incoherent space charge (Laslett) tune
shift, chromaticity, beam-beam interaction, betatron amplitude detuning, etc.

111 See e.g. L.R. Evans, in the Proceedings of the CERN Accelerator School on Antiprotons For
Colliding Beam Facility, p. 319, CERN 84-15 (1985); see also the Proceedings of the third ICFA
Beam Dynamics Workshop on Beam-Beam Effects in Circular Colliders, edited by I. Koop and G.
Tumaikin (Novosibirsk, 1989).
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(b) Show that the resonance strength of the third-order resonance at 3i/x = £ due
to two sextupoles at si and s2 is proportional to

Wx(si)f2 [S(Si)As] + [J3x(s2)f2 [S{s2)As\ e>P*..-(3^-0A»i)

where ip2i = X,*2 ds/px is the betatron phase advance, AO = (s2 - SI)/RQ, and
Ro is the average radius of the accelerator. Show that, at the 3ux = £ resonance,
the "geometric aberrations" of these two sextupoles cancel each other if ip2l — T
and \px(Sl)f2 [S{sx)As] = [&(s2)]3/2 [S{s2)As].

(c) Based on the above result, show that the geometric aberration of two chromatic
sextupoles located in the arc of FODO cells separated by 180° in phase advance
cancel each other.

2. Near a third-order coupling difference resonance at vx — 2vz = £, where £ is an integer,
the Hamiltonian can be approximated by

H = vxjx + vzJz + gJll2Jz cos(0x - 2(j>z -£9 + 0 ,

where ux, vz are the betatron tunes, g = G\t-2,i is the eifective resonance strength, and
(Jxi 4>x-> Jz) 4>z) are the horizontal and vertical action-angle phase-space coordinates.

(a) Using the generating function

F2{4>x, <j>z, Ju J 2 ) = ( ^ - 2<6Z -19 + £ ) J i + <j>zJ2,

transform the phase-space coordinates from {JxAxiJz-i^z) to (Ji,<t>i,J2,<h)>
and show that the new Hamiltonian is H = H\ + H2, where

Hi{Juh) = <5iJi+9J11/2(J2-2Ji)cos«^i,
H2{J2,(j>2) = Vzh,

and 81 = vx — 2vz — £ is the resonance proximity parameter. Show also that
2Jx + Jz is invariant.

(b) For a given J2, show that the unstable fixed points of the Hamiltonian are
located at

•A.ufp = "^» and <j>i = ± arccos ( * ) ,

and the stable fixed points are located at

for cf>i = 0 or 7T respectively.

3. Near a sum resonance at ux + 2vz = £, the Hamiltonian can be approximated by

H = vxjx + uzJz + gJll2Jz cos{(j>x + 24>z - £0 + (,),

where vx,vz are betatron tunes, g = Gi]+2,f is the effective resonance strength, and
(Jx, <j>x, Jz, 4>z) are horizontal and vertical action-angle phase-space coordinates. Dis-
cuss the difference between the sum and the difference resonances.
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4. In general, betatron motion in storage rings can encounter many nonlinear resonances.
Normally only low-order resonances are important. If the betatron tune of the ma-
chine is chosen such that mvx + nvz ~ I, where m > 0, n, and (. are integers, the
Hamiltonian can be approximated by

H = HO(JX, Jz) + ff4m|/24n|/2 cos(m^ + n<f>z -W + O + Atf.

This is called a sum resonance if mn > 0, and a difference resonance if ran < 0. Ne-
glecting the perturbing term AH that includes contributions from other resonances,
derive the invariants of the approximated Hamiltonian.

(a) Transform the phase-space coordinates from

{Jx,<t>x,Jz,<l>z) to (Jl,<f>l,J2,(fa)

by using the generating function

F2{<t>x, 4>z,J\, h) = W > * + n<j>z -10 + OJi + 4>zJ*,

and find the new Hamiltonian.

(b) Show that the new Hamiltonian is invariant.

(c) Show that the action J2 is invariant, i.e.

njx — mJz = constant.

Discuss the difference between the sum and the difference resonances.
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VIII Collective Instabilities and Landau Damping

So far we have discussed only single-particle motion in synchrotrons, where each par-
ticle can be described by a simple harmonic oscillator. In reality, a circulating charged
particle beam resembles an electric circuit, where the impedance plays an important
role in determining the circulating current. Likewise, the impedance of an accelera-
tor is related to the voltage drop with respect to the motion of the charged particle
beams. The impedance is more generally defined as the Fourier transform of the
wakefield, which is the electromagnetic waves induced by a passing charged particle
beam. The induced electromagnetic field can, in turn, impart a force on the motion
of each individual particle. Thus, single-particle motion is governed by the external
focusing force and the wakefield generated by the beams, and the beam distribution
is determined by the motion of each particle. A self-consistent distribution function
may be obtained by solving the Poisson-Vlasov equation.

Since particle motion in an accelerator is classified as transverse betatron motion
or longitudinal synchrotron motion, wakefields are classified as having transverse or
longitudinal modes. Likewise, the impedances are classified as longitudinal or trans-
verse. The effect of longitudinal impedances will be discussed in Chap. 3, Sec. VII.
Here, we discuss some basic aspects of transverse collective beam instabilities and Lan-
dau damping. For a complete treatment of the subject, see Ref. [3]. In Sec. VIII.1,
some properties of impedance are listed. In Section VIII.2 we discuss transverse wave
modes, where the waves are classified as fast, backward, or slow waves. In Sec. VIII.3,
we will show that a slow wave can become unstable in a simple impedance model.
Landau damping and dispersion relation will be discussed in Sec. VIII.4.

VIII. 1 Impedance

The impedance that a charged-particle beam experiences inside a vacuum chamber
resembles the impedance in a transmission wire. For beams, there are transverse and
longitudinal impedances. The longitudinal impedance has the dimension ohm, and
by definition is equal to the energy loss per revolution in a unit beam current. The
transverse impedance is related to the transverse force on betatron motion, and has
the dimension ohm/meter.

The transverse impedance arises from accelerator components such as the resis-
tive wall of vacuum chamber, space charge, image charge on the vacuum chamber,
broad-band impedance due to bellows, vacuum ports, and BPMs, and narrow-band
impedance due to high-Q resonance modes in rf cavities, septum and kicker tanks,
etc. Without deriving them, we list these impedances as follows.
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A. Resistive wall impedance

The resistive wall impedance is given by112

T>i7

2 x , r w H = ( l + j ) £ ^ 4 k i n , (2.397)

where R is the mean radius of the accelerator, b is the vacuum chamber radius,

ZQ = fioc = 377 ohm is the vacuum impedance, (5Skjn = y 2/<7c//ca; is the skin depth

of the electromagnetic wave in metal, ac is the conductivity, fic is the permittivity

in metal, and u is the wave frequency. For resistive wall impedance, the transverse

impedance is related to the longitudinal impedance by

7 _ 2cZ||irw . .

02 LJ

where c is the speed of light.

B. Space-charge impedance

Let o be the radius of a uniformly distributed beam in a circular cylinder. Let XQ

be an infinitesimal displacement from the center of the cylindrical vacuum chamber.
The resulting beam current density is

i(r, *) = A9(a - r) + I^^5(r - a), (2.399)
irar 7ror

where Q(x) = 1 if x > 0 and 0 otherwise, and 6(x) is the Dirac 5-function. Here,
the first term corresponds to the unperturbed beam current, and the second term
arises from an infinitesimal horizontal beam displacement. The perturbing current
is a circular current sheet with cosine-theta current distribution. Using the result
of Exercise 1.9, we find the induced dipole field inside the beam cross section to
be Ai3Z]b = ij,olQXo/2Tra2. Similarly the induced image current is (see Exercise 1.16)
Jw = -(IOXQCOS<f)K/nb2)6(r - 6), and the induced dipole field due to the image wall
current is ABZ:VI — —/j,oIoXo/2-Kb2. The total induced vertical dipole field due to the
beam displacement becomes

By definition, the impedance per unit length becomes

_ JcABz _ .Zo / JL_ M
X'mag ~ J p l o x o " J 2 7 r W b V '

112The imaginary number j = —i of engineering convention is used throughout this textbook. Here,
the resistive wall impedance consists of a resistive and an inductive component.
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where j3c is the velocity of the beam, and Zo = fj,oc is the vacuum impedance. Simi-
larly, the impedance due to the electric field is

7 • Zo (l M

Thus the transverse impedance due to space charge in one complete revolution is113

* ~ ~ ^ (?-?)• (2-400)

where a is the beam transverse radius, b is the beam-pipe radius, R is the average
radius of the accelerator, and 7 is the Lorentz relativistic factor. Because of the f32j2

factor in the denominator, the space-charge impedance is important for low energy
beams.

Note that the space charge is capacitive because the beam radius a is less than
the vacuum chamber radius b. However, when the oscillatory amplitude XQ is large,
the perturbation current of Eq. (2.399) is invalid, and the self space-charge force term
may disappear. The remaining space charge impedance is the image current term,
which is inductive.

C. Broad-band impedance

All vacuum chamber gaps and breaks, BPMs, bellows, etc., can be lumped into a
term called the broad-band impedance, which is usually assumed to take the form of
a RLC circuit:

2c%bb 2c Rs OAm\
^±,bb = TT — 75—., , • „,—-, TT» (2.401)

b2 UJ b2U> 1 + jQ(LJ/U)r - (*>r/U)

where Q « 1 is the quality factor, Rs is the shunt resistance, OJT « (R/b)u>0 is the
cut-off frequency of the vacuum chamber, R is the average radius of the accelerator,
and 6 is the beam pipe radius. The space-charge impedance can be considered as a
broad-band impedance because it is independent of wave frequency.

D. Narrow-band impedance

Narrow-band impedances are usually represented by a sum of Eq. (2.401), where the
corresponding Q-factor is usually large. Narrow-band impedances may arise from
parasitic rf cavity modes, septum and kicker tanks, vacuum ports, etc.

113Note here that the derivation of the space charge impedance assumes a uniform circular beam
distribution for the direct term and a circular vacuum chamber geometry for the induced charge
term. The formula that takes into account the shape of the vacuum chamber can be found in Ref. [3].
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E. Properties of the transverse impedance

When the beam centroid is displaced from the closed orbit, the motion can be ex-
pressed as a dipole current. The dipole current will set up a wakefield that acts on
the beam. The transverse impedance of the ring is defined by

Z±M = Tffiv) f F^ds = ife /(^ + ̂  x S)±ds = T i W±{T) e^T dT' (2'402)
where I\ = Io(y) is the dipole current, (y) is the centroid of the beam in the betatron
motion, and C is the circumference of the accelerator. The imaginary number j
included in the definition of the impedance is needed to conform a real loss for a real
positive resistance. This occurs because the driving force is leading the dipole current
by a phase of ir/2. The factor /? in the denominator is included by convention. The
wake function is then related to the impedance by

WL{t) = -3J- f°° Z^Y^du (2.403)
2?r J-OO

with the causality condition

W±(t) = 0 (t < 0).

Thus, the impedance can not have singularities in the lower half of the complex u
plane; however, it may have poles in the upper half plane. For example, the impedance
of RLC resonator circuit in Eq. (2.401) has two poles located at

u> =uv [±v/l-(l/2Q)2+j(l/2Q)] .

The analytic properties of impedances provide us with the Kramer-Kronig relation,
i.e. the real and imaginary parts are related by a Hilbert transform

ReZ±^) = --f d u ' 1 ^ ^ ! , (2.404)
7T J P . V . W' - U>

lmZ±(uj) = -[ d o / R e Z l ( u / ) , (2.405)

where P.V. means taking the principal value integral. Since the wake function is real,
the impedance at a negative frequency is related to that at a positive frequency by

Z L ( - W ) = ~Zl(u), (2.406)

or
ReZj_(-w) = -ReZ±(w), ImZL{-uj) = +ImZL(w). (2.407)

Thus the real part of the transverse impedance is negative at negative frequency.
To summarize, various components of the transverse impedance ZJ_(CJ) are schemat-

ically shown in Fig. 2.56, where the real part of the impedance is an odd function of
ui, and the imaginary part is an even function.
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Figure 2.56: A schematic draw-
ing of the transverse broad-band and
narrow-band impedances. The real
paxts are shown as solid lines and
the imaginary parts as dashed lines.
A broad-band and a narrow-band
impedance are represented by peaks
in the real parts. The resistive
wall impedance is important in the
low-frequency region, and the space-
charge impedance is independent of
frequency.

VIII.2 Transverse Wave Modes
For a coasting (DC) beam, where particles continuously fill the accelerator, the trans-
verse coordinate at any instant of time is given by114

oo

y(tO,0)= E Vne'jn9, (2.408)
n=—oo

where 0 is the orbiting angle, and n is the mode number. At a fixed azimuth angle
9Q, the betatron oscillation of the transverse motion is

oo

V(t,9o)= E ynej{Q"ot-ne°\ (2.409)
n=—oo

where Q is the betatron tune, and Wo is the angular revolution frequency. Since
9 — 80 + uot, the nth mode of transverse motion is

y(t, 9) = ynej[ (»+«-»'-»»], (2.410)

where the angular phase velocity is

0n,w=(l + - W (2.411)

There are three possible transverse wave modes: the fast wave, the backward wave,
and the slow wave. The corresponding angular phase velocity is

(1 H jwo, i f n > 0 : fast wave

a =)—{-. 1 I wo, if n < 0 and In < Q : backward wave (2 412)

I 1 - T—r I w0, if n < 0 and In > Q : slow wave.

IV My
U4Another extreme case is a beam with a delta-function pulse. Its Fourier harmonic contains all

modes with equal amplitude (see Sec. III.7), i.e. yn = constant.
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The phase velocity of a fast wave is higher than the particle velocity, that of a slow
wave is slower than the particle velocity, and a backward wave travels in the backward
direction. The signal picked up in a transverse beam position monitor (BPM) will
have a single frequency located at \n + Q\uj0, which is a sideband at rotation harmonic
nu)Q. We will show later that the characteristic responses of these waves to wakefields
are different.

VIII.3 Effect of Wakefield on Transverse Wave

Let yk be the horizontal or vertical transverse betatron displacement of the fcth par-
ticle, and let Qkuo be the corresponding angular frequency of betatron motion. The
equation of motion in the presence of a wakefield can be expressed as a force oscillator
equation115

Vk + (QkUofyk = ^ p (2.413)

where the overdot corresponds to the derivative with respect to time t, m is the mass,
7 is the Lorentz relativistic factor, and F± is the time-dependent transverse force
resulting from the wakefield. The EM force on a charged particle [see Eq. (2.402)]
resulting from a broad-band impedance is

*l(t) = -J6-§^ (V), (2-414)

where R is the mean radius of the accelerator.
If beam particles encounter collective instability of mode n, they execute collective

motion with a coherent frequency w:

yk = Yke^t~ne\ (2.415)

where n is the mode number, and Yk is the amplitude of collective motion for the kth
particle. Using the relation

Vk = ̂ +O^=j(uj-nLJo)yk, (2.416)

we obtain
yk =-(u - nu)0)2yk. (2.417)

Substituting into Eq. (2.413), we obtain

115In a global sense, the betatron motion is well approximated by simple harmonic motion.
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or

^-^^iJ^M' (2'418)
where

{y) = j PiOvkdti

is the centroid of the beam, p(f) is the normalized beam distribution function with
f p(£)d£ ~ 1J ? represents a set of parameters that describe the dependence of the
betatron tune on its amplitude, u)n)W is the wave frequency given by

( n > 0 fast wave,

n < 0, |n| < Q backward wave, (2.419)
n < 0, |n| > Q slow wave,

and we have used the relation
W — TJWo + Qwo « Wn,w — "Wo + Qwo — 2Qwo-

Note that the real part of the slow wave frequency wniW is negative.116 Averaging over
the beam distribution, we obtain a dispersion relation for the collective frequency u>

epiZL f PJQ dc ( 2 4 2 0 )

The set of parameters f represents any variables that wn>w and the beam distribu-
tion function depend on. Since betatron tunes depend on betatron amplitudes due
to space-charge force, sextupoles, and other higher-order magnetic multipoles, the
betatron amplitude can serve as a £ parameter. Since Q and u>0 depend on the
off-momentum parameter 6 = Ap/p, 6 can also be chosen as a possible £ parameter.

Now we discuss coherent frequency spread vs off-momentum variable 5. Using
Awo/wo = —T)6, and AQ = CyS, where ui0 is the angular revolution frequency of the
beam, r] is the phase-slip factor, Q is betatron tune, and Cy is chromaticity, we obtain
the collective wave frequency as

Wn,w = Wn.wO + [Cy ~ mj\ W0 S, (2.421)

where S = Ap/p0 is the fractional off-momentum coordinate, Here, we have assigned
the fractional off-momentum coordinate as a £ parameter.

It is worth noting that, from Eq. (2.421), the wave frequency spread vanishes at
mode number

n0 = (^L. (2.422)

Thus if Cy/rj < 0, the mode number n0 of Eq. (2.422) is a slow wave. The beam may
become unstable against transverse collective instability, discussed as follows.

116When the transverse coordinate of collective motion is represented by Eq. (2.415), the slow wave
frequency is negative. One can also use a positive frequency approach to express the slow wave, then
the resulting dispersion relation changes sign.
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A. Beam with zero frequency spread

For a beam with zero frequency spread, i.e. p(£) = 5(£ — £o), we obtain

w = wn,w0 + j 6 ' , n • (2.423)

Thus, the imaginary part of the impedance gives rise to a frequency shift, and the
resistive part generates an imaginary coherent frequency ui. If the imaginary part of
the coherent frequency is negative, the betatron amplitude grows exponentially with
time, and the beam encounters collective instability.

For fast and backward waves, wniWo is positive. The real part of the impedance
ZJ_(OJ) is positive (see Fig. 2.56), thus the imaginary part of the coherent frequency
is positive, and there is no growth of collective instability.

On the other hand, the collective frequency uin>v,o of a slow wave is negative, where
the real part of the transverse impedance is negative. Since the imaginary part of
the collective frequency is negative, a beam with zero frequency spread can suffer slow
wave collective instability.

Defining U and V parameters as

V + jU=A e%IZLn , (2.424)

where V is related to growth rate, and U is related to collective frequency shift, we
obtain

Re [wCou] = wn,w0 - U, Im [wcon] = V.

B. Beam with finite frequency spread

With parameters U and V, the dispersion relation for coherent dipole mode frequency
w becomes

(-U + jVV = j P{0 dg. (2.425)

The solution of the dispersion relation corresponds to a coherent eigenmode of collec-
tive motion. If the imaginary part of the coherent frequency is negative, the amplitude
of the coherent motion grows with time. On the other hand, if the imaginary part of
each eigenmodes is positive, coherent oscillation is damped. The threshold of collec-
tive instability can be obtained by finding the solution with ui = ui — j\0+\, where 0+

is an infinitesimal positive number. The remarkable thing is that there are solutions
of real u> even when — U + jV is complex.

In general, the growth rate can be solved from the dispersion integral with known
impedance and distribution function. Similarly, for a given growth rate, the disper-
sion relation provides a relation between U(LO) VS V(LJ). If the distribution function
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is symmetric in betatron frequency, the U vs V contour plot will have reflection sym-
metry with respect to the V axis. For any beam distribution p(£) that does not have
infinite tails, the threshold curve contains two straight vertical lines lying on the U
axis. This means that if the coherent frequency shift is beyond the distribution tails,
the beam can be, but may not necessarily be, unstable against collective instability,
and the growth rate is proportional to the real part of the impedance.

C. A model of collective motion

We consider a macro-particle model of a beam with (Y) = YlPkYk, where Pk is the
distribution function with Y*Pk = 1- In matrix form, Eq. (2.418) becomes

[w - wn,w(fc)] Yk = WYt PiYi, (2.426)
i

where W = —U + jV for a broad-band impedance. If wn>w(fc) = wn,wo is independent
of k, i.e. no frequency spread, the collective frequency is trivially given by117

wcoii = wn,w0 + W, (2.427)

which is identical to the solution of Eq. (2.423). The corresponding eigenvector for
collective mode is Yjt)COii — PkYh- Thus any amount of a negative real part of the
impedance can produce a negative imaginary collective frequency and lead to collec-
tive instability. All other incoherent solutions have random phase with eigenvalue
wn>w0. In fact, the coupling between external force and beam particles is completely
absorbed by the collective mode.

Now, if there is a frequency spread between different particles, we have to diag-
onalize the matrix of Eq. (2.426). This is equivalent to solve the collective mode
frequency from the dispersion relation of Eq. (2.425). In general, if the frequency
spread Awnw among beam particles is larger than the coherent frequency shift pa-
rameter W, the collective mode disappears, and there is no coherent motion. The
disappearance of the collective mode due to tune spread is called Landau damping.

The requirement of a large frequency spread for Landau damping is a necessary
condition but not a sufficient one. We consider the frequency spread model

w»,w(*)n = wB|WOn + Mi{Yk - ( y» ,

where Afl is a constant that determines the frequency spread of the beam. In this
model, the frequency shift of a particle is proportional to the local density of the

U7The collective mode occurs frequently in almost all many-body systems. In nuclear physics,
the giant dipole resonance where protons oscillate coherently against neutrons presents a similar
physical picture.
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beam. This model of tune spread resembles space-charge tune shift. The resulting
collective mode frequency is

Wcoiia = wn,w0 + W. (2.428)

This means that the frequency spread that is proportional to the distribution function
can not damp the collective motion. This is equivalent to the argument that the
space-charge tune shift can not damp the transverse collective instability. Since the
space-charge tune shift is a tune shift relative to the center of a bunch, and the
coherent motion is relative to the closed orbit of the machine, the space-charge tune
shift alone can not provide Landau damping against transverse collective instability.

VIII.4 Frequency Spread and Landau Damping

From Eq. (2.423), we see that a slow wave can suffer transverse collective instability
for a beam with zero frequency spread. What is the effect of frequency spread on
collective instabilities? The key is the Landau damping mechanism discussed below.
The examples illustrate the essential physics of Landau damping.

A. Landau damping

The equation of collective motion (2.413) can be represented by a forced oscillator:

y + oj20y = Fsinujt, (2.429)

where w is the collective frequency, and ojp = Qw0 is the betatron frequency. The
solution is

v(t) — H—5 o \s\aut sinugt I +y0cosuist+ — sinujgt, (2.430)
LJJ-LJ2 \ Up P J Up P

where y0, y0 are initial values at t = 0. We are interested in the response of the particle
under external force. Since the second and third terms, which describe unperturbed
particle motion, are of little interest here, we set yo = 0 and y0 = 0. The lower plot of
Fig. 2.57 shows y{t) for three particles with u$ = 0.85 (dash-dots), CJ@ = 0.8 (dashes),
and u)g = 0.76 (line) under the action of an external force w = 0.75, F = 0.01. Note
particularly that if up differs substantially from the driving frequency w, the external
force can not deliver energy to the system forever. The particle motion will be out of
phase with the external force sooner or later, and the energy will be transferred back
to the external force. A smaller w — wg results in a longer in-phase time, as shown
in the lower plot of Fig. 2.57. As time goes on, the number of particles (oscillators)
that remain in phase with the external force becomes smaller and smaller. This is
the essence of Landau damping.
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Figure 2.57: The upper plot shows the coherent function (sin2 C)/C2- Note that the function
becomes smaller as the £ variable increases. This means that the external force can not
coherently act on a particle if (up — u)T becomes large. The lower plot shows the response
of three particles vs time t to an external sinusoidal driving force F(t) = Fsinut. Here the
units of w and t are related: if u is in rad/s, t is in s, and if u is in 106 rad/s, then t is
in /is. The frequency difference of these three particles is Au = 0.01,0.05, and 0.1 shown
respectively as solid line, dashes, and dots. Note that the particle with a large frequency
difference will fall out of coherence with the external force.

In fact, we are interested in the average power that the external force exerts on
the particle:118

<P(T)> = i f yFrin^= [ i ^ y ^ ] r + . . , (2.431)

where £ — |(w - wp)T. Here we retain only the leading term that is proportional to
time T.

The upper plot of Fig. 2.57 shows the coherent functions (sin2 () / (2- As time T
increases, the coherent frequency window decreases, i.e.

| w - w / 8 | ~ l / T , (2.432)

or equivalently, fewer and fewer oscillators will be affected by the external force. When
the external force can not pump power into a beam with a finite frequency spread,
collective instability essentially disappears, i.e. the system is Landau damped.

118In general, when an external force F(t) is applied to a Hamiltonian system with y+dV/dy = F(t),
where V is the potential energy, the total energy the external force delivered to the system after
time T is AH = JQ yF(t)dt, where H is the Hamiltonian of the system. Thus the average power is
given by Eq. (2.431).
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It is worth noting that the power dissipation to the oscillator in Eq. (2.431) comes
entirely from the second term in parentheses in Eq. (2.430). That is to say, the term
y(t) that is in phase with the force is actually a reactive term, which does not dissipate
energy. The term that will absorb power from the external force is the second term
in parentheses in Eq. (2.430). This corresponds to a resistive term, which will absorb
energy from the external force and lead to collective instability.

B. Solutions of dispersion integral with Gaussian distribution

We consider a beam with Gaussian distribution given by

^ - ^ < 2 - 4 3 3 )

where S = Ap/po is the fractional off-momentum coordinate, and o& is the rms mo-
mentum width of the beam. Using Eq. (2.421), the dispersion relation of Eq. (2.425)
becomes

-u + jv = j[w(^^-)]~\ (2.434)

where
<ra = y/2 \Cy - nrj\ ujoas (2.435)

is the rms frequency spread of the beam for mode n, w(z) is the complex error
function,119 and

u = , v = .

The curves t ivsn for Gaussian distribution for Im(w/crw) = 0 and —0.5 are shown in
Fig. 2.58, where the rectangular symbols in each curve represent coherent frequency
shifts at Re(ui — wn)Wo) = ±CTU (inner ones) and ±2au (outer ones).

From Fig. 2.58, we observe that if the frequency of the coherent mode is within
the width of the spectrum, then induction of collective beam instability requires a
finite resistive impedance. This is because the coherent mode excites only a small
fraction of the particles in the beam, and most of the beam particles are off resonance.
Thus the collective beam motion is damped. Landau damping differs in essence from
phase-space damping due to beam cooling, or phase space decoherence due to tune
spread (see Exercise 2.8.5).

119The complex error function is

w(z) = e-*2erfc(-jz) = - /"°° —dt.
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Figure 2.58: The normalized u vs
v for Gaussian distribution is plotted
with two different growth rates with
Im(u;) = 0 and —0.5CTW. The rectan-
gular symbols represents the coherent
frequency shifts at Re(w — wn;Wo) =
icr^ and ±2frw.

We note particularly that the frequency spread can vanish for mode number n0 of
Eq. (2.422). Because such modes have vanishing frequency spread, collective insta-
bilities will not be Landau damped. However, if chromaticity Cy is negative below
transition energy or if Cy is positive above transition energy, then mode no with van-
ishing frequency spread is a fast wave. Since the real part of a fast wave is positive,
the imaginary part of collective frequency is positive, and thus there is no collec-
tive instability. This has been commonly employed to overcome transverse collective
instabilities.120

Exercise 2.8
1. Verify the wave angular velocity of Eq. (2.411), and show that fast, slow, and back-

ward waves travel faster, slower, and backward relative to particle angular velocity,
respectively.

2. Show that the solution given by Eq. (2.423) for the dispersion relation at zero frequency
spread is identical to the collective frequency solution by matrix diagonalization of
Eq. (2.426), and show that the eigenvector of collective motion is Yjfc,Coii = PkYk-

3. Using the Gaussian distribution of Eq. (2.433) to show that the dispersion relation
becomes an algebraic equation, Eq. (2.434).

4. The solution of Eq. (2.429) with initial condition j/o = Vo = 0 is

F ( . w . \
y = —s T sinwi smwat .

u} ~ w2 \ "IS )

(a) Plot y(t) as a function of t for w = 1, F = 0.01 with three particles at up = 0.8,
0.9, and 0.99.

120For bunched beams, the head-tail instability has been observed in SPS and Fermilab Main Ring
above transition energy if the chromaticity is negative (see J. Gareyte, p. 134 in Ref. [14]). Treatment
of head-tail instability is beyond the scope of this book.
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(b) Let u)p = iij + e, where |e| is a small frequency deviation. Show that

... F r i -cos(e t ) . . sin(ei) 1
y(t) as — ^-^-sinurt —-cosurf .

Show that the first term in square brackets does not absorb energy from the
external force but the second term can. The first term corresponds to a reactive
coupling and the second term is related to a resistive coupling.

(c) If a beam has a distribution function given by p(£) with J p(£)d£ = 1, discuss
the centroid of beam motion, i.e. (y(t)} = fy(t)p(£)d£. For example, we choose
£ = e and p(e) = 1/2A, if |e| < A; and 0, otherwise.

5. Consider a beam with uniform momentum distribution

( J ) f l / ( 2 A ) i f | 5 | < A ,
\0 otherwise.

(a) Show that the dispersion relation Eq. (2.425) becomes

(—u+jv) = In • ,

where u = U/2aw, v = V/2aw, and aw = \Cy — nr)\uit)A.

(b) Show that the imaginary part of the coherent frequency is

T , , n e-"sinfr/(«2+^)1

{ ' w 1 + e -2 U / («W) _ 2e-«/(«2+«2) cos[t)/(u2 + v20]'

Show that the condition that Imw = 0~ is

U2 + (V + ; 1 ) 2 = J L .

2TT 4TT2

Plot u vs v, and compare your result with that shown in Fig. 2.58.
6. A beam is usually composed of particles with different frequencies.121 Let p(up) be

the frequency distribution of the beam with J p(u)p)dwfj = 1. If initially all particles
are located at y = y = 0, and at time t = 0 all particles are kicked to an amplitude
A, i.e.

y{t) = jlcosu^t,
and begin coherent betatron motion, find the centroid of beam motion as a function
of time with the following frequency distribution functions.

(a) If the frequency distribution of the beam is

p(W/J) = -J=^c-<"*-o)i/*'2,

where a is the rms frequency spread, show that (y) = AeT" * I2 cos uiot.

121This exercise illustrates the difference between Landau damping and beam decoherence (or
filamentation). Note that coherent beam motion will decohere within a time range At ~ 1/(7, where
a is the rms frequency spread of the beam. As the coherent motion is damped, particles are not
damped to the center of phase space. See also Fig. 2.15 for coherent betatron oscillation induced by
an rf dipole kicker.
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(b) If the frequency distribution is a one-sided exponential

P(UR) = / (l/ff)c-to-"»>/*, ifW/J>wo,
p / \ 0 otherwise,

where <x is the rms frequency spread, and (cup) = u)g + a, show that

(y) = 2 2 [cos wi - o-tsinwt].

(c) If the frequency distribution is a Lorentzian

p ( w ' } = »[(W/J-wo)a + r2]'

where F is the width, show that (y) = Ae~vt cos wi.

(d) If the frequency distribution is uniform with

n(u, •, = / i / ( 2 r ) , i f w O - r < w / 8 < w o + r,
PK 0> \ 0, otherwise,

where F = y/ia and cr is the rms width, show that

. . .sinFt

(e) If the frequency distribution is parabolic with

piijff) = {(3/(4r)) I1 ~«w/>-^)/r)2], i fwO-r<w/,<«o + r,
[ 0, otherwise,

where F = \f%o and cr is the rms width, show that

. , / s inr t cosFA

<2/> = M W - T r 7 F J C O S W 0 < -
(f) If the frequency distribution is quadratic with

p(Up) = I (2/TTF) y/l - ((up - wo)/rf, ifcjo-r<w0<uJo + T,
(0, otherwise,

where F = 2<r and a is the rms width, show that

{y) = A [Jo (Ft) + J2(Fi)] coswoi,

where Jo a nd Ji are Bessel functions.
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(g) Plot (y(t)) vs t for the parabolic and Lorentzian distribution functions with
wo = 1, a = 0.1, and A = 1. Compare your result with the Gaussian, one-sided
exponential, and uniform distribution results shown in the plot below.

1.0 r—i , , 1 1 , , , . 1 . 1 1 . 1 . 1 . 1 1 1 r-

j /V one —side exponen t i a l : l ine
-i I!\\ Gaussian : dots

- | / : \\ A uniform: dashes

- i . o L—J—.—.—i—.—.—.—•—i—i—i—•—i—i—•—•—'—.—i—.—i-
O 1O 2O 3O 4O

cot
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IX Synchro-Betatron Hamiltonian

So far, we have discussed particle motion only in (x,px, z,px) phase-space coordinates.
The remaining phase-space coordinates (t, —H) or (t, —E) have not been mentioned.
Here we will study the "synchrotron" equation of motion for phase-space coordinates
(t, —E). The terminology of synchrotron motion is derived from the synchronization
of particle motion with rf electric field. The name "synchrotron" has been broadly
used for all circular accelerators that employ rf electric field for beam acceleration.

This unified description has the advantage of treating synchrotron motion and
betatron motion on an equal footing. It is particularly useful in the study of synchro-
betatron coupling resonances.122

To simplify algebra, we disregard vertical betatron coordinates (z,pz) and consider
only a planar synchrotron. Neglecting vertical betatron phase-space coordinates, the
Hamiltonian is [see Eq. (2.18)]

„ x, \/E-e$\2 2 2 2 211/2
Ho = - (1 + - ) U J - m 2 c 2 - p 2 - p 2 -eAs

- -<4H)+(1+;>(^H-' <"»>
where the orbital length s is used as an independent variable, p = ^J(E/c)2 — (me)2

is the momentum of a particle, p is the bending radius of the Frenet-Serret coordi-
nate system, $ is the sealer potential, As is the longitudinal vector potential, and
(x,px,z,pz,t,—E) are canonical phase-space coordinates.

The static transverse magnetic field is

o __ 1 dAs 1 8AS

z 1 + (x/p) dx' x 1 + [x/p) Dz '

and the longitudinal varying electric field can be obtained from

r)A

Es = —gf = Yl W 5 - sk) sin(wrf* + fok), (2.437)

where 6p(s — s^) = Yin <HS ~ s* ~ 2nnR) is a periodic delta function with period 2nR,
Vk is the rf voltage, wrf is the angular frequency of the rf field, and <j>ok is the initial
phase of the /cth cavity. Thus the rf accelerating field can be represented by

^,rf = — E W s " sk) cos(wrft + <j>Qk). (2.438)
wrf k

122See T. Suzuki, Part. Accel. 18, 115 (1985); see also S.Y. Lee and H. Okamoto, Phys. Rev. Lett.
80, 5133 (1998) for the effects of space charge dominated beams.
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The Hamiltonian is an implicit function of energy E. Let E = EQ + AE and
p = p0 4- Ap, where Eg and po a r e the energy and momentum of the reference particle.
We obtain then

PO ~ ^ 2 s 0 27* > V • P2E{i ~ po + 2 72i Po) • ^ - « » ;

Expanding the dipole field 5Z in power series with Bz = Bo + B\X + • • •, where
Si = dBz/dx, we obtain

^ . = Box + | V + iBi(x2 - z2) + • • • + As,ri + AIJK, (2.440)

where AStIi given by Eq. (2.438) stands for the vector potential of rf cavities. The space
charge force of the beam particles gives rise to a mean field, that can be represented by
a sealer and vector potentials $ = Vsc and ASiSC with J4SJSC = P2Vsc/pc. Substituting
the sealer and vector potentials into the Hamiltonian, we obtain

„ AE 1 . AE ,2 AE x
Ho = - * , - * , — + „ , _ ( _ ) -Po^-

+PI+PI + P±{KXX2 + Kzz2) _ eAsT{ (2 4 4 1 )

zp0 z

up to second order in phase-space coordinates, where Kx = 1/p2 — B\/Bp is the
focusing function for the horizontal plane, and we used the identity condition BQ =
—Po/ep, which signifies the expansion of x around the closed orbit at the reference
energy.

The next step is to transform the coordinate system onto the closed orbit for a
particle with off-energy AE. This procedure cancels the cross-term proportional to
(AE/P2E0) • x in the Hamiltonian. Using the generating function

F2{x,pX:t,-AE) = (x - £>—r)ps - (E + AE)t
P -bo

where the new phase-space coordinates are

PX=PX-D'^ -x = x- D*Hr

AE = E-E0, f = t + ( ^ . f t _ | i ) >

and the dispersion function D satisfies

D" + KXD = -, (2.442)

P
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we obtain a new Hamiltonian,

AE 1 (D 1\(AE\2 px2 p- 2

- d S - { i - ^ + Tc")-eA^ (2-443)
Note that x is the betatron phase-space coordinate around the off-momentum closed
orbit, and the rf vector potential is

eASid = — ]T eVk Sp(s - sk) cos Lr f ( i - -^zrPx + -^-x) + ^ok \. (2.444)
Wrf V L V P &o Pc I J

Now we expand the standing wave of the rf field into a traveling wave, i.e.

1 °° -
<Sp(s-s*)cos(wrf«-|-0o*) = 7 -p E [eJ(n e + W r f ' +^-^) + ej ( n e-W r f '-^-n f l t )] , (2.445)

^ti n-_oo

Keeping only terms that synchronize the beam arrival time with n = ±h, we obtain

1 - hs
<5P(s - s*) cos(wrf£ + (j>ok) = -^—j^ cos(wrft - — + 4>0k + h0k), (2.446)

where <j>ok + h9k should be an integer multiple of 2?r. Using the corresponding function

hs
F2 = xfx + (wrff - —)W, (2.447)

where

Px=Px, x = x, W = , </> = w r f i - - ^ , (2.448)
Ulrf H

we obtain the Hamiltonian

Making a scale change to canonical phase-space coordinates with

{x,px, 4>,W) -+ (x,x' = —,$,—),
Po Po
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we obtain the Hamiltonian

-Ssk?rti~(*-5I* + jH

Since </> and (a;, x') are coupled through dispersion function (D, D') in rf cavities, syn-
chrotron and betatron motions are coupled. This is called synchro-betatron coupling
(SBC). If a resonance condition is encountered, it is called synchro-betatron resonance
(SBR).

In general, the SBC potential must satisfy the Panofsky-Wenzel theorem, which
relates the transverse kicks to the longitudinal energy gain. Consider a particle of
charge e and velocity v = ds/dt experiencing a kick from a component in an acceler-
ator. The total transverse momentum change is

rh -
Ap± = e / (E + v x B)i_dt,

Jta

where E and B are electromagnetic fields, and 4 — ta is the transit time of the kicker
component. The total energy change will be

rsb -,
AE = e E-ds,

where sa, sj are the entrance and exit azimuthal coordinates of the kicker. Then
the Panofsky-Wenzel theorem yields a relation between the transverse kick and the
energy gain123

AAfA^vJ-^) (2 449)
Rd4>[po ) H W ' ( '

where Apx/p0 is the transverse kick, R(j>/h is the longitudinal phase-space coordinate
of the particle, and Vj_ is the transverse gradient. Thus if the transverse kick de-
pends on the longitudinal coordinates, then the energy gain depends on the transverse
coordinates.

This synchro-betatron coupling potential, which satisfies the Panofsky-Wenzel
theorem Eq. (2.449), can generally be expressed as a function of 6D phase-space
coordinates. The synchrotron phase-space coordinates are chosen naturally to be
(R(f>/h, — Ap/po), and the Hamiltonian in 6D phase-space coordinates becomes

123D.A. Goldberg and G.L. Lambertson, AIP Con}. Proc. No. 249, p. 537 (1992).
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- | ^ E ^ - ^ + ^ ) . (2.450)

It is worth noting that if RF cavities are located in a straight section, the phase factor
-Dx' + D'x will be the same for all cavities (see Exercise 2.9.1). The driving terms
for the synchro-betatron coupling in Eq. (2.450) coherently add up in all cavities
arranged in one straight section. Thus it is beneficial to put rf cavities in dispersion
free regions.

Neglecting synchro-betatron coupling, the Hamiltonian for canonical phase-space
variables (x, x', z, z', R<j>/h, -Ap/p0) is

H = H±(x,x\z,z') + Hs(^^) (2.451)
h p0

with

HL = ^{x12 + Kxx2 + z12 + Kzz2) + • • • (2.452)

H° = ^ i - T ) ( — ) 2 " £ lS^[C0S^+(^- *') sin 4>,W-9k), (2.453)

where rf cavities are assumed to be at dispersion free locations.
Averaging over one revolution around the ring, the Hamiltonian for synchrotron

motion becomes

(H,) = - ^ { — ? ~ 0 l o 2 p I c o s ^ ~ cos<f>*+ {<!>- <t>s) sin<f>s\
I po Zixhp EJQ
1 / \ 27 j/2

= -2 7 7 (~) 2 - /^ l [ C 0 S < ? ! > ~ C 0 S ^ + W - ^ ) s i n ^ ] ' (2-454)

where rj is the phase slip factor, and

lh\r)\eV
Vs"i2*P2EQ

is the synchrotron tune of the stationary bucket with <f>s = 0.
The action of the synchrotron oscillations and the linearized betatron oscillations

can be defined on an equal footing as

7» = A / — W' Ix = ̂ -fx'dx, Iz = ̂ -fz'dz. (2.455)
Z7T/1 J Po Z7T 7 Z7T J

Table 2.4 lists some properties of electron storage rings, where the transverse emit-
tances and the longitudinal phase-space area are determined by the equilibrium be-
tween the quantum fluctuation of photon emission and the phase-space damping due
to beam acceleration to compensate energy loss in the longitudinal direction.
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The synchrotron action Is (Tr-mm-mrad) is related to the commonly used phase
area A (eV-s) of the phase-space coordinates {<j>, AE/huo) by

is = ^ A = 3 . 2 x 1 0 ^ M - ( 2-4 5 6 )

Since the typical longitudinal phase-space area is about 0.1 - 1.0 eV-s, the corre-
sponding longitudinal action is 100-1000 times as large as the transverse action. This
result has important implications for the synchro-betatron coupling resonances.

Table 2.4: Parameters of some electron storage rings.
BEPC CESR LER HER LEP APS ALS

E [GeV] 2.2 6 3.1 9 55 7 1.5
ux 5.8 9.38 32.28 25.28 76.2 35.22 14.28
vz 6.8 9.36 35.18 24.18 70.2 14.3 8.18
ex [nm] 450 240 96 48 51 8 4.8
ez [nm] 35 8 3.86 1.93 0.51 0.08 0.48
p [m] 10.35 60 30.6 165.0 3096.2 38.96 4.01
a [xHT 4 ] 400 152 14.9 24.4 3.866 2.374 14.3
C [m] 240.4 768.4 2199.3 2199.3 26658.9 1104 196.8
h 160 1281 3492 3492 31320 1296 328
/rf [MHz] 199.5 499.8 476 476 352.2 352.96 499.65
vs 0.016 0.064 0.0498 0.0522 0.085 0.0061 0.0082
(AE/Eo) [xlO"4] 4.0 6.3 9.5 6.1 8.4 9.6 7.1
A [xlO"4 eV-s] 3.5 7.2 3.1 5.7 78. 4.1 0.43
Is [103 nm] 7.7 5.7 4.7 3.0 6.8 2.8 1.4
^ 34 48 98 127 267 699 574
ass [m-1] -3.3 -25.5 -6.5 -10.6 -11.2 -0.27 -0.61

Exercise 2.9
1. Show that the function -Dx' + D'x in the Hamiltonian H4 is invariant in a straight

section, where D is the dispersion function, x is the horizontal betatron function, and
the primes are derivative with respect to the longitudinal coordinate s. Show that rf
cavities located in a straight section contribute coherently to SBC if the dispersion
function is not zero.

2. Show that if the SBC potential is an analytic function of 6D phase space coordinates
(x,x',z,z',R<j>/h, —Ap/po), it satisfies the Panofsky-Wenzel theorem.





Chapter 3

Synchrotron Motion

In general, particles gain energy from the electric field in the longitudinal direction.1
Since the electric field strength of an electrostatic accelerator is limited by field break-
down and by the length of the acceleration column, electrostatic accelerators have
been used mainly for low energy acceleration. Alternatively, a radio-frequency (rf)
cavity operating in a resonance condition can be used to provide accelerating voltage
with V sm(4>s + uijft), where V is the amplitude of the rf voltage, <ps is a phase factor,
and wrf is the angular frequency synchronized with the arrival time of beam particles.
In this chapter we study particle dynamics in the presence of rf accelerating voltage
waves.

Although we can derive a 6D Hamiltonian for both synchrotron and betatron
oscillations (see Chap. 2, Sec. IX), here, for simplicity, we will derive the synchrotron
Hamiltonian based only on the revolution frequency and energy gain relations. This
formalism lacks the essential connection between synchrotron and betatron motions,
but it simplifies the choice of synchrotron phase-space coordinates.

A particle synchronized with rf phase <f> = <j>a at revolution period To and mo-
mentum po is called a synchronous particle. A synchronous particle will gain or lose
energy, eVsin(f>s, per passage through the rf cavity. Normally the magnetic field is
ideally arranged in such a way that the synchronous particle moves on a closed or-
bit that passes through the center of all magnets. Particles with different betatron
amplitudes execute betatron motion around this ideal closed orbit.

A beam bunch consists of particles with slightly different momenta. A particle
with momentum p has its own off-momentum closed orbit, D5, where D is the dis-
persion function and 5 = (p — po)/po is the fractional momentum deviation. Since
the energy gain depends sensitively on the synchronization of rf field and particle
arrival time, what happens to a particle with a slightly different momentum when the
synchronous particle is accelerated?

1This statement also applies to beam acceleration in the betatron and the induction linac, in
which the induced electromotive force is given by the time derivative of the magnetic flux.

239
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The key answer is the discovery of the phase stability of synchrotron motion
by McMillan and Veksler [17]. If the revolution frequency / is higher for a higher
momentum particle, i.e. df/dS > 0, the higher energy particle will arrive at the rf gap
earlier, i.e. (j> < <j>s. Therefore if the rf wave synchronous phase is chosen such that
0 < </>s < TT/2, higher energy particles will receive less energy gain from the rf gap.
Similarly, lower energy particles will arrive at the same rf gap later and gain more
energy than the synchronous particle. This process provides the phase stability of
synchrotron motion. In the case of df/d5 < 0, phase stability requires TT/2 < cj>s < TT.

The discovery of phase stability paved the way for all modern high energy acceler-
ators, called "synchrotrons," and after half a century of research and development, it
remains the cornerstone of modern accelerators. Particle acceleration without phase
stability is limited to low energy accelerators, e.g. Cockcroft-Walton, Van de Graaff,
betatron, etc. Furthermore, bunched beams can be shortened, elongated, combined,
or stacked to achieve many advanced applications by using rf manipulation schemes.
Phase-space gymnastics have become essential tools in the operation of high energy
storage rings.

In this chapter we study the dynamics of synchrotron motion. In Sec. I, we derive
the synchrotron equation of motion in various phase-space coordinates. Section II
deals with adiabatic synchrotron motion, where an invariant torus corresponds to a
constant Hamiltonian value. In Sec. Ill, we study the perturbation of synchrotron
motion resulting from rf phase and amplitude modulation, synchro-betatron coupling
through dipole field error, ground vibration, etc. In Sec. IV, we treat non-adiabatic
synchrotron motion near transition energy, where the Hamiltonian is not invariant. In
Sec. V, we study beam injection, extraction, stacking, bunch rotation, phase displace-
ment acceleration, beam manipulations with double rf systems and barrier rf systems,
etc. Section VI treats fundamental aspects of rf cavity design. In Sec. VII, we intro-
duce collective longitudinal instabilities. In Sec. VIII, we provide an introduction to
the linac.

I Longitudinal Equation of Motion
We assume that the longitudinal electric field at an rf gap is

£ = £0 sin(<?!>rf (t) + & ) , cf>d = hcjot, (3.1)

where wo = PQC/RO is the angular revolution frequency of the reference (synchronous)
particle, £0 is the amplitude of the electric field, /30c and Ro are respectively the speed
and the average radius of the reference orbiting particle, h is an integer called the
harmonic number, and 4>s is the phase angle for a synchronous particle with respect
to the rf wave. We assume that the reference particle passes through the cavity gap
in time t € nT0 + {-g/2pc,g/2l3c) (n = integer), where g is the rf cavity gap width.
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The energy gain for the reference particle per passage is

/•9/2/Soc

AE = eSofic / sm(huot + <j>s)dt = e£ogT sin 0S, (3.2)
J-g/2poc

where e is the charge of the circulating particles, and T is the transit time factor:

_ sin(/ig/2fio)
1 - (hg/2RQ) • (3-3)

The effective voltage seen by the orbiting particle is V — SogT. The transit time
factor arises from the fact that a particle passes through the rf gap within a finite
time interval so that the energy gain is the time average of the electric field in the gap
during the transit time (see also Exercise 3.1). If the gap length is small, the transit
time factor is approximately equal to 1. However, a high electric field associated with
a small gap may cause sparking and electric field breakdown.

Since a synchronous particle synchronizes with the rf wave with a frequency of
Uri = hu>o, where u>0 = pQc/R0 is the revolution frequency and h is an integer, it
encounters the rf voltage at the same phase angle 4>s every revolution. The acceleration
rate for this synchronous particle is

£0 = ^ s i n i , (3.4)

where the dot indicates the derivative with respect to time t.
Now we consider a non-synchronous particle with small deviations of rf parameters

from the synchronous particle, i.e.

( w = wo + Aw, (j> = <f>s + A<f>, e = 9s + A0,
I p = po + Ap, E = Eo + AE.

Here (j)s,6s,ujo,po,Eo are respectively the synchronous phase angle, the azimuthal
orbital angle, the angular revolution frequency, the momentum, and the energy of
the synchronous particle, and <f>,9,cj,p,E are the corresponding parameters for an
off-momentum particle.

The phase coordinate is related to the orbital angle by A</> = <f> — <f>s = —hA9, or

Au = ±A9 = -l±A^=J-dA. (3.5)
dt hdt v hdt y '

The energy gain per revolution for this non-synchronous particle is eV sin <j>, where <f>
is the rf phase angle. Thus the acceleration rate of a non-synchronous particle is

E=~eVsin(t>, (3.6)
2TT
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and the equation of motion for the energy difference is2

d {AE\ 1

Using the fractional off-momentum variable

Ap _ u0 AE
d-^~ PE~W' (3-8)

we obtain
S=^^eV(smct>-smcl>s). (3.9)

The next task is to find the time evolution of the phase angle variable 0, where,
using Eq. (3.5), we have

4> = -h(u - w0) = -hAoj. (3.10)

Using the relation LUR/LJQRQ = /3/Po, we obtain

— " ^ - 1 (3 11)

Following the result in Chap. 2, Sec. IV, the mean radius of a circular accelerator is

R = RO{1 + a o 6 + a x 5 2 + a 2 6 3 + •••), (3.12)

where the momentum compaction factor is3

a c = - J T - £ = a o + 2 a x 5 + 3a262 + ••• = —, (3.13)

and 7Tmc2, or simply 7T, is called the transition energy. Most accelerator lattices
have Qo > 0 a n d the closed-orbit length for a higher energy particle is longer than
the reference orbit. Some specially designed synchrotrons can achieve the condition
a0 = 0, where the circumference, up to first order, is independent of particle mo-
mentum. Recently, medium energy proton synchrotrons have been designed to have
an imaginary j r or a negative momentum compaction (see Chap. 2, Sec. IV.8). The
orbit length in a negative compaction lattice is shorter for a higher energy particle.

2 We use the relation

u UJQ Uo UQ WO L A£> J at \ OJO /

3Typically, we have Qi72 ss -^-^f =s 1 for accelerators without chromatic corrections. The ai
term depends on the sextupole field in the accelerator.



I. LONGITUDINAL EQUATION OF MOTION 243

Let p — mcP^f = po + Ap be the momentum of a non-synchronous particle. The
fractional off-momentum coordinate 5 is

8 = ^ = ^ - 1 . (3.14)

Expressing /? and 7 in terms of the off-momentum coordinate 5, we obtain

2- = Jl+ 20$6 +ffiP, (3.15)

and

A> yji + 2ffi6 + /?0252 To 2 7 o 2 2 7 o 2

Combining Eqs. (3.11) and (3.12), we obtain

— = -r,(5)5 = - ( % + ViS + V262 + • • -)6, (3.17)

where

1 3/32

r)0 = (a0 j), % = ~ + ai - a0r/o, (3.18)
7o / 7 o

y9o(5/8n - 1 ) Q i 2 3^o Q0

% = - ^ r i + Q2 ~ 2 a ° a i + "I + "o7?" ~ -TT- (3-19)
•̂ 7o 7o ^7o

In the linear approximation, we have
Aw = -T)OUJO6 = (— - — )wod. (3.20)

Below the transition energy, with 7 < 7T, a higher energy particle with 5 > 0 has
a higher revolution frequency. The speed of the higher energy particle compensates
more than the difference in path length. At the transition energy, the revolution
frequency is independent of particle momentum. The AVF cyclotron operates in this
isochronous condition. The nonlinear term in Eq. (3.17) becomes important near
transition energy, to be addressed in Sec. IV. Above the transition energy, with
7 > 7T, a higher energy particle with 6 > 0 has a smaller revolution frequency, i.e.
the particle appears to have a "negative mass."

With Eqs. (3.10) and (3.17), the phase equation becomes

where ((/>, AE/u>0) or equivalently (4>, S) are pairs of conjugate phase-space coordi-
nates. Equations (3.7) and (3.21) form the "synchrotron equation of motion."
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I.I The Synchrotron Hamiltonian

The synchrotron equations of motion (3.7) and (3.21) can be derived from a "Hamil-
tonian"

H=lj^E{w) + ^ : [ c o s ^ - c o s & + (<£-&) sin &] (3.22)

for phase-space coordinates (</>, AE/LOO) or

H = -hujor]o52 + 2"°f2_g[cos (j> - cos fa+ (</>- fa) sin fa] (3.23)

for phase-space coordinates (<fr, 6) with time t as an independent variable.
This Hamiltonian, although legitimate, is inconsistent with the Hamiltonian for

transverse betatron oscillations, where s is the independent coordinate. To simplify
our discussion, we will disregard the inconsistency and study only the synchrotron
motion. A fully consistent treatment is needed in the study of synchro-betatron
coupling resonances.4

With this simplified Hamiltonian, we now discuss the stability condition for small
amplitude oscillations, where the linearized equation of motion is

The stability condition for synchrotron oscillation is

r]0cosfa<0 (3.25)

discovered by McMillan and Veksler [17]. Below the transition energy, with 7 < 7T

or 770 < 0, the synchronous phase angle should be 0 < fa < TT/2. Similarly the
synchronous phase angle should be shifted to n — fa above the transition energy.5
The angular synchrotron frequency is

[heV\rfycosfa\ c IheV\r]cosfa\

Ws = WoV WE = i ?V 2*E ' (3-26)

where c is the speed of light and R is the average radius of the synchrotron. The
synchrotron tune, defined as the number of synchrotron oscillations per revolution, is

UJS lheV\r]0cosfa]

Qs = ^0=i 2K(PE • (3'27)

Typically the synchrotron tune is of the order of < 10~3 for proton synchrotrons and
10"1 for electron storage rings.

4S.Y. Lee, Phys. Rev. E49, 5706 (1994).
5This can be accomplished by a phase shift of TT — 2<j>s to the rf wave.
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The stability of particle motion in the rf force potential can be understood from
the left plot of Fig. 3.1, where the rf potentials for (f>s = 0 and cj>s = TT/6 are shown.
The potential well near the synchronous phase angle provides restoring force for quasi-
harmonic oscillations. The horizontal dashed line shows the maximum Hamiltonian
value for a stable synchrotron orbit. The corresponding stable phase-space (bucket)
area is shown in the right plots.

Figure 3.1: The left plot shows schematically the rf potential for (f>s = 0 and vr/6. The
dashed line shows the maximum "energy" for stable synchrotron motion. The right plot
shows the corresponding separatrix orbits in {ixh\r)\leV02E)1l2di.Esx vs cf>. The phase (f>u is
the turning point of the separatrix orbit.

1.2 The Synchrotron Mapping Equation

In Hamiltonian formalism, the rf electric field is considered to be uniformly distributed
in an accelerator. In reality, rf cavities are localized in a short section of a synchrotron,
and therefore synchrotron motion is more realistically described by the symplectic
mapping equation

( eV
I Sn+l =5n+ o^g (sin (j>n - sin <j)s), ,g 2 g .
I 4>n+i = K + 2nhr}(6n+i)6n+i.

The physics of the mapping equation can be visualized as follows. First, the particle
gains or loses energy at its nth passage through the rf cavity, then the rf phase 0n + 1

depends on the new off-momentum coordinate <5n+1. It is no surprise that Eq. (3.28)
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satisfies the symplectic condition:

J a c o b i a n = 9 ( w ^ = 1 (329)

Thus the mapping from {cj>n, 5n) to (< n̂+i,<5n+i) preserves phase-space area.
It is worth pointing out that Eq. (3.28) treats the rf cavity as a single lumped el-

ement in an accelerator. In reality, the rf cavities may be distributed non-uniformly.
The rf phase change between different cavities may not be uniform. Because syn-
chrotron motion is usually slow, Hamiltonian formalism and mapping equations are
equivalent. Because of the simplicity of the mapping equations, they are usually used
in particle tracking calculations.

1.3 Evolution of Synchrotron Phase-Space Ellipse

The phase-space area enclosed by a trajectory (</>, 6) obtained from Eq. (3.28) is
independent of energy. Therefore, Eq. (3.28) can not be used in tracking simulations of
beam acceleration. During beam acceleration, the phase-space area in (4>, AE/u>0) is
invariant. The phase-space mapping equation for phase-space coordinates {<f>, AE/LUQ)
should be used. The adiabatic damping of phase-space area can be obtained by
transforming phase-space coordinates (<j>, AE/LJ0) to {(j),5).

The separatrix for the rf bucket shown in Fig. 3.1 is a closed curve. In a rapid
cycling synchrotron or electron linac where the acceleration gradient is high, the
separatrix is not a closed curve. The mapping equations for synchrotron phase-space
coordinates (<j), AE) are

AEn+l = AEn + eV(sin <f>n - sin fa), (3.30)

0n+l = <t>n + 2^AEn+u (3.31)

where the quantity rj//32E in Eq. (3.30) depends on the acceleration rate according
to E = £0,n+i = £o,n + eV sin fa, j = E/mc2, /3 = y/l - I/72, and r) = ac - I/72. If
the acceleration rate is low, the factor hr]/{32E is nearly constant, and the separatrix
orbit shown in Fig. 3.1 can be considered as a closed curve.

When the acceleration rate is high, tori of the synchrotron mapping equations are
not closed curves. Figure 3.2 shows two tori in phase-space coordinates (cj), AE//32E)
with parameters V = 100 kV, h = 1, ac = 0.04340, fa = 30° at 45 MeV proton kinetic
energy.6 Note that the separatrix is not a closed curve when the acceleration rate is
high. The phase-space tori change from a fish-like to a golf-club-like shape. This is
equivalent to the adiabatic damping of phase-space area discussed earlier. Since the
acceleration rate for proton (ion) beams is normally low, the separatrix torus shown

6The actual rf voltage V is about 200 V in a low energy proton synchrotron.
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in Fig. 3.1 is a good approximation. When the acceleration rate is high, e.g. in many
electron accelerators, the tori near the separatrix may resemble those in Fig. 3.2.

Figure 3.2: Two tori in phase-
space coordinates ((f>, AE//32E) ob-
tained from mapping equations (3.30)
and (3.31) with parameters V = 100
kV, h = 1, ac = 0.04340, and &, =
30° at 45 MeV proton kinetic energy.

1.4 Some Practical Examples

Using the basic relations

e pc 2nR

we find a basic rf cavity requirement:

Vsm(j)s = 27rRpB. (3.32)

For example, proton acceleration in the IUCF cooler ring from 45 MeV to 500 MeV
in one second requires

B = M ^ l „ l.l Tesla/sec,

where p « 2.4 m. Using R ss 14 m, we obtain

V sin <j>s ss 240 Volts,

which is independent of the harmonic number used.
Similarly, acceleration of protons from 9 GeV to 120 GeV in 1 s at the Fermilab

Main Injector would require B « 1.6 Tesla/s. The circumference is 3319.4 m with
p = 235 m. The voltage requirement becomes

Fsin09 = 1.2MV.
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1.5 Summary of Synchrotron Equations of Motion

A. Using t as independent variable

Using time t as an independent variable, the equations of motion and the Hamiltonian
are listed as follows.

• Using (<f>, AE/UIQ) as phase-space coordinates:

d<p hLoZn fAE\ d(AE/u0) 1 ,

H = l ^ ( — ) + ̂ [cos0-cos0s + (0-0s)sin0s]. (3.34)

• Using (<f>, 6) as phase-space coordinates:

d(j> d5 ojoeV , . , . , , ,„ o cx

Tt=huoV6, _ = 5 - ^ ( s i n 0 - s m 0 s ) , (3.35)

H = -huj0r]62 + ^ [cos <(> - cos 4>s + {<(> - <t>s) sin 0S]. (3.36)

• Using {4>, V = — {h\r)\/vs)5) as the normalized phase-space coordinates:

— = uavj>, — = —7W0^s(sini/> - s in^s) , (3.37)
1 Tj

H = -ZOJQI/SV2 + ~UJ0^S[COS (/> - cos 4>s + {4>- <£s) sin <j>s]. (3.38)
^ I7?!

• Using (r = (0 — (j>s)/hwo,t) as phase-space coordinates:

I"* 5-^"-<*- -W)--«, (3-39)
H =-i2+ 2J^6 [cos(0s - /iwor) - cos 0S - /IW0T sin <£s]. (3.40)

The corresponding normalized phase space is (T, f/ws).

B. Using longitudinal distance s as independent variable

• Using (R<f>/h, —Ap/p0) as phase-space coordinates, the Hamiltonian is

H = -T;T>\—) - T 5 7 1 [ c o s ^ - c o s & + ( ^ - & ) s i n & ] ) (3.41)
^ \Po / M \V\

where ua = Jh\r]\eV/2irf32Eo is the synchrotron tune at <j>s = 0. This syn-
chrotron Hamiltonian is on an equal footing with the transverse betatron mo-
tion. In particular, the negative sign in the first term corresponds to negative
mass above the transition energy, where 77 > 0.
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Exercise 3.1

1. An rf cavity consists of an insulating gap g across which the rf voltage is applied. The
gap length is finite and the rf field changes with time during transit time At. The
total energy gain of a particle passing through the gap is the time average of the rf
voltage during the transit time, i.e.

e fA*/2
AE= — V(t)dt, V(t) = Vg sm(<j> + huot)

At J-At/2

where Vs is the peak gap voltage, and <j> the rf phase of the particle. Show that the
effective voltage is

V _ V T sin(hg/2R)

where R is the mean radius of the accelerator. Thus the transit time factor T is the
same for all particles.

2. Calculate synchrotron tunes for the proton synchrotrons listed in the following table
with <f>s = 0.

RF parameters of some synchrotrons

P-synchrotron I AGS I RHIC I FNAL-MI 1 FNAL-BST I SSC I Cooler
K.E. [GeV/u] 0.2 28 8 0.2 2000 0.045
Vrf [MV] 0.3 0.3 2 0.95 10 0.0001
h 12 342 588 84 17424 1
7 r 8.5 24.5 21.8 5.446 140 4.6
C [m] 807.12 3833.84 3319.4 474.2 87120 86.8

^s 1 1 1 1 I I ~

3. Show that the relation between the rf frequency of an accelerator and the magnetic
flux density B(t) during particle acceleration at a constant radius is given by

_ hi \ g 2 w 1/2
" r f ~ Ro [B2(t) + (mc2/ecp)2

where h is the harmonic number, p is the bending radius of the dipoles, RQ is the
mean radius of the accelerator, e and m are the charge and mass of the particle, and
c is the speed of light.

4. Redefine y = h\r)\8, and x = 0/2TT.

(a) Show that Eq. (3.28) of the symplectic mapping equation for a stationary bucket
synchrotron motion can be transformed into the standard map:

2M+1 = Vn - IKVI sin27rzn,

xn+i = xn + yn+\ (Mod 1),

where ws is the synchrotron tune.
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(b) Write a program to track the phase-space points (x,y) such that x e [—1,1],
2/£[-1,1].

(c) Explore the phase-space evolution at us > i/SjC, where the critical synchrotron
tune is i/SiC = 0.39324366 [2ws2c = 0.971635406].

5. Write a computer program to track synchrotron motion near the separatrix, explore
the dependence of the separatrix on the acceleration rate, and verify the golf-club-like
tori in Fig. 3.2.

6. Electrons in storage rings emit synchrotron radiation. The energy loss per turn is
given by

UQ = Cj^Et/p,

where Eo is the beam energy, /3c is the beam velocity, p is the bending radius of
dipoles, and

C7 = 8.85 x 10"5 m/(GeV)3.

The energy loss due to synchrotron radiation is compensated by the rf accelerating
field, i.e. Uo = eVTfSm<j>s. Calculate synchrotron tunes for the electron storage rings
listed in the following table.

I LEP I ALS I APS 1 NLC PR I BEPC I TRISTAN
? H 26658.9 196.8 1060 223 240.4 3018
Energy [GeV] 50 1.2 7.0 1.98 2.2 30.
p [m] 3096.2 4.01 38.96 4.35 10.35 246.5
Vrf [MV] 400 1.5 10 1.0 0.8 400
h 31320 328 1248 531 160 5120
7 r 50.86 26.44 64.91 46.1 5.0 25.5
ux 76.2 14.28 35.22 23.81 6.18 36.8

j ^ 70.2 8.18 14.3 8.62 7.12 38.7
4>s [deg]

_& 1 1 1 1 1 I
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II Adiabatic Synchrotron Motion

With time t as an independent variable, the synchrotron Hamiltonian for phase-space
coordinates (<j>, 6) is

H = ^hu0r]52 + ^^[cos<f> - coscj>s + {(j>- </>s)sinc/>s], (3.23)

where the first term can be considered as "kinetic energy" and the second as "potential
energy." For simplicity in notation, hereafter, the subscript of the energy Eo of the
beam has been neglected. Figure 3.1 illustrates schematically the potential energy as
a function of cj> for <f>s = 0 and </>a = TT/6.

Hamilton's equations of motion are

4> = hr)bjQ5, 6 = " (sin <j> - s u n f e ) , (3.42)

where the over-dots indicate derivatives with respect to time t. If }rj\ ^ 0, the small
amplitude synchrotron tune is

^ lheV\ricos(/>s\ r. ~ ,„ .

Qs = V 2*fPE =V'fi™**1 (3'27)

where
\h\q\eV

"s-y2nP*E
is the synchrotron tune at j cos0s| = 1. The synchrotron period is TS = TO/QS! where
To is the revolution period.

The typical synchrotron tune in proton synchrotrons is of the order of 10~3, i.e.
it takes about 1000 revolutions to complete one synchrotron oscillation. The typical
synchrotron tune in electron storage rings is of the order of 10"1. If the rf parameters
V and 4>s vary only slowly with time so that the gain in beam energy in each revolution
is small, and 77 differs substantially from 0, the Hamiltonian is time independent or
nearly time independent.

During beam acceleration, the Hamiltonian (3.23) generally depends on time.
However, if the acceleration rate is low, the Hamiltonian can be considered as quasi-
static. This corresponds to adiabatic synchrotron motion, where parameters in the
synchrotron Hamiltonian change slowly so that the particle orbit is a torus of constant
Hamiltonian value. The condition for adiabatic synchrotron motion is

aaa = \*£ = i- § « 1, (3.43)
wj dt 2?r dt

where a/s is the angular synchrotron frequency and a ^ is called the adiabaticity
coefficient. Typically, when a^ < 0.05, the time variation of synchrotron period is
small and the trajectories of particle motion can be approximately described by tori
of constant Hamiltonian values.
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II. 1 Fixed Points

The Hamiltonian for adiabatic synchrotron motion has two fixed points (< ŝ,0) and
(TT - 4>s, 0), where 0 = 0 and 5 = 0. The phase-space point (cf>s, 0) is the stable fixed
point (SFP). Small amplitude phase-space trajectories around the stable fixed point
are ellipses. Therefore the SFP is also called an elliptical fixed point.

On the other hand, the phase-space trajectories near the unstable fixed point
(UFP) (ir - 4>s, 0) are hyperbola. Thus the UFP is also called a hyperbolic fixed
point. The torus that passes through the UFP is called the separatrix; it separates
phase space into regions of bound and unbound oscillations. Figure 3.3 shows the
separatrix orbit for r) < 0 with <f>s = 0,7r/6,7r/3 and for r] > 0 with (f>s = 2?r/3, 5TT/6, TT.

The synchrotron phase space is divided into stable and unstable regions, and only
particles in the stable region can be accelerated to high energy. Thus particles in
synchrotrons are naturally bunched. A beam in which particles are grouped together
forming bunches is called a bunched beam.

For a slowly time-varying Hamiltonian, particle motion adiabatically follows a
phase-space ellipse, which is also a contour (a torus) of constant Hamiltonian value.
Particles outside the rf bucket drift along the longitudinal direction, and particles
inside the rf bucket execute quasi-harmonic motion within the bucket. The phase-
space area enclosed by a Hamiltonian torus is

A = J8{<t>)dct>.

The phase-space area enclosed by the separatrix orbit is called the bucket area. The
maximum momentum deviation of the separatrix orbit is called the bucket height.

Figure 3.3: The separatrix orbits for
r) > 0 with <j)s = 2?r/3,57r/6,7T, and
for r\ < 0 with <j>3 = 0,7r/6,7r/3. The
phase space area enclosed by the sep-
aratrix is called the bucket area. The
stationary buckets that have largest
phase space areas correspond to cj>s =
0 and n respectively.
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II. 2 Bucket Area
The separatrix passes through the unstable fixed point (TT — </>s, 0). Therefore the
Hamiltonian value of the separatrix is

Hsx = ^—^ [-2 cos <j>s + (TT - 2&) sin 0J. (3.44)

The phase-space trajectory of the separatrix is H = Hsx, or

eV
*« + « n , [cos0 + cos <f>s - (?r - ^ - <j>a) sin0S] = 0. (3.45)

rKpitihr\

The separatrix has two turning points, <fiu and TT — <fis, where <fiu is

c o s (j>u + <j>n s i n 4>s = — c o s <̂>s + (n — (j>s) s i n 4>s. (3.46)

For </)s = 0, the turning points are — ir and ir.
The phase-space area enclosed by the separatrix is called the bucket area, i.e.

A - / « • ) * - 1 6 v S £ « ' * » = ^ = 3 »<«• (3-47)
where the factor ab(</!|s) is the ratio of the bucket area between a running bucket
(4>s ^ 0) and a stationary bucket (</>s = 0), i.e.

1 /•*-«. f In I 1 1 / 2

ah{<ps) = -r7= \—^ [cos0 + cos(/>s-(7r-0-(k)sin0s] df (3.48)
4 v ^ '^u [ *7 J

Table 3.1 lists Qb((/>s) as a function of the synchronous phase angle cj>s. Naturally
ab(0) = 1, and Qb(7r/2) = 0, i.e. the bucket area vanishes at 90° synchronous phase
angle. Note that Qb(0s) can be approximated by a simple function

aM « £?£. (3.49)
1 + sin </>s

The corresponding invariant bucket area in (</>, AE/UJ0) phase-space variables,

B2E -
AB = -—.4B « hAtAE, (3.50)

Wo
is the phase-space area of h buckets in the entire accelerator, where At is the bucket
width in time (s), AE is the bucket energy height (eV), and the resulting bucket
phase-space area is in eV-s. Table 3.2 lists some relevant formulas for rf bucket
properties.
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Table 3.1: Bucket length, bucket height and bucket area factors.

s in& I 4>u 1 7T - & I y ( & ) I qb(<fe) I jg j f f i
0.00 -180.00 180.00 1.0000 1.0000 1.0000
0.05 -136.47 177.13 0.9606 0.8888 0.9048
0.10 -118.90 174.26 0.9208 0.8041 0.8182
0.15 -105.32 171.37 0.8807 0.7294 0.7391
0.20 -93.71 168.46 0.8402 0.6611 0.6667
0.25 -83.26 165.52 0.7992 0.5980 0.6000
0.30 -73.59 162.54 0.7577 0.5388 0.5385
0.35 -64.45 159.51 0.7156 0.4832 0.4815
0.40 -55.66 156.42 0.6729 0.4305 0.4286
0.45 -47.11 153.26 0.6295 0.3806 0.3793
0.50 -38.69 150.00 0.5852 0.3333 0.3333
0.55 -30.31 146.63 0.5399 0.2885 0.2903
0.60 -21.88 143.13 0.4936 0.2460 0.2500
0.65 -13.31 139.46 0.4459 0.2058 0.2121
0.70 -4.48 135.57 0.3967 0.1679 0.1765
0.75 4.75 131.41 0.3455 0.1323 0.1429
0.80 14.59 126.87 0.2919 0.0991 0.1111
0.85 25.38 121.79 0.2349 0.0685 0.0811
0.90 37.77 115.84 0.1731 0.0408 0.0526
0.95 53.42 108.19 0.1028 0.0170 0.0256
1.00 [ 90.00 | 90.00 I 0. 1 0. | 0.

Table 3.2: Formula for bucket area in conjugate phase space variables.

1 (Affi 1 (<P,S) 1 (4,^6)
Bucket Area 16 (£§f^)V* Qb(&) 16 (afeff) 1" a ^ 16 Qb^>

Bucket Height 1 2 ( g g j ^ y f o ) [ ^^J)1''^^) | 2 YQfeT

The bucket length is \(n — <j>s) — <f>u\, and the bucket height or the maximum
momentum width is

s-'{^mfY^'mtiU (351)
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Here the bucket height factor Y((j)s) and Y(6S) are the ratios of the maximum mo-
mentum height to the height of the stationary bucket, i.e.

- 26 1/2 n -26 1/2

Y{6S) = cos 6S ^ sin 6S , Y{6S) = 1 ^ tan 6S . (3.52)

Table 3.1 lists the turning points, and the bucket height factor, Y(6S), of an rf bucket.

II.3 Small-Amplitude Oscillations and Bunch Area

The linearized synchrotron Hamiltonian around the SFP is

1 2 w0eVcos6s 2

H = -h^rjS2 - 4 7 r / g 2 g V?2, (3.53)

where ip = 6 — 6S. The synchrotron frequency is given by Eq. (3.27), and

(p = (f>cos(ujst + x), 5= -~-J>sH^ + X), (3-54)
h\r]\

where UJS = QSLJ0 is the angular synchrotron tune. The phase-space ellipse of a particle
becomes

/^V+M2-! * __(eV\cos6s\\1/2_ Qs

[dj + U J ~ ' 4>-WpEh\v\) -h\n\' (3'55)

where 5 and 6 are maximum amplitudes of the phase-space ellipse. The phase-space
area of the ellipse is ir5(f>.

A. Gaussian beam distribution

The equilibrium beam distribution is a function of the invariant ellipse of Eq. (3.55).
In many beam applications, we use the normalized Gaussian distribution given by

***>-5^-H[$+£]}- (3-56)
where as and o"̂  are rms momentum spread and bunch length respectively. The
corresponding rms phase-space area is .Arms = naga^. The phase-space area that
contains 95% of the particles in a Gaussian beam distribution is

-495% = 6-4rms,

where the factor 6 depends on the distribution function.
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Since the synchrotron phase-space area A, usually measured in eV-s, is defined as
the area in the phase space (c/>/h, AE/u0) for one bunch,7 it is related to A by

A = *W = hA(j^y (3.57)

Using Eq. (3.55), the maximum momentum width and the bunch length are

S = AW (j±.\V2 (heV\coS(f>s\\1/4

\*PEJ { 2TT/32E\V\ ) '

h \np2EJ \heV\ cos <f>s\J

5_(heV\coscl>s\y/2 Qs

Note that here the phase-space area A is the invariant phase-space area for one bunch
in eV-s. The scaling properties of the bunch length and bunch height of Eq. (3.58)
become

S~ ^1/2yl/4fel/4|r?|-l/47-3/4! fl~>tVV-l/4/l-1/4|r?|l/47-l/4) (3 6 Q )

where the adiabatic damping is also shown. As the energy approaches the transition
energy with rj —> 0, we expect that 5 —> oo, and 8 —> 0. This is not true because the
synchrotron motion around the transition energy is non-adiabatic. It will be discussed
in Sec. IV.

Similarly, the invariant phase-space ellipse in (9, S) phase space is

W - - J-fr
where 5 and 9 are maximum amplitudes of the phase-space ellipse. The normalized
Gaussian distribution in (9,5) space becomes

7Since the energy of a heavy ion beam is usually expressed as [MeV/u] or [GeV/u], the E in the
denominator of Eq. (3.57) can be expressed as A x (E/A), where A is the atomic mass number or the
number of nucleons in a nucleus, E/A = juc2, and u = 0.931494 GeV/c2 is the atomic mass unit.
Thus the phase-space area is commonly defined as phase-space area per amu expressed as [eV-s/u]
for heavy ion beams. The factor eV/E in this chapter should be modified by a charge-to-mass ratio
of Z/A for heavy ion beams, i.e. e -> Ze, and E -^ Ay. (E/A), where Zis the charge number of the
ion beam.
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Here og and as are respectively the rms bunch angular width and the rms fractional
momentum spread. The bunch length is as = Rag in meters, where R is the average
radius of the accelerator, or at = crg/uio in s.

Now we consider NB particles distributed in a bunch, where JVB may vary from
108 to 1013 particles. The line distribution is

p(fl =-*l-e-*/*} or m = -T=-e-"»i. (3.63)
V27T(T^ y/2-Kag

The peak current (in Amperes) of the bunch is

~ = NBe = NBeuj0 = f 2ir \ NBe

\p2mat y/^ag \\f2KOg) To

B. Synchrotron motion in reference time coordinates

In the discussion of collective beam instabilities, it is sometimes useful to use the
particle arrival time r and its time derivative f for the synchrotron phase-space co-
ordinates, i.e.

r = -lzlli and r = — =+tf. (3.65)

The linearized synchrotron Hamiltonian becomes

where uis is the angular synchrotron frequency shown in Eq. (3.26). The phase-space
ellipse that corresponds to a constant Hamiltonian is

T' + ~2 = f^ (3-67)

The equation of motion is f 4- w|r = 0, and the solution can be expressed as

r = fcos?/), = fsini/>, ip = ip0 + ujst (3.68)

where f and ip are respectively the synchrotron amplitude and phase. See Eq. (3.333)
for its application.

C. Approximate action-angle variables

Expanding the phase coordinate around the SFP with <j> = <f>s + <p, the synchrotron
Hamiltonian becomes (see Exercise 3.2.11)

H = -hu)0r,52 + ~^Ql [v>2 - | tan <̂ s ̂  - -^ p* + • • •] , (3.69)
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where Qs = ij heV\r] cos <j>s\/2n ft2 E = vs^j\ cos</is| is the small amplitude synchrotron
tune. For simplicity, we assume r\ > 0 in this section.

Using the generating function for linearized synchrotron motion

^ , V 0 = -2^O¥>2tanV>, (3.70)

the synchrotron phase-space coordinates are transformed according to

(fi= /2§ZcosV,; 6 = -J^-^i>, (3.71)
V Vs V nv

where the conjugate variables (J, tp) are approximate action-angle variables of the
Hamiltonian in (<f>, 6) phase space. If we use the approximate action-angle variables,
the Hamiltonian for synchrotron motion becomes

H = UJOQSJ + CJ0^2yB tan4>s J3'2 [cos3</> + 3cosV>] - uj—^cos^</>• (3.72)
12 6

If we apply the canonical perturbation method (see Exercise 3.2.11), the averaged
synchrotron Hamiltonian becomes

H = uj0QsJ - ^ ( l + jj tan2 ^ J2 + • • •. (3.73)

Thus the synchrotron tune becomes

QS(J) * Qs [l - ^ ( l + | tan2 0S) j ] . (3.74)

II.4 Small-Amplitude Synchrotron Motion at the UFP
Small amplitude synchrotron motion around the unstable fixed point (UFP) is also
of interest in accelerator physics. Expanding the Hamiltonian around the UFP, i.e.
ip = (j> — (TT — <f>s), w e o b t a i n

• u)0eVcos<i>s .

= 2TT/32E <P' ^ = VU)° ^ ^

or
J = w2<5, 5̂ = waV- (3.76)

Thus the particle motion is hyperbolic around the UFP.
Now, we study the evolution of an elliptical torus of Eq. (3.55) at the UFP. We

would like to find the evolution of bunch shape when the center of the beam bunch
is instantaneously kicked8 onto the UFP at time t = 0. With normalized coordinates

- V x Sip = —, o = -,
(j> 5

8In reality, the beam does not move in the phase space; instead, the phase of the rf wave is being
shifted so that the UFP is located at the center of the bunch.
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the solutions of Eq. (3.76) are

<p = ae1"*' + be-Ust, 6 = ae"'1 - be'"3'', (3.77)

where a and b are determined from the initial condition. With the constants a and 6
eliminated, the evolution of the bunch shape ellipse is

(p1 -2\rL. tanh 2uist ) <p6 + 52 = (cosh 2ujst)-1. (3.78)

\\v\ )
Thus the upright phase-space ellipse will become a tilted phase-space ellipse encom-
passing the same phase-space area. The width and height of the phase-space ellipse
increase or decrease at a rate e±u>st, where t is the length of time the bunch stays at the
UFP (see Exercise 3.2.5). This scheme of bunch deformation can be used for bunch
rotation or bunch compression. At ust 3> 1, the ellipse becomes a line (p ± 5 — 0.
However, the nonlinear part of the synchrotron Hamiltonian will distort the ellipse.

II.5 Synchrotron Motion for Large-Amplitude Particles

The phase space trajectory of adiabatic synchrotron motion follows a Hamiltonian
torus H(cj),S) = Ho, where H(4>,6) is the synchrotron Hamiltonian in Eq. (3.23) and
the constant Hamiltonian value Ho is

Ho = -hu}Or/S2 = 2n32E^C°S ^ ~ C ° S ^ + ^ ~ ^ Sm^'

Here 0 and <5 are respectively the maximum phase coordinate and fractional momen-
tum deviation of synchrotron motion. Using Hamilton's equation 0 = huiorj8, we find
the synchrotron oscillation period as

T = j \2tiLJoV \Ho - | ^ [ « > s <f> - cos & + {</,- &) sin 0 j j j # , (3.79)

where Ho is the Hamiltonian value of a torus. The angular synchrotron frequency is
2TT/T. The action of the torus is

J=hi[h^[Ho~S^E{COS*~cos0s+{<t>~0s)sin^s)]) #- (3-80)
The synchrotron period of Eq. (3.79) can also be derived by differentiating Eq. (3.80)
with respect to J, and using dH0/dJ = UJ(J) to find the synchrotron frequency.
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A. Stationary synchrotron motion

For simplicity, we consider the stationary synchrotron motion above the transition
energy with 7? > 0, or <f>s = n. The Hamiltonian value for a torus with a maximum
phase coordinate 4> (or maximum off-momentum coordinate 5) is

Ho = ihuovS2 = % s 2 ( l - cos0).

Note that the maximum off-momentum coordinate 5 is related to the maximum phase
coordinate (j> a Hamiltonian torus by

* - * 4 (,81)
The Hamiltonian torus is the phase space trajectory given by ((/>, ±6((j>)), where

5{<f>) = ^ - V ' 2 ( C 0 S ( ? i - C 0 S ^ ) - (3-8 2)

The phase space area A, or the action J enclosed by the Hamiltonian torus is

A = 2TT J = 2 / 0 5{<t>)d4> = 1 6 ^ - [-B(fc) - (1 - k2) K{k)] , (3.83)

where the modulus of these integrals k = sin(</>/2) and

I-K/2 / / , , , fit/2 1

K{k)= . _ ,. , E{k)= Jl-k2sin2wdw, (3.84)
•/o VI - Ps in io •'0

are the complete elliptic integrals of the first and second kind.

B. Synchrotron tune

The synchrotron tune of the Hamiltonian torus with maximum phase amplitude 4>
becomes (see Exercise 3.2.8)

Q8(0) = 7r*V2#(sin(^/2)) (3.85)

Figure 3.4 compares the theoretical curve of Eq. (3.85) with a measured synchrotron
tune at the IUCF Cooler. When the value of the Hamiltonian Ho approaches that
of the separatrix Hsx of Eq. (3.44), the synchrotron tune becomes zero and the
synchrotron period becomes infinite. In the small angle approximation, we find
Qs(4>) « (1 - YQ4>2)US, which is identical to Eq. (3.74) at <f>s - 0.

Since the synchrotron tune is nonlinear, particles having different synchrotron am-
plitudes in a beam bunch can have different synchrotron tunes. If the bunch area is



II. ADIABATIC SYNCHROTRON MOTION 261

Figure 3.4: The measured
synchrotron tune obtained by
taking the FFT of the syn-
chrotron phase coordinate is
plotted as a function of the
maximum phase amplitude of
the synchrotron oscillations.
The solid line shows the theo-
retical prediction of Eq. (3.85).
The inset shows an example
of the synchrotron phase-space
map measured at the IUCF
Cooler, and the corresponding
FFT spectrum. The zero am-
plitude synchrotron tune was
ua = 5.2 x 10-4.

a substantial fraction of the bucket area, the synchrotron tune spread may be large.
For a mismatched beam bunch, synchrotron tune spread can cause beam decoherence,
a filamentation process, where beam particles spread out in the synchrotron phase
space. Beam filamentation causes a mismatched beam bunch to evolve into spirals
bounded by a Hamiltonian torus. The final bunch area is determined by the initial
beam distribution and parameters of the rf system (see Fig. 3.19 in Sec. V). Filamen-
tation can dilute the phase-space density of the beam. When the beam encounters
longitudinal collective beam instability, or mis-injection in the rf bucket, or rf voltage
and phase modulations, etc., the mismatched phase-space distribution will decohere
and result in beam dilution. This process is important to rf capture in low energy
synchrotrons during injection. On the other hand, synchrotron tune spread is useful
in providing Landau damping for collective beam instabilities.

II.6 Experimental Tracking of Synchrotron Motion

Experimental measurements of synchrotron phase-space coordinates are important in
improving the performance of synchrotrons. For example, a phase detector is needed
in implementing a phase feedback loop to damp dipole or higher-order synchrotron
modes. In this section we discuss the methods of measuring the off-momentum and
rf phase coordinates of a beam.

The fractional off-momentum coordinate of a beam can be derived by measuring
the closed orbit of transverse displacement Axco at a high dispersion function location.
The off-momentum coordinate is

Ap Axco

T = "#' (3-86)
where D is the horizontal dispersion function. Since synchrotron oscillation is rela-
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tively slow in proton synchrotrons, the signal-to-noise ratio can be enhanced by using
a low-pass filter at a frequency slightly higher than the synchrotron frequency.

The inset in Fig. 3.4 shows a synchrotron phase space ellipse measured at the
IUCF Cooler Ring. The phase coordinate is obtained by a phase detector, and the
fractional off-momentum coordinate is obtained from the displacement of the beam
centroid measured with a beam position monitor (BPM).

The BPM system had an rms position resolution of about 0.1 mm. By averaging
the position measurements the stability of the horizontal closed orbit was measured to
be within 0.02 mm. The momentum deviation is related to the off-momentum closed
orbit, Axco, by Aa;co = D5, where 5 = Ap/po is the fractional momentum deviation,
and the horizontal dispersion function D is about 4.0 m at a high-dispersion location.
The position signals from the BPM were passed through a 3 kHz low-pass filter before
digitization to remove effects due to coherent betatron oscillations and high frequency
noise. Since the synchrotron frequency at the IUCF Cooler in this experiment was
less than 1 kHz for an rf system with h = 1, a 3 kHz low-pass filter could be used to
average out betatron oscillations of a few hundred kHz.

The synchrotron phase coordinate can be measured by comparing the bunch ar-
rival time with the rf cavity wave. First, we examine the characteristics of beam
current signal from a beam position monitor. We assume that the bunch length is
much shorter than the circumference of an accelerator. With the beam bunch ap-
proximated by an ideal 5-function pulse, the signal from a beam position monitor
(BPM) or a wall gap monitor (WGM)9 is

OO 00

I(t, r) = NBe £ 5{t + r - ITO) = NBe £ ein^t+T\ (3.87)
fc-oo n=-oo

where NB is the number of particles in a bunch, To is the revolution period, u>0 = 2TT/T0

is the angular revolution frequency, and r = (8 — OS)/UIQ is the arrival time relative
to the synchronous particle. Equation (3.87) shows that the periodic delta-function
pulse, in time domain, is equivalent to sinusoidal waves at all integer harmonics of
the revolution frequency.

To measure the phase coordinate or equivalently the relative arrival time r, we
first select a sinusoidal wave by using the band-pass filter, or we select the fundamen-
tal harmonic with a low-pass filter including only the fundamental harmonic. The
sinusoidal signal is compared with the rf wave; and the phase between the beam
and the reference rf wave can be obtained by using phase detectors.10 Normally, the

9A wall gap monitor consists of a break in the vacuum chamber. The wall current that flows
through a resistor, typically about 50 Ohms with a stray capacitance of about 30 pF, can then be
measured. The bandwidth is about 100 MHz.

10See Roland E. Best, Phase Locked Loops, Theory, Design, and Applications, pp. 7-9 (McGraw-
Hill, New York, 1984). The type II phase detector utilizes XOR logic, and has a range of ±90°; the
type III utilizes the edge triggered JK-master-slave flip-flop circuit, and has a range of ±180°. The
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BPM sum signal or the WGM signal can be used to measure the relative phase of
the beam.11 Since the rf frequency was 1.03 MHz for the 45 MeV protons in this
measurement at the IUCF Cooler, the BPM signal was passed through a 1.4 MHz
low-pass filter to eliminate high harmonics noise before it was compared with an rf
signal in a phase detector.

The phase-space map of synchrotron oscillations can be obtained by plotting
Ap/po vs <j> in each revolution. Since the synchrotron tune of a proton synchrotron
is small, the synchrotron motion can be tracked at N revolution intervals, where
N -C l/vs- The top inset in Fig. 3.4 shows the Poincare map of the longitudinal
phase space at 10 turn intervals; the bottom inset shows the FFT of the phase data.
The resulting synchrotron tune as a function of peak phase amplitude is compared
with the theoretical prediction in Fig. 3.4.

Exercise 3.2
1. Write a simple program to calculate a^((j>o)-

2. This exercise concerns the acceleration of protons in the AGS booster. The injection
kinetic energy is 200 MeV from the linac. The circumference of the booster ring is
201.78 m, the transition energy is ~fT = 4.5, the extraction energy is 1.5 GeV kinetic
energy, the acceleration time is 160 ms, and the harmonic number is h = 3.

(a) Find the rf voltage needed for acceleration of a proton bunch in the booster.

(b) The bunch area is determined by several factors, such as line charge density,
microwave instabilities, transition crossing in the AGS, etc. If we need a bunch
area of about 1 eV-s per bunch in (AE/uiQ,<f>/h) phase space, and the bucket
area is about 1.2 times as large as the bunch area, what is the minimum rf
voltage needed?

(c) What is the rf frequency swing needed to accelerate protons from 200 MeV to
1.5 GeV?

(d) How does the rf bucket area change during the acceleration process?

3. For a constant rf voltage and synchronous phase angle, show that the rf bucket area
in the (AE/UJQ, 4>/h) phase space has a minimum at 7 = \ /37 r .

4. Particle acceleration at a constant bucket is a possible "rf program" in synchrotrons.
Find the relation between rf voltage and beam energy.

5. Verify Eq. (3.76). Rotate the phase-space ellipse of Eq. (3.78) into the upright posi-
tion, show that the width and height of the bunch change by a factor e±Ust, where t
is the time the bunch stays at the UFP, and estimate the time needed to double the
bunch height.

type III has a phase error of about ±10° near 0°, but can adequately measure the synchrotron tune.
For more accurate measurement of phase amplitude response, the type II can be used. To extend
the range of beam phase detection, a type IV phase detector with a range of ±360° can be used.

n M. Ellison et al, Phys. Rev. E 50, 4051 (1994).
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6. The anti-protons produced from the Main Injector (Main Ring) pulses have the follow-
ing characteristics: p0 = 8.9 GeV/c, at = 0.15 ns, aE = 180 MeV, or Ap/p0 = ±2%.
The antiprotons are captured in the Debuncher into the 53.1 MHz (h = 90) rf bucket
with V = 5 MV, 7T = 7.7, and R = 83 m.12

(a) Find the bucket height, synchrotron tune, and synchrotron period of the De-
buncher ring for the rf system.

(b) At 1/4 of the synchrotron period after antiproton injection, the rf voltage is
lowered suddenly to match the bunch shape. Show that the final rf voltage V2
is related to the initial voltage V\ by

Find the final matched rf voltage for the Debuncher.

(c) Show that the final energy spread in this debunching process is

Find the final energy spread of the antiproton beams.

7. Assuming stationary bucket, fill out the beam properties of the proton synchrotrons
in the table below.

P-synchrotron I AGS I RHIC I FNAL-MI I FNAL-BST I Cooler
K.E. [GeV] 25 250 120 8 0.045
Vrf [MV] 0.3 0.3 2 0.95 0.0001
h 12 342 588 84 1
7T 8.5 24.5 21.8 5.446 4.6
C [m] 807.12 3833.84 3319.4 474.2 86.8
A [eV-s] 1.5 0.5 0.15 0JJ5 0.0001
aE [MeV]
<Jt [ n s ] I I I I I

8. Show that the synchrotron tune of a particle with phase amplitude <j> in a stationary
bucket is

where K(x) is the complete elliptical integral of the first kind given in Eq. (3.84).

9. Define p^ = hur]5, and show that the synchrotron equations of motion become

<I> = P4>, P0 = o w 2 ( s i n ^ - s i n ^ s ) ,

12See A.V. Tollestrup and G. Dugan, p. 954 in Ref. [13] (1983). Note that 5 MV is the maximum
voltage that the Debuncher rf system can deliver.
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where us = w$y/h\q\eV/2-Kp1E, and the overdot indicates the derivative with respect
to time t. The Hamiltonian for a stationary rf system with fa becomes

ff=^ + ^ s 2 ( c o s ^ - l ) .

(a) Using the generating function

i^-y^tan^

show that phase-space coordinates are

<j> = \J2Jjus cos-0, V<S> = —\/2Jussm4>,

where J and ip are action-angle coordinates. Show that the Hamiltonian below
the transition energy becomes

H = usJ + w2 1 cos2 tb - cos I A — cos ip I .
L ws Vv ws j \

(b) Using the phase averaging method, show that the synchrotron tune is approxi-
mately given by

[2 w J V ws

where J\ (w) is the Bessel function.

(c) Compare the accuracy of the above approximated synchrotron tune to that of
the exact formula given by Exercise 3.2.8.

10. Let (j> be the maximum synchrotron phase amplitude. Show that the maximum off-
momentum deviation is

11. Expanding the phase coordinate around the SFP with (j) = <j>s + ip, the synchrotron
Hamiltonian becomes

H = -hw0r,82 + ^ - w o Q 2 p - - tan fa <pz - —<pA + • • -j ,

where
//tey|T?cos^sJ r — -

For simplicity, we assume r\ > 0 in this exercise.
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(a) Using the generating function

show that the phase-space coordinates are related to action angle (J, ip) by

ip = J2hr] J/Qs cos ip, 8 — — y2QsJ/hijsinip,

and the Hamiltonian in action-angle coordinates is

H = u^j _ " o v y ; U n ^ j 3 / 2 [CQS ̂  + 3 CQS ̂  _ "skn ji C0S4 ^
12 6

(b) Using the generating function

F2(ip, I)=ipl + G3(I) sin 3^ + Gi(J) sin V,

show that terms proportional to J3/2 in the Hamiltonian can be canceled if Gz
and G\ are chosen to be

G3 = ^ t a n ^ / 3 / 2 i G l = ^ t a n ^ s 7 3 / 2 .

Finding new canonical variables to cancel low-order perturbation terms is called
the canonical perturbation technique.

(c) Show that the new Hamiltonian is

uiohrj 2 4

H = u0QsI —I* cos4 ip
6

- " f r v ^ Q a t a n 0s/i /2[c o s 3 ^ + 3 c o s ^][3Gr3 c o s 3^, + G l CDS ^]_
8

Now the perturbation in the new action variable is proportional to 72.

(d) Show that the average Hamiltonian is

< t f > = " o Q s / - ^ ( l + ^ t a n ^ s ) / 2 + . . . .

Show that the synchrotron tune for a particle with a synchrotron amplitude (p
is

Q(¥>) = Q s [ l - ^ ( l + 5tan2<^2],

where <p is the maximum synchrotron amplitude in the quasi-harmonic approx-
imation. Compare your result with that of Eq. (3.85) for <ps = 0.

12. The natural rms fractional momentum spread of electron beams in a storage ring
is OE/E = JCq~f2/JEP, where Cq = 3.83 x 10~13 m, p is the bending radius, and

JE ~ 2 is the damping partition. In the NLC damping ring (DR) parameter list
shown in Exercise 3.1.3, the rms fractional momentum spread of the electron beam
is ag = 0.000813. Find the bunch length and rms phase-space area in eV-s.
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13. The equilibrium distribution in linearized synchrotron phase space is a function of
the invariant ellipse given by Eq. (3.61), where 6 = \r)\6/uB. When a mismatched
Gaussian beam

p(5,0) = exp < - - —^ H 5- >
' 27r<T5CT9 F \ 2 [o-92 as2\ J

is injected into the synchrotron at time t = 0, what is the time evolution of the beam?
Here ag and ag are respectively the initial rms bunch angular width and fractional
momentum spread, and the mismatch condition for the linearized synchrotron motion
is given by ag / \r)\as/vs-

(a) Show that the projection of the beam distribution function onto the 0 axis is13

p(0, t) = J^Le-8*l2*2 ~a2 = CT| CQS2 ̂  + fl^/^2 gin2 ^
V27TCT

Show that the peak current is I(t) = N^euol{\p2/na•.

(b) For a weakly mismatched beam, show that

a2e « al{\ - AV/2V), (va5/us)2 « «rg(l + AV/2V),

where CTO = Jag + {r]as/i/s)2 is the matched rms beam width, AV is the mis-
matched voltage, and V is the voltage for the matched beam profile. Show that
the peak current for the weakly mismatched beam is

Discuss your result. Because the bunch tumbles at twice the synchrotron fre-
quency, the resulting coherent beam motion is called the quadrupole synchrotron
mode. The nonlinear synchrotron tune will cause the mismatched injection to
filament and the resulting phase-space area will be larger.

^Transform the (9,8) coordinate system into the normalized coordinate system (x = 9 and
P — M /̂"«)> where the matched beam profile is a circle. Make coordinate transformation into the
synchrotron rotating frame. The beam profile in the x plane is equal to p{x) — J p(x,p)dp.
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III RF Phase and Voltage Modulations

Particle motion in accelerators experiences perturbations from rf phase and amplitude
noise, power supply ripple, wakefields, etc. These perturbation sources cause rf phase
or voltage modulations. In general, the frequency spectrum of rf noise may contain
high frequency arising from random thermal (white) noise, low frequency from power
supply ripple and ground motion, and medium frequency from mechanical vibration
etc. In this section, we study the effects of a single frequency sinusoidal rf phase and
voltage modulation on particle motion and beam distribution. The understanding of
the beam response to a single frequency modulation can be applied to the analysis of
more complicated situations.

III.l Normalized Phase-Space Coordinates

Using normalized momentum deviation coordinate V = —(/i|7?|/^s)(Ap/p), the Hamil-
tonian for a stationary synchrotron motion is

#o = ^ P 2 + 2 M , s i n 2 ^ , (3.88)

where i/s = *Jh\r)\eV/2n/32E is the synchrotron tune at |cos^>s| = 1, the orbital
angle 9 is the independent variable, and (<fi, V) are normalized conjugate phase-space
coordinates. The Hamiltonian has fixed points at

( ^ ) S F P = (0 ,0 ) and (<fr,V)UFP = (TT,O).

The synchrotron Hamiltonian is autonomous (time independent), and thus the Hamil-
tonian value is a constant of motion.

Expressing the synchrotron coordinates in parameters k and w as

d> V
sin— = ksinw, — = A;COSUJ, (3.89)

we obtain Ho = 2i/sk2, where k = 0 corresponds to the SFP and k = 1 corresponds
to the separatrix orbit that passes through the UFP. The action is

J^~ivd4>=- [E(k) - (1 - k2)K(k)}, (3.90)

where the complete elliptical function integrals are [25]

E{k) = [n/2 Jl-k25m2w dw, K(k) = r / 2 l .. = dw.
Jo Jo VI - k2 sin w

In the normalized phase-space coordinates, the maximum action (k = 1) is Jmax =
8/TT, and the maximum bucket area is A — 27rJmax = 16 (see Table 3.2).
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For synchrotron motion with a small action, the power series expansions of ellip-
tical integrals are

K(k) = \ 1 + (\?e + ( I ^ | ) V + ( ^ | ) 2 * 6 + • • • ] ,

^ W ~ 2 [ 1 " ( 2 j T " ( 2 - 4 j 3 ( 2 - 4 . 6 } 5 " J"

Thus the action is related to the parameter k by

J = 2k2(l + l-k2 + ^ + • • •), (3.91)

2fc2 = J^-TeJ-iej2 - • ) • ^
In terms of the action, the Hamiltonian is Ho{J). The synchrotron tune becomes

y s ( < 7 ) - 9J ~ 2K(k) ~Ml 8 256 }' ( 3-9 3 )

where we have used the identities

2k^ = E(k) -K(k), ^dJ§t = ^m-K(k).

Using the generating function

Fa{<l>,J)= [*V($) dj>, (3.94)
Jo

we obtain the angle coordinate

^ = 4G7W*Jt.
v dJ vs k V((/>)

The angle variable ip, which is conjugate to the action J, can be obtained simply by
integrating Eq. (3.93), i.e.

V> = ^ 0 + ift>- (3.96)

The next task is to express the normalized off-momentum coordinate V, and
the synchrotron phase coordinate <j>, in Fourier harmonics of the conjugate angle
parameter ip. First, using Hamilton's equation 4> = vaV, we can relate the orbital
angle 0 to the w parameter of Eq. (3.89) as

vs{0 - e0) = f* § = u - u0,
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where
rw I ,u>o 1

u= . , aw, u0 = I , . aw.
Jo VI — k2sin w Jo v l — k2sin w

The Jacobian elliptical functions, en and sn, are then defined as

sinw = sn(u|fc), cosw = cn(u\k), (3.97)

and the synchrotron phase-space coordinates are related to the Jacobian elliptical
function by

V = 2k cn(u\k), sin | = k sn(u\k). (3.98)

Thus the expansion of V and sin(0/2) in Fourier harmonics of ijj is equivalent to the
expansion of cn(u\k) and sn(u\k) in V = vu/2K. This can be achieved by using
Eq. (16.23.2) in Ref. [25], i.e.

v = 2 t o H , ) = _v_^_^__c o s ( 2 n + 1)̂

(oj)3/2 (2J)5/2

« (2J)1/2cosV + ^ — c o s 3 V ' + i ^ - cos 5V + ---, (3.99)

where ip is the synchrotron phase with the q parameter given by

with K' = K(\/l - k2). Similarly, using the identity k2sn2(u\k) = 1 - dn2(w|A;), we
obtain

<h °° 1 J2

2 s i n 2 r = J2 Gn{J)e>n* « - - c o s 2 V - — c o s # + • • •, (3.100)

Gn(J) = ^- [2n{l - cos^e-^di/j, (3.101)
2?r JO

where G_n = G*. Because 1 — cos<f> is an even function, Gn = 0 for odd n. The
expansion of normalized coordinates in action-angle variables is useful for evaluating
the effect of perturbation on synchrotron motion, discussed below.

Sum rule theorem

The solutions of many dynamical systems can be obtained by expanding the pertur-
bation potential in action angle variables. For the case of rf phase modulation, the
expansion of the normalized off-momentum coordinate is

oo

?= E W)eini>, (3.102)
n=—oo
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where /_„ = f* and, from Eq. (3.99), the strength functions /„ are

2nVkqm+^ _
hm+1~ K(k)(i + q*"+iy hm~

Because V is an odd function, only odd harmonics exist. Furthermore, the sum of all
strength functions is (see Exercise 3.3.2)

E \fn\2 = ^~J- (3.103)
n=-oo ^s

We observe that the strength functions are zero at the center of the rf bucket where
J — 0 and at the separatrix where Qs(JSx) = 0.

III.2 RF Phase Modulation and Parametric Resonances

If the phase of the rf wave changes by an amount <p(6), where 9 = u>ot is the orbiting
angle serving as time coordinate, the synchrotron mapping equation is

<l>n+l = <Pn + 27ThVSn + Aip(e), (3.104)
eV

5n+1 = 5n + —(sm4>n+1-sixi(t>s), (3.105)

where A(p(9) = ip(9n + 2TT) — ip(9n) is the difference in rf phase error between succes-
sive turns in the accelerator. In this section, we consider only a sinusoidal rf phase
modulation with14

</> = <zsin(j/m0 + Xo),

where vm is the modulation tune, a is the modulation amplitude, and xo is an ar-
bitrary phase factor. The resulting rf phase difference in every revolution is Aip =
2TTi/macos{vm9 + xo)-

For simplicity, we consider the case of a stationary bucket with 4>s = 0 for r\ < 0.
Using the normalized off-momentum coordinate V = — {h\rj\/vs)8, we obtain the
perturbed Hamiltonian

H^H0 + Hl = -vj>2 + 2iss sin2 ^ + vmaV cos(t<m0 + Xo), (3.106)

where the perturbation potential of rf phase modulation is

Hi = vmaV cos(i/m0 + xo). (3.107)

14M. Ellison et al., Phys. Rev. Lett. 70, 591 (1993); M. Syphers et al, Phys. Rev. Lett. 71,
719 (1993); H. Huang et al, Phys. Rev. E48 , 4678 (1993); Y. Wang et al, Phys. Rev. E49, 1610
(1994).
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Expressing the phase-space coordinate V in action-angle coordinates with Eq. (3.99),
we can expand the perturbation in action-angle variables

Hi = vmcn/j/2 [cos(V> + vm6 + Xo) + cos(^ - vm6 - xo)]

(2J)3/2

+v™a IOQ [C0S(3^ + vm0 + Xo) + cos(3V> - vm6 - xo)] + • • •, (3.108)

where J and ip are conjugate action-angle variables. The rf phase error generates
only odd order parametric resonances because V is an odd function. However, two
nearby strong parametric resonances can drive secondary and tertiary resonances. For
example, the 1:1 and 3:1 parametric resonances driving by a strong phase modulation
can produce a secondary 4:2 resonance at vm ~ 2vs. In the following, we discuss only
the primary parametric resonances, particularly the 1:1 dipole mode.

A. Effective Hamiltonian near a parametric resonance

When the modulation tune is near an odd multiple of synchrotron sideband, i.e.
vm = (2m + l)fs, stationary phase condition exists for a parametric resonance term.
We neglect all non-resonance terms in Hi to obtain an approximate synchrotron
Hamiltonian

HKVSJ- ^ysJ2 + vmf2m+xJm+1'2 cos ((2m + l)tf - vmd - X o ) , (3.109)

where /i = a/y/2, $•$ — a/32\/2, etc. The effect of rf phase modulation on phase-space
distortion can be solved by using the effective parametric resonance Hamiltonian, that
resembles the Hamiltonian for 1-D betatron resonances discussed in Sec. VII, Chap. 2.
This primary parametric resonance is called (2m +1):1 resonance. In this section, we
consider only the dominant dipole mode below.

B. Dipole mode

If the phase modulation amplitude is small, the dominant contribution arises from
the m = 0 sideband. Near the first-order synchrotron sideband with vm sa vs, the
Hamiltonian for the dipole mode is

HKVJ- ±-VSJ2 + ^J1'2 cos(V - vm6 - X o) . (3.110)
ID V2

The Hamiltonian can be transformed into the resonance rotating frame by using the
generating function

F2{il>,I) = (Tl>-vm0-xo-n)I- (3.1H)

The new phase-space coordinates become

X = 1> - vme - xo - n, I = J; (3.112)
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and the new Hamiltonian is

H=(vs- vm)I - ±vj2 - ^ I 1 / 2 cosx. (3.113)

Since the new Hamiltonian is time independent in the resonance rotating frame, a
torus of particle motion will follow a constant Hamiltonian contour, where Hamilton's
equations of motion are

X = vs-vm--vsl-vs—j==cosx, i=-vs-V2Isinx- (3.114)

The fixed points of the Hamiltonian, which characterize the structure of resonant
islands, are given by the solution of 7 = 0, x = 0. Using g = %/2Jcosx, with x = 0
or 7T, to represent the phase coordinate of a fixed point, we obtain the equation for g
as

g3-ie(l-—)g + 8a = 0. (3.115)
\ vs J

When the modulation tune is below the bifurcation tune i/\,\f given by15

vw = *. [l - ^ ( 4 « ) 2 / 3 ] . (3-116)

Eq. (3.115) has three solutions:

8 £

9a(x) = - - / = x1'2 cos - , (ip = ir)

• gb(x) = ̂ =x"2 sin(^ - | ) , (V = 0) (3.117)

^(xH^a^sm^ + i), (V = 0)
where

[7~~x~\^ 3
x = l-vm/vs, xbif = l-uhi{/vs, ^ = arctanW - 1 , xbif = — (4o)2 / 3 .

V VZbif/ 16

Here ga and gt, are respectively the outer and the inner stable fixed points (SFPs)
and gc is the unstable fixed point (UFP). The reason that ga and gt, are SFPs and
gc is the UFP will be discussed shortly. Particle motion in the phase space can be
described by tori of constant Hamiltonian around SFPs. The lambda-shaped phase
amplitudes of the SFPs (\ga\ and \gb\, solid lines) and UFP (\gc\, dashed line) shown
in the left plot of Fig. 3.5 vs the modulation frequency is a characteristic property of
the dipole mode excitation with nonlinear detuning. In the limit vm <C vbif, we have
f -> 7r/2, thus ga -> -4x1 / 2 , gc ->• 4a;1/2, and gb -)• 0.

15Find the root of the discriminant of the cubic equation (3.115).
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The Hamiltonian tori in phase space coordinates V — — %/2/sin x vs X = %/2/cos x
are shown in the right plot of Fig. 3.5. The actual Hamiltonian tori rotate about the
center of the phase space at the modulation tune vm, i.e. the phase space ellipses
return to this structure in l/ivm revolutions.

Figure 3.5: Left plot: fixed point amplitudes |ga|, \gi,\, and \gc\ (in unit of (4a)1/3); and
right plot: Poincare surfaces of section for fm = 245 Hz and / s = 262 Hz at a = 0.02.
The stable fixed points are ga and <?(,, and the unstable fixed point is gc. The torus passing
through the UFP is the separatrix, which separates the phase space into two stable islands.
The intercept of the the separatrix with the phase axis is denoted by g\ and <?2-

When the modulation frequency approaches the bifurcation frequency from below,
the UFP and the outer SFP move in and the inner SFP moves out. At the bifurcation
frequency, where x = rcbif and f = 0, the UFP collides with the inner SFP with
9b — 9c = (4a)1/3; and they disappear together. Beyond the bifurcation frequency,
vm > z/bjf (x < Xbif), there is only one real solution to Eq. (3.115):

/ / 3 \ 1 / 3 / / 3 \ 1 / 3

fcW-(<.r^/.-(jL)+ij - ^ - ( J L ) . , ) j . (3.i8)
In particular, ga = —(8a)1/3 at x — 0 (vm = vs), and ga = — 2(4a)x/3 at x = lyf-
The characteristics of bifurcation appear in all orders of resonances with nonlinear
detuning. As the modulation tune approaches the bifurcation tune, resonance islands
can be created or annihilated.

C. Island tune

Let y,py be the local coordinates about a fixed point of the Hamiltonian, i.e.

y = V2IcosX-g, py = -V2IsmX, (3.119)
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where g is a fixed point of the Hamiltonian. With a local coordinate expansion, the
Hamiltonian (3.113) becomes

island = ^ ( 1 - £)V2 + 7 ^ + • • • • (3-120)
Ag 4a Ag y

Therefore the fixed point g is a stable fixed point if (1 — g3/4a) > 0. Because
gl/Aa < 0 and 0 < gl/Aa < 1, ga and g^ are SFPs. Since g\jAa > 1, gc is the
UFP. The equilibrium beam distribution (see Appendix A, Sec. II.4), which satisfies
the Fokker-Planck-Vlasov equation, is generally a function of the local Hamiltonian,
Eq. (3.120) can also provide information on the local distortion of the bunch profile.

The island tune for the small-amplitude oscillations is

( 2 \ / 3 \ ^/^

' - fej-M'-y • (3-m)
The island tune around the inner SFP given by gi, at vm -C Vbu is approximately given
by island ~ |fs(l —-ĵ ff2) —"m|- This means that the solution of the equations of motion
can be approximated by a linear combination of the solution of the homogeneous
equation with tune fs(l — j^g2) and the particular solution with tune ^m.16 Thus the
island tune is the beat frequency between these two solutions. When the modulation
tune vm approaches fbif, with (1 — gl/4.a)xl2 —¥ 0, the island tune for small-amplitude
oscillation about the inner SFP approaches 0 and the small-amplitude island tune
for the outer SFP at vm = î jf is i^and = 3|K,(1 — j^g2) — vm\. In this region of the
modulation frequency, the linear superposition principle fails. When the modulation
frequency becomes larger than the bifurcation frequency so that [1 — (p3/4o)]1/2 -¥ 1,
we obtain again îsiand — K ( l - jj-g2) - vm\, and the linear superposition principle
is again applicable. The island tune for large-amplitude motion about a SFP can be
obtained by integrating the equation of motion along the corresponding torus of the
Hamiltonian in Eq. (3.113).
D. Separatrix of resonant islands

The Hamiltonian torus that passes through the UFP is the separatrix. With the UFP
gc substitutes into the Hamiltonian (3.113), the separatrix torus is

H{J, i,) = us \±xgl - ±g*c - \ag^ , (3.122)

where x — 1 — vmjv&. The separatrix orbit intersects the phase axis at g\ and g2.
These intercepts, shown in Figs. 3.5 and 3.6, are useful in determining the maximum

16M. Ellison et al, Phys. Rev. Lett. 70, 591 (1993).
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phase amplitude of synchrotron motion with external phase modulation. With the
notation h, = g, /(4a)1/3, the intercepts of the separatrix are

2 2
hi - -hc •==, h2 = -he + —==.

The intercepts of the separatrix with the phase axis, hi and hi, and the fixed points,
ha, hi, and hc are shown in 3.6.

Figure 3.6: The fixed points in units
of (4a)1/3 are plotted as a function of
the modulation frequency in x/xbn,
where x = 1 — vmlvs and Zbif =
^(4a)2/3 with a as the amplitude of
the phase modulation. The SFPs are
K = ffa/(4a)1/3 and hb = ff6/(4a)1/3

and the UFP is hc = pe/^a)1/3.
The intercepts of the separatrix with
the phase axis are shown as hi =
ffl/(4a)1/3and/l2=fl2/(4a)1/3.

E. The torus passing through the origin

For a beam with small bunch area, all particles can be approximately described as
having initial phase-space coordinates at the origin. The Hamiltonian torus pass-
ing through the origin, called the torus-O, satisfies the equation H(J, if)) = 0. The
intercepts (j>0 of the torus-0 with the phase axis are then

4>0{<j>l - 32x(j>0 + 3 2 a ) = 0, (3.123)

where x = 1 - {vm/vs)- When x > x0 = 21/3Zbif, or vm < v0 = K,(1 - 21/3:Cbif), there
are three solutions to Eq. (3.123) besides the solution <j>0 = 0. This means that there
are two non-intersecting tori with the same zero Hamiltonian value. One of the tori
orbits about the inner SFP, which is the torus-O, and other tori orbit about the outer
SFP.

At x = x0, two solutions of Eq. (3.123) become degenerate. This means that the
torus-O is also the separatrix of islands. When the separatrix passes through the
origin, the phase axis intercept of Eq. (3.123) is

Uxo) = -25/3(4a)1/3. (3.124)
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At a higher modulation frequency with a; < x0, there is only one real root to
Eq. (3.123) besides <j>0 = 0. The torus-0 orbits around the outer SFP. The inter-
cept is then

U/ x* \"' l"s \i x> v" 1"*]

^ ' - - ( " • q K ' - S E ) +1J - [ ( ' - £ £ ) "'] )• <3'125>
III.3 Measurements of Synchrotron Phase Modulation

Here we discuss an example of experimental measurements of rf phase modulation at
the IUCF Cooler. The experimental procedure started with a single bunch of about
3 x 108 protons with kinetic energy 45 MeV. The corresponding revolution period
was 969 ns with an rf frequency of 1.03148 MHz. The cycle time was 10 s. The
injected beam was electron-cooled for about 3 s. The full width at half maximum
bunch length was about 5.4 m (or 60 ns). The low-frequency rf system of the IUCF
Cooler at h = 1 was used in this experiment.

For the longitudinal rf phase shift, the beam was kicked longitudinally by a phase
shifter and the data acquisition system was started 2000 turns before the phase kick.
The principle of the phase shifter used is as follows. The rf signal from an rf source
is split into a 90° phase shifted channel and a non-phase shifted channel. A separate
function generator produces two modulating voltages, each proportional to the sine
and cosine of the intended phase shift <pmod- As a result of the amplitude modulation,
the two rf channels are multiplied by sin (pmod and cos tpmOd respectively. These two
modulated signals were added, using an rf power combiner, resulting in an rf phase
shift ymod in the rf wave. The control voltage versus actual phase shift linearity was
experimentally calibrated. Both the phase error due to control nonlinearity and the
parasitic amplitude modulation of the IUCF Cooler rf systems were controlled to less
than 10%.

The phase lock feedback loop was switched off in our experiment. The response
time of the step phase shift was limited primarily by the inertia of the resonant cavity.
At 1 MHz, the quality factor Q of the rf cavity was about 40, resulting in a half-power
bandwidth of about 25 kHz. The corresponding response time for a step rf phase
shift was about 40~50 revolutions. In this experiment, the synchrotron oscillation
frequency was chosen to be about 540 Hz, or about 1910 revolutions (turns) in the
accelerator. Measurements of subsequent beam-centroid displacements have been
discussed in Chap. 3, Sec. II.6.

A. Sinusoidal rf phase modulation

When the bunch, initially at 0,- = 0, 5; = 0, experiences the rf phase sinusoidal mod-
ulation with ipmod = asinz;m0, where um is the modulation tune and a the modulation
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amplitude with a -C 1. The synchrotron motion, in terms of a differential equation,
is

eV
<f> = hr]d + uma cos vm6, 5 = sin</>- X5, (3.126)

where <f> is the particle phase angle relative to the modulated rf phase, the overdot
indicates the derivative with respect to the variable 9, and A is the damping decrement
due to electron cooling. Thus the synchrotron equation of motion becomes

(j> H (j> + v l s i n 4> = - a v 2 m s i n v m 6 H vma cos vm6. (3.127)
LOQ UJQ

The measured damping coefficient a at the IUCF Cooler was a = uj0X/4n « 3 ± 1
s"1. Since the measurement time was typically within 150 ms after the phase kick or
the start of rf phase modulation, the effect of electron cooling was not important in
these measurements.

Figure 3.7: The left plots show the normalized off-momentum coordinate V and the phase
0 as functions of revolutions at 10-turn intervals. The corresponding Poincare surfaces of
section are shown in the right plots. The upper and lower plots correspond to fm = 490
and 520 Hz respectively. The modulation amplitude was a = 1.45°, and the initial phase
kick amplitude was 45°. The solid line shows the Hamiltonian torus of Eq. (3.110).

The subsequent beam centroid phase-space coordinates are tracked at 10 revolu-
tion intervals. The left plots of Fig. 3.7 show examples of measured <j) and V = ^-^
vs turn number at 10-turn intervals for an rf phase modulation amplitude of 1.45°
after an initial phase kick of 42° at modulation frequencies of 490 Hz (upper) and 520
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Hz (lower). The resulting response can be characterized by the beating amplitude and
period. The beating period is equal to To/VjSiand> where To is the revolution period
and z/jSiand is the island tune, and the beating amplitude is equal to the maximum
intercept of Poincare surface of section with the phase axis.

B. Action angle derived from measurements

For small-amplitude synchrotron motion, Eq. (3.71) can be used to deduce the action
and angle variables, i.e.17

J = I ( 0 2 + p2) , t an^ = - ^ (3.128)
2 0

in the {<j>, V) phase space.
For large-amplitude synchrotron motion, we need to use the following procedure

to deduce the action-angle variables from the measured synchrotron phase-space co-
ordinates. This procedure can improve the accuracy of data analysis.

1. The k value at the phase-space coordinates {<t>,V) is

*2 = ^ + s in 2 | . (3.129)

The action can be obtained from Eq. (3.90) or Eq. (3.91).

2. The synchrotron phase, tjj, can be obtained from the expansion

i £ i = £ tan(f " *>" 1 1 T T ^ s i n ^ (3-130)
For synchrotron motion with relatively large k, a better approximation for data

analysis can be obtained through the polynomial approximation of Eqs. (17.3.34) and
(17.3.36) of Ref. [25] to evaluate K(k),E(k) and q functions in order to obtain the
action J and ip. For each data point {(j>,V), Eq. (3.129) is used to calculate k, and
finally, the action J is obtained from Eq. (3.90). The corresponding angle variable ip
is obtained from Eq. (3.130).

C. Poincare surface of section

The Poincare map in the resonance frame is then formed by phase-space points in

(^/2Jcos(•0 - vm9), -V2Jsm{tjj - vm6)).

17Note that the action in the (<j>, S) phase space is related to the action in the (0, V) space by a
constant factor h\q\l{ys^J\ cos0s|).
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The resulting invariant tori are shown in the right plots in Fig. 3.7. It becomes
clear that the measured response period corresponds to the period of island motion
around a SFP, and the response amplitude is the intercept of the invariant torus with
the phase axis. The trajectory of a beam bunch in the presence of external rf phase
modulation traces out a torus determined by the initial phase-space coordinates of the
bunch. Since the torus, which passes through fixed initial phase-space coordinates,
depends on the rf phase modulation frequency, the measured tori depend on the driven
frequency. Figure 3.7 shows invariant tori deduced from experimental data. The
solid lines are invariant tori of the Hamiltonian in Eq. (3.113), where the synchrotron
frequency was fitted to be about 535±3 Hz.

III.4 Effects of Dipole Field Modulation

Ground motion of quadrupoles and power supply ripple in dipoles can cause dipole
field modulation. Equation (2.173) in Chap. 2, Sec. Ill, shows that the path length
of a reference orbit is changed by dipole field errors at nonzero dispersion function
locations. If the dipole field is modulated, the path length and thus the arrival time
at rf cavities of the reference (synchronous) particle are also modulated. This effect
is equivalent to rf phase modulation, which gives rise to parametric resonances in
synchrotron motion. The effect is a special type of "synchro-betatron coupling" that
may limit the performance of high energy colliders.

Here we discuss experimental measurements of dipole field modulation at the
IUCF Cooler. For this experiment, the harmonic number was h = 1, the phase
slip factor was r) « —0.86, the stable phase angle was 4>0 = 0, and the revolution
frequency was /o = 1.03168 MHz at 45 MeV proton kinetic energy. The rf voltage
was chosen to be 41 V to obtain a synchrotron frequency of /s = WS/2TT = 262
Hz in order to avoid harmonics of the 60 Hz ripple. The synchrotron tune was
vs = u>s/u)0 = 2.54 x 10~4. We chose vx = 3.828, vz = 4.858 to avoid nonlinear
betatron resonances. The corresponding smallest horizontal and vertical betatron
sideband frequencies were 177 and 146 kHz respectively.

With horizontal dipole (vertical field) modulation at location s0, the horizontal
closed-orbit deviation xco(t) becomes (see Chap. 2, Sec. Ill)

ico(<) = VP*{s)Px{So)9(t) c o s ( ^ - | ^ ( s ) - <f>x(s0)\),
2 sin •KVX

where 9{t) = 0sin(wm£ + xo); 0 = Bm£/Bp; and Bm is the peak modulation dipole
field. Furthermore, if the dispersion function at the modulating dipole location is not
zero, the path length is also modulated. The change in the circumference is

AC = D6(t) = D§ sin(wmi + xo), (3.131)
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where D is the dispersion function at the modulation dipole location. The corre-
sponding rf phase difference becomes A<j> = 2TTII(AC/C), where C = 86.82 m is the
circumference of the IUCF Cooler. In our experiment, the maximum rf phase shift
per turn A~4> was 0.78 x 10~5i?m radians, where the magnetic field Bm is in Gauss.

The longitudinal phase-space coordinates (0, Ap/po) at the nth and the (n + l)th
revolutions are transformed according to the mapping equations

<£n+1 = 4>n + 2-Khr] ( ^ J +Acf>, (3.132)

where the fractional momentum deviation of particles (Ap/po) is the conjugate co-
ordinate to synchrotron phase angle <j>, and A is the phase-space damping parameter
related to electron cooling. Thus the synchrotron equation of motion, in the presence
of transverse dipole field modulation, becomes

—— + 2a— + Wg sin</> = w^a coscomt + 2aojsasinujmt, (3.134)
(XL (XL

where the damping coefficient is a = \u)a/kn. With an electron current of 0.75 A,
the damping time for the 45 MeV protons was measured to be about 0.33 ± 0.1 s or
a = 3 ± 1 s""1, which was indeed small compared with us = 1646 s- 1.

Because the synchrotron frequency is much smaller than the revolution frequency
in proton storage rings, the phase errors of each turn accumulate. The equivalent
phase modulation amplitude is enhanced by a factor wo/27rwm, i.e. the effective
phase modulation amplitude parameter a is

« = ^ = ^ A 0 . (3.135)

Although the cooling was weak, the transient solution of Eq. (3.134) was damped
out by the time of measurement. We therefore measured the steady state solution,
in contrast to the experiment discussed in the previous section, where we measured
the transient solutions. Let the steady state solution of the nonlinear parametric
dissipative resonant system, Eq. (3.134), be

</>xgsin(Ljmt-x), (3.136)

where we used the approximation of a single harmonic. Expanding the term sin</>
in Eq. (3.134) up to the first harmonic, we obtain the equation for the modulation
amplitude g as

[-u2mg + 2ujJ1(g)]2 + [2aumgf = [wmw8a]2 + [2awsa]2 (3.137)
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with the phase x given by

= a r c t a n l 9 ^ i + ^)-2^mJl{g)l

where J\ is the Bessel function [25] of order 1. Steady state solutions of Eq. (3.137)
are called attractors for the dissipative system. The existence of a unique phase
factor x f ° r solutions of the dissipative pararrietric resonant equation implies that the
attractor is a single phase-space point rotating at modulation frequency wm.

When the modulation frequency is below the bifurcation frequency, Wbif, given by
the condition

OUm = 0 ,

Eq. (3.137) has three solutions. A stable solution with a large phase amplitude ga

and phase factor Xa ~ T / 2 is the outer attractor. The stable solution at a smaller
phase amplitude <?(, with Xb w —TT/2 is the inner attractor. The third solution gc with
Xc ~ —TT/2 corresponds to the unstable (hyperbolic) solution, which is associated with
the UFP of the effective non-dissipative Hamiltonian. When the damping parameter
a is small, these two stable solutions are nearly equal to the SFPs of the effective
Hamiltonian, and are almost opposite to each other in the synchrotron phase space,
as shown in Fig. 3.5. They rotate about the origin at the modulation frequency
[see Eq. (3.136)]. When the damping parameter a is increased, the stable solution
(flo, Xa) and the unstable solution (gc, Xc) approach each other. At a large damping
parameter, they collide and disappear, i.e. the outer attractor solution disappears.
When the modulation frequency is larger than the bifurcation frequency, only the
outer attractor solution exists.

When the modulation frequency is far from the bifurcation frequency, the response
amplitude for the inner attractor at ujm -C oJuf, or for the outer attractor at uim S> wt>if,
can be approximated by solving the linearized equation (3.137), i.e.

( ( W ) 2 + (2aa;s)2 \ 1 / 2

A. Chaotic nature of parametric resonances

In the presence of a weak damping force, fixed points of the time-averaged Hamiltonian
become attractors. A weak damping force does not destroy the resonance island
created by external rf phase modulation. Because of phase-space damping, these
fixed points of the Hamiltonian become attractors. Particles in the phase space are
damped incoherently toward these attractors, while the attractors rotate about the
center of the bucket at the modulation frequency. As the damping force becomes
larger, the outer SFP and the UFP may collide and disappear.
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Numerical simulations based on Eq. (3.133) were done to demonstrate the coher-
ent and incoherent nature of the single particle dynamics of the parametric resonance
system. One of the results is shown in Fig. 3.8, where each black dot corresponds
to initial phase-space coordinates that converge toward the outer attractor. Comple-
mentary phase-space coordinates converge mostly to the inner attractor except for
a small patch of phase-space coordinates located on the boundary of the separatrix,
which will converge toward two attractors located near the separatrix.

Figure 3.8: Initial normalized
phase-space coordinates, obtained
from a numerical simulation of
Eq. (3.133), which converge to
the outer attractor are shown for
Bm = 4 Gauss and /m = 230 Hz.
The synchrotron frequency is 262
Hz. The number of phase-space
points that converge to the inner
or the outer attractors can be used
to determine the beamlet inten-
sity.

The basin of attraction for the inner and the outer attractors forms non-intersecting
intervolving spiral rings. To which attractor a particle will converge depends sen-
sitively on the initial phase-space coordinates, especially for particles outside the
bucket. The orientation of initial phase-space coordinates converging toward the in-
ner or the outer attractor depends on the initial driving phase xo of the dipole field in
Eq. (3.131). Numerical simulations indicate that all particles located initially inside
the rf bucket will converge either to the inner or to the outer attractor. However,
initial phase-space coordinates in a small patch located at the separatrix of the rf
bucket converge toward two attractors moving along the separatrix.

B. Observation of attractors

Since the injected beam from the IUCF K200 AVF cyclotron is uniformly distributed
in the synchrotron phase space within a momentum spread of about (Ap/p) w ±3 x
10~~4, all attractors can be populated. The phase coordinates of these attractors could
be measured by observing the longitudinal beam profile from BPM sum signals on
an oscilloscope. Figure 3.9 shows the longitudinal beam profile accumulated through
many synchrotron periods with modulation field Bm — 4 G for modulation frequencies
of 210, 220, 230, 240, 250, and 260 Hz; it also shows the rf waveform for reference.
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Figure 3.9: Oscil-
loscope traces of ac-
cumulated BPM sum
signals showing the
splitting of a beam
bunch into beamlets
below the bifurcation
frequency. The mod-
ulation amplitude was
Bm = 4 G. The
sine waves are the rf
waveform. The rela-
tive populations of the
inner and outer at-
tractors can be un-
derstood qualitatively
from numerical simu-
lations of the attrac-
tor basin.

It was puzzling at first why the longitudinal profile exhibited gaps in time domain,
as if there were no synchrotron motion for the beam bunch located at a relatively large
phase amplitude. However, using a fast sampling digital oscilloscope (HP54510A) for
a single trace, we found that the beam profile was not made of particles distributed
in a ring of large synchrotron amplitude, but was composed of two beamlets. Both
beamlets rotated in the synchrotron phase space at the modulating frequency, as
measured from the fast Fourier transform (FFT) of the phase signal. If the equilibrium
distribution of the beamlet was elongated, then the sum signal, which measured
the peak current of the beam, would show a large signal at both extremes of its
phase coordinate, where the peak current was large. When the beamlet rotated to
the central position in the phase coordinate, the beam profile became flat with a
smaller peak current. Therefore the profile observed with the oscilloscope offered an
opportunity to study the equilibrium distribution of charges in these attractors.

If we assume an equilibrium elliptical beamlet profile with Gaussian distribution,
the current density distribution function becomes

p^t\ = fj e-[4>-Mt)?l2°l + P^e-[*-Mt)?lz°^ (3.14o)
V27T<Ti V27TCT2

where pi and p% represent the populations of the two beamlets with px +p 2 = 1- Since
each particle in the two beamlets rotates in the phase space at modulating frequency
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u)m, the parameters </>i]2 and <Tii2 are

<j>\(t)=gasin(umt - Xa), 4>2(*) = 56sin(wmt - x6),

and
CT? = <7io (1 + r i sin2 wmi), cr2. = cr20 (1 + r2 sin2 wm£).

Here <7aii) and Xa,b are the amplitudes and phases of the two beamlets, obtained by
solving Eqs. (3.137) and (3.138). Since the profile observed on the oscilloscope was
obtained by accumulation through many synchrotron periods, it did not depend on
the parameters Xo,i>, i-e. these profiles were not sensitive to the relative positions of
the two beamlets. The eccentricity parameters r\ and r2 signify the aspect ratio of the
two beamlets, and <7io and <72Q represent the average rms bunch length. For example,
the aspect ratio, given by 1 : 1 + r\ of the outer beamlet at modulation frequency
220 Hz was found to be about 1:3 from the profile in Fig. 3.9. This means that the
peak current for the outer beamlet was reduced by a factor of 3 when this beamlet
rotated to the center of the phase coordinate. The relative populations of the two
beamlets was about 75% for the inner and 25% for the outer, obtained by fitting the
data. As the modulating frequency increased toward the synchrotron frequency, the
phase amplitude of the outer beamlet became smaller and its population increased.
When the modulating frequency was higher than the bifurcation frequency w f̂, the
center peak disappeared (see 260 Hz data of Fig. 3.9).

C. The hysteretic phenomena of attractors

The phase amplitudes of attractors shown in Fig. 3.10 also exhibited hysteresis phe-
nomena. When the modulation frequency, which was initially above the bifurcation
frequency, was ramped downward, the phase amplitude of the synchrotron oscilla-
tions increased along the outer attractor solution. When it reached a frequency far
below the bifurcation frequency, the phase amplitude jumped from the outer attrac-
tor to the inner attractor solution. On the other hand, if the modulation frequency,
originally far below the bifurcation frequency, was ramped up toward the bifurcation
frequency, the amplitude of the phase oscillations followed the inner attractor solu-
tion. At a modulation frequency near the bifurcation frequency, the amplitude of the
synchrotron oscillations jumped from the inner to the outer attractor solution.

The hysteresis depended on beam current and modulation amplitude a. Since a
large damping parameter could destroy the outer attractor, the hysteresis depended
also on the dissipative force. The observed phase amplitudes were found to agree well
with the solutions of Eq. (3.137). Similar hysteretic phenomena have been observed in
electron-positron colliders, related to beam-beam interactions, where the amplitudes
of the coherent 7r-mode oscillations showed hysteretic phenomena.18 At a large beam-

18See T. Ieiri and K. Hirata, Proc. 1989 Part. Accel. Conf. p. 926 (IEEE, New York, 1989).
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beam tune shift, the vertical beam size exhibited a flip-flop effect with respect to the
relative horizontal displacement of two colliding beams.19

D. Systematic property of parametric resonances

The formalism discussed so far seems complicated by the transformation of phase-
space coordinates into action-angle variables. However, the essential physics is rather
simple. In this section, we will show that the global property of parametric resonances
can be understood simply from Hamiltonian dynamics.

The circles in Fig. 3.10 show a compilation of beamlet phase amplitude vs mod-
ulation frequency for four different experimental phase modulation amplitudes. The
solid lines show the synchrotron tune and its third harmonic. We note that the bifur-
cation of the 1:1 resonance islands follows the tune of the unperturbed Hamiltonian
system, and the measured third order 3:1 resonance islands fall on the curve of the
third harmonic of the synchrotron tune.

Figure 3.10: The phase amplitudes of beam-
lets excited by rf phase modulation, mea-
sured from the oscilloscope trace, are com-
pared with the theoretical synchrotron tune.
The bifurcation of the resonance islands fol-
lows the unperturbed tune of the synchrotron
Hamiltonian, shown as the lower solid line
(see also Fig. 3.5 on the bifurcation of 1:1
parametric resonance). The third order reso-
nance island falls also on the third harmonic
of the synchrotron tune. Because the rf phase
modulation does not excite 2:1 resonance, we
did not find parametric resonances at the
second synchrotron harmonic. The sideband
around the first order synchrotron tune cor-
responds to the 60 Hz power supply ripple.

When an external time dependence perturbation is applied to a Hamiltonian
system, the perturbed Hamiltonian contains a perturbing term similar to that in
Eq. (3.108). On the basis of the KAM theorem, most of the Hamiltonian tori are
not perturbed except those encountering a resonance condition. Thus the external
perturbation excites only particles locally in the phase space where the amplitude
dependent synchrotron tune falls exactly at the modulation tune, where the particle

19See M.H.R. Donald and J.M. Paterson, IEEE Trans. Nucl. Sci. NS-26, 3580 (1979); G.P.
Jackson and R.H. Siemann, Proc. 1987 Part. Accel. Con}, p. 1011 (IEEE, New York, 1987).
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motion can be described by the effective parametric resonance Hamiltonian (3.109).20

The size of the resonance island depends on the slope of tune vs amplitude, the
strength function gn(J), a n d the amplitude of perturbation.

In fact, the external perturbation creates a local minimum in the potential energy
at the SFP locations. When a weak damping force is applied to the dynamical system,
the SFP becomes an attractor, and the local potential well becomes the basin for
stable particle motion. Thus a beam inside an rf bucket can split into beamlets.

When the modulation frequency is varied, SFPs (attractors) are formed along the
tune of the unperturbed Hamiltonian, i.e.

vm = n&(JSFP). (3.141)

The measurement of attractor amplitude vs modulation tune is equivalent to the mea-
surement of synchrotron tune vs synchrotron amplitude, as clearly seen in Fig. 3.10.
Since the rf phase modulation does not excite even synchrotron harmonics, we do
not observe a 2:1 attractor in Fig. 3.10. If, however, a stronger phase modulation is
applied to the dynamical system, a 2:l-like (4:2) parametric resonance can be formed
by 1:1 and 3:1 resonances through second order perturbation.

An important implication of the above parametric excitation theorem is that chaos
at the separatrix orbit is induced by overlapping parametric resonances. This can be
understood as follows. Let Q(J) be the tune of a dynamical system, where the tune
is zero at the separatrix, i.e. Q(JSx) = 0. Now a time dependent perturbation can
induce a series of parametric resonances in the perturbed Hamiltonian. These para-
metric resonances, located at nQ(J) with integer n, can be excited by time dependent
perturbation. Since nQ(Jsx) ~ 0 for all n near the separatrix, a perturbation with low
frequency modulation can produce many overlapping parametric resonances near the
separatrix and lead to local chaos. This result can be applied to synchrotron motion
as well as to betatron motion, where higher order nonlinear resonances serve as the
source of time dependent modulation.

Now, we apply this result to evaluate the effect of low frequency modulations on
particle motion. If the amplitude of low frequency modulation is not large, it will
induce overlapping parametric resonances only near the separatrix. If the beam size
is relatively small, the stochasticity at the separatrix will do little harm to the beam
motion. However, when the modulation frequency approaches the tune of particles at
the center of the bucket, particle orbits near the center of the bucket will be strongly
perturbed, forming islands within the bucket.

In reality, the perturbation arising from wakefields, rf phase error, dipole field
error, ground vibration, etc., consists of a spectrum of frequency distributions. The

20The remaining terms play the role of time dependent perturbations to the effective Hamiltonian
of Eq. (3.109). The KAM theorem produces a hierarchy of higher order resonance islands within
parametric resonance islands.
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mean field of the perturbation gives rise to the effect called potential well distor-
tion, which, solved self-consistently in the Vlasov equation, modifies the unperturbed
tune of the system. The remaining time dependent perturbation can generate further
bunch deformation, bunch splitting, hysteresis, etc., depending on its frequency spec-
trum. The complicated collective instability phenomenon is in fact closely related to
nonlinear beam dynamics.21

III. 5 RF Voltage Modulation

The beam lifetime limitation due to rf noise has been observed in many synchrotrons,
e.g., the super proton synchrotron (SPS) in CER.N.22 Recently, there has been some
interest in employing rf voltage modulation to induce super slow extraction through
a bent crystal for very high energy beams,23 rf voltage modulation to stabilize collec-
tive beam instabilities, rf voltage modulation for extracting beam with a short bunch
length, etc. Since the rf voltage modulation may be used for enhancing a desired
beam quality, we will study the physics of synchrotron motion with rf voltage mod-
ulation, that may arise from rf noise, power supply ripple, wakefields, etc. Beam
response to externally applied rf voltage modulation has been measured at the IUCF
Cooler.24 The rf voltage modulation has been implemented to stabilize coupled bunch
instabilities induced by parasitic rf cavity modes with high brightness beams at the
Taiwan Light Source.25

A. The equation of motion with rf voltage modulation

In the presence of rf voltage modulation, the synchrotron equations of motion are

(/>n+1 = </>n-2vvaj^Pn, (3.142)

Vn+i = Pn-2irvs[l + bsm{vm9n+1+X)}sm<l>n+1-—Vn, (3.143)

21Recently, a series of beam transfer function measurements were made at electron storage rings.
Sweeping the rf phase modulation frequency and measuring the response by measuring either the
centroid of the beam, or the beam profile from a synchrotron light monitor using a streak camera,
the response of the beam to external rf phase modulation can be obtained. For details see M.H.
Wang, et al, Proc. 1997 Part. Accel. Conf. (1997); J. Byrd, ibid. (1997); M.G. Minty et al, ibid.
(1997); D. Rice, private communications.

2 2D. Boussard, et al, IEEE Trans. Nucl. Sci. NS-26, 3484 (1979); D. Boussard, et al, Proc.
11th Int. Con}, on High Energy Accelerators, p. 620 (Birkhauser, Basel, 1980); G. Dome, CERN
87-03, p. 370 (1987); S. Krinsky and J.M. Wang, Part. Accel 12, 107 (1982).

23H.J. Shih and A.M. Taratin, SSCL-389 (1991); W. Gabella, J. Rosenzweig, R. Kick, and S.
Peggs, Part. Accel 42, 235 (1993).

24D. Li et al, Phys. Rev. E 48, R1638 (1993); D.D. Caussyn et al, Proc. Part. Ace. Conf. p. 29
(IEEE, Piscataway, NJ, 1993); D. Li et al, Nucl. Instru. Methods A 364, 205 (1995).

25M.H. Wang, and S.Y. Lee, Journal of Applied Physics, 92, 555 (2002).
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where V = -h\ri\5/vs is the normalized off-momentum coordinate conjugate to </>;
8 = Ap/po is the fractional momentum deviation from the synchronous particle;
77 is the phase slip factor; vs = Jh\r]\eV/2Tr/32Eo is the synchrotron tune at zero
amplitude; Eo is the beam energy; b = AV/V is the fractional rf voltage modulation
strength (b > 0); vm is the rf voltage modulation tune; x is a phase factor; 9 is the
orbital angle used as time variable; Wo = 2TT/O is the angular revolution frequency;
and a is the phase-space damping factor resulting from phase-space cooling.

At the IUCF Cooler, the phase-space damping rate was measured to be about
a « 3.0 ± 1.0 s"1, which is much smaller than wô si typically about 1500 s"1 for the
h = 1 harmonic system. Without loss of generality, we discuss the case for a particle
energy below the transition energy, i.e. r\ < 0.

Neglecting the damping term, i.e. a = 0, the equation of motion for phase variable
(f> is

ij> + v2s{\ + bsm{vm0 + x)] sin<£ = 0, (3.144)

where the overdot indicates the time derivative with respect to 9. In linear approx-
imation with sin<jf> « <j>, Eq. (3.144) reduces to Mathieu's equation. By choosing
X = -TT/2 and z = \vm9, p = 4^/j/^,, and q = 2fo/s2/^, we can linearize Eq. (3.144)
into Mathieu's equation [25]

^ 4 + (p - 2q cos 2z)(j> = 0. (3.145)

In accelerator physics applications, p and q are real with 5 < 1. Thus stable
solutions of Mathieu's equation are obtained with the condition that the parameter
p is bounded by the characteristic roots aT(q) and bT+i(q), where r = 0,1,2, • • •. In
other words, unstable solutions are in the region br(q) < p < ar(q), where r = 1,2, • • •.
Thus the first unstable region is obtained from 61 (q) < p < <Zi (q) or, equivalently,

2i/«(l - \b) <vm< 2PS{1 + hb). (3.146)

Similarly, the second order unstable region is

".(1 - ^&2) < m̂ < «/.(l + ^&2), (3.147)

where the second order Mathieu resonance can be obtained from second order per-
turbation theory.26 The width of the instability decreases rapidly with increasing
order for small b. In our application, we need to consider only the lowest order Math-
ieu instability. Since synchrotron motion is nonlinear, the linear Mathieu instability
analysis should be extended to nonlinear synchrotron motion as follows.

26L.D. Landau and E.M. Lifschitz, Mechanics, 3rd. ed. (Pergamon Press, Oxford, 1976).
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B. The perturbed Hamiltonian

The synchrotron equation of motion with rf voltage modulation can be derived from
the Hamiltonian H = Ho + Hi with

Ho = ^usV2 + vs{l-cos<f>), (3.148)

Hi = psb sin(z/m0 + x) [1 - cos <t>], (3.149)

where Ho is the unperturbed Hamiltonian and Hi the perturbation. For a weakly
perturbed Hamiltonian system, we expand Hi in action-angle coordinates of the un-
perturbed Hamiltonian

Hi = vjb £ \Gn{J)\ sm(i/m0 - n^ - 7 n ) , (3.150)
n=—oo

where we choose x — 0 for simplicity, and |Gn(J)| is the Fourier amplitude of the
factor (1 — cos</>) with 7 n its phase, defined in Eq. (3.101).

Since (1 — cos(j>) is an even function of T/J in [—ir,n], the Fourier integral for Gn

from Eq. (3.101) is zero except for n even with G_n = G*n. Thus rf voltage modulation
generates only even-order synchrotron harmonics in H\. Expanding Gn(J) in power
series, we obtain

U0 ~ 2 J + 2048J + ' U 2 ~ 4 J + 128J + '

U i 6 4 J + 2048 J "" ' ° 6 ~ 4096 J + " " " -

The GQ(J) term in the perturbation can contribute to synchrotron tune modulation
with a modulation depth

AQS « -J/s6sinfm^.

C. Parametric resonances

When the modulation frequency is near an even harmonic of the synchrotron fre-
quency, i.e. vm fa nQs (n = even integers), particle motion is coherently perturbed
by the rf voltage modulation resulting from a resonance driving term (stationary
phase condition). The resonances, induced by the external harmonic modulation of
the rf voltage, are called parametric resonances. Using the generating function

we obtain the Hamiltonian in the resonance rotating frame as

H = E{J) - —J + vsb\Gn{J)\cosn4> + AH(J, $, 6), (3.151)
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where the remaining small time dependent perturbation term AH oscillates at fre-
quencies um, 2vm, •••. In the time average, we have (AH) « 0. Thus the time
averaged Hamiltonian (H) for the nth order parametric resonance becomes

(H) = E{J) - — J + vsb\Gn{J)\cosni>. (3.152)
n

The phase-space contour may be strongly perturbed by the parametric resonance.
Note here that \Gn+2/Gn\ ~ J for n > 0. The resonance strength is greatest at
the lowest harmonic for particles with small phase amplitude. The system is most
sensitive to the rf voltage modulation at the second synchrotron harmonic.

D. Quadrupole mode

When the rf voltage modulation frequency is near the second harmonic of the syn-
chrotron frequency, particle motion is governed by the n = 2 parametric resonance
Hamiltonian

(H) = (!/„ - V-f) J - ^ J 2 + £&Jcos2tf (3.153)
Z ID 4

in the resonance rotating frame. Since the Hamiltonian (3.153) is autonomous, the
Hamiltonian is a constant of motion. For simplicity, we drop the tilde notations.
Hamilton's equations are

j = ^-bJsm2if), (3.154)
Li

j> = us-^f-^J+^bcos2ip. (3.155)
Zi o 4

The fixed points that determine the locations of the islands and separatrix of the
Hamiltonian are obtained from J = 0, tp = 0. The stable fixed points (SFPs) are

(, 0, if vm > 2vs + ~bvs

with tp = 0 and TT. Tori of the Hamiltonian flow around SFPs are shown in Fig. 3.11.
The unstable fixed points (UFPs) are located at

j /8( l -£)-2&, if i/m < 21/. - i&i/.
J U F P - | 0, i f 2 , s - I ^ < , m < 2 , s + I ^ ( 3-1 5 ? )

with ip = 7r/2 and 3TT/2.

We note that the second harmonic rf voltage modulation can induce an instability
at JUFP = 0 in the frequency domain 2us - \bvs < vm < 2vs + \bvs. This is the first
order Mathieu resonance of Eq. (3.146). Nonlinear synchrotron motion extends the
instability to lower modulation frequency at larger synchrotron amplitude, according
to

vm = 2i/.(l - ^ L ) - \vtb, (3.158)
o z
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Figure 3.11: The separatrix and tori of the Hamiltonian (3.153) in the resonance rotating
frame. The synchrotron frequency is /s = 263 Hz, the voltage modulation amplitude is
b = 0.05, and the modulation frequencies are /m = 526 Hz (left plot) and fm = 490 Hz
(right plot).

which is a nonlinear extension of Mathieu instability.
Modulation of the rf voltage at the second harmonic of the synchrotron tune has

been found useful in damping the multi-bunch instabilities for the damping ring of
the Stanford linear collider (SLC).27 By adjusting the amplitude and phase of the rf
voltage modulation, the collective instability of high brightness electron beams in the
SLC damping ring can be controlled. The damping mechanism may be understood as
follows. When the voltage modulation at vm = 2v& is applied, the Mathieu resonance
gives rise to an UFP at the origin of the phase space and the SFP is displaced to
JSFP = 26. Since electrons are damped incoherently into the SFP by the synchrotron
radiation damping, the beam distribution becomes dumbbell-shaped in phase space,
rotating about the longitudinal phase space at half the modulation frequency, or
equivalently the synchrotron frequency. The size and orientation of the dumbbell can
be controlled by parameter b and phase x-

E. Island tune and equilibrium beamlet profile

The island tune i/isiand, defined by /isiand//o, is an important property of a resonant
system, where /iSiand is the frequency with which a particle rotates around a SFP in
the resonant precessing frame. To obtain the island tune, we expand the phase-space
coordinates around a fixed point of the Hamiltonian, with

y = \/2J cosij) — y2J0cosi/'o, Py = — v2JsinV> + y2Josim/>oj

27J.D. Fox and P. Corredoura, Proc. European Part. Accel. Con}, p. 1079 (Springer-Verlag,
Heidelberg, 1992).
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where (v^^JoCosip0, -^/2Josin^o) are the phase-space coordinates of a fixed point of
the Hamiltonian in the resonance precessing frame. In terms of the local coordinates
py and y, the Hamiltonian, Eq. (3.153), becomes

H = \ A V \ + l-By2 + ••• (3.159)

with

A = vs - - y - -vaJo sin2 Vo - ^ K - g^s Jo,

B = l/s--^- T^O COS2 Vo + -Ms ~ -l/aJ0-
Z 4 4 o

It is clear that the fixed point is stable if the parameters A and B satisfy AB > 0.
The small amplitude island tune is inland = \/AB.

For b > 0, the fixed points associated with i/i = 0, n, and Jo = JSFP — 8(1 —
vm/2vs) + 2b are stable because A = -\vsb and B — —\VSJSFP SO that AB > 0. The
small amplitude island tune at the SFP becomes

v^BA = y/AB = va^^-. (3.160)

The fixed points associated with tp = TT/2,3IT/2, and Jo = JUFP are unstable since
A = - JZ^JUFP and B = \bvs, and so AB < 0.

The equilibrium beam profile, which satisfies the Vlasov equation, is a function of
the Hamiltonian (3.159). Assuming a Gaussian distribution, we obtain

*y^»1BM-^-^M (3-161)
in the resonance precessing frame, where nal/VAB is the rms phase-space area of
the beamlet. Since the resonance rotating frame rotates in the phase space at half
the modulation frequency, the beam profile will retain its shape except for exchange
of its local coordinates. The longitudinal profile monitor measures the image current
on a wall gap monitor; it is the line density of the bunch or the projection of the
density distribution function onto the phase coordinate

P(y) = I p(y,Py)dpy. (3.162)

Since the rms widths of the distribution function (3.161) are

ay = <TQ/yJ\B\, aPy = ao/y/\A\, (3.163)

the aspect ratio of the phase-space distribution <JPy/oy is ^J\B/A\ evaluated at the
SFP. When the beamlet rotates to the phase coordinate, as shown in Fig. 3.11, the



294 CHAPTER 3. SYNCHROTRON MOTION

aspect ratio of the beamlet becomes yjJSFP/26, which is normally much larger than
1, and the peak current will be large. On the other hand, when the beamlet rotates
to a position 90° from that of Fig. 3.11, the aspect ratio becomes y26/JsFP and the
line density becomes small.

F. The separatrix

The separatrix torus, which passes through the UFPs, is given by

H(J,iP) = H(JVFP,i,VFP). (3.164)

The separatrix intersects the phase axis at the actions Ji and J2 given by

j = l JSFP + \/JIFP ~ JUFP ^ ^m < 2vs - \bvs ^ ^
\ 2 JSFP if 2vs - \bvs <vm< 2vs + \bvs

and

J, = ] ^ S F P ~ V^SFP - ^UFP i f m̂ < 2i-s - \bvs , 3 1 6 g ,
\ 0 if 2vs - \bvs <vm< 2vs + \bvs.

The intercepts can be used to determine the maximum synchrotron phase oscillation
due to rf voltage modulation. Figure 3.11 shows also the intercepts of separatrix with
phase axis. The island size A</>jSiand is \f2J[ — y/2J2.

G. The amplitude dependent island tune of 2:1 parametric resonance

For an autonomous dynamical system governed by the Hamiltonian (3.153), the
Hamiltonian is a constant of motion. The Hamiltonian value is Es = ^ ^ S J | F P at
SFP, and Eu = J^S-'UFP a^ UFP. Using Hamilton's equations of motion, we obtain
J = f(J,E), where

For a given Hamiltonian value E, the action J is limited by Jm;n and Jmax given by

i n = (1 - Vl - X) JSFP, ./max = (1 + \fl-x)JS¥V,

where x = E/Es, with x € [^UFP/^SFP > !]• Note that JSFP = |(^min + Jmrn)- The
island tune becomes
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where K(k) is the complete elliptical integral of the first kind [25] with

, _ 1 / % JSFP — JUFP

It is easy to verify that Eq. (3.168) reduces to Eq. (3.160) at x = 1. Similarly, the
island tune is zero at the separatrix with x = JUFP/^SFP-

H. Physical interpretation

In the longitudinal phase space, particles execute synchrotron motion with an ampli-
tude dependent tune QS(J), where J is the invariant action of the particle motion.
When the rf system is perturbed by a harmonic voltage modulation at vm, with a
non-vanishing perturbation strength function Gn(J), the perturbation creates n res-
onance islands in the longitudinal phase space around J = Jr, where Jr is obtained
from the resonance condition: vm — nQs(JT).

Near the resonance island, the action J is no longer invariant and the synchrotron
tune is likewise perturbed. These islands precess in the phase space at 1/n of the
modulation tune, or equivalently the synchrotron tune at the resonance action Jr.
A particle executing synchrotron motion within the nth order resonance island will
have a characteristic tune fm/n with a regular amplitude oscillation due to the island
motion. This oscillation tune is equal to the island tune. For particles located at
the "separatrix" of the parametric resonance (not the separatrix of the rf bucket) the
period of this amplitude oscillation becomes infinite. In other words, the island tune
of the separatrix orbit is zero. The synchrotron tune of a particle on the separatrix
is exactly vm/n. The synchrotron tune for particles at or near SFP is also vm/n with
an amplitude modulation whose tune is equal to the island tune. Particles located
far from resonance islands experience little effect on their synchrotron motion if the
voltage modulation amplitude is small.

III.6 Measurement of RF Voltage Modulation
We describe here an rf voltage modulation measurement at the IUCF Cooler. The
experiment started with a single bunch of about 5 x 108 protons with kinetic energy
45 MeV. The cycle time was 10 s, with the injected beam electron-cooled for about
3 s, producing a full width at half maximum bunch length of about 9 m (or 100 ns)
depending on rf voltage. The low frequency rf system used in the experiment was
operating at harmonic number h = 1 with frequency 1.03168 MHz.

A. Voltage modulation control loop

The voltage control feedback of the IUCF Cooler rf system works as follows. The
cavity rf voltage is picked up and rectified into DC via synchronous detection. The
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rectified DC signal is compared to a preset voltage. The error found goes through
a nearly ideal integrator that has very high DC gain. The integrated signal is then
used to control an attenuator regulating the level of rf signal being fed to rf amplifiers.
Because of the relatively low Q of the cavity at the IUCF Cooler, the effect of its
inertia can be ignored if the loop gain is rolled off to unity well before /o/2Q, where /o
is the resonant frequency of the rf cavity and Q ~ 50 is the cavity Q value. Thus, no
proportional error feedback is needed to stabilize the loop. The overall loop response
exhibits the exponential behavior prescribed by a first order differential equation, i.e.
dV/dt = —V/T, where V is the rf voltage and the characteristic relaxation time r is
about 10 - 200 fj, s.

The amplitude modulation is summed with the reference and compared to the
cavity sample signal. The modulation causes a change in the error voltage sensed by
the control loop and results in modulation of the attenuator around a preset cavity
voltage. The maximum modulation rate is limited by the loop response time of
about 10 kHz. The modulation rates in our experiments are well within this limit.
The modulation amplitude was measured and calibrated.

Figure 3.12: The beam bunch was ob-
served to split into three beamlets in a
single rf bucket measured from a fast
sampling scope. The voltage modulation
amplitude is 6 = 0.05 at modulation fre-
quency fm = 480 Hz with synchrotron
tune /s = 263 Hz. Note that the outer
two beamlets rotated around the center
beamlet at a frequency equal to half the
modulation frequency.

B. Observations of the island structure

Knowing that the beam bunch will be split into beamlets, as shown in Sec. III.2, we
first measured the phase oscillation amplitude of the steady state solution by using
the oscilloscope. The beam was injected, the rf voltage was modulated, and the beam
was cooled with electron current 0.75 A. Then the steady state bunch distribution
was measured. Figure 3.12 shows that the sum signals from a beam position monitor
(BPM) on a fast oscilloscope triggered at the rf frequency exhibited two peaks around
a central peak. A fast 1 x 109 sample per second oscilloscope was used to measure
the profile of the beam in a single pass. The profile shown in Fig. 3.12 indicated
that there were three beamlets in the h = 1 rf bucket. The beam particles were
damped to attractors of the dissipative parametric resonant system. Thus the phase
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amplitude of the outer peaks measured from the oscilloscope can be identified as the
phase amplitude of the SFP.

Since the attractors (or islands) rotate around the origin of the rf bucket with
half the modulation frequency, the observed beam profile in an oscilloscope is a time
average of the BPM sum signal. Because the equilibrium beamlet distribution in a
resonance island has a large aspect ratio in the local phase-space coordinates, the
resulting beam profile will exhibit two peaks at the maximum phase amplitude, re-
sembling that in Fig. 3.12. This implies that when a beamlet rotates to the upright
position in the phase coordinate, a larger peak current can be observed. On the other
hand, when a beamlet rotates to the flat position, where the SFPs are located on the
V axis, the aspect ratio becomes small and the line density is also small.

Figure 3.13: The measured action
J of outer beamlets as a function of
modulation frequency. Here J ~ j ^ 2

with 0 as the peak phase amplitude
of attractors. Different symbols cor-
respond to measurements at different
times for an almost identical rf volt-
age. The solid line for JSFP obtained
from Eq. (3.156) fits data with /„ =
263 Hz. The actions of UFP JUFP

and intercepts J\ and J2 of the sep-
aratrix with the phase axis are also
shown.

The measured action J of the outer beamlets as a function of modulation fre-
quency is shown in Fig. 3.13, where JSFP of the Hamiltonian (3.153) is also shown
for comparison. Experimentally, we found that the action of the outer attractor var-
ied linearly with modulation frequency. Similarly, JSFP is also a linear function of
modulation frequency, where the slope depends sensitively on synchrotron frequency.
Using this sensitivity, the synchrotron frequency was determined more accurately to
be about 263±1 Hz for this run. Our experimental results agreed well with the the-
oretical prediction except in the region /m € [510,520] Hz, where we did not observe
beam splitting. A possible explanation is that the actual beam size was larger than
the separation of islands. In this case, the SFPs were about 100 ns from the center
of the bucket. Once fm reached 2/a - \bfs « 520 Hz, where JUFP = 0, the beam
was observed to split into only two beamlets. It was also clearly observed that all
parametric resonance islands ceased to exist at /m = 2/s + | 6 / s « 532 Hz.

Exercise 3.3
1. Prove the identity of the action integral in Eq. (3.90).
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2. We consider a general Hamiltonian

H = \vsV2 + V(<j>),

where ((j>, V) are conjugate phase-space variables with orbiting angle 8 as time vari-
able, fs is the small amplitude synchrotron tune, and V(<j>) is the potential.28 The
action is J = (l/2ir) §Vd4>. Using the generating function

F2 = / Vd<t>,
Jo

show that the coordinate transformation between phase variable ip and coordinate (/>

where ip is the conjugate phase variable to the action J. Expanding V in action-angle
variables with

00

P= £ fnein*,
n=—oo

prove the sum rule theorem

n=-oo "»

3. Prom Exercise 2.4.8, we find that the change of orbit length due to a modulating
dipole kicker is given by

AC = D{s0) 6(t) = D{sQ) 6 sm{umt + Xo),

where D(SQ) is the dispersion function at the dipole location, 9 is the maximum dipole
kick angle, uim is the modulating angular frequency, and xo is an arbitrary initial
phase. The modulating tune is um = cjm/u)Q, where wo is the angular revolution
frequency.

(a) Show that the modulating dipole field produces an equivalent rf phase error

A0 = cS° sin(cjmt + xo) = A>sin(o;mt + xo),

where C is the circumference of the synchrotron, and h is the harmonic number.

(b) Show that the amplitude of the equivalent rf wave phase error is

o = A(/)/2in/m.

Give a physical argument that the amplitude of the equivalent rf wave phase
error a is amplified as the modulation tune vm becomes smaller.

28In linear approximation, the potential can be expressed as V(cj>) = \vs<j>2 + •••. However, small
amplitude behavior of the potential is not a necessary condition for the sum rule theorem stated in
this exercise.
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(c) Evaluate the effective rf modulation amplitude a for the accelerators listed in
the table below, where C is the circumference, AB£ is the integrated dipole
field error, /mod is the modulation frequency, D is the dispersion function at the
dipole, 7 is the Lorentz relativistic factor, and h is the harmonic number.

1 IUCF Cooler I RHIC [ MI I Recycler
C (m) 86.8 3833.8 3319.4 3319.4
ABl (Gm) 1 1 1 1
/ m o d (Hz) 262 60 60 4
D (m) 4 1 1 1
7 1.04796 24 21.8 9.5
h. 1 342 588 1
a

4. Using the conjugate phase space coordinates

Q = V2Jcos(i>--vme), P = -V2Jsm(ip--vm9),

show that the Hamiltonian (3.153) for the quadrupole mode is

H=\{5+ f)Q> + I(« - f)P> " g(O2 + P2)\

where 8 = vs- {vm/2) and, without loss of generality, we assume b > 0. Show that
the fixed points of the Hamiltonian are located at

-PSFP = 0, QSFP = 0 (vm> 2us + uab/2)

PSFP = 0, QSFP = ^16{1 - um/2us)+4b (i/m > 2M, + vab/2)

QUFP = 0, PUFP = 0 (2J/S - vsb/2 <um< 2vs + usb/2)

QUFP = 0, PUFP = ^/l6(l - vj2vs) - 46 (um < 2vs - -wsb).

Compare this result with Eqs. (3.156) and (3.157). Show that the separatrix for
vm 5: 2vs — Vsb/2 is given by two circles

(Q_Qc)2 + p 2 = r 2 ; (Q + Q c ) 2 + p 2 = r 2

with
Qc = \/46, r = yfl66/vs.

The separatrix in the betatron phase space for slow beam extraction that employs
a half integer stopband is identical to that given in this exercise. Quadrupoles are
used to provide resonance driving term b, and octupoles are used to provide nonlinear
detuning otxx. The resulting effective Hamiltonian is

1 £
-Heff = vxjx + -axxJ% + bJx cos(tl>x - -0),

where axx = (1/WnBp) § 0^.B^ds is the detuning parameter, B% is the octupole
strength, and 6 is the half integer stopband width.
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5. Show that the equation of motion for rf dipole on betatron motion in Eq. (2.182) near
a betatron sideband can be casted into an effective Hamiltonian

HeS = uJ+ -aJ2 + gjll2 cos(V> - vm0 + x),

where v, (J, <f>), a are the tune, the action-angle coordinates, and the detuning pa-
rameter of the betatron motion, g is proportional to the rf dipole field strength, and
i/m is the rf dipole modulation tune. Find the fixed points of the Hamiltonian and
discuss the dependence of the fixed point on parameters vm — v, and a.
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IV Nonadiabatic and Nonlinear Synchrotron Mo-
tion

Transition energy has been both a nuisance in machine operation and a possible bless-
ing for attaining beam bunches with some desired properties, such as enhanced beam
separation for filtering ion beams having nearly equal charge to mass ratios, and beam
bunches with ultra-small beam width.29 However, the synchrotron frequency spread
vanishes at transition energy, and the circulating beams can suffer microwave insta-
bilities and other collective instabilities for lack of Landau damping, to be discussed
in Sec. VII.

Near the transition energy region, the adiabaticity condition (3.43) is not satisfied,
i.e. the Hamiltonian is time dependent and is not a constant of motion. This results
in non-adiabatic synchrotron motion, where the bucket area increases dramatically,
and the phase-space area occupied by the beam bunch is a small fraction of the bucket
area. The linearized rf potential is a good approximation. If the phase slip factor is
independent of the off-momentum variable, we will obtain analytic solutions for the
linearized synchrotron motion near transition energy in Sec. IV. 1. The integral of the
linearized Hamiltonian is also an ellipse, and the action is a constant of motion. We
will discuss the scaling properties of the beam at the transition energy crossing.

However, when the phase slip factor % of Eq. (3.18) becomes small, the nonlinear
phase slip factor term 771 can be important. This again raises another nonlinear prob-
lem in synchrotron motion, i.e. parts of a beam bunch can encounter a defocussing
force during transition energy crossing. In Sec. IV.2 we study nonlinear synchrotron
motion due to nonlinearity in phase slip factor. Although the action of a Hamil-
tonian flow is invariant, the torus is highly distorted and particles in a beam may
be driven out of the rf bucket after crossing the transition energy. In Sec. IV.3 we
examine beam manipulation techniques for particle acceleration through transition
energy. In Sec. IV.4 we study the effects of nonlinear phase slip factor and examine
the properties of the so-called a-bucket, and in Sec. IV.5 we study problems asso-
ciated with quasi-isochronous (QI) storage rings, which may provide beam bunches
with ultra-short bunch length.

29Since the bunch width becomes very short and the momentum spread becomes large at transition
energy, transition energy may be used to generate short bunches. See e.g., R. Cappi, J.P. Delahye,
and K.H. Reich, IEEE Trans. Nucl. Sci. NS-28, 2389 (1981). Using the sensitivity of the closed
orbit to beam momentum at transition energy, one can filter beam momentum from nearly identical
Z/A (charge to mass ratio) ion beams. Oxygen and sulfur ions have been filtered at transition energy
in the CERN PS.
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IV. 1 Linear Synchrotron Motion Near Transition Energy

Since the energy gain per revolution in rf cavities is small, we assume 7 = 7T + jt,
where j = d^/dt is the acceleration rate, and t is the time coordinate. The phase slip
factor becomes

% = ao-7-2«^r- (3-169)
7 T

Here we have neglected the dependence of the phase slip factor on the off-momentum
coordinate 5, and assume that all particles in a bunch pass through transition energy
at the same time. Substituting Eq. (3.169) into Eq. (3.27), we obtain

Ws2 = 4 , (3-170)
rad

where r^ is the adiabatic time given by

T a d = Uo 2 ^ |cos0 s |J • (3-171)

At |i| S> Tacj, the adiabaticity condition (3.43) is satisfied.30 Table 3.3 lists the
adiabatic time for some proton synchrotrons.31 Typically rad is about 1-10 ms.

Table 3.3: The adiabatic and nonlinear times of some proton synchrotrons.

I FNAL I FNAL I AGS I RHIC I KEKPS I CPS
Booster MI

C (m) 474.2 3319.4 807.12 3833.8 339.29 628.32
V (kV) 950 4000 300 300 90 200
h 84 588 12 360 9 6-20
7T 5.4 20.4 8.5 22.5 6.76 6.5
7 (s"1) 200 190 70 1.6 40 60
A (eVs/u) 0.04 0.04 1. 0.3 0.3 0.5
5 (xlO~3) 6.4 2.5 6.7 4.5 5.4 6.6
Tad (ms) 02 JTO 2.5 36 T8 L5
rnl (ms) I 0.13 | 0.19 | 0.61 [ 63 | 0.7 | 0.5

30When \t\ > 4raa the adiabatic condition is approximately fulfilled because aad = IdC^f1)/^! =
|(rad/l*l)3/2 « 0.06.

31 Note that the beam parameters for RHIC correspond to those of a typical gold beam injected
from the AGS with charge number Z = 79, and atomic mass number A = 197. The injection energy
for proton beams in RHIC is above transition energy.
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In linear approximation, the synchrotron equations of motion near the transition
energy region become

where the overdot indicates the derivative with respect to time t, and 6 = Ap/po and
A</> = <f> — 4>s are the fractional off-momentum and phase coordinates of a particle.
Taking into account the synchronous phase change from <j>a to IT — <j>s across transition
energy, we obtain

£(i | |A ' )+ A' = 0- (3173)
Defining a new time variable y as

y= fxx'2dx=\x%l2 with x=$-, (3.174)
Jo 3 r^

Eq. (3.173) can be transformed into Bessel's equation of order 2/3,

</ + V + (1 - ^^-)<p = 0, (3.175)
y y

where <p = y~2'3A<f>, and the primes indicate derivatives with respect to time variable
y. The solution of Eq. (3.175) can be written readily as32

A<f> = bx [cosx J2/3(y) + sinxN2/3(yj\ , (3.176)

where \ a n d b are constants to be determined from the initial condition. The off-
momentum coordinate 5 can be obtained from Eq. (3.172), i.e.

• 2hoJojt A<f> bx2?3 ( [2J2/3 1 [2iV2/3 } \

Combining this with Eq. (3.176), we obtain the constant of motion

a0 0(A0)2 + 2a<j,6A(/)5 + assS2 = 1, (3.177)

where

au = g^2 [(|^5/3 - 2̂ 2/3) + (2J2/3 - \yJ^) ] ,

^ = £ {^r) K- (|̂ ./. - 2̂ /3) - /̂a (2j2/3 - \y^)],

M ~ 9 6 2 V 7^ J /3 2/sJ"
32The Neumann function is defined as JV^(z) = [Jr(z)cosTTI/- /-^(zJJ/sinTri/. It is also called the

Bessel function of the second kind. The notation used for Nu{z) is Yu(z) in Ref. [25].
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There is no surprise that the constant of motion for a time dependent linear
Hamiltonian is an ellipse. In (0, S) phase-space coordinates, the shape of the ellipse
changes with time. The phase-space area enclosed in the ellipse of Eq. (3.177) is a
constant of motion given by

Ja^ass - ofa 2/1704,7-*, /?27Tmc2

where A is the phase-space area of the bunch in eV-s. Thus the parameter b is

(2AhMirlV12

b ~ \ 3 m c ^ ) • ( 3 - 1 7 9 )

A. The asymptotic properties of the phase space ellipse

The phase-space ellipse is tilted in the transition energy region. Using a Taylor series
expansion around y = 0, we obtain

7T2 4

a ^ = 9^3V3[r(§)]2> ( 3 ' 1 8 0 )

^ = -gj2 {—^—) V (3'181)

aw = 9^l^T"J ^ ^ ~ ' (3 8)
The tilt angle, the maximum momentum spread, and the maximum bunch width of
the ellipse are

^ = ^ t a n - 1 2a** , (3.183)
2 atjuj, — ass

-v / 2A V2 v ( A \1/2

i^^f(f)(3^J -a502^(^j ' (3^
X - / a« _32/3r( | ) /2^^7^d\1 / 2

0 7=,T ~ y <*„<*„-<% ~ ~r~ \ zmtp-t) • (3-185j

Note that 6 is finite at 7 = 7T for a nonzero acceleration rate. At a higher acceler-
ation rate, the maximum momentum width of the beam will be smaller. Substituting
the adiabatic time r ^ of Eq. (3.171) into Eq. (3.184), we obtain the following scaling
property:

5 ~ /i1'3V1/!U1/27-1/a7T~1/3- (3-186)
7=7 T
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The scaling property is important in the choice of operational conditions.
In the adiabatic region where x 3> 1, we can use asymptotic expansion of Bessel

functions to obtain

"•2 1 /9 „ ft2 (2/*7^o'T?d\ 1 / 2

The phase-space ellipse is restored to the upright position.

B. The equilibrium Gaussian distribution function at transition energy

The distribution function that satisfies the Vlasov equation is a function of the in-
variant ellipse (3.177). Using the Gaussian distribution function model, we obtain

#0(A<M) = 3NB(Oi4"i'aS6 ~ als)1/2 c-3\ad,JA4>)2+2a^6(A4.)+ali/i62]

= NBG1{Ac/>)G2(6), (3.187)

where NB is the number of particles in the bunch, the factor 3 is chosen to ensure
that the phase-space area A of Eq. (3.178) corresponds to 95% of the beam particles,
and the normalized distribution functions Gi(A(f>) and C?2(<5) are

Gl(Afl = i 3(°»"« ~ als) exp{-3 ( a»Q W-OftW}
\| nagg ass

G2{6) = J**H exp{-3ass(5 + ^A<^)2}.
V 7T aSs

Note here that Gi(A(j>) is the line charge density, and the peak current is still located
at A</> = 0. Using the ellipse of Eq. (3.177), we can evaluate the evolution of the peak
current at the transition energy crossing.

IV. 2 Nonlinear Synchrotron Motion at 7 fa 7T

In Sec. IV. 1, all particles were assumed to cross transition energy at the same time.
This is not true, because the phase slip factor depends on the off-momentum coordi-
nate 5. Near the transition energy region, the nonlinear phase slip factor of Eq. (3.17)
becomes quite important. Expanding the phase slip factor up to first order in 5, the
synchrotron equations of motion become

A> = h.o ( ^ + V1S) 5, 6 = ^ g g ^ (A*), (3.188)

where the synchronous particle crosses transition energy at time t = 0, and, to a good
approximation, the phase slip factor has been truncated to second order in 6. At time
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Figure 3.14: Schematic plot of n
vs 5 near the transition energy re-
gion for the Fermilab Booster, where
7T = 5.446, 7?c*i = 0.5, and a phase-
space area 01 0.05 eV-s are used to
calculate TJ(S) for the beam. A beam
bunch is represented by a line of r](5)
vs S. The synchrotron motion corre-
sponds to particle motion along this
line. At the beam synchronous en-
ergy of E = 5.1 GeV, which is be-
low the transition energy of 5.11 GeV,
particles at 5 > 0.0018 will experience
unstable synchrotron motion due to
the nonlinear phase slip factor.

t = 0, the synchronous phase is also shifted from <f>s to w — (j>s in order to achieve
stable synchrotron motion.

Figure 3.14 shows the phase slip factor 77 vs the fractional off-momentum coor-
dinate 5 near transition energy for a beam in the Fermilab Booster. A beam bunch
with momentum width ±6 is represented by a short tilted line. At a given time (or
beam energy), particles are projected onto the off-momentum axis represented by this
line. Since the phase slip factor is nonlinear, the line is tilted. When the beam is
accelerated (or decelerated) toward transition energy, a portion of the beam particles
can cross transition energy and this leads to unstable synchrotron motion, as shown
in the example at 5.1 GeV beam energy in Fig. 3.14. Since the synchrotron motion
is slow, we hope that the unstable motion does not give rise to too much bunch
distortion before particles are recaptured into a stable bucket.

To characterize nonlinear synchrotron motion, we define the nonlinear time rn\ as
the time when the phase slip factor changes sign for the particle at the maximum
momentum width 5 of the beam, i.e. rjo + Vi$ = — (2771,1/7') + Vi$ = 0, or

where 8 is the maximum fractional momentum spread of the beam, 771 is obtained from
Eq. (3.17), and the a\ term can be adjusted by sextupoles. For a lattice without sex-
tupole correction, we typically have 7^«i ~ 1 (see footnote 3). Within the nonlinear
time ±rni, some portions of the beam could experience unstable synchrotron mo-
tion. Note that the nonlinear time depends on the off-momentum width of the beam.
Table 3.3 lists the nonlinear time of some accelerators, where ct\ = 0 is assumed.
Note that the nonlinear time for RHIC is particularly long because superconducting
magnets can tolerate only a slow acceleration rate.
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When the beam is accelerated toward transition energy to within the range

7T - "Km < 7 < 7T + 7Tm,

the phase equation begins to change sign for particles at higher momenta while the
phase angle (j>s has not yet been shifted. Therefore these particles experience de-
focussing synchrotron motion. After the synchronous energy of the bunch reaches
transition energy and the synchronous phase has also been shifted from </>„ to IT — 4>s,
lower momentum portions of the bunch will experience defocussing synchrotron mo-
tion. The problem is most severe for accelerators with a slow acceleration rate.

The relative importance of non-adiabatic and nonlinear synchrotron motions de-
pends on the adiabatic time of Eq. (3.171) that governs the adiabaticity of the syn-
chrotron motion, and the nonlinear time rnl, within which some portion of the beam
particles experiences unstable synchrotron motion. Using Eq. (3.188), we obtain

S" = -X5 + ^C, (3.190)
Tad 5

where the primes indicate derivatives with respect to x = |t|/ra(j. Note that when the
nonlinear time rni vanishes, the solution of Eq. (3.190) is an Airy function, discussed
in Sec. IV. 1. Since the solution of the nonlinear equation is not available, we estimate
the growth of momentum width by integrating the unstable exponent. The growth
factor is

for a particle with 5 = 5. The maximum momentum height is increased by the
growth factor G, which depends exponentially on T^/T^. Depending on the adiabatic
and nonlinear times, the effects of nonlinear synchrotron motion and of microwave
instability can be analyzed.33

We have seen that the momentum width will increase due to the nonlinear phase
slip factor. However, we should bear in mind that the synchrotron motion can be
derived from a Hamiltonian

H = iha,0 [% + |m <j] <52 - £ J | ^ cos U^)2, (3-192)

where r)0 = 2-yt/j^. Expressing Hamilton's equation as a difference mapping equation,
we can easily prove that the Jacobian is 1. Therefore the area of the phase-space
ellipse of each particle is conserved, and the ID dynamical system is integrable. The
action integral is a distorted curve in phase-space coordinates. When the bunch is

33 The microwave instability will be discussed in Sec. VII.
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accelerated through transition energy, some portions of the phase-space torus may lie
outside the stable ellipse of the synchrotron Hamiltonian. They may be captured by
other empty buckets of the rf system, or may be lost because of the aperture limitation.
For a modern high intensity hadron facility, the loss would cause radiation problems;
therefore efforts to eliminate transition energy loss are important.

IV.3 Beam Manipulation Near Transition Energy

Near the transition energy, the revolution frequencies of all particles are nearly iden-
tical, i.e. the beam is isochronous or quasi-isochronous. Since there is no frequency
spread for Landau damping, the beam can suffer microwave instability. The tolerance
of microwave instability near transition energy will be discussed in Sec. VII.

The nonlinear phase slip factor can cause defocussing synchrotron motion for
a portion of the bunch. The growth of the bunch area is approximately G2 =
exp{|(rni/rad)3''2} shown in Eq. (3.191). The 5% beam loss at transition energy found
for proton synchrotrons built in the 60's and 70's may arise mainly from this nonlinear
effect. Bunched beam manipulation are usually needed to minimize beam loss and
uncontrollable emittance growth. Minimizing both Tad and TD\ provides cleaner beam
acceleration through the transition energy.

A. Transition energy jump

By applying a set of quadrupoles, transition energy can be changed suddenly in order
to attain fast transition energy crossing (see Chap. 2, Sec. IV.8). The effective 7T

crossing rate is jes = 7 — j r . For example, if j r is changed by one unit in 1 ms,34

the effective transition energy crossing rate is 1000 s~1, which is much larger than the
beam acceleration rates listed in Table 3.3.

Transition jT jump has been employed routinely in the CERN PS. The scheme
has also been studied in the Fermilab Booster and Main Injector, the KEK PS, and
the AGS. The minimum 7T jump width is

A 7 T = 27 x Max(rad,rn,). (3.193)

B. Use of momentum aperture for attaining faster beam acceleration

The synchronization of dipole field with synchronous energy is usually accomplished
by a "radial loop," which provides a feedback loop for rf voltage and synchronous
phase angle. In most accelerators, the maximum B is usually limited, but the rf
voltage and synchronous phase angle can be adjusted to move the beam across the

34The 7T jump time scale is non-adiabatic with respect to synchrotron motion. However, the time
scale can be considered as adiabatic in betatron motion so that particles adiabatically follow the
new betatron orbit.
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momentum aperture. The radial loop can be programmed to keep the beam closed
orbit inside the nominal closed orbit below transition energy, and to attain faster
acceleration across transition energy so that the beam closed orbit is outside the
nominal closed orbit above transition energy. For an experienced machine operator
to minimize the beam loss with a radial loop, the essential trick is to attain a faster
transition energy crossing rate.

C. Flatten the rf wave near transition energy

Near transition energy, partial loss of focusing force in synchrotron motion can be
alleviated by flattening the rf wave. This can be done by choosing <f>s = n/2 or
employing a second or third harmonic cavity.35 In the flattened rf wave, all particles
gain an equal amount of energy each turn, and thus 5 of each particle is approximately
constant in a small energy range.

The solution of Eq. (3.188) with 5 = 0 is

A<t> = A0! + ^ ^ ( i 2 - t\) + Vlhco052 (t - h), (3.194)
7T

where t\ is the rf flattening period, {/S.<t>\,5\) are the initial phase-space coordinates
of the particle, and 8 — Si. Figure 3.15 shows the evolution of the phase-space torus
when the rf wave is flattened across the transition energy region; the parameters used
in this calculations are 7T = 22.5, u0 = 4.917 x 105 rad/s, j - 1.6 s"1, h = 360,
ti = —63 ms, and 7̂ 771 « 2. Note that the ellipse evolves into a boomerang shaped
distribution function with an equal phase-space area. The rf flattening scheme is
commonly employed in isochronous cyclotrons.

IV.4 Synchrotron Motion with Nonlinear Phase Slip Factor

In the production of secondary beams, very short proton bunches are needed for at-
taining small emittance. Very short electron bunches, e.g. sub-millimeter in bunch
length, have many applications such as time resolved experiments with synchrotron
light sources, coherent synchrotron radiation, and damping rings for the next linear
colliders. Since the ratio of bunch length to bunch height is proportional to J\ri\,
a possible method of producing short bunches is to operate the accelerator in an
isochronous condition for proton synchrotrons, or to reduce the momentum com-
paction factor for electron storage rings. Because of its potential benefit of the low r\
condition, we carefully study the physics of the QI dynamical system.36

35see e.g., CM. Bhat et al, Phys. Rev. E55, 1028 (1997). The AVF cyclotron has routinely
employed this method for beam acceleration. This concept was patented by G.B. Rossi, U.S. Patent
2778937 (1954).

36A. Riabko et al, Phys. Rev. E54, 815 (1996); D. Jeon et al, Phys. Rev. E54, 4192 (1996); M.
Bai et al, Phys. Rev. E55, 3493 (1997); C. Pellegrini and D. Robin, Nucl. Inst. Methods, A 301,
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Figure 3.15: The evolution of a
phase-space ellipse in the flattened rf
wave near the transition energy re-
gion. Note that the off-momentum
coordinates of each particle are un-
changed, while the bunch length elon-
gates along the tj> axis.

Table 3.2 and Eq. (3.60) show that the synchrotron bucket height and momentum
spread become very large when |7y| is small. This requires careful examination because
when the phase slip factor T) is small, its dependence on the fractional momentum
deviation 5 becomes important. The synchrotron Hamiltonian needs to take into
account the effects of nonlinear phase slip factor.

Expanding the phase slip factor as r\ = r)0 + rjiS H and using the orbiting angle
6 as the independent variable, we obtain the Hamiltonian for synchrotron motion as

H=\h (r]0 + ^ms"j S2 + ^S^ [cos0 - cos0s + (0 - 0s)sin0s], (3.195)

where we have truncated the phase slip factor to the second order in 5. The fixed
points of the nonlinear synchrotron Hamiltonian are

(0, <5)SFP = (0s, 0), (TT - 0s, - V ? i ) . (3-196)

(0, <5)UFP = (JT - 0S, 0), (0S, -Tfy/rn). (3.197)

Note that the nonlinear phase slip factor introduces another set of fixed points in
the phase space. The fixed points with 5pp = 0 are the nominal fixed points. The
fixed points with (5pp = — ̂ o/^i arising from the nonlinear-phase-slip factor are called
nonlinear-phase-slip-factor (NPSF) fixed points. These fixed points play important
role in determining the dynamics of synchrotron motion.

We define vs = Jh\rio\eV/2-KJ32E for small amplitude synchrotron tune, and use
the normalized phase space coordinates 0 and V = (hrjo/i/s)6. The Hamiltonian of

27 (1991); D. Robin, et. al, Phys. Rev. E48, 2149 (1993); H. Brack et al, IEEE Trans. Nucl. Sci.
NS20, 822 (1973); L. Liu et al, Nucl. Instru. Methods, A329, 9 (1993); H. Hama, S. Takano and
B. Isoyama, Nucl. Instru. Methods, A329, 29 (1993); S. Takano, H. Hama and G. Isoyama, Japan
J. Appl. Phys. 32, 1285 (1993); A. Nadji et al., Proc. EPAC94 p. 128 (1994); D. Robin, H. Hama,
and A. Nadji, LBL-37758 (1995).
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synchrotron motion becomes

H = \vsT2 + ^-vsV3 + ua[coa cf> - cos 4>s+ ((/>- </>s) sin <f>s}. (3.198)
z Zy

The parameter

2/ = 3 H 2 / 2 % ^ (3.199)

signifies the relative importance of the linear and nonlinear parts of the phase slip
factor. If \y\ » 1, the nonlinear phase slip factor is not important, and if \y\ is small,
the phase space tori will be deformed.

Figure 3.16 shows the separatrix of the nonlinear Hamiltonian in normalized phase
space coordinates for </>s = 150° and 180° respectively, where, without loss of gener-
ality, we have assumed r/o > 0 and T?I > 0. The separatrix that passes through the
nominal fixed points are nominal separatrix. When the nominal separatrix crosses
the unstable NPSF fixed point, the separatrix of two branches will become one (see
the middle plots of Fig. 3.16 and Exercise 3.4.6). This condition occurs at y = yCI,
given by

2/cr = v/27[(?r/2 - 4>s) sin fa - cos &]. (3.200)

For y ;§> ycr, the stable buckets of the upper and lower branches are separated by a
distance of AV = 2y/3. Particle motion can be well described by neglecting the V3

term in the Hamiltonian.

Figure 3.16: Left: Sep-
aratrix in the normalized
phase space ((/), P = V) for
the synchrotron Hamilto-
nian with parameters tps =
150° and y = 5 (top), y =
yCT = 3.0406 (middle) and
1 (bottom); Right: Separa-
trix with parameters <f>s =
180° and y = 8 (top), y =
ycr = 5.1962 (middle), and
3 (bottom). In this exam-
ple, we assume T)Q > 0 and
?7i > 0. Note the depen-
dence of the Hamiltonian
tori on the parameter y.

For y < yCI, the separatrix ("fish") is deformed into up-down shape (see lower
plots). They are called "a-bucket." Since the a-bucket is limited in a small region
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of the phase coordinate <j>, small angle expansion is valid. The particle motion inside
such a quasi-isochronous (QI) dynamical system can be analytically solved as follows.

IV.5 The QI Dynamical Systems

The synchrotron equation of motion for the rf phase coordinate 0 of a particle is

4> = hrjd, (3.201)

where h is the harmonic number, 5 = Ap/p0 is the fractional momentum deviation
from a synchronous particle, the overdot indicates the derivative with respect to the
orbiting angle 0 = s/Ro, and r\ is the phase slip factor given by

V = Vo + ViS + • • •, (3.202)

where % and r]i are the first order and second order phase slip factors. In many storage
rings, truncation of the phase slip factor at the ??i term is a good approximation.
Similarly, the equation of motion for the fractional off-momentum deviation is

i-5^^'* + «-ta*"-W* (3-203)

where Vo and <j>B are the rf voltage and synchronous phase angle, /3c is the speed, and
Eo is the energy of the beam. Here, the linearized phase coordinate in Eq. (3.203)
is a good approximation because the (up-down) synchrotron bucket is limited in a
small range of the phase coordinate (see Fig. 3.16).

With t = vs6 as the time variable, where vs = JheV0\r]0 cos <j>s\/2-nP2Ea is the small
amplitude synchrotron tune, and with (x,p) as conjugate phase-space coordinates,
where

* = - ^ , P = ^ , (3.204)

the synchrotron Hamiltonian for particle motion in QI storage rings becomes

H0 = \p2 + \x2-l-x\ (3.205)

This universal Hamiltonian is autonomous and the Hamiltonian value E is a constant
of motion with E € [0, \] for particles inside the bucket.

The equation of motion for the QI Hamiltonian with Hg = E is the standard
Weierstrass equation,

( ^ r ) =4(^-ei)(p-e2)(P-e3), (3.206)
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where u = t/y/6, p = x, and the turning points are

ei = ^ + cos(0, e2 = ^ + cos(£-120°), e3 - \ + cos(£ + 120°)

with £ = |arccos(l — 12E). The £ parameter for particles inside the bucket varies
from 0 to TT/3. Figure 3.17 shows the separatrix of the QI bucket QI potential, and
the turning points, where e2 and e3 are turning points for stable particle motion.

Figure 3.17: Schematic plots of the QI bucket (left) and the QI potential (right). The
turning points e\, e2, and e3 are also shown. The separatrix of the QI bucket is one of the
separatrix, plotted sideway, shown in Fig. 3.16.

The Weierstrass elliptic p-function is a single valued doubly periodic function of
a single complex variable. For particle motion inside the separatrix, the discriminant
A = 648^(1 — 6E) is positive, and the Weierstrass p function can be expressed in
terms of the Jacobian elliptic function [25]

x(t) = e3 + (e2 - e3) sn2 ( \ p - ^ * M . (3-207)

m = e 2 _ - e s = sine
ei - e3 sin(f + 60°) v ;

The separatrix orbit, which corresponds to m = 1, is

^( t ) = 1-^h7TT' p^ = ( i h W <3-2 0 9)
The tune of the QI Hamiltonian is

qw-"*•%* r r ) r - (3̂ o)
V6K(m)
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Figure 3.18: The synchrotron tune
of the QI dynamical system (up-
per curve) is compared with that of
a single rf potential (lower curve).
Note that the sharp drop of the QI
synchrotron tune at the separatrix
can cause chaotic motion for par-
ticles with large synchrotron ampli-
tudes under the influence of the low-
frequency time-dependent perturba-
tion.

The tune of the QI Hamiltonian is compared with that of the normal synchrotron
Hamiltonian in Fig. 3.18. Here, we note that the synchrotron tune decreases to zero
very sharply near the separatrix. Because of the sharp decrease in synchrotron tune,
time dependent perturbation will cause overlapping parametric resonances and chaos
near the separatrix.37

The action of a torus is

J = ^fpdx = | y | ( e 2 - e3)2(ei - e3)^F ( j , -^3;m) , (3.211)

where F is the hypergeometric function [25]. The action of the separatrix orbit is
Jsx = 3/5?r, or equivalently the bucket area id 6/5. Using the generating function

F2(x, J)= f p dx, (3.212)

the angle variable is ip = dFz/dJ = Qt. The resulting Hamiltonian is

H0(J)*J-^J2 + ---.

Because of the synchrotron radiation damping, the equation of motion for QI
electron storage rings is

x" + Ax' + x - x2 = 0, (3.213)

37H. Huang, et al, Phys. Rev. E48, 4678 (1993); M. Ellison, et al, Phys. Rev. Lett. 70, 591
(1993); M. Syphers, et al, Phys. Rev. Lett. 71 , 719 (1993); Y. Wang, et al, Phys. Rev. E49, 1610
(1994). D. Li, et al, Phys. Rev. E48, R1638 (1993); D. Li, et al, Nud. Inst. Methods, A364, 205
(1995).
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where the effective damping coefficient is

A = A = 3lE_. (3.214)

Here A is the damping decrement, Uo is the energy loss per revolution, and JE is the
damping partition number. In QI storage rings, the effective damping coefficient is
enhanced by a corresponding decrease in synchrotron tune, i.e. A ~ |J7O|~1/'2J where
the value of A can vary from 0 to 0.5.

Including the rf phase noise, the Hamiltonian in normalized phase-space coordi-
nates is

H = j + -x2 - -x3 + ujmBx cos ojmt, (3.215)

where
B = — (3.216)

is the effective modulation amplitude, a is the rf phase modulation amplitude, wm =
vm/i>B is the normalized modulation tune, and vm is the modulation tune of the
original accelerator coordinate system. Note that the effective modulation amplitude
B is greatly enhanced for QI storage rings by the smallness of ?j0, i.e. B ~ |T?I|/|T?O|3''2-

Including the damping force, the equation of motion becomes

x" + Ax'+ x-x2 = -um B cos umt. (3.217)

The stochasticity of such a dynamical system has been extensively studied.38 Experi-
mental verification of the QI dynamical system has not been fully explored. Detailed
discussions of this topic is beyond this introductory textbook.

Exercises 3.4
1. Verify the adiabatic time, the nonlinear time, and the momentum spread of the beam

8 at 7 = 7 r for the accelerators listed in Table 3.3.

2. Show that Eq. (3.172) can be reduced to

6" + x5 = 0

where the primes indicate derivatives with respect to the variable x = |t|/Ta,j, where
T ^ is the adiabatic time of Eq. (3.171).

(a) Express the solution in terms of Airy functions and find the equation for the
invariant torus.

38A. Riabko et al., Phys. Rev. E54, 815 (1996); D. Jeon et al, Phys. Rev. E54, 4192 (1996); M.
Bai et al, Phys. Rev. E55, 3493 (1997).
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(b) Verify Eq. (3.177).

3. Show that T^/T^ OC 7~5/67~2/3. Discuss the effects of high vs low yT lattices on the
dynamics of synchrotron motion near the transition energy.

4. The Fermilab Main Injector accelerates protons from 8.9 GeV to 120 GeV in 1 s.
Assuming 7T = 20.4, calculate the characteristic time and the maximum momentum
spread for a phase space area of 0.04 eV-s.

5. Show that the phase space area enclosed by (A<f>,5) of Eq. (3.194) is equal to the
phase space area enclosed by (A^i, Si) of the initial ellipse.

6. Using the normalized phase space coordinates <f> and V, show that the Hamiltonian
(3.195) with nonlinear phase slip factor depends only on a single parameter y =
3hrjQ/2usr)i. Show that the separatrices of the Hamiltonian are

vsV% + yV2 + 2j/[cos 4> + cos </>s + ((f> + <f>s - n) sin 4>s) = 0,

vsV* + yV2 + 1y[cos <t> - cos <f>s+ {(}>- <fe) sin 4>s] - —y3 = 0.

Show that when y = ycr of Eq. (3.200) the separatrix of the upper branch passes
through the UFP of the lower branch.

7. Show that the QI Hamiltonian can be reduced to Eq. (3.205) and that the solution
is given by the Weierstrass elliptical function.
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V Beam Manipulation in Synchrotron Phase Space

A charged particle beam is usually produced by an intense ion source, pre-accelerated
by an electrostatic Cockcroft-Walton or an RFQ, prebunched and injected into a linac
to reach an injection energy for low energy synchrotrons, called booster synchrotrons
or boosters. The beam is accumulated, phase-space painted, stacked in a low energy
booster, and accelerated toward higher energies by a chain of synchrotrons of various
sizes. The reasons for this complicated scheme are economics and beam dynamics
issues. Since dipole and quadrupole magnets have low and high field operational
limits, the range of beam energy for a synchrotron is limited. The mean-field Coulomb
force can also have a large effect on the stability of low energy beams in boosters,
where the space-charge tune shift, proportional to circumference of the synchrotron,
is limited to about 0.3-0.4.

For acceleration of ion beams, the fractional change of beam velocity in low en-
ergy boosters can be large; accordingly, rf frequency for a low energy booster has
to be tuned in a wide range. The rf voltage requirement is determined by technical
issues such as rf cavity design, rf power source, etc., and the beam dynamics issues
of minimum momentum aperture and phase-space area. During beam acceleration,
phase-space area is normally conserved. The beam distribution function can thus be
manipulated to attain desirable properties for experiments. Careful consideration is
thus needed to optimize the operation and construction costs of accelerators.

On the other hand, electrons are almost relativistic at energies above 10 MeV,
and the required range of rf frequency change is small. However, electrons emit syn-
chrotron radiation, which must be compensated by the longitudinal rf electric field
in a storage ring. Since synchrotron radiation power depends on particle energy, and
the mean energy loss of a beam is compensated by the rf field, particle motion in syn-
chrotron phase-space is damped. The synchrotron radiation emitted by a relativistic
electron is essentially concentrated in a cone with an angular divergence of I/7 along
its path, and the energy compensation of the rf field is along the longitudinal direc-
tion; the betatron motion is also damped. Equilibrium is reached when the quantum
fluctuation due to the emission of photons and the synchrotron radiation damping
are balanced. The resulting momentum spread is independent of the rf voltage, and
the transverse emittance depends essentially on the lattice arrangement. The effects
of synchrotron radiation must be taken into account in beam manipulation.

In this section we examine applications of the rf systems in the bunched beam
manipulations, including phase displacement acceleration, phase-space stacking, adi-
abatic capture, bucket to bucket transfer, bunch rotation, and debunching. We care-
fully study the double rf systems, that have often been applied in the space charge
dominated beams and high brilliance electron storage rings for providing a larger
tune spread for Landau damping. We also study the barrier rf systems that have
been proposed for low energy proton synchrotrons. In general, innovative bunched
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beam manipulation schemes can enhance beam quality for experiments.

V.I RF Frequency Requirements

Particle acceleration in synchrotrons requires synchronism between rf frequency and
particle revolution frequency. Thus the rf frequency is an integer multiple of the
revolution frequency ui^ = hLjo(B,Ro), where h is the harmonic number, and the
angular revolution frequency UJQ is a function of the magnetic field B and the average
radius of the synchrotron RQ. The momentum po of a particle is related to the
magnetic field by po = epB, where p is the bending radius, and e is the particle's
charge. Thus the rf frequency is

Pc _ hepB _ he [ B*{t) | 1 / 2

where m is the particle's mass. The rf frequency is a function of the dipole magnetic
field. Since

rru?_ _ f 3.1273/p[m] Tesla for protons,
~^p~~\ 0.001703/p[m] Tesla for electrons, \A-iVi)

rf frequency ramping is particularly important for low energy proton or ion accel-
erators. In low to medium energy synchrotrons, the rf system is usually limited by
the range of required frequency swing. Table V.I lists parameters of some proton
synchrotrons.

Table 3.4: RF parameters of some proton synchrotrons

I AGS BST 1 AGS I RHIC I FNALBST 1 FNALMI
Inj. K.E. [GeV/u] 0.001/0.2 0.2(1.5) 12 0.2(0.4) 8.0
Ace. Rate [GeV/s] 100 60 3.7 200 100
Max. K.E. [GeV] 1.5 30 250 8 500
/r f [MHz] 0.18-4.1 2.4-4.6 26.68-26.74 30.0-52.8 52.8-53.1
Av. Radius [m] (l/4)-Rags 128.457 (19/4).Rags 75.47 528.30
h 1-3 (2) 12 (8) 6x60 84 7x84
Kf [kV] |_90 I 300 1 300 j_950 | 4000

In some applications, the magnetic field can be ramped linearly as B = a + bt, or
resonantly as B = (B/2)(l — cosu)t) = Bsin2(cut/2), with ramping frequency w/2?r
varying from 1 Hz to 50 Hz; the rf frequency should follow the magnetic field ramp
according to Eq. (3.218), for which cavities with ferrite tuners are usually used. On
the other hand, electrons are nearly relativistic at all energies, and the rf frequency
swing is small. High frequency pill-box-like cavities are usually used. Normally the
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frequency range can be in the 200, 350, 500, and 700 MHz regions, where rf power
sources are readily available. In recent years, wideband solid state rf power sources
and narrowband klystron power sources have been steadily improved. New methods
of beam manipulation can be employed.

Requirements of rf systems depend on their applications. To achieve high beam
power in meson factories and proton drivers for spallation neutron sources, a fast
acceleration rate is important.39 On the other hand, acceleration rate is less important
in storage rings used for internal target experiments.

A. The choice of harmonic number

The harmonic number determines the bunch spacing and the maximum number of
particles per bunch obtainable from a given source, which can be important for col-
liding beam facilities. The harmonic numbers are related by the mean radii of the
chain of accelerators needed to reach an efficient box-car injection scheme.40 For ex-
ample, the average radius of the AGS Booster is 1/4 that of the AGS, and the ratio
of harmonic numbers is 4. Similar reasoning applies to the chain of accelerators.

Since the damping time of electron beams in electron storage rings (see Table 1.4,
Chap. 4, Sec. 1.4) is short, the injection scheme of damping accumulation at full
energy is usually employed in high performance electron storage rings. The choice of
harmonic number for high energy electron storage rings is determined mainly by the
availability of the rf power source, efficient high quality cavity design, and the size of
the machine. Since rf power sources are available at 200, 350, 500, 700 MHz regions,
most of the rf cavities of electron storage rings are operating at these frequencies.
The harmonic number is then determined by the rf frequency and circumference of
the storage ring.

B. The choice of rf voltage

High intensity beams usually require a larger bunch area to control beam instabilities.
Since the rf bucket area and height are proportional to \A^f, a minimum voltage is
needed to capture and accelerate charged particles efficiently.

In electron storage rings, the choice of rf voltage is important in determining the
beam lifetime because of quantum fluctuation and Touschek scattering, a large angle
Coulomb scattering process converting the horizontal momenta of two electrons into
longitudinal momenta.

In general, the rf voltage is limited by the rf power source and the Kilpatrick limit
of sparking at the rf gap. The total rf voltage of synchrotrons and storage rings is

39The ISIS at the Rutherford Appleton Laboratory has a 50 Hz ramp rate, whereas the rf systems
in the Spallation Neutron Source (SNS) provide only beam capture.

40A box-car injection scheme is equivalent to bucket to bucket transfer from one accelerator to
another accelerator.
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usually limited by the available space for the installation of rf cavities.

V.2 Capture and Acceleration of Proton and Ion Beams
At low energy, the intensity and brightness of an injected beam are usually limited
by space-charge forces, intrabeam scattering, microwave instability, etc.; phase-space
painting for beam distribution manipulation can be used to alleviate some of these
problems (see Chap. 2, Sec. III.8, for transverse phase-space painting).

Since the injected beam from a linac normally has a large energy spread, the
rf voltage requirement in booster synchrotrons needs enough bucket height for beam
injection.41 The resulting captured beam brightness depends on the rf voltage manip-
ulation. The following example illustrates the difference between adiabatic capture
and non-adiabatic capture processes.

A. Adiabatic capture

During multi-turn injection (transverse or longitudinal phase-space painting or charge
exchange strip injection), very little beam loss in the synchrotron phase-space can
theoretically be achieved by adiabatically ramping the rf voltage with <j>a = 0. The
right plots, (e) to (h), of Fig. 3.19 show an example of adiabatic capture in the IUCF
cooler injector synchrotron (CIS). The proton beam was accelerated from 7 to 200
MeV at 1 Hz repetition rate, and the rf voltage VTi(t) was increased from a small
value to 240 V adiabatically, plots (e) and (f), while the synchronous phase was kept
at zero. The adiabaticity coefficient of Eq. (3.43) becomes

Ts dVd_ Ts dAB

aad-«^T-2^^T' (3'220)

where Ts is the synchrotron period and AB is the bucket area. In order to satisfy the
adiabatic condition, the initial rf voltage should have a small finite initial voltage Vo,
and the rf voltage is ramped to a final voltage smoothly (see also Exercise 3.5.1).

After beam capture, the synchronous phase was ramped adiabatically to attain
a desired acceleration rate. Good acceleration efficiency requires adiabatic ramping
of V and 4>s while providing enough bucket area during beam acceleration. In this
numerical example, we find that the capture efficiency is about 99.6%. In reality,
the momentum spread of the injected beam is about 0.5% instead of 0.1% shown
in this example. The maximum voltage is only barely able to hold the momentum
spread of the injected beam from linac. The actual capture efficiency is much lower.
A possible solution is to install a debuncher in the injection transfer line for lowering
the momentum spread of the injected beam.

41 The peak voltage is usually limited by the power supply and electric field breakdown at the rf
cavity gap. A debuncher or a bunch rotator in the transfer line can be used to lower the momentum
width of injected beams.
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Figure 3.19: The left plots, (a) to (d), show non-adiabatic beam capture during injection
and acceleration. The right plots, (e) to (h), show adiabatic capture of the injected beam:
the rf voltage is ramped from 0 to 240 V adiabatically to capture the injected beam with
a momentum spread of 0.1%. The rf synchronous phase is then ramped adiabatically to
achieve the required acceleration rate. The actual momentum spread of the injected beam is
about ±0.5%, and thus the actual adiabatic capture efficiency is substantially lower. Space-
charge force and microwave instability are not included in the calculation. This calculation
was done by X. Kang (Ph.D. Thesis, Indiana University, 1998).
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B. Non-adiabatic capture

The left plots, (a) to (d), of Fig. 3.19 show an example of non-adiabatic capture
with nonzero initial rf voltage. When the if voltage is set to 240 V to capture the
injected beam, the beam fills up the entire phase-space, as shown in plot (b). Beam
loss occurs during acceleration, the final phase-space area is larger, and the capture
efficiency is low. With microwave instability and space-charge effects included, the
capture efficiency may be even lower.

As seen in plots (b) and (f), the injected beam particles decohere and fill up the
entire bucket area because of synchrotron tune spread. The decoherence results in
emittance growth.

C. Chopped beam at the source

Many fast cycling synchrotrons require nonzero rf voltage and nonzero rf synchronous
phase (j>s > 0 to achieve the desired acceleration rate. In this case, capture efficiency
is reduced by the nonadiabatic capture process. To circumvent low efficiency, a beam
chopper consisting of mechanical or electromagnetic deflecting devices, located at the
source, can be used to paint the phase-space of the injected beam and eliminate beam
loss at high energy.

V.3 Bunch Compression and Rotation
When a bunch is accelerated to its final energy, it may be transferred to another
accelerator or used for research. When the beam is transferred from one accelerator
to another, the beam profile matching condition is

\l] =\l] , (3-221)
L-RflJacc.l L-R Ĵacc.2

or equivalently, the rf parameter matching condition is

fi [W] _ [ i [W]
l*v¥LrL*v¥L- (3-222)

This matching condition may be higher than the limit of a low frequency rf system.
Similarly, the bunch length of a beam may need to be shortened in many applications.
A simple approach is to raise the voltage of the accelerator rf system. However, the
peak voltage of an rf system is limited by the breakdown of electric field at the
acceleration gap. According to the empirical Kilpatrick criterion, the rf frequency /
[MHz] is related to the peak electric field gradient EK [MV/m] by

f = 1.64 El e-8-5/EK. (3.223)
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Because of this limitation, we have to use different beam manipulation techniques
such as bunch compression by rf gymnastics, etc.

Bunched beam gymnastics are particularly important for shortening the proton
bunch before the protons hit their target in antiproton or secondary beam production.
Generally, the emittance of secondary beams is equal to the product of the momentum
aperture of the secondary-beam capture channel and the bunch length of the primary
beam. When the bunch length of a primary proton beam is shortened, the longitudinal
emittance of the secondary antiproton beam becomes smaller. The antiproton beam
can be further debunched through phase-space rotation in a debuncher by converting
momentum spread to phase spread, and the final antiproton beam is transported to
an accumulator for cooling accumulation (see Exercise 3.5.3).

Beam bunch compression is also important in shortening the electron bunch in
order to minimize the beam breakup head-tail instabilities in a linac (see Sec. VIII).
A few techniques of bunch compression are described below.

V.3.A Bunch compression by rf voltage manipulation

The first step it to lower the rf voltage adiabatically, e.g. Vo -* V1; so that the
bucket area is about the same as the bunch area. Then the rf voltage is increased
non-adiabatically from VI to Vi- The unmatched beam bunch rotates in synchrotron
phase-space. At 1/4 or 3/4 of the synchrotron period, a second rf system at a higher
harmonic number is excited to capture the bunch, or a kicker is fired to extract beams
out of the synchrotron. Figure 3.20 shows schematic phase-space ellipses during the
bunch compression process. The lower-left plot shows the final phase-space ellipse in
an idealized linear synchrotron motion. In reality, the maximum attainable rf voltage
is limited, and the final phase-space ellipse is distorted by the nonlinear synchrotron
motion that causes emittance dilution.

For a given bunch area, the rms bunch width and height are obtained from
Eq. (3.58) during the adiabatic rf voltage compression from Vo to Vx. After the
rf voltage is jumped to V"2, the bunch height will become bunch width according to
Eq. (3.59). The maximum bunch compression ratio, defined as the ratio of the bunch
lengths at (Vo = V2) -> V"i ->• V2, becomes

where we have used the properties that the bunch area supposedly fills up the bucket
area at Vxi = V\, and the fact that the bucket area is 16 (see Table 3.2), and the
bunch area containing 95% of the beam is 6TT(T̂  in the normalized synchrotron phase
space coordinates.
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Figure 3.20: Schematic draw-
ings (clockwise) of bunch com-
pression scheme using rf volt-
age manipulation. The bunch
area is initially assumed to
be about 1/5 of the bucket
area (top-left). The voltage
is adiabatically reduced by 16
times so that the bunch is al-
most fill the bucket area (top-
right). As the voltage is non-
adiabatically raised to four
times the original rf voltage,
the mismatched bunch begins
to rotate. When the bunch
length is shortened (lower-left)
at 1/4 of the synchrotron pe-
riod, a kicker can be fired to
extract the beam.

V.3.B Bunch compression using unstable fixed point

If the rf phase is shifted so that the unstable fixed point (UFP) is located at the
center of the bunch, the bunch will begin compressing in one direction and stretching
in the other direction along the separatrix orbit (see Sec. II.4 and Exercise 3.2.5).
In linear approximation, the bunch length and bunch height change according to
exp{±wsiUfp} = exp{±27rtufp/Ts}, where ws is the small amplitude synchrotron an-
gular frequency, Ts is the synchrotron period, and iufp is the time-duration that the
bunch stays at the UFP. The length of stay at the UFP can be adjusted to attain a
required aspect ratio of the beam ellipse.

When the SFP of the rf potential is shifted back to the center of the bunch. The
mis-matched bunch profile will begin to execute synchrotron motion. At 3/8 of the
synchrotron period, the bunch can be captured by a matched high frequency rf system
or kicked out of the accelerator by fast extraction.

We now derive the ultimate bunch compression ratio for the rf phase shift method
as follows. In the normalized phase-space coordinates, <j> and V = — (h\ri\/vs)(Ap/p),
the Hamiltonian for stationary synchrotron motion is given by Eq. (3.88).

Near the UFP, the separatrix of the Hamiltonian in Eq. (3.88) can be approxi-
mated by two straight lines crossing at 45° angles with the horizontal axis cj>. When the
rf phase is shifted so that the beam sits on the UFP, the bunch width and height will
stretch and compress along the separatrix. The rate of growth is equal to exp(wsiufP)-
The maximum rf phase coordinate 0max that a bunch width can increase and still stay
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within the bucket after the rf phase is shifted back to SFP is given approximately by

I ^ + 2sin2(^)«2, (3.225)

where we assume linear approximation for particle motion near SFP. Thus we obtain
</>max ~ V%- Using Liouville's theorem, conservation of phase-space area, we find

^a\;\ = 7rc7-p,fcr0,f- (3.226)

Assuming that 95% of the beam particles reach 0max = y/2 so that a-p,i — r^max —

y/2/3, we find the compression ratio as

rc,max — — „ ~ /» > (6.ZZI)

The time needed to reach this maximum compression ratio is

ujsiufp == In — - 0.203. (3.228)
a4>,'

A difficulty associated with bunch compression using rf phase-shift is that the rf
voltage may remain at a relatively low value during the bunch rotation stage. The
effect of non-linear synchrotron motion will be more important because the ratio of
bucket-area to the bunch-area is small.

The difficulty of nonlinear synchrotron motion in the final stage of bunch rota-
tion can be solved by using the buncher in the transport line. After proper bunch
compression, the beam is kicked out of the synchrotron and the R^ transport matrix
element will compress bunch, i.e. lower energy particles travel shorter path, and the
higher energy particle travel a longer path. However, the resulting compression ratio
is reduced by a factor of l / \ /2- Since there is no constraint that the final bunch size
should fit into the bucket, one can regain the factor of y/2 in staying longer at the
UFP.

V.3.C Bunch rotation using buncher/debuncher cavity

The principle of bunch rotation by using a buncher/debuncher cavity is based on the
correlation of the time and off-momentum coordinates (the transport element R$&).
By employing a cavity to accelerate and decelerate parts of the beam bunch, the
bunch length and the momentum spread can be adjusted. This method is commonly
used in the beam transfer line. For example, a simple debuncher used to decrease the
energy spread of a non-relativistic beam out of a linac can function as follows. First,
let the beam drift a distance L so that higher energy particles are ahead of lower
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energy particles. A cavity that decelerates leading particles and accelerates trailing
particles can effectively decrease the energy spread of the beam.

For relativistic particles, a drift space can not provide the correlation for the
transport element R^ because all particles travel at almost the same speed. It requires
bending magnets for generating local dispersion functions so that the path length is
correlated with the off-momentum coordinate.42 A buncher/debuncher cavity can
then be used to shorten or lengthen the bunch.

V.4 Debunching

When rf systems are non-adiabatically turned off, particles drift and fill up the en-
tire ring because the rotation frequency depends on the off-momentum variable. The
debunching rate is <j> = huior]S. Neglecting synchrotron radiation loss, the momen-
tum spread will not change. The bunch shape will be distorted because particles of
higher and lower momenta drift in different directions. The debunching time can be
expressed as

T d b = 2Tr/hLj0r]5, (3.229)

where 5 is the maximum momentum spread of a beam. Note that the momentum
spread of the entire beam remains the same in this non-adiabatic debunching process.

To reduce the momentum spread in the debunching process, we can adiabatically
lower the rf voltage. In this case, the resulting debunched beam has a smaller mo-
mentum spread. The phase-space area remains the same if we can avoid collective
beam instability.

V.5 Beam Stacking and Phase Displacement Acceleration

The concept of beam stacking is that groups of particles are accelerated to a desired
energy and left to circulate in a fixed magnetic field; and subsequent groups are
accelerated and deposited adjacent to each other. The accumulated beam will overlap
in physical space at special locations, e.g. small ft and zero D(s) locations, which
increases the density and the collision rate. In a successful example of beam stacking
in the ISR pp collider, a single beam current of 57.5 A was attained. To accomplish
phase-space stacking, phase displacement acceleration is usually employed.43

In a Hamiltonian system, particles can not cross the separatrix, therefore particles
outside the bucket can not be captured during acceleration. Since the magnetic field

42See e.g., T. Raubenheimer, P. Emma, and S. Kheifets, Proc. 1993 Part. Accel. Con]., p. 635
(1993).

43K.R. Symon and A.M. Sessler, Methods of radio-frequency acceleration in fixed field accelerators
with applications to high current and intersecting beam accelerators, p. 44, CERN Symp. 1956; L.W.
Jones, C.H. Pruett, K.R. Symon and K.M. Terwilliger, in Proc. of Int. Conf. on High-Energy
Accelerators and Instrumentation, p. 58 (CERN, 1959).
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depends on rf frequency, only particles inside the stable rf bucket are accelerated
toward high energy. Particles outside the rf bucket are lost in the vacuum chamber
because of the finite magnet aperture.

What happens to the unbunched coasting beam outside the separatrix when an
empty moving bucket is accelerated through the beam? Since the beam is outside the
separatrix, it may not be captured into the bucket if the rf bucket acceleration is adia-
batic. Particles flow along lines of constant action, and their energies are lowered. The
change in energy is AE = LJoA/2n. Similarly, when a bucket is decelerated toward
lower energy, the beam energy will be displaced upward in phase-space, i.e. accel-
erated. Phase displacement acceleration has been used to accelerate coasting beams
in the Intersecting Storage Ring (ISR) at CERN44 and to compensate synchrotron
radiation loss in electron storage rings.

In a storage rings with electron cooling or stochastic cooling, a newly injected
beam accelerated by phase displacement can be moved toward the cooling stack to
achieve a high cooling rate. This method has been successfully used to accumulate
polarized protons at low energy cooling storage rings, and to accumulate antiprotons
at antiproton accumulators. For example, the cooling stacking method can enhance
polarized proton intensity by a factor of 1000 in the IUCF Cooler.45 Similarly, with
phase displacement acceleration, antiprotons can be moved to the cooling stack for
cooling accumulation.

V.6 Double rf Systems

Space charge has been an important limitation to beam intensity in many low energy
proton synchrotrons. Space charge induces potential well distortion and generates
coherent and incoherent betatron tune shifts, which may lower the thresholds for
transverse and longitudinal collective instabilities. Fast beam loss may occur during
accumulation and storage when the peak beam current exceeds a threshold value.

To increase the threshold beam intensity, a double rf system has often been used
to increase the synchrotron frequency spread, which enhances Landau damping in
collective beam instabilities. As early as 1971, an attempt was made to increase
Landau damping by installing a cavity operating at the third harmonic of the ac-
celerating frequency in the Cambridge Electron Accelerator (CEA) .46 This technique
was also successfully applied to cure coupled bunch mode instabilities at ISR, where

44A high current stack at the ISR has a momentum spread of about 3%, that can be handled by a
low power rf system in the ISR. By employing the phase displacement acceleration, the circulating
beams in ISR were accelerated from 26 GeV to 31.4 GeV without loss of luminosity. The installation
of low-/? superconducting quadrupoles in 1981 brought a record luminosity of 1.4 x 1032 cm2s-1.
The machine stopped operation in December 1983, giving its way to a fully operational SPPS, that
observed its first pp collision at the center of mass energy of 540 GeV on July 10, 1981.

45A. Pei, Ph.D. Thesis, Indiana University (1993).
46R. Averill et al, Proc. 8th Int. Conf. on High Energy Accelerators, p. 301 (CERN 1971).
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an additional cavity was operated at the sixth harmonic of the primary rf frequency.47

Adding a higher harmonic rf voltage to the main rf voltage can flatten the potential
well. Since the equilibrium beam profile follows the shape of the potential well, a
double rf system can provide a larger bunching factor, defined as the fraction of the
circumference occupied by a beam or the ratio of average current to peak current, than
that of a single rf system. Therefore, for a given DC beam current in a synchrotron,
the peak current and consequently the incoherent space-charge tune shift are reduced.
For example, a double rf system with harmonics 5 and 10 was successfully used in
the Proton Synchrotron Booster (PSB) at CERN to increase the beam intensity by
25 — 30% when the coherent longitudinal sextupole and decapole mode instabilities
were suppressed by beam feedback systems.48 At the Indiana University Cyclotron
Facility (IUCF), a recent beam dynamics experiment showed that with optimized
electron cooling the beam intensity in the cooler ring was quadrupled when two rf
cavities were used.49

A. Synchrotron equation of motion in a double rf system

For a given particle at angular position 9 relative to the synchronous angle 9S, the
phase angle of the primary rf system can be expressed as

4> = <t>is-h1(6-6s), (3.230)

where </> is the phase coordinate relative to the primary rf cavity, (pis is the phase
angle for the synchronous particle, and hi is the harmonic number for the primary rf
system. Similarly, the rf phase angle for the second rf system is

02 = fas -h2(6- 9S) = <t>2s + ^ - 0 l s ) , (3.231)

where h2 is the harmonic number for the second rf system and <j>2S is the corresponding
synchronous phase angle. The equation of motion becomes

5 = ^ | jsin<£ - sin^ls + ^ fsin L s + ^ ( 0 - 0ls)l - sin02sj j , (3.232)

where the overdot is the derivative with respect to orbiting angle 9, and V\ and V2 are
the voltages of the rf cavities. Equations (3.21) and (3.232) are Hamilton's equations
of motion for a double rf system.

4 7P. Bramham et al, Proc. 9th Int. Conf. on High Energy Accel. (CERN, 1974); P. Bramham et
al., IEEE Trans. Nucl. Sci. NS-24, 1490 (1977).

48see J.M. Baillod et al, IEEE Trans. Nucl. Sci. NS-30, 3499 (1983); G. Galato et al, Proc.
PAC, p. 1298 (1987).

49See S.Y. Lee et al, Phys. Rev. E49, 5717 (1994); J.Y. Liu et al, Phys. Rev. E50, R3349
(1994); J.Y. Liu et al, Part. Accel. 49, 221-251 (1995).
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Using the normalized momentum coordinate V = -(hi\r)\/vs)(Ap/p0), the Hamil-
tonian is

H=1-psV2 + V(cf>)> (3.233)

where the potential V(<f>) is

V{4>) = ^{(cos (j>is - cos 4>) + (<f>is - 0) sin 0ls

-T-r [cos02s - cos(02s + h{(f> - 0ls)) - h((j> - 4>ls)sin02s]}. (3.234)
ft

Here i/s = ^hleVi\T]\/2K/32Eo is the synchrotron tune at zero amplitude for the
primary rf system, ft = ft2/fti, r = -V2/Vu and <j)ls and (j>2s are the correspond-
ing rf phase angles of a synchronous particle. Here, the conditions r = I/ft and
ft sin 02s = sin</>is are needed to obtain a flattened potential well. For r > I/ft, there
are two inner buckets on the <j> axis. The effective acceleration rate for the beam is
AE = eVi(sincj)is — r sin02a) per revolution.

Because the rf bucket is largest at the lowest harmonic ratio, we study the double
rf system with ft = 2. To simplify our discussion, we study a stationary bucket with
0is = 02s = 0°. However, the method presented in this section can be extended to
more general cases with 0is ^ 0 and 02S ^ 0.

B. Action and synchrotron tune

When the synchrotron is operating at 0l s = 02s = 0, the net acceleration is zero and
the Hamiltonian becomes

H = ^V2 + vs [(1 - cos 0) - T- (1 - cos 20)1 . (3.235)

The fixed points (0FP ,^FP) are listed in Table V.6.

Table 3.5: SFP and UFP of a double rf system.

ISFP I UFP
0 < r < i (0,0) (TT,O)

\<r | (±arccos(j),0) | (0,0), (±7r,0)

Since the Hamiltonian is autonomous, the Hamiltonian value E is a constant of
motion with E/vs G [0,2]. The action is

J{E) = - ^Vd<t>, (3.236)
7T J-cj>
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where 0 is the maximum phase angle for a given Hamiltonian torus. The value E is
related to 4> by E = 2vs(l - 2r cos2(</>/2)) sin2(0/2); the phase-space area is 2irJ; and
the synchrotron tune is Qs = (dJ/dE)"1. The bucket area «4b is

A = 27rJ = 8k/rT2r-|--i=ln(\/rT2f+\/2r)l , (3.237)
L V2r J

which is a monotonic increasing function of the ratio r. The corresponding bucket
area for the single rf system is Ab(r -» 0) = 16 (see Table 3.2).

C. The r < 0.5 case

Changing the variables with

t = tan - , d<j) = —-dt, t0 = tan - , r = —,

we obtain

9J 2(1+^) ri[ 2 ( l-2r + tl YT1*

Thus the synchrotron tune becomes [26]

Qs__^(l-2r) + 2tl + (l + 2r)tt

vs 2(1+tl)K(k1) ' [6-2M)

where K(k\) is the complete elliptic integral of the first kind with modulus

1/(l-2r) + 2(g + (l+2r)«J

In fact, this formula is also valid for r > 0.5 and 4> > 0b, where 0b is the intercept of
the inner separatrix with the phase axis.

D. The r > 0.5 case

For r > 0.5, the origin of phase-space V = <j> = 0 becomes a UFP of the unperturbed
Hamiltonian. Two SFPs are located at V — 0 and 0 = ±<fo, where cos(0f/2) = l/2r.
The inner separatrix, which passes through the origin, intersects the phase axis at
±(j)h with cos(0b/2) = l/-v/2r.

A given torus inside the inner bucket corresponds to a Hamiltonian flow of constant
Hamiltonian value. Let <j>\ and 0U be the lower and upper intercepts of a torus with the
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phase axis, where </>u = 0 and sin(<fo/2) = ^/sin2((/>b/2) - sin2(</>u/2). The derivative
of the action with respect to the energy for the torus becomes

8J_ = V( l + <g)(l + <?) rt. dt

dE nvsy/2f h ^ ( * 5 - t 2 ) ( t 2 - t ? ) '

where tu = tan(0u/2), t, = tan(^/2), i = tan(<£/2), and # = 2dt/(l +12). Thus the
synchrotron tune is

Qs = V277Ttu 1

"- ^/(l + ig) (1 + if) ^(fc2> '

where modulus hi = \Jt\ — t2/tn.
Figure 3.21 shows the synchrotron tune as a function of the amplitude of syn-

chrotron oscillation for various voltage ratios. At r = 0, the system reduces to a
single primary rf cavity, where the synchrotron tune is Qs/vs = 1 at zero amplitude.
As r increases, the derivative of synchrotron tune vs action becomes large near the
origin. Since large tune spread of the beam is essential for Landau damping of collec-
tive beam instabilities, an optimal rf voltage ratio is r = 0.5, where the synchrotron
tune spread of the beam is maximized for a given bunch area.

At r = 0.5, the synchrotron tune becomes

Qs = nt0 = 7r(g/2i/5)1/4

V* ^2{1+t20)K{k) V2K{k)

with modulus

where to = tan(</>/2). For small amplitude synchrotron motion, t0 = 0 and k0 = l/%/2.
In this case, the maximum synchrotron tune is Qs = 0.7786i/s, located at 0 = 117°
(or E = 1.057^). Near this region, dQs/d<j) is very small or zero. When the voltage
ratio is r > 0.5, a dip in QS(J) appears at the inner separatrix of inner buckets, and
two small potential wells are formed inside the inner separatrix.

E. Action-angle coordinates

Although analytic solutions for action-angle variables, presented in this section, are
valid only for the case with r = 0.5, the method can be extended to obtain similar
solutions for other voltage ratios. Using the generating function

F2(<M)= fvWW, (3.244)
Jtp
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Figure 3.21: The normalized syn-
chrotron tune as a function of the
peak phase <j> = 0 for various values
of voltage ratio r. Note that when
r > 0.5, the center of the bucket be-
comes an UPP, and two SPPs are pro-
duced.

we obtain the angle coordinate as

._dF±_dE r*ffP Q,r+W
v- dj-^JU dEd<p ~ us h V { '

where the action variable is given in Eq. (3.236).
Using the generating function

^(<M) = / . V ( W > (3-246)

the angle coordinate becomes

_ dF2 _dE r*dV,,,_Qs [*d<t>

* ~ dJ ~~dJk BET ~ vJi'V

where

and the Jacobian elliptical function cnw is
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with q = e-«K'lK, K' = A ^ / T ^ F ) , and

^wir^wy' (3-248)
From Eq. (3.247), we obtain

</> = 2 arctan I tan - cnu , or tan — = tan -cnu, (3.249)
\ 2 ) II

and from Hamilton's equation of motion, we get

V = -2v^sin (+) tan (+) ^ ^ . (3.250)
\2J \2J 1 + [tan (0/2) cn«]2 V ;

When the voltage ratio is not 0.5, Eqs. (3.248) to (3.250) remain valid provided that
the modulus is replaced by kx of Eq. (3.240) or k2 of Eq. (3.242).

Thus the transformation of the phase-space coordinates (<f>, V) to the action-angle
variables (J, %))) can be accomplished by using Eqs. (3.249) and (3.250) or equivalently

<j> elli cnu V ,,, I c n % ,

"s-^-fy.^- T - ^ ' - d - ^ ^ y (3251)

where i = E/2vs.

F. Small amplitude approximation

A tightly bunched beam occupies a small phase-space area. The formulas for small
amplitude approximation are summarized as follows:

J ~ ^ r t e ! -^r~sin2' (3-252)

^ ^ E o T T ? ^ c o s ( 2 n + l ^

^ - ^ S ^ ^ " 1 ' 2 " ^ (3-253)
where k ss l/%/2, K = K{k) « 1.8541, and q « e~*.

Let A be the rms phase-space area of the bunch, and a-p and a^ the rms conjugate
phase-space coordinates. We then obtain
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The rms tune spread of the beam is then

AQ'7^{^T»- (3255)
G. Sum rule theorem and collective instabilities

The perturbing potential due to rf phase modulation is linearly proportional to V of
Eq. (3.250). Expanding V in action-angle coordinates as V = En fn{J)ejnt, we find
that the strength functions fn(J) satisfy the sum rule shown in Eq. (3.103). The sum
rule can be used to identify the region of phase-space that is sensitive to rf phase
modulation (see Exercise 3.3.1).

Since dQ/dJ = 0 occurs inside the bucket, it may be of concern that large ampli-
tude particles can become unstable against collective instabilities. When an rf phase
or voltage noise is applied to beams in a double rf system, particle motion near the
center of the bucket may become chaotic because of overlapping resonances. However,
the chaotic region is bounded by invariant tori, and the effect on beam dilution may
not be important. A most critical situation arises when the synchrotron amplitude of
the beam reaches the region where Qs is maximum or near the rf bucket boundary,
where the tune spread is small. The beam may be susceptible to collective instabili-
ties, and feedback systems may be needed for a high intensity beam that occupies a
sizable phase-space area.

V.7 The Barrier RF Bucket
Bunch beam gymnastics have been important in antiproton production, beam coales-
cence for attaining high bunch intensity, multi-turn injection, accumulation, phase-
space painting, etc. The demand for higher beam brightness in storage rings and
higher luminosity in high energy colliders requires intricate beam manipulations at
various stages of beam acceleration. In particular, a flattened rf wave form can be
employed to shape the bunch distribution in order to alleviate space-charge problems
in low energy proton synchrotrons and to increase the tune spread in electron storage
rings. The extreme of the flattened rf wave form is the barrier bucket.50

For achieving high luminosity in the Fermilab TeV collider Tevatron, a Recycler
has been built, which would recycle unused antiprotons from the Tevatron. The
recycled antiprotons can be cooled by stochastic cooling or electron cooling to attain
high phase-space density. At the same time, the Recycler would also accumulate
newly produced, cooled antiprotons from the antiproton Accumulator. To maintain
the antiproton bunch structure, a barrier rf wave form can be used to confine the

50See J. Griffin, C. Ankenbrandt, J.A. MacLachlan, and A. Moretti, IEEE Trans. Nucl Sci. NS-
30, 3502 (1983); V.K. Bharadwaj, J.E. Griffin, D.J. Harding, and J.A. MacLachlan, IEEE Trans.
Nucl. Sci. NS-34, 1025 (1987); S.Y. Lee and K.Y. Ng, Phys. Rev. E55, 5992 (1997).
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beam bunch and shape the bunch distribution waiting for the next collider refill. The
required bunch length and the momentum spread of the beam can be adjusted more
easily by gymnastics with barrier rf waves than with the usual rf cavities.

A Figure 3.22: Possible wave forms
for the barrier bucket. The barrier
rf wave is characterized by a voltage

... height Vo, a pulse width To, and a
/ " \ pulse gap Ti.

The barrier rf wave is normally generated by a solid state power amplifier, which
has intrinsic wide bandwidth characteristics. An arbitrary voltage wave form can be
generated across a wideband cavity gap. Figure 3.22 shows some possible barrier rf
waves with half sine, triangular, and square function forms. These wave forms are
characterized by voltage amplitude V(r), pulse duration 7\, pulse gap T2 between
positive and negative voltage pulses, and integrated pulse strength / V(r)d,T. For
example, the integrated pulse strength for a square wave form is VoTi. The rf wave
form is applied to a wideband cavity with frequency hf0, where h is an integer, and /0

is the revolution frequency of synchronous particles. The effect on the beam depends
mainly on the integrated voltage of the rf pulse. Acceleration or deceleration of the
beam can be achieved by employing a biased voltage wave in addition to the bunch-
confining positive and negative voltage pulses.

Most of the time, orbiting particles see no cavity field in passing through the
cavity gap. When a particle travels in the time range where the rf voltage is not zero,
its energy can increase or decrease depending on the sign of the voltage it encounters.
In this way, the accelerator is divided into stable and unstable regions. Thus the wide
bandwidth rf wave can create a barrier bucket to confine orbiting particles.

A. Equation of motion in a barrier bucket

For a particle with energy deviation AE, the fractional change of the orbiting time
AT/To is

— - n — f3 256)

To ~ V i V ( 56)

where rj is the phase slip factor, /3c and Eo are the speed and the energy of a syn-
chronous particle, and To is its revolution period. Without loss of generality, we
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consider here synchrotron motion with r\ < 0. For T] > 0, the wave form of the barrier
bucket is reversed.

The time coordinate for an off-momentum particle —r is given by the difference
between the arrival time of this particle and that of a synchronous particle at the
center of the bucket. The equation of motion for the phase-space coordinate r is

Passing through a barrier wave, the particle gains energy at a rate of

dJ^r - ^ • <3-258>
at l0

The equations of particle motion in a barrier rf wave are governed by Eqs. (3.257)
and (3.258).

B. Synchrotron Hamiltonian for general rf wave form

From the equations of motion (3.257) and (3.258), we obtain the general synchrotron
Hamiltonian for an arbitrary barrier rf wave form:

H=-2h^2-T-SeV{T)dT- (3-259)
Thus the maximum off-energy bucket height can be easily derived:

(2B2En rT2/2+Ti \ 1 / 2

where 7\ is the width of the barrier rf wave form. Since the barrier rf Hamiltonian
is time independent, an invariant torus has a constant Hamiltonian value. We define
the W parameter for a torus from the equation below:

hi - „ 1 fT-2/2+W

^=r{AE)2 = -f eV(r)dr. (3.261)

The synchrotron period of a Hamiltonian torus becomes

T - 2— (^A + 4T (3 262)
where Tc is

Clearly, all physical quantities depend essentially on the integral / V(r)dT. Thus, the
essential physics is independent of the exact shape of the barrier rf wave.
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C. Square wave barrier bucket

Since the effect of the barrier rf wave on particle motion depends essentially on the
integrated rf voltage wave, we consider only the square wave forms with voltage
heights ±V0 and pulse width Ti in time, separated by a gap of T2. When the particle
passes through the cavity gap at voltage ±V0, it gains (loses) an equal amount of
energy eVQ, i.e. d(AE)/dt = ±eV0/TQ every turn. The number of cavity passages
before the particle loses all its off-energy value AE is

JV=^L (3.264)

Thus the phase-space trajectory for a particle with maximum off-energy AE is

f (AE)2 if \T\ < T2/2

^ 2 = {{AEf-(\r\-T{)^^ ,T2/2<lr\<{T,/2)+Tl, ^

where u>0 = 2TT/0 is the angular revolution frequency of the beam. The phase-space
ellipse is composed of a straight line in the rf gap region and a parabola in the square
rf wave region. The phase-space area of the invariant phase-space ellipse is

^ = 2 T 2 A ^ + 3 ^ ^ ( A ^ 3 - ( 3-2 6 6 )

The maximum energy deviation or the barrier height that a barrier rf wave can
provide is

(eV0T12pE0V/2

A £ b =hrTj ' (3-267)
where 7\ is the pulse width of the rf voltage wave, and To is the revolution period
of the beam. The bucket height depends on VQTJ, which is the integrated rf voltage
strength / V(T)CLT. The synchrotron period is

T2(p*E0\ \AE\

Ts = 2 w l ^ J + 4 ^ T o (3-268)
for particles inside the bucket. The mathematical minimum synchrotron period of
Eq. (3.268) is

S ' m i n = l \v\eV0 ) ' (3'269)

and the corresponding maximum synchrotron tune is

_(T1WV^V"
\l2 6lfi'-tiQ )
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Note here that TTTO/(16T2) plays the role of harmonic number h of a regular rf system.
The synchrotron tune is a function of the off-energy parameter AE given by

*-**-i/i||(1+« [Ill's)"'- w
Note that when the rf pulse gap width decreases to T2/T1 < 4, the synchrotron tune
becomes peaked at an amplitude within the bucket height. This feature is similar to
that of a double rf system.51 Figure 3.23 shows va vs AE with Fermilab Recycler
parameters Eo = 8.9 GeV, -yT = 20.7, /„ = 89.8 kHz, 7\ = 0.5 /JS, Vo = 2 kV,
and T2/Ti = 1,2,4, and 8. For example, i/s>niax = 3.7 x 10"5 for T2 = Tu i.e. the
synchrotron frequency is 3.3 Hz.

Figure 3.23: Synchrotron tune vs
off-energy parameter AE. Param-
eters used are EQ = 8.9 GeV, /o =
89.8 kHz, Vo = 2 kV, -yT = 20.7, and
Ti = 0.5 us. Note that if T2 > 4Ti,
the synchrotron tune is a monotonic
function of AE. On the other hand,
if T2 < 4Ti, the synchrotron tune is
peaked at an off-energy AE smaller
than the bucket height AE\,.

D. Hamiltonian formalism

The Hamiltonian for the phase-space coordinates (r, AE) is

Ho = ^ r ( A £ ) 2 + ^^fO(T,TuT2), (3.272)

where

MT,TUT2) = -l + Yi[(r + Ti + ~)e(r + T1 + ̂ )-(r+^)9(r + '^)

_ ( r _ Tl)0{T - | ) + (r - Tl - ^)0(r - Tx - | ) ] . (3.273)

51S.Y. Lee et al., Phys. Rev. E49, 5717 (1994); J.Y. Liu et al, Phys. Rev. E50, R3349 (1994).
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Here 9(x) is the standard step function with 9(x) = 1 for x > 0 and 9(x) = 0 for
x <0 .

For a constant Ti, T2 and Vo, the Hamiltonian Ho is a constant of motion. The
action of a Hamiltonian torus is

J = i- / AEdr = i R p / /W + Mr,TuT2)dr. (3.274)
27T J 2ir \ 7r|r?| J "

The parameter PV with a dimension of time is related to the Hamiltonian value by

*-f»^K' <3-275>
For a given Hamiltonian torus, W has the physical meaning that it is equal to the
maximum phase excursion \T\ in the rf wave region. Therefore W = 0 corresponds
to an on-momentum particle, and W = 7\ is associated with particles on the bucket
boundary.

The action for a particle torus inside the bucket is

The bucket area is related to the maximum action with W = 7\, i.e.

B = 2nJ = (2T2 + ^Ti) AEh. (3.277)
\ o /

Again, the bucket area depends only on the integrated rf voltage strength / V(T)CIT =
VQTX.

E. Action-angle coordinates

Canonical transformation from the phase-space coordinates (r, AE) to the action-
angle variable can be achieved by using the generating function

F2(J,T)= fT AEdr, (3.278)
J—t

where f = W + (T2/2). The angle variable ip is
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The integral can be evaluated easily to obtain

^mJW + \T* + T \1-W-\T2<T<-\T2,AE>0

A + T^hw(T+lT2) if-|T2<r<lT2,AS>0

2Vc + A - ^ 7 w iW + lT2~T iflT2<r<W+iT2, A£>0
I 1-K\fW I 1

2^ + ^ + T2 + 4W\]W+2T2 ~T if 2T2 < r <W+±T2: AE < 0

3A + A + nTtW {lT2 ~ T) if -5T2 < ̂  < \T2, AE < 0
2ir\/W / 1

4Vc + 2V, - T2 + 4W\]W + -T2 + r if - W - \T2 < T < -\T2, AE < 0,

where

^ = l^w> ^ = T7^W < 3 - 2 8 0 )

are respectively the synchrotron phase advances for a half orbit in the rf wave region
and in the region between two rf pulses. Note that 2ipc + ips = n for one half of
the synchrotron orbit, and that the motion of a stable particle orbit in the barrier
bucket with 7? < 0 is clockwise. We choose the convention of ip > 0 corresponding to
a clockwise motion in synchrotron phase-space.

When a perturbation, such as rf noise, is applied to the barrier rf system, stable
bucket area may be reduced. The resonance strength functions and their associated
sum rules can be derived analytically. The resonance strength function decreases
slowly with mode number. The rf phase and voltage modulation can severely dilute
bunch area if the modulation frequency is near the top of the synchrotron tune and its
harmonics. The rf phase modulation due to orbit length modulation resulting from
ground vibration can be important. Because the solid state amplifier is a low power
device, it is important to avoid a large reduction of stable phase-space area. Active
compensation may be used to compensate the effect of rf phase modulation.52

Exercise 3.5
1. The Cooler Injector Synchrotron (CIS) accelerates protons from 7 MeV to 200 MeV

in 1.0 Hz. The circumference is 17.364 m. The rf system operates at h = 1 with
a maximum voltage 240 V. The momentum compaction factor is ac = 0.6191. The
momentum spread of the injection linac is about ±5.0 x 10~3.

(a) Assuming that the rf voltage is ramped according to

Vrf (i) - V0 + {V, - V0) U^ - 2^) , t e [0, T!],

52See S.Y. Lee and K.Y. Ng, Phys. Rev. E55, 5992 (1997).
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where VQ and V\ = 240 V are the initial and the maximum final rf voltages, Ti
is the voltage ramp time. Calculate the adiabaticity coefficient of Eq. (3.43),
and the rf bucket height during the rf voltage ramping as functions of time t
with VQ = 10 V and T\ = 10 ms. Change these parameters to see the variation
of the adiabaticity coefficient,

(b) If the magnetic field of a proton synchrotron is ramped according to

B(t) = B0+ (£ - 2~\ (B, -Bo), te [0, h]

where Bo and B\ are magnetic field at the injection and at the flat top, and
t = 0 and t = ti are the time at the beginning of ramp and at the flat top, find
the frequency ramping relation of the rf cavity, and find the maximum B.

2. In proton accelerators, the rf gymnastics for bunch rotation is performed by adiabat-
ically lowering the voltage from Vi to V2 and suddenly raising the voltage from V2 to
V\ (see also Exercise 3.2.5). Using Eq. (3.58) and conservation of phase-space area,
show that the bunch length in the final step is

where initial is the initial bunch length in orbital angle variable, and vs\ and uS2 are the
synchrotron tune at voltages V\ and V2. Apply the bunch rotation scheme to proton
beams at E = 120 GeV in the Fermilab Main Injector, where the circumference is
3319.4 m, the harmonic number is h = 588, the transition energy is yT = 21.8, and the
phase-space area is A = 0.05 eV-s for 6 x 1010 protons. Find the voltage V2 such that
the final bunch length is 0.15 ns with an initial voltage V\ = 4 MV. The energy of the
secondary antiprotons is 8.9 GeV. If the acceptance of the antiproton beam is ±3%,
what is the phase-space area of the antiproton beams? If the antiproton production
efficiency is 10~5, what is the phase-space density of the antiproton beams?

3. Neglecting wakefield and other diffusion mechanisms, the momentum spread of an
electron beam in a storage ring is determined mainly by the equilibrium between
the quantum fluctuation of photon emission and the radiation damping. For an
isomagnetic ring, it is given by

(E] -C<JsP>

where Js is the damping partition number with Js w 2 for separate function machines,
and

c 3Cy» = J5 A = 3 . 8 3 x l 0 - i 3 m
4mc 32V3 me

Using the electron storage ring parameters listed in Exercise 3.1.4, calculate the phase-
space area in eV-s.

4. Verify Eq. (3.232) and derive the Hamiltonian for the double rf system. For a flattened
potential well in the double rf system with (6ls = <j>2S = 0, show that the Hamiltonian
for small amplitude synchrotron motion is
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where b = (h2 — l)/24, h is the ratio of the harmonic numbers, and the independent
"time" variable is the orbital angle 6. We solve the synchrotron motion for the quartic
potential below.

(a) Since the Hamiltonian is time independent, the Hamiltonian value E is a con-
stant of motion. Show that the action variable is related to the Hamiltonian
value by

where K = K{J\) = 1.85407468 is the complete elliptical integral with modulus

k = l/v/2, 41 is the amplitude of the phase oscillation.

(b) Show that the synchrotron tune is

(c) Define the generating function

F2{<I>,J)= ( Td<t>,
Jo

and show that the solution of the synchrotron motion is given by

(IK 1\
<t> = 4> en ( — ip\- j ,

,-V»-(^)d.(^Hi),

where en, sn, and dn are elliptical functions with modulus k = l / \ /2 . Compare
your results with that of Eq. (3.253) for the h = 2 case.
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VI Fundamentals of RF Systems

The basic function of rf cavities is to provide a source of electric field for beam accel-
eration. The longitudinal electric field must be synchronized with the particle arrival
time. Resonance cavities, where only electromagnetic fields at resonance frequencies
can propagate, are a natural choice in rf cavity design.

Cavities are classified according to their operational frequencies. For cavities
operating at a few hundred MHz or higher, pillbox cavities with nose-cone or disk
loaded geometry can be used. At lower frequencies, coaxial geometry is commonly
employed. Some fundamental parameters of cavities are transit time factor, shunt
impedance, and quality factor.

The transit time factor of Eq. (3.3) reflects the finite passage time for a particle
to traverse the rf cavity, while the accelerating field varies with time. The transit
time factor reduces the effective voltage seen by passing particles. We may reduce
the accelerating voltage gap to increase the transit time factor, but a smaller gap can
cause electric field breakdown due to the Kilpatrick limit (see Sec. V.3).

The quality factor (Q-factor) depends on the resistance of the cavity wall and the
characteristic impedance of the rf cavity structure. It is defined as the ratio of the
rf power stored in the cavity to the power dissipated on the cavity wall. The shunt
impedance, defined as the ratio of the square of the rf voltage seen by the beam to
the dissipated power, is an important figure of merit in cavity design. Generally, the
ratio of shunt impedance to Q-factor depends only on the geometry of the cavity and
the characteristic impedance. Thus a cavity with a higher Q-factor has a higher shunt
impedance.

In this section we examine some basic principles in cavity design. Properties of
pillbox and coaxial-geometry cavities will be discussed. Some fundamental charac-
teristic parameters, the shunt impedance, the Q-factor, and the filling time, of a
resonance cavity will be defined and discussed. At a given resonance frequency, we
will show that a resonance cavity can be well approximated by an equivalent RLC cir-
cuit. Beam loading and Robinson dipole-mode instability will be addressed. Further
properties of high frequency cavities used in linacs will be discussed in Sec. VIII.

VI. 1 Pillbox Cavity

We first consider a cylindrically symmetric pillbox cavity [18] of radius b and length
I (left plot of Fig. 3.24). Maxwell's equations (see Appendix B Sec. V) for electro-
magnetic fields inside the cavity are

V - B = 0, V x B = ^ , V-E = 0, V x f i = ~ (3.281)

where e and \i are dielectric permittivity and permeability of the medium. The EM
waves in the cavity can conveniently be classified into transverse magnetic (TM)
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mode, for which the longitudinal magnetic field is zero, and transverse electric (TE)
mode, for which the longitudinal electric field is zero. The TM modes are of interest
for beam acceleration in the rf cavity.

Figure 3.24: Schematic
drawings of high frequency
cavities. Left: pill-box cavity
with disk load; right: nose-
cone cavity. Although their
names and shapes axe dif-
ferent, these high frequency
cavities have similar basic
features.

In an ideal acceleration cavity, the electromagnetic fields satisfy the boundary
condition: n x E = 0, h • H = 0, where h is the vector normal to the conducting
surface. There is no tangential component of electric field, and no normal component
of magnetic field.

Assuming a time dependence factor e?"* for electric and magnetic fields, the TM
standing wave modes in cylindrical coordinates (r, <j>, s) are (see the Appendix B
Sec. V)53

Es = A k2 Jm{krr) cos rruj)cos ks
Er = — AkkT J'm{kTr) cosm(t>sinks
E,p — A (mk/r)Jm{kTr) sinm(j>sinks , .

' Bs = 0 ( 3 ' 2 8 2 )

BT = -jA(mui/c2r) Jm{krr) sin mcj) cos ks
. B$ = -jA (bjkr/c2) J'm{krr) cos m<f> cos ks

where A is a constant, s = 0 and I correspond to the beginning and end of the pillbox
cavity, m is the azimuthal mode number, k, kr are wave numbers in the longitudinal
and radial modes, and UJ/C = Jk2 + k2.

The longitudinal wave number k is determined by the boundary condition that
Er = 0 and £ 0 = 0 at s = 0 and t, i.e.

ks,P = Y> P = 0,l,2,---. (3.283)

Similarly the radial wave number is determined by the boundary condition with Es =
0 and E,f, = 0 at r = b, i.e.

kr,mn = 3jy, (3.284)

where j m n , listed in Table V.2, are zeros of Bessel functions Jm(jmn) = 0.

53A standing wave can be decomposed into traveling waves in the +s and -s directions.
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The resonance wave number k for mode number (m, n, p) is

kmnp = ̂ mn + k?, = J%" + P~ = ̂  = ̂ L. (3.285)

The lowest frequency mode is usually called the fundamental mode. Other resonance
frequencies are called high order modes (HOM). The art (science) of cavity design is
to damp HOMs without affecting the fundamental mode. The EM field of the lowest
mode TMoio (kSiP = 0) is

Es = EoJo(kr), B* = j ^ J i ( f c r ) , fcoio = ^ , A = ^ . (3.286)

For example, a 3 GHz structure corresponds to A = 10 cm and b — 3.8 cm. Such a
structure is usually used for high frequency cavities.

The phase velocity, w//cSlP, for the traveling wave component of the TMOio mode
with kSiP = 0 is infinite. Thus beam particles traveling at speed v < c do not
synchronize with the electromagnetic wave. To slow down the phase velocity, the
cavity is loaded with one beam hole with an array of cavity geometries and shapes.
Figure 3.24 shows high frequency cavities with disk and nose-cone loaded geometries.
Many different geometric shapes are used in the design of high frequency cavities, but
their function and analysis are quite similar. All cavities convert TEM wave energy
into TM mode to attain a longitudinal electric field. We will return to this subject
in Sec. VIII.

Figure 3.25: Schematic
drawing of a low frequency
coaxial cavity. Note that
the TEM wave is matched
to a TM wave at the ca-
pacitive loaded gap for the
acceleration electric field.

VI.2 Low Frequency Coaxial Cavities
Lower frequency rf systems usually resemble coaxial wave guides, where the length is
much larger than the width. Figure 3.25 shows an example of a coaxial cavity. The
TEM wave in the coaxial wave guide section is converted to the TM mode at the
cavity gap through the capacitive load. When the cavity is operating in 50 to 200
MHz range, it requires a very small amount of ferrite for tuning.54 When the cavity

54Ferrite is magnetic ceramic material that combines the property of high magnetic permeability
and high electric resistivity. The material is made of double oxide spinel Fe2O3MO, where M can
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is operating at a few MHz range, the TEM wave guide is usually ferrite loaded with
magnetic dipole or quadrupole fields for bias frequency tuning. At lower rf frequency,
ferrite rings in the cavity are needed to slow down EM waves.55 Using the wave guide
transmission line theory, characteristic properties of rf systems can be analyzed.

Let ri and r-i be the inner and outer radii of a wave guide. The inductance and
the capacitance of the concentric coaxial wave guides are

L=^lnr, + ^ 1 + i C=^-y (3.287)
2?r TX 4?r V I r2 ln^/n)

where /ic is the permeability of the conductor, 5skin = ^2/ujfj,ca is the skin depth of
flux penetration, and £ is the length of the structure. Neglecting the flux penetration
in the conductor, the resonating frequency is

w = Vrc = ijw * Tfifo' (3'288)

where e = e0 is assumed for the dielectric permittivity. Thus the required cavity
length for the fundamental mode is

t = - ^ = = 4 7 " 7 " • (3.289)
^V^/Mo /[MHz]0i//*o

For a cavity operating beyond 20 MHz, ferrite can be used only for tuning purposes.
At frequencies below tens of MHz, the rf cavities must be ferrite loaded in order to fit
into the available free space in an accelerator. Typically the magnetic permeability
of ferrite is about 1500/io- When a biased field is applied to the ferrite core, the
magnetic permeability can be tuned to match the change of the particle revolution
frequency.

To understand the capacitive loading that converts the TEM wave into the TM
wave at the cavity gap, we study the rf electromagnetic wave in the wave guide. The
characteristic impedance of a wave guide is

Zc = Rc = JL/C = LjL»-l-<[^\n-. (3.290)

Now, we consider an ideal lossless transmission line, where the electromagnetic field
has no longitudinal component. Assuming a time dependent factor e?ui, the current
and voltage across the rf structure are (see Exercise 3.6.3)

I(s, t) = Io cos ks + j(V0/Rc) sin ks, V{s, t) - Vo cos ks + jI0Rc sin ks, (3.291)

be Mn, Zn, Cr, Ni, etc. Ferrites are commonly used in frequency synthesis devices, Touch-Tone
telephone, low loss microwave devices, etc. Application in accelerator can be found in induction
linac, frequency tuning for rf cavities, kickers, etc.

55W.R. Smythe, IEEE Trans. Nucl. Sci., NS-30, 2173 (1983).
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where s is the distance from one end of the transmission line, VQ and IQ are the voltage
and current at the end of the line where s = 0, and the wave number of the line is

2TT _ w

For a standing wave, where the end of the transmission line is shorted, the bound-
ary condition at the shorted side is V = 0 at s = 0, i.e.

I{s,t) = I0{t)cosks, V(s,t) = +jI0(t)Rcsinks. (3.292)

The line input impedance becomes

Zin = j ^ - = +JR. tan kl (3.293)

The line impedance is inductive if kl < ir/2. The length of the line is chosen to match
the gap capacitance at a required resonance frequency:

Zin + Zgap = 0, or tan Uv = = - , (3.294)
w/iccgap g

where g is the geometry factor of the cavity, Zgap = — j/(wCgap) is the gap impedance,
and Cgap is the capacitance of a half gap. For example, a total capacitance of 10 pF
implies that Cgap = 20 pF. The length £T of one-half cavity, the gap capacitance,
the biased current, and the external loading capacitance can be designed to attain a
resonance condition for a given frequency range.

In principle, for a given £T:RC, and Cgap, there are many resonance frequencies
that satisfy Eq. (3.294). The lowest frequency is called the fundamental TEM mode.
If the loading capacitance is small, the resonance condition of Eq. (3.294) becomes
k£T = TT/2, i.e. £T = A/4: the length of the coaxial cavity is equal to 1/4 of the
wavelength of the TEM wave in the coaxial wave guide. Thus such a structure is also
called a quarter-wave cavity. The gap voltage of the coaxial cavity is

Vrt = +jI(0)Rc sin k£r = + j 4 = f t - (3.295)
v l + g

A. Shunt impedance and Q-factor

The surface resistivity Rs of the conductor and the resistance R of a transmission line
are

^ = V ! 7 ' R = ~2^in+72)> (3'296)

where a is the conductivity of the material, u> is the rf frequency, ri and r-i are the
inner and outer radii of the transmission line, and I is the length. Thus the quality
factor becomes

Q = £ = !£„ * ™ _ £ h I*. (3.297)
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Table VI.2 lists typical Q-factors for a copper cavity as a function of cavity frequency,
where we have used In fo/ri) ~ 1 a n d r\ « 0.05 m, and <rcu ~ 5.8 x 107 [flm]"1 at
room temperature. The total power of dissipation P& is

^ = IH^R JK cog2 x dx = J ! i ^ _ [ ( 1 + f) ^ - i g + g]_ (3.298)

Table 3.6: Some characteristic properties of copper RF cavities

/ [MHz] 11 I 10 I 100
<5skin H 66. 21. 6.6
n 0.05 0.05 0.05

_Q 1100 3500 11000

An important quantity in the design and operation of rf cavities is the shunt
impedance. This is the resistance presented by the structure to the beam current at
the resonance condition, i.e.

tf* = ~f- (3.299)

For a transmission line cavity, the shunt impedance becomes

#sh = - M • 2 ^ !-i _L ^ Q , (3.300)
•K L(l + ff2)cot 1g + g\

where the expression in brackets is a shunt impedance reduction factor due to the
gap capacitance loading. If Cgap = 0, i.e. 5 = 0, the capacitance loading factor is 1.
As the gap capacitance increases, the shunt impedance decreases.

Figure 3.26: Top: Schematic drawing
of an equivalent circuit of a cavity. The
input impedance of the wave guide is
represented by an equivalent inductance.
The wave guide is loaded with capaci-
tive cavity-gap and real shunt impedance.
The resonance frequency and the Q-factor
of the equivalent RLC-circuit are UJT =
1/VLeqCeq and Q = iish^Ceq/ieq- Bot-
tom: Plot of the impedance of Eq. (3.301).
The solid lines are the real and the imagi-
nary impedances for Q=l, and the dashed
lines are the corresponding impedances for
Q=30.
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From the transmission-line point of view, the cavity gap presents a capacitance
and resistive load shown in Fig. 3.26, where Z-lTi = jwLeq, and Ceq = Cgap- The
matching condition of Eq. (3.294) implies that the reactance of the cavity is zero
on resonance, and the effective impedance is R^. The impedance of the rf system,
represented by a parallel RLC circuit, becomes

Z=(~+JuCeq + -±-) = . . . ^ h - - ^ h C o s V e " ^ , (3.301)

where Leq and Ceq are the equivalent inductance and capacitance, uiT = (L^C^)"1/2,

Q = Rsh^/Ceq/Leq, and

^ = tan_12QK-a^) ( 3 3 0 2 )

Here tp is the cavity detuning angle. At the resonance frequency wr particles see a
pure resistive load with an effective resistance Rgt- The rf system becomes capacitive
at w > wn and inductive at w < wr. The right plot of Fig. 3.26 shows the real and
imaginary parts of the impedance of Eq. (3.301) for Q=l and Q=30.

Accelerator cavities usually contain also many parasitic HOMs. Each HOM has
its shunt impedance and Q-value. If the frequency of one of the HOMs is equal to
that of a synchrotron or betatron sideband, the beam can be strongly affected by
the parasitic rf driven resonance. Correction, detuning, and lowering the Q-factor of
these sidebands are very important in rf cavity design and operation.

B. Filling time

The quality factor defined in Eq. (3.297) is equal to the ratio of the stored power Pst

to the dissipated power P^, i.e.

where Ws is the stored energy. Using energy conservation, we obtain

^JT = - p o = - ^ W - ' Ws = WsOe-"^. (3.304)

The time for the electric field or voltage to decay to 1/e of its original value is equal
to the unloaded filling time

2Q
Tm = — . (3.305)
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C. Qualitative feature of rf cavities

Qualitatively, the rf voltage is the time derivative of the total magnetic flux linking
orbit (Faraday's law of induction). Assuming that the magnetic flux density varies
as \/r in a coaxial structure and assuming a sinusoidal time dependent magnetic flux
density, we obtain

Kf = wrf^ / 2 B{r)dr = uJlf£B1rl In — « UJV(BIA, (3.306)
Jri 7"i

where A = lr\ In(r2/ri) « £(r2 — ri) is the effective area of the ferrite core and Bi
is the peak magnetic flux at r = rx. Note that increasing the outer radius of the
ferrite core is an inefficient way of increasing the rf voltage. The peak magnetic flux
in Eq. (3.306) depends on the ferrite material.

The shunt impedance of an rf structure is the resistance presented to the beam
current at the resonance condition, i.e.

p \Vrt\ RcPst r> n /q on^l
^b ~ T P ~ = ~5~~ ~ KcQ' (3.307)

^ ^ d ^ d

where Pst is the power stored in the cavity and Pj is the dissipated power.
The quality factor Q of the ferrite loaded accelerating cavity is dominated by the

Q value of the ferrite material itself, i.e.

Qferrite « 50 - 300, (3.308)

which alone is not adequate for the required frequency tuning range. Frequency tuning
can be achieved by inducing a DC magnetic field in the ferrite core, using an external
magnet or bias current to encircle the ferrite without contributing a net rf flux. By
adjusting the bias current and the bias field direction, the effective permeability for
rf field can be changed.

Since the Q-value of ferrite is relatively low, power dissipation in ferrite is an
important consideration. The dissipation power

q,rfBM „ Vr]

in a cavity should be efficiently removed by cooling methods, where A is the effective
area of the ferrite core. To obtain high rf voltage at low frequencies, we need a large
volume of ferrite to decrease the flux density in order to minimize energy loss.

At an rf frequency above tens of MHz, the cavity size (normally 1/2 or 1/4 wave-
length) becomes small enough that a resonant structure containing little or no ferrite
may be built with significantly lower power loss at Q « 104 with a narrower band-
width.
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At frequencies of a few hundred MHz, where adequate and efficient rf power sources
are commercially available, the main portion of the rf cavity can be made of copper
or aluminum with a small amount of ferrite used for tuning. The cavity can still be
considered as a coaxial wave guide, and Eqs. (3.287) to (3.306) remain valid. The
characteristic impedance Rc of Eq. (3.290) is about 60 fi. The stored power is I2RC

and the power dissipation is I2R, where / is the surface current and R of Eq. (3.296)
is the surface resistance of the structure. At frequencies above a few hundred MHz,
resonance frequency can be tuned only by a slotted tuner or by physically changing
the size of the cavity.

D. Example: The rf cavity of the IUCF cooler injector synchrotron

The IUCF cooler injector synchrotron (CIS) is a low energy booster for the IUCF
cooler ring. It accelerates protons (or light ions) from 7 MeV to 225 MeV. The cavity
is a quarter-wave coaxial cavity with heavy capacitance loading.56 To make the
cavity length reasonably short and to achieve rapid tuning, required for synchrotron
acceleration, ten Phillips 4C12 type ferrite rings are used. The fi of the ferrite material
is changed by a superimposed DC magnetic field provided by an external quadrupole
magnet. The ferrite rings return the magnet flux between the two adjacent quadrupole
tips (Fig. 3.27).

Figure 3.27: The cross section (left) and the longitudinal view of the CIS rf cavity. The
external quadrupole magnet provides biased field in ferrite rings to change the effective
permeability.

Analysis of such a field shows that the field direction is mostly parallel to the rf
field, i.e. along the azimuthal direction, except near the tips of the quadrupole, where
the biased fields in the ferrite rings are perpendicular to the rf field. In the working

56A. Pei, private communications.
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region of the ferrite biasing strength, the effect of the perpendicular component on
ferrite rf-fi is small. The effective rf-/i, to first order in wave propagation, is determined
by dB/dH, as in parallel biasing analysis, rather than B/H, as in perpendicular
analysis. The phenomenon of gyromagnetic resonance associated with perpendicular
biasing, however, needs to be considered and avoided in the design of the cavity.

The advantages of using an external biasing magnet include making it possible to
separate the rf field from the biasing elements, and the rf field in the cavity will not
be affected by the biasing structure. As many windings of the bias coils as practical
can be used — resulting in a smaller amperage requirement for the bias supply. In
CIS and the IUCF cooler ring, the bias supplies for these external quadrupole biasing
magnet type cavities are rated at only 20 A. If the biasing field is to be produced only
by a bias winding threaded through the rf cavity, the number of windings is usually
limited to no more than a few turns because of possible resonance and arcing. It
usually takes 1000 A or more to bias such a cavity.

As the frequency changes, the power loss in ferrite material varies (usually in-
creasing as frequency increases). As a result, it has been difficult to feed the rf
generator power to the cavity efficiently because of the high voltage standing wave
ratio (VSWR) caused by impedance mismatch (see Appendix B.V.3). In the CIS
cavity this problem was solved by dividing the ferrite rings into two sections; the
strength of the biasing magnet in each section can be adjusted by the coupling loop.
The coupling coefficient can be used to compensate the change in the gap impedance,
and the input impedance can be maintained constant to match the transmission line
impedance of the rf amplifier. The CIS cavity is thus able to operate with a 10:1 fre-
quency ratio with high efficiency, due to the higher impedance of a resonant structure
and optimized amplifier coupling.

The loading capacitor reduces the length requirement of coaxial cavities and can
also be used conveniently to switch frequency bands. For example, the CIS cavity
can be operated at 0.5 - 5 MHz or 1 - 10 MHz by varying its loading capacitor.

E. Wake-function and impedance of an RLC resonator model

If we represent a charged particle of charge q by I(t) = qS(t) = (1/2TT) / qe?utdu), the
energy loss due to the passage of an rf gap, represented by an RLC resonator model,
is

At/ = 11 J(w) \2Z(oj)dtJ = 2krq2, (3.310)

where

is the loss factor of the impedance at frequency wr. This means that the passing
particle loses energy and induces a wakefield in the cavity.
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Since the longitudinal impedance is defined as the Fourier transform of the wake
function,

fOO roo

Z{u) = / W{t)e-jutdt = / W(t)e~jutdt, (3.311)
JO J-oo

the wake function, given by the inverse Fourier transform of the impedance, for the
RLC resonator model becomes

W(t) = •£- [ Z{u)e>utdu) = 2kT fcoswTt - ^ r sinwril e-t/Tf° Q(t), (3.312)
2ir J L wrJfo J

where 0(i) = 1 if t > 0, and 0 if t < 0; Tf0 = 2Q/wr is unloaded filling time denned in
Eq. (3.305); and wr = wr (1 - (1/4Q2))1/2. If the filling time is long, then the wake
potential is a sinusoidal function with angular frequency u>T, i.e.

W(t) « 2kTe-t/T{0 coswrt.

Thus the filling time corresponds also to the wakefield decay time. When beams pass
repetitively through the cavity, the effective voltage is the sum of the voltage supplied
by the generator current and the wakefields of all beams. Beam loading is important
in the design and operation of rf cavities.

VI.3 Beam Loading

A passing beam charge can induce wakefields in an rf cavity. The effective voltage at
the rf gap is a superposition of voltage due to generator current and induced voltage
due to induced rf current. Without proper compensation, the resulting rf voltage
acting on the passing beam may cause beam deceleration in an uncontrollable manner.
Thus beam loading needs to be considered in the operation of rf cavities.

The rf voltage, oscillating at frequency uvf, can be considered as a vector rotating
in the complex plane at an angular frequency u>rf. The magnitude of the vector is
equal to the amplitude of the rf voltage, and the rf voltage seen by the beam is the
projection of the rotating vector on the real axis. Now, we choose a coordinate system
that rotates with the rf frequency, and thus the rf voltage is stationary in this rotating
coordinate system. Let Vo and 6 be respectively the amplitude and the angle with
respect to the real axis of the rf voltage vector. By definition, we have

V0cos6 = Vosin^s,

where </)s is the synchronous phase angle. The representation of sinusoidal waves in
a rotating frame is called a phasor diagram and is particularly useful in analyzing
beam loading compensation problems.
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A. Phasor

The electromagnetic fields and voltages in a standing wave rf structure are normally
expressed as complex quantities, V = Vej(-ut+e\ where u is the frequency and 9 is a
phase angle. In the rotating coordinate system, the voltage is expressed as a phasor

V = Veje. (3.313)

Phasors are manipulated by using usual rules of complex vector algebra. The prop-
erties of rf fields can be studied by using graphic reconstruction in phasor diagrams.

B. Fundamental theorem of beam loading

The cavity provides a longitudinal electric field for particle acceleration. However,
when a charged particle passes through the cavity, the image current on the cavity
wall creates an electric field that opposes the particle motion. The question arises:
what fraction of the electric field or voltage created by the beam affects the beam
motion? The question can be addressed by the fundamental theorem of beam loading
due to Wilson.57

Theorem: A charged particle sees exactly | of its own induced voltage.

To prove this fundamental theorem, we assume that the stored energy in a cavity
in any given mode is

W = aV2. (3.314)

We assume that a fraction / of the induced voltage is seen by the inducing particle,
and the effective voltage is Ve = /VJ,, where V}, is the induced voltage in each passage.
We assume further that the induced voltage lies at phase angle \ with respect to the
inducing current or charge.

Now, we consider two identical charged particles of charge q, separated by phase
angle 9, passing through the cavity. The total energy deposited in the cavity is

Wc = a |H(l) + Kb(2)|2 = af2Vbcos-J = 2aVb2(l + cosfl). (3.315)

The energy loss by these two particles is

AU = [qVe] + [qVe + qVh cos(x + 9)], (3.316)

where the first and second brackets are the energy losses due to the first and second
particles respectively. From the conservation of energy, AU = Wc, we obtain

X = 0, Vh = ±, V* = \V*' f = \- (3-317)

The result can be summarized as follows:

5 7P. B. Wilson, AIP Con}. Proc. 87, 452 (1981).
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1. The induced voltage of a beam must have a phase maximally opposite the
motion of the charge, i.e. the phase angle \ = 0-

2. Ve = 14/2. The particle sees exactly 1/2 of its own induced voltage.
3. Wc = aV£ = q2/4a = kq2, where k is the loss factor, k = Vb2/(4W/C).
4. Vb = 2kq or Ve = kq.

C. Steady state solution of multiple bunch passage

Consider an infinite train of bunches, separated by time Tb, passing through an rf
cavity gap. When the cavity is on resonance, the induced voltage seen by the particle
is

Vb = \vb0 + Vb0(e-^ + e " 2 ^ + •••) = VM(~ + 1 _ e _ ( A + J > ) ) , (3-318)

where 0 = — (u — wr)Tb [Mod 2?r] is the relative bunch arrival phase with respect
to the cavity phase at the rf gap; wr is the resonance frequency of the rf cavity;
and A = T\,/Tf is the decay factor of the induced voltage between successive bunch
passages, and T[ = 2Qi,/k>r is the cavity time constant or the cavity filling time. Here
QL is the loaded cavity quality factor, taking into account the generator resistance
Rs in parallel with the RLC circuit of the cavity, i.e.

QL-(RA + Rs)Rc-lTd' d " V (3-319)

The filling time of the loaded cavity is reduced by a factor 1/(1 + d).
When the cavity is detuned by a detuning angle rp,

<P = t a n - l pQL(^-^r)l = tan_i [(w _ Wf)Tf] ^ ( 3 3 2 0 )

where to is the cavity operation frequency, the rf phase shift is

<j>-{u- cor)Tb = +(Tb/Tf) tan ip = +A tan V>. (3.321)

For rf cavities used in accelerators, we have A = Tb/T{ = wrTb/2QL <C 1, and the
induced voltage seen by the beam is

Vb = IAhX(-l + 1 _ g_1(A+.0)) « J i ^ ^ c o s ^ - ^ (A->0), (3.322)

where I; is the rf image current, Vbo = IiR^hTb/T{, and the term -1 /2 is neglected.
The beam induced voltage across the rf gap at the steady state is exactly the rf image
current times the impedance of the rf system.
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Figure 3.28: Phasor diagrams for beam loading compensation. Left: The beam loading
voltage for a cavity tuned on resonance. The combination of generator voltage Vg and
induced voltage V\ gives rise to a decelerating field Vo- Right: When the cavity is detuned
to a detuning angle ip, the superposition of the generator voltage Vs and the beam loading
voltage V\ gives a proper cavity voltage Vo for beam acceleration.

VI.4 Beam Loading Compensation and Robinson Instability

To provide particle acceleration in a cavity, we need a generator rf current IQ = Ioe>e

with phase angle 9 so that the voltage acting on the beam is Vacc = Vg cos 9 = Vg sin <j>s,
where (j>s is the synchronous phase angle. It appears that the rf system would be
optimally tuned if it were tuned to on-resonance so that it had a resistive load with
Vg = IoRsh- However, we will find shortly that the effect of beam loading would
render such a scheme unusable.

When a short beam bunch passes through the rf system, the image rf current /;
generated by the beam is twice the DC current, as shown in Eq. (2.211). The beam
will induce I\Rsh across the voltage gap (see dashed line in Fig. 3.28). The voltage
seen by the beam is the sum of the voltage produced by the generator current and the
beam induced current. Thus the stable phase angle 4>s of the synchrotron motion will
be changed by the induced voltage. This is shown schematically in Fig. 3.28 (left),
where the required gap voltage IoRsh and the synchronous phase angle 4>s are altered
by the voltage induced by the image current. The projection of the resultant vector
Vo on the real axis is negative, and results in deceleration of the beam.

One way to compensate the image current is to superimpose, on the generator
current, current directly opposite to the image current. Such a large rf generator
current at a phase angle other than that of the rf acceleration voltage is costly and
unnecessary.

An alternative solution is to detune the accelerating structure.58 The detuning
angle and the generator current are adjusted so that the resultant voltage has a correct

58J.E. Griffin, AIP Conf. Proc. 87, 564 (1981); F. Pedersen, IEEE Tran. Nucl. Sci. NS-32,
2138 (1985); D. Boussard, CERN 91-04, p. 294 (1991).
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magnitude and phase for beam acceleration. This scheme will minimize the generator
current. We define the following phasor currents and voltages for the analysis of this
problem.

/„ = 7oe3' generator current necessary for accelerating voltage
in the absence of beam

Ig = Ige^B+9^ required generator current with beam

< /; = —7; = — 7b rf beam image current, 7; is a positive quantity
Ve = Vge?e required rf accelerating voltage

I/J = tan"12Q(^~"r) detuning angle
Y = 7j//o ratio of image current to unloaded generator current

The equation for a proper accelerating voltage is

% = 7 0 7 W = [IgeW+*> - 7,]iU cos tf e"*. (3.323)

Here the induced voltage is derived from the steady state beam loading. By equating
the real and imaginary parts, we obtain

tan ip - Y sin 0 T 1 + Y cos 6 , '
tanflg= y — , 7g = 70 , (3.324)

s 1 + Fcos# s cos(9g

where 9% is the phase angle of the generator current relative to the ideal To. The
optimal operating condition normally corresponds to 9S = 0, which minimizes 7g, i.e.
the generator current is optimally chosen to be parallel to 70, and Eq. (3.324) reduces
to

7g = 7O(1 + Fsin0s), tan-0 = Ycosfc. (3.325)

Figure 3.28 (right) shows the beam loading phasor diagram with a detuned cavity
angle ifi. The resultant vector of the generator voltage and the image current voltage
is the effective accelerating voltage for the beam.

A. Robinson dipole mode instability

In accelerators, beams experience many sources of perturbation such as power supply
ripple, mis-injection, mismatched beam profile, rf noise, voltage error, etc. Beam
stability may sometimes need sophisticated active feedback systems. The topic of
control and feedback is beyond the scope of this textbook. Here, we discuss only
the dipole mode stability condition related to beam loading, studied by Robinson in
1964.59

We consider a small perturbation by shifting the arrival time of all bunches by
a phase factor f. The accelerating rf voltage will be perturbed by the same phase
factor,

Vacc = Vo cos(0 - £) = VQ cos 9 + £VQ sin 9 = Vo sin <ps + £Vo cos <f>s. (3.326)

59K.W. Robinson, CEA report CEAL-1010 (1964).
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where the first term is the intended accelerating voltage and the second term is the
effect of phase perturbation due to an error in arrival time.

The wrong arrival time shifts the image beam current by a phase angle f. The
perturbation to the image rf current is

A7; = j£ii = - # / j , (3.327)

and its induced rf voltage is

AVg = -j£IAh cos </>e-**. (3.328)

The induced accelerating voltage is equal to the projection of the phasor voltage onto
the real axis:

AV0 = - f rv0cos V sin ip. (3.329)

The net change in accelerating voltage seen by the bunch becomes

AKcc = ̂ ocos0s[ l-F^^]. (3.330)

A small perturbation in arrival time causes a perturbation in acceleration voltage
proportional to the phase shift. If the voltage induced by the image charge is not
significant, the bunches in the accelerator will execute synchrotron motion. Thus the
equation of motion for the phasor error £ is (see Exercise 3.6.7)

Using Eq. (3.325), we find that the Robinson stability condition becomes

sin ib cos ib sin2 ib , .

1 - Y—^-r1- ^ ° or * TT ^ °- 3-332)
cos <ps cos2 <pB

This means that Robinson stability requires ip < 9 = \^TT-(/>S\. In general, Eq. (3.332)
is applicable to all higher order modes. For those modes, Robinson stability can be
described as follows.

Below transition energy, with cos 0S > 0, Robinson stability can be attained by
choosing s i n ^ < 0, i.e. the cavity frequency is detuned with u < ur. Above transition
energy, with cos</>s < 0, the cavity should be detuned so that sin ip > 0 or UJ > Ljr

in order to gain Robinson stability. Since the stability condition is a function of
bunch intensity, instability is a self-adjusting process. Beam loss will appear until the
Robinson stability condition can be achieved. Active feedback systems are used to
enhance the stability of bunched beam acceleration.60

60See D. Boussard, CERN 87-03, p. 626 (1987); CERN 91-04, p. 294 (1991).
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B. Qualitative feature of Robinson instability

Robinson instability can be qualitatively understood as follows. The wakefield pro-
duced in a cavity by a circulating bunch is represented qualitatively in Fig. 3.29,
where the impedance of the cavity is assumed to be real.

cor h c o o h w 0 coT

y>yT / : i \J I i ; \ y<yT

: I I I L_l_l :

CO CO

Figure 3.29: A schematic drawing of the real part of impedance arising from a wakefield
induced by the circulating beam. To avoid Robinson instability, the cavity should be de-
tuned to h<jj(, > ur above transition energy and huo < wr below transition energy. Above
transition energy, higher energy particles have a smaller revolution frequency and thus lose
more energy if the cavity detuning is huio > uiT. A similar argument applies to rf cavities
operating below transition energy.

Since the revolution frequency is related to the fractional momentum spread by

Aw _ AE

a higher beam energy has a smaller revolution frequency above the transition energy.
If the cavity is detuned so that HLOQ > wr, where wr is the resonance frequency of
the cavity (Fig. 3.29, left), the beam bunch at higher energy sees a higher shunt
impedance and loses more energy, and the beam bunch at lower beam energy sees a
lower shunt impedance and loses less energy. Thus the centroid of the beam bunch
will damp in the presence of beam loading, and the dipole mode of beam motion is
Robinson damped. Similarly, if the cavity is detuned such that hoJo < wr, Robinson
stability will be attained below transition energy.

Exercise 3.6
1. The skin depth <5skin of an AC current with angular frequency w traveling on a con-

ductor of bulk conductivity a is <5skjn = I/2/^CTW, where \i is the permeability.

(a) Show that the surface resistivity defined as Rs = l/o"5skin [in Ohm] is given by

Rs = \l2cT-
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Note that the surface resistivity does not depend on the geometry of the con-
ductor.

(b) Show that the resistance of a coaxial structure is given by Eq. (3.296) with

where i is the length of the structure and ri, ri are the inner and outer radii of
the coaxial wave guide.

2. Show that the solution of Maxwell's equation in the cylindrical coordinate is given
by Eq. (3.282).

3. In a lossless transverse electromagnetic (TEM) wave transmission line, the equation
for the current and voltage is

d V _ 5 / dl__ BV
!te~ 3 ? ~d~s~~ ~dt'

where L and C are respectively the inductance and capacitance per unit length.

(a) Show that the general solution of the right/left traveling TEM wave is given by

V = f(t^sVW), I=±^-f(tTsVLC),
•n-c

where Rc = \JLjC is the characteristic impedance of the line, i.e. the charac-
teristic impedance is the impedance seen by traveling waves with V = IRc-

(b) Show that the current and voltage of Eq. (3.291)

(I{s,t) = [Io COS ks + j{V0/Rc) sinks]ejut

I V(s, t) = [Vo cosks + jIoRcsinks]^1

satisfies the TEM wave equation.

4. Verify Eqs.(3.301) and plot Z vs UJ for wr = 200 MHz, Q = 104, and i U = 25 Mfi.

5. Evaluate the integral of Eq. (3.310) and show that the loss factor of a parallel RLC
resonator is given by61

_ t^r-Rsh
47rQ

where R^ is the shunt resistance, Q is the Q-factor, and wT is the resonance frequency.
Verify the Fourier integral of Eq. (3.312).

6. Verify Eq. (3.322)

7. Use the following steps to derive Eq. (3.331).

61Use the identity [l + Q2(x - 1/x)2]"1 = x2 [Q2{x2-r21+)(x2-rj_)]~\ where r1± =
yi-( l /4Q2)±j( l /2Q).
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(a) Let £ be the rf phase associated with the error in beam arrival time. Show that

£ = hrt&b,

where the overdot indicates the derivative with respect to orbiting angle 0, and
5/, is the momentum error of the beam centroid.

(b) Show that
i _ eV0 cos <fe I" _ sin 2^ 1

b~ 2-K^E [ 2cos4>s\^

Thus you have arrived at Eq. (3.331).
(c) Draw the Robinson stability region, i.e. 1 > (sin 2^/2 cos (j>s)Y, in {Y,ip) for

0S = O°,3O°,6O°, 120°, 150°, 180°.
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VII Longitudinal Collective Instabilities

As the demand for beam brightness increases, the physics of collective instabilities
becomes more important. Indeed, almost all accelerators and storage rings have
suffered some type of collective instability that limits beam intensity. This section
provides an introduction to the collective instability in synchrotron motion induced
by the wakefield, similar to the transverse collective dipole mode instability discussed
in Chap. 2, Sec. VIII. The wakefield generated by the beam bunch can further induce
collective motion of beam particles. In the frequency domain, the collective motion
is governed by the impedance, which is the Fourier transform of the wakefield. The
impedance responsible for collective instabilities can be experimentally derived from
beam transfer function measurements,62 or from passive measurements of beam loss,
coherent and incoherent tune shift, and equilibrium momentum spread and emittance.
The results of collective instabilities are bunch lengthening, beam brightness dilution,
luminosity degradation, beam loss, and problems in machine operation.63

Longitudinal collective instabilities have many modes. The collective synchrotron
motion can be classified according to synchrotron modes, as discussed in Sec. Ill,
where the phase space are split into resonance islands. On the other hand, since the
growth rate of the microwave instability is very large, it can be classified according
to the longitudinal mode with density fluctuation. This causes a beam bunch to
form microbunches, and decoherence due to nonlinear synchrotron motion generates
emittance dilution.

In this introduction to the collective beam instability, we discuss only single bunch
effects without mode coupling. In Sec. VII. 1, we discuss the coherent frequency spec-
tra of beams in a synchrotron. Knowledge of coherent synchrotron modes provides
useful information about possible sources, and about the signature at onset, of collec-
tive instabilities. An experimental measurement of coherent synchrotron mode will
be discussed. Detecting the onset of instabilities and measuring coherent synchrotron
modes can help us understand the mechanism of collective instabilities. In Sec. VII.2,
we study the linearized Vlasov equation with a coasting beam, and derive a disper-
sion relation for the collective frequency in single mode approximation. In Sec. VII.3,
we list possible sources of longitudinal impedances. In Sec. VII.4, we examine the
microwave instability for a beam with zero momentum spread and for a beam with
Gaussian momentum spread, and discuss the Keil-Schnell criterion and the turbu-
lent bunch lengthening. Mode coupling and coupled bunch collective instabilities and
other advanced topics can be found in a specialized advanced textbooks [3].

62A. Hofmann, Proc. 1st EPAC, p. 181 (World Scientific, Singapore, 1988).
63See Ref. [3], and T. Suzuki, Y. Chin and K. Satoh, Part. Accel. 13, 179 (1983); B. Zotter, Proc.

3rd EPAC, p. 273 (Edition Frontiere, Gif-sur-Yvette Cedex, 1992).
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VII. 1 Longitudinal Spectra

The current observed at a wall gap monitor or a BPM from a circulating charged
particle is represented by a periodic 5-function in Eq. (2.211); and the corresponding
frequency spectra occur at all harmonics of the revolution frequency fa- Similarly, the
current of N equally spaced circulating particles is described by Eq. (2.221), where
the Fourier spectra are separated by Nf0. Since N ~ 108 -101 3, Nf0 is well above the
bandwidths of BPMs and detection instruments, the coherent rf signal is invisible.
Such a beam is called a coasting or DC beam because only the DC signal is visible.
This analysis is applicable to a single short bunch or equally spaced short bunches; for
the effect of a finite bunch length, see Eq. (2.215). The frequency spectra of a single
short bunch occur at all harmonics of the revolution frequency /o. For B equally
spaced short bunches, the coherent frequency spectra are located at harmonics of
BfoM

A. Coherent synchrotron modes

The synchrotron motion of beam particles introduces a modulation in the periodic
arrival time. We expand the current Eq. (3.87) of an orbiting particle with a linear
synchrotron motion in Fourier series,

oo

Ie(t) = e Y, S(t-fcos(u}st + rP)-£T0)
fc-oo

oo oo

= Y £ £ j-mJm(™of)e>Kn*>+m*»+m*\ (3.333)

where e is the charge, f and tp are the synchrotron amplitude and phase of the
particle, u>s — u>0^heV\r]cos(t>s\/2n/32E is the synchrotron angular frequency with
4>s as the rf phase of the synchronous particle, To is the revolution period, and Jm

is the Bessel function of order m. The resulting spectra of the particle motion are
classified into synchrotron modes, i.e. there are synchrotron sidebands around each
orbital harmonic n. The amplitude of the mth synchrotron sideband is proportional
to the Bessel function Jm.

A bunch is made of particles with different synchrotron amplitudes and phases,
the coherent synchrotron modes of the bunch can be obtained by averaging the syn-
chrotron mode over the bunch distribution. For a •^-independent particle distribution
function p(f,tp) = PO(T), the beam current becomes

Ia{t)=jle{t)Pa{T)TdfdiP = Im f) V ™ * ' . (3-334)
n=—oo

64The power of a coherent signal is proportional to ./Vg, where TVB is the number of particles in a
bunch.
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where /av = iVBe/0 is the average current, and Anfi is the Hankel transformation of
Po,

Anfi = 2nJ Jo{nuof)po{f)fdf. (3.335)

Note that Eq. (3.334) contains only orbital harmonics nu>o, i.e. all synchrotron side-
bands of individual particles are averaged to zero. Note also that po can be ob-
tained from the inverse Hankel transformation, although one can detect incoherent
synchrotron sidebands from the Schottky signal, whose power is about 1/iV of the
coherent ones.

Now, if there is a coherent synchrotron mode in the bunch distribution, e.g.
p(f, 4>) = po(f) + Ap(f, i>) with

A p ( f , ^ ) = p m ( f ) e ^ t - m * ) , (3.336)

where fic is the coherent frequency, the coherent current signal becomes

/

oo

Ie{t)Ap{f,ij)fdfdij = I0{t) + Iav J2 An,meXn"°+r™°+n^, (3.337)
n=-oo

where j4n>m is the mth order Hankel transformation,

An,m = 2TT J™ Jm{nuj0T)pm(f)fdT. (3.338)

The mth order synchrotron sideband appears around all coherent revolution harmon-
ics. It is a coherent synchrotron mode. Using the inverse Hankel transformation, we
can deduce the beam distribution function from the amplitudes of coherent modes
An,m. These coherent mode integrals form the kernel for the Sacherer integral equa-
tion in determining the longitudinal collective instability.65

The coherent synchrotron sidebands can be measured by taking the fast Fourier
transform (FFT) spectrum of the longitudinal beam profile digitized at fixed times
during the onset of coherent mode instability.66 This requires a digital oscilloscope
with a sizable memory. However, a spectrum analyzer (SA), tuned to a synchrotron
sideband, can also measure beam power arising from the coherent synchrotron mode
excitation, i.e. |>ln)m|2. With the power spectrum of the the mth synchrotron mode
known, the inverse Hankel transformation can be used to reconstruct the coherent
longitudinal distribution pm, which is important in identifying the source of coherent
excitations. As an illustrative example, we measure the power of a synchrotron mode
of a longitudinally kicked beam.

6 5F. Sacherer, IEEE Trans. Nucl. Sci. NS-20, (1973), ibid NS-24, (1977); see also J.L. Laclare,
CERN 87-03, p. 264 (1987).

66X. Lu and G. Jackson, Proc. IEEE PAC, p. 3366 (IEEE, Piscataway, NJ, 1993).
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B. Coherent synchrotron modes of a kicked beam

For simplicity, we assume an initial Gaussian equilibrium beam distribution (see
Eq. (3.40) for the phase space coordinates):

»te)-5=?->P^)- < 3 ^
When the beam is phase kicked by T^, the initial beam distribution becomes

, T 1 / Tk f2 TTk

= ^ ( - ^ r ^ Sj-irimQym*' (3-340)
where /_m = Im. Thus the coherent distribution is

( — A\m T2 f2 TTi

^ = 1 ^ - ^ - 2 ^ - S f ) 7 " ^ ' (3"341)

and the coherent mode integral of Eq. (3.338) becomes67

An,m = e'^OTk)HV2Jm(nuj0Tk). (3.342)

The power of the mth sideband of a kicked beam is proportional to the square of
the mth order Bessel function. For non-Gaussian beams, the power spectrum is a
weighted average of Bessel functions in Eq. (3.338). We describe below an experiment
measuring the coherent mode power at the IUCF Cooler.

C. Measurements of coherent synchrotron modes

The experiment started with a single bunched beam of about 5 x 108 protons at a
kinetic energy of 45 MeV and harmonic number h = l. The revolution frequency was
/o = 1.03168 MHz and the phase slip factor was rj = -0.86. The cycle time was 5 s,
while the injected beam was electron-cooled for about 3 s. The typical bunch length,
which could be adjusted by varying the rf voltage, was about 4.5 m (50 ns) FWHM,
i.e. the rms bunch length oy was about 20 ns.

The bunched beam was kicked longitudinally by phase-shifting the rf cavity wave
form (see Sec. III). A function generator was used to generate a 0 to 10 V square wave
to control the phase kick. The rf phase lock feedback loop, which normally locks the
rf cavity to the beam, was switched off. The resulting phase oscillations of the bunch
relative to the rf wave form were measured by a phase detector, which was used to

67See e.g. 6.633.4 of Ref. [26]
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calibrate the control voltage for the phase shifters versus the actual phase shift. Both
the phase error due to control nonlinearity and the parasitic amplitude modulation
of the IUCF Cooler rf systems were kept to less than 10%. The response time of the
step phase shifts was limited primarily by the inertia of the rf cavities, which had a
quality factor Q of about 40. The magnitude of the phase shift was varied by the size
of the applied step voltage.

To measure the FFT spectrum of the coherent signal, the spectrum analyzer (SA)
was triggered about 5 ms before the phase shift. The power observed at a synchrotron
sideband from the SA is shown in Fig. 3.30, where the top and bottom traces show
the SA responses at the sidebands of the first harmonic f0 — fs and the sixth harmonic
6/o — fs vs time. The kicked amplitude was 90 ns, or equivalently w0Tk = 0.58 rad.
The resolution bandwidth of SA was 100 Hz, thus the measurement of the sideband
power was taken at 10 ms after the phase kick. The sideband power shown in Fig. 3.30
was proportional to |^4i,i|2 for the upper trace and |^6,i|2 for the lower trace.

Figure 3.30: The synchrotron side-
band power of a kicked beam observed
from a spectrum analyzer tuned to
the first revolution sideband (upper
trace) and the 6th revolution sideband
(lower trace) as a function of time.
The revolution frequency was 1.03168
MHz. The setting of the SA was reso-
lution bandwidth 100 Hz, video band-
width 100 Hz, and frequency span 0
Hz. Note that the sideband power de-
creased with time for the first harmonic
and increased for the 6th harmonic,
probably because of electron cooling in
the IUCF Cooler. The vertical axis is
coherent synchrotron power in dB, and
the horizontal axis is time at 10 ms per
division.

Since UJQT^ « 0.58 and uT = 20 ns for the case shown in Fig. 3.30, we obtain

Altl ~ e-00083^^), A6tl ~ e-0-299./!^.^).

Thus the initial power at the fundamental harmonic sideband, which is proportional
to |^4i,i|2, after the phase kick will be a factor of 6 larger than that of the 6th orbital
harmonic. As the synchrotron phase amplitude decreases because of electron cooling,
the power Aiti decreases because Ji(woTa) decreases with decreasing ujQTa, where
ra is the synchrotron amplitude. On the other hand, as 6cooTa decreases, Ji(6woTa)
increases. Therefore the power spectrum shown in the lower plot of Fig. 3.30 increases
with time.
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Figure 3.31: Measured m = 1 syn-
chrotron sideband power vs frequency
for different phase kicked amplitudes
is compared with theory based on a
Gaussian beam distribution. Plots
from top to bottom correspond to a
kicking amplitude (time) of 53, 90,
100 and 150 ns. These data were
normalized to the peak. The curves
were theoretical predictions with no
adjustable parameter except the nor-
malization constant.

Figure 3.31 shows the power of the m = 1 sideband, for various kicking times, as
a function of UIT ~ WJJQTY, where n is the revolution harmonic. For a kicked Gaussian
beam, the power P n l is proportional to |^4n,i|2:

Pn,i ~ \AnA\2 = e -<"^)2^^)2 | J i («^ork) | 2 . (3.343)

Because the actual power depends on the beam intensity, all data are normalized
at the first peak around nw0Ty « 1.8. Solid curves are obtained from Eq. (3.343)
normalized to the peak. The effect of finite bunch length is visible in Fig. 3.31.

When a bunched beam encounters collective instability, the observed sideband
power \AnX\2 is proportional to the weighted average of the coherent mode density
p(r) shown in Eq. (3.342). Measurement of AUtl for all orbital harmonics can be
used to obtain the coherent mode distribution function. Similarly, setting up the
central frequency at the second synchrotron harmonic, we can measure the m = 2
synchrotron modes for the kicked beam.

VII.2 Collective Microwave Instability in Coasting Beams

For coasting beams, there is no rf cavity and the unperturbed distribution function
is a function only of the off-momentum coordinate 5 = Ap/p0. Let ^o(5) be the
normalized distribution function with f^od5= 1. Because of the impedance of the
ring, the beam generates wakefields, which in turn perturb particle motion.

A self-consistent distribution function obeys the Vlasov equation

d * d$ - a * - a *
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where the overdot is the derivative with respect to time t. In the presence of a
wakefield, we assume that the distribution function is approximated by68

tf = tf 0 (g) + A<bnej{Qt-n^, (3.345)

where <3>0 is the unperturbed distribution, Q is the coherent frequency, 9 is the or-
biting angle, and A\Pn(<5) is the perturbation amplitude for the longitudinal mode
n. The perturbation causes density fluctuation along the machine, i.e. the collective
instability of mode number n can cause a coasting beam to split into n microbunches.

By definition, the energy gain/loss per revolution due to the wakefield is equal to
the current times the longitudinal impedance:

AE = Z« (eIQ I AVnd5) e^nt-nB\
per turn \ J )

where the impedance is evaluated at the collective frequency Q. Thus, the time
derivative of the 5 coordinate in a coasting beam becomes

6 = ^ (e/o^i / A*nd5) e*0*-*'. (3.346)

Since |A$n | -C \l/o at the onset threshold of collective instability, we linearize the
Vlasov equation to obtain

Using 0 = u) and integrating Eq. (3.347), we obtain the dispersion relation

_ .e/OTi(Jo(Z||/n) r dVp/dd JX _ .eI0n2ujQ{Z^n) f % du JS.
1 ~J 1*PE J Q^^dd ~3 2^E J ({l-ruo)*d6 ' ( 3 '3 8)

where partial integration has been carried out in the second equality.
The eigenfrequency fl of the collective motion is given by the solution of the dis-

persion relation. If the imaginary part of the coherent mode frequency is negative, i.e.
Im fl < 0, the perturbation amplitude grows exponentially, and the beam encounters
the collective microwave instability. The terminology is derived from the fact that
the coherent frequency observed is in the microwave frequency range. With the re-
lation (j = Wo — u)oT]S, the dispersion integral can be analytically obtained for some
distribution functions of the beam. First we examine possible sources of longitudinal
impedance.

68Here we assume a single longitudinal mode. In general, the perturbing distribution function
should be written as a linear superposition of all possible modes. The frequencies of the collective
motion are eigenfrequencies of the coupled system.



VII. LONGITUDINAL COLLECTIVE INSTABILITIES 369

VII.3 Longitudinal Impedance

The impedance of an accelerator is related to the wake function by

Z,|H = r Wn(t)e-jutdLj, (3.349)
J-oo

and similarly, the wake function is related to the impedance by

1 r00

Wn(t) = — Z^e^du. (3.350)
Z7T J— oo

Since the wakefield obeys the causality principle, the impedance must not have sin-
gularities in the lower complex plane,69 and the real and imaginary parts of the
impedance are related by the Hilbert transform

ReZ,|(U) = - i / d o / ^ M , (3.351)

ImZ||(W) = +-/" d^Z^'\ (3.352)

where P.V. stands for the principal value integral.
Because the wake function is real, the impedance has the symmetry property

Zn{-u) = Z;(u>). (3.353)

Thus the real part of the longitudinal impedance is positive and is a symmetric
function of the frequency. In fact, the property of Z\\(u))/u is similar to that of
Z±(u). Without making the effort to derive them, we list below some sources of
commonly used impedance models.

A. Space-charge impedance

Let a be the radius of a uniformly distributed coasting beam, and let b be the radius
of a beam pipe (Fig. 3.32). The electromagnetic fields of the coasting beam are

!

eXr ( fj.QeXl3cr
2-Kta2 R J 2na2 ~ , ,

\ B<t>-\ x a (3.354)
r > a

2-Ktr l. 2TIT

where A is the particle's line density, e is the charge, fie is the speed, and e0 and Ho

are the permittivity and permeability of the vacuum.
Now we consider a small fluctuation in the line density and current with

A = Ao + Axe*"*-"*), / = 70 + Iie^nt-n6\

89See K.Y. Ng, p. 472 in Ref. [12]; see also Appendix 2.
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Figure 3.32: The geometry of a uniformly distributed beam with radius a in a beam pipe
of radius b. The induced electric fields that arise from impedance are shown schematically.
The rectangular loop is used for the path integral of Faraday's law.

where Io = e/3cA0 and 7i = e/3cAi. The perturbation generates an electric field on the
beam. Using Faraday's law

£ Ed£=- — fB-da
J at J

along the loop shown in Fig. 3.32, where da is the surface integral, we obtain

(E. - Ew)As + f*L[\{8 + As) - AW] = - A s ^ § ,
where Es and Ev are the electric fields at the center of the beam pipe and at the
vacuum chamber wall, and the geometry factor g0 = 1 + 2 ln(6/a) is obtained from the
integral along the radial paths from the beam center to the vacuum chamber wall.70

Assuming that the disturbance is propagating at the same speed as the orbiting beam
particles, i.e. dX/dt = —j3c(d\/ds), the electric field acting on the circulating beam
becomes

W - F eg° dX (1W\
t,s — hy, — r—, (6.600)

47reO7 as
where the factor I/72 arises from cancellation between the electric and magnetic
fields.

For most accelerators, the vacuum chamber wall is inductive at low and medium
frequency range. Let L/2-KR be the inductance per unit length, then the induced wall
electric field is

L dIw_ep<?Ld\
K-2^Rlf- ^rTTd? ( 3 '3 5 6 )

Thus we have
_ [ go _ 0W\ d\

6 [47r£o72 27ri? J 9 s '
70If the impedance is averaged over the beam cross section, the geometric factor becomes go =

I + 2 In (b/a). On the other hand, if the perturbation is on the surface of the beam, the geometry
factor becomes go = 21n(fc/a).
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The total voltage drop in one revolution on the beam is

A[/ = - e / 3 c / ? S [ l 7 - W o L ] ' (3'357)
where /3c = us0R is the speed of the orbiting particles, and Zo = l/eoc = 377 ohms is
the vacuum impedance. Using R(d\/ds) = (dX/d6), and ej3c\\ = I\, we obtain the
impedance, defined as the voltage drop per unit current, as

Z,| At/ \g0Z0 1 , ,

The first term in Eq. (3.358) is the space-charge impedance and the second term
is the inductance of the vacuum chamber wall. Typical values of the space-charge
impedance at transition energy are listed in Table VII.3.

Table 3.7: Typical space-charge impedance at 7 = 7T.

I AGS I RHIC I Fermilab BST [ Fermilab MI I KEKPS"
7T 8.7 22.5 5.4 20.4 6.8
|Z||,scl/rc [ft] 1 13 1 1.5 I 30 [23 | 20

In fact, the vacuum chamber wall is not perfectly conducting, and Ew has a
resistive contribution that depends on the conductivity, microwave frequency, and
skin depth.

B. Resistive wall impedance

Because the resistivity of the vacuum chamber wall is finite, part of the wakefield
can penetrate the vacuum chamber and cause energy loss to the beam. Penetration
of electromagnetic wave into the vacuum chamber can be described by Maxwell's
equations

O 77

V x E = - ( j t - — , V x H = J = acE, (3.359)

where CTC is the conductivity and /J, is the permeability. Here we have used Ohm's
law, and neglected the contribution of the displacement current for electromagnetic
wave with not so high frequencies.71 From Eq. (3.359), we find

V2E = fiac^. (3.360)

71For frequencies OJ <C <rc/e fa <rcZoc « 1019 Hz, where e is the permittivity, the displacement
current contribution to Maxwell's equation is small.
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Substituting the ansatz of the electric field

E = s Eo exp{j(ujt — kx)}

into Eq. (3.360), where x is the distance in the vacuum chamber wall, we obtain the
wave number

k = (1 - j)y/\u\acn/2.

The imaginary part of the wave number is the inverse of the penetration depth, or
equivalently, the skin depth is Ss^n = ^J2/iJ,acLO. The electromagnetic fields penetrate
a skin depth inside the vacuum chamber wall. The resistance due to the electric field
becomes

ZH X2^^- = ^{-0) *"»•»' (3-361)

where Zo is the vacuum impedance, /3 is Lorentz's relativistic velocity factor, b is the
vacuum chamber radius, <5Skin,o = ^2/nacu>o is the skin depth at frequency uio, H is the
permeability, and ac is the conductivity of the vacuum chamber. Since the magnetic
energy is equal to the electric energy, the magnitude of the reactance is equal to the
resistance. The resistive wall impedance becomes

Z||(W) = ( l + j s g n H ) ^ ( M ^ 5skin0, (3.362)
ZO \ w 0 /

where the sign function, sgn(w) = +1 if UJ > 0 and — 1 if u < 0, is added so that the
impedance satisfies the symmetry property.

C. Narrowband and broadband impedances

Narrowband impedances arise from parasitic modes in rf cavities and cavity-like struc-
tures in accelerators. Broadband impedances arise from vacuum chamber breaks,
bellows, and other discontinuities in accelerator components. The longitudinal nar-
rowband and broadband impedances can conveniently be represented by an equivalent
RLC circuit

Z(w) = 7 " ^ , (3.363)

where cuT is the resonance frequency, i^h is the shunt impedance, and Q is the quality
factor. The high order mode (HOM) of rf cavities is a major source of narrowband
impedances. Parameters for narrowband impedances depend on the geometry and
material of cavity-like structures.

For a broadband impedance, the Q-factor is usually taken to be 1, and the reso-
nance frequency to be the cut-off frequency

wr,bb = LOoR/b = Pc/b, (3.364)
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where LJO is the revolution frequency, R is the average radius of the accelerator, and b
is the vacuum chamber size. The magnitude of the broadband shunt impedance can
range from 50 ohms for machines constructed in the 60's and 70's to less than 1 ohm
for recently constructed machines, where the vacuum chamber is carefully smoothed.

To summarize, the longitudinal impedances Z\\(UJ)/U> or Z\\/n are schematically
shown in Fig. 3.33, where the solid and dashed lines correspond to the real and
imaginary parts respectively. The symmetry of the impedance as a function of w is
also shown.

Figure 3.33: Schematic of a longitu-
dinal impedance that includes broad-
band, narrowband, and space-charge
impedances. Including the resistive
wall impedance in the longitudinal
impedances, we find that |Re(Z||/o;)|
becomes large at u « 0.

VII.4 Microwave Single Bunch Instability

The negative mass instability was predicted in 1960's. Experimental observations
were obtained in the intersecting storage rings (ISR), where microwave signal was
detected in the beam debunching process. Subsequently, it was observed in almost
all existing high intensity accelerators. In this section, we discuss the single bunch
microwave instability.

A. Negative mass instability without momentum spread

First, we consider negative mass instability. In the absence of momentum spread with
\&o(<5) = 5A{5), where 5 = Ap/po and Sd(x) is the Dirac 5-function, the solution of
Eq. (3.348) is

/ fi \ 2 eI0Zn/n

U) =-'iyK (3-365)
The condition for having a real fi is -j(Z^/n)rj > 0. This condition is only satisfied

for a space-charge (capacitive) impedance below the transition energy, or an indue-
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tive impedance above the transition energy. If Z\\/n is capacitive, e.g. space-charge
impedance, the collective frequency is a real number below the transition energy with
77 < 0. This results in a collective frequency shift without producing collective insta-
bilities. On the other hand, if the impedance is inductive, the collective frequency
becomes a complex number below the transition energy, and the solution with a neg-
ative imaginary part gives rise to collective instability. For resistive impedance, the
beam with a zero momentum spread is unstable. Table VII.4 shows the characteristic
behavior of microwave collective instability.

Table 3.8: Characteristic behavior of collective instability without Landau damping.

Z\\/n capacitive inductive resistive
Below transition r\ < 0 stable unstable unstable
Above transition 77 > 0 unstable stable unstable

The terminology of negative mass instability is derived from a pure space charge
effect. The mass, —77, in the longitudinal Hamiltonian (see Chap. 2, Sec. IX)

1 /Az>\2 eV
H = - o7? " O UP2J? tC0S ̂  - C0S * « + ( * - &) Sin *J> (3-366)

is negative above the transition energy with 77 > 0. A higher energy particle takes
longer to complete one revolution, or it appears to have a negative mass. Since
the "microwave instability" resulting from the space-charge impedance occurs when
77 > 0, it is also called negative mass instability. However, a beam with a small
frequency spread can also encounter microwave instability at 7 < j r if the impedance
is inductive, or resistive.

B. Landau damping with finite frequency spread

For a beam with a finite momentum spread with 77 ^ 0, the coherent mode frequency
can be obtained by solving the dispersion relation. In this case, there is a finite
region of impedance value where the growth rate of collective instability is zero, and
collective motion is Landau damped.

If the distribution function is a symmetric function of momentum deviation 5, the
threshold impedance for microwave instability is reflectively symmetric with respect
to the real part of the impedance. Depending on the actual distribution function, the
threshold of collective instability can be estimated from the dispersion relation.72

72A.G. Ruggiero and V.G. Vaccaro, CERN ISR TH/68-33 (1968); see also Ref. [3].
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For example, we consider a Gaussian beam model of a coasting beam given by

1 f ? \
V27TCT,; I 2cr<S J

where 5 = Ap/po and as is the rms momentum spread. In the limit of small frequency
spread, the distribution becomes the Dirac ^-function. The rms frequency spread of
the beam becomes au = tJor/as. The dispersion relation can be integrated to obtain

where
[o r°° re~x2l2

JG = V - / —rKTf \dx = 2[1 + J^*vwW> (3-368)
V 7r J-oo x + il/(nujo'r]as)

fi = CI — nu>o, and w(y) is the complex error function with y = —Q/(y/2nuioT](7s)-
Asymptotically, we have JQ —> y~2 as y —> oo. Thus in the limit of zero detuning (or
zero frequency spread), Eq. (3.367) reduces to Eq. (3.365).

We usually define the effective U and V parameters, or U' and V parameters as

For the Gaussian beam, we find <5FWHM = \/8 In 2 ag. In terms of U and V parameters,
Eq. (3.367) becomes -j(U + jV)JG/2 = 1.

The solid line in the left plot of Fig. 3.34 shows the threshold V vs U' parameters
of collective microwave instability with Im(fi) = 0. Dashed lines inside the thresh-
old curve correspond to stable motion, and the dashed lines outside the threshold
curve are unstable with growth rates — (lmQ,)/y/2 In2wor?aj = 0.1,0.2,0.3,0.4, and
0.5 respectively. The right plot of Fig. 3.34 shows the threshold V vs U' parameters,
from inside outward, for the normalized distribution functions ^o(x) = 3(1 — £2)/4,
8(1 - x2f'2/2,-K, 15(1 - z2)2/16, 315(1 - z2)4/32, and (l/V2^)exp(-a:2/2). All dis-
tribution functions, except the Gaussian distribution, are limited to x < 1. Note
that a distribution function with a softer tail, i.e. a less sudden cutoff, gives a larger
stability region in the parametric space.

C. Keil-Schnell criterion

Figure 3.34 show that the stability region depends on beam distribution. Based on
experimental observations and numerical calculations of the dispersion relation, a
simplified estimation of the stability condition is to draw a circle around the origin
in the impedance plane

Z, < 2^Ea2MF
n elo v ;
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Figure 3.34: Left: The solid line shows the parameters V vs U' for a Gaussian beam
distribution at a zero growth rate. Dashed lines inside the threshold curve are stable. They
correspond to -Ima/(V2 In2 W0T)OS) = -0.1,-0.2,-0.3,-0.4, and -0.5. Dashed lines
outside the threshold curve have growth rates —lmQ/(V2 ln2uoT]as) = 0.1,0.2,0.3,0.4,
and 0.5 respectively. Right: The threshold V vs U' parameters for various beam distribu-
tions.

where F is a form factor that depends on the distribution function. For a Gaussian
beam, F = 1; and for a tri-elliptical distribution with ^o(^) = 8(1 - X2)3/2/3TT,

F « 0.94 [3]. This is the Keil-Schnell criterion.73

The Keil-Schnell criterion states that if the beam is stable, the total longitudinal
energy drop from impedance, e/0|Z|||, per unit frequency spread n\r]\\/2Tras for mode
number n should be less than the total energy spread y/2^P2Eas of the beam.

Since the microwave growth rate is usually fast, and the the wavelength of the
coherent wave is usually small compared with the bunch length, the Keil-Schnell
criterion can be applied to the bunched beam by replacing the average current Io by
the peak current / , i.e.

z-± < **PWW
n eI

where / = FQIQ, and -FB = 27r/v/27rcr̂ , is the bunching factor. This Boussard conjec-
ture has been well tested in the Intersecting Storage Ring (ISR).74

73E. Keil and W. Schnell, CERN-ISR-TH-RF/69-48 (July 1969); A.G. Ruggiero and V.G. Vaccaro,
CERN ISR TH/68-33 (1968).

74Since the growth rate of the microwave instability is normally very fast, the threshold condition
can be obtained from the local peak current of the beam. See e.g. J.M. Wang and C. Pellegrini,
Proc. 11th HEACC, p. 554 (1980).
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D. Microwave instability near transition energy

Near the transition energy, Landau damping for microwave single bunch instability
vanishes because of a small synchrotron frequency spread. The Keil-Schnell criterion
is not applicable in this region. For a pure capacitive impedance, e.g. space-charge
impedance, instability occurs when 7 > 7T. For a pure inductance impedance, in-
stability exists only below transition. Since the beam distribution function is non-
adiabatic in the transition energy region, determination of microwave instability needs
careful evaluation of the dispersion integral.

We assume a model of collective microwave instability such that the longitudinal
modes are nearly decoupled and thus the coherent growth rate can be obtained by
solving the dispersion relation Eq. (3.348). Furthermore, we assume a Gaussian beam
model with the threshold impedance determined by the peak current. The peak
current is located at the center of the bunch A<j> = 0, and the distribution function
is therefore given by (see Sec. IV. 1)

<jro(<5) = J^ie-3°ui\ (3.372)
V 7T

where a^ is given by Eq. (3.177). T h e peak current is

f 3 ( a 0 0 q w - a2^) y ^
1 = 1O\\ = la 7 , , (6.616)

\ irass A ^

where Io is the average current and A is the rms phase-space area of the beam. The
dispersion integral can be integrated to obtain the coherent mode frequency given by

_ 3e/0 (Zy/n) 7 r V 3 ^ t

1 ~3 2**/*FEv A G > ( }

where

JG = 2[l+jy/nyw(y)], y = %/6aM.
nujori

For a given broadband impedance model with constant Z\\/n, we can find the
eigenvalue of the growth rate Im (fi(t)) by solving Eq. (3.374).75 Landau damping
plays an important role in damping collective instability. The region of collective
instability can be estimated by using the Keil-Schnell criterion.

The solution of Eq. (3.374) shows that the growth rate near the transition energy is
nearly equal to the growth rate without Landau damping. This is easy to understand:

75see e.g. S.Y. Lee and J.M. Wang, IEEE Trans. Nucl. Sci. NS-32, 2323 (1985). The impedance
model Z\\/n = 5 - j(Z^:SC/n) ohms was used to study the growth rate around the transition energy
for RHIC. Microwave instability below transition may arise from the real impedance. Because of a
large space-charge impedance, the growth rate appears to be larger above the transition energy.
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at 7 = 7T, the frequency spread of the beam becomes zero, and Landau damping
vanishes. Fortunately, the growth rate is also small at 7 ss 7T.

The total growth factor across the transition energy region can be estimated by

G = exp j/(-Imfi)un8tabled*j . (3.375)

The total growth factor is a function of the scaling variable \Z\\/n\Nb/A. Note that
the growth factor is much smaller if the initial phase-space area is increased. Phase-
space dilution below transition energy has become a useful strategy in accelerating
high intensity proton beams through transition energy. The CERN PS and the AGS
employ this method for high intensity beam acceleration. Bunched beam dilution can
be achieved either by using a high frequency cavity as noise source or by mismatched
injection at the beginning of the cycle.

The distribution function model Eq. (3.372) does not take into account nonlinear
synchrotron motion near the transition energy. For a complete account of microwave
instability, numerical simulation is an important tool near transition energy.76 A
possible cure for microwave instability is to pass through transition energy fast with
a transition energy jump. Furthermore, blow-up of phase-space area before transition
energy crossing can also alleviate the microwave growth rate.

We have discussed microwave instabilities induced by a broadband impedance.
In fact, it can also be generated by a narrowband impedance. Longitudinal bunch
shapes in the KEK proton synchrotron (PS) were measured by a fast bunch-monitor
system, which showed the rapid growth of the microwave instability at the frequency
of 1 GHz and significant beam loss just after transition energy (see Fig. 3.35).77

Temporal evolution of the microwave instability is explained with a proton-klystron
model. The narrowband impedance of the BPM system causes micro-bunching in the
beam that further induces wakefield. The beam-cavity interaction produces the rapid
growth of the microwave instability. This effect is particularly important near the
transition energy, where the frequency spread of the beam vanishes, and the Landau
damping mechanism disappears.

E. Microwave instability and bunch lengthening

When the current is above the microwave instability threshold, the instability can
cause micro-bunching. The energy spread of the beam will increase until the stability
condition is satisfied. For proton or hadron accelerators, the final momentum spread
of the beam may be larger than that threshold value caused by decoherence of the
synchrotron motion.

76W.W. Lee and L.C. Teng, Proc. 8th Int. Conf. on High Energy Accelerators, CERN, p. 327
(1971); J. Wei and S.Y. Lee, Part. Accel. 28, 77-82 (1990); S.Y. Lee and J. Wei, Proc. EPAC,
p. 764 (1989); J. McLachlan, private communications on ESME Program.

77K. Takayama et al., Phys. Rev. Lett, 78, 871 (1997).
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Figure 3.35: The longitudinal beam profiles observed at
KEK PS revealing microwave bunching in the tail of the
bunch. The bottom figure shows the longitudinal bunch
profile before the transition energy, the middle figure at 1
ms after the transition energy, and the top figure at 2 ms
after the transition energy. The microwave instability oc-
curs near the transition energy for lack of Landau damping.
The instability was found to be driven by a narrowband
impedance caused by the BPM system. [Courtesy of K.
Takayama, KEK]

For electron storage rings, the final momentum spread is equal to the microwave
instability threshold due to synchrotron radiation damping. Using the Keil-Schnell-
Boussard condition of Eq. (3.371), we find

where vs is the synchrotron tune. Note that the bunch length depends only on the
parameter f = {IQ\T]\IV1P2E) provided that the impedance does not depend on the
bunch length. Chao and Gareyte showed that the bunch lengths of many electron
storage rings scaled as

a ,~e 1 / ( 2 + a ) - (3.377)

This is called Chao-Gareyte scaling law. For a broadband impedance, we have a = 1.
The scaling law is not applicable if the impedance depends on the beam current and
bunch length.

F. Microwave instability induced by narrowband resonances

At low energy, the longitudinal space charge potential, shown as the first term in
Eq. (3.357), can be large for high intensity beam bunch. It requires a costly large rf
cavity potential to keep beam particles bunched inside the rf bucket. In particular,
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if it requires a beam gap for a clean extraction, and for minimizing the effect of the
electron-cloud instability.

The longitudinal space charge potential can be compensated by the inductive
impedance shown in the second term of Eq. (3.357). We consider a cavity with ferrite
ring filling a pillbox. The inductance is

L"~l^lniV (3'378)

where fj,' is the real part of the ferrite permittivity, i?i and R2 are the inner and outer
radii of the ferrite rings, and I is the length of the pillbox cavity. The inductive inserts
carried out at PSR experiment employs coaxial pillbox cavity with 30 ferrite rings each
with width 2.54 cm, 12.7 cm inner diameter (id), and 20.3 cm outer diameter (od).
The Proton Storage Ring (PSR) at Los Alamos National Laboratory compresses high
intensity proton beam from the 800 MeV linac into a bunch of the order of 250 ns.
The parameters for PSR are C = 90.2 m, 7T = 3.1, vx = 3.2, vz = 2.2, vs = 0.00042,
and /o = 2.8 MHz.

To cancel the space charge impedance at 800 MeV for PSR at the harmonic h = 1,
one requires about 3 pillbox cavities. The experimental test for this experiment was
indeed successful.78 Unfortunately, the beam also encounters collective microwave
beam instability at high intensity. The left plot of Fig. 3.36 shows the initial bunched
coasting beam, and the right plot shows the microbunching of the beam under the
action of three ferrite inserts.

Figure 3.36: The longitudinal beam profiles observed at PSR the bunched coasting beam
in the presence of inductive inserts, where three 1-m long ferrite ring cavities were installed
in the PSR ring. [Courtesy of R. Macek, LANL]

The microwave instability is induced by a narrowband impedance with Q w 1 at
the center frequency of /res « 27/o.79 Although the inductive inserts can be used

78M.A. Plum, et at, Phys. Rev. Special Topics, Accelerators and Beams, 2, 064201 (1999).
79see C. Beltran, Ph.D. thesis, Indiana University (2003).
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to cancel the space charge impedance, the pillbox cavity can generate a narrowband
impedance to cause microwave instability of the beam at higher harmonics. In order
to alleviate this problem, it is necessary to broaden the narrowband impedance by
either choosing different design geometries for different ferrite inserts, or by heating
the ferrite so that the imaginary part (//') of the permittivity is larger at the cavity
resonance frequency. At PSR, the cavities was heated to 125-150° C, so that the
beam is below the microwave instability threshold.

Exercise 3.7
1. In synchrotrons, beam bunches are filled with a gap for ion-clearing, abort, extraction

kicker rise time, etc. Show that the frequency spectra observed from a BPM for short
bunches filled with a gap have a diffraction-pattern-like structure. Specifically, find
the frequency spectra for 10 buckets filled with 9 equal intensity short bunches. The
revolution frequency is assumed to be 1 MHz.

2. Show that the impedance of Eq. (3.363) has two poles in the upper half of the u
plane, and find their loci. Use the inverse Fourier transformation to show that the
wake function of the RLC resonator circuit is

W|| = nT^-"rt/2Q c o s ^ - ^ ^ s i n J ,

where £>r = o)r^/l — 1/4Q2.

3. The parameters of the SLC damping ring are E = 1.15 GeV, vx = 8.2, uz = 3.2,
ac = 0.0147, -yex<z = 15 7T mm-mrad, aAp/p = 7.1 x 10"4, Vrf = 800 kV, C = 35.270
m, h = 84, /,f = 714 MHz, p = 2.0372 m, and the energy loss per revolution is
f0 = 93.1 keV. If the threshold of bunch lengthening is JVB = 1.5 x 1010, use the
Keil-Schnell formula to estimate the impedance of the SLC damping ring.80

4. We assume that the growth rate of microwave instability in a quasi-isochronous elec-
tron storage ring can be obtained from Eq. (3.365). For electron beams, synchrotron
motion is also damped because of the energy dependence of synchrotron radiation
energy loss. The damping rate is given by TS = 2ETo/JsUo, where E is the energy of
the particle, TQ is the revolution period, the damping partition Js ~ 2, UQ = C1E4/p,
C7 = 8.85 x 10~5 m/(GeV3), and p is the bending radius. Assuming that the growth
rate is equal to the damping rate at equilibrium, find the tolerable impedance as a
function of the machine parameters. Discuss an example of an electron storage ring
at E = 2 GeV.

5. Consider a pillbox-like cavity with length I (see Sec. VII.4). The cavity is filled with
ferrite rings with inner and outer radii a and 6 respectively. Show that the longitudinal

80G.E. Fisher et al, Proc. 12th HEACC, p. 37 (1983); L. Rivkin, et al, Proc. 1988 EPAC, p. 634
(1988); see also P. Krejcik, et a!., Proc. 199S PAC, p. 3240 (1993). The authors of the last paper
observed sawtooth instability at the threshold current JVB=3x 1010.



382 CHAPTER 3. SYNCHROTRON MOTION

impedance for TMoio mode is81

Z1=.ZS_ U'-jy," H^jk^H^jkcb) - H^(kcb)H^(kca)

I J2na\ er H[l\kca)42)(kcb) - H^(kcb)H[2\kca)'

where Hm are Hankel functions which represent incoming and outgoing waves, ZQ =

377fi is the impedance of free space. kc = ui^/JIe = kJer{^i — j ^ " ) , k = ^ = wy'/ioeo

in vacuum, tr is the relative permittivity and fx and n are the real and complex
parts of the relative complex permeability.

81The general formula to calculate the shunt impedance is AV = —IZ\\ — —Esi, where Es is the
longitudinal electric field, I is the total length, and / is obtained by Ampere's law: / = f Hdl =
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VIII Introduction to Linear Accelerators

By definition, any accelerator that accelerates charged particles in a straight line is
a linear accelerator (linac).82 Linacs includes induction linacs; electrostatic accel-
erators such as the Cockcroft-Walton, Van de Graaff and Tandem; radio-frequency
quadrupole (RFQ) linacs; drift-tube linacs (DTL); coupled cavity linacs (CCL); cou-
pled cavity drift-tube linacs (CCDTL); high-energy electron linacs, etc. Modern
linacs, almost exclusively, use rf cavities for particle acceleration in a straight line.
For linacs, important research topics include the design of high gradient acceleration
cavities, control of wakefields, rf power sources, rf superconductivity, and the beam
dynamics of high brightness beams.

Linacs evolved through the development of high power rf sources, rf engineering,
superconductivity, ingenious designs for various accelerating structures, high bright-
ness electron sources, and a better understanding of high intensity beam dynamics.
Since electrons emit synchrotron radiation in synchrotron storage rings, high energy
e+e~ colliders with energies larger than 200 GeV per beam can be attained only by
high energy linacs. Current work on high energy linear colliders is divided into two
camps, one using superconducting cavities and the other using conventional copper
cavities. In conventional cavity design, the choice of rf frequency varies from S band
to millimeter wavelength at 30 GHz in the two beam acceleration scheme. Research
activity in this line is lively, as indicated by bi-annual linac, and annual linear collider
conferences.

Since the beam in a linac is adiabatically damped, an intense electron beam bunch
from a high brightness source will provide a small emittance at high energy. The
linac has also been considered as a candidate for generating coherent synchrotron
light. Many interesting applications will be available if high brilliance photon beam
experiments, such as LCLS, SASE, etc., are successful.

This section provides an introduction to a highly technical and evolving branch of
accelerator physics. In Sec. VIII. 1 we review some historical milestones. In Sec. VIII.2
we discuss fundamental properties of rf cavities. In Sec. VIII.3 we present the general
properties of electromagnetic fields in accelerating cavity structures. In Sec. VIII.4
we address longitudinal particle dynamics and in Sec. VIII.5, transverse particle dy-
namics. Since the field is evolving, many advanced school lectures are available.

VIII. 1 Historical Milestones
In 1924 G. Ising published a first theoretical paper on the acceleration of ions by
applying a time varying electric field to an array of drift tubes via transmission lines;
subsequently, in 1928 R. Wideroe used a 1 MHz, 25 kV rf source to accelerate potas-

82See G.A. Loew and R. Talman, AIP Conf. Proc. 105, 1 (1982); J. Le Duff, CERN 85-19, p. 144
(1985).
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sium ions up to 50 keV.83 The optimal choice of the distance between acceleration
gaps is

d = p\/2 = Pc/2f, (3.379)

where d is the distance between drift tube gaps, pc is the velocity of the particle, and
A and / are the wavelength and frequency of the rf wave. A Wideroe structure is
shown in Fig. 3.37. Note that the drift tube distance could be minimized by using a
high frequency rf source.

In 1931-34 E.O. Lawrence, D. Sloan et al, at U.C. Berkeley, built a Wiederoe
type linac to accelerate Hg ions to 1.26 MeV using an rf frequency of about 7 MHz.84

At the same time (1931-1935) K. Kingdon at the General Electric Company and L.
Snoddy at the University of Virginia, and others, accelerated electrons from 28 keV
to 2.5 MeV.

Figure 3.37: Top:
Wideroe type linac
structure. Bottom:
Alvarez type struc-
ture. An Alvarez cav-
ity has more than 50
cells. Here /3c is the
speed of the accelerat-
ing particle, and X =
2TTC/CJ is the rf wave-
length.

To minimize the length of the drift region, which does not provide particle accel-
eration, a higher frequency rf source is desirable. For example, the velocity of a 1
MeV proton is v = Pc — 4.6 x 10~2c, and the length of drift space in a half cycle at
rf frequency /rf = 7 MHz is \vf^1 « l m . As the energy increases, the drift length
becomes too long. The solution is to use a higher frequency system, which became
available from radar research during WWII. In 1937 the Varian brothers invented
the klystron at Stanford. Similarly, high power magnetrons were developed in Great
Britain.85

83G. Ising, Arkiv fur Matematik o. Fisik 18, 1 (1924); R. Wideroe, Archiv fur Electrotechnik 21,
387 (1928).

84D.H. Sloan and E.O. Lawrence, Phys. Rev. 32, 2021 (1931); D.H. Sloan and W.M. Coate, Phys.
Rev. 46, 539 (1934).

85The power source of present day household microwave ovens is the magnetron.
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However, the accelerator is almost capacitive at high frequency, and it radiates a
large amount of power P = IV, where V is the accelerating voltage, / = OJCV is the
displacement current, C is the capacitance between drift tubes, and w is the angular
frequency. The solution is to enclose the gap between the drift tubes in a cavity that
holds the the electromagnetic energy in the form of a magnetic field by introducing an
inductive load to the system. To attain a high gradient, the cavity must be designed
such that the resonant frequency is equal to the frequency of the accelerating field.

A cavity is a structure in which electromagnetic energy can be resonantly stored.
An acceleration cavity is a structure in which the longitudinal electric field can be
stored at the gap for particle acceleration. A cavity or a series of cavities can be fed
by an rf source, as shown in Fig. 3.38.

Figure 3.38: Left: Schematic of a single gap cavity fed by an rf source. The rf currents are
indicated by j on the cavity wall. Middle: A two-gap cavity operating at vr-mode, where
the electric fields at two gaps have opposite polarity. Right: A two-gap cavity operating at
0-mode, where the electric fields at all gaps have the same polarity. In 0-mode (or 27r-mode)
operation, the rf currents on the common wall cancel, and the wall becomes unnecessary.
The Alvarez structure shown in Fig. 3.37 operates at 0-mode.

When two or more cavity gaps are adjacent to each other, the cavity can be
operated at 7r-mode or 0-mode, as shown in Fig. 3.38. In 0-mode, the resulting
current is zero at the common wall so that the common wall is useless. Thus a group
of drift tubes can be placed in a single resonant tank, where the field has the same
phase in all gaps.86 Such a structure (Fig. 3.37) was invented by L. Alvarez in 1945.87

In 1945-47 L. Alvarez, W.K.H. Panofsky, et al, built a 32 MeV, 200 MHz proton drift
tube linac (DTL). Drift tubes in the Alvarez structure are in one large cylindrical tank
and powered at the same phase. The distances between the drift tubes, d = /3A,88 are
arranged so that the particles, when they are in the decelerating phase, are shielded

86This is the TMOio mode to be discussed in Sec. VIII.3.
87L. Alvarez, Phys. Rev. 70, 799 (1946).
88It appears that the distance between drift tubes for an Alvarez linac is twice that of a Wideroe

linac, and thus less efficient. However, the use of a high frequency rf system in a resonance-cavity
more than compensates the requirement of a longer distance between drift tubes.
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from the fields.
In 1945 E.M. McMillan and V.I. Veksler discovered the phase focusing principle,

and in 1952 J. Blewett invented electric quadrupoles for transverse focusing based
on the alternating gradient focusing principle. These discoveries solved the 3D beam
stability problem, at least for low intensity beams. Since then, Alvarez linacs has
commonly been used to accelerate protons and ions up to 50-200 MeV kinetic energy.

In the ultra relativistic regime with /3 —> 1, cavities designed for high frequency
operation are usually used to achieve a high accelerating field.89 At high frequencies,
the klystron, invented in 1937, becomes a powerful rf power source. In 1947-48 W.
Hansen et al., at Stanford, built the MARK-I disk loaded linac yielding 4.5 MeV
electrons in a 9 ft structure powered by a 0.75 MW, 2.856 GHz magnetron.90 On
September 9, 1967, the linac at Stanford Linear Accelerator Center (SLAC) accel-
erated electrons to energies of 20 GeV. In 1973 P. Wilson, D. Farkas, and H. Hogg,
at SLAC, invented the rf energy compression scheme SLED (SLAC Energy Devel-
opment) that provided the rf source for the SLAC linac to reach 30 GeV. In 1990's,
SLAC has achieved 50 GeV in the 3 km linac.

Another important idea in high energy particle acceleration is acceleration by trav-
eling waves.91 The standing wave cavity in a resonant structure can be decomposed
into two traveling waves: one that travels in synchronism with the particle, and the
backward wave that has no net effect on the particle. Thus the shunt impedance of a
traveling wave structure is twice that of a standing wave structure except at the phase
advances 0 or TT. TO regain the factor of two in the shunt impedance for standing
wave operation, E. Knapp and D. Nagle invented the side coupled cavity in 1964.92

In 1972 E. Knapp et al. successfully operated the 800 MHz side coupled cavity linac
(CCL) to produce 800 MeV energy at Los Alamos. In 1994 the last three tanks of
the DTL linac at Fermilab were replaced by CCL to upgrade its proton energy to
400 MeV. Above j3 > 0.3, CCL has been widely used for proton beam acceleration.
A combination of CCL with DTL produces the CCDTL structure suitable for high
gradient proton acceleration.

For the acceleration of ions, the Alvarez linac is efficient for /3 > 0.04. The
acceleration of low energy protons and ions relies on DC accelerators such as the

89The linacs designed for relativistic particles are usually called high-/) linacs even though the
maximum f) is 1.

90E.L. Ginzton, W.W. Hanson and W.R. Kennedy, Rev. Sci. lustrum. 19, 89 (1948); W.W.
Hansen et al, Rev. Sci. lustrum. 26, 134 (1955).

91J.W. Beams at the University of Virginia in 1934 experimented with a traveling-wave acceler-
ator for electrons using transmission lines of different lengths attached to a linear array of tubular
electrodes and fed with potential surges generated by a capacitor-spark gap circuit, similar to the
system proposed by Ising. Burst of electrons were occasionally accelerated to 1.3 MeV. See J.W.
Beams and L.B. Snoddy, Phys. Rev. 44, 784 (1933); J.W. Beams and H. Trotter, Jr., Phys. Rev.,
45,849 (1934).

92E. Knapp et al., Proc. 1966 linac Con}., p. 83 (1966).
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Cockcroft-Walton or Van de Graaff. In 1970 I. Kapchinskij and V. Teplyakov at
ITEP Moscow invented the radio-frequency quadrupole (RFQ) accelerator. In 1980
R. Stokes et al. at Los Alamos succeeded in building an RFQ to accelerate protons
to 3 MeV. Today RFQ is commonly used to accelerate protons and ions for injection
into linacs or synchrotrons.

Since the first experiment on a superconducting linear accelerator at SLAC in
1965, the superconducting (SC) cavity has become a major branch of accelerator
physics research. In the 1970's, many SC post linear accelerators were constructed
for the study of heavy ion collisions in nuclear physics.93 Recently, more than 180 m
of superconducting cavities have been installed in CEBAF for the 4 GeV continuous
electron beams used in nuclear physics research. More than 400 m of SC cavities at
about 7 MV/m were installed in LEP energy upgrade, and reached 3.6 GV rf voltage
for the operation of 104.5 GeV per beam in 2000.94 The TESLA project had also
successfully achieved an acceleration gradient of 35 MV/m.

VIII.2 Fundamental Properties of Accelerating Structures
Fundamental properties of all accelerating structures are the transit time factor, shunt
impedance, and Q-value. These quantities are discussed below.

A. Transit time factor

We consider a standing wave accelerating gap, e.g. the Alvarez structure, and assume
that the electric field in the gap is independent of the longitudinal coordinate s. If £
is the maximum electric field at the acceleration gap, the accelerating field is

Es=£ cos Lot. (3.380)

The total energy gain in traversing the accelerating gap is

AE = ejii£ cos f ds = e£gTtr = eV0, Ttr = ^ ^ , (3.381)

where Vo = £gTtv is the effective voltage of the gap, Ttr is the transit time factor,
A = 2TTC/CJ is the rf wavelength, and wg/PA is the rf phase shift across the gap. If the
gap length of a standing wave structure is equal to the drift tube length, i.e. g = /3A/2,
the transit time factor is Ttr = sin(7r/2)/(7r/2) = 0.637. This means that only 63%
of the rf voltage is used for particle acceleration. To improve the efficiency, the gap
length g should be reduced. However, a small g can lead to sparking at the gap. Since

93See e.g., H. Piel, CERN 87-03, p. 376 (1987); CERN 89-04, p. 149 (1994), and references
therein. The geometries of these low energy SC cavities are essentially the drift tube type operating
at A/4 or A/2 modes.

94P. Brown et al, Proceedings of PAC2001, p. 1059 (IEEE, 2001).
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there is relatively little gain for g < /JA/4, the gap g is designed to optimize linac
performance. The overall transit time factor for standing wave structures in DTL is
about 0.8.

It is worth pointing out that the transit time factor of Eq. (3.381) is valid only
for the standing wave structure. The transit time factor for particle acceleration by
a guided wave differs from that of Eq. (3.381). An example is illustrated in Exercise
3.8.7.

B. Shunt impedance

Neglecting power loss to the transmission line and reflections between the source
and the cavity, electromagnetic energy is consumed in the cavity wall and beam
acceleration. The shunt impedance for an rf cavity is defined as

Rsh = V02/Pd, (3.382)

where Vo is the effective acceleration voltage, and P<j is the dissipated power. For a
multi-cell cavity structure, it is also convenient to define the shunt impedance per
unit length rSh as

r . - ^ - ^ - « £--*, (3.383,
•^cav -Td/^cav US rsb

where £ is the effective longitudinal electric field that includes the transit time factor,
and dP<i/ds is the fraction of input power loss per unit length in the wall. The power
per unit length needed to maintain an accelerating field £ is P^/L = £2/rs^ and the
accelerating gradient for low beam intensity is £ = yrShPd/£cav

For a 200 MHz proton linac, we normally have rsj, ~ 15 — 50 Mfi/m, depending on
the transit time factors. For an electron linac at 3 GHz, rsh « 100 Mfi/m. For high
frequency cavities, the shunt impedance is generally proportional to a;1/2 (see Exercise
3.8.4). A high shunt impedance with low surface fields is an important guideline in
rf cavity design. For example, using a 50 MW high peak power pulsed klystron, the
accelerating gradient of a 3 GHz cavity can be as high as 70 MV/m. The working
SLC S-band accelerating structure delivers about 20 MV/m.95

C. The quality factor Q

The quality factor is defined by Q = oj\Vst/Pd, and thus we obtain

dWJdt = -Pd = -LJWJQ, (3.384)

95P. Raimondi, et al, Proceedings of the EPAC2000, (EPAC, 2000).
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where Wst is the maximum stored energy. In general, the Q-factor of an accelerating
structure is independent of whether it operates in standing wave or traveling wave
modes.

For standing wave operation, the time for the field to decay to 1/e of its initial
value is called the filling time of a standing wave cavity,

<F,SW = 2QL/o;, (3.385)

where QL is the loaded Q-factor that includes the resistance of the power source.
For a traveling wave structure, we define the stored energy per unit length as

Wst = Wst/Lcav,

and the power loss per unit length becomes

dPd wwst uwst ,
~di = - ^ ' o r Q = -dPjdS- ( 3 3 8 6 )

The filling time for a traveling wave structure is96

*F,tw = -kcav/^g, (3.387)

where Lcav is the length of the cavity structure and v% is the velocity of the energy
flow. A useful quantity is the ratio Rsh/Q'-

Q ^ ' Q u(Wst/Lcm) uwst- (6-6m)

which depends only on the cavity geometry and is independent of the wall material,
welds, etc.

VIII.3 Particle Acceleration by EM Waves

Charged particles gain or lose energy when the velocity is parallel to the electric
field. A particle traveling in the same direction as the plane electromagnetic (EM)
wave will not gain energy because the electric field is perpendicular to the particle
velocity. On the other hand, if a particle moves along a path that is not parallel
to the direction of an EM wave, it can gain energy. However, it will quickly pass
through the wave propagation region unless a wiggler field is employed to bend back
the particle velocity vector.97 Alternatively, a wave guide designed to provide electric

96We will show that the velocity of the energy flow is equal to the group velocity, vt = Pd/wst.
The conventional definition of standing wave filling time in Eq. (3.385) is twice that of the traveling
wave in Eq. (3.387).

97This scheme includes inverse free electron laser acceleration and inverse Cerenkov acceleration.
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field along the particle trajectory at a phase velocity equal to the particle velocity is
the basic design principle of rf cavities.

In general, rf cavities for particle acceleration can be operated in standing wave or
traveling wave modes.98 Standing wave cavities operating at steady state are usually
used in synchrotrons and storage rings for beam acceleration or energy compensation
of synchrotron radiation energy loss. The standing wave can also accelerate oppositely
charged beams traveling in opposite directions. Its high duty factor can be used to
accelerate long pulsed beams such as protons, and continuous wave (CW) electron
beams in the Continuous Electron Beam Accelerator Facility (CEBAF). On the other
hand, employing high power pulsed rf sources, a traveling wave structure can attain
a very high gradient for the acceleration of an intense electron beam pulse.

In this section we study the properties of electromagnetic waves in cavities. These
waves are classified into transverse magnetic (TM) or transverse electric (TE) modes.
The phase velocity of the EM waves can be slowed down by capacitive or inductive
loading. We will discuss the choice of standing wave vs traveling wave operation, the
effect of shunt impedance, and the coupled cavity linac.

A. EM waves in a cylindrical wave guide

First we consider the propagation of EM waves in a cylindrical wave guide. Since
there is no ends for the cylindrical wave guide, the EM fields can be described by the
traveling wave component in Eq. (3.282) in Sec. VI.1 (see Appendix B Sec. V). The
EM fields of the lowest frequency TMoi mode, traveling in the +s direction, are

Es = EoMkTr)e-X'a-ut\

Er = j^£oJi(fc r r)e-*s-w t l , (3.389)
Kr

E# = 0, Hs = 0, Hr = 0,

where ZQ = y/zoAo is the vacuum impedance, (r, <j>) is the cylindrical coordinate, s
is the longitudinal coordinate, k is the propagation wave number in the +s direction,
and

k2 = {u/cf - k2T . (3.390)

The propagation modes are determined by the boundary condition for Es = E$ = 0
. at the pipe radius r = b, i.e.

Kmn = jmn/b, (3.391)

where j m n are zeros of the Bessel functions Jm(jmn) = 0 listed in Table V.2 in Ap-
pendix B Sec. V.

98See G.A. Loew, R.H. Miller, R.A. Early, and K.L. Bane, Proc. 1979 Part. Ace. Con}., p. 3701
(IEEE, 1979); R.H. Miller, SLAC-PUB-3935 (1988); see also Exercise 3.8.7.
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Figure 3.39: Left: Schematic of a cylindrical cavity. Right: Dispersion curve (w/c)2 =
fc2 + (2.405/b)2 for the TMoi wave. The phase velocity u/k for a wave without cavity load
is always greater than the velocity of light. At high frequencies, where kT -> 0, the phase
velocity approaches the speed of light. However, the longitudinal component of the EM
wave vanishes.

Thus the frequency of the TMoi mode is

LJ/C = \Jk2 + (2.405/6)2,

shown in Fig. 3.39. The subscript 01 stands for m = 0 in ^-variation, 1 radial-node
at the boundary of the cylinder [see Eq. (3.282)]. This mode is a free propagation
mode along the longitudinal s direction. We define wc = krc = 2.405c/6. The wave
number of the TMOi wave and the corresponding phase velocity vp become

k = ^\l- p ) 2 l V2 , v, = £ = , , C. .211/2 > c. (3.392)
c [ \OJ J \ v k [ 1 - (LJC/LO)2]1/2

Unattenuated wave propagation at ui < uoc is not possible. Since the phase velocity
propagates faster than the speed of light, the particle can not be synchronized with
the EM wave during acceleration. At low frequency, the wave travels forward and
backward with a very large phase velocity; it is not useful for particle acceleration.
At high frequency, the phase velocity approaches c. However, the electromagnetic
field is transverse; it becomes the transverse TEM wave, i.e.

ET J k ' ET ckZ0 Zo'

B. Phase velocity and group velocity

Equation (3.389) represents an infinitely long pulse of EM waves in the cylindrical
wave guide. The phase of the plane wave, ks — cut, travels at a phase velocity of
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vp = ds/dt = uj/k. In reality, we have to discuss a short pulse formed by a group
of EM waves. Since the Maxwell equation is linear, the pulse can be decomposed in
linear superposition of Fourier series.

For a quasi-monochromatic pulse at frequency w0 in free space, the electric field
can be represented by

E(t, s) = A{t)e^at-k^ = 7^fJ AiOeJ^-^-^+^dtdu, (3.393)

where A(t) is the amplitude with a short time duration. The propagation of the pulse
inside a wave guide becomes

E(t, s) = ̂ ff A(OeJ'[llrt-*(w)-tte+wo41dedw, (3-394)

where the dispersion of the wave number of Eq. (3.390) has been included. For a
quasi-monochromatic wave at the angular frequency CJ0, we expand the dispersion
wave number around Wo:

k{u) = k(u0) + — {ui-Ljo) = ko + k'(uj-uJo). (3.395)

aw

Substituting Eq. (3.395) into Eq. (3.394), we obtain

E(t) = A(t - k's) ejiuot-kas\ (3.396)
Note that the phase of the pulse propagates at a "phase velocity" of vp = uo/ko, and
the amplitude function of the EM pulse propagates at the "group velocity"

*-F-S| • < 3 3 9 7 >
wo

Using Eq. (3.392) for single-mode wave propagation, we obtain vg = kc2/uj, or vpvg =
c2. From Fig. 3.39 we see that the group velocity is zero at k = 0.

In fact, the group velocity is equal to the velocity of energy flow in the wave guide.
The power of the TM wave is

P=\te[ ErH;dS = \El^~ f J!(krr)2nrdr, (3.398)
2 Js 2 CZQK^ JO

where H^ is the complex conjugate of H^, and the total energy per unit length stored
is

W = 2Wm = \E20J^-2 fQ J?(krr)2irrdr, (3.399)

where Wm is the magnetic energy. The velocity of the energy flow is

v* = w = tc2=v*- (3-400)
Thus the velocity of energy flow is equal to the group velocity.
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C. TM modes in a cylindrical pillbox cavity

Now we consider a cylindrical pillbox cavity, where both ends of the cylinder are nearly
closed. The cylinder has a beam hole for the passage of particle beams (Fig. 3.40}.
Here we discuss the standing wave solution of Maxwell's equation for a "closed pillbox
cavity," and the effect of beam holes. The effect of a chain of cylindrical cells on the
propagation of EM waves is discussed in the next section.

Figure 3.40: Left: Schematic of a cylindrical cavity. Right: Dispersion curve (w/c)2 =
(pir/d)2 + (2.405/6)2 for TMoip resonance waves (marked as circles) for a closed cylindrical
pillbox without beam holes. With proper design of pillbox geometry, the phase velocity of
the TMoio mode can be slowed to the particle speed for beam acceleration.

We first discuss the standing wave solution of a closed pillbox cavity without beam
holes. With a time dependent factor e7'"'*, the TM mode solution of Eq. (3.282) in
the closed cylindrical pillbox cavity is reproduced as follows:

( Es = Ck2r Jm{kTr) cosm<j>cos ks, ( Hs = 0,

ET = -CkK J'm{krr) cos m0 sin ks, J Hr = -jC^^- Jm{krr) sin m0 cos ks,
1 I T

E,p = Cnk -Jm(krr) sinm<f>sinks, [ # 0 = -jCu>eokr J'm{krr) cos mcj) cos ks,
where the longitudinal magnetic field is zero for TM modes, u is the angular frequency,
and kr and k are wave numbers of the radial and longitudinal modes. The dispersion
relation is UJ/C = ^Jk? + k2. Similarly, there are also TE modes where the longitudinal
electric field is zero.

Using the boundary conditions that Er = 0 and E$ = 0 at s = 0 and d, we obtain
k d = PTT, p = 0 , 1 , 2 , • • • , (3.401)

where d is the length of the pillbox, and kd is the phase advance of the EM wave in
the cavity cell. Using the boundary conditions Es = 0 and E^ = 0 at the pipe radius
r = b, we obtain

kr,mnb = jmn, (3.402)
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where b is the inner radius of the cylinder, and j m n are zeros of the Bessel functions
JmUmn) = 0 listed in Table V.2 (Appendix B Sec. V).

Thus the resonance frequency w for the TMmnp mode is

For the lowest mode, TMolo, we have

Es = EoJo{krr), B^^j^-Jx{kTr), (3.404)

where LO/C = 2.405/6. The circles in Fig. 3.40 (right) show the discrete mode fre-
quencies of TMOIO and TM0U on the dispersion curve. Both these modes have phase
velocities greater than c.

To lower the phase velocity, beam hole radius a and cylinder radius 6 are tailored to
provide matched phase advance kd and phase velocity cj/k for the structure. Analytic
solution of Maxwell's equations for an actual cavity geometry is difficult. The EM
wave modes can be calculated by finite element or finite difference EM codes with a
periodic boundary (resonance) condition and a prescribed phase advance kd across
the cavity gap.

The solid lines in Fig. 3.41 are the dispersion curves of frequency / vs phase shift
kd for TMOnp modes of a SLAC-like pillbox cavity with a = 18 mm, b = 43 mm,
and d = 34.99 mm." Because of the coupling between adjacent pillbox-cavities, the
discrete mode frequencies become a continuous function of the phase advance kd, and
the phase-velocity is effectively lowered. The dashed lines show the world line vp = c.
The details of the TMOio mode are shown in the right plot. At / = 2.856 GHz, the
phase shift per cell is about 120°, and the phase velocity vp is equal to c.

The frequencies of the TM modes 010, 011, 020, 021, 030 for a closed cylindrical
pillbox are shown as circles in the left plot of Fig. 3.41. Increasing the size of the beam
hole decreases the coupling capacitance and increases the TMOio mode frequency.
More importantly, it provides a continuous TM mode frequency as a function of
wave number k. When the beam hole radius decreases, all mode frequencies become
horizontal lines. When the beam hole is completely closed, the mode frequencies
become discrete points, the circles in the left plot of Fig. 3.41.

Table 3.9 shows parametric dependence of a SLAC-like pillbox cavity at / = 2.856
GHz. Note that the shunt impedance per unit length is maximum at a phase advance

" T h e calculation was done by Dr. D. Li using MAFIA in 2D monopole mode. The wall thickness
chosen was 6.027 mm. The wall thickness slightly influences the mode frequencies of TMOni modes,
where the effective d parameter is reduced for a single cell structure. The actual SLAC structure
is a constant gradient structure with frequency of / = 2.856 GHz, phase advance of 2TT/3, length
of the structure of L = 3.05 m, inner diameter of 26 = 83.461 — 81.793 mm, disk diameter of
2a = 26.22 - 19.24 mm, and disk thickness of 5.842 mm. See also C.J. Karzmark, Xraig S. Nunan,
and Eiji Tanabe, Medical Electron Accelerators, (McGraw-Hill, New York, 1993).
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Figure 3.41: Left: Dispersion curves, / vs kd, for TMoip modes for a pillbox cavity with
a = 18 mm, 6 = 43 mm, and d = 34.99 mm. Circles show the TMonp mode frequencies
for a closed pillbox cavity. The dashed lines show the world line vp = c. Right: Dispersion
curve of TMoio mode.

Table 3.9: Parametric dependence of the SLAC cavity geometry
T(mm) I d (mm) I kd (deg) | / (GHz) I R& (10Bfl) I Q I rsh (10sfVnTr

42.475 17.495 60 2.8579 0.5107 7713 29.2
42.000 26.24 90 2.853 1.2 10947 45.73
41.805 30.616 105 2.857 1.559 12413 50.92
41.685 34.99 120 2.854 1.874 13700 53.56
41.580 39.36 135 2.857 2.14 14848 54.37
41.415 46.653 160 2.857 2.416 16507 51.79
41.290 [ 52.485 | 180 [ 2.857 | 2.466 | 17646 | 46.98

of about 135°. The phase advance per cell at a given frequency is mainly determined
by the cell length.

D. Alvarez structure

The Alvarez linac cavity resembles the TMOio standing wave mode (see Table 3.10).
The tank radius and other coupling structures, such as rods and slugs inside the
cavity, are designed to obtain a proper resonance frequency for the TMOio mode, and
thus we have b « 2.405c/w. The resulting electric field of Eq. (3.404) is independent
of s. The total length is designed to have a distance /3\ between two adjacent drift
tubes (cells), where fie is the speed of the accelerating particles. Since fi increases
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along the line, the distance between drift tubes increases as well. Table 3.10 shows
some properties of an Alvarez linac, the SLAC cavity, and the CEBAF cavity.

Table 3.10: Some parameters of basic cylindrical cavity cells
Machine I / (MHz) I b (cm) I d (cm) I JVcen I £ (MV/m)
Alvarez linac 201.25 57.0 EiftA
Fermilab (cavity 1) 47 744 55 1.60
Fermilab (cavity2) 45 1902 59 2J)_
CEBAF SC cavity 1497 7.66 10. 5 5 - 1 0
SLAC linac | 2856 | 4.2 | 3.5 [ « 100 [ 20_

E. Loaded wave guide chain and the space harmonics

In previous subsections, we find that the dispersion curve of a closed cylindrical
pillbox cavity resembles that of a cylindrical wave guide except that there are infinite
numbers of discrete resonance frequencies. Opening a beam hole at the center of the
cavity is equivalent to a capacitive loading for attaining continuous bands of resonance
frequencies. Figure 3.41 shows, as an example, frequency / vs phase advance kd of
the loaded SLAC-like pillbox cavity. Loaded cavity cells can be joined together to
form a cavity module. The question is, what happens to the EM wave in a chain of
cavity cells?

If the wave guide is loaded with wave reflecting structures such as iris, nose-
cone, etc., shown in Fig. 3.42 (top), the propagating EM waves can be reflected by
obstruction disks. The reflected waves for a band of frequencies interfere destructively
so that there is no radial field at the irises. Since the irises play no role in wave
propagation, this gives rise to a minor perturbation in the propagating wave. The
dispersion relation in this case resembles that in Fig. 3.39. At some frequencies the
reflected waves from successive irises are exactly in phase so that the irises force a
standing wave pattern. At these frequencies, unattenuated propagation is impossible,
so that the EM wave becomes a standing wave and the group velocity again becomes
zero, i.e. the phase advance kd = n. Such a chain of loaded wave guides can be used
to slow the phase velocity of EM waves.

For particle beam acceleration, we consider the TM guided wave, where .E-field
is in the direction of beam momentum. We observed in Sec. D that the propagating
wave in an unloaded cylindrical wave guide has phase velocity vp > c. The phase
velocity must be brought to the level of the particle velocity, i.e. vp w c. A simple
method of reducing the phase velocity is to load the structure with disks, or washers.
Figure 3.42 shows a slow wave structure. The size of the beam hole determines the
degree of coupling and the phase shift from one cavity to the next. When the a, b
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Figure 3.42: Top: Schematic of a chain
of cylindrical cavities. Bottom: Disper-
sion curve (tu/c) vs k. The phase veloc-
ity ui/k with a cavity load is equal to the
speed of light at a specific point of the
dispersion curve, shown as the intersec-
tion of the dashed diagonal line and the
solid dispersion curve. The solid line
branches correspond to forward travel-
ing waves and the dashed line branches
are associated with backward traveling
waves. The q = 0 space harmonic cor-
responds to kd £ (—IT, 7r), and the q = 1
space harmonic to kd £ (TT, 37T), etc.

parameters of the disk radii are tailored correctly, the phase change from cavity to
cavity along the accelerator gives an overall phase velocity that is equal to the particle
velocity.

The EM wave of an infinitely long disk loaded wave guide is

Es(r, <j>, s,t) = e-^s-^Es(r, <l>, s), #,(r, 0, a,t) = e'^-^H^r, 4>, s). (3.405)

With the Floquet theorem for the periodic wave guide:

Es{r,<f>,s + d) = E3{r,<t>,s), H^(r,cj>,S + d) = H^(r,^s), (3.406)

where d is the period of the wave guide, the electromagnetic field can be expanded
in Fourier series (or Floquet series), i.e.

Es(r,J>,s,t) = e-Xk°s-^ g Es,q{r,<j>)e-^s'd = e^1 £ £ s »)e -^ s , (3 .407)
q=—oo g=—oo

where
27rg

kq = ko + —, (q = integer)

is the propagation wave number for the gth "space harmonic," and feo is the propaga-
tion factor of the "fundamental space harmonic." These space harmonics are shown
in Fig. 3.42. We note further that as kod —> 0 or TT, forward and backward traveling
branches coincide and they will contribute to enhance the electric field.

The field components of the lowest TMOn mode with cylindrical symmetry become

Es = ^EOgJo(kriqr)e-^s-wt\ (3.408)

&r = iEr£o,Ji(^/)e"3hs-ul1, (3.409)
q Kr,q

V* = J^E^EoMkr^e-^-^, (3.410)
•^0 q &r,q
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with
k\ = (o,/c)2 - A*,. (3.411)

At a given frequency w, the phase velocity is

vpq = -r = -, — n . (3.412)
p>* kq ko + 2irq/d K '

Note that kr>q = 0 and Jo(kr^r) = 1 for up>9 = c. This indicates that the electric field
of the qth space harmonic is independent of the transverse position.100

The dispersion curve of a periodic loaded wave-guide structure (or slow wave
structure) is a typical Brillouin-like diagram shown in Fig. 3.42, where the branches
with solid lines correspond to forward traveling wave, and the branches with dashed
dots are backward traveling wave. Because the dispersion curve is a simple translation
of 2ir/d, and these curves must join, they must have zero slope at the lower frequency
u>o/c, where kod = 0, and at the upper frequency uv/c, where kod = TT (see also
Fig. 3.41). The range of frequencies [u>o, ww] is called the pass band, or the propagation
band. The extreme of the pass band is

kod = 7T, (3.413)

where the group velocity is zero. At kod = ir, the cavity has lowest rf loss,101 making
this a favorable mode of operation for accelerator modules.

The electric field at a snapshot is shown schematically in Fig. 3.43. At an instant
of time, it represents a traveling wave or the maximum of a standing wave. The upper
plot shows the snapshot of an electromagnetic wave. The lengths of kd — n, 2TT/3,

and TT/2 cavities are also shown. The arrows indicate the maximum electric field
directions. The lower plot shows a similar snapshot for kd = 0, TT/2, 27r/3 and n
cavities.

The condition for wave propagation is

- 1 < cos kod < 1. (3.414)

If we draw a horizontal line in the dispersion curve within the pass band of the
frequency, there are infinite numbers of crossings between the horizontal line and the
dispersion curve. These crossings are separated into space harmonics. Higher order
space harmonics have no effect on a beam because they have very different phase
velocity. Each point corresponds to the propagation factor kq, which has an identical
slope in the u>/c vs k curve, i.e. an identical group velocity:

doj duj

^ = dk~g = Ik, = V'- ( 3 -4 1 5 )

100 One may wonder how to reconcile the fact t ha t the tangential electric field component Es must
be zero at r = b. The s ta tement tha t the electric field is independent of transverse position is valid
only near the center axis of loaded wave-guide structures.

101 The rf loss is proportional to \H$\2 on the cavity wall.
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Figure 3.43: Top: Snapshot of a si-
nusoidal wave. The phase advances
kd = 7r/2,27r/3, and -K are shown.
Bottom: Snapshot at the maximum
electric field configuration across
each cell for kd = 0, n/2, 2TT/3, and
•K phase shift structures. The actual
electromagnetic fields must satisfy
the periodic boundary conditions.
The snapshot represents the field
pattern of a traveling wave guide
or the maximum field pattern of a
standing wave. Note that only half
of the kd = TT/2 mode has longi-
tudinal electric field in the stand-
ing wave mode. The resulting shunt
impedance is half of that in travel-
ing wave operation.

A module made of N cells resembles a chain of N weakly coupled oscillators.
There are N + 1 resonances located at

kOmd = miT/N {m = 0,1,2, • • •, N). (3.416)

In the coupled RLC circuit model, the resonance frequency of the electric coupled
cavity is102

wm = u)0[l + «(1 - cos k0md)]l/2 , (3.417)

where Wo is the resonance frequency without beam hole coupling, and K is the cou-
pling coefficient. The resonance frequency can be more accurately calculated from
powerful finite difference, or finite element, programs such as 2D URMEL, SUPER-
FISH, LALA, and 3D MAFIA. The size and the length of cavity cells are also tailored
to actual rf sources for optimization.

The operating condition vp = c is equivalent to

kg = u>/c, or krfi = 0

for the fundamental space harmonic [see Eq. (3.411)]. Since Jo(kTfir) = 1, the energy
gain of a charged particle is independent of its transverse position, i.e. the longitudinal
electric field of the fundamental space harmonic is independent of the radial position
within the radius of the iris. This implies that the transverse force on the particle
vanishes as well (see Sec. VIII.5).

102See Exercise 3.8.6. For magnetically coupled cavity, the resonance frequency is given by o>o =
U[1 + K(1 -COSM)] 1 / 2 •
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F. Standing wave, traveling wave, and coupled cavity linacs

We have shown that the Alvarez linac operates at the standing wave TMOio mode,
with drift tubes used to shield the electric field at the decelerating phase. The effective
acceleration gradient is reduced by the transit time factor and the time the particle
spends inside the drift tube.

On the other hand, a wave guide accelerator, where the phase velocity is equal to
the particle velocity, can effectively accelerate particles in its entire length. A wave
guide accelerator is usually more effective if the particle velocity is high. There are
two ways to operate high-/? cavities: standing wave or traveling wave.

The filling time of a standing wave structure is a few times the cavity filling time
2QL/W, where QL is the loaded Q-factor, to allow time to build up its electric field
strength for beam acceleration. Standing wave cavities are usually used to accelerate
CW beams, e.g. the CEBAF rf cavity at the Jefferson Laboratory (see Table 3.10),
and long pulse beams, e.g. in the proton linacs and storage rings. In a storage ring, a
standing wave can be used to accelerate beams of oppositely charged particles moving
in opposite directions.

Standing wave operation of a module made of many cells may have a serious
problem of many nearby resonances. For example, if a cavity has 50 cells, it can have
standing waves at

I.A 4 9 4 8

^ = 7 r ' 5 0 ? r ' 5 0 7 r ' - - -
Since du/dk — 0 for a standing wave at fed = 0 or n, these resonances are located
in a very narrow range of frequency. A small shift of rf frequency will lead to a
different standing wave mode. This problem can be minimized if the standing wave
operates at the kd = n/2 condition, where dui/dk has its highest value. However, the
shunt impedance in kd = TT/2 mode operation is reduced by a factor of 2, because
only half of the cavity cells are used for particle acceleration. Similarly, the forward
traveling wave component of a standing wave can accelerate particles, the resulting
shunt impedance is 1/2 of that of a traveling wave structure except for the phase
advance kd = 0 or n (see Fig. 3.44).

Since every other cavity cell has no electric fields in kd — TT/2 standing wave
operation, these empty cells can be shortened or moved outside. This led to the
invention of the coupled cavity linac (CCL) by E. Knapp and D. Nagle in 1964. The
idea is schematically shown in Fig. 3.45. The CCL cavities operate at TT/2 mode,
where field free cells are located outside the main cavity cells. These field free cells
are coupled to the main accelerating cavity in the high magnetic field region. The
electric field pattern of the main accelerating cavity cells looks like that of a w-mode
cavity. Such a design regains the other half of the shunt impedance and provides very
efficient proton beam acceleration for /? > 0.3.

The high-/5 linac can also be operated as a traveling wave guide. There are divided
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Figure 3.44: In general, a stand-
ing wave (left) can be decomposed
into forward and backward travel-
ing waves (right). Since only the
forward traveling wave can acceler-
ate the beam, the shunt impedance
is 1/2 of that of the traveling wave
structure except for kd = 0 and
7T standing wave modes, where two
neighboring space harmonics con-
tribute to regain the factor of two in
the shunt impedance. Note that the
particle riding on top of the right-
going wave that has the phase ve-
locity equal to the particle velocity
will receive energy gain

Figure 3.45: A schematic drawing
of the 7r/2 phase shift cavity struc-
ture (top), where the field free re-
gions are shortened (middle), and
moved outside to become a coupled
cavity structure (bottom).

into "constant gradient" and "constant impedance" structures (see Exercise 3.8.8).
The accelerating cavities of a constant impedance structure are identical and the
power attenuation along the linac is held constant. On the other hand, the geometry
of accelerating cavities of a constant gradient structure are tapered to maintain a
constant accelerating field along the linac. The filling time for a traveling wave guide
is Lcav/vg, where Lcav is the length of a cavity and vg is the group velocity. Typical
group velocity is about 0.05c. Table 3.10 lists the properties of SLAC linac cavity,
that is a constant gradient structure operating at a phase advance of 2TT/3. With a
high peak power rf source, a traveling wave cavity can provide a high acceleration
gradient for intense electron beams.
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G. HOMs

So far we have discussed only the fundamental mode of a cavity. In reality, higher
order modes (HOMs) can be equally important in cavity design. Efforts are being
made to design or invent new cavity geometries with damped HOMs or detuned and
damped HOMs. Such efforts are instrumental for future linear colliders operating at
high frequencies.

These HOMs, particularly TMnp-like modes, can affect the threshold current of a
linac. When a beam is accelerated in cavities, it also generates long range and short
range wakefields. A long range wake can affect trailing bunches, and a short range
wake can cause a bunch tail to break up. These instabilities are called BBU (beam
break up, or beam blow up) instabilities, observed first in 1957.103 The BBU is a
transverse instability. Its threshold current can be increased by a quadrupole focusing
system. It also depends strongly on the misalignment of accelerating structure and
rf noise. Operation of the SLAC linac provides valuable information on transverse
instability of intense linac beams.104

VIII.4 Longitudinal Particle Dynamics in a Linac

Phase focusing of charged particles by a sinusoidal rf wave is the essential core of
longitudinal stability in a linac. Let ts, >̂s and Ws be the time, rf phase, and energy
of a synchronous particle, and let t, ip, and W be the corresponding physical quantities
for a non-synchronous particle. We define the synchrotron phase space coordinates
as

At = t-ta, Arp = tp-ipa=uj{t-ta), AW = W-WS. (3.418)

The accelerating electric field is

£ = £0 sin u>t = £Q sin{ips + Atp), (3.419)

where the coordinate s is chosen to coincide with the proper rf phase coordinate. The
change of the phase coordinate is

where v = ds/dt and vs = ds/dts are the velocities of a particle and a synchronous
particle, and the subscript s is used for physical quantities associated with a syn-
chronous particle. This equation is in fact identical to Eq. (3.21), where u)/fisc is
equivalent to the harmonic number per unit length, AW//3%E is the fractional mo-
mentum spread, and —l/ja is the equivalent phase slip factor. Since the momentum
compaction in a linac is zero, the beam in a linac is always below transition energy.

103T.R. Jarvis, G. Saxon, and M.C. Crowley-Milling, IEEE Trans. Nucl. Sci. NS-112, 9 (1965).
104See J.T. Seeman, p. 255 in Ref. [15].
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The energy gain from rf accelerating electric fields is105

dAW
— ; — = e£0 [sin(V>8 + Aip) - sink's] « e£0 cos V>s A^>. (3.421)

as
The Hamiltonian for the synchrotron motion becomes

H = - " JAW)2 + e£0 [cos(^s + AV>) + A^sinVs]. (3.422)
2mcr)pJ7J

Hereafter, /3S and 7S are replaced by /? and 7 for simplicity. The linearized synchrotron
equation of motion is simple harmonic,

f ^ = -k%nAW, (3.423)

where the wave number of the synchrotron motion is

le£0u)cosips
ksyn = \ , „ , „ • (3.424)

Since fcsyn ~ 1/I /T5 , the wave number of synchrotron motion becomes very small for
high energy electrons. The beam moves rigidly in high energy electron linacs. Thus
the synchronous phase angle is normally chosen as (f>s = | , i.e. electron bunches are
riding on top of the crest of the rf wave. The beam will get the maximum acceleration
and a minimum energy spread.

In contrast to synchrotrons, the linac usually do not have repetitive periodic struc-
tures, the concept of synchrotron tune is not necessary. However, if there is a quasi-
periodic external focusing structures such as periodic solenoidal focusing systems,
FODO focusing systems, or periodic doublet focusing systems, etc., the synchrotron
tune can be defined as the i/syn = ksynL/(2n), where L is the length of the periodic
focusing system. Parametric synchrotron resonances can occur if mvsyn = I is sat-
isfied, where m and i are integers. Near a parametric synchrotron resonance, the
longitudinal phase space will form islands as discussed in Sec. III.

A. The capture condition in an electron linac with vp = c

Since (3S% changes rapidly in the first few sections of electron linac, the Hamiltonian
contour is not a constant of motion. Tori of phase space ellipses form a golf-club-like
shape, shown in Fig. 3.2. This section will show that all captured particles ride on
top of the rf wave.

105Note that the convention of the rf phase used in the linac community differs from that of the
storage ring community by a phase of 7r/2. In this textbook, we use the rf phase convention of the
storage ring community.
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In an electron linac operating at a phase velocity equal to c, what happens to
the injected electrons with velocities less than c? Let V be the phase angle between
the wave and the particle. Assuming constant gradient acceleration, the electric field
seen by the electron is fosin^- Since the phase velocity and the particle velocity are
different, the path length difference between the EM wave and the particle in time
interval dt is

de={c- v)dt = ^-dfa (3.425)
Z7T

where A = 2nc/ui is the rf wavelength, and we use the fact that dl/\ = dip/2n.
Letting /3 = v/c, we obtain

The particle gains energy through the electric field, i.e.

^ " " s M ^ H - * (3-427)
Substituting f3 = cos£, we obtain

^ = _ ^ s i n V , s i n 2 C . (3.428)
dt me

Using the chain rule dtp/dt = (dtp/dQidC^/dt), we can integrate the equation of motion
to obtain

cosV,-cos^ = — t a n - ^ - — ( ^ — J =-Yiai, (3.429)

where the indices 1 and 2 specify the injection and the captured condition respectively,
and we have used /?2 = 1 and the relation

tan (C/2) = ((1 - cos C)/(l + cos C))1/2 = [(1 - 0)/( l + /?)]1/2 = 7 - \jl2 - 1-

The capture condition, Eq. (3.429), favors a linac with a higher acceleration gradient
£Q. If Yinj = 1.5, particles within an initial phase —TT/3 < fa < TT/3 will be captured
inside the phase region IT > fa> > 27r/3. If the factor Ylnj = 1, all particles within
—IT/2 < fa < IT/2 will be captured into the region IT > fa, > TT/2. In particular,
particles distributed within the range A > fa > - A will be captured into the range
TT/2 < fa < TT/2 + A2/2 (A <C 1). For example, all injected beam with phase length
20° will be compressed to a beam with a phase length 3.5° in the capture process.

The capture efficiency and energy spread of the electron beam can be optimized
by a prebuncher. A prebuncher is usually used to prebunch the electrons from a
source, which can be thermionic or rf gun. We assume a thermionic gun with a DC
gun voltage Vo, which is usually about 80-150 kV. Let the electric field and the gap
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width of the prebuncher be £ sin(wi) and g. Electrons that arrive earlier are slowed
and that arrive late are sped up. At a drift distance away from the prebuncher,
the faster electrons catch up the slower ones. Thus electrons are prebunched into
a smaller phase extension to be captured by the buncher and the main linac (see
Exercise 3.8.9). All captured high energy electrons can ride on top of the crest of the
rf wave in order to gain maximum energy from the rf electric field.

B. Energy spread of the beam

In a multi-section linac, individual adjustment of each klystron phase can be used to
make a bunch with phase length A ride on top of the rf crest, i.e. ips = §. The final
energy spread of the beam becomes

This means that a beam with a phase spread of 0.1 rad will have an energy spread
of about 0.13 %. Thus the injection match is important in minimizing the final
energy spread of the beam. Other effects that can affect the beam energy are beam
loading, wakefields, etc. A train of beam bunches extracts energy from the linac
structure and, at the same time, the wakefield induced by the beam travels along at
the group velocity. Until an equilibrium state is reached, the energies of individual
beam bunches may vary.

C. Synchrotron motion in proton linacs

Since the speed of protons in linacs is not highly relativistic, the synchronous phase
angle ips can not be chosen as | . The synchrotron motion in ion linac is adiabatic. The
longitudinal particle motion follows a torus of the Hamiltonian flow of Eq. (3.422).
Table 3.11 lists bucket area and bucket height for longitudinal motion in proton linacs
(see also Table 3.2 for comparison), where a^ips) and F(V's) are running bucket factors
shown in Eqs. (3.48) and (3.52). The rf phase region for stable particle motion can
be obtained from ipu and n — ips identical to those in the second the third columns of
Table 3.1.

Table 3.11: Properties of rf bucket in conjugate phase space variables

1 (i>,^) I hM)
Bucket Area Te ("*'ff «*>)^ aM 16 ( ^ ) V' ab(^s)

Bucket Height | 2 (rnc^feS^ Y{A) | 2 (fa^go)1/2 y ( ^ ) '
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The equilibrium beam distribution must be a function of the Hamiltonian, i.e.
p[H(AW/u>, Aip)]. In small bunch approximation, the Hamiltonian becomes

H = - d w ( ^ ) 2 - \e£oCOS^ {^?- (3-431)
A Gaussian beam distribution with small bunch area becomes

p ( — , Aifr) = - <*!*>, (3.432)

where Ho is related to the thermal energy of the beam and the rms energy spread
and bunch width are given by

/ffomcSffV fj^s fmc3/3373e£0cosAY/4

VAW/u, = \j ~3 = V ̂ T { tf ) ' (3-433)

/ H0 [AZ( ^ V / 4 ,,,_..
a At = \ —z = \ — , Q , , ., , (3.434)

Ve^ocos% V 7T ym^p^^eto cosips)

where ^. r m s is the rms phase space area in (eVs), i.e. -4rms = TTCTAW/LJCA -̂ The bunch
length in r-coordinate is given by aT = a^jw. Note that, for a constant phase space
area Ams, we find aAW ~ (w50)1/4(/?7)3/4, and aT ~ (wfo)"1/4(/37)"3/4- However,
the fractional momentum spread will decrease when the beam energy is increased:

g ^ = V ^ r ( m 3 C ^ 7 J • (3-435̂
Examples for beam properties in the Fermilab DTL linac and SNS linacs are available
in Exercises 3.8.3 and 3.8.10 respectively.

Figure 3.46: A schematic drawing of elec-
tric field lines between electrodes of acceler-
ation cavities. Note that the converging field
lines contribute to a focusing effect in electro-
static accelerators. For rf accelerators, the
field at the exit end increases with time so
that the defocussing effect due to the diverg-
ing field lines is larger than the focusing ef-
fect at the entrance end of the cavity gap.
E.O. Lawrence placed a screen at the end of
the cavity gap to straighten the electric field
line. The screen produces a focusing force,
but unfortunately it also causes nuclear and
Coulomb scattering.
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VIII. 5 Transverse Beam Dynamics in a Linac

Figure 3.46 shows the electric field lines between electrodes in an acceleration gap, e.g.,
the drift tubes of an Alvarez linac or the irises of a high-/? linac. In an electrostatic
accelerator, the constant field strength gives rise to a global focusing effect because
the particle at the end of the gap has more energy so that the defocussing force is
weaker. This has been exploited in the design of DC accelerators such as the Van de
Graaff or Cockcroft-Walton accelerators.

For rf linear accelerators, phase stability requires TT/2 > ips > 0 (below transition
energy), and field strength increases with time during the passage of a particle. Thus
the defocussing force experienced by the particle at the exit end of the gap is stronger
than the focusing force at the entrance of the gap.

Using Eq. (3.389), the EM field of TMOio mode is

Es = £0sin V>, Er = ~—£ocos ij>, B& = —^£o cos tp, (3.436)

where tp — (uit — w / ds/vp). The transverse force on particle motion is

dt = ~eEr - evB^ = — — (1 - - / ) cos rp. (3.437)

For a synchronous particle with v = vp, we obtain

dj-ymf) _ euie0 sin ips

dt ~ 2/3-y2c T' ( • )

For a relativistic particle with 7 > 1 , the transverse defocussing force becomes neg-
ligible because the transverse electric force and the magnetic force cancel each other.
Assuming a zero defocussing force, Eq. (3.438) becomes

Here we obtain
dx

7— = constant = 70a;!,. (3.440)
ds

Assuming 7 = 70 + j's, where 7' = d'y/ds, we obtain

X-Xo=(7±\nl)x< (3.44I)

Thus the orbit displacement increases only logarithmically with distance along a
linac (Loreritz contraction), if no other external force acts on the particle. In reality
quadrupoles are needed to focus the beam to achieve good transmission efficiency and
emittance control in a linac.
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Transverse particle motion in the presence of quadrupole elements is identical to
that of betatron motion. The linear betatron equation of motion is given by

^x{t,s) + Kx{s)x{t,s) = 0, ^z{t,s) + Kz{s)z{t,s) = 0, (3.442)

where Kx(s) and Kz{s) are focusing functions. Since there is no repetitive focusing
elements, the betatron motion in linac is an initial value problem. It should be
designed from a known initial or desired betatron amplitude function and matched
through the linac. A mismatched linac will produce quadrupole mode oscillations
along the linac structure.

In smooth approximation, the linear betatron motion can be described by

—y{t,s) + k2y{s)y{t,s)=O, (3.443)

where y is used to represent either x or z, and ky is the wave number. Since there
is no apparent periodic structure, the concept of betatron tune is not necessary.
However, many linacs employ periodic focusing systems. In this case, one can define
the betatron tune per period as vy = kyL/2n, where L is the length of a period.
Betatron resonances may occur when the condition mvx + nvz — £ is satisfied, where
m, n, and £ are integers. Furthermore, synchrobetatron resonances may occur when
the condition mvx + nvz + li/syn = £ is satisfied, where I is also an integer.

Wakefleld and beam break up instabilities

Applying the Panofsky-Wenzel theorem [24],

VxfdsFn = -^Jd8F±, (3.444)

the transverse force is
—* r cc

F±= ds Vx-Fjl = - V ± £ s • (3.445)
J LO

Thus the transverse force on a charged particle is related to the transverse depen-
dence of the longitudinal electric field; it vanishes if the longitudinal electric field
is independent of the transverse positions. This is the basic driving mechanism of
synchro-betatron coupling resonances.106 Since TE modes have zero longitudinal
electric field, its effect on the transverse motion vanishes as well. Thus we are most
concerned with HOMs of the TM waves. These HOMs are also called wakefields. The
design of cavities that minimize long range wakefields is an important task in NLC
research.107

106see e.g., S.Y. Lee, Phys. Rev. E49, 5706 (1994).
107See R. Ruth, p. 562 in Ref. [15].
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In the presence of a wakefield, the equation of motion is [3]

-^x(t, s) + k\t, s)x(t, s) = -j±rr ]t dtp(t)W±(i - t)x(t, s), (3.446)

where t describes the longitudinal position of a particle, s is the longitudinal coordi-
nate along the accelerator, x(t, s) is the transverse coordinate of the particle, k(t, s)
is the betatron wave number (also called the focusing function), p(t) is the density
of particle distribution, and W±(t' — t) is the transverse wake function. Detailed
properties of the wake function and its relation to the impedance and the transverse
force can be found in Ref. [3]. We will examine its implications on particle motion in
a simple macro-particle model.

We divide an intense bunch into two macro-particles separated by a distance
I = 2<rz. Each macro-particle represents half of the bunch charge. They travel at the
speed of light c. The equation of motion in the smoothed focusing approximation is

x'[ + k\xx = 0, (3.447)

4 + k2X2 = ^ ^ M X l = Gxu (3.448)

where eN/2 is the charge of the leading macro-particle, x\ and x2 are transverse
displacements, W±(£) is the wake function evaluated at the position of the trailing
particle, and kx and k2 are betatron wave numbers for these two macro-particles.

If, for some reason, the leading particle begins to perform betatron oscillation with

X\ = Xisinkis,

the trailing particle can be resonantly excited. This is the essence of BBU instability.
The motion of the trailing particle due to betatron oscillation of the leading particle
becomes

ki „ Gxi I k\ \
x2 = j-Xi sin k2s + -s T~2 sin Kis — — sin K2S . (3.449)

hi k2 — kx \ K2 /

In the limit of equal focusing s t rength , k2 -> fci, we have

/ C \
x2 —¥ xi sin kis + xi I Afc — ) s cos kis. (3.450)

where Ak = k2 — k\. In the limit Ak —> 0, the trailing macro-particle can be
resonantly excited, i.e. The amplitude grows linearly with s. If the beam bunch is
subdivided into many macro-particles, one would observe nonlinear growth for trailing
particles.108

108Including beam acceleration, the amplitude will grow logarithmically with energy (distance), as
in Eq. (3.441) [3].
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An interesting and effective method to alleviate the beam break up instabilities is
BNS damping.109 If the betatron wave number for the trailing particle is higher than
that for the leading particle by

the linear growth term in Eq. (3.450) vanishes. This means that the dipole kick
due to the wakefield is exactly canceled by the extra focusing force. The bunch will
perform rigid coherent betatron oscillations without altering its shape. Note that
BNS damping depends on the beam current.

The BNS damping of Eq. (3.451) can be achieved either by applying rf quadrupole
field across the bunch length or by lowering the energy of trailing particles. The SLC
linac uses the latter method by accelerating the bunch behind the rf crest early in the
linac, and then ahead of the rf crest downstream, to restore the energy spread at the
end of the linac. Since the average focusing function is related to the energy spread
by the chromaticity

and the chromaticity Cx ~ — 1 for FODO cells, the energy spread is equivalent to a
spread in focusing strength. This method can also be used to provide BNS damping.
It is also worth pointing out that the smooth focusing approximation of Eq. (3.447)
provides a good approximation for the description of particle motion in a linac.

Exercise 3.8
1. Show that the phase shifts per cell for the CEBAF and SLAC linac cavities listed in

Table 3.11 are kd = n and 2TT/3 respectively.

2. Show that the peak rf magnetic flux density on the inner surface of a pillbox cylindrical
cavity in TMoio mode is

B^K^-S or % [T] « 50 x 10"4 £ [MV/m],

where Zo = fioc is the impedance of the vacuum.

3. In an Alvarez linac, the longitudinal equations of motion (3.420) and (3.421) can be
expressed as mapping equations:

AEn+i = AEn + eVcosips Aif>n+i,

where ipn, AEn are the synchrotron phase space coordinates at the nth cell, Lceii is
the length of the drift tube cell, and eV is the energy gain in this cell.

109V. Balakin, A. Novokhatsky, and V. Smirnov, Proc. 12th HEACC, p. 119 (1983).
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(a) Using the Courant-Snyder formalism, we can derive the amplitude function
for synchrotron motion similar to that for betatron motion. Show that the
synchrotron phase advance per cell is

$s y n = 2 arcsin ( 2 ^ 2 g j ,

where E — "fine2 is the beam energy, £av = V/Lce\\ is the average acceleration
field, A is the rf wave length, and tps is the synchronous phase.

(b) Using the table below, calculate the synchrotron phase advance per cell for the
first and last cells of cavities 1 and 2, where the synchronous phase is chosen to
be cos^s = 1/2. Estimate the total synchrotron phase advance in a cavity.

Fermilab Alvarez linac
Cavity Number 1 2

Proton energy in (MeV) 075 10.42
Proton energy out (MeV) 10.42 37.54
Cavity length (m) 7.44 19.02
Cell length (cm) (first/last) 6.04/21.8 22.2/40.8
Average field gradient (MV/m) (first/last) 1.60/2.30 2.0
Average gap field (MV/m) (first/last) 7.62/7.45 10.0/6.45
Transit time factor (first/last) 0.64/0.81 0.86/0.81
Number of cells 55 59

4. In a resonance circuit, Q is expressed as

2&LI2 wL stored energy

\RI2 R energy dissipation per period'

where w = {LC)~ll2. The energy stored in the cavity volume is

The power loss in the wall is obtained from the wall current,

Pd = \ [ R*\H\2dS = ̂ f ^ / \H\2dS,
2 Js 4 Js

where Rs = l/o^skin is the surface resistance,110 <5s](jn = y/2//j,aui is the skin depth,
and a is the conductivity. The total energy loss in one period becomes

AWd = 2JLPd = ! ^ H i / ]Hl2dS,
w 2 Js

110In the limit that the mean free path I of conduction electrons is much larger than the skin
depth (Sskini the surface resistance becomes Rs = (8/9)(\/3iilu}2£/16w<7)1^3. Since the conductivity
is proportional to the mean free path £, the resulting surface resistance is independent of the mean
free path, and is proportional to u2/3. There is little advantage to operating copper cavities at very
low temperature. See G.E.H. Reuter and E.H. Sonderheimer, Proc. Roy. Soc. A195, 336 (1984).
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(a) Using the identity /06 Jf(krr)2nrdr = Trb2J2(krb), show that the quality factor
for a pillbox cavity at TMOio mode is

= 2jv\H\2dV = _d b_ = 2A05Z0

SSKafs\H\2dS 5skind + b 21^(1+ b/d)'

where 6 and d are the radius and length of a cavity cell, Us is the surface resis-
tivity, and ZQ = 1/fj.QC « 377f2. The Q-factor depends essentially on geometry
of the cavity. Since <5skin ~ w~1/2, we find Q ~ w+1/2. Find the Q-value for the
SLAC copper cavity at / = 2.856 GHz.

(b) Show that the shunt impedance is

D _ Zpd2 ^sh _ 2u}fi - n 41

R^nb(b + d)J2{krb) r Q ~ n{krb)2J2(krb) ~ ' " ^

where kTb = 2.405. Note here that the shunt impedance behaves like rsh ~ wxl2.
At higher frequencies, the shunt impedance is more favorable; however, the
diameter of the cavity will also be smaller, which may limit the beam aperture.

5. The average power flowing through a transverse cross-section of a wave guide is

p = I [ E± x H±dS

where only transverse components of the field contribute. For TM mode,

£l- 7 A P - X [ k \ f 2WCffI = °̂V P-2Z-J^dS

The energy stored in the magnetic field is

Wst,m = \ I \H±\2dS = ^ ^ j \£L\2dS

Thus the total energy per unit length is

Wst = Wst,m + WKJ* = 2Wst,m.

(a) Show that the energy flow, defined by ve = P/Wst, is ve = fic/k.

(b) Verify that vg = du/d/3 = ve.

6. Identical resonator LC circuits are coupled with disk or washer loading by parallel
capacitors 2CP shown in the figure below.
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In the limit of large Cp, these resonators are uncoupled, which corresponds to a pillbox
without holes, or equivalently, a small beam hole in a pillbox cavity corresponds to
Cp > C s . m

(a) Applying Kirchoff's law, show that

C
i n +i - 2 cos(fcd) in + tn_! = 0, cos(fcd) = 1 4- - f - w2CpL.

(b) Show that the solution of the above equation is

,- _ p±j[nkd+xo] r, — Q 1 9 • • •tn — e , /t — u, i, ^,

We identify fed as the phase advance per cell, and k as the wave number. Show
that the frequency is

u2 = WQ [1 + «(1 - cos kd)],

where u>o = l/^/LCs is the natural frequency without coupling at kd = 0, and
K = Cs/Cp is the coupling constant between neighboring cavities.

(c) Show that the condition for an unattenuated traveling wave is LUQ < ui < uin,
where

^="°(i+2§)1/2^°(i+S)
is the resonance frequency at phase advance kd — TT. Draw the dispersion curve
of u vs k. In a realistic cavity, there are higher frequency modes, which give rise
to another passband (see Fig. 3.41).

(d) Find k such that the phase velocity vp = c.

(e) Cavities can also be magnetically coupled. The magnetically coupled-cavity
chain can be modeled by replacing 2CP in the LC circuit with £ p /2 . Show that
the dispersion curve of a magnetically coupled cavity is

uil = J1 [1 + «(1 - cos kd)],

m T h e equivalent circuit does not imply that a coupled resonator accurately represents a disk
loaded structure. The model describes only the qualitative narrowband properties of a loaded wave
guide.
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where wo = 1/-\ZLCS is the natural frequency without coupling at kd = 0, and
K = Lp/L is the coupling constant between neighboring cavities. Discuss the
differences between the electric and magnetic coupled cavities.

7. Using Eq. (3.408), the electric field of a standing wave rf cavity structure that consists
of N cells is

£s = £Q cos ks cos ut,

where s € [0, Nd] is the longitudinal coordinate, k is the wave number, d is the cell
length of one period, and to is the frequency. The resonance condition is

kd = mir/N, m = 0,1, • • • ,N,

where kd is the rf phase advance per cell.

(a) For a particle traveling at velocity v, show that the total voltage gain in passing
through the cavity is

MT = -NdE f»fr(*-("/"))M* | sm(k + (U/v))Ndl
2 °[ (k-(ui/v))Nd {k + {u/v))Nd r

Show that the energy gain is maximum when the phase velocity fc/o; is equal
to the particle velocity v. Show that the maximum voltage gain of the standing
wave is (AV)max = Nd£o/2, i.e. the energy gain of a standing wave structure
is only 1/2 that of an equivalent traveling wave structure.

(b) For a sinusoidal electric field, the power consumed in one cell is

|M2/2iU,ceii>

where J?sh,ceii is t n e shunt impedance per cell for the traveling wave. For an rf
structure composed of N cells, the power is

Pd = N\£0d\2/2RshMl.

Using the definition of shunt impedance, show that the shunt impedance of a
standing wave rf structure is

Thus the shunt impedance for a standing wave structure is equal to 1/2 that of
an equivalent traveling wave structure.112

8. There are two types of traveling wave structures. A constant impedance structure
has a uniform multi-cell structure so that the impedance is constant and the power
decays exponentially along the structure. A constant gradient structure is tapered so
that the longitudinal electric field is kept constant. We define the parameter a as

1 dPd

01 ~ 2Pd ds '

112The above calculation for voltage gain in the cavity structure is not applicable for an standing
wave structure with kd = 0 and it, where two space harmonics contribute to the electric field so that
£s = 2£0 cos ks cosut. This means that the voltage gain in the rf structure is AV = Nd£o, and the
shunt impedance is /2sh = NRa,,cell-
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the electric field is related to the shunt impedance per unit length by [see Eq. (3.383)]

S2 = - r s h ^ = 2a rsh Pd(s).
as

The total energy gain for an electron in a linac of length L is

AE = e f £ds.
Jo

(a) In a constant impedance structure, show that the energy gain is

AE(L) = eL(2rshPoa)1/21 ~ %" ,
Cth

where Po is the power at the input point.

(b) Assuming that rsh and Q are nearly constant in a constant gradient structure,
show that

Pd = P 0 ( l - £ ( l - e - 2 T ) ) ,

where T = Jo a(s)ds. The group velocity is equal to the velocity of energy flow.
Show that the group velocity of a constant gradient structure is [see Eq. (3.386)]

Wg = u,L(l-J(l-e-2T))(Q(l-e-2T);f\

and the energy gain is

AE = e£L = e^P0rshL{l-e-2T).

9. A prebuncher is usually used to prebunch the electrons from a source, which can be
thermionic or rf gun. We assume a thermionic gun with a DC gun voltage Vo, which
is usually about 80-150 kV. Let the electric field and the gap width of the prebuncher
be £ sin(wt) and g. Electrons that arrive earlier are slowed and that arrive late are
sped up. At a drift distance away from the prebuncher, the faster electrons catch up
the slower electrons. Thus electrons are prebunched into a smaller phase extension
to be captured by the buncher and the main linac. Assuming a small prebuncher gap
with Vi = £g -C Vo, find the drift distance as a function of the Vo and Vi. Discuss
the efficiency of prebunching as a function of relevant parameters.

10. The design of the 2 MW spallation neutron source uses a chain of linacs composed of
ion source, RFQ, DTL, CCL, and SCL to accelerate 2.08 x 1014 particles per pulse
at 60 Hz repetition rate. An accumulator compresses the 1 ms linac pulse into a 695
ns high intensity beam pulse with 250 ns beam gap. The following table lists linac
and beam parameters. Calculate the longitudinal bucket and bunch areas in (eVs).
Compare the rms bunch length in (ns) and in (m) with the rms transverse beam size
at exit points of linacs. Each microbunch has about Â B = 8.70 x 108 protons, what
is the longitudinal brightness of the beam in number of particles per (eVs)?
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1 RFQ 1 DTL I CCL I SRFL
L (m) length of the structure 3.723 38.7 55.12 206.812
/r f (MHz) 402.5 402.5 805 805
%j)s (differ from linac convention by -n/2) 60° 45-65° 60-62° 20°
£0T (MV/m) 3.0 " 3.37 To.6
KEinj (MeV) 0.065 2.5 86.8 185
KEext (MeV) 2.5 86.8 185 1001.5
E|[ (7T-MeV-deg) emittance at exit point 0.108 - - 0.60
e_L (7r-mm-mrad) emittance at exit point 0.21 - - 0.45
gAn, (MeV) "O0092~ " ~5".33
•̂ bucket (eVs) at injection energy
Ams (eVs)
<yT (ns)

fcsyn (m- 1)
/3x/z at exit (m) | 0.2/0.2 | - | - | 10.1/5.3"



Chapter 4

Physics of Electron Storage Rings

Accelerated charged particles, particularly electrons in a circular orbit, radiate elec-
tromagnetic energy. As far back in 1898, Lienard derived an expression for elec-
tromagnetic radiation in a circular orbit. Modern synchrotron radiation theory was
formulated by many physicists; in particular, its foundation was laid by J. Schwinger.
Some of his many important results are summarized below:1

• The angular distribution of synchrotron radiation is sharply peaked in the di-
rection of the electron's velocity vector within an angular width of I/7, where
7 is the relativistic energy factor. The radiation is plane polarized on the plane
of the electron's orbit, and elliptically polarized outside this plane.

• The radiation spans a continuous spectrum. The power spectrum produced
by a high energy electron extends to a critical frequency wc = 373wc/2, where
UJP = c/p is the cyclotron frequency for electron moving at the speed of light.2

• Quantum mechanical correction becomes important only when the critical en-
ergy of the radiated photon, hioc = ^hcy3/p, is comparable to the electron beam
energy, E = •ymc2. This occurs when the electron energy reaches mc1(mcplfi)ll2 «
106 GeV. The beamstrahlung parameter, defined as T = ^hcjc/E, is a measure
of the importance of quantum mechanical effects.

Shortly after the first observation of synchrotron radiation at the General Electric
70 MeV synchrotron in 1947,3 applications of this radiation were contemplated.4 The

1J. Schwinger, Phys. Rev. 70, 798 (1946); 75, 1912 (1949); Proc. Nat. Acad. Sci. 40, 132
(1954).

2D.H. Tomboulin and P.L. Hartman experimentally verified that electrons at high energy (70
MeV then) could emit extreme ultraviolet (XUV) photons; Phys. Rev. 102, 1423 (1956).

3F.R. Elder et al., Phys. Rev. 71, 829 (1947); ibid. 74, 52 (1948); J. Appl. Phys. 18, 810 (1947).
4R.P. Madden and K. Codling at the National Bureau of Standards were the first to apply

synchrotron radiation to the study of atomic physics. See Phys. Rev. Lett. 10, 516 (1963); J. Appl.
Phys. 36, 380 (1965).

417
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first dedicated synchrotron radiation source, Tantalus at the University of Wisconsin,
was commissioned in 1968. Today, nearly a hundred light sources are distributed in
almost all continents. Applications of synchrotron radiation include surface physics,
condensed matter physics, biochemistry, medical research, advanced manufacturing
processes, etc.

A. Basic properties of synchrotron radiation from electrons

According to Larmor's theorem, the instantaneous radiated power from an accelerated
electron is

p=J_?eW =2ro_(dp &\
47re0 3c3 3mc \dt dt) ' X ' '

where v is the acceleration rate and r$ — e2/4ireomc2 is the classical radius of the
electron. The relativistic generalization of Larmor's formula (obtained by Lienard in
1898) is

2^ (dp, dp,\=^\(dv\2 _l(dE\2} ,42,
Zmc \dr dr J 3mc [{dr) c2 \ dr j J ' K ' '

where the proper-time element dr = dt/j, and pM = (po,P) is the 4-momentum
vector. In Sec. 1.2 we will show that the power radiated from a circular orbit of a
highly relativistic charged particle is much higher than that from a linear accelerator,
i.e.

dp . . 1 dE , .

i=l-\v\»-^ (4.3)
where w is the angular cyclotron frequency.

The radiation power arising from circular motion is

* = &**-&**-%*?• (">
where F± = u\p\ = evB is the transverse force, v = /3c is the speed of the particle, p
is the local radius of curvature, and

. C 8.846 x 10"5 m/(GeV)3 for electrons
C7 = ^ 7 - ^ - 3 = \ 4.840 x If)"14 m/(GeV)3 for muons (4.5)

3 {me) [ ? 7 g 3 x 10_i8 m / ( G e V )3 for protons.

The energy radiated from the particle with nominal energy EQ in one revolution is

where R is the average radius. For an isomagnetic ring with constant field strength
in all dipoles, the energy loss per revolution and the average radiation power become

Uo-C^EJp, (F) _ _ _ _ _ - , (4.7)
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where To = 2nR//3c is the orbital revolution period.
Because the power of synchrotron radiation is proportional to E4/p2, and the

beam is compensated on average by the longitudinal electric field, the longitudinal
motion is damped. This natural damping produces high brightness electron beams,
whose applications include e+e~ colliders for nuclear and particle physics, and electron
storage rings for generating synchrotron light and free electron lasers for research in
condensed matter physics, biology, medicine and material applications.

B. Synchrotron radiation sources

The brilliance of the photon beam is defined as

d4N
B = dtdQdS(dX/X) ^

in units of photons/(s mm2-mrad2 0.1% of bandwidth). Neglecting the optical diffrac-
tion, the product of the solid angle and the spot size dtldS is proportional to the
product of electron beam emittances exez. Therefore a high brilliance photon source
demands a high brightness electron beam with small electron beam emittances. Fur-
thermore, a beam with short bunch length can also be important in time resolved
experiments.

Using the synchrotron radiation generated from the storage rings, one can obtain
a wide frequency span tunable high brilliance monochromatic photon source. A syn-
chrotron radiation handbook edited by J. Murphy at BNL provides a list of beam
properties of synchrotron light sources.5

Synchrotron radiation sources are generally classified into generations. A first gen-
eration light source parasitically utilizes synchrotron radiation in an electron storage
ring built mainly for high energy physics research. Some examples are SPEAR at
SLAC, and CHESS in CESR at Cornell University. A second generation light source
corresponds to a storage ring dedicated to synchrotron light production, where the
lattice design is optimized to achieve minimum emittance for high brightness beam
operation. In Sees. II and III we will show that the natural emittance of an electron
beam is enat = TCq^263/ Jx, where Cq = 3.83 x 10~13 m, Jx « 1 is a damping partition
number, and 0 is the bending angle of one half period. The factor T can be optimized
in different lattice designs. A third generation light source employs high brightness
electron beams and insertion devices such as wigglers or undulators to optimize pho-
ton brilliance, mostly about 1020 photons/[s(mm-mrad)20.1%bandwidth], which is
about five to six orders higher than that generated in dipoles, or about ten order
higher than the brilliance of X-ray tubes. Using long undulators in long straight sec-
tions of a collider ring, a few first generation light sources can provide photon beam
brilliance equal to that of third generation light sources. Table 4 lists some machine

5http://www.nsls.bnl.gov/AccPhys/hlights/dbook/Dbook.Menu.html
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parameters of the advanced light source (ALS) at LBNL and the advanced photon
source (APS) at ANL.

The widely discussed "fourth" generation light source is dedicated to the coherent
production of X-rays and free electron lasers at a brilliance at least a few orders higher
than that produced in third generation light sources.6

Table 4.1: Properties of some electron storage rings.

Colliders Light Sources
BEPC I CESR 1 LER(e+) 1 HER(e~) I LEP ~APS I ALS

E [GeV] 2.2 6 3.1 9 55 7 1.5
vx 5.8 9.38 32.28 25.28 76.2 35.22 14.28
vz 6.8 9.36 35.18 24.18 70.2 14.3 8.18
p [m] 10.35 60 30.6 165.0 3096.2 38.96 4.01
a[xlO"4] 400 152 14.9 24.4 3.866 2.374 14.3
C [m] 240.4 768.4 2199.3 2199.3 26658.9 1104 196.8
h 160 1281 3492 3492 31320 1296 328
frf [MHz] 199.5 499.8 476 476 352.2 352.96 499.65
va 0.016 0.064 0.034 0.0522 0.085 0.006 0.0082
^ [xlO-4] 4.0 6.3 9.5 6.1 8.4 9.6 7.1

^ ° [ x l o " 4 e V - s ] 3.5 7.2 3.1 5.7 78. 4.1 0.43
ex [nm] 450 240 64 48 51 8 4.8
ez [nm] | 35 [8 [ 3.86 | 1.93 [ 0.51 | 0.08 [ 0.48

C. e+e~ colliders

The development of electron and positron storage rings was driven by the needs of
particle and nuclear physics research. Since 1960, many e+e~ colliders have served as
important research tools for the particle physics. Some of their properties are listed in
Table 4, where BEPC stands for Beijing electron positron collider; CESR for Cornell
electron storage ring; LER and HER for low energy ring and high energy ring of the
SLAC B-factory; and LEP for CERN large electron-positron collider.

From Table 4, we note that the emittances of third generation facilities, APS and
ALS, are much smaller than those of their collider counterparts. The reason is that
colliders are optimized to attain a maximum luminosity given by

6M. Cornacchia and H. Winick, eds., Proc. Fourth Generation Light Sources, SSRL 92/02 (1992);
J.L. Laclare, ed., Proc. Fourth Generation Light Sources, ESRF report (1996).
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where N+ and N- are the numbers of particles per bunch, Anaxcrz is the cross section
area at the interaction point (IP) of colliding beams, /collision = /o-B is the beam
encountering rate, B is the number of bunches, and f0 is the revolution frequency.

During the crossing of the e+ and e" beams, particles experience a strong Coulomb
force of the opposite beam. The electric and magnetic forces of the beam-beam inter-
action are coherently additive. Because of the nature of the Coulomb interaction, the
beam-beam interaction for particles at a large betatron amplitude is highly nonlinear.
However, the beam-beam interaction for particles with a small betatron amplitude is
characterized by a quadrupole-like force. The resulting betatron tune shift is called
the linear beam-beam tune shift7

_ NTrop; __ NTrop:
?z± — 7, 7 ; \ i sx± — -, ; r , ^4.1UJ

2njaz(ax + az) 2iryax(ax + az)
where ro is the classical radius of electrons, /3* x are the values of the betatron function
at the IP, and 7 is the Lorentz relativistic factor. Since ax ^> az for electron beams
(see Sec. II), we have £z ~S> £x. Results of beam experiments at e+e" colliders show
that the beam-beam tune shift is limited by

£2 ~ 0.05 - 0.10. (4.11)

The luminosity expressed in terms of the tune shift parameter with N+ = 7V_ becomes

7Tj2 crxaz c2

*~ ~ 2 fl*2~^z /collision- {^••i-^l
r0 Pz

Note that the luminosity is proportional to axaz. If the luminosity of a machine
is optimized, then, in order to minimize the beam-beam tune shift the emittance
of the beam can not be too small. This design constraint for e+e~ colliders differ
substantially from that for synchrotron light sources.

7Because the horizontal and vertical emittances of hadron beams are normally equal, the beam-
beam tune shift for hadron colliders is £ = Nro/iwje = Nro/AireN, where r0 is the classical radius
of the particle, and eN is the normalized emittance. The linear beam-beam tune shift of hadron
colliders is independent of fi*.
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I Fields of a Moving Charged Particle

Let x'(t') be the position of an electron at time t' and let x be the position of the
observer with R(t) = x — x'(t') (Fig. 4.1). The electromagnetic signal, emitted by
the electron at time t' and traveling on a straight path, will arrive at the observer at
time

t=t,+m (413)
c

where R{t') = \x — x'\; t' is called the retarded time or the emitter time; and t is the
observer time. The motion of the electron is specified by x'(t') with

d f ' _ a _ d^

Figure 4.1: Schematic drawing of
the coordinates of synchrotron radi-
ation emitted from a moving charge.
Here t' is the retarded time. The
unit vector along the line joining the
point of emission and the observa-
tion point P is h = R{t')/R(t').

The retarded sealer and vector potentials (4-potential) due to a moving point
charge are

where J^(f ,t') = ec^6(x' — f(t')) is the current density of the point charge with
Pfi = (P/c> l)i a n d r{t') is the orbiting path of the charge particle. The delta func-
tion in Eq. (4.14) is needed to ensure the retarded condition. With the identity
/F6(f(t'))dt' = F/\df/dt\, the scalar and vector potentials become

$(£,*) = — — - , A(x,t) = — ^ . (4-!5)
v ' 4ne0KRret K ' 4ire0c KR ret ;

with
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where h = R/R = VR.
The electric and magnetic fields are E = —V$ - dA/dt and B = V x A. Using

the identity V —> V i ? ^ = n ^ , we obtain

E = JL. [[*6V + 2-t) + ^ W + 2-t)]*>
Ane0 J R 2 c cR c

= e \ h i 1 d " ~ ^ 1 (4 17^
L J ret

= _ £ _ [£^_ft 1 _d_£iinl f418l
47reoc Ki?2 CKdi' KR K ' '

L J ret

Since the time derivative of the vector n is equal to the ratio of the vector Vj_ to R

dn _ n x (n x /?) _ (n -P)h-0
CM" R ~ R [ '

we obtain

B(f rt _ _ ^ f ^ + A A J_ _ 1 ± A] (A 20)
1 ' ' ~ 4ne0 «2i?2 CK dt' K ^ c/c df KR ' [ '

I J ret

47T€OC \ K 2 i ? 2 CK dt' KR \
L \ / J ret

Note that the magnetic field is in fact related to the electric field by B = (1 / c )hx E,
a feature common to all electromagnetic radiation in free space. Thus it suffices to
calculate only the electric radiation field. Using the relations

we obtain the electric field as

E{x,t) = -^\^fM +-J_[^x((n-^)x^)l . (4.23)
47Te0 [72«3i?2J 47T£oC [K3R J ret

The flux, defined as the energy passing through a unit area per unit time at the
observer location, is the Poynting vector

S = —[E xB} = — \E\2n. (4.24)
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The total power radiated by the particle is

g = (*•$)*£ = «rf|J|'. (4.25)

Note here that the electric field in Eq. (4.23) is composed of two terms. The first
term, which is proportional to 1/i?2, is a static field pointing away from the charge at
time t. This field can be transformed into an electrostatic electric field by performing
a Lorentz transformation into a frame in which the charge is at rest. The total energy
from this term is zero.

The second term, related to the acceleration of the charged particle, is the radia-
tion field, which is proportional to 1/i?. Both E and B radiation fields are transverse
to n and are proportional to 1/R.

1.1 Non-relativistic Reduction
When the velocity of the particle is small, the radiation field becomes

^ T ^ - M ^ l , (4-26)
47re0c \ R \

L J ret

and the Poynting's vector (energy flux) is

5 = — E xB = —\Ea\2h. (4.27)
Mo Moc

Thus the power radiated per unit solid angle is

^ = — \Ea\2R2 = - ^ — |n x (ft x /?)|2 = —f-^tfstfe, (4.28)
dQ, Hoc 16n2e0c 16nzeoc3

where 9 is the angle between vectors n and /?, i.e. n x /3 = |/3| sin0. Integration over
all angles gives the same total radiated power as Larmor's formula:

P = J_^ ( 4 1 )
47re0 3c3 ' l '

1.2 Radiation Field for Particles at Relativistic Velocities

For particles at relativistic velocity, the Poynting's vector becomes

^•^^fe i^^-^^^L- (429)
The total energy of radiation during the time between 7\ and T2 is

/•T2+IR2/C) „ rtl=T2 -, dt
W= (S-n)dt= (S-h)—d£. (4.30)

M+(Hl/c) •/f=Ti dt'
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Thus the power radiated per unit solid angle in retarded time is

™£L = tf (S- ft) * = *#{§ • n) = rjrnc\n*{{n-P)*h\ m )
dQ. y 'dt' v ' 4TT (l-n-Pf

There are two important relativistic effects on the the electromagnetic radiation.
The first arises from the denominator with K = 1 — h-fi. Note that the instantaneous
radiation power is proportional to 1/K5, where n = dt/dt' is the ratio of the observer's
time to the electron's radiation time. At relativistic energies, we have

P = ( 1 - ^ ) 1 / 2 « l - ^ • (4-32)

and

K * (6* + l/72) ' ( 4 3 3 )

where 6 is the angle between the radiation direction n and the velocity vector 0.
Since the angular distribution is proportional to 1/K5, the radiation from a relativistic
particle is sharply peaked at the forward angle within an angular cone of 6 « I/7.

The second relativistic effect is the squeeze of the observer's time: dt — ndt' w
dt'/j2. When the observer is in the direction of the electron's velocity vector within an
angle of 1/7, the time interval of the electromagnetic radiation dt' of the electron ap-
pears to the observer squeezed into a much shorter time interval because a relativistic
electron follows very closely behind the photons it emitted at an earlier time. Thus
photons emitted at later times follow closely behind those emitted earlier. Therefore
it appears to the observer that the time is squeezed. The resulting wavelength of the
observed radiation is shortened or, equivalently, the energy of the photon is enhanced.

Example 1: linac

In a linear accelerator, j3 is parallel to 0. The angular distribution of the electromag-
netic radiation is

dPjt') _ remcv2 sin2 0
dn ~ 4TT ( l - ^ c o s 6 ) 5 ' ( '

where 9 is the angle between n and /3. The maximum of the angular distribution is
located at

emaj( = cos"1 \jg(y/l + 15/?2 - 1) -»• Y- (4-35)

The rms of the angular distribution is also (02)1/2 = 1/7. The integrated power is
then

T><^ fdP^ l 2 e 2 7 S 2 e2 fdpA2
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where
dpL 3 . AE

is the energy gain per unit length. Typically, A.E/As is about 20 MeV/m in the
SLAC linac, and 25 to 100 MV/m in future linear colliders.

Example 2: Radiation from circular motion

When the charged particle is executing circular motion due to a transverse magnetic

field, /? is perpendicular to /?. Figure 4.2 shows the coordinate system. The power
per unit solid angle is then

rfP _ e2v2 1 T sin2 0 cos3 $ 1
dfl ~ 167r2eoc3(l-/?cos0)3 [ ~ 7 2 ( l - /3cos0) 2 J

e2i,2 6 1 [ 47262cos2$]
~ 2 ^ ? 7 ( l+ 7 2 6 2 ) 3 [ ~ (1 + 7202)2 J ' (4-37)

where v = /32c2/p, and p is the bending radius. Therefore the radiation is also confined
to a cone of angular width of (02)1/2 ~ 1/7. The total radiated power is obtained by
integrating the power over the solid angle, i.e.

where
dn B2r2
JpL = jmv = Jmti— = 299.79/3B[T] [MeV/m].
at p

Comparing Eq. (4.38) with Eq. (4.36), we find that the radiation from circular motion
is at least a factor of 272 larger than that from longitudinal acceleration.

/ P

x'(t') ;'
^ \ ^ , / Figure 4.2: The coordinate system

^ v 1 ,' . for synchrotron radiation from the
\ I p ' " circular motion of a charged particle.

-> ] / '

' ' ' 0 / N'
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1.3 Frequency and Angular Distribution
The synchrotron radiation from an accelerated charged particle consists of contribu-
tions from the components of acceleration parallel and perpendicular to the velocity.
Since the radiation from the parallel component has been shown to be I/72 smaller
than that from the perpendicular component, it can be neglected. In other words, the
radiation emitted by a charged particle in an arbitrary extremely relativistic motion
is about the same as that emitted by a particle moving instantaneously along the
arc of a circular path. In this case, the acceleration v± is related to the radius of
curvature p by v± = v2/p « <? j p.

The angular distribution given by Eq. (4.31) has an angular width (62)1/2 ~ 1/7,
and the charged particle illuminates the observer for a time interval cdt' « p0rms =
p/7. To the observer, however, the corresponding time interval At of the radiation is

At ~ %At>« V = -r•
at 72 7dc

Thus the frequency spectrum spans a broad continuous spectrum up to the critical
frequency wc of order8

Wc ~ zb ~ 7 ' p = j 3 u j p - (439)
To obtain the frequency and angular distribution of the synchrotron radiation, we

should study the time dependence of the angular distribution discussed in the last
section. The power radiated per unit solid angle is given by Eq. (4.28), i.e.

^- = \G(t)\2, G(t) = (—Y'2[REU (4.40)

with electric field E given by Eq. (4.26). Using the Fourier transform

G(w) = j G(t)ejutdt, Git) = ̂ J G{w)e-jutdt, (4.41)

we obtain the total energy radiated per unit solid angle as

(flilf TOO _, 1 rOO _,

—-= \G(t)\2dt = — \G{uj)\2du>, (Parseval's theorem). (4.42)
dil J-00 ZTT J—oo

Since the function G(t) is real, the Fourier component has the property G(-LO) =
G"(io). Since the negative frequency is folded back to the positive frequency, we can
define the energy radiation per unit solid angle per frequency interval as

%=r^
8The critical frequency is defined later to be uic = Z^UJP/2.
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with

^ = |G(o;)|2 + |G(-u;)|2 = 2\G(OJ)\2. (4.44)

The Fourier amplitude G(w) is

327r3e0c ./-oo «3

= (W^)1/2 / " " X ( ( " - / X ^^^W, (4.45)

where i? = \x — r(t')\ is the distance between the observer and the electron. With the
observer far away from the source, we have

R=\x- f{t')\ tzx-h- r{t'), (4.46)

where x is the distance from the origin to the observer. Apart from a constant phase
factor, the amplitude of the frequency distribution becomes

0/7Tdeoc •'-oo K

= M*T5— )V2 r ft x (ft x fief-V-Wde, (4.47)
327rJeoc •'-oo

where we use integration by parts and the relation

K* dt< K ' l j

We now consider a group of charged particles ej. The radiation amplitude is a
linear combination of contributions from each charge, i.e.

e/^-jam-r7c _^ £ ej^-^^0 -> - [ d3xf(x, ^ e " ^ " ^ . (4.49)

The corresponding intensity spectrum becomes
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L ^ \ Figure 4.3: Coordinate system for
Z a circular trajectory of electrons.

r(t') /

A. Frequency spectrum of synchrotron radiation

The radiation emitted by an extremely relativistic particle subject to arbitrary accel-
eration arises mainly from the instantaneous motion of the particle along a circular
path. The radiation is beamed in a narrow cone in the forward direction of the ve-
locity vector. The short pulse of radiation resembles a searchlight sweeping across
the observer. Figure 4.3 shows the coordinate system of a particle moving along a
circular orbit, where the trajectory is

f(t') — p(l — cosojpt', sinujpt', 0),

/3 = /3(sinujpt', cosujpt', 0),

where up = Pc/p is the cyclotron frequency and /3c = df(t')/dt' is the velocity vector.
Let

n — (cos 6 sin $, cos 9 cos $, sin 6) (4-51)

be the direction of photon emission, as shown in Fig. 4.3. Because the particle is
moving on a circular path, all horizontal angles are equivalent, and it is sufficient to
calculate the energy flux for the case $ = 0. The vector nx(nxJ3) can be decomposed
into

h x (n x /?) = p [—ey sin u>pt' + ej_ cos u>pt' sin 0j , (4.52)

where ey is the polarization vector along the plane of circular motion in the outward
x direction and e± — h x ey is the orthogonal polarization vector, which is nearly
perpendicular to the orbit plane.

Since the range of the t' integration is of the order of At? ~ p/cry, the exponent of
Eq. (4.47) can be expanded as

W(f - ±f) = W(f - ^sin./cose) « | [ ( 1 + e v +1^'3] [i + o(l)]

= f£(z + ̂ 3 ) + - " . (4.53)
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where

and

e=£-(i+xrj, *-!•**-?£. (4.55)
Note that both terms in the expansion of Eq. (4.53) are of the same order of magni-
tude. The critical frequency wc has indeed the characteristic behavior of Eq. (4.39).

With the identity

jQ°° xsin [ ^ (x + \x3)] dx = ^ # 2 / 3 ( 0 . (4-56)

J™ cos [ ^ (x + ^ 3 ) ] dx = ^ * i / 3 ( f l (4-57)

for the modified Bessel function, the energy and angular distribution function of
synchrotron radiation becomes

where the amplitudes are

Thus the energy radiated per unit frequency interval per unit solid angle becomes

EK = T e S ^ O 2 ' 1 + X'f K K ) + TTX^w®] • (461>

where the first term in the brackets arises from the polarization vector on the plane
of the orbiting electron and the second from the polarization perpendicular to the
orbital plane. The angular distribution has been verified experimentally.9 On the
orbital plane, where X = 0, the radiation is purely plane polarized. Away from the
orbital plane, the radiation is elliptically polarized.

9F.R. Elder et al, Phys. Rev. 71, 829 (1947); 74, 52 (1948); J. Appl. Phys. 18, 810 (1947).
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B. Asymptotic property of the radiation

Using the asymptotic relation of the Bessel functions

^ M v O ^ , if?»i, (4-62)

we find that the radiation is negligible for £ > 1. Thus the synchrotron radiation is
confined by

^ ( I ^ P or W^O1'8- (4-63)
The synchrotron radiation spans a continuous spectrum up to UJC. High frequency
synchrotron light is confined in an angular cone 1/7. The radiation at large angles is
mostly low frequency.

C. Angular distribution in the orbital plane

In the particle orbital plane with 0 = 0, the radiation contains only the parallel
polarization. We find

dl 3e2 2 w
IF, = T^i—TH2{—), 4.64
dfi @=0 167T3£0C LJC

where

with y = tu/u>c (Fig. 4.4). Thus the energy spectrum at 0 = 0 increases with frequency
as 2.91(W/UJC)2/3 for u> <C uic, reaches a maximum near uic, and then drops to zero
exponentially as e~u/"c above critical frequency.

• / ^ ^ ^ \ ^ H2(y) :

• / ^ ^ \ Figure 4.4: The functions i?2(y)
/ " and S(y) for synchrotron radiation

o 5 -V ---^^^^^ly) _ are shown as functions of y = u/uc,
I ^ ~ ^ ^ ^ _ ^ ^ - where u = hco, uc = Tiuc.

0 . 0 I ' 1 1 ' I 1 ' 1 1 I I ' ' 1 I 1 1 1 1 I 1 1 1 1
0 0.5 1 1.5 2 2.5

y=u/uc
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D. Angular distribution for the integrated energy spectrum

When the energy flux is integrated over all frequency (see Section 6.576 in Ref. [26]),
we obtain

f°° dP 7e2 -fue ( 5X2 \
Jo dudn ~ 967T£0C (1 + X2)5/2 ^ + 7(1 + X2)) ^ '

where the first term corresponds to the polarization vector parallel to the orbital
plane, while the second term is the perpendicular component. Integrating over all
angles, we find that the parallel polarization carries seven times as much energy as
does the perpendicular polarization.

E. Frequency spectrum of radiated energy flux

Integrating Eq. (4.61) over the entire angular range, we obtain the energy flux10

/H = ̂ 7-/>V3(#^7^), (4.67)

where

S(y) = 9-^-yf~K5/3(y')dy', £°S{y) = l, (4.68)

also shown in Fig. 4.4. The total instantaneous radiation power becomes

1 r°° AP2 CC FA
PJ = ~ /Mdw =-p—7wc = ^ P % , (4-69)

2-Kp Jo 367re0p 2n pl

where C7 = 8.85 x 10~5 meter/(GeV)3. This result was obtained by Lienard in 1898.
The instantaneous power spectrum becomes

/ » = ^-I(u) = ̂ S(-). (4.70)
2iTp Ulc U)c

Since the energy of the photon is fuv, the photon flux density is

i-[3i i^^(S)1' i +^N'«+T^i«4 <4-7i)
In the forward direction Q = 0, the flux is

^ = m 3e2 Sm w
dn 0=0 LeJ 16n3e0hc w 2KuJ

= 1.33xl013£02^]^2(-) f . P t T 5 , , J . (4-72)
0 l J ywc' [s mr2 0.1% bandwidth] ' v '

10J. Schwinger, Phys. Rev. 75, 1912 (1949).
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which peaks at y = 1 or u = u)c. Thus the radiation due to the bending magnets has
a smooth spectral distribution with a broad maximum at the critical frequency uc.
The critical photon energy is

uc [keV] = hu>c = 0.665 E%[GeV] B[T] (4.73)

Using the asymptotic properties of the modified Bessel functions of Eq. (4.62),
we find that the spectral flux vanishes as (w/wc)2^3 for u <C u>c and as e~ulWc for
w ~S> u>c. Following the traditional convention, we define 4wc as the upper limit for
useful photon frequency from bending magnet radiation.

Integrating Eq. (4.61) over the vertical angle 0, we obtain

dT r /1 %/3e2 5u UJ r°°

= 2.46xlO"£b[GeV]/[A]Gi(-) f 2 n ^ T \ -,J (^)
uc [s mr2 0.1% bandwidth]

where
roo

Gi(y) = y Ks/3(y')dy' (4.75)
Jy

The function S{y) - ^Gx{y) is shown in Figure 4.4.

1.4 Quantum Fluctuation

Electromagnetic radiation is emitted in quanta of energy u — tuu, where h is Planck's
constant. Let n(u)du be the number of photons per unit time emitted in the frequency
interval dui = du/h at frequency u), i.e.

du
un(u)du = I(u))dw = I(LO)— (4.76)

n

or

n{u)=^FO=^§ r, Kv3{y)dy> (4-?7)
Uc Uc O7T Uc Jujuc

where
F(y) = -S(y), rFiy)^1-^. (4.78)

y Jo o

The total number of photons emitted per second, A/", is

.r f°° , , , W 3 P 7 5ac7

N= n(u)du=— •!-= —-rJ-, (4.79)
Vo 8 uc 2 v ^ p V ;
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where a = e2/4Tre0hc is the fine structure constant. The average number of photons
emitted per revolution becomes

N7 = N2-K- = -^Lory. (4.80)
c V o

Table 1.4 lists synchrotron radiation properties of some storage rings. Note tha t
the number of photons emitted per revolution is typically a few hundred to a few
thousand. In Table 1.4, E is the beam energy, p is the bending radius, C is the
circumference, To is the revolution period, UQ is the energy loss per revolution, r s and
T± are radiation damping times of the longitudinal and transverse phase spaces (to be
discussed in Sec. II), uc is the critical photon energy, and JV7 is the average number
of photons emitted per revolution.

Table 4.2: Properties of some high energy storage rings

I B E P C I CESR I LER I HER I APS I ALS I LEP II LHC
E [GeV] 2.2 6 3.2 9 7 1.5 55 7000
p [m] 10.35 60 30.6 165 38.96 4.01 3096.2 3096.2
C [m] 240.4 768.4 2199.3 2199.3 1104 196.8 26658.9 26658.9
To [//s] 0.80 2.56 7.34 7.34 3.68 0.66 89. 89.
Uo [MeV] 0.20 1.91 0.30 3.52 5.45 0.11 261. 0.00060
T|| [ms] 8.8 8.0 77. 19. 4.7 8.8 19. 1.0 x 109

7 i [ms] 18. 16. 155. 38. 9.4 18. 38. 2.0 x 109

uc [keV] 2.28 7.97 2.37 9.78 19.50 1.86 119.00 0.040
iV7 | 285 | 777 I 415 | 1166 | 907 | 194 | 7125 |[ 494"

The moments of energy distribution become

1 r°° 8
{u) = AfJo un(u)du = ^7=uc, (4.81)

(u2) = ±fo°°u2n(«)du = ^u2c, (482)

or

N{u)-CuucP7-^—{mc2)3—, Cu-^=. (4.83)

At a fixed bending radius, the quantum fluctuation varies as the seventh power of the
energy.
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Exercise 4.1
1. A particle of mass m and charge e moves in a plane perpendicular to a uniform, static

magnetic induction B.

(a) Calculate the total energy radiated per unit time. Express it in terms of the
constants m,e,j and B.

(b) Find the path of the electron.

2. Plot the angular distribution of synchrotron radiation shown in Eq. (4.61) for /? = 0.5
and P = 0.99. Find the maximum angular distribution of synchrotron radiation, and
show that the integrated power is given by Eq. (4.69).

3. Plot the angular distribution of synchrotron radiation shown in Eq. (4.37) for /3 = 0.5
and p = 0.99. Find the angle of the maximum angular distribution, and show that
the integrated power is given by Eq. (4.38).

4. The synchrotron radiation generated by the circulating beam will liberate photo elec-
trons from the chamber walls, which will desorb the surface molecules. The photon
yields depend on the photon energy and the chamber wall material. Using Eq. (4.67),
show that the number of primarily photons per unit energy interval in one revolution
is

<IN 9v^c/0 r ° „ , ,,
~r = -^—2 / K5/3(y)<iy,
du 8n ulc Ju/uc

where K5/3 is the Bessel function of order 5/3; uc = 3hcj3/2p is the critical pnoton
energy; and

_ 4nrpmp<?y4 _ f 8.85 x 10"5[(£ [GeV])4/p[m]] [GeV] for electrons,
0 ~~ 3p ~\ 7.78 x 1Q-6[(E [TeV])4/p[m]] [GeV] for protons,

is the energy loss per revolution. Show that the total number of primary photons in
one revolution is given by

15V3Uo

Verify 7V7 of the machines in the table below.

Proton storage rings Electron storage rings
VLHC I SSC I LHC LEP I HER(B) I APS

E [GeV] 50000 20000 8000 55 9 7
p [m] 15000 10108 3096.2 3096.2 165 38.96
7 53289 21316 8526 107632 17612 13699
uc [keV] 3.0 0.28 0.059 119 9.78 19.5
Up [keV] 3246 123 10.3 261495 3518 5453
N7 3530 1429 567 7136 Tl68 908

5. At 55 GeV, the magnetic flux density in a LEP dipole is B = 592.5 G. What happens
if you design the LEP with a magnetic flux density of 0.5 T at 55 GeV beam energy?
What will the energy loss per revolution be at 100 GeV? With the present LEP dipole
magnets, at what energy will the beam lose all its energy in one revolution?
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6. Verify Eq. (4.66), integrate the intensity over all angles, and prove that the parallel
polarization carries seven times as much energy as that of the perpendicular polar-
ization.

7. Verify Eqs. (4.72) and (4.74).

8. In designing a high energy collider, you need to take into account the problems asso-
ciated with gas desorption due to synchrotron radiations.

(a) For an accelerator with an average current / [A], show that the total synchrotron
radiation power is given by

F, - b.Od x 10 ( ^ m ] ) 2 [W\.

(b) Show that the total number of photons per unit time (s) is given by

M = 4 . 1 4 x l O 1 7 - 7 1 [A].

Show that the total number of photons per unit length in the dipole magnet is
given by11

^— = 6.60 x 10 1 6 41* [A] [photons/ml,
as pl

11 The resulting pressure increase is given by

kS ds

where i) is the molecular desorption yield (molecules/photon), 5 is the pumping speed (liter/s), and
k = 3.2 x 1019 (molecules/torr-liter) at room temperature. See 0. Grobner, p. 454 in Ref. [15].
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II Radiation Damping and Excitation

The instantaneous power radiated by a relativistic electron at energy E is

*-£7-•£*>**• <484'

where B is the magnetic field strength, p is the local radius of curvature, and
C1 = 8.85 x 10~5 m/(GeV)3 is given by Eq. (4.5). The total energy radiated in
one revolution becomes

Uo — ——f - r (= C7—for isomagnetic rings). (4.6)
2TT J p1 p

Therefore the average radiation power for an isomagnetic ring is

(P)-~- cCjEA (4 7)

where To = /3C/2TTJ? is the revolution period, and R is the average radius of a storage
ring. For example, an electron at 50 GeV in the LEP at CERN (p = 3.096 km) will
lose 0.18 GeV per turn. The energy loss per revolution at 100 GeV is 2.9 GeV, i.e. 3%
of its total energy. The energy of circulating electrons is compensated by rf cavities
with longitudinal electric field.

Since higher energy electrons lose more energy than lower energy electrons [see
Eq. (4.84)] and the average beam energy is compensated by longitudinal electric field,
there is radiation damping (cooling) in the longitudinal phase space. Furthermore,
electrons lose energy in a cone with an angle about 1/7 of their instantaneous ve-
locity vector, and gain energy through rf cavities in the longitudinal direction. This
mechanism provides transverse phase-space damping. The damping (e-folding) time
is generally equal to the time it takes for the beam to lose all of its energy.

On the other hand, synchrotron radiation is a quantum process. The photon emis-
sion is discrete and random, and the quantum process causes diffusion and excitation.
The balance between quantum fluctuation and phase-space damping provides natural
momentum spread of the beam.

The longitudinal and transverse motions are coupled through the dispersion func-
tion; there is a damping-fluctuation partition between the longitudinal and transverse
radial planes. The balance between damping and excitation provides natural emit-
tance or equilibrium beam size. The vertical emittance is determined by the residual
vertical dispersion function and linear betatron coupling. In this section we discuss
damping time, damping partition, quantum fluctuation, beam emittances, and meth-
ods of manipulating the damping partition number.



438 CHAPTER 4. PHYSICS OF ELECTRON STORAGE RINGS

II. 1 Damping of Synchrotron Motion

Expanding the synchrotron radiation power of Eq. (4.84) around synchronous energy,
we obtain12

U(E) =U0 + WAE, W = % , (4.85)
at, E=E0

where Eo is the synchronous energy. We will show later that the coefficient W deter-
mines the damping rate of synchrotron motion.

First, we consider the longitudinal equation of motion in the presence of energy dis-
sipation. We assume that all particles travel at the speed of light. Let (C(T + TS), AE)
be the longitudinal phase-space coordinates of a particle with energy deviation AE
from the synchronous energy, and let (CTS, 0) be those of a synchronous particle. The
path length difference between these two particles is AC = acC^r, where ac is the
momentum compaction factor, C is the accelerator circumference, and the difference
in arrival time is13

(~* A p A F
AT = ac — = a c T 0 — . (4.86)

C Ej EJ

Thus the time derivative of the r coordinate is

!=*¥•
During one revolution, the electron loses energy U(E) by radiation, and gains

energy eV(r) from the rf system. Thus the net energy change is
d(AE) = eV(T)-U(E)^

dt TQ

where the radiation energy loss per revolution is U(E) = UQ + WAE. For simplicity,
we assume a sinusoidal rf voltage wave in the cavity and expand the rf voltage around
the synchronous phase angle (f>s = hu>oTs,

V(T) = Vos\n(f> = Vosinwrf(r + rs), (4.89)

where the rf frequency is wrf = hu>0 = h2ir/T0; w0 is the revolution frequency; and h
is the harmonic number. Now we consider the case of a storage mode without net
acceleration, where the energy gain in the rf cavity is to compensate the energy loss
in synchrotron radiation, i.e.

[/rf = eV(r) = Uo + eVr (4.90)

12In fact, since a particle having nonzero betatron amplitude moves through different regions
of magnetic field, its rate of synchrotron radiation may differ from that of an electron with zero
betatron amplitude. However, if the field is linear with respect to displacement, the radiation power
averaged over a betatron cycle is independent of betatron amplitude. Thus Eq. (4.85) does not
depend explicitly on betatron amplitude.

l3Here, the phase slip factor is rj = ac — 1/y2 fa ac for high energy electrons.
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Figure 4.5: A schematic drawing of
damped synchrotron motion. Par-
ticle motion is damped toward the
center of the bucket.

with
i/o = eVosin(wrfrs), V'= wrfVo cos(a>rfTs). (4-91)

Thus, in small amplitude approximation, we have

dJ^l = heVr-WAE). (4.92)
at Jo

Combining with Eq. (4.87), we obtain

g + 2«Bf+u<?r = 0, (4.93)

where
W , aceV

<*E = ^ , ws2 = - ^ — . (4.94)

This is the equation of a damped harmonic oscillator with synchrotron frequency ws

and damping coefficient a^. Since the damping rate is normally small, i.e. OE -C WS,
the solution can be expressed as

r{t) = Ae~aEt cos(wst - 00). (4.95)

Figure 4.5 illustrates damped synchrotron motion. Table 1.4 lists the longitudinal
and transverse damping times T\\ = 1/CXE and T± of some storage rings. Typically,
1/e damping time is 103 — 104 revolutions.

The damping partition

To evaluate the damping rate, we need to evaluate W. Since the radiation energy
loss per revolution is

£>™i = fP,dt = fp^ds = - lp.il + -)ds = - /P7(l + ~^)ds, (4.96)
J J as c J p c J p h/Q
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where D is the dispersion function, p is the radius of curvature, and we have used
cdt/ds = (1+rr/p),14 the derivative of radiation energy with respect to particle energy

w=e±mifi&+°z\ „. ,4.97)
dE c J [dE p E J E

Using F7 ~ E2B2 of Eq. (4.84), we obtain

dE Eo Eo Bo dE Eo Bo dE dx Eo Bo Eo dx' K >

and

rft/rad = If f ^ 2 ^ r j D d 5 P , D 1
d^ cf \ Eo BoEodx Eo p j E

Thus the damping coefficient becomes

a £ = 2 ^ ^ ^ = ^ 2 + 2?)- ( 4 ' 1 0 0 )

Here T> is the damping partition number,

cC/o /1 7 V P Bdx)]Eo

= [/f (?+ »<•>)*] [/?]"'' ("01)
where A'(s) = Bi/Bp is the quadrupole gradient function with Bi = dB/dx. The
damping partition number V is a property of lattice configuration. For an isomagnetic
ring,

V = ~<fD(s)(-2+2K(s)) ds. (4.102)
Z7!" J \P /dipole

The integral is to be evaluated only in dipoles.

14The transverse displacement x is the sum of betatron displacement and off-momentum closed
orbit. Since we are interested in the dependence of total radiation energy on the off-energy coordinate
and (xp) = 0, we replace x by D(AE/E0).
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Example 1: Damping partition for separate function accelerators

For an isomagnetic ring with separate function magnets, where K(s) = 0 in dipoles,

V=^l^ds = ^ (4.103)
2K pJ p p y '

where QC is the momentum compaction factor. Since normally ac -C 1 in synchrotrons,
V -C 1 for separate function machines.

The damping coefficient for separate function machines becomes

The damping time constant, which is the inverse of OE, is nearly equal to the time it
takes for the electron to radiate away its total energy.

Example 2: Damping partition for combined function accelerators

For an isomagnetic combined function accelerator, we find (see Exercise 4.2.1)

£> = 2 - ^ (4.105)

and OE « 2(Py)/E. The synchrotron motion is highly damped at the expense of
horizontal betatron excitation, to be discussed in the next section.

Figure 4.6: Schematic drawing of
the damping of vertical betatron
motion due to synchrotron radia-
tion. The energy loss through syn-
chrotron radiation along the parti-
cle trajectory with an opening an-
gle of I/7 is replenished in the rf
cavity along the longitudinal direc-
tion. This process damps the ver-
tical betatron oscillation to a very
small value.

II.2 Damping of Betatron Motion

A. Transverse (vertical) betatron motion

A relativistic electron emits synchrotron radiation primarily along its direction of mo-
tion within an angle I/7. The momentum change resulting from recoil of synchrotron
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radiation is exactly opposite to the direction of particle motion. Figure 4.6 illustrates
betatron motion with synchrotron radiation, where vertical betatron coordinate z is
plotted as a function of longitudinal coordinate s. The betatron phase-space coordi-
nates are

z = Acos(f>, z' = - - s i n 0 , A2 = z2 + {pz'f, (4.106)

where A is betatron amplitude, <j> is betatron phase, and (3 is betatron function.
When an electron loses an amount of energy u by radiation, the momentum vector

P changes by 5P, such that 5P is parallel and opposite to P with \c5P\ = u. Since
the radiation loss changes neither slope nor position of the trajectory, the betatron
amplitude is unchanged except for a small increment in effective focusing force.

Now the energy gain from rf accelerating force is on the average parallel to the
designed orbit (see Fig. 4.6). Let p±_ be the component of momentum p that is
perpendicular to the designed orbit, i.e.

z' = ?±. (4.107)
P

When an accelerating field is applied to the electron, it does not change z either;
however, the new slope is decreased by the increment of longitudinal momentum at
cavity locations

^ ^ - 7 ( 1 - 7 ' - y ( 1 - 7 » - (4"108)
where the change of z' is15

Az' = -z'^ = -z'^. (4.109)
p E

The corresponding change of amplitude A in one revolution becomes

ASA = (fz'Az1) = -<(/?z')2)^, (4.110)

where (...) averages over betatron oscillations in one revolution, and UQ is synchrotron
radiation energy per revolution. Since the betatron motion is sinusoidal, we have
({pz<?) = A2/2, and

The time variation of the amplitude function is then

I^ = !M = _J^ (4H2)
Adt To A 2ET0' K ' ;

15Although dipole magnets, where electrons emit synchrotron radiation, are distributed in a stor-
age ring but rf cavities are usually located in a small section of a storage ring, Eq. (4.108) is valid
because the momentum direction of photon emitted is along the trajectory of betatron motion, and
the energy of each photon is small in comparison with particle energy.



II. RADIATION DAMPING AND EXCITATION 443

and the damping coefficient is

The radiation loss alone does not result in betatron phase-space damping. The radi-
ation damping arises from the combination of energy loss in the direction of betatron
orbit and energy gain in the longitudinal direction from rf systems, as shown in
Eq. (4.108).

B. Horizontal betatron motion

The horizontal motion of an electron is complicated by the off-momentum closed
orbit. The horizontal displacement from the reference orbit is

A r i An

x = xp + xe, xe = D{s)—, x' = x'g + x'e, x'e = D'{s)—,

where xp is the betatron displacement, xe is the off-energy closed orbit, and D(s) is
the dispersion function. When the energy of an electron is changed by an amount u
due to photon emission, the off-energy closed orbit xe changes by an amount 5xe =
D(s) (u/E) shown schematically in Fig. 4.7. Since phase-space coordinates are not
changed by any finite impulse, the resulting betatron amplitude is

Sip = -Sxe = -D(a)l, 6x'0 = -5x'e = -D'(s)^. (4.114)

The resulting change of betatron amplitude can be obtained from the betatron phase
average along an accelerator.

We consider betatron motion with

Xf, = Aco84>, x'0 = -~sm<j>, A2 = x} + (px'p)2; (4.115)

the change in betatron amplitude becomes

ASA = xpSxf, + px'pSx'p = -(Dip + P2D'x'e)^. (4.116)

Substituting the energy loss u in an element length S£ with

into Eq. (4.116),16 we obtain the change in betatron amplitude as

ASA = xeD (l + l^-xf, + %) %-ds. (4.118)
y B dx p J eh

16Here we use SI = (1 + x/p)ds with x = xp, because we are interested in the effect on betatron
motion. The off-momentum closed orbit does not contribute to the change in betatron amplitude.
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Figure 4.7: Schematic illustration, after M. Sands [27], of quantum excitation of horizontal
betatron motion arising from photon emission at a location with nonzero dispersion func-
tions. At a location marked by a vertical dashed line, the electron emits a photon, and the
electron energy is changed by u, and thus the off energy closed orbit is shifted by Sxe, which
perturbs the betatron motion. A small and not so important effect is a stronger focusing
field for betatron motion.

Here we have neglected all terms linear in x'p, because their average over the betatron
phase is zero. We are now looking for the time average over the betatron phase, where
(xp) = 0 and (zjj) = \A^. The fractional betatron amplitude increment in one turn
becomes

where V is the damping partition number given in Eq. (4.101). In particular, we
observe that the right side of Eq. (4.119) is positive, i.e. there is an increase in
horizontal betatron amplitude due to synchrotron radiation.17 Including the phase-
space damping due to rf acceleration given by Eq. (4.112), we obtain the net horizontal
amplitude change per revolution as

The damping (rate) coefficient becomes

as = ( l - 2 > ) - ^ - , (4.121)
Hot,

where the damping partition V is given by Eq. (4.101).
In summary, radiation damping coefficients for the three degrees of freedom in a

bunch are
ax - JxaQ, az = Jza0, aE = JEOC0, (4.122)

17This is easy to understand. Emission of a photon excites betatron motion of the electron. This
resembles the random walk problem, and the resulting betatron amplitude will increase with time.
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where a0 = (P7}/2E, and the damping partition numbers

.7, = 1-2?, Jz = h JE = 2 + V (4.123)

satisfy the Robinson theorem18

52Ji = Jx + Jz + JE = 4 or JX + JE = 3 (4.124)

provided that all fields acting on the particle are predetermined and are not influenced
by the motion of electrons. The corresponding damping time constants are

_ 2E _ 4-irRp _ 2E

Tx = MP-,) = CC,JXE3 ~ jjT0 °'
_ 2E _ AirRp _ IE

Tz ~ J,{P,) ~ cC.JzE* ~~JjT00'
2E AnRp _ IE

TE ~ JE(P7) ~ CCJJEE* ~ JETTO °'

where To is the revolution period. Note that the damping time, for constant p, is
inversely proportional to the cubic power of energy and, for a fixed B-field, is inversely
proportional to the square of energy. Some typical damping times for electron storage
rings are listed in Table 1.4. The corresponding damping decrements are defined as

K=T0/TX, \Z=T0/TZ, XE = T0/TE, (4.125)

The damping rate of an individual particle or a portion of a bunch can be modified
if additional forces are introduced that depend on the details of particle motion. Some
examples are image current on vacuum chamber wall, induced current in rf cavity,
wakefields, longitudinal and transverse dampers powered by amplifiers sensing beam
displacement, and electron and stochastic cooling devices.

II.3 Damping Rate Adjustment
The damping partition and damping times are determined by the lattice design.
However, insertion devices, such as undulators and wigglers, can be used to adjust
beam characteristic parameters. We discuss below some techniques for damping rate
adjustment.

A. Increase U to increase damping rate (damping wiggler)

Phase-space damping rates, apart from damping partition numbers, depend on radia-
tion energy Uo per turn. Wiggler magnets, which consist of strings of dipole magnets

18K. Robinson, Phys. Rev. I l l , 373 (1958).
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with alternate polarities excited so that the net deflection is zero, can be used to
increase the radiation energy and thus enhance damping rate. The resulting energy
loss per revolution becomes

Uy, = Uo + C/wjggier, (4.126)

and the damping rate is enhanced by

aw = —~ = a0 + awiggier- (4.127)

The damping time is shortened by a factor of (1 + f/wiggier/̂ o)"1-

B. Change V to repartition the partition number
Many early synchrotrons, such as the 8 GeV synchrotron (DESY) in Hamburg, the 28
GeV PS at CERN, the 33 GeV AGS at BNL, etc., used combined function isomagnetic
magnets, where V « 2 (see Exercise 4.2.1). Thus the energy oscillations are strongly
damped (JE ~ 4) and the horizontal oscillations become anti-damped (Jx ss — 1).

At the CERN PS, in facilitating the acceleration of e+/e~ from 0.6 to 3.5 GeV
as part of the LEP injection chain, horizontal emittance is an important issue. The
growth time at 3.5 GeV is about 76 ms {Jx « —1, p = 70 m), which is much shorter
than the cycle time of 1.2 s. Stability of the electron beam can be achieved only by
having a positive damping partition number, which can be facilitated by decreasing
the orbit radius R.

The reason for the change in damping partition due to orbit radius variation is as
follows. The potential for betatron motion in a quadrupole is

V0 = \K(S) (X2 - z% (4.128)

where K = (\/Bp)(dBz/dx) is the focusing function; K > 0 for a focusing quadrupole,
and K < 0 for a defocussing quadrupole. If the rf frequency is increased without
changing the dipole field, the mean radius will move inward, and the change of radius
ARis

±L = _ ^ = -aA. (4.129)

The actual closed orbit can be expressed as x = xc0 + x$, where xco < 0 is a new
closed orbit relative to the center of a quadrupole, and xp is the betatron coordinate.
The potential for betatron motion becomes

V0 = l-K{s) (xj -z2 + 2x0xco + x\o). (4.130)

Since xco < 0, the effective dipole field xC0K(s) in a quadrupole and the quadrupole
field have opposite signs, i.e. (l/Bz)(dBz/dx) < 0. This is similar to the effect of a
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Robinson wiggler, discussed below. The combined effect is that the damping partition
V will get a negative contribution from these quadrupoles. The effective dipole field
arising from the closed orbit in a quadrupole is given by BpK {xp + xco), where Bp
is the momentum rigidity. Substituting the contribution of quantum excitation from
the quadrupole into Eq. (4.117) gives the additional change of betatron amplitude in
Eq. (4.118) as

A ( T ) = ̂ ? / ^ 2 J D 2 ^ S ' (4-131)
where we have used xco = D5S, and the fractional off-momentum shift <5S = —Af/acf.
The resulting change of damping partition is (see also Exercise 4.2.9)

f={2JK^ds)[f^S]~l. (4,32)
The CERN PS lattice is composed of Ncen = 50 nearly identical combined function

FODO cells with a mean radius of R = 100 m. Using Eq. (4.101) or Eq. (4.117) we
get the change in damping partition due to closed orbit variation (see Exercise 4.2.9),

AV = ^<fD(^P\2dsARK^fAR. (4.133)
7T / \Bp) TT2R

Figure 4.8 shows Jx, JE vs AR for the CERN PS.

Figure 4.8: The variation of the
damping partition number of the
CERN PS with the strength of
the Robinson wiggler. Without
the Robinson wiggler, a fairly large
change in AR is needed to attain
Jx = 1, with loss of useful aperture.
From K. Hubner, CERN 85-19, p. 226
(1985).

C. Robinson wiggler

Without a Robinson wiggler, changing the damping partition requires a large shift
of the mean orbiting radius (Fig. 4.8), and this limits the dynamical aperture of
circulating beams. Thus, it is preferable to change the damping partition number
by using the Robinson wiggler, which consists of gradient dipoles. If the gradient
and dipole field of each magnet satisfy Kp < 0, as shown in Fig. 4.9, the damping
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Figure 4.9: Schematic drawing of a Robinson wiggler, where gradient dipoles with B^ < 0
are used to change the damping partition number.

partition of Eq. (4.101) can be made negative. A string of four identical magnet
blocks having zero net dipole and quadrupole fields will not produce global orbit and
tune distortion in the machine. Since these magnets have Kwpw < 0, the wiggler
contributes a negative term to the damping partition of Eq. (4.101). The change of
damping partition is

AV = m^^l(l + ^lY\ (4,34)
' Bw dx 2npl \ 2irplJ

where pw, Bw, dB^/dx, and Lw are respectively the bending radius, the wiggler field
strength, its derivative, and the length of each wiggler; and p is the bending radius
of ring magnets and (D) the average dispersion function in wiggler locations. The
Robinson wiggler has been successfully employed in the CERN PS to produce Jx « 3,
which enhances damping of horizontal emittance and reduces damping in energy
oscillation. The resulting line density of beam bunches is likewise reduced to prevent
collective instabilities.

II.4 Radiation Excitation and Equilibrium Energy Spread
Electromagnetic radiation is emitted in quanta of discrete energy. When a photon
is emitted, the electron energy makes a small discontinuous jump. The emission
time is short and thus the synchrotron radiation can be considered as instantaneous.
This can be verified as follows. In a semi-classical picture, the time during which a
quantum is emitted is about

P® P 6 12

c C7 B[Tesla]

where 7 is the relativistic Lorentz factor, p is the radius of curvature, and B is the
magnetic flux density. Since this time is very short compared with the revolution
period and the periods of synchrotron and betatron oscillations, quantum emission
can be considered instantaneous.
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Another important feature of synchrotron radiation is that emission times of indi-
vidual quanta are statistically independent. Since the energy of each photon [keV] is
a very small fraction of electron energy, the emission of successive quanta is a purely
random process, which satisfies Poisson distribution.19

Discontinuous quantized photon emission disturbs electron orbits. The cumulative
effect of many such small disturbances introduces diffusion similar to random noise.
The amplitude of oscillation will grow until the rates of quantum excitation and
radiation damping are on the average balanced. The damping process depends only
on the average rate of energy loss, whereas the quantum excitation fluctuates about
its average rate.

A. Effects of quantum excitation

When a quantum of energy tiu is emitted, the energy of the electron is suddenly de-
creased by an amount hui. The impulse disturbance sets up a small energy oscillation.
The cumulative effect of many such random disturbances causes energy oscillation to
grow (as in a random walk). The growth is limited by damping.

In the absence of any disturbance and damping, the energy deviation AE from
the synchronous energy, expressed in complex representation, is

AE = Aoejul!!{t-to\ (4.135)

where ^o is the amplitude of synchrotron motion, and LJS is the synchrotron frequency.
Now if the energy is suddenly decreased by an amount u at instant t\ via quantum
emission, the energy oscillation of the particle becomes

AE = Aoeju"{t-to) - ue^1'^ = A^^-^, (t > h), (4.136)

where
A2 = A2 + u2- 2A0ucosuj%{tl - t0). (4.137)

The quantum emission has changed the amplitude of synchrotron oscillation. Since
the time t\ is unpredictable, the probable change in amplitude will be

5A2 = (A2 - A2)t = u2, (4.138)

where (.. .)t stands for time average. Qualitatively, the amplitude growth rate be-
comes

,dA2, d(A2) . ,

<-5"> = - W Z = Vtt' (4139)
where JV" is the rate of photon emission.

19The probability of an electron emitting n photons per second is given by a Poisson distribution
f(n) = p"e~p/ni, where p = (n) is the average rate per second. The variance of Poisson distribution
a2 is equal to p. In the limit of large p, Poisson distribution approaches Gaussian distribution, i.e.
P{n) = (l/V3ip>-("-")2/2p.
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B. Equilibrium rms energy spread

Since damping time of the amplitude A is TE = I/as, as shown in Eq. (4.94), the
damping time of A2 is TE/2. The equation for the synchrotron amplitude thus becomes

^>=-2<^ + A^, (4.140)
at TE

where the stationary state solution is (A2) = | JVU2TE . A qualitative estimation of
the rms beam energy spread for sinusoidal energy oscillation is20

aB2 = ^ = j ^ « V (4.141)

To attain a better calculation on the equilibrium beam momentum spread, the quan-
tum fluctuation should be obtained from the sum of the entire frequency spectrum
because the photon spectrum of synchrotron radiation is continuous.

Let n(u)du be the photon density at energy between u and u + du. The amplitude
growth rate due to quantum fluctuation becomes

^ 1 L Z = / u2n{u)du = N(u2), JV = n{u)du. (4.142)
dt Jo Jo

This shows that the amplitude growth rate depends on mean energy loss (u2) of
electrons, which depends on electron energy E and local radius of curvature p. Since
the radius of curvature may vary widely along the ring, and damping time TE and
synchrotron period l/ws are much longer than revolution period To, it is reasonable
to average the excitation rate by averaging M{u2) over one revolution around the
accelerator. We define the mean square energy fluctuation rate GE as

GE = Win2}}, = ̂  fN{u2)ds, (4.143)

where the subscript s indicates an average over the ring. The mean square equilibrium
energy width becomes

O\ = \GETE. (4.144)

On the design orbit, the radiated power is

P" deseed orbit = ^ ^ = ( V ^ V - ( 4 M 5 )

20For an order of magnitude estimation, we use u RJ hu)c, M a P-,/tu^c, and TE « E/Py to obtain
an rms energy oscillation amplitude of UE OC \/Efujc ~ 72. The energy fluctuation is roughly the
geometric mean of electron energy and critical photon energy, and is proportional to 72.
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Equation (4.83) then gives

N{u>) = tchclt+jjL, (4.146)
designed orbit ^ F \±/ h> /

where Cu = 55/24^3- Using Eq. (4.143) and TE = 2E/JE(P1), we obtain

GE = 3-Cuhcj3-^-}(l/p3) (4.147)

and

-i-Sw- (4148)
The fractional energy spread is then

<f>° = ̂ ( 1 / A (4I49)
where

c » = J5 n_ = x io_13 m

9 4mc 32\/3wc '

For an isomagnetic ring, we obtain

(f)2 = i ^ ! i r c ^ or f-(°-62xl0"6)7^ri- 4̂-151)
h, 4&VSJEE JEP t, yJJEp[m\

Note that the energy spread is independent of the rf voltage. For a bunch with a
given momentum spread, the bunch length is shorter with higher rf voltage, and the
resulting phase-space area is smaller; with lower rf voltage phase-space area is larger.
In many electron storage rings, the bunch length is also affected by wakefields [3].

C. Adjustment of rms momentum spread

Insertion devices, such as undulators and wigglers, can change the rms energy spread
of Eq. (4.144). Two competing effects determine the equilibrium energy spread. In-
sertion devices increase radiation power, which will increase quantum fluctuation GE-
Since the damping time is also shortened, the resulting equilibrium energy spread
becomes

4 = 4o(l + ^ ) ( l + : | i )~\ (4.152)

where

3̂ = / r-^ds, I2 = / r-rrds, I3w = / -—prds, I2w = / -.—r^ds,
J \p\3 J |p | 2 J | p w | 3 J \pw\2

are radiation integrals for ring dipoles and wigglers respectively. Because the magnetic
field of insertion devices is usually larger than that of ring dipoles, i.e. |pw| < p, the
rms energy spread will normally be increased by insertion devices.
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D. Beam distribution function in momentum

The energy deviation AE at any instant t is a result of contributions from the emission
of quanta at an earlier time £,. We can write

AE{t) = £ Uie-aE{t-u) cos [u.{t - U)], (4.153)

where Ui is the energy of a quantum emitted at time U. Since the typical value of
AE(t) is much larger than the energy of each photon, and £*'s are randomly dis-
tributed, the sum at any time t consists of a large number of individual terms, which
are positive and negative with equal probability. The central limit theorem (see Ap-
pendix A) implies that the distribution function of energy amplitude is Gaussian:

9{AE) = ^ = ^ e - A £ 2 / 2 ^ , (4.154)
\J2-KOE

where OE is the rms standard deviation. Normally the damping time is much longer
than the synchrotron period, 2ir/u>s. For a particle executing synchrotron motion
with

AE(t) = Acos(ust - X), (4.155)

the corresponding longitudinal time component relative to a synchronous particle [see
Eq. (4.87)] is

T=^sm(ujst-x), (4.156)

where ac is the momentum compaction factor, and x is an arbitrary phase factor.
The normalized phase-space coordinates are (AE,6 = Eu>&r/ac).

Since the normalized phase-space ellipse is a circle, the Gaussian distribution of a
beam bunch is

tf (A£, 61) = NB^(AE)^(0), (4.157)

where ./VB is the number of particles in a bunch, and

\J2-KOE V27T(TE

The bunch length in time is

Or = -^-VE, (4.158)

which depends on the rf voltage. We define the invariant amplitude A2 = AE2 + 92,
and the distribution function becomes

g{A) = N^e'A2l2^ = N24e-All°i. (4.159)
°E °A
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where a\ = {A2} = 2a2E. Using the variable W = A2 with dW = 2AdA, we get the
probability distribution function as

h(W) = tf J L e - " 7 W , (4.160)

with (W) = 2<r|.

II. 5 Radial Bunch Width and Distribution Function
Emission of discrete quanta in synchrotron radiation also excites random betatron
motion. The emission of a quantum of energy u results in a change of betatron
coordinates, i.e.

Sxp = -D {u/E0), Sx'g = -D' {u/Eo). (4.161)

The resulting change in the Courant-Snyder invariant is

6* = I [DH + {pxD> - f z W - f x)] | - + A ^ + {PxD' - fD)'] (J)»,
where /3X and f}'x are the horizontal betatron amplitude function and its derivative
with respect to longitudinal coordinate s. Averaging betatron coordinates xp,x'p, the
resulting amplitude growth becomes

8(a2) = %{^-f, U = j ^ [D2 + (PXD' - \p'xDf] , (4.162)

where the ^-function depends on the lattice design. In an accelerator straight section,
where there is no dipole, the %-function is invariant; it is not invariant in regions with
dipoles. The rate of change of betatron amplitude (emittance) is obtained by replacing
u2 with M(u2) and averaging over the accelerator, i.e.21

where (•••)„ stands for an average over a complete revolution. Adding the damping
term of Eq. (4.112), we obtain

OX Tx

The equilibrium rms width becomes

(a2) = -TxGx and o*xfil = ^ & (a2). (4.165)

21The emittance growth in a transport line is de/dt = -^ $* N(u2)Hds.
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Using Eq. (4.83) for M{u2), we obtain

r _ 3 r f i 3(P,)(n/\p\3) 3Cqcro75(-H/\p3\)
ox--,unn E2{1/p2) - 3 ( p 2 ) ( 1 / p 2 ) .

where Cq = 3.83 x 1CT13 m is given by Eq. (4.150). The emittance of Eq. (4.166)
is also called the natural emittance. For isomagnetic storage rings, the result can be
simplified to

ex- —— -Uq — , (4.Lb7)
Px -Jxy

where (H)ma.g is the average "H-function in dipoles, i.e.

(H)mag = ̂ ~f nds. (4.168)
Z7T/9 Jdipole

Since the H-function is proportional to LO2 ~ pO3, where 6 is the dipole angle of a
half cell, the natural emittance of an electron storage ring is proportional to j263.
The normalized emittance is proportional to 7303. Unless the orbital angle of each
dipole is inversely proportional to 7, the normalized natural emittance of an electron
storage ring increases with energy.

Comparing with the energy width for the isomagnetic ring, we find

& ~ Jx \ E ) • ( '

The horizontal distribution function

The distribution function for particles experiencing uncorrelated random forces with
zero average in a simple harmonic potential well is Gaussian:

*(*/0 = - 7 i r — e x p j - ^ } - (4-17°)
Since the betatron oscillation period is much shorter than the damping time, the
distribution in phase-space coordinates follows the Courant-Snyder invariant

^ • ^ , ) - ' np{-'» + ' ^ - ' « ^ ' ' ' } . <,m>
V2naxffx { 2axfjx )

Now the total radial spread has contributions from both betatron and energy oscil-
lations. Since the betatron and synchrotron frequencies differ substantially, Gaussian
quadrature can be applied to obtain

o-x = 4 » , + * « - (4-172)
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For an isomagnetic ring, we obtain

, r 7 2 Px(s){n)™s , D2(s)]
a*= % —J.— + ~17\ • ( 4 '173 )

II.6 Vertical Beam Width

Synchrotron radiation is emitted in the forward direction within a cone of angular
width I/7. When the electron emits a photon at a nonzero angle with respect to its
direction of motion, it experiences a small transverse impulse. Consider the emission
of a photon with momentum u/c at angle 91 from the electron direction of motion,
where we expect 97 < 1/7. The transverse kick is then equal to 97u/c. The transverse
angular kicks on phase-space coordinates become

5x = 0, 6x' = ±9X, Sz = 0, Sz' = ^9Z, (4.174)
•&0 -fro

where 9X, 9Z are projections of 9y onto x, z axes respectively. Since Sx' is small com-
pared with that of Eq. (4.161), we neglect it. We consider only the effect of random
kick on vertical betatron motion. Emission of a single photon with energy u gives rise
to an average change of invariant betatron emittance 8{a2z) = (u/E0)292zfiz. Including
both damping and quantum fluctuation, the equilibrium beam width is

0% = -ATZGZ$Z, (4.175)

(N(v?9ppz)s _ (N(u2){9l)pz)s (Af{u2))(pz)
G* = & ^ ^ * 72£2 > (4-1 7 6)

where we have used the fact that (Of) ~ I/72. Recalling that (JV(M2)) = GE, we
obtain

o\ = TZGZ/3Z ^ JE{Pl)

o\ rEGE ~ Jrf&- ^U']
Using Jz = 1, we obtain

°l*CM/p or ezHCq(fi)m/P, (4-178)

which is very small. Thus the vertical oscillation is energy independent and is less
than the radial oscillation by a factor of I/72. The vertical beam size is damped
almost to zero.

Emittance in the presence of linear coupling

Sometimes it is desirable to introduce intentional horizontal and vertical betatron
coupling. When the coupling is introduced, the quantum excitation is shared up to
an equal division. Let ex and ez be the horizontal and vertical emittances with

e* + ez=enat, (4.179)
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where the natural emittance enat is Eq. (4.166). The horizontal and vertical emittances
can be redistributed with appropriate linear betatron coupling

1 K
£x = Z ; Enat; £z — Z ! ^natj (4.180)

1 + K 1 + K
where the coupling coefficient K is (see Exercise 4.2.8).

11.7 Radiation Integrals

To summarize the properties of electron beams, we list radiation integrals in the left
column of Table II.7, and the corresponding physical quantities in the right column.
Here (5) is the spin polarization, and PST = —8/5-\/3 is the Sokolov-Ternov radiative
polarization limit.

Table 4.3: Radiation integrals and their effects on properties of electrons.

11 = J D/pds ac = II/2TTR

12 = J i/p^ds Uo = 1.404 E4 [GeV] 72 [GeV]

h = I l/\p\3ds (aE/Ef = Cg72I3/(2I2 + 74)
ha = I 1/P3ds (S) = PsTha/h

I4 = f(D/p)(l/p2 + 2K)ds Jx = l-h/I2, JE = 2 + Ii/I2, V = hll2

K=(l/Bp)(dBz/dx) 6nRax = recy3{I2-h), 6nRaz = recj3{I2 - 74),

QirRaE = recj3{2I2 + h)

h = fH/\p\3dS ex = Crfh/(I2-h)

11.8 Beam Lifetime

We have used a Gaussian distribution function for the electron beam distribution
function. Since the aperture of an accelerator is limited by accelerator components
such as vacuum chambers, injection or extraction kickers, beam position monitors,
etc., the Gaussian distribution, which has an infinitely long tail, is only an ideal
representation when the aperture is much larger than the rms width of the beam so
that particle loss is small.

A. Quantum lifetime

Even when the aperture is large, electrons, which suffer sufficient energy fluctuation
through quantum emission, can produce a radial displacement as large as the aperture.
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If the chance of an electron being lost at the aperture limit, within its damping time,
is small, then the loss probability per unit time is the same for all electrons. The loss
rate becomes

1 ^ = - I , (4.181)
N dt rq K '

where rq is the quantum lifetime. We discuss quantum lifetime for radial and longi-
tudinal motion below.

Radial oscillation

We consider radial betatron oscillation

x = acoswpt. (4.182)

Quantum excitation and radiation damping produce an equilibrium distribution given
by

h(W) = ~e-w^w\ {W) = 2al, (4.183)

where W = a2.
To estimate beam lifetime, we set up a diffusion equation for h(W). We assume an

equilibrium distribution without aperture limit and consider an electron at amplitude
Wo, with Wo > (W), so that the probability for the electron to have W > Wo is
small. Once the electron gets into the tail region (W > Wo) of the distribution, it is
most likely to return to the main body of the distribution because of faster damping
at large amplitude, i.e.

dW 2W ,
• * - = — • ( 4 1 8 4 )

The flux inward through Wo due to damping is

W = 2NWoh(Wo)
at w0 TX

In a stationary state, an equal flux of electron passes inward and outward through
Wo, i.e.

w = ™wm = Nw_e-*,m, (4.186)
at TX TX(W)

where Wo has been replaced by W. Thus the quantum lifetime is22

r W

rq = f^, f = M . (4.187)

22Note that the formula is valid only in a weakly damping system. See M. Bai et al., Phys. Rev.
E55, 3493 (1997).
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Synchrotron oscillations

For synchrotron motion, the aperture is limited by rf voltage and bucket area. The
Hamiltonian of synchrotron motion is

H ( 5 , <j>) = -huac62 + ^ - ^ [ c o s <j> - cos </>B + (<j>- cj>s) s in & ] , (4.188)

where 5 = Ap/p = AE/E, (j> = her, and h is the harmonic number. If the nonlinear
term in the momentum compaction factor is negligible and the synchrotron tune
differs substantially from zero, the Hamiltonian is invariant.

The Hamiltonian has two fixed points, (0, 0S) and (0, TT — <j>8). The value of the
Hamiltonian at the separatrix is

Hsx = Jff(O,7r-^) = ^ ^ [ - c o s 0 s + ( ^ - 0 s ) s i n ^ ] . (4.189)

The stable rf phase angle (f>s is determined by the energy loss due to synchrotron
radiation with eVosin^s = Uo = C7E4/p. From Eq. (4.187), the quantum lifetime is

T* = 1 P (.t = Ha/(H)), (4.190)

where the average value of the Hamiltonian is

(H) = hojoac{aE/E)2, (4.191)

and

£ - ^T-JE— \~ cos & + (£ - 0.) sin J . (4.192)
ooirna uc L 2 J

B. Touschek lifetime

In the beam moving frame, the deviation of the momentum Apb of a particle from that
of the synchronous particle, which has zero momentum, is related to the momentum
deviation in the laboratory frame Ap by

Aph = Ap/-y. (4.193)

Thus the momentum deviation in the rest frame of the beam is reduced by the rela-
tivistic factor 7. Because of synchrotron radiation damping and quantum fluctuation
in the horizontal plane, the rms beam velocity spreads in the beam moving frame
satisfy the characteristic property

(W/2 » <(4)2)1/2 * <(ApbM,)2>1/2, (4-194)

where xp and z@ are betatron coordinates; x'p — dxp/ds, z'p = dzp/ds are the slopes
of the horizontal and vertical betatron oscillations; and p0 is the momentum of a
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synchronous particle. Since the transverse horizontal momentum spread of the beam
is much larger than the momentum spread of the beam in the longitudinal plane,
large angle Coulomb scattering can transfer the radial momentum to the longitudinal
plane and cause beam loss. This process was first pointed out by Touschek et al. in
the Frascati e+e" storage ring (AdA).23 The Touschek effect has been found to be
important in many low emittance synchrotron radiation facilities.

We consider the Coulomb scattering of two particles in their center of mass system
(CMS) with momentum pi,init = (px, 0,0) and p2,init = (-px, 0,0), where the momenta
are expressed in the x, s, and z base vectors. The velocity difference between two
particles in the CMS is

v = 2px/m. (4.195)

Since the transverse radial momentum component of the orbiting particle is much
larger than the transverse vertical and longitudinal components, we assume that the
initial particle momenta of scattering particles are only in the horizontal direction. In
the spherical coordinate system, the differential cross-section is given by the Moller
formula,

^_Ji_M 3_i ,4196)

dn~ (v/cyUnH sin20j' ( '
where r^ is the classical electron radius. Let x De the angle between the momentum
Pi.scatt of a scattered particle and the s-axis, and let (p be the angle between the i-axis
and the projection of the momentum of the scattered particle onto the x-z plane, as
shown in Fig. 4.10.

Figure 4.10: The schematic geom-
etry of Touschek scattering, which
transfers horizontal momentum into
longitudinal momentum in the cen-
ter of mass frame of scattering par-
ticles. We use x, s, and z as or-
thonormal curvilinear coordinate sys-
tem. Particle loss resulting from large
angle Coulomb scattering gives rise to
the Touschek lifetime, which becomes
a limiting factor for high brightness
electron storage rings.

With the geometry shown in Fig. 4.10, the momentum of a scattered particle is

Pi,scatt = (px sin x cos (p, px cos x, px sin x sin ip), (4.197)

23C. Bernardini et at., Phys. Rev. Lett. 10, 407 (1963).
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where the momentum of the other scattered particle is — pi,scatt- The scattering angle
9 is related to x a n d <fi by

cos 6 = sin x cos ip, (4.198)

and the momentum transfer to the longitudinal plane in the CMS is

APcms=px\cosx\- (4.199)

Now we assume that the scattered particles will be lost if the scattered longitudinal
momentum is larger than the momentum aperture, i.e.

| c o s x | > — (4.200)

where Ap = {2vs/hac)Y(<ps) is the rf bucket height. Thus the total cross-section
leading to particle loss in the CMS is

crT = / . da
J\cosx\>£p/lPx

Arl rcos-1 (Ap/jpx) y27r I" 4 3 1

~ (v/c)i Jo S m X X Jo V [(l-sin2xcos2(/j)2 ~ 1 -s in2xcos2^J

= T ^ f ^ - l + m^l. (4.201)

The number of particles lost by Touschek scattering in the CMS becomes

dN = 2aTNndx, (4.202)

where n is the density of the beam bunch, ndx is the target thickness, N is the total
number of particles in the bunch, and the factor 2 indicates that two particles are lost
in each Touschek scattering. Thus the loss rate in the CMS is dN/dt = 2 / aTvn2dV,
where dV is the volume element, and v = dx/dt.

In the laboratory frame, the Touschek loss rate becomes

where the factor I/72 takes into account the Lorentz transformation of aTv from
the CMS to the laboratory frame. Since Touschek scattering takes place only in the
horizontal plane, the vertical and longitudinal planes can be integrated easily, and
the Touschek loss rate becomes24

dN N2 1 r
—r- = 2 — - / va p(xj,x'1)p(x2, x'2)5(x1 - x2)dxidx'1dx2dx'2, (4.204)
dt 7 vK(jzas J

24Using the Gaussian distribution, we get the integrals of the vertical and longitudinal planes as
(2V^7TCTZ)~1 and (2y/7rcrs)~1 respectively.
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where az and as are respectively the rms bunch height and bunch length, and the
function 6(xi - x2) indicates that the scattering process takes place in a short range
between two particles. Using the Gaussian density function

P{X>X>) = 2 S f 6XP [ " 2 ^ ( ^ + {PxX' " f " ) 2 ) ] ' (4205)
we easily integrate the integral of Eq. (4.204) to obtain

ldN_ Nrlc HrncV

Ndt~ W*axv,<x. { Ap ) m h [ '

where £ = (Ap/ja^)2 = (pxAp/j2mcax)2; aPx = jmccrx//3x; and

£>(£) = >/£/0°° ( ( ^ j 5 [u + \tlnt + \t ln̂ w + $} e"?) e""du- (4207)
The Touschek loss rate is inversely proportional to the 3D volume axazas.

With typical parameters Ap w ap; ap/p = JCqj/^/JEp [see Eq. (4.149)]; ax =

s/(5xex; and ex = .7rC,7203/^ [see Eq. (4.211) Sec. Ill]; the parameter £ is

^W^WJE (4208)

where J7L and ,7k are the damping partition numbers, p is the bending radius, T is
the lattice dependent factor, and 6 is the orbital bending angle in one half period.
Thus the typical £ parameter for Touschek scattering is about 10~3 to 1. In this
parameter region, D(£) is a function varying slowly with the parameter £ in accelerator
applications, as shown in Fig. 4.11.

Figure 4.11: The Touschek integral
D{0 ofEq. (4.207).

In a low emittance storage ring, the betatron amplitude function can change
appreciably. The actual Touschek scattering rate should be averaged over the entire
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ring, i.e.
1 / 1 dN\ 1 / 1 dNJ

-T=\N^)s = ̂ fN-dTds- (4'209)

Since D(£) a a slowly varying function, we can approximate (-D(f)) = 1/6 to obtain

487W^/Ag\3

Nrlc \ p ) x '

The Touschek lifetime is a complicated function of machine parameters. It can be
affected by linear coupling, rf parameters, peak intensity, etc. If we choose Ap « Wap,
i.e. the rf voltage increases with energy with Vrf oc 72, we obtain rT oc 76, and at a
fixed energy the Touschek lifetime is proportional to Vrf because as oc VrJ1'2.25 The
beam current in many high brightness synchrotron radiation light sources is limited
by the Touschek lifetime.

Exercise 4.2
1. Show that the damping partition number is V = 2 — (acR/p) for an isomagnetic

combined function lattice, and V = (acR/p) for an isomagnetic separate function
lattice with sector magnets.

(a) In thin-lens approximation, show that the damping partition number for an
isomagnetic combined function accelerator made of N FODO cells is given by

g - o R( 2- V
p \2Nsm{$/2)J '

where R is the mean radius of the accelerator, p is the bending radius of the
dipole, and $ is the phase advance per cell.

(b) Show that the damping partition for a separated function double bend achromat
with sector dipoles (discussed in Exercise 2.4.16) is

/ sin(^/iV)\ ^ 62

V (*/N) ) ~ J'
where N is the number of DBA cells for the entire lattice, and 6 is the bending
angle of a half DBA cell. The damping partition number of DBA lattices is
independent of the betatron tunes.

(c) Use the midpoint rule to evaluate the integral of the damping partition T>, and
show that the damping partition number for the separate function FODO cell
lattice is

l-fsin2(c&/2) R62

sin2($/2) p '

where R is the average radius of the ring, p is the bending radius of the dipoles,
0 is the bending angle of a half FODO cell, and $ is the phase advance per cell.

25Actual calculation of Touschek lifetime should include the effect of the dispersion function. See,
e.g., J. LeDufF, CERN 89-01, p. 114 (1989). Touschek lifetime calculation is also available in MAD
[19].



EXERCISE 4.2 463

2. The damping partition number V for energy spread and natural emittance is given
by V = (74a + 1hx,)lh, where the radiation integrals are

ha. = f -gds, I4h = i K—ds, h= -jrfs.
J ps J p J p2-

Here p is the bending radius, D is the dispersion function, and K = (l/Bp)dBz/dx
is the quadrupole gradient function.

(a) For a separate function isomagnetic machine with sector dipoles, show that
/4a = 2nacR/p2 and /4b = 0, where ac is the momentum compaction factor and
R is the average radius of the synchrotron.

(b) Show that the contribution from the edge angles of a non-sector type magnet
to the integral 74b is26

tan<$i tanc52

where 5\ and 62 are entrance and exit angles of the beam, D\ and £>2 are
values of the dispersion function at the entrance and exit of the dipole with
£>2 = (1 - cos 9)p + Di cos d + [pD[ + Dx tan 5{j sinfl.

3. The beam energy spread of a collider should be of the order of the width of the
resonance in the energy region of interest. For example, T(J/ip : 3100) = 0.063 MeV
and F(ip' : 3685) = 0.215 MeV. The rms beam energy spread is given by Eq. (4.149).
Show that

..[MeV] = 1.2lfGerV'

For a SPEAR-like ring, with p = 12 m and JE ~ 2, find the energy spread at the
J/tp and tp' energies. Note that, when the energy spread is large, the production rate
is reduced by a factor of T/OE-

4. From the previous problem, we learn that the beam energy spread can reduce the
effective reaction rate. Now imagine that you want to design an interaction region
(IR) such that the higher energy electrons will collide with lower energy positrons
or vice versa. What is the constraint of the IR design such that the total center of
mass energies for all electron-positron pairs are identical? Discuss possible difficulties.
Discuss your result.

5. Verify Eq. (4.162) for the change of betatron amplitude in photon emission.

6. Show that the vertical emittance resulting from residual vertical dispersion is given

c _C,.2(?WIP|3)
z ~ ql J*WP2) '

where

Hz = ±-[Dl + (pzD'z + azDz)2],
Pz

26R.H. Helm, M.J. Lee, P.L. Morton, and M. Sands, IEEE Trans, on Nucl. Sci. NS-20, 900
(1973).
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fiz and az are vertical betatron amplitude functions, and Dz and D'z are the residual
vertical dispersion function and its derivative with respective to s. Make a realistic
estimate of the magnitude of the vertical emittance arising from the residual vertical
dispersion.

7. Near a betatron coupling resonance, the horizontal action of each particle can inter-
change with its vertical action, while the total action of the particle is conserved, as
shown in Eq. (2.363). Use the following model to find emittances of electron storage
rings. The equation of motion for emittance of an electron storage ring near a linear
coupling resonance is

—j^ = -C(ex - e2) - ax(ex - e0),

-£• = ~C{e2 - ex) - azez,

where ax, az are damping rates, eo is the natural emittance, and C is the linear
coupling constant.

(a) Show that the equations of motion for horizontal and vertical emittances are

- ^ + (ax + az + 2C)-^- + [axaz + C{ax + az)]ex = ax{az + C)e0,

^ - + {az + az + 2 C ) ^ + [axaz + C(ax + az))ez = axCe0.

Find the equilibrium emittances.

(b) For ax = az = a, show that the emittance can be expressed by Eq. (4.180)
where the K parameter is given by

C

8. The damping partition T> can be decreased by moving the particle orbit inward. Use
the following steps to derive the expression for AV/AR.

(a) The synchrotron radiation power is

P = ^2^E2B2.
Z7T

If the rf frequency is altered, the average radius and the beam energy are changed
by AR/R = -Af/fo and Eo + 8e, and the magnetic field can be expanded as
B = Bo+B'xco+B'xp. Using Eq. (4.118) show that the average rate of betatron
amplitude diffusion per revolution is

<£ = <¥4(E0 + sef ID \^ + B'X^+2B'B0 + 2B- J *.
A vncti J y p J
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(b) Show that the change in damping partition with respect to xc0 is

£-('/o"*)(/>r
For an isomagnetic FODO cell combined function machine, show that

AP „ 8JVc2ell

Axco ~ TT2E '

where iVcen is the number of FODO cells.

(c) The above analysis assumes that xco = AR. In fact, xco = D5S, where

1 A/ _ 1 Afl
ac /o ac il

is the fractional momentum deviation from the momentum at frequency fo-
Show that the variation of the damping partition with respect to Ss is

For a FODO cell combined function lattice, show that

ASS ~ sin2($/2) a n d A P " TT^B A i i -

(d) Compare your estimation with that in Fig. 4.8 for the CERN PS.

9. Consider a weak focusing synchrotron (Exercise 2.4.5) with focusing index 0 < n < 1.
Show that (H) = p/(l - n)3/2; V = (1 - 2n)/(l - n); ^ = n/( l - n); J £ = (3 -
4n)/(l - n); and ê  = Cq^2/n^/l - n, where p is the bending radius. Show also that
the quadrature horizontal beam size of the electron beam is cr2 = 3pC?72/[n(3 - An)}.
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III Emittance in Electron Storage Rings

The synchrotron light emitted from a dipole spans vertically an rms angle of 1/7
around the beam trajectory at the point of emission, where 7 is the Lorentz factor.
Horizontally, the synchrotron light fans out to an angle equal to the bending angle
of the dipole magnet. The synchrotron light spectrum is continuous up to a critical
frequency of

3c73

Beyond the critical photon frequency, the power of the synchrotron light decreases
exponentially e1- — LJ/UJC). Because synchrotron light sources from electron storage
rings are tunable, they have been widely applied in basic research areas such as
atomic, molecular, condensed matter, and solid state physics, chemistry, cell biology,
microbiology, electronic processing, etc. The brilliance of a photon beam is defined
as

dtdfldS(d\/X) y '

in units of photons/(s-mm2-mrad2 0.1% of bandwidth), where the product of the solid
angle and the spot size dSldS is proportional to the product of electron beam emit-
tances exez. Thus a small electron beam emittance is desirable for a high brightness
synchrotron radiation storage ring.27

The amplitudes of the betatron and synchrotron oscillations are determined by
the equilibrium between the quantum excitation due to the emission of photons and
the damping due to the rf acceleration field used to compensate the energy loss of the
synchrotron radiation. The horizontal (natural) emittance is

where Cq = 3.83 x 10 13 m, Jx « 1 is the damping partition number, p is the
bending radius, and the %-function is given by Eq. (2.258). For an isomagnetic ring,
the horizontal emittance reduces to

ex = Cqj2{H)dipole/JxP. (4.167)

The objective of low emittance optics is to minimize {H) in dipoles. Computer codes
such as MAD [19] or SYNCH [20] can be used to optimize {%). However, it would
be useful to understand the limit of achievable emittance in order to determine the
optimal solution for a given lattice. Since % ~ L62 = p93, the {'H) and the resulting
natural emittance obey the scaling laws:

{•H)/Jx = fuuicep03 and e, = ^,atticeC,72^3, (4.211)

27Many review articles have been published on this subject. See e.g., H. Wiedemann, Low emit-
tance Ring Design, p. 390 in Ref. [14] (1988).
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where the scaling factor lattice depends on the design of the storage ring lattices, and
6 is the total dipole bending angle in a bend-section.

The resulting normalized emittance

6n = jex = ^atticeC,^)3- (4.212)

depends essentially only on the lattice design factor l̂attice for electron storage rings
at constant 7$. Figure 4.12 compiles normalized emittances of some electron stor-
age rings. Possible lattice design includes FODO cells, the double-bend achromat
(DBA) or Chasman-Green lattice, three-bend (TBA), four-bend (QBA), and n-bend
achromats (nBA), etc. Note that the emittances tend to be larger for machines with
FODO cell lattices than for those with DBA or TBA lattices.

Figure 4.12: Normalized emit-
tances of some electron storage rings
plotted vs the designed beam ener-
gies. The low emittance point of a
FODO cell lattice at 8 GeV corre-
sponds to that of a PEP low emit-
tance lattice [G. Brown et al., in
Proc. IEEE PAC, p. 461 (1987)].

III.l Emittance of Synchrotron Radiation Lattices
Storage ring lattices are designed to attain desirable electron beam properties. Elec-
tron storage rings have many different applications, and each application has its
special design characteristics. For example, the lattice of a high energy collider is
usually composed of arcs with many FODO cells and low 0 insertions for high en-
ergy particle detectors. The function of arcs is to transport beams in a complete
revolution. On the other hand, lattices for synchrotron radiation sources are usually
arranged such that many insertion devices can be installed to enhance coherent radia-
tion while attaining minimum emittance for the beam. Popular arrangements include
the double-bend achromat, three-bend achromat, etc. In this section, we review the
basic beam characteristics of these lattices.28

28G.K. Green, BNL-50522 (1976); R. H. Helm, M.J. Lee and P.L. Morton, IEEE Trans. Nucl.
Sci. NS-20, 900 (1973); M. Sommer, Internal report DCI/NI/20/81 (1981); D. Potaux, Internal
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A. FODO cell lattice

FODO cells have been widely used as building blocks for high energy colliders and
storage rings. Some high energy colliders have been converted into synchrotron light
sources in parasitic operation mode. Here we discuss the characteristics of FODO cell
lattices.29

A FODO cell is usually configured as { | Q F B Q D B | Q F } , where QF and QD are
focusing and defocussing quadrupoles and B is a dipole magnet (see Chap. 2, Sec. II).
In thin lens approximation, the optical function is

2L . . $. o 2L . $. Z, $
/3' = S ^ ( 1 + S m 2 ) ' ^ = ^ 1 ~ S m 2 ) ' 2f=Sm2'

and
L6 ,, 1 . $ . „ L9 . 1 <J>

D ' = ri?f(1+28in2)' D° = ^1-2**2)>
where L is the half cell length of a FODO cell, / is the focal length, 9 is the bending
angle in a half cell, and $ is the phase advance per cell. The %-function is therefore

% is invariant outside the dipole region. The ratio 'HF/'HD is typically less than
1, as shown in the left plot of Fig. 4.13. Note that the dispersion invariant does
not change appreciably within the FODO cell. In normalized coordinates ((aD +
PD')/y/P, D/\/]3), the change of the dispersion functions of a FODO cell is shown in
Fig. 2.34, where two invariant circles of radii JH^ and J'HT at the defocussing and
focusing quadrupole locations are joined at dipole locations to form a small loop.

Since the dispersion invariant does not vary much from QF to QD, we can ap-
proximate {H) in the dipole by averaging %F and Ha (see also Exercise 4.3.1),30

^ 1 .3cos($/2) r(l + isin($/2))2 ( l - | s i n ( $ / 2 ) ) 2 l
W ~ 2 P sin3($/2) [ (l + sin($/2)) + (1 - sin($/2)) J " [ '

The coefficient T of the FODO cell becomes

_ l - f s i n 2 ( $ / 2 )
FODO " sin3($/2)cos($/2) Jx • [ b)

report DCI/NI/30/81 (1981); Y. Kamiya and M. Kihara, KEK 83-16 (1983); H. Wiedemann, Report
ESRP-IRM-71/84 (1984); L. Teng, LS-17, Argonne Report (1985); A. Ropert, p. 158 in Ref.[28].

29H. Wiedemann, Nucl. Instr. Methods 172, 33 (1980).
30R. Helm and H. Wiedemann, SLAC Tech Note, PEP-303 (1979).
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Figure 4.13: Left: the ratio HT/HD; right: T with Jx = 1 for a FODO cell lattice.

The right plot of Fig. 4.13 shows the coefficient T as a function of phase advance per
cell, where we assume Jx = 1. The coefficient decreases rapidly with phase advance
of the FODO cell.

We note that the factor T has a minimum of about 1.3 at <j> « 140°. At this
phase advance, the chromaticity and the sextupole strength needed for chromaticity
correction are large. Nonlinear magnetic fields can become critical in determining the
dynamical aperture.31 The resulting emittance of the FODO cell dominated lattice
is

W o = ^ P O D O C ^ 3 - (4.217)

B. Double-bend achromat (Chasman-Green lattice)

The simplest Chasman-Green lattice is made of two dipole magnets with a focusing
quadrupole between them to form an achromatic cell (see Exercise 2.5.14). A possible
configuration is

[00] B {O QF 0} B [00].

The betatron function matching [00] section can be made of doublets or triplets for
attaining optical properties suitable for insertion devices such as wigglers, undulators,
and rf cavities. The {O QF 0} section may consist of a single focusing quadrupole,
or a pair of doublets, or triplets with reflection symmetry for dispersion matching.
Since the dispersion function is nonzero only in this section, chromatic sextupoles are

31A. Wrulich, Part. Accel. 22, 257 (1987).
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also located in this section. In general, the dispersion function inside the dipole is

D = p(l - cos (j>) + D o cos <t> + pD'o sin (f>, (4.218)

D'=(l °-)sm<P + D'0cos<j) , (4.219)

where <f> = s/p is the bend angle at a distance s from the entrance of the dipole, p
is the bending radius, and Do and D'o are respectively the values of the dispersion
function and its derivative at s = 0. For the Chasman-Green lattice, we need Do = 0
and D'Q — 0 to attain the achromatic condition.

The evolution of the "H-function in a dipole is (see Exercise 2.4.14)

H((t>) = Ho + 2(a0D0 + /3oD'o) sin c/> - 2(j0D0 + a0D'0)p{l - cos 0)

+Po sin2 4> + 7op2(l - cos (j>)2 - 2aopsin 0(1 - cos <j>), (4.220)

where Ho = 7O-DQ + 2aoDoD'o + PQD'O2, and a0, /30, and 7Q are the Courant-Snyder
parameters at s = 0. Averaging the %-function in the dipole, we get

(H) = (aoDo + PoDo)e2E(6)-±(joDo + aoD'o)P62F(e)

+^e2A(e) - ^pe3B(9) + f/e'ae), (4.221)

where L and 6 = L/p are the length and bending angle of dipole(s) in a half DBA
cell, and

E{9) = 2 ( 1 - cos9)/92, F{6)=6{6-sme)/63, A{9) = (66 - 3sin20)/(403),

B(6) = (6 - 8 cos 0 + 2 cos 20)/0\ C{0) = (306 - 40 sin 6 + 5 sin 20)/65.

In the small angle limit, we find

A->1, B->1, C-»l, E-+1, F->1.

With the normalized scaling parameters

do = § ' d'0 = ^' P° = T' ^ = ^oL' "o = ao, (4.222)

the averaged %-function becomes

(H) = pe3\^od2 + 2aodod'o + hd'o2+(&aE-1^F^do

+ {PoE - | F ) di + | A - | B + | c } . (4.223)
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Bl. Minimum emittance DBA lattice

Applying the achromatic condition with d0 — d'0 = 0, we get the average ^-function
as

< W )=pf l» [ |A- |B + | c ] . (4.224)

With the identity /3o7o = (1 + &l), the minimum of (H) becomes (see Exercise 4.3.4)

MMBDBA = •jjfiPP' ( 4 2 2 5 )

where G = y/16AC - 15B2, and the corresponding betatron amplitude functions are

- 6C . y/TEB . 8V5A

Po = 7TEd' °° = — • 7o = W (4226)

The factor G = y/16AC — 15B2, shown in Fig. 2.37, decreases slightly with increasing
9 because of the horizontal focusing of the bending radius, i.e. a longer dipole magnet
will give a smaller emittance.

The dispersion action %{&) outside the dipole is an important parameter in de-
termining the aperture requirement. For a minimum emittance (ME) DBA lattice,
we find H — 0 at s = 0, and the ^-function at the end of the dipole is

(4.227)
In thin lens approximation, the dispersion "H-function for a MEDBA lattice at the
end of a dipole is

W) = -LPe>.
In small angle approximation, since %(</>) ~ 4>3, the average of % is 1/4 of its maxi-
mum value, i.e. (H) = H(6)/4, and we obtain

1 3 3

(^)MEDBA = J y f f ^ W l t h ^MEDBA = ^ ^ Q ^ ' SMEDBA = g^"

The corresponding minimum emittance is

^MEDBA = FMEDBACql2e3, (4.228)
where FUEDBA = 1/(4^15 Jx).

In zero gradient approximation, the horizontal betatron phase advance across a
dipole for the MEDBA lattice is 156.7°, and the phase advance in the dispersion
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matching section is 122° (see Exercise 4.3.4). Thus the minimum phase advance for
the MEDBA module is 435.4°, which does not include the phase advance of the zero
dispersion betatron function matching section for the insertion devices. Thus each
MEDBA module will contribute about 1.2 unit to the horizontal betatron tune. Since
the phase advance is large, the chromatic properties of lattices should be carefully
corrected. The resulting emittance is smaller than the corresponding FODO cell
lattice by a factor of 20 to 30.

B2. Examples of low emittance DBA lattices

Many high brilliance synchrotron radiation light sources employ low emittance DBA
lattice for the storage ring. Figure 4.14 shows the lattice functions of a nearly mini-
mum emittance DBA lattice ELETTRA at Trieste in Italy for 2 GeV electron stor-
age ring (left), and the low emittance DBA lattice of APS at Argonne for 7 GeV
electron storage ring (right). The total phase advance of each ELETTRA DBA-
period is about 429°, while the corresponding phase advance of APS DBA-period is
about 319°. The ELETTRA lattice employs defocussing combined-function dipole
with q = y |J5i|/Bp£dipoie = 0.9439 to increase damping partition number Jx (see
Sec. III.l.D). The resulting horizontal emittances of these lattices are respectively

« 1.38 and — « 3.64.
£MEDBA £MEDBA

Figure 4.14: The low emittance lattice functions for a superperiod of ELETTRA (left)
and APS (right). The ELETTRA lattice has 12 superperiods, and the APS lattice has 40
superperiods.
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B3. Triplet DBA lattice

A variant of the DBA lattice is the triplet DBA, where a quadrupole triplet is used
in the dispersion matching section for the achromat condition. Because there is no
quadrupole in the [00] section of the DBA, the lattice is very simple (see the lower
plot of Fig. 2.30). The minimum emittance is32

WPI« = ^jCrf9*' (4-229)

where /?* is the value of the betatron amplitude function at the symmetry point of
the dispersion free straight section, and I is the length of the dipole.

C. Minimum ('H)-function lattice

Without the achromat constraint, each module of an accelerator lattice has only one
dipole. The optical functions that minimize (71), i.e. the dispersion and betatron
amplitude functions, are symmetric with respect to the center of the dipole.

From Eq. (4.221), the minimization procedure for (H) can be achieved through
the following steps. First, (H) can be minimized by finding the optimal dispersion
functions with

ddQ ' dd'o '

where we obtain

rfo,min = ^ , d'aMa = -\E, (4.230)
6 2

and

(H) = ̂ P03 (faA - a0B + ̂ c ) (4.231)

with

A = 4A- 3E2, B = W- 2EF, C = -C - -F2.
4 4

With the relation /?o7o = 1 + QQ> *he minimum emittance is

(^)ME = J^P03' (4-232)

where G = ylQAC - 15B2 is also shown in Fig. 2.37. Note also that G is nearly
equal to G.

32See Exercise 4.3.6, where we find that the stability condition is incompatible with the achromat
condition. Therefore, this minimum emittance condition can not be reached.
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From Eq. (4.232), we find that the minimum {%) without achromatic constraint
is smaller by a factor of 3 than that with the achromat condition. The minimum
condition corresponds to

= 8C . V15B . 2VTEA
PO = 7EG> ao = — • 7o = ^ - (4233)

The waist of the optimal betatron amplitude function for minimum ("H) is located at
the center of the dipole, i.e. s*ME = Lji.

In small angle approximation with ^ C l , where A -» 1, B ->• 1, and C -> 1, the
corresponding minimum betatron amplitude function at the waist is 8^B = L/\/60.
The required minimum betatron amplitude function is

B* = -B*

It is interesting that the minimum B value for a ME lattice is actually larger than
that of a MEDBA lattice. The attainable emittance is

eME = ?u*Cql2e\ (4.234)

where J-ME = l /(12\/l5Ji). To attain the minimum emittance, the betatron phase
advance across the dipole is 151°, and the dispersion matching section is 133.4°.
Thus the horizontal betatron tune of this minimum emittance single dipole module
is 284.4° (see Exercise 4.3.5). Each minimum emittance module with a single dipole
would contribute a horizontal betatron tune of 0.79.

The values of the dispersion H-function on both sides of the dipole are important
in determining the beam size in the straight sections, where insertion devices such
as undulators are located. Using Eq. (4.230) and (4.233) for the ME condition, we
obtain

H(0) = H(9) = ~^=p93 [WE2 - ^-BEF + ̂ -AF2} G"1. (4.235)
3vl5 I 2 2 J

In small bending angle approximation, we have 7i(9) = j^pO3 = 4("H)ME, which is

equal to |H(0)|MEDBA.
The brilliance of the photon beam from an undulator depends essentially on the

electron beam width. The horizontal beam width is given by the quadrature of the
betatron beam width and the momentum beam width. It is appropriate to define the
dispersion emittance as

ed = lx{D5)2 - B'X(D5)(D'5) + BX(D'6)2 = U(0)62, (4.236)

where S2 = {aE/E)2 = Cqj2/pJE is the equilibrium energy spread in the beam.
Because the "H-function is invariant in the straight section, ê  is invariant in the
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straight section. Substituting 7/(0) of Eq. (4.235) into Eq.(4.236), we obtain

For a separated function lattice, JE « 2, J i « 1 or J"£ « 2 ^ . The total effective
emittance for a bi-Gaussian distribution becomes

1 Crffi tA?W\

The decrease in betatron beam size in minimum emittance lattice is accompanied by
an equal amount of increment in the dispersion beam size.33

D. Minimizing emittance in a combined function DBA

We have discussed the minimum {H) only for sector dipoles. To simplify the design
of a DBA in a synchrotron storage ring, combined function dipoles have often been
used, e.g. in the Elettra at Trieste and in the UVU and X-ray rings in NSLS (see
Exercise 2.5.22). A defocussing combined function dipole has the advantage of having
minimum /3X inside the dipole. Thus designing the lattice may be slightly easier.

The dispersion function in a combined function dipole satisfies

D" + KXD = - ,
P

where Kx = (1/p2) + B\/Bp < 0 is the effective defocussing strength function and p
is the bending radius of the dipole. For a DBA, the dispersion function is

D(s) = -7^ (cosh JlK^s - 1), (4.239)
p\Kx\

and {%) is

(H) = p63 ^A(q) - °^B(q) + ^ C ( 9 ) ] , (4.240)

where q = ^J\KX\L; /30 = /30/L; a0 = a0; 7o = loL; and

3(sinh 2q-2q) _ 6 - 8 cosh q + 2 cosh 2q

. . 30q - 40 sinh q + 5 sinh 2q
CW = -5 •

33The brilliance of a photon beam is inversely proportional to the phase space areas of the electron
beam in the straight section. Although the total electron rms beam size in the straight section for
a MEDBA lattice is the same as that of an equivalent ME lattice, the divergence of the ME lattice
is smaller than that of the MEDBA lattice, and thus the resulting photon brilliance is proportional
t 0 l/V£MEeiot.i> i-e- a S a m m photon brilliance by minimizing the betatron beam-emittance.
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Figure 4.15: The factor
V16AC - 15S2 for a combined
function DBA lattice is shown as
a function of quadrupole strength
q = y/Kt. The emittance factor
V16AC - 15B2/JX is also shown.
Note that the combined function
DBA can achieve lower emittance
due to damping partition.

Thus the minimum of (%) is

_ V16AC-15B* 3

{n)mtn ~ WE p •

Figure 4.15 shows %/16/lC — 1552 vs quadrupole strength. As expected, we find
y/16AC — 15B2 > 1, i.e. a combined function DBA gives rise to a larger (Ti).

However, there is another factor that can change the emittance of the machine.
The damping partition number for radial betatron motion is given by

^ = l + 2 S i n h g ~ g - ^ , (4.241)
3 P

where ac is the momentum compaction factor, R is the average radius, and p is the
bending radius. Depending on the focusing strength, the emittance can be reduced
accordingly.

E. Three-bend achromat

Now we are ready to discuss the minimum emittance for three-bend achromat (TBA)
lattices, which have been used in synchrotron radiation sources such as the Advanced
Light Source (ALS) at LBNL, the Taiwan Light Source (TLS), the Pohang Light
Source (PLS), etc. The TBA is a combination of DBA lattices with a single dipole
cell at the center.

To simplify our discussion, we use small angle approximation, which is good pro-
vided that the bending angle for each dipole is less than 30°. The normalized dis-
persion coordinates for the minimum emittance DBA and minimum emittance single
dipole lattices are given respectively by

VP O Pi
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aD + PD' 7 LT ,
^ M E D B A - ^ " 8(15)V4 p i ' V*-™)

at the dispersive ends of the dipoles in the MEDBA lattice, and

. D V2(15)V^f ( 4 2 4 4 )

= oD + 0D'= 3 L f
V^ T4V2(15)V4 p2 ' [*-Mb)

at the entrance and exit locations of the dipole in the ME lattice, where p\ and Lx

are the bending radius and length of the DBA dipoles, and pi and L2 are those of
the ME dipoles.

Optical matching between the MEDBA module and the ME single dipole module
is accomplished with quadrupoles, where the normalized dispersion functions are
transformed by coordinate rotation, i.e.

{X**\-{ cos # sin $ W XMEDBA \
1 p / V-sin$ cos<3?MP / ' l^.zwj
^ r ME ' V b 1 1 1 * LOb ^ / V. -"MEDBA /

where $ is the betatron phase advance. The necessary condition for achieving dis-
persion phase space matching is34

§=4- (4-247)
The phase advance is $ = 127.76°, and the matching condition of Eq. (4.247) requires
Li = 2>1I3L\ for isomagnetic storage rings, or pi = \/3p2 for storage rings with equal
length dipoles.

Thus we have proved a theorem stating that an isomagnetic TBA with equal
length dipoles can not be matched to attain the advertised minimum emittance. For
an isomagnetic storage ring, the center dipole for the TBA should be longer by a
factor of 31//3 than the outer dipoles in order to achieve dispersion matching. In
this case, we can prove the following trivial theorem: The emittance of the matched
minimum TBA (QBA, or nBA) lattice is

e = ^ A (4 248)
METBA 4V15JX' [ '

where 9\ is the bending angle of the outer dipoles, provided the middle dipole is longer
by a factor of 31/3 than the outer dipoles. The formula for the attainable minimum
emittance is identical to that for the MEDBA.

34This necessary condition is valid in small angle approximation, see S.Y. Lee, Phys. Rev. E 54,
1940 (1996). The necessary condition for finite angle can be obtained by equating Eq. (4.227) and
Eq. (4.235).
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III.2 Insertion Devices

A. Effects of insertion devices on the emittances

The rm beam emittance ex and the fractional energy spread (JE/E in electron stor-

age rings can be expressed in terms of the radiation integrals (listed in Table II.7,

Sec. II.7):

Since insertion devices also contribute to the radiation integrals, the natural emittance
and the energy spread of the beam can be expressed as

*-= ^ ( 1 + 7=) (1 + 7=^7=)"'. (4-25°)
V J50 / V •'20 ~~ -"40 /

0E=<'Eo[1 + -j—l[l+OT ,r ) . (4.251)
\ 730 / V JI20 + ho /

where I20, I30, I40, a nd 5̂0 a r e radiation integrals of bending dipoles, and 72w, /3W,
/4W, and 75w are radiation integrals of wigglers. Depending on the radiation integrals,
the emittance and the energy spread can increase or decrease. For insertion devices in
zero dispersion regions, the emittance can be reduced while the momentum spread can
be enhanced. Damping wigglers have been successfully employed in LEP to enhance
the momentum spread for Landau damping of coherent instability and, at the same
time, to reduce the horizontal emittance.

( PW. B) I ( -p w , -20 ) I ( Pyr 6) I
: Figure 4.16: A schematic
: S drawing of a section of a
• vertical field wiggler.

0 L_ 2L W 3L W 4L W

Example 1: Ideal vertical field wiggler in zero dispersion sections

We consider a simple ideal vertical field wiggler (Fig. 4.16), where /?w = p/eBy, is the
bending radius, 9 = 0 W = £ w / p w is the bending angle of each dipole, and Lw is the
length of each wiggler dipole. Since the rectangular magnet wiggler is an achromat
(see Exercise 2.4.20), the wiggler, located in a zero dispersion straight section, will not
affect the dispersion function outside the wiggler. However, this wiggler can generate
it's own dispersion (see Exercise 2.4.20), i.e.

U{S) ~ \ -[2L2W - (2LW - s)2]/2pw ' V [S)~ I -[2LW - s ] / P w , Lw < s < 2LW '
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Now we assume that the wiggler magnet is located in a region with ax = — \@'x ~ 0
with high jjx. Since we normally have fix S> pw, the H-function can be approximated
by 7i « f3xD'2, and the radiation integral 75w is approximately

* - 5 * f - ^ <4 2 5 2 )
where each dipole contributes an equal amount to this radiation integral with 6W =
LY,/PW The contribution of each wiggler period to I2 is

/2w = 4 % = — 6W. (4.253)
P2 Pv,

Now, we assume that there are Nw wiggler periods in an isomagnetic storage ring.
The emittance of Eq. (4.250) becomes

e*,w = fxo (1 + o 2P/o/\ ^ w & e t ) (1 + —iVwOw , (4.254)

where we have used J5o = 2TT('H)O/P2 and 720 = 2TT/P for the isomagnetic storage ring
with /40 « 0 and 74w « 0. Thus the condition for exw < eI>0 is

—p^P^l < I- (4.255)

This condition is usually satisfied, i.e. adding wiggler magnets in regions where
the dispersion function is zero will generally reduce the beam emittance. It is worth
pointing out that the edge defocussing in the rectangular vertical field magnets cancels
the dipole focusing gradient of 1/p2, thus there is no net focusing in the horizontal
plane. The focal length of the vertical betatron motion and the tune shift resulting
from the rectangular wiggler dipole are respectively

f ~ 4 ^ e ; ~ 4X' z " 47 y 7 ~ 4,rp2 ' ( 4 2 5 6 )

where LWitotai = 4ArwZ/w is the total length of the undulator, and (/3Z) is the average
betatron amplitude function in the wiggler region.

Example 2: Effects of undulators and wigglers with sinusoidal fields

Insertion devices, i.e. wigglers or undulators, in synchrotron radiation storage rings
can greatly enhance the brilliance and wavelength of the radiation. Since all magnetic
fields must satisfy Maxwell's equation, the ideal dipole field discussed in the last
section does not exist. We consider a simple model of a nonlinear undulator with a
planer vertical modulation field,

Bz = By, cosh ky,z cos £ws, (4.257)



480 CHAPTER 4. PHYSICS OF ELECTRON STORAGE RINGS

where A;w is the wiggler wave number, the wiggler period is Aw = 2ir/kw, and the
corresponding horizontal and longitudinal magnetic fields are Bx = 0 and Bs =
—Bw sinh kwz sin k^s. The corresponding vector potential is

Ax =--~-Bw cosh k^z sin ky,s, Az = 0, As = 0. (4.258)

Thus the Hamiltonian of particle motion is

H=-(px- -r cosh Kzsin A:ws)2 + -p2 , (4.259)

where pw is the bending radius of the wiggler field, i.e. i?wpw = vle with particle
momentum p. The equation of motion is

x" = — cosh ky,z cos kws,

P \ , • x. , (4-260)
„ sin^/cwssmh2fcwz px . .

z H 5 — = — sinh ky,z sin KWS.
Pw 2fcw Pw

T h e nonlinear magnet ic field can be neglected if the vertical be t a t ron motion is
small with kwz <C 1. The horizontal closed orbit becomes

1 1 TC
xco = ——(1 - cosfcws), x'co = (3j_ = ——sinfcws = —^sinfews, (4.261)

Pw "'w ^ w w ^

where we use l/pwA;w = Kw/fiy « Kw/y with the wiggler parameter defined as

Kv = ^ ^ = 0.934 B^ [T] Aw [cm]. (4.262)

Table 4.4 lists wiggler parameters of the some insertion devices for third generation
light sources.

The transverse electron angular divergence inside the undulator or wiggler is equal
to Kw/j. For Kw < 1, the device is called an undulator; for ivTw ^> 1, it is called a
wiggler. The velocity vector of an electron in the planar undulator is /? = /3j_x + P\\s,
where 02=01 + tf\=l- l/j2, or

/ i K2 \ l / 2

|̂| = X/^^i=(^l-^-^sin2fcwSj

w ! _ l J ^ l 4 ^ £ = 1 _ i±M_^ s i n 2 , w S . (4.263)
272 272 472

Note that the magnitude of the longitudinal velocity oscillates at two times the un-
dulator wave number. The quantity ii'w.rms = Kw/V^ is called the rms undulator
parameter.
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Table 4.4: parameters of some undulators and wigglers
Machine 1 E [GeV] I B [T] I Aw [cm] 1 L [m] I K~
ALS 1.5 5 14 1.96 65

1.15 9 4.8 9.7
Elettra 2 5 30 3 140

1.2 5.5 5.5 6.2
Photon Factory 2.5 1.5 10 3.18 14

.45 6 3.63 2.5
ESRF 6 1.25 TO 2 12~~

.63 5.5 6 3.2
APS I 7 I 0.65 I 2.2 | 5 | 1.3~

The vertical closed orbit is not affected by the vertical field undulator. However,
the vertical field generates average vertical focusing strength and vertical betatron
tune shift given by

sin2fcws 1 _ 1 r j3z{s)ds _ (/?2)Lw,totai

where Lv is the total length of the undulator. Since the vertical field undulator
introduces a vertical quadrupole field error, it also produces vertical ^-function mod-
ulation.

For an off-momentum particle, the vertical field undulator also gives rise to a
dispersion function in the insertion region:

D = l— (l-cosifcws), D'= i-sin/cws, (4.264)
Pvf "• Pw "*

where we have assumed Do — D'o = 0. Thus the nonlinear wiggler is achromatic if
kwLw is an integer multiple of 2n, where Lw is the wiggler length. The nonlinear field
in the wiggler can also affect the dynamical aperture. The betatron tunes should
avoid all low order nonlinear resonances.

The radiation integrals of the sinusoidal wiggler are

/2w = l t ' /3w = ̂ ' ' - " d ^ 2 - (4265)
where we have approximated ~H ss fixDa. The emittance and the energy spread
become

4 = 4 o (1 + ^ ( ^ ) 3 ) (l + T ^ ( ^ ) 2 ) ~l • (4.267)
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Since the dispersion generated by an undulator is usually small, the emittance can
be reduced by wigglers located in zero dispersion regions, at the expense of rms
momentum spread. Installation of damping wigglers in PEP had once been proposed
to reduce the emittance by a factor of 10, i.e. to a normalized natural emittance of
enat,n ~ 7?r mm-mrad at 6 GeV.

Example 3: Ideal helical undulators or wigglers

We next consider a helical wiggler with magnetic field35

—• 2TT S 2TT S

By, = By, {x cos hisin——), (4.268)
A w A w

where (£, J, z) are unit vectors of the curvilinear coordinate system for the transverse
radial, longitudinal, and transverse vertical directions. The transverse equation of
motion for electrons traveling at nearly the speed of light in the longitudinal direction
inside the wiggler is

dp n dp eBy, , , „ . , ,
ymc— = Pcs x B, or —- = (z cos A;ws — x sin rews),

dt as -ymc
-* fC
P = —-(xcosky,s + zsmky,s) + p\\s, (4.269)

where the wiggler parameter Ky, is defined in Eq. (4.262). Note that the magnitude
of the transverse velocity vector is /3j_ = -R"W/T with

P* = ^ + ^ = 1-1, fl, «!_!+*£. (4.270)

Unlike the planer undulator, the helical undulator does not produce a large tune shift
in linear approximation.

The displacement vector of the electron in the wiggler is obtained by integrating
Eq. (4.269):

T^l = ^-(xsmujy,t' - ZCOSLOJ) + put's; (4.271)
c ww7

where t' is the reference frame of the moving electrons. Let the observer be located
at one end of the wiggler. The n can be written as (see Fig. 4.17),

h = </>x + ipz+(l- ]-02)s (4.272)

35In order for the ideal helical magnetic field to obey the Maxwell's equation, we need to include
higher order nonlinear terms in the magnetic field. For linear betatron motion, we neglect all higher
order terms in the following discussions.
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Figure 4.17: Coherent addi-
tion of radiation from elec-
trons in wigglers or undula-
tors. Longitudinal coherence
gives rise to resonance con-
dition of single frequency of
diffraction like structure.

with (j>2 4- ip2 = 92, where these angles are of the order of - . The observer's time t is
related to the electron's time t' via the retarded condition, i.e.

t h-f(t') i + Kl + 12e\, <j>K» . ^ w
t = t —^ = ^ 1 smwwi H cos uwt. (4.273)

c 2Y ww7 ww7

Let £ = wwt', Eq. (4.273) can be transformed to

I + Kl + W ^ t - I + Kl + W^+I + Kl + W"**- ( 4 2 7 4 )

It is apparent to see that the periodic motion of the electron in the wiggler are
transformed to the observer at a frequency boosted by the factor shown in Eq. (4.274).
Let us use the notation wL for the laser frequency, i.e.

*>>• = I + K ( + 1 ^ - (4-275>

We can rewrite Eq. (4.274) as wLt = £ — puiL sin f + quih cos ^, with

2 7 ^ w 27y,irw

Thus wL corresponds to the characteristic frequency of the device in the observer's
frame. The actual frequency should be obtained by solving Eq. (4.276) for t' as a
function of t.

When 4> and ip are not zero, we expect to have higher harmonic in the spectrum.
The integrand of the radiation integral in Eq. (4.3.13) of the classical radiation formula
is given by

— K K
n x (n x ft) = x[(j) cos wwt'] + z[<t> sin wwi']. (4.277)

The radiation integral of Eq. (4.47) becomes

6 = "' ( s ^ ) V 2 fl ([̂  - 1 C 0 S ^ + [4>~ Tsin^)e"^-
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Now considering the periodic structure of the wiggler, we obtain

s - - J j w 5 q i (as)'"*•*""•*>Lk*-Tcosfl*
+[(f> -sinf]£J xexpj - j—(£-ps in£ +gcos£) 1 df, (4.278)

where JVW is the number of the wiggler period, the apparent angular frequency wL(0)
at the forward direction is

CJL(0)=LUL(9 = 0) = Y^CUW, \ L = £L(I + KI) (4.279)

and the spectral coherent factor S(u)/u>h) is sharply peaked at integer harmonics of

5(W/Wj - [iVwsin^J ~ =*= [ ^ W ( W - ^ ) K j ' (4'280)

Wn = na,L((?) = no;L(0) ( l + ^ ^ J .

The corresponding photon energy at the fundamental frequency is

_0195^[GeVL ; 13.1(1+ ^)Aw[cm]
e i - M 0 ) - ( 1 + i a ) A w [ c m ] . o r A i W - ^ p ^ • (4-281)

Thus the photon energy can be adjusted by tunning the electron energy, or the wiggler
parameters, Aw and Kw. The spectral distribution of the diffraction pattern has a
full width half maximum at the n-th harmonic:

^ « -4- « »£. (4.282)

Due to the coherent interference nature, the frequency spectrum is discrete. The
maximum power is proportional to N%. The photon flux is proportional to the number
of electron due to incoherent nature. The frequency spectrum will also be broadened
by the momentum spread of the electron beam.

B. Summary on characteristics of radiation from undulators and wigglers

If the wiggler parameter is large, i.e. Kw > 1, the spectra are similar to those of
synchrotron radiation from dipoles. Synchrotron radiation has a continuous spectrum
up to the critical frequency wC]W = 373c/2pw. Since a wiggler magnet may have a
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stronger magnetic field, the synchrotron radiation spectrum generated in a wiggler is
shifted upward in frequency. Such a wiggler is also called a wavelength shifter.

If Kw < 1, the radiation from each undulator period can coherently add up to
give rise to a series of spectral lines given by36

l+i^+72e2 13.1 Aw [cm] 2 _2 2 .
" = 2^f w = nE2 [GeV] ( w 7 ' ^ J (n = 1,2,...), (4-283)

where 0 is the observation angle with respect to the undulator plane. The reso-
nance condition for constructive interference is achieved when the path length dif-
ference between the photon and electron, during the time that the electron travels
one undulator period, is an integer multiple of the electromagnetic wavelength, i.e.
Aw//?|| -A w cos0 = n\n. Figure 4.18 shows schematically the sinusoidal electron orbit
and electromagnetic radiation (vertical bars), where the electron (circle) lags behind
the electromagnetic wave by one wave length in traversing one undulator period for
n = l.

Figure 4.18: Schematic drawing of the
sinusoidal orbit of an electron in a planar
undulator and the electromagnetic wave
(vertical bars). The resonance condition
is achieved when the electron travels one
undulator period, it lags behind the elec-
tromagnetic wave by one full wave length
for the n = 1 mode.

The pulse length of a photon from a short electron bunch is

A i = i V w A w _ A ^ c o s 0 % A ^ A i }

/3|,c c c

Thus the frequency bandwidth is

*»-s=]Sr=5b (4-285)
where Ai is the wavelength of the fundamental radiation. The fractional bandwidth is
then Au/uji = l/(2iVw). The angular aperture and the source radius of the radiation
are (62)1/2 = ^JX/NWXW and y/XN^X^/A-K. The emittance of the photon beam is
equal to A/4TT. Optical resonance cavities have been used to enhance the radiation

36The critical wavelength from a regular dipole is

_ i-Kmc _ 0.007135 f , _ 18.6 r ,
Ac,dipole - 3 ^ 2 - B [ T ] ^ [m\ - B [ T ) £2 [ G e V ] [A].
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called the free electron laser (FEL). This is a subject of active research in the field of
accelerator physics and technology.37

With the progress in small emittance beam sources from photocathode rf guns,
emittance preservation in linacs, longitudinal bunch compression, and precise undu-
lators, efforts are being made in many laboratories to demonstrate the self-amplified
spontaneous emission (SASE) principle, to produce an infrared FEL, and to achieve
single pass X-ray FELs such as the Linac Coherent Light Source (LCLS) at SLAC
and DESY.

III.3 Beam Physics of High Brightness Storage Rings

High brilliance photon beams are generally produced by the synchrotron radiation
of high brightness electron beams, which can be attained by high quality linacs with
high brightness rf-gun electron sources or by high brightness storage rings. Here, we
discuss only the physics issues relevant to high brightness electron storage rings. Some
of these issues are the emittance, dynamical aperture, beam lifetime, beam intensity
limitation, beam brightness limitation, etc.

A. Low emittance lattices and the dynamical aperture

In Sec. III.l, we have studied methods of attaining a small natural emittance. At
the same time, the vertical emittance is determined mainly by the residual vertical
dispersion and the linear betatron coupling. The beam brightness is proportional to
NB/CXCZ, where NB is number of electrons per bunch. If we neglect the effects of the
residual vertical dispersion function, the vertical emittance is arrived from the linear
betatron coupling with ex + ez = enat- Thus, minimizing the natural emittance in
an accelerator lattice and minimizing the vertical emittance by correcting the linear
coupling will provide higher beam brightness.

The natural emittance of an electron storage ring obeys the scaling law

£nat = TCql26\ (4.286)

where 9 is the total bending angle of dipoles in a half-cell, and

C l/(12\/l5X) for ME lattice
T = I l/(4Vl5Jx) for MEDBA, TBA or nBA ,. 2&?]

| 2/3'/{3LJx) for ME triplet DBA l ' '
[ (5 + 3 cos $)/[2(l - cos $) sin $ Jx] for FODO cell lattice.

37The free electron laser was realized in 1977 by J. Madey's group [D.A.E. Deacon et al., Phys.
Rev. Lett, 38, 892 (1977)]. Since then, this field has been very active, with many regular workshops
and conferences. See, e.g. R.H. Pantell, p. 1708 in Ref. [12]; G. Dattoli, A. Torre, L. Giannessi, and
S. Dopanfilis, CERN 90-03 p. 254 (1990); G. Dattoli and A. Torre, CERN 89-03 (1989).
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Here ft* is the betatron amplitude function at the symmetry point of the dispersion
free straight section, L is the length of the dipole, and $ is the phase advance of a
FODO cell.

To maximize beam brightness for synchrotron radiation with insertion devices,
lattices with zero dispersion-function straight sections are favorable. Thus DBA,
TBA, or nBA lattices are often used in the design of synchrotron radiation sources
(see Sec. III.l).

Low emittance lattices require strong focusing optics. The correction of large
chromaticities in these lattices requires strong chromaticity sextupoles. Dynamical
aperture can be limited by strong nonlinear resonances and systematic chromatic stop-
bands. Multiple-families of sextupoles are needed to correct geometric and chromatic
aberrations. Since a strong focusing machine is much more sensitive to the dipole
and quadrupole errors, the lifetime and brightness of the beam can be considerably
reduced by power supply ripple, ground motion, and other error sources.

B. Diffraction limit

Since the phase space area of a photon beam with wavelength A is38

AxrA4 = AzrAz'r = ara'T > A/4TT = ephoton, (4.288)

where the subscript r stands for radiation, the electron beam emittance that reaches
the diffraction limit is

ediff > ~- (4.289)
4TT

For hard X-ray at energies 10 keV, the required emittance is about tag « 10~n m,
which is difficult to attain in electron storage rings. High energy linacs may be the
only way to reach such a small emittance.

With emittance given by Eq. (4.287), the diffraction limit condition is

TC 7203 - -^- - — (4 290)
ql ~ 3 7 3 ~ 3 B 7 2 ' [ '

where the critical wavelength of synchrotron radiation is used. Figure 4.19 shows
the required bending angle per half period as a function of beam energy and the
corresponding critical wavelength. The circle symbols are bending angles per dipole
for existing synchrotron light sources. Note that the dipole angles of all existing
synchrotron light sources are above the diffraction limit (solid line). This means that
the synchrotron radiation at the critical frequency emitted from these light sources
can not reach the diffraction limit However, the high brightness lights emitted from
undulators in many synchrotron light sources can reach the diffraction limit.

38The conjugate phase space coordinates of a wave packet obey the uncertainty relation axokx > i ,
where ax and <Jkx are the rms beam width and the rms value of the conjugate wave number. The
equality is satisfied for a Gaussian wave packet. Thus we find axax> = crx{akx/k) > l/{2k) = A/(4TT),
where k = 2TT/A is the wave number in the longitudinal direction.
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Figure 4.19: The solid line shows
the required bending angle vs energy
for a synchrotron light source, where
the emittance of the electron beam
is equal to the emittance of the pho-
ton beam at the critical wavelength,
with parameters T = l/A\/TE, Jx =
1, and B = 1 T. The dashed
line shows the corresponding critical
wavelength. Circles show the bend-
ing angle of each dipole for existing
synchrotron light sources. Two high
energy machines with small bending
angles are PEP and PETRA.

C. Beam lifetime

Since high energy photons can desorb gases in a vacuum chamber, vacuum pressure is
particularly important to beam lifetime in synchrotron radiation sources (see Exercise
4.1.8). The beam gas scattering processes include elastic and inelastic scattering with
electrons and nuclei of the gases,39 bremsstrahlung, ionization, ion trapping, etc. The
beam-gas scattering lifetime is

Tg = ~ ^ ? = aW?Cn' (4'291)
where <7tot is the total cross-section, n = 3.22 x 1022P [torr] m~3 is the density of the
gas, and /3c is the speed of the particle.

Because of these problems, many high brightness storage rings employ positrons
with full energy injection. An effect associated with beam gas scattering is the mul-
tiple small angle Coulomb scattering, which results in emittance dilution. The small
angle multiple Coulomb scattering between beam particles within a bunch is called
the intrabeam scattering. This is particularly important for high-charge density low-
energy beams (< 1 GeV). The beam emittances in low energy storage rings are usually
determined by the intrabeam scattering.

The quantum lifetime can be controlled by the rf cavity voltage. The Touschek
scattering discussed in Sec. II.8 arises from the Coulomb scattering that transfers
transverse horizontal momentum into longitudinal momentum. If the longitudinal
momentum of the scattered particle is outside the rf bucket, the particle will be lost.
The Touschek lifetime depends on a high power of 7, and it is usually alleviated by
increasing the beam energy. Another solution is to increase the rf voltage. However,
the corresponding bunch length will be decreased and the peak beam current may be
limited by collective beam instabilities.

39See e.g., E. Weihreter, CERN 90-03, p. 427 (1990) for analysis on the vacuum requirement for
compact synchrotron radiation sources.
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D. Collective beam instabilities

Collective instabilities are important to high intensity electron beams. The single
beam instabilities are usually driven by broadband impedance. The turbulent bunch
lengthening or microwave instability leads to increase in bunch length and momentum
spread (see Sec. VII.4; Chap. 3). The broadband impedance can be reduced by
minimizing the discontinuities in the vacuum chamber. The transverse microwave
instability has usually a larger threshold provided that the chromaticities are properly
corrected.

In storage ring, there are high-Q components such as the rf cavities, un-shielded
beam position monitors, etc. These accelerator components can lead to coupled
bunch oscillations. The results are emittances dilution, fluctuation, lifetime degra-
dation, intensity limitation, etc. Methods to combat these collective instabilities are
minimizing the impedance by careful design of vacuum chamber, de-Qing HOMs of rf
cavities, enlarging the tune spread with Landau cavities, and active feedback systems
to damp the collective motion [3].

Besides collective beam instabilities, stability of the beam orbit is also an impor-
tant issue. Power supply ripple, ground motion, mechanical vibration, and/or human
activities can perturb the beam. These operational issues should be addressed in the
operation of a storage ring facility. Those issues have been discussed in Chapters 2
and 3.

Exercise 4.3
1. Dividing the dipole into two pieces, we can express the dispersion function transfer

matrix of the half dipole by

(I \L L9/S\
MkB=[0 1 9/2 ,

VO 0 1 /

where L and 9 are the length and the bending angle of the dipole in the half cell.

(a) Using thin lens approximation, show that the dispersion function at the center
of the dipole is

£0(1 - 1 sin2 f ) 9__

sin2($/2) ' sin($/2)'

where $ is the phase advance per cell and L is the half cell length.

(b) Show that the dispersion invariant at the center of the dipole is

U = sin3(*/2)L(*/2)(1 " IS l n 2 f + h Sln4 f >"
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(c) Applying Simpson's rule, show that the average of H-function is

X ' P [ sin3($/2) cos($/2) j '

The number in brackets is the T factor of Eq. (4.211), where the numerator
depends slightly on the dipole configuration. Plot T vs the phase advance of
the FODO cell.

2. In a zero gradient dipole, the dispersion transfer matrix is

/ cos <p p sin (p p (1 — cos tp) \
M = I — (l/p)sin(f cosy s'm(p I

\ 0 0 1 /

where p is the bending radius, and <p = s/p is the beam bending angle along the
dipole. Using Exercise 2.4.11, show that the average of the %-function in the dipole
is

(H) = Ho + 2(a0DQ + poD'o)(1 ~™%6) - 2(7 0A, + a o ^ ) p ( l - ~ )

p.3 n cos26^ fa sin2i9, 2 / 3 2sini9 sin2(9,

where 9 is the bending angle of dipoles in a half cell and p is the bending radius.
Express the {H) in Eq. (4.221).

3. For a double-bend achromat (DBA), using the small bending angle approximation,
e.g. 6 < 60°, show that average H in a dipole is

<«>-*•(!-?•£).
where £ is the length of the dipole.

(a) Using the relation ,0070 = 1 + ajji show that the minimum of {H) is

WMEDBA = ^ 7 J ^ 3

with
/— 6 8VT5

(b) Show that the minimum (H) occurs at s* = | l with

B* - 3 P
4%/60

(c) Show that the horizontal betatron phase advance across the dipole for a MEDBA
lattice is

(tan"1 VT5 + tan"1 5\/l5/3).
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(d) Evaluate (aD + fiD')/y/fi^ and D/yffix at the exit points of the dipole magnet
for the MEDBA condition and show that

Use the result to show that the phase advance of the dispersion function match-
ing section of the MEDBA is 2tan"1(7/\/l5)-

4. Verify the following properties of a minimum emittance (ME) lattice, in small angle
approximation.

(a) When (%) is minimized, show that the dispersion and the betatron amplitude
functions inside the dipole are

where s = 0 corresponds to the entrance edge of the dipole, i is the length of
the dipole magnet, and /?* = £/V60.

(b) Show that the horizontal betatron phase advance in the dipole is 2tan~x vT5.
(c) Evaluate (aD + /3D')/y/]3^ and D/i/fi^ at the exit point of the dipole magnet

for the ME condition and show that

Use the result to show that the phase advance of the matching section is
2tan"1(9/\/l5).

5. A minimum emittance n-bend achromat (MEnBA) module is composed of n — 2 ME
modules inside a MEDBA module. Show that the necessary condition for matching
ME modules to the MEDBA module in small angle approximation is

- = 3 -
^ ME P MEDBA

Thus an isomagnetic nBA can achieve optical matching for the minimum emittance
only if the middle dipole is longer than the outer dipole by a factor of 31/3. Find the
minimum emittance. Extend your result to find a formula for the condition necessary
for a matched MEnBA without using small angle approximation.

6. A variant of the double bend achromat is to replace the focusing quadrupole by a
triplet. The configuration of the basic cell is40

40Because there is no quadrupole in the straight section, such a configuration has the advantage of
a very compact storage ring for synchrotron light with dispersion free insertions. This configuration
appears in the SOR Ring in Tokyo and the ACO Ring in Orsay, where combined function dipoles
are used.
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• • \ \ Triplet DBA

• • n u n • •
B QF QD QF B

Here 2L\ is the length of the zero dispersion straight section, and I, is the length of
the dipole. Since the mid-point of the straight section is the symmetry point for the
lattice function, the betatron amplitude function inside the dipole is

P-P + p ,

where s = 0 corresponds to the entrance of the dipole.

(a) In small angle approximation, show that the average of the 7i function in the
dipole is41

<«>^'[!+Mti+T^)].
where 2Li is the length of the zero dispersion straight section, and £ is the length
of the dipole. Show that the minimum emittance of the triplet DBA is

20*
('H)min = pO ~~op~i

where

I V P U 20'

Since the emittance is proportional to the betatron amplitude function at the
insertion region, the emittance will be altered by insertion devices that alter the
betatron amplitude function.

(b) Show that the betatron phase advance of the dispersion matching section for a
minimum emittance triplet DBA is

/ At 2 + 9 f , 13 \
i/> = 2 arctan ,

Ue + u+iJ
where £ = L\jl. Plot the betatron phase advance of the matching section and
3* 11 as a function of £.

(c) What happens to (H) and the natural emittance if the dipole is replaced by a
combined function magnet?

(d) Study the linear stability of the triplet DBA lattice.

41The formula can be obtained by substituting ao,/3o, jo,Do, and D'o into Eq. (4.221). The method
is applicable to a sector dipole or a rectangular dipole. For a combined function dipole, Eq. (4.240)
should be used.
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7. The dispersion function in the combined function dipole is

D = ^— (cosh <0 - 1) + .Do cosh <j> + ~^D'O sinh<j>,
pK vK

D' = {DQVK-\ 7=)sinh</i + .Docosn0.
pvK

where K = -Bi/Bp— 1/p2 is the defocussing strength with B\ = dBz/dx, <f> = \fKs
is the betatron phase, s = 0 corresponds to the entrance of the dipole, and Dg and
D'g are respectively the values of the dispersion function and its derivative at s = 0.
The evolution of the 'H-function in a dipole is

2 2
%{<t>) = •Ho + —7={aoDa+/3oD'0)sinh4>-—(y0D0 + a0D'0){cosh<l>-l)

pVK pK-

+ ^ s i n h 2 ^ + A ( c 0 S h ^ - I)2 - - ^ 5 _ sinh^(cosh^- 1),

where HQ = 7oi?o + 2otoDoD'0 + PQD'Q, and ao,/3o, and 70 are the Courant-Snyder
parameters at s = 0.

(a) Averaging the 'H-function in the dipole, show that

(H) = Ho + p93 [(5orfo + M)E(q) - ~(jodo + aod'o)F(q)

4 A ( 9 ) - ^ ) + ^ ) ] ,
where 9 = L/p is the bending angle of the dipole, L is the length of the dipole,
q = \fKL is the defocussing strength of the dipole, the normalized betatron
amplitude functions are So = «o, A) = Po/L, 70 = 7o£, do = DQ/L9, d'Q = D'Q/0,
and

_ 2(coshg-l) _ 6(sinhg-g) _ 3sinh2g-6g
^ w -2 ' Fw 3̂ . Aw - — ^ 3 .

, . 6 - 8 cosh g + 2 cosh 2<j 3Qq - 40 sinh q + 5 sinh 2q
B(q) = _ , C(q) = -5 .

(b) The minimization procedure can be achieved through the following steps. First,
(H) can be minimized by finding the optimal dispersion functions with

d(H) d{U) _
dd0 Ul dd'o U'

Show that the solution is

do,min = -F{q), d'Oimin = --E{q),

with
(H) = ±p930oA-aoB + ^C),

where A = 4A - 3E2, B = 3B - 2EF, C=\C- \F2.
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(c) Using the relation /3o7o = 1 + <*o, show that the minimum (H) is

where G = Vl6AC - 15B2 with

s 8(5 . \/l5S . 2 ^ 1
A = V T f 6 ' Q° = -G-' ^ = —G—

Plot G vs q.

(d) Show that the value of the dispersion "H-function at both ends of the dipole for
the ME condition is

W(0) = U{q) = ^=^p03{6CE2 - ^BEF + ^AF2}.

(e) Show that the damping partition number Jx for horizontal motion is

Jx = l - ac- + -2 (coshq - 1 - - 9 2 J .

(f) Discuss the effect of damping partition number for the combined function ME
lattice.

8. The PEP is a high energy e+e~ collider at SLAC with circumference C = 2200 m
and bending radius p = 165 m. If the phase advance is tuned to 98° per FODO cell,
the natural emittance of the electron beam is enat = 5.1 nm at 6 GeV. To decrease
the emittance further, wigglers installed at zero dispersion locations, where (/3X) « 16
m, can be used to decrease the damping time with a minimum increase in quantum
diffusion integrals.

(a) Using the parameters of PEP with Jx = 1, show that ('H)o = 0.0159 m, where
(H)o is the average of the ^-function for the storage ring without wigglers.

(b) Using a typical set of the wiggler parameters:

~B^ (T) I Aw (cm) I K I 6W (mr) I pw (m)
L26 I 12 I 14.12 I 1.20 | 25

show that the emittance is

1 + 1.6 x 10"6iVw

ex'w ~ £a:0l + 2 .5xl0- 3 iV w '

where JVW is the number of wiggler periods. How many wiggler periods are
needed to reduce the emittance by a factor of 10? What is the total length of
the wigglers? What will be the momentum spread of the beam?

9. Using the parameter listed in Table 4.1 and the undulator parameters listed in Table
4.4 for the APS, estimate the effect of an undulator in the zero dispersion straight
section (/3X « 10 m) on the emittance and momentum spread of the beam. What
happens if similar undulators fill 30 straight sections?
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10. Study the attached lattice data file for the APS and answer the questions below.

TITLE, "APS STORAGE RING LATTICE '96 VERSION"
L0: DRIFT, L=3.36
LI: DRIFT, L=.66
L2: DRIFT, L=.17365
L3: DRIFT, L=.17365
L4: DRIFT, L=.83365
L5: DRIFT, L=.22365
L6: DRIFT, L=.22365
L6: DRIFT, L=.22365
L7: DRIFT, L=.78365
L8: DRIFT, L=.35
L9: DRIFT, L=.17365
M: SBEND, ANGLE=PI/40., L=3.06, El=PI/80., E2=PI/80.
Ql: QUAD, Kl=-.45435995, L=0.50
Q2: QUAD, Kl= .639333739, L=0.80
Q3: QUAD, Kl=-.41158941, L=O.5O
Q4: QUAD, Kl=-.80954550, L=0.50
Q5: QUAD, Kl= .780136057, L=0.60
SI: SEXTUPOLE, K2= 5.1400, L=0.2527
S2: SEXTUPOLE, K2=-11.4700, L=0.2527
S3: SEXTUPOLE, K2=-16.5150, L=0.2527
S4: SEXTUPOLE, K2= 15.1194, L=0.2527
RF: RFCAVITY, V0LT=9.5, HARM0N=1296
HSECTOR: LINE=(LO,Q1,L1,Q2,L2,S1 ,L3,Q3,L4,&

S2,L5,M,L6,S3,L7,Q4,L8,Q5,L9)
SECTOR: LINE=(HSECTOR,S4,-HSECTOR)
USE, SECTOR, SUPER=40
PRINT,#S/E
TWISS
STOP

(a) In thin lens approximation, what are the quadrupole strengths of Q4 and Q5
for the achromat condition? Do the data in the MAD input file agree with your
thin-lens approximation calculation?

(b) What is the purpose of sextupoles pairs (SI and S2) and (S3 and S4)?

(c) What is the absolute minimum emittance of this lattice at 7 GeV? Compare
your result with the emittance listed in Table 4.1.

11. Show that the dispersion function generated by a helical wiggler in a dispersion-free
straight section is

„ #wAw L . 2TTS „ / 27rs\l
D = — a; s i n - \-z [1 - c o s - — .

2TT7 L Aw V Aw J\

Find the ratio of the transverse beam sizes arising from the dispersion function and
betatron motion, where we assume Kv = 5, 7 = 800, Aw = 8.0 cm, as = 0.1 %,
Px — Pz = 10 m, and eN = 2ir mm-mrad.





Chapter 5

Special Topics in Beam Physics

In preceding chapters, we have focused on particle dynamics of betatron and syn-
chrotron motions, nonlinear beam dynamics, the effects of space-charge force, linac,
impedance and collective beam instabilities, radiation damping and quantum fluctua-
tion in electron storage rings, and synchrotron radiation. However, this introductory
textbook does not address advanced topics including free-electron laser, laser-particle
interaction, beam-beam interaction, beam cooling, advanced nonlinear beam dynam-
ics, and collective beam instabilities. There are many textbooks and workshop pro-
ceedings on these advanced topics [10, 11, 12, 13, 14]. Nevertheless, I would like to
provide introduction to the following two topics: free electron laser and beam beam
interaction.

In Chapter 4, we discussed incoherent spontaneous synchrotron radiation of each
individual electron in dipole or wiggler fields. Beside the quantum fluctuation and en-
ergy dissipation, the radiated electromagnetic wave plays no role on the motion of elec-
trons. The radiation is incoherent, i.e. there is no correlation between electromagnetic-
waves radiated by any two electrons. The spectral coherence of synchrotron radiation
in undulators (see Eq. (4.280)) is attained through the electromagnetic-wave inter-
ference radiated by a single electron. The power or intensity of the radiation is
proportional to the number of electrons in a bunch. The efficiency of these radia-
tion is only a few percent. For high power operation, it is necessary to induce laser
oscillation in a laser cavity consisting of undulator and mirrors.1 The idea has been
extended to vacuum ultra-violet (VUV) and X-ray production by a process called
Self-Amplified Spontaneous Emission (SASE), where a collective instability induces
microbunching in electron beam for coherent laser action in a long undulator. The
stimulated radiation can generate high power coherent radiation from infrared to X-
ray. The first section in this chapter addresses physics of beam-laser interaction and
the free electron laser.

2J.M.J. Madey J. Appl. Phys. 42 (1971) 1906; R.L. Elias et al., Phys. Rev. Lett. 36 (1976) 717;
see also C.W. Robinson and P. Sprangle, a Review of FELs, p. 914 in Ref. [10].
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The center of mass energy available in fixed target experiments is limited by the
kinematic transformation. Since 1960's, accelerator scientists devote great efforts in
developing colliders, where two counter-traveling beams are made to collide at the
interaction points. When two beams collide, the beam-beam interaction becomes an
important topic in accelerator physics because it plays a major role in limiting the
luminosities of all high energy colliders. The space charge force between two counter-
traveling bunches produces large impulse on each other. The force is highly non-linear.
When the beam-beam potential is coupled with the betatron and synchrotron motion
in particle accelerators, it perturbs the beam distribution, degrades beam lifetime
and beam stability, and induces noises in the detector area. Since the advance of
the collider concept, physicists and engineers have discovered many techniques to
minimize the effects of beam-beam interaction. Depending on the beam-damping
time, the limit of beam-beam interaction in colliders is found to be about 0.02 to 0.08.
Methods of finding a larger tolerable beam-beam interaction is needed to enhance
luminosities in high energy colliders.

I Free Electron Laser (FEL)

Lasers are coherent and high power light (radiation) sources. The radiation is gener-
ated by coherent transition from population-inverted states to a low-lying state of a
lasing medium made of atomic or molecular systems. A free electron laser employs
relativistic electron-beams in undulators to generate tunable, coherent, high power
radiation. Its optical properties possess characteristic of conventional lasers: high
spatial coherence and near the diffraction limit. Its wavelengths are tunable from
millimeter to visible and potentially ultraviolet to x-ray.2 Figure 5.1 summarizes the
existing laboratories with free electron laser research facilities. For a complete up-
dated list, see the World Wide Web Virtual Library of the Free Electron Laser at
http://sbfel3.ucsb.edu/www/vLfel.html.

The circularly polarized plane electromagnetic (EM) wave, produced by the rela-
tivistic electron-beam in a helical wiggler magnetic field Bw of Eq. (4.268)3 is

E = Eo\xsm(koS — tx>ot + <f>a) + zeos(fcos — u>ot + 4>o)}, B = -s x E (5.1)

propagating along the wiggler axis s. Here fco = 2TT/A, UQ = 2TTC/X, <j>o is an arbi-
trary initial phase of the EM wave, s is the longitudinal distance, and t is the time
coordinate. In the presence of the electromagnetic fields, the equation of motion for

2See e.g. FEL Physics, in SLAC-R-521 Chapter 4, (2001) and reference there in.
3For radiation from planar undulator, see Exercise 5.1.1. For simplicity, we limit our discussion

to ID FEL-theory, where the amplitude Eo is independent of the transverse coordinates, and is a
slowly varying function of * and s.
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Figure 5.1: A compilation
of the existing FEL labora-
tories with associated FEL
wavelength. High gain X-
ray FEL projects, such as
the LCLS and XFEL to be
completed around 2007, are
not listed on this graph.
The wavelengths of these
projects are of the order of
0.1 nm. Besides these op-
erational facilities listed in
the graph, there are about
10 FEL development centers
in universities and National
Laboratories.

electron is

^=eE + ec0x{B + Bw) + FS.C. + Nation- (5.2)

where fie is the speed of the electron, Fs.c. and Fradiation are respectively the space
charge force and the radiation reaction force. Since the space charge force (see Exer-
cise 2.3.2) is proportional to I /72, it is negligible at the energy of our consideration.
The effect of radiation reaction force is also small, provided that the condition:

^ r = J t = s ^ = 4 - 2 2 * io"6 ^Gev»2 **w«'
is satisfied, where P7 is the instantaneous radiation power in the wiggler and r0 is
the electron classical-radius. The effect of the electromagnetic waves E and B on
the electron orbit is small, i.e. the electron orbital motion is essentially determined
by the wiggler magnetic field. Hereafter, we neglect the radiation force. However,
the importance effect of the EM fields is that it can cause the electron beam to
microbunch itself for producing possible coherent radiation.

Using Eqs. (5.1) and (4.269), we obtain the energy-exchange between the electron
and electromagnetic wave: mc27 = — eE • j3c, or

, dj eEa(3i_ . eEoKv,
i = — = — sin0 = 5-sm^, 5.3

as mcz jmc1

where

4>= (K + ko)s - u>ot + (/>o- (5.4)

The wiggler field provides electron trajectory while the EM-fields interact with elec-
trons for energy exchange. The energy exchange is maximum when the stationary
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phase (or resonance) condition is satisfied:

'^6d» + 4-s ) ]"4-*^H (55)
where ds/dt = c(5\\ of Eq. (4.270) is used.4 The resonance condition can also be
expressed as

, _ Aw(l + ^ ) _ l + Kl
7 r - 2A ' °r K~K^f~- (5-6)

for resonance electron beam energy at a given photon wavelength A, or for resonance
photon wavelength at a given beam energy 7. When this resonance condition is
satisfied, electrons lag behind the EM wave by one wavelength as electrons advance
one wiggler period, i.e. uj0At = wo( j^~^f) = 2TT, graphically represented in Fig. 4.18.

The equation of motion for the phase angle cj> becomes

4>' = M i - ^ ) - (5-7)

The coupled equations (5.3) and (5.7) can be derived from the Hamiltonian

tf = A:w(l + ^ ) 7 - ^ ^ c o s ^ (5-8)

where (7,4>) are conjugate phase-space coordinates and longitudinal distance s serves
as the independent "time" coordinate. The energy exchange between the electron and
the external electromagnetic fields can be obtained by solving Hamiltonian's equation.

I.I Small Signal Regime

In a small radiation loss regime, the electron energy is near the resonance energy.
With the definition of a small parameter

V = ^ , (5-9)

the equations of motion for electrons become

, = _eEoK^ f = 2U (5.10)
m& 7^

where (r\, <j>) are conjugate phase-space coordinates and the longitudinal coordinate s
is the independent variable. The corresponding Hamiltonian is

H = kW-6-^ffcoS<f>, (5.11)

4For a planar undulator, the longitudinal velocity vector is given by Eq. (4.263), and thus the
resonance condition should be replaced by the rms undulator parameter KWiTms = K^j\pi. See also
Exercise 5.1.1.
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that resembles the Hamiltonian for synchrotron motion. The small amplitude wave-
number K is

2 _ 2ky,eEoKy, _ eEpX^Ky, 2 . .

mc272 7T7^mc2 w

n = l ^ t t = 4.03 x 1Q_5^wAw[cm]^MV/m]

Here, the quantities fcw and «/A;w play the roles of the orbital wave number and "syn-
chrotron" tune respectively. The Hamiltonian and Hamilton's equations of motion
become

0' = 2 M , 7/ = -y (^ ) 2 s in t f . , (5.14)

H = M 2 -^(^) 2 cos^=| - [ i (g 2 -co S ^ (5,5)

where ((/>, ^-) forms a set of normal phase-space coordinates. Figure 5.2 shows tori of
Hamiltonian flow in phase-space ((J>'/K = 2kwri/K,(p). The separatrix corresponds to
a Hamiltonian torus that passes through (4> = ±TT, -̂ = 0) and (<j> = 0, -̂ = ±2):

Hsx = A;w7?gX r - r - COS 0 = r-y. (5.16)
sx mc272 mc272

Figure 5.2: The phase-space ellipses
of the energy loss (J>'/K VS. (j> for elec-
trons in an undulator. The energy ex-
change between the electron and the
EM fields resembles the synchrotron
motion for a particle in the rf system.

The energy exchange between the electron and EM-fields depends on the electron
trajectory in phase-space. The electron can lose or gain energy. To calculate the
energy transfer, we have to integrate the electron paths and average over the initial
condition of all electrons in the beam bunch. The time evolution of the electron beam
distribution function f(cf>, r), s) is governed by the Vlasov equation.
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Vlasov Equation for Longitudinal Phase-Space Coordinates

When the transverse and longitudinal oscillations are decoupled, the longitudinal
distribution function obeys the Vlasov equation:

d/ + ̂  + vf = 0, (5.17)
OS d(f> OT]

where the conjugate coordinates {4>,rf) satisfy Eq. (5.15). A steady-state solution of
the Vlasov equation is a function of the Hamiltonian: feq = feq(H(<j),TJ)). If an initial
beam distribution is not a function of the Hamiltonian, the distribution function
evolves with "time" (s). Depending on the initial condition, the time evolution of
the bunch can be obtained by solving the Vlasov equation. Once the distribution
is obtained, the energy exchange can be calculated by averaging the variable rj over
distribution function in phase-space coordinates, i.e.

(v) = fvf(4>,v)dHV- (518)

Since the equilibrium distribution function is an even function of r], we find (77) = 0.
At equilibrium, electrons are distributed evenly around the resonant energy. There is
no net energy-exchange between electrons and EM-fields.

As an example, we consider a distribution that is initially uniform in 4>, i.e.

/o(*,»7) = / t o > M = O) = ^ f o ) . (5.19)

where n0 is the number of particle per unit volume. Using Eq. (5.14), the maximum
change in the energy-deviation coordinate in one wiggler period is Ar;|max « 7r(p-)2.
Since y- is a small number, we can expand the distribution function in power series

/ = £/n(<M,s)(f)2n, (5.20)

where the hierarchy of fn can be solved iteratively.

t + 2 ^ t = T s i n ^ - (521)
Using Eq. (5.19) for /0, we obtain

= _^^_ ^ _ CQS^ _ 2rjkws)), (5.22)
O7T77 arj

where the distribution function is not uniform in <f> and the electron beam becomes
bunched.
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The exchange of energy between the electron and the EM-fields is

(V) = Jvfodvdt + { Y ? J Vfidr)d<t> = {v)o + ( -^) 2 (v)i, (5.23)

where we find (77)0 = 0 and (77)1 = 0 in the (^integral by using the distribution func-
tion (5.22). The beam is bunched in the first order perturbation expansion without
producing any energy exchange. To calculate energy exchange, we need to perform a
second order perturbation calculation by expanding fa as

m=2
/2 = £ /2me™*. (5.24)

m=-2

The only term which will contribute to the energy exchange is /20, which satisfies the
equation:

^0 = ^w Wd \ljj]\ fldj\ c o 1 ^
ds 32?r l\dr} [ridrj}/ yvdrjj J

The solution of this equation is

^=^h[Vi[l-C0S{2riKs){ (5-26)
Averaging rj over the distribution function /2o, we obtain

A(V) = (r,) - (77)0 = § ( f ) 4 (2*wS)3 / 9{r,)F{2r)kw8)dV, (5.27)

with

F(r) = 1 [cosr - 1 + ^sinr] = \±[S(T)]>, 5(r) = "f^, (5.28)

where S(T) is the line-shape function of the spontaneous emission in an undulator.
The line shape function is equal to the square of the diffraction coherent function in
Eq. (4.280). The factor fg (-^)4 in Eq. (5.27) can be expressed as

Tc\T~) = o Wfei) 2' (5.29)
16 Kky,/ 2 ryTmc2

where Uem = (Ue + Um) = eo^o is the average energy-density of electromagnetic fields,
pfei is the FEL (or the Pierce) parameter:

8ir2jfm \ 7ww J IA 27rEe73
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Here, wpj = w7ioe2Ao7m is the plasma frequency of the electron beam, o>w = kwc,
I = noEeec is the peak current, 7A = ec/r0 = 17.0 kA is the Alfven current, and
Ee is the electron beam cross-sectional area. Equation (5.27) allows us to evaluate
the average electron energy exchange at the exit of the wiggler: s = iVwAw and
T = rj2kws = T]4nNw. The gain function F(r) is plotted in Fig. 5.3. Electrons lose
energy if r > 0 and gain energy if r < 0. The gain is proportional to the slope of the
spontaneous emission line-shape function.

Figure 5.3: The gain function
F(T) = [COST - 1 + (r/2)sinT]/T3 of
the FEL is plotted as a function of
the parameter r = 2rjky,s = AirN^r).

If the initial energy distribution is narrow compared with the width of the function
F(T), e.g. ATTN^AT] < 2 or Ar) < 5 ^ - , we can approximate g(rj) = 5{q - 770). The
energy exchange becomes

A ^ = T^ (T) (4^w)3F(r0) = {4(47rpfelATw)3F(ro)} - ^ , (5.31)

where To = 4TT./VW?7O. The maximum energy loss is obtained with To = 2.6 or 770 = jf-,
which corresponds to F(r0) = 0.0675.

The Free Electron Laser Gain

The energy loss or gain of the electron beam bunch transforms energy to or extracts
energy from the electromagnetic fields. The gain of the free electron laser, defined as
the fractional increase of electromagnetic wave intensity of the spontaneous emission
in a single pass, is

ArwAw£e7rrrtc2(A77) , Af^3F^1 ^ ^
ko = M \ "T TT = 4(47rPfel'/Vw) ? [To), (5.32)

iVwAw2j^Uem

where T,e and E7 are the cross-sectional areas of the electron and photon beams and
Ee = E7 = ArwAwA/(167r) is assumed at the undulator.
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Electrons lose energy if 7 > 7,. and gain energy if 7 < 7,.. There is no energy
exchange if 7 = 7r. The maximum energy gain occurs at the condition To = 2.6:

Ai^;^b^- (5-33)
The efficiency for spontaneous emission in an undulator is < ~j-. For a beam with
finite momentum spread, the gain function is reduced by folding integral of Eq. (5.27).
If the fractional momentum width is larger than l/2Nw, i.e. <77/7 > 1/2NV/, the
effective gain becomes nearly zero. The natural momentum width of the beam, given
by Eq. (4.149), is normally well within the limit.

The FEL gain Go in Eq. (5.32) is proportional to the peak current I. It is im-
portant to increase the peak current in wiggler region in order to enhance the FEL
gain. Since the FEL gain is only a few percent, an optical cavity with two mirrors
in the simplest configuration can be added to induce FEL oscillation. One of these
mirrors is assumed to be a perfect reflector, while the other is assumed to transmit a
fraction go of the incident light (see Fig. 5.4). Neglecting the possible loss of light in
the cavity, the system can be a laser oscillator if the gain is larger than the loss, i.e.
G > go- When G = g0, the system is in steady state operation. At the steady state,
the laser output power is

PL = efficiency x EIm, (5.34)

where Im is the average electron particle current and E is the energy of the electron.
The efficiency of the device, i.e. the fraction of energy transfer, is about ~-.

f- L ! A Figure 5.4: A schematic drawing
1 L g n i z z z z z z z z i t ? ^ ) of an optical cavity for FEL res-

y/x ' I I I I I I I I I 1 \ ^ ~ onator with mirrors, while the elec-
eiectron beam *r o n beam is guided by the deflec-

tors.

Because the laser gain is proportional to the peak electron beam current, the space
time structure of the laser beam reflects the electron beam structure. For a bunch
beam operation, the laser pulse length is equal to the electron pulse length as. The
time structure of the laser line width becomes

au = ̂ , or £, = A = ^ I ± ^ ) , (5.35)

which is smaller than the diffraction limit of l/2iVw. To sustain amplification, the
synchronization of the laser pulses with the electron beam bunches is important as
well. The synchronization procedure can be achieved by adjusting the length of the
optical cavity.
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1.2 Interaction of the Radiation Field with the Beam
We have examined the gain of EM field-intensity through the equation of motion for
the electron. When the gain is large, the system is coupled. The evolution of the
electromagnetic fields can be obtained through Maxwell's equation:

VxB-^~=fi0J, (5.36)

where J is the transverse electric-current:

J = ec'£p±iS(r-fi). (5.37)

The electric and magnetic fields are given exactly by Eq. (5.1):

E = Eo(s,t)[xsm(kos-u>ot + (j>o) + zcos(k0s-Ljot + (j)O)\,

B = -Eo(s,t)[xcos(k0s — wot + </>0) — zsin(kos — uQt + <j>0)}-
c

The amplitude E0(s,t) and phase <f>0(s,t) are both slowly varying functions of coor-
dinates s and t within one optical wave length:

dE0 dE0 2n d(j>0 dc/>0 2TT
— «Wo£o; ^7«y£o; - ^«^o ; -^ « y * , .

Carrying out some algebraic manipulation, we obtain

8E0 ldEo dfa \dfa. .

where

Ja = Jxsin(kos - LJot + (j>o) + Jzcos(k0s - uot + <j>0) = -no( ),
lr 1+7?

PC* t\ C*C\Q iTi

Jb = Jx cos(k0s - UJOt + 0O) - Jz sin(fcos - uot + (j>o) = ~no{- )•

Here (...) is the ensemble average over the beam distribution in phase space coordi-
nates cj) and r] = : t ^ t given by Eqs. (5.3) and (5.9), and we use Eq. (5.37) to obtain
Ja and J;,. The ensemble average of any function g is defined as

(<?) = I d4> I dVg(<j>, v)f{<t>, V, s) (5.39)

where the electron-beam distribution-function f(<f>, rj) satisfies the Vlasov equation
Eq. (5.17). The system of coupled equations can be solved numerically at a given
initial condition to obtain the time and space evolution of the electron beam and of
the EM fields.
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Perturbation Solution of the Maxwell-Vlasov equations

The perturbed distribution function of Eq. (5.22), up to the first order of (j^)2, is

' = 1 > + 1 \ % [ ~ c o s *+cos(̂  - 2^sK/- (5-40)
This solution was obtained by assuming a constant electric field-amplitude EQ. Using
the zeroth order distribution function, we find (cos</>) = 0 and (sin</>) = 0, and this
Ja = 0 and Jh = 0.

Using the first order perturbation distribution function, which carries the infor-
mation of beam bunching, we obtain Ja and J/, as

ecK K, 1
Ja = —~-n0{~)2 — [5m(2rjkvs)-(2r]Ks)cos{2Tikv,s)\,

lO'Jr /Cw 7/

ecK K 1
Jb = -7~no{-r-)2^[cos{2r]kws) - 1 + (2-qk^s) sin(27?A;ws)].

The change in the electric field-amplitude Eo up to first order in (f-)2 can be obtained
by integrating Eq. (5.38):

AE0 = f^^L(±)2(2kwsrF(r0). (5.41)

The gain of electromagnetic-field energy is

9 A P
Go = - ^ = 4(47rPfeliVw)3F(ro), (5.42)

which is identical to that of Eq. (5.32). This verifies the fact that energy loss or gain
in electron beam is equal to the energy gain or loss in the electromagnetic radiation.

High Gain Regime

The wavelength of the electromagnetic wave radiated by electrons in an undulator is
determined by the resonance condition Eq. (5.5) with a line-width of (4.282). The
radiation is not transversally coherent and its power is proportional to the peak beam
current, or the number of electrons. Under certain conditions, the EM-wave can cause
the electron-beam to bunch itself into microbunches with bunch-length equal to the
wavelength of the EM-wave. All electrons in each microbunch radiate coherently in-
phase. The radiation-intensity is proportional to the square of the total charge in a
microbunch; and its power is greatly enhanced.

The population inversion in the free-electron coherent-lasing process is produced
by the electron beam microbunching. The electromagnetic radiation occurs through
coherent transition of the microbunched electron beam as a single identity. The
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process can be described by the coupled Vlasov-Maxwell equations. We consider a
simple one-dimensional (ID) approximation, where the Vlasov-Maxwell equations are

t+!£--«*. <-)
where

, , kv, n 2 . noecKw sin cf>.
^ = 2 M , J/ =--z-( j r - ) sm^, Ja = — ( — - > .

With the coordinate-transformation from (s, i) to (s, cf>) of Eq. (5.4), Maxwell's equa-
tion (5.44) becomes (see Exercise 5.1.4)

-—-w — / dr)d<l>f(Ti,<j>)sm<t> , (5.45)
OS \ Jr / L/7T 7 J

where the detuning of the electric field amplitude Eo is neglected, i.e. we assume
EQ is independent of <f>. The amplitude of the EM-field is enhanced by the electron-
beam distribution function. We express the electron beam distribution function as
/ = fo{v)+h(v, <£)i where f0 is the unperturbed distribution, and fx is the perturbed
distribution function resulting from the interaction with the EM-field. Substituting
K/K, from Eq. (5.13), we approximate the Vlasov equation as

f+2 t- 't^'(^f)(^-«+")E»- <5«>
The perturbed electron beam distribution fi is coupled to the ponderomotive force
of the electric field.

Self-consistent solution of the electric field and the perturbed distribution function
can be expressed as

Eo = Eo exp[j(Q,s] + ex., (5.47)

/i = h+ exp[j{Qs - <£)] + /!_ exp[j(fis + 0)] + c.c. (5.48)

The eigen-wave-number f2 of the coupled equation is determined by the solution of
the nonlinear equation:5

12 + (2PfelM3 / ^ T ^ = " - (2^fcw)3 / {J°}Vl)2dv = 0. (5.49)

6R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Comrnun., 50, 373 (1984); K.-J. Kim, Nucl.
Instru. and Methods, A250, 396 (1986); J.M. Wang and L.H. Yu, Nucl. Instru. and Methods,
A250, 484 (1986).
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For an initial delta-function distribution function with /o = 6 (77), the eigenvalues are

fii = 2pfe,/cw, n2 = 2pfei/cwexp ( j y j , fi3 = 2pfeiA:wexp ( - J y J » (5-50)

where pfei is the FEL parameter given by Eq. (5.30). There is a mode that grows
exponentially. The exponential growth-factor of the electric field \E0\ and the mi-
crobunching in the electron beam distribution function is determined by the imagi-
nary part of the eigenvalues: |Im(fi2)| = V^PMK- T n e evolution of the magnitude
of electric field and power is

|£0| ~ e|Im(n)|s = e^P!"k-s, Power ~ |£0|2 ~ e2^'*"*"5 = es/L*.

The power gain-length is denned as the e-folding distance of the electromagnetic-field
energy:

Lg-1D = 2 JMnJI = Wf^' (5'51)
The electric field gain-length is twice the power gain-length. The exponential growth
will eventually saturate at a saturation length about 20Lg.

The fact that the beam microbunching arises from the shot-noise and its effect is
amplified by the beam-laser interaction. This instability is called self-amplified spon-
taneous emission (SASE) process. The SASE process plays a particularly important
role in the generation of coherent X-rays, where a resonance low-loss cavity is difficult
to find. Vigorous efforts have been carried out to understand the SASE process in
3D.6

1.3 Experiments on High Gain FEL Generation

Since 1980, experiments using high gain FEL as an amplifier have been successfully
carried out at LLNL.7 The high peak beam-current of the induction linac accelerators
is used as the amplifier from microwave to CO2 laser attaining up to 35% efficiency
with tapered undulators. The rectangular symbol in Fig. 5.5 is the ratio of the power
gain-length derived from FEL amplifier experiments to the ID power gain-length of
Eq. (5.51).

In 2000, there are many successful SASE-FEL experiments.8 The ratio of the
power gain-length to that of ID theory is shown as circles on Fig. 5.5. These experi-

6G.T. More, Nucl Instru and Methods, 239, 19 (1985); K.J. Kim, Phys. Rev. Lett, 57, 1871
(1986); S. Krinsky and L.H. Yu, Phys. Rev. A35, 3406 (1987); L.H. Yu, S. Krinsky and R.
Gluckstem, Phys. Rev. Lett, 64, 3011 (1990); Z. Huang and K.J. Kim, Nucl Instru. and Methods,
A475, 59 (2001).

7See e.g. T.J. Orzechowski, p. 1840 in [10] and references there in.
8see e.g. J. Rossbach, in Proc. of Linac Conference 2002, p.582 (2002) and references therein;

M. Hogan et al., Phys Rev. Lett., 81, 4867 (1998); S. Milton et al., Phys Rev. Lett., 85, 988 (2000),
Science 292, 2037 (2001); J. Andruszkow et al, Phys. Rev. Lett. 85, 3825 (2000); V. Ayvazyan et
al, Phys. Rev. Lett. 88, 104802 (2002).
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Figure 5.5: The rectangle-symbols
are the ratio of the power gain-length
derived from FEL amplifier experi-
ments to the ID power gain-length
of Eq. (5.51). The circle-symbols are
those derived from the SASE FEL ex-
periments.

ments verified the exponential growth of FEL power, statistical nature of the SASE
process, and the transverse coherence of the photon beam in diffraction pattern.

The high-gain harmonic generation (HGHG) concept expands the high-gain am-
plifier by dividing the undulator into a modulator, a dispersive section for electron
beam-bunching, and a radiator section for harmonic generation. The resulting coher-
ent radiation can be greatly enhanced at a narrower bandwidth and shorter wave-
length.9

Upon the verification of the SASE-FEL and HGHG principles, many proposals
aim to produce single pass high gain FEL from vacuum-ultra-violet (VUV) to X-
ray. Figure 5.6 shows recently completed experiments and ongoing high gain FEL
proposals. Successful completion of these high brilliance SASE light sources will open
up a new window in nano-science research.

Figure 5.6: A compila-
tion of FEL laboratories
working on high gain FEL
projects.

9L.H. Yu et al, Science 289, 932 (2000); see also S.G. Biedron, Ph.D. thesis, University of Lund
(2001).
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Exercise 5.1
1. In a planar undulator, the closed orbit and the velocity vector are given by Eqs. (4.261)

and (4.263). The interaction of the electron with the EM field becomes

* +^r(»>t-»+•"•••>•"•)•

where EQ(S, t) is a slow-varying amplitude of the electric field and the phase factor ip
is defined as tp = (fcw + ko)s - tJot.

(a) The energy exchange is maximum at the stationary phase condition: (dip/ds) =
0. Show that the resonance condition is given by

2 Aw(l + \Kl) l + \Kl

(b) Show that the equation for the phase factor ip is

dip
—— = 2ky,r) + 2kwbcos2kV!s,
ds

where r] = Aj/^r as defined in Eq. (5.9) and the constant 6 = \K^/{\ + \K%,)-
The phase factor 'ip is not monotonic, it oscillates at twice the undulator wave
number. Defining the phase factor <f> = tp + bsin2/cws, show that the equation
for the phase factor <j> becomes

d<t>
ds

(c) Expanding the exp(-jbsin 2fcws) in Bessel functions (see Sec IV in Appendix B),
show that the energy equation of the electron becomes

d7 e£o#w[JJ] . , dv e£o#w[JJ] . ,
ds 2mc27r ds 2mc2ry^

where the factor [JJ] is defined as [JJ] = Jo(6) - J\{b) and Jo(6) and J\(b) are
the Bessel functions of order 0 and 1. Note that {<f>,rj) forms a set of conjugate
phase-space coordinates. The spontaneous emission of electrons in an undulator
is identical to that of a helical undulator with the FEL parameter of Eq. (5.30)
replaced by

3 _ ^ n p e ^ M J J ] 2

( 2 p f e l ) ~ 1 6 ^ 3 ^ •

2. Verify the FEL parameter shown in Eq. (5.30).

3. Verify the gain of spontaneous emission shown in Eqs. (5.32) and (5.42).
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4. With the coordinate-transformation from (s, t) to (s, (j> = [kw + ko]s — cutf + <fo):

V9s/t V^s/^ \dsJt\d(j>Js \dsjj, \d<j>J,

show that Maxwell's equation (5.44) becomes

9s c OT as d(f> as \ 7r y L2TT 7 J
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II Beam-Beam Interaction
Since 1960, the e+e~ colliders have played an important role in the discovery and ex-
ploration of elementary particle physics, such as J/^, T, etc. Two counter traveling
high energy e+ and e~ beams collide at interaction points (IPs), where experimen-
tal detectors can measure high energy particles created by fundamental interactions.
Because e+ and e~ particles have opposite charges, e+e~ beams can sometimes be
confined in a single storage ring. Some of e+e~ colliders were the SPEAR, PEP, and
SLC at SLAC, DORIS and PETRA at DESY, CESR at Cornell, BEPC in China,
VEPP-4M in Novosibirsk, TRISTAN at KEK, and LEP at CERN. In particular, the
LEP and the SLC have provided careful tests of the electro-weak theory of the stan-
dard model. Since 2001, particle factories (the B-factories: PEP-II and TRISTAN-B
at SLAC and KEK, and the ^-factory at Frascati) can further our understanding of
the fundamental symmetry in the force of nature.

In storage rings, electrons emit synchrotron radiation. The synchrotron radiation
damping and quantum fluctuation provide a beneficial effect of equilibrium beam
distribution. Since the synchrotron radiation energy-loss is proportional to E4/p in
each revolution, the beam-energy E is limited to about 100 GeV in LEP-II. Very
high energy e+e~ colliders rely on linac technology. Research topics relevant to lin-
ear colliders beyond 500 GeV cm. energy are important in high energy accelerator
physics.

An important quantity in the design optimization of colliders is the luminosity.
The counting rate is the product of the luminosity and the cross-section of a physics
process. The luminosity for a head-on collision between two beams with identical
intensity is

c=BN1N2fo (*_=wi.jr,i=^) JVg/coli = (I/e)2

2TTI!I£Z 4iraxaz 4noxGzfco\\

where Ni and A^ are numbers of particles in counter-moving bunches, B is the number
of bunches, /o is the revolution frequency, /con = Bf0 is the bunch collision frequency,
Yix and E2 are effective transverse rms beam widths of these colliding bunches at the
interaction point (IP) with Y?x = a2xX + a\2 and T?z = a\x + a\2. Here, axi,azl

and ax2, az2 are the rms horizontal and vertical beam widths of two interacting beam
bunches. When the colliding bunches have equal number of particles with Ns — Nx =
N2 and equal transverse beam widths (crxl = ax2, az\ = crZ2), the luminosity formula
is further reduced as shown in the right-side of Eq. (5.52), where I/e = IVs/coii is the
particle current, 4ir<rxcrz is the beam cross-section area at the IP with

a\ = P*xex + (D:^)2 , al = fe, + ( z ^ V . (5.53)
V Po j \ Po J

Here eXtZ are the horizontal and the vertical rms emittances, /3* z and Dxz are the
values of the horizontal and vertical betatron and dispersion functions at IP. Normally,
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the collider lattice is designed such that D*z = 0 and D* = 0 in order to maximize the
luminosity. This section discusses the basic physics of beam-beam interaction in high
energy hadron or e+e~ colliders. Table 5.1 lists parameters of some high luminosity
colliders.

Table 5.1: Parameter-list of high luminosity e+e~ colliders

I KEKB I PEP2 I BEPC I DA$NE I LEP
E (GeV) 3.5 | ~~8~ 3.12 | 8.97 1.55 0.511 98_
C(m) 3016.3 2199.318 240.4 97.69 26659
p (m) 16.3 I 104.5~ 13.75 I 165 10.35 1.4 3096.2
-̂damping (ms) 43 46_ 63 37 44~ 36 6.5
ex (nm) 18 24 40 49 390 850 45
ez (nm) 0.36 0.36 4_ 2 3.9 8.5 0.1
6X (mrad) U_ 11_ 0_ 0_ 0 12.5 0_
P* (cm) 59 63 50 50 120 450 150
PI (cm) 0.7 0.7 1.25 1.25 5 4.5 5_
at (mm) 7_ 7_ 13_ 13 45 30_ 13_
Nb (1010) ~ 7.3 5~X 9.9 5.3 21.6 8.9 43_

JB 1284 1284 1658 1658 1 45_ 4_
^ 0.097 0.074 0.065 0.075 0.04 0.03 0.021
lz 0.066 | 0.05 0.048 | 0.06 0.04 0.03 0.083
£ (1030) | 12000 | 9200 | 15 | 28 j 100

When two bunches intersect each other at the interaction point (IP), particles can
experience localized periodic kicks by the opposing beam bunch. The Coulomb force
between two interacting bunches is called the beam-beam interaction, which has been
found to limit the performance of almost all high luminosity colliders.

Many numerical simulations and experimental and theoretical studies have been
conducted to understand the underlying physics. Two theoretical models are (1)
weak-strong (incoherent) beam-beam model and (2) strong-strong (coherent) beam-
beam model. In the incoherent or the weak-strong model, a test particle interacts with
the mean field produced by the counter rotating beam bunch. The stability of the test
particle depends essentially on the single particle dynamics. In the coherent beam-
beam model, beam stability and bunch shape deformation are dynamically excited
by coherent mode interactions. In both models, the linear beam-beam parameters £x

and £2, defined as

NBreP'z NBrep:
Kz~2^az(ax + azy Kx 2n7ax(ax + az)' [°-°V

serve as scaling strength-parameters for beam-beam interaction.
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Past experiments show that the luminosity of colliders is determined mainly by
the beam-beam interaction. Although the horizontal emittance of electron storage
rings is much larger than the vertical emittance, the beam-beam parameters fz and
£r can be made equal by setting P*/ex ~ /3*Jez. Figure 5.7 plots the beam-beam
parameter £2 achieved in some e+e--colliders: DA$NE, VEPP2M, DCI, ADONE,
SPEAR, BEPC, CESR, PEP, KEKB, PEP2, PETRA, HERA, TRISTAN, and LEP.
Note that the beam-beam parameter is a very complicated function of machine op-
erational parameters. The achieved beam-beam parameter may be smaller than the
actual beam-beam limit.10

Figure 5.7: Left: A compilation of achieved linear beam-beam parameter £z vs. the
beam-energy of e+e~ colliders. Right: The same data plotted vs the transverse damping-
decrement. The figure seems to indicate that the tolerable beam-beam parameter increases
with the energy of a collider. However, the energy dependence of the beam-beam parameter
is not obvious. Typical value achieved in e+e~-colliders is about 0.05-0.08. On the other
hand, typical value achieved in hadron-colliders is about 0.005-0.025. The curves on the
right plot correspond to £0 + (£LEP - £o)(̂ damPingMLEp)a, where Adamping is the damping
decrement, ALEP is the damping decrement for LEP at 102.7 GeV, £0 = 0.025, £LEP = 0.115
and a = 0.175 (solid) and 0.35 (dashes) respectively. The dependence of the beam-beam
parameters on the damping decrement has not been fully established. Furthermore, there
is no theoretical basis for these curves.

10See e.g. J. Seeman, Observation of the Beam-Beam Interaction, in Lecture Notes in Physics
#247, p. 121 (Springer-Verlag, Berlin, 1985); R. Assmann and K. Cornells, Proceedings of
EPAC2000, p. 1187 (EPAC, 2000).
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In terms of the linear beam-beam parameter £z, the luminosity formula becomes

z'ePz ox re pz ax

If fz is the limiting factor for colliders, the luminosity can only be increased by
increasing the beam intensity and beam emittance while maintaining a constant £2.
For a constant £z, the luminosity can be increased by decreasing /?* value at the
IP, increasing az, or increasing the number of bunches B.n However, the maximum
luminosity occurs when the value of the betatron amplitude function at IP is about
equal to the bunch length as. This is called the hourglass effect, arising from the fact
that the betatron amplitude function in the interaction region is given by fiz(s) =
/3* + s2//3*, where s is the distance away from the IP (see Exercise 2.2.17). For a
flat beam with /?* » as, the luminosity reduction factor depends on the parameter
Az = FJa.:

C F~A~ A2 A2

l-o V T 2 2

where Co is the luminosity for zero bunch length, and K0(A^./2) is the zeroth order
modified Bessel function. For a round beam, the luminosity hourglass reduction factor
becomes C = CQ X •s/7rexp(A2) erfc(^4), where A = /?*/as.

If e+ and e~ beams are of the same energy in an e+e~-collider, the counter-
circulating e+ and e~ beams can be stored in a single storage ring. Since the lumi-
nosity of e+e" colliders are usually limited by the beam-beam interaction, the number
of bunches is limited by avoiding un-wanted beam-beam interactions other than the
interaction points for physics experiments. Electrostatic separators are installed in
these colliders to separate these counter-circulating beams, called pretzel scheme for
achieving separate closed orbits for these two beams. In order to produce high lumi-
nosity in 5-meson (KEKB and PEPII), $-meson (DA$NE), and r-charm (CESR and
BEPC) factories, two storage rings crossing only at an interaction area are used for
multi-bunch operation. Since the luminosity of e+e~ colliders is usually limited by the
beam-beam parameter, the design strategy differs from that of synchrotron radiation
sources, where the emittance is minimized to maximize the beam brightness.

For hadron colliders, the pp colliders (TEVATRON or SppS) have used one ring
strategy to minimize construction cost. These colliders have also been limited by the
beam-beam interaction. In order to avoid un-wanted beam-beam interaction, elec-
trostatic beam separators are installed in the storage ring for multi-bunch operation.
Proton-proton and heavy ion colliders require two independent rings for counter-
circulating beams to collide at a few interaction points. In this case, the parasitic
long-range beam-beam interactions at the interaction area can also set limit on the
number of bunches in the ring.

uIf the counter rotating e+e~ beams are stored in the same storage ring, these two counter-
rotating beams should be separated by orbit separation schemes to minimize the beam-beam tune
shift.
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Because of the importance of this subject, there have been many workshops de-
voted to this subjects. For related and current topics on this subject, the proceedings
of these workshops are handy.12

II.l The beam-beam force

We consider head-on collisions between two Gaussian round beams of length L with
transverse charge distribution:

*> = S «*[-•&]' (5-56)
where Ne = / p(r)2nrdr is the charge per unit length, a2 = §(?"2) is the rms beam
width. The Lorentz force on a test particle due to the opposing bunch at a radius
r is Fj_ = e(E + v x B) = e(Er + /3cB#)r. Using the Lorentz transformation (see
Appendix B. Sec. V.I) of electromagnetic fields from the rest frame of the beam
to the lab frame of the accelerator, we obtain the force acting on a particle of the
opposing bunch:

F± = - i '- 1-exp - — - r >• (xx + zz+ • • • ) ,
4we0r \ [ 2a1 \) 4ne0a2

where (5 = v/c and 7 = v'l — P2- The corresponding kick-angle Ax' in linear approx-
imation is

Ax,= fFAdsh) ^ NBTOX + ... ( 5 5 7 )

7mc p 7(7̂

where Â B = J Nds is the number of particles in the opposing bunch, ro = j-^—$ is
the classical radius. The focal length of the linear kick is given by j = ^- = ̂ J 1 ,
and the linear tune shift is given by

4TT / 47T7CT2 4 T T £ N

where P* is the betatron amplitude function at the interaction point and eN is the
normalized emittance of the bunch. The linear beam-beam tune shift is equal to
the beam-beam parameter f, which serves as the scaling factor for the nonlinear
beam-beam force.

12See e.g. Lecture Notes in Physics 247, Nonlinear Dynamics Aspects of Particle Accelerators
(Springer-Verlag, NY, 1985); Proceedings of the ICFA Beam Dynamics Workshop on Beam-Beam
Effects in Circular Colliders, (Novosibirsk, 1989); AIP Conf. Proc. 693, (AIP, New York, 2003).
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Disruption Factor

The disruption factor, defined as the ratio of the bunch length to the focal length of
the beam-beam interaction,

»-7-^- (559)

is commonly used to gauge the strength of beam-beam interaction in linear colliders.
If the disruption factor is larger than 1, the beam particles are focused toward each
other within the bunch length. For electron colliders in storage rings, the disruption
parameter is about V = as/f = 47r£crs//3* « 0.63, where we set /3* « as and the
beam-beam tune shift parameter £ ss 0.05 at a single IP. If this beam-beam tune shift
is produced by a single interaction point, the focal length of beam-beam interaction
is about / ss 2/3*. For e+e~ linear colliders, T> can be much larger than 1 in order to
achieve luminosity enhancement.

Generalized Beam-Beam Interaction for Flat-Beam

In general, the beam size is not the same for the horizontal and vertical directions,
i.e. ax ^ az at the interaction point. The beam-beam potential can be obtained by
solving Poisson's equation for the generalized electromagnetic potential of an elliptical
bunch (see Exercise 5.2.2). The generalized beam-beam kick can be derived from the
beam-beam potential Vbb{x,z):

M = _BVi*>(x,z) Az, = _dVbh(x,z)^
ox oz

where
2 a

Nr0 r°° l - e " ^ 7 " ^

Nrof x2 | z2 \
7 \Ox{ox + CT2) az{ax + az)j

Nr0 (2 + R 4 2 2 2 1 + 2R A

with the round-beam parameter R = az/ax. At a small amplitude, x <C crx, z <C uz,
the above equation reduced to (see Exercise 5.2.2)

Ax> = ™«> Az> = ™r0

lOx\Ox + az) icrz{ax + az)

The focal lengths of the beam-beam interaction become

_1_ = 2Nr0 1_ = 2Nr0

fx i<Jx{ox + ozy fz ioz(ax+azy
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The focal length is positive (focusing) for the collision of opposite charges, and nega-
tive (defocussing) for the collision of like charges. The resulting beam-beam param-
eters are given by Eq. (5.54.

Dynamics Betatron Amplitude Functions

Due to the beam-beam interaction, the linear lattice will be perturbed. The one-turn
map, including a thin-lens beam-beam kick, for betatron motion is

M = /cos$o + aSsin<S>0 /3o'sin$o \ f 1 0 \
V -7oSin$o c o s $ 0 - a o S i n $ o ) \ - j l j ' \- )

where B^, QQ, and 7g are the values of the unperturbed betatron amplitude function
at IP, $o is the unperturbed betatron phase advance in one revolution. Identifying
the one-turn map M with Courant-Snyder parametrization, we obtain

B*
cos$ = cos$o ^sin$o = cos$o — 27r£sin<I>o, (5.65)

where B* is the value of the perturbed betatron amplitude function at IP, $ is the
perturbed betatron phase advance in one turn. The betatron tune-shift due to the
beam-beam interaction is AQ = ($ — $0)/(2TT) SS £, and the betatron amplitude
function is dynamically modified. The tune-shift can cause betatron tunes to overlap
with betatron resonances. This can result in emittance blow-up, beam halo, and
beam loss. The mismatched betatron amplitude-function can induce lattice-function
modulation (/3-beat) if the resulting betatron tune is near a half-integer stopband.

The stability condition for linear betatron motion is |cos$o — 27r^sin$o| < 1, i-e.

The shaded area in Fig. 5.8 shows the tolerable beam-beam parameter of Eq. (5.67).
Experimentally, the measured tolerable beam-beam tune shift of about 0.05 for e+e~
colliders and 0.03 for hadron colliders shown in Fig. 5.7 is much smaller than the linear
stability-limit of Eq. (5.67). The observed beam-beam limit is essentially determined
by the effects of nonlinear resonances generated by the beam-beam interaction, non-
linear magnetic fields, noises, and time-dependent tune modulations.

II.2 The Coherent Beam-Beam Effects
For two beams with similar intensity, if one beam is slightly displaced with respect
to the other, coherent oscillations are induced, which may lead to unstable motion.13

13A. Piwinski, Proc. 8th Int. Conf. on High Energy Accelerators, p. 357 (1971).
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Figure 5.8: The shaded area cor-
responds to stable condition of
Eq. (5.67), where UQ is the frac-
tional part of the bare betatron
tune $O/(2TT). The left plot is the
maximum tolerable linear beam-beam
parameter for the e+e~ or pp colliders,
while the right plot is the maximum
tolerable linear beam-beam parameter
for colliders with like-charges. The
actual tolerable beam-beam parameter
is much smaller than that of the linear
stability limit.

We consider two counter circulating bunches, specified by indices 1 and 2 respectively.
The center of mass motion relative to each other is

1/i =-7- ( ! / i - Ife). 2/2 = f ^ - ^ ) ' (5-68)
h h

where g is the geometric overlapping factor that depends on the transverse distribu-
tions of two beams. In rigid beam approximation, the cm. linear betatron motion
(closed orbit) of the two beams is obtained from the one turn transfer matrix. The
transfer matrix in the normalized coordinates becomes (see Exercise 5.2.5)

[ cos$i sin$i 0 0 \ / 1 0 0 0\

— sin<J>i cos$i 0 0 —Airg^i 1 47rp£1 0
0 0 cos$2 sin$2 0 0 1 0
0 0 — sin $2 cos $2 / \ 4TT<7£2 0 — 47rgf2 1 /

/ cos$i - 47r^1sin$1 sin$i 4irg£i sin $x 0 \
_ — sin$x — 47r<7£1cos$i cos$i 47rg£i cos $i 0

47rp£2 sin $2 0 cos $2 - 47r#f2 sin $ 2 sin $ 2

^ ing^2 cos $2 0 — sin $2 — 47T<7£2 COS $2 cos $2 /
The stability of the system is determined by the eigenvalue of the transfer matrix M,
i.e. IA — M| = 0. We consider a simple example of two beams with identical intensity
and betatron amplitude functions, i.e. £ = £1 = £2 and $0 = $1 = $2- Two of four
eigenvalues are given by

\a = cos $0 ± j sin $Ol (5.69)
i.e., the same eigenvalues as the original unperturbed system. This is identified as
the cr-mode, where two beams oscillate in-phase with each other, and produce no
coherent beam-beam effect on betatron motion.

The eigenvalues of 7r-mode are solutions of the equation:
\l - 2(cos$0 - i-ngisin$0)A^ + 1 = 0, (5.70)
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where two beams oscillate out of phase. In small linear beam-beam parameter approx-
imation, the coherent tune shift is AQ = (2g)£. For rigid Gaussian distribution, the
coherent beam-beam tune-shift factor is 2g = y/2.u Yokoya et al. carried out careful
analysis of coherent motion using Vlasov equation and found that the Yokoya-factor
is about 2g « 1.21 ~ 1.33.15 Experimental observations show that the Chao-Yokoya
factor agreed well with Yokoya's analysis.16 The stability condition is

1 $n
|cos$o-47T0fsin$o| < 1, or £ ^ 4 ^ r c o t y - (5-71)

This condition is more stringent than that of Eq. (5.67) by a factor l/{2g).

II.3 Nonlinear Beam-Beam Effects
Including beam-beam interaction, the particle Hamiltonian is given by

H = l-{x12 + Kxx2) + l-{za + Kzz2) + Vhb(x, z)S(s), (5.72)

where we have assumed linear betatron motion elsewhere and the beam-beam poten-
tial Vbb(x,z) of Eq. (5.61) at a single interaction point. For example, the nonlinear
beam-beam force for a round beam gives an octupole-like beam-beam force:

Ax' = -^-2(x3 + xz2). (5.73)

This octupole-like nonlinear beam-beam force differs from a regular octupole pole
magnetic force shown in Eq. (2.25), and can not be compensated by octupole magnets.
Even if we were using an octupole to compensate the x3 nonlinearity, the required
octupole strength, B$l = -^^Bp, would be difficult to attain.

Using the Floquet transformation of Eq. (2.94) and the orbital angle 9 = s/R as
the time coordinate, the Hamiltonian (5.72) can be transformed into

H = vxjx + vz3z + U(JX, JZ,^X,A;9), (5-74)

where
U = ^ £ Km,n(Jx, Jje-W*-**'-") (5.75)

with

Km,n = ^ T L . /• / d ^ d t P) 2°*+t 2°>+t V - * * * ) . (5.76)
(2^)27 J J yj{2al + t){2a2z+t)

14A. Chao, Beam-beam Instability, in AIP Conference Proceedings #127, Physics of High Energy
Accelerators, p. 202 (AIP, NY, 1983).

15K. Yokoya et al, KEK Preprint 89-14 (1989); K. Yokoya and H. Koiso, Particle Accelerators
27, 181 (1990).

16W. Fischer et al, Proceedings of PAC2003, p. 135 (2003); J.T. Seeman, Luminosity and beam-
beam interactions, in AIP Proceedings #592, p. 163 (AIP, NY, 2001).
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Because of the symmetry of the integrand, only even order resonances exist, i.e., m
and n must be even. Using the generating functions for the Bessel functions listed in
Sec. IV Appendix B, we obtain

K NrQ f Z0(&ftj)U£&)
Koo = / at . * —; ZQ(a) = e I0(a). (5.77)

7 J y/{2ai + t){2a^ + t)

The Hamiltonian is given by

H = uxJs + u,J, + K0,0{Jx,J,) + ±- Y. Km,n{Jx,Jz)e-^+n<»-te\ (5.78)
M m,n?0

First, the beam-beam interaction creates a detuning term A'o.o- The tune shift of a
particle depends on its betatron amplitudes. The beam-beam interaction produces
nonlinear resonances at mvx + nvz — £, where m and n are even-integers for head
on collisions. If two beams are colliding off-axis, or with an angle, the odd order
resonances can also appear. These nonlinear resonances can profoundly influence the
beam distribution function in phase-space.

II.4 Experimental Observations and Numerical Simulations
Since the luminosity of high energy colliders is normally limited by the beam-beam
interaction, there are many experiments, numerical simulations, methods of compen-
sation, and workshops conducted on this subject. This section summarizes some
research findings of the past 40 years.

A. Experimental Observations of Beam-Beam Effects

The luminosity of a collider depends on the beam-energy, beam-emittances, betatron
and synchrotron tunes, /3*'s and bunch length, beam current, beam crossing angle,
and the number of bunches. However, the beam-beam parameters of many colliders
may have reached saturated values so that the resulting luminosity increased only
linearly with the beam current stored in the ring. The saturated values of the beam-
beam parameter depend on many machine parameters, such as the betatron tunes,
the damping decrement of the storage ring, etc. Although the essential physics has not
yet been fully understood, some general features have been explored through many
detailed experimental observations. This section lists some of these experimental
observations of existing colliders.

1. If a collider is not limited by the beam-beam interaction, i.e. £2 is not saturated,
we expect £z ~ / and C ~ 72, where / is the beam current. Once the beam-
beam parameter £z reaches its maximum number, the luminosity will increase
linearly with I [see Eqs. (5.52) and (5.54)]. Similarly, if one assumes that the
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beam-beam parameter, f, has reached its limit, the tolerable current in a collider
is proportional to 73, provided that the collider is not aperture-limited, and we
find L ~ 74. At the aperture-limit of an accelerator, where the beam size at the
maximum fiz location reaches the maximum value, the /?* will be proportional
to tz. Assuming az <C ax at the IP, the maximum current will scale with energy
as / ~ 72 for a constant beam-beam parameter £2. The luminosity will scale
with energy as C ~ 72. The dependence of the beam-beam parameter on the
damping decrement has not been fully explored.17

2. Since the beam-beam interaction is highly nonlinear, nonlinear resonances may
play important roles in the beam distribution, beam lifetime, and dynamical
aperture. Extensive beam-beam experiments have been carried out at many
colliders, such as colliders listed in Fig. 5.7, SppS, Tevatron, RHIC, etc.18 For
example, VEPP-4 in Novosibirsk (yx sa 8.56 vz fa 9.59) showed that the low
order resonances can affect the beam emittance and beam size, and reduce
the luminosity, while high-order nonlinear resonances can affect the luminosity
background. Avoiding higher order nonlinear resonances will minimize luminos-
ity background. Similar experiments at the SppS, Tevatron, and RHIC showed
that the background could be minimized by avoiding even-order nonlinear res-
onances. At the VEPP-4, the luminosity background was found to be very
sensitive to the alignment of two-beams when the collider was operating near
an odd-order parametric resonance lvx = 60, while the magnitude of the lumi-
nosity was not much affected by this odd order parametric resonance. Similar
beam-beam experiments and numerical simulations have been carried out at
DA$NE.19

3. Measurements of transverse beam deflection at the interaction point can be
used to map the transverse nonlinear beam-beam force and beam properties
such as the rms sizes, dynamic-/?, etc.20 By adjusting the relative rf phase of
two beams, the location of the interaction points can also be adjusted. Such
scan can be used to maximize the luminosity to find the actual minimum /3*
location.

17H. Burkhardt, Proceedings of the PAC1997, p. 1532 (1997); R. Assmann and K. Cornelis,
Proceedings of the EPAC2000, p. 1187 (2000).

18A. Temnykh, in Proceedings of the ICFA Beam Dynamics Workshop on Beam-Beam Effects in
Circular Colliders, p. 5 (Novosibirsk, 1989); L. Evans, J. Gareyte, M. Meddahi, and R. Schmidt,
Proceedings of PAC1989, p. 1403 (1989); X. Zhang, et al, Proceedings of PAC2003, p. 1757 (2003);
W. Fisher, et al, ibid p. 135 (2003).

19M.E. Biagini et al, Proc. of PAC1999, p. 1536 (IEEE, NY, 1999).
2 0P. Bambade, et al, Phys. Rev. Lett. 62, 2949 (1989); M. Venturini and W. Kozanecki, SLAC-

PUB-8700 (2000).
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B. Coherent Beam-Beam Modes and the Nonlinear Effect

When two beams are colliding, coherent beam-beam modes are induced by the beam-
beam interaction. The a-mode corresponds to two beams oscillating in phase while
the 7T mode corresponds to two beams oscillating out of phase. The tune of the
7r-mode oscillations can be measured by either an impulse kick, or by the beam-
transfer-function method. Many experiments have found that the coherent mode
tune-shift agrees with the Yokoya factor of 1.21.

Nonlinear beam-beam force plays also an important role in the coherent beam-
beam effects. When the excitation amplitude is comparable to the rms beam size,
nonlinearity in beam-beam force can cause the coherent modes to bifurcate resembling
that of Fig. 3.5, showing the hysteresis in the beam transfer function.21

C. Numerical Simulations

Because of its importance in determining the performance of high energy colliders,
numerical simulations of beam-beam interactions become a very powerful tool in the
design of high energy colliders. In many instances, the numerical simulations have
been used to predict and find the optimal operation condition for high luminosity
colliders.

A large number of macro-particles distributed in 6D phase space with an ini-
tial Gaussian distribution are tracked through accelerator elements, such as magnets
(linear or nonlinear) rf stations, and beam-beam interactions. For electron storage
rings, the radiation damping is important, each particle is considered to lose all mem-
ory of its past motion after a few damping times. An equilibrium distribution can
therefore be determined from the macro-particle-simulations. Since the nonlinear
kick in beam-beam force is much stronger than that of the accelerator magnetic-field,
linear betatron transfer map or a concatenated nonlinear map can be used to save
computation-time.

The synchrotron radiation damping and quantum fluctuation can be treated ac-
cording to localized kicks in each revolution as shown in Chap. 4, Sec. II. The
beam-beam kick is usually represented by Bassetti-Erskine formula.22 Many exten-
sive beam-beam tracking simulations have been carried out to improve the operational
conditions for e+e~-colliders.23

For hadron colliders, numerical simulations have also been carried out to opti-
mize the operational conditions. Because there is no synchrotron radiation damping,

21see e.g. T. Ieiri and K. Hirata, Proc. of PAC1989 at Chicago, p.926 (1989). Sweeping the dipole
deflector, they observed characteristic nonlinear coherent dipole-mode bifurcation (see also Chapter
3, Sec. III.2).

22M. Bassetti, and G.A. Erskine, CERN-ISR-TH/80-06 (1980) [see also exercise 5.2.2], V. Ziemann,
SLAC-PUB-5582 (1991).

23See e.g. S. Myers, in Lecture Notes in Physics #247, p. 176 (Springer-Verlag, Berlin, 1985); T.
Chen, J. Irwin, and R. Siemann, Phys. Rev. E 49, 2323 (1994); Y. Cai et al, Phys. Rev. ST
Accelerators and Beams 4, 011001 (2001).
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even weak high-order nonlinear resonances can enhance diffusion rate, reduce beam-
lifetime, distort phase space ellipse, induce emittance growth, etc.

D. Compensation Methods for Beam-beam Effects

We note that nonlinear multipole-magnets can not be used to compensate the nonlin-
earity of the beam-beam interaction. However, accelerator scientists have been trying
to combat the beam-beam interaction with many ingenious methods since 1970's. The
DCI in Orsay carried out experiments with the collision of 4 e+e~ beams in two sep-
arate rings. The 4-beam collision scheme was intended to cancel strong beam-beam
force at the interaction point.24

More recently, through many careful experimental measurements, one recognizes
that the tune spread caused by the beam-beam interactions plays a major role in de-
termining beam-distribution, beam lifetime, beam loss, and luminosity background.
Thus, electron lens and current carrying wires have been proposed to compensate
the tune spread caused by the beam-beam interaction at the Fermilab pp and LHC
colliders.25 In particular, the current-carrying-wire method has been shown to be
effective in suppressing the tune spread caused by the long range beam-beam inter-
action between two bunches separated by a few a of beam width. Experimental data
will be available when the LHC commissions in 2008.

II. 5 Beam-Beam Interaction in Linear Colliders
The beam-beam interactions in linear collider at TeV energies are usually charac-
terized by disruption factors Vx and Vz, disruption deflection angle 60 for collision
particles, and the beamstrahlung parameter T for pair production through beam-
strahlung.

In linear approximation, the effect of beam-beam interaction is characterized by
the focal length fx and fz in Eq. (5.63). The disruption deflection angle for a particle
at la amplitude is

_ ax _ ax _ 2Nr0

fx fz -Y(<7X+(TZ)

and the disruption factors T>x and Vz are defined as

*.- = -?p^ = f- = -SK (5-80)
7<7x,z(ax + °z) fx,z Ax,z

where £Xtl are the linear beam-beam tune shift parameter, Ax<z = ^- is the lattice
variation parameter at the interaction point.

2 4P. Marin, in Proceedings of the IX ICHEA at SLAC, Conf 740522, UC-28-Accelerators, (NTIS,
US DoC, 1974).

25J.P. Koutchouk, Proceedings of the PAC2001, p. 1681 (IEEE, 2001); V. Shiltsev, et al., Pro-
ceedings of the PAC2001, p. 148 (IEEE, 2001).
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Defining the normalized coordinates:

*=-; Z=i-; 5=-, (5.81)

ax az as

we find linearized equations of motion within the bunch crossing as

The solution is sinusoidal. When the disruption factor is large, the number of particle
oscillation within the opposing bunch may be large. As the disruption factor increases,
the luminosity can be enhanced by the pinch effect, i.e. C = Co x HD where HD is
a function of Dx, Dz, Ax, and Az. The luminosity enhancement for a nearly round
SLC beams was found to be about 2.26

In the range of opposing bunch, S 6 (—1,1), the number of oscillation is27

IT)
n= — or V = 7r2n2. (5.83)

These oscillations can also be viewed as plasma oscillation with

Note that the disruption parameter is proportional to the number of plasma oscil-
lations within the bunch length. Another quantity of interest is the Debye length,
XD, defined as the transverse amplitude of the plasma oscillation. The time for the
maximum amplitude is about |TP, i.e.

^ 4 UJp

Since the emittance is given by e — naxyj(v^)/c, one obtains

-9- = I77)1'* °s = ('K)1/4 1 (5 86)
ax y2! 2P*s/V 2J 2AVV' '

The Debye length is normally less than the bunch width for a reasonable machine
parameter A. Particle motion in the e+e~ linear collider is trapped in the bunch
during the collision.

26T. Barklow et al, Proceedings of PAC1999, p. 307 (IEEE, 1999).
27R. Hollebeck, NIM 184, 333 (1981); AIP Proc. 184, 680 (1988).
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The strong beam-beam interaction in e+e~ colliders at TeV energies can cause
uoiim particles to lose substantial amount of their energy to synchrotron radiation.
The quantity is characterized by the beamstrahlung parameter:

2hujc hf 2B
T = o~FT = = 7-5-, I5'87)

3 b mcp Bc

where B is the magnetic field produced by the colliding bunches, the factor 2 takes
into account the contribution of the electric field, and Bc = m2c2/(eh) « 4.4 x 109 T
is the Schwinger critical field. Averaging the induced magnetic field over the beam
distribution, the average beamstrahlung parameter is

_ 5 _ vyBr0Ac 7

where Ac = h/mc is the Compton wavelength. When the beamstrahlung parameter
(T) becomes large, quantum-electrodynamics processes are important in the beam-
beam interaction. These topics are actively researched in the quest of linear collider
design studies.28 Table 5.2 lists the evolving parameters of some linear colliders.

Table 5.2: Parameters of Linear Collider Design

I SLC I NLC/JLC I TESLA I CLIC
Ecm CM Energy[TeV] 0.1 1 0.8 T] 5~
LuminosityllO^cm-V1] .0003 1.3 5.0 1.1 14.9
N[1010} 4.2 0.75 1.41 0.4 0.4
B per train 1 192 4500 150 150
Rep. Rate[Hz] 120 120 120 150 50
<7*[nm] 1400 235 392 123 27
CT2*[nm] 700 3.9 2.0 2.7 0.45
a*[fj,m] 1100 120 300 50 25
7eI[10-6m-rad] 55 3.6 8 1.48 0.58
7ez[lQ-6m-rad] 10 0.04 0.01 0.07 0.01
Vx (disruption parameter) 0.91 0.12 0.2 0.07 0.16
Vz (disruption parameter) 1.81 7.2 39 3.40 9.3
HD (enhancement factor) 2.1 1.46 1.8 1.54 1.99
(Y) (beamstrahlung) 0.0016 0.29 0.085 0.57 27

28see K. Yokoya, in High Quality Beams, AIP Proceedings 592, p. 185 (AIP, N.Y. 2001); D.
Schulte, Proceedings of PAC1999, p. 1688 (IEEE, 1999); P. Chen, in Handbook of Accelerator Physics
and Engineering, edited by A. Chao and M. Tigner, p. 140 (World Scientific, Singapore, 1999).
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Exercise 5.2

1. Please verify the following table:

Operation Conditions and Beam-Beam Parameters

I CESR I BEPC I TRISTAN I LEP I SLC I VEPP4M
I[mA] 90 52 7.5 2.0 0.001 40
iVB[1010]xM 20x7 26x1 24x2 41.6x4 4.5x1 15x2
C[m] 768 240.4 3018 26,660. 366
E[GeV] 6 2.2 26 55 50 6
ez[7r/im] 0.008 0.044 0.0016 0.0021 0.0004 0.02
J3Z 0.018 0.085 0.04 0.04 0.01 0.05
£z 0.032 0.031 0.032 0.04 0.05
e^Tr/jm] 0.24 0.66 0.10 0.052 0.0006 0.4

Jx I 1.0 | 1.3 1 1.0 | 1.0 [ 0.01 I 0.75
SPS(P) SPS(P) ^Ev(p) ~rEvW RHIC : ssc

iVB[10lu] 7 2.5 12 8 10 1
E[GeV] 315 315 900 900 250 20,000
eN[np,m] 16 8 14 10 20 6

_£ | 0.0015 | 0.0049 | 0.0052 | 0.005 | 0.003 [

2. Follow the following steps to derive the beam-beam interaction potential for the Gaus-
sian charge density:

Ne x2 z2

^'Z) = w ; e x p { - ^ r 2 ^ '
where N is the charge per unit length.

(a) Show that the Fourier transform of the Poisson equation V 2 $ = -^, where p is
the charge distribution, and «o is the vacuum permittivity, for the electrostatic
potential $ of a beam is given by

(k2x + k2zMkx,kz) = -p(kx,kz),

where

$ = -X; I $(*, z)eik*x+ik'2dxdz, p=-^ I p{x, z)eik*x+ik>zdxdz.
4TT2 J 47^ J

For a Gaussian beam distribution, show that

P "47r2 e ' * ^2e0kl + kf
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(b) Show that the electrostatic potential 4> is given by29

where the singularity at x = z = 0 is removed by the addition of the —1 term
in the numerator of the integrand.

(c) Show that the beam-beam kick at /3 ~ 1 is given by

Az'--^ Az'--^- V(r~)-Nro rl-^{-^-W]df
AX ~ dx' A ^ dz' V{X'Z)~ 7 h ^{2al+t){2al+t) *

(d) For small amplitude particle motion with x <C crx, z <C oz, show that3"

, 2Nr0 , 2Nr0

Ax = ; -X, Az = •: TZ

l°x {0x + crz) iaz{ox + <yz)

(e) In many electron storage rings, we have ax 3> az. Now we define

__az _ x z 2 _ 2a\ +1

T~yx' a ~ J2{ai - aif ~^/2{al-ai)' * ~2ox + t>
show that

(f) Show that the beam-beam kick is then given by31

^ _ i A y = - m:° ,>e-^2 r+Jb e<^
ls/2{al - Of) Jar+j>7

(g) Using the definition of the complex error function [M. Abramowitz and LA.
Stegun, Handbook of Math. Functions]:

w(z) = e-z2 [1 + 7̂= f eC2dc|,
L v7r Jo J

29S. Kheifeit, "Potential of a three dimensional Gauss-bunch", PETRA Note 119 (1976). Note
that

*i + *l 4/0

30The problem can be carried out easily by changing the dummy variable to s2 =
(2a2z+t)/(2a2x+t).

31Change the dummy variable to C = as + ib/s with (r < s < 1).
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show that32

Ax' - jAz' = j ™r?/* .„ \v>{a + jb) - e -(°+^)2+(-+^)2 w [ a r +jb-)}

or

, 2jv>ov/^ T \ , x + iz -&-& ,x% + iz%s]

ls/2{al-aj) [ yy/2ipl-oty ^y/2(ol-al)'\

3. Using Eq. (6.3.10), show that [See A. Chao, AIP127, 202 (1979)]

A u x - ^ 2 ~ J o (i + u)3/2(i + « ) i / 2 Z i ( - i 7 7 ) Z o ( T T ^ )

*Vz~ 2 Jo ( l + ^ l + A ) ! / 1 1 ^ ^ ^ 1 ! ^ 1

with r = £ , Z0(a:) = C-*/0(a:) and Zx(x) = e-'[I0(x) - h(x)].

4. Using the normalized phase-space coordinates Y = y/^//^ and Vy = {aly+Ply')I\/J%,
show that the one-turn transfer matrix M of Eq. (5.64 becomes

M = / c o s $ 0 s i n$ 0 \ / 1 0\
V - sin $o cos $o / V -4TT^ 1 J '

where f = j8o/(^7r/) is the linear beam-beam tune-shift parameter.

5. Define the normalized closed-orbit phase-space coordinates (Yi = y\l\f^-,Vy\ =
(a*lVl +Pty'i)/VM), and (Y2 = y2/^/M,VY2 = {a*2y2 + Ky2)/VM) for b e a m l a n d
beam 2 respectively.

(a) Show that coherent beam-beam kick of Eq. (5.68) becomes

/ I 0 0 0\

(vYl)_ -4^i + «! 1 4*6^1 0 / ^ ^
y2 I ~ o o l o y2 h

\VY2/ I 47r^2W^| 0 -4jr£2 + a2 W ^ ^ 2 /

where jSjf, QJ and /J ,̂ «2 a r e the betatron amplitude functions at the IP for beams
1 and 2 respectively.

32Numerical calculation of beam-beam interaction by using the complex error functions in CERN
library is considerably more accurate and faster than that obtained from the numerical integration.
The derivation of this homework problem was due to M. Bassetti, and G.A. Erskine, CERN-ISR-
TH/80-06 (1980).



EXERCISE 5.2 531

(b) The lattices for colliders are usually designed with a* = 0 for both colliding
beams. Assuming fi\ = P^ show that the one-turn map for the closed orbit for
one interaction point in one revolution is

(
cos$i sin$i 0 0 \ / 1 0 0 0\

- s in$ i cos$i 0 0 I I -4n£i 1 4 < x 0 I
0 0 cos $2 sin $ 2 I 0 0 1 0 1'
0 0 - s i n * 2 cos$2/ V+47r£2 0 -4n& 1 /

where $ i and $2 are the phase advance for one revolution for the beams 1 and
2 respectively. The stability of the closed orbit of two beams is given by the
condition that all eigenvalues of the matrix have a norm 1.





Appendix A

Basics of Classical Mechanics

I Hamiltonian Dynamics

I.I Canonical Transformations
Based on the variational principle of the Lagrangian, 6 J Ldt = 0, the dynamics of
particle motion is given by Lagrange's equation of motion

where the Lagrangian is a function of the coordinate (qit ft). Hereafter the subscripts
of the phase-space coordinates are omitted when there is no ambiguity. Defining the
Hamiltonian as

H{q,p,t) = J2<iiPi-L(<l,<i,t), (A.2)
i

we obtain Hamilton's equation of motion:

dp__dH_ dq_dH_ dH_ _ _dL_ ,
dt~ <V dt~ dp' dt ~ dt' [ ' '

Hamilton's equation of motion is derived from the variational principle of the
Lagrangian, the conjugate variables (q,p) of the coordinates and momenta can be
transformed to another set [Q,P) by a total differential (contact transformation)
through the "generating function" G. Possible generating functions are

fifoQ.t); F2(q,P,t); F3(p,Q,t); F4(p,P,t). (A.4)

The corresponding canonical transformations are

G = F1(q,Q,t):p=?j±,P = -Zj±; H(Q, P,t) = H(q,p,t) + ^ ; (A.5)

533
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G = F2(q,P,t): p=^,Q = ^ ; H(Q,P,t) = H(q,p,t) + ^ ; (A.6)

G = F3(p,Q,t): q = -f¥±tP=-W*; H(Q,P,t) = H(q,p,t) + ^ ; (A.7)

G = Ft(p,P,t) : q = - ^ , Q = ^ ; W(Q,P,t) = H(q,p,t) + ^ . (A.8)

Canonical transformations are useful in solving many dynamical systems. For
example, the generating function F2 can be used to obtain % = 0, whence Hamilton's
equation of motion is equivalent to finding the generating function with

H(,f) + f=0. (A,,
Here the generating function F2 is called Hamilton's principal function. In particu-
lar, when the Hamiltonian is independent of time {autonomous system), Eq. (A.9)
becomes the Hamilton-Jacobi equation

H(q,^) = E, (A.10)

which is particularly useful for solving the Hamiltonian with separable variables.

1.2 Fixed Points
Fixed points of Hamiltonian flow are phase space points where both q = 0 and p = 0.
Thus the velocity field at fixed point is zero. Fixed points are classified into stable
fixed points (SFPs) and unstable fixed points (UFPs). Near the SFP, the Hamiltonian
flow resembles elliptical motion, and it is also called elliptical fixed point. Near the
UFP, the Hamiltonian flow is hyperbolical, thus it is also called hyperbolical fixed
point.

The fixed points are important in the Hamiltonian dynamics, because they de-
termine the topology of Hamiltonian flow in the phase space. The Hamiltonian flow
(torus) that pass through the UFP is called the separatrix, which separates the Hamil-
tonian flow into stable and unstable regions.

1.3 Poisson Bracket

The Poisson bracket of two functions, u(q,p),v(q,p) of the phase-space coordinates
is defined as

„ du dv dv du
[u, v] = XX ;3-"5 -5—5-)- ( A - n

By definition, we have fe,?j] = 0; [qi,Pj] = <%; \pt,Pj] = 0. From the definition, the
Poisson brackets satisfy the following properties:
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• anti-commutativity : [u, v] = — [v,u];

• Jacobi's identity : [[«, v], w] + [[v, w],u] + [[to,u],v] = 0.

Using the Poisson bracket, we can express Hamilton's equation as

The time derivative of an arbitrary function F(q,p,t) can then be expressed as

If the Poisson bracket [F, H] = 0 and F is not an explicit function of time, then F
is a constant of motion. Clearly, if the Hamiltonian H is not an explicit function of
time, then H is a constant of motion. If H is independent of coordinate <& then the
conjugate momentum p, is a constant of motion. This can be observed easily from
the Hamilton's equation. If a canonical transformation can be found that transforms
all momenta to constants, the complete solution can be obtained through inverse
transformation. Some examples of Hamiltonian systems are given in this section.

1.4 Liouville Theorem
Let H(t, <?i, • • •, qif,pi, • • • ,PN) be the Hamiltonian of an isolated dynamical system,
where t is the time coordinate, and (<7i, • • • > 9AT,PI, • •' ,pw) are the generalized phase-
space coordinates with

Let p(qi, • • • > 9iv, Pi, •"" > Piv) be the density function, and pdr be the number of the
system within phase-space volume dr = YldqiYldpt. Thus the rate of increasing
phase-space points inside volume V is

ilvpdT- <A-15>
On the other hand, the rate of phase-space points flowing out of the volume is

Jp(v-n)da, (A. 16)

where v is the vector field of the Hamiltonian flow, n is the normal vector on the sur-
face of the volume V, and da is the surface integral differential. For a non-dissipative
Hamiltonian system with no source and sink, we obtain the continuity equation

^ + V - ( H = 0 , (A.17)
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where we have used the identity

f p(v • n)da = I V • (pv)dr. (A.18)

Using Hamilton's equation, Eq. (A. 14), we get the equation of continuity

dp dp T-^ . dp -r-^ dp

i = i + £^+5>^ = 0. (A.19)
This is called the Liouville theorem.

1.5 Floquet Theorem

We consider the linear Hill's equation of motion

y" + K(s)y = 0, (A.20)

where y and y' are conjugate phase space coordinates, K(s) is the focusing function,
and the prime is the derivative with respect to the independent variable s. In many
accelerator applications, K(s) is a periodic function of s with period L, i.e. K(s+L) =
K(s). It is advantageous to make the Floquet transformation and express the solution
in amplitude and phase functions,

y{s) = w(s)ej^s\ (A.21)

The Floquet theorem states that the amplitude and phase functions satisfy a periodic
periodic boundary condition similar to that of the potential function K(s), i.e.

w(s) = w{s + L), ip(s + L)-ip(s) = 27Cfj,, (A.22)

where the phase advance fj, in one period is independent of s. Although the periodic
boundary condition is not necessary, it would simplify the solution of the differential
condition. Using the Floquet transformation, we get the differential equation

1 rs dt
2w'iP' + wip" = 0, V' = - ~ , 1> = / - 5 , (A.23)

Wz Jso Wz

w" + K(s)w - wip'2 = 0 , w" + K(s)w - 4r = 0, (A.24)
w

where we have chosen a normalization for the amplitude function in Eq. (A.23). By
defining Y = w2, we obtain

The amplitude function can be solved easily for some special function K. The second
order differential equation has two independent solutions y\ = weJ* and 2/2 = we~^.
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It is easy to verify that the Wronskian W = yiy'2 - y[y2 is invariant. The solution y
of Hill's equation is a linear combination of j/i and yi\ it satisfies the Coulomb-Snyder
invariant,

e = W-2y2 + (w'y - y'wf, (A.25)

where ne is the phase-space area enclosed by the ellipse of particle motion.

II Stochastic Beam Dynamics

Electrons in storage rings emit synchrotron radiation, which is a quantum process.
Since the photon emission is discrete and random, the quantum process causes also
diffusion and excitation. The balance between damping and excitation provides a
natural emittance or beam size for the electron beam bunch in a storage ring. Because
the synchrotron radiation spectrum depends weakly on the energy of photons up to
the critical frequency, the emission of photons can be approximated by white noise,
i.e. electrons are acted on by a Langevin force. For random noise, an important
theorem is the central limit theorem discussed below.

II. 1 Central Limit Theorem

If the probability P(u) of each quantum emission is statistically independent, and the
probability function falls off rapidly as \u\ —¥ oo, then the probability distribution
function for the emission of n photons is a Gaussian,

Vn{w) = _ ^ e - ( » - ^ ) 2 / 2 ^ ( A 2 6 )

V2TT<Jn

where

wn = n{u), (u) = / uP{u)du,

°l = nal a\ = f(u - (v))*P(u)du. (A.27)

The theorem is important in all branches of information science. We provide a
mathematically non-rigorous proof as follows. Since the quantum emission is statis-
tically independent, the probability of n photons being emitted is

P(ui)duiP(u2)du2 • • • P{un)dun.

Thus we have

P » W = / / f P{ui)P{u2) • ••P(un)6{w - J2ui)duidu2 • --dun. (A.28)
1 »=i
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Using the identity

5{w - £ » = ±- [°° eJfc(»-E«i), (A.29)
t= l ^"" J—oo

we obtain

Pn(w) = h £ L e~jkw m)]n• (A-30)
where

Q{k) = r duejkuP{u) « 1 + jk(u) - \{u2)k2 + •••. (AM)
J-oo 2

Since Q(k) is small for large k, we can expand it in power series shown in Eq. (A.31).
Substituting into Eq. (A.30) and using the formula ln(l + y) = y — \y2 + • • •, we
obtain

p n ( w ) = ± [°° e-J(^+nlnlQmdk = _ J _ c - ( » - « - ) i / 2 « i ) (A.32)
Z7T 7-00 V 27T(Tn

where uin and an are given in Eq. (A.27), which is called the Einstein relation in
the random walk problem. This result indicates that the distribution function is
Gaussian, and the square of the rms width increases linearly with the number of
photons emitted. The balance between diffusion and phase-space damping gives rise
to an equilibrium beam width.

II. 2 Langevin Equation of Motion

For simplicity, we consider a ID dynamical system, where the unperturbed Hamilto-
nian is

H0 = ^p2 + U(x). (A.33)

Here (x,p) are conjugate phase-space coordinates, and U(x) is the potential energy.
Hamilton's equation of motion is

x'=P, P' = ~%, (A.34)

where the prime indicates the derivative with respect to time coordinate t. In the
presence of diffusion processes and phase-space damping, the equation of motion
becomes

x'=p, p' = - ^ - A p + Dt;(t), (A.35)

where D is the diffusion coefficient, A is the phase-space damping coefficient, and the
white noise function £(t) satisfies

<f(*)) = 0 , (e( i )£(f)> =6(t-t'). (A.36)
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The stochastic differential equation becomes

x" + Ax' + ^ = DZ(t), (A.37)
ax

To solve the resulting stochastic differential equation numerically, we examine several
numerical algorithms.

II.3 Stochastic Integration Methods
A. Random walk method

Including the quantum emission of photons, the difference equation for the normalized
synchrotron phase-space coordinates is

i xi+i =Xi + 2ni/s(-Axi + p^

pi+1 = ft - 2 ^ 1 + [2nvsyi*DW(t) , (A-38)

where the subscript indicates the revolution number, and vs is the (synchrotron) tune.
The Wiener process function W(t) is defined as

1 rt+T»
WV) = 7rU2 / W)dt' > (A"39)

i 0 Jt

where To is the time for one revolution in the ring, and £(£) is the white-noise function.
Thus the variance of the Wiener process function becomes

(W(t)W(t)) = 1 . (A.40)

Therefore in the tracking equations (A.38), a Wiener process W(t) can be imitated
by a random walk of ±1 per revolution. In the smooth approximation, Eq. (A.38) is
equivalent to the differential equations of motion:

Here t is the real time for particle motion in a storage ring.

B. Other stochastic integration methods

For one stochastic variable x, the general Langevin equation has the form

±{t) = f(x)+g{x)£{t). (A.42)
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The Langevin force £(t) is assumed to be a Gaussian random variable with zero mean
and 5-function correlation shown in Eq. (A.36). The integration of Eq. (A.42) is

x(t + h)= x(t) + f{x)h + g(x)VhW(h), (A.43)

where

Two widely used methods for solving stochastic differential equations numerically are
Euler's and Heun's.

B.I Euler's scheme

Euler's integration scheme includes terms up to order h for additive noise. To integrate
stochastic differential equations from t = 0 to t = T, we first divide the time interval
T into N small finite steps of length h

tn = nh, h = T/N, n = l,2,...,N.

The stochastic variable at a later time in+i,

xn+x = x(tn+1) = x{(n + l)h), (A.44)

is calculated according to

xn+i =xn + f{xn)h + g(xn)VhWn(h) (A.45)

where W\(h), W2(h), ..., W^{h) are independent Gaussian-distributed random vari-
ables with zero mean and variance 1, i.e.

(Wn) = 0, (WnWm) = 6nm. (A.46)

A possible choice of the set of Gaussian random variable Wn is

Wn{h) = ^^-(n-Q.5), (A.47)

where r* is a random number with 0 < r; < 1, and M is an arbitrary non-zero large
integer, e.g. M > 10.

B.2 Heun's scheme

Heun's scheme is second order in h. The difference from Euler's scheme is an addi-
tional predictor step,

xn+1=xn + ±(f(xn) + f(yn))h + g(xn)^/hW2n-i(h) (A.48)
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with
Vn = xn + f(xn)h + g{xn)VhW2n{h).

In this case we need 27V independent random variables {Wn(h)}. The equilibrium
distribution function does not depend on the method of stochastic integration used
in numerical simulations. It is, however, worth pointing out that a non-symplectic
integration method can lead to a slightly different Eth due essentially to the change
in the effective A parameter.

II.4 Fokker-Planck Equation
The equilibrium distribution function of a stochastic differential equation (A.37) sat-
isfies the Fokker-Planck equation

a* r d Ae du a D2 d2] _ ,A An.
It = \~vYx + V + ^dp + Te?\ *• (A'49)

The solution of the Fokker-Planck equation is

tf = J - e x p { - - | - } , (A.50)

where Af is the normalization, and Eth is the "thermal" energy given by

*h = g- (A.51)

In the small bunch approximation, the normalization constant becomes M = Eth-
This is the Einstein relation, where the diffusion coefficient is proportional to the
thermal energy Et^ = kT, where k is the Boltzmann constant and T is the tempera-
ture.1

If the potential is nearly quadratic, i.e., the restoring force is simple harmonic, the
distribution is bi-Gaussian. Thus the central limit theorem of white noise gives rise
to a Gaussian distribution. In reality, if the potential is nonlinear, the distribution
may not be Gaussian in coordinate space x.

The rms phase-space area A of the beam distribution is

— = Wvar(a:)var(p) — (covar(:r,p))2, (A.52)

'The diffusion coefficient "D" is usually defined according the Fick's law: j = pv — —"D" (Vp).
Using the continuity equation, Eq. (A.17), we obtain the diffusion equation dp/dt = "D"V2p, where
we have assumed that the diffusion coefficient is independent of the coordinates. Comparing this
equation with Eq. (A.49) for the case of no damping, A = 0 and potential U = 0, we find that
the diffusion coefficient is related to the random walk coefficient by "D" = D2/2. The normalized
solution of the diffusion equation for Eq. (A.49) becomes *(p, t) = (l/v/27rZ52t)e~p2/2£>2*. This result
agrees with the central limit theorem.
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where

var(z) = ((x - (x))2), var(p) = ((p - (p))2), covar(a;,p) = {xp) - (x)(p).

Here (• • •} denotes an average over the beam distribution. In a small bunch nearly
Gaussian approximation, the rms phase-space area is equal to irEth, i.e. the emittance
A/V is equal to the thermal energy .Eth-



Appendix B

Numerical Methods and Physical
Constants

I Fourier Transform

Spectral analysis of beam properties has many applications in beam physics. When a
detecting device picks up a beam current or position signal as the beam passes by, the
time structure and its frequency can be analyzed to uncover characteristic properties
of the beam in the accelerator.

Let y{t) be a physical quantity of the beam, e.g. a transverse betatron coordinate,
a transverse sum signal, or a longitudinal phase coordinate of the beam. The Fourier
spectrum function of y{t) is

Y(u)= ^ y(t)e-^dt. (B.I)

If the variable t is time, then the conjugate Fourier variable w is the angular frequency.
The function y(t) can be obtained from the spectrum function by using the inverse
Fourier transform

y(t) = ±- f°Y{u,) <**&*, (B.2)

In a synchrotron, the beam passes through the detector in a discrete sampling
time given by the the revolution period To. The measured physical quantities are

yn = y(nT0), n= 1 ,2 ,3 , . . . ,

where the sampling rate for beam motion in a synchrotron is usually equal to the
revolution period.

543
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1.1 Nyquist Sampling Theorem

The Nyquist theorem of discrete sampling states that, if the data are taken in time
interval To, then their spectral content is limited by the Nyquist critical frequency

In terms of betatron tune, the Nyquist critical tune is qc = fcTo — | . The discrete
sampling of beam motion can provide power spectrum only within the frequency
range (—fc,fc). The power spectrum of all outside frequencies is folded into the
range (—fc,fc)- This is called aliasing. Frequency components outside the critical
frequency range are aliased into the range by discrete sampling. In other words, we
can assume that the Fourier component is nonzero only inside the frequency range
—fc to /c for our discrete sampling data.

1.2 Discrete Fourier Transform

Now we would like to find the Fourier transform Y(u>) of the phase space coordinate
y(t), where we have collected N consecutive data samples,

yk = y ( k T 0 ) , k = 0 , 1 , 2 , - - - , N - 1 . (B.4)

The data can provide the Fourier amplitude for all frequencies within the range — fc

to fc. For the N data points, we can estimate the Fourier amplitude at discrete
frequencies

n N N , ,
Wn = -^W0, 7J = - y , . . . , y , (B.5)

where u0 = 2TT/T0 is the angular revolution frequency. The discrete Fourier transform
is1

Yn = YM = f°° y(t) e-^dt « To £ yk e~^knlN. (B.6)
J-°° *=o

Here n varies from -N/2 to N/2. We note that Yn of Eq. (B.6) has a period N with
Y-n = Vfv-n, n = 1,2, • • •. Thus we can let n in Yn vary from 0 to TV — 1. Here the
frequency range 0 < / < fc corresponds to 0 < n < N/2 — 1, the frequency range
-fc < / < 0 corresponds to N/2 + 1 <n< N —1, and f — fc and / = -fc give rise
to n - N/2.

The discrete Fourier transform has properties similar to those of the Fourier trans-
form of continuous functions, e.g.

1The discrete Fourier transform can be optimized by an algorithm called the Fast Fourier Trans-
form (FFT), which uses clever numerical algorithms to minimize the number of operations for the
calculation of Yn in Eq. (B.6). See, e.g., W.H. Press, B.P. Flannery, S.A. Tukolsky, and W.T.
Vetterling Numerical Recipes (Cambridge Press, New York, 1990).
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yn real F_n = Y+n

yn imaginary F_n = -Y^n

yn even/odd Yn even/odd

The inverse Fourier transform is

ft^E1'.^"'' (B-7)
i V J 0 n = 0

Since the tune is equal to the number of (betatron or synchrotron) oscillations
per orbital revolution, the discrete Fourier transform gives a tune within the range
0 < q < 1/2. Equation (B.5) of Nyquist's theorem implies also that the spectrum
resolution from N sampling data points is

Aui = — LJQ, or Aq = —. (B.8)

For example, the betatron tune resolution is 0.001 from 1000 digitized data points.
Figure 2.20 shows the FFT spectrum of horizontal betatron oscillations excited by a
magnetic kicker. Since 385 data points are used in obtaining the FFT spectrum, the
betatron tune resolution is about 0.003.

Discrete sampling of the phase space coordinate also gives rise to aliasing. Fig-
ure B.I shows that the discrete data points can be fitted by sinusoidal functions with
tunes Q = m±q, where m is an integer, and q is the fractional part of the betatron
tune.

Figure B.I: Discrete data
points (circles) fitted by sinu-
soidal functions with Q = m ±
q, where q is the fractional part
of the betatron tune, and m is
an integer.

1.3 Digital Filtering

The digitized data for a low intensity beam can be contaminated by many sources of
noise, e.g. cable noise, cable attenuation, amplifier noise, power supply ripple, ground
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motion, etc., and the resulting betatron and synchrotron phase space coordinate data
can be noisy.2 A possible way to enhance the signal to noise (S/N) ratio is to filter the
FFT spectrum by multiplying it by a filtering function F(q). Performing the inverse
FFT transformation with the filtered data can provide a much clearer beam signal.
The filtering function can be a low pass filter, a high pass filter, a band pass filter,
or a notch filter to remove only narrow bands of unwanted frequencies. A DC offset
such as a closed orbit or BPM offset can be filtered by removing the running average
of the BPM signals.

1.4 Some Simple Fourier Transforms

W = T, Ho ***** S(u,) = £ / ^ e-^dt

y(t) = {1 - T < t < T y(w) = IMnH£.
y w 10 otherwise v ; n u

y(t) = ̂  y(w) = i e -w.

II Model Independent Analysis

The linear response of a dynamical system is represented by the relation between
the iVt-dimensional observation vector y(i), i.e. the number of BPMs, and the A ŝ-
dimensional source-signal vector s(i) by

y(t) = As{t)+AT(t) (B.9)

where Nb> Ns, Ns is unknown a priori, A € ?RNi>xN' is the mixing matrix, and N{t)
is the noise vector assumed to be stationary, zero mean, temporally white and statisti-
cally independent of source signal s(i). The task is to determine the mixing matrix A

2See e.g., R.W. Hamming, Digital filters (Prentice Hall, Englewood Cliffs, NJ, 1977).
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and the source signals s(t) from the measured sample signal y(t). Possible sources in
particle accelerators are betatron motion, synchrotron motion, power supply ripple,
collective beam instabilities due to wake fields, ground motion, high frequency noises,
etc. The data sampled by BPMs around the ring are put into a data matrix

/ yi(l) yi(2) ... yi(N) \

y = »W M ;;• * f > (B.IO)

V Vm(l) Vm(2) • • • ym(N) )

where TV is the total number of turns, m = Ni, is the number of BPMs. The element
yi(j) is the reading of the i'th BPM on the j ' th turn. BPM gains may be applied to
correct the BPM calibration error if necessary and available.

II. 1 Model Independent Analysis

Traditionally, the MIA method analyzes data by making SVD decomposition to the
data matrix, i.e.

y = UAVT, (B.ll)

where U and V are unitary real matrices with U r U = I and VTV = I, and A is a
diagonal matrix. The SVD decomposition usually works well in identifying modes in
the data matrix y, except when the eigenvalues are degenerate, or weak modes that
can be mixed by random noise.

For most of physical processes, the source signals are assumed to be independent
and temporally correlated, i.e.

(CU(T) 0 . - A

( ( s ( t ) ) ( s ( f - r ) ) T ) = C s ( r ) = 0 C 2 2 ( r ) ••• ( B . 1 2 )

(Si{t)sj{t - T)> = j Si(t)Sj(t - r)dt = CuSij

is diagonal for an arbitrary time-lag constant r. Here (• • •) stands for mathematical
expectation value or the ensemble average of the source signal. The MIA procedure
of Eq. (B.ll) is equivalent to

yyT = <yyT) = U A 2 U T ,

i.e. making equal-time correlation to the data matrix. The eigenvalues in A of equal
time correlation may sometimes become degenerate, and cause mode-mixing.
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II.2 Independent Component Analysis
The independent component analysis (ICA) extends the data analysis of MIA into
unequal-time correlation, and thus it has the potential to separate these independent-
modes. The source signal separation is to jointly diagonalize the covariance matrices
with selected time-lag constants r with data whitening procedure listed as follows.

1. Compute the Nb x Nb sample covariance matrix Cy(0) = (y{t)y(t)T). Perform
eigenvalue decomposition to Cy(0) to obtain

Cy(0) = ( U 1 , U a ) ( D ^ £ ) ( £ ) (B.13)

where Di,D2 are diagonal matrices with min(Diii) > Ac > max(D2ji) > 0,
Ac is a cut-off threshold set to remove the singularity of the data matrix, or
equivalently removing the noise background. Defining the matrix V as V =
T>i~1/2\JiT, we construct an 7Vs-component vector as Y = Vy. The Vector Y
is called white because (YYT) = I, where I is the Ns x Ns identity matrix.
This MIA procedure reduces the dimension of the data space, separates the
noise from the original data, and de-correlates and normalizes the data.

2. For a selected set of time-lag constants {T ĴA: = 1,2,..., K}, compute the time-
lagged covariance matrix {CY(T*:) = (Y(i)Y(i—Tk)T)\k = 1,2,..., K} and form
symmetric matrix CY(TH) = (CY(T*;) + Cy(Tt)T)/2, and find a unitary matrix
W that diagonalize all matrices CY(T>) of this set, i.e. CY(T*;) = WTDkW,
where Dk is diagonal.3

3. The source signals are found by s = WVy, i.e. the mixing matrix is A =

v-1wT.
For digitized sample data yt{i), constants 7> have to be integers. The expectation

functional (• • •) are replaced with sample average in practice.4 The application of
ICA to synchrotron beam diagnosis involves three phases: data acquisition and pre-
processing, source signal separation and beam motion identification. To gain more
information of the beam lattice, the beam need to be undergoing coherent transverse
motion in the time turn-by-turn data are taken. A pinger or rf resonant excitation
kicker should be fired once or periodically to excite the beam.

3The time-lagged covariance matrix is in fact symmetric if there is no error in noise and finite
sampling. The symmetrization is used to guarantee a real solution in matrix diagonalization. Since
the source signals are independent as shown in Eq. (B.12), the matrices CY(TI) can be jointly
diagonalized with an identical eigenvector matrix W and the eigenvalue-matrix Cs(rt) for each Tfc.
In practice, joint diagonalization can be achieved only approximately due to finite sampling error
and noise. See J. F. Cardoso and A. Souloumiac, SIAM J. Mat. Anal. Appl., 17, 161, (1996).

4The algorithm could be improved by robust whitening or by combining the non-stationarity and
time-correlation. See e.g. Aapo Hyvarinen, Juha Karhunen, Erkki Oja, Independent Component
Analysis, (John Wiley & Sons, New York, 2001).
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ICA algorithm is then applied to data matrix y to extract the mixing matrix A
and source signals s. Each source signal Sj and its spatial distribution A,, where A,
is the i'th column of A, is called a mode. The physical origin of a mode can be
identified by its spatial and temporal pattern. For example, the betatron amplitude
and phase functions of a betatron mode are

A = a 2 ( ^ l i + ^ ), Vi = t a n - 1 ^ L i , (B.14)

where a is a scaling factor depending on the kick amplitude and BPM calibrations.
The dispersion function is given by D = bAs. Here, b is also the scaling factor, that
depends on the magnitude of synchrotron motion.

II.3 Accelerator Modeling
Once these optical functions are determined, the accelerator modeling can be obtained
by minimizing the x2 of the measured quantity with the modeled machine parameters,
where x21S defined as

N" Nm 1 / N 2
,.2 _ V ^ V ^ -1 I nexp DmodeA ITt 1 ^

X -2-,2-,-Zr{BiJ ~Bi,3 ) > (B-15)

Nb is the number of BPMs, Nm is the number of relevant modes, and -By's correspond
to measured or modeled betatron amplitude and phase functions, dispersion functions,
etc. The modeling can be carried out by the same procedure as that of the ORM
discussed in Sec. III.3D.

Ill Cauchy Theorem and the Dispersion Relation

III.l Cauchy Integral Formula
If f(z) is an analytic function within and on a contour C, then

I f(z)dz = 0. (B.16)
J C

Let f{z) be an analytic function within a closed contour C, and continuous on the
contour C, then

where a is any arbitrary point within C. The denominator of a Cauchy integral can
usually be represented by

- = ±jnS(z-a), (B.18)
z - a^f je z - a P.v.



550 APPENDIX B. NUMERICAL METHODS AND PHYSICAL CONSTANTS

where P.V. stands for the principle value of the integral, i.e.

•'p.v. Z — Z\ •'p.v. Z — Z\

Figure B.2: The contour integral
of the impedance in the complex oS
plane. Because the impedance is an-
alytic in the lower complex ui' plane,
the Cauchy integral formula can be
used to obtain the dispersion relation.

III.2 Dispersion Relation

Since the impedance must be analytic in the lower complex plane, we obtain

ZH = ^<f 4^-d" ' , (B.19)
2TTJ JC U)' — U)

where the contour integral C is shown in Fig. B.2. Assuming that Z{OJ) -> 0 as
ui —> oo, we obtain

2-KJ Jc <J - w + je

= ^ U ^-du'- j«Z(J , (B.20)
2TTJ [JP.V. or - w J

where P.V. means taking the principal value of the integral. Thus the real and the
imaginary impedances are related by the Hilbert transform

ReZ||(W) = - i / " A , ' 1 ^ ^ - , (B.21)

ImZ|,(a;) = + i / " rfW'^^. (B.22)
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IV Useful Handy Formulas

IV. 1 Generating functions for the Bessel functions

e*""«= f; jkjk(zy»e= £ jkjk(z)cos(ke)
k=—oo k——oo

cos(zcos0) = J0(z) + 2 £ ( - l ) * J2k{z)cos{2k0)
k=l

sin(zcos9) = 2Yi(-l)kJ2k+1(z)cos((2k + l)0)
fc=0

oo
e j 2 s in# = j - Jk(z)e>ne

k=-oo
oo

cos(zsin0) = Jo(z) + 2^2 hdz)cos{2k9)
k=l

oo

sin(zsin^) = 2 ^ J2jfc+i(z)sin((2fc + \)9)

eHt+m= g tkIk{z)

k=-oo
oo

ezcose = I0{z) + 2 J2h(z) cosk9
k=l

ezsiae = I0(z) + 2 £(- l)*J»(z) cos 2k9 + 2 f^(-l)kI2k+l sin(2fc + 1)0
* = 1 jfc=O

IV. 2 The Hankel transform

/W = r g(k)Jn(kr)kdk g(k) = [M f(r)Jn{kr)rdr
Jo Jo

5(r -r') = r f°° Jn(kr)Jn{kr')kdk
Jo

8(k -k') = k r Jn(kr)Jn(k'r)rdr
Jo

IV. 3 The complex error function

w(z) = e-z2eiic{-jz) = 1 r ^~dt
7T 7-oo Z — t
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IV.4 A multipole expansion formula

b2 — r2 °° /r\n

IV.5 Cylindrical Coordinates

A point in rectangular space coordinates is represented in cylindrical coordinates by

x = pcos(f>, z — psin(f>, s = s,

so that the unit vectors p, </> and I form the orthonormal basis with

d(j> dp »

dcj> d(f>

The Jacobian is p, i.e. the volume element is dV — pdpd<j>ds. Any vector in the
space can be expanded in the coordinate system by

A = App + A^ + Ass,

where Ap, A^ and A3 are components. The position vector is r — pp + ss, and the
gradient operator and the Laplacian are respectively,

-d i1 d d

v = % + ^PY4> + s¥s'

pdp \Pdp) + p2dci>2 + ds2'

Using the gradient operator, we obtain

dp pd(j> as

_ .- 1 d , . , 1 dAj, dAs

\p d(j> ds ) \ ds dp ) \pdp p dcj> )

pdp xdp)P2d4>2 ds2'
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IV.6 Gauss' and Stokes' theorems

<f A-dS = f (V-A)dV
Js Jv

<£ A-ds = I V x A - d S
Jc Js

Here 5 is the surface area that encloses the volume V, dS is the differential for the
surface integral, ds is the differential for the line integral, and C is the line enclosing
the surface area 5.

IV. 7 Vector Operation
A-(BxC) = (AxB)-C
Ax(BxC) = B(AxC)+C (AxB)
V(A-B) = Bx(VxA) + Ax (V x B) + (B -V)A+ (A-V)B
V-{A + B) = V-A + V-B
V-(fA) = (Vf)-A+J(V-A)
V-(AxB) = (V xA)-B-A-(y x B) K ' '
V x {A + B) = V x A + V xB
V x {fA) = (V/) x i + / ( V x i )
V x (V x A) = V(V • A) - V2i
V x (A x B]| = A{V • B) - B(V -A) + (B- V)A- {A-V)B

The term (B • V)A obtains from the operation of the differential operator (B • V) on
the vector function A.

V Maxwell's equations
The following table lists Maxwell's equations in a homogeneous medium, and the
scalar and vector potentials:

V - £ = £ f E-dS = Qeacl/e
c J S

V-B = 0 B = V xA,

VxE^-f E = -V*-d4
at at

VxB = tiJ + (ie~ jcH-ds = /encl.

Here e and fj, are the permittivity and permeability of the medium, B = /J,H is the
magnetic flux density, J is the current density, Qenci. is the charge inside the enclosed
volume, and /end is the total current enclosed by a contour C.
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The equation of continuity V • J + dp/dt = 0 is a consequence of Maxwell's
equation. The boundary condition at the interface of two material is (£2-̂ 2 — t\E\) •
h = a, where a is the surface charge density on the boundary, (E2 — -^i)|| = 0,
(Z?2 — B{) • h = 0, and (H2 — #i) | | = Ks, where Ks is the surface current density per
unit length along the boundary.

V.I Lorentz Transformation of EM fields
The electromagnetic fields (E, B) at a rest frame (x, y, z) are transformed to another
inertial reference frame (x1, y', z') moving at a velocity v relative to the rest frame
with velocity in the +x direction by

K = EX, E'y = j(Ey-vBz), E'z = y(Ez + vBy), (B.24)

E'X = EX, E'y=-r(Ey + ^Bz), E'z = 7(Ez-^2By), (B.25)

where 7 = l / \ / l — /?2, /3 = v/c.

V.2 Cylindrical waveguides
The electromagnetic fields in a cylindrical waveguide can be expressed in cylindrical
coordinate system as E = Epp + E^> + Ess and H — Hpp + H^ + Hss. For the
propagation of electromagnetic fields in a uniform sourceless medium (e.g. the free
space), only two components of the EM fields, e.g., Es and Hs, are sufficient to
determine E and H.

Without loss of generality, we consider the forward propagation mode with ei\<»t-k's\
The resulting field equations are

(&•;&•?&••!)*-• <-»

where k2p = (w/c)2 — k2s with c = l/^/ejl. The longitudinal components of the EM
fields can be solved by the method of separation of variables, and all other components
of the EM fields are given by

j (ksdEs OHs\
9 k2p\p d4> r dr )

j (uedEs 8HS\
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„ j ( dE. k.dH.\
kj \ dr p d<j> )

One can replace ks by — ks for backward traveling waves.
The EM fields are conveniently classified into transverse magnetic (TM) modes,

where Hs = 0 or H\\ = 0, and transverse electric (TE) modes, where Es = 0 or
£|, = 0.

A. TM modes: Hs = 0

The solution of the longitudinal electric field is given by

Es = Acos(m<j> + x)Jm(kpp), (B.28)

where m = integer is the azimuthal mode number, Jm(kpp) is Bessel's function of
order m, kp = JUJ2/C2 — kj is the radial wave number, and ks is the longitudinal
wave number. In a perfectly conducting wave guide with radius b, the longitudinal
component of the electric field must vanish on the wave guide wall, i.e.

Jm(kpb) = 0, (B.29)

or kp>mn = jmn/b, where j m n , listed in Table V.2, are zeros of Jm(z). The correspond-
ing wave propagation mode is called TMmn mode.

Other components of the electromagnetic field are

Ep = - ^ i J 4cos (m0 + X)J'm(kPp), H* = ^Ep,
Kp Ks

E4 = +J~^Asm{m(j) + x)Jm{kpp), HT = ~E+.
Kpp Ks

The wave impedance is given by

_ Ep E* HL ks

ti<$, Hp V e ui/c

B. TE modes: E, = 0

The solution of the longitudinal electric field is given by

Hs = Acos{mct> + x)Jm{kpp), (B.31)

where m = integer is the azimuthal mode number, Jm(kpp) is Bessel's function of
order m, kp = ^/w2/c2 — kj is the radial wave number, and ks is the longitudinal
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Table B.I: Zeros of Bessel function for TM and TE modes

~ 1 Jmn(TM) [I j ' m (TE)
m\n 1 I 2 I 3 I 4 1 I 2 I 3 1 4

"O 2.405 5.520 8.654 11.79 3.832 7.016 10.174 13.32
1 3.832 7.016 10.17 13.32 1.841 5.331 8.536 11.71
2 5.136 8.417 11.62 14.80 3.054 6.706 9.969 13.17
3 1 6.380 1 9.761 [ 13.02 | 16.22 | 4.201 | 8.015 [ 11.35 | 14.59

wave number. Other components of the electromagnetic field are

Ep = + « ^ s i n ( m 0 + x)Jm(kpP), H* = ^Ep,
kpP up

E* = +J-^Acos(m<t> + x)J'm(kPp). Hp = - - ^ .
Kp idfA

In a perfectly conducting wave guide with radius b, the ^-component of the electric
field must vanish on the wave guide wall, i.e.

J'm(kpb) = 0, (B.32)

or kPiJnn = j'mn/b, where j ' m n , shown in Table V.2, are zeros of J'm{z). The corre-
sponding wave propagation mode is called TEmn mode. The wave impedance is given
by

Ep E^ niu/c .

z™ = T* = ~TP = V7X"- (B-33)

V.3 Voltage Standing Wave Ratio

The voltage standing wave ratio (VSWR) measures the amount of reflection in a
transmission line. Let the forward wave be &*'("'*"**> and the reflected wave R ej(-ut+ks'>.
Then the wave amplitude along the transmission line is {e"jks + Re+jks)ejut.

The wave in the transmission line appears to oscillate in phase with respect to time
but has spatial modulations due to interference. When R = 0 the spatial modulation
disappears, and when R — 1 (100% reflection) the modulation looks like a standing
wave on a string with nodes and peaks. The VSWR is denned as

VSWR - Max|e-*' + fl*e+'-*'|
Min|e-^s + R*e+iksV

which is infinity when R=\. and 1 when R = 0.
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VI Physical Properties and Constants

Microwave transmission in wave guide

We list some useful electromagnetic wave transmission properties of some media.
Here p is resistivity; <5skin, skin depth; u, microwave frequency; e, permittivity; fi,
permeability; c, capacitance per unit length; and £, inductance per unit length.

<*skin = \f2p/uii skin depth
Z = (1 + j)p/uj5s\an resistive wall impedance

c = 27re/ In(r2/ri) capacitance per unit length in a coaxial cable

(, = (fJ./2-ir) In(r2/ri) inductance per unit length in a coaxial cable

Zc = \JLjC characteristic impedance of a transmission line

v — l/VLC = 1 / v ^ speed of a wave in a transmission line

Thermodynamic law of dilute gases

The ideal gas law PV = NkT = nRT is often used in the calculation of molecules in
vacuum chamber, where P, V, N, k, T, n and R are respectively the pressure, volume,
number of molecules, Boltzmann's constant, temperature, number of moles, and the
ideal gas constant. Since there are a composition of gases in the vacuum chamber,
partial pressure is usually used with P = "£, Pi, N = £ Nt, and n = 'Z,ni, where the
ideal gas law becomes P{V = N{kT = ntRT, where PuNi and n;, partial pressure,
number of molecules, and number of moles for the ith gas species.

The target thickness t, defined as the number of molecules per m2, is given by
t = CN/V = CP/kT, where C is the circumference of the accelerator.

Critical temperature Tc of some superconducting materials

Nb3Sn Nb Pb Hg YaBa2Cu307 BiSrCaCuO TIBaCaCuO
Tc (K) 18.05 9.46 7.18 4.15 90 105 125

Resistivity and density of some materials

Resistivity I Ag Cu Au Al SS304 W
pc0 [10-8fim] (at 20°C) 1.59 1.7 2.44 2.82 7.3 5.5
Qc [10~3 I" C] 3.8 3.9 3.4 3.9 5.0 4.5
Resistivity at temperature T pc(T) = pc0[l + ac(T - TQ)]

Density [g/cm3] 10.5 8.92 19.3 2.70 7.87 19.3
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Units of physical quantities

Quantity unit SI unit SI derived unit
Capacitance F (farad) m"2 kg 'VA 2 C/V
Electric charge C (coulomb) As
Electric potential V (volt) m2 kg s^A"1 W/A
Energy J (joule) m2 kg s~2 Nm
Force N (newton) m kg s~2 N
Frequency Hz (hertz) s"1

Inductance H (henry) m2 kg s~2A~2 Wb/A
Magnetic flux Wb (weber) m2 kg s~2A"1 Vs
Magnetic flux density T (tesla) kg s~2A~1 Wb/m2

Power W (watt) m2 kg s~3 J/s
Pressure Pa (pascal) m"1 kg s~2 N/m2

Resistance fl (ohm) m2 kg s~3A~2 V/A

Magnetic field in the SI unit is (A/m). However, The cgs unit of Oe (in honor of
Oersted) is also commonly used. The unit conversion is 1 Oe = 1000/4TT A/m.

Radiation dose units and EPA limit

Activity Ci 3.70 x 1010 disintegrations/s
Bq 1 disintegration/s

Energy deposit rad amount of radiation that deposits energy 1.00 x 10~2 J/kg
Gy 1 Gy = 100 rad = 1 J/kg in absorber

quality factor QF RBE (relative biological effect)
effective dose rem dose (in rad x QF)

Sv 1 sievert = dose (in Gy x QF) = 100 rem

The RBE (QF) factors are 1.0 for X-rays and 7-rays, 1.0-1.7 for ,0-particles, 10-20
for a-particles, 4-5 for slow neutrons, 10 for fast neutrons, 10 for protons, and 20 for
heavy ions.

Low level radiation dosage from natural sources accounts for about 130 mrems/year.
The upper limit of radiation dose recommended by the U.S. government is 500
mrems/year apart from background radiation and exposure related to medical pro-
cedures. The upper limit of radiation dosage for radiation worker is 5 rems/year (or
50 mSv/year) for the entire body.

Quantities associated with nuclear collisions

1. Target thickness: t = p£t in (mass/area), where p is the density of the target
material and it is the thickness of the target.
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2. Target thickness: Nt = NAp5s/A, usually in (number of atoms/cm2), where iVA

is the Avogadro number and A is the atomic mass in one mole.
3. Luminosity for fixed target: C = J°x Nt, where the incident flux is the number of

incident beam particle per unit time, i.e. T = <i/Vbeam particles/^- The dimension
of the luminosity is usually cm~2s~1.

4. Counting rate: R = La, where a is the collision cross-section.
5. Absorption length: Aabs = A/(N^a-me\p), where A is the atomic mass, N& is the

Avogadro number, amei is the inelastic cross-section, and p is the density of the
material.

Unit definition and conversion

Unit conversions often used in beam physics:

1 in. = 0.0254 m; 1 Angstrom [A] = 10"10 m

1 barn = 10"28 m2 = 10~24 cm2;

1 cal = 4.186 J; 1 J = 107 erg; 1 eV = 1.60217733 x 10"19 J
1 atm = 760 torr = 1.01325 x 105 Pa;
1 bar = 1 x 105 N/m; 1 mbar = 0.7361 torr
1 T = 104 G; 1 A/m = 4TT X 10~3 Oe

Power units:

1 dBm = 101og(P/1.0mW)

dB gain of power amplifier = 101og(Pout/Pjn)

Momentum rigidity of a beam:

Bp [Tm] = 3.33564 p [GeV/c]

The relation between the longitudinal action Is (in mm-mrad) and the longitudinal
phase space area A (in eV-s):

j _ i /BE)A — i ^"^ X 105(.4 [eVs]//?7) [?r̂ m] proton synchrotron
. - VIP ) - | 2 Q3 x 1 0 8 ^ [eVs]//37) [irum] electron synchrotron
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Fundamental physical constants

Physical constant symbol value unit
Avogadro's number NA 6.0221367 x l ( F /mol
atomic mass unit ( im(C 1 2 ) ) mu or u 1.6605402 xlO"2 7 kg
Boltzmann's constant k 1.380658 xlO~23 J/K
Bohr magneton /iB = eh/2me 9.2740154 xlO"24 J/T

5.7883826 x 10"5 eV/T
Bohr radius a0 = 4ire0h2/mec2 0.529177249X10"10 m
classical radius of electron re = e2/47re0mec2 2.81794092xl0~15 m
classical radius of proton rp = e2/4we0mpc2 1.5346986 xlO"1 8 m
elementary charge e 1.60217733 xlO~19 C
fine structure constant a = e2/2eQhc 1/137.0359895
muc2 931.49432 MeV
mass of electron me 9.1093897 xlO~31 kg
mec2 0.51099906 MeV
mass of proton mp 1.6726231 xl0~2 7 kg
mpc2 938.27231 MeV
mass of neutron mn 1.6749286 xlO"2 7 kg
mpc2 939.56563 MeV
molar gas constant R = NAk 8.314510 J/mol K
neutron magnetic moment /zn -0.96623707 x 10"26 J/T
nuclear magneton /up = eh/2mu 5.0507866 xlO"27 J/T
Planck's constant h 6.626075 xlO"3 4 Js
permeabili ty of vacuum /i0 4TT X 10~7 N / A 2

permit t ivi ty of vacuum e0 8.854187817 x lO~ 1 2 F/m
proton magnetic moment pp 1.41060761 xlO"26 J/T
proton g factor gp = HP/[J.N 2.792847386
speed of light (exact) c 299792458 m/s
vacuum impedance Zo = l/eoc = fj,oc 376.7303 O
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A superconducting cyclotrons, 16
SLAC,

Accelerators and Laboratories NLC damping ring, 250, 266
ANL LER, 237, 420

APS, 159, 237, 420 HER, 237, 420
BNL SSC, 163, 249

AGS, 56, 163, 249, 264, 302, 318 TJNAF
AGS Booster, 86, 94, 318 CEBAF, 395
NSLS, 171 accelerator components,
RHIC, 163, 249, 264, 302, 318 acceleration (rf) cavities, 20, 343

BEPC, 237, 250, 420 dipoles (see dipole)
CERN, quadrupoles (see quadrupole)

LEP, 237, 250, 420 miscellaneous components, 21
LHC, 163 accelerator lattice (see betatron motion)
PS, 302 achromats (see dispersion function)

CESR, 237, 420 action-angle variables,
ELETTRA, 472 transverse (see betatron motion)
Fermilab, longitudinal (see synchrotron motion)

Booster, 54, 124, 249, 264, 302, 318 adiabatic damping (see betatron motion)
Debuncher, 264 adiabatic time (see synchrotron motion)
MI, 249, 264, 302, 318, 341 adiabaticity condition (see synchrotron mo-
Tevatron, 163 tion)

IUCF admittance, 64
CIS, 20, 84, 340 Alfven current, 504
Cooler, 135, 209, 249, 264, 295 a-bucket (see synchrotron motion)

KEK Atomic-beam polarized ion source, 82
PS, 302 attractor (see resonances)
TRISTAN, 250

LBNL
ALS, 237, 250, 420 B

LLNL,
induction linac, 7 barrier rf bucket (see rf system)

LANL, beam-beam effects, 421, 513
CCL, CCDTL, 10, 384 beam-beam parameter, 514
PSR, 380 coherent beam-beam effects, 522

NSCL dynamic beta, 517
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in linear collider, 524 FOFO cell, 76
beamstrahlung, 526 insertions, 181
disruption deflection angle, 524 nBA, 477
disruption factor, 524 TBA 477

hour-glass effect (see luminosity) action-angle, 57
nonlinear effects, 520 adiabatic damping, 64
pretzel scheme, 516 betatron tune, 54
tune shift, 517, 421 betabeat, 102, 178

beam-gas scattering, 121 chromatic aberration, 172
beam loading, 353 correction, 173

fundamental theorem, 354 , . .
, __„ chromaticity, 173

phasor, 353
o , . . , ..... „_„ chromaticity corrections, 173
Robinson instability, 356
steady state, 355 chromaticity measurement, 174

beam manipulation specific, 173
bunch compression (rotation), 322 Courant-Snyder invariant, 60
(pre)buncher 325 Courant-Snyder parametrization, 51
capture, 320 closed orbit, 85
debunching, debuncher, 326 integer stopband (see stopbands)
extraction, 115 closed orbit bump, 94, 116

fast, 94, 115 off-momentum, 121
slow, 115 dipole field error, (see errors)

injection, 115 envelope equation (see envelope equa-
charge exchange, 115 tion)
multi-turn injection, 115 geometric aberration, 202
strip (see charge exchange) gradient (quadrupole) error, (see er-

mismatch, 80 rOrs)
phase space stacking, 326 momentum compaction, 136, 242
rf knock-out, 95 d o u b l e b e n d a c n r o m a t ) 157
tune jump, (see tune) flexible ^ ^ ^ m

beam position monitor (BPM), 106 F 0 D 0 ^ j ^ . 1 3 7 1 6 5

A-signal, 106 . , . .„
. 5 ' 7T jump schemes, 146

S-signal, 106 . , . ,. „.
, , , , . v ,,„ „ . necktie diagram, 66
beamstrahlung parameter, T, 417, 526 . , , _. „ „
betatron, 7 path length, 74, 90, 136

betabeat (see betatron motion) r f k n o c k o u t ( see b e a m manipulation)

betatron motion, 47 s t a b i l i t y - 6 3

accelerator lattice symplecticity, 64
Chasman-Green, (see DBA) B e t h representation (see magnetic field)
combined function DBA, 493 bifurcation (see resonance)
DBA, 141, 469 bucket area (see synchrotron motion)
doublet cell, 56 bunch area (see synchrotron motion)
FMC, 149 bunch height (see synchrotron motion)
FODO cell, 54, 125, 468 bunching factor, 113
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V_/ cyclotron frequency wo, 10

canonical perturbation, 253
canonical transformation, 481 -L'
cavity (see rf systems)
central limit theorem, 485 damping decrement, 445, 510
Child's law, 31 diffraction function CP(u), 1™
chromatic aberration (see betat ron motion) dipole, 20, 28
chromaticity (see betatron motion) s e c t o r d i P o l e - 40> 7 1

Chasman-Green lattice, 132, 455 e d S e focuslnS- 7 1

circumference, 72, 87, 136 d i P o l e m o d e ' 2 6 0

closed orbit (see betat ron motion) dispersion Function, 120
coasting (DC) beam, 108 achromat, 131
Cockcroft-Walton, 4 dispersion action, 125
collective instabilities, 204, 350 ^-function, 124

headtail, 409 <W> minimization, 158
Keil-Schnell criterion, 363 dispersion s u p p r e s s ^ , 130
Landau damping, 213 i n t e g r a l ^presenta t ion, 126
Ion itudinal 350 momentum compaction (see betatron

microwave, 361 m o t i o n )
Robinson instability (see beam load- P h a s e s l i P f a c t o r ' 1 3 7 ' 2 4 2

j n •, transition energy, 136, 149
transverse, 204 distribution functions,

collider (colliding beam facility), 16 transverse, 63, 68, 454
e + e - colliders, 17, 420 longitudinal 255, 284, 452

compaction factor (see betat ron motion) d o u b l e b e n d a c h r o m a t ( D B A ) > ( s e e b e t a "
coding, beam cooling, 2 tron motion)

. i .. ,. n double rf system (see rf system)stochastic cooling, 2 J \ J J
electron cooling, 2
laser cooling, 2 JTJ
ionization cooling, 2
synchrotron radiation cooling, 2, 424 electrostatic accelerators, 6

Collision (nuclear) length, 80 Cockcroft-Walton, 6
Courant-Snyder invariant (see betat ron mo- tandem, Van de-Graaff, 6

tion) X-ray tube, 6
Courant-Snyder parametrization (see be- EM fields (see Maxwell's equation)

tatron motion) emittance, 61
critical frequency wc, 416 electron storage rings, 454, 466
cyclotron, 9 growth - beam gas scatering, 128

AVF, sector-focused, 12 growth - optical mismatch, 80
isochronous, 12 longitudinal emittance, 237, 255
superconducting, 12 normalized emittance, 64
synchrocyclotron, 13 measurement, 62
separate-sector (ring), 12 quadrupole tuning method, 62
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moving screen method, 62 half-integer stopband (see stopbands)
momentum spread, 255 group velocity (see velocity)
momentum spread (quantum fluctua-

tion), 451
statistical definition, 61 TT
transverse emittance, 61

envelope equation ^-function (see dispersion function)
of betatron motion, 52, 67, 79 Hamilton's equation, 531
KV envelope equation, 70 H i n , g ^ . ^ 4 ?

eiT°TA- i fi M as H 0 M > 345> 4 0 1
dipole field error, 85 .

, . „ , , ,_, hour-glass effect (see luminosity)
quadrupole field error, 101

extraction (see beam manipulation)

F l
impedance, 216, 347, 369

feed-down, 101 i •. .• i o™
' longitudinal, 369

FEL (see synchrotron radiation) ,- , ,„ „.„
rtljO, o4f

ferrite, 346 , . , „._ „„„
' . . shunt impedance, 347, 376

fixed point, 532 (see resonances)
p , , ,, _„. transverse, 216
Floquet theorem, 534 , _
Floquet transformation, 50, 52, 92 V a C U U m l m P e d a n c e Z^ 2 1 7

FMC (see betatron motion, lattice) independent component analysis (ICA), 546
focal length, 46 i n d e x o f focusinS- 22> 7 4

focusing of atomic beams, 79 inductance of accelerator magnets
focusing - lithium lens, 80 solenoid, 28
focusing - solenoid, 42 dipole, 29
Fokker-Planck equation (see Langevin force) quadrupole, 29
Fourier transform, 541 injection (see beam manipulation)

discrete Fourier transform, 542 insertions (see betatron motion, lattice)
digital filtering, 543 instabilities,
Nyquist theorem, 542 see resonances

free electron laser (see synchrotron radia- see collective instabilities
tion) interaction point (IP), 81

Frenet-Serret coordinate system, 37 isochronous
cyclotron, 14

*-*i quasi-isochronous, 312

gain (see FEL)
gain-length (see FEL) J
geometric aberration (see betatron motion)
Green's function, 86 Jacobian, 63
gradient error, (see errors) [JJ] factor, 511
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K luminosity, 28, 81, 420, 513
hour-glass effect, 82, 515

KAM theorem, 287
if-value (cyclotron), 12
Kapchinskij-Vladimirskij (KV) distribution, •»*•

68 i V 1

KV equation, 68 .. ,. . , . .
rr •, n i n -. • / n *• • i. magnetic dipole moment, 83
Keil-Schnell criterion (see collective insta- . ,

. . . . . . magnetic field,
. . . . . Beth representation, 29, 40kicker, 94 ±- > >
, • , , „. multipole expansion, 40
kicker lever arm, 94 r r >
Kilpatrick limit, 322 P r e s s u r e ' 8 4

klystron 10 Mathieu's instability, 289
Maxwell's equations, 343, 551

Electromagnetic fields
L TE mode, 553

TM mode, 553
Lambertson septum, 94 microtron, 15
Landau damping (see collective instabili- microwave instability (see collective insta-

ties) bilities)
Lande ^-factor, 83 model independent analysis (MIA), 546
Langevin force, 536 momentum compaction (see betatron mo-

Fokker-Planck equation, 539 tion)
Larmor theorem, 418 momentum rigidity, 21, 25
Laslett tune shift, 73, 123 momentum spread (see emittance)
lattice (see betatron motion)
linac, 9, 383

Alvarez, DTL, 383, 395 v r
beam breakup instability, 408
BNS damping, 408 . ,. ,. , , , , .. .

necktie diagram (see betatron motion)
CCL, 400
R n negative mass, 242
, ,'. „__ normalized emittance (see emittances)

standing wave, 399 '
, ,. onn nonlinear resonances (see resonances)superconducting, 399 '

, ,. o n n nonlinear time (see synchrotron motion)
traveling wave, 399 v J '

constant gradient, 414 normalized phase space coordinates, 59
constant impedance, 414

Wideroe, 383
linear coupling, 186 O

solenoid, 186
skew quadrupole, 186 orbit response matrix (ORM), 98
coupling coefficient, 186 off-momentum closed orbit, 129

lithium lens, 83 optically pumped polarized ion source, 82
loss factor (see rf system) OFHC (oxygen free high conductivity), 22
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sr resonances,
attractor, 283

Panofsky-Wenzel theorem, 235, 407 bifurcation, 273
paraxial ray equation, 33 bifurcation tune, 273
path length (see betatron motion) ,._

. , . difference, resonance 214
perveance (see space charge)

phase detector, 262 ^ ^ ^ ^ ^ ^
phase displacement acceleration, 326
phase focusing, 137, 243 e l l i P t i c a 1 ' s t a b l e < S F P ) ' 2 0 6

phase slip factor, (see dispersion function) hyperbolic, unstable (UFP), 206
phase space area separatrix, 207, 263, 291

longitudinal (see emittance) hysteretic phenomena, 285
transverse (see emittance) island tune (see tune)

phase space stacking (see beam manipula- linear coupling, 186
tion) nonlinear resonance, 202

phase stability (see phase focusing) parametric resonance, 271, 290
phase velocity (see velocity) s u m resOnances, 214
Pierce parameter (see synchrotron radia- s u m r u l e ( g e e g u m m l e )

, t l o n ) synchrobetatronresonance(SBR),235
phasor (see beam loading) __ ,„_. „_„
D • V i , coo t o r u s > 58> l 9 5> 2 7 8Poisson bracket, 532
T> • J- i -u ±- A*n retardedPoisson distribution, 449
Poincare surface of section, 58, 274 s c a l a r a n d v e c t o r Potential, 422
pretzel scheme (see beam-beam interac- retarded time, 422

tjon) rf systems, 20, 343
PUE (Pick Up Electrode), (see BPM) barrier bucket, 334

beam loading (see beam loading)
_ coaxial cavities, 345

*% double rf system, 327

Q-factor (see rf systems) f e r r i t e l o a d e d C a v i t i e S ' 3 5 1

quadrupole, 22, 30 fillinS T i m e ' 3 4 9 ' 3 8 8

quadrupole mode, l o s s f a c t o r ' 3 5 5

longitudinal, 255, 291 pillbox, 343, 392
transverse, 79 Q-factor, 350, 387

rf accelerators, 9
Ij rf cavities, 348
•"" RLC equivalent circuit, 348

radiation length, 127 s h u n t i m P e d a n c e (see impedance)

reaction length, 84 t r a n s i t t i m e fac to r< 2 4 1 ' 2 4 9 ' 3 8 6

RFQ linac (see linac) w a k e function, 353
Robinson instability (see beam loading) rf knockout (see beam manipulation)
Robinson theorem, 445 rf phase modulation, 271
Robinson wiggler (see wiggler) rf voltage modulation, 288
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S barrier bucket (see rf systems)
bucket area, 252

cx-matrix, 61 bucket height, 254
Schottky noise, 115 bunch area, 255
sensitivity factor, 89 bunch rotation (see beam manipula-
separatrix (see resonance) tions)
septum, 94 double rf system (see rf systems)
shunt impedance (see impedance) mapping equation, 245
skin depth, 217, 372 non-adiabatic, 301
slow extraction (see beam manipulation) nonlinear time, 306
solenoid, 33, 44, 186 rf phase modulation (see rf phase mod-
Sokolov-Ternov radiative polarization, 456 ulation)
space charge, 67 rf voltage modulation (see rf voltage

tune shift (see Laslett tune shift) modulation)
perveance, 33, 69 small amplitude motion near

ion source, 33 SFP, 255
in transport line, 69 UFP, 258
in synchrotron, 119 synchronous particle (see synchronous

spectrum, beam spectrum particle)
longitudinal, 262, 363 synchrotron sidebands, 262, 365
transverse, 110 synchrotron tune (see tune)

spin polarization, 116 torus (see nonlinear resonances)
intrinsic spin resonances, 116 synchrotron radiation, 418
imperfection spin resonances, 116 FEL, 498

Stern-Gerlach effect, 80 efficiency, 505
stochastic integration methods, 537 FEL or Pierce paramter, 503
stopbands, gain, 504

integer stopband, 88 gain-length, 509
half-integer stopband, 103 critical frequency wc, 430
systematic (chromatic) stopband, 179 damping, 437

storage rings, 18 transverse, 441
sum rule (resonances), 270 longitudinal, 438
superconductor (type II), 19 partition number, 445
superperiod, 50 emittance (see emittance)
surface resistivity, surface resistance, 347 lifetime
symplecticity (see betatron motion) quantum, 457
synchronous particle, 137, 241 Touschek, 458
synchrotron, 14 momentum spread (see emittance)
synchrotron motion, 239 photon flux, 432

action, 257, 268 power, 418
adiabaticity coefficient a^, 302 radiation excitation, 437
adiabatic synchrotron motion, 239 radiation integrals, 456
adiabatic time, 302 undulator, wigglers, 480
a-bucket, 311 Robinson wiggler, 447
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wavelength shifter, 480
wiggler parameter, 480

T
Tandem (see electrostatic accelerators)
target (foil) thickness, 115, 128, 555
three bend achromat (see lattice)
torus (see resonances)
Touschek lifetime (see stnchrotron radia-

tion)
transport notation, 143
tunes,

betatron tune, 54
island tune, 275, 292
nonlinear detuning, 211
synchrotron tune, 244
tune jump, 109
tune shift,

beam-beam (see beam-beam effect)
of quadrupole error, 102
space charge (see Laslett tune shift)

transfer matrix, 50
transit time factor (see rf systems)
transition energy (see dispersion function)

UVWXYZ
undulator, see synchrotron radiation
vector and sealer potential, 36, 551
velocity,

group velocity, 390
phase velocity, 390

Van de Graaff, 6
VSWR, 352, 554
wavelength shifter, see wiggler
wigglers, see synchrotron radiation
wall gap monitor,
wake function (see rf system)
wakefield, 219, 369
Wronskian, 535
X-ray tube, Coolidge, 6
zero gradient synchrotron, 73



Symbols and Notations
• a, phase space damping rate
• oiad, the adiabaticity coefficient of synchrotron motion.
• ab(0s)> running bucket phase space area reduction factor
• ac, momentum compaction factor
• ax = - # / 2 , az = -P'J2
• otxx — dQx/dJx nonlinear betatron detuning parameter
• a-xz = dQx/dJz nonlinear betatron detuning parameter
• azz — dQz/dJz nonlinear betatron detuning parameter
• a, b, the horizontal and the vertical envelope radii in KV equation.
• Ax — /3x/as, Az = filz/as, hour-glass scaling factors for luminosity
• A, vector potential
• A, longitudinal phase space area of one bunch
• A, longitudinal phase space area of all bunches in the ring.
• .4B, longitudinal bucket area
• B or rib, the number of bunches in a storage ring
• B, betatron amplitude matrix
• JBi = dBz/dx, gradient function of a quadrupole magnet
• Bn = dnBz/dxn, 2(n + l)th multipole of a magnet
• bn, an, multipole expansion coefficients of magnetic fields
• Bp = pole, momentum rigidity of the beam
• Bc = m2(?l{eh) K> 4.4 x 109 T, Schwinger critical field
• Ac, Pz, betatron amplitude functions, or called the Courant-Synder parameter,

or the Twiss parameter.

• 7« = (! + <£)/&, 7, = (1+ £# /&•
• 7, /?, Lorentz's relativistic factors.
• 7T, transition energy jTmc2

• C, circumference of the machine.
C 8.846 x 10-5 m/(GeV)3 for electrons

• C7 = 47rre/3(mc2)3 = t 4.840 x 1CT14 m/(GeV)3 for muons
[ 7.783 x 10"18 m/(GeV)3 for protons.

• Cq = 55ft/32\/3mc = 3.83 x 10~13 m quantum fluctuation coefficient (electron)
• Cx = dQx/d5, Cz = dQz/d5, chromaticities
• Cy stands for either Cx or Cz.
• c = 299792458 m/s, speed of light
• D or Dx, horizontal dispersion function
• Dz, vertical dispersion function
• V, damping partition number
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• V = <7s//bb, beam-beam disruption parameter
• 5 = Ap/p0, fractional momentum deviation
• 5, the maximum fractional momentum spread of a beam
• 6 or <$!, the resonance proximity parameter

• <̂ kin = y 2/fiacu), skin depth of conductors
• eo, permittivity of the vacuum
• £x,ez,e_i_, transverse emittances
• in,x = /3jex, £n,z = Pjtz, normalized emittances
• £ electric field across a cavity gap
• £Q the amplitude of the electric field across a cavity gap
• T, the emittance dependent factor for electron storage rings, i.e. ex = TC,fi2Bz

• FB = 2nR^/\/2nas, bunching factor
• /o revolution frequency
• / = Bp/Bi£ focal length of a quadrupole
• fbb, focal length of beam-beam interaction
• (4>, 6), synchrotron phase space coordinates with S = Ap/p0

• (<fi,AE/cu0), synchrotron phase space coordinates
• (j</>, —S), synchrotron phase space coordinates
• ("P,1?), normalized synchrotron phase space coordinates with V = — (h\r)\/i/s)S
• <J>, $x, <&z, $xi transverse phase advance per cell or per period
• 5 = 1 + 2 ln(6/a), geometric factor of electromagnetic wave in a wave guide
• h, harmonic number of the rf frequency, /rf = hfo
• H, Hamiltonian
• H = -yxD2 + 2axDD' + /3XD'2, dispersion ft-function
• Id or Jd, the dispersion action
• IX,IZ or JX,JZ, horizontal and vertical betatron actions
• Is or Js, the longitudinal action
• JX,JE,JZI damping partition numbers
• 7j's (i = 1,2,3...), radiation integrals

h = J(D/p)ds; I2 = !{l/P2)ds
h = m/\p\3)ds; I3a = I(l/p3)ds
h = I(D/p)[(l/p2) + 2K]ds- Ih = IW\p\3)ds

• k = u/c, wave number
• K(s) = Bi/Bp, gradient function of a magnet
• Kx(s) = 1/p2 - K(s), horizontal focusing function
• Kz(s) = K(s), vertical focusing function
• Ksc — 2iVro//3273, space charge perveance
• K = KscL/2ex$x, effective space charge perveance parameter
• Kw = eBwAw/27T77ic, wiggler or undulator parameter
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• -Kw.rms = Kw, f°r helical wiggler or undulator ifWiims = K^/y/2, for planar
wiggler or undulator

• L, length of a periodic cell or superperiod
• Ac = h/(mec) = 2.426 x 10"12 m, Compton wavelength
• Aw, the wiggler period
• C, Luminosity
• fio = 4TT x 1CT7 Tm/A, permeability of the vacuum
• fic, permeability of a conducting medium
• fi, permeability of a medium
• p, magnetic dipole moment
• M(s2\si), (2x2, 3x3, or 4x4) transfer matrix for linear betatron motion
• M(s), betatron transfer matrix of a periodic beam transport section
• vx>z, betatron tunes
• va, synchrotron tune for <j)s = 0 at zero synchrotron amplitude
• Ai/sc = KscL/Aire, Laslett space charge tune shift
• N, number of particle per unit length, for a Gaussian bunch: N = NQ/y/2Tras

• NB, number of particles per bunch
• n, field gradient index, focusing index
• wo, revolution angular frequency
• uc, critical angular frequency
• up, angular frequency of betatron motion
• wr resonance frequency of an rf cavity
• CJ, angular frequency of Electromagnetic waves,
• P, superperiod
• Pd, power dissipation in rf cavity
• PST = —8/5%/3, Sokolov-Ternov radiative polarization
• Qx,z, (nonlinear) betatron tunes

• Qs = fsyj\ cos0s|, synchrotron tune

• Qs, the amplitude dependent synchrotron tune
• Q-factor, quality factor of rf cavity
• p, bending radius of a dipole magnet
• pc = 1/<7C, resistivity of a conductor
• Pfei = l^onoe2X^K^/(4n2jfm), FEL or Pierce parameter
• p(x, s,z), distribution function
• R(AX,AZ), hour-glass reduction factor for the luminosity
• R or Ro, average radius of a synchrotron
• Rc — Zc — yJL/C, characteristic impedance of a transmission line

• -Rs = l/crci5Skm = \JHoui/2ac surface resistance of a conductor
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• Rij,Tijk,Uijkh transport matrices
• RX,RZ, the horizontal and the vertical envelope radii
• Rsh, shunt impedance of an rf cavity
• rSh, shunt impedance of rf cavities per unit length
• RRR=p(273K, 0 Tesla)/p(10K, 0 Tesla), residual resistance of a conducting wire.
• ro = e2/4ire0mc2 classical radius of the particle with mass m.
• ro{s), a reference orbit in an accelerator or a transport line
• rc, bunch compression ratio
• <TC = 1/pc, conductivity
• cr-matrix
• ox,az, rms bunch bunch widths
• <J5 or at, rms bunch bunch length
• r^ adiabatic time
• Tni, nonlinear time
• (T, 5), synchrotron phase space coordinates
• (T, f/wo), normalized synchrotron phase space coordinates
• To and T, revolution periods for a reference particle and other particles
• Ts, period of synchrotron motion
• UQ, energy loss per revolution due to synchrotron radiation in dipoles.
• Uw, total synchrotron radiation-energy loss per revolution including wigglers.
• V, Vo, frf, rf voltage
• vp, phase velocity
• vg, group velocity
• Wst, stored energy in rf cavity
• wst, stored energy per unit length in rf cavity
• £,6n£z, linear beam-beam tune shift parameter,
• fsc,?x,sc£z,sci linear space charge tune shift parameter,
• (x, s, z), Frenet-Serret coordinate system defined by a reference orbit fo{s)
• {x,x'), horizontal betatron phase space coordinates
• {x,Vx), horizontal normalized phase space coordinates
• (2/i 2/')i either x or z betatron phase space coordinates
• (2/1 Vy) either x or z normalized phase space coordinates
• rj, phase slip factor
• T beamstrahlung parameter
• (z, z'), vertical betatron phase space coordinates
• (z,Vz), vertical normalized phase space coordinates
• ZSh, shunt impedance
• ZQ = HQC = 1/eoc « 377 fl, Vacuum impedance
• Zsc, space charge impedance
• Cv(w) = siniVw7r/sinw7r, the enhancement function
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