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Preface

If we knew what we were doing, it wouldn’t be called research, would it?

Albert Einstein (1879 –1955)

Our nation’s strongest information technology (IT) industry ad-

vances are occurring in the life sciences, and it is believed that IT

will play an increasingly important role in information-based medicine.

Nowadays, the research and economic benefits are found at the intersec-

tion of biosciences and information technology, while future years will

see a greater adoption of systems-oriented perspectives that will help

change the way we think about diseases, their diagnosis, and their treat-

ment. On the other hand, medical imaging is positioned to become a

substantial beneficiary of, and a main contributor to, the emerging field

of systems biology.

In this important context, innovative projects in the very broad field

of biomedical signal analysis are now taking place in medical imaging,

systems biology, and proteomics. Medical imaging and biomedical signal

analysis are today becoming one of the most important visualization and

interpretation methods in biology and medicine. The period since 2000

has witnessed a tremendous development of new, powerful instruments

for detecting, storing, transmitting, analyzing, and displaying images.

These instruments are greatly amplifying the ability of biochemists,

biologists, medical scientists, and physicians to see their objects of

study and to obtain quantitative measurements to support scientific

hypotheses and medical diagnoses.

An awareness of the power of computer-aided analytical techniques,

coupled with a continuing need to derive more information from medical

images, has led to a growing application of digital processing techniques

for the problems of medicine. The most challenging aspect herein lies

in the development of integrated systems for use in the clinical sector.

Design, implementation, and validation of complex medical systems re-

quire not solely medical expertise but also a tight collaboration between

physicians and biologists, on the one hand, and engineers and physicists,

on the other.

The very recent years have proclaimed systems biology as the future

of biomedicine since it will combine theoretical and experimental ap-

proaches to better understand some of the key aspects of human health.

The origins of many human diseases, such as cancer, diabetes, and car-

diovascular and neural disorders, are determined by the functioning and

malfunctioning of signaling components. Understanding how individual
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components function within the context of an entire system under a

plentitude of situations is extremely important to elucidate the emer-

gence of pathophysiology as a result of interactions between aberrant

signaling pathways. This poses a new challenge to today’s pharmaceu-

tical industry, where both bioinformatics and systems biology/modeling

will play a crucial role. Bioinformatics enables the processing of the enor-

mous amount of data stemming from high-throughput screening meth-

ods while modeling helps in predicting possible side effects, as well as

determining optimal dosages and treatment strategies. Both techniques

aid in a mechanistic understanding of both disease and drug action, and

will enable further progress in pharmaceutics by facilitating the transfer

from the “black-box” approach to drug discovery.

The goal of the present book is to present a complete range of

proven and new methods which play a leading role in the improvement

of biomedical signal analysis and interpretation.

Chapter 1 provides an introduction to biomedical signal analysis. It

will give an overview on several processing and imaging techniques that

will disambiguate mixtures of observed components being observed in

the biomedical analysis. Chapter 2 contains a description of methods

for spectral transformations. Signal processing techniques that extract

the information required to explore complex organization levels are de-

scribed . Methods such as continuous and discrete Fourier transforms

and derived techniques as discrete cosine and sine transform will be elu-

cidated. Chapter 3 deals with principal component analysis, representing

an important step in demixing groups of components. The theoretical

aspects of blind source separation or independent component analysis

(ICA) are described in chapter 4. Several state-of-the-art ICA techniques

are explained and many practical issues are presented, since the mix-

ture of components represents a very important paradigm in biosignal

processing. Chapter 5 presents a new signal processing technique, the

dependent component analysis and practical modeling of relevant archi-

tectures. Neural networks have been an emerging technique since the

1980s and have established themselves as an effective parallel process-

ing technique in pattern recognition. The foundations of these networks

are described in chapter 6. Besides neural networks, fuzzy logic methods

represent one of the most recent techniques applied to data analysis in

medical imaging. They are always of interest when we have to deal with

imperfect knowledge, when a precise modeling of a system is difficult,
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Figure 1
Overview of material covered in this volume and a flow diagram of the chapters.

and when we have to cope with both uncertain and imprecise knowl-

edge. Chapter 7 develops the foundations of fuzzy logic and of several

fuzzy c-means clustering and adaptive algorithms. Chapters 8 through

14 show the application of the theoretical tools to practical problems en-

countered in everyday biosignal processing. Challenging topics ranging

from exploratory data analysis and low frequency connectivity analysis

in fMRI, to MRI signal processing such as lesion detection in breast

MRI, and cerebral time-series analysis in contrast-enhanced perfusion

MRI time series are presented, and solutions based on the introduced

techniques are outlined and explained in detail. In addition, applications

to skin lesion classification, microscopic slice image processing, and au-

tomatic labeling, as well as mass spectrometry, are described.

An overview of the chapters is given in order to provide guidance

through the material, and thus to address specific needs of very diverse

audiences. The basic structure of the book is depicted in figure 1.
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The selected topics support several options for reference material

and graduate courses aimed to address specific needs of a very diverse

audience:

• Modern biomedical data analysis techniques: Chapters 2 to 7

provide theoretical aspects and simple implementations of advanced top-

ics. Potential readers: graduate students and bioengineering profession-

als.

• Selected topics of computer-assisted radiology: chapters 1, 2, 3,

4, 6, 7 (section 7.5) and 10 to 14. Potential readers: graduate students,

radiologists, and biophysicists.

The book is also designed to be accessible to the independent reader.

The table of contents and end-of-chapter summaries should enable the

reader to quickly determine which chapters he or she wants to study in

most depth. The dependency diagram in figure 1 serves as an aid to the

independent reader by helping him or her to determine in what order

material in the book may be covered.

The emphasis of the book is on the compilation and organization of

a breadth of new approaches, modelling, and applications from signal

processing, exploratory data analysis, and systems theory relevant to

biosignal modeling. More than 300 references are included and are

the basis of an in-depth study. The authors hope that the book will

complement existing books on biomedical signal analysis, which focus

primarily on time-frequency representations and feature extraction.

Only basic knowledge of digital signal processing, linear algebra,

and probability is necessary to fully appreciate the topics considered

in this book. Therefore, the authors hope that the book will receive

widespread attention in an interdisciplinary scientific community: for

those new to the field as a novel synthesis, and as a unique reference

tool for experienced researchers.
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1
Foundations of Medical Imaging and Signal
Recording

Computer processing and analysis of medical images, as well as experi-

mental data analysis of physiological signals, have evolved since the late

1980s from a variety of directions, ranging from signal and imaging ac-

quisition equipment to areas such as digital signal and image processing,

computer vision, and pattern recognition.

The most important physiological signals, such as electrocardiograms

(ECG), electromyograms (EMG), electroencephalograms (EEG), and

magnetoencephalograms (MEG), represent analog signals that are digi-

tized for the purposes of storage and data analysis.

The nature of medical images is very broad; it is as simple as an

chest X-ray or as sophisticated as noninvasive brain imaging, such as

functional magnetic resonance imaging (fMRI).

While medical imaging is concerned with the interaction of all forms

of radiation with tissue and the clinical extraction of relevant informa-

tion, its analysis encompasses the measurement of anatomical and phys-

iological parameters from images, image processing, and motion and

change detection from image sequences.

This chapter gives an overview of biological signal and image analy-

sis, and describes the basic model for computer-aided systems as a com-

mon basis enabling the study of several problems of medical-imaging-

based diagnostics.

1.1 Biosignal Recording

Biosignals represent space-time records with one or multiple independent

or dependent variables that capture some aspect of a biological event.

They can be either deterministic or random in nature. Deterministic

signals very often can be compact, described by syntactic techniques,

while random signals are mainly described by statistical techniques.

In this section, we will present the most common biosignals and the

events from which they were generated. Table 1.1 describes these signals.

Biosignals are usually divided into the following groups:

• Bioelectrical (electrophysiological) signals: Electrical and chemical

transmissions form the electrophysiological communication between neu-
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Table 1.1
Most common biosignals [56].

Event Signal
Heart electrical conduction Electrocardiogram (ECG)
at limb surfaces
Surface CNS electrical activity Electroencephalogram (EEG)
Magnetic fields of neural activity Magnetoencephalogram (MEG)
Muscle electrical activity Electromyogram (EMG)

ral and muscle cells. Signal transmission between cells takes place as

each cell becomes depolarized relative to its resting membrane poten-

tial. These changes are recorded by electrodes in contact with the physi-

ological tissue that conducts electricity. While surface electrodes capture

bioelectric signals of groups of correlated nerve or muscle cell potentials,

intracellular electrodes show the difference in electric potential across an

individual cell membrane.

• Biomechanical signals: They are produced by tissue motion or force

with highly correlated time-series from sample to sample, enabling an

accurate modeling of the signal over long time periods.

• Biomagnetic signals: Body organs produce weak magnetic fields as

they undergo electrical changes, and these biosignals can be used to

produce three-dimensional images.

• Biochemical signals: They provide functional physiological informa-

tion and show the levels and changes of various biochemicals. Chemicals

such as glucose and metabolites can be also measured.

Electroencephalogram (EEG)

The basis of this method lies in the recording over time of the electric

field generated by neural activity through electrodes attached to the

scalp. The electrode at each position records the difference in potential

between this electrode and a reference one. EEG is employed for spon-

taneous brain activity, as well as after averaging several presentations of

the stimulus. These responses are processed either in the time or in the

frequency domain.
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Figure 1.1
EEG signal processing. The EEG signal is displayed in the upper right corner, and
the filtered signals averaged is shown below [243].

Magnetoencephalogram (MEG)

The magnetoencephalogram is a technique that records based on ul-

trasensitive superconducting sensors (SQUIDS), which are placed on a

helmet-shaped device. The magnetic fields generated by the neural ac-

tivity thus allow clinicians to monitor brain activity at different locations

and represent different brain functions. As with EEG, the magnetic fields

result from coherent activity of dendrites of pyramidal cells. The pro-

cessing methods are the same as in EEG in regard to both spontaneous

and averaged activity. Both EEG and MEG have their own advantages.

In MEG, the measured magnetic fields are not affected by the conduc-

tivity boundaries, as is the case with EEG. On the other hand, EEG,

compared to MEG, enables the localization of all possible orientations

of neural sources.

Electrocardiogram (ECG)

The electrocardiogram (ECG) is the recording of the heart’s electric ac-

tivity of repolarization and depolarization of the atrial and ventricular

chambers of the heart. Depolarization is the sudden influx of cations
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P

R

Q S

ST segment

T

Figure 1.2
Typical waveform of an ECG. The P -wave denotes the atrial depolarization, and
the QRS-wave the ventricular depolarization. The T -wave describes the ventricular
recovery.

when the membrane becomes permeable, and repolarization is the re-

covery phase of the ion concentrations returning to normal.

The waveform of the typical ECG is displayed in figure 1.2 with

the typical deflections labeled P, QRS, and T , corresponding to atrial

contraction (depolarization), ventricular depolarization, and ventricular

repolarization, respectively.

The interpretation of an ECG is based on (a) morphology of waves

and (b) timing of events and variations observed over many beats.

The diagnostic changes observed in the ECG are permanent or

transient occlusion of coronary arteries, heart enlargement, conduction

defects, rhythm, and ionic effects.

Electromyogram (EMG)

The electromyogram records the electrical activity of muscles and is used

in the clinical environment for the detection of diseases and conditions

such as muscular distrophy or disk herniation. There are two types of

EMG: intramuscular and surface EMG (sEMG). Intramuscular EMG is

performed by inserting a needle which serves as an electrode into the

muscle. The action potential represents a waveform of a certain size and

shape. Surface EMG (sEMG) is done by placing an electrode on the skin

over a muscle in order to detect electrical activity of this muscle.
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1.2 Medical Image Analysis

Medical imaging techniques, mostly noninvasive, play an important role

in disciplines such as medicine, psychology, and linguistics. The four

main medical imaging signals are (1) x-ray transmission, (2) gamma-ray

transmission, (3) ultrasound echoes, and (4) nuclear magnetic resonance

induction. This is illustrated in table 1.2, where US is ultrasound and

MR is magnetic resonance.

Table 1.2
Range of application of the most important radiological imaging modalities [173].

X-rays Breast, lung, bone
γ-rays Brain, organ parenchyma, heart function
MR Soft tissue, disks, brain
US Fetus, pathological changes, internal organs

The most frequently used medical imaging modalities are illustrated

in figure 1.3.

Figure 1.3a and 1.3b illustrate ionizing radiation. Projection ra-

diography and computed tomography are based on x-ray transmission

through the body and the selective attenuation of these rays by the

body’s tissue to produce an image. Since they transmit energy through

the body, x-rays belong to transmission imaging modalities, in contrast

to emission imaging modalities found in nuclear medicine, where the

radioactive sources are localized within the body. They are based on

injecting radioactive compounds into the body which finally move to

certain regions or body parts, which then emit gamma-rays of intensity

proportional to the local concentration of the compounds.

Magnetic resonance imaging is visualized in figure 1.3(c) and is based

on the property of nuclear magnetic resonance. This means that protons

tends to align themselves with this magnetic field. Regions within the

body can be selectively excited such that these protons tip away from

the magnetic field direction. The returning of the protons to alignment

with the field causes a precession. This produces a radio-frequency (RF)

electromagnetic signature which can be detected by an antenna.

Figure 1.3(d) presents the concept of ultrasound imaging: high fre-

quency acoustic waves are sent into the body and the received echoes

are used to create an image.
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X�ray Subject        Detector

source

MRI

RF receiver

Magnetic

RF transmitter

Radio�
nuclide

field

Radionuclide imagingX�ray imaging

Detector

Ultrasound
Transducer

Ultrasound

tracer

(a) (b)

(c) (d)

Figure 1.3
Schematic representations of the most frequent used medical imaging modalities
[153].

In this chapter, we discuss the four main medical imaging signals

introduced in figure 1.3. The medical physics behind these imaging

modalities, as well as the image analysis challenges, will be presented.

Since the goal of medical imaging is to be automated as much as possible,

we will give an overview of computer-aided diagnostic systems in section

1.3. Their main component, the workstation, is described in great detail.

For further details on medical imaging, readers are referred to [51,

164, 280].

Imaging with Ionizing Radiation

X-ray, the most widespread medical imaging modality, was discovered

by W. C. Röntgen in 1895. X-rays represent a form of ionizing radiation
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with a typical energy range between 25 keV and 500 keV for medical

imaging. A conventional radiographic system contains an X-ray tube

that generates a short pulse of X-rays that travels through the human

body. X-ray photons that are not absorbed or scattered reach the large

area detector, creating an image on a film. The attenuation has a spatial

pattern. This energy- and material-dependent effect is captured by the

basic imaging equation

Id =

∫ Emax

0

S0(E)E exp

[
−
∫ d

0

μ(s; E)ds

]
dE (1.1)

where S0(E) is the X-ray spectrum and μ(s; E) is the linear attenuation

coefficient along the line between the source and the detector; s is the

distance from the origin, and d is the source-to-detector distance.

The image quality is influenced by the noise stemming from the

random nature of the X-rays or their transmission. Figure 1.4 is a thorax

X-ray.

A popular imaging modality is computed tomography (CT), intro-

duced by Hounsfield in 1972, that eliminates the artifacts stemming

from overlying tissues and thus hampering a correct diagnosis. In CT,

x-ray projections are collected around the patient. CT can be seen as

a series of conventional X-rays taken as the patient is rotated slightly

around an axis. The films show 2-D projections at different angles of a

3-D body. A horizontal line in a film visualizes a 1-D projection of a 2-D

axial cross section of the body. The collection of horizontal lines stem-

ming from films at the same height presents a one-axial cross section.

The 2-D cross-sectional slices of the subject are reconstructed from the

projection data based on the Radon transform [51], an integral transform

introduced by J. Radon in 1917. This transformation collects 1-D projec-

tions of a 2-D object over many angles, and the reconstruction is based

on a filtered backpropagation, which is the most frequently employed

reconstruction algorithm. The projection-slice theorem, which forms the

basis of the reconstructions, states that a 1-D Fourier transform of a

projection is a slice of the 2-D Fourier transform of the object. Figure

1.5 visualizes this.

The basic imaging equation is similar to conventional radiography,

the sole difference being that an ensemble of projections is employed in

the reconstruction of the cross-sectional images:
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Figure 1.4
Thorax X-ray. (Courtesy of Publicis-MCD-Verlag.)

Id = I0 exp

[
−
∫ d

0

μ(s; Ē)ds

]
dE (1.2)

where I0 is the reference intensity and Ē is the effective energy.

The major advantages of CT over projection radiography are (1)

eliminating the superposition of images of structures outside the region

of interest; (2) providing a high-contrast resolution such that differences

between tissues of physical density of less than 1% become visible;

and (3) being a tomographic and potentially 3-D method allowing the

analysis of isolated cross-sectional visual slices of the body. The most

common artifacts in CT images are aliasing and beam hardening. CT

represents an important tool in medical imaging, being used to provide
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Figure 1.5
Visualization of the projection-slice theorem.

more information than X-rays or ultrasound. It is employed mostly in

the diagnosis of cerebrovascular diseases, acute and chronic changes

of the lung parenchyma, supporting ECG, and a detailed diagnosis of

abdominal and pelvic organs. A CT image is shown in figure 1.6.

Nuclear medicine began in the late 1930s, and many of its procedures

use radiopharmaceuticals. Its beginning marked the use of radioactive

iodine to treat thyroid disease. Like x-ray imaging, nuclear medicine

imaging developed from projection imaging to tomographic imaging.

Nuclear medicine is based on ionizing radiation, and image generation is

similar to an x-ray’s, but with an emphasis on the physiological function

rather than anatomy. However, in nuclear medicine, radiotracers, and

thus the source of emission, are introduced into the body. This technique

is a functional imaging modality: the physiology and biochemistry of the

body determine the spatial distribution of measurable radiation of the

radiotracer. In nuclear medicine, different radiotracers visualize different

functions and thus provide different information. In other words, a

variety of physiological and biochemical functions can be visualized by

different radiotracers. The emissions from a patient are recorded by
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Figure 1.6
CT of mediastinum and lungs. (Courtesy of Publicis-MCD-Verlag.)

scintillation cameras (external imaging devices) and converted into a

planar (2-D) image, or cross-sectional images.

Nuclear medicine is relevant for clinical diagnosis and treatment cov-

ering a broad range of applications: tumor diagnosis and therapy, acute

care, cardiology, neurology, and renal and gastrointestinal disorders.

Based on radiopharmaceutical disintegration, the three basic imag-

ing modalities in nuclear medicine are usually divided into two main

areas: (1) planar imaging and single-photon emission computed tomog-

raphy (SPECT), using gamma-emitters as radiotracers, and (2) positron

emission tomography (PET) using positrons as radiotracers. Projection



Foundations of Medical Imaging and Signal Recording 13

imaging, called also planar scintigraphy, uses the Anger scintillation

camera, an electronic detection instrument. This imaging modality is

based on the detection and estimation of the position of individual scin-

tillation events on the face of an Anger camera. The fundamental imag-

ing equation contains two important components: activity as the desired

parameter, and attenuation as an undesired but extremely important

additional part.

The fundamental imaging equation is:

ϕ(x, y) =

∫ 0

∞

A(x, y, z)

4πz2
exp

(
−
∫ 0

z

μ(x, y, z
′

; E)dz
′

)
dz (1.3)

where A(x, y, z) represents the activity in the body and E, the energy

of the photon. The image quality is determined mainly by camera

resolution and noise stemming from the sensitivity of the system, activity

of the injected substance, and acquisition time.

On the other hand, SPECT uses a rotating Anger scintillation cam-

era to obtain projection data from multiple angles. Single-photon emis-

sion uses nuclei that disintegrate by emitting a single γ-photon, which

is measured with a gamma-camera system. SPECT is a slice-oriented

technique, in the sense that the obtained data are tomographically re-

constructed to produce a 3-D data set or thin (2-D) slices. This imaging

modality can be viewed as a collection of projection images where each

is a conventional planar scintigram. The basic imaging equation con-

tains two inseparable terms, activity and attenuation. Before giving the

imaging equation, we need some geometric considerations: if x and y

are rectlinear coordinates in the plane, the line equation in the plane is

given as

L(l, θ) = {(x, y)|x cos θ + y sin θ = l} (1.4)

with l being the lateral position of the line and θ the angle of a unit

normal to the line. Figure 1.7 visualizes this.

This yields the following parameterization for the coordinates x(s)

and y(s):
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Figure 1.7
Geometric representations of lines and projections.

x(s) = l cos θ − s sin θ (1.5)

y(s) = l sin θ + s cos θ (1.6)

Thus, the line integral of a function f(x, y) is given as

g(l, θ) =

∫ ∞

−∞
f(x(s), y(s))ds (1.7)

For a fixed angle θ, g(l, θ) represents a projection, while for all l and θ

it is called the 2-D radon transformation of f(x, y).

The imaging equation for SPECT, ignoring the effect of the attenu-

ation term, is:

ϕ(l, θ) =

∫ ∞

−∞
A(x(s), y(s))ds (1.8)

where A(x(s), y(s)) describes the radioactivity within the 3-D body

and is the inverse 2-D Radon transform of ϕ(l, θ). Therefore, there is

no closed-form solution for attenuation correction in SPECT. SPECT

represents an important imaging technique by providing an accurate
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Figure 1.8
SPECT brain study. (Image courtesy Dr. A. Wismüller, Dept. of Radiology,
University of Munich.)

localization in 3-D space and is used to provide functional images of

organs. Its main applications are in functional cardiac and brain imaging.

Figure 1.8 is an image of a SPECT brain study.

PET is a technique having no analogy to other imaging modalities.

The radionuclides employed for PET emit positrons instead of γ-rays.

These positrons, antiparticles of electrons, are measured and their posi-

tions are computed. The reconstruction is produced by using algorithms

of filtered backprojection. The imaging equation in PET is similar to

that in SPECT, with one difference: The limits of integration for the
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attenuation term span the entire body because of the coincidence detec-

tion of paired γ-rays, the so-called annihilation photons. The imaging

equation is given as

ϕ(l, θ) = K

∫ R

−R

A(x(s), y(s))ds (1.9)

where K represents a constant that includes the constant factors, such

as detector area and efficiency, that influence ϕ. The image quality in

both SPECT and PET is limited by resolution, scatter, and noise. PET

has its main clinical application in oncology, neurology, and psychiatry.

An important area is neurological disorders, such as early detection of

Alzheimers disease, dementia, and epilepsy.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-invasive imaging method

used to render images of the inside of the body. Since the late 1970s, it

has become one of the key bioimaging modalities in medicine. It reveals

pathological and physiological changes in bod tissues as nuclear medicine

does, in addition to structural details of organs as CT does.

The MRI signal stems from the nuclear magnetism of hydrogen

atoms located in the fat and water of the human body, and is based

on the physical principle of nuclear magnetic resonance (NMR). NMR is

concerned with the charge and angular momentum possessed by certain

nuclei. Nuclei have positive charge and, in the case of an odd atomic

number or mass number, an angular momentum Φ. By having spin,

these nuclei are NMR-active. Each nucleus that has a spin also has a

microscopic magnetic field. When an external electric field is applied,

the spins tend to align with that field. This property is called nuclear

magnetism. Thus, the spin systems become macroscopically magnetized.

In MR imaging, we look at the macroscopic magnetization by con-

sidering a specific spin system (hydrogen atoms) within a sample. The

“sample” represents a small volume of tissue (i.e., a voxel). Applying

a static magnetic field B0 causes the spin system to become magne-

tized, and it can be modeled by a bulk magnetization vector M. In the

undisturbed state, M will reach an equilibrium value M0 parallel to the

direction of B0, see figure 1.10(a).

It’s very important to note that M(r, t) is a function of time and
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of the 3-D coordinate r that can be manipulated spatially by external

radio-frequency excitations and magnetic fields.

At a given voxel, the value of an MR image is characterized by two

important factors: the tissue properties and the scanner imaging proto-

col. The most relevant tissue properties are the relaxation parameters

T1 and T2 and the proton density. The proton density is defined as the

number of targeted nuclei per unit volume. The scanner software and

hardware manipulate the magnetization vector M over time and space

based on the so-called pulse sequence.

In the following text, we will focus on a particular voxel and give the

equations of motion for M(t) as a function of time t. These equations

are based on the Bloch equations and describe a precession of the

magnetization vector around the external applied magnetic field with

a frequency ω0, which is known as the resonance or Larmor frequency.

The magnetization vector M(t) has two components:

1. The longitudinal magnetization given by Mz(t), the z-component of

M(t)

2. The transverse magnetization vector Mxy(t), a complex quantity, which

combines two orthogonal components:

Mxy(t) = Mx(t) + jMy(t) (1.10)

where ϕ is the angle of the complex number Mxy, known as the phase

angle, given as

ϕ = tan−1 Mx

My
(1.11)

Since M(t) is a magnetic moment, it will have a torque if an external

time-varying magnetic field B(t) is applied. If this field is static and

oriented parallel to the z-direction, then B(t) = B0.

The magnetization vector M precesses if it is initially oriented away

from the B0. The spin system can also be excited by using RF signals,

such that RF signals are produced as output by the stimulated system.

This RF excitation is achieved by applying B1 at the Larmor frequency

rather than keeping it constant, and allows tracking the position of M(t).

However, the precession is not perpetual, and we will show that there
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Figure 1.9
The magnetization vector M precesses about the z-axis.

are two independent mechanisms to dampen the motion and cause the

received signal to vanish: the longitudinal and transversal relaxations.

The RF excitation pushes M(t) down at an angle α toward the xy-

plane if B1 is along the direction of the y-axis. At α = 0, we have

Mz = 0 and the magnetization vector rotates in the xy-plane with a

frequency equal to the Larmor frequency. The B1 pulse needed for an

angle α = π/2 is called the 90 pulse. The magnetization vector returns

to its equilibrium state, and the relaxation process is described by

Mz(t) = M0

[
1 − exp (− t

T1
)

]
(1.12)

and depends on the longitudinal or spin-lattice relaxation time (T1) (See

figure 1.9.
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Transverse or spin-spin relaxation is the effect of perturbations

caused by neighboring spins as they change their phase relative to others.

This dephasing leads to a loss of the signal in the receiver antenna. The

resulting signal is called free induction decay (FID). The return of the

transverse magnetization Mxy to equilibrium is described by

Mxy(t) = Mx0y0 exp

(
− t

T2

)
(1.13)

where T2 is the spin-spin relaxation time. T2 is tissue-dependent and

produces the contrast in MR images. However, the received signal decays

faster than T2. Local perturbations in the static field B0 give rise to a

faster time constant T ∗
2 , where T ∗

2 < T2. Figure 1.10(b) visualizes this

situation. The decay associated with the external field effects is modeled

by the time constant T
′

2. The relationship between the three transverse

relaxation constants is modelled by

1

T ∗
2

=
1

T2
+

1

T
′

2

(1.14)

It’s important to note that both T1 and T2 are tissue-dependent and

that for all materials T2 ≤ T1.

Valuable information is obtained from measuring the temporal

course of the T1/T2 relaxation process after applying an RF pulse

sequence. This measured time course is converted from the time to the

frequency domain based on the Fourier transform. The amplitude in the

spectrum appears at the resonance frequency of hydrogen nucleons in

water (see figure 1.11).

A contrast between tissues can be seen if the measured signal is

different in those tissues. In order to achieve this, two possibilities are

available: the intrinsic NMR properties, such as PD, T1, and T2, and

the characteristics of the externally applied excitation. It is possible to

control the tip angle α and to use sophisticated pulse sequences such

as the spin-echo sequence. A 90◦ pulse has a period of TR seconds

(repetition time) and is followed by a 180◦ pulse after TE seconds (echo

time). This second pulse partially rephases the spins and produces an

echo signal.

Figure 1.12 shows a brain scan as T1-weighted, T2-weighted, and

hydrogen density-weighted images.
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Frequency-domain transformation of the measured temporal course. The amplitude
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Figure 1.12
Brain MRI showing (a) T1, (b) T2, and (c) hydrogen density-weighted images.
(Image courtesy Dr. A. Wismüller, Dept. of Radiology, University of Munich.)

“Weighted” means that the differences in intensity observed between

different tissues are mainly caused by the differences in T1, T2, and PD,

respectively, of the tissues. The basic way to create contrast based on

the above parameters is show in table 1.3.

The pixel intensity I(x, y) of an MR image obtained using a spin-echo

sequence is given by

I(x, y) ∝ PD(x, y)

(
1 − exp

[
−TR

T1

])
︸ ︷︷ ︸

T1−weighting

exp

[
−TE

T2

]
︸ ︷︷ ︸
T2−weighting

(1.15)

Varying the values of TR and TE will control the sensitivity of the signal

to the T1/T2 relaxation process and will produce different weighted
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Table 1.3
Basic way to create contrast depending on PD , T1, and T2.

Contrast Scanner Parameters
PD Long TR, read FID or use short TE

T2 Long TR, TE ≈ T2

T1 Read FID or use short TE , TR ≈ T1

contrast images. If, for example, TR is much larger than T1 for all tissues

in the region of interest (ROI), then the T1 weighting term converges to

zero and there is no sensitivity of the signal to the T1 relaxation process.

The same holds whan TE is much smaller than T2 for all tissues. When

both T1 and T2 sensitivities decrease, the pixel density depends only on

the proton density PD(x, y).

The MR image quality depends not only on contrast but also on

sampling and noise. To summarize, the advantages of MRI as an imaging

tool are (1) excellent contrasts between the various organs and tumors

essential for image quality, (2) the 3-D nature of the image, and (3) the

contrast provided by the T1 and T2 relaxation mechanism, as one of the

most important imaging modalities.

An important technique in MRI is multispectral magnetic resonance

imaging. A sequence of 3-D MRI images of the same ROI is recorded

assuming that the images are correctly registered. This imaging type

enables the discrimination of different tissue types.

To further enhance the contrast between tissue types, contrast agents

(CA) are used to manipulate the relaxation times. CAs are intravenously

administrated, and during that time a signal enhancement is achieved

for tissue with increased vascularity.

Functional magnetic resonance imaging (fMRI) is a novel noninva-

sive technique for the study of cognitive functions of the brain [189]. The

basis of this technique is the fact that the MRI signal is susceptible to

changes of hemodynamic parameters, such as bood flow, blood volume,

and oxygenation, that arise during neural activity. The most commonly

used fMRI signal is the blood oxygenation level-dependent (BOLD) con-

trast. The BOLD temporal response changes when the local deoxyhe-

moglobin concentration decreases in an area of neuronal activity. This

fact is reflected in T ∗
2 - and T2-weighted MR images.

The two underlying characteristics of hemodynamic effects are spa-

tial and temporal. While vasculature is mainly responsible for spatial
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effects, the temporal effects are responsible for the delay of the detected

MR signal changes in response to neural activity and a longer duration

of the dispersion of the hemodynamic changes. The temporal aspects

impose two different types of fMRI experiments: “block” designs and

“event-related” designs. The block designs are characterized by an exper-

imental task performed in an alternating sequence of 20-60 sec blocks. In

event-related designs, multiple stimuli are presented randomly and the

corresponding hemodynamic response to each is measured. The main

concept behind this type of experiment is the almost linear response to

multiple stimulus presentations. fMRI, with high temporal and spatial

resolution, is a powerful technique for visualizing rapid and fine activa-

tion patterns of the human brain. The functional localization is based

on the evident correlation between neuronal activities and MR signal

changes. As is known from both theoretical estimations and experimen-

tal results [187], an activated signal variation appears very low on a

clinical scanner. This motivates the application of analysis methods to

determine the response waveforms and associated activated regions.

The main advantages of this technique are (1) noninvasive recording

of brain signals without any risk of radiation, unlike CT; (2) excellent

spatial and temporal resolution, and (3) integration of fMRI with other

techniques, such as MEG and EEG, to study the human brain.

fMRI’s main feature is to image brain activity in vivo. Therefore its

applications lie in the diagnosis, interpretation, and treatment evalua-

tion of clinical disorders of cognitive brain functions. The most important

clinical application lies in preoperative planning and risk assessment in

intractable focal epilepsy. In pharmacology, fMRI is a valuable tool in

determining how the brain is responding to a drug. Furthermore in clin-

ical applications, the importance of fMRI in understanding neurological

and psychiatric disorders and refining the diagnosis is growing.

Ultrasound and Acoustic Imaging

Ultrasound is a leading imaging modality and has been extensively

studied since the early 1950s. It is a noninvasive imaging modality which

produces oscillations of 1 to 10 MHz when passing through soft tissues

and fluid.

The cost effectiveness and the portability of ultrasound have made

this technique extremely popular. Its importance in diagnostic radiology

is unquestionable, enabling the imaging of pathological changes of inner
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organs and blood vessels, and supporting breast cancer detection.

The principle of the ultrasonic imaging is very simple: the acoustic

wave launched by a transducer into the body interacts with tissue and

blood, and some of the energy that is not absorbed returns to the

transducer and is detected by it. As a result, “ultrasonic signatures”

emerge from the interaction of ultrasound energy with different tissue

types that are subsequently used for diagnosis.

The speed of sound in tissue is a function of tissue type, temper-

ature, and pressure. Table 1.4 gives examples of acoustic properties of

some materials and biological tissues. Because of scattering, absorption

or reflection, an attenuation of the acoustic wave is observed. The atten-

uation is described by an exponential function of the distance, described

by A(x) = A0 exp (−αx), where A is the amplitude, A0 is a constant, α

is the attenuation factor, and x is the distance. The important charac-

teristics of the returning signal, such as amplitude and phase, provide

pertinent information about the interaction and the type of medium

that is crossed. The basic imaging equation is the pulse-echo equation,

which gives a relation among the excitation pulse, the transducer face,

the object reflectivity, and the received signal.

Ultrasound has the following imaging modes:

• A-mode (amplitude mode): the most simple method that displays the

envelope of pulse-echoes versus time. It is mostly used in ophthalmology

to determine the relative distances between different regions of the eye,

and also in localization of the brain midline or of a myocardial infarction.

Figure 1.13 visualizes this aspect.

• B-mode (brightness mode): produced by scanning the transducer

beam in a plane, as shown in figure 1.14. It can be used for both

stationary and moving structures, such as cardiac valve motion.

• M-mode (motion mode): displays the A-mode signal corresponding

to repeated pulses in a separate column of a 2-D image. It is mostly

employed in conjunction with ECG for motion of the heart valves.

The two basic techniques used to achieve a better sensitivity of the

echoes along the dominant (steered) direction are the following:

• Beam forming: increases the transducer’s directional sensitivity

• Dynamic focusing: increases the transducer’s sensitivity to a particular

point in space at a particular time



Foundations of Medical Imaging and Signal Recording 25

z

Pulse

Patient

x
Motion

Transducer

Figure 1.13
A-mode display.

Table 1.4
Acoustical properties of some materials and biological tissues .

Medium Speed of sound (m/sec) Impedance Attenuation
(106kg/m2s) (dB/cm at 1MHZ)

Air 344 0.0004 12
Water 1480 1.48 0.0025
Fat 1410 1.38 0.63
Muscle 1566 1.70 1.2-3.3
Liver 1540 1.65 0.94
Bone 4080 7.80 20.0

1.3 Computer-Aided Diagnosis (CAD) Systems

The important advances in computer vision, paired with artificial intel-

ligence techniques and data mining, have facilitated the development of

automatic medical image analysis and interpretation. Computer-aided

diagnosis (CAD) systems are the result of these research endeavors and

provide a parallel second opinion in order to assist clinicians in detecting

abnormalities, predicting the diseases progress, and obtaining a differ-

ential diagnosis of lesions.

Modern CAD systems are becoming very sophisticated tools with a

user-friendly graphical interface supporting the interactions with clini-

cians during the diagnostic process. They have a multilayer architecture

with many modules, such as image processing, databases, and a graph-

ical interface.
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A typical CAD system is described in [205]. It has three layers: data

layer, application layer, and presentation layer, as shown in figure 1.15.

The functions of each layer are described below.

• Data layer: has a database management system which is responsible

for archiving and distributing data

• Application layer: has a management application server for database

access and presentation to graphical user interface, a WWW server to

ensure remote access to the CAD system, and a CAD workstation for

image processing

• Presentation layer: has the Eeb viewer to allow a fast remote access

to the system, and at the user site it grants access to the whole system.
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Figure 1.15
Multilayer structure of a CAD system [205].)

CAD Workstation

A typical CAD system’s architecture is shown in figure 1.16. It has

four important components: (1) image preprocessing, (2) definition of

a region of interest (ROI), (3) extraction and selection of features, and

(4) classification of the selected ROI.

These basic components are described in the following:

• Image preprocessing: The goal is to improve the quality of the image

based on denoising and enhancing the edges of the image or its contrast.

This task is crucial for subsequent tasks.

• Definition of an ROI: ROIs are mostly determined by growing seeded

regions and by active contour models that correctly approximate the

shapes of organ boundaries.

• Extraction and selection of features: These are crucial for the sub-

sequent classification and are based on finding mathematical methods

for reducing the sizes of measurements of medical images. Feature ex-

traction is typically carried out in the spectral or spatial domains and

considers the whole image content and maps it onto a lower-dimensional

feature space. On the other hand, feature selection considers only the in-

formation necessary to achieve a robust and accurate classification. The

methods employed for removing redundant information are exhaustive,

heuristic, or nondeterministic.
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Figure 1.16
Typical architecture of a CAD workstation.

• Classification of the selected ROI: Classification, either supervised or

unsupervised, assigns a given set of features describing the ROI to its

proper class. These classes can be in medical imaging of tumors, diseases,

or physiological signal groups. Several supervised and unsupervised

classification algorithms have been applied in the context of breast tumor

diagnosis [171, 201, 294].
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Pattern recognition tasks require the conversion of biosignals in features

describing the collected sensor data in a compact form. Ideally, this

should pertain only to relevant information. Feature extraction is an im-

portant technique in pattern recognition by determining descriptors for

reducing dimensionality of pattern representation. A lower-dimensional

representation of a signal is a feature. It plays a key role in determining

the discriminating properties of signal classes. The choice of features, or

measurements, has an important influence on (1) accuracy of classifica-

tion, (2) time needed for classification, (3) number of examples needed

for learning, and (4) cost of performing classification.

A carefully selected feature should remain unchanged if there are

variations within a signal class, and it should reveal important differences

when discriminating between patterns of different signal classes. In other

words, patterns are described with as little loss as possible of pertinent

information.

There are four known categories in the literature for extracting

features [54]:

1. Nontransformed structural characteristics: moments, power, amplitude

information, energy, etc.

2. Transformed signal characteristics: frequency and amplitude spectra,

subspace transformation methods, etc.

3. Structural descriptions: formal languages and their grammars, parsing

techniques, and string matching techniques

4. Graph descriptors: attributed graphs, relational graphs, and semantic

networks

Transformed signal characteristics form the most relevant category

for biosignal processing and feature extraction. The basic idea employed

in transformed signal characteristics is to find such transform-based

features with a high information density of the original input and a

low redundancy. To understand this aspect better, let us consider a

radiographic image. The pixels (input samples) at the various positions

have a large degree of correlation. Gray values only introduce redundant

information for the subsequent classification. For example, by using

the wavelet transform we obtain a feature set based on the wavelet
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coefficients which retains only the important image information residing

in some few coefficients. These coefficients preserve the high correlation

between the pixels.

There are several methods for obtaining transformed signal char-

acteristics. For example, Karhunen-Loeve transform and singular value

decomposition are problem-dependent and the result of an optimiza-

tion process [70, 264]. They are optimal in terms of decorrelation and

information concentration properties, but at the same time are too com-

putationally expensive. On the other hand, transforms which use fixed

basis vectors (images), such as the Fourier and wavelet transforms, ex-

hibit low computational complexity while being suboptimal in terms of

decorrelation and redundancy.

We will review the most important methods for obtaining trans-

formed signal characteristics, such as the continuous and discrete Fourier

transform, the discrete cosine and sine transform, and the wavelet trans-

form.

2.1 Frequency Domain Representations

In this section, we will show that Fourier analysis offers the rigorous

language needed to define and design modern bioengineering systems.

Several continuous and discrete representations derived from the Fourier

transform are presented. Thus, it becomes evident that these techniques

represent an important concept in the analysis and interpretation of

biological signals.

Continuous Fourier Transform

One of the most important tasks in processing of biomedical signals is to

decompose a signal intp its frequency components and to determine the

corresponding amplitudes. The standard analysis for continuous time

signals is performed by the classical Fourier transform. The Fourier

transform is defined by the following equation:

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt (2.1)

while the inverse transform is given as
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f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω (2.2)

The direct transform extracts spectrum information from the signal,

and the inverse transform synthesizes the time-domain signal from the

spectral information.

Example 2.1: We consider the following exponential signal

f(t) = e−5tu(t) (2.3)

where u(t) is the step function. The Fourier transform is given as

F (jω) =

∫ ∞

0

e−5te−jωtdt =

∫ ∞

0

e−5+jωtdt =
1

5 + jω
(2.4)

For real-world problems, we employ the existing properties of the Fourier

transform that help to simplify the frequency domain transformations

[190]. However, the major drawback of the classical Fourier transform

is its inability to deal with nonstationary signals. Since it considers

the whole time domain, it misses the local changes of high-frequency

components in the signal. In summary, it is assumed that the signal

properties (amplitudes, frequency, and phases) will not change with time

and will stay the same for the whole length of the window. To overcome

these disadvantages, the short-time Fourier transform was proposed by

Gabor in 1946 [88]. The short-time Fourier transform is defined as

F (ω, τ) =

∫ ∞

−∞
f(t)g∗(t − τ)e−jωtdt (2.5)

where a window g(t) is positioned at some point τ on the time axis. Thus,

this new transform works by sweeping a short-time window over the time

signal, and thus determines the frequency content in each considered

time interval.

The transform modulates the signal with a window function g(t). In

this context ω and τ are the modulation and translation parameters. The

window g(t) has a fixed time duration and a fixed frequency resolution.

Although the frequency and time domains are different, when used to

represent functions, they are linked: A precise information about time

can be achieved only at the cost of some uncertainty about frequency,

and vice versa. This important aspect is captured by the Heisenberg
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Uncertainty Principle [195] in information processing.

The uncertainty principle states that for each transformation pair

g(t) ←→ G(ω), the relationship

σtσω ≥ 1

2
(2.6)

holds. σT and σω represent the squared variances of g(t) and G(ω):

σ2
T =

∫
t2|g(t)|2dt∫ |g(t)|2dt

(2.7)

σ2
ω =

∫
ω2|G(ω)|2dω∫ |G(ω)|2dω

where g(t) is defined as a prototype function. The lower bound is given

by the Gaussian function f(t) = e−t2 . As τ increases, the prototype

function is shifted on the time axis such that the window length remains

unchanged. Figure 2.1 graphically visualizes this principle, where each

basis function used in the representation of a function is interpreted

as a tile in a time-frequency plane. This tile, the so-called Heisenberg

cell, describes the energy concentration of the basis function. All these

tiles have the same form and area. Thus, each element σT and σω of

the resolution rectangle of the area σT σω remains unchanged for each

frequency ω and time shift τ .

The short-time Fourier transform can be interpreted as a filtering of

signal f(t) by a filter bank in which each filter is centered at a different

frequency but has the same bandwidth. It can be seen immediately that

a problem arises since both low- and high-frequency components are

analyzed by the same window length, and thus an unsatisfactory overall

localization of events is achieved. A solution to this problem is given by

choosing a window of variable length such that a larger one can analyze

long-time, low-frequency components while a shorter one can detect

high-frequency, short-time components. This exactly is accomplished by

the wavelet transform.

Discrete Fourier Transform

An alternative Fourier representation that pertains to finite-duration

sequences is the discrete Fourier transform (DFT). This transform

represents a sequence rather than a function of a continuous variable, and
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Short-time Fourier transform: time-frequency space and resolution cells.

captures samples equally spaced in frequency. The DFT analyzes a signal

in terms of its frequency components by finding the signal’s magnitude

and phase spectra, and exists for both one- and two-dimensional cases.

Let us consider N sampled values x(0), . . . , x(N − 1). Their DFT is

given by

y(k) =

N−1∑
n=0

x(n)e−j 2π
N

kn, k = 0, 1, . . . , N − 1 (2.8)

and the corresponding inverse transform is

x(n) =
1

N

N−1∑
k=0

y(k)ej 2π
N

kn, n = 0, 1, . . . , N − 1 (2.9)
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with j ≡ √−1. All x(n) and y(k) can be concatenated in the form of

two N × 1 vectors. Let us also define

WN ≡ e−j 2π
N (2.10)

such that equations (2.8) and (2.9) can be written in the matrix form

y = W−1x, x = Wy (2.11)

with

W =

⎡⎢⎢⎢⎢⎣
1 1 1 · · · 1

1 WN W 2
N · · · WN−1

N
...

...
...

...
...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)(N−1)
N

⎤⎥⎥⎥⎥⎦ (2.12)

where W is an unitary and symmetric matrix.

Let us choose as an example the case N = 2.

Example 2.2: We then obtain for N = 2

W =

[
1 1

1 −1

]
We see that the columns of W correspond to the basis vectors

w0 = [1, 1]T

w1 = [1,−1]T

and, based on them, we can reconstruct the original signal:

x =
1∑

i=0

y(i)wi

Unfortunately, the DFT has the same drawbacks as the continuous-time

Fourier transform when it comes to nonstationary signals: (a) the be-

havior of a signal within a given window is analyzed; (b) accurate repre-

sentation is possible only for signals stationary within a window; and (c)

good time and frequency resolution cannot be achieved simultaneously,

as illustrated by table 2.1.
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Table 2.1
Time and frequency resolution by window width.

Narrow window Good time resolution Poor frequency resolution
Wide window Poor time resolution Good frequency resolution

The two-dimensional DFT for an N × N image is defined as

Y (k, l) =

N−1∑
m=0

N−1∑
n=0

X(m, n)W km
N W ln

N (2.13)

and its inverse DFT is given by

X(m, n) =
1

N2

N−1∑
k=0

N−1∑
l=0

Y (k, l)W−km
N W−ln

N (2.14)

The corresponding matrix representation yields

Y = W̃XW̃, X = WYW (2.15)

We immediately see that the two-dimensional DFT represents a separa-

ble transformation with the basis images wiw
T
j , i, j = 0, 1, . . . , N − 1.

Discrete Cosine and Sine Transform

Another very useful transformation is the discrete cosine transform

(DCT), which plays an important role in image compression and has

become an international standard for transform coding systems. Its

main advantage is that it can be implemented in a single integrated

circuit having all relevant information packed into a few coefficients. In

addition, it minimizes blocking artifacts that usually accompany block-

based transformations. In the following, we will review the DCT for both

the one- and two-dimensional cases.

For N given input samples the DCT is defined as

y(k) = α(k)

N−1∑
n=0

x(n) cos

(
π(2n + 1)k

2N

)
, k = 0, 1, . . . , N − 1 (2.16)

Its inverse transform is given by
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x(n) =

N−1∑
k=0

α(k)y(n) cos

(
π(2n + 1)k

2N

)
, n = 0, 1, . . . , N − 1 (2.17)

with

α(0) =

√
1

N
, k = 0 and α(k) =

√
2

N
, 1 ≤ k ≤ N − 1 (2.18)

The vector form of the DCT is given by

y = CTx (2.19)

while for the elements of the matrix C we have

C(n, k) =

√
1

N
, k = 0, 0 ≤ n ≤ N − 1

and

C(n, k) =

√
2

N
cos

(
π(2n + 1)k

2N

)
,

1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1.

C represents an orthogonal matrix with real numbers as elements:

C−1 = CT.

In the two-dimensional case the DCT becomes

Y = CTXC, X = CYCT. (2.20)

Unlike the DFT, the DCT is real-valued. Also, its basis sequences

are cosines. Compared with the DFT, which requires periodicity, this

transform involves indirect assumptions about both periodicity and even

symmetry.

Another orthogonal transform is the discrete sine transform (DST),

defined as
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S(k, n) =

√
2

N + 1
sin (

π(n + 1)(k + 1)

N + 1
), k, n = 0, 1, . . . , N − 1

(2.21)

Its basis sequences in the orthonormal transformation are sine functions.

Both DCT and DST have excellent information concentration properties

since they concentrate most of the energy in a few coefficients.

Other important transforms are the Haar, wavelet, Hadamard, and

Walsh transforms [48, 264]. Because of the powerful properties of the

wavelet transform and its extensive application opportunities in biomed-

ical engineering, the next section is dedicated solely to the wavelet trans-

form.

2.2 The Wavelet Transform

Modern transform techniques such as the wavelet transform are gain-

ing an increasing importance in biomedical signal and image processing.

They provide enhanced processing capabilities compared to the tradi-

tional ones in terms of denoising, compression, enhancement, and edge

and feature extraction. These techniques fall under the categories of mul-

tiresolution analysis, time-frequency analysis, or pyramid algorithms.

The wavelet transform is based on wavelets, which are small waves of

varying frequency and limited duration, and thus represents a devia-

tion from the traditional Fourier transform concept that has sinusoids

as basis functions. In addition to the traditional Fourier transform, they

provide not only frequency but also temporal information on the signal.

In this section, we present the theory and the different types of

wavelet transforms. A wavelet represents a basis function in continuous

time and can serve as an important component in a function represen-

tation: any function f(t) can be represented by a linear combination

of basis functions, such as wavelets. The most important aspect of the

wavelet basis is that all wavelet functions are constructed from a single

mother wavelet. This wavelet is a small wave or a pulse.

Wavelet transforms are an alternative to the short-time Fourier

transform. Their most important feature is that they analyze differ-

ent frequency components of a signal with different resolutions. In other

words, they address exactly the concern raised in connection with the
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short-time Fourier transform. Implementing different resolutions at dif-

ferent frequencies requires the notion of functions at different scales. Like

scales on a map, small scales show fine details while large scales show

only coarse features. A scaled version of a function ψ(t) is the function

ψ(t/a), for any scale a. When a > 1, a function of lower frequency is

obtained that is able to describe slowly changing signals. When a < 1,

a function of higher frequency is obtained that can detect fast signal

changes. It is important to note that the scale is inversely proportional

to the frequency.

Wavelet functions are localized in frequency in the same way sinu-

soids are, but they differ from sinusoids by being localized in time as well.

There are several wavelet families, each having a characteristic shape,

and the basic scale for each family covers a known, fixed interval of time.

The time spans of the other wavelets in the family widen for larger scales

and narrow for smaller scales. Thus, wavelet functions can offer either

good time resolution or good frequency resolution: good time resolution

is associated with narrow, small-scale windows, while good frequency

resolution is associated with wide, large-scale windows.

To determine what frequencies are present in a signal and when

they occur, the wavelet functions at each scale must be translated

through the signal, to enable comparison with the signal in different

time intervals. A scaled and translated version of the wavelet function

ψ(t) is the function ψ( t−b
a ), for any scale a and translation b. A wavelet

function similar to the signal in frequency produces a large wavelet

transform. If the wavelet function is dissimilar to the signal, a small

transform will arise. A signal can be coded using these wavelets if

it can be decomposed into scaled and translated copies of the basic

wavelet function. The widest wavelet responds to the slowest signal

variations, and thus describes the coarsest features in the signal. Smaller

scale wavelets respond best to high frequencies in the signal and detect

rapid signal changes, thus providing detailed information about this

signal. In summary, smaller scales correspond to higher frequencies,

and larger scales to lower frequencies. A signal is coded through the

wavelet transform by comparing the signal against many scalings and

translations of a wavelet function.

The wavelet transform (WT) is produced by a translation and dila-

tion of a so-called prototype function ψ. Figure 2.2 illustrates a typical

wavelet and its scalings. The bandpass characteristics of ψ and the time-
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Figure 2.2
Wavelet in time and frequency domains: (a) scale parameter 0 < a < 1, (b) scale
parameter a > 1.

frequency resolution of the WT can easily be detected.

The foundation of the WT is based on the scaling property of the

Fourier transform. If

ψ(t) ←→ Ψ(ω)

represents a Fourier transform pair, then we have

1√
a
Ψ

(
t

a

)
←→ √

aΨ(aω) (2.22)

with a > 0 being a continuous variable. A contraction in the time domain

produces an expansion in the frequency domain, and vice versa. Figure

2.3 illustrates the corresponding resolution cells in the time-frequency

domain. The figure makes visual the underlying property of wavelets:

they are localized in both time and frequency. The functions ejωt are
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perfectly localized at ω, they extend over all time; wavelets, on the other

hand, that are not at a single frequency are limited to finite time. As

we rescale, the frequency increases by a certain quantity, and at the

same time the time interval decreases by the same quantity. Thus the

uncertainty principle holds.

A wavelet can be defined by the scale and shift parameters a and b,

ψab(t) =
1√
a
ψ

(
t − b

a

)
(2.23)

while the WT is given by the inner product

W (a, b) =

∫ ∞

−∞
ψab(t)f

∗(t)dt =< ψab, f > (2.24)

with a ∈ R+, b ∈ R.

The WT defines an L2(R) → L2(R2) mapping which has a better

time-frequency localization than the short-time Fourier transform.

In the following, we will describe the continuous wavelet transform

(CWT) and show an admissibility condition which is necessary to ensure

the inversion of the WT. Also, we will define the discrete wavelet trans-

form (DWT), which is generated by sampling the wavelet parameters

(a, b) on a grid or lattice. The quality of the reconstructed signals based

on the transform values depends on the coarseness of the sampling grid.

A finer sampling grid leads to more accurate signal reconstruction at

the cost of redundancy; a coarse sampling grid is associated with loss of

information. To address these important issues, the concept of frames is

now presented.

The Continuous Wavelet Transform

The CWT transforms a continuous function into a highly redundant

function of two continuous variables, translation and scale. The resulting

transformation is important for time-frequency analysis and is easy to

interpret.

The CWT is defined as the mapping of the function f(t) on the

time-scale space by

Wf (a, b) =

∫ ∞

−∞
ψab(t)f(t)dt =< ψab(t), f(t) > (2.25)
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Wavelet transform: time-frequency domain and resolution cells.

The CWT is invertible if and only if the resolution of identity holds:

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

0

dadb

a2︸ ︷︷ ︸
Summation

Wf (a, b)︸ ︷︷ ︸
Waveletcoefficients

ψab(t)︸ ︷︷ ︸
Wavelet

(2.26)

where

Cψ =

∫ ∞

o

|Ψ(ω)|2
ω

dω (2.27)

assuming that a real-valued ψ(t) fulfills the admissibility condition. If
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Cψ < ∞, then the wavelet is called admissible. Then for the gain we get

Ψ(0) =

∫ ∞

−∞
ψ(t)dt = 0 (2.28)

We immediately see that ψ(t) corresponds to the impulse response of a

bandpass filter and has a decay rate of |t|1−ε. It is important to note that

based on the admissibility condition, it can be shown that the CWT is

complete if Wf (a, b) is known for all a, b.

The Mexican-hat wavelet

ψ(t) = (
2√
3
π− 1

4 )(1 − t2)e−
t2

2 (2.29)

is visualized in figure 2.4. It has a distinctive symmetric shape, and it

has an average value of zero and dies out rapidly as |t| → ∞. There is

no scaling function associated with the Mexican hat wavelet.
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(a) (b)

Figure 2.5
Continuous wavelet transform: (a) scan line and (b) multi-scale coefficients. (Images
courtesy of Dr. A. Laine, Columbia University.)

Figure 2.5 illustrates the multiscale coefficients describing a spicu-

lated mass. Figure 2.5a shows the scan line through a mammographic

image with a mass (8 mm), and figure 2.5b visualizes the multi scale

coefficients at various levels.

The short-time Fourier transform finds a decomposition of a signal

into a set of equal-bandwidth functions across the frequency spectrum.

The WT provides a decomposition of a signal based on a set of band-

pass functions that are placed over the entire spectrum. The WT can

be seen as a signal decomposition based on a set of constant-Q band-

passes. In other words, we have an octave decomposition, logarithmic

decomposition, or constant-Q decomposition on the frequency scale. The

bandwidth of each of the filters in the bank is the same in a logarithmic

scale or, equivalently, the ratio of the filters bandwidth to the respective

central frequency is constant.

2.3 The Discrete Wavelet Transformation

The CWT has two major drawbacks: redundancy and lack of practical

relevance. The first is based on the nature of the WT; the latter is

because the transformation parameters are continuous. A solution to

these problems can be achieved by sampling both parameters (a, b) such

that a set of wavelet functions in the form of discrete parameters is
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obtained. We also have to look into the following problems:

1. Is the set of discrete wavelets complete in L2(R)?

2. If complete, is the set at the same time also redundant?

3. If complete, then how coarse must the sampling grid be, such that the

set is minimal or nonredundant?

A response to these questions will be given in this section, and we

also will show that the most compact set is the orthonormal wavelet set.

The sampling grid is defined as follows [4]:

a = am
0 b = nb0a

m
0 (2.30)

where

ψmn(t) = a−m/2ψ(a−m
0 t − nb0) (2.31)

with m, n ∈ Z. If we consider this set to be complete in L2(R) for a

given choice of ψ(t), a, b, then {ψmn} is an affine wavelet . f(t) ∈ L2(R)

represents a wavelet synthesis. It recombines the components of a signal

to reproduce the original signal f(t). If we have a wavelet basis, we can

determine a wavelet series expansion. Thus, any square-integrable (finite

energy) function f(t) can be expanded in wavelets:

f(t) =
∑
m

∑
n

dm,nψmn(t) (2.32)

The wavelet coefficient dm,n can be expressed as the inner product

dm,n =< f(t), ψmn(t) >=
1

a
m/2
0

∫
f(t)ψ(a−m

0 t − nb0)dt (2.33)

These complete sets are called frames. An analysis frame is a set of

vectors ψmn such that

A||f ||2 ≤
∑
m

∑
n

| < f, ψmn > |2 ≤ B||f ||2 (2.34)

with
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||f ||2 �

∫
|f(t)|2dt (2.35)

A, B > 0 are the frame bounds. A tight, exact frame that has A = B = 1

represents an orthonormal basis for L2(R). A notable characteristic of

orthonormal wavelets {ψmn(t)} is

∫
ψmn(t)ψm′n′ (t)dt =

{
1, m = m

′

, n = n
′

0, else
(2.36)

In addition they areorthonormal in both indices. This means that for the

same scale m they are orthonormal both in time and across the scales.

For the scaling functions the orthonormal condition holds only for a

given scale ∫
ϕmn(t)ϕml(t)dt = δn−l (2.37)

The scaling function can be visualized as a low-pass filter. While scaling

functions alone can code a signal to any desired degree of accuracy,

efficiency can be gained by using the wavelet functions. Any signal

f ∈ L2(R) at the scale m can be approximated by its projections on

the scale space.

The similarity between ordinary convolution and the analysis equa-

tions suggests that the scaling function coefficients and the wavelet func-

tion coefficients may be viewed as impulse responses of filters, as shown

in Figure 2.6. The convolution of f(t) with ψm(t) is given by

ym(t) =

∫
f(τ)ψm(τ − t)dτ (2.38)

where

ψm(t) = 2−m/2ψ(2−mt) (2.39)

Sampling ym(t) at n2m yields

ym(n2m) = 2−m/2

∫
f(τ)ψ(2−mτ − n)dτ = dm,n (2.40)



46 Chapter 2

2

f(t)

m=0

m=1

-m

d0,n

d-1,n

d -m,n

2
0

ψ 0(-t) = ψ (-t)

ψ−1(-t) = ψ(-2t)

ψ-m(-t) =2
m/2

ψ (-2
m

t)

.

.

.

.

.

.

.

.

2
-1

-m
2

Figure 2.6
Filter bank representation of DWT.

Whereas in the filter bank representation of the short-time Fourier

transform all subsamplers are identical, the subsamplers of the filter

bank corresponding to the wavelet transform are dependent on position

or scale.

The DWT dyadic sampling grid in figure 2.7 visualizes this aspect.

Every single point represents a wavelet basis function ψmn(t) at the scale

2−m and shifted by n2−m.

2.4 Multiscale Signal Decomposition

The goal of this section is to highlight an important aspect of the wavelet

transform that accounts for its success as a method in pattern recogni-

tion: the decomposition of the whole function space into subspaces. This

implies that there is a piece of the function f(t) in each subspace. Those
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Dyadic sampling grid for the DWT.

pieces (or projections) give finer and finer details of f(t). For audio

signals, these scales are essentially octaves. They represent higher and

higher frequencies. For images and all other signals, the simultaneous

appearance of multiple scales is known as multiresolution.

Mallat and Meyer’s method [165] for signal decomposition based on

orthonormal wavelets with compact carrier will be reviewed here. We

will establish a link between these wavelet families and the hierarchic

filter banks. In the last part of this section, we will show that the FIR

PR–QMF hold the regularization property, and produce orthonormal

wavelet bases.

Multiscale-Analysis Spaces

Multiscale signal analysis provides the key to the link between wavelets

and pyramidal dyadic trees. A wavelet family is used to decompose a

signal into scaled and translated copies of a basic function. As stated

before, the wavelet family consists of scaling and wavelet functions.

Scaling functions ϕ(t) alone are adequate to code a signal completely,

but a decomposition based on both scaling and wavelet functions is most

efficient.
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In mathematical terminology, a function f(t) in the whole space

has a piece in each subspace. Those pieces contain more and more of

the full information in f(t). These successive approximations converge

to a limit which represents the function f ∈ L2. At the same time

they describe different resolution levels, as is known from the pyramidal

representation.

A multiscale analysis is based on a sequence of subspaces {Vm|m ∈
Z} in L2(R) satisfying the following requirements:

• Inclusion: Each subspace Vj is contained in the next subspace. A

function f ∈ L2(R) in one subspace is in all the higher (finer) subspaces:

· · ·V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · (2.41)

← coarser finer →

• Completeness: A function in the whole space has a part in each

subspace.

T

m∈Z Vm = 0

S

m∈Z Vm = L2(R) (2.42)

• Scale invariance:

f(x) ∈ Vm ⇐⇒ f(2x) ∈ Vm−1 for any function f ∈ L2(R) (2.43)

• Basis-frame property: This requirement for multiresolution concerns

a basis for each space Vj . There is a scaling function ϕ(t) ∈ V0, such

that ∀m ∈ Z, the set

{ϕmn(t) = 2−m/2ϕ(2−mt − n)} (2.44)

forms an orthonormal basis for Vm:∫
ϕmn(t)ϕmn′ (t)dt = δn−n′ (2.45)

In the following, we will mathematically review the multiresolution

concept based on scaling and wavelet functions, and thus define the

approximation and detail operators.
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Let ϕmn(t) with m ∈ Z be defined as

{ϕmn(t) = 2−m/2ϕ(2−mt − n)} (2.46)

Then the approximation operator Pm on functions f(t) ∈ L2(R) is

defined by

Pmf(t) =
∑

n

< f, ϕmn > ϕmn(t) (2.47)

and the detail operator Qm on functions f(t) ∈ L2(R) is defined by

Qmf(t) = Pm−1f(t) − Pmf(t) (2.48)

It can easily be shown that ∀m ∈ Z, {ϕmn(t)} is an orthonormal basis

for Vm [278], and that for all functions f(t) ∈ L2(R),

lim
m→−∞

||Pmf(t) − f(t)||2 = 0 (2.49)

and

lim
m→∞

||Pmf(t)||2 = 0 (2.50)

An important feature of every scaling function ϕ(t) is that it can

be built from translations of double-frequency copies of itself, ϕ(2t),

according to

ϕ(t) = 2
∑

n

h0(n)ϕ(2t − n) (2.51)

This equation is called a multiresolution-analysis equation. Since ϕ(t) =

ϕ00(t), both m and n can be set to 0 to obtain the above simpler

expression. The equation expresses the fact that each scaling function in

a wavelet family can be expressed as a weighted sum of scaling functions

at the next finer scale. The set of coefficients {h0(n)} is called the scaling

function coefficients and behaves as a low-pass filter.

Wavelet functions can also be built from translations of ϕ(2t):

ψ(t) = 2
∑

n

h1(n)ϕ(2t − n) (2.52)
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This equation is called the fundamental wavelet equation. The set of co-

efficients {h1(n)} is called the wavelet function coefficients and behaves

as a high-pass filter. This equation expresses the fact that each wavelet

function in a wavelet family can be written as a weighted sum of scaling

functions at the next finer scale.

The following theorem provides an algorithm for constructing a

wavelet orthonormal basis, given a multiscale analysis.

Theorem 2.1:

Let {Vm} be a multiscale analysis with scaling function ϕ(t) and

scaling filter h0(n).

Define the wavelet filter h1(n) by

h1(n) = (−1)n+1h0(N − 1 − n) (2.53)

and the wavelet ψ(t) by equation (2.52).

Then

{ψmn(t)} (2.54)

is a wavelet orthonormal basis on R.

Alternatively, given any L ∈ Z,

{ϕLn(t)}n∈Z

⋃
{ψmn(t)}m,n∈Z (2.55)

is an orthonormal basis on R.

The proof can be found in [278]. Some very important facts repre-

senting the key statements of multiresolution follow:

(a) {ψmn(t)} is an orthonormal basis for Wm.

(b) If m �= m
′

, then Wm⊥Wm′ .

(c) ∀m ∈ Z, Vm⊥Wm where Wm is the orthogonal complement of Vm in

Vm−1.

(d) In ∀m ∈ Z, Vm−1 = Vm⊕Wm, ⊕ stands for orthogonal sum. This means

that the two subspaces are orthogonal and that every function in Vm−1

is a sum of functions in Vm and Wm. Thus every function f(t) ∈ Vm−1

is composed of two subfunctions, f1(t) ∈ Vm and f2(t) ∈ Wm, such that
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Table 2.2
Properties of orthonormal wavelets.

ϕ(t) =
P

h0(n)ϕ(2t − n)
ψ(t) =

P
h1(n)ψ(2t − n)

h1(n) = (−1)n+1h0(N − 1 − n)
< ψmn(t), ψkl(t) > = δm−kδn−l

< ϕmn(t), ϕ
mn

′ (t) > = δ
n−n

′

< ϕmn(t), ψkl(t) > = 0

f(t) = f1(t) + f2(t) and < f1(t), f2(t) >= 0.

The most important part of multiresolution is that the spaces Wm

represent the differences between the spaces Vm, while the spaces Vm

are the sums of Wm.

(e) Every function f(t) ∈ L2(R) can be expressed as

f(t) =
∑
m

fm(t), (2.56)

where fm(t) ∈ Wm and < fm(t), fm′ >= 0. This can be usually written

as

· · · ⊕ Wj ⊕ Wj−1 · · · ⊕ W0 · · · ⊕ W−j+1 ⊕ W−j+2 · · · = L2(R). (2.57)

Although scaling functions alone can code a signal to any desired de-

gree of accuracy, efficiency can be gained by using the wavelet functions.

This leads to a new understanding of the concept of multiresolution.

Multiresolution can be described based on wavelet Wj and scaling sub-

spaces Vj . This means that the subspace formed by the wavelet functions

covers the difference between the subspaces covered by the scaling func-

tions at two adjacent scales.

The mathematical properties of orthonormal wavelets with compact

carriers are summarized in table 2.2 [4].

A Very Simple Wavelet: The Haar Wavelet

The Haar wavelet is one of the simplest and oldest known orthonormal

wavelets. However, it has didactic value because it helps to visualize the

multiresolution concept.

Let Vm be the space of piecewise constant functions
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Figure 2.8
Piecewise constant functions in V1, V0 and V−1.

Vm = {f(t) ∈ L2(R); f is constant in [2mn, 2m(n + 1)] ∀n ∈ Z}.
(2.58)

Figure 2.8 illustrates such a function.

We can easily see that · · ·V1 ⊂ V0 ⊂ V−1 · · · and f(t) ∈ V0 ←→
f(2t) ∈ V−1, and that the inclusion property is fulfilled. The function

f(2t) has the same shape as f(t) but is compressed to half the width.

The scaling function of the Haar wavelet ϕ(t) is given by

ϕ(t) =

{
1, 0 ≤ t ≤ 1

0, else
(2.59)

and defines an orthonormal basis for V0. Since for n �= m, ϕ(t − n) and

ϕ(t − m) do not overlap, we obtain∫
ϕ(t − n)ϕ(t − m)dt = δn−m (2.60)

The Fourier transform of the scaling function yields

Φ(ω) = e−j ω
2

sin ω/2

ω/2
. (2.61)

Figure 2.9 shows that ϕ(t) can be written as the linear combination of

even and odd translations of ϕ(2t):

ϕ(t) = ϕ(2t) + ϕ(2t − 1) (2.62)

Since V−1 = V0 ⊕ W0 and Q0f = (P−1f − P0f) ∈ W0 represent the

details from scale 0 to −1, it is easy to see that ψ(t− n) spans W0. The
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(a)                                        (b)                                              (c)
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(d)                                                                   (e)

0 1

φ (t)

Figure 2.9
(a) and (b) Haar basis functions; (c) Haar wavelet; (d) Fourier transform of the
scaling function; (e) Haar wavelet function.

Haar mother wavelet function is given by

ψ(t) = ϕ(2t) − ϕ(2t − 1) =

⎧⎨⎩
1, 0 ≤ t < 1/2

−1, 1/2 ≤ t < 1

0, else

(2.63)

The Haar wavelet function is an up-down square wave, and can be

described by a half-box minus a shifted half-box. We also can see that the

wavelet function can be computed directly from the scaling functions. In

the Fourier domain it describes a bandpass, as can be easily seen from

figure 2.9e. This is given by

Ψ(ω) = je−j ω
2

sin2 ω/4

ω/4
. (2.64)
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Figure 2.10
Typical Haar wavelet for the scales 0 and 1.

We can easily show that

ϕm+1,n =
1√
2
[ϕm,2n + ϕm,2n+1]

and

ψm+1,n =
1√
2
[ϕm,2n − ϕm,2n+1]. (2.65)

Figure 2.10 illustrates a typical Haar wavelet for the scales 0 and 1.

Figure 2.11 shows the approximations P0f , P−1f and the detail Q0f for

a function f . As stated in the context of multiresolution, the detail Q0f

is added to the coarser approximation P0f in order to obtain the finer
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approximation P−1f .

Q
0

f

f

P-1 f

t

P
0

f

2
(R)f       L

(a) (b) (c)

Figure 2.11
Approximation of (a) P0f, (b) P−1f, and (c) the detail signal Q0f, with
P0f+Q0f=P−1f.

The scaling function coefficients for the Haar wavelet at scale m are

given by

cm,n =< f, ϕmn >= 2−m/2

∫ 2m(n+1)

2mn

f(t)dt (2.66)

This yields an approximation of f at scale m:

Pmf =
∑

n

cm,nϕmn(t) =
∑

n

cm,n2−m/2ϕ(2−mt − n) (2.67)

In spite of their simplicity, the Haar wavelets exhibit some undesirable

properties which pose a difficulty in many practical applications. Other

wavelet families, such as Daubechies wavelets and Coiflet basis [4, 278]

are more attractive in practice. Daubechies wavelets are quite often used

in image compression. The scaling function coefficients h0(n) and the

wavelet function coefficients h1(n) for the Daubechies-4 family are nearly

impossible to determine. They were obtained based on iterative methods

[38].

Multiscale Signal Decomposition and Reconstruction

In this section we will illustrate multiscale pyramid decomposition.

Based on a wavelet family, a signal can be decomposed into scaled and

translated copies of a basic function. As discussed in the preceeding

sections, a wavelet family consists of scaling functions, which are scalings

and translations of a father wavelet, and wavelet functions, which are
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scalings and translations of a mother wavelet. We will show an efficient

signal coding that uses scaling and wavelet functions at two successive

scales. In other words, we give a recursive algorithm which supports the

computation of wavelet coefficients of a function f(t) ∈ L2(R).

Assume we have a signal or a sequence of data {c0(n)|n ∈ Z}, and

c0(n) is the nth scaling coefficient for a given function f(t):

c0,n =< f, ϕ0n >

for each n ∈ Z. This assumption makes the recursive algorithm work.

The decomposition and reconstruction algorithm is given by theorem

2.2 [278].

Theorem 2.2:

Let {Vk} be a multiscale analysis with associated scaling function

ϕ(t) and scaling filter h0(n). The wavelet filter h1(n) is defined by

equation (2.52), and the wavelet function is defined by equation (2.53).

Given a function f(t) ∈ L2(R), define for n ∈ Z

c0,n =< f, ϕ0n > (2.68)

and for every m ∈ N and n ∈ Z,

cm,n =< f, ϕmn > and dm,n =< f, ψmn > (2.69)

Then the decomposition algorithm is given by

cm+1,n =
√

2
∑

k

cm,kh0(k − 2n) dm+1,n =
√

2
∑

k

dm,kh1(k − 2n)

(2.70)

and the reconstruction algorithm is given by

cm,n =
√

2
∑

k

cm+1,nh0(n − 2k) +
√

2
∑

k

dm+1,nh1(n − 2k) (2.71)

From equation (2.70) we obtain for m = 1 at resolution 1/2 the

wavelet d1,n and the scaling coefficients c1,n:



Spectral Transformations 57

2

2

c(0,n)

2

2

c(1,n)

d(1,n)

h 0 (-n)

h 1(-n)

Figure 2.12
First level of the multiscale signal decomposition.

c1,n =
√

2
∑

h0(k − 2n)c0,k (2.72)

and

d1,n =
√

2
∑

h1(k − 2n)c0,k (2.73)

These last two analysis equations relate the DWT coefficients at a finer

scale to the DWT coefficients at a coarser scale. The analysis operations

are similar to ordinary convolution. The similarity between ordinary

convolution and the analysis equations suggests that the scaling function

coefficients and wavelet function coefficients may be viewed as impulse

responses of filters. In fact, the set {h0(−n), h1(−n)} can be viewed as

a paraunitary FIR filter pair. Figure 2.12 illustrates this.

The discrete signal d1,n is the WT coefficient the resolution 1/2 and

describes the detail signal or difference between the original signal c0,n

and its smooth undersampled approximation c1,n.

For m = 2, we obtain at the resolution 1/4 the coefficients of the



58 Chapter 2

c(0,n)

2

2

h 0 (-n)

h 1(-n)

2h 1(-n)

2h 0 (-n)
c(2,n)

Res 1/4

d(2,n)

Res 1/4

d(1,n)

Res 1/2

Res 1

Low-pass

High-pass

c(1,n)

Res 1/2

2

2

2

2

Figure 2.13
Multiscale pyramid decomposition.

smoothed signal (approximation) and the detail signal (approximation

error) as

c2,n =
√

2
∑

c1,kh0(k − 2n) (2.74)

d2,n =
√

2
∑

c1,kh1(k − 2n) (2.75)

These relationships are illustrated in the two-level multiscale pyramid

in figure 2.13.

Wavelet synthesis is the process of recombining the components of

a signal to reconstruct the original signal. The inverse discrete wavelet

transformation, or IDWT, performs this operation. To obtain c0,n, the

terms c1,n and d1,n are upsampled and convoluted with the filters h0(n)

and h1(n), as shown in figure 2.14.

The results of the multiscale decomposition and reconstruction of a

dyadic subband tree are shown in figure 2.15 and describe the analysis

and synthesis part of a two-band PR-QMF bank.

It is important to note that the recursive algorithms for decompo-

sition and reconstruction can easily be extended for a two-dimensional

signal (image) [278] and play an important role in image compression.
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Figure 2.14
Reconstruction of a one-level multiscale signal decomposition.
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Multiscale analysis and synthesis.
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Wavelet Transformation at a Finite Resolution

In this section we will show that a function can be approximated to a

desired degree by summing the scaling function and as many wavelet

detail functions as necessary. Let f ∈ V0 be defined as

f(t) =
∑

c0,nϕ(t − n) (2.76)

As stated in previous sections, it also can be represented as a sum of

a signal at a coarser resolution (approximation) plus a detailed signal

(approximation error):

f(t) = f1
v (t) + f1

w(t) =
∑

c1,n2
1
2 ϕ

(
t

2
− n

)
+
∑

d1,n2
1
2 ψ

(
t

2
− n

)
(2.77)

The coarse approximation f1
v (t) can be rewritten as

f1
v (t) = f2

v (t) + f2
w(t) (2.78)

such that

f(t) = f2
v (t) + f2

w(t) + f1
w(t) (2.79)

Continuing with this procedure we have at scale J for fJ
v (t)

f(t) = fJ
v (t) + fJ

w(t) + fJ−1
w (t) + · · · + f1

w (2.80)

or

f(t) =

∞∑
n=−∞

cJ,nϕJ,n(t) +

J∑
m=1

∞∑
n=−∞

dm,nψm,n(t) (2.81)

This equation describes a wavelet series expansion of function f(t) in

terms of the wavelet ψ(t) and scaling function ϕ(t) for an arbitrary

scale J . In comparison, the pure WT,

f(t) =
∑
m

∑
n

dm,nψmn(t) (2.82)

requires an infinite number of resolutions for a complete signal represen-

tation.



Spectral Transformations 61

From equation (2.82) we can see that f(t) is given by a coarse

approximation at the scale L and a sum of L detail components (wavelet

components) at different resolutions.

Example 2.3: Consider the simple function

y =

{
t2, 0 ≤ t ≤ 1

0, else
(2.83)

Using Haar wavelets and the starting scale J = 0, we can easily

determine the following expansion coefficients:

c0,0 =

∫ 1

0

t2ϕ0,0(t)dt =
1

3
(2.84)

d0,0 =

∫ 1

0

t2ψ0,0(t)dt = −1

4

d1,0 =

∫ 1

0

t2ψ1,0(t)dt = −
√

2

32

d1,1 =

∫ 1

0

t2ψ1,1(t)dt = −3
√

2

32

Thus, we obtain the wavelet series expansion

y =
1

3
ϕ0,0(t) − 1

4
ψ0,0(t) −

√
2

32
ψ1,0(t) − 3

√
2

32
ψ1,1(t) + · · · (2.85)

2.5 Overview: Types of Wavelet Transforms

The goal of this section is to provide an overview of the most frequently

used wavelet types. Figure 2.16 illustrates the block diagram of the

generalized time-discrete filter bank transform. It is important to point

out that there is a strong analogy between filter banks and wavelet bases:

the low-pass filter coefficients of the filter bank determine the scaling

functions while the high-pass filter coefficients produce the wavelets.

The mathematical representation of the direct and inverse general-

ized time–discrete filter bank transform is
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Figure 2.16
Generalized time-discrete filter bank transform.

vk(n) =

∞∑
m=−∞

x(m)hk(nkn − m), 0 ≤ k ≤ M − 1 (2.86)

and

x̂(n) =

M−1∑
k=0

∞∑
m=−∞

vk(m)gk(n − nkm) (2.87)

Based on this representation, we can derive as functions of nk, hk(n),

and gk(n) the following special cases [78]:

1. Orthonormal wavelets: nk = 2k with 0 ≤ k ≤ M − 2 and nM−1 =

nM−2. The basis function fulfills the orthonormality condition (2.36).

2. Orthonormal wavelet packets: They represent a generalization of

the orthonormal wavelets because they use the recursive decomposition-

reconstruction structure which is applied to all bands. The following

holds: nk = 2L with 0 ≤ k ≤ 2L − 1.
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3. Biorthogonal wavelets: They have properties similar to those of the

orthogonal wavelets but are less restrictive.

4. Generalized filter bank representations: They represent a general-

ization of the (bi)orthogonal wavelet packets. Each band is split into two

subbands. The basis functions fulfill the biorthonormality condition:

∞∑
m=−∞

gc(m − ncl)hk(nkn − m) = δ(c − k)δ(l − n). (2.88)

5. Oversampled wavelets: There is no downsampling or oversampling

required, and nk = 1 holds for all bands.

The first four wavelet types are known as nonredundant wavelet

representations. For the representation of oversampled wavelets, more

analysis functions ({uk(n)}) than basis functions are required. The

analysis and synthesis functions must fulfill

M−1∑
k=0

∞∑
m=−∞

gk(m − l)hk(n − m) = δ(l − n). (2.89)

This condition holds only in the case of linear dependency. This means

that some functions are represented as linear combinations of others.

2.6 The Two-Dimensional Discrete Wavelet Transform

For any wavelet orthonormal basis {ψj,n}(j,n)∈Z2 in L2(R), there also

exists a separable wavelet orthonormal basis in L2(R):

{ψj,n(x)ψl,m(y)}(j,l,n,m)∈Z4 (2.90)

The functions ψj,n(x)ψl,m(y) mix the information at two different scales

2j and 2l, across x and y. This technique leads to a building proce-

dure based on separable wavelets whose elements represent products of

function dilation at the same scale. These multiscale approximations

are mostly applied in image processing because they facilitate the pro-

cessing of images at several detail levels. Low-resolution images can be

represented using fewer pixels while preserving the features necessary

for recognition tasks.
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Figure 2.17
Filter bank analogy of the WT of an image.

The theory presented for the one-dimensional WT can easily be

extended to two-dimensional signals such as images. In two dimensions,

a 2-D scaling function, ϕ(x, y) and three 2D wavelets ψ1(x, y), ψ2(x, y),

and ψ3(x, y) are required. Figure 2.17 shows a 2-D filter bank. Each filter

ψa(x, y) represents a 2-D impulse response, and its output, a bandpass

filtered version of the original image. The set of the filtered images

describes the WT.

In the following, we will assume that the 2-D scaling functions are

separable. That is:

ϕ(x, y) = ϕ(x)ϕ(y) (2.91)

where ϕ(x) is a one–dimensional scaling function. If we define ψ(x), the

companion wavelet function, as shown in equation (2.52), then based on

the following three basis functions,
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ψ1(x, y) = ϕ(x)ψ(y) ψ2(x, y) = ψ(x)ϕ(y) ψ3(x, y) = ψ(x)ψ(y)

(2.92)

we set up the foundation for the 2-D wavelet transform. Each of them is

the product of a one-dimensional scaling function ϕ and a wavelet func-

tion ψ. They are “directionally sensitive” wavelets because they measure

functional variations, either intensity or gray-level variations, along dif-

ferent directions: ψ1 measures variations along the columns (horizontal

edges), ψ2 is sensitive to variations along rows (vertical edges), and ψ3

corresponds to variations along diagonals. This directional sensitivity is

an implication of the separability condition.

To better understand the 2-D WT, let us consider f1(x, y), an N×N

image, where the subscript describes the scale and N is a power of 2.

For j = 0, the scale is given by 2j = 20 = 1, and corresponds to the

original image. Allowing j to become larger doubles the scale and halves

the resolution.

An image can be expanded in terms of the 2-D WT. At each

decomposition level, the image can be decomposed into four subimages

a quarter of the size of the original, as shown in figure 2.18. Each of

these images stems from an inner product of the original image with the

subsampled version in x and y by a factor of 2. For the first level (j = 1),

we obtain

f0
2 (m, n) =< f1(x, y), ϕ(x − 2m, y − 2n) > (2.93)

f1
2 (m, n) =< f1(x, y), ψ1(x − 2m, y − 2n) >

f2
2 (m, n) =< f1(x, y), ψ2(x − 2m, y − 2n) >

f3
2 (m, n) =< f1(x, y), ψ3(x − 2m, y − 2n) > .

For the subsequent levels (j > 1), f0
2j (x, y) is decomposed in a similar

way, and four quarter-size images at level 2j+1 are formed. This proce-

dure is visualized in figure 2.18.

The inner products can also be written as a convolution:
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f(x,y)

(b)

(d)(c)

(a)

Figure 2.18
2-D discrete wavelet transform: (a) original image; (b) first, (c) second, and (d)
third levels.

f0
2j+1(m, n) =

{
[f0

2j (x, y) ∗ ϕ(x, y)](2m, 2n)
}

(2.94)

f1
2j+1(m, n) =

{
[f0

2j (x, y) ∗ ψ1(x, y)](2m, 2n)
}

f2
2j+1(m, n) =

{
[f0

2j (x, y) ∗ ψ2(x, y)](2m, 2n)
}

f3
2j+1(m, n) =

{
[f0

2j (x, y) ∗ ψ3(x, y)](2m, 2n)
}

.

The scaling and the wavelet functions are separable, and therefore we

can replace every convolution by a 1-D convolution on the rows and

columns of f0
2j . Figure 2.20 illustrates this fact. At level 1, we convolve

the rows of the image f1(x, y) with h0(x) and with h1(x), then eliminate

the odd-numbered columns (the leftmost is set to zero) of the two
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Figure 2.19
DWT decomposition in the frequency domain.

resulting arrays. The columns of each N/2×N are then convolved with

h0(x) and h1(x), and the odd-numbered rows are eliminated (the top

row is set to zero). As an end result we obtain the four N/2 × N/2

arrays required for that level of the WT. Figure 2.19 illustrates the

localization of the four newly obtained images in the frequency domain.

f0
2j (x, y) describes the low-frequency information of the previous level,

while f1
2j(x, y), f2

2j (x, y), and f3
2j (x, y) represent the horizontal, vertical,

and diagonal edge information.

The inverse WT is shown in figure 2.20. At each level, each of the

arrays obtained on the previous level is upsampled by inserting a column

of zeros to the left of each column. The rows are then convolved with

either h0(x) or h1(x), and the resulting N/2 × N arrays are added

together in pairs. As a result, we get two arrays which are oversampled

to achieve an N × N array by inserting a row of zeros above each row.

Next, the columns of the two new arrays are convolved with h0(x) and

h1(x), and the two resulting arrays are added together. The result shows

the reconstructed image for a given level.
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Image decomposition (a) and reconstruction (b) based on discrete WT.
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EXERCISES

1. Consider the continuous-time signal

f(t) = 3 cos (400πt) + 5 sin (1200πt) + 6 cos (4400πt) + 2 sin (5200πt).

(2.95)

Determine its continuous Fourier transform.

2. Compute the DFT for the following signal:

x[n] = cos (2πrn/N), 0 ≤ n ≤ N − 1, 0 ≤ r ≤ N − 1 (2.96)

3. Prove the linearity property for the discrete cosine transform

(DCT) and discrete sine transform (DST).

4. What is the difference between the continuous and discrete wavelet

transforms?

5. Comment on the differences and applicability of the discrete cosine

transform and the wavelet transform to medical image compres-

sion.

6. Show if the scaling function

ϕ(t) =

{
1, 0.5 ≤ t < 1

0, else

satisfies the inclusion requirement of the multiresolution analysis.

7. Compute the Haar transform of the image

I =

[
4 −1

8 2

]
(2.97)

8. Consider the following function

ϕ(t) =

{
t3, 0 ≤ t < 1

0, else

Using the Haar wavelet and starting at scale 0, give a multiscale

decomposition of this signal.

9. Plot the wavelet ψ5,5(t) for the Haar wavelet function. Express ψ5,5
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in terms of the Haar scaling function.

10. Verify if the following holds for the Haar wavelet family:

a) ϕ(2t) =
∑

h0(n)ϕ(4t − k) and

b) ψ(2t) =
∑

h1(n)ψ(4t − k).

11. The function f(t) is given as

f(t) =

{
8, 0 ≤ t < 4

0, else

Plot the following scaled and/or translated versions of f(t):

a) f(t − 1)

b) f(2t)

c) f(2t − 1)

d) f(8t)

12. Write a program to compute the CWT of a medical image and use

it to determine a small region of interest (tumor) in the image.

13. Write a program to compute the DWT of a medical image of an

aneurysm and use this program to detect edges in the image.

14. Write a program to compute the DWT of a medical image and

use this program to denoise the image by hard thresholding. Hint:

First choose the number of levels or scales for the decomposition

and then set to zero all elements whose absolute values are lower

than the threshold.



3
Information Theory and Principal Component
Analysis

In this chapter, we introduce algorithms for data analysis based on

statistical quantities. This probabilistic approach to explorative data

analysis has become an important branch in machine learning with many

applications in life sciences.

We first give a short, somewhat technical review of necessary con-

cepts from probability and estimation theory. We then introduce some

key elements from information theory, such as entropy and mutual in-

formation. As a first data analysis method, we finish this chapter by

discussing an important and often used preprocessing technique, princi-

pal component analysis.

3.1 Probability Theory

In this section we summarize some important facts from probability

theory which are needed later. The basic measure theory required for

the probability theoretic part can be found in many books, such as [22].

Random Functions

In this section we follow the first chapter of [23]. We give only proofs

that are not in [244].

Definition 3.1: A probability space (Ω,A, P ) consists of a set Ω, a

σ-algebra A on Ω, and a measure P called probability measure on A

with P (Ω) = 1.

While this may sound confusing, the intuitive notion is very simple:

For some subsets of our space Ω, we specify how probable they are.

Clearly, we want intersections and unions also to have probabilities, and

this (in addition to some technicality with respect to infinite unions) is

what is implied by the σ-algebra.

Elements of A are called events, and P (A) is called the probability

of the event A. By definition we have

0 ≤ P (A) ≤ 1.
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As usual we us L1(Ω, Rn) to denote the Banach space of all equivalence

classes of integrable functions from Ω to Rn, and L2(Ω, Rn) to denote

the Hilbert space of all equivalence classes of square-integrable functions.

Note that this is a subset.

The notion of a random variable is one of the key concepts of

probability theory.

Definition 3.2: If (Ω,A, P ) is a probability space and (Ω′,A′) is a

measurable space, then an (A,A′)-measurable mapping X : Ω −→ Ω′ is

called a random function with values in Ω′.

If (Ω′,A′) = (R,B(R)) are the real numbers together with the

Borel sigma algebra (i.e. the sigma algebra generated by the half-open

intervals), then such a random function is also called a random variable.

Note that an X : Ω → R is a random variable over the probability space

(Ω,A) if and only if X−1(a, b] ∈ A for all −∞ ≤ a < b ≤ ∞. Similarly,

for (Ω′,A′) = (Rn,B(Rn)) we speak of a random vector .

Although initially possibly confusing due to the notation, a function

X from some probability space to the real numbers is a random function

if it assigns a probability to intervals of R. Later we will see under

what (weak) conditions we can simply assign a density to this function

X . Then this coincides with the possibly more intuitive notion of a

probability density on R. In this chapter we use capitals for random

functions in order to not confuse them with points from R
n. In later

chapters, such confusion will rarely occur, and we will often use x or

x(t) to describe a random function.

Given a random function X : (Ω,A, P ) → (Ω′,A′, P ′), we define a

mapping

X(P ) : A′ −→ R
+
0

A′ �−→ X(P )(A′) := P{X ∈ A′} := P (X−1(A′)).

Since P{X ∈ Ω′} = P (Ω) = 1, this defines a probability measure on A′

called the image measure X(P ) of P under X .

Definition 3.3: Let X be a random function. The image measure

X(P ) is called the distribution of X with respect to P , and we write

PX := X(P ).
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For A′ ∈ A′ we have

PX(A′) = P{X ∈ A′}.

Definition 3.4: If X : Ω −→ Rn denotes a random vector on a

probability space (Ω,A, P ), then

FX : R
n −→ [0, 1]

(x1, . . . , xn) �−→ PX((−∞, x1] × . . . × (−∞, xn])

is called the distribution function of X with respect to P .

If n = 1, then X is a random variable. Then its distribution function

FX is monotonic-increasing, and right-continuous and limx→−∞ X(x) =

0, limx→∞ X(x) = 1.

If the image measure PX of a random vector X on Rn can be written

as

PX = pXλn,

with a function pX : Rn → R and the Lebesgue-measure λn on Rn, then

the random vector is said to be continuous and pX is called the density

of X. X has a density according to the Radon-Nikodym theorem [22] if

X is continuous with respect to the Lebesgue-measure.

For example, if a random variable has a density

pX =
1√

2πσ2
exp

(
− (x − m)2

2σ2

)
with σ > 0, m ∈ R, then it is said to be a Gaussian random variable. If

σ = 1 and m = 0, it is called normal .

Note that if X is a random vector with density pX, then ∂n

∂x1...∂xn
FX

exists almost everywhere and

∂n

∂x1 . . . ∂xn
FX = pX

also exists almost everywhere.

Theorem 3.1 Transformation of densities: Let X be an n-

dimensional random vector with density pX and h : U −→ V a C1-

diffeomorphism with U, V ⊂ Rn open and supp pX ⊂ U . Then h ◦X has
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the density

ph◦X ◦ h = | detDh|−1 pX.

Expectation and moments

Definition 3.5: Let X be a random vector on a probability space

(Ω,A, P ). If X is P -integrable (X ∈ L1(Ω, Rn)), then

E(X) :=

∫
Ω

XdP

is called the expectation of X.

E(X) is also called the mean of X or the first-order moment .

Lemma 3.1: If X ∈ L1(Ω, Rn) then

E(X) =

∫
Rn

x dPX.

Hence E(X) is a probability theoretic notion (i.e. it depends only on

the distribution PX of X). If X has a density pX, then

E(X) =

∫
Rn

xpX(x)dx.

The expectation is a linear mapping of the vector space L1(Ω, Rn) to

Rn, so E(AX) = AE(X) for a matrix A.

Definition 3.6: Let X : Ω → Rn be an L2 random vector. Then

RX := Cor(X) := E(XX�)

CX := Cov(X) := E((X − E(X))(X − E(X))�)

exist, and are called the correlation (respectively covariance) of X.

Note that X is then also L1 (i.e. integrable) and therefore E(X) ex-

ists. RX and CX are symmetric and positive semidefinite (i.e. a�RXa ≥
0 for all a ∈ Rn). If X has no deterministic component (i.e. a component

with constant image), then the two matrices are positive-definite, mean-

ing that a�RXa > 0 for a �= 0. Since the above equations are quadratic

in X, the components of R are called the second-order moments of X
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and the components of C are the central second-order moments . If n = 1,

then

varX := σX := E((X − mX)2) = CX

is called the variance of X . Its square root σX is called the standard

deviation of X .

The central moments and the general second-order ones are related

as follows:

RX = CX + mXm�
X.

Decorrelation and Independence

We are interested in analyzing the structure of random vectors. A simple

question to ask is how strongly they depend on each other. This we can

measure in first approximation using correlations. By taking into account

higher-order correlations, we later arrive at the notion of dependent and

independent random vectors.

Definition 3.7: Let X : Ω → R
n be an arbitrary random vector.

If Cov(X) is diagonal, then X is called (mutually) decorrelated . X is

said to be white or whitened if E(X) = 0 and Cov(X) = I (i.e. if X is

centered and decorrelated with unit variance components). A whitening

transformation of X is a matrix W ∈ Gl(n) such that WX is whitened.

Note that X is white if and only if AX is white for an orthogonal

matrix A ∈ O(n) = {A ∈ Gl(n)|AA� = I}, which follows directly from

Cov(AX) = ACov(X)A�.

Lemma 3.2: Given a centered random vector X with nondeterministic

components, there exists a whitening transformation of X , and it is

unique modulo O(n).

Proof Let C := Cov(X) be the covariance matrix of X. C is symmetric,

so there exists V ∈ O(n) such that VCV� = D with D ∈ Gl(n) diagonal

and positive. Set W := D−1/2V, where D−1/2 denotes a diagonal matrix

(square root) with D−1/2D−1/2 = D−1. Then, using the fact that X is
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centered, we get

Cov(WX) = E(WXX�W�)

= WCW�

= D−1/2VCV�D−1/2

= D−1/2DD−1/2 = I.

If V is another whitening transformation of X, then

I = Cov(VX) = Cov(VW−1WX) = VW−1W−�V�

so VW−1 ∈ O(n).

So decorrelation clearly gives insight into the structure of a random

vector but does not yield a unique transformation. We will therefore

turn to a more stringent constraint.

Definition 3.8: A finite sequence (Xi)i=1,...,n of random functions

with values in the probability space Ωi with σ-algebra Ai is called

independent if

P{X1 ∈ A1, . . . , Xn ∈ An} := P

(
n⋂

i=1

X−1
i (Ai)

)
=

n∏
i=1

P{Xi ∈ Ai}

for all Ai ∈ Ai, i = 1, . . . , n. A random vector X is called independent

if the family (Xi)i := (πi ◦ X)i of its components is independent.

Here πi denotes the projection onto the i-th coordinate. If X is a

random vector with density pX, then it is independent if and only if the

density factorizes into one-dimensional functions. That is,

pX(x1, . . . , xn) = pX1(x1) . . . pXn
(xn)

for all (x1, . . . , xn) ∈ Rn. Here, the pXi
are also often called the marginal

densities of X.

Note that it is easy to see that independence is a probability theoretic

term. Examples for independent random vectors will be given later.

Definition 3.9: Given two n- respectively m-dimensional random

vectors X and Y with densities, the joint density pX,Y is the density

of the n + m-dimensional random vector (X,Y)
�

. For given y0 ∈ Rm
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with pY(y0) �= 0, the conditional density of X with respect to Y is the

function

pX|Y(x|y0) =
pX,Y(x,y0)

pY(y0)

for x ∈ Rn.

Indeed, it is possible to define a conditional random vector X|Y with

density pX|Y(x|y0).

Note that if X and Y are independent, meaning that their joint

density factorizes, then pX|Y(x|y0) = pX. More generally we get

pX|Y(x0|y0) = pX|Y(x0|y0)pY(y0) = pY|X(y0|x0)pX(x0),

so we have shown Bayes’s rule:

pY|X(y0|x0) =
pX|Y(x0|y0)pY(y0)

pX(x0)

Operations on Random Vectors

In this section we present two different methods for constructing new

random vectors out of given ones in order to get certain properties. The

first of these properties is the vanishing mean.

Definition 3.10: A random vector X : Ω → R
n is called centered if

E(X) = 0.

Lemma 3.3: Let X : Ω → R
n be a random vector. Then X − E(X) is

centered.

Proof E(X − E(X)) = E(X) − E(X) = 0.

Another construction we want to make is the restriction of a random

vector in the sense that only samples from a given region are taken into

account. This notion is formalized in next lemma 3.4.

Lemma 3.4: Let X : Ω → R
n be a random vector, and let U ⊂ Rn be

measurable with PX(U) = P (X−1(U)) > 0. Then

X|U : X−1(U) −→ R
n

ω �−→ X(ω)
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defines a new random vector on
(
X−1(U),A′) with σ-algebra A′ :=

{A ∈ A |A ⊂ X−1(U)} and probability measure

P ′(A) =
P (A)

PX(U)

for A ∈ A′. It is called the restriction of X to U .

Lemma 3.5 Transformation properties of restriction: Let

X,Y : Ω → R be random variables with densities pX and pY respec-

tively, and let U ⊂ Rn with PX(U), PY(U) > 0.

i. (λX)|(λU) = λX|U if λ ∈ R.

ii. (AX)|(AU) = A(X|U) if A ∈ Gl(n).

iii. If X is independent and U = [a1, b1] × . . . × [an, bn], then X|U is

independent.

We can construct samples of X|U given samples x1, . . . ,xs of X by

taking all samples that lie in U .

Examples of Probability Distributions

In this section, we give some important examples of random vectors. In

particular, Gaussian distributed random vectors will play a key role in

ICA. The probability density functions of the following random vectors

in the one-dimensional case are plotted in figure 3.4.

Uniform Density

For a subset K ⊂ R
n let χK denote the characteristic function of K:

χK : R
n −→ R

x �−→
{

1 x ∈ K

0 x /∈ K

Definition 3.11: Let K ⊂ R
n, be a measurable set. A random vector

X : Ω → Rn is said to be uniform in K if its density function pX exists

and is of the form

pX =
1

vol(K)
χK

.
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Figure 3.1
Smoothed density of a two-dimensional random vector, uniform in [−1, 1]2 uniform
distribution.

Figure 3.1 shows a plot of the density of a uniform two-dimensional

random vector.

Gaussian Density

Definition 3.12: A random vector X : Ω → Rn is said to be Gaussian

if its density function pX exists and is of the form

pX(x) =
1√

(2π)n detC
exp

(
−1

2
(x − μ)�C−1(x − μ)

)
where μ ∈ R

n and C is symmetric and positive-definite.

If X is Gaussian with μ and C, as above, then E(X) = μ and

Cov(X) = C. A white Gaussian random vector is called normal. In

the one-dimensional case a Gaussian random variable with mean μ ∈ R

and variance σ2 > 0 has the density

pX(x) =
1√

(2π)σ
exp

(
− 1

2σ2
(x − μ)2

)
.
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Figure 3.2
Density of a two-dimensional normal distribution i.e. a Gaussian with zero mean
and unit variance.

The density of a two-dimensional Gaussian is shown in figure 3.2.

Note that a Gaussian random vector is independent if and only if it

is decorrelated. Only mean and variance are needed to describe Gaus-

sians, so it is not surprising that detection of second-order information

(decorrelation) already leads to independence. Furthermore, note that

the conditional density of a Gaussian is again Gaussian.

Lemma 3.6: Let X be a Gaussian n-dimensional random vector and

let A ∈ Gl(n). Then AX is Gaussian. If X is independent, then AX is

independent if and only if A ∈ O(n).

Proof The first- and second-order moments of X do not change by

being multiplied by an orthogonal matrix, so if A ∈ O(n), then AX

is independent. If, however, AX is independent, then I = Cov(X) =

ACov(X)A� = AA�, so A ∈ O(n).
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Laplacian Density

Definition 3.13: A random vector X : Ω → Rn is said to be Lapla-

cian if its density function pX exists and is of the form

pX(x) =
λ

2
exp (−λ|x|1) =

λ

2
exp

(
−λ

n∑
i=1

|xi|
)

for a fixed λ > 0.

Here |x|1 :=
∑n

i=1 |xi| denotes the 1-norm of x.

More generally, we can take the p-norm on Rn to generate γ-

distributions or generalized Laplacians or generalized Gaussians [152].

They have the density

pX(x) = C(γ) exp
(−λ|x|γγ

)
= C(γ) exp

(
−λ

n∑
i=1

|xi|γ
)

for fixed γ > 0. For the case γ = 2 we get an independent Gaussian

distribution, for γ = 1 a Laplacian, and for smaller γ we get distributions

with even higher kurtosis.

In figure 3.3 the density of a two-dimensional Laplacian is plotted.

Higher-Order Moments and Kurtosis

The covariance is the main second-order statistical measure used to

compare two or more random variables. It basically consists of the second

moment α2(X) := E(X2) of a random variable and combinations. In

so-called higher-order statistics , too, higher moments αj(X) := E(Xj)

or central moments μj(X) := E((X − E(X))j) are used to analyze a

random variable X : Ω → R.

By definition, we have α1(X) = E(X) and μ2(X) = var(X). The

third central moment μ3(X) = E((X − E(X))3), is called skewness of

X . It measures asymmetry of its density; obviously it vanishes if X is

distributed symmetrically around its mean.

Consider now the fourth moment α4(X) = E(X4) and the central

moment μ4(X) = E((X − E(X))4). They are often used in order to

determine how much a random variable is Gaussian. Instead of using

the moments themselves, a combination called kurtosis is used.
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Figure 3.3
Density of a two-dimensional Laplacian random vector.

Definition 3.14: Let X : Ω → R be a random variable such that

kurt(X) := E(X4) − 3(E(X2))2

exists. Then kurt(X) is called the kurtosis of X .

Lemma 3.7 Properties of the kurtosis: Let X, Y : Ω → R be

random variables with existing kurtosis.

i. kurt(λX) = λ4 kurt(X) if λ ∈ R.

ii. kurt(X + Y ) = kurt(X) + kurt(Y ) if X and Y are independent.

iii. kurt(X) = 0 if X is Gaussian.

iv. kurt(X) < 0 if X is uniform.

v. kurt(X) > 0 if X is Laplacian.

Thus the kurtosis of a Gaussian vanishes. This leads to definition

3.15.

Definition 3.15: Let X : Ω → R be a random variable with existing

kurtosis kurt(X). If kurt(X) > 0 X is called super-Gaussian or lep-
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Random variables with different kurtosis. In each picture a Gaussian (kurt = 0)
with zero mean and unit variance is plotted in dashed lines. The left figure shows a
Laplacian distribution with λ =

√
2. In the middle figure a uniform density in

[−√
3,

√
3] is shown. It has zero mean and kurtosis −1.2. The right picture shows

the sub-Gaussian random variable X := 1
π

cos(Y ) with Y uniform in [−π, π]. Its

kurtosis is − 21
8

, [105]. Figures courtesy of Dr. Christoph Bauer [19].

tokurtic. If kurt(X) < 0, X is called sub-Gaussian or platykurtic. If

kurt(X) = 0, X is said to be mesokurtic.

By lemma 3.7, Laplacians are superGaussian, and uniform densities

are sub-Gaussian densities. In practice, superGaussian variables are

often pictured as having sharper peaks and longer tails than Gaussians,

whereas sub-Gaussians tend to be flatter or multimodal, as those two

examples confirm. See figure 3.4 for these and more examples.

Sampling

Above, we spoke about only random functions. In actual experiments

those are not known, but some samples (i.e. some values) of the random

function are known. Sampling is defined in this section.

Definition 3.16: Given a finite independent sequence (Xi)i=1,...n of

random functions on a probability space (Ω,A, P ) with the same distri-

bution function F and an element ω ∈ Ω. Then the n elements Xi(ω),

i = 1, . . . , n are called i.i.d. samples of the distribution F .
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Here “i.i.d.” stands for “independent identically distributed”. Thus

sampling means executing the same experiments independently n times.

Theorem 3.2 Strong theorem of large numbers: Given a pair-

wise i.i.d. sequence (Xi)i∈N in L1(Ω), then

lim
n→∞

1

n

n∑
i=1

(Xi(ω) − E(Xi)) = lim
n→∞

(
1

n

n∑
i=1

Xi(ω)

)
− E(X1) = 0

for almost all ω ∈ Ω.

Thus for almost all ω ∈ Ω the mean of i.i.d. samples of a distribution

F converge to the expectation of F if it exists. This basically means that

the more samples you have, the better you can approximate a measure

variable.

Theorem 3.3 explains why Gaussian random variables are so inter-

esting and why they occur very frequently in nature.

Theorem 3.3 Central limit theorem: Given a pairwise i.i.d. se-

quence (Xi)i∈N in L1(Ω), and let Yk :=
∑k

i=1 Xi be its sum and

Zk := Yk−E(Yk)
var Yk

be the normalized sum. Then the distribution of Zk

converges to a normal distribution for k → ∞.

3.2 Estimation Theory

We have shown how to formulate observations subject to noise in the

framework of probability theory; moreover, we have calculated some

quantities such as moments within this framework. However, the full

formulation clearly relies on the fact that the full random vector is

known — which in practice cannot be expected. Indeed, instead of this

asymptotic knowledge, only a few (or hopefully many) samples of a

random vector are given, and we have to estimate the quantities of

interest from the smaller set of samples. In this section we will show

how to formulate such estimations and how to do this in practice.

Definitions and Examples

Often it is necessary to estimate parameters in a probabilistic model

given a few scalar measurements or samples. The goal, given T scalars
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x(1), . . . , x(T ) ∈ R is to estimate parameters θ1, . . . , θn. Such a mapping

θ̂ : RT → Rn is called an estimator .

Two examples of such estimators are the sample mean estimator

μ̂ =
1

T

T∑
i=1

x(i)

and the sample variance estimator (for T > 1)

σ̂2 =
1

T − 1

T∑
i=1

(x(i) − μ̂(x))2.

Note that we divide by T − 1, not by T ; this makes σ̂2 unbiased, as we

will see.

In practice we distinguish between deterministic and random esti-

mators ; for the latter a distribution of the θ has to be given. Usually, an

estimator is given not only for fixed T but also for all T ∈ N. Instead of

writing θ̂(T ), we omit the index and write θ̂ for the whole family.

Such a family of estimators is said to be online if it can be calculated

recursively:

θ̂(T+1) = h(x(T + 1), θ̂(T ))

for a fixed function h independent of T . Otherwise it is called a batch.

An example of an online estimator is the sample mean:

μ̂(T+1) =
T

T + 1
μ̂(T ) +

1

T + 1
x(T + 1)

For a given random vector X , let θ(X) ∈ R be the value to be

estimated, and let θ̂ be an estimator. Then

θ̃(X, x(1), . . . , x(T )) := θ(X) − θ̂(x(1), . . . , x(T ))

is called the estimation error of θ(X) with respect to the observations

x(1), . . . , x(T ). If the x(i) are samples of X , then θ̃ should be as close

to zero as possible.

Definition 3.17: If X1, . . . , XT are independent random variables

with distribution as X , then θ̂ is said to be an unbiased estimator of

θ if

E(θ(X)) = E(θ̂(X1, . . . , XT ))
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Similarly, it is possible to define an asymptotically unbiased estimator

by requiring the above only in the limit. In this case such an estimator

is said to be consistent. Note that a consistent estimator is of course not

necessarily unbiased.

The sample mean μ̂ is an unbiased estimator of the mean of a random

variable:

E(μ̂(X)) =
1

T

T∑
i=1

E(x(i)) =
1

T
TE(X) = E(X)

Maximum Likelihood Estimation

Now we define a special random estimator that is based on partial

knowledge of the distribution that is to be estimated. Namely, for

given samples x(1), . . . , x(T ) of a random variable X , the maximum

likelihood estimator θ̂ML is chosen such that the conditional probability

p(x(1), . . . , x(T )|θ̂ML) is maximal. This means that θ̂ML takes the most

likely value given the observations x(j).

If θ �→ p(x(1), . . . , x(T )|θ) is continuously differentiable, then by the

above condition and the fact that the logarithm is strongly monotonously

increasing, we get the likelihood equation

∂

∂θi
ln p(x(1), . . . , x(T )|θ)

∣∣∣∣
θ=θ̂ML

= 0

for i = 1, . . . , n if n is the dimension of the (here) multidimensional

estimator θ. Here ln p(x(1), . . . , x(T )|θ) is also called the log likelihood .

Using

p(x(1), . . . , x(T )|θ) =

T∏
j=1

p(x(j)|θ),

the likelihood equation reads

∂

∂θi

T∑
j=1

ln p(x(j)|θ)
∣∣∣∣∣∣
θ=θ̂ML

= 0.

For example, assume that x(1), . . . , x(T ) are samples of a Gaussian

with unknown mean μ and variance σ2, which are both to be estimated
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from the samples. The conditional probability from above is

p(x(1), . . . , x(T )|μ, σ2) = (2πσ2)−T/2 exp

⎛⎝− 1

2σ2

T∑
j=1

(x(j) − μ)2

⎞⎠
and hence the log likelihood is

ln p(x(1), . . . , x(T )|μ, σ2) = −T

2
ln(2πσ2) − 1

2σ2

T∑
j=1

(x(j) − μ)2.

The likelihood equation then gives the following two equations at the

maximum-likelihood estimates (μ̂ML, σ̂2
ML) :

∂

∂μ
ln p(x(1), . . . , x(T )|μ̂ML, σ̂2

ML) =
1

σ̂2
ML

T∑
j=1

(x(j) − μ̂ML) = 0

∂

∂σ2
ln p(x(1), . . . , x(T )|μ̂ML, σ̂2

ML) = − T

2σ̂2
ML

+

1

2σ̂4
ML

T∑
j=1

(x(j) − μ̂ML) = 0

From the first one, we get the maximum-likelihood estimate for the mean

μ̂ML =
1

T

T∑
j=1

x(j)

which is precisely the sample mean estimator. From the second equation,

the maximum-likelihood estimator for the variance is calculated as

follows:

σ̂2
ML =

1

T

T∑
j=1

(x(j) − μ̂ML)2.

Note that this estimator is not unbiased, only asymptotically unbiased,

and it does not coincide with the sample variance.

3.3 Information Theory

After introducing the necessary probability theoretic terminology, we

now want to define the terms entropy and mutual information. These
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notions are important for formulating the hypothesis of structural in-

dependence, for example, and have been heavily used in the field of

computational neuroscience to interprete data in the framework of some

testable theory.

Note that in physics one often distinguishes between discrete and

continuous entropy; we will speak only of entropies of random vectors

with densities1. However, one can easily see that the discrete entropy

converges to the continuous one for a growing number of discrete events

up to a divergent term that has to be subtracted; this is a common

technique in stochastics when going from finite to infinite variables.

Definition 3.18: Let X be an n-dimensional random vector with

density pX such that the integral

H(X) := −
∫

Rn

pX(x) log(pX(x))dx = −EX(log pX)

exists. Then H(X) is called the (differential) entropy or Boltzmann-Gibbs

entropy of X.

Note that H(X) is not necessarily well-defined, since the integral

does not always exist.

The entropy of a uniform random variable, for example, can be

calculated as follows. Let X have the density pX = 1
aχ[0,a] for variable

a > 0. Then the entropy of X is given by

H(X) = −
∫ 1

a

0

log
1

a
= log a.

Note that the entropy is obviously invariant under translation. Its

more general transformation properties are given in theorem 3.4.

Theorem 3.4 Entropy transformation: Let X be a n-dimensional

random variable with existing entropy H(X) and h : Rn −→ Rn a C1-

diffeomorphism. Then H(h ◦ X) exists and

H(h ◦ X) = H(X) + EX(log | detDh|).

1 There is also the more general notion of densities in the distribution sense — this
would generalize both entropy terms
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Theorem 3.5 Gibbs Inequality for random variables: Let X

and Y be two n-dimensional random vectors with densities pX and pY.

If pX log pX and pX log pY are integrable, then

H(X) ≤ −
∫

Rn

pX log pY

and equality holds if and only if pX = pY.

The entropy measures “unorder” of a random variable in the sense

that it is maximal for maximal unorder:

Lemma 3.8: Let A ⊂ R
n be measurable of the finite Lebesgue measure

λ(A) < ∞. Then the maximum of the entropies of all n-dimensional

random vectors X with density functions having support in A and for

which H(X) exists is obtained exactly at the random vector X∗ being

uniformly distributed in A.

So for the random vector X∗ the density p∗ := λ(A)−1χA satisfies:

All X as above with density pX �= p∗ satisfy H(X) < H(X∗) = log λ(A).

Proof Let X be as above with density pX. The Gibbs inequality for X

and X∗ then shows that

H(X) ≤ −
∫

Rn

pX log p∗ = − log

(
1

λ(A)

)∫
A

pX = log λ(A) = H(X∗)

and equality holds if and only if pX = p∗.

For a given random vector X in L2, denote Xgauss the Gaussian

with mean E(X) and covariance Cov(X). Lemma 3.9 is the non-finite

generalization of the above lemma. It shows that the Gaussian has

maximal entropy over all random vectors with the same first- and second-

order moments.

Lemma 3.9: Given an L2-random vector X, the following inequality

holds:

H(Xgauss) ≥ H(X)

Another information theoretic function measuring distance from a

Gaussian can be defined using this lemma.
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Definition 3.19: Let X be an n-dimensional random variable with

existing entropy. Then

J(X) := H(Xgauss) − H(X)

is called the negentropy of X.

According to lemma 3.9, J(X) ≥ 0, and if X is Gaussian, then

J(X) = 0. Note that the entropy of an n-dimensional Gaussian can be

calculated as

H(Xgauss) =
1

2
log | detCov(Xgauss)| + n

2
(1 + log 2π),

so by definition

J(X) :=
1

2
log | detCov(X)| + n

2
(1 + log 2π) − H(X).

Using the transformational properties of the entropy, it is obvious

that the negentropy is invariant under Gl(n), because

J(AX) = H((AX)gauss) − H(AX)

= H(Xgauss) + log detA − H(X) − log detA = J(X)

for A ∈ Gl(n).

The negentropy of a random variable can be approximated by its

moments as follows:

J(X) =
1

12
E(X3)2 +

1

48
kurt(X)2 + . . . (3.1)

Definition 3.20: Let X and Y be two Lebesgue-continuous n-

dimensional random vectors with densities pX and pY such that

pX log pX and pX log pY are integrable. Then

K(X,Y) :=

∫
Rn

pX log
pX

pY

dx

is called the Kullback-Leibler divergence or relative entropy of X and Y.

The Kullback-Leibler divergence measures the similarity between

two random variables:
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Theorem 3.6: Let X and Y be two random variables with existing

K(X,Y). Then K(X,Y) ≥ 0, and equality holds if and only if X and

Y have the same distribution.

Definition 3.21: Let X be an n-dimensional random vector with

density pX. If H(Xi) exists, it is called the marginal entropy of X in

the component i. If H(Xi) exists for all i, then
∑n

i=1 H(Xi) is called the

marginal entropy of X .

Theorem 3.7: The marginal entropy of X equals H(X) if and only

if X is independent; if not, it is greater than H(X).

Definition 3.22: Let X be an n-dimensional random variable with

existing entropy and marginal entropy. Then

I(X) :=

(
n∑

i=1

H(Xi)

)
− H(X) = K(pX,

n∏
i=1

pX,i)

is called the mutual information (MI) of X.

The mutual information is a scaling-invariant and permutation-

invariant measure of independence of random vectors.

Corollary 3.1: I(X) ≥ 0 and I(X) = 0 if and only if X is

independent.

Theorem 3.8 Transformation of MI: Let X be an n-dimensional

random vector with existing I(X). If h(x1, . . . , xn) = h1(x1) × . . . ×
hn(xn) is a componentwise C1−diffeomorphism, then I(h ◦ X) exists

and

I(h ◦ X) = I(X).

Therefore, if P ∈ Gl(n) is a permutation matrix, L ∈ Gl(n) is a diagonal

matrix (scaling matrix), and if c ∈ Rn, then I(LPX+c) exists and equals

I(X):

I(LPX + c) = I(X).

Under certain conditions, independence (i.e., the zeros of mutual
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information) is invariant under Gl(n) if and only if the matrix a scaling

and a permutation.

Theorem 3.9 Invariance of independence: Let X be an inde-

pendent n-dimensional random vector with at most one Gaussian com-

ponent and existing covariance, and let A ∈ Gl(n). If AX is again inde-

pendent, then A is the product of a scaling and permutation matrix.

This has been shown by Comon [59]; it is a corollary of the Skitovitch-

Darmois theorem, which shows a nontrivial connection between Gaus-

sian distributions and stochastic independence. More precisely, it states

that if two linear combinations of non-Gaussian independent random

variables are again independent, then each original random variable can

appear in only one of the two linear combinations. It has been proved

independently by Darmois [62] and Skitovitch [233]; in a more accessible

form, the proof can be found in [128]. A short version of this proof is

presented in the appendix of [245].

Note that if X is allowed to have more than one Gaussian component,

then obviously the above theorem cannot be correct: For example, if X

is a two-dimensional decorrelated (hence independent) Gaussian, then

according to lemma 3.6, AX is independent for any matrix A ∈ O(n).

3.4 Principal Component Analysis

Principal component analysis (PCA), also called Karhunen-Loève trans-

formation, is one of the most common multivariate data analysis tools

based on early works of Pearson [198]. It tries to (mostly linearly) trans-

form given data into data in a feature space, where a few “main features”

already make up most of the data; the new basis vectors are called prin-

cipal components . We will see that this is closely connected to data

whitening.

PCA decorrelates data, so it is a second-order analysis technique.

ICA, as we will see, uses the much richer requirement of independence,

often enforced by the mutual information; hence ICA is said to use

higher-order statistics. Here, we will define only linear PCA.
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Directions of Maximal Variance

Originally, PCA was formulated as a dimension reduction technique. In

its simplest form, it tries to iteratively determine the most “interest-

ing” signal component in the data, and then continue the search in the

complement of this component. For any such dimension reduction or de-

flation technique, we need to specify how to differentiate between signal

and noise in this projection. In PCA, this is achieved by considering data

to be interesting if it has high variance.

Note that from here on, for simplicity we specify random vectors as

lowercase letters. Given a random vector x : Ω → R
n with existing

covariance, we first center it and may then assume E(x) = 0. The

projection is defined as follows:

f : Sn−1 ⊂ R
n −→ R (3.2)

w �−→ var(w�x),

where

Sn−1 := {w ∈ R
n| |w| = 1}

denotes the (n−1)-dimensional unit sphere in R
n, and |w| =

(∑
i w2

i

)1/2

denotes the Euclidean norm.

Without the restriction to unit norm, maximization of f would be

ill-posed, so clearly such a constraint is necessary. The first principal

component of x is now defined as the random variable

y1 := w�
1 x =

∑
i

(w1)ixi

generated by projecting x along a global maximum w1 of f .

The function f may, for instance, be maximized by a local algo-

rithm, such as gradient ascent constrained on the unit sphere (e.g. by

normalization of w after each update).

A second principal component y2 is calculated by assuming that the

projection w2 also maximizes f , but at the same time y2 is decorrelated

from y1, so E(y1y2) = 0 (note that the yi are centered because x is

centered). Iteratively, we can determine principal components yi. Such

an iterative projection method is called deflation and will be studied

in more detail for a different projection in the setting of ICA (see

section 4.5).
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Figure 3.5
Searching for the first principal component in a two-dimensional correlated
Gaussian random vector.

As an example, we consider a two-dimensional Gaussian random

vector x centered at 0 with covariance

Cov(x) =
1

10

(
1 1

1 2

)
.

In figure 3.5, we sampled 104 samples from x and numerically determined

f for w = (cosϕ, sin ϕ) with ϕ ∈ [0, π). The resulting function f(w) is

shown in the figure. It is maximal at ϕ = 1.05 that is w1 = (0.5, 0.86).

This equals the eigenvector of Cov(x) corresponding to the (largest)

eigenvalue 0.26, which will be explained in the next section.

Batch PCA

Here we will use the fact that the function f represents a second-order

optimization problem, so that it can be solved in closed form: We rewrite

f(w) = var(w�x) = E((w�x)2) = E(w�xx�w) = w� Cov(x)w
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This maximization can be explicitly performed by first calculating an

eigenvalue decomposition of the symmetric matrix

Cov(x) = EDE�

with orthogonal matrix E and diagonal matrix D with eigenvalues

d11 ≥ d22 ≥ . . . ≥ 0.

For simplicity, we may assume pairwise different eigenvalues. Then

d11 > d22 > . . .. Using the decomposition, we can further rewrite

f(w) = w� Cov(x)w = (E�w)�D(E�w) =
∑

i

diiv
2
i

with v := E�w. E is orthogonal, so |v| = 1, and hence f(v) is maximal

if vi = 0 for i > 1 (i.e. if up to a sign v equals the first unit vector).

This means that w1 = ±e1 if E = (e1 . . .en), so f is maximal at the

eigenvector of the covariance corresponding to the maximal eigenvalue.

In order to calculate the other principal components, we furthermore

assume decorrelation with the previously calculated ones, so

0 = E(yiyj) = E(w�
i xx�w�

j ) = w�
i Cov(x)wj .

For the second principal component, this means

0 = w�
1 Cov(x)w2 = w�

1 EDE�w2 = d11e
�
1 w2

so w2 is orthogonal on e1. Hence we want to solve maximization of f

in the subspace orthogonal to e1, which, using the same calculation as

above, is clearly maximized by w2 = e2.

Iteratively this shows that we can determine the principal compo-

nents by calculating an eigenvalue decomposition of the data covariance,

and then project the data onto the eigenvectors corresponding to the first

few largest eigenvalues.

By construction the principal components are mutually decorrelated.

If we further normalize their power, this corresponds to a whitening of

the data. According to lemma 3.2, this is unique except for orthogonal

transformation.

Example

As a first example, we consider a set of handwritten digits (from the

NIST image database). They consist of 1000 28x28 gray-scale images,

in our case only of digits 2 and 4 (see figure 3.6(a)). We want to
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(a) digits data set
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(c) PCA result

Figure 3.6
NIST digits data set. In (a), we show a few samples of the 1000 28x28 gray-scale
pictures of the digits 2 and 4 used in the analysis. (b) shows the eigenvalue
distribution of the covariance matrix i.e. the power of each principal component,
and (c) a projection onto the first two principal components. At each
two-dimensional location, the corresponding picture is plotted. Clearly, the first two
PCs already capture the differences between the two digits.
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understand the structure of this 282-dimensional space given by the

samples x(1), . . . ,x(1000). For this we determine a dimension reduction

onto its first few principal components.

We calculate the 784 × 784-dimensional covariance matrix and plot

the eigenvalues in decreasing order ( figure 3.6(b)). No clear cutoff can be

determined from the eigenvalue distribution. However, by choosing only

the first two eigenvalues (0.25% of all eigenvalues), we already capture

22.6% of the total eigenvalues:

d11 + d22∑784
i=1 dii

≈ 0.226.

And indeed, the first two eigenvalues are already sufficient to distin-

guish between the general shapes 2 and 4, as can be seen in the plot

figure 3.6(c), where the 4s have a significantly lower second PC than the

2s.

From the previous analysis, we can deduce that the first few PCs

already capture important information of the data. This implies that

we might be able to represent our data set using only the first few

PCs, which results in a compression method. In figure 3.7, we show the

truncated PCA expansion

x̂ =

k∑
i=1

eiyi

when varying the truncation index k. The resulting error E(|x̂ − x|)2 is

precisely the sum of the remaining eigenvalues. We see that with only a

few eigenvalues, we can already capture the basic digit shapes.

EXERCISES

1. Calculate the first four centered moments of a in a [0, a] uniform

random variable.

2. Show that the variance of the sum
∑

i Xi of uncorrelated random

variables Xi equals the sum of the variances varXi.

3. Show that the kurtosis of a Gaussian random variable vanishes,

and prove that the uneven moments of a symmetric density vanish

as well.



98 Chapter 3

original k=1 k=2 k=5 k=8 k=16 k=32 k=64

Figure 3.7
Digits 2, 3 and 4 filtered using the first few principal components.

4. Linear least-squares fitting. Consider the following estimation

problem: assume that an n-dimensional data vector x follows the

linear model

x = Aθ + y

with known n×m data matrix A, unknown parameter θ ∈ R
m and

unknown measurement errors y. The interesting case is if n > m.

We determine the parameter vector θ̂LS by minimizing the squared

error
∑

i y2
i that is by minimizing

f(θ) =
1

2
|y|2 =

1

2
(x − Aθ)�(x − Aθ).

a) Show that θLS fulfills the normal equation

A�AθLS = A�x.

b) If A is full rank, we can solve this explicitly by using its

pseudoinverse:

θLS = (A�A)−1A�x.

Show that if we assume that y is a zero-mean random vector,

the least-squares estimator is unbiased.

c) Calculate the error covariance matrix Cov(θ− θ̂LS) if the noise

y is decorrelated of equal variance σ2.
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5. Compute the entropy of one-dimensional Gaussian, Laplacian and

uniform distributions.

6. Show theoretically and numerically that the negentropy of a gen-

eral Laplacian pσ(x) = (
√

2σ)−1 exp(
√

2|x|/σ) is independent of

its variance σ.

7. Implement a gradient ascent algorithm for optimizing the PCA

cost function f from equation (3.2).

8. Generalize the gradient ascent algorithm to a multicomponent

extraction algorithm by deflation. Compare this to the batch-PCA

solution, using a 3-dimensional Gaussian with nontrivial covariance

structure.

9. Generate two uniform, independent signals s1, s2 with different

variances and mix these with some matrix A: x := As. Calculate

the PCA matrix W of x both analytically and numerically.

10. Prove that in exercise 9, if s is Gaussian, then WA is orthogonal.

Confirm this by computer simulation and study the dependence on

small sample numbers.





4
Independent Component Analysis and Blind Source
Separation

Biostatistics deals with the analysis of high-dimensional data sets origi-

nating from biological or biomedical problems. An important challenge

in this analysis is to identify underlying statistical patterns that facilitate

the interpretation of the data set using techniques from machine learn-

ing. A possible approach is to learn a more meaningful representation

of the data set, which maximizes certain statistical features. Such often

linear representations have several potential applications including the

decomposition of objects into “natural” components [150], redundancy

and dimensionality reduction [87], biomedical data analysis, microarray

data mining or enhancement, feature extraction of images in nuclear

medicine, etc. [6, 34, 57, 123, 163, 177].

In this chapter, we review a representation model based on the

statistical independence of the underlying sources. We show that in

contrast to the correlation-based approach in PCA (see chapter 3), we

are now able to uniquely identify the hidden sources.

4.1 Introduction

Assume the data is given by a multivariate time series x(t) ∈ R
m, where t

indexes time, space, or some other quantity. Data analysis can be defined

as finding a meaningful representation of x(t) that is, as x(t) = f(s(t))

with unknown features s(t) ∈ R
m and mixing mapping f . Often, f is

assumed to be linear, so we are dealing with the situation

x(t) = As(t) (4.1)

with a mixing matrix A ∈ R
m×n. Often, white noise n(t) is added to

the model, yielding x(t) = As(t) + n(t); this can be included in s(t)

by increasing its dimension. In equation (4.1), the analysis problem is

reformulated as the search for a (possibly overcomplete) basis, in which

the feature signal s(t) allows more insight into the data than x(t) does.

This of course has to be specified within a statistical framework.

There are two general approaches to finding data representations or

models as in equation (4.1):

• Supervised analysis: Additional information, for example in the form
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(a) sources s(t) (b) mixtures x(t) (c) recoveries (d) WA

Figure 4.1
Two-dimensional example of ICA-based source separation. The observed mixture
signal (b) is composed of two unknown source signals (a), using a linear mapping.
Application of ICA (here: Hessian ICA) yields the recovered sources (c), which
coincide with the original sources up to permutation and scaling: ŝ1(t) ≈ 1.5s2(t)
and ŝ2(t) ≈ −1.5s1(t). The composition of mixing matrix A and separating matrix
W equals a unit matrix (d) up to the unavoidable indeterminacies of scaling and
permutation.

of input-output pairs (x(t1), s(t1)), . . . , (x(tT ), s(tT )). These training

samples can be used for interpolation and learning of the map f or

the basis A (regression). If the sources s are discrete, this leads to

a classification problem. The resulting map f can then be used for

prediction.

• Unsupervised models: Instead of samples, weak statistical assumptions

are made on either s(t) or f/A. A common assumption, for example,

is that the source components si(t) are mutually independent, which

results in an analysis methods called independent component analysis

(ICA).

Here, we will focus mostly on the second situation. The unsuper-

vised analysis is often called blind source separation (BSS), since nei-

ther features or “sources” s(t) nor mixing mapping f are assumed to

be known. The field of BSS has been rather intensively studied by the

community for more than a decade. Since the introduction of a neural-

network-based BSS solution by Hérault and Jutten [112], various algo-

rithms have been proposed to solve the blind source separation problem

[25, 46, 59, 124, 259]. Good textbook-level introductions to the topic

are given by Hyvärinen et al. [123] and Cichocki and Amari [57]. Re-

cent research centers on generalizations and applications. The first part

of this volume deals with such extended models and algorithms; some

applications will be presented later.
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(a) cocktail party problem (b) linear mixing model
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word
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decis ion
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t=4

(c) neural cocktail party

Figure 4.2
Cocktail party problem: (a) a linear superposition of the speakers is recorded at
each microphone. This can be written as the mixing model x(t) = As(t) equation
(4.1) with speaker voices s(t) and activity x(t) at the microphones (b). Possible
applications lie in neuroscience: given multiple activity recordings of the human
brain, the goal is to identify the underlying hidden sources that make up the total
activity (c). See plate 1 for the color version of this figure.

A common model for BSS is realized by the independent component

analysis (ICA) model [59], in which the underlying signals s(t) are

assumed to be statistically independent. Let us first concentrate on

the linear case, i.e. f = A linear. Then we search for a decomposition

x(t) = As(t) of the observed data set x(t) = (x1(t), . . . , xn(t))� into

independent signals s(t) = (s1(t), . . . , sn(t))�. For example, consider

figure 4.1. The goal is to decompose two time series (b) into two

source signals (a). Visually, this is a simple task—obviously the data

is composed of two sinusoids with different frequency; but how to do

this algorithmically? And how to formulate a feasible model?

A typical application of BSS lies in the cocktail party problem. At
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a cocktail party, a set of microphones records the conversations of the

guests. Each microphone records a linear superposition of the conver-

sations, and at each microphone, a slightly different superposition is

recorded, depending on the position (see figure 4.2). In the following

we will see that given some rather weak assumptions on the conversa-

tions themselves, such as independence of the various speakers, it is then

possible to recover the original sources and the mixing matrix (which en-

codes the position of the speakers) using only the signals recorded at the

microphones. Note that in real-world situations the nice linear mixing

situation deteriorates due to noise, convolutions, and nonlinearities.

To summarize, for a given random vector, independent component

analysis (ICA) tries to find its statistically independent components.

This idea can also be used to solve the blind source separation (BSS)

problem which is, given only the mixtures of some underlying indepen-

dent source signals, to separate the mixed signals (henceforth called sen-

sor signals), thus recovering the original sources. Figure 4.3 shows how

to apply ICA to separate three simple signals. Here neither the sources

nor the mixing process is known; hence the term blind source separa-

tion. In contrast to correlation-based transformations such as principal

component analysis (PCA), ICA renders the output signals as statisti-

cally independent as possible by evaluating higher-order statistics. The

idea of ICA was first expressed by Jutten and Herault [112], [127], while

the term “ICA” was later coined by Comon in [59]. However, the field

became popular only with the seminal paper by Bell and Sejnowski [25]

who elaborated upon the Infomax principle, which was first advocated

by Linsker [157], [158]. Cardoso and Laheld [44], as well as Amari [8],

later simplified the Infomax learning rule introducing by the concept of

a natural gradient which accounts for the non-Euclidean Riemannian

structure of the space of weight matrices. Many other ICA algorithms

have been proposed, the FastICA algorithm [120] being the one of the

most efficient and commonly used ones.

Recently, geometric ICA algorithms based on Kohonen-like cluster-

ing algorithms have received further attention due to their relative ease

of implementation [217], [218]. They have been applied successfully to

the analysis of real-world biomedical data [20] [216] and have been ex-

tended to nonlinear ICA problems, too [215].

We will now precisely define the two fundamental terms independent

component analysis and blind source separation.
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(a) sources

(b) mixtures

(c) estimated sources

Figure 4.3
Use of ICA for performing BSS. (a) shows the three source signals, which were
linearly mixed to give mixture signal as shown (b). We separated these signals using
FastICA (see section 4.5). When comparing the estimated sources (c) with the
original ones, we observe that they have been recovered very well. Here, we have
manually chosen signs and order for visual purposes; in general the sign cannot be
recovered — it is part of the ICA indeterminacies (see section 4.2).
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4.2 Independent Component Analysis

In independent component analysis, a random vector x : Ω → R
m called

a mixed vector is given, and the task is to find a transformation f(x) of x

out of a given analysis model such that x is as statistically independent

as possible.

Definition

First we will define ICA in its most general sense. Later we will mainly

restrict ourselves to linear ICA.

Definition 4.1 ICA: Let x : Ω → R
m be a random vector. A

measurable mapping g : Rm → Rn is called an independent component

analysis (ICA) of x if y := g(x) is independent. The components Yi of

y are said to be the independent components (ICs) of x.

We speak of square ICA if m = n. Usually, g is then assumed to be

invertible.

Properties

It is well-known [125] that without additional restrictions to the map-

ping g, ICA has too many inherent indeterminacies, meaning that there

exists a very large set of ICAs which is not easily described. For this,

Hyvärinen and Pajunen construct two fundamentally different (nonlin-

ear) decompositions of an arbitrary random vector, thus showing that

independence in this general case is too weak a condition.

Note that if g is an ICA of x, then I(g(x)) = 0. So if there is some

parametric way of describing all allowed maps g, a possible algorithm

to find ICAs is simply to minimize the mutual information with respect

to g:

g0 = argming I(g(x)).

This is called minimum mutual information (MMI). Of course, in prac-

tice the mutual information is very hard to calculate, so approximations

of I will have to be found. Sections 4.5, 4.6, and 4.7 will present some

classical ICA algorithms. Often, instead of minimizing the mutual in-

formation, the output entropy is maximized, which is kwown as the

principle of maximum entropy (ME). This will be discussed in more de-
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tail in section 4.6. Connections between those two ideas were given by

Yang and Amari in the linear case [290], where they prove that under

the assumption of vanishing expectation of the sources, ME does not

change the solutions of MMI except for scaling and permutation. A gen-

eralization of these ideas to nonlinear ICA problems is shown in [261]

and [252].

It was mentioned that without restriction to the demixing mapping,

the above problem has too many solutions. In any case, knowing the

invariance of mutual information under componentwise nonlinearities

(theorem 3.8), we see that if g is an ICA of x and if h is a componentwise

diffeomorphism of R
n, then also h(g) is an ICA of x. Here h : Rn → Rn

is said to be componentwise if it can be decomposed into

h = h1 × . . . × hn

with one-dimensional mappings hi : R → R.

Linear ICA

Definition 4.2 Linear ICA: Let x : Ω → Rm be a random vector.

A full-rank matrix W ∈ Mat(m × n; R) is called a linear ICA of x if it

is an ICA of x (i.e. if y := Wx is independent).

Thus, in the case of square linear ICA, W ∈ Gl(n). In the following,

we will often omit the term “linear” if it is clear that we are speaking

of linear ICA. Note that an ICA of x is always a PCA of x but

not necessarily vice versa. The converse holds only if the signals are

deterministic or Gaussian.

The inherent indeterminacies of ICA translate into the linear case

as scaling and permutation indeterminacies, because those are the only

linear mappings that are componentwise - and these mappings are in-

variants of independence (theorem 3.8). Scaling and permutation inde-

terminacy mean nothing more than that by requiring only independence,

it is not possible to give an inherent order (hence permutations) and a

scaling of the independent components.

One of the specialities of linear ICA, however, is that these are

already all indeterminacies, as has been shown by Comon [59].

Theorem 4.1 Indeterminacies of linear ICA: Let x : Ω → R
m
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be a random vector with existing covariance, and let W,V ∈ Gl(m) be

two linear ICAs of x such that Wx has at most one Gaussian component.

Then their inverses are equivalent i.e. there exists a permutation P and

a scaling L with

PLW = V.

Proof This follows directly from theorem 3.9: Wx is independent, and

by assumption (VW−1)(Wx), so VW−1 is the product of a scaling and

permutation matrix, and therefore W−1 equals V−1 except for right-

multiplication by a scaling and permutation matrix.

Note that this theorem also obviously holds for the case m > n,

which can easily be shown using projections.

In order to solve linear ICA, we could again use the MMI algorithm

from above,

W0 = argminW I(Wx),

because elements in Gl(n) ⊂ R
n2

are easily parameterizable. Still, the

mutual information has to be approximated.

4.3 Blind Source Separation

In blind source separation, a random vector x : Ω → R
m called a mixed

vector is given; it comes from an independent random vector s : Ω → Rn,

which will be called a source vector , by mixing with a mixing function

μ : R
n −→ Rm (ie. x = μ(s)). Only the mixed vector is known, and the

task is to recover μ and then s. If we find an ICA of x, some kind of

inversion thereof could possibly give μ.

In the square case (m = n), μ is usually assumed to be invertible,

so reconstruction of μ directly gives s via s = μ−1(x). This means

that if we assume that the inverse of the mixing function already lies

in the transformation space, then we know that the global minimum of

the contrast function (usually the mutual information) has value 0, so

a global maximum will indeed give us an independent random vector.

Of course we cannot hope that μ−1 will be found because uniqueness in

this general setting cannot be achieved (section 4.2) — in contrast to the

linear case, as shown in section 4.2. This will usually impose restrictions

on the used model.
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Definition

Definition 4.3 BSS: Let s : Ω → R
n be an independent random

vector, and let μ : Rn −→ Rm be a measurable mapping. An ICA

of x := μ(s) is called a BSS of (s, μ). Given a full-rank matrix A ∈
Mat(n×m; R), called a mixing matrix , a linear ICA of x := As is called

a linear BSS of (s,A).

Again, we speak of square BSS if m = n. In the linear case this

means that the mixing matrix A is invertible: A ∈ Gl(n).

If m > n, the model above is called overdetermined or undercomplete.

In the case m < n (i.e. in the case of less mixtures than sources) we speak

of underdetermined or overcomplete BSS .

Given an independent random vector s : Ω → R
n and an invertible

matrix A ∈ Gl(n), denote BSS(s,A) all invertible matrices B ∈ Gl(n)

such that BAs is independent (i.e. the set of all square linear BSSs of

As).

Properties

In the following we will mostly deal only with the linear case. So the goal

of BSS - one of the main applications of ICA - is to find the unknown

mixing matrix A, given only the observations/mixtures x. Using theorem

4.2, we see that in the linear case this is indeed possible, except for the

usual indeterminacies scaling and permutation.

Theorem 4.2 Indeterminacies of linear BSS: Let s : Ω → R
n

be an independent random vector with existing covariance having at

most one Gaussian component, and let A ∈ Gl(n). If W is a BSS of

(s,A), then W−1 ∼ A.

Proof This follows directly from theorem 4.2 because both A−1 and

W are ICAs of x := As.

So in this case BSS(s,A) = Π(n)A−1, where Π(n) denotes the group

of products of n × n scaling and permutation matrices.
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Linear BSS

In this section, we show that in linear BSS, some additional model

assumptions are possible.

The general problem of square linear BSS deals with an arbitrary

source random vector s and an arbitrary invertible matrix A. In this

section, we will show that we can make some further assumptions about

those two elements.

First of all, note that in both ICA and BSS we can assume the sources

to be centered, that is E(s) = 0, because the coordinate transformation

x′ = x − E(x)

y′ = Wx′ = Wx − WE(x)

gives centered variables that fulfill the same model requirements (inde-

pendence). The same holds if we assume the BSS model and x := As.

Now denote

A := (a1| . . . |an)

with ai ∈ Rn being the columns of A. Scaling indeterminacy can be read

as follows:

x = As

= (a1| . . . |an)s

=

n∑
i=1

aisi

=

n∑
i=1

(
1

αi
ai

)
(αisi)

where αi ∈ R, αi �= 0. Multiplying the sources with nonzero constants

does not change their independence, so A can be found only up to

scaling. Furthermore permuting the sum in the index i above does

not change the model, so only the set of columns of A can be found,

but not their order; hence the permutation indeterminacy. In order to

reduce the set of solutions, some kind of normalization is often used.

For example, in the model we could assume that var(si) = 1 (i.e. that

the sources have unit variances or that |ai| = 1). These conditions would

restrict choices for the αi to only two (sign indeterminacy). Permutation

indeterminacy could be reduced by arbitrarily requiring some order of
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the source components, for example, using some higher-order moment

(like kurtosis); in practice, however, this is not very common.

We will show that we can make some further assumptions using PCA

as follows. For this we assume that the sources (and hence the mixtures)

have existing covariance. This is equivalent to requiring existing var(si).

Assume that var(si) = 1. Then the sources are white, that is

Cov(s) = I. We claim that we can also assume Cov(x) = I. For this,

let V be a whitening matrix (principal component analysis, section 3.4)

of x. Then z := Vx has unit covariance by definition. Calculating an

ICA y′ := W′z of z then gives an ICA of x by W := W′V, because by

construction W′Vx is independent.

Furthermore, having applied PCA makes A and W orthogonal (i.e.

AA� = I): As shown above, we can assume Cov(s) = Cov(x) = I. Then

I = Cov(x) = ACov(x)A� = AA�

and similarly W ∈ O(n) if we require Cov(y) = I. This method of

prewhitening considerably simplifies the BSS problem. Using the well-

known techniques of PCA, the number of parameters to be found has

been reduced from n2 to “only” 1
2n(n − 1), which is the dimension of

O(n).

4.4 Uniqueness of Independent Component Analysis

Application of ICA to BSS tacitly assumes that the data follow the model

equation (4.1), that is x(t) admits a decomposition into independent

sources, and we want to find this decomposition. But neither the mixing

function f nor the source signals s(t) are known, so we should expect to

find many solutions for this problem. Indeed, the order of the sources

cannot be recovered—the speakers at the cocktail party do not have

numbers—so there is always an inherent permutation indeterminacy.

Moreover, also the strength of each source also cannot be extracted

from this model alone, because f and s(t) can interchange so-called

scaling factors. In other words, by not knowing the power of each speaker

at the cocktail party, we can extract only his or her speech, but not

the volume—he or she could also be standing farther away from the

microphones, but shouting instead of speaking in a normal voice.

One of the key questions in ICA-based source separation is whether
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there are any other indeterminacies. Without fully answering this ques-

tion, ICA algorithms cannot be applied to BSS, because we would not

have any clue how to relate the resulting sources to the original ones.

But apparently, the set of indeterminacies cannot be very large—after

all, at a cocktail party we are able to distinguish the various speakers.

In 1994, Comon was able to answer this question [59] in the linear

case where f = A by reducing it to the Darmois-Skitovitch theorem

[62, 233, 234]. Essentially, he showed that if the sources contain at most

one Gaussian component, the indeterminacies of the above model are

only scaling and permutation. This positive answer more or less made

the field popular; from then on, the number of papers published in

this field each year increased considerably. However, it may be argued

that Comon’s proof lacked two points: by using the rather difficult-

to-prove old theorem by Darmois and Skitovitch, the central question

why there are no more indeterminacies is not at all obvious. Hence not

many attempts have been made to extend it to more general situations.

Furthermore, no algorithm can be extracted from the proof, because it

is nonconstructive.

In [246], a somewhat different approach was taken. Instead of using

Comon’s idea of minimal mutual information, the condition of source

independence was formulated in a different way: in simple terms, a two-

dimensional source vector s is independent if its density ps factorizes

into two one-component densities, ps1 and ps2 . But this is the case

only if ln ps is the sum of one-dimensional functions, each depending

on a different variable. Hence, taking the differential with respect to s1

and then to s2 always yields zero. In other words, the Hessian Hln ps
of

the logarithmic densities of the sources is diagonal—this is what we

meant by ps being a “separated function” in [246]. Using only this

property, Comon’s uniqueness theorem [246], can be shown without

having to resort to the Darmois- Skitovitch theorem; the following is

a reformulation of theorem 4.2.

Theorem 4.3 Separability of linear BSS: Let A ∈ Gl(n; R)

and s be an independent random vector. Assume that s has at most

one Gaussian component and that the covariance of s exists. Then As is

independent if and only if A is the product of a scaling and permutation

matrix.
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Instead of a multivariate random process s(t), the theorem is for-

mulated for a random vector s, which is equivalent to assuming an

i.i.d. process. Moreover, the assumption of equal source (n) and mix-

ture dimensions (m) is made, although relaxation to the undercomplete

case (1 < n < m) is straightforward, and to the overcomplete case

(n > m > 1) is possible [73]. The assumption of at most one Gaussian

component is crucial, since independence of white, multivariate Gaus-

sians is invariant under orthogonal transformation, abd so theorem 4.3

cannot hold in this case.

An algorithm for separation: Hessian ICA

The proof of theorem 4.3 is constructive, and the exception of the

Gaussians comes into play naturally as zeros of a certain differential

equation. The idea of why separation is possible becomes quite clear

now. Furthermore, an algorithm can be extracted from the pattern used

in the proof.

After decorrelation, we can assume that the mixing matrix A is or-

thogonal. By using the transformation properties of the Hessian matrix,

we can employ the linear relationship x = As to get

Hln px
= A�Hln ps

A (4.2)

for the Hessian of the mixtures. The key idea, as we have seen in the

previous section, is that due to statistical independence, the source Hes-

sian Hln ps
is diagonal everywhere. Therefore equation (4.2) represents

a diagonalization of the mixture Hessian, and the diagonalizer equals

the mixing matrix A. Such a diagonalization is unique if the eigenspaces

of the Hessian are one-dimensional at some point, and this is precisely

the case if x(t) contains at most one Gaussian component [246], lemma

5. Hence, the mixing matrix and the sources can be extracted algorith-

mically by simply diagonalizing the mixture Hessian evaluated at some

point. The Hessian ICA algorithm consists of local Hessian diagonal-

ization of the logarithmic density (or equivalently the easier-to-estimate

characteristic function). In order to improve robustness, multiple ma-

trices are jointly diagonalized. Applying this algorithm to the mixtures

from our example from figure 4.1 yields very well recovered sources in

figure 4.1(c) with a high SIR: 23 and 42 dB.

A similar algorithm has been proposed by Lin [155], but without
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considering the necessary assumptions for successful algorithm applica-

tion. In [246] conditions are given for when to apply this algorithm, and

showed that points satisfying these conditions can indeed be found if the

sources contain at most one Gaussian component ([246], lemma 5). Lin

used a discrete approximation of the derivative operator to approximate

the Hessian; we suggested using kernel-based density estimation, which

can be directly differentiated. A similar algorithm based on Hessian di-

agonalization was proposed by Yeredor [291], using the character of a

random vector. However, the character is complex-valued, and additional

care has to be taken when applying a complex logarithm. Basically, this

is well-defined only locally at nonzeros. In algorithmic terms, the char-

acter can be easily approximated by samples. Yeredor suggested joint

diagonalization of the Hessian of the logarithmic character evaluated at

several points in order to avoid the locality of the algorithm. Instead of

joint diagonalization, we proposed to use a combined energy function

based on the previously defined separator. This also takes into account

global information, but does not have the drawback of being singular at

zeros of the density.

Complex generalization

Comon [59] showed separability of linear real BSS using the Darmois-

Skitovitch theorem (see theorem 4.3). He noted that his proof for the real

case can also be extended to the complex setting. However, a complex

version of the Darmois-Skitovitch theorem is needed. In [247], such a

theorem was derived as a corollary of a multivariate extension of the

Darmois-Skitovitch theorem, first noted by Skitovitch [234] and later

shown in [93]:

Theorem 4.4 complex S-D theorem: Let s1 =
∑n

i=1 αixi and

s2 =
∑n

i=1 βixi with x1, . . . , xn independent complex random variables

and αj , βj ∈ C for j = 1, . . . , n. If s1 and s2 are independent, then all

xj with αjβj �= 0 are Gaussian.

This theorem can be used to prove separability of complex BSS and

generalize this to the separation of dependent subspaces (see section 5.3).

Note that a simple complex-valued uniqueness proof [248], which does

not need the Darmois-Skitovitch theorem, can be derived similarly to the

case of real-valued random variables from above. Recently, additional
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relaxations of complex identifiability have been described [74].

4.5 ICA by Maximization of non-Gaussianity

In this and the following sections, we will present the most important

“classical” ICA algorithms. We will follow the presentation in [123] in

part. The following also serves as the script for a lecture presented by

the author at the University of Regensburg in the summer of 2003.

First, we will develop the famous FastICA algorithm, which is among

the most used current algorithms for ICA. It is based on componentwise

minimization of the negentropy.

Basic Idea

Given the basic noiseless square linear BSS model

x = As

from section 4.3, we want to construct an ICA W of x. Then ideally

W = A−1 (except for scaling and permutation). At first we do not

want to recover all the sourcess but only one source component. We are

searching among all linear combinations of the mixtures, which means

we are looking for a coefficient vector b ∈ R
n with

y =

n∑
i=1

bixi = b�x = b�As =: q�s.

Ideally, b is a row of A−1, so q should have only one non- zero entry.

But how to find b?

The main idea of FastICA now is as follows. A heuristic usage of the

central limit theorem (section 3.3) tells us that a sum of independent

random variables lies closer to a Gaussian than the independent random

variables themselves:

Gaussianity
(∑

indep. RVs
)

> Gaussianity (indep. RVs)

Of course later we will have to specify what Gaussianity means (i.e. how

to measure how “Gaussian” a distribution is). So in general y = q�s

is more Gaussian than all source components si. But in ICA solutions

y has the same distribution as one component si , hence solutions are

least Gaussian.
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Figure 4.4
Kurtosis maximization: Source and mixture scatterplots. A two-dimensional in
[−1, 1]2-uniform distribution with 20000 samples was chosen. The source random
vector was linearly mixed by a rotation of 30 degrees. This mapping is
multiplication by an orthogonal matrix, so the mixtures z are already white.

Algorithm: (FastICA) Find b with b�x is maximal non Gaussian.

Indeed, as for PCA (section 3.4), we will see that we can restrict the

search to unit-length vectors, that is to the (n − 1)-sphere

Sn−1 := {x ∈ R
n| |x| = 1}.

And it turns out that such a cost function as above has 2n maxima on

Sn−1 corresponding to the solutions ±si.

Figures 4.4 and 4.5 show an example of applying this ICA algorithm

to a mixture of two uniform random variables, and figures 4.6 and 4.7 do

the same for a Laplacian random vector. In both cases we see that the

projections are maximally non-Gaussian in the separation directions.

Measuring non-Gaussianity using kurtosis

Given a random variable y, its kurtosis was defined as

kurt(y) := E(y4) − 3(E(y2))2.

If y is Gaussian, then E(y4) = 3(E(y2))2, so kurt(y) = 0. Hence,

the kurtosis (or the squared kurtosis) gives a simple measure for the

deviation from Gaussianity. Note that of course this measure is not

definite, meaning that there also exist random variables with vanishing

kurtosis that are not Gaussian.
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alpha=0, kurt=�0.7306 alpha=10, kurt=�0.93051

alpha=20, kurt=�1.1106 alpha=30, kurt=�1.1866

alpha=40, kurt=�1.1227 alpha=50, kurt=�0.94904

alpha=60, kurt=�0.74824 alpha=70, kurt=�0.61611

alpha=80, kurt=�0.61603 alpha=90, kurt=�0.74861

Figure 4.5
Kurtosis maximization: histograms. Plotted are the random variable w�z for
vectors w = (cos(α) sin(α))� and angle α between 0 and 90 degrees. The whitened
mixtures z are shown in figure 4.4. Note that the projection is maximally
non-Gaussian at the demixing angle 30 degrees; the absolute kurtosis is also
maximal there(see also figure 4.4).

Under the assumption of unit variance, E(y2) = 1, we get

kurt(y) = E(y4) − 3,

which is a sort of normalized fourth-order moment.

Let us consider a two-dimensional example first. Let

q = A�b =

(
q1

q2

)
.

Then

y = b�x = q�s = q1s1 + q2s2.

Using linearity of kurtosis if the random variables are independent
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Figure 4.6
Kurtosis maximization, second example: Source and mixture scatterplots. A two-
dimensional Laplacian distribution (super-Gaussian) with 20000 samples was
chosen, again mixed by a rotation of 30 degrees.

(lemma 3.7), we therefore get

kurt(y) = kurt(q1s1) + kurt(q2s2) = q4
1 kurt(s1) + q4

2 kurt(s2).

By normalization, we can assume E(s2
1) = E(s2

2) = E(y2) = 1, so

q2
1 + q2

2 = 1, which means that q lies on the circle q ∈ S1.

The question is: What are the maxima of

S1 −→ R

q �→ |q4
1 kurt(s1) + q4

2 kurt(s2)|
This maximization on a smooth submanifold of R

2 can be quickly solved

using Lagrange multipliers. Using the function without absolute values,

we can take derivatives and get two equations:

4q3
i kurt(si) + 2λqi = 0

for λ ∈ R, i = 1, 2. So

λ = −2q2
1 kurt(s1) = −2q2

2 kurt(s2)

or q1 = 0 or q2 = 0 (assuming that the kurtoses are not zero). Obviously

only the latter two equations correspond to maxima, so from q ∈ S1 we

get solutions

q ∈ {±e1,±e2}
with the ei denoting the unit vectors. And this is exactly what we
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alpha=0, kurt=1.8948 alpha=10, kurt=2.4502

alpha=20, kurt=2.914 alpha=30, kurt=3.0827

alpha=40, kurt=2.8828 alpha=50, kurt=2.404

alpha=60, kurt=1.859 alpha=70, kurt=1.4866

alpha=80, kurt=1.4423 alpha=90, kurt=1.7264

Figure 4.7
Kurtosis maximization, second example: histograms. For explanation, see figure 4.6.
The data set is shown in figure 4.6. The kurtosis as function of the angle is also
given in figure 4.6.

claimed: The points of maximal Gaussianity correspond to the ICA

solutions.

Indeed, this can also be shown in higher dimensions (see [120]).

Algorithm

Of course, s is not known, so after whitening z = Vx we have to search

for w ∈ Rn with w�z maximal non-Gaussian. Because of q = (VA)�w

we get

|q|2 = q�q = (w�VA)(A�V�w) = |w|2

so if q ∈ Sn−1, w ∈ Sn−1 also. Hence, we get the following

Algorithm: (kurtosis maximization) Maximize w �→ | kurt(w�z)| on

Sn−1 after whitening.
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Figure 4.8
Kurtosis maximization: absolute kurtosis versus angle. The function
α �→ | kurt((cos(α) sin(α))z)| is plotted with the uniform z from figure 4.4.

We have seen that prewhitening (i.e. PCA) is essential for this

algorithm — it reduces the search dimension by making the problem

easily accessible. The above equation can be interpreted as finding the

projection onto the line given by w such that z along this line is maximal

non Gaussian.

In figures 4.8 and 4.9, the absolute kurtosis is plotted for the uniform-

source example respectively the Laplacian example from above.

Gradient ascent kurtosis maximization

In practice local algorithms are often interesting. A differentiable func-

tion f : R
n → R can be maximized by local updates in the direction of

its gradient (which points to the direction of greatest ascent). Given a

sufficiently small learning rate η > 0 and a starting point x(0) ∈ R
n,

local maxima of f can be found by iterating

x(t + 1) = x(t) + ηΔx(t)

with

Δx(t) = (Df)(x(t))� = ∇f(x(t)) =
∂f

∂x
(x(t))

being the gradient of f at x(t). This algorithm is called gradient ascent .

Often, the learning rate η is chosen to be dependent on the time t, and



Independent Component Analysis and Blind Source Separation 121

0 20 40 60 80 100 120 140 160 180 200
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Figure 4.9
Kurtosis maximization, second example: absolute kurtosis versus angle. Again, we
plot the function α �→ | kurt((cos(α) sin(α))z)| with the super-Gaussian z from
figure 4.6.

some suitable abort condition is defined. Furthermore, there are various

ways of increasing the convergence speed of this type of algorithm.

In our case the gradient of f(w) := | kurt(w�z)| can be easily

calculated as

∇| kurt(w�z)|(w) =
∂| kurt(w�z)|

∂w

= 4 sgn(kurt(w�z))
(
E(z(w�z)3) − 3|w|2w) (4.3)

because by assumption Cov(z) = I, so

E((w�z)2) = w�E(zz�)w = |w|2.
By definition of the kurtosis, for white z we therefore get

kurt(w�z) = E((w�z)4) − 3|w|4

hence

∂ kurt(w�z)

∂wi
= 4E((w�z)3Zi) − 12|w|2wi

so

∂ kurt(w�z)

∂w
= 4
(
E((w�z)3z) − 3|w|2w) .

On S1, the second part of the gradient can be neglected and we get
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Algorithm: (gradient ascent kurtosis maximization) Choose η > 0

and w(0) ∈ Sn−1. Then iterate

Δw(t) := sgn(kurt(w(t)�z))E(z(w(t)�z)3)

v(t + 1) := w(t) + ηΔw(t)

w(t + 1) :=
v(t + 1)

|v(t + 1)| .

The third equation is needed in order for the algorithm to stay on

the sphere Sn−1.

Fixed-point kurtosis maximization

The above local kurtosis maximization algorithm can be considerably

improved by introducing the following fixed-point algorithm:

First, note that a continuously differentiable function f on Sn−1 is

extremal at w if its gradient ∇f(w) is proportional to w at this point.

That is,

w ∝ ∇f(w)

So here, using equation (4.5), we get

w ∝ ∇f(w) = E((w�z)3z) − 3|w|2w.

Algorithm: (fixed-point kurtosis maximization) Choose w(0) ∈ Sn−1.

Then iterate

v(t + 1) := E((w(t)�z)3z) − 3w(t)

w(t + 1) :=
v(t + 1)

|v(t + 1)| .

The above iterative procedure has the separation vectors as fixed

points. The advantage of using such a fixed-point algorithm lies in the

facts that the convergence speed is greatly enhanced (cubic convergence

in contrast to quadratic convergence of the gradient-ascent algorithm)

and that other than the starting vector, the algorithm is parameter-free.

For more details, refer to [124] [120].

Generalizations

Using kurtosis to measure non-Gaussianity can be problematic for non-

Gaussian sources with very small or even vanishing kurtosis. In general it
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often turns out that the algorithms can be improved by using a measure

that takes even higher order moments into account. Such a measure can,

for example, be the negentropy, defined in definition 3.19 to be

J(y) := H(ygauss) − H(y).

As seen in section 3.3, the negentropy can indeed be used to measure

deviation from the Gaussian. The smaller the negentropy, the ”less

Gaussian” the random variable.

Algorithm: (negentropy minimization) Minimize w �→ J(w�z) on

Sn−1 after whitening.

We can assume that the random variable y has unit variance, so we

get

J(y) :=
1

2
(1 + log 2π) − H(y).

Hence negentropy minimization equals entropy maximization.

In order to see a connection between the two Gaussianity measures

kurtosis and negentropy, Taylor expansion of the negentropy can be used

to get the approximation from equation (3.1):

J(y) =
1

12
E(y3)2 +

1

48
kurt(y)2 + . . . .

If we assume that the third-order moments of y vanish (for exampl,e

for symmetric sources), we see that kurtosis maximization indeed cor-

responds to a first approximation of the more general negentropy mini-

mization.

Other versions of gradient-ascent and fixed-point algorithms can now

easily be developed by using more general approximations [120] of the

negentropy.

Estimation of more than one component

So far we have estimated only one independent component (i.e. one row

of W). How can the above algorithm be used to estimate the whole

matrix?

By prewhitening W ∈ O(n), so the rows of the whitened demixing

mapping W are mutually orthogonal. The way to get the whole matrix

W using the above non-Gaussianity maximization is to iteratively search

components as follows.

Algorithm: (deflation FastICA algorithm) Perform fixed-point kurto-
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sis maximization with additional Gram-Schmidt orthogonalization with

respect to previously found ICs after each iteration.

This algorithm can be explicitly written down as follows:

Step 1 Set p := 1 (current IC).

Step 2 Choose wp(0) ∈ Sn−1.

Step 3 Perform a single kurtosis maximization step (here: fixed-

point algorithm):

vp(t + 1) := E((wp(t)
�z)3z) − 3wp(t)

Step 4 Take only the part of vp that is orthogonal to all previ-

ously found wj :

up(t + 1) := vp(t + 1) −
p−1∑
j=1

(vp(t)wj)wj

Step 5 Normalize

wp(t + 1) :=
up(t + 1)

|up(t + 1)|

Step 6 If the algorithm has not converged go to step 3.

Step 7 Increment p and continue with step 2 if p is less than the

desired number of components.

Obviously any single-IC algorithm can be turned into a full ICA

algorithm using this idea; this general principle is called the deflation

approach. It is opposed to the symmetric approach, in which the single

ICA update steps are performed simultaneously. The resulting matrix

is then orthogonalized. Depending on the situation, the two methods

perform differently. In the examples we will always use the deflation

algorithm.

Example

We want to finish this section with an example application of FastICA.

For this we use four speech signals, as shown in figure 4.10. They were
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Figure 4.10
FastICA example: sources. In this figure, the four independent sources are shown —
four speech signals (with time structure) were chosen. The texts of the signals are
“peace and love”, “hello how are you”, ”to be or not to be” and “one two three”,
all spoken by the same person except for ”hello how are you”. Distribution of
speech signals tends to be super-Gaussian (here the kurtoses are 5.9, 4.8, 4.4, and
14.0, respectively).

mixed by the matrix

A :=

⎛⎜⎜⎝
−0.59 −0.60 0.86 0.05

−0.60 −0.97 −0.068 −0.59

0.21 0.49 −0.16 0.34

−0.46 −0.11 0.69 0.68

⎞⎟⎟⎠ .

The mixtures are given in figure 4.11.

Applying the kurtosis-based FastICA algorithm with the deflation

approach, we get recovered sources, as shown in figure 4.12, and a
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Figure 4.11
FastICA example: mixtures. The speech signals from figure 4.10 were linearly mixed
by the mapping A given in the text. The four mixture signals are shown here.

demixing matrix

W =

⎛⎜⎜⎝
96 16 130 −88

34 19 76 −24

31 6 54 −25

12 −4.5 5.0 −6.9

⎞⎟⎟⎠ .

In order to check whether the solution is good, we multiply W and A,

and get

WA =

⎛⎜⎜⎝
0.036 −0 0.0807 −20

−5.6 0.42 −0.48 0.054

0.75 5.1 −0.03 −0.42

−0.48 0.13 5.4 0.36

⎞⎟⎟⎠ .

We see that except for small perturbations this matrix is equivalent to

the unit matrix (i.e. it is a scaling and a permutation.) To test this, we
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Figure 4.12
FastICA example: recovered sources. Application of kurtosis-based FastICA using
the deflation approach to the mixtures from figure 4.11 gives the following recovered
source signals. The first signal corresponds to the fourth source; the second, to the
first source; the third, to the second source; and the fourth signal is the recovered
third source. The cross-talking error between the mixture matrix A and the
recovery matrix W is E(A, W) = 1.1, which is quite good in four dimensions.

can calculate the cross-talking error :

E(A,W) := E(W−1A) = E(C) =

n∑
i=1

⎛⎝ n∑
j=1

|cij |
maxk |cik| − 1

⎞⎠
+

n∑
j=1

(
n∑

i=1

|cij |
maxk |ckj | − 1

)

Note that E(A,W) = 0 if and only if A equals W−1 up to right-

multiplication. We get E(A,W) = 1.1 as the measure of recovery

quality, which is good in this four-dimensional example.
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4.6 ICA Using Maximum-Likelihood Estimation

Maximum-likelihood estimation was introduced in section 3.2 in order

to estimate the most probable parameters, given certain samples or ob-

servations in a parametric model. Here, we will use maximum likelihood

estimation to estimate the mixing or separating matrix coefficients.

Likelihood of the ICA model

Consider the noiseless ICA model

x = As.

Let B := A−1. Then, using the transformational properties of densities

(theorem 3.1), we can write

px(As) = | detB|ps(s)

for s ∈ Rn. Using independence of the sources, we furthe get

px(As) = | detB|
n∏

i=1

pi(s)

with pi := psi
the source component densities. Setting x := As yields

s = Bx. If we denote the rows of B with b�
i , that is,

B = (b1| . . . |bn)�

then si = b�
i x, and therefore

px(x) = | detB|
n∏

i=1

pi(b
�
i x)

for fixed A (respectively) B.

Thus according to section 3.2, we can calculate the likelihood func-

tion, given i.i.d. samples x(1), . . . ,x(T ), as

L(B) =

T∏
t=1

px|B(x(t)|B)

=

T∏
t=1

| detB|
n∏

i=1

pi(b
�
i x(t)).
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The log likelihood then reads

ln L(B) =

T∑
t=1

n∑
i=1

ln pi(b
�
i x(t)) + T ln | detB|

and, using the sample mean, we get

1

T
ln L(B) = E

(
n∑

i=1

ln pi(b
�
i x(t))

)
+ ln | detB|.

The main problem we are facing now is that in addition to the

parametric model - the estimation of B - the unknown source densities

have to be estimated; they cannot be directly described by a finite set of

parameters. So we are dealing with so-called semiparametric estimation.

If we still want to use maximum likelihood estimation in order to find

B, two different solutions can be found, depending on prior information:

• Due to prior information, the source densities pi are known. Then the

likelihood of the whole model is described only by L(B) because B is

the only unknown parameter.

• If no additional information is given, the source densities pi will have

to be approximated using some sort of parameterized density families.

Indeed, the second route can be taken without too much difficulty, as

is shown by theorem 4.5. It claims that for ICA estimation it is enough

to locally describe each pi by a simple binary density family (a family

with only two elements) - this is quite astonishing, as the space of density

families is obviously very large.

Theorem 4.5: Let p̃i be the estimated IC densities, and assume

p̃i > 0. Let

gi(s) :=
d

ds
ln p̃i(s) =

p̃′i
p̃i

(s)

be the (negative) score functions and let yi := b�
i x be whitened. Then

the maximum likelihood estimator is locally consistent if

E(sigi(si) − g′i(si)) > 0 (4.4)

for i = 1, . . . , n.
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Here locally consistent means that locally the estimated matrix B̃

converges to B in probability for T → ∞.

For a proof of this theorem, see, for example theorem 9.1 from [123]

Note that equation 4.4 is invariant under small perturbations to the

estimated densities p̃i because this equation depends only on the sign

of sgi(s) − g′i(s), so the local consistency of the maximum likelihood

estimator is stable under small perturbations.

This idea enables us to use a simple binary density family. Define

densities

p̃+(s) :=
c+

cosh2(s)
(4.5)

p̃−(s) :=
c− cosh2(s)

exp (s2/2)
(4.6)

with constant c± such that
∫

p̃± = 1. Calculation shows that c+ = 0.5

and c− ≈ 0.0951.

Taking logarithms, we note that

ln p̃+(s) = ln c+ − 2 ln cosh(s)

ln p̃−(s) = ln c− −
(

s2

2
− ln cosh2(s)

)
so p̃+ is super-Gaussian and p̃− is sub-Gaussian. This can also be seen

in figure 4.13.

The score functions g± of these two densities are easily calculated as

g+(s) = (−2 ln cosh s)′ = −2 tanh s

for p̃+ and

g−(s) = (−s2

2
+ ln cosh s)′ = −s + tanh s

for p̃−. Putting the score functions into (4.4) then yields

E(−si tanh si + (1 − tanh si)
2) > 0

and

E(si tanh si − (1 − tanh si)
2) > 0

respectively, (because E(s2
i ) = 1) for local consistency of the maximum

likelihood estimator.
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Figure 4.13
A binary density family. The left density is given by p̃+(s) := 0.5 cosh−2(s)
(equation 4.5), and the right one by p̃−(s) := 0.0951 cosh2(s) exp

`−s2/2
´

(equation
4.5).

If we assume that the source components fulfill E(si tanh si − (1 −
tanh si)

2) �= (similar to the assumption kurt(si) �= 0 in the kurtosis

maximization algorithms), we have shown that either p̃+
i or p̃−i fulfills

equation (4.4). So, in order to guarantee local consistency of the estima-

tor, for choosing the density of each source component we simply have

to choose the correct p̃+
i . Then theorem 4.5 guarantees that the max-

imum likelihood estimator with this approximated source density still

gives the correct unmixing matrix B (as long as the mixtures have been

whitened).

Note that if we put g(s) = −s3 into equation (4.4), we get the

condition kurt(si) > 0 for local consistency. So in some sense, the choice

of p̃±i corresponds to whether we minimize or maximize kurtosis, as we

did in section 4.5.

Algorithms

Euclidean gradient and natural gradient

In the next section, we want to maximize the likelihood from above

using gradient ascent. For this we have to calculate the gradient of a

function defined on a manifold of matrices. The gradient of a function

is defined as the dual of the differential of the function with respect

to the scalar product. As the standard scalar product on R
n is x�y,

the ordinary gradient is simply the transpose of the derivative of the
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function. Here, we are interested in the gradient of a function defined

on the open submanifold Gl(n) of Rn2

. On Gl(n) we can either use the

standard (Euclidean) scalar product (standard Riemannian metric) to

get the Euclidean gradient

∇euklf(W) := ∇f(W) := (Df(W))�

or we can take a metric that is invariant under the group structure

(multiplication) of Gl(n) to get the natural gradient

∇natf(W) := (∇euklf(W))W�W.

More details are given, for example, in chapter 2 of [244].

We also write for the Euclidean gradient

∂

∂W
f(W) := ∇euklf(W).

Lemma 4.1:

∂

∂W
ln detW = W−�

for W ∈ Gl(n).

Proof We have to show that

∂

∂wij
ln detW = (W−1)ji

holds for i, j = 1, . . . , n. Using the chain rule, we get

∂

∂wij
ln detW =

1

detW

∂

∂wij
detW.

According to the Cramer rule for the inverse, we have

(W−1)ji = (−1)i+j 1

detW
detW(ij),

where W(ij) ∈ Mat((n−1)×(n−1); R) denotes the matrix which comes

from W by leaving out the i th row and the j th column. The proof is

finished if we show

∂

∂wij
detW = (−1)i+j detW(ij).
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For this, develop detW by the i-th row to get

detW =
n∑

k=1

(−1)i+kwik detW(ik).

Then, taking derivative by wij shows the claim.

Lemma 4.2: For W ∈ Mat(n×n; R) and pi ∈ C∞(R, R), i = 1, . . . , k

∂

∂W

n∑
i=1

ln p′i(Wx)i = g(Wx)x�,

for x ∈ Rn, where for y ∈ Rn,

g(y) :=

(
p′′i (yi)

p′i(yi)

)n

i=1

∈ R
n.

Proof We have to show that

∂

∂wij

n∑
k=1

ln p′k(Wx)k =
p′′i (yi)

p′i(yi)
xj

This follows directly from the chain rule.

Bell-Sejnowski algorithm

With the following algorithm, Bell and Sejnowski gave one of the first

easily applicable ICA algorithms [25]. It maximizes the likelihood from

above by using gradient ascent.

The goal is to maximize the likelihood (or equivalently the log

likelihood) of the parametric ICA model. If we assume that the source

densities are differentiable, we can do this locally, using gradient ascent.

The Euclidean gradient of the log likelihood can be calculated, using

lemmata 4.1 and 4.2, to be

1

T

∂ ln L(B)

∂B
= B−� + E(g(Bx)x�)

with the n-dimensional score function g = g1 × . . . × gn. Thus the local

update algorithm goes as follows.

Algorithm: (gradient ascent maximum likelihood) Choose η > 0 and
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B(0) ∈ Gl(n). Then iterate for whitened mixtures x

ΔB(t) := B(t)−� + E(g(B(t)x)x�)

B(t + 1) := B(t) + ηΔB(t).

Instead of using this batch update, we can use a stochastical version

by substituting expectation by samples to get

ΔB(t) := B(t)−� + g(B(t)x(t))x(t)�)

for a sample x(t) ∈ R
n.

This algorithm was quite revolutionary in its early days, but it faces

problems such as convergence speed and the numerically problematic

matrix inversion in each update step.

Natural gradient algorithm

These problems were mostly fixed by Amari [8], who used the natural

instead of the Euclidean gradient:

1

T
∇natL(B) =

1

T

(∇euklL(B)
)
B�B = (I + E(g(y)y�))B

with y := Bx. Using

ΔB(t) := (I + E(g(y)y�))B

gives both better convergence and numerical stability, as simulations

confirm.

Score functions

Still, it is not clear which score functions are to be used. As we saw

before, the score functions of the binary density family p̃± are

g+(s) = −2 tanh s

g−(s) = tanh s − s.

For the above two algorithms, the componentwise nonlinearities gi are

then chosen online according to equation (4.4): If

E(−si tanh si + (1 − tanh2 si)) > 0

then we use g+ for the i-th component, if not g−. As said before, this is

done online after prewhitening.
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Infomax

Some of the first ICA algorithms, such as the Bell-Sejnowksi, algorithm

were derived not from the maximum likelihood estimation principle as

shown above, but from the Infomax principle. It states that in an input-

output system, independence at the output is achieved by maximizing

the information flow that is the mutual information between inputs

and outputs. This makes sense only if some noise is introduced into the

system:

x = As + N

where N is an unknown white Gaussian random vector. One can show

that in the noiseless limit (|N| → 0) Infomax corresponds to maximizing

the output entropy.

Often input-output systems are modeled using neural networks. A

single-layered neural network output function reads as

y = Φ(Bx),

where Φ = ϕ1×ϕn is a componentwise monotonously increasing nonlin-

earity and B is the weight matrix. In this case, using theorem 3.4, the

entropy can be written as

H(y) = H(x) + E(log | det
∂Φ

∂B
|)

where x is the input random vector. Then

H(y) = H(x) +

n∑
i=1

E(log ϕi(b
�
i x)) + log | detB|.

Since H(x) is fixed, comparing this with the logarithmic likelihood func-

tion shows that Infomax directly corresponds to maximum likelihood, if

we assume that the componentwise nonlinearities are the cumulative

densities of the source components (i.e. ϕ′
i = pi).

4.7 Time-Structure Based ICA

So far we have considered only mixtures of random variables having no

additional structure. In practice, this means that in each algorithm the

order of the samples was arbitrary. Of course, in reality the signals often
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have additional structure, such as time structure (e.g. speech signals) or

higher-dimensional dependencies (e.g. images).

In the next section we will define what it means to have this addi-

tional time structure and how to build algorithms that specifically use

this information. This means that the sample order of our signals is now

relevant.

Stochastical processes

Definition 4.4 Stochastical process: A sequence of random

vectors x(t), t = 1, 2, . . . is called a discrete stochastical process . The

process (x(t))t is said to be i.i.d. if the x(t) are identically distributed

and independent. A realization or path of (x(t))t is given by the Rn-

sequence

x(1)(ω),x(2)(ω), . . .

for any ω ∈ Ω.

The expectation of the process is simply the sequence of the expec-

tations of the random vectors, and similarly for the covariance of the

process , in particular for the variance:

E ((x(t))t) := (E(x(t)))t

Cov ((x(t))t) := (Cov(x(t)))t

So far we have not yet used the time structure. Now we introduce a

new term which makes sense only if this additional structure is present.

Given τ ∈ N, for t > τ we define the autocovariance of (x(t))t to be

the sequence of matrices

Cx
τ := (Cov(x(t),x(t − τ)))t

and the autocorrelation to be

Rx
τ := (Cor(x(t),x(t − τ)))t.

Consider the what we now call the instantaneous mixing model

x(t) := As(t)

for n-dimensional stochastic processes s and x, and mixing matrix

A ∈ Gl(n). Now we do not need s(t) to be independent for every t,
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but we require the autocovariance Cs
τ (t) to be diagonal for all t and

τ . This second-order assumption holds for time signals which we would

typically call “independent”. Furthermore, note that we do not need the

source distributions to be non-Gaussian.

In terms of algorithm, we will now use simple second-order statistics

in the time domain instead of the higher-order statistics used before.

Without loss of generality, we can again assume E(x(t)) = 0 and

A ∈ O(n). Then

Cx
τ (t) := E(x(t)x(t − τ)�).

Time decorrelation

Let the offset τ ∈ N be arbitrary, often τ = 1. Define the symmetrized

autocovariance

C̄x
τ :=

1

2

(
Cx

τ + (Cx
τ )�
)

Using the usual properties of the covariance together with linearity, we

get

C̄x
τ = AC̄s

τA
�. (4.7)

By assumption C̄s
τ is diagonal, so equation 4.7 is an eigenvalue decom-

position of C̄x
τ . If we further assume that C̄x

τ has n different eigenvalues,

then the above decomposition is uniquely determined by C̄x
τ except for

orthogonal transformation in each eigenspace and permutation; since the

eigenspaces are one-dimensionalm this means A is uniquely determined

by equation 4.7 except for equivalence. Using this additional assump-

tion, we have therefore shown the usual separability result, and we get

an algorithm:

Algorithm: (AMUSE ) Let x(t) be whitened and assume that for

a given τ the matrix C̄x
τ has n different eigenvalues. Calculate an

eigenvalue decomposition

C̄x
τ = W�DW

with D diagonal and W ∈ O(n). Then W is the separation matrix and

W� ∼ A.

Note that by equation 4.7, C̄x
τ and C̄s

τ have the same eigenvalues.

Because C̄s
τ is diagonal, the eigenvalues are given by

E(si(t)si(t − τ))
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that is, the autocovariance of the component si. Thus the assumption

reads that the source components are to have different autocovariances

for given τ . In practice, if the eigenvalue decomposition is problematic,

a different choice of τ often resolves this problem. However, the AMUSE

algorithm is not applicable to sources with equal power spectra, meaning

sources for which such a τ does not exist.

Another solution is instead of using simple diagonalization to choose

more than one time lag and to do a simultaneous diagonalization of the

corresponding autocovariances. Such algorithms turn out to be quite

robust against noise, but of course also cannot overcome the problem of

equal source power spectra.

For this, other time-based ICA algorithms also use higher-order

moments in time, such as crosscumulants. A good overview of time-

based ICA/BSS algorithms is given in [123].

EXERCISES

1. Define ICA and compare it with PCA.

2. After having found an ICA separating matrix of a linear noisy

mixture x = As + y with white noise y, how can the sources be

estimated?

3. How can maximization of non-Gaussianity find independent com-

ponents?

4. Study the central limit theorem experimentally. Consider T

i.i.d. samples x(t), t = 1, . . . , T of a uniform random variable,

and define

y :=
1

T

T∑
t=1

x(t).

Calculate 104 such realizations with corresponding y for T =

2, 4, 10, 100 and compare these with a Gaussian with mean 0 and

variance varx by using histograms and kurtosis.

5. In exercise 9 from chapter 3, calculate determine also an ICA of

the signals. Then compare the separated components with the

principal components, visually using scatter plots and numerically

by analyzing the mixing-separation-matrix products. For the ICA
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algorithm, first implement the one-unit FastICA rule manually and

then download and use the Matlab FastICA Package available at

http://www.cis.hut.fi/projects/ica/fastica/code/FastICA 2.1.zip

http://www.cis.hut.fi/projects/ica/fastica/code/FastICA




5 Dependent Component Analysis

In this chapter, we discuss the relaxation of the BSS model by taking

into account additional structures in the data and dependencies between

components. Many researchers have taken interest in this generalization,

which is crucial for the application in real-world settings where such

situations are to be expected.

Here, we will consider model indeterminacies as well as actual sep-

aration algorithms. For the latter, we will employ a technique that has

been the basis of one of the first ICA algorithms [46], namely, joint di-

agonalization (JD). It has become an important tool in ICA-based BSS

and in BSS relying on second-order timedecorrelation [28]. Its task is,

given a set of commuting symmetric n×n matrices Ci, to find an orthog-

onal matrix A such that A�CiA is diagonal for all i. This generalizes

eigenvalue decomposition (i = 1) and the generalized eigenvalue problem

(i = 2), in which perfect factorization is always possible.

Other extensions of the standard BSS model, such as including

singular matrices [91] will be omitted from the discussion.

5.1 Algebraic BSS and Multidimensional Generalizations

Considering the BSS model from equation (4.1)—or a more general,

noisy version x(t) = As(t) + n(t)—the data can be separated only if we

put additional conditions on the sources, such as the following:

• They are stochastically independent: ps(s1, . . . , sn) = ps1(s1) · · · psn
(sn),

• Each source is sparse (i.e. it contains a certain number of zeros or has

a low p-norm for small p and fixed 2-norm)

• s(t) is stationary, and for all τ , it has diagonal autocovariances E(s(t+

τ) s(t)�); here zero-mean s(t) is assumed.

In the following, we will review BSS algorithms based on eigenvalue de-

composition, JD, and generalizations. Thereby, one of the above condi-

tions is denoted by the term source condition, because we do not want to

specialize on a single model. The additive noise n(t) is modeled by a sta-

tionary, temporally and spatially white zero-mean process with variance

σ2. Moreover, we will not deal with the more complicated underdeter-

mined case, so we assume that at most as many sources as sensors are
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to be extracted (i.e. n ≤ m).

The signals x(t) are observed, and the goal is to recover A and s(t).

Having found A, s(t) can be estimated by A†x(t), which is optimal in

the maximum-likelihood sense. Here † denotes the pseudo inverse of A,

which equals the inverse in the case of m = n. Thus the BSS task reduces

to the estimation of the mixing matrix A, and hence, the additive noise

n is often neglected (after whitening). Note that in the following we will

assume that all signals are real-valued. Extensions to the complex case

are straightforward.

Approximate joint diagonalization

Many BSS algorithms employ joint diagonalization (JD) techniques on

some source condition matrices to identify the mixing matrix. Given a set

of symmetric matrices C := {C1, . . . ,CK}, JD implies minimizing the

squared sum of the off-diagonal elements of Â�CiÂ, that is minimizing

f(Â) :=

K∑
i=1

‖Â�CiÂ − diag(Â�CiÂ)‖2
F (5.1)

with respect to the orthogonal matrix Â, where diag(C) produces a

matrix, where all off-diagonal elements of C have been set to zero,

and where ‖C‖2
F := tr(CC�) denotes the squared Frobenius norm. A

global minimum A of f is called a joint diagonalizer of C. Such a joint

diagonalizer exists if and only if all elements of C commute.

Algorithms for performing joint diagonalization include gradient de-

scent on f(Â), Jacobi-like iterative construction of A by Givens rotation

in two coordinates [42], an extension minimizing a logarithmic version

of equation (5.1) [202], an alternating optimization scheme switching

between column and diagonal optimization [292], and, more recently, a

linear least-squares algorithm for diagonalization [297]. The latter three

algorithms can also search for non-orthogonal matrices A. Note that in

practice, minimization of the off-sums yields only an approximate joint

diagonalizer—in the case of finite samples, the source condition matrices

are estimates. Hence they only approximately share the same eigenstruc-

ture and do not fully commutate, so f(Â) from equation (5.1) cannot

be rendered zero precisely but only approximately.
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Table 5.1
BSS algorithms based on joint diagonalization (centered sources are assumed)

algorithm source model condition matrices optimization
algorithm

FOBI [45] independent
i.i.d. sources

contracted quadrico-
variance matrix with
Eij = I

EVD af-
ter PCA
(GEVD)

JADE [46] independent
i.i.d. sources

contracted quadrico-
variance matrices

orthogonal
JD after
PCA

eJADE [180] independent
i.i.d. sources

arbitrary-order cumu-
lant matrices

orthogonal
JD after
PCA

HessianICA
[246, 291]

independent i.i.d.
sources

multiple Hessians
Hlog x̂(x(i)) or

Hlog px
(x(i))

orthogonal
JD after
PCA

AMUSE
[178, 270]

wide-sense stationary
s(t) with diagonal au-
tocovariances

single autoco-
variance matrix
E(x(t + τ)x(t)�)

EVD af-
ter PCA
(GEVD)

SOBI [28],
TDSEP [298]

wide-sense stationary
s(t) with diagonal au-
tocovariances

multiple autocovari-
ance matrices

orthogonal
JD after
PCA

mdAMUSE
[262]

s(t1, . . . , tM ) with
diagonal autocovari-
ances

single multidimen-
sional autocovariance
matrix (5.3)

EVD af-
ter PCA
(GEVD)

mdSOBI
[228, 262]

s(t1, . . . , tM ) with
diagonal autocovari-
ances

multidimensional au-
tocovariance matrices
(5.3)

orthogonal
JD after
PCA

JADETD

[182]
independent s(t) with
diagonal autocovari-
ances

cumulant and autoco-
variance matrices

orthogonal
JD after
PCA

Source conditions

In order to get a well-defined source separation model, assumptions

about the sources such as stochastic independence have to be formulated.

In practice, the conditions are preferably given in terms of roots of

some cost function that can easily be estimated. Here, we summarize

some of the source conditions used in the literature; they are defined

by a criterion specifying the diagonality of a set of matrices C(.) :=

{C1(.), . . . ,CK(.)}, which can be estimated from the data. We require

only that

Ci(Wx) = WCi(x)W� (5.2)

for some matrix W. Note that using the substitution C̄i(x) := Ci(x) +

Ci(x)�, we can assume Ci(x) to be symmetric. The actual source
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Table 5.2
BSS algorithms based on joint diagonalization (continued)

algorithm source model condition matrices optimization
algorithm

SONS [52] non-stationary s(t)
with diagonal (auto-
)covariances

(auto-)covariance
matrices of windowed
signals

orthogonal
JD after
PCA

ACDC [292],
LSDIAG
[297]

independent or auto-
decorrelated s(t)

covariance ma-
trices and cumu-
lant/autocovariance
matrices

non-
orthogonal
JD

block-
Gaussian
likelihood
[203]

block-Gaussian non-
stationary s(t)

(auto-)covariance
matrices of windowed
signals

non-
orthogonal
JD

TFS [27] s(t) from Cohen’s
time-frequency distri-
butions [58]

spatial time-
frequency distribution
matrices

orthogonal
JD after
PCA

FRT-
based BSS
[129]

non-stationary s(t)
with diagonal block-
spectra

autocovariance of
FRT-transformed
windowed signal

(non-
)orthogonal
JD

ACMA [273] s(t) is of constant
modulus (CM)

independent vectors

in ker P̂ of model-
matrix P̂

generalized
Schur QZ-
decomp.

stBSS [254] spatiotemporal
sources s := s(r, t)

any of the above con-
ditions for both x and
x�

non-
orthogonal
JD

group BSS
[249]

group-dependent
sources s(t)

any of the above con-
ditions

block or-
thogonal JD
after PCA

model is then defined by requiring the sources to fulfill Ci(s) = 0

for all i = 1, . . . , K. In table 5.1, we review some commonly used

source conditions for an m-dimensional centered random vector x and a

multivariate random process x(t).

Searching for sources s := Wx fulfilling the source model requires

finding matrices W such that Ci(Wx) is diagonal for all i. Depending

on the algorithm, whitening by PCA is performed as preprocessing

to allow for a reduced search on the orthogonal group W ∈ O(n).

This is equivalent to setting all source second-order statistics to I, and

then searching only for rotations. In the case of K = 1, the search

can be performed by eigenvalue decomposition of C1(x̃) of the source

condition of the whitened mixtures x̃; this is equivalent to solving the

generalized eigenvalue decomposition (GEVD) problem for the matrix

pencil (E(xx�),C1(x̃)). Usually, using more than one condition matrix
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increases the robustness of the proposed algorithm, and in these cases

the algorithm performs orthogonal JD of C := {Ci(x̃)}, for instance by

a Jacobi-type algorithm [42].

In contrast to this hard-whitening technique, soft-whitening tries to

avoid a bias toward second-order statistics and uses a nonorthogonal

joint diagonalization algorithm [202, 292, 297] by jointly diagonalizing

the source conditions Ci(x) together with the mixture covariance matrix

E(xx�). Then possible estimation errors in the second-order part do not

influence the total error to a disproportional degree.

Depending on the source conditions, various algorithms have been

proposed in the literature. Table 5.1 gives an overview of the algorithms

together with the references, the source model, the condition matrices,

and the optimization algorithm. For more details and references, see

[258].

Multidimensional autodecorrelation

In [262], we considered BSS algorithms based on time decorrelation and

the resulting source condition. Corresponding JD-based algorithms in-

clude AMUSE [270] and extensions such as SOBI [28] and TDSEP [298].

They rely on the fact that the data sets have non-trivial autocorrelations.

We extended them to data sets having more than one direction in the

parameterization such as images. For this, we replaced one-dimensional

autocovariances with multidimensional autocovariances defined by

Cτ1,...,τM
(s) := E

(
s(z1 + τ1, . . . , zM + τM )s(z1, . . . , zM )�

)
(5.3)

where the s is centered and the expectation is taken over (z1, . . . , zM ).

Cτ1,...,τM
(s) can be estimated given equidistant samples by replacing

random variables with sample values and expectations with sums as

usual.

A typical example of nontrivial multidimensional autocovariances is

a source data set in which each component si represents an image of size

h×w. Then the data is of dimension M = 2, and samples of s are given at

indices z1 = 1, . . . , h, z2 = 1, . . . , w. Classically, s(z1, z2) is transformed

to s(t) by fixing a mapping from the two-dimensional parameter set

to the one-dimensional time parameterization of s(t), for example, by

concatenating columns or rows in the case of a finite number of samples

(vectorization). If the time structure of s(t) is not used, as in all classical
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(a) analyzed image
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Figure 5.1
One- and two-dimensional autocovariance coefficients (b) of the gray-scale
128 × 128 Lena image (a) after normalization to variance 1. Clearly, using local
structure in both directions (2-D autocov) guarantees that for small τ , higher
powers of the autocorrelations are present than by rearranging the data into a
vector (1-D autocov), thereby losing information about the second dimension.

ICA algorithms in which i.i.d. samples are assumed, this choice does not

influence the result. However, in time-structure-based algorithms such

as AMUSE and SOBI, results can vary greatly, depending on the choice

of this mapping.

The advantage of using multidimensional autocovariances lies in the

fact that now the multidimensional structure of the data set can be used

more explicitly. For example, if row concatenation is used to construct

s(t) from the images, horizontal lines in the image will make only trivial

contributions to the autocovariances. Figure 5.1 shows the one- and two-

dimensional autocovariance of the Lena image for varying τ (respectively

(τ1, τ2)) after normalization of the image to variance 1. Clearly, the two-

dimensional autocovariance does not decay as quickly with increasing

radius as the one-dimensional covariance. Only at multiples of the

image height is the one-dimensional autocovariance significantly high

(i.e. captures image structure).
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More details, as well as extended simulations and examples, are given

in [228, 230, 262].

5.2 Spatiotemporal BSS

Real-world data sets such as recordings from functional magnetic res-

onance imaging often possess both spatial and temporal structure. In

[253], we propose an algorithm including such spatiotemporal informa-

tion into the analysis, and reduce the problem to the joint approximate

diagonalization of a set of autocorrelation matrices.

Spatiotemporal BSS, in contrast to the more common spatial or tem-

poral BSS, tries to achieve both spatial and temporal separation by op-

timizing a joint energy function. First proposed by Stone et al. [241], it

is a promising method which has potential applications in areas where

data contains an inherent spatiotemporal structure, such as data from

biomedicine or geophysics (including oceanography and climate dynam-

ics). Stone’s algorithm is based on the Infomax ICA algorithm [25], which

due to its online nature, involves some rather intricate choices of parame-

ters, specifically in the spatiotemporal version, where online updates are

being performed in both space and time. Commonly, the spatiotemporal

data sets are recorded in advance, so we can easily replace spatiotempo-

ral online learning with batch optimization. This has the advantage of

greatly reducing the number of parameters in the system, and leads to

more stable optimization algorithms. Stone’s approach can be extended

by generalizing the time-decorrelation algorithms to the spatiotemporal

case, thereby allowing us to use the inherent spatiotemporal structures

of the data [253].

For this, we considered data sets x(r, t) depending on two indices r

and t, where r ∈ R
n can be any multidimensional (spatial) index and

t indexes the time axis. In order to be able to use matrixnotation, we

contracted the spatial multidimensional index r into a one-dimensional

index r by row concatenation. Then the data set x(r, t) =: xrt can be

represented by a data matrix x of dimension sm× tm, where the super-

scripts s(.) and t(.) denote spatial and temporal variables, respectively.

Temporal BSS implies the matrix factorization x = tAts, whereas

spatial BSS implies the factorization x� = sAss or equivalently x =
ss�sA�. Hence x = tAts = ss�sA�. Thus both source separation mod-
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=x tA ts

(a) temporal BSS

=x� sA ss

(b) spatial BSS

=x ss�
ts

(c) spatiotemporal BSS

Figure 5.2
Temporal, spatial and spatiotemporal BSS models. The lines in the matrices ∗S
indicate the sample direction. Source conditions apply between adjacent such lines.

els can be interpreted as matrix factorization problems; in the temporal

case, restrictions such as diagonal autocorrelations are determined by

the second factor, and in the spatial case, by the first one. In order to

achieve a spatiotemporal model, we required these conditions from both

factors at the same time. Therefore, the spatiotemporal BSS model can

be derived from the above as the factorization problem

x = ss�ts (5.4)

with spatial source matrix ss and temporal source matrix ts, which

both have (multidimensional) autocorrelations that are as diagonal as

possible. The three models are illustrated in figure 5.2.

Concerning conditions for the sources, we interpreted Ci(x) :=

Ci(
tx(t)) as the i-th temporal autocovariance matrix, whereas Ci(x

�) :=

Ci(
sx(r)) denoted the corresponding spatial autocovariance matrix.
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Application of the spatiotemporal mixing model from equation (5.4)

together with the transformation properties equation (5.2) of the source

conditions yields

Ci(
ts) = ss†�Ci(x)ss† and Ci(

ss) = ts†�Ci(x
�)ts† (5.5)

because ∗m ≥ n and hence ∗s∗s† = I. By assumption the matrices

Ci(
∗s) are as diagonal as possible. In order to separate the data, we had

to find diagonalizers for both Ci(x) and Ci(x
�) such that they satisfy

the spatiotemporal model equation (5.4). As the matrices derived from

X had to be diagonalized in terms of both columns and rows, we denoted

this by double-sided approximate joint diagonalization.

This process can be reduced to joint diagonalization [253, 254]. In or-

der to get robust estimates of the source conditions, dimension reduction

was essential. For this we considered the singular value decomposition

x, and formulated the algorithm in terms of the pseudo-orthogonal com-

ponents of X. Of course, instead of using autocovariance matrices, other

source conditions Ci(.) from table 5.1 can be employed in order to adapt

to the separation problem at hand.

We present an application of the spatiotemporal BSS algorithm to

fMRI data using multidimensional autocovariances in chapter 8.

5.3 Independent Subspace Analysis

Another extension of the simple source separation model lies in extract-

ing groups of sources that are independent of each other, but not within

the group. Thus, multidimensional independent component analysis, or

independent subspace analysis (ISA), is the task of transforming a multi-

variate observed sensor signal such that groups of the transformed signal

components are mutually independent—however, dependencies within

the groups are still allowed. This allows for weakening the sometimes

too strict assumption of independence in ICA, and has potential appli-

cations in fields such as ECG, fMRI analysis, and convolutive ICA.

Recently we were able to calculate the indeterminacies of group ICA

for known and unknown group structures, which finally enabled us to

guarantee successful application of group ICA to BSS problems. Here,

we will review the identifiability result as well as the resulting algorithm

for separating signals into groups of dependent signals. As before, the
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algorithm is based on joint (block) diagonalization of sets of matrices

generated using one or multiple source conditions.

Generalizations of the ICA model that are to include dependencies of

multiple one-dimensional components have been studied for quite some

time. ISA in the terminology of multidimensional ICA was first intro-

duced by Cardoso [43] using geometrical motivations. His model, as well

as the related but independently proposed factorization of multivariate

function classes [155] are quite general. However, no identifiability results

were presented, and applicability to an arbitrary random vector was un-

clear. Later, in the special case of equal group sizes k (in the following

denoted as k-ISA), uniqueness results have been extended from the ICA

theory [247]. Algorithmic enhancements in this setting have studied been

recently [207]. Similar to [43], Akaho et al. [3] also proposed to employ a

multidimensional-component, maximum-likelihood algorithm, but in the

slightly different context of multimodal component analysis. Moreover,

if the observations contain additional structures such as spatial or tem-

poral structures, these may be used for the multidimensional separation

[126, 276].

Hyvärinen and Hoyer [121] presented a special case of k-ISA by com-

bining it with invariant feature subspace analysis. They model the de-

pendence within a k-tuple explicitly, and are therefore able to propose

more efficient algorithms without having to resort to the problematic

multidimensional density estimation. A related relaxation of the ICA

assumption is given by topographic ICA [122], where dependencies be-

tween all components are assumed and modeled along a topographic

structure (e.g. a two-dimensional grid). However, these two approaches

are not completely blind anymore. Bach and Jordan [13] formulate ISA

as a component clustering problem, which necessitates a model for inter-

cluster independence and intracluster dependence. For the latter, they

propose to use a tree structure as employed by their tree-dependent

component analysis [12]. Together with intercluster independence, this

implies a search for a transformation of the mixtures into a forest (i.e. a

set of disjoint trees). However, the above models are all semiparametric,

and hence not fully blind. In the following, we will review two contribu-

tions, [247] and [251], where no additional structures were necessary for

the separation.
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Fixed group structure: k-ISA

A random vector y is called an independent component of the random

vector x if there exist an invertible matrix A and a decomposition

x = A(y, z) such that y and z are stochastically independent. Note

that this is a more general notion of independent components in the

sense of ICA, since we do not require them to be one-dimensional.

The goal of a general independent subspace analysis (ISA) or mul-

tidimensional independent component analysis, is the decomposition of

an arbitrary random vector x into independent components. If x is to be

decomposed into one-dimensional components, this coincides with ordi-

nary ICA. Similarly, if the independent components are required to be

of the same dimension k, then this is denoted by multidimensional ICA

of fixed group size k, or simply k-ISA.

As we have seen before, an important structural aspect in the search

for decompositions is the knowledge of the number of solutions (i.e.

the indeterminacies of the problem). Clearly, given an ISA solution,

invertible transforms in each component (scaling matrices L), as well

as permutations of components of the same dimension (permutation

matrices P), give an ISA of x. This is of course known for 1-ISA (i.e. ICA,

see section 4.2).

In [247], we were able to extend this result to k-ISA, given some

additional restrictions to the model: We denoted A as k-admissible if for

each r, s = 1, . . . , n/k the (r, s) sub-k-matrix of A is either invertible or

zero. Then theorem 5.1 can be derived from the multivariate Darmois-

Skitovitch theorem (see section 4.2) or using our previously discussed

approach via differential equations [250].

Theorem 5.1 Separability of k-ISA: Let A ∈ Gl(n; R) be k-

admissible, and let s be a k-independent, n-dimensional random vec-

tor having no Gaussian k-dimensional component. If As is again k-

independent, then A is the product of a k-block-scaling and permutation

matrix.

This shows that k-ISA solutions are unique except for trivial trans-

formations, if the model has no Gaussians and is admissible, and can

now be turned into a separation algorithm.
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ISA with known group structure via joint block diagonalization

In order to solve ISA with fixed block size k or at least known block

structure, we will use a generalization of joint diagonalization which

searches for block structures instead of diagonality. We are not interested

in the order of the blocks, so the block structure is uniquely specified by

fixing a partition n = m1+. . .+mr of n and setting m := (m1, . . . , mr) ∈
Nr. An n × n matrix is said to be m-block diagonal if it is of the form⎛⎜⎝ M1 · · · 0

...
. . .

...

0 · · · Mr

⎞⎟⎠
with arbitrary mi × mi matrices Mi.

As with generalization of JD in the case of known block structure,

the joint m-block diagonalization problem is defined as the minimization

of

fm(Â) :=
K∑

i=1

‖Â�CiÂ − diagm(Â�CiÂ)‖2
F (5.6)

with respect to the orthogonal matrix Â, where diagm(M) produces a

m-block diagonal matrix by setting all other elements of M to zero.

Indeterminacies of any m-JBD are m-scaling (i.e. multiplication by an

m-block diagonal matrix from the right), and m-permutation, which is

defined by a permutation matrix that swaps only blocks of the same size.

Algorithms to actually perform JBD have been proposed [2, 80].

In the following we will simply perform joint diagonalization and then

permute the columns of A to achieve block diagonality—in experiments

this turns out to be an efficient solution to JBD, although other, more

sophisticated pivot selection strategies for JBD are of interest [81]. The

fact that JD induces JBD has been conjectured by Abed-Meraim and

Belouchrani [2], and we were able to give a partial answer with theorem

5.2.

Theorem 5.2 JBD via JD: Any block-optimal JBD of the Ci’s

(i.e., a zero of fm) is a local minimum of the JD cost function f from

equation (5.1).

Clearly, not just any JBD minimizes f ; only those such that in each
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block of size mk, f(Â), when restricted to the block, is maximal over

A ∈ O(mk), which we denote as block-optimal. The proof is given in

[251].

In the case of k-ISA, where m = (k, . . . , k), we used this result

to propose an explicit algorithm [249]. Consider the BSS model from

equation (4.1). As usual, by preprocessing we may assume whitened

observations x, so A is orthogonal. For the density ps of the sources, we

therefore get ps(s0) = px(As0). Its Hessian transforms like a 2-tensor,

which locally at s0 (see section 4.2) guarantees

Hln ps
(s0) = Hln px◦A(s0) = AHln px

(As0)A
�. (5.7)

The sources s(t) are assumed to be k-independent, so ps factorizes into

r groups each depending on k separate variables Thus ln ps is a sum

of functions depending on k separate variables, and hence Hln ps
(s0) is

k-block diagonal. Hessian ISA now simply uses the block-diagonality

structure from equation (5.7) and performs JBD of estimates of a set

of Hessians Hln ps
(si) evaluated at different sampling points si. This

corresponds to using the HessianICA source condition from table 5.1.

Other source conditions, such as contracted quadricovariance matrices

[46] can also be used in this extended framework [251].

Unknown group structure: General ISA

A serious drawback of k-ISA (and hence of ICA) lies in the fact that

the requirement of fixed group size k does not allow us to apply this

analysis to an arbitrary random vector. Indeed, theoretically speaking,

it may be applied only to random vectors following the k-ISA blind

source separation model, which means that they have to be mixtures of

a random vector that consists of independent groups of size k. If this

is the case, uniqueness up to permutation and scaling holds according

to theorem 5.1. However, if k-ISA is applied to any random vector, a

decomposition into groups that are only “as independent as possible”

cannot be unique, and depends on the contrast and the algorithm. In

the literature, ICA is often applied to find representations fulfilling the

independence condition only as well as possible. However, care has to be

taken; the strong uniqueness result is not valid anymore, and the results

may depend on the algorithm as illustrated in figure 5.3.

In contrast to ICA and k-ISA, we do not want to fix the size of the
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Figure 5.3
Applying ICA to a random vector x = As that does not fulfill the ICA model; here
s is chosen to consist of a two-dimensional and a one-dimensional irreducible
component. Shown are the statistics over 100 runs of the Amari error of the random
original and the reconstructed mixing matrix using the three ICA algorithms
FastICA, JADE, and Extended Infomax. Clearly, the original mixing matrix could
not be reconstructed in any of the experiments. However, interestingly, the latter
two algorithms do indeed find an ISA up to permutation, which can be explained
by theorem 5.2.

groups Si in advance. Of course, some restriction is necessary; otherwise,

no decomposition would be enforced at all. The key idea in [251], is to

allow only irreducible components defined as random vectors without

lower-dimensional independent components.

The advantage of this formulation is that it can clearly be applied

to any random vector, although of course a trivial decomposition might

be the result in the case of an irreducible random vector. Obvious inde-

terminacies of an ISA of x are scalings (i.e. invertible transformations

within each si) and permutation of si of the same dimension. These are

already all indeterminacies, as shown by theorem 5.3.

Theorem 5.3 Existence and Uniqueness of ISA: Given a ran-

dom vector X with existing covariance, an ISA of X exists and is unique

except for permutation of components of the same dimension and invert-

ible transformations within each independent component and within the

Gaussian part.

Here, no Gaussians had to be excluded from S (as in the previous

uniqueness theorems), because a dimension reduction results from [104,

251] can be used. The connection of the various factorization models and
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(a) ICA (b) ISA with fixed group-
size

(c) general ISA

Figure 5.4
Linear factorization models for a random vector x = As and the resulting
indeterminacies, where L denotes a one- or higher-dimensional invertible matrix
(scaling), and P denotes a permutation, to be applied only along the horizontal line
as indicated in the figures. The small horizontal gaps denote statistical
independence. One of the key differences between the models is that general ISA
may always be applied to any random vector x, whereas ICA and its generalization,
fixed-size ISA, yield unique results only if x follows the corresponding model.

the corresponding uniqueness results are illustrated in figure 5.4.

Again, we turned this uniqueness result into a separation algorithm,

this time by considering the JADE source condition based on fourth-

order cumulants. The key idea was to translate irreducibility into max-

imal block diagonality of the source condition matrices Ci(s). Algorith-

mically, JBD was performed using JD first using theorem 5.2, followed

by permutation and block size identification, see [251].

As a short example, we consider a general ISA problem in dimen-

sion n = 10 with the unknown partition m = (1, 2, 2, 2, 3). In order

to generate two- and three-dimensional irreducible random vectors, we

decided to follow the nice visual ideas from [207] and to draw samples

from a density following a known shape - in our case 2-D letters or 3-

D geometrical shapes. The chosen source densities are shown in figure

5.5(a-d). Another 1-D source following a uniform distribution was con-

structed. Altogether, 104 samples were used. The sources S were mixed

by a mixing matrix A with coefficients uniformly randomly sampled from

[−1, 1] to give mixtures X = AS. The recovered mixing matrix Â was

then estimated, using the above block JADE algorithm with unknown

block size; we observed that the method is quite sensitive to the choice

of the threshold (here θ = 0.015). Figure 5.5(e) shows the composed

mixing-separating system Â−1A; clearly the matrices are equal except
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Figure 5.5
Application of general ISA for unknown sizes m = (1, 2, 2, 2, 3). Shown are the
scatter plots (i.e. densities of the source components) and the mixing-separating

map Â−1A.

for block permutation and scaling, which experimentally confirms the-

orem 5.3. The algorithm found a partition m̂ = (1, 1, 1, 2, 2, 3), so one

2-D source was misinterpreted as two 1-D sources, but by using pre-

vious knowledge combination of the correct two 1-D sources yields the

original 2-D-source. The resulting recovered sources Ŝ := Â−1X, figures

5.5(f-j), then equal the original sources except for permutation and scal-

ing within the sources — which in the higher-dimensional cases implies

transformations such as rotation of the underlying images or shapes.

When applying ICA (1-ISA) to the above mixtures, we cannot expect to

recover the original sources, as explained in figure 5.3. However, some al-

gorithms might recover the sources up to permutation. Indeed, SJADE

equals JADE with additional permutation recovery because the joint

block diagonalization is performed using joint diagonalization. This ex-

plains why JADE retrieves meaningful components even in this non-ICA

setting, as observed in [43].
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(a) ECG recordings (b) extracted sources

(c) MECG part (d) fetal ECG part

Figure 5.6
Independent subspace analysis with known block structure m = (2, 1) is applied to
fetal ECG. (a) shows the ECG recordings. The underlying FECG (4 heartbeats) is
partially visible in the dominating MECG (3 heartbeats). (b) gives the extracted
sources using ISA with the Hessian source condition from table 5.1 with 500
Hessian matrices. In (c) and (d) the projections of the mother sources (first two
components from (b)) and the fetal source (third component from (b)) onto the
mixture space (a) are plotted.

Application to ECG data

Finally, we report the example from [249] on how to apply the Hes-

sian ISA algorithm to a real-world data set. Following [43], we show

how to separate fetal ECG (FECG) recordings from the mother’s ECG

(MECG). Our goal is to extract an MECG component and an FECG

component; however we cannot expect to find only a one-dimensional

MECG due to the fact that projections of a three-dimensional vector

(electric) field are measured. Hence, modeling the data by a multidi-

mensional BSS problem with k = 2 (but allowing for an additional

one-dimensional component) makes sense. Application of ISA extracts a

two-dimensional MECG component and a one-dimensional FECG com-

ponent. After block permutation we get estimated mixing matrix A and
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sources s(t), as plotted in figure 5.6(b). A decomposition of the observed

ECG data x(t) can be achieved by composing the extracted sources us-

ing only the relevant mixing columns. For example, for the MECG part

this means applying the projection ΠM := (a1, a2, 0)A−1 to the obser-

vations. The results are plotted in figures 5.6 (c) and (d). The FECG

is most active at sensor 1 (as visual inspection of the observation con-

firms). When comparing the projection matrices with the results from

[43], we get quite high similarity of the ICA-based results, and a modest

difference from the projections of the time-based algorithm.

EXERCISES

1. How does k-ISA for k = 1 compare with ICA, and how with

complex ICA if k = 2?

2. Autodecorrelation

a) Implement a time-based ICA algorithm using autodecorrelation

- how many calculations of an eigenvalue decomposition are

needed?

b) Instead of only two autocorrelations, use a joint diagonalization

method, such as Cardoso’s [42] from

http://www.tsi.enst.fr/~cardoso/Algo/Joint_Diag/

c) Apply this algorithm to the separation of the artificial mixture

of two natural images. For this, vectorize the images in order

to get two “time series”’that can be mixed. Up to which noise

level can you still separate the images?

d) Use the same algorithm to the separate the images, but now

diagonalize not the one-dimensional autocorrelations but the

multi dimensional ones. How does this perform with increas-

ingly noise level?

3. Multidimensional sources

a) Generate two multi dimensional, independent sources by taking

i.i.d. samples from nontrivial compact regions of R
n, (e.g. letters

or discs) as in figure 5.5.

b) Apply fastICA/JADE to separate the sources themselves and

then a random mixture. Show that in general, the multi dimen-

sional sources cannot be recovered.

http://www.tsi.enst.fr/~cardoso/Algo/Joint_Diag/
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c) Test all permutations of the recovered sources to show that after

permutation, even the multi dimensional sources are typically

restored.





6 Pattern Recognition Techniques

Modern classification paradigms such as neural networks, genetic algo-

rithms, and neuro–fuzzy methods have become very popular tools in

medical imaging. Whether diagnosis, therapeutics, or prognosis, artifi-

cial intelligence methods are leaders in these applications. In conjunction

with computer vision, these methods have become extremely important

for the development of computer-aided diagnosis systems which support

the analysis and interpretation of the routine production of the vast

numbers of medical images.

Artificial neural networks mimic the biological neural processing

based on a group of information-processing units, called neurons, and a

connectionist approach to computation. The neural architecture enables

a highly parallel processing and an adaptive learning which changes the

values of the interconnections between the neurons, called synapses, such

that the system learns directly from the data. Like the brain, artificial

neural networks are able to process incomplete, noise-corrupted, and

inconsistent information.

This chapter gives an overview of the most important approaches in

artificial neural networks and their application to biomedical imaging.

Traditional architectures such as unsupervised or supervised architec-

tures, and modern paradigms such as kernel methods, are presented

in great detail. The chapter also reviews the classifier evaluation tech-

niques in which the most relevant one represents the diagnostic accuracy

of classification measured by ROC curves.

6.1 Learning Paradigms and Architecture Types

Neural networks are adaptive, interconnected nonlinear systems which

are able to generalize and adapt to new environments by learning.

Besides its architecture, the learning algorithm is the most important

component for neural information processing. By learning, we mean

an iterative updating algorithm, which changes the interconnections

between the neurons according to input data. Learning, ideally inspired

by connectionist principles, falls for artificial neural networks into two

categories: supervised and unsupervised learning.

Supervised learning represents an error-correction learning which re-
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quires that both the input data and the corresponding target answers

are presented to the network. The error signal caused by the mismatch

between known target outputs and actual outputs is employed to itera-

tively adapt the connection strength between the neurons. In unsuper-

vised learning, on the other hand, a different paradigm is implemented:

the training data of known labels are not available, and thus an error

correction for all processing units or neurons does not take place. The

neurons compete with each other, and the connections of the winner

are adapted to the new input data. Learning is correlational and creates

categories of neurons specialized to similar or correlated input data.

As previously mentioned, neural networks implement a nonlinear

mapping between an input space and an output space by indirectly

inferring the structure of the mapping from given data pairs.

There are three basic mapping neural networks known in the litera-

ture [110]:

1. Recurrent networks: The feedback structure determines the networks’

temporal dynamics and thus enables the processing of sequential inputs.

This dynamic system is highly nonlinear because of the nonlinear input-

output mechanisms. This coupled with a sophisticated weights adjust-

ment paradigm, poses many stability problems for the overall dynamic

behavior. A form to control the dynamic behavior is based on choosing

a stabilizing learning mechanism imposed by strict conditions on the

“energy” function of this system. The most prominent representant is

the Hopfield neural network [118]. Less known and previously used was

the bidirectional associative memory (BAM) [143].

2. Multilayer feedforward neural networks: These are composed of a hierar-

chy of multiple units, organized in an input layer, an output layer and at

least one hidden layer. Their neurons have nonlinear activations enabling

the approximation of any nonlinear function or, equivalently, the classifi-

cation of nonlinearly separable classes. The most important examples of

these networks are the multilayer perceptron [159], the backpropagation–

type neural network [61], and the radial–basis neural network [179].

3. Local interaction–based neural networks: These architectures implement

the local information-processing mechanism in the brain. The learning

mechanism is a competitive learning, and updates the weights based on

the input patterns. In general, the winning neuron and those neurons in

its close proximity are positively rewarded or reinforced while the others
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Figure 6.1
Classification of neural networks based on (a) architecture type and (b) learning
algorithm.

are suppressed. This processing concept is called lateral inhibition and is

mathematically described by the Mexican-hat function. The biologically

closest network is the von der Malsburg model [277, 284]. Other networks

are the Kohonen maps [139] and the ART maps [100, 101].

The previously introduced concepts regarding neural architecture

and learning mechanisms are summarized in figure 6.1.

The theory and representation of the various network types are

motivated by the functionality and representation of biological neural

networks. In this sense, processing units are usually referred to as

neurons , and interconnections are called synaptic connections .

Although different neural models are known, all have the following

basic components in common:

1. A finite set of neurons a(1), a(2), . . . , a(n) with each neuron having a

specific activity at time t, which is described by at(i).

2. A finite set of neural connections W = (wij), where wij describes the

strength of the connection of neuron a(i) with neuron a(j).

3. A propagation rule τt(i) =
∑n

j=1 at(j)wij .

4. An activation function f , which has τ as an input value and produces

the next state of the neuron at+1(i) = f(τt(i)−θ), where θ is a threshold

and f is a nonlinear function such as a hard limiter, threshold logic, or

sigmoid function.
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Figure 6.2
Two-layer perceptron.

6.2 Multilayer Perceptron (MLP)

Multilayer perceptrons are one of the most important neural architec-

tures, with applications in both medical image processing and signal

processing. They have a layered, feedforward structure with an error-

based training algorithm. The architecture of the MLP is completely

defined by an input layer , one or more hidden layers, and an output

layer . Each layer consists of at least one neuron. The input vector is

applied to the input layer and passes the network in a forward direction

through all layers. Figure 6.2 illustrates the configuration of the MLP.

A neuron in a hidden layer is connected to every neuron in the layer

above it and below it. In figure 6.2, weight wij connects input node

xi to hidden node hj , and weight vjk connects hj to output node ok.

Classification starts by assigning the input nodes xi, 1 ≤ i ≤ l equal

to the corresponding data vector component. Then data propagates in

a forward direction through the perceptron until the output nodes ok,

1 ≤ k ≤ n, are reached. The MLP is able to distinguish 2n separate

classes, given that its outputs are assigned to the binary values 0 and 1.
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Propagation rule and activation function for the MLP network.

The input vector is usually the result of a preprocessing step of a

measured sensor signal. This signal is denoised, and the most relevant

information is obtained based on feature extraction and selection. The

MLP acts as a classifier, estimates the necessary discriminant functions,

and assigns each input vector to a given class. Mathematically, the

MLP belongs to the group of universal approximators and performs a

nonlinear approximation by using sigmoid kernel functions. The learning

algorithm adapts the weights based on minimizing the error between

given output and desired output.

The steps that govern the data flow through the perceptron during

classification are the following [221]:

1. Present the pattern p = [p1, p2, . . . , pl] ∈ Rl to the perceptron, that is,

set xi = pi for 1 ≤ i ≤ l.

2. Compute the values of the hidden layer nodes as is illustrated in figure

6.3:

hj =
1

1 + exp
[
−
(
w0j +

∑l
i=1 wijxi

)] 1 ≤ j ≤ m (6.1)
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Figure 6.4
XOR-problem and solution strategy using the MLP.

The activation function of all units in the MLP is given by the sigmoid

function f(x) = 1
1+exp (−x) and is the standard activation function in

feedforward neural networks. It is defined as a monotonically increasing

function representing an approximation between nonlinear and linear

behavior.

3. Calculate the values of the output nodes based on

ok =
1

1 + exp
(
v0k +

∑m
j=1 vjkhj

) 1 ≤ k ≤ n (6.2)

4. The class c = [c1, c2, . . . , cn] that the perceptron assigns p must be a

binary vector. Thus ok must be the threshold of a certain class at some

level τ and depends on the application.

5. Repeat steps 1 2 3 and 4 for each given input pattern.

MLPs are highly nonlinear interconnected systems and serve for both

nonlinear function approximation and nonlinear classification tasks. A

typical classification problem that can be solved only by the MLP is

the XOR problem. Based on a linear classification rule, Rm can be

partitioned into regions separated by a hyperplane. On the other hand,

the MLP is able to construct very complex decision boundaries, as

depicted in figure 6.4.

MLPs in medical signal processing operate based on either extracted
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temporal or spectral features [5, 55, 56]. Key features for medical image

processing are shape, texture, contours or size and in most cases describe

the region of interest [66, 67].

Backpropagation-type neural networks

MLPs are trained based on the simple idea of the steepest descent

method. The core part of the algorithm forms a recursive procedure

for obtaining a gradient vector in which each element is defined as

the derivative of a cost function (error function) with respect to a

parameter. This learning algorithm, known as the error backpropagation

algorithm, is bidirectional, consisting of a forward and a backward

direction. The learning is accomplished in a supervised mode which

requires the knowledge of the output for any given input. The learning

is accomplished in two steps: the forward direction and the backward

direction. In the forward direction, the output of the network in response

to an input is computed, while in the backward direction, an updating

of the weights is accomplished. The error terms of the output layer are

a function of ct and output of the perceptron (o1, o2, . . . , on).

The algorithmic description of the backpropagation is given below

[61]:

1. Initialization: Initialize the weights of the perceptron randomly with

numbers between –0.1 and 0.1; that is,

wij = random([−0.1, 0.1]) 0 ≤ i ≤ l, 1 ≤ j ≤ m

vjk = random([−0.1, 0.1]) 0 ≤ j ≤ m, 1 ≤ k ≤ n
(6.3)

2. Presentation of training patterns: Present pt = [pt
1, p

t
2, . . . , p

t
l ] from

the training pair (pt, ct) to the perceptron and apply steps 1, 2, and 3

from the perceptron classification algorithm described above.

3. Forward computation (output layer): Compute the errors δok, 1 ≤
k ≤ n in the output layer using

δok = ok(1 − ok)(ct
k − ok), (6.4)

where ct = [ct
1, c

t
2, . . . , c

t
n] represents the correct class of pt. The vector

(o1, o2, . . . , on) represents the output of the perceptron.
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4. Forward computation (hidden layer): Compute the errors δhj ,

1 ≤ j ≤ m, in the hidden layers nodes based on

δhj = hj(1 − hj)

n∑
k=1

δokvjk (6.5)

5. Backward computation (output layer): Let vjk denote the value

of weight vjk after the tth training pattern has been presented to the

perceptron. Adjust the weights between the output layer and the hidden

layer based on

vjk(t) = vjk(t − 1) + ηδokhj (6.6)

The parameter 0 ≤ η ≤ 1 represents the learning rate.

6. Backward computation (hidden layer): Adjust the weights between

the hidden layer and the input layer using

wij(t) = wij(t − 1) + ηδhjp
t
i (6.7)

7. Iteration: Repeat steps 2 through 6 for each pattern vector of the

training data. One cycle through the training set is defined as an

iteration.

Design considerations

MLPs represent global approximators by being able to implement any

nonlinear mapping between the inputs and the outputs. The minimum

requirement for the MLP to represent any function is fulfilled math-

ematically by imposing only one hidden layer [109]. In the beginning,

the architecture of the network has to be carefully chosen since it re-

mains fixed during the training and does not grow or prune like other

networks having a hybrid or unsupervised learning scheme. As with all

classification algorithms, the feature vector has to be chosen carefully,

be representative of the all pattern classes, and provide a good gener-

alization. Feature selection and extraction might be considered in order

to remove redundancy of the data.

The number of neurons in the input layer equals the dimension of the

training feature vector while those in the output layer are determined by

the number of classes of feature vectors required to be distinguished. A
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critical component of the training of the MLP is the number of neurons

in the hidden layer. Too many neurons result in overlearning, and too

few impair the generalization property of the MLP.

The complexity of the MLP is determined by the number of its

adaptable parameters such as weights and biases. The goal of each

classification problem is to achieve optimal complexity.

In general, complexity can be influenced by (1) data preprocessing

such as feature selection/extraction or reduction, (2) training schemes

such as cross validation and early stopping, and (3) network structure

achieved through modular networks comprising multiple networks.

The cross validation technique is usually employed when we aim at

a good generalization in terms of the optimal number of hidden neurons

and when the training has to be stopped. Cross validation is achieved

by dividing the training set into two disjoint sets. The first set is used

for learning, and the latter is used for checking the classification error

as long as there is an improvement of this error. Thus, cross validation

becomes an effective procedure for detecting overfitting.

In general, the best generalization is achieved when three disjoint

data sets are used: a training, a validation and a testing set. While

the first two sets avoid overfitting, the latter is used to show a good

classification.

Modular networks

Modular networks represent an important class of connectionist archi-

tectures and implement the principle of divide and conquer: a complex

task (classification problem) is achieved collectively by a mixture of ex-

perts (hierarchy of neural networks). Mathematically, they belong to the

group of universal approximators. Their architecture has two main com-

ponents: expert networks and a gating network. The idea of the commit-

tee machine was first introduced by Nilsson [186]. The most important

modular networks types are shown below.

• Mixture of experts: The architecture is based on experts and a sin-

gle gating network that yields a nonlinear function of the individual

responses of the experts.

• Hierarchical mixture of experts: This comprises several groups of

mixture of experts whose responses are evaluated by a gating network.

The architecture is a tree in which the gating networks sits at the
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Mixture of two expert networks.

nonterminals of the tree.

Figure 6.5 shows the typical architecture of a mixture of experts.

These networks receive the vector x as input and produce scalar outputs

that are a partition of unity at each point in the input space. They are

linear with the exception of a single output nonlinearity. Expert network

i produces its output μi as a generalized function of the input vector x

and a weight vector ui:

μi = uT
i x (6.8)

The neurons of the gating networks are nonlinear.

Let ξi be an intermediate variable; then

ξi = vT
i x (6.9)

where vi is a weight vector. Then the ith output is the “softmax”

function of ξi given as

gi =
exp (ξi)∑

k

exp (ξk)
. (6.10)

Note that gi > 0 and
∑
i

gi = 1. The gis can be interpreted as providing

a “soft” partitioning of the input space.
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The output vector of the mixture of experts is the weighted output

of the experts, and becomes

μ =
∑

i

giμi (6.11)

Both g and μ depend on the input x; thus, the output is a nonlinear

function of the input.

6.3 Self–organizing Neural Networks

Self-organizing maps implement competition-based learning paradigms.

They represent a nonlinear mapping from a higher-dimensional feature

space onto a usually 1-D or 2-D lattice of neurons. This neural network

has the closest resemblance to biological cortical maps. The training

mechanism is based on competitive learning: similarity (dissimilarity) is

selected as a measure, and the winning neuron is determined based on

the largest activation. The output units are imposed on a neighborhood

constraint such that similarity properties between input vectors are

reflected in the output neurons’ weights. If both the input and the neuron

spaces (lattices) have the same dimension, then this self-organizing

feature map [141] also becomes topology-preserving.

Self–organizing feature map

Mathematically, the self–organizing map (SOM) determines a transfor-

mation from a high–dimensional input space onto a one–dimensional

or two–dimensional discrete map. The transformation takes place as an

adaptive learning process such that when it converges, the lattice rep-

resents a topographic map of the input patterns. The training of the

SOM is based on a random presentation of several input vectors, one at

a time. Typically, each input vector produces the firing of one selected

neighboring group of neurons whose weights are close to the input vector.

The most important features of such a network are the following:

1. A 1-D or 2-D lattice of neurons on which input patterns of arbitrary

dimension are mapped, as visualized in figure 6.6a.

2. A measure that determines a winner neuron based on the similarity

between the weight vector and the input vector.
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Figure 6.6
(a) Kohonen neural network and (b) neighborhood Λi, of varying size, around the
“winning” neuron i, (the black circle).

3. A learning paradigm that chooses the winner and its neighbors simulta-

neously. A neighborhood Λi(x)(n) is centered on the winning neuron and

is adapted in its size over time n. Figure 6.6b illustrates such a neigh-

borhood, which first includes the whole neural lattice and then shrinks

gradually to only one “winning neuron” (the black circle).

4. An adaptive learning process that updates positively (reinforces) all

neurons in the close neighborhood of the winning neuron, and updates

negatively (inhibits) all those that are farther from the winner.

The learning algorithm of the self-organized map is simple and is

described below.

1. Initialization: Choose random values for the initial weight vectors

wj(0) to be different for j = 1, 2, . . . , N, where N is the number of

neurons in the lattice. The magnitude of the weights should be small.

2. Sampling: Draw a sample x from the input data; the vector x represents

the new pattern that is presented to the lattice.

3. Similarity Matching: Find the “winner neuron” i(x) at time n based

on the minimum distance Euclidean criterion:

i(x) = arg min
j

||x(n) − wj(n)||, j = 1, 2, . . . , N (6.12)
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4. Adaptation: Adjust the synaptic weight vectors of all neurons (winners

or not), using the update equation

wj(n + 1) =

{
wj(n) + η(n)[x(n) − wj(n)], j ∈ Λi(x)(n)

wj(n), else
(6.13)

where η(n) is the learning rate parameter and Λi(x)(n) is the neighbor-

hood function centered around the winning neuron i(x); both η(n) and

Λi(x) are functions of the discrete time n, and thus are continuously

adapted for optimal learning.

5. Continuation: Go to step 2 until there are no noticeable changes in the

feature map.

The presented learning algorithm has some interesting properties,

which are described based on figure 6.7.

The feature map implements a nonlinear transformation Φ from

a usually higher-dimensional continuous input space X to a spatially

discrete output space A:

Φ : X → A. (6.14)

In general, if the dimension between input and output space differs

significantly, the map is performing a data compression between the

higher-dimensional input space and the lower-dimensional output space.

The map preserves the topological relationship that exists in the input

space, if the input space has the same dimensionality as the output

space. In all other cases, the map is said to be only neighborhood-

preserving, in the sense that neighboring regions of the input space

activate neighboring neurons on the lattice. In cases where an accurate

topological representation of a high-dimensional input data manifold is

required, the Kohonen feature map fails to provide perfectly topology-

preserving maps.

Self-organizing maps have two fundamental properties:

• Approximation of the input space: The self-organizing feature map Φ,

completely determined by the neural lattice, learns the input data dis-

tribution by adjusting its synaptic weight vectors {wj|j = 1, 2, . . . , N}
to provide a good approximation to the input space X .

• Topological ordering achieved by the nonlinear feature map: There is
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Mapping between input space X and output space A.

a correspondence between the location of a neuron on the lattice and a

certain domain or distinctive feature of the input space.

Kohonen maps have been applied to a variety of problems in medical

image processing [144, 148, 286].

Design considerations

The Kohonen map is mostly dependent on two parameters of the algo-

rithm: the learning rate parameter η and the neighborhood function Λi.

The choice of these parameters is critical for a successful application,

and since there are no theoretical results, we have to rely on empirical

considerations: the learning rate parameter η(n) employed for adapta-

tion of the synaptic vector wj(n) should be time-varying. For the first

100 iterations η(n) should stay close to unity and decrease thereafter

slowly, but remain above 0.1. The neighborhood function Λi always has

to include the winning neuron in the middle. The function is shrunk

slowly and linearly with the time n, and usually reaches a small value

of only a couple of neighboring neurons after about 1000 iterations.

Learning vector quantization

Vector quantization (VQ) [99, 156] is an adaptive data classification

method which is used both to quantize input vectors into reference or

code word values and to apply these values directly to the subsequent

classification. VQ has its root in speech processing but has also been suc-
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cessfully applied to medical image processing [60]. In image compression,

VQ provides an efficient technique for data compression. Compression

is achieved by transmitting the index of the code word instead of the

vector itself.

VQ can be defined as a mapping that assigns each vector x = (x0, x1,

· · · , xn−1)
T in the n–dimensional space Rn to a code word from a finite

subset of Rn. The subset Y = {yi : i = 1, 2, · · · , M}, representing

the set of possible reconstruction vectors is called a codebook of size

M . Its members are called the code words. Note that both the input

space and the codebook have the same dimension and several yi can

be assigned to one class. In the encoding process, a distance measure,

usually Euclidean, is evaluated to locate the closest code word for

each input vector x. Then the address corresponding to the code word

is assigned to x and transmitted. The distortion between the input

vector and its corresponding codeword y is defined by the distance

d(x,y) = ||x − y||, where ||x|| represents the norm of x.

A vector quantizer achieving a minimum encoding error is referred to

as a Voronoi quantizer . Figure 6.8 shows an input data space partitioned

into four regions, called Voronoi cells, and the corresponding Voronoi

vectors. These regions represent all those input vectors that are very

close to the respective Voronoi vector.

Recent developments in neural network architectures lead to a new

unsupervised data-clustering technique, the learning vector quantization

(LVQ). Its architecture is similar to that of a competitive learning net-

work, with the only exception being that each output unit is associated

with a class. The learning paradigm involves two steps. In the first step,

the closest prototype (Voronoi vector) is located without using class in-

formation, while in the second step, the Voronoi vector is adapted. If

the class of the input vector and the Voronoi vector match, the Voronoi

vector is moved in the direction of the input vector x. Otherwise, the

Voronoi vector w is moved away from this vector x.

The LVQ algorithm is simple and is described below.

1. Initialization: Initialize the weight vectors {wj(0)|j = 1, 2, . . . , N}
by setting them equal to the first N exemplar input feature vectors

{xi|i = 1, 2, . . . , L}.
2. Sampling: Draw a sample x from the input data; the vector x represents
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Figure 6.8
Voronoi diagram involving four cells. The circles indicate the Voronoi vectors and
are the different region (class) representatives.

the new pattern that is presented to the LVQ.

3. Similarity matching: Find the best matching code word (Voronoi vec-

tor) wj at time n, based on the minimum-distance Euclidean criterion:

arg min
j

||x(n) − wj(n)||, j = 1, 2, . . . , N (6.15)

4. Adaptation: Adjust only the best matching Voronoi vector, while the

others remain unchanged. Assume that a Voronoi vector wc is the closest

to the input vector xi. We define the class associated with the Voronoi

vector wc y Cwc
, and the class label associated with the input vector xi

by Cxi
. The Voronoi vector wc is adapted as follows:

wc(n + 1) =

{
wc(n) + αn[xi − wc(n)], Cwc

= Cxi

wc(n) − αn[xi − wc(n)], otherwise
(6.16)

where 0 < αn < 1.

5. Continuation: Go to step 2 until there are no noticeable changes in the

feature map.

The learning rate αn is a positive, small constant; is is chosen as a

function of the discrete time parameter n, and decreases monotonically.
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The “neural-gas” Algorithm

The “neural–gas” network algorithm [166] is an efficient approach which,

applied to the task of vector quantization, (1) converges quickly to low

distortion errors, (2) reaches a distortion error E lower than that from

Kohonen’s feature map, and (3) at the same time obeys a gradient

descent on an energy surface.

Instead of using the distance ||x − wj|| or the arrangement of the

||wj|| within an external lattice, it utilizes a neighborhood ranking of

the reference vectors wi for the given data vector x. The adaptation of

the reference vectors is given by

Δwi = εe−ki(x,wi/λ)(x − wi) i = 1, · · · , N (6.17)

N is the number of units in the network. The step size ε ∈ [0, 1] describes

the overall extent of the modification, and ki is the number of the closest

neighbors of the reference vector wi. λ is a characteristic decay constant.

In [166] it was shown that the average change of the reference vectors

can be interpreted as an overdamped motion of particles in a potential

that is given by the negative data point density. Added to the gradient

of this potential is a “force” which points in the direction of the space,

where the particle density is low. The results of this “force” are based

on a repulsive coupling between the particles (reference vectors). In its

form it’s similar to an entropic force and tends to distribute the particles

(reference vectors) uniformly over the input space, as is the case with a

diffusing gas. Therefore the name “neural-gas” algorithm. Interestingly

the reference vectors are slowly adapted, and therefore, pointers that are

spatially close at an early stage of the adaptation procedure might not

be spatially close later. Connections that have not been updated for a

while die out and are removed.

Another important feature of the algorithm compared to the Koho-

nen algorithm is that it doesn’t require a prespecified graph (network).

In addition, it can produce topologically preserving maps, which is possi-

ble only if the topological structure of the graph matches the topological

structure of the data manifold. However, in cases where an appropriate

graph cannot be determined from the beginning, for example, in cases

where the topological structure of the data manifold is not known in

advance or is too complex to be specified, Kohonen’s algorithm always

fails to provide perfectly topology-preserving maps.
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Figure 6.9
Delaunay triangulation.

To obtain perfectly topology-preserving maps, we employ a powerful

structure from computational geometry: the Delaunay triangulation,

which is the dual of the Voronoi diagram [212]. In a plane, the Delaunay

triangulation is obtained if we connect all pairs wj by an edge if and only

if their Voronoi polyhedra are adjacent. Figure 6.9 shows an example of

a Delaunay triangulation. The Delaunay triangulation arises as a graph

matching the given pattern manifold.

The “neural-gas” algorithm is simple and is described below.

1. Initialization: Randomly initialize the weight vectors {wj|j = 1, 2, . . . , N}
and the training parameters (λi, λf , εi, εf ), where λi, εi are initial values

of λ(t) and ε(t) and λf , εf are the corresponding final values.

2. Sampling: Draw a sample x from the input data; the vector x represents

the new pattern that is presented to the “neural-gas” network.

3. Distortion: Determine the distortion set Dx between the input vector x

and the weights wj at time n, based on the minimum-distance Euclidean

criterion:

Dx = ||x(n) − wj(n)||, j = 1, 2, . . . , N (6.18)

Then order the distortion set in ascending order.

4. Adaptation: Adjust the weight vectors according to
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Δwi = εe−ki(x,wi/λ)(x − wi) i = 1, · · · , N, (6.19)

where i = 1, · · · , N . The parameters have the time dependencies λ(t) =

λi(λf/λi)
t

tmax and ε(t) = εi(εf/εi)
t

tmax

Increment the time parameter t by 1.

5. Continuation: Go to step 2 until the maximum iteration number tmax

is reached.

6.4 Radial-Basis Neural Networks (RBNN)

Radial-basis neural networks implement a hybrid learning mechanism.

They are feedforward neural networks with only one hidden layer; their

neurons in the hidden layer are locally tuned; and their responses to an

input vector are the outputs of radial-basis functions. The radial-basis

functions process the distance between the input vector (activation)

and its center (location). The hybrid learning mechanism describes a

combination of an unsupervised adaptation of the radial-basis functions’

parameter and a supervised adaptation of the output weights using a

gradient-based descent method.

The design of a neural network based on radial-basis functions is

equivalent to model nonlinear relationships, and implement an interpo-

lation problem in a high-dimensional space. Thus, learning is equivalent

to determining an interpolating surface which provides a best match to

the training data. To be specific, let us consider a system with n inputs

and m outputs, and let {x1, · · · , xn} be an input vector and {y1, · · · , ym}
the corresponding output vector describing the system’s answer to that

specific input. During the training, the system learns the input and out-

put data distribution, and when this is completed, it is able to find the

correct output for any input. Learning can be described as finding the

“best” approximation function f̂(x1, · · · , xn) of the actual input–output

mapping function [70, 208].

In the following, we will describe the mathematical framework for

solving the approximation problem based on radial-basis neural net-

works. In this context, we will present the concept of interpolation net-

works and how any function can be approximated arbitrarily well, based

on radial-basis functions under some restrictive conditions.
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Interpolation networks

Both the interpolation network problem and the approximation network

problem can be very elegantly solved by a three-layer feedforward neural

network. The architecture is quite simple, and has the structure of a

feedforward neural network with one hidden layer. The input layer has

branching neurons equal in number to the dimension of the input vector.

The hidden layer has locally tuned neuron sand performs a nonlinear

transformation, while the output layer performs a linear transformation.

The mathematical formulation of the simplified interpolation prob-

lem, assuming that there is no noise in the training data, is given below.

Let’s assume that to N different points {mi ∈ Rn|i = 1, · · ·N} there

correspond N real numbers {di ∈ R|i = 1, · · · , N}. Then find a function

F : Rn → R that satisfies the interpolation condition such that it yields

exact desired outputs for all training data:

F (mi) = di for i = 1, · · · , N. (6.20)

The simplified interpolation network based on radial-basis functions

has to determine a simplified representation of the function F that has

the form [208]

F (x) =

N∑
i=1

cih(||x − mi||) (6.21)

where h is a smooth function, known as a radial–basis function. ||.|| is the

Euclidean norm in Rn and ci are weight coefficients. It is assumed that

the radial-basis function h(r) is continuous on [0,∞) and its derivatives

on [0,∞) are strictly monotonic.

The above equation represents a superposition of locally tuned neu-

rons and can be easily represented as a three-layer neural network, as

shown in figure 6.10. The figure shows a network with a single output

which can be easily generalized.

As previously stated, the presented architecture implements any

nonlinear function of the input data. Interpolation networks with radial-

basis functions have three key features:

1. This interpolation network with an infinite number of radial-basis neu-
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Figure 6.10
Approximation network.

rons represents a universal approximator based on the Stone-Weierstrass

theorem [209]. In essence, every multivariate, nonlinear, and continuous

function can be approximated.

2. The interpolation network with radial-basis functions has the best ap-

proximation property compared to other neural networks, such as the

three-layer perceptron. The sigmoid function does not represent a trans-

lation and rotation-invariant function, as the radial-basis function does.

Thus, every unknown nonlinear function f is better approximated by a

choice of coefficients than any other choice.

3. The interpolation problem can be solved even more simply by choosing

radial-basis functions of the same width σi = σ, as shown in [197]:

F (x) =

N∑
i=1

cig

( ||x − mi||
σ

)
(6.22)

In other words, Gaussian functions of the same width can approximate

any given function.

Data processing in radial-basis function networks

Radial-basis neural networks implement a hybrid learning algorithm.

They have a combined learning scheme of supervised learning for the out-

put weights and unsupervised learning for radial-basis neurons. The ac-
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tivation function of the hidden-layer neurons mathematically represents

a kernel function but also has an equivalent in neurobiology: it represents

the receptive field . The unsupervised learning mechanism emulates the

“winner takes all” principle found in biological neural networks, and the

MLP’s backpropagation algorithm is an optimization method, known in

statistics as stochastic approximation. The theoretical basis of interpo-

lation and regularization networks based on radial-basis functions can

be found in [179] and [210].

The RBF network has a feedforward architecture with three distinct

layers. Let’s assume that the network has N hidden neurons, where the

output of the ith output node fi(x) when the n-dimensional input vector

x is given by

fi(x) =

N∑
j=1

wijΨj(x) (6.23)

Ψj(x) = Ψ(||x−mj||/σj) represents a suitable rotational and translation-

invariant kernel function that defines the output of the jth hidden node.

For most RBF networks, Ψ(.) is chosen to be the Gaussian function

where the width parameter σj is the standard deviation and mj is its

center. wij is the weight connecting the jth kernel/hidden node to the

ith output node. Figure 6.11a illustrates the architecture of the network.

The steps of a simple learning algorithm for am RBF neural network

are presented below.

1. Initialization: Choose random values for the initial weights of the

RBF network. The magnitude of the weights should be small. Choose

the centers mi and the shape matrices Ki of the N given radial-basis

functions.

2. Sampling: Randomly draw a pattern x from the input data. This

pattern represents the input to the neural network.

3. Forward computation of hidden layer’s activations: Compute the

values of the hidden-layer nodes as is illustrated in figure 6.11b:

ψi = exp (−d(x,mi,Ki)/2) (6.24)

d(x,mi) = (x−mi)
T Ki(x−mi) is a metric norm and is known as the

Mahalanobis distance. The shape matrix Ki is positive definite, and its
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elements Ki
jk,

Ki
jk =

hjk

σj ∗ σk
(6.25)

are the correlation coefficients hjk and σj the standard deviation of the

ith shape matrix.

For hjk we choose: hjk = 1 for j = k, and |hjk| ≤ 1 otherwise.

4. Forward computation of output layer’s activations: Calculate the

values of the output nodes according to

foj = ϕj =
∑

i

wjiψi (6.26)

5. Updating: Adjust weights of all neurons in the output layer based on

a steepest descent rule.

6. Continuation: Continue with step 2 until no noticeable changes in the

error function are observed.

The above algorithm assumes that the locations and the shape of a

fixed number of radial-basis functions are known a priori. RBF networks

have been applied to a variety of problems in medical diagnosis [301].

Design considerations

The RBF network has only one hidden layer, and the number of basis

functions and their shape are problem-oriented and can be determined

online during the learning process [151, 206]. The number of neurons

in the input layer equals the dimension of the feature vector. Likewise,

the number of nodes in the output layer corresponds to the number of

classes.

The success of RBF networks as local approximators of nonlinear

mappings is highly dependent on the number of radial-basis functions,

their widths, and their locations in the feature space. We are free to

determine the kernel functions of the RBF networks: they can be fixed

or adjusted through either supervised or unsupervised learning during

the training phase.

Unsupervised methods determine the locations of the kernel func-

tions based on clustering or learning vector quantization. The best-

known techniques are hard c-means algorithm, fuzzy c-means algorithm
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Figure 6.11
RBF network: (a) three-layer model; (b) the connection between input layer and
hidden layer neuron.

and fuzzy algorithms for LVQ.

The supervised methods for selection of the locations of the kernels

is based on an error-correcting learning. It starts with defining a cost

function

E =
1

2

P∑
j=1

e2
j (6.27)

where P is the size of the training sample and ej is the error defined by

ej = dj −
M∑
i=1

wiG(||xj − mi||Ci
) (6.28)

The goal is to find the widths, centers, and weights such that the error

E is minimized.

The results of this minimization [110] are summarized in table 6.1.
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From that table, we can see that the update equations for wi, xi, and

Σ−1
i have different learning rates thus visualizing the different time-

scales. The presented procedure is different from the backpropagation of

the MLP.

Table 6.1
Adaptation formulas for the linear weights and the position and widths of centers
for an RBF network [110].

1. Linear weights of the output layer
∂E(n)

∂wi(n)
=

PN
j=1 ej(n)G(||xj − mi(n)||)

wi(n + 1) = wi(n) − η1
∂E(n)

∂wi(n)
, i = 1, · · · , M

2. Position of the centers of the hidden layer
∂E(n)

∂mi(n)
= 2wi(n)

PN
j=1 ej(n)G

′
(||xj − mi(n)||)Ki[xj − mi(n)]

mi(n + 1) = mi(n) − η2
∂E(n)

∂mi(n)
, i = 1, · · · , M

3. Widths of the centers of the hidden layer
∂E(n)

∂ki(n)
= −wi(n)

PN
j=1 ej(n)G

′
(||xj − mi(n)||)Qji(n)

Qji(n) = [xj − mi(n)][xj − mi(n)]T

Ki(n + 1) = Ki(n) − η3
∂E(n)

∂Ki(n)

6.5 Transformation Radial-Basis Networks (TRBNN)

The selection of appropriate features is an important precursor to most

statistical pattern recognition methods. A good feature selection mecha-

nism helps to facilitate classification by eliminating noisy or nonrepresen-

tative features that can impede recognition. Even features that provide

some useful information can reduce the accuracy of a classifier when the

amount of training data is limited. This curse of dimensionality, along

with the expense of measuring and including features, demonstrates the

utility of obtaining a minimum-sized set of features that allow a classi-

fier to discern pattern classes well. Well-known methods in the literature

that are applied to feature selection are floating search methods [214]

and genetic algorithms [232].

Radial-basis neural networks are excellent candidates for feature

selection. It is necessary to add an additional layer to the traditional

architecture to obtain a representation of relevant features. The new

paradigm is based on an explicit definition of the relevance of a feature
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Figure 6.12
Linear transformation of a radial-basis neural network.

and realizes a linear transformation of the feature space.

Figure 6.12 shows the structure of a radial-basis neural network with

the additional layer 2, which transforms the feature space linearly by

multiplying the input vector and the center of the nodes by the matrix

B. The covariance matrices of the input vector remain unmodified.

x
′

= Bx, m
′

= Bm, C
′

= C (6.29)

The neurons in layer 3 evaluate a kernel function for the incoming

input and the neurons in the output layer perform a weighted linear

summation of the kernel functions:

y(x) =
N∑

i=1

wi exp
(
−d(x

′

,m
′

i)/2
)

(6.30)

with

d(x
′

,m
′

i) = (x
′ − m

′

i)
T C−1

i (x
′ − m

′

i). (6.31)
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Here, N is the number of neurons in the second hidden layer, x is the

n-dimensional input pattern vector, x
′

is the transformed input pattern

vector, m
′

i is the center of a node, wi are the output weights, and y is

the m-dimensional output of the network. The n × n covariance matrix

Ci is of the form

Ci
jk =

{
1

σ2
jk

if m = n

0 otherwise
(6.32)

where σjk is the standard deviation. Because the centers of the Gaussian

potential function units (GPFU) are defined in the feature space, they

will be subject to transformation by B as well. Therefore, the exponent

of a GPFU can be rewritten as

d(x,m
′

i) = (x − mi)
TBT C−1

i B(x − mi) (6.33)

and is in this form similar to equation (6.31).

For the moment, we will regard B as the identity matrix. The

network models the distribution of input vectors in the feature space

by the weighted summation of Gaussian normal distributions, which are

provided by the GPFU Ψj . To measure the difference between these

distributions, we define the relevance ρn for each feature xn:

ρn =
1

PJ

∑
p

∑
j

(xpn − mjn)2

2σ2
jn

(6.34)

where P is the size of the training set and J is the number of the GPFUs.

If ρn falls below the threshold ρth, one will decide to discard feature xn.

This criterion will not identify every irrelevant feature. If two features are

correlated, one of them will be irrelevant, but this cannot be indicated

by the criterion.

Learning paradigm for the transformation radial-basis neural

network

We follow [151] for the implementation of the neuron allocation and

learning rules for the TRBNN. The network generation process starts

without any neuron.

The mutual dependency of correlated features can often be approx-

imated by a linear function, which means that a linear transformation
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of the input space can render features irrelevant.

First we assume that layers 3 and 4 have been trained so that

they comprise a model of the pattern-generating process, and B is the

identity matrix. Then the coefficients Bnr can be adapted by gradient

descent with the relevance ρ
′

n of the transformed feature x
′

n as the target

function. Modifying Bnr means changing the relevance of xn by adding

xr to it with some weight Bnr. This can be done online, that is, for every

training vector xp, without storing the whole training set. The diagonal

elements Bnn are constrained to be constant 1, because a feature must

not be rendered irrelevant by scaling itself. This in turn guarantees that

no information will be lost. Bnr will be adapted only under the condition

that ρn < ρp, so that the relevance of a feature can be decreased only by

some more relevant feature. The coefficients are adapted by the learning

rule:

Bnew
nr = Bold

nr − μ
∂ρn

∂Bnr
(6.35)

with the learning rate μ and the partial derivative

∂ρn

∂Bnr
=

1

PJ

∑
p

∑
j

(x
′

pn − m
′

jn)

σ2
jn

(x
′

pr − m
′

jr). (6.36)

In the learning procedure, which is based on, for example, [151], we

minimize, according to the LMS criterion, the target function

E =
1

2

P∑
p=0

|y(x) − Φ(x)|2. (6.37)

where P is the size of the training set. The neural network has some

useful features, such as automatic allocation of neurons, discarding of

degenerated and inactive neurons, and variation of the learning rate

depending on the number of allocated neurons.

The relevance of a feature is optimized by gradient descent:

ρnew
i = ρold

i − η
∂E

∂ρi
(6.38)

Based on the new introduced relevance measure and the change in

the architecture, we get the following correction equations for the neural



Pattern Recognition Techniques 189

network:

∂E
∂wij

= −(yi − Φi)Ψj

∂E
∂mjn

= − ∑
i (yi − Φi)wijΨj

∑
k (x′

k − m′
jk)Bkn

σ2
jk

∂E
∂σjn

= − ∑
i (yi − Φi)wijΨj

(x′
n−m′

jn)2

σ3
jn

.

(6.39)

In the transformed space the hyperellipses have the same orientation

as in the original feature space. Hence they do not represent the same

distribution as before. To overcome this problem, layers 3 and 4 will

be adapted at the same time as B. Converge these layers fast enough,

and they can be adapted to represent the transformed training data,

thus providing a model on which the adaptation of B can be based. The

adaptation with two different target functions (E and ρ) may become

unstable if B is adapted too fast, because layers 3 and 4 must follow

the transformation of the input space. Thus μ must be chosen � η. A

large gradient has been observed to cause instability when a feature of

extreme high relevance is added to another. This effect can be avoided

by dividing the learning rate by the relevance, that is, μ = μ0/ρr.

6.6 Hopfield Neural Networks

An important concept in neural networks theory is dynamic recurrent

neural systems. The Hopfield neural network implements the operation

of auto associative (content-addressable) memory by connecting new

input vectors with the corresponding reference vectors stored in the

memory.

A pattern, in the parlance of an N -node Hopfield neural network ,

is an N -dimensional vector p = [p1, p2, . . . , pN ] from the space P =

{−1, 1}N . A special subset of P represents the set of stored or reference

patterns E = {ek : 1 ≤ k ≤ K}, where ek = [ek
1 , e

k
2 , . . . , ek

N ]. The Hop-

field network associates a vector from P with a certain reference pattern

in E. The neural network partitions P into classes whose members are

in some way similar to the stored pattern that represents the class. The

Hopfield network finds a broad application area in image restoration and

segmentation.
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Like the other neural networks, the Hopfield network has the follow-

ing four components:

Neurons: The Hopfield network has a finite set of neurons x(i), 1 ≤
i ≤ N which serve as processing units. Each neuron has a value (or

state) at time t, described by xt(i). A neuron in the Hopfield network

has one of the two states, either -1 or +1; that is, xt(i) ∈ {−1, +1}.
Synaptic connections: The learned information of a neural net-

work resides within the interconnections between its neurons. For each

pair of neurons x(i) and x(j), there is a connection wij , called the

synapse, between them. The design of the Hopfield network requires that

wij = wji and wii = 0. Figure 6.13a illustrates a three-node network.

Propagation rule: It defines how states and synapses influence the

input of a neuron. The propagation rule τt(i) is defined by

τt(i) =

N∑
j=1

xt(j)wij + bi (6.40)

bi is the externally applied bias to the neuron.

Activation function: The activation function f determines the

next state of the neuron xt+1(i) based on the value τt(i) computed by

the propagation rule and the current value xt(i). Figure 6.13b illustrates

this. The activation function for the Hopfield network, is the hard limiter

defined here:

xt+1(i) = f(τt(i),xt(i)) =

{
1, if τt(i) > 0

−1, if τt(i) < 0
(6.41)

The network learns patterns that are N -dimensional vectors from the

space P = {−1, 1}N . Let ek = [ek
1 , ek

2 , . . . , e
k
n] define the kth exemplar

pattern where 1 ≤ k ≤ K. The dimensionality of the pattern space is

reflected in the number of nodes in the network, such that the latter will

have N nodes x(1),x(2), . . . ,x(N).

The training algorithm of the Hopfield neural network is simple and

outlined below.

1. Learning: Assign weights wij to the synaptic connections:

wij =

{ ∑K
k=1 ek

i ek
j , if i �= j

0, if i = j
(6.42)

Keep in mind that wij = wji, so it is necessary to perform the preceding
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Figure 6.13
(a) Hopfield neural network; (b) propagation rule and activation function for the
Hopfield network.

computation only for i < j.

2. Initialization: Draw an unknown pattern. The pattern to be learned

is now presented to the network. If p = [p1, p2, . . . , pN ] is the unknown

pattern, write

x0(i) = pi, 1 ≤ i ≤ N (6.43)

3. Adaptation: Iterate until convergence. Using the propagation rule and

the activation function for the next state we get

xt+1(i) = f

⎛⎝ N∑
j=1

xt(j)wij ,xt(i)

⎞⎠ . (6.44)

This process should be continued until any further iteration will produce

no state change at any node.

4. Continuation: For learning a new pattern, repeat steps 2 and 3.

There are two types of Hopfield neural networks: binary and con-

tinuous. The differences between the two of them are shown in table

6.2.

In dynamic systems parlance, the input vectors describe an arbitrary

initial state, and the reference vectors describe attractors or stable states.

The input patterns cannot leave a region around an attractor, which is

called the basin of attraction.
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Table 6.2
Comparisons between binary and continuous Hopfield neural networks

Network type Binary Continuous-valued
Updating Asynchronous Continuous

Neuron function Hard limiter Sigmoid function
Description Update only one random Update continuously and

neuron’s output and simultaneously all
neurons’ outputs

The network’s dynamics minimizes an energy function, and those

attractors represent possible local energy minima. Additionally, these

networks are able to process noise-corrupted patterns, a feature that

is relevant for performing the important task of content-addressable

memory.

The convergence property of Hopfield’s network depends on the

structure of W (the matrix with elements wij) and the updating mode.

An important property of the Hopfield model is that if it operates in

a sequential mode and W is symmetric with non negative diagonal

elements, then the energy function

Ehs(t) = 1
2

n∑
i=1

n∑
j=1

wijxi(t)xj(t) −
n∑

i=1

bixi(t)

= − 1
2x

T (t)Wx(t) − bT x(t)

(6.45)

is nonincreasing [117]. The network always converges to a fixed point.

Hopfield neural networks are applied to solve many optimization

problems. In medical image processing, they are applied in the con-

tinuous mode to image restoration, and in the binary mode to image

segmentation and boundary detection.

6.7 Performance Evaluation of Clustering Techniques

Determining the optimal number of clusters is one of the most crucial

classification problems. This task is known as cluster validity. The chosen

validity function enables the validation of an accurate structural repre-

sentation of the partition obtained by a clustering method. While a vi-

sual visualization of the validity is relatively simple for two-dimensional

data, in the case of multidimensional data sets this becomes very tedious.
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In this sense, the main objective of cluster validity is to determine the

optimal number of clusters that provide the best characterization of a

given multidimensional data set. An incorrect assignment of values to

the parameter of a clustering algorithm results in a data-partitioning

scheme that is not optimal, and thus leads to wrong decisions.

In this section, we evaluate the performance of the clustering tech-

niques in conjunction with three cluster validity indices: Kim’s index,

the Calinski-Harabasz (CH) index, and the intraclass index. These in-

dices were successfully applied earlier in biomedical time-series analysis

[97]. In the following, we describe the above-mentioned indices.

Calinski-Harabasz index: [39]: This index is computed for m data

points and K clusters as

CH =
[traceB/(K − 1)]

[traceW/(m − K)]
(6.46)

where B and W represent the between- and within-cluster scatter ma-

trices.

The maximum hierarchy level is used to indicate the correct number

of partitions in the data.

Intraclass index [97]: This index is given as

IW =
1

n

K∑
k=1

nk∑
i=1

||xi − wk||2 (6.47)

where nk is the number of points in cluster k and wk is a prototype

associated with the kth cluster. IW is computed for different cluster

numbers. The maximum value of the second derivative of IW as a

function of cluster number is taken as an estimate for the optimal

partition. This index provides a possible way of assessing the quality

of a partition of K clusters.

Kim’s index [138]: This index equals the sum of the overpartition

vo(K,X,W), and the underpartition vu(K,X,W) function measure

IKim =
vu(K) − vumin

vumax − vumin
+

vo(K) − vomin

vomax − vomin
. (6.48)

where vu(K) is the underpartitioned average over the cluster number of

the mean intracluster distance, and measures the structural compactness
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of each class, vumin is its minimum and vumax is the maximum value.

vu(K,X,W) is given by the average of the mean intracluster distance

over the cluster number K, and measures the structural compactness

of each and every class. vo(K,X,W) is given by the ratio between the

cluster number K and the minimum distance between cluster centers,

describing intercluster separation. X is the matrix of the data points

and W is the matrix of the prototype vectors. Similarly, vo(K) is the

overpartitioned measure defined as the ratio between the cluster number

and the minimum distance between cluster centers that measures the

intercluster separation. vomin is its minimum and vomax is the maximum

value. The goal is to find the optimal cluster number with the smallest

value of IKim for a cluster number K = 2 to Kmax.

6.8 Classifier Evaluation Techniques

The evaluation of the classification accuracy of the pattern recognition

paradigms and the comparisons among them are accomplished based on

well-known tools such as the confusion matrix, the ranking order curves,

and ROC curves.

Confusion matrix

For a classification system, it’s important to determine the percentage

of correctly and incorrectly classified data.

A convenient visualization tool when analyzing results in an error-

prone classification system in general is the confusion matrix , which

is a two–dimensional matrix containing information about the actual

and predicted classes. The dimension of the matrix corresponds to the

number of classes. Entries on the diagonal of the matrix are the correct

classes and those off–diagonal are the misclassifications. The columns

are the actual classes and the rows are the predicted classes. The ideal

error–free classification case is a diagonal confusion matrix. Table 6.3

shows a sample confusion matrix. The confusion matrix allows us to keep

track of all possible outcomes of a classification process. In summary,

each element of the confusion matrix indicates the chances that the row

element is confused with the column element.
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Table 6.3
Confusion matrix for a classification of three classes: A1, A2, A3.

Output
A1 A2 A3

Input
A1 92% 3% 5%
A2 0% 94% 6%
A3 12% 88% 0%
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Figure 6.14
Example of ranking order curves showing feature selection results using three
different classifiers (MLP, SOM, RBFN).

Ranking order curves

Ranking order curves are a useful method that provides a feature set

that can be used to train a classifier to have very good generalization

capability.

The importance of the set of the most relevant features is well-known

in pattern recognition. In general, by adding additional features, we may

improve the classification performance. However, we observe that after

considering additional features, this may deteriorate or lead to over-

training. This situation varies across the different types of classifiers. To

avoid this problem, several simulations are required to determine the

optimal feature set. As a result, the ranking order curves provide a clear

picture of the feature dependence and, at the same time, a comparison

of the classification performance of different classifiers. Figure 6.14 vi-

sualizes three feature ranking order curves for supervised, unsupervised,

and hybrid classifiers.
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Table 6.4
Results of a test in two populations, one of them with a disease.

Disease present Disease absent Sum
Test positive true positive false positive (TP + FP)

(TP) (FP)
Test negative false negative true positive (FN + TN)

(FN) (TN)
Sum (TP + FN) (FP + RN)

6.9 Diagnostic Accuracy of Classification Measured by ROC

curves

Receiver operating characteristics (ROC) curves were discovered in con-

nection with signal detection theory, as a graphical plot to discriminate

between hits and false alarms. It is a graphical representation of the false

positive (false alarm) rate versus the true positive rate that is plotted

while a threshold parameter is varied.

Recently, ROC analysis has become an important tool in medical

decision-making by enabling the discrimination of diseased cases from

normal cases [172]. For example, in cancer research, the false positive

(FP) rate represents the probability of incorrectly classifying a normal

tissue region as a tumor region. On the other hand, the true positive

(TP) rate gives the probability of correctly classifying a tumor region as

such. Both the TP and the FP rates take values on the interval from 0.0

to 1.0, inclusive. In medical imaging the TP rate is commonly referred

to as sensitivity, and (1.0 - FP rate) is called specificity.

The schematic outcome of a particular test in two populations, one

with a disease and the other without the disease, is summarized in table

6.4.

In the following it is shown how ROC curves are generated given

the two pdfs of healthy and tumor tissue [287]. A decision threshold T

is set, such that if the ratio is larger than T , the unknown outcome

is classified as abnormal, otherwise as normal. By changing T , the

sensitivity/specificity trade–off of the test can be altered. A larger T

will result in lower TP and FP rates, while a smaller T will result in

higher TP and FP rates. The procedure described in [287] is illustrated

in figure 6.15.

The sensitivity is a performance measure of how well a test can
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Figure 6.15
Discriminant functions for two populations, one with a disease and the other
without the disease. A perfect separation between the two groups is rarely given; an
overlap is mostly observed. The FN, FP, TP, and TN areas are indicated.

determine the patients with disease, and the specificity shows the ability

of the test to determine the patients who do NOT have the disease.

In general, the sensitivity Se and the specificity Sp of a particular

test can be mathematically determined.

Sensitivity Se reveals that the test result will be positive when disease

is present (true positive rate, expressed as a percentage):

Se =
TP

FN + TP
(6.49)

Specificity Sp is the probability that a test result will be negative when

the disease is not present (true negative rate, expressed as a percentage):

Sp =
TN

TN + FP
(6.50)

Sensitivity and specificity are functions of each other and also counterre-

lated. The x-axis describes the specificity and the ROC curve expresses

1-specificity. Thus, the x and y coordinates are given as

x = 1 − TN

TN + FP
(6.51)

y =
TP

FN + TP
(6.52)
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Figure 6.16
Typical ROC curve.

Another important parameter in connection with ROC curves is the

discriminability index d
′

, which captures both the separation and the

spread of the disease and disease-free curves. Thus, it’s an estimate of

the signal strength and does not depend on interpretation criteria and is

therefore a measure of the internal response. The discriminability index

d
′

is defined as

d
′

=
separation

spread
(6.53)

For d
′

= 0, we have the 45◦ diagonal line.

A typical ROC curve is shown in figure 6.16. High values of sensitivity

and specificity (i.e., high y-axis values at low x-axis values) demonstrate

a good classification result. The area under the curve (AUC) is an

accepted modality of comparing classifier performance, where an area of

1.0 signifies near perfect accuracy, and an area of less than 0.5 indicates

random guessing.

A given classifier has a flexibility, in terms of chosen parameter

values, to change the FP and TP rates and to determine a different

operating point (TP, FP pair). Furthermore, it may thus obtain a lower

(higher) FP rate at the expense of a higher (lower) TP detection.

Another important aspect in the context of ROC curves is the

degree of overlapping between the two pdfs. The more they overlap, the

smaller the AUC becomes. When the overlap is complete, the resulting
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Figure 6.17

ROC curves for different discriminability index d
′
. When the overlap is minimal

and d
′

is large, the ROC curve becomes more bowed.

ROC curve becomes a diagonal line connecting the points (0,0) and

(1,1). Figure 6.17 illustrates the dependence of the ROC curve on the

discriminability index d
′

. ROC curves for a higher d
′

(not much overlap)

bow out further than ROC curves for lower d
′

(lots of overlap).

An ROC curve for a given two-group population problem (disease/non-

disease) is easily plotted based on the following steps:

1. We run a test for the disease and rank the test results in order of

increasing magnitude. We start at the origin of the axis where both

false positive and true positive are zero.

2. We set the threshold just below the largest result. If this first result

belongs to a patient with the disease, we obtain a true positive and

read from the overlapping pdfs the values of the true positive and false

negative, and plot the first point of the ROC curve.

3. We lower the threshold just below the second largest result and repeat

step 2.

4. We continue this process until we have moved the threshold below the

lowest value.

In summary, this procedure is very simple: the ranked values are

labeled as either true or false positive and then the curve is constructed.

The main requirement in connection with ROC curves is that the values

have to be ranked.

Some important aspects in the context of the ROC curve are of
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special interest:

• In the parlance of pattern recognition, it shows the performance of a

classifier as a trade-off between selectivity and sensitivity.

• The curve always connects the two coordinates (0, 0) (finds no posi-

tives) and (1, 1) (finds no negatives), and for the perfect classifier has

an AUC=1.

• The area under the ROC curve is similar to the Mann-Whitney

statistics.

• In the context of ROC curves we speak of the “gold standard” which

confirms the absence or presence of a disease.

• In the specific case of randomly paired normal and abnormal radio-

logical images, the area under the ROC curve represents a measure of

the probability that the perceived abnormality of the two images will

allow correct identification.

• Similar AUC values do not prove that ROC curves are also similar.

Deciding if similar AUC values belong to similar ROC curves requires

the application of bivariate statistical analysis.

6.10 Example: Adaptive Signal Analysis of Immunological

Data

This section aims to illustrate how both supervised and unsupervised sig-

nal analysis can contribute to the interpretation of immunological data.

For this purpose a data base was set up containing cellular data from

bronchoalveolar lavage fluid which was obtained from 37 children with

pulmonary diseases. The children were dichotomized into two groups: 20

children suffered from chronic bronchitis and 17 children had an inter-

stitial lung disease. A self-organizing map (SOM) (see section 6.3) and

linear independent component analysis were utilized to test higher-order

correlations between cellular subsets and the patient groups. Further-

more, a supervised approach with a perceptron trained to the patients’

diagnosis was applied. The SOM confirmed the results that were ex-

pected from previous statistical analyses. The results of the ICA were

rather weak, presumably because a linear mixing model of independent

sources does not hold; nevertheless, we could find parameters of high

diagnosis influence that were confirmed by the perceptron. The super-
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vised perceptron learning after principal component analysis for dimen-

sion reduction turned out to be highly successful by linearly separating

the patients into two groups with different diagnoses. The simplicity of

the perceptron made it easy to extract diagnosis rules, which partly were

known already and could now readily be tested on larger data sets.

The neural network signal analysis of this immunological data set

has been performed in [257] and extended using ICA in [256].

Medical background

Immunological approaches have gained increasing importance in modern

biochemical research. Within the last few years a broad array of sophis-

ticated experimental tools has been developed, and ultimately has led to

the generation of an immense quantity of new and complex information.

Since the interpretation of these results is often not trivial, there is a

need for novel data analysis instruments that allow evaluation of large

databases. For this purpose three different algorithms were applied to

immunological data that were generated as outlined below.

In inflammatory airway diseases, lymphocytes accumulate in the pul-

monary tissue. Since the lung is perfused by two different arterial sys-

tems that feed the bronchi and the alveoli, lymphocytes can enter the

pulmonary tissue by two separate vascular routes. Therefore, a selective

recruitment of distinct effector T cells into the two pulmonary compart-

ments may occur. Controlled trafficking of T cells to peripheral sites oc-

curs through adhesion molecules and the interaction of chemokines with

their counterpart receptors. Accordingly, a number of chemokine recep-

tors are differentially expressed on lymphocytes in an organ- or disease-

specific manner [92]. Chemokines are classified into four families (CC,

CXC, CX3, C) based on the positioning of amino acids between the two

N-terminal cysteine residues (see also [224]). CX3- and C-chemokines

are each represented by single members, whereas the other two groups

have multiple members. While the group of CXC-chemokines acts pref-

erentially on neutrophils, the CC-chemokine group is mainly involved in

the attraction of lymphocytes [224]. However, these distinctions are not

absolute.

To test whether a selective recruitment of T cells into the lung oc-

curs, 37 children suffering from various pulmonary diseases were selected

for the study. Based on clinical and radiological findings, the children

were further subdivided into two groups which mirrored the two pul-
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monary compartments. Seventeen children (f=10; mean age 5.3 years;

range 0.3-17.3 years) had chronic bronchitis (CB). Twenty children (f=7;

mean age 6.8 years, range 2 months - 18.8 years) had interstitial lung

diseases (ILD). In all children a bronchoalveolar lavage was performed

for diagnostic and/or therapeutic indications. Cells were obtained from

bronchoalveolar lavage fluid (BALF), and the frequency of lymphocytes

expressing different chemokine receptors (CXCR3+, CCR5+, CCR4+,

and CCR3+) which control lymphocyte migration was analyzed by four-

color flow cytometry on CD4+ and CD8+ T cell subsets. To evaluate the

contribution of the corresponding chemokines to the local effector cell re-

cruitment, the ligands for CXCR3 and CCR5, termed IP-10 (Interferon-γ

inducible Protein of 10 kDa), and RANTES (Regulated upon Activation

Normal T cell Expressed and Secreted) were quantified in BALF with a

commercial enzyme-linked immunosorbent assay (R&D Systems, Min-

neapolis, Minnesota USA).

Signal analysis

We analyzed the following parameters in BALF (visualization in figure

6.18): RANTES relative to the cell number in BALF (RANTESZZ), IP-

10, CD4+ T cells, CD8+ T cells, the ratio of CD4+ to CD8+ T cells

(CD4/CD8), CD19+ B cells, CCR5+CD4+ cells, CXCR3+CD4+ cells,

CXCR3+CD8+ cells, macrophages (M), lymphocytes (L), neutrophile

granulocytes (NG), eosinophile granulocytes (EG), the total cell count

in BALF (ZZ), systemic corticosteroid therapy (CORTISONE), and C-

reactive protein (CRP).

Altogether, we had a data set of 30 parameters; however, some

parameters were missing for some of the patients. In the following

we will use preselected subsets of these parameters as specified in the

corresponding section.

Self-organizing maps

SOMs approximate nonlinear statistical relationships between high-di-

mensional data items by easier geometric relationships on a low-di-

mensional display. They also perform abstraction by reducing the in-

formation while preserving the most important topological and metric

relationships of the primary data. These two aspects, visualization and

abstraction, can be utilized in a number of ways in complex tasks such
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as process analysis, machine perception, control, and communication.

In the following we will use SOMs as unsupervised analysis tools

mainly to visualize the complex data set from above and to find clusters

in the data set which might belong to separate diagnoses.

Results

Calculations were performed on a P4-2000 PC with Windows and Mat-

lab, using the “SOM Toolbox” from the Helsinki group1. In figure 6.18,

we show a SOM generated on the described data set.

The information obtained from the visualized data agreed with pre-

vious statistical analyses [108]. The parameter ZZ showed distinct clus-

ters on map units which represented samples of patients with ILD; a

weaker clustering was observed for RANTESZZ and CRP. Patients with

CB were characterized by map unit clusters of CD8 and CXCR3C+D8.

Furthermore, the SOM indicated relationships between immunological

parameters and patient groups which had not been identified by conven-

tional statistical approaches. NG showed a positive relationship to CRP

on map units which represented a subgroup of ILD samples (correlation

0.32 after normalization). M were predominately clustered on map units

of CB samples. Interestingly, the SOM separated three ILD samples on

map units from the ILD main cluster. These ILD samples showed dis-

tinct parameter characteristics in comparison to the ILD main cluster

group, both a higher density on the cluster map and agreater neighbor-

hood correlation than the other ILDs. The parameters CD4, CD4/CD8,

CD19, CR5CD4, and CX3CD4 showed a clear relationship (correlations

with respect to CD4 of CD4/CD8, CD19, CR5CD4, and CX3CD4 are

0.76, 0.47, 0.86, and 0.67). This is not surprising because these are pa-

rameter subgroups of cells from the same group, so they must correlate.

Independent component analysis

Algorithm

Principal component analysis (PCA), also called the Karhunen-Loève

transformation, is one of the most common multivariate data analysis

tools based on early works of Pearson [198]. PCA is a well-known

technique often used for data preprocessing in order to whiten the data

1 Available online at http://www.cis.hut.fi/projects/somtoolbox/.

http://www.cis.hut.fi/projects/somtoolbox/
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Figure 6.18
Self-organizing map generated on the 16-dimensional immunology data set. In
addition, the upper left image gives a visualization of the distance matrix between
hexagons – darker areas are larger distances – and the lower two images with labels
show how diagnosis and obstruction of each patient are mapped onto the
2-dimensional grid. The bottom right figure shows a plot of k-means clustering
applied to the distance matrix using 3 clusters.

and reduce its dimensionality, see chapter 3.

Given a random vector, the goal of ICA is to find its statistically

independent components, see chapter 4. This can be used to solve the

blind source separation (BSS) problem, which is, given only the mixtures

of some underlying independent sources, to separate the mixed signals

and thus recover the original sources. In contrast to correlation-based

transformations such as PCA, ICA renders the output signals as sta-

tistically independent as possible by evaluating higher-order statistics.

The idea of ICA was first expressed by Herault and Jutten [112] [127]

and the term ICA was later coined by Comon [59]. However, the field

became popular only with the seminal paper by Bell and Sejnowski [25],
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who elaborated upon the Infomax principle first advocated by Linsker

[157] [158].

In the calculations we used the well-known and well-studied FastICA

algorithm [124] of Hyvärinen and Oja, which separates the signals

using negentropy, and therefore non-Gaussianity, as a measure of the

separation signal quality.

Results

We used only 29 of the 39 samples because the number of missing pa-

rameters was too high in the other samples. As preprocessing, we applied

PCA in order to whiten the data and to project the 16-dimensional data

vector to the five dimensions of highest eigenvalues.

Figure 6.19 gives a plot of the linearly separated signals together

with the comparison patient diagnosis - the first 14 samples were CB

(diagnosis 0) and the last 15 were ILD (diagnosis 1). Since we were

trying to associate immunological parameters with a given diagnosis in

our data set, we calculated the correlation of the separated signals with

this diagnosis signal. In figure 6.18, the signal with the highest diagnosis

correlation is signal 5, with a correlation of 0.43 (which is still quite low).

The rows of the inverse mixing matrix contain the information on

how to construct the corresponding independent components from the

sample data. After normalization to unit signal variance, ICA signal 5

is constructed by multiplication of

ŵ� = 104( −9.5 −10.1 1.6 −10.1 4.7

0.40 −1.6 −8.5 −21 3.6

−6.2 −1.8 3.5 0 −0.037

3.6 )

with the signal data. We see that parameter 1 (RANTES), parameter

2 (IP10), parameter 4 (CD8), parameter 8 (CXCR3CD4), and param-

eter 9 (CXCR3+CD8) are those with the highest absolute values. This

indicates that those parameters have the greatest influence on the clas-

sification of the patients into one of the two diagnostic groups. The

perceptron learning results from the next section will confirm that high

values of RANTESZZ (which is positively correlated with RANTES re-

lated to lymphocytes in BALF (RANBALLY), which is analyzed using

the neural network) and CX3CD8 are indicators for CB; of course this



206 Chapter 6

0 5 10 15 20 25 30 35 40
�5

0

5
Independent components

0 5 10 15 20 25 30 35 40
�5

0

5

0 5 10 15 20 25 30 35 40
�5

0

5

0 5 10 15 20 25 30 35 40
�5

0

5

0 5 10 15 20 25 30 35 40
�5

0

5

0 5 10 15 20 25 30 35 40
�0.5

0

0.5

1

1.5
Diagnosis

Figure 6.19
ICA components using FastICA with symmetric approach and pow3-nonlinearity
after whitening and PCA dimension reduction to 5 dimensions. Below the
components, the diagnoses (0 or 1) of the patients are plotted for comparison. The
covariances of each signal with the diagnoses are −0.16, 0.27, 0.25, 0.04 and 0.43,
and visual comparison already confirms bad correspondence of one of the ICs with
the diagnosis signal.

holds true only with other values being small.

All in all, however, we note that the linear ICA model applied to

the given immunology data did not hold very well when trying to find

diagnosis patterns. Of course we did not have such nice linear models as

EEG data; altogether, not many medical models describing connections

of these immunology parameters have been found. Therefore we will try

to model the parameter-diagnosis relationship using supervised learning

in the next section.

Neural network learning

Having used the two unsupervised learning algorithms from above, we

now use supervised learning in order to approximate the parameter-

diagnosis function. We will show that the measured parameters are
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indeed sufficient to determine the patient diagnosis quite well.

Algorithm

Supervised learning algorithms try to approximate a given function

f : Rn → A ⊂ Rm by using a number of given sample-observation pairs

(xλ, f(xλ)) ∈ Rn ×A. If A is finite, we speak of a classification problem.

Typical examples of supervised learning algorithms are polynomial and

spline interpolation or artificial neural network (ANN) learning. In many

practical situations, ANNs have the advantage of higher generalization

capability than other approximation algorithms, especially when only

few samples are available.

McCulloch and Pitts [167] were the first to describe the abstract

concept of an artificial neuron base on the biological picture of a real

neuron. A single neuron takes a number of input signals, sums these and

plugs the result into a specific activation function (for example a (trans-

lated) Heaviside function or an arc tangent). The neural network itself

consists of a directed graph with an edge labeling of real numbers called

weights. At each graph node we have a neuron that takes the weighted

input and transmits it to all following neurons. Using ANNs has the ad-

vantage that in neural networks, which are adaptive systems, we know

for a given energy function how to algorithmically minimize this function

(for example, using the standard accelerated gradient descent method).

When trying to learn the function f , we use as the energy function the

summed square error
∑

λ |f(xλ) − y(xλ)|2, where y denotes the neural

network output function. Moreover, more general functions can then be

approximately learned using the fact that sufficiently complex neural

networks are so called universal approximators [119]. For more details

about ANNs, see some of the many available textbooks (e.g. [9] [110]

[113]).

We will restrict ourselves to feed forward layered neural networks.

Furthermore, we found that simple single-layered neural networks (per-

ceptrons) already sufficed to learn the diagnosis data well. In addition,

they have the advantage of easier rule extraction and interpretation.

A perceptron with output dimension 1 consists of only a single

neuron, so the output function y can be written as

y(x) = θ(w�x + w0)
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with weight w ∈ Rn, n input dimension, w0 ∈ R the bias, and as

activation function θ, the Heaviside function (θ(x) = 0 for x < 0 and

θ(x) = 1 for x ≥ 0). Often, the bias w0 is added as additional weight to

w with fixed input 1.

Learning in a perceptron means minimizing the error energy function

shown above. This can be done, for example, by gradient descent with

respect to w and w0. This induces the well-known delta rule for the

weight update,

Δw = η(y(x) − t)�x,

where η is a chosen learning rate parameter, y(x) is the output of the

neural network at sample x, and t is the observation of input x. It is easy

to see that a perceptron separates the data linearly, with the boundary

hyperplane given by {x ∈ R
n|w�x + w0 = 0}.

Results

We wanted to approximate the diagnosis function d̄ : R30 → {0, 1}
that classifies each parameter set to one of the two diagnoses. It turned

out that we achieved best results in terms of approximation quality by

using the 13-dimensional column subset with parameters RANTESRO,

RANTESZZ, RANBALLY, IP101RO, IP101ZZ, IP102RO, IP1O2ZZ,

CD8, CD4/CD8, CX3CD8, NG, ZZ and CORTISONE, as explained

earlier in this section. The diagnosis of each patient in this sample set

was known; so we really wanted to approximate the now 13-dimensional

diagnosis function d : R
13 → {0, 1}.

We had to omit 10 of the original 39 samples because too many

parameters of those samples were missing. Of the remaining 29 samples,

one parameter of one sample was unknown, so we replaced it with the

mean value of this parameter of the other samples.

After centering the data, further preprocessing was performed by

applying a PCA to the 13-D data set in order to normalize and whiten

the data and to reduce their dimension. With only this small number

of samples, learning in a 13-D neural network can easily result in very

low generalization quality of the network. In figure 6.20, we give a plot

of reduction dimension versus the output error of a perceptron trained

with all 29 samples after reduction to the given dimension. We see that

dimension reduction as low as five dimensions still yields quite good
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results: only three samples were not correctly classified. Note that we

use the same sample set for training and for testing the net; this is

due to the fact of the low number of samples did not allow testing

techniques like jackknifing or splitting the sample set into training and

testing samples. Therefore, we also used a simple perceptron and not a

more complex multi layered perceptron; its simple structure resulted in

a linear separation of the given sample set.

The perceptron used had a Heaviside activation function and an

additional bias for threshold shifting. We trained the network using 1000

epochs, although convergence was achieved after less than 50 epochs. We

got a reconstruction error of only three samples.

The weight matrix of the learned perceptron converged to

w� = ( 0.047 −0.66 −3.1 0.010 −0.010

0.010 0.029 −0.010 1.0 −0.32

−0.059 < 104 4.1 )�.

with bias w0 = −2.1, where we had already multiplied w by the

dewhitening PCA matrix. If we normalize the signals to unit variance,

we get normalized weights

ŵ� = ( 2.7 −0.69 −4.4 5.7 −0.17

5.6 0.40 −0.19 3.1 −6.0

−1.7 1.81.6 )�

and ŵ0 = 6.0. These entries in ŵ can be used to detect parameters that

have significant influence on the separation of the perceptron; these are

mainly parameters 1 (RANTESRO), 3 (RANBALLY), 4 (IP101RO), 6

(IP102RO), 9 (CD4/CD8), 10 (CX3CD8). By setting the other param-

eters to zero, we constructed a new perceptron

w̄� = ( 0.047 0 −3.2 0.010 0

0.010 0 0 1.04 −0.32

0 0 0 )�

and w̄0 = −2.0, again given for the non normalized source data. If we

apply the data to this new reduced perceptron, we get a reconstruc-

tion error of five samples, which means that even this low number of

parameters seems to distinguish the diagnosis quite well.

Further information can be obtained from the nets if we look at

the sample classification without applying the signum function. We get



210 Chapter 6

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Figure 6.20
PCA Dimension reduction versus perceptron reconstruction error.

values for the original network w, w0, as shown in figure 6.21.

The single-layer neural network was trained with our measured

immunological parameters to reveal the diagnoses of our patients. Since

the bearing and the interdependencies of our measured parameters are

not fully understood, it is difficult to ascribe importance to certain

parameters. Six measured parameters were found to be essential for

the ANN learning process to assign the diagnosis CB or ILD to the

individual data samples.

A point of interest is the distances of the patient samples from the

ANN separation boundary line (figure 6.21). The ANN showed three

outliers in the assignment of the samples to the diagnoses CB and ILD,

leading to wrong diagnosis assignments. Under these three outliers, two

turned out to be CB patients with bronchial asthma, representing a

distinct subgroup of the CB patient group. Two CB patients had the

greatest distance to the separation boundary; those were identified as

patients with a severe clinical course of CB. Similarly, three patients

with ILD showed a distinct separation distance. These patients were

identified as those with a severe course of the disease. Thus the ANN

showed a graduated discrimination specificity for the diagnoses CB and

ILD.
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The upper figure shows a plot of the sample number versus the perceptron output
w�x + w0. Samples 1, 2, and 4 are not correctly classified (should be below zero).
For comparison, the lower figure shows a plot of the correct diagnosis of the sample.

Discussion

We applied supervised and unsupervised signal analysis methods to

study lymphocyte subsets in BALF of children with different pulmonary

diseases. The self-organizing map read outs matched very well with the

results of perviously performed statistical analyses. Therefore, the SOM

clusters confirmed the expected differences in the frequency of distinct

lymphocyte subsets in both patient groups. In addition, the SOM re-

vealed possible relationships of immunological parameters, which were

not identified by conventional non parametric statistical methods. Since

the number of samples used for this analysis was limited, generaliza-

tions cannot be made at this point. However, the analysis of larger

sample numbers will further help to evaluate the importance of SOM

and advanced clustering methods in the description of immunological

contiguities.
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With a linear separation, the perceptron learned a diagnosis differen-

tiation in 90% of the analyzed samples. The network showed a graduated

discrimination specificity for the diagnoses CB and ILD. The application

of the ANN to a larger number of samples and higher-dimensional data

sets, could prove the benefit of this artificial intelligence tool.

In conclusion, the combination of these artificial intelligence ap-

proaches could be a very helpful tool to facilitate diagnosis assignment

from immunological patient data where no diagnosis can be given or the

discrimination between diagnoses is difficult.

6.11 Overview of Statistical, Syntactic, and

Neural Pattern Recognition

The artificial neural networks techniques are an important part of the

field of pattern recognition. In general, there are many classification

paradigms which lead to a reasonable solution of a classification problem:

syntactic, statistical, or neural. The delimitations between statistical,

syntactic and neural pattern recognition approaches are fuzzy since

all share common features and are geared toward obtaining a correct

classification result.

The decision to choose a particular approach over another is based on

analysis of underlying statistical components, or grammatical structure,

or on the suitability of a neural network solution [173].

Table 6.5 and figure 6.22 elucidate the similarities and differences

between the three pattern recognition approaches [227].

Both neural and statistical classification techniques require that the

information be given as a numerical-valued feature vector. In some cases,

information is available as a structural relation between the components

of a vector. The important aspect of structural information forms the

basis of the structural and syntactic classification concepts. Thus, struc-

tural pattern recognition can be employed for both classification and

description.

Each method has its strengths, but at the same time there are also

some drawbacks: the statistical method does not operate with syntactic

information; the syntactic method does not operate based on adaptive

learning rules; and the neural network approach does not contain any

semantic information in its architecture [173].
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Table 6.5
Comparing statistical, Syntactical and neural pattern recognition approaches.

Statistical Syntactic Neural
Pattern

Generation
Basis

Probabilistic
Models

Formal
Grammars

Stable State or
Weight Matrix

Pattern
Classification

Basis
Estimation or

Decision Theory Parsing

Neural
Network

Properties
Feature

Organization Input Vector
Structural
Relations Input Vector

Training Mechanism

Supervised

Density

Estimation

Forming

Grammars

Determining

Neural Network
Parameters

Unsupervised Clustering Clustering Clustering

Limitations
Structural

Information

Learning

Structural
Rules

Semantic
Information

EXERCISES

1. Consider a biased input of the form

τt(i) =
∑

k

at(i)wik + b

and a logistic activation function. What bias b is necessary for

f(0) = 0? Does this also hold for the algebraic sigmoid function?

Hint: The logistic function is defined as f(x) = 1
1+exp−αx with

α being a slope parameter. The algebraic sigmoid function is given

as f(x) = x√
1+v2

.

2. For f(τj) given as

f(τj) =
1

1 + exp−{ τj−θj

θ0
}
,

a) Determine and plot f
′

(τj) for τj = 0 and θ0 = 10.

b) Repeat this for τj = 0, θ0 = 100, and θ0 = 0.1.

3. Show that if the output activation is given by
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Pattern recognition approaches: (a) statistical approach (b) syntactic approach (c)
neural approach.

oj = f(τj) =
τj√

1 + τ2
j

then we obtain for its derivative

∂f(τj)

∂τj
=

f3(τj)

τ3
j

Is it possible to have a τj such that we obtain f(τj) = 0?

4. Explain why an MLP does not learn if the initial weights and biases

are all zeros.

5. A method to increase the rate of learning, yet to avoid the insta-

bility, is to modify the weight updating rule
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wij(n) = wij(n − 1) + ηδhjp
t
i (6.54)

by including a momentum term as described in [61]

Δwij(n) = αΔwij(n − 1) + ηδhjp
t
i (6.55)

where α is a positive constant called the momentum constant.

Describe how this affects the weights and also explain how a

normalized weight updating can be used for speeding the MLP

backpropagation training.

6. The momentum constant is in most cases a small number with

0 ≤ α < 1. Discuss the effect of choosing a small negative constant

with −1 < α ≤ 0 for the modified weight updating rule from

equation (6.55).

7. Create two data sets, one for training an MLP and the other for

testing the MLP. Use a single-layer MLP and train it with the

given data set. Use two possible nonlinearities: f(x) = x√
1+v2

and

f(x) = 2
π tan x−1. Determine for each of the given nonlinearities

a) The computational accuracy of the network by using the test

data.

b) The effect on the network performance by varying the size of

the hidden layer.

8. Comment on the differences and similarities between the Kohonen

map and the LVQ.

9. Which unsupervised learning neural networks are “topology-

preserving” and which are “neighborhood-preserving”?

10. Consider a Kohonen map performing a mapping from a 3-D input

onto a 1-D neural lattice of 100 neurons. The input data are random

points uniformly distributed inside a sphere of radius 1 centered

at the origin. Compute the map produced by the neural network

after 100, 1000, and 10,000 iterations.

11. Write a program to show how the Kohonen map can be used for

image compression. Choose blocks of 4× representing gray values

from the image as input vectors for the feature map.

12. When does the radial-basis neural network become a “fuzzy” neu-
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ral network? Comment on the architecture of such a network and

design strategies.

13. Show that the Gaussian function representing a radia-basis func-

tion is invariant under the product operator. In other words, prove

that the product of two Gaussian functions is still a Gaussian func-

tion.

14. Find a solution for the XOR problem using an RBF network

with four hidden units where four two-radial–basis function centers

are given by m1 = [1, 1]T , m2 = [1, 0]T , m3 = [0, 1]T , and

m4 = [0, 0]T . Determine the output weight matrix W.

15. How does the choice of the weights of the Hopfield neural network

affect the energy function in equation (6.45)?

16. Assume we switch the signs of the weights in the Hopfield algo-

rithm. How does this affect the convergence?



7 Fuzzy Clustering and Genetic Algorithms

Besides artificial neural networks, fuzzy clustering and genetic algo-

rithms represent an important class of processing algorithms for biosig-

nals.

Biosignals are characterized by uncertainties resulting from incom-

plete or imprecise input information, ambiguity, ill–defined or overlap-

ping boundaries among the disease classes or regions, and indefiniteness

in extracting features and relations among them. Any decision taken at a

particular point will heavily influence the following stages. Therefore, an

automatic diagnosis system must have sufficient possibilities to capture

the uncertainties involved at every stage, such that the system’s out-

put results should reflect minimal uncertainty. In other words, a pattern

can belong to more than one class. Translated to clinical diagnosis, this

means that a patient can exhibit multiple symptoms belonging to several

disease categories. The symptoms do not have to be strictly numerical.

Thus, fuzzy variables can be both linguistic and/or set variables. An ex-

ample of a fuzzy variable is the heart-beat of a person ranging from 40

to 150 beats per minute, which can be described as slow, normal, or fast.

The main difference between fuzzy and neural paradigms is that neural

networks have the ability to learn from data, while fuzzy systems (1)

quantify linguistic inputs and (2) provide an approximation of unknown

and complex input-output rules.

Genetic algorithms are usually employed as optimization procedures

in biosignal processing, such as determining the optimal weights for

neural networks when applied, for example, to the segmentation of

ultrasound images or to the classification of voxels.

This chapter reviews the basics of fuzzy clustering and of genetic

algorithms. Several well-known fuzzy clustering algorithms and fuzzy

learning vector quantization are presented.

7.1 Fuzzy Sets

Fuzzy sets are an important tool for the description of imprecision and

uncertainty.

A classical set is usually represented as a set with a crisp boundary.

For example,
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X = {x|x > 8} (7.1)

where 8 represents an unambiguous boundary. On the other hand, a

fuzzy set does not have a crisp boundary. To represent this fact, a new

concept is introduced, that of a membership function describing the

smooth transition from the fact “belongs to a set” to “does not belong

to a set”. Fuzzyness stems not from the randomness of the members of

the set but from the uncertain nature of concepts.

This chapter will review some of the basic notions and results in

fuzzy set theory.

Fuzzy systems are described by fuzzy sets and operations on fuzzy

sets. Fuzzy logic approximates human reasoning by using linguistic

variables and introduces rules based on combinations of fuzzy sets by

these operations. The notion of fuzzy set way introduced by Zadeh [295].

Crisp sets

Definition 7.1: Crisp set

Let X be a non empty set considered to be the universe of discourse.

A crisp set A is defined by enumerating all elements x ∈ X ,

A = {x1, x2, · · · , xn} (7.2)

that belong to A.

The universe of discourse consists of ordered or nonordered discrete

objects or of the continuous space.

Definition 7.2: Membership function

The membership function can be expressed by a function uA, that

maps X on a binary value described by the set I = {0, 1}:

uA : X → I, uA(x) =

{
1 if x ∈ A

0 if x �∈ A.
(7.3)

Here, uA(x) represents the membership degree of x to A.

Thus, an arbitrary x either belongs to A or it does not; partial member-
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Figure 7.1
A membership function of temperature.

ship is not allowed.

For two sets A and B, combinations can be defined by the following

operations:

A ∪ B = {x|x ∈ A or x ∈ B} (7.4)

A ∩ B = {x|x ∈ A and x ∈ B} (7.5)

Ā = {x|x �∈ A, x ∈ X}. (7.6)

Additionally, the following rules have to be satisfied:

A ∪ Ā = ∅, and A ∩ Ā = X (7.7)

Fuzzy sets

Definition 7.3: Fuzzy set

Let X be a non–empty set considered to be the universe of discourse.

A fuzzy set is a pair (X, A), where uA : X → I and I = [0, 1].

Figure 7.1 is an example of a possible membership function.

The family of all fuzzy sets on the universe x will be denoted by

L(X). Thus

L(X) = {uA|uA : X → I} (7.8)

and uA(x) is the membership degree of x to A. For uA(x) = 0, x does

not belong to A, and for uA(x) = 1, x does belong to A. All other cases

are considered fuzzy.
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Definition 7.4: Membership function of a crisp set

The fuzzy set A is called non ambiguous, or crisp, if uA(x) ∈ {0, 1}.

Definition 7.5: Complement of a fuzzy set

If A is from L(X), the complement of A is the fuzzy set Ā, defined

as

uĀ(x) = 1 − uA(x), ∀x ∈ X (7.9)

In the following, we define fuzzy operations which allow us to work

with fuzzy sets defined by membership functions.

For two fuzzy sets A and B on X , the following operations can be

defined.

Definition 7.6: Equality

Fuzzy set A is equal to fuzzy set B if and only if uA(x) = uB(x) for

all X . In symbols,

A = B ⇐⇒ uA(x) = uB(x), ∀x ∈ X (7.10)

The next two definitions are for the inclusion and the product of two

fuzzy sets.

Definition 7.7: Inclusion

Fuzzy set A is contained in fuzzy set B if and only if uA(x) ≤ uB(x)

for all X . In symbols,

A � B ⇐⇒ uA(x) ≤ uB(x), ∀x ∈ X (7.11)

Definition 7.8: Product

The product AB of fuzzy set A with fuzzy set B has a membership

function that is the product of the two separate membership functions.

In symbols,

u(AB)(x) = uA(x) · uB(x), ∀x ∈ X (7.12)
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The next two definitions pertain to intersection and union of two

fuzzy sets.

Definition 7.9: Intersection

The intersection of two fuzzy sets A and B has as a membership

function the minimum value of the two membership functions. In sym-

bols,

u(A∩B)(x) = min(uA(x), uB(x)), ∀x ∈ X (7.13)

Definition 7.10: Union

The union of two fuzzy sets A and B has as a membership function

the maximum value of the two membership functions. In symbols,

u(A∪B)(x) = max(uA(x), uB(x)), ∀x ∈ X (7.14)

Besides these classical set theory definitions, there are additional

fuzzy operations possible, as shown in [71].

Definition 7.11: Fuzzy partition

The family A1, · · · , An, n ≥ 2, of fuzzy sets is a fuzzy partition of the

universe X if and only if the condition

n∑
i=1

uAi
(x) = 1 (7.15)

holds for every x from X .

The above condition can be generalized for a fuzzy partition of a

fuzzy set. By C we define a fuzzy set on X . We may require that the

family A1, · · · , An of fuzzy sets is a fuzzy partition of C if and only if

the condition

n∑
i=1

uAi
(x) = uC(x) (7.16)

is satisfied for every x from X .
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7.2 Mathematical Formulation of a Fuzzy Neural Network

Fuzzy neural networks represent an important extension of the tradi-

tional neural network. They are able to process “vague” information

instead of crisp. The fuzziness can be found at different levels in the

process: as a fuzzy input, weights, or logic equations.

We attempt to give a concise mathematical formulation of the fuzzy

neural network as introduced by [194]. The fuzzy input is defined with

x and is the fuzzy output vector is defined with y, both being fuzzy

numbers or intervals. The connection weight vector is denoted with W.

The fuzzy neural network achieves a mapping from the n–dimensional

input space to the l–dimensional space:

x(t) ∈ Rn → y(t) ∈ Rl. (7.17)

A confluence operation ⊗ determines the similarity between the fuzzy

input vector x(t) and the connection weight vector W(t). For neural

networks, the confluence operation represents a summation or product

operation, while for the fuzzy neural network it describes an arithmetic

operation such as fuzzy addition and fuzzy multiplication.

The output neurons implement the nonlinear operation

y(t) = ψ[W(t)⊗x(t)], (7.18)

Based on the given training data {(x(t),d(t)),x(t) ∈ Rn,d(t) ∈ Rl, t =

1, · · · , N}, the cost function can be optimized:

EN =
N∑

t=1

d(y(t),d(t)), (7.19)

where d(·) defines a distance in Rl.

The learning algorithm of the fuzzy neural network is given by

W(t + 1) = W(t) + εΔW(t), (7.20)

and thus adjusts NW connection weights of the fuzzy neural network.
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(a)                                                        (b)

Figure 7.2
Different cluster shapes: (a) compact, and (b) spherical.

7.3 Fuzzy Clustering Concepts

Clustering partitions a data set in groups of similar pattern, each group

having a representant that is characteristic of the considered feature

class. Within each group or cluster, patterns have the largest similarity

to each other. In pattern recognition, we distinguish between crisp

and fuzzy clustering. Fuzzy clustering has a major advantage in real-

world application where the belonging of a pattern to a certain class

is ambiguous. To obtain such a fuzzy partitioning, the membership

function is allowed to have elements with values between 0 and 1, as

shown in the previous section, In other words, in fuzzy clustering a

pattern belongs simultaneously to more than one cluster, with the degree

of belonging specified by membership grades between 0 and 1, whereas

in traditional statistical approaches it belongs exclusively to only one

cluster.

Clustering is based on minimizing a cost or objective function J

of dissimilarity (or distance) measure. This predefined measure J is a

function of the input data and of an unknown parameter vector set L.

The number of clusters n is assumed in the following to be predefined

and fixed. Algorithms with growing or pruning cluster numbers and

geometries are more sophisticated and are described in [264].

An optimal clustering is achieved by determining the parameter L

such that the cluster structure of the input data is as captured as well

as possible. It is plausible that this parameter depends on the type of

geometry of the cluster: compact or spherical as visualized in figure 7.2.

While compact clusters can be accurately described by a set of n

points Li ∈ L representing these clusters, spherical clusters are described

by the centers of the cluster V and by the radii R of the clusters.

In the following, we will review the most important fuzzy clustering
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techniques, and show their relationship to nonfuzzy approaches.

Metric concepts for fuzzy classes

Let X = {x1,x2, · · · ,xp},xj ∈ Rs, be a data set. Suppose the optimal

number of clusters in X is given and that the cluster structure of X may

be described by disjunct fuzzy sets which, when combined, yield X.

Also, let C be a fuzzy set associated with a class of objects from

X and Fn(C) be the family of all n–member fuzzy partitions of C.

Let n be the given number of subclusters in C. The cluster family of

C can be appropriately described by a fuzzy partition P from Fn(C),

P = {A1, · · · , An}.
Every class Ai is described by a cluster prototype Li which represents

a point in an s–dimensional Euclidean space Rs. The clusters’ form can

be either spherical or ellipsoidal. Li represents the mean vector of the

fuzzy class Ai.

The fuzzy partition is typically described by an n × p membership

matrix U = [uij ]n×p which has binary values for crisp partitions and

continuous values between 0 and 1 for fuzzy partitions. Thus, the mem-

bership uij represents the degree of assignment of the pattern xj to the

ith class. The contrast between fuzzy and crisp partition is the follow-

ing: Given a fuzzy partition, a given data point xj can belong to several

classes as assigned by the membership matrix U = [uij ]n×p, while for

a crisp partition, this data point belongs to exactly one class. In the

following we will use the notation uij = ui(xj).

We also will give the definition of a weighted Euclidean distance.

Definition 7.12: The norm–induced distance d between two data x

and y from Rs is given by

d2(x,y) = ||x − y|| = (x − y)T M(x − y) (7.21)

where M is a symmetric positive definite matrix.

The distance with respect to a fuzzy class is given by definition.

Definition 7.13: The distance di between x and y with respect to
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the fuzzy class Ai is given by

di(x,y) = min(uAi
(x), uAi

(y))d(x,y), ∀x,y ∈ X (7.22)

Alternating optimization technique

The minimization of the objective function for fuzzy clustering depends

on variables such as cluster geometry as well as the membership matrix.

The standard approach used in most analytical optimization-based clus-

ter algorithms where coupled parameters are optimized alternatively, is

the alternating optimization technique. In each iteration, a set of vari-

ables is optimized while fixing all others. In general, the cluster algorithm

attempts to minimize an objective function which is based n either an

intra class similarity measure or a dissimilarity measure.

Let the cluster substructure of the fuzzy class C be described by the

fuzzy partition P = {A1, · · · , An} of C being equivalent to

p∑
j=1

uij = uC(xj), j = 1, · · · , p. (7.23)

Further, let Li ∈ Rs be the prototype of the fuzzy class Ai, and a point

from the data set X. We then obtain

uAi
(Li) =

max

j
uij . (7.24)

The dissimilarity between a data point and a prototype Li is given by:

Di(xj ,Li) = u2
ijd

2(xj ,Li). (7.25)

The inadequacy I(Ai,Li) between the fuzzy class Ai and its proto-

type is defined as

I(Ai,Li) =

p∑
j=1

Di(xj ,Li) (7.26)

Assume L = (L1, · · · ,Ln) is the set of cluster centers and describes a

representation of the fuzzy partition P .

The inadequacy J(P,L) between the partition P and its representa-

tion L is defined as

J(P,L) =

n∑
i=1

I(Ai,Li) (7.27)
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Thus the objective function J : Fn(C) × Rsn → R is obtained:

J(P,L) =

n∑
i=1

p∑
j=1

u2
ijd

2(xj ,Li) =

n∑
i=1

p∑
j=1

u2
ij ||xj − Li||2 (7.28)

It can be seen that the objective function is of the least-squares error

type, and a local solution of this minimization problem gives the optimal

fuzzy partition and its representation:⎧⎨⎩
minimize J(P,L)

P ∈ Fn(C)

L ∈ Rsn

(7.29)

We obtain an approximate solution of the above problem based on

an iterative method, the alternating optimization technique [33], by

minimizing the functions J(P, ·) and J(·,L).

In other words, the minimization problem from equation (7.29) is

replaced by two separate problems:

⎧⎨⎩
minimize J(P,L) → min

P ∈ Fn(C)

L is fixed

(7.30)

and

⎧⎨⎩
minimize J(P,L) → min

L ∈ Rsn

P is fixed

(7.31)

To solve the first optimization problem, we introduce the notation

Ij = {i|1 ≤ i ≤ n, d(xj ,Li) = 0} (7.32)

and

Īj = {1, 2, · · · , n} − Ij . (7.33)

Two theorems without proof are given regarding the minimization of the

function J(P, ·) or J(·,L) in equations (7.30) and (7.31).

Theorem 7.1:
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P ∈ Fn(C) represents a minimum of the function J(·,L) only if

Ij = ∅ ⇒ uij =
uC(xj)

n∑
k=1

d2(xj ,Li)
d2(xj ,Lk)

, ∀1 ≤ i ≤ n; 1 ≤ j ≤ p (7.34)

and

Ij �= ∅ ⇒ uij = 0, ∀i ∈ Ij (7.35)

and arbitrarily
∑

i∈Ij

uij = uC(xj).

Theorem 7.2:

If L ∈ Rsn is a local minimum of the function J(P, ·), then Li is the

cluster center (mean vector) of the fuzzy class Ai for every i = 1, · · · , n:

Li =
1

p∑
j=1

u2
ij

p∑
j=1

u2
ijxj (7.36)

The alternating optimization (AO) technique is based on the Picard

iteration of equations (7.34), (7.35), and (7.36).

It is worth mentioning that a more general objective function can be

considered:

Jm(P,L) =

n∑
i=1

p∑
j=1

um
ijd

2(xj ,Li) (7.37)

with m > 1 being a weighting exponent, sometimes known as a fuzzifier ,

and d the norm–induced distance.

Similar to the case m = 2 shown in equation (7.28), we have two

solutions for the optimization problem regarding both the prototypes

and the fuzzy partition. Since the parameter m can take infinite values,

an infinite family of fuzzy clustering algorithms is obtained. In the

case m → 1, the fuzzy n-means algorithm converges to a hard n-

means solution. As m becomes larger, more data with small degrees

of membership are neglected, and thus more noise is eliminated.
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7.4 Fuzzy Clustering Algorithms

This section describes several well-known fuzzy clustering algorithms,

such as the generalized adaptive fuzzy n-means algorithm, the general-

ized adaptive fuzzy n-shells algorithm, the Gath-Geva algorithms, and

fuzzy learning vector quantization algorithms.

Let X = {x1, · · · ,xp} define the data set, and C a fuzzy set, on X.

The following assumptions are made:

• C represents a cluster of points from X.

• C has a cluster substructure described by the fuzzy partition P =

{A1, · · · , An}.
• n is the number of known subclusters in C.

The algorithms require a random initialization of the fuzzy partition.

In order to monitor the convergence of the algorithm, the n×p partition

matrix Qi is introduced to describe each fuzzy partition P i at the

ith iteration, and is used to determine the distance between two fuzzy

partitions. The matrix Qi is defined as

Qi = U at iteration i. (7.38)

The termination criterion for iteration m is given by

d(P m, Pm−1) = ||Qm − Qm−1|| < ε. (7.39)

where ε defines the admissible error and || · || is any vector norm.

Generalized Adaptive Fuzzy n-Means Algorithm

This adaptive fuzzy technique employs different distance metrics such

that several cluster shapes, ranging from spherical to ellipsoidal, can be

detected.

To achieve this, an adaptive metric is used. We define a new distance

metric d(xj ,Li), from the data point xj to the cluster prototype Li, as

d2(xj ,Li) = (xj − Li)
T Mi(xj − Li), (7.40)

where Mi is a symmetric and positive definite shape matrix and adapts

to the clusters’ shape variations. The growth of the shape matrix is
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monitored by the bound

|Mi| = ρi, ρi > 0, i = 1, · · · , n (7.41)

Let X = {x1, · · · ,xp}, xj ∈ Rs be a data set. Let C be a fuzzy set

on X describing a fuzzy cluster of points in X, and having a cluster

substructure which is described by a fuzzy partition P = {A1, · · · , An}
of C. Each fuzzy class Ai is described by the point prototype Li ∈ Rs.

The local distance with respect to Ai is given by

d2
i (xj ,Li) = u2

ij(xj − Li)
T Mi(xj − Li) (7.42)

As an objective function we choose

J(P,L, M) =

n∑
i=1

p∑
j=1

d2(xj ,Li) =

n∑
i=1

p∑
j=1

u2
ij(xj − Li)

T Mi(xj − Li)

(7.43)

where M = (M1, · · · ,Mn).

The objective function chosen is again of the least-squares error type.

We can find the optimal fuzzy partition and its representation as the

local solution of the minimization problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
minimize J(P,L, M)

n∑
i=1

uij = uC(xj), j = 1, · · · , p

|Mi| = ρi, ρi > 0, i = 1, · · · , n

L ∈ Rsn

(7.44)

Without proof theorem 7.3 which regards the minimization of the func-

tions J(P,L, ·), is given. It is known as the adaptive norm theorem.

Theorem 7.3: Assuming that the point prototype Li of the fuzzy class

Ai equals the cluster center of this class, Li = mi, and the determinant

of the shape matrix Mi is bounded, |Mi| = ρi, ρi > 0, i = 1, · · · , n, then

Mi is a local minimum of the function J(P,L, ·) only if

Mi = [ρi|Si|] 1
s S−1

i (7.45)
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where Si is the within-class scatter matrix of the fuzzy class Ai:

Si =

p∑
j=1

u2
ij(xj − mi)(xj − mi)

T . (7.46)

Theorem 7.3 can be employed as part of an alternating optimization

technique. The resulting iterative procedure is known as the generalized

adaptive fuzzy n–means (GAFNM) algorithm.

An algorithmic description of the GAFNM is given below.

1. Initialization: Choose the number n of subclusters in C and the

termination criterion ε. P 1 is selected as a random fuzzy partition of

C having n atoms. Set the iteration counter l = 1.

2. Adaptation, part I: Determine the cluster prototypes Li = mi, i =

1, · · · , n using

Li =
1

p∑
j=1

u2
ij

p∑
j=1

u2
ijxj . (7.47)

3. Adaptation, part II: Determine the within-class scatter matrix Si

using

Si =

p∑
j=1

u2
ij(xj − mi)(xj − mi)

T . (7.48)

Determine the shape matrix Mi using

Mi = [ρi|Si|] 1
s S−1

i (7.49)

and compute the distance d2(xj ,mi) using

d2(xj ,mi) = (xj − mi)
T Mi(xj − mi). (7.50)

4. Adaptation, part III: Compute a new fuzzy partition P l of C using

the rules
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Ij = ∅ ⇒ uij =
uC(xj)

n∑
k=1

d2(xj ,mi)
d2(xj ,mk)

, ∀1 ≤ i ≤ n; 1 ≤ j ≤ p (7.51)

and

Ij �= ∅ ⇒ uij = 0, ∀i ∈ Ij (7.52)

and arbitrarily
∑

i∈Ij

uij = uC(xj).

The standard notation is used:

Ij = {i|1 ≤ i ≤ n, d(xj ,Li) = 0} (7.53)

and

Īj = {1, 2, · · · , n} − Ij (7.54)

5. Continuation: If the difference between two successive partitions is

smaller than a predefined threshold, ||P l − P l−1|| < ε, then stop.

Otherwise, go to step 2.

An important issue for the GAFNM algorithm is the selection of the

bounds of the shape matrix Mi. They can be chosen as

ρi = 1, i = 1, · · · , n (7.55)

If we choose C = X, we obtain uC(xj) = 1 and thus get the membership

degrees

uij =
1

n∑
k=1

d2(xj ,mi)
d2(xj ,mk)

, ∀1 ≤ i ≤ n; 1 ≤ j ≤ p (7.56)

The resulting iterative procedure is known as the adaptive fuzzy n-means

(AFNM) algorithm.

Generalized adaptive fuzzy n-shells algorithm

So far, we have considered clustering algorithms that use point proto-

types as cluster prototypes. Therefore, the previous algorithms cannot



232 Chapter 7

detect clusters that can be described by shells, hyperspheres, or hyper-

ellipsoids. The generalized adaptive fuzzy n-shells algorithm [63, 64] is

able to detect such clusters. The cluster prototypes that are used are

s-dimensional hyperellipsoidal shells, and the distances of data points

are measured from the hyperellipsoidal surfaces. Since the prototypes

contain no interiors, they are referred to as shells.

The hyperellipsoidal shell prototype Li(vi, ri,Mi) of the fuzzy class

Ai is given by the set

Li(vi, ri,Mi) = {x ∈ Rs|(x − vi)
T Mi(x − vi) = r2

i } (7.57)

with Mi representing a symmetric and positive definite matrix.

The distance dij between the point xj and the cluster center vi is defined

as

d2
ij = d2(xj ,vi) = [(x − vi)

T Mi(x − vi)]
1
2 − ri (7.58)

Thus a slightly changed objective function is obtained:

J(P, V, R, M) =

n∑
i=1

p∑
j=1

u2
ijd

2
ij =

n∑
i=1

p∑
j=1

u2
ij [(x−vi)

T Mi(x−vi)]
1
2 −ri]

2.

(7.59)

For optimization purposes, we need to determine the minimum of the

functions J(·, V, R, M), J(P, ·, R, M), and J(P, V, ·, M). It can be shown

that they are given by propositions 7.1 and 7.2 [71].

Proposition 7.1 is the proposition for optimal partition.

Proposition 7.1: The fuzzy partition P represents the minimum of

the function J(·,V,R,M) only if

Ij = ∅ ⇒ uij) =
uC(xj)

n∑
k=1

d2
ij

d2
kj

(7.60)

and

Ij �= ∅ ⇒ uij = 0, ∀i ∈ Ij (7.61)

and arbitrarily
∑

i∈Ij

uij = uC(xj).
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Proposition 7.2 is the proposition for optimal prototype centers.

Proposition 7.2: The optimal value of V with respect to the function

J(P, ·, R, M) is given by

p∑
j=1

u2
ij

dij

qij
(xj − vi) = 0, i = 1, · · · , n, (7.62)

where qij is given by

qij = (xj − vi)
T Mi(xj − vi) (7.63)

Proposition 7.3 is the proposition for optimal prototype radii.

Proposition 7.3: The optimal value of R with respect to the function

J(P, V, ·, M) is given by

p∑
j=1

u2
ijdij = 0, i = 1, · · · , n. (7.64)

To ensure that the adaptive norm is bounded, we impose the con-

straint

|Mi| = ρi, where ρi > 0, i = 1, · · · , n (7.65)

The norm is given by theorem 7.4, the adaptive norm theorem [71].

Theorem 7.4:

Let X ⊂ Rs. Suppose the objective function J already contains

the optimal P, V , and R. If the determinant of the shape matrix Mi

is bounded, |Mi| = ρi, ρi > 0, i = 1, · · · , n, then Mi is a local

minimum of the function J(P, V, R, ·) only if

Mi = [ρi|Ssi|] 1
s S−1

si , (7.66)

where Ssi represents the nonsingular shell scatter matrix of the fuzzy

class Ai:
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Ssi =

p∑
j=1

u2
ij

dij

qij
(xj − vi)(xj − vi)

T . (7.67)

In praxis, the bound is chosen as ρi = 1, i = 1, · · · , n.

The above theorems can be used as the basis of an alternating

optimization technique. The resulting iterative procedure is known under

as the generalized adaptive fuzzy n-shells (GAFNS) algorithm.

An algorithmic description of the GAFNS is given below:

1. Initialization: Choose the number n of subclusters in C and the

termination criterion ε. P 1 is selected as a random fuzzy partition of

C having n atoms. Initialize Mi = I, i = 1, · · · , n where I is a s × s

unity matrix. Set the iteration counter l = 1.

2. Adaptation, part I: Determine the centers vi and radii ri by solving

the system of equations{ ∑p
j=1 u2

ij
dij

qij
(xj − vi) = 0∑p

j=1 u2
ijdij = 0

(7.68)

where i = 1, · · · , n and qij = (xj − vi)
T Mi(xj − vi.

3. Adaptation, part II: Determine the shell scatter matrix Ssi of the

fuzzy class Ai,

Ssi =

p∑
j=1

u2
ij

dij

qij
(xj − vi)(xj − vi)

T . (7.69)

where the distance dij is given by

d2
ij = [(xj − vi)

T Mi(xj − vi)]
1/2 − ri (7.70)

4. Adaptation, part III: Determine the approximate value of Mi:

Mi = [ρi|Ssi|] 1
s S−1

si , i = 1, · · · , n (7.71)

where ρi = 1 or ρi is equal to the determinant of the previous Mi.

5. Adaptation, part IV: Compute a new fuzzy partition P l of C using

the following rules:
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Ij = ∅ ⇒ uij =
uC(xj)

n∑
k=1

d2
ij

d2
kj

(7.72)

and

Ij �= ∅ ⇒ uij = 0, ∀i ∈ Ij (7.73)

and arbitrarily
∑

i∈Ij

uij = uC(xj).

Set l = l + 1.

6. Continuation: If the difference between two successive partitions is

smaller than a predefined threshold,||P l −P l−1|| < ε, then stop. Else go

to step 2.

If we choose uC = X, we obtain uC(xj) = 1, and thus we get the

following fuzzy partition:

Ij = ∅ ⇒ uij =
1

n∑
k=1

d2
ij

d2
kj

(7.74)

and

Ij �= ∅ ⇒ uij = 0, ∀i ∈ Ij (7.75)

and arbitrarily
∑

i∈Ij

uij = 1.

The resulting iterative procedure is known a adaptive fuzzy n-shells

(AFNS) algorithm. This technique enables us to identify the elliptical

data substructure, and even to detect overlapping between clusters to

some degree.

The Gath–Geva algorithm

A major problem arises when fuzzy clustering is performed in real–

world tasks: the necessary cluster number, their locations, their shapes,

and their densities are usually not known beforehand. The Gath-Geva

algorithm [89] represents an important development of existing fuzzy

clustering algorithms. The cluster sizes are not restricted as im other

algorithms, and the cluster densities are also considered.
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To allow the detection of cluster shapes ranging from spherical to

ellipsoidal, different metrics have to be used. Usually, an adaptive metric

is used. In general a distance metric d(xj ,Li) from the data point xj to

the cluster prototype Li is defined as

d2(xj ,Li) = (xj − Li)
T F−1

i (xj − Li), (7.76)

where Fi is a symmetric and positive definite shape matrix, and adapts

to the clusters’ shape variations.

Due to this exponential distance, the Gath–Geva algorithm seeks an

optimum in a narrow local region. Its major advantage is obtaining good

partition results in cases of unequally variable features and densities, but

only when the starting cluster prototypes are properly chosen.

An algorithmic description of the Gath–Geva algorithm is given

below [89]:

1. Initialization and adaptation, part I: These are similar to the fuzzy

n-means algorithm.

3. Adaptation, part II: Determine the fuzzy covariance matrix Fi, i =

1, · · · , c by using

Fi =

N∑
k=1

u2
ik(xk − Li)(xk − Li)

T

N∑
k=1

u2
ik

(7.77)

4. Adaptation, part III: Compute the exponential distance de:

d2
e(xj ,Li) =

√
|Fi|
αi

e[(xj−Li)
T F

−1
i

(xj−Li)/2], (7.78)

with the a priori probability αi = 1
N

∑N
k=1 ul−1

ik , where l − 1 is the

previous iteration.

5. Adaptation, part IV: Update the membership degrees according to

uij =
1

c∑
k=1

d2
e(xj ,Li)

d2
e(xj ,Lk)

, ∀1 ≤ i ≤ c; 1 ≤ j ≤ N. (7.79)
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6. Continuation: If the difference between two successive partitions is

smaller than a predefined threshold ||Ul − Ul−1|| < ε, then stop. Else

go to step 2.

Fuzzy algorithms for learning vector quantization

The idea of combining the advantages of fuzzy logic with learning vector

quantization is reflected in the concept of fuzzy learning vector quan-

tization (FALVQ) [15, 130], where FALVQ stands for fuzzy algorithms

for learning vector quantization. Thus, fusing the concepts of approxi-

mate reasoning and imprecision with unsupervised learning acquires the

benefits of both paradigms.

Let us consider the set X of samples from an n–dimensional Eu-

clidean space and let f(x) be the probability distribution function of

x ∈ X ∈ Rn. Learning vector quantization is based on the minimization

of the functional [193]

D(L1, · · · ,Lc) =

∫
· · ·
∫
Rn

c∑
r=1

ur(x)||x − Lr||2f(x)dx (7.80)

with Dx = Dx(L1, · · · ,Lc) being the expectation of the loss function,

defined as

Dx(L1, · · · ,Lc) =

c∑
r=1

ur(x)||x − Lr||2 (7.81)

ur = ur(x), 1 ≤ r ≤ c, all membership functions that describe com-

petitions between the prototypes for the input x. Supposing that Li

is the winning prototype that belongs to the input vector x, that is,

the closest prototype to x in the Euclidean sense, the memberships

uir = ur(x), 1 ≤ r ≤ c are given by

uir =

{
1, if r = i,

u( ||x−Li||2
||x−Lr||2 ), if r �= i

(7.82)

The role of the loss function is to evaluate the error of each input vector

locally with respect to the winning reference vector.

FALVQ considers both the very important winning prototype and

also the global non winning information. Several FALVQ algorithms can
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Table 7.1
Membership functions and interference functions for the FALVQ1, FALVQ2, and
FALVQ3 families of algorithms

Algorithm u(z) w(z) n(z)
FALVQ1 (0 < α < ∞) z(1 + αz)−1 (1 + αz)−2 αz2(1 + αz)−2

FALVQ2 (0 < β < ∞ z exp (−βz) (1 − βz) exp (−βz) βz2 exp (−βz)
FALVQ3 (0 < γ < 1) z(1 − γz) 1 − 2γz γz2

be determined based on minimizing the loss function.

The winning prototype Li is adapted iteratively, based on the fol-

lowing rule:

ΔLi = −η
′ ∂Dx

∂Li
= η(x − Li)

⎛⎝1 +

c∑
i�=r

wir

⎞⎠ , (7.83)

where

wir = u
′

( ||x − Li||2
||x − Lr||2

)
= w

( ||x − Li||2
||x − Lr||2

)
. (7.84)

The nonwinning prototype Lj �= Li is also adapted iteratively, based on

the following rule:

ΔLj = −η
′ ∂Dx

∂Lj
= η(x − Lj)nij (7.85)

where

nij = n

( ||x − Li||2
||x − Lj ||2

)
= uij − ||x − Li||2

||x − Lj ||2 wij

It is very important to mention that the fuzzyness in FALVQ is employed

in the learning rate and update strategies, and is not used for creating

fuzzy outputs.

The above-presented mathematical framework forms the basis of the

three fuzzy learning vector quantization algorithms presented in [131].

Table 7.1 shows the membership functions and interference functions

w(·) and n(·) that generated the three distinct fuzzy LVQ algorithms.

An algorithmic description of the FALVQ is given below.

1. Initialization: Choose the number c of prototypes and a fixed learning
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rate η0 and the maximum number of iterations N . Set the iteration

counter equal to zero, ν = 0. Randomly generate an initial codebook

L = {L1,0, · · · ,Lc,0}.
2. Adaptation, part I: Compute the updated learning rate η = η0

(
1 − ν

N

)
.

Also set ν = ν + 1.

3. Adaptation, part II: For each input vector x find the winning proto-

type based on the equation

||x − Li,ν−1||2 < ||x − Lj,ν−1||2, ∀j �= i (7.86)

Determine the membership functions uir,ν using

uir,ν = u

( ||x − Li,ν−1||2
||x − Lr,ν−1||2

)
, ∀r �= i. (7.87)

Determine wir,ν using

wir,ν = u
′

( ||x − Li,ν−1||2
||x − Lr,ν−1||2

)
, ∀r �= i. (7.88)

Determine nir,ν using

nir,ν = uir,ν −
( ||x − Li,ν−1||2
||x − Lr,ν−1||2

)
wir,ν , ∀r �= i. (7.89)

4. Adaptation part III: Determine the update of the winning prototype

Li using

Li,ν = Li,ν−1 + η(x − Li,ν−1)(1 +
c∑

r �=i

wir,ν) (7.90)

Determine the update of the nonwinning prototype Lj �= Li using

Lj,ν = Lj,ν−1 + η(x − Lj,ν−1)nij,ν . (7.91)

5. Continuation: If ν = N , stop; else go to step 2.
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7.5 Genetic Algorithms

Basic aspects and operations

Genetic algorithms (GA) are simple heuristic optimization tools for both

continuous and discrete variables. These tools provide near-global opti-

mal values even for poorly behaved functions. Compared to traditional

optimization techniques, GAs have softer mathematical requirements by

removing the restrictions on allowable models and error laws. In return,

“softer” solutions to the optimization problem are provided that never-

theless are very good.

Their most important characteristics are the following:

• Parallel-search procedures: implementation on parallel-processing

computers, ensuring fast computations.

• Stochastic nature: avoid local minima, and thus desirable for practical

optimization problems.

• Applications: continuous and discrete optimization problems.

Genetic algorithms are, like neural networks, biologically inspired

and are based on the application of the principles of “Darwinian natural

selection” to a population of numerical representations of the solution

domain. The natural evolution is emulated by allowing solutions to

reproduce, creating offsprings of them, and allowing only the fittest

to survive. Average fitness improves over generations, although some

offsprings may not be improved compared to the previous generation,

such that the best (fittest) solution is close to the global optimum.

Let’s look again at the definition of a GA. In a strict sense, the

classical GA is based on the original work of John Holland in 1975 [116].

This novel evolution-inspired paradigm - known also as the canonical

genetic algorithm - is still a relevant research topic. In a more detailed

sense, the GA represents a solution (population)–based model which

employs selection, mutation, and recombination operators to generate

new data points (offsprings) in a search space [282]. There are several GA

models known in the literature, most of them designed as optimization

tools for several applications in medical imaging. A very important one

- the edge detection - will be reviewed in this chapter.

In summary, GAs differ from classical optimization and search pro-

cedures by (1) direct manipulation of a coding, (2) search from a pop-
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Table 7.2
Definition analogies

Pattern recognition Biology/genetics
vector, string chromosome

feature, character gene
feature, value allele

set of all vectors population

ulation of points and not a single solution, (3) search via sampling, a

so–called blind search, and (4) search using stochastic operators, not

deterministic rules.

Most of the definitions used in context with GAs have their roots in

genetics but also have an equivalent in pattern recognition. For a better

understanding, we can find those correspondents in table 7.2.

In the next section, we will review the basics of GAs such as encoding

and mathematical operators, and describe edge detection in medical

images based on GAs, as one of the most important applications of

GAs.

Problem encoding and operators in genetic algorithms

The application of a GA as an optimization tool has three important

parts: representation of solutions, operations that manipulate these

solutions, and fitness selection.

If real solutions are required, these are represented as binary integers,

which are mapped onto the real number axis. For example, for encoding

solutions on the real interval [−l, l], we will choose 0000...000 for −l and

1111...111 for l. Adding a binary “1” to an existing number increases its

value by l
2D−1 , where D is the length (number of digits) of the binary

representation. Thus, an efficient coding is obtained, which enables

bitwise operations.

In the beginning, a large initial population of random possible so-

lutions is produced. The solution pool is continuously altered based on

genetic operations such as selection and crossover. The selection is favor-

able to good solutions and punishes poor ones. To overcome convergence

based on homogeneity resulting from excessive selection, and thus a lo-

cal optimum, operations such as inversion and mutations are employed.

They introduce diversity in the solution pool and prevent a local con-

vergence.
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These important and most common operators are the following [282]:

• Encoding scheme:

Transforms pattern vectors into bit string representations. Each coordi-

nate value of a feature vector can be encoded as a binary string. Through

an efficient encoding scheme, problem-specific knowledge is translated

directly into the GA framework and implicitly influences the GA’s per-

formance.

• Fitness evaluation:

After the creation of a generation, fitness evaluation becomes important

in order to provide the correct ranking information necessary for per-

petuation. Usually, fitness of a member is related to the evaluation of

the objective function of the point representing this member.

• Selection:

Based on selection, population members are chosen based on their fitness

(the value of the objective function for that solution). The strings in

the current population are copied in proportion to their fitness and

placed in an intermediate generation. Selection enables the fittest genes

to perpetuate, and guarantees the convergence of the population toward

the desired solution.

• Crossover:

Crossover describes the swapping of fragments between two binary

strings at a random position and combines the head of one with the

tail of the other, and vice versa. Thus, two new offsprings are created

and are inserted into the next population. In summary, new sample

points are generated by recombining two parent strings. Consider the

two strings 000101000 and 111010111. Using a single randomly chosen

crossover point, recombination occurs as follows:

000|101000

111|010111.

The following offsprings are produced by swapping the fragments be-

tween the two parents:

000010111 and 111101000

This operator also guarantees the convergence of the population.
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generation t

Selection Crossover                Mutation

Current
generation t+1

Next

........

String 2
String 3

String 4
........

........

Offspring�A
Offspring�B
Offspring�A
Offspring�B

........

String 1

Figure 7.3
Splitting of a generation into a selection phase and a recombination phase.

• Mutation:

This operator does not represent a critical operation for GAs since many

authors employ only selection and crossover. Mutation transforms the

population by randomly changing the state (0 or 1) of individual bits.

It prevents both an early convergence and a local optimum by creating

divergence and inhomogeneity in the solution pool. In addition, new

combinations are produced which lead to better solutions. Mutation

is often performed after crossover has been applied, and should be

employed with care. At most, one out of 1000 copied bits should undergo

a mutation.

Apart from these very simple operations, many others emulating

genetic reproduction have been proposed in the literature [176].

The application of a GA as an optimization techniques involves two

steps: selection (duplication) and recombination (crossover). Initially, a

large random population of random candidate solutions is generated.

These solutions are continuously transformed by operations that model

genetic reproduction: based on selection we obtain an intermediate pop-

ulation, and afterward based on recombination and mutation, we obtain

the next population. The procedure of generating the next population

from the current population represents one generation in the execution

of a GA. Figure 7.3 visualizes this procedure [282].

An intermediate population is generated from the current popula-

tion. In the beginning, the current population is given by the initial pop-

ulation. Then, every single string is evaluated and its fitness value is de-
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termined. There is an important difference between the fitness function

and the evaluation function in context with GAs: the evaluation func-

tion represents a performance measure for a particular set of parameters,

while the fitness function gives the chance of reproductive opportunities

based on the measured performance. Thus, the fitness function defines

the criterion for ranking potential hypotheses and for probabilistically

selecting them for inclusion in the population of the next generation.

While the evaluation of a string describing a particular set of param-

eters is not related to any other string evaluation, the fitness of that

string is related to the other strings of the current population. Thus,

the probability that a hypothesis is chosen is directly proportional to

its own fitness, and inversely proportional to the rest of the competing

hypotheses for the given population.

For canonical GAs the definition of the fitness is given by fi/f̄ ,

where fi is the evaluation associated with string i and f̄ is the average

evaluation of all strings in the population.

f̄ =
1

n

n∑
i=1

fi. (7.92)

As stated before, after generating the initial population, the fitness

fi/f̄ for all members of the current population is evaluated, and then the

selection operator is employed. Members of the population are copied

or duplicated proportional to their fitness and then entered in the

intermediate generation. If for a string i, we obtain fi/f̄ > 1.0, then

the integer portion of fitness determines the number of copies of this

string that enter directly int the intermediate population. A string with

a fitness of fi/f̄ = 0.69 has a 0.69 chance of placing one string in the

intermediate population, and a string with a fitness of fi/f̄ = 1.38 places

one copy in the intermediate population. The selection process continues

until the intermediate population is generated.

Next the recombination operator is carried out as a process of gen-

erating the next population from the intermediate population. Then

crossover is applied and models the exchange of genetic material be-

tween a pair of strings. These strings are recombined with a probability

of pc, and the newly generated strings are included in the next popula-

tion. The mutation is the last operator needed for producing the next

population. Its goal is to maintain diversity and to introduce new alleles
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into the generation. The mutation probability of a bit pm is very small,

usually pm � 1%. For practical applications, we normally choose pm

close to 0.01. Mutation changes the bit values, and produces a nearly

identical copy with some components of the string altered. Selection,

recombination, and mutation operators are applied to each population

in each generation. The GA stops either when a satisfactory solution is

found or after a predefined number of iterations.

The algorithmic description of a GA is given below.

Generate the initial population randomly for the strings ai:

Π = {ai}, i = 1, · · · , n.

for i ← 1 to Numberofgenerations do
Initialize mating set M ← ∅ and Offspring O

for j ← 1 to n do
Add f(ai)/f̄ copies from ai to M .

end

for j ← 1 to n/2 do
Choose two parents aj and ak from M and perform with

the probability pc O = O ∪ Crossover(aj , ak).

end

for i ← 1 to n do

for j ← 1 to d do
Mutate with the probability pm the j-th bit from

ai ∈ O
end

end

Update the population Π ← combine(Π, O).

end

It is extremely important to mention that the theoretical basis for

convergence of the GA toward the global maximum is based on the

schema theorem. The formation and preservation of a schema which

is a local optimal pattern should happen at rates acceptable for solving

problems in practice. While we have been dealing so far with only binary

strings, schemas represent bit patterns based on a ternary alphabet: 0,

1, and ∗ (do not care). Thus, a crossover operation enables information

sharing between two optimal schemas such that new and better solutions

are generated.
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Finally, we would like to point out the analogy between the tradi-

tional optimization approach and GAs. The binary strings correspond

to an orthogonal direction system, crossovers to moving randomly at the

same time in multiple directions from one point to another of the surface,

and mutation to searching along a single, randomly chosen direction.

Optimization of a simple function

A GA represents a general-purpose optimization method that searches

irregular, poorly characterized function spaces and is easily implemented

on parallel computers. The performance of the solutions is continuously

tested based on a fitness function. It’s not always guaranteed that an

optimal candidate is found, but in most cases GAs do find a candidate

with high fitness. An important application area for GAs is pattern

recognition: the highly nonlinear problem of estimating the weights in a

neural network.

This section will apply the most important basic operations of a GA

to an example of function optimization [50].

The following function is considered:

g(x) = x2 − 42x + 152

where x is an integer. The goal is to find, based on a GA, the minimum

of this function in the interval [0 · · · 63]:

g(x0) ≤ g(x), for all x ∈ [0 · · · 63].

To solve this optimization problem, some typical GA operators are

employed.

Number representation

The integer-valued x have to be transformed into a binary vector (chro-

mosome). Since 26 = 64, we will use six-bit binary numbers to represent

the solutions. This means that six bits are needed to represent a binary

vector (chromosome).

The transformation of a binary number < b5 · · · b0 > into an integer

number x is done by the following rule:

Transform the binary number < b5 · · · b0 > from basis 2 into basis

10:
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(< b5 · · · b0 >)2 = (

5∑
i=0

bi · 2i)10 = x

Initial population

The initial population is randomly generated. Each chromosome repre-

sents a six-bit binary vector.

Evaluation function

The evaluation function f of the binary vector v is equivalent to the

function g(x):

f(v) = g(x).

The five given x-values x1 = 37, x2 = 13, x3 = 35, x4 = 44, and x5 = 6

correspond to the following five chromosomes:

v1 = (100110),

v2 = (001101),

v3 = (100011),

v4 = (101110),

v5 = (000110)

The evaluation function provides the following values:

f(v1) = g(x1) = 0

f(v2) = g(x2) = −225

f(v3) = g(x3) = −93

f(v4) = g(x4) = 336

f(v4) = g(x5) = −64.

We immediately see that v2 is the fittest chromosome since its

evaluation function provides the minimal value.
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Genetic operators

While the GA is executed, three distinct operators are employed to

change the chromosomes: selection, mutation, and crossover.

We randomly choose the first and fourth chromosomes for selection.

Since f(v1) < f(v4), chromosome 4 will be replaced by chromosome 1.

After five other random selections, we obtain the following values:

f(v1) = g(x1) = 0

f(v2) = g(x2) = −225

f(v3) = g(x3) = −93

f(v4) = g(x4) = −225

f(v5) = g(x5) = −93.

As we see, no new solutions were produced and the fittest solution was

perpetuated.

Next, we randomly choose chromosome 1 and 4 for crossover at the

fourth gene and obtain the following solutions:

f(v1) = g(x1) = 287

f(v2) = g(x2) = −225

f(v3) = g(x3) = −93

f(v4) = g(x4) = −64

f(v5) = g(x5) = −93.

After undergoing four pairs of crossing, we obtain:
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f(v1) = g(x1) = 285

f(v2) = g(x2) = −273

f(v3) = g(x3) = −288

f(v4) = g(x4) = −285

f(v5) = g(x5) = −33.

Next, we apply mutation and randomly suppose chromosome 3 and bit 6

are chosen. Thus, the mutated chromosome is 010101 and gives a further

improvement of f to -288.

Simulation parameters

To determine the solution of the given optimization problem, we will

choose the following parameters: the population consists of 100 distinct

chromosomes, and we choose 5950 random pairs for selection.

Simulation results

The results achieved after one cycle, including the above-mentioned

operators, are the following:

f(v1) = g(x1) = 285

f(v2) = g(x2) = −289

f(v3) = g(x3) = −288

f(v4) = g(x4) = −285

f(v5) = g(x5) = −33.

The best value is xmin = 21. We can show that the GA converges toward

the minimum of the given function. The fact that this solution is reached

is more a coincidence than a property of the GA. It’s important to

emphasize that a GA may not find an exact optimal solution, but most

often finds solutions close to the neighborhood of the global optimum.

As a final remark, it’s very important to mention that GAs can be

very well applied in combinatorial optimization where the decision vari-
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ables are integer or mixed. We have seen that problems with integer

variables can be reduced to those of 0 and 1 binary variables. Thus, we

are left with problems with 0 and 1 binary variables. Many optimiza-

tion problems, such as the traveling salesman problem, are NP-complete

problems, and there are both heuristics and exact solutions available,

although they are considered to be unsolved problems in their general-

ity. The variable selection problem thus becomes very interesting, not

only for theoretical reasons. In life sciences, such situations occur very

frequently: there is a large number of candidate variables and a known

condition (y=1 or 0) where the data may be not completely known.

For example, the problem of locating homologies in the human genome

represents an important discrete choice problem.

Edge detection using a genetic algorithm

Most edge detection algorithms applied to medical images perform sat-

isfactorily when applied for a certain anatomical structure, but cannot

be generalized to other modalities or anatomical structures. This moti-

vates the search for an efficient algorithm to overcome these drawbacks.

GAs are optimal and robust candidates since they are not affected by

spurious local optima in the solution space.

A GA can be used to detect well-localized, unfragmented, thin edges

in medical images based on optimization of edge configurations [103].

An edge structure is defined within a 3 × 3 neighborhood Wij(S )

around a single center pixel l = s(i, j) in S ∈ S, where S represents the

set of all possible edge configurations in an image I .

The total cost for an edge configuration S ∈ S is the sum of the

point costs at every pixel in an image:

F (S ) =
∑
l∈I

F (S , l) =
∑
l∈I

∑
j

wjcj(S , l). (7.93)

cj consists of the five cost factors: the dissimilarity cost Cd, the cur-

vature cost Cc, the edge pixel cost Ce, the fragmentation cost Cf , and

the cost for thick edges Ct. wj represents the corresponding weights

wd, wc, we, wf , wt employed for optimizing the shape of the edges.

Edge detectors can be imagined as edges in binary images where edge

pixels are assigned the value of 1 and nonedge pixels have the value of 0.

Thus, there is an orientation and adjacency-preservation map between
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Table 7.3
Approximation of the size of the search space, assuming independent subregions
[103].

Size No. of Regions No. of Combinations Search Space
256×256 1 265536 > 1019728

128×128 4 216364 > 4 · 104932

64×64 16 24096 > 101234

32×32 64 21024 > 10310

16×16 256 2256 > 1079

8×8 1024 264 > 1022

4×4 40960 216 > 108

the binary edge image and the original one.

The search and solution space for the edge-detection problem is huge

as shown in table 7.3. The table shows, for different image sizes, the

number of combinations and the corresponding search space. In order

to reduce the sample space and simplify the optimization problem, the

original image has to be split into linked regions.

It has been shown in [103] that the GA for edge detection works best

for regions sized 4 × 4 and larger. Thus, for each subregion we have a

single independent GA which tries to optimize the edge configuration

within the subregion.

Pratt’s figure of merit [211] provides a quantitative comparison of

the results of different edge detectors by measuring the deviation of the

output edge from a known ideal edge:

P =
1

max(IA, II )

IA∑
i=1

1

1 + αd2(i)
(7.94)

with IA being the number of detected edge points, II the edge points in

the ideal image, α a scaling factor, and d(i) the distance of the detected

edge pixel from the nearest ideal edge position. Thus, Pratt’s figure of

merit represents a rough indicator of edge quality in the sense that a

higher value denotes a better edge image.

The results shown in [103] demonstrate that GA improved Pratt’s

figure of merit from 0.77 to 0.85 for ideal images and detected most of

the basic edge features (thin, continuous, and well-localized) for MR,

CT, and US images.
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EXERCISES

1. Suppose that fuzzy set A is described by the membership function

uA(x),

uA(x) = bell(x; a, b, c) =
1

1 + |x−c
x |2b

, (7.95)

where the parameter b is usually positive. Show that the classical

complement of a is given as uĀ(x) = bell(x; a,−b, c).

2. Derive the Gath-Geva algorithm based on the distance metric.

3. Derive the update of the winning and nonwinning prototypes for

the FALVQ algorithm.

4. Consider the function

g(x) = 31.5 + x|sin(4πx)|.
Find the maximum of this function in the interval [−4 · · · 22.1] by

employing a GA.

5. Apply the GA to determine an appropriate set of weights for

a 4 × 2 × 1 multilayer perceptron. Encode the weights as bit

strings, and apply the required genetic operators. Discuss how

the backpropagation algorithm differs from a GA regarding the

weights’ learning.

6. Consider the function

J =

N∑
i=1

d2(x, Cvi
)

where d(x, Cvi
) describes the distance between an input vector x

and a set using no representatives for the set. Propose a coding

of the solutions for a GA that uses this function. Discuss the

advantages and disadvantages of this coding.
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8 Exploratory Data Analysis Methods for fMRI

Functional magnetic resonance imaging (fMRI) has been shown to be

an effective imaging technique in human brain research [188]. By blood

oxygen level- dependent contrast (BOLD), local changes in the magnetic

field are coupled to activity in brain areas. These magnetic changes are

measured using MRI. The high spatial and temporal resolution of fMRI

combined with its noninvasive nature makes it an important tool for

discovering functional areas in the human brain and their interactions.

However, its low signal-to-noise ratio and the high number of activities

in the passive brain require a sophisticated analysis method. These

methods either (1) are based on models and regression, but require

prior knowledge of the time course of the activations, or (2) employ

model-free approaches such as BSS by separating the recorded activation

into different classes according to statistical specifications without prior

knowledge of the activation.

The blind approach (2) was first studied by McKeown et al. [169].

According to the principle of functional organization of the brain, they

suggested that the multifocal brain areas activated by performance of

a visual task should be unrelated to the brain areas whose signals

are affected by artifacts of a physiological nature, head movements, or

scanner noise related to fMRI experiments. Every single process can

be described by one or more spatially independent components, each

associated with a single time course of a voxel and a component map.

It is assumed that the component maps, each described by a spatial

distribution of fixed values, represent overlapping, multifocal brain areas

of statistically independent fMRI signals. This is visualized in figure 8.1.

In addition, McKeown et al. [169] considered the distributions of the

component maps to be spatially independent and in this sense uniquely

specified (see section 4.2). They showed that these maps are independent

if the active voxels in the maps are sparse and mostly nonoverlapping.

Additionally, they assumed that the observed fMRI signals are the

superpositions of the individual component processes at each voxel.

Based on these assumptions, ICA can be applied to fMRI time series

to spatially localize and temporally characterize the sources of BOLD

activation. Considerable research has been devoted to this area since the

late 1990s.



256 Chapter 8

Figure 8.1
Visualization of the spatial fMRI separation model. The n-dimensional source
vector is represented as component maps, which are interpreted as contributing
linearly in different concentrations to the fMRI observations at the time points
t ∈ {1, . . . , m}. See plate 2 for the color version of this figure.

8.1 Model-based Versus Model-free Analysis

However, the use of blind signal-processing techniques for the effective

analysis of fMRI data has often been questioned, and in many applica-

tions, neurologists and psychologists prefer to use the computationally

simpler regression models. In [135], these two approaches are compared

using a sufficiently complex task of a combined word perception and mo-

tor activity. The event-based experiment was part of a study to investi-

gate the network of neurons involved in the perception of speech and the

decoding of auditory speech stimuli. One- and two-syllable words were

divided into several frequency bands and then rearranged randomly to

obtain a set of auditory stimuli. Only a single band was perceivable as

words. During the functional imaging session these stimuli were pre-

sented pseudo–randomized to five subjects, according to the rules of a

stochastic event-related paradigm. The task of the subjects was to press

a button as soon as they were sure that they had just recognized a word

in the sound presented. It was expected that in the case of the single

perceptible frequency band, these four types of stimuli activate different

areas of the auditory system as well as the superior temporal sulcus in

the left hemisphere [236].
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(a) general linear model analysis

(b) one independent component

Figure 8.2
Comparison of model-based and model-free analyses of a word-perception fMRI
experiment. (a) illustrates the result of a regression-based analysis, which shows
activity mostly in the auditory cortex. (b) is a single component extracted by ICA
and corresponds to a word-detection network. See plate 3 for the color version of
this figure.

The regression-based analysis using a general linear model was per-

formed using SPM2. This was compared with components extracted

using ICA, namely fastICA [124].
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The results are illustrated in figure 8.2, and are explained in more de-

tail in [135]. Indeed, one independent component represented a network

of three simultaneously active areas in the inferior frontal gyrus, which

was previously proposed to be a center for the perception of speech [236].

Altogether, we were able to show that ICA detects hidden or suspected

links and activity in the brain that cannot be found using the classical,

model-based approach.

8.2 Spatial and Spatiotemporal Separation

As short example of spatial and spatiotemporal BSS, we present the

analysis of an experiment using visual stimuli. fMRI data were recorded

from 10 healthy subjects performing a visual task. One hundred scans

were acquired from each subject with five periods of rest and five photic

stimulation periods, and a resolution of 3×3×4 mm. A single 2-D slice,

which is oriented parallel to the calcarine fissure, is analyzed. Photic

stimulation was performed using an 8 Hz alternating checkerboard stim-

ulus with a central fixation point and a dark background.

First, we show an example result using spatial ICA. We performed

a dimension reduction using PCA to n = six dimensions, which still

contained 99.77% of the eigenvalues. Then we applied HessianICA with

K = 100 Hessians evaluated at randomly chosen samples (see section 4.2

and [246]). The resulting six-dimensional sources are interpreted as the

six component maps that encode the data set. The columns of the mixing

matrix contain the relative contribution of each component map to the

mixtures at the given time point, so they represent the components’

time courses. The maps and the corresponding time courses are shown

in figure 8.3. A single highly task-related component (#4) is found,

which after a shift of 4s has a high crosscorrelation with the block-based

stimulus (cc = 0.89). Other component maps encode artifacts (e.g., in

the interstitial brain region) and other background activity.

We then tested the usefulness of taking into account additional in-

formation contained in the data set such as the spatiotemporal depen-

dencies. For this, we analyzed the data using spatiotemporal BSS as

described in chapter 5 (see [253, 255]). In order to make things more

challenging, only four components were to be extracted from the data,

with preprocessing either by PCA only or by the slightly more gen-
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(a) recovered component maps

(b) time courses

Figure 8.3
Extracted ICA components of fMRI recordings. (a) shows the spatial, and (b) the
corresponding temporal, activation patterns, where in (b) the gray bars indicate
stimulus activity. Component 4 contains the (independent) visual task, active in the
visual cortex (white points in (a)). It correlates well with the stimulus activity (b).
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Figure 8.4
Comparison of the recovered component that is maximally auto-crosscorrelated
with the stimulus task (top) for various BSS algorithms, after dimension reduction
to four components.

eral singular value decomposition, a necessary preprocessing for spa-

tiotemporal BSS. We based the algorithms on joint diagonalization, for

which K = 10 autocorrelation matrices were used, for both spatial and

temporal decorrelation, weighted equally (α = 0.5). Although the data

were reduced to only four components, stSOBI was able to extract the

stimulus component very well, with a equally high crosscorrelation of

cc = 0.89. We compared this result with some established algorithms for

blind fMRI analysis by discussing the single component that is maxi-

mally autocorrelated with the known stimulus task (see figure 8.4). The

absolute corresponding autocorrelations are 0.84 (stNSS), 0.91 (stSOBI

with one-dimensional autocorrelations), 0.58 (stICA applied to separa-

tion provided by stSOBI), 0.53 (stICA), and 0.51 (fastICA). The obser-

vation that neither Stone’s spatiotemporal ICA algorithm [241] nor the

popular fastICA algorithm [124] could recover the sources showed that

spatiotemporal models can use the additional data structure efficiently,

in contrast to spatial-only models, and that the parameter-free joint-

diagonalization-based algorithms are robust against convergence issues.
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8.3 Other Analysis Models

Before continuing to other biomedical applications, we briefly want to

review other recent work of the authors in this field.

The concept of window ICA can be used for the analysis of fMRI

data[133]. The basic idea is to apply spatial ICA in sliding time windows;

this approach avoids the problems related to the high number of signals

and the resulting issues with dimension reduction methods. Moreover,

it gives some insight into small changes during the experiment which

are otherwise not encoded in changes in the component maps. We

demonstrated the usefulness of the proposed approach in an experiment

where a subject listened to auditory stimuli consisting of sinusoidal

sounds (beeps) and words in varying proportions. Here, the window ICA

algorithm was able to find different auditory activation patterns related

to the beeps (respectively, the words).

An interesting model for activity maps in the brain is given by sparse

coding; after all, the component maps are always implicitly assumed

to show only strongly focused regions of activation. Hence we asked

whether specific sparse modeling approaches could be applied to fMRI

data. We showed a successful application to the above visual-stimulus

experiment in [90]. Again, we were able to show that with only five

components, the stimulus-related activity in the visual cortex could be

nicely reconstructed.

A similar question of model generalization was posed in [263]. There

we proposed to study the post-nonlinear mixing model in the context of

fMRI data. We derived an algorithm for blindly estimating the sensor

characteristics of such a multisensor network. From the observed sensor

outputs, the nonlinearities are recovered using a well-known Gaussian-

ization procedure. The underlying sources are then reconstructed using

spatial decorrelation as proposed by Ziehe et al. [296]. Application of

this robust algorithm to data sets acquired through fMRI leads to the

detection of a distinctive bump of the BOLD effect at larger activations,

which may be interpreted as an inherent BOLD-related nonlinearity.

The concept of dependent component analysis (see chapter 5) in

the context of fMRI data analysis is discussed in [174], [175]. It can be

shown that dependencies can be detected by finding clusters of depen-

dent components; algorithmically, it is interesting to compare this with

tree-dependent [12] and topographic ICA [122]. For the fMRI data, a
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comparative quantitative evaluation of tree–dependent and topographic

ICA was performed. We observed that topographic ICA outperforms

other ordinary ICA methods and tree–dependent ICA when extracting

only a few independent components. This resulted in a postprocessing

algorithm based on clustering of ICA components resulting from differ-

ent source-component dimensions [134].

The above algorithms have been included in our MFBOX (Model-

free Toolbox) package [102], a Matlab toolbox for data-driven analysis

of biomedical data, which may also be used as an SPM plug-in. Its main

focus is on the analysis of functional nuclear magnetic resonance imaging

(fMRI) data sets with various model-free or data-driven techniques.

The toolbox includes BSS algorithms based on various source models

including ICA, spatiotemporal ICA, autodecorrelation, and NMF. They

can all be easily combined with higher-level analysis methods such as

reliability analysis using projective clustering of the components, sliding

time window analysis, and hierarchical decomposition.

The time-series analysis employed for fMRI signal processing also

forms also the basis for a general MRI signal processing as described in

chapters 9, 10, and 11. There, exploratory data analysis techniques are

applied to resting-state fMRI data, the diagnosis of dynamic breast MR

data and the detection of cerebral infarctions based on perfusion MRI.



9 Low-frequency Functional Connectivity in fMRI

Low-frequency fluctuations (< 0.08 Hz) temporally correlated between

functionally related areas have been reported for the motor, auditory,

and visual cortices and other structures [35]. The detection and quan-

tification of these patterns without user bias poses a current challenge in

fMRI research. Many recent studies have shown decreased low-frequency

correlations for subjects in pathological states or in the case of cocaine

use [199], which can potentially indicate normal neuronal activity within

the brain.

The standard technique for detecting low-frequency fluctuations has

been the crosscorrelation method. However, it has several drawbacks,

such as sensitivity to data drifts and choosing the reference waveform

when no external paradigm is present. The use of prespecified regions

of interest (ROI) or “seed clusters” has been the method of choice in

functional connectivity studies [35], [199]. The main limitation of this

method is that it is user-biased.

Model-free methods that have recently been applied to fMRI

data analysis include projection-based and clustering-based. The first

method, PCA [14, 242] and ICA [10, 77, 168, 170] extracts several

high-dimensional components from original data to separate functional

response and various noise sources from each other. The second method,

fuzzy clustering analysis [24, 53, 226, 285] or the self-organizing map

[84, 185, 285], attempts to classify time signals of the brain into pat-

terns according to temporal similarity among these signals.

Recently, self-organizing maps (SOM) have been applied to the

detection of resting-state functional connectivity [199]. It has been shown

that the SOM represents an adequate model-free analysis method for

detecting functional connectivity.

The present chapter elaborates this interesting idea and introduces

several unsupervised clustering methods implementing arbitrary dis-

tance metrics for the detection of low-frequency connectivity of the rest-

ing human brain. These techniques allow the detection of time courses

of low-frequency fluctuations in the resting brain that exhibit functional

connectivity with time courses in several other regions which are re-

lated to motor function. The results achieved by these approaches are

compared to standard model-based techniques.
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9.1 Imaging Protocol

fMRI data were recorded on a 1.5 T scanner (Magnetom Vision, Siemens,

Erlangen, Germany) from four subjects (three males and one female, be-

tween the ages of 25 and 28) with no history of neurological disease. The

sequence acquired 512 images (TR/TE=500/40 msec). Two 10.0-mm-

thick axial slices were acquired in each TR, with an in-plane resolution

of 1.37×1.37 mm.

The four subjects were studied under conditions of activation and

rest. Two separate data sets, one a task-activation set and one a resting-

state set, were acquired for each subject. During the resting-state collec-

tion, the subjects were told to refrain from any cognitive, language, or

motor task. For the task-activation set, a sequential finger-tapping mo-

tor paradigm (20.8-sec fixation, 20.8-sec task, 6 repeats) was performed.

The slices were oriented parallel to the calcarine fissure.

9.2 Postprocessing and Exploratory Data Analysis Methods

Motion artifacts were compensated for by automatic image registration

(AIR, [288]). To remove the effect of signal drifts stemming from ei-

ther the scanner and/or physiological changes in the subjects, linear de-

trending was employed. In addition, for the resting-state data, the time

courses were filtered with a low-pass filter having a cutoff frequency of

0.08 Hz. Thus, the influence of respiratory and cardiovascular oscilla-

tions was avoided while preserving the frequency spectrum pertaining

to functional connectivity [35]. The time courses were further normal-

ized in order to focus on signal dynamics rather than amplitude. See

discussion in [285] on this issue.

The following unsupervised clustering techniques are presented and

evaluated: topographic mapping of proximity, minimum free energy

neural network, fuzzy clustering, and Kohonen’s self-organizing map.

These techniques have in common that they group pixels together based

on the similarity of their intensity profile in time (i.e., their time courses).

Let n denote the number of sequential scans in an fMRI study, and

let K be the number of pixels in each scan. The dynamics of each

pixel μ ∈ {1, . . . , K} can be interpreted as a vector xμ ∈ Rn in the n-

dimensional feature space of possible signal time series. In the following,
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the pixel-dependent vector xμ will be called a pixel time course (PTC).

Here, several vector quantization (VQ) approaches are employed as

a method for unsupervised time series analysis. VQ clustering identifies

several groups of pixels with similar PTCs, and these groups or clusters

are represented by prototypical time series called codebook vectors (CV)

located at the center of their corresponding cluster. The CVs represent

prototypical PTCs sharing similar temporal characteristics. Thus, each

PTC can be assigned in the crisp clustering scheme to one specific CV

according to a minimal distance criterion, and in the fuzzy scheme

according to membership to several CVs. Accordingly, the outcomes

of VQ approaches for fMRI data analysis can be plotted as “crisp” or

“fuzzy” cluster assignment maps.

Besides the more traditional VQ approaches, a soft topographic

vector quantization algorithm is employed here which supports the

topographic mapping of proximity (TMP) data [98]. This algorithm can

be seen as an extension of Kohonen’s self-organizing map to arbitrary

distance measures. The TMP processes the data based on a dissimilarity

matrix, and the topographic neighborhood by a matrix of transition

probabilities. A detailed mathematical derivation can be found in [98].

This algorithm is employed in connection with two different distance

measures, the linear crosscorrelation between the time courses, which

is refered to as TMPcorr, and also in connection with the nonlinear

prediction error between time courses, which is refered to as TMPpred.

The nonlinear prediction error between time courses is determined by a

generalized radial-basis function (GRBF) neural network [179, 208]. For

the fuzzy c-means vector quantization, two different implementations

are employed: fuzzy c-means with unsupervised codebook initialization

(FSM), and the fuzzy c-means algorithm (FVQ) with random codebook

initialization.

9.3 Cluster Analysis of fMRI Data Sets Under Motor

Stimulation

This section describes the simulation results obtained with unsupervised

clustering methods during the activation state of the finger-tapping

motor paradigm.

The first objective is to demonstrate the applicability of the TMP
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algorithm to the partitioning of fMRI data. In a following step, a

comparison between the unsupervised algorithms implementing different

distance metrics is performed.

The TMP algorithm determines the mutual pairwise similarity be-

tween the PTCs, which leads to an important issue in fMRI data analy-

sis: What is the underlying basic similarity measure between the PTCs?

Two approaches described in the exploratory data analysis part are em-

ployed: the TMPcorr considering the correlation between the PTCs and

the TMPpred considering the prediction error.

Figure 9.1 visualizes the computed distance matrices for subject #1

and for N = 25 clusters based on both the correlation and the prediction

error methods. The first row shows the unsorted distance matrices and

the second row shows the results obtained after application of the TMP

algorithm, resulting in a display of the distance matrix, where the rows

and columns appear in an ordered fashion. The emerging block-diagonal

structure reflects the characteristic of the TMP algorithm to cluster

PTCs based on their mutual dependency (i.e., their pairwise distance).

By taking the average value of all PTCs belonging to a certain

cluster, a cluster-representative PTC is obtained. Figure 9.2 shows a

comparison of the segmentation results obtained by the unsupervised

clustering methods for subject #1. The cc-cluster describes a method

based on the threshold segmentation of the correlation map. This map

assigns to each pixel the Pearson correlation coefficient between the PTC

and the stimulus function. The threshold was chosen as Δ = 0.6, and

thus every pixel with a correlation of its PTC exceeding 0.6 is considered

to be activated and is white on the map. For the clustering methods, all

the clusters with an average correlation of PTCs above the threshold of

Δ = 0.6 are collected and their pixels are plotted white on the map.

The average value of all PTCs belonging to a certain segmentation

determines a segmentation-specific PTC shown under the assignment

maps. A high correlation of these representative PTCs with the stimulus

function cc = 0.75 is found exceeding for all methods.

It is important to perform a quantitative analysis of the relative

performance of the introduced exploratory data analysis techniques for

all four subjects. To do so, the proposed algorithms are compared for 9,

16, and 25 clusters in terms of ROC analysis using a correlation map with

a chosen threshold of 0.6 as the reference. The ROC performances for the

four subjects are shown in figure 9.3. The figure illustrates the average
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(a) (b)

Figure 9.1
Distance matrices with distances represented by gray values, with N = 25 clusters
used for the analysis of the motor stimulation data set of subject #1. Distances are
determined based on the correlation method (a) and the prediction error method
(b). The upper and lower rows show the matrices before and after applying the
TMP algorithm, respectively. The dissimilarity matrices were plotted such that the
rows from bottom to top and the columns from left to right correspond to
increasing indices of the PTCs. The block-diagonal structure of the ordered
distance matrices becomes evident. The dark lines represent the cluster borders and
are overlaid onto the distance matrices. Small distances are plotted dark,
representing close proximity.

area under the curve and its deviations for 20 different ROC runs for

each algorithm, using the same parameters but different initializations.

From this figure, it can be seen that all clustering methods achieve
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Figure 9.2
Segmentation results in the motor areas of subject #1 in the motor stimulation
experiment. The obtained task activation maps are shown for all unsupervised
methods. For comparison, the cc-cluster describes a method based on the threshold
segmentation of a pixel-specific correlation map. This map assigns to each pixel the
Pearson correlation coefficient between the PTC and the stimulus function. The
threshold was chosen as Δ = 0.6 and thus every pixel correlation exceeding 0.6 is
considered as activated and is colored white on the map. For the clustering
methods, all the clusters with an average correlation of PTCs above the threshold
of Δ = 0.6 are collected and their pixels are plotted white on the map. The average
value of all PTCs belonging to a certain segmentation determines a
segmentation-specific PTC shown under the assignment maps. The motor task
reference waveform is given as a square wave and overlaid on the average PTC.

good results expressed by an area A under the curve of A > 0.8. For a

smaller number of clusters, for all subjects SOM is outperformed by the
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Figure 9.3
Results of the comparison between the different exploratory data analysis methods
on motor stimulation fMRI data. Spatial accuracy of the maps is assessed by ROC
analysis using the pixel-specific correlation map with a threshold of 0.6 as the
reference segmentation. The figure illustrates the average area under the ROC
curve and its deviations for 20 runs of each algorithm, using the same parameters
but different initializations. The number of clusters for all techniques is equal to 9,
16, and 25, and results are plotted for all four subjects.

other methods, while for N = 25 this difference cannot be observed, an

important result is that the TMP algorithm, for both distance measures

(i.e. the nonlinear prediction error and cross-correlation), yields compet-

itive results when compared to the established clustering methods.

9.4 Functional Connectivity Under Resting Conditions

This section describes results obtained with the unsupervised clustering

methods for the analysis of the resting-state fMRI data. The partitioning

results are compared with regard to the segmentation of the motor

cortex.

Figure 9.4 visualizes the computed distance matrices for the resting-

state data set of subject #1 for N = 25 clusters, based on both the

correlation and the prediction error methods. The first row shows the un-

sorted distance matrices, and the second row shows the results obtained

after application of the TMP algorithm, resulting in a display of the dis-
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tance matrix where the rows and columns appear in an ordered fashion.

The emerging block-diagonal structure reflects the characteristic of the

TMP algorithm to cluster PTCs based on their mutual dependency (i.e.

their pairwise distance).

For each resting-state fMRI data set, the position of the motor cortex

is determined based on the segmentation provided by the pixel-specific

stimulus-correlation map obtained in the motor task fMRI experiment

of the same subject. That is, a PTC whose correlation coefficient in

the motor stimulation experiment is above a defined threshold of Δ

(e.g., Δ = 0.6) is considered as belonging to the motor cortex. This

segmentation approach is referred to as the cc-cluster method.

For the clustering methods, the segmentation of the motor cortex is

obtained by merging single clusters. The identification of such clusters

is determined by the similarity index (SI) [300]. The SI index is defined

as

SI = 2
|A1 ∩ A2|
|A1| + |A2| (9.1)

and gives a measure of the agreement of the two binary segmentations

A1 and A2. It is defined as the ratio of twice the common area to the sum

of the individual areas. An excellent agreement is given for SI > 0.7,

according to [300]. Although the absolute value of SI is difficult to

interpret, it gives a quantitative comparison between measurement pairs.

The cluster identification works as follows. First, the cluster showing

the largest SI value with the reference segmentation is selected. Then

this cluster is combined with the remaining cluster, if the SI value of

the two merged clusters is increased. This procedure continues until no

increase in the SI value is observed.

Figure 9.5 shows a comparison between the segmentation results

obtained by the unsupervised clustering methods for subject #1 in

the resting-state. By taking the average value of all PTCs belonging

to a certain determined segmentation, a representative PTC for each

segmentation is obtained. The figure shows that both the topographic

mapping of proximity data and the classical clustering techniques are

able to detect low-frequency connectivity associated with the motor

cortex.

The resulting values for the SI index for the proposed methods
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(a) (b)

Figure 9.4
Distance matrices with distances represented by gray values, if N = 25 clusters is
used for the analysis of subject #1 in the resting state experiment. Distances are
determined based on the correlation method (a) and the prediction error method
(b). The upper and lower rows show the matrices before and after applying the
TMP algorithm, respectively. The dissimilarity matrices were plotted such that the
rows from bottom to top and the columns from left to right correspond to
increasing indices of the PTCs. The block-diagonal structure of the ordered
distance matrices becomes evident. The dark lines represent the cluster borders and
are overlaid on the distance matrices. Small distances are plotted dark, representing
close proximity.

represent a quantitative evaluation of this observation and are shown

in table 9.1. For all applied methods, they range within the interval [0.5,

0.6], showing a fair agreement. It should be noted that the novel TMP
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TMPpred TMPcorr MFE SOM

FVQ FSM cc-cluster

Figure 9.5
Segmentation results in the motor areas of subject #1 in the resting-state. The
obtained functional connectivity maps are shown for all unsupervised methods. The
cc-cluster describes a method based on the threshold segmentation of the
pixel-specific correlation map of the motor stimulation fMRI experiment. This map
assigns to each pixel the Pearson correlation coefficient between the PTC and the
time-delayed stimulus function. The threshold was chosen as Δ = 0.6, and thus
every pixel correlation exceeding 0.6 is considered as activated and is white on the
cc-cluster map. The procedure used in order to obtain the segmentation for
clustering of the resting-state data is explained in the text. The average value of all
PTCs belonging to segmented areas determines a segmentation representative PTC
shown under the respective assignment map.

method in both variants yields acceptable results compared to the other
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Table 9.1
SI-index as a quantitative measure of the agreement of the segmentation between
the motor cortex areas in figure 9.5 and the reference segmentation cc-cluster.

TMPpred TMPcorr MFE SOM FVQ FSM
0.5409 0.5169 0.5476 0.5294 0.5663 0.5509

established clustering methods.

A comparison of the task activation maps with the functional con-

nectivity maps reveals some very interesting observations regarding the

resting-state data set: (a) the segmented motor areas in both hemi-

spheres are less predominant for the resting-state data set; (b) the seg-

mentation results for this data set does not show any pixels belonging to

the frontal lobes; and (c) the segmentations of the resting-state data set

include an increased number of pixels in the region of the supplemen-

tary motor cortex when compared to the cluster segmentation of the

motor stimulation data set in figure 9.2. Looking at these differences,

it becomes clear why an excellent agreement of SI > 0.7 for the clus-

ter segmentations and the reference cannot be observed. Whether these

differences are induced by physiological changes of the resting-state con-

nectivity in comparison to the situation found in motor activity, remains

speculative at this point.

9.5 Summary

This chapter has demonstrated the applicability of various unsupervised

clustering methods using different distance metrics to the analysis of

motor stimulation and resting-state functional MRI data. Two different

strategies were compared: a Euclidian distance metric as the basis of

the classical unsupervised clustering techniques and a topographic map-

ping of proximities determined by the correlation coefficient and the

prediction error. Both strategies were successfully applied to segmen-

tation tasks for both motor activation and resting-state fMRI data to

capture spatiotemporal features of functional connectivity.

The most important results are summarized as follows: (1) both un-

supervised clustering approaches show comparable results in connection

with model-based evaluation methods in task-related fMRI experiments;

and (2) they allow for the construction of connectivity maps of the motor
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cortex that unveil dependencies between anatomically separated parts of

the motor system at rest. It can be conjectured that the presented meth-

ods may be helpful for further investigation of functional connectivity

in the resting human brain.



10 Classification of Dynamic Breast MR Image Data

Breast cancer is the most common cancer among women. Magnetic res-

onance (MR) is an emerging and promising new modality for detection

and further evaluation of clinically, mammographically, and sonograph-

ically occult cancers [115, 293]. However, film and soft-copy reading and

manual evaluation of breast MRI data are still critical, time–consuming

and inefficient, leading to a decreased sensitivity [204]. Furthermore,

the limited specificity of breast MR imaging continues to be problem-

atic. Two different approaches are mentioned in literature [145] aiming

to improve the specificity: (1) single–breast imaging protocols with high

spatial resolution offer a meticulous analysis of the lesion’s structure and

internal architecture, and are able to distinguish between benign and

malignant lesions; (2) lesion differential diagnosis in dynamic protocols

is based on the assumption that benign and malignant lesions exhibit

different enhancement kinetics. In [145], it was shown that the shape

of the time-signal intensity curve is an important criterion in differen-

tiating benign and malignant enhancing lesions in dynamic breast MR

imaging. The results indicate that the enhancement kinetics, as shown

by the time-signal intensity curves visualized in figure 10.1, differ signif-

icantly for benign and malignant enhancing lesions and thus represent

a basis for differential diagnosis. In breast cancers, plateau or washout

time courses (type II or III) prevail. Steadily progressive signal intensity

time courses (type I) are exhibited by benign enhancing lesions. Also,

these enhancement kinetics are shared not only by benign tumors but

also by fibrocystic changes [145].

Concurrently, computer–aided diagnosis (CAD) systems in conven-

tional X–ray mammography are being developed to expedite diagnos-

tic and screening activities. The success of CAD in conventional X–ray

mammography motivated the research of similar automated diagnosis

techniques in breast MRI. Although, they are an issue of enormous clin-

ical importance with obvious implications for health care politics, re-

search initiatives in this field concentrate only on pattern recognition

methods based on traditional artificial neural networks [161] ,[1, 162,

271].

A standard multilayer perceptron (MLP) was applied to the classi-

fication of signal–time curves from dynamic breast MRI in [161]. The
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Figure 10.1
Schematic drawing of the time-signal intensity curve types [145]. Type I
corresponds to a straight (Ia) or curved (Ib) line; enhancement continues over the
entire dynamic study. Type II is a plateau curve with a sharp bend after the initial

upstroke. Type III is a washout time course SIc−SI
SI

where SI is the precontrast
signal intensity and SIc is the postcontrast signal intensity. In breast cancers,
plateau or washout time courses (type II or III) prevail. Steadily progressive signal
intensity time courses (type I) are exhibited by benign enhancing lesions.

major disadvantage of the MLP approach and also of any other super-

vised technique is the fixed number of input nodes, which imposes the

constraint of a fixed imaging protocol. Delayed administration of the con-

trast agent or a different temporal resolution has a negative effect on the

classification and segmentation capabilities. Thus, a change in the MR

imaging protocol requires a new training of the CAD system. In addi-

tion, the system fails in most cases to diagnose small breast masses with

a diameter of only a few millimeters. It must be mentioned that during

the training phase of a classifier, a histopathologically classified lesion

represents only a single input pattern. There is an urgent need, based

on the limited number of existing training data, to efficiently extract

information from a mostly inhomogeneous available data pool. While

supervised classification techniques often fail to accomplish this task,

the proposed biomimetic neural networks, in the long run, represent the

best training approaches leading to advanced CAD systems.

When applied to segmentation of MR images, traditional pattern

recognition techniques such as the MLP have shown unsatisfactory de-

tection results and limited application capabilities [1, 162]. Furthermore,

the underlying supervised nonbiological learning strategy leads to the in-

ability to capture the feature structure of the breast lesion in the neural

architecture. One recent paper demonstrated examples of the segmenta-

tion of dynamic breast MRI data sets by unsupervised neural networks.
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Trough use of a Kohonen neural network, areas with similar signal time

courses in mammographic image series were detected, making possible

a clear detection of carcinoma [85].

In Summary, the major disadvantages associated with standard

techniques in breast MRI are (1) requirement of a fixed MR imaging

protocol, (2) lack of increase in sensitivity and/or specificity, (3) inability

to capture the lesion structure, and (4) training limitations due to an

inhomogeneous lesion data pool.

To overcome the above-mentioned problems, a minimal free energy

vector quantization neural network is employed that focuses strictly

on the observed complete MRI signal time series and enables a self–

organized, data–driven segmentation of dynamic contrast–enhanced

breast MRI time series with regard to fine-grained differences of sig-

nal amplitude, and dynamics, such as focal enhancement in patients

with indeterminate breast lesions. This method is developed, tested,

and evaluated for functional and structural segmentation, visualization,

and classification of dynamic contrast-enhanced breast MRI data. Thus,

it is a contribution toward the construction and evaluation of a flexible

and reusable software system for CAD in breast MRI.

The results show that new method reveals regional properties of

contrast–agent uptake characterized by subtle differences of signal am-

plitude and dynamics. As a result, one obtains both a set of prototypical

time series and a corresponding set of cluster assignment maps which

further provide a segmentation with regard to identification and regional

subclassification of pathological breast tissue lesions. The inspection of

these clustering results is a unique practical tool for radiologists, en-

abling a fast scan of the data set for regional differences or abnormali-

ties of contrast-agent uptake. The proposed technique contributes to the

diagnosis of indeterminate breast lesions by noninvasive imaging.

10.1 Materials and Methods

Patients

A total of 13 patients, all female and ranging in age from 48 to 61, with

solid breast tumors, were examined. All patients had histopathologically

confirmed diagnosis from needle aspiration/excision biopsy and surgical

removal. Breast cancer was diagnosed in 8 of the 13 cases.



278 Chapter 10

MR imaging

MRI was performed with a 1.5 T system (Magnetom Vision, Siemens,

Erlangen, Germany) equipped with a dedicated surface coil to enable si-

multaneous imaging of both breasts. The patients were placed in a prone

position. First, transversal images were acquired with a STIR (short

TI inversion recovery) sequence (TR=5600 ms, TE=60 ms, FA=90◦,
IT=150 ms, matrix size 256×256 pixels, slice thickness 4 mm). Then a

dynamic T1 weighted gradient echo sequence (3-D fast, low, angle-shot

sequence) was performed (TR=12 ms, TE=5 ms, FA=25◦) in transver-

sal slice orientation with a matrix size of 256×256 pixels and an effective

slice thickness of 4 mm.

The dynamic study consisted of six measurements with an interval

of 83 sec. The first frame was acquired before injection of paramag-

netic contrast agent (gadopentatate dimeglumine, 0.1 mmol/kg body

weight; MagnevistTM , Schering, Berlin, Germany) and immediately fol-

lowed by the five other measurements. Rigid image registration by the

AIR method [288] as a preprocessing step was used. As this did not

correct for nonlinear deformations, only data sets without relevant mo-

tion artifacts were included. The initial localization of suspicious breast

lesions was performed by computing difference images (i.e., subtract-

ing the image data of the first acquisition from the fourth acquisition).

As a preprocessing step to clustering, each raw gray-level time series

S(τ), τ ∈ {1, · · · , 6} was transformed into a pixel time course (PTC)

of relative signal reduction x(τ) for each voxel, the precontrast scan at

τ = 1 serving as reference. Based on this implicit normalization, no

significant effect of magnetic field inhomogeneities on the segmentation

results was observed.

Data clustering

The employed classifier (the minimal free energy vector quantization

neural network) is according to grouping image pixels together based on

the similarity of their intensity profiles in time (i.e., their time courses).

Let n denote the number of subsequent scans in a dynamic contrast-

enhanced breast MRI study, and let K be the number of pixels in

each scan. μ ∈ {1, · · · , K}, that is, the sequence of signal values

{xμ(1), · · · ,xμ(n)}, can be interpreted as a vector xμ(i) ∈ Rn in the

n–dimensional feature of possible PTCs at each pixel.
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Cluster analysis groups image pixels together based on the similarity

of their intensity profiles in time. In the clustering process, a time

course with n points is represented by one point in an n–dimensional

Euclidean space which is subsequently partitioned into clusters based on

the proximity of the input data. These groups or clusters are represented

by prototypical time series called codebook vectors (CV), located at the

centers of the corresponding clusters. The CVs represent prototypical

PTCs sharing similar temporal characteristics.

Segmentation methods

In the following, three segmentation methods for the evaluation of signal

intensity time courses for the differential diagnosis of enhancing lesions

in breast MRI are presented. The results obtained by these methods are

shown exemplarily on data set #1.

Segmentation method I

This segmentation method is based on carefully choosing a circular ROI

defined by taking into account the voxels whose intensity curves are

above a radiologist-defined threshold (> 50%) in the early postcontrast

phase. The specific choice of this threshold is motivated by the rele-

vant literature (e.g., [82], where the probability of missing malignant

lesions by excluding regions with a relative signal increase of less than

50% is considered negligible). For all voxels belonging to this ROI, an

average time-signal intensity curve is computed. This averaged value is

then rated. This very simple method corresponds to the radiologists’

conventional way of analyzing dynamic MRI mammography data. Fig-

ure 10.2 illustrates the described segmentation method. White pixels

have an above–threshold signal increase. The contrast–enhanced pixels

are shown in figure 10.2b. Based on a region–growing method [95], the

suspicious lesion area can be easily determined (see figure 10.8).

Figure 10.3 shows the result of the segmentation when it is applied to

data set #1. Slices #14 to #17 contain the lesion. The average contrast–

enhanced dynamics over all pixels is shown in the right image of this

figure. It is a plateau curve after an initial medium upstroke.
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Figure 10.2
Segmentation method I. (a) Threshold segmentation. (b) Classification based on
threshold segmentation: pixels exhibiting time signal intensity curves above a given
threshold are white. (c) The lesion is determined based on region growing.

Segmentation method II

The ROI contains a slice through the whole breast, and all the voxels

within the ROI are subject to cluster analysis. Results on data set

#1 are presented in figures 10.4 and 10.5 for the clustering technique

employing nine clusters. They are numbered consecutively from 1 to 9.

The figures show cluster assignment maps and corresponding codebook

vectors of breast MRI data covering a supramamillar transversal slice of

the left breast containing a suspicious lesion that has been proven to be

malignant by subsequent histological examination.

The procedure is able to segment the lesion from the surrounding

breast tissue, as can be seen from cluster #6 of figure 10.4. The rapid
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Figure 10.3
Segmentation method I applied to data set #1 (scirrhous carcinoma). The left
image shows the lesion extent over slices #14 to #17. The right image shows the
average time-signal intensity curve of all pixels belonging to this lesion.

and strong contrast-agent uptake is followed by subsequent plateau and

washout phases in the round central region of the lesion, as indicated by

the corresponding CV of cluster #6 in figure 10.5.

Furthermore, clustering results enable a subclassification within this

lesion with regard to regions characterized by different MRI signal time

courses: The central cluster #6 is surrounded by the peripheral circular

clusters #7, 8, and 9, which primarily can be separated from both the

central region and the surrounding tissue by the amplitude of their

contrast-agent uptake ranging between CV #6 and all the other CVs.

Segmentation method III

This segmentation method combines method I with method II. Method

I is chosen for determining the lesions with a super-threshold contrast-

agent uptake, while method II performs a cluster analysis of the identi-

fied lesion.

Figure 10.6 shows the segmentation results for data set #1.

10.2 Results

The computation time for vector quantization depends on the number

of PTCs included in the procedure. The computation time per data set
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Figure 10.4
Segmentation method II: Cluster assignment maps for cluster analysis using the
fuzzy clustering technique based on deterministic annealing of the dynamic breast
MRI study (data set #1).

was 285 ± 110 s and 3.1 ± 2.5 sec for segmentation methods II and III,

respectively, using an ordinary PC (Intel Pentium 4 CPU, 1.6 GHz, 512

MB RAM).

In the following, a comparison of three different lesion segmentation

methods is presented when applied to a study involving 13 subjects.

Segmentations I and III and a slightly changed version of segmentation

method I which is called ∗ are considered. Only the slice where the lesion

has its largest circumference is chosen as an ROI, and then the process

proceeds as described in method I. The results achieved by segmentation
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Figure 10.5
Segmentation method II: Codebook vectors for fuzzy clustering technique based on
deterministic annealing of the dynamic breast MRI study according to figure 10.4.
sai represents the initial, and svp the postinitial, time-signal intensity.

method II are not included, since it involves the whole breast and will

be less accurate than method III.

The obtained time-signal intensity curves of enhancing lesions were

plotted and presented to two experienced radiologists who were blinded

to any clinical or mammographic information of the patients. The radi-

ologists were asked to rate the time courses as having a steady, plateau,

or washout shape type I, II, or III, respectively [145]. Their ratings are

the column entries in table 10.1.

The classification of the lesions on the basis of the time-course
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Figure 10.6
Segmentation method III applied to data set #3 (benign lesion, fibroadenoma), and
resulting in four clusters. The left image shows the cluster distribution for slices 21
through 23. The right image visualizes the representative time-signal intensity time
curves for each cluster. See plate 4 for the color version of this figure.

analysis was then compared for all three segmentation methods and with

the lesions’ definitive diagnoses. The definitive diagnosis was obtained

histologically by means of excisional biopsy or of follow–up of the cases

that, on the basis of history, clinical, mammographic, ultrasound, and

breast MR imaging findings, were rated to be probably benign.

The results show an increase in sensitivity of breast MRI with regard

to malignant tissue changes for 4 out of 13 cases. Also, the data sets

#4 and 10 are incorrectly classified by method I and I as a benign

lesion. Only method III, which includes cluster analysis as well as the

conventional method of thresholding, correctly distinguishes between the

two lesion types.

The mismatch between the three segmentation methods is shown in

figures 10.11 to 10.18.

Figure 10.14 illustrates the result of this segmentation method when

it is applied to a malignant lesion (ductal carcinoma in situ). Cluster 1

shows the central body of the lesion while and 2, 3, and 4 mark the

periphery, surrounding the central part like a shell. The time-signal

intensity curve for cluster 1 is of type III, while those for clusters 2,

3, and 4 are of type Ib.

Segmentation method I, which is based on the average time-signal

intensity curve of the pixels, shows only a type Ib curve, which is



Classification of Dynamic Breast MR Image Data 285

Table 10.1
Comparison of different data-driven segmentation methods of dynamic
contrast-enhanced breast MRI time series. The differentiation between benign and
malignant lesions is based on the method described in [145]. m is a malignant lesion
and b a benign lesion.

Data set Method I Method I∗ Method III Lesion Description
# 1 III III III m Scirrhous carcinoma
# 2 II II III m Tubulo–lobular carcinoma
# 3 Ib Ib Ib b Fibroadenoma
# 4 Ib Ib III m Ductal carcinoma in situ
# 5 Ia Ia Ia b Fibrous mastopathy
# 6 III III III m Papilloma
# 7 II II II m Ductal carcinoma in situ
# 8 Ib Ib Ib b Inflammatory granuloma
# 9 Ib Ib Ib b Scar, no relapse

# 10 Ib Ib II m Ductal carcinoma in situ
# 11 II II III m Invasive, ductal carcinoma
# 12 Ib Ib Ib b Fibroadenoma
# 13 III III III m Medullary carcinoma

characteristic of benign lesions. This fact is visualized in figure 10.11. The

resulting mismatch between these two segmentation methods shows the

main advantage of segmentation method III: based on a differentiated

examination of tissue changes, we obtain an increase in sensitivity of

breast MRI with respect to malignant lesions.

The examined data sets show that the relevance of the minimal free

energy vector quantization neural network for MRI breast examination

lies in the potential to increase the diagnostic accuracy for MRI mam-

mography by improving the sensitivity without reduction of specificity.

In order to document this improvement induced by segmentation method

III, the results are included of all three segmentation methods on all the

“critical” data sets (i.e., those where such a mismatch between segmen-

tation methods I and III could be observed: data sets #2, 4, 10, and 11),

see figures 10.7-10.22.

In this chapter, three different segmentation methods have been

presented for the evaluation of signal-intensity time-courses for the

differential diagnosis of enhancing lesions in breast MRI. Starting from

the conventional methodology, the concepts of threshold segmentation

and cluster analysis were introduced and in the last step those two

concepts were combined.

The introduction of new techniques was motivated by the conceptual
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weaknesses of the conventional technique. A manually predefined ROI

substantially impacts the differential diagnosis in breast MRI. However,

cluster analysis is almost independent of manual intervention, yet is

computationally intensive. Threshold-based segmentation allows a dif-

ferentiation between contrast–enhancing lesions and surrounding tissue.

However, a subdifferentiation within the lesion is not provided. A fusion

of the techniques of threshold segmentation and cluster analysis com-

bines the advantages of these single methods. Thus, a fast segmentation

method is obtained which carefully discriminates between regions with

different lesion enhancement kinetics. Additionally, the third segmenta-

tion method, when compared to the method based only on cluster anal-

ysis, provides a subdifferentiation of the enhancement kinetics within a

lesion, and is mostly independent of user intervention.

However, the most important advantage lies in the potential to in-

crease the diagnostic accuracy of MRI mammography by improving the

sensitivity without reduction of specificity for the data sets examined.
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Figure 10.7
Segmentation method I applied to data set #2 (tubulo-lobular carcinoma). The left
image shows the lesion extent over slices 13 to 16. The right image shows the
average time-signal intensity curve of all pixels belonging to this lesion.
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Figure 10.8
Segmentation method II: Cluster assignment maps for cluster analysis using on the
fuzzy clustering technique based on deterministic annealing of the dynamic breast
MRI study (data set #2).



288 Chapter 10

1 2 3 4 5 6
  0

 50

100

150

200

250 1 sa
i
: 4.08

sv
p
: 0.50

1 2 3 4 5 6
  0

 50

100

150

200

250 2 sa
i
: 7.44

sv
p
: 1.41

1 2 3 4 5 6
  0

 50

100

150

200

250 3 sa
i
: 13.07

sv
p
: 1.15

1 2 3 4 5 6
  0

 50

100

150

200

250 4 sa
i
: 24.42

sv
p
: 5.85

1 2 3 4 5 6
  0

 50

100

150

200

250 5 sa
i
: 1.57

sv
p
: �7.96

1 2 3 4 5 6
  0

 50

100

150

200

250 6 sa
i
: 42.30

sv
p
: 16.76

1 2 3 4 5 6
  0

 50

100

150

200

250 7 sa
i
: 177.62

sv
p
: �8.24

1 2 3 4 5 6
  0

 50

100

150

200

250 8 sa
i
: 58.89

sv
p
: �24.87

1 2 3 4 5 6
  0

 50

100

150

200

250 9 sa
i
: 97.73

sv
p
: �3.32

Figure 10.9
Segmentation method II: Codebook vectors for fuzzy clustering technique based on
deterministic annealing of the dynamic breast MRI study according to figure 10.8.
sai represents the initial, and svp the postinitial, time-signal intensity.
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Figure 10.10
Segmentation method III applied to data set #1 (malignant lesion, tubulo-lobular
carcinoma) with four clusters. The left image shows the cluster distribution for
slices 13 through 16. The right image visualizes the representative time-signal
intensity curves for each cluster. See plate 5 for the color version of this figure.
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Figure 10.11
Segmentation method I applied to data set #4. The left image shows the lesion’s
extent over slices 6 to 8. The right image shows the average time-signal intensity
curve of all pixels belonging to this lesion.
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Figure 10.12
Segmentation method II: Cluster assignment maps for cluster analysis using the
fuzzy clustering technique using deterministic annealing of the dynamic breast MRI
study (data set #4).



Classification of Dynamic Breast MR Image Data 291

1 2 3 4 5 6
  0

 50

100

150

200

250

300 1 sa
i
: �5.11

sv
p
: �6.98

1 2 3 4 5 6
  0

 50

100

150

200

250

300 2 sa
i
: 34.86

sv
p
: 19.14

1 2 3 4 5 6
  0

 50

100

150

200

250

300 3 sa
i
: 19.36

sv
p
: 13.41

1 2 3 4 5 6
  0

 50

100

150

200

250

300 4 sa
i
: 10.32

sv
p
: 7.35

1 2 3 4 5 6
  0

 50

100

150

200

250

300 5 sa
i
: 3.84

sv
p
: 3.06

1 2 3 4 5 6
  0

 50

100

150

200

250

300 6 sa
i
: 0.83

sv
p
: �1.09

1 2 3 4 5 6
  0

 50

100

150

200

250

300 7 sa
i
: 74.06

sv
p
: 22.81

1 2 3 4 5 6
  0

 50

100

150

200

250

300 8 sa
i
: 150.64

sv
p
: 8.01

1 2 3 4 5 6
  0

 50

100

150

200

250

300 9 sa
i
: 217.15

sv
p
: �6.88

Figure 10.13
Segmentation method II: Codebook vectors for fuzzy clustering technique using
deterministic annealing of the dynamic breast MRI study according to figure 10.12.
sai represents the initial, and svp the postinitial, time-signal intensity.
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Figure 10.14
Segmentation method III applied to data set #4 (malignant lesion, ductal
carcinoma in situ) and resulting in four clusters. The left image shows the cluster
distribution for slices 6 through 8. The right image visualizes the representative
time-signal intensity time curve for each cluster. See plate 6 for the color version of
this figure.
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Figure 10.15
Segmentation method I applied to data set #10 (ductal carcinoma in situ). The left
image shows the lesion’s extent over slices 16 to 18. The right image shows the
average time-signal intensity curve of all pixels belonging to this lesion.
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Figure 10.16
Segmentation method II: Cluster assignment maps for cluster analysis using the
fuzzy clustering technique using deterministic annealing of the dynamic breast MRI
study (data set #10).
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Figure 10.17
Segmentation method II: Codebook vectors for fuzzy clustering technique using
deterministic annealing of the dynamic breast MRI study according to figure 10.16.
sai represents the initial, and svp the postinitial, time-signal intensity.
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Figure 10.18
Segmentation method III applied to data set #10 (malignant lesion, ductal
carcinoma in situ) with four clusters. The left image shows the cluster distribution
for slices 16 through 18. The right image visualizes the representative time-signal
intensity curve for each cluster. See plate 7 for the color version of this figure.
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Figure 10.19
Segmentation method I applied to data set #11. The left image shows the lesion
extent over slices 20 to 23. The right image shows the average time-signal intensity
curve of all pixels belonging to this lesion.
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Figure 10.20
Segmentation method II: Cluster assignment maps for cluster analysis using the
fuzzy clustering technique using deterministic annealing of the dynamic breast MRI
study (data set #11).
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Figure 10.21
Segmentation method II: Codebook vectors for fuzzy clustering technique using
deterministic annealing of the dynamic breast MRI study according to figure 10.20.
sai represents the initial, and svp the postinitial, time-signal intensity.
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Figure 10.22
Segmentation method III applied to data set #11 (malignant lesion, invasive ductal
carcinoma) with four clusters. The left image shows the cluster distribution for
slices 20 through 23. The right image visualizes the representative time-signal
intensity curve for each cluster. See plate 8 for the color version of this figure.



11
Dynamic Cerebral Contrast-enhanced Perfusion
MRI

Cerebrovascular stroke is the third leading cause of mortality in indus-

trial countries after cardiovascular disease and malignant tumors [86].

Therefore, the analysis of cerebral circulation has become an issue of

enormous clinical importance.

Novel magnetic resonance imaging (MRI) techniques have emerged

since the 1990s that allow for rapid assessment of normal brain function

as well as cerebral pathophysiology. Both diffusion-weighted imaging

and perfusion-weighted imaging have already been used extensively for

the evaluation of patients with cerebrovascular disease [65]. They are

promising research tools that provide data about infarct evolution as

well as mechanisms of stroke recovery. Combining these two techniques

with high-speed MR angiography leads to improvements in the clinical

management of acute stroke subjects [192].

Measurement of tissue perfusion yields important information about

organ viability and function. Dynamic susceptibility contrast MR imag-

ing, also known as contrast-agent bolus tracking represents a noninvasive

method for cerebrovascular perfusion analysis [275]. In contrast to other

methods to determine cerebral circulation, such as iodinated contrast

media in combination with dynamic X-ray computed tomography (CT)

[11] and the administration of radioactive tracers for positron emission

tomography (PET) blood-flow quantification studies [114], it allows high

spatial and temporal resolution and avoids the disadvantage of patient

exposure to ionizing radiation.

MR imaging allows assessment of regional cerebral blood-flow

(rCBF), regional cerebral blood volume (rCBV), and mean transit time

(MTT) (for definitions, see, e.g. [220]).

In clinical praxis, the computation of rCBV, rCBF, and MTT values

from the MRI signal dynamics has been demonstrated to be relevant,

even if its underlying theoretical basis may be weak under pathologi-

cal conditions [65]. The conceptual difficulties with regard to the pa-

rameters MTT, rCBV, and rCBF arise from four basic constraints: (1)

homogeneous mixture of the contrast-agent and blood pool, (2) negligi-

ble contrast-agent injection volume, (3) hemodynamic indifference of the

contrast-agent, and (4) strict intravascular presence of the indicator sub-

stance. Conditions (1)-(3) are usually satisfied in dynamic susceptibility
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contrast MRI using intravenous bolus administration of gadolinium com-

pounds. Condition (4), however, requires an intact blood-brain barrier.

This prerequisite is fulfilled in examinations of healthy subjects. These

limitations for the application of the indicator dilution theory have been

extensively discussed in the literature on MRI [200, 220] and nuclear

medicine [149]. If, absolute flow quantification by perfusion MRI should

be performed, the additional measurement of the arterial input function

is needed, which is difficult to obtain in clinical routine diagnosis.

However, clinicians agree that determining parameter images based

on the MRI signal dynamics, is a key issue in clinical decision-making,

bearing a huge potential for diagnosis and therapy.

The analysis of perfusion MRI data by unsupervised clustering meth-

ods provides the advantage that it does not imply speculative presump-

tive knowledge on contrast-agent dilution models, but strictly focuses

on the observed complete MRI signal time series. In this chapter, the

applicability of clustering techniques as tools for the analysis of dynamic

susceptibility contrast MRI time series is demonstrated and the perfor-

mance of five different clustering methods is compared for this purpose.

11.1 Materials and Methods

Imaging protocol

The study group consisted of four subjects: (1) two men aged 26 and 37

years without any neurological deficit, history of intracranial abnormal-

ity, or previous radiation therapy. They were referred to clinical radiol-

ogy to rule out intracranial abnormality. (2) two subjects (one man and

one woman, aged 61 and 76 years, respectively) with subacute stroke

(symptoms two and four days, respectively) who underwent MRI ex-

amination as a routine clinical diagnostic procedure. All four subjects

gave their written consent. Dynamic susceptibility contrast MRI was

performed on a 1.5 T system (Magnetom Vision, Siemens, Erlangen,

Germany) using a standard circularly polarized head coil for radio fre-

quency transmission and detection. First, fluid-attenuated inversion re-

covery, T2-weighted spin echo, and diffusion-weighted MRI sequences

were obtained in transversal slice orientation, enabling initial localiza-

tion and evaluation of the cerebrovascular insult in the subjects with

stroke. Then dynamic susceptibility contrast MRI was performed us-
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ing a 2-D gradient echo echoplanar imaging (EPI) sequence employ-

ing 10 transversal slices with a matrix size of 128 × 128 pixels, pixel

size 1.88 × 1.88mm, and a slice thickness of 3.0mm (TR = 1.5 sec, TE

= 0.54 sec, FA = 90◦). The dynamic study consisted of 38 scans with

an interval of 1.5 sec, between each scan. The perfusion sequence and an

antecubital vein bolus injection (injection flow 3ml/sec) of gadopente-

tate dimeglumine (0.15mmol/kg body weight, MagnevistTM, Schering,

Berlin, Germany) were started simultaneously in order to obtain several

(more than six) scans before cerebral first pass of the contrast-agent.

The registration of the images was performed based on the automatic

image alignment (AIR) algorithm [288].

Data analysis

In an initial step, a radiologist excluded by manual contour tracing the

extracerebral parts of the given data sets. Manual presegmentation was

used for simplicity, as this study was designed to examine only a few

MRI data sets in order to demonstrate the applicability of the perfusion

analysis method.

For each voxel, the raw gray-level time series S(τ), τ ∈ {1, . . . , 38}
was transformed into a pixel time course (PTC) of relative signal reduc-

tion x(τ) by

x(τ) =

(
S(τ)

S0

)α

, (11.1)

where S0 is the precontrast gray level and α > 0 a is distortion ex-

ponent. The effect of the native signal intensity was eliminated prior

to contrast-agent application. If time-concentration curves are not com-

puted according to the above equation (i.e., avoiding division of the raw

time series data by the pre-contrast gray level before clustering), implicit

use is made of additional tissue-specific MR imaging properties that do

not directly relate to perfusion characteristics alone.

In the study, S0 was computed as the average gray level at scan times

τ ∈ {3, 4, 5}, excluding the first two scans. There exists an exponential

relationship between the relative signal reduction x(τ) and the local

contrast-agent tissue concentration c(τ) [223], [181], [83], [137]:

c(τ) = − ln x(τ) = −α ln

(
S(τ)

S0

)
, (11.2)
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where α > 0 is an unknown proportionality constant. Based on equation

(11.2), the concentration-time curves (CTCs) are obtained from the

signal PTCs.

Conventional data analysis was performed by computing MTT,

rCBV, and rCBF parameter maps employing the relations (e.g. [299],

[11], [240])

MTT =

∫
τ · c(τ) dτ∫
c(τ) dτ

, rCBV =

∫
c(τ) dτ, rCBF =

rCBV

MTT
. (11.3)

Methods for analyzing perfusion MRI data require presumptive

knowledge of contrast-agent dynamics based on theoretical ideas of

contrast-agent distribution that cannot be confirmed by experiment

(e.g., determination of relative CBF, relative CBV, or MTT compu-

tation from MRI signal dynamics). Although these quantities have been

shown to be very useful for practical clinical purposes, their theoretical

foundation is weak, as the essential input parameters of the model cannot

be observed directly. On the other hand, methods for absolute quantifi-

cation of perfusion MRI parameters do not suffer from these limitations

[200]. However, they are conceptually sophisticated with regard to theo-

retical assumptions and require additional measurement of arterial input

characteristics, which sometimes may be difficult to perform in clinical

routine diagnosis. At the same time, these methods require computa-

tionally expensive data postprocessing by deconvolution and filtering.

For example, deconvolution in the frequency domain is very sensitive to

noise. Therefore, additional filtering has to be performed, and heuris-

tic constraints with regard to smoothness of the contrast-agent residual

function have to be introduced. Although other methods, such as singu-

lar value decomposition (SVD), could be applied, a gamma variate fit

[213, 265] was used in this context.

The limitations with regard to perfusion parameter computation-

based equations (11.3) are addressed in the literature (e.g., [281], [220]).

Evaluation of the clustering methods

This section is dedicated to presenting the algorithms and evaluating

the discriminatory power of unsupervised clustering techniques. These

are Kohonen’s self-organizing map (SOM), fuzzy clustering based on

deterministic annealing, the “neural gas” network, and the fuzzy c-

means algorithm. These techniques are according to grouping image
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pixels together based on the similarity of their intensity profile in time

(i.e., their time courses).

Let n denote the number of scans in a perfusion MRI study, and

let K be the number of pixels in each scan. The dynamics of each pixel

μ ∈ {1, . . . , K} (i.e., the sequence of signal values {xμ(1), . . . ,xμ(n)})
can be interpreted as a vector xμ(i) ∈ Rn in the n-dimensional feature

space of possible signal time series at each pixel (PTC). For perfusion

MRI, the feature vector represents the PTC.

The chosen parameters for each technique are the following. For SOM

[142] is chosen: (1) a one-dimensional lattice and (2) the maximal number

of iterations. For the fuzzy clustering based on deterministic annealing,

a batch expectation maximization (EM) version [173] of fuzzy clustering

based on deterministic annealing is used in which the computation of

CVs wj (M-step) and assignment probabilities aj (E-step) is decoupled

and iterated until convergence at each annealing step characterized by a

given “temperature” T = 2ρ2. Clustering was performed employing 200

annealing steps corresponding to approximately 8 × 103 EM iterations

within an exponential annealing schedule for ρ. The constant α in

equation (11.1) was set at to α = 3. For “neural gas” network we chose:

(1) the learning parameters εi = 0.5 and εf = 0.005, and (2) the lattice

parameters λi equal to half the number of classes and λf = 0.01, and (3)

the maximal number of iterations equal to 1000. For the fuzzy algorithms

[33], the fuzzy factor=1.05, and the maximal number of iterations equal

to 120 is chosen.

The performance of the clustering techniques was evaluated by

(1) qualitative visual inspection of cluster assignment maps (i. e. clus-

ter membership maps) according to a minimal distance criterion in the

metric of the PTC feature space shown exemplarily only for the “neural

gas” network; (2) qualitative visual inspection of corresponding cluster-

specific CTCs for the “neural gas” network; (3) quantitative analysis

of cluster-specific CTCs by computing cluster-specific relative perfusion

parameters (rCBV, rCBF, MTT); (4) comparison of the best-matching

cluster representing the infarct region from the cluster assignment maps

for all presented clustering techniques with conventional pixel-specific

relative perfusion parameter maps; (5) quantitative assessment of asym-

metry between the affected and a corresponding non-affected contralat-

eral brain region based on clustering results for a subject with stroke

in the right basal ganglia; (6) cluster validity indices, and (7) receiver
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operating characteristic (ROC) analysis;

The implementation of a quantitative ROC analysis demonstrating

the performance of the presented clustering paradigms is reported in

the following. Besides the four clustering techniques - “neural gas” net-

work, Kohonen’s self-organizing map (SOM), fuzzy clustering based on

deterministic annealing, and fuzzy c-means vector quantization - for the

last, two different implementations are employed: fuzzy c-means with

unsupervised codebook initialization (FSM) and the fuzzy c-means al-

gorithm (FVQ) with random codebook initialization. The two relevant

parameters in an ROC study, sensitivity and specificity, are explained

in the following for evaluating the dynamic perfusion MRI data. In the

study, sensitivity is the proportion of the activation site identified cor-

rectly, and specificity is the proportion of the inactive region identified

correctly. Both sensitivity and specificity are functions of the two thresh-

old values Δ1 and Δ2, representing the thresholds for the reference and

compared partitions, respectively. Δ2 is varied over its whole range while

Δ1 is kept constant. By plotting the trajectory of these two parameters

(sensitivity and specificity), the ROC curve is obtained. In the ideal case,

sensitivity and specificity are both 1, and thus any curve corresponding

to a certain method closest to the uppermost left corner of the ROC plot

will be the method of choice. The results of quantitative ROC analysis

presented in figure 11.14 show large values of the areas under the ROC

curves as a quantitative criterion of diagnostic validity (i.e. agreement

between clustering results and parametric maps).

The threshold value Δ1 in table 11.1 was carefully determined for

both performance metrics, regional cerebral blood volume (rCBV; left

column), and mean transit time (MTT): Δ1 was chosen as the one

that maximizes the AUC of the ROC curves of experimental series. The

optimal threshold value Δ1 is given individually for each data set (see

table 11.1) and corresponds to the maximum of the sum over all ROC

areas for each possible threshold value.

The ground truth used for the ROC analysis is given by the seg-

mentation obtained for the parameter values of the time series of each

individual pixel (i.e. the conventional analysis). The implemented pro-

cedure is as follows: (a) Select a threshold Δ1. (b) Then, determine the

ground truth: for the time series of each individual pixel, compare the

MTT value to Δ1. If the MTT value of this specific pixel is less than Δ1,

assign this pixel to the active ground truth region; otherwise, assign it
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Table 11.1
Optimal threshold value Δ1 for the data sets #1 to #4 based on rCBV and MTT.

rCBV MTT
#1 0.30 21.0
#2 0.30 28.0
#3 0.30 18.7
#4 0.20 21.5

to the inactive one. (c) Select a threshold Δ2 independently of Δ1. De-

termine all the clusters whose cluster-specific concentration time-curve

reveals an MTT less than Δ2. Assign all the pixels belonging to these

clusters to the active region found by the method. Plot the (sensitiv-

ity, specificity) point for the chosen value of Δ2 by comparing with the

ground truth. (d) Repeat (c) for different values of Δ2.

Thus, for each Δ2, a single (sensitivity, specificity) point is obtained.

For each Δ1, however, a complete ROC curve is obtained by variation

of Δ2, where Δ1 remains fixed. This means that for different values of

Δ1, different ROC curves in general are obtained. Δ1 is chosen for each

data set in such a way that the area under the ROC curve (generated by

variation of Δ2) is maximal. The corresponding values for Δ1 are given

in table 7.2.

11.2 Results

In this section, the clustering results of the pixel time courses based on

the presented methods are presented.

To elucidate the clustering process in general, and thus to obtain a

better understanding of the techniques, the cluster assignment maps and

the corresponding cluster-specific concentration-time curves belonging

to the clusters exemplarily only for the “neural gas” network are shown.

Clustering results for a 38-scan dynamic susceptibility MRI study

in a subject with a subacute stroke affecting the right basal ganglia are

presented in figures 11.1 and 11.2. After discarding the first two scans, a

relative signal reduction time series x(τ), τ ∈ {1, . . . , n}, n = 36 can be

computed for each voxel according to equation (11.1). Similar PTCs form

a cluster. Figure 11.1 shows the “cluster assignment maps” overlaid onto

an EPI scan of the perfusion sequence. In these maps, all the pixels that

belong to a specific cluster are highlighted. The decision on assigning
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Figure 11.1
Cluster assignment maps for the “neural gas” network of a dynamic perfusion MRI
study in a subject with a stroke in the right basal ganglia. Self-controlled
hierarchical neural network clustering of PTCs x(τ) was performed by the “neural
gas” network employing 16 CVs (i.e., a maximal number of 16 separate clusters at
the end of the hierarchical VQ procedure). For a better orientation, an anatomic
EPI scan of the analyzed slice is underlaid.

a pixel ν characterized by the PTC xν = (xν(τ)), τ ∈ {1, . . . , n} to

a specific cluster j is based on a minimal distance criterion in the n-

dimensional time series feature space (i.e., ν is assigned to cluster j), if

the distance ‖xν −wj‖ is minimal, where wj denotes the CV belonging

to cluster j. Each CV represents the weighted mean value of all the

PTCs belonging to this cluster.

Self-controlled hierarchical neural network clustering of PTCs x(τ)
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1 rCBF: 0.05

rCBV: 1.00

MTT : 21.30

2 rCBF: 0.04

rCBV: 0.81

MTT : 19.83

3 rCBF: 0.01

rCBV: 0.20

MTT : 21.44

4 rCBF: 0.01

rCBV: 0.14

MTT : 22.01

5 rCBF: 0.01

rCBV: 0.19

MTT : 19.59

6 rCBF: 0.01

rCBV: 0.11

MTT : 19.95

7 rCBF: 0.00

rCBV: 0.06

MTT : 21.87

8 rCBF: 0.00

rCBV: 0.06

MTT : 20.20

9 rCBF: 0.02

rCBV: 0.43

MTT : 23.15

10 rCBF: 0.02

rCBV: 0.35

MTT : 21.26

11 rCBF: 0.01

rCBV: 0.23

MTT : 20.14

12 rCBF: 0.03

rCBV: 0.51

MTT : 19.74

13 rCBF: 0.02

rCBV: 0.34

MTT : 19.69

14 rCBF: 0.03

rCBV: 0.64

MTT : 20.73

15 rCBF: 0.01

rCBV: 0.11

MTT : 20.43

16 rCBF: 0.04

rCBV: 0.82

MTT : 23.04

Figure 11.2
Cluster-specific concentration-time curves for the ”neural gas” network of a
dynamic perfusion MRI study in a subject with a stroke in the right basal ganglia.
Cluster numbers correspond to figure 11.1. MTT values are indicated as multiples
of the scan interval (1.5 sec), rCBV values are normalized with regard to the
maximal value (cluster #1). rCBF values are computed from MTT and rCBV by
equation (11.3). The X-axis represents the scan number, and the Y-axis is arbitrary.

was performed by a “neural gas” network employing 16 CVs (i.e. a

maximal number of 16 separate clusters at the end of the hierarchical

VQ procedure, as shown in figure 11.1).

Figure 11.2 shows the prototypical cluster-specific CTCs belonging

to the pixel clusters of figure 11.1. These can be computed from equation

(11.2), where the pixel-specific PTC x(τ) is replaced by the cluster-

specific CV.
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The area of the cerebrovascular insult in the right basal ganglia for

subject 1 is clearly represented mainly by cluster #7 and also by cluster

#8, which contains other essential areas. The small CTC amplitude is

evident (i.e., the small cluster-specific rCBV, the rCBF, and the large

MTT). Cluster #3 and #4 contain peripheral and adjacent regions.

Clusters #1, #2, #12, #14, and #16 can be attributed to larger vessels

located in the sulci. Figure 11.2 shows the large amplitudes and apparent

recirculation peaks in the corresponding cluster-specific CTCs .

Further, clusters #2, #12, and #11 represent large, intermediate,

and small parenchymal vessels respectively of the nonaffected left side

showing subsequently increasing rCBV and smaller recirculation peaks.

The clustering technique unveils even subtle differences of contrast

agent first-pass times: small time-to-peak differences of clusters #1,

#2, #12, #14, and #16 enable discrimination between left- and right-

side perfusion. Pixels corresponding to regions supplied by a different

arterial input tend to be collected into separate clusters: For example,

clusters #6 and #11 contain many pixels that can be attributed to the

supply region of the left middle cerebral artery, whereas clusters #3

and #4 include regions supplied by the right middle cerebral artery.

Contralateral clusters #6 and #11 versus #3 and #4 show different

cluster-specific MTTs as evidence for an apparent perfusion deficit at

the expense of the right-hand side.

The diffusion-weighted image in figure 11.3a visualizes the structural

lesion. Figs. 11.3b, c, and d represent the conventional pixel-based MTT,

rCBF, and rCBV maps at the same slice position in the region of the

right basal ganglia. A visual inspection of the clustering results in Figs.

11.1 and 11.2 (clusters #7 and #8) shows a close correspondence with

the findings of these parameter maps. In addition, the unsupervised and

self-organized clustering of pixels with similar signal dynamics allows a

deeper insight in the spatiotemporal perfusion properties .

Figure 11.4 visualizes a method for comparative analysis of clustering

results with regard to side differences of brain perfusion. The best-

matching cluster #7, with the diffusion-weighted image corresponding

to the infarct region in figure 11.1 is shown in figure 11.4a.

To better visualize the perfusion asymmetry between the affected

and the nonaffected sides, a spatially connected region of interest (ROI)

can be obtained from the clustering results by spatial low-pass filter-

ing and thresholding of the given pixel cluster. The resulting ROI is
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(a) (b)

(c) (d)

Figure 11.3
Diffusion-weighted MR image and conventional perfusion parameter maps of the
same patient as in figures 11.1 and 11.2. (a) Diffusion weighted MR image; (b)
MTT map; (c) rCBV map; (d) rCBF map.

shown in figure 11.4b (white region). In addition, a symmetrical con-

tralateral ROI can be determined (light gray region). Then, the mean

CTC values of all the pixels in the ROIs are determined and visualized

in figure 11.4d, together with the corresponding quantitative perfusion

parameters: the difference between the affected (figure 11.4c) and the

nonaffected (figure 11.4d) sides with regard to CTC amplitude and dy-

namics is visualized, in agreement with highly differing corresponding

quantitative perfusion parameters. Comparative quantitative analyses

for fuzzy clustering based on deterministic annealing, the self-organizing
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(a) (b)

rCBF: 0.02
rCBV: 0.37
MTT : 22.81

(c)

rCBF: 0.05
rCBV: 1.00
MTT : 20.22

(d)

Figure 11.4
Quantitative analysis of the results for the “neural gas” network in figure 11.1 with
regard to side asymmetry of brain perfusion. (a) Best-matching cluster #7 of
figure 11.1 representing the infarct region; (b) contiguous ROI constructed from (a)
by spatial low-pass filtering and thresholding (white), and a symmetrical ROI at an
equivalent contralateral position (light gray); (c) average concentration-time curve
of the pixels in the ROI of the affected side, (d) average concentration-time curve of
the pixels in the ROI of the nonaffected side. For a better orientation, an anatomic
EPI scan of the analyzed slice is underlaid in (a) and (b). The X-axis represents the
scan number, and the Y-axis is arbitrary for (c) and (d).

map, and the fuzzy c-means vector quantization are shown in figures

11.5, 11.6, and 11.7, respectively.

The power of the clustering techniques is also demonstrated for a

perfusion study in a control subject without evidence of cerebrovascular

disease (see figures 11.8 and 11.9). The conventional perfusion parameter

maps, together with a transversal T2-weighted scan at a corresponding
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(a) (b)

(c) (d)

Figure 11.5
Quantitative analysis of clustering results with regard to side asymmetry of brain
perfusion in analogy to figure 11.4 for vector quantization by fuzzy clustering based
on deterministic annealing. For a better orientation, an anatomic EPI scan of the
analyzed slice is underlaid in (a) and (b). The X-axis represents the scan number
while the Y-axis is arbitrary for (c) and (d).

slice position, are presented in figure 11.10. Clusters #1, #3, #4, and

#15 represent larger vessels located primarily in the cerebral sulci,

while most of the other clusters seem to correspond to parenchymal

vascularization. The important difference from the results of the stroke

subject data in figures 11.1, 11.2, 11.3, and 11.5 is evident: the side-

asymmetry with regard to both the temporal pattern and the amplitude

of brain perfusion is here nonexistent. This fact becomes obvious since
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(a) (b)

(c) (d)

Figure 11.6
Quantitative analysis of clustering results with regard to side asymmetry of brain
perfusion in analogy to figure 11.4 for vector quantization by a self-organizing map.
For a better orientation, an anatomic EPI scan of the analyzed slice is underlaid in
(a) and (b). The X-axis represents the scan number, and the Y-axis is arbitrary for
(c) and (d).

each cluster in figure 11.1 contains pixels in roughly symmetrical regions

of both hemispheres, different from the situation visualized in figure 11.1.

In addition, no localized perfusion deficit results from the clustering. The

clustering results of figures 11.8 and 11.9 match the information derived

from the conventional perfusion parameter maps in figures 11.10b, c,

and d.

The effectiveness of the different cluster validity indices and clus-
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(a) (b)

(c) (d)

Figure 11.7
Quantitative analysis of clustering results with regard to side asymmetry of brain
perfusion in analogy to figure 11.4 for fuzzy c-means vector quantization. For a
better orientation, an anatomic EPI scan of the analyzed slice is underlaid in (a)
and (b). The X-axis represents the scan number, and the Y-axis is arbitrary for (c)
and (d).

tering methods in automatically evolving the appropriate number of

clusters is demonstrated experimentally in the form of cluster assign-

ment maps for the perfusion MRI data sets, with the number of clusters

varying from 2 to 36.

Table 11.2 shows the optimal cluster number K∗ obtained for each

perfusion MRI data set, based on the different cluster validity indices.

Figures 11.11 and 11.12 show results for cluster-validity analysis for
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Figure 11.8
Cluster assignment maps for the “neural gas” network of a dynamic perfusion MRI
study in a control subject without evidence of cerebrovascular disease. For a better
orientation, an anatomic EPI scan of the analyzed slice is underlaid.

Table 11.2
Optimal cluster number K∗ for the data sets #1 to #4, based on different cluster
validity indices. The detailed curve for the cluster validity indices for data set #1 is
shown in figures 11.11 and 11.12.

Index #1 #2 #3 #4

K∗

Kim 18 6 10 12

K∗

CH
24 4 19 21

K∗

intraclass
3 3 3 3
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1 rCBF: 0.04

rCBV: 0.68

MTT : 18.44

2 rCBF: 0.01

rCBV: 0.13

MTT : 18.54

3 rCBF: 0.05

rCBV: 1.00

MTT : 21.15

4 rCBF: 0.03

rCBV: 0.52

MTT : 16.73

5 rCBF: 0.01

rCBV: 0.22

MTT : 19.25

6 rCBF: 0.01

rCBV: 0.14

MTT : 16.72

7 rCBF: 0.01

rCBV: 0.11

MTT : 20.03

8 rCBF: 0.02

rCBV: 0.50

MTT : 20.26

9 rCBF: 0.01

rCBV: 0.11

MTT : 19.13

10 rCBF: 0.02

rCBV: 0.42

MTT : 19.69

11 rCBF: 0.01

rCBV: 0.22

MTT : 17.66

12 rCBF: 0.01

rCBV: 0.21

MTT : 20.84

13 rCBF: 0.00

rCBV: 0.08

MTT : 16.90

14 rCBF: 0.01

rCBV: 0.12

MTT : 20.44

15 rCBF: 0.02

rCBV: 0.34

MTT : 18.74

16 rCBF: 0.02

rCBV: 0.33

MTT : 17.78

Figure 11.9
Cluster-specific concentration-time curves for the “neural gas” network of a
dynamic perfusion MRI study in a control subject without evidence of
cerebrovascular disease. Cluster numbers correspond to figure 11.8. The X-axis is
the scan number, and the Y-axis is arbitrary.

data set #1, representing the minimal rCBV obtained by the minimal

free energy VQ, and the values of the three cluster validity indices de-

pending on cluster number. The cluster-dependent curve for the rCBVs

was determined based on the minimal obtained rCBV value as a re-

sult of the clustering technique for fixed cluster numbers. For each of

the twenty runs of the partitioning algorithms, the minimal codebook-

specific rCBV was computed separately. The cluster whose CTC showed

the minimal rCBV was selected for the plot. The MTT of this CTC is
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(a) (b)

(c) (d)

Figure 11.10
T2-weighted MR image and conventional perfusion parameter maps of the same
subject as in figures 11.8 and 11.9. (a) T2-weighted MR image; (b) MTT map; (c)
rCBV map; (d) rCBF map.

indicated in the plot as well. The bottom part of the figure shows the

cluster assignment maps for cluster numbers corresponding to the opti-

mal cluster number K∗ and K = K∗ ± 1. The cluster assignment maps

correspond to the cluster-specific concentration-time curves exhibiting

the minimum rCBV.

The results show that based on the indices KKim and KIntraclass, a

larger number of clusters is needed to represent the data sets #1, #3,

and #4.

In the following, the results of the quantitative ROC analysis are
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Figure 11.11
Visualization of the minimal rCBV curve and the curves for the three cluster
validity indices – Kim’s index, the Calinski-Harabasz (CH) index, and the intraclass
index for data set #1 – and as a result of classification based on the minimal free
energy VQ. The cluster number varies from 2 to 36. The average, minimal and
maximal values of 20 different runs using the same parameters but different
algorithms’ initializations are plotted as vertical bars. For the intraclass and
Calinski-Harabasz validity indices, the second derivative of the curve is plotted as a
solid line.

presented. An ROC curve for subject 1 in figure 11.13, using the “neural

gas” network with N = 16 codebook vectors as the clustering algorithm,

is shown.

The clustering results are given for four subjects: subject 1 (stroke

in the right basal ganglia), subject 2 (large stroke in the supply region

of the middle cerebral artery, left hemisphere, and subjects 3 and 4

(both with no evidence of cerebrovascular disease). The codebook vectors

from 3 to 36 for the proposed algorithms were varied, and an ROC

analysis using two different performance metrics was performed: the

classification outcome regarding the discrimination of the concentration-

time curves based on the rCBV value and the discrimination capability of

the codebook vectors based on their MTT value. The ROC performances

for the four subjects are shown in figure 11.14. The figure illustrates the

average area under the curve and its deviations for 20 different ROC runs

using the same parameters but different algorithms’ initializations. The
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N=2 N=3 N=4

N=17 N=18 N=19

N=23 N =24 N=25

Figure 11.12
Cluster assignment maps for cluster numbers corresponding to the optimal cluster
number K∗ and K = K∗ ± 1. The cluster assignment maps correspond to the
cluster-specific concentration-time curves exhibiting the minimum rCBV.

ROC analysis shows that rCBV outperforms MTT with regard to its

diagnostic validity when compared to the conventional analysis serving

as the gold standard in this study, as can be seen from the larger area

under the ROC curve for rCBV.
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Figure 11.13
ROC curve of the cluster analysis of data set for subject 1 analyzed with the
“neural gas” network for N=16 codebook vectors. “A” represents the area under
the ROC curve, and Δ the threshold for rCBV/MTT.

11.3 General Aspects of Time Series Analysis Based on

Unsupervised Clustering in Dynamic Cerebral Contrast-

enhanced Perfusion MRI

The advantages of unsupervised self-organized clustering over the con-

ventional and single extraction of perfusion parameters are the following:

1. Relevant information given by the signal dynamics of MRI time series

is not discarded.

2. A nonbiased interpretation that results from the indicator-dilution the-

ory of nondiffusible tracers only for an intact blood-brain barrier.

Nevertheless, clustering results support the findings from the indicator-

dilution theory, since conventional perfusion parameters like MTT,

rCBV, and rCBF values can be derived directly from the resulting pro-

totypical cluster-specific CTCs.

The proposed clustering techniques were able to unveil regional

differences of brain perfusion characterized by subtle differences of signal

amplitude and dynamics. They could provide a rough segmentation with

regard to vessel size, detect side asymmetries of contrast-agent first pass,

and identify regions of perfusion deficit in subjects with stroke.
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Figure 11.14
Results of the comparison between the different clustering analysis methods on
perfusion MRI data. These methods are minimal free energy VQ (MFE), Kohonen’s
map (SOM), the “neural gas” network (NG), fuzzy clustering based on
deterministic annealing, fuzzy c-means with unsupervised codebook initialization
(FSM), and the fuzzy c-means algorithm (FVQ) with random codebook
initialization. The average area under the curve and its deviations are illustrated for
20 different ROC runs using the same parameters but different algorithms’
initializations. The number of chosen codebook vectors for all techniques is between
3 and 36, and results are plotted for four subjects. Subjects 1 and 2 had a subacute
stroke, while subjects 3 and 4 gave no evidence of cerebrovascular disease. The
ROC analysis is based on two performance metrics: regional cerebral blood volume
(rCBV) (left column) and mean transit time (MTT) (right column). See plate 9.
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In general, a minimal number of clusters is necessary to obtain a

good partition quality of the underlying data set, which leads to a higher

area under the ROC curve. This effect can clearly be seen for subjects 3

and 4. For the data sets of subjects 1 and 2, the cluster number doesn’t

seem to play a key role. A possible explanation of this aspect is the large

extent of the infarct area. Thus, even with a smaller number of codebook

vectors, it becomes possible to obtain a good separation of the stroke

areas from the rest of the brain. Any further partitioning, obtained by

increasing the number of codebook vectors, is not of crucial importance

- the area under the curve does not change substantially. Also, for the

patients without evidence of a cerebrovascular disease, the area under

the ROC curve is smaller than that for the subjects with stroke.

Three important aspects remain to be discussed: the interpretation

of the codebook vector, the normalization of the signal time curves, and

the relatively high MTT values.

A codebook vector can be specified as a time series representing

the center (i.e., average) of all the time series belonging to a cluster.

Here, a cluster represents a set of pixels whose corresponding time

series are characterized by similar signal dynamics. Thus, “codebook

vectors” as well as “clusters” are defined in an operational way that

- at a first glance - does not refer to any physiological implications.

However, it is common practice in the literature to conjecture [84] that

similar signal characteristics may be induced by similar physiological

processes or properties, although this cannot be proven definitely. It is

very interesting to observe that the average values for the areas under the

ROC curves seem to be higher for the patients with stroke in comparison

to the patients without stroke. So far, no explanation can be given for

this, but it may be an important subject for further examination in

future work. The different numbers of codebook vectors used for different

subjects can be explained as follows: 16 and 36 codebook vectors were

used for clustering in all data sets. In addition, the optimal number of

clusters was determined by a detailed analysis using several “cluster-

validity criteria”: Kim [138], Calinski, and Harabazs (CH) [39], and

intraclass [97].

In biomedical MRI time series analysis considered here, a similar

problem is faced: It is certainly not possible to interpret all details of

the signal characteristics of the time series belonging to each pixel of the

data set as known physiological processes. Nevertheless, it may be a use-
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ful hypothesis to interpret the time series of at least some clusters in the

light of physiological meta knowledge, although a definite proof of such

an interpretation will be missing. Hence, such an approach is certainly

biased by subjective interpretation on the part of the human expert per-

forming this interpretation of the resulting clusters, and thus, may be

subject to error. In summary, it is not claimed that a specific cluster

is well-correlated with physiological phenomena related to changes of

brain perfusion, although one cannot exclude that a subjective inter-

pretation of some of these clusters by human experts may be useful to

generate hypotheses on underlying physiological processes in the sense

of exploratory data analysis. These remarks are in full agreement with

the whole body of literature dealing with unsupervised learning in MRI

time series analysis, such as [84] and [53].

The normalization of signal time-curves represents an important is-

sue where the concrete choice depends on the observer’s focus of interest.

If cluster analysis is to be performed with respect to signal dynam-

ics rather than amplitude, clustering should be preceded by time series

normalization. While normalization may lead to noise amplification in

low-amplitude CTCs, in cluster analysis of signal time series, preceding

normalization is an option. However, CTC amplitude unveils important

clinical and physiological information, and therefore it forms the basis

of the reasoning for not normalizing the signal time-curves before they

undergo clustering.

In order to provide a possible explanation of the relatively high MTT

values obtained in the results, the following should be mentioned. The ra-

tionale for using equation (11.3) for computing MTT is that the arterial

input function, which is difficult to obtain in routine clinical diagnosis,

was not determined. The limitations of such an MTT computation have

been addressed in detail in the theoretical literature on this topic (e.g.,

[299]). In particular, it has been pointed out that the signal intensity

changes measured with dynamic MR imaging are related to the amount

of contrast material remaining in the tissue, not to the efflux concentra-

tion of contrast material. Therefore, if a deconvolution approach using

the experimentally acquired arterial input function (e.g., according to

[149, 281]), is not performed, equation (11.3) can be used only as an

approximation for MTT. However, this approximation has been widely

used in the literature on both myocardial and cerebral MRI perfusion

studies (e.g., [106, 219, 283]).
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In summary, the study shows that unsupervised clustering results

are in good agreement with the information obtained from conventional

perfusion parameter maps, but may sometimes unveil additional hidden

information (e.g., disentangle signals with regard to different vessel

sizes). In this sense, clustering is not a competitive, but a complementary,

additional method that may extend the information extracted from

conventional perfusion parameter maps by taking into account fine-

grained differences of MRI signal dynamics in perfusion studies. Thus,

the presented techniques can contribute to exploratory visual analysis

of perfusion MRI data by human experts as a complementary approach

to conventional perfusion parameter maps. They provide computer-

aided support to appropriate data processing in order to assist the

neuroradiolgist, and not to replace his/her interpretation. In addition,

following further pilot studies on larger samples, the nature of additional

information can be better clarified, as the proposed techniques should

be applicable in a larger group to assess validity and reliability. In

conclusion, clustering is a useful extension to conventional perfusion

parameter maps.





12 Skin Lesion Classification

This chapter describes an application of biomedical image analysis: the

detection of malignant and benign skin lesions by employing local in-

formation rather than global features. For this we will build a neural

network model in order to classify these different skin lesions by means

of ALA-induced fluorescence images. After various image preprocess-

ing steps, eigenimages and independent base images are extracted using

PCA and ICA. In order to use local information in the images rather

than global features, we first add self-organizing maps (SOM) to clus-

ter patches of the images and then extract local features by means of

ICA (local ICA). These components are used to distinguish skin cancer

from benign lesions. An average classification rate of 70% is achieved,

which considerably exceeds the rate obtained by an experienced physi-

cian. These PCA- and ICA-based tumor classification ideas have been

published in [21] and extend previous work presented in [19].

12.1 Biomedical Image Analysis

Many kinds of biomedical data, such as fMRI, EEG, and optical imaging

data, form a challenge to any data-processing software due to their high

dimensionality. Low-dimensional representations of these signals are key

to solving many of the computational problems. Therefore, principal

component analysis (PCA) commonly was used in the past to provide

practically useful and compact representations. Furthermore, PCA was

successfully applied to the classification of images [272]. One major de-

ficiency of PCA is its global, orthogonal representation, which often

cannot extract the intrinsic information of high-dimensional data.

Independent component analysis (ICA) is a generalization of prin-

cipal component analysis which decorrelates the higher-order moments

of the input in addition to the second-order moments. In a task such

as image recognition, much of the important information is contained

in the higher-order statistics of the image. Hence ICA should be able

to extract local feature like structures of objects, such as fluorescence

images of skin lesions. Bartlett demonstrated that ICA outperformed

the face recognition performance of PCA [18]. Finally, local ICA was
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(a) (b)

(c)

Figure 12.1
Typical fluorescence images of psoriasis (a), actinic keratosis (b), and a basal cell
carcinoma (c).

developed by Karhunen and Malaroiu to take advantage of the localized

features in high-dimensional data [132]. Using Kohonen’s self-organizing

maps [140], multivariate data are first split into clusters and then local

features are extracted using ICA within these clusters.

Here, we intend to classify skin lesions (basal cell carcinoma, actinic

keratosis , and psoriasis plaques) through their fluorescence images (see

figures 12.1 and 12.2).

Even an experienced physician is unable to distinguish malignant

from the benign lesions when fluorescence images are taken. For the
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(a) (b)

Figure 12.2
Nonfluorescence images of psoriasis (a), actinic keratosis (b), and basal cell
carcinoma.

sake of simplicity, we will just denote the diseases as malignant, since

basal cell carcinoma is a skin cancer and actinic keratosis is considered

a premalignant condition.

12.2 Classification Based on Eigenimages

PCA is a well-known method for feature extraction and was successfully

applied to face recognition tasks by Turk and Pentland [272], Bartlett
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et al. [17, 18] and others. Thereby images are decomposed into a set of

orthogonal feature images called eigenimages, which can then be used

for classification. A new image is first projected into the PCA subspace

spanned by the eigenimages. Then image recognition is performed by

comparing the position of the test image with the position of known

images, using the reconstruction error as the recognition criterion. For

a statistical analysis of the obtained results, hypothesis testing is used

for a reliable classification.

Calculation of the eigenimages

Consider a set of m images x1, . . . ,xm with each image vector

xi = [xi(1), . . . , xi(N
2)]�

comprising N2 pixel values of the N × N image i. Merge the whole set

of images into an N2 × m matrix X = [x1, . . . ,xm] and assume the

expectation value E {xi} of each image vector to be zero.

Then the covariance matrix can be calculated according to

Cov(X) =
1

m

m∑
i=1

xix
�
i = XX�.

A set of N2 orthogonal eigenimages ui can now be determined by solving

the following eigenvalue problem:

XX�ui = Σui, (12.1)

where Σ = diag [σ1, . . . , σN2 ] denotes the diagonal matrix with the vari-

ances σi of the projections ri = x�
i ui = u�

i xi.

As solving the eigenvalue problem for large matrices (i. e. , for the

reduced fluorescence images we still deal with a 1282 × 1282 covariance

matrix) proves computationally very demanding, Turk and Pentland

introduced the following dimension reduction technique [272] :

Consider the eigenvalue system

X�Xvi = λivi, (12.2)

where vi denotes an eigenvector with its corresponding eigenvalue λi.
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Premultiplying equation (12.2) with X results in

XX�Xvi = Xλivi

Cov(X)Xvi = λiXvi, (12.3)

thus indicating that Xvi also is also eigenvector of the covariance matrix

Cov(X). Define an m × m matrix

L = (lij)0<i≤m,0<j≤m = X�X

and its corresponding eigenvectors vl. Then, using equation (12.3),

the calculation of the eigenvectors of the covariance matrix can be

accomplished by the linear combination

ul =

m∑
i=1

v
(i)
l xi,

where v
(i)
l denotes the ith component of the lth eigenvector vl. Thus the

number of calculations is greatly reduced from the order of the number

of pixels N2 in the images to the order of the number of images m in

the training ensemble.

Note that the associated eigenvalues imply a ranking of the eigenvec-

tors according to their usefulness in characterizing the variation among

the images. The first four eigenimages of an ensemble of psoriasis are

displayed in figure 12.3.

Classification based on the reconstruction error

Using eigenimages, a classification criterion can be defined, based on the

reconstruction error of images. Therefore consider a set of eigenimages

U = [u1, . . . ,um] computed as in the previous section. Furthermore,

calculate the projections ri of the original images xi into the PCA space,

following

ri = U�xi. (12.4)

Now a dimension reduction can be accomplished, transforming the

projections ri back into the input space, using only a subset of the

m′ < m eigenimages u1, . . . , um′ with the largest eigenvalues. Thus the

images xi can be reconstructed, thereby generating the reconstruction

error

εi = ‖xi − xrec
i ‖. (12.5)
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(a) (b)

(c) (d)

Figure 12.3
The first four eigenimages of a psoriasis ensemble, displayed according to their
variances. Note the increasing localized structures in the eigenimages.

For an ensemble of images, a relative reconstruction error εrel
i can be

defined for an image xi according to

εrel
i = − εi − εmax

εmax − εmin
, (12.6)

where εmax = max {εi} and εmin = min {εi}, respectively.
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12.3 Classification Using Independent Base Images

In tasks such as image classification, much of the important information

may be contained in the higher-order correlations among the image

pixels. As PCA is based on second-order statistics only, it does not

take into account higher-order statistical dependencies which can be

addressed by ICA. Thus not only decorrelation, but also statistical

independence of the signals, can be achieved, thereby allowing us to

extract relevant information which is coded in higher-order statistics.

By analogy to the eigenimages of the previous section, here we

separate images across space and thus extract a set of statistically

independent base images which may capture some independent features

of the corresponding ensemble.

Statistically independent base images

By analogy to the eigenimages in the previous section, assume all

fluorescence images X = [x1, . . . ,xm]� with xi = [xi(1), . . . , xi(N
2)]

to be a linear combination (mixture) of m source images S according

to the image synthesis model in figure 12.4. As the mixing matrix A

is unknown, these source images, have to be recovered by a matrix

WI which produces statistically independent output according to Y =

WIX. As already mentioned, these base images Y can be considered

an ensemble of independent (localized) features in the images and the

coefficients for the linear combinations of the independent base images

Y, which comprise each image xi, are represented by the matrix A =

W−1
I .

In order to be able to control the number of recovered source images

extracted by an ICA algorithm, learning is performed on the first m

principal component eigenimages, which are calculated as in the previous

section. Thus let U = [u1, . . . ,um′ ] denote the N2×m′ matrix containing

the first m′ eigenimages ui = [ui(1), . . . , ui(N
2)]� in its columns.

After a random initialization of the weight matrix W, the input data

are sphered, using a sphering matrix Wz; thus the unmixing matrix is

given by WI = WWz. ICA is then performed on U� (i. e. , at each step

m′ pixels at the same location in the different eigenimages are presented

to the network). Thereby the Infomax learning rule with the natural
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Figure 12.4
Image synthesis model. The recorded fluorescence images X are considered to be a
set of linearly mixed source images S according to X = AS. The underlying
independent base images Y can be estimated by determining the unmixing matrix
W, where the indetermination of ICA with regard to scaling and permutation
remains.

gradient extension is used, according to [8] and [26]:

W(t + 1) = W(t) + η
(
Im′ − ϕ(y)y�)W,

where η controls the learning rate and Im′ denotes the m′ ×m′ identity

matrix. Due to the computational complexity only a fixed sigmoidal

score function ϕ(y) is used, thus reducing the required calculation to a

large extent. Learning is stopped when

1

m′2

m′∑
i,j

|wij(t + 1) − wij(t)| < ε,

where ε was commonly chosen as ε = 0.0001. Therefore, 50, 000 itera-

tions proved necessary at a learning rate of η = 0.01 for the convergence

of the network.

Classification via base coefficients

By analogy to the reconstruction using eigenimages, the coefficients

B = [b1, . . . ,bm]�
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(a) (b)

(c) (d)

Figure 12.5
Four independent base images of the psoriasis ensemble. By analogy to the PCA
eigenimages, these base images are considered the underlying images of the
recorded fluorescence images as clarified by the image synthesis model shown in
figure 12.4. However, note that none of the independent base images shows large
structures like the first PCA eigenimages in figure 12.3.

for the linear combinations of the independent source images Y that

comprise the original fluorescence images X have to be determined next.

Therefore, consider that instead of the original fluorescence images X,

their corresponding eigenimages U are used to train the network, and

hence

WIU
� = Y. (12.7)



334 Chapter 12

As demonstrated in the previous section, PCA reconstruction is obtained

by first calculating the projections onto the eigenimages according to

ri = U�xi, or in matrix notation

R = XU,

and then performing a subsequent backtransformation into the original

system according to

Xrec = RU�. (12.8)

Solving equation (12.7) for U� and plugging into equation (12.8) leads

to

Xrec = RW−1
I Y = BY

xrec
i = biY,

where the rows of B contain the coefficients for the linear combinations

of the statistically independent sources Y. The resulting basis images

are shown in figure 12.5.

Image classification can now be performed by evaluating the coeffi-

cient vectors bi for different image ensembles. Therefore the projections

onto the eigenimages U are calculated for a training set and a test set

according to

Rtest = XtestU and Rtrain = XtrainU (12.9)

by analogy to the previous section. Then the coefficient matrices Btrain

and Btest are determined using the learned unmixing matrix W, follow-

ing

Btrain = RtrainW−1 and Btest = RtestW−1.

Image recognition performance can now be computed by first calculating

the similarity of the coefficient vectors as evaluated by the cosine of the

angle between them, according to

dij =
btest

i btrain
j

‖btest
i ‖ ‖btrain

j ‖ , (12.10)

and finally assigning each test image i′ the class label of the training

image j′ with di′j′ = max {dij}.
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12.4 Classification Using Local Features Extracted by ICA

Local ICA was proposed by Karhunen and Malaroiu to take advantage

of localized features in high dimensional data [132]. Although standard

ICA yields meaningful results in many cases, it can only provide a crude

approximation for nonlinear data distributions. Therefore, self organiz-

ing maps [140] are used to split multivariate data into various clusters,

followed by a local feature extraction using ICA within these clusters.

Clustering the data applying SOM

First, the images are split up into n0 square patches such that the

patches overlap with at least two pixels. Thus the statistical structure

in the image data can be conserved. However, sometimes parts of the

images are no longer covered by the patches, a fact which can be ne-

glected due to the little information contained in the outer image areas.

For the SOM, a one-dimensional chain with n0 neurons is used,

whereby each neuron is supposed to finally learn one certain type

of image patch. After a random initialization of the synaptic weights

w(j), 0 < j ≤ n0, the patch vectors are presented to the network.

Learning is accomplished following Kohonen’s algorithm, according to

Δw
(j)
i (t) = η (t) Λ

(‖w(j) (t) − w(j∗) (t) ‖, t) ·[
xi(t) − w

(j)
i (t)

]
,

with η(t) time-dependent learning rate and neighborhood function

Λ
(‖w(j)(t) − w(j∗)(t)‖, t) with the following properties:

lim
‖w(j)(t)−w(j∗)(t)‖→∞

Λ
(
‖w(j)(t) − w(j∗)(t)‖, t

)
= 0

lim
t→∞

Λ
(
‖w(j)(t) − w(j∗)(t)‖, t

)
= 0.

Thereby, typically T = 1000 iterations proves necessary for conver-

gence. In order to allow a fast spreading of the Kohonen chain at the

beginning of the simulations, the neighborhood function Λ is set to 1

and hence all neurons are updated at each iteration. While learning

proceeds, the influence of the neighborhood function is reduced and the
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(a) (b)

Figure 12.6
Typical spreading of a Kohonen chain over 16 patches of a psoriasis image. Only
patches which can already be represented adequately are indicated by a
corresponding neuron. After convergence of the network, all patches can be
described by the weight vectors w(j) of the Kohonen chain.

learning rate η(t) is decreased. Thus the one-dimensional Kohonen chain

quickly spreads over the image data at the beginning of the simulation

and subsequently is fine-tuned for an accurate representation of the cor-

responding patch cluster in the end.

This procedure is illustrated in fig 12.6, where the spreading of

a Kohonen chain over 16 patches of a psoriasis image is displayed:

Note that for the sake of clarity, only patches which can already be
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represented sufficiently exactly are indicated by a corresponding neuron.

Although the synaptic weights are randomly initialized, three patches

can already be appropriately represented by neurons. After a rapid

spreading of the chain over the image at a high learning rate η(t), all

patches are covered and the neurons are finally adapted such that their

corresponding clusters are best represented.

Classification via averaged base coefficients

Once the algorithm has converged, ICA is applied within the sets of

similar patches. The similarity coefficients are evaluated for every patch

individually with regard to the different clusters and image ensembles,

following

d
(l)
ij =

(b
(l)
i )train(b

(l)
j )test

‖(b(l)
i )train‖‖(b(l)

j )test‖
.

Finally, classification can be performed by averaging over all similarity

coefficients of the different patches per image according to

dij =
1

n0

n0∑
l=1

d
(l)
ij ,

thus obtaining a single similarity coefficient per image, as in the previous

sections.

12.5 Results

Data material

The raw data material consists of 50 images of each type of skin

lesion, which were recorded with a conventional CCD camera at a

size of 786 × 572 pixels and 256 shades of gray (0 . . . 255, where 0

symbolizes white and 255 symbolizes black). In order to reduce the

computational load, the fluorescence images were first centered and

subsequently reduced by coarse graining to a size of 128 × 128 pixels

[225].

After reducing the dimensions of the data by coarse graining, the images

were transformed via several transfer functions which are standard
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. .
 .

. . .

Figure 12.7
Basic procedure for converting the N × N image matrix into an N2-dimensional
image vector. The rows of the matrix are subsequently combined, resulting in an
N2-dimensional vector.

methods in image processing. The goal was to stress either contrast

or smoothness of the images. Thus, we generated different ensembles of

images for each cell type.

Presentation of the samples

For any analysis of the fluorescence images, a rearrangement of the image

matrices proved necessary either to calculate the covariance matrix

needed for PCA or to train the neural network when performing ICA.

Therefore consider an image X, the N2 pixels of which are stored in

an N ×N matrix according to X = (xij)0<i≤N,0<j≤N . An image vector

x = [x(1), . . . , x(N2)] can then be created by subsequently concatenating

the rows of the matrix X, thus obtaining an N2-dimensional image

vector, as illustrated in figure 12.7.

Reconstruction error-based classification using PCA

First the PCA eigenimages are computed for the different ensembles of

skin lesions and the corresponding relative reconstruction error εrel
i is

determined, following equation (12.6). In figure 12.8, εrel
i for 20 fluores-

cence images of each type of skin lesion based on a reconstruction by

psoriasis eigenimages is shown. An image is then classified as belonging

to class i when the minimum εi is below some fixed threshold Θ. For a

reliable classification, this threshold Θ has to be adapted such that the

ratio between the relative portion of the chosen class below and above

the threshold Θ is maximum.

Applying this technique to all three types of skin lesions, three

different sub-parts are defined by the corresponding thresholds, as also
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Figure 12.8
The relative reconstruction error for 20 images of each type of skin lesion, based on
psoriasis eigenimages. The thresholds Θ1 = 0.111 and Θ2 = 0.165 divide the image
into three sub-parts. Actinic keratosis is symbolized by (◦), basal cell carcinoma by
(+), and psoriasis by (×), respectively.

depicted in figure 12.8, leading to Θ1 = 0.111 and Θ2 = 0.165 as plotted.

Every image can now be assigned the class label of the respective sub-

part.

However, this technique involves an error which has to be evaluated next:

Assume that image i has binomial distribution (i. e. , it either belongs or

does not belong to class A). Furthermore, note that all values depicted

in figure 12.8 are only some samples in the whole sample space. Due

to the large number of available fluorescence images, it is possible to

verify the assumption concerning the relative portion with regard to the

whole ensemble several times. Therefore, for each experiment 10 samples

are taken, and thus the reliability of the classification can be evaluated

using hypothesis testing. As several simulations with the same training

set can be accomplished, the overall relative portion of the relevant image

ensemble is chosen close to the mean value of the corresponding relative

portions of the experiments.
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The results are summarized in the following table, based on the

reconstruction using the different ensembles for the calculation of the

principal axis (pa).

pa: akt. kera. pa: bcc pa: psori.

akt. kera. 65% 63% 68%

bcc 55% 55% ?

psori. 70% 71% 82%

It must to be noted that classifying basal cell carcinoma on the base

of psoriasis eigenimages leads to a rate which is smaller than 54% at an

α-error of α = 0.05. Thus a reliable classification is not possible, as 50%

corresponds to guessing.

Classification by ICA

By analogy to the evaluation of the classification rate based on PCA

eigenimages, here first the coefficient matrices Btrain and Btest are com-

puted, and subsequently the similarity coefficients dij are calculated.

Then the thresholds Θ1 and Θ2 are determined as explained in the

previous section, using 10 different ensembles of the same class for vali-

dation. Figure 12.9 shows the similarity coefficients dij for 20 test images

of each skin lesion class, based on a set of psoriasis training images. The

thresholds are fixed at Θ1 = 0.99 and Θ2 = 0.999. A profound analysis

of the recognition rate is accomplished based on hypothesis testing as

demonstrated above, resulting in 72% for actinic keratosis, 55% for basal

cell carcinoma and 87% for psoriasis images, respectively, at an α-error

of 5%.

Using various training ensembles, no significant differences in the

results are obtained. This is in contrast to the outcomes using PCA,

where the overall classification rates depended on the ensemble used for

the calculation of the principal axes. Note however, that the test images

which are of the same ensemble as the training images always show the

largest similarity coefficients, as expected.

Although various image preprocessing steps were used, no significant

classification enhancement could be obtained, as summarized in the table
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Figure 12.9
The similarity coefficients dij for 20 images of actinic keratosis (◦), basal cell
carcinoma (+), and psoriasis (×), based on a set of psoriasis training images. The
thresholds Θ1 = 0.99 and Θ2 = 0.999 are evaluated, averaging over 10 different
ensembles of the same class. For the sake of clarity, the Y-axis is differently scaled
below Θ1 = 0.99.

below.

orig. yi = x2
i yi =

√
xi hist. equal.

akt. kera. 72% 72% 72% 70%

bcc. 55% 56% 56% 61%

psori. 87% 87% 86% 84%

Based on a training ensemble of psoriasis images which are pre-

processed by the corresponding contrast manipulations and histogram

equalization, respectively, only a slight performance increase for basal

cell carcinoma can be noted at the cost of psoriasis images for histogram

equalization.

Local ICA

By analogy to the evaluation demonstrated above, 10 different training

ensembles of the same type of skin lesion are used for the simulations,
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Figure 12.10
Based on the training ensemble of psoriasis images, the similarity coefficients dij

are displayed for 20 fluorescence images of aktinic keratosis (◦), basal cell carcinoma
(+), and psoriasis (×). For a better representation, the Y-axis is scaled differently
for dij < Θ1 = 0.99.

thus allowing hypothesis testing for a reliable classification. Here the

results using 16×16 patches of psoriasis images as the training ensemble

are exemplified:

Reviewing figure 12.10, the thresholds Θ1 and Θ2 are calculated as

in the PCA case, obtaining Θ1 = 0.99 and Θ2 = 0.999. As expected, the

highest similarity coefficients are achieved for psoriasis images, resulting

in a classification rate of more than 80% at an α-error of 5%. In the

sub part Θ1 ≤ dij < Θ2, basal cell carcinoma shows the highest

relative portion, with an average value of p = 0.69. As the hypothesis

H0 : π ≤ 0.69 can be rejected, a basal cell carcinoma image can be

correctly identified at a rate of more than 69%. Finally, for actinic

keratosis an average classification rate of 70% is achieved.

Neither different training ensembles nor various preprocessing steps

significantly influence the quality of the obtained results. However, due

to the high classification rate of basal cell carcinoma, a relatively homo-
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classification based on local ICA using SOM

Figure 12.11
The classification rates for the three skin lesions strongly depends on the patch size.
A patch size of at least 16 × 16 is needed to obtain a reliable classification rate.
While for large patch sizes the classification rate for basal cell carcinoma (+)
strongly decreases, for psoriasis (×) a further enhancement can be noted, leading to
the ICA results.

geneous identification of the different skin lesion ensembles is achieved.

As the clustering step is added to capture nonlinear trends in the

multivariate data, various patch sizes have to be analyzed as generally

nothing is known about the inherent structure of the fluorescence images.

In figure 12.11 the classification rates for the three different skin lesion

ensembles, based on a training set of psoriasis images, are displayed,

depending on the patch sizes: At least a size of 16 × 16 = 256 pixels is

needed to obtain a reasonable recognition rate. For patch sizes between

16 × 16 and 32 × 32 pixels per patch, on the average a relatively good

recognition rate is achieved. Thereby the classification rate of psoriasis

images (80%) still considerably exceeds the values obtained for basal cell

carcinoma and actinic keratosis (70%). A further increase of the patch
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Table 12.1
Comparison of the classification rates for actinic keratosis, basal cell carcinoma and
psoriasis, depending on different algorithms. PCA corresponds to the results based
on the original PCA-classification criterion. In the rows of SOM-ICA the results
based on local ICA are summarized. The mean values and corresponding standard
deviations are calculated by substituting (p − 1)% when classification rates < p%
were obtained. Thus the average classification rate per algorithm (row wise) and
per skin lesion (column wise) can be calculated.

algorithm act. kera. bcc. psor. mean std.

PCA 72% 60% 80% 71% 10%
ICA 1 72% 55% 87% 71% 16%

SOM-ICA 70% 70% 81% 74% 6%
mean 70% 59% 79%
std. 2% 8% 7%

size leads to a notable effect: while the recognition rate for psoriasis

images is further ameliorated until the ICA results are obtained (87%),

for basal cell carcinoma a strong decrease is noted. This may be due

to its inherent structure, which cannot be represented adequately by

(global) ICA.

12.6 Performance Comparison

The main goal of this chapter was to develop PCA- and ICA-based clas-

sification techniques which allow a reliable identification of psoriasis,

basal cell carcinoma, and actinic keratosis. While an experienced physi-

cian still needs a biopsy for the distinction of basal cell carcinoma and

actinic keratosis, in this study only fluorescence images of the relevant

skin lesions were used. The results discussed in the following are shortly

summarized in table 12.1.

PCA is a well-established method for classification and recognition

tasks. Thereby a transformation of the base system allows a more effi-

cient representation of important features in the multivariate data, see

chapter 3. These structures (eigenimages) are ordered by their decreas-

ing variances, so that most information can be transferred via the first

principal components. For an exact examination of the possible enhance-

ment by ICA, first PCA eigenimages of the skin lesion ensembles were

computed, and classification was subsequently based on the reconstruc-

tion error. Obviously the principal axes of the image ensembles differ
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sufficiently strongly that ensemble-specific features and structures are

stressed by the projection, and thus a relatively high recognition rate is

achieved. However, when reconstructing the images, one major reason

may be that information is lost when reconstructing the images with a

reduced number of eigenimages, which leads to a rather inexact repre-

sentation of the fluorescence images by the corresponding reconstruction

error.

ICA is an extension of PCA and was introduced to solve the blind

source separation problem, see chapter 4. Thereby some source signals

which were linearly mixed by an unknown process are reconstructed

based on the statistical properties of the mixtures only. Here the In-

fomax algorithm of Bell and Sejnowski with the natural gradient ex-

tension was applied to the classification of the skin lesions, using the

following images synthesis model. The recorded images were considered

linear combinations of independent base images (by analogy to the PCA

eigenimages). Therefore weight vectors were found in the directions of

statistical dependencies in the ensemble of fluorescence images. Inde-

pendent base images were subsequently calculated by projecting the

fluorescence images onto the weights, and thus each fluorescence image

was represented by the coefficients for the linear combinations of the in-

dependent base images. Classification was then based on the similarity

of the coefficients for a set of training and test images.

However, no significant enhancement could be stated when using in-

dependent base images in comparison to the results obtained for PCA

eigenimages. Although the recognition rate for psoriasis could be im-

proved considerably (87%), basal cell carcinoma could hardly be identi-

fied (55%).

It seems that the ICA algorithm could not extract relevant features,

so that the additional information coded in higher-order moments al-

lowed higher classification rates. The main problem when dealing with

ICA models is the indetermination of the number of sources. Unlike in

PCA where the significance of the eigenimages is determined by their

variances, a ranking of the ICA base images is not available. As the

number of underlying independent base images is unknown, any set of

base images—independent of their significance—could have been ex-

tracted. Especially when dealing with overcomplete systems, a subset

of randomly found independent base images does not necessarily code



346 Chapter 12

the most relevant information, and thus no further enhancement of the

classification rate might be understandable.

And there is a second reason, while PCA provides a statistical tool based

on an exact algebraic solution and independent of the probability distri-

bution, the neural implementation of the Bell-Sejnowski ICA algorithm

strongly depends on the assumed source density. Due to the computa-

tional load of the high-dimensional data, no adaptive techniques could

be applied for an accurate modeling of the source densities. Although

the distributions of the fluorescence images are super-Gaussian, and

consequently the assumption of a Laplacian source distribution proves

reasonable, slight deviations may involve errors which automatically

lower the level of accuracy, and therefore the classification rate.

Using local ICA based on Kohonen’s SOMs, the cluster size proved

most essential for a reliable classification. Patches with sizes up to 8× 8

pixels did not contain sufficient spatially structured information to al-

low a further increase of the classification rates. However, using larger

patches (16 × 16 and 32 × 32 pixels), the obtained results clearly out-

performed the classification rates achieved by PCA and ICA. It must to

be noted that a strong simultaneous increase of the rates for all ensem-

bles was obtained when evaluating patches of 16× 16 pixels. Obviously,

corresponding spatial structures in the fluorescence images allow high

classification rates. However, a Fast Fourier Transformation (FFT) could

not prove this hypothesis.

For larger patch sizes (64×64 and 128×128 pixels), a further increase of

the classification rates for psoriasis and actinic keratosis could be noted.

However, at the same time, the results for basal cell carcinoma deterio-

rated considerably until the values for (global) ICA were obtained. This

might be due to the inherent structure of basal cell carcinoma, again

only an assumption which could not be evidenced by an FFT analysis.

For answering the question of when to apply which classification

method, two circumstances have to be taken into account: In the case

where a high classification for a single skin lesion is needed (Does image

i belong to class A?), the applied method depends on the desired clas-

sification class: while for actinic keratosis PCA and ICA showed equally

high classification rates (72%), basal cell carcinoma can be identified

best by using local ICA based on SOM, resulting in an average classifi-
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cation rate of 70%. For the identification of psoriasis, ICA proves most

reliable, to 87%.

However, when dealing with an unknown set of fluorescence images and

trying to classify the images (What class does image i belong to? ), local

ICA based on SOM showed the best overall recognition rate at a very

low standard deviation (74% ± 6%).

It is interesting to note that the dermatologists’ identification prob-

lem between actinic keratosis and basal cell carcinoma is mirrored in

the average recognition rate of the skin lesions. While psoriasis can be

identified at a very high rate of 79%, actinic keratosis and basal cell car-

cinoma show much lower recognition rates (70% and 59%, respectively),

both of which are still considerably higher than those achieved by an

experienced physician.

Nevertheless, various improvements are necessary until a reliable

assisting tool for the diagnosis based on the fluorescence images is

available. Some interesting aspects include the following approaches.

• An independent analysis of the three channels of the corresponding

RGB color image (see figure 12.2) may reveal additional information

about the lesions. Furthermore, taking into account diameter, shape, or

volume of the lesions, the evaluation of supplementary knowledge may

contribute to an increased classification rate.

• All fluorescence images had to be reduced from an original size of 768×
572 pixels to 128×128 pixels through coarse graining in order to reduce

the computational load. Thereby, important information may have been

lost, particularly when taking into account many-pixel correlations.

With the next computer generations providing faster processors and

significantly more memory, a further increase of the classification rates

when analyzing entire fluorescence images is expected.

• Adaptive source density estimators may be applied for a more accu-

rate extraction of the independent base images. Again, computational

complexity prohibited the possible application of KBDE or the neural

adaptation of the score function.

• A calibration of the fluorescence recordings with regard to size, loca-

tion, and contrast of the lesion is most desirable, as similar experiments

for face recognition resulted in much higher classification rates [17]. The
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main differences lay only laid in the specified orientations and sizes of

the faces, allowing an exact matching of characteristic features such as

eyes, nose, and lips. Additionally, the tissue surrounding the lesions may

differ strongly, depending on the affected region of the body. In order

to cancel out its influence on the analysis, sophisticated preprocessing

tools may be applied.

In Conclusion, various PCA- and ICA-based classification methods

to identify actinic keratosis, basal cell carcinoma, and psoriasis have been

evaluated in a comparative study. The results underline the importance

of higher-order statistics in recognition tasks, as much information seems

to be coded in higher correlations. The average classification rates

considerably exceed the rates achieved by an experienced dermatologist,

and therefore raise hope for a cheap and reliable diagnostic tool.



13
Microscopic Slice Image Processing and Automatic
Labeling

A supervised interpretation of the initial data analysis model from

section 4.1 leads to a classification problem: given a set of input-output

samples, find a map that interpolates these samples, and, hopefully

generalizes well to new input samples. Such a map thus serves as classifier

if the output consists of discrete labels. Classification based on support

vector machines [36, 37, 229] or neural networks [111] has prominent

applications in biomedical data analysis. Here we review an application

to biomedical image processing [260].

While many different tissues of the mammalian organism are capable

of renewing themselves after damage, it was long believed that the

nervous system is not able to regenerate at all. Nevertheless, the first

data showing, that the generation of new nerve cells in the adult brain

could happen were presented in the 1960s [7], showing new neurons in

the brain of adult rats. In order to quantify neurogenesis in animals,

newborn cells are labeled with specific markers such as BrdU; in brain

sections these cells can later be analyzed and counted through the use of

a confocal microscope. However, so far this counting process had been

performed manually.

The goal of this chapter is to automate the task of counting labeled

cells, which is currently done manually in many laboratories. Our novel

algorithm contributes to a substantial speed-up in experimental settings.

Furthermore, when comparing manual counts, differences in the counts

are often noticed; hence, with an automated counting algorithm we hope

to achieve an objective counter with known error bounds.

The chapter is organized as follows: section 13.1 presents the nec-

essary neurobiological background of the analyzed section images. We

then give an overview of the ZANE cell-counting algorithm in section

13.2. Section 13.3 presents an efficient algorithm for image stitching used

in ZANE to allow for counting larger brain sections. The neural-network

cell classifier is constructed in section 13.4, and is then used to analyze

cell images in section 13.5. Comparisons with other methods are pre-

sented in section 13.6, and our main results are shown in section 13.7,

comparing ZANE with manually counted section images. We finish with

a discussion of further applications and future work in section 13.8.
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13.1 Biological background

While many different tissues of the mammalian organism are capable of

renewing themselves after damage, it was long believed that the nervous

system is not able to regenerate at all. The first data showing that new

nerve cells could be generated in the adult brain could happen were

presented by Altman and Das in the 1960s. They published histological

data showing new neurons in the brain of adult rats [7]. To identify

those cells, they used the audioradiographic method by labeling newly

emerged cells with 3H-thymidine. As there were no tools available for

proving that these cells were adult nerve cells, their findings remained

relatively unnoticed. In the early 1980s S. Goldman and F. Nottebohm

found newly developed neurons in the dorsomedial striatum of adult

songbirds [94]. But adult neurogenesis did not come into focus until the

1990s [16, 40, 146], when new techniques to analyze the newborn neurons

were established. In particular, the introduction of thymidine-analogon

bromodeoxyuridine (BrdU) as a nonradioactive marker for dividing cells

gave rise to many new studies concerning adult neurogenesis. On the

other hand, by establishing confocal microscopy it became possible to

identify the characteristics of the newborn cells more clearly.

After that it could be shown that adult neurogenesis occurred in

rodents (rats and mice), but also was found in primates and even in

humans [40, 72, 75]. But neuroscientists also found that under physio-

logical conditions adult neurogenesis is restricted to two brain regions.

One is the lateral wall of the lateral ventricle, which is called the sub-

ventricular zone. The cells generated there migrate through the rostral

migratory stream to the olfactory bulb, where they differentiate into

mature neurons. The other “neurogenic” region in the adult brain is the

granular cell layer of the dentate gyrus in the hippocampal formation of

the temporal lobe. There, new cells are born in a thin zone right below

the granular cell layer. During differentiation the cells integrate into the

granular cell layer and become mature neurons with all functions of a

granular cell [274]. “Neurogenesis” does not mean proliferation of cells

alone; these newborn cells have to differentiate into mature nerve cells

and be integrated into the existing network of neurons.

After these important findings much research was performed on the

possible factors influencing adult neurogenesis. It was be shown that

adult neurogenesis can be regulated by administering growth factors,
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Figure 13.1
Brain section image of the dentate gyrus of a mouse. The black scale bar is 50μm
long. The number of cells counted within the boundary (region of interest) following
the dentate gyrus is 84; the number of cells in the whole image is 116.

neurotransmitters and several drugs. Further, pathological influences

such as ischemia, seizures, or radiation affect the number of newly gener-

ated nerve cells. Also, general effects such as age, genetic modifications,

and the amount of physical activity influence neurogenesis (review in

[147]). Animals living in an enriched environment compared to standard

laboratory conditions showed an increase of neurogenesis under distinct

conditions [136].

13.2 Automated Counting

Figure 13.1 shows a brain section image of the dentate gyrus of a mouse

in which the cells are to be counted. Classical approaches such as thresh-

olding and erosion after image normalization could not successfully count

the cells, mainly because cell clusters in the image cannot be properly
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detected and counted using this method. In sections 13.6 and 13.7 we

give a more detailed comparison with other methods.

ZANE

We propose the following adaptive counting algorithm, which we call

ZANE (zell1 analysis and evaluation). In the first step ZANE performs

image stitching of the various microscope images and manual ROI se-

lection to acquire the analysis image. The main counting step is based

on a method proposed by Nattkemper et al. [183, 184] for evaluating

fluorescence micrographs of lymphocytes invading human tissue; here,

however, it is applied to light microscope images, and classifier prepro-

cessing and training, as well as application, are different. The main idea

is first to construct a function mapping an image patch to a confidence

value in [0, 1], indicating how probable it is that a cell lies in this patch

or not – we call this function the cell classifier . In the second step this

function is applied as a local filter onto the whole image; its applica-

tion gives a probability distribution over the image with local maxima

at cell positions. Nattkemper et al. call this distribution a confidence

map. Maxima analysis of the confidence map reveals the number and

the position of the cells. A flow chart of the ZANE algorithm is shown

in figure 13.2.

Regions of interest

In practice, the cell counting is to be performed not within the whole

image but only within a restricted region of the image called region of

interest (ROI). For example, in the presented experiments we want to

count only cells from the dentate gyrus in the hippocampal formation of

the temporal lobe. So far, the selection of the ROI is done manually, but

we hope to automate this process in the future. However, precise criteria

for the ROI detection seem to be difficult to extract – we assume a joint

criterion taking both shape and image background texture into account

is needed.

The impact of manual ROI selection is rather low in our experiments

– the brain region of interest can be roughly identified manually by

brightness and, especially, shape. Small deviations in this identification

(given, for example, when comparing two experts who use implicit

1 German for “cell”.
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Figure 13.2
Flow chart of the main counting steps during ZANE image analysis.

ROI detection when focusing through the slice) do not matter because

newborn cells sit in the subgranular layer, which is always included by

protocol. Hence a certain cell type is analyzed which is present only in

the given region. Other labeled cells in other regions are of another type,

which is not to be counted. These cells typically lie far enough from the

ROI region, which yields the low variability in ROI selection.
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13.3 Image Stitching

Typically, brain sections are too large to be digitized as a single image

by the camera at fixed resolution. In this case, multiple pictures are

taken of the section with horizontally and vertically translated origin.

In a first preprocessing step, these translated image patches have to be

stitched together. This task is called by image stitching , and has been

widely studied in the image-processing community (see e.g. [41, 96, 154]

and references therein). Mathematical properties, together with the more

general geometric pattern-matching problem, are nicely discussed in [96].

Measuring differences between masked images

With ZANE, we take a quite direct approach to the image-stitching

problem. First, we need to define a measure for comparing two image

patches I1, I2 ∈ Rw×h of size w × h. As mentioned in section 13.2,

we consider patches with marked regions of interest. For the sake of

simplicity, we assume that the given image patch has pixel entries only

within a given interval C (say [0, 255]). Pixels not belonging to the ROI

are to be set to a fixed value outside of C, say -1 (in the figures, we show

those pixels as white). An image patch comparison measure can then

simply be defined by

d̄p(I1, I2) :=

⎛⎜⎝ ∑
(x,y),I1(x,y)�=−1

I2(x,y)�=−1

|I1(x, y) − I2(x, y)|p
⎞⎟⎠

1/p

, (13.1)

with p > 0. This is obviously equivalent to taking the p-norm of the

vector of pixels lying in both ROIs. Typical choices of p are p = 1, 2. In

order to be able to compare image patches of a varying sizes in the ROI,

we further normalize this measure (for images with nonempty ROI) as

follows:

dp(I1, I2) :=
d̄p(I1, I2)

|{(x, y)|I1(x, y) �= −1 ∧ I2(x, y) �= −1}| . (13.2)

Then dp(I1, I2) ∈ C, so overlapping image patches of different sizes with

different ROI sizes can be compared. In practice, we set dp(I1, I2) to

some large value if the overlap of the image patches and their ROIs is

too small.
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Since we have to consider only translations (the scale as well as

the rotation of the image patches can be assumed to be the same due

to the experimental setup), image-stitching of two patches I1 and I2

is performed by minimizing dp(I1, τδ(I2)), where τδ(I)(x, y) := I(x −
δ1, y − δ2) denotes the translation of the image patch I by the vector

δ ∈ R2 (possible additional zero-padding of the images assumed):

δ0 := argminδ dp(I1, τδ(I2)). (13.3)

Various minimization algorithms can be employed to find or approx-

imate δ0. A simple solution is, for example, given by (discrete) gradient

descent to determine local minima: the update rule is defined by

δnew = δold − η∇dp(I1, τδ(I2))
p, (13.4)

where η denotes a fixed or adaptive learning rate and ∇ is the discretized

gradient of the cost function (taken to the power p to avoid roots) with

respect to δ. The latter can easily be calculated as

p
∑

(x,y),I1(x,y)�=−1

τδI2(x,y)�=−1

sgn(τδI2(x, y) − I1(x, y))|τδI2(x, y) − I1(x, y)|p−1 ·

(
τ(δ1+1,δ2)(I2)(x, y) − τδ(I2)(x, y)

τ(δ1,δ2+1)(I2)(x, y) − τδ(I2)(x, y)

)
. (13.5)

FFT-based speed-up

In practice, we use a previously selected feature from each image to

restrict the search space spanned by δ in equation (13.3), and then search

for translations δ within this restricted region. This is necessary because

evaluation of the image distance equation (13.2) is computationally

expensive; an exhaustive search for all possible 4hw translations is not

feasible, and local update algorithms such as equation (13.4) need good

starting values in order to avoid local minima.

In the following, we will describe an easy-to-calculate approximation

of image similarity which allows us to estimate a fusion parameter δ̂0,

from which we can start the above algorithm. The idea is to determine a

δ with maximal crosscorrelation between I1 and τδ(I2); in other words,

we want to maximize the autocorrelation between the images. This can

be interpreted as a second-order approximation of the distance equation

(13.2), ignoring scaling and especially ROI parameters. In order to
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account for the latter, we perform preprocessing in each image I by

first subtracting the ROI-mean

Ī := I −
∑

(x,y),I(x,y) �=−1 I(x, y)

|{(x, y)|I(x, y) �= −1}| , (13.6)

and then setting all non-ROI pixels to zero:

Ĩ(x, y) :=

{
Ī(x, y) I(x, y) �= −1

0 I(x, y) = −1
. (13.7)

Thus Ĩ also has mean zero; hence, in the masked autocovariance

Rδ(I1, I2) :=
∑
x,y

Ĩ1(x, y)Ĩ2(x − δ1, y − δ2) (13.8)

we do not have to subtract the means, and non-ROI regions in any of

the two patches do not contribute to the sum. The desired initial start-

ing parameter δ̂0 is now simply estimated by maximizing the masked

correlation between the translated patches:

δ̂0 := argmaxδ Rδ(I1, I2) (13.9)

We introduced this additional measure because although calculating

equation (13.8) for all δ is just as expensive as (13.2), we can now use

the multiplicative structure to derive an immensely faster calculation of

equation (13.8). For this we use the well-known trick [29] of rewriting

the autocorrelation as a 2-D convolution:

Rδ(I1, I2) =
∑
x,y

Ĩ1(x, y)Ĩ ′2(δ1 − x, δ2 − y) = Ĩ1 ∗ Ĩ ′2, (13.10)

where I ′(x, y) := I(−x,−y) (with additional zero-padding). But the

convolution reduces to a simple multiplication in the Fourier spaces, so,

using the 2-D Fourier transformation [48] F , we get:

Rδ(I1, I2) = Ĩ1 ∗ Ĩ ′2 = F−1
(
F(Ĩ1)F(Ĩ ′2)

)
(13.11)

The discrete Fourier transforms and the inverse are calculated using

the 2-D FFT algorithm, which costs O(wh log wh) operations. The mul-

tiplication in the frequency domain itself needs only O(wh) operations,

so the total cost of using equation (13.11) is O(wh log wh), which, es-

pecially for large images, is much cheaper than the O(w2h2) operations

needed for directly convolving the images in equation (13.8).
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Due to the limited precision of the FFT-based intermediate results,

equation (13.11) does contain small numerical errors. Moreover, some

caution concerning the above theoretical gain seems to be appropriate:

FFT routines generally have a larger overhead and use more memory

than the direct convolution. Also, the convolution is real-valued, whereas

the multiplication in the frequency domain and the FFTs need complex

operations, so the speed-up factor should be decreased by a factor of 4

to 6.

Example

Figure 13.3 shows an experiment, in which two images of sizes w = 1600,

h = 1200 with marked ROIs (see 13.3(a) and 13.3(b)), are stitched

together using the above algorithm. The 2-D autocorrelation Rδ is

calculated, using FFTs, by equation (13.11). The result is a complex-

valued matrix; however, the sum over all complex components is about

1015 lower than the sum over the real ones. Hence it comes from

numerical errors and is discarded. The autocorrelation is displayed in

figure 13.3(c). Clearly a dominant maximum at δ̂0 = (1159,−237) is

present. The more precise distance measure from (13.2) is then applied,

using an exhaustive search within the square δ̂ + (±5,±5), which yields

the final δ0 = (1159,−238). Obviously the FFT had already localization

yielded a nice match, though in some situations (e.g., given complicated

masking borders) fine-tuning by equation (13.2) is more important.

In our MATLAB realization the exhaustive search within the small

square took about twice as long as the FFT-based calculation of the

full-size autocorrelation (though the latter consumed considerably more

memory), so the speed-up factor was around 38000.

13.4 Cell Classifier

In this section, we will explain how to generate a cell classifier that is

a function mapping image patches to cell confidence values. For this a

sample set of cells and non cells is generated; then an artificial neural

network is trained using this sample set.
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(a) Left image patch (b) Right image patch

(c) Rescaled and translated autocorrela-
tion calculated using 2-D FFT

(d) Stitched image

Figure 13.3
Image stitching. The two image patches (a) and (b) with marked ROIs are stitched
together using translation of the two patches against each other. (c) shows the
calculated autocorrelation (white = higher values), (d) is the final result.
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Figure 13.4
Part of the training set. The first row consists of 20x20-pixel image patches that
contain cells; the lower row consists of non cell image patches.

Sample set

After fixing the patch size – in the following we will use 20 × 20 pixel

gray-level image patches – a training set of cell and non cell patches

has to be manually generated by the expert. The image set is enlarged

by adding rotated, flipped copies of the patches. The image patches are

then to be classified by a neural network. Figure 13.4 shows some cell

and non cell patches.

Interpreting each 20 × 20 image patch as a 400-dimensional vector,

we get a set of L training vectors

T := {(x1, t1), . . . , (xL, tL)} (13.12)

with xi ∈ Rn – here n = 202 – representing the image patch and

ti ∈ {0, 1} either 0 or 1, depending on whether xi is a non cell or a

cell. This can easily be generalized to classify different types of cells.

The goal is to find a mapping that correctly classifies this data set that

is a mapping a ζ : R
n → [0, 1] with ζ(xi) = ti for i = 1, . . . , L. We call

such a mapping cell classifier . Of course ζ is not uniquely defined by

the above property, so some regularization has to be introduced. Any

interpolation technique, such as a Fourier or a Taylor approximation, can

be used to find ζ; we will use single-layer and multilayer perceptrons, as

explained in the following sections.

Preprocessing

Before we apply neural network learning, we preprocess the data as

follows. Denote x as the underlying n-dimensional random vector from

which the samples x have been drawn.
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In a first normalization step, we scale and translate x such that

the two density maxima of x – corresponding to the gray background

and the dark cell color – are mapped onto two fixed values. Subtracting

the mean x �→ x − E(x) then ensures that the data set is centered.

In order to reduce dimension as well as to decorrelate the data in a

first separation step, we apply principal component analysis (PCA), i.e.

linearly transform the random vector x in order to decorrelate it and

also to reduce its dimension by projecting along the largest eigenvectors

(principal axes) of the correlation matrix of x, see chapter 3.

When analyzing the eigenvalue structure of the training set covari-

ance, we note that by taking only the first five eigenvalues, projection

along those first five principal axes still retains 95% of the data. Thus,

the 400-dimensional data space is reduced to a whitened five-dimensional

data set. A visualization of the 120-sample data set is given in figure 13.5,

after projection to three dimensions. One can easily see the cell and non

cell components can be linearly separated – thus using a perceptron (see

later) can indeed already learn the cell classifier. Furthermore, a k-means

clustering algorithm has been applied with k = 2 in order to find the two

data clusters. They correspond directly to the cell/non cell components

(see figure 13.5).

The above result also indicates that unsupervised learning algo-

rithms can produce a meaningful approximation of a cell classifier. We

will confirm this by successful application of independent component

analysis (ICA). In ICA, given an (observed) random vector, the goal

is to find its statistically independent components. This can be used to

solve the blind source separation (BSS) problem, which is, given only

the mixtures of some underlying independent sources, to separate the

mixed signals and thus recovering the original sources. In contrast to

correlation-based transformations such as PCA, ICA renders the output

signals as statistically independent as possible by evaluating higher-order

statistics. The idea of ICA was first expressed by Hérault and Jutten

[112] while the term ICA was later coined of Comon in [59]. In the cal-

culations we used the well-known FastICA algorithm [123] by Hyvärinen

and Oja, which separates the signals by using negentropy, and therefore

non-Gaussianity, as a measure of the signal separation quality.

Figure 13.6 is a plot of the linearly separated signals together with

the cell/non cell function for comparison. The fifth component is highly

correlated (cc = 0.9) with the desired output function, so instead of
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Figure 13.5
Data set with 120 samples after three-dimensional PCA projection (91% of the data
was retained). The dots mark the 60 samples representing cells; the crosses mark
the 60 non cell data points. The two circles indicate clusters of a k -means
application with a search for two clusters. Obviously, k -means nicely differentiates
between the cell and the non cell components.

using a linear perceptron, projection along the direction of the fifth IC,

together with a sign function, can be used in order to separate cells

and non cells. This is quite interesting because in comparison to the

supervised perceptron learning approach above, the ICA is completely

unsupervised. Only later, when comparing the ICs, do we use the prior

information on cells and non cells in order to differentiate between the

source components. The fact that the data set contains a cell/non cell

independent component was already indicated by the k -means cluster

analysis from figure 13.5, where we saw that the data set clusters into

the cell and non cell components. If we perform PCA to decorrelate

the data, we can also identify a cell/non cell component; however, its

crosscorrelation with the correct classification function is 5% lower than

the ICA result. This confirms that higher-order correlations improve
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Figure 13.6
The five independent components of the data set calculated using FastICA with
deflation and pow3-nonlinearity after whitening and PCA dimension reduction to
five dimensions. Below the five components, the cell/non cell functions (−1 or 1) of
the samples are plotted for comparison. The crosscorrelations of each signal with
these functions are −0.055, 0.11, 0.37, −0.081, and 0.90. Visual comparison already
confirms good correspondence of the fifth IC with the cell/non cell function.

data separation, albeit by a rather small factor in this case.

Neural network learning

In the previous text, we saw that even unsupervised methods were

sufficient to detect an acceptable cell classifier in the given BrdU-labeled

cell experiment. However, performance is somewhat weak, because the

knowledge of cell/non cell labels was exploited only afterward. Also, if

more complicated structures are to be analyzed, nonlinear classifiers turn

out to be preferable. In order to allow for training as well as flexibility

regarding the strength of possible nonlinearities, we will use neural

networks to learn such a cell classifier. Depending on the applications
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presented later, either simple linear, single-layered, or more complicated

network structures have to be used.

Supervised learning algorithms try to approximate a given function

f : R
n → A ⊂ Rm by using a number of given sample-observation pairs

(xλ, f(xλ)) ∈ Rn × A. If A is finite, we speak of a classification prob-

lem. Typical examples of supervised learning algorithms are polynomial

or spline interpolation and artificial neural network (ANN) learning. In

many practical situations, ANNs have the advantage of higher general-

ization capability than other approximation algorithms, especially when

only a few samples are available, see chapter 6.

We will restrict ourselves to feed forward layered neural networks.

Furthermore, we found that in comparison to multi-layered perceptrons

(MLP), simple single-layered neural networks (perceptrons) already suf-

ficed to learn the data set well – and they have the advantage of easier

rule extraction and interpretation.

In order to learn the cell classifier, we use a single-unit perceptron

with a linear activation function to get a measure for the certainty of

cell/non cell classification. Application of the delta learning rule to the

five-dimensional data set from above gives excellent performance after

four epochs of batch learning. The final performance error (variance

of perceptron estimation error of the training set) after 55 epochs was

0.0038, which confirms the good performance as well as the linearity of

the classification problem. This was confirmed by training a two-layered

network with five hidden neurons in order to test for nonlinearities

in the data set. Indeed, the MLP could not significantly enhance the

result: after only 10 epochs, the classification error was already very

small (10−4), and it could finally be diminished to 3 · 10−19; the latter,

however, did not enhance classification noticeably.

Directional neural networks

The above approach works well in the case of cell types that are more or

less circular, where mainly texture identification is important. However,

if we have to deal with more complicated classification problems, we

lose cell classification specificity – this follows from the fact that we

do not know the orientation of the cells in both the training data set

and the test image. Above, we accounted for this by adding rotated and

mirrored versions of the cells to the data set; however, this leads to an

approximate radial symmetry in our classifier.



364 Chapter 13

Depending on the image patch type – for example, patches containing

higher-order structures such as axon-dendrite networks of the neurons –

a more elaborate network structure has to be found in order to avoid the

symmetry. In the following, we introduce a preprocessing method that

allows us to orient the image patches in a default way, thus enabling the

shape classification of arbitrarily oriented image patches. We will denote

trained neural classifiers employing this preprocessing as directional

neural networks .

The idea, similar to PCA, is to orient an image I along its principal

axis, where the image pixels themselves are interpreted as samples of

a two-dimensional random vector xI . Hence I is a two-dimensional

histogram of xI , and the density of xI at the pixel (x, y) can be estimated

by pxI
(x, y) ≈ I(x, y)/T with T :=

∑
x,y I(x, y). This yields estimates

for the mean

E(xI) ≈ μI :=
∑
x,y

(
x

y

)
I(x, y)

T
(13.13)

and the covariance

Cov(xI) ≈ CI :=

(∑
x,y

(
x2 xy

xy y2

)
I(x, y)

T

)
− μIμ

�
I . (13.14)

For a given image I, let ρ(I) be the rotated image I of the same size such

that the eigenvector of Cρ(I) corresponding to the largest eigenvalue

is parallel to the x-axis (1, 0). Applying the neural network training

from section 13.4 to the “normalized” training set (ρ(xλ), f(xλ)) (after

adding possible reflections of the patches at the x-axis) yields the desired

directional neural network, which now is directionally selective. Any

possibly rotated input image patch is applied to the composed classifier

f ◦ ρ.

Figure 13.7(a) is an example of the application of the eigenvector-

based rotation. In the top row, five 15 × 15 input patches displaying

the character A in various rotations and typed in various fonts are

displayed. The corresponding normalized images are given in the second

row; clearly all characters, except for the last one, were oriented such

that their main axis is parallel to the x-axis. Apparently due to aliasing

effects in the original image, in the last character the horizontal bar

of the A contributed most to the covariance, and hence could not be

rotated correctly.
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(a) directional normalization

(b) training data set (c) classification result

Figure 13.7
Directional neural networks. (a) shows five rotated As together with their
normalized image patches (below).

Figures 13.7(b) and 13.7(c) briefly demonstrate the successful ap-

plication of the ZANE classification scheme based on directional neural

networks to character detection. A character classifier ζ is trained using

a directional network based on a generalized regression neural network

[279], a specialized radial basis function network allowing for more com-

plicated nonlinear function approximations. The classifier is trained us-

ing the seven noisy “A” training samples from 13.7(b) together with 70

randomly selected non-A patches. After directional normalization, PCA
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is performed to reduce the dimension to 10, and a generalized regression

network is trained with five hidden neurons. The classifier is applied

(see section 13.5 for algorithmic details) to identify rotated characters

in figure 13.7(c). Five characters were correctly identified, a single one

was not, and the algorithm produced no misclassifications. This result

is good, considering the small training set.

13.5 Confidence Map

Generation

The cell classifier has to be trained only once. Given such a cell classifier,

section pictures can now be analyzed as follows.

A pixelwise scan of the image yields an image patch with center

location at the scan point; the cell classifier is then applied onto this

image patch in order to give a probability determining whether a cell is

located at the given position or not. This yields a probability distribution

over the whole image which is called a confidence map. Each point of

the confidence map is a value in [0, 1] stating how probable it is that a

cell is depicted at the specified location.

In practice, a pixelwise scan can be too expensive in terms of

calculation time, so a grid value γ can be introduced, and the picture is

scanned only every γ-th pixel. This yields a rasterization of the original

confidence map, which for small γ can still be fine enough to detect cells.

Figure 13.8 shows the rasterized confidence map of a section part. The

maxima of the confidence map correspond to the cell locations; small but

non zero values in the confidence map typically depict misclassifications

that can be avoided by thresholding.

Depending on the type of cell classifier, a method to increase perfor-

mance similar to that in section 13.3 can be applied. In the simplest case,

the classifier is a linear separator (for example, learned by a perceptron

or one of the above unsupervised techniques). Then

ζ : R
n×n → [0, 1], I1 �→ σ

(∑
x,y

I1(x, y)W (x, y)

)
, (13.15)

where I1 is the n × n image patch to be tested, W ∈ Rn×n the trained

weight matrix, and σ : R → R is an increasing nonlinearity (already
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(b) confidence map

Figure 13.8
The plot shows the confidence map (b) generated with grid value γ = 5 from the
source image (a).

containing a possible bias). The inherent decision rule ζ(I1) > 0 then

translates to the inner product of I1 and W being greater than σ−1(0).

By definition, the confidence map κ ∈ R
h×w of an image I of size

h × w is given by

κ(u, v) = ζ(I(u . . . u + n, v . . . v + n)) (13.16)

= σ

(∑
x,y

I(u + x, v + y)W (x, y)

)
(13.17)

= σ

(∑
x,y

I(x, y)W ′(u − x, v − y)

)
(13.18)

= σ (I ∗ W ′(u, v)) (13.19)

after sufficient zero-padding of W and again with W ′ denoting the

reflected image. Application of the filter W ′ can now be easily speeded

up by using multiplication in the Fourier space (see section 13.3):

κ = σ
(F−1 (F(I)F(W ′))

)
. (13.20)

Here σ is implicitly applied for each pixel; in addition F(W ′) can be

calculated beforehand, so that only two 2-D FFTs have to be calcu-

lated. Similar to the case of image-stitching, this results in a consid-
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erable performance increase, especially for larger images. Furthermore,

this approach can be readily extended to the case of MLPs by replac-

ing each neuronal activity calculation with the FFT-perceptron weight

calculation [29].

Evaluation

After the confidence map has been generated, it can be evaluated by

simple maxima analysis. However, as seen in figure 13.8, due to noise

and non cell objects in the images, maxima do not always correspond to

cell positions, so thresholding in the confidence map has to be applied

first. Values of 0.5 to 0.8 yield good results in experiments, and if a

neural network-based approach is taken, the threshold values are already

implicitly given by the bias value at the output neuron. Furthermore,

the cell classifier yields high values corresponding to a single cell when

applied to image patches with large overlap. Therefore, after a maximum

has been detected, adjacent points in the confidence map are also set to

zero within a given radius (15 to 18 were good values for 20× 20 image

patches). Iterative application of this algorithm then gives the final cell

positions, and hence the image segmentation and the cell count.

13.6 Relation to Other Methods

Although feature counting per se has not been studied very intensely

(see, e.g., [183, 184]), it can of course be interpreted as a secondary

problem in the larger field of image segmentation. Its goal is to de-

compose one or multiple images into their “natural” parts, those being

specified by similarities such as color, shape, texture, or some higher-

level semantic meaning. Our problem of cell counting can then be solved

by counting those image segments that represent cells – in the case of

a perfect segmentation, these should consist of all components except

for the large background component (which itself could contain multiple

segments).

Nowadays common algorithms for image segmentation, apart from

neural network based approaches like the above, include segmentation

using morphological operations or linear decomposition algorithms such

as non negative matrix factorization [150]. A very common technique

belonging to the first category is the so-called watershed transform. Its
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intuitive idea can be visualized in geographical terms: in a landscape

flooded by water, watersheds divide the domains of attraction of rain

falling over the region. If image properties are measured by a single

variable specified at each pixel, the watershed algorithm finds connected

components belonging to separate local minima. This algorithm was first

proposed by Digabel and Lantuéjoul [68] and later improved by Beucher

and Lantuéjoul [32]. A nice up-to-date overview can, for example, be

found in [222]. More elaborate frameworks and extensions have been

proposed, such as the combination of watershedding with region merging

in a hierarchical structure [107] or graph-theoretic segmentation known

as the n-cut method [231].

An application of the watershed transform to cell image segmenta-

tion and recognition is presented in [191]; however, the cell images are

acquired from bone marrow smear, which substantially reduces back-

ground noise. Furthermore, no focusing problems are involved, so all

cells are of similar shape, texture, and especially size.

A more direct method, which has recently been suggested for slice

image segmentation in [30], uses thresholding for noise removal, and

afterward simply counts the number of connected components. Clusters

of appropriate pixel size are then interpreted as a single cell and counted.

We have also considered the use of these more classical approaches

to cell counting, but apart from some computational issues (and choice

of the various involved thresholding parameters), the main disadvantage

in contrast to the proposed algorithm lies in the fact that the above algo-

rithms do not take the actual cell shapes into account. Essentially they

are indifferent to shape, and count any object of appropriate color and

pixel size. A related problem can be seen in figure 13.9. There compare

ZANE with the two most common methods by applying the watershed

transform both to the confidence map and to a distance map (containing

distance values of pixels to cell boundaries given by a threshold). In both

cases the result strongly depends on image preprocessing and thresh-

olding to avoid too many local minima. Apart from some misclassified

regions due to thresholding problems, watershedding of the confidence

map partially separates cell clusters, but also introduces additional seg-

ments at intersections. If water shedding was applied to the distance

map, cell clusters could not be separated at all. We believe that this is

due to the somewhat problematic conditions of image acquisition using

a confocal light microscope, which cannot give cell boundaries as clearly
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as other experimental settings such as [191]. ZANE resolves this problem

by using the previously learned shapes; the better counting performance

can be observed in figure 13.9(c). Finally, the advantage of ZANE lies

in the fact that after training, image analysis is basically performed by

a combination of filtering (to generate the confidence map) and maxima

analysis, which is enough for counting but not for segmentation. Hence,

ZANE can be expected to outperform the above methods.

13.7 Results

Brain section image acquisition

The analyzed brain sections were taken from the dentate gyrus of mice.

BrdU given systemically is integrated into the dividing DNA instead

of thymidine during the S-phase of the mitosis [69]. Using a specific

antibody against BrdU, labeled cells can be detected by an immunohis-

tochemical staining procedure. The nuclei of labeled cells on 40μm-thick

brain sections are dense dark brown or black. To determine the number

of BrdU-positive cells in the granular cell layer of the dentate gyrus,

they were counted on a light microscope (Olympus IX 70; Hamburg,

Germany) with a 20× objective. Digital images with a resolution of

1600 × 1200 pixels were taken by a color video camera adapted to the

analySIS software system (Soft Imaging System, Münster, Germany).

Manual counting

Before analyzing ZANE counting performance, it should be noted that

the number of labeled cells counted by an expert varies considerably

between observers. This is not due only to inaccuracies of the experts,

but mainly depends on the interpretations of whether a labeled cell is

present at a location or not (i.e., on the personal cell classifiers of the

experts). In order to quantitatively compare the proposed algorithm with

manual counts, we therefore need an estimate of the expert cell count

deviation. Such a deviation has been mentioned in the literature [30],

but finding actual values is difficult.

From our knowledge, a typical value of the inter observer variability

in expert cell counts ranges from 10% to 15%. In order to confirm this,

we compare the cell counts of two experts given 18 different animals with

five to seven slices each. Each slice is counted using the microscope, so
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(d) watershed segmentation
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of (e)

Figure 13.9
Section image segmentation using the watershed transform. Using the cell-classifier
ζ, an example 100 × 100 section image (a) is transformed to give the confidence
map (b). For comparison the ZANE counting/cell localization result is presented in
(c). Direct application of the watershed transform (after thresholding) yields (d);
distance map generation of the thresholded source image (e) gives a different
watershed result (f).
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additional three-dimensional information was available to the experts

for confirmation of the cell/non cell status. Figure 13.11(a) shows the

resulting numbers; clearly the experts differ considerably, with the first

expert typically counting more than the second one. The standard

deviation σi :=
√

varXi in each counting result Xi ranges from 14.1

to 171.8. We normalize the deviation by dividing by the estimated mean

μi := E(Xi) of each experiment, and get a total relative deviation of

E(σi/μi) = 0.1494. Hence the mean deviation between the two experts

lies at 15%.

Finally, even though the problem of differences in the number of

counted cells is well known, a possible solution such as deliberate slight

overcounting in order not to miss important features is not feasible. This

is because over- and undercounting are equally bad. The former results

in a too high variability, whereas the latter does not allow for sufficient

differentiation.

ZANE counting

When training the cell classifier in practice, we use perceptron learning

after preprocessing with both and ICA in order to increase the per-

formance of the learning algorithm with linearly separated data. Using

prior knowledge about the sizes of cells and the zoom factor of the im-

ages, the patch size is chosen to be 20×20. Optimal values for threshold

and cut out radii have been obtained using optimization on the training

images. A thresholding of 0.8 is applied in the confidence map, and the

cut out radius for cell detection in the confidence map is chosen to be

18 pixels. In figure 13.1, an automatically segmented picture is shown.

Figure 13.10 presents the segmentation of the stitched image from fig-

ure 13.3. ZANE counted 281 cells, versus 267 counted cells by an expert

using focusing in the full three-dimensional slice; this confirms the good

performance of the counting algorithm.

A more detailed analysis of the ZANE cell counting algorithm is

shown in figure 13.11. In (c), five stitched brain section images of a

single mouse are counted using ZANE, manual counting, and two other

segmentation algorithms, based on clustering [30] and the watershed

transform [68] respectively. Note that manual counting can be performed

either by using the digital image only or by directly using the microscope

(this is usually done in experiments). Then the counting person can

change the focus plane, and hence detect and count cells that lie below or
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Figure 13.10
Automatically segmented image from figure 13.3. Here, the number of counted cells
(marked by black boxes) is 281. The expert counted 267 cells (focusing through the
section).

above the fixed focus plane of the digital image (in the digital image those

cells are visible only as slightly darker shadows). We compare ZANE

with Benali’s clustering method [30] and a more elaborate segmentation

scheme using the watershed transform for segmentation and afterward

counting only sufficiently large clusters (see section 13.6).

Comparing mean manual counts using focusing versus ZANE, we

get a standard deviation of ±8.6 cells, and comparing it against the

counts from the digital images, we get a deviation of ±4.9 cells. In both

cases the deviation is acceptable, taking into account that counts of two

experts often vary by 5 to 10 cells or even more.

When comparing the manually segmented the digital images with

the ZANE segmentations of images 2–5 from figure 13.11(c), we get the

following average confusion matrix:(
90% ± 3.8% 4.1% ± 2.6%

9.9% ± 3.8%

)
. (13.21)

This means that in the average ZANE correctly labeled 90% of all

(manually detected) cells, additionally labeled 4.1% of all cells, and

forgot to label 9.9% of all cells. Figure 13.11(b) shows a comparison

of ZANE versus manual counting with varying focus for a larger data
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Figure 13.11
Cell-counting results. (a) gives the counting results of two experts using a
microscope (and changing the focus plane). (b) presents a comparison of ZANE
versus manual microscope-based counting within various mice. (c) compares the
ZANE counting performance with other proposed counting method as well as
manual counting by microscope, counting only cells in the digital image within one
mouse. (d) lists the corresponding algorithm runtimes. In (b) and (c), a single
expert made all manual counts.

set (from two mice). The slope of the fitted line is about 0.9, which

implies a counting error of around 10%.

The comparisons of ZANE with other counting algorithms also favor

our proposed algorithm; indeed, the more advanced shape selectivity is
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Table 13.1
Mean square error of automatic counting methods applied to the five section images
from figure 13.11.

Algorithm Counting error Counting error

(vs. manual+focusing) (vs. manual)

ZANE 3.4 3.5

clustering 5.0 6.8

watershed 5.8 5.4

preferable: using the data from figure 13.11(c), we get mean square errors

of the three counting algorithms as shown in table 13.1. Clearly ZANE

considerably outperforms the other two algorithms, especially in terms of

counting performance given only the digital image data. A comparison

of the computing times T (figure 13.11)(d), shows that ZANE (mean

T̄ = 24sec) and Benali’s clustering method (mean T̄ = 29sec) perform

similarly, with the watershed taking roughly twice as long (mean T̄ =

68sec).

Finally, we wanted to test ZANE on images with different numbers

of labeled cells and to give some neuro biologically interesting results.

We therefore analyzed neurogenesis in the dentate gyrus of mice, and

compared a control group of animals with mice that had been treated

with pilocarpin to induce a status epilepticus. It is known that this

condition raises the number of proliferating cells in the hippocampus

one week after the treatment, which can be shown by an increase of

BrdU-labeled cells [31, 196]. Our experiment confirmed these findings

by showing that proliferation of cells in the dentate gyrus was 340%

stronger in the epilepticmice than in the control group (see figure 13.12).

Counting images with multiple markers

The advantage of the presented method lies in the fact that it can

be readily extended to the detection, localization, and identification of

other kinds of cells in microscopic images. For example, images marked

by multiple markers such as neuronal nuclei antigen (NeuN), BrdU,

doublecortin (DCX), or S100β allow the differentiation of various types

of cells. By adapting the cell classifier we can identify the desired type of

cell, and multiple cell classifiers can then identify the various cell classes.

In the following we will demonstrate this by applying ZANE to a slice
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Figure 13.12
Number of cells in brain sections of a epileptic mouse versus number of cells of a
mouse in a control group (counted both manually and using ZANE).

image that contains BrdU-marked cells in the green channel and S100β-

labeled cells in the blue channel. Here, the polyclonal rabbit antibody

S100β (SWant, Bellinzona, Switzerland) was used to detect astrocytes

and glial cells. Newborn BrdU-labeled cells are located mainly in the

subgranular layer (others are cut out due to ROI selection), and are not

expected to be labeled by S100β. BrdU labels only newborn cells, and

hence is not specific with respect to neurons or glial cells. The double

labeling allows to us classify this (i.e., to exclude glial cells, which are

not to be counted).

The BrdU-labeled cells, which in the multicolored images turned out

to be larger, are counted using a cell classifier based on a two-layer MLP

with two hidden neurons (see figure 13.13). The S100β-marked cells, the

astrocytes, do not possess such a simple radial structure, and, moreover,

axons and dendrites are also colored. Hence we apply a directional neural

network based on a generalized regression network to construct a cell

classifier. Due to the additional preparation time, essentially only three

usable multi labeled scans were available for testing. The training data

set was acquired from the first two images; 35 cell patches of size 34×34

were identified by an expert, and 350 non cell patches were randomly

generated. The patches together with their x-mirrored equivalents were

added after directional normalization (see section 13.4). Training of the

RBF was fast, and after 30 epochs of batch training, the performance

error was negligible, 3 ·10−25. The cell classifier was applied to the third
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Figure 13.13
Multi colored image – counting in the green channel using MLP-based ZANE (top
right image) and in the blue channel using a directional neural network (bottom
left).

sample image with a high threshold of 0.9999, step size γ = 10 and

cutout radius of 60. The resulting labeled image is shown in figure 13.13.

Altogether, 13 neurons were counted and no overcounting was observed,

but depending on the expert two or three additional possible neuron

locations could have been added.
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Figure 13.14
ZANE front end. A plug-in for the Java image editor ImageJ has been developed. It
loads a perceptron text file and applies the ZANE image segmentation algorithm to
give a segmented section as well as the cell count.

User interface

A visual front end has been developed in order to simplify the use of

ZANE in the laboratory. It has been realized as plug-in for the Java

image editor “ImageJ”. An arbitrary linear cell classifier can be specified

by a text file. Then the ZANE image segmentation algorithm is applied

to calculate a segmented section and the cell count. A screen shot is

shown in figure 13.14.

13.8 Conclusion

We have presented a framework for brain section image segmentation

and analysis. The feature detector, here the cell classifier, was first

trained onto a given sample set using neural networks or ICA. This
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detector was then applied onto the image to get a confidence map, and

maxima analysis yielded the cell locations. Experiments also showed

good performance of the classifier when compared against more tradi-

tional segmentation techniques.

In future work, one goal is to face the problem that in typical brain

section images, some cells not lying directly in the focus plane are

blurred. In order to count those without counting them twice in two sec-

tion images with different focus planes, a three-dimensional cell classifier

can be trained for fixed focus plane distances. A different approach for

accounting for non focused cells is simply to allow “overcounting”, and

then to reduce doubles in the segmented images according to location.

This seems suitable, given the fact that cells do not vary greatly in size.

We also plan on automating ROI selection in the future by classifying

separating features of these regions.





14 NMR Water Artifact Removal

Multidimensional proton nuclear magnetic resonance (NMR) spectra of

biomolecules dissolved in aqueous solutions are usually contaminated by

an intense water artifact. In this chapter, we will discuss the application

of the generalized eigenvalue decomposition method using a matrix

pencil to solve the blind source separation (BSS) problem of separating

out the water artifacts. BSS methods explore either the time structure

of the free induction decay (FID) signals or their corresponding spectral

power densities, using second-order correlations only. We analyze 2D

spectra acquired from Nuclear Overhauser and Exchange Spectroscopy

(2-D NOESY ). The spectra of simple solutes as well as dissolved proteins

are studied. Results are compared to those obtained with the FastICA

algorithm, which explores higher-order statistical dependencies as well.

The ICA analyis of NMR spectra was first presented by Stadlthanner

et al. [237] and extended in two conference proceedings [238, 239].

14.1 Use time-structure-based BSS

Blind source separation addresses the problem of finding which signals

contribute to any given sensor signals recorded. It is of interest if little or

nothing is known about the source signals and the mixing process, hence

the term “blind”. This is a widespread problem in signal processing, so

BSS techniques have many applications in speech and image processing,

biomedical signal processing, and communications, see chapter 4 for a

review of BSS and related algorithms.

In general the problem is very ill-posed and needs to be regularized

to become solvable. Two means have been considered in the past. Either

one assumes statistically independent source signals and exploits higher-

order correlations in the data – this has been done in the previous

chapters – or one exploits time correlations in the data, relying on

second-order statistics only. In any case, a linear mixing model is mostly

considered. Most solutions consider a two-step procedure. During a

whitening step the sensor signals are linearly transformed (via PCA,

for example, see chapter 3) such that the covariance matrix becomes

the identity matrix. During this step the dimensionality of the sensor

signal vector can be reduced to the source vector dimensionality. The
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problem is then reduced to finding an orthogonal (or unitary, in the

case of complex-valued signals) separating matrix using higher-order

or time-decorrelation algorithms. higher-order decorrelation techniques

have been intensely studied, and many algorithms have been proposed,

among which are the popular Infomax algorithm [25] or its natural

gradient version [289], the JADE algorithm [47] that exploits fourth-

order correlations and the very efficient FastICA algorithm, as well as

geometric approaches such as the fastGeo algorithm [259] (see section

4.5).

Second-order techniques exploit the temporal structure of the source

signals. The blind identification of the mixing model can be converted to

standard (EVD) or generalized (GEVD) eigenvalue decomposition and

simultaneous or joint diagonalization (SD) problems. In algorithms such

as AMUSE and EFOBI [269], also see section 4.7 of the ICA chapter, a

standard EVD is performed on a matrix derived from fourth-order cu-

mulants or time-delayed correlations. Algorithms such as SOBI instead

try to jointly diagonalize a set of delayed covariance matrices of whitened

data to extract their average eigenstructure. Recently GEVD solutions

have been presented which comprise the simultaneous diagonalization

of a matrix pencil formed with the sensor signals. The matrices forming

the pencil can be computed in different ways: Souloumiac [235] considers

two segments of time-dependent signals with distinct energies, Lo et al.

[160] consider different embedding spaces of chaotic signals, Molgedey

and Schuster [178] and Chang et al. [49] compute time-delayed correla-

tion matrices, and Tomé [266] considers filtered versions of the sensor

signals. Later, Tomé [267] also presented an algebraic formulation of the

GEVD problem using the notion of congruent matrix pencils and block

matrix operations when the mixing matrix has more rows than columns.

Iterative as well as online methods to compute the eigendecomposition of

a symmetric, positive, definite pencil have also been presented [79, 268].

We will follow this latter approach and apply it to the separation of

water artifacts from 2-D NOESY NMR proteins spectra.

14.2 The General Eigendecomposition Approach

For convenience we briefly review the general eigendecomposition ap-

proach using congruent matrix pencils. Consider the matrix pen-



NMR Water Artifact Removal 383

cil (Rs1.Rs2) formed with the source signals and the matrix pencil

(Rx1,Rx2) formed with the sensor signals. Both pencils are considered

congruent if there exists an invertible matrix A ∈ Gl(n) such that

Rx1 = ARs1A
T

Rx2 = ARs2A
T . (14.1)

In BSS problems A = {aij}, i = 1, ..., m, j = 1, ..., n represents

the instantaneous mixing matrix. It has been shown that the inverse or

pseudo inverse of the mixing matrix can be estimated from the sensor

signal pencil if the eigenvector matrix of the source signal pencil is

diagonal. In fact, congruent pencils possess the same eigenvalues which

form the roots of the characteristic polynomials

χx(λ) = det(Rx1 − Rx2) = 0

χs(λ) = det(Rs1 − Rs2) = 0 (14.2)

With A a rectangular matrix (m > n), if AT A is an invertible ma-

trix, the congruent source signal pencil (AT ARs1A
T A,AT ARs2A

T A)

also possesses the same eigenvalues. Hence the sensor signal pencil

formed with (m × m) matrices shows n eigenvalues equal to the eigen-

values of the source signal pencil.

The generalized eigendecomposition of the sensor signal pencil now

reads

Rx1E = Rx2EΛ (14.3)

where E represents the unique eigenvector matrix if the diagonal matrix

Λ has distinct eigenvalues λi. The corresponding eigendecomposition

statement concerning the source signal pencil can be obtained easily by

substituting equation(14.1) into equation(14.3), yielding

ARs1A
T E = ARs2A

T EΛ (14.4)

Multiplying both sides of equation(14.4) by A−1 and using

Es = AT E (14.5)

as the corresponding eigendecomposition statement of the source signal

pencil results in

Rs1Es = Rs2EsΛ, (14.6)
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where Es represents its eigenvector matrix, and the normalized eigen-

vectors corresponding to a particular eigenvalue are

�es = αAT�e (14.7)

with α a normalizing constant.

Concerning square (m = n) BSS problems, it can be seen from

equation(14.5) that the eigenvector matrix E forms an estimate of the

inverse of the mixing matrix A if the matrix Es corresponds to the

identity matrix or a simple permutation matrix. This occurs if the source

signal pencils are both diagonal.

With nonsquare mixing matrices, equation (14.6) can be rewritten in

block matrix notation if A and E are both divided into two blocks:

A into AH , (n × n) and AL, ((m − n) × n), and E into EH , (n × m)

and EL, ((m− n)×m). Then the eigendecomposition statement can be

reformulated as

AHRs1Φ = AHRs2EsΛ

ALRs1Φ = ALRs2EsΛ (14.8)

Es = AT
HEH + AT

LEL = AT E (14.9)

and Es is now an (n × m) matrix representing the eigenvector matrix

of the source signal pencil having (m − n) columns of zeros paired with

the corresponding eigenvalues in Λ that do not belong to the eigenvalue

decomposition of the source signal pencil (Rs1,Rs2).

Since after the separation (m−n) signals have vanishing amplitudes

this approach also allows one to estimate the number of source signals.

If the latter is known, then a subset of n sensor signals can be used to

compute the corresponding matrix pencil, and identical results will be

obtained. In summary, the GEVD approach to BSS problems is feasible

if the congruent source signal pencils are formed with statistically in-

dependent source signals yielding the identity matrix or a permutation

matrix only.



NMR Water Artifact Removal 385

14.3 Computing the Eigendecomposition of Symmetric Pencils

The matrix pencil (R�x,1,R�x,2) of zero mean data comprises two corre-

lation matrices of the data. The first matrix is computed as follows:

R�x,1 =
1

N
S(ω2, t1)S

H(ω2, t1), (14.10)

with N = 2048 representing the number of samples in the ω2 domain

and SH the conjugate transpose of the matrix S. The second correlation

matrix R�x,2 of the pencil has been computed after filtering each single

spectrum (each row of S(ω2, t1)) with a bandpass filter of Gaussian

shape centered in the spectrum and having a variance in the range of

1 ≤ σ2 ≤ 4. Both matrices of the pencil are of dimension 128 × 128,

since we assume as many sources as there are sensor signals.

A very common approach to computing the eigenvalues and eigen-

vectors of a matrix pencil is to reduce the GEVD statement

Rx2E = Rx1EΛ

to the standard eigenvalue decomposition (EVD) problem, which is of

the form

CZ = ZΛ.

The strategy that we will follow is first to solve the eigendecomposi-

tion of the matrix Rx1, giving

Rx1 = SDST = S1/2D1/2ST SD1/2ST = WW.

Substituting this result into the GEVD statement and defining Z = WE

yields the transformed equation

W−1Rx2W
−1Z = ZΛ,

which is the standard EVD form of a real symmetric matrix C =

W−1Rx2W
−1 if the matrix Rx2 is also symmetric positive definite and

the transformation matrix W−1 is obtained as

W−1 = SD−1/2ST .

While the eigenvalues of the matrix pencil are available from the solution

of the EVD of the matrix C, the corresponding eigenvectors are obtained

via E = W−1Z.
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14.4 NMR Spectra

Modern multidimensional NMR spectroscopy [76] is a versatile tool

for the determination of the native 3-D structure of biomolecules in

their natural aqueous environment. Proton NMR (i.e. the observation

of the magnetization of the 1H nuclei in the probe), is an indispensable

contribution to this structure determination process but is hampered

by the presence of the very intense water (H2O) proton signal. Since

it is the most intense signal in two-dimensional spectra, it causes the

most trouble with baseline distortions and t1 noise, and it can obscure

weak signals lying under its edges. Because of its intensity it also

causes severe dynamic range problems; hence sophisticated experimental

protocols have been developed to suppress the water signal as far as

possible. All these procedures introduce spectral distortions that can be

neither avoided nor removed, and prevent the analysis of the spectral

region close to the water resonance. Hence equivalent spectra of the

molecules dissolved in heavy water (D2O) also have to be taken which

raises additional problems not the least being that heavy water differs

sufficiently in its physical-chemical properties from light water to cast a

doubt on a direct comparison of both spectra. Hence it is interesting to

consider whether (BSS) techniques can contribute to the removal of the

water artifact in such spectra without regard to any sophisticated water

suppression pulse protocols except a simple presaturation to reduce the

dynamic range problem. However, even a long, weak pulse on the water

resonance can bleach nearby solute proton resonances and can also affect

other signals through crossrelaxation or chemical exchange.

Concerning structure determination, homonuclear 2-D NOESY spec-

tra are a must. They rely on the nuclear Overhauser effect, the change

in the intensity of the resonance of one spin species upon saturation of

an adjacent spin with which it has an appreciable dipole-dipole inter-

action. They provide information about crossrelaxation rates, which for

protons depend mainly on magnetic dipolar interactions. The latter vary

with distance as r−6, and hence allow distances to neighboring nuclei to

be determined. Loosely speaking, one can consider the NOE effect an

atomic ruler, which allows the 3-D structure to be determined if enough

NOEs are available experimentally. A two-dimensional NMR time do-

main signal, called free induction decay (FID), is modeled by a sum of
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damped complex harmonic functions

S(t1, t2) =
∑

i

Mi exp(−iΩ1it1) exp(−λ1it1) exp(−iΩ2it2) exp(−λ2it2)

on to which Gaussian noise is superimposed. Signal processing is per-

formed by Fourier analysis, resulting in spectra consisting of sums of

Lorentzian-shaped resonance lines [76] given by

f(ω1, ω2) =
∑

i

Mi

(
1

iΔΩ1i + λ1i

)(
1

iΔΩ2i + λ2i

)
.

Statistical independence of two signals requires their scalar product to

be zero both in the time domain and in the frequency domain. Therefore

nonoverlapping resonance lines should be reasonably independent. But

because the limited range of chemical shifts (i.e. the spread of the

proton resonances on the frequency scale) is rather limited compared

to individual resonance line widths, statistical independence is hard

to assure in general. second-order techniques like the GEVD using

matrix pencils discussed above, as well as many others, exploit some

weaker conditions for the separation of sources, assuming that they

have a temporal structure with different autocorrelation functions or,

equivalently, different power spectra.

14.5 Results and Discussion

EDTA spectra

First, 2-D NOESY spectra of simple solute molecules such as EDTA were

analyzed. Presaturation of the water resonance was applied in all cases.

FIDs S(t1,j , t2) recorded at fixed evolution times t1,j, j = 1, ...., m

were sampled over time spans t2 and have been Fourier transformed

with respect to both time domains to obtain corresponding spectra

S(ω1, ω2) which could be corrected for any phase distortions. Data

matrices X = �x1, ..., �xN were then formed with one row representing a

single spectrum S(ω2, t1,j) corresponding to a fixed evolution time t1,j.

The final m × N matrix X then contained as many rows as there were

different evolution times t1,j according to the experimental protocol.

Typically m = 128 evolution periods were considered and N = 2048

data points were sampled from each spectrum in the t2 domain. Due to
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phase cycling every fourth spectrum has been considered yielding only

data matrices of size (m × N = 32 × 2048).

A matrix pencil (C1,C2) comprised two covariance matrices C of

the data where the second covariance matrix C2 represented a delayed

or filtered version of R1. With zero mean data the covariance matrices

C of the data equaled their correlation matrices C = R. The latter were

of dimension 32× 32, and the expectations were estimated according to

< xixj >=
1

N

N∑
n=1

xi(n)xj(n) (14.11)

with N = 2048 representing the number of samples in the ω1 domain

in the case of R1. The second correlation matrix R2 of the pencil was

obtained in two different ways:

• First, by collecting spectral data at frequencies below the water reso-

nance (i.e., only data points between 1285 and 2048) were used to cal-

culate the expectations in the covariance matrix R2 of the pencil. That

amounts to low-pass filtering the whole spectrum. Any smaller frequency

shifts did not yield reasonable results (i.e., a successful separation of the

water and the EDTA resonances could not be obtained).

• A second procedure consisted in bandpass filtering the water resonance

in the frequency domain with a narrow-band filter which removed only

the water resonance. The spectra were then converted to the time

domain with an inverse Fourier transform, and corresponding correlation

matrices were calculated with time domain data for both correlation

matrices of the pencil. Even in the case of R1 the data had to be Fourier-

transformed first to be able to effect a phase correction to the spectra,

which then were subjected to an inverse Fourier transform to obtain

suitably corrected time domain data.

The matrix pencil thus obtained was treated in the manner given

above to estimate the independent components of the EDTA spectra and

the corresponding demixing matrix. Independent components showing

spectral energy only in the frequency range of the water resonance were

related to the water artifact. To effect a separation of the water artifact

and the EDTA spectra, these water-related independent components

were deliberately set to zero. Then the whole EDTA spectrum could be

reconstructed with the estimated inverse of the demixing matrix and the
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corrected matrix of estimated source signals.

A typical 1-D EDTA spectrum is shown in figure 14.1(a). It illus-

trates the still intense water artifact around sample point 1050, corre-

sponding to a frequency shift of 4.8 ppm relative to the resonance fre-

quency of the standard. Figure 14.1(b) presents the reconstructed spec-

trum with the water artifact removed. The small distortions remaining

are due to baseline artifacts caused by truncating the FID due to limited

sampling times.

To see whether the use of higher-order statistics could perform better

the data set has also been analyzed with the FastICA algorithm [124].

As the latter does not use any time structure, all 128 data points in each

column of the (128×2048)-dimensional data matrix X were used. Again,

independent components related to the water artifact were nulled in the

reconstruction procedure. The result is shown in figure 14.1(c). Visual

inspection shows a comparable separation quality of both methods in

the case of 2-D NOESY EDTA spectra.

Simulated protein spectra

We then analyzed simulated noise- and artifact-free 2-D NOESY spectra

of the cold-shock protein (CSP) of thermotoga maritima, comprising 66

amino acids, were overlaid with experimental NOESY spectra of pure

water taken with presaturation of the water resonance to simulate con-

ditions corresponding to experimental protein NOESY spectra to be

analyzed later on.

A 1-D CSP spectrum backcalculated with the RELAX algorithm over-

laid with the experimental water spectrum is shown in figure 14.2(a),

illustrating the realistically scaled, rather intense water artifact around

sample point 1050. The matrix pencil calculated from these data was

treated in the manner given above to estimate the independent compo-

nents (ICs) of the artificial CSP spectra and the corresponding demixing

matrix. Figure 14.2(b,c) present the reconstructed spectra with the wa-

ter artifact removed using the matric pencial algorithm and the fastICA

algorithm. The small distortions remaining are due to a limited number

of ICs components estimated. Attempts to overlay water spectra that

have been taken without presaturation, and hence show an undistorted

water resonance, indicated that a 3 × 3 mixing matrix then suffices to

reach an equally good separation. This is due to the fact that the presat-
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10 9 8 7 6 5 4 3 2 1 0 �1
�2

0

2

4

6

8

10

12

14
x 10

7

δ [ppm]

(b) reconstruction with removed water artifact using matrix pen-
cil

10 9 8 7 6 5 4 3 2 1 0 �1
�2

0

2

4

6

8

10

12

14
x 10

7

δ [ppm]

(c) reconstruction with removed water artifact using ICA

Figure 14.1
(a) 1-D slice of a 2-D NOESY spectrum of EDTA in aqueous solution
corresponding to the shortest evolution period t2. The chemical shift ranges from
−1.206 ppm to 10.759 ppm. (b) Reconstructed EDTA spectrum (a) with the water
artifact removed using frequency structure by applying the proposed matrix pencil
algorithm. (c) Reconstructed spectrum using statistical independence (fastICA).



NMR Water Artifact Removal 391

uration pulse introduces many phase distortions, which then cause the

algorithm to decompose the water resonance into many ICs instead of

just one.

The fastICA results are somewhat less convincing; indeed the algo-

rithm introduced spectral distortions such as inverted multiplets, hardly

visible on the figures presented, that not observed in the analysis with

the GEVD method using a matrix pencil. This is of course an important

issue concerning an automated water artifact separation procedure, as

any spectral distortions might result in false structure determinations

using these 2-D NOESY data.

Spectra of the protein RALGEF

As a second data set 2-D NOESY spectra of the protein RALH814 were

analyzed as well. The data were analyzed with the matrix pencil method

as described above. This time both correlation matrices had the dimen-

sion (128 × 128) and all 2048 data points were used to estimate the

expectations within the correlation matrices. Again the second correla-

tion matrix R2 of the matrix pencil corresponded to a bandpass-filtered

version of the correlation matrix R1. Figure 14.3 shows an original pro-

tein spectrum with the prominent water artifact, its reconstructed ver-

sion with the water artifact separated out, and a spectrum difference

between original and reconstructed spectra.

An equally good separation of the water artifact could have been

obtained if the correlation matrix R2 had been calculated by estimating

the corresponding expectations with the low-frequency samples, those

with shifts below the water resonance, of the spectrum only (see figure

14.4(a)). Again the data were analyzed with the FastICA algorithm as

well yielding comparable results (see figure 14.4(b)). However, though

hardly visible on the figures presented, the FastICA algorithm intro-

duced some spectral distortions that had not been observed in the anal-

ysis with the GEVD method using a matrix pencil. This is of course

an important issue concerning an automated water artifact separation

procedure, as any spectral distortions might result in false structure de-

terminations using these 2-D NOESY data.
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(c) reconstruction with removed water artifact using ICA

Figure 14.2
(a) 1-D slice of a simulated 2-D NOESY spectrum of CSP overlaid with an
experimental water spectrum corresponding to the shortest evolution period t2. The
chemical shift ranges from 10.771 ppm (left) to −1.241 ppm (right). Only the real
part of the complex quantity S(ω2, t1) is shown. Reconstructed CSP spectra with
the water artifact removed by solving the BSS problem using a congruent matrix
pencil (b) and the fastICA algorithm (c).
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(b) reconstruction with removed water artifact using GEVD
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(c) reconstruction with removed water artifact using GEVD

Figure 14.3
(a) 1-D slice of a 2-D NOESY spectrum of the protein RALH814 in aqueous
solution corresponding to the shortest evolution period t2. The chemical shift
ranges from −1.189 ppm to 10.822 ppm, i.e. one digit corresponds to a shift of
5.864E-3 ppm. (b) Reconstructed protein spectrum with the water artifact removed
with the GEVD using a matrix pencil. (c) Difference between original and
reconstructed protein spectra.
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(b) reconstruction with removed water artifact using ICA

Figure 14.4
Reconstructed protein spectrum obtained with the GEVD algorithm using a matrix
pencil(a) and fastICA (b). In (a), the expectations within the second covariance
matrix were calculated using low-frequency sample points only.

14.6 Conclusions

Proton 2-D NOESY spectra are an indispensable part of any determi-

nation of the three-dimensional conformation of native proteins, which

forms the basis for understanding their function in living cells. Water is

the most abundant molecule in biological systems, hence proton protein

spectra are generally contaminated by large water resonances that cause
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severe dynamic range problems. We have shown that ICA methods can

be useful to separate these water artifacts out and obtain largely undis-

torted, pure protein spectra. Generalized eigenvalue decompositions us-

ing a matrix pencil are an exact and easily applied second-order tech-

nique to effect such arefact removal from the spectra. We have tested

this method with simple EDTA spectra where no solute resonances ap-

pear close to the water resonance. Application of the method to protein

spectra with resonances hidden in part by the water resonance showed

a good separation quality with few remaining spectral distortions in

the frequency range of the removed water resonance. It is important

to note that no noticeable spectral distortions were introduced farther

away from the water artifact, in contrast to the FastICA algorithm,

which introduced distortions in other parts of the spectrum. Further,

baseline artifacts due to the intense water resonance can also be cured

to a large extent with this procedure. Further investigations will have to

improve the separation quality even further and to determine whether

solute resonances hidden underneath the water resonance can be made

visible with these or related methods.
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[174]A. Meyer-Bäse, F. Theis, O. Lange, and C. Puntonet. Tree-dependent and
topographic-independent component analysis for fMRI analysis. In Proc. ICA
2004, volume 3195 of LNCS, pages 782–789. Springer, 2004.
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Plate 1
Cocktail party problem. (a) A linear superposition of the speakers is recorded at each 
microphone. This can be written as the mixing model x(t) = As(t) equation (4.1) with 
speaker voices s(t) and activity x(t) at the microphones (b). Possible applications lie in 
neuroscience: given multiple activity recordings of the human brain, the goal is to identify 
the underlying hidden sources that make up the total activity (c).

(a) cocktail party problem

(b) linear mixing problem

(c) neural cocktail party



Plate 2
Visualization of the spatial fMRI separation model. The n-dimensional source vector is 
represented as component maps, which are interpreted as contributing linearly in different 
concentrations to the fMRI observations at the time points t ∈ {1, . . . , m}. 



Plate 3
Comparison of model-based and model-free analyses of a word-perception fMRI 
experiment. (a) illustrates the result of a regression-based analysis, which shows activity 
mostly in the auditory cortex. (b) is a single component extracted by ICA which 
corresponds to a word-detection network. 

(a) general linear model analysis

(b) one independent component
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Plate 4
Segmentation method III applied to data set #3 (benign lesion, fibroadenoma), resulting in 
four clusters. The left image shows the cluster distribution for slices 21 through 23. The right 
image visualizes the representative time-signal intensity time curves for each cluster. 

Plate 5
Segmentation method III applied to data set #1 (malignant lesion, tubulo-lobular 
carcinoma) with four clusters. The left image shows the cluster distribution for slices 13 
through 16. The right image visualizes the representative time-signal intensity curves for 
each cluster. 
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Plate 6
Segmentation method III applied to data set #4 (malignant lesion, ductal carcinoma in 
situ) and resulting in four clusters. The left image shows the cluster distribution for slices 6 
through 8. The right image visualizes the representative time-signal intensity time curve for 
each cluster. 



Plate 7
Segmentation method III applied to data set #10 (malignant lesion, ductal carcinoma in 
situ) with four clusters. The left image shows the cluster distribution for slices 16 through 18. 
The right image visualizes the representative time-signal intensity curve for each cluster. 
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Plate 8
Segmentation method III applied to data set #11 (malignant lesion, invasive ductal 
carcinoma) with four clusters. The left image shows the cluster distribution for slices 20 
through 23. The right image visualizes the representative time-signal intensity curve for each 
cluster. 
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Plate 9
Results of the comparison between the different clustering analysis methods on perfusion 
MRI data. These methods are Kohonen’s map (SOM), the “neural gas” network (NG), 
fuzzy clustering based on deterministic annealing, fuzzy c-means with unsupervised 
codebook initialization (FSM), and the fuzzy c-means algorithm (FVQ) with random 
codebook initialization. The average area under the curve and its deviations are 
illustrated for 20 different ROC runs using the same parameters but different algorithms’ 
initializations. The number of chosen codebook vectors for all techniques is between 3 and 
36, and results are plotted for four subjects. Subjects 1 and 2 had a subacute stroke, while 
subjects 3 and 4 gave no evidence of cerebrovascular disease. The ROC analysis is based on 
two performance metrics: regional cerebral blood volume (rCBV) (left column) and mean 
transit time (MTT) (right column). 
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