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Université Pierre et Marie Curie
CNRS
Laboratoire d’Imagerie Parametrique
15, rue de L’Ecole de Medecine
75006 Paris
France
pascal.laugier@upmc.fr

Guillaume Haı̈at
CNRS
B2OA UMR 7052
10, avenue de Verdun
75010 Paris
France
guillaume.haiat@univ-paris-est.fr

ISBN 978-94-007-0016-1 e-ISBN 978-94-007-0017-8
DOI 10.1007/978-94-007-0017-8
Springer Dordrecht Heidelberg London New York

c© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

pascal.laugier@upmc.fr
guillaume.haiat@univ-paris-est.fr
www.springer.com


Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Pascal Laugier and Guillaume Haı̈at

1 Bone Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
David Mitton, Christian Roux, and Pascal Laugier

2 Introduction to the Physics of Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pascal Laugier and Guillaume Haı̈at

3 Quantitative Ultrasound Instrumentation for Bone In Vivo
Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Pascal Laugier

4 Clinical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Reinhard Barkmann and Claus-C. Glüer
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Introduction

Pascal Laugier and Guillaume Haı̈at

Ask yourself what makes the strength of a building such as the Eiffel tower, i.e., its
ability to withstand bending and shearing forces of the wind. The quantity of scrap
used to build it? The intrinsic strength of each iron beam? The structure (i.e., size,
shape, orientation of the beams, overall shape of the building)? All these factors
contribute to the strength would answer the engineer. The Eiffel tower was surpris-
ingly inspired by the work in early 1850s of the anatomist Hermann von Meyer on
the anatomy of the femur (thighbone). Like engineers who control the integrity and
the strength of buildings (towers, bridges), physicians scrutinize the strength of our
bones, specifically to detect fragile bones and identify subjects at fracture risk and
in need for treatment.

Fragile bones are commonly, but not exclusively, encountered in a disease called
osteoporosis characterized by a decrease in bone mass and structural and material
deterioration of bone, leading to increased susceptibility to fractures. Osteoporosis
is most common in women after menopause, but may also develop in men, and may
occur in anyone in the presence of particular hormonal disorders and other chronic
diseases or as a result of medications. Osteoporosis may significantly affect life
expectancy and quality of life. Osteoporosis is a major public health threat with ex-
tremely high costs to health care systems. Approximately one in two women and one
in four men over age 50 will have an osteoporosis related fracture in their remaining
lifetime. The costs measure in billions of dollars annually and these numbers are
expected to increase, with as many as 6.3 million hip fractures predicted annually,
around the world, by 2050. Clinicians and researchers alike are emphasizing the
importance of early detection of osteoporosis and fracture prevention.

Today, X-ray measured bone mass serves as a surrogate for bone fragility, but
fails to take into account other important aspects like material strength or mi-
crostructure. Mechanical waves such as ultrasound are intrinsically suited to probe
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mechanical properties and may perhaps have the best chances of all modalities to
yield non-invasively an improved estimation of bone fragility combined with advan-
tages like lack of ionizing radiation and cost-effectiveness.

Although the clinical potential of ultrasound for the investigation of bone fragility
was recognized as early as in the 1950s where an ultrasound method was described
for monitoring fracture healing [1], ultrasound was used episodically to investigate
bone properties until the 1990s. The reason why ultrasound techniques were not
used before this date was because of immature technology and poor understand-
ing of the interaction mechanisms between ultrasound and bone. In 1984, Chris
Langton et al. took a step forward by discovering that the transmission of ultrasound
through the heel could discriminate osteoporotic from non-osteoporotic women [2].
He demonstrated that the heel of osteoporotic patients could transmit ultrasound
waves with less attenuation than that of age-matched normal subjects. Since then
many advances have been achieved and a variety of different sophisticated tech-
nologies capable of measuring different skeletal sites such as the heel, fingers, wrist,
leg or hip have been introduced and evaluated. The evidence that ultrasound is a
valid (radiation free and inexpensive) method for fracture risk assessment is first
class. Several devices received FDA approval that further opened the door to clin-
ical acceptance and use. Bone ultrasound technology, termed QUS (Quantitative
Ultrasound), gained a place in the armamentarium of modalities used to assess the
skeleton.

While the concept of measuring attenuation and velocity of ultrasound in bone
has changed little since its inception, technology has evolved. Quantitative ultra-
sound imaging of the skeleton was first applied to image the heel [3]. Technological
advances have provided clinicians with smaller, lighter, and portable equipment
such as an inexpensive device operated with four AAA batteries [4].

An important limitation of QUS today is their limited access to peripheral skele-
tal sites only. One of the most significant recent technological advances is the new
QUS scanner developed for direct assessment of skeletal properties at the proxi-
mal femur (hip) [5]. For X-ray based techniques, measurements directly at the main
osteoporotic fracture sites have proved to be superior to measurements in the pe-
ripheral skeleton. It is reasonable to also expect better hip fracture risk prediction
for QUS assessment at the proximal femur compared to the heel. However, the com-
plexity of the anatomy and the presence of soft tissues make measurements at this
site quite challenging.

More recently, the emphasis of innovative QUS basic research has shifted to-
wards cortical long bone measurements, such as the tibia (leg) or the radius (fore-
arm). Like tube or pipelines inspected by non destructive ultrasonic testing methods,
long bones can be probed by ultrasound waves produced in response to an impact
(the ultrasound impulse) transmitted by a source to the bone through soft tissues.
Interestingly, long bones support the propagation of different kind of waves, such
as surface or guided waves, which contain relevant information on micro-structural
and material properties. Judicious choice of propagation modes over a suitable fre-
quency range can be achieved and subsequent measurements of their velocities can
reflect distinct aspects of bone quality [6], hoping that they would appropriately
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reflect the bone quality status at the main fracture sites (e.g., hip or spine) and its
changes associated with disease or treatment.

QUS techniques could find widespread clinical use to predict bone fragility not
only in osteoporotic patients, but also in a wider context of bone diseases in female,
male and pediatric populations. For example, preliminary studies suggest that this
technique may be a useful method of assessing changes in bone health in preterm
infants for whom X-ray technologies are unsuitable. An ultrasound wearable system
for remote monitoring of the healing process in fractured long bones has also been
reported [7].

QUS techniques and implementations have been introduced into clinical practice
despite the fact that the interpretation of QUS data is hampered by the structural
complexity of bone. Interaction mechanisms between ultrasound and bone are still
poorly understood. Modeling can be seen as a major need in order to drive future
experiments, to optimize measurements, to integrate multiscale knowledge, and to
relate QUS variables to relevant bone biomechanical properties. Ultrasound propa-
gation through bone is complex. It may involve different wave types, each with its
own propagation characteristics. An accurate interpretation of ultrasound measure-
ment results requires first a detailed understanding of ultrasound propagation with
clear identification of the different waves and their exact propagation paths. The
complex and multiscale nature of bone significantly complicates the task of solving
equations, though.

Recently developed computer simulation tools offer a fertile alternative to in-
tractable theoretical formulations. Computer simulation will likely have its greatest
impact by allowing the researcher to visualize the propagation of ultrasound through
the complex three-dimensional bone structures and by providing insight into the
interaction mechanisms between ultrasound and bone. Simulators and computers
may well become the primary tool for investigators to answer questions such as:
how is the wave transmitted through the bone, what is the path followed by the
wave? How does it interact with bone? What kind of wave is propagating? Com-
puter simulations have been applied to the problem of transmission through pieces
of spongy bone (such as that found in the femur at the hip), and along or across long
cortical bones such as the radius [8–10]. In every case, the computer simulations
provided valuable insight into the properties (e.g., nature and pathway) of the prop-
agating waves. Computer simulation therefore resembles experiments in a virtual
laboratory with independent control over each bone parameter. Virtual scenarios
of osteoporosis for instance can be easily implemented and used to form a com-
prehensive understanding of bone ultrasonic properties and their relation to bone
biomechanical competence [11], help validate or refute theoretical approaches, and
probe new experimental configurations.

Although the methodology for assessing bone properties using ultrasound is
much less developed to date than with X-rays, the potential of ultrasound extends
far beyond the currently available techniques and is largely unexploited. Many new
areas of investigation are in preliminary stages, though. Most active research is
carried out in QUS to develop new measurement modes, access to the central skele-
ton (hip), exploit multiple propagation modes or extend the frequency range of the
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measurements. All these new developments should result in new QUS variables and
systems able to provide information on material or structural properties other than
density and ultimately on osteoporotic fracture risk.

Quantitative ultrasound (QUS) of bone is a relatively recent research field. The
research community is steadily growing, with interdisciplinary branches in acous-
tics, medical imaging, biomechanics, biomedical engineering, applied mathematics,
bone biology and clinical sciences, resulting in significant achievements in new
ultrasound technologies to measure bone and develop models to elucidate the in-
teraction and the propagation of ultrasonic waves in complex bone structures. The
present book will offer the most recent experimental results and theoretical concepts
developed so far and would be intended for researchers, graduate or undergraduate
students, engineers and clinicians who are involved in the field.

The first chapter is intended for readers who do not have a background in bone
biomechanics. It gives a description of bone, highlighting the complex and hierar-
chical structure of bone, pointing to bone properties that determine bone strength.
Then basic definitions and concepts of biomechanics are given. The clinical con-
text (osteoporosis) in which quantitative ultrasound (QUS) has been developed is
described. The first chapter can be skipped by readers who have a good knowledge
of bone biomechanics. The second chapter offers an ultrasound overview which
is intended for readers who do not have a background in the physics of ultrasound
and may be skipped by those readers who already have a good knowledge of ultra-
sound wave propagation. Basic definitions of acoustics and equations of ultrasound
wave propagation in homogeneous media are given. The third chapter is devoted to
the generic measurement and signal processing methods implemented in bone clin-
ical ultrasound devices. The section describes the devices, their practical use and
clinical performance measures. The potential of QUS for a clinical application in
osteoporosis management, the status today and its future perspectives are described
in Chap. 4.

Chapters 4 to 9 cover the physical principles of ultrasound propagation in het-
erogeneous media such as bone and the interaction between an ultrasound wave and
bone structures. Our goal is to give the reader an extensive view of the interaction
mechanisms as an aid to understand the QUS potential and the types of variables
that can be determined by QUS in order to characterize bone strength. The prop-
agation of sound in bone, bone marrow and surrounding soft tissue is still subject
of intensive research and a unique conclusive theory does not exists yet. Ultrasonic
wave propagation in cancellous bone and cortical bone obeys different theories. For
example, the Biot theory modeling bone as a poroelastic medium and the theory of
scattering have been extensively used to describe wave propagation in cancellous
bone, whereas propagation in cortical bone falls in the scope of guided waves the-
ories. In these chapters, we intend to present in details the models that are used to
solve the direct problem and strategies that are currently developed to solve the in-
verse problem. These developments will include analytical theories (Biot theory of
poroelasticity, theory of scattering, guided wave theory) and numerical approaches
that have grown exponentially in recent years. We assume that the reader is familiar
with the theory of elastic wave propagation in homogeneous media as well as with
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the underlying physical concepts of elastic wave interaction with heterogeneous
media. This part of the book covers many advanced physical and mathematical con-
cepts used to model ultrasound propagation in bone. Also, in order to differentiate
the numerous variables used in ultrasound measurements it is important to better
understand the complexity of the underlying physical concepts.

Chapters 10 to 14 review research findings of in vitro and in vivo ultrasound
studies of bone and highlights some useful concepts that may lead to a better in-
sight into the relationships between characteristics of ultrasound propagation and
bone properties. This part of the book refers as much as possible to the theoretical
developments presented in Chaps. 4–9. Clinically available QUS techniques rely
on the quantitative measurement of linear acoustic parameters. Therefore much of
the discussion is dedicated to these parameters (e.g., attenuation, speed of sound,
backscatter coefficient) and to their relationship to bone mechanical and structural
properties. The goal is to highlight the foundations for the clinical use of QUS tech-
nologies for fracture risk prediction and bone status assessment. Chapter 14 presents
the state of the art and provides an extensive review of studies in the literature deal-
ing with bone healing monitoring by ultrasonic means.

Intensive research is ongoing in many different areas of applications of ul-
trasound to characterize bone. The three last chapters (15 to 17) cover these
cutting-edge researches (non-linear ultrasonics, ultrasound tomography, and acous-
tic microscopy) although they are still at an early development stage. The goal is to
give a flavour of new areas of investigation that are currently investigated with the
aim of measuring a variety of material and structural properties at several descriptive
levels of bone structure from the tissue to the organ level.
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Chapter 1
Bone Overview

David Mitton, Christian Roux, and Pascal Laugier

Abstract This chapter is intended for readers who do not have a background in
bone biomechanics. It gives a description of bone, highlighting its complex and hier-
archical structure, starting at the macroscopic scale from an entire bone, such as the
femur, down to the nanoscopic scale and its basic components: the collagen fibers
and the mineral crystals. Then, some definitions and concepts of biomechanics are
given in relation to the hierarchical structure of bone. The goal is to define the main
parameters that can be used to assess bone mechanical competence. Some mechani-
cal features are accessible using the quantitative ultrasound (QUS) technologies that
are presented in subsequent chapters. Finally, the clinical context in which QUS has
been developed is described. Diagnosis and follow-up of osteoporosis is a major
public health problem in which QUS can play a role.

Keywords Anisotropy · Biomechanics · Bone mineral density · Bulk modulus
· Canaliculi · Cancellous bone · Collagen fibers · Cortical bone · Damage · Densito-
metry · Density · Diagnosis · Elastic coefficient · Elasticity · Failure load · Fatigue
· Fracture risk · Haversian canal · Isotropy · Lamellae · Microarchitecture · Micro-
cracks · Crystals · Multi-scale · Osteoblasts · Osteoclasts · Osteocytes · Osteon
· Osteoporosis · Poisson’s coefficient · Porosity · Rigidity · Shear modulus
· Strain · Strength · Stress · Toughness · Trabeculae · Viscoelasticity · Young’s
modulus
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1.1 Introduction

This chapter gives an overview of the basic knowledge necessary to study bone
biomechanics. First of all, we shall describe the different types of bone tissue and the
hierarchical structure of bone that is extending over multiple scales. This structural
organisation will serve as a link to introduce the different biomechanical parameters,
such as elasticity, strength and toughness. These are standard parameters to estimate
bone structural or material properties. They are useful to assess the mechanical com-
petence of bone considered as a structure (e.g., a whole femur) or as a material (e.g.,
a cylindrical specimen of cortical bone). Bone quantitative ultrasound has been de-
veloped in the context of osteoporosis. The main features of this disease and the
diagnosis needs will be discussed to provide the reader with a better knowledge of
bone properties that are of particular interest in this pathology. More specifically, the
target of any diagnostic tool is the accurate prediction of fracture risk. Fracture risk
is related to various factors such as (i) bone strength which is related to the intrinsic
components (collagen fibers, bone crystals and cells activity) and to the hierarchical
organisation of bone, and (ii) bone loading which depends on body weight, muscles
activity and risk of fall.

1.2 Bone Description

1.2.1 What Is Bone?

Bone has three main functions: (1) sustaining loads from external actions (gravity)
or from muscular insertion (movement), (2) a metabolic activity and (3) a protection
role of vital organs (this is for example the case of the thorax and the skull). As bone
strength in vivo assessment is the main topic of this book, we focus in the following
on bone mechanical behaviour.

Bone is a living material. Bone evolves during life according to different fac-
tors having an effect on bone physiology or biology (physical activities, nutrition,
hormones and medications). Bones adapt their shape and structure to their envi-
ronment and especially to their mechanical environment. One illustration of bone
adaptation is the bone loss occurring during exposure to microgravity [1]. This ef-
fect was observed for the astronauts in human space flights. The measurement sites
in the load-bearing lower skeleton showed higher losses than the spine and arms [2].
The opposite effect could be observed in case of intensive physical activity. For ex-
ample, an in vivo experiment was performed on dog to induce locally mechanical
loading using a hydraulic bone chamber [3]. The authors found a 600% increase in
the Young’s modulus (see definition in Sect. 1.3) of the loaded bone tissue. These
examples illustrate the bone adaptation to mechanical loading. This was conceptu-
alized by Wolff’s law in 1892 [4] stating that mechanical stress was responsible for
determining the architecture of bone. These adaptations of bone to the mechanical
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Fig. 1.1 Multilevel organization of cortical bone. Form left to right: mid-diaphysis of a femur;
cross section at the mid-diaphysis illustrating the outer cortical shell and the inner cancellous
bone compartment at the periphery of the medullary canal; scanning acoustic microscopy of cor-
tical bone showing the osteons, haversian canals and osteocytes lacunae (black dots), scales are
indicative

environment can be easily observed for other biological tissues. For example, the
effect of physical activity is faster and more visible on the muscular tissue.

Bone is composed of two main components:

– Cortical (or compact) bone that composes the external envelope of all bones (long
bones such as femur or tibia, short bones such as vertebra or calcaneus and flat
bones such as the skull). Cortical bone presents a dense structure of low porosity
(typical porosity is of a few % to 15%) that seems compact at the macroscopic
level.

– Cancellous (or trabecular) bone found in the inner parts of bones. Cancellous
bone looks like a highly porous sponge with a three-dimensional (3-D) struc-
ture made of connected plates and/or rods, called trabeculae. In vivo the cavities
formed by the trabeculae network are filled with bone marrow. These two bone
types are illustrated by Figs. 1.1 and 1.2.

1.2.2 Multi-scale Description

Bone is a hierarchical structure that extends over several organization levels. This
hierarchical structure results in the exceptional mechanical competence of bone.
Bone is a composite material containing about 70% mineral (hydroxyapatite), 22%
proteins (type I collagen) and 8% water by weight [5]. Bone organisation depends
on different levels, leading to a hierarchical structure (Fig. 1.3).
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Fig. 1.2 Defatted cancellous bone specimens. (a) Half femoral head showing the macroscopic
architecture of cancellous bone, (b) scanning electron microscopy images of vertebral cancellous
bone specimen illustrating rod and plate connective elements

Cancellous bone

Lamella
Cortical bone

Osteon Haversian
canal

10-500 μm

Microstructure Nanostructure

Sub-nanostructureMacrostructure

3-7 μm

0.5 μm

Bone
Crystals

Collagen
molecule

Collagen
fibril

Collagen
fiber

Sub-microstructure

1 nm

Fig. 1.3 Hierarchical structural organisation of bone (Reprinted from [6], copyright 1998, with
permission from Elsevier)

As shown in Fig. 1.3 bone organisation is complex and depends on the analysed
level.

Starting at the nanoscale with basic constituents (collagen and hydroxyapatite),
bone is made of collagen molecules which are organised in fibrils. Fibrils are them-
selves arranged in fibers. The crystals, aligned with the fibers, are located in the
interfibrillar spaces. Mineralized fibers are aligned to form bone lamellae of typical
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thickness of a few micrometers. The orientation of the fibers depends on the lamellae
and may change within lamellar sublayers. This organisation was described as the
twisted plywood structure [7].

The osteon constitutes the bone structural unit (BSU) in cortical bone. An osteon
is a cylindrical structure (100–300μm in diameter) [8] consisting of several concen-
tric lamellae surrounding a Haversian canal. The Haversian canals encompass the
blood vessels and nerves. The interstitial tissue which is between osteons represents
the remnants of osteons after remodeling. It can be identified as irregular lamel-
lar structures that lack a central Haversian canal. At the periphery of each osteon,
and separating it from adjacent osteons or from interstitial tissue, is a cement line
which is less mineralized and rich in proteoglycans. In cancellous bone, trabeculae
of thickness around 100μm are composed of aligned bone packets.

This hierarchical structure of bone also includes porosity at various scales. For
cortical bone the largest porosity is due to resorption cavities and Haversian canals
(20–100 μm indiameter). A smaller scale porosity is related the Volkmann canals
(network connecting the Haversian canals and perpendicular to them) and to the
osteocytes lacunae and canaliculi of a few μm to less than 1μm in diameter.

1.2.3 Bone Remodelling

The bone evolution over time is due to its cells activity. In addition to the tissue
matrix (collagen fibers and bone crystals) bone contains various types of cell: os-
teoblasts, osteoclasts and osteocytes. Remodelling is the replacement of old bone
tissue by new bone tissue. Remodelling occurs in childhood to insure bone growth
and bone shaping, in the adult skeleton to maintain bone mass, to adapt the skeleton
to the loads or to repair microcracks. Bone remodelling is also involved in frac-
ture healing. Bone cells act successively during the remodelling process. First of
all the osteoclasts remove old bone (resorption). Then the osteoblats add new bone
(remodelling). After mineralization osteoblasts become osteocytes and remain in
the mineralised bone matrix. The new bone tissue which is not mineralized at the
beginning of the remodelling process is called osteoid. For cortical bone the remod-
elling process occurs along tunnels and creates osteons. For cancellous bone the
remodelling process takes place at the surface of the trabeculae. A comprehensive
description of the resorption/remodelling process can be found in the referenced
papers [9, 10].

Even if the exact mechanism inducing bone remodelling is not perfectly known
at the present time, it is hypothesized that osteocytes and canaliculi act as mecano-
transducers to activate bone remodelling.

Two types of bone can be identified according to the pattern of collagen forming
the osteoid: woven bone is characterized by an irregular apposition of collagen fibres
and lamellar bone is characterized by a regular parallel alignment of collagen into
lamellae sublayers. Woven bone appears when osteoblasts produce osteoid rapidly.
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In adults, woven bone is formed during fracture healing. Following a fracture,
woven bone is remodelled and lamellar bone is deposited. Normally all bone in
healthy mature human adults is lamellar bone.

1.3 Bone Biomechanics

This section will define the various parameters used to assess the mechanical com-
petence of bone from the organ level to the microscopic scale. In addition to the
macroscopic and microscopic levels described in Fig. 1.1, the mesoscopic level will
be introduced for the study of bone biomechanics. The mesoscopic level corre-
sponds to the millimetric scale (e.g. calibrated specimens of few millimetres for
each dimension). To describe bone mechanical competence various terms must be
defined. They are sometimes not properly used. For example, strength is different
from elasticity. To better explain such mechanical characteristics, the hierarchical
structure of bone will be taken as a guideline.

From a mechanical point of view, a distinction is usually made between struc-
tural and material properties. As an example, the Eiffel Tower is a structure, the
steel composing the tower is a material. The same distinction can be done in bone
biomechanics. The femur is a structure. Its mechanical competence is influenced by
its shape and size. At the macroscopic level, cortical or cancellous bone can be seen
as materials composing the femur. Parameters independent of the geometry (shape
and size) can be assessed using calibrated specimens. At the mesoscopic level can-
cellous bone is a structure composed of trabecular tissue (material).

The analysis of the biomechanical properties will be conducted according to the
different scales.

1.3.1 Rigidity and Failure Load at the Macroscopic Level

Let us consider the upper extremity of the femur loaded in a single stance phase
configuration. This configuration mimicks the monopodal loading. This loading
condition can be reproduced ex vivo on a testing machine. From this specific ex-
periment, the load applied to simulate a single stance phase configuration and the
corresponding displacement can be measured. The load-displacement curve is plot-
ted from such measurements (Fig. 1.4). The rigidity (R) can be assessed from the
linear part of the curve:

R =
F
Δl

in N/mm (1.1)

F is the load (in N) and Δl the displacement (in mm).
The rigidity assesses the capability of the bone to withstand a loading. The rigid-

ity evaluates the elasticity of a complex shape (such as an entire bone or a portion
of bone, in this example the proximal femur).
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F

R

Fult

Δl

Fig. 1.4 Load-displacement curve, ultimate load (Fult) and rigidity (R)

Table 1.1 Rigidity and ultimate load of different human bones

Rigidity Ultimate load (N)
Mean (SD) {Range} Mean (SD) {Range}

Femur

Single stance phase loading – 5568 (1597) [12],
{4937–16948} [13],
9039 (3412)a [14]

Lateral loading – 4000 {1100–8700} [15],
2586 (1146)a [14]

Vertebra

Compression – {2602–5802} [16]
Anterior bending 3109 (1234) (N/m) [17] {630–2970} [18],

2098 (815) [17]

Radius (Distal third diaphysis)

Compression – 12946 (3644) [19]
aData obtained on 40 paired femurs

The ultimate response of the structure is defined by the ultimate load (failure
load) which corresponds to the maximum of the load-displacement curve (Fig. 1.4).
These parameters depend on the geometry of the bone. The bigger the bone is the
higher the rigidity and the failure load are.

In daily life, the loads applied on the skeleton are not only compressive loads.
Bending or torsion can also be observed. Most of the time, these loadings are
combined. However, to evaluate the rigidity and ultimate load of a specific entire
bone, biomechanical experiments are performed either in compression, in tension,
in bending or in torsion. At the macroscopic level on entire bone (such as the femur)
bending and torsion experiments will give global response in terms of rigidity and
ultimate load.

Table 1.1 shows the variability of the data that were obtained on different anatom-
ical sites at the level of the organ (proximal femur, vertebra, distal third of the
radius). Among several factors of variability, the data are influenced by the age of the
subject. As an example the mean femoral strength in lateral loading configuration is
7200±1090 N for young subjects (33 years old in average) and 3440±1330 N for
elderly subjects (74 years old in average) [11].
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1.3.2 Elasticity, Strength and Damage at the Mesoscopic Level

To evaluate the mechanical response of bone at the mesoscopic level, it is necessary
to define calibrated specimens (parallelepiped, cubic or cylindrical). Thus the pa-
rameters issued from such an approach are independent of the geometry of the
sample (size and shape) in contrast to the mechanical properties assessed on whole
bone. To keep the example of the femur, the cortical or cancellous bone speci-
mens can be cut from the femur. Experiments performed on such specimens lead to
the derivation of mechanical properties. The following relationships can be applied
assuming homogeneity and linear elasticity. The homogeneity is a valid assump-
tion when considering the bone tissue at the mesoscopic level. In the specific
case of cancellous bone it is necessary to have sample of at least 5 mm in each
dimension [20].

1.3.2.1 Stress

The stress (σ) is assessed from the measurement of the load (F) applied to a given
area (A) (Fig. 1.5):

σ =
F
A

in MPa (N/mm2) (1.2)

1.3.2.2 Strain

The strain (ε) can be computed from the ratio of the measured displacement (Δl)
and the initial specimen length (lo) (Fig. 1.6). This definition is only valid for small
strains (under 5%) [8]. This limit is compatible with the values measured on bone.

ε =
Δl
lo

(1.3)

From such parameters, it is possible to plot the stress-strain curve (e.g. in the longi-
tudinal axis of a long bone) (Fig. 1.7).

F

F

A

Fig. 1.5 Schematic representation of a specimen subjected to a tension load (F) on an area (A)
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lo

Δl

F

F

Fig. 1.6 Schematic representation of the displacement (Δl) under a tension load (F) for a specimen
of initial length (lo)

σy

ε

σ

ε

σ

σy

σult

W

Fig. 1.7 Stress-strain curves. On the left the curve represents the elastic behavior up to the yield
stress (σy) (the double arrow represents the loading and unloading). On the right is a typical stress-
strain curve extending above the ultimate stress (σult) the area under the curve represent the energy
until failure (W)

1.3.2.3 Elasticity

If the material after loading returns to the initial position (Fig. 1.7, left), the material
presents an elastic behaviour. The yield point corresponds to the end of the elastic
domain and is defined by the yield stress (σy).

The material elasticity is defined by the Young’s modulus or modulus of elasticity
(E) which can be assessed as the slope of the linear part of the stress-strain curve.

E =
σ
ε

in MPa (N/mm2) (1.4)

1.3.2.4 Poisson’s Coefficient

When a specimen is submitted to a uniaxial loading (compression or tension) it
respectively expands or shrinks in the orthogonal directions (Fig. 1.8). The Poisson’s
ratio (ν) is defined by Eq. 1.5.
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ΔlL

ΔlT

F

F

Fig. 1.8 Schematic representation of the displacements along two orthogonal directions (ΔlT :
transverse displacement, ΔlL: longitudinal displacement) for a specimen submitted to tensile test

P

P

P

P

P

P

Fig. 1.9 Illustration of uniform compression

ν = −
ΔlT
l0T

ΔlL
l0L

= −εT

εL
(1.5)

1.3.2.5 Bulk Modulus

The bulk modulus (K) of an isotropic material (see the isotropy-anisotropy para-
graph for definition) measures its resistance to uniform compression (i.e., uniform
load applied in all directions) (Fig. 1.9).

K = −V
∂P
∂V

in MPa (1.6)

where P is pressure, V is volume, and ∂P
∂V denotes the partial derivative of pressure

with respect to volume.
The bulk modulus is linked to the Young’s modulus (E) and the Poisson’s ratio

(ν) by the following relationship [21]:

K =
E

3(1−2ν)
in MPa (1.7)
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τ

τ

γ

Fig. 1.10 Representation of the shear deformation of a cubic specimen submitted to shear
stress (τ)

1.3.2.6 Shear Modulus

The shear modulus (G) is defined as the ratio of the shear stress (τ) and the shear
strain (γ) (Fig. 1.10). γ is equivalent to the tangent of the angle in the hypothesis of
small displacements.

G =
τ
γ

in MPa (1.8)

The shear modulus is related to the Young’s modulus and the Poisson’s ratio [21]:

G =
E

2(1 + ν)
in MPa (1.9)

1.3.2.7 Isotropy – Anisotropy

Isotropy is the property of being directionally independent. A material is anisotropic
when its mechanical properties vary according to the direction of analysis. In first
approximation, cortical and cancellous bones can be considered orthotropic, which
means that the properties differ according to orthogonal directions.

Several factors contribute to the mechanical anisotropy of bone. These include
the orientation of the BSU and of the Haversian porous network, the orientation
of the lamellae and the alignment of collagen fibers and hydroxyapatite crystals.
In hierarchical structures like bone, the anisotropy depends on the observational
level.

1.3.2.8 Elastic Coefficients

The mechanical response of an anisotropic material depends on the direction of
loading. The previous relationships regarding elasticity were given for one direction.
By generalization, the linear elastic constitutive law becomes:

Cij =
σi

ε j
in MPa (1.10)

C is the stiffness tensor and Cij are the elastic coefficients.
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In the case of orthotropy, the stiffness tensor contains nine independent coeffi-
cients and can be written:

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.11)

Conversely, strain can be expressed as a function of stress. This leads to an ex-
pression of the compliance tensor (inverse of the stiffness tensor) which is usually
expressed as a function of engineering constants (the Young’s moduli (Ei), the Pois-
son’s ratios (νij) and the shear moduli (Gij)) and is written as [8]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

− ν12
E1

− ν13
E1

0 0 0

− ν21
E2

1
E2

− ν23
E2

0 0 0

− ν31
E3

− ν32
E3

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ13

σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.12)

The first six coefficients in the upper left part of the matrix are related to compres-
sion loadings and the last three in the bottom right diagonal are linked to shear
loadings.

1.3.2.9 Viscoelasticity

Viscoelasticity of a material leads to energy dissipation. Contrary to an elastic mate-
rial which releases all the energy it receives, a viscoelastic material does not release
all the input energy. The energy dissipation leads to a hysteretic behavior where the
stress-strain curve during unloading is different from the stress-strain curve during
loading. This phenomenon is illustrated in Fig. 1.11 and corresponds to the area
between the loading and unloading curve. As for most of biological tissues, vis-
coelasticity is observed for bone.

As a consequence of viscoelasticity, a different mechanical response is recorded
according to the loading speed. It must be noted that conventional mechanical
tests (compression, tension, bending, shear and torsion) are often performed un-
der quasi-static loading conditions whereas ultrasound measurements correspond to
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σ

ε

Fig. 1.11 Loading-unloading cycle (hysteresis loop) of the stress-strain curve, below the yield
stress. The area between the two curves represents the dissipative energy

Fig. 1.12 Scanning electron microscopy images of loaded trabeculae, (a) microcrack, (b) broken
trabecula

dynamic mechanical testing with high strain rate. This difference is important when
comparing the data obtained by both methods.

1.3.2.10 Strength

The strength of a material is its ability to withstand an applied stress without failure.
The ultimate stress gives a quantification of the ultimate strength.

1.3.2.11 Damage

Damage is a degradation of the material. Figure 1.12 shows microcracks and fail-
ure of two different loaded bone trabeculae (see Chap. 15 for details on the use of
ultrasound to investigate damage in bone tissue).
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Fig. 1.13 Loading-unloading cycle above the yield stress, with residual strain (εr)
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Fig. 1.14 Typical diagram of the evolution of the stress-strain curves recorded during a fatigue
test. The first cycle on the left corresponds to the first cycle of the fatigue test conducted on a
cancellous bone specimen, the last cycle on the right corresponds to 900th cycles

Bone damage occurs:

– When loading above the yield stress. Unloading leads to residual strain (εr)
(Fig. 1.13)

Above the yield point, the behaviour is related to the plastic domain. In case of
unloading the material will not return to the initial state and will present a residual
strain. The residual strain is related to the damage induced in the material.

– In fatigue, loading under the yield point during a certain amount of time will lead
to damage accumulation in the specimen (Fig. 1.14).

Damage can be assessed by the computation of the Young’s modulus at the initial
state and subsequently for the following loading cycles. The damage is noted D and
is computed by:

D = 1− En

Eo
(1.13)
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where E0 is the Young’s modulus at the initial step and En is the Young’s modulus
for the current loading cycle.

1.3.2.12 Toughness

The toughness of a material is the capability of bone tissue to absorb energy during
the failure process. It can be assessed from the computation of the energy until fail-
ure which is the area under the stress-strain curve up to failure (Fig. 1.7). Fracture
mechanics approaches are usually employed. Two parameters are commonly used
for assessing fracture toughness: critical stress intensity factor (Kc in MPa.

√
m) and

critical strain energy release rate (Gc in J.m−2), respectively. The former charac-
terizes the stress intensity around the crack tip, whereas the latter is related to the
surface energy of the newly formed crack surfaces [22].

Orders of magnitude of the main parameters that can be assessed for both cor-
tical and cancellous bones at the mesoscopic level are presented in Table 1.2. The
large variability is due to differences in measurement protocols and to intra or inter-
subject variability.

Table 1.2 Mechanical properties of human bone at the mesoscopic level (cortical and cancellous
bone)

Cortical bone
Mean (SD) {Range}

Cancellous bone
Mean (SD) {Range}

Elasticity
Young’s modulus

(longitudinal, EL)
(MPa)

Femoral diaphysis: 14300
(400) in tension, 11800
(360) in compression [23]
17400b [8]

Vertebra: 138 (83)a

Femoral head: 417
(85) [24]

Young’s modulus
(transverse, ET)
(MPa)

9600b [8] Vertebra {16–100}a

Poisson’s coefficient (ν) Femur: 0.22–0.42 [25] Proximal femur: 0.3 [26]
Shear modulus (G)

(MPa)
3510b [8] Femoral head:

{100–500} [27]

Strength
Ultimate stress (MPa) Femoral diaphysis: 53.8 (20.3)

in tension, 106.4 (29.4) in
compression [23]

Vertebra: 1.6 (0.9)a

Femoral head: 9.6
(2.4) [24]

Toughness
Critical stress intensity

factor (Kc)
(MPa.

√
m)

Humeral diaphysis: 2.06
(0.2) [28]

Femoral head:
{0.1–1} [29]

a Mitton, unpublished data
b Anatomical site non defined



16 D. Mitton et al.

1.3.3 Elasticity at the Microscopic Level

Young’s modulus can also be assessed at a microscopic level. Apart from acoustic
microscopy that will be detailed in Chap. 16, bone tissue micro-elastic properties
can be assessed with three methods: (1) traditional mechanical testing (compression,
tension and three or four-point bending), (2) micro-computed tomography (μCT)
image-based finite-element models and (3) nanoindentation.

1. Traditional mechanical testing already mentioned at the macro- or mesoscopic
scales have been adapted to test small specimens. More details can be found
in the references [8, 30]. At the microscopic scale, the difficulties are related to
the small size of the samples that can be prepared from human bones (cortical
thickness at some anatomical sites is less than 1 mm and trabeculae thickness is
around 100 μm).

2. To overcome these limits the Young’s modulus of bone tissues (cortical and
trabecular) can be assessed by an inverse method using micro finite element mod-
elling and biomechanical experiments. Such method is based on imaging such as
high resolution computed tomography [31–33]. The tissue Young’s modulus is
obtained by an optimization routine that matches both the experimental and sim-
ulated displacement of the specimen for a given load.

3. Nanoindentation uses a diamond indenter to load and unload a material. The
Young’s modulus can be derived from the unloading curve [34] (Fig. 1.15).

Table 1.3 shows the variability of the Young’s modulus according the anatomical
site, the measuring methods. Nanoindentation can assess the spatial heterogeneity
of the elastic properties for osteons (22.5± 1.3GPa) and for interstitial lamellae
(25.8±0.7) [34] or within lamellae [35].

1.3.4 Synthesis

It is important to note that a large number of investigators have reported a strong
linear relationship between the Young’s modulus and the ultimate compressive

Young’s modulus

Load

Displacement

Fig. 1.15 Typical load-displacement curve for a nanoindention test. The Young’s modulus is
derived from the slope of the upper portion of the unloading curve
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Table 1.3 Elastic properties of human bone tissue at the microscopic
level (cortical and cancellous tissues)

Values in GPa, mean (SD) {Range}
Young’s modulus Cortical tissue Cancellous tissue

Tensile test (tibia) 18.6 (3.5) [36] 10.4 (3.5) [36]
Three-point bending

(iliac crest)
4.89 [37] 3.81 [37]

Three-point bending
(tibia)

5.44 (1.25) [38] 4.59 (1.60) [38]

μCT image-based finite
element models
(proximal tibia)

– {2.23–10.1} [31]

μCT image-based finite
element models
(vertebra)

– 5.7 (1.6) [39]

CT image-based finite
element models
(98 μm pixel size)
(radius)

16 (1.8) [19] –

Nanoindentation
(femur)

20.02 (0.27) [40] 18.14 (1.7) (distal
epiphysis) [40]25.0 (4.3) [41]

6.9 (4.3) (neck) [41]

μCT: micro computed tomography

strength [24, 42]. Moreover, there is also an extremely tight correlation between
the Young’s modulus and the bending strength [43]. Thus, Young’s modulus can be
used as a surrogate for bone strength. The measurement of the ultrasound propaga-
tion velocity (see Chap. 13) that is directly related to the bone stiffness (or to the
Young’s modulus) can also be used as a surrogate measurement for bone strength.

The orders of magnitude of the main mechanical parameters are summarized
in Tables 1.1–1.3. The important variability is due to various factors, including
intra and inter-subjects differences, skeletal sites and experimental protocols.
In particular, the macro or mesoscopic mechanical properties (ultimate strength,
toughness, fatigue strength) of cancellous and cortical bones decrease with age
[44–46]. These modifications are related to an increased porosity and cancellous
bone micro-architecture degradation. At the microscopic level the elastic proper-
ties are not affected by aging [47]. However collagen crosslinking, collagen fibers
orientation, their interaction with bone crystals and water content are modified by
aging and are correlated with toughness reduction for cortical bone [22, 48].

To summarise, the influences of the bone composition and structure on its me-
chanical properties are the following [49]:

1. The porosity modifies Young’s modulus independently of density
2. Microcracks weaken cortical bone tissue and contribute to increased susceptibil-

ity to fracture
3. The collagen fibrils provide tensile strength and toughness
4. The crystalline structure provides compressive strength and brittleness
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1.4 Densitometric and Morphological Parameters

The main densitometric and morphological parameters affecting the mechanical
competence of bone are listed Table 1.4. The preferred techniques to measure these
characteristics are indicated below.

At the macroscopic scale, the quantitative analysis includes the assessment of
bone mineral density and morphology:

– Bone mineral density (BMD) corresponds to the density of the mineral phase of
the bone. This density can be measured with X-ray absorptiometry techniques.
The mineral phase alone contributes to the images. Because the amount of min-
eral is normalized by the total area or total volume occupied by the bone, BMD
does not represent the true density but rather is an apparent density. BMD can be
assessed in vivo using imaging techniques such as:

• Dual X-ray absorptiometry (DXA): DXA is the gold standard method in clin-
ics for densitometry measurements. A DXA image is a 2D projection of
the segment of interest (Fig. 1.16) where both cancellous and cortical bone
are superimposed. Thus the density is obtained in g/cm2 and refers to areal
bone mineral density (BMDa) [50].

• X-ray quantitative computed tomography (QCT): a certain number of
cross-sections of the anatomical site are reconstructed from QCT acquisi-
tions. Volumetric density (g/cm3) (BMD) is derived from volumetric (or
three-dimensional, 3-D) measurements performed using QCT, enabling dif-
ferentiation between cortical and cancellous bone densities.

Extensive details on the techniques and the parameters that can be derived from
such methods can be found in the International Commission on Radiation Units and
Measurements (ICRU) bone densitometry report [50].

Table 1.4 Main bone structural features determining bone strength,
according to physical scale (From [67])

Scale (m) Bone characteristics

>10−2 Macrostructure
Bone densities
Whole bone morphology (size and shape)

10−2–10−3 Mesoscopic scale (apparent and real densities)
10−6–10−3 Microstructure (porosity, cortical thickness, trabecular

number and spacing, structural anisotropy)
10−9–10−6 Sub-microstructure (microcracks)

Nanostructure (collagen fibers)
<10−9 Sub-nanostructure (hydroxyapatite crystals)
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Fig. 1.16 Dual-X-ray Absorptiometry (DXA) images and areas of interest for bone mineral
density measurement (a) hip and (b) lumbar spine

Fig. 1.17 Example of femoral geometric features derived from 3-D model issued from biplanar
radiography (a) neck shaft angle and (b) the femoral neck axis length

– Geometric features (e.g. in the case of the proximal femur: neck shaft angle,
femoral neck axis length, cortical thickness of the femoral neck) (Fig. 1.17) can
be derived either using plain radiographic or DXA projection images with po-
tential bias due to projection, or in 3-D using biplanar radiography [51, 52] or
computed tomography [53].

At the mesoscopic scale, bone density can be measured in small bone specimens of
a few millimetres in each dimension by weighting the specimens and by dividing
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bone mass by the volume defined by the external dimensions. This density is an
apparent density (ρapp). When the considered volume is the volume of bone tissue
alone, excluding the bone marrow cavities, the density represents the actual density
of the bone tissue (ρreal). The bone volume can be obtained applying Archimede’s
principle and using Eq. 1.14:

ρreal =
Mair

Mair −Mwater
ρwater in g/cm3 (1.14)

with Mair the specimen weight in the air, Mwater the specimen weight in water and
ρwater the water density.

Both the apparent and the actual densities are expressed in g/cm3. Using this
method, the weight of the bone specimens accounts for the total weight of collagen
fibers and hydroxyapatite crystals.

Mineral density and micro-architectural parameters can be assessed at the micro-
scopic scale:

– Bone density can be determined using high resolution imaging techniques such
as microradiography [54] and synchrotron-radiation micro computed tomodensit-
ometry (SR−μCT). Because the resolution allows separating the tissue from the
cavities, the density is the true mineral density of the tissue, and is often referred
to as the degree of mineralization (g/cm3). The heterogeneity of the mineraliza-
tion is illustrated in Fig. 1.18.

– Micro-architectural parameters of cortical bone (cortical thickness, porosity)
and trabecular bone (e.g., trabecular number Tb.N, trabecular thickness Tb.Th,
trabecular separation Tb.Sp, connectivity and structural anisotropy) can be as-
sessed in vitro from 2-D cross-sectional histomorphometry [55] or in 3-D using
high resolution imaging modalities. The first approaches using micro-computed

Fig. 1.18 Microradiograph of a 100±1μm-thick section illustrating the heterogeneity of the min-
eralization in the various bone structural units. The darker is the young bone and the brighter is
the interstitial old bone. (Reprinted from [54], copyright 2008, with permission from Elsevier)
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Fig. 1.19 3-D image (High-Resolution Peripheral Quantitative Computed Tomography) of radius,
top view (Courtesy of S. Boutroy, INSERM U831 Lyon, France)

tomography (μCT) were proposed in the beginning of the 1990s [56, 57].
Improvement in the resolution of clinically available imaging systems such
as high resolution peripheral quantitative computed tomography (HR pQCT)
[58, 59] (Fig. 1.19) or high-resolution magnetic resonance imaging (HR-MRI)
[60, 61] has enabled in vivo assessment of bone micro-architecture. Bone micro-
architecture can also be assessed indirectly using texture analysis from high
resolution radiography [62].

– Microcracks (few microns in width and around 100μm in length) can be quanti-
tatively assessed using histomorphometric techniques [63, 64] and more recently
X-ray μCT or synchrotron micro-computed tomography (SR−μCT) [65] leading
to the 3-D representation of microcracks.

At the nano scale, the bone tissue can be examined by synchrotron radiation
techniques that have been reviewed by Peyrin [66]. For example, spectroscopic tech-
niques such as X-ray fluorescence and Fourier Transform Infra Red spectroscopy
may be implemented with synchrotron source to obtain chemical information on
bone tissue. X-ray diffraction and small-angle X-ray scattering are complementary
diffraction techniques to characterize hydroxyapatite crystals and mineral particles
in terms of their orientation, shape and thickness [66].

1.5 Osteoporosis

1.5.1 Definition

Osteoporosis is a skeletal disease in which the density and quality of bone are
reduced, leading to weakness of the skeleton and increased risk of fracture, par-
ticularly of the spine, wrist, hip, pelvis and arm [68]. Bone quality encompasses a
number of bone tissue properties, beyond density, that govern mechanical resistance
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Fig. 1.20 3-D high-resolution peripheral quantitative computed tomography images of tibia from
healthy premenopausal (left) and severe osteoporotic postmenopausal (right) women. Osteoporosis
induces an increased porosity and a reduced thickness of the cortical shell and disruption in the
trabecular network (Courtesy of S. Boutroy, INSERM U831 Lyon, France)

such as bone geometry, cortical properties, trabecular micro-architecture, bone
tissue mineralization, quality of collagen and hydroxyapatite crystals, and presence
of microcracks [62]. The main cause of osteoporosis is hormonal deficiency, and
thus the most frequent disease is post menopausal osteoporosis.

Figure 1.20 illustrates the deterioration of cancellous bone microstructure and
reduction of bone mass that leads to bone fragility.

1.5.2 Epidemiology

Osteoporosis is considered as a major public health problem due to the number and
consequences of fractures. At least 40% of post menopausal women [69] over the
age of 50 and 15–30% of men [70] will sustain one or more fragility fractures in
their remaining lifetime. By comparison, the risk is 10% for breast cancer and 46%
for cardio-vascular diseases [71, 72].

Because of the increase in the number of frail elderly patients, the world-
wide number of hip fractures is projected to increase dramatically in the next
decades [73]. An expanding part of the health-care system costs is dedicated to
osteoporosis.

1.5.3 Diagnosis

Osteoporosis diagnosis in clinical practice relies today on areal bone mineral density
(BMDa) measurements at the hip or lumbar spine [74]. The diagnosis of osteoporo-
sis is based on the T-score [50] concept. The T-score denotes the difference between
a measured value x of an individual subject and the mean value from a healthy
young reference population (denoted by index Y) normalized by the standard devi-
ation SDr of the reference population distribution:

T =
x− x̄r(age = ageY )
SDr(age = ageY )

(1.15)

The World Health Organisation (WHO) [75] definition uses BMDa to categorize a
subject into one of four groups (Table 1.5).
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Table 1.5 T-score values according to four groups of subjects. BMDa is
the areal Bone Mineral Density assessed by dual X-ray absorptiometry

Normal BMDa T-score ≥−1.0
Low bone mass or osteopenia −1.0 > BMDa T-score > −2.5
Osteoporosis −2.5 ≥ BMDa T-score
Established osteoporosis −2.5 ≥ BMDa T-score and at

least one osteoporotic fracture

However a substantial overlap exists between the BMDa values of non-fractured
and fractured patients [76], confirming that bone factors beyond BMDa have an
impact on fracture risk.

In addition to BMD assessment, clinical risk factors assessment is mandatory
to select patients with the highest risk of fracture who should receive the highest
priority for treatment. A tool to calculate the individual 10-year risk of fracture is
now available: the FRAX� [77]. It is based on factors such as age, sex, weight,
height and clinical risk factors which include previous fragility fractures, premature
menopause, parental history of hip fracture, current tobacco smoking, long-term use
of glucocorticoids, rheumatoid arthritis, and other causes of secondary osteoporosis.
Treatments are now available for osteoporosis, which have shown in studies of ap-
propriate methodology that they are able to decrease the risk of fractures [78]. Most
of these treatments increase bone density, but this increase does not fully explain
the anti fracture effect. Thus treatments have also positive effect on non-quantitative
parameters of bone.

The currently accepted definition of osteoporosis considering that not only bone
mass is affected but that factors of bone quality are also deteriorated strongly sug-
gests the need for complementary methods to assess fracture risk in vivo.

Quantitative ultrasound (QUS) technologies have augmented the armamentar-
ium of bone assessment technologies in the 1990s [79], but they are not yet
widely accepted, partly because of technical immaturity and partly because of
lack of standardization between different technical approaches and among vari-
ous manufacturers. Recently, progress in patient-specific finite element analysis
has been proposed as an effective means of direct assessment of patient-specific
skeletal risk factors. Regarding the skeletal risk factors, it is important to distin-
guish bone strength and the amount of load applied on a specific bone. Keaveny
and Bouxsein have evaluated the load-to-strength ratio called Φ [80]. When Φ is
greater than a critical value (the biomechanical fracture threshold), fracture is more
likely to occur. Strength can be determined by patient-specific QCT-based finite
element analysis [81–84]. Patient-specific finite element models take into account
the individual macroscopic geometry and bone density. To improve the strength
predictability in vivo there is a need for a better estimation of cancellous and
cortical bone mechanical properties (elasticity and ultimate strength) using non-
destructive methods. Besides, up to now the main limit to use the Φ ratio is the
estimation of patient-specific loads applied on a specific bone. It is still based on
important hypotheses (especially for muscular loading) and is still not sufficiently
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subject-specific. Researches are under way to be able to assess accurate subject-
specific loads. In a near future, such an approach should complement clinical risk
factors analysis.

1.6 Conclusion

In current clinical practice the quantification of bone mechanical competence or
strength is mainly related to the measurement of bone mineral density. However as
this was shown in this chapter, the bone biomechanics (elasticity and strength) is
related to other specific features beyond density, such as elementary components of
the tissue and the hierarchical structure of bone.

Moreover in the context of osteoporosis there is a need for patient-specific quan-
titative data to improve fracture risk prediction. Multi-scale modelling approach is
under way in the international research community (e.g. the Osteoporotic Virtual
Physiological Human project (VPHOP) [85]) and should probably offer in a near
future improved risk fracture assessment.

As part of this initiative, quantitative ultrasounds are good candidate for assessing
subject-specific properties because they are non-destructive, radiation free and make
use of elastic waves that are inherently sensitive to architectural and mechanical
features of the propagation medium. The following chapters will present the most
recent researches on quantitative ultrasound.
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aspects of bone densitometry (ICRU Report 81),” J ICRU 9(1), 1–130 (2009).

51. A. Le Bras, S. Laporte, V. Bousson, D. Mitton, J. A. De Guise, J. D. Laredo, and W. Skalli,
“3D reconstruction of the proximal femur with low-dose digital stereoradiography,” Comput
Aided Surg 9(3), 51–57 (2004).



1 Bone Overview 27

52. G. Haiat, F. Padilla, R. Barkmann, S. Kolta, C. Latremouille, C. C. Glüer, and P. Laugier,
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Chapter 2
Introduction to the Physics of Ultrasound

Pascal Laugier and Guillaume Haı̈at

Abstract From an acoustical point of view, bone is a complex medium as it is
heterogeneous, anisotropic and viscoelastic. This chapter reviews the basic notions
of physical acoustics which are necessary to tackle the problem of the ultrasonic
propagation in bone, in the perspective of the application of quantitative ultrasound
(QUS) techniques to bone characterization. The first section introduces the basic
phenomena related to the field of medical ultrasound. Basic description of wave
propagation is introduced. Mechanical bases are necessary to understand the elas-
todynamic nature of the interaction between bone and ultrasound. The physical
determinants of the speed of sound of the different types of waves corresponding
to the propagation in a liquid and in a solid are considered. The effects of bound-
ary conditions (guided waves) are also detailed. The second section describes the
physical interaction between an ultrasonic wave and bone tissue, by introducing
reflection/refraction, attenuation and scattering phenomena.

Keywords Absorption · Anisotropy · Attenuation · Compression wave · Diffrac-
tion · Elastic modulus · Elastic solid · Group velocity · Guided wave · Impedance ·
Kramers Krönig · Lamb waves · Phase velocity · Poisson’s ratio · Reflection ·
Refraction · Scattering · Shear wave · Snell’s law · Speckle · Speed of sound ·
Stiffness · Strain · Stress · Young’s modulus

2.1 Fundamentals of Ultrasound

In analogy to visible and ultraviolet light, the terms sound and ultrasound are used
to describe the propagation of a mechanical perturbation in different frequency
ranges. Ultrasound corresponds to a mechanical wave propagating at frequencies
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above the range of human hearing (conventionally 20 kHz). Ultrasound and sound
waves propagate in fluids (gases and liquids) and solids. The mechanical perturba-
tion provokes tiny disturbances of the medium particles from their resting position.
These disturbances induce a displacement of these particles and are transmitted step
by step to other parts of the medium. The interaction between the particles can be
schematically described using a mechanical spring analogy. In particular the wave
propagation depends on the intrinsic elastic properties of the medium as well as on
its mass density. For tiny perturbations (linear propagation regime), no mass is trans-
ported as the wave propagates from point to point: the medium as a whole remains
stationary. In depth analysis of some aspects of non-linear propagation regimes will
be provided in Chap. 15.

Perfect fluids (i.e. non viscous) support bulk compression waves only, which
are characterized by density changes of the medium in which the particles oscil-
late in the longitudinal direction or the direction of wave propagation. Thus, bulk
compression waves correspond to longitudinal waves. Moreover, bulk compression
elastic waves can also propagate in solids. However, in solids unlike in fluids, a
shearing strain produced at some point can be transmitted to adjacent layers by the
strong binding between particles. This mechanism generates transverse waves also
called bulk shear waves, for which the particle motion is perpendicular to the direc-
tion of propagation in the case of isotropic solids (refer to subsection 1.5.3 for the
anisotropic case).

Biological soft tissues are viscoelastic solids, where both bulk compression and
shear waves can propagate. However, typically, in soft tissues, ultrasound bulk shear
waves are usually neglected because shear waves are highly attenuated at ultrasonic
frequencies. However, in hard tissues like bone, both compression and shear waves
must be considered.

The reader will find in what follows basic descriptions of elementary aspects
of the physics of ultrasound. However, the aim of the authors only consists in in-
troducing the basic description of fundamental phenomena involved in ultrasonic
characterization of bone. Readers interested in deeper and more complete descrip-
tion of the acoustics of wave are referred to dedicated books [1–4].

2.1.1 Frequency–Period–Wavelength

As known from basic physics the characteristic variables describing the propaga-
tion of a monochromatic wave in time and space are frequency f or period T and
wavelength λ given by:

λ =
c
f

= cT, (2.1)

where c is the wave propagation velocity (also termed sound velocity or speed of
sound). Typical diagnostic ultrasound devices employ frequencies in the range of
2–15 MHz. In contrast, due to the frequency dependence of ultrasound attenuation
and to high attenuation values in bone, lower frequencies in the range of 250 kHz to
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1.25 MHz are used in bone clinical devices, although higher frequencies have been
tested experimentally, for example to investigate cancellous bone micro-structure
[5] or to measure microelastic properties of cortical bone [6].

In cortical bone a typical sound velocity of 4000 m ·s−1 results in a wavelength of
16 mm at 250 kHz and of 4 mm at 1.0 MHz. A representative value of sound velocity
in cancellous bone of the human calcaneus is 1500 m · s−1 resulting in a wavelength
of 3.1 mm at 500 kHz.

2.1.2 Phase Velocity–Group Velocity

Two fundamentally different sound velocities can be distinguished. Phase velocity
corresponds to the propagation velocity of a given phase that is of a single frequency
component of a periodic wave. A propagating medium is said to be dispersive if the
phase velocity is a function of frequency or wavelength, which is the case for ex-
ample in all attenuating media. This means that the different frequencies contained
in the signal do not propagate at a constant velocity, which derive from the linear-
ity and causality principles (see Chap. 12). Group velocity corresponds physically
to the velocity at which energy or information is conveyed along the direction of
propagation. In the case of a dispersive medium, the group velocity may differ from
the phase velocity. It is important to be aware of velocity dispersion because it po-
tentially affects the accuracy of speed of sound measurements [7–10]. Note that
the attenuation coefficient and velocity dispersion are related through the Kramers-
Krönig relationships [11, 12].

2.1.3 Notion of Stress

A stress is defined by a force per unit area applied to a given medium. Any stress
applied to a solid can be expressed as a combination of pure compression and pure
shear stresses [1]. If the solid is anisotropic the combination of compression and
shear stresses can be described in terms of a stress matrix (also called stress tensor).
In contrast, fluids only support pure compression stress, which is called pressure.
A compression wave propagating in fluids or in isotropic solid media produces com-
pressions and expansions, which causes pressure changes. The instantaneous value
of the total pressure minus the ambient pressure is then called acoustic pressure or
simply sound pressure. In contrast, shear wave causes shear stress.

We shall assume that the stress can be expressed in one-dimensional form and
that therefore the waves are either purely longitudinal or purely transversal. This
approach allows for a much simpler (but correct) description of the propagation
phenomena. The description adopted for isotropic media can then be modified to
take into account bone anisotropy (see for example Chap. 8).
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2.1.4 Acoustic Impedance

During the propagation of an acoustic wave in a fluid, the particles of the medium
are subject to displacements around their resting positions. The velocity of these
displacements is called acoustic particle velocity and noted v. Thus, the particle
velocity is the speed of motion of the particles due to the sound wave, it must be
distinguished from the sound velocities defined in Sect. 1.2. For plane waves in a
lossless medium (non-attenuating medium), the sound pressure p and particle ve-
locity v are related to each other following :

p = ρcv = Zv, (2.2)

where ρ is the mass density of the medium at rest, and Z = ρ · c is called specific
acoustic impedance.

2.1.5 Acoustic Intensity

The energy transported in an ultrasound wave is usually characterized by an acous-
tic intensity I defined as the energy transmitted per unit time (usually 1 s) and per
unit area (usually 1cm2) in the direction normal to the considered area. In the field
of medical ultrasound, intensity is measured in W ·cm−2. In the far field of an unfo-
cused transducer where the wave front can be considered as a planar wave or at the
focus of a focused transducer, the intensity of a monochromatic wave is related to
the sound pressure as follows:

I =
p2

2Z
. (2.3)

2.1.6 Determinant of the Speed of Sound

In the linear propagation regime (tiny perturbation or small wave amplitude) speed
of sound is a characteristic of the medium. It is independent from the wave am-
plitude and can be determined from the material and geometrical properties of the
medium. To account for wave type, for example bulk compression, bulk shear, sur-
face, or guided wave specific differences in c, the generalized concept of an effective
elastic modulus Me and an effective mass density ρe can be introduced [13]. The ef-
fective elastic modulus is related to elastic and geometrical characteristics of the
medium, which determine the stiffness with respect to a given type of wave. The ef-
fective mass density is related to the inertia of the propagating medium. Following
this concept c is expressed as:

c =

√
Me

ρe
. (2.4)
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A common correction in realistic systems is that speed of sound can also depend on
the amplitude of the wave, leading to a nonlinear wave propagation (Chap. 15).

2.1.6.1 Case of a Fluid

In fluids, Me is given by the adiabatic bulk modulus of elasticity K, the reciprocal
of the adiabatic compressibility χ . The effective mass density ρe is the mass den-
sity of the fluid. The propagating waves are pure compression waves. K physically
corresponds to the force opposing compression of the fluid. Compressibility is the
relative change in volume when the pressure changes by one unit. A fluid model is
generally adopted to describe waves at ultrasonic frequencies in soft tissue.

Of interest is the temperature dependence of c. Speed of sound in water is
1482m · s−1 at 20◦C. Between 20◦C and 37◦C it increases with a temperature co-
efficient of about 2.5m · s−1 · ◦C−1 [14]. As soft tissues are largely composed of
water, it is not surprising that their speed of sound also increases with temperature.
Fat is the exception. Speed of sound in fat decreases when temperature increases
[15]. The observed temperature dependent decrease of c of trabecular bone mar-
row is also likely due to the influence of fat, an important component of bone
marrow [16].

2.1.6.2 Case of an Infinite Isotropic Homogeneous Elastic Solids

For solids, Me is given by a combination of the elastic properties. In general, this
combination can be expressed using the different components of the elastic stiffness
tensor (or matrix), noted cij and called stiffness coefficients. The stiffness coeffi-
cients are defined by the linear coefficients of proportionality between the different
components of the stress and strain matrixes [17]. An isotropic homogeneous elastic
solid can be equivalently described by:

• Two stiffness coefficients c11 and c12

• The Lamé coefficients λ (bulk modulus, not to be confused with the wavelength)
and μ (shear modulus)

• Two engineering constants such as E (Young’s modulus) and ν (Poisson’s ratio)

The Lamé coefficients (λ ,μ) can be expressed as a function of the stiffness coeffi-
cients (c11,c12) or as a function of the engineering constants (E,ν). Similarly, the
stiffness coefficients are related to the engineering constants. The full derivation of
the wave propagation equation in anisotropic elastic solids is out of the scope of this
chapter. Readers can find a comprehensive description in many classical textbooks,
for example [1,2,17]. We only indicate in the following the principle of derivation of
the wave propagation equation for the case of an isotropic linear elastic solid. Three
equations are necessary to obtain the linear propagation equation in an isotropic
solid. The first equation, corresponding to the constitutive law (Hooke’s law) of the
isotropic material considered, expresses the general relationship existing between
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stress and strain in a perfectly elastic solid:

σ = λ · tr(ε)+ 2με, (2.5)

where σ denotes the stress tensor, ε the strain tensor and tr(ε) is the trace of ε . The
second equation corresponds to the equation of motion and is given by:

ρ
∂ 2u
∂ t2 = div(σ), (2.6)

where ρ denotes the mass density of the solid, u denotes the elementary particle
displacement vector and div the divergence operator (div = ∂

dx + ∂
dy + ∂

dz ).
The last equation relates the strain tensor with the displacement field and is

given by:

ε =
1
2
(grad(u)+T grad(u)), (2.7)

where grad indicates the gradient tensor and T indicates the transpose operation.
By combining Eqs. 2.5–2.7 and considering respectively the case where the particle
displacement is parallel and perpendicular to the direction of propagation, the wave
propagation equations corresponding to the case of a longitudinal and shear wave
mode are obtained and are given respectively by:

ρ
∂ 2u
∂ t2 = (λ + 2μ) ·Δu and ρ

∂ 2u
∂ t2 = μ ·Δu (2.8)

where Δ denotes the Laplacian operator: Δ = ∂ 2

dx2 + ∂ 2

dy2 + ∂ 2

dz2 .
In summary, in an infinite isotropic homogeneous solid body, in which the prop-

agating wave does not interact with the boundary of the medium, the longitudinal
and shear (transversal) propagation velocity cl and csare given by [1]:

cl =

√
λ + 2μ

ρ
=

√
c11

ρ
=

√
E(1−ν)

ρ(1 + ν)(1−2ν)
(2.9)

and

cs =
√

μ
ρ

=
√

c11 − c12

2ρ
=

√
E

ρ(1 + ν)
(2.10)

2.1.6.3 Infinite Anisotropic Homogeneous Elastic Solids

In homogeneous anisotropic media, the elastic properties depend on the direc-
tion of propagation of the acoustical wave. For example, in crystalline materials,
the elastic properties (and thus the sound velocities) depend on the orientation of
the crystalline directions relative to the direction of propagation. In this case, Me
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depends on the direction of propagation, wave polarization (the direction of particle
displacement with respect to propagation direction) and crystal class of symmetry.
For an arbitrary direction in a crystal, three wave types can generally propagate: one
quasi-longitudinal and two quasi-transverse waves. However, there are special direc-
tions called symmetry axes along which pure longitudinal or shear waves propagate.
Details of the relationships between sound velocity and elastic coefficients for infi-
nite anisotropic elastic solids are beyond the scope of this chapter and can be found
in reference books on elastic waves in solids [1–3].

For cortical bone the general degree of anisotropy is that of orthotropic material
symmetry [18], which is characterized by nine independent stiffness coefficients.
A simplified model of a transverse isotropic elastic solid medium, which reduces
the number of independent coefficients of the stiffness matrix to five, has also been
considered [19–23]. The directional dependence of engineering elastic moduli such
as E or σ can then be derived from the stiffness coefficients. These assumptions
about bone symmetry were used successfully in studying in vitro ultrasound propa-
gation along the various symmetry axes of cortical bone specimens [18, 21, 24, 25].

2.1.6.4 Finite Homogeneous Elastic Solids

Equations 2.9 and 2.10 were introduced for unbounded media assuming that the
wavelength λ is much smaller than the smallest sample dimension. In the opposite
case (e.g., when the propagation medium is thin compared to λ ), multiple reflec-
tions, mode conversions and interferences of longitudinal and shear waves from the
sample boundaries occur. These phenomena create a wave guide character of the
sound propagation within boundaries of the considered medium. In this case, sound
perturbations can be represented as superposition of resonant guided wave modes
(so-called eigen modes).

Guided wave modes which exist in plates are known as Lamb waves, which are
complex waves traveling through the entire plate. Different families of Lamb wave
modes can be distinguished including symmetrical modes (in-phase displacements
of opposite plate surfaces) and asymmetrical or flexural modes (anti-phase displace-
ments of opposite plate surfaces), as shown in Fig. 2.1.

Guided wave modes have been described for rods [3] as well as for tubes
[26]. Guided wave modes are always dispersive, which means that their phase
velocities are function of the wavelength (or frequency) and of the layer thickness.

Symmetrical guided wave Antisymmetrical guided wave

Fig. 2.1 Illustration of symmetrical and asymmetrical guided wave modes propagating through
the entire thickness of a plate
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In addition, phase velocity is also function of the elastic properties and density of
the medium [27].

The wave guide character of the sound propagation has been evidenced for cor-
tical bone in the 0.25–2 MHz frequency range. In this case, cortical bone can be
modeled as a plate-like (2-D description) or a tube-like (3-D description) layered
medium [27, 28].

A particular case of guided wave is the extensional or bar wave in a thin rod,
a configuration which has been used to measure the properties of cortical bone.
Under the assumption that the cross-sectional dimensions of the rod (in the case of
a cylindrical rod, its diameter) are much smaller than λ , only a longitudinal stress
component can be considered along the propagation direction of the rod. In this
case, the speed of sound c is given by [13]:

c =

√
E
ρ
⇔ E = ρ c2 (2.11)

For in vivo measurements purposes, guided waves in cortical bone can be excited
from the surrounding soft tissues using an incident beam at a specific angle [28].
If a wave is guided by the bone cortex with a phase velocity greater than that of
the compression wave of the surrounding soft tissues, the energy propagating in the
bone cortex can leak into the soft tissue. Thus, power is continuously radiated into
the soft tissues, the guided wave mode can be detected and its velocity measured
with sensors placed at its surface. A comprehensive review of guided waves used to
investigate cortical bone is given in Chap. 7.

2.1.6.5 Inhomogeneous Elastic Solids

In the sections above, the sound wave propagation was restricted to homogeneous
elastic solids. However, bone is highly heterogeneous at different scales, and can be
described by a composite and poroelastic material. The derivation of Me for com-
posite or poroelastic materials may be rather complex and requires cumbersome
theoretical developments. Moreover, due to the important difference in porosity and
structure between cortical and trabecular bone, the analysis of ultrasound propa-
gation may require different theoretical frameworks for these two types of bone
structures.

As the medium is no longer homogeneous but rather a mixture of several compo-
nents such as collagen fibers, hydroxyapatite crystals, water, non-collagen substance
and marrow, which are all characterized by different elastic coefficients, it remains
difficult to simply determine Me. Replacing the actual material by a homogenized
material is the best we can expect. Me can then be determined assuming that λ is
much larger than d, where d is the characteristic size of the structural heterogeneities
such as, for example, osteons, Haversian canals, osteocytes, lacunae, apatite crys-
tals and collagen fibers. At the scale of the wavelength, the medium can then be
considered homogeneous and therefore Eqs. 2.9 and 2.10 can be applied using the
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homogenized stiffness coefficients. The effective elastic modulus and the effective
mass density can be derived from experiments or theoretical models. Different mul-
tiscale homogenization approaches [20,29–32] have been developed to determine a
homogenized value for Me, which is the only way to practically estimate the material
properties at the scale of λ .

The porosity of human cortical bone is rather low and the pore size (∼50 to
100μm) is smaller than typical wavelengths (>1mm). Therefore, the aforemen-
tioned homogenization theories can be applied and cortical bone can be modeled as
a mono-phase homogeneous medium (rather than a two-phase medium) in regard
to the ultrasonic propagation. Therefore, ultrasound propagation at diagnostic fre-
quencies (around 1 MHz) in cortical bone can be described at first approximation by
the propagation in an anisotropic homogeneous medium (see Chap. 13).

In contrast, such an assumption is not valid for cancellous bone where poros-
ity values are rather high. The pore size (∼500 to 1000 μm) is comparable to the
wavelength (1.5 mm at 500 kHz). The elasticity of such a poroelastic structure then
intrinsically depends on the structure of the bone. Several theoretical concepts con-
sidering poroelasticity such as Biot’s theory [33–39] and Schoenberg’s theory for
multilayered media [40–44] have been applied to describe ultrasound propagation
in cancellous bone. These models will be detailed in Chap. 5.

2.2 Tissue Interaction

2.2.1 Specular Reflection and Refraction

As known from basic physics, reflection and refraction occur at the boundary
between two media with different characteristic acoustic impedances or different
speeds of sound. If the surface is smooth compared to the wavelength, specular
reflections occur whereas for rough surfaces, reflections are diffuse [45]. Specu-
lar reflection forms the basis of pulse-echo ultrasonic imaging (echography) and
contributes to image formation displaying organ boundaries. It is convenient to dis-
tinguish fluid–fluid interfaces such as the discontinuity between two soft tissues,
which is the typical model for diagnostic clinical ultrasound, and fluid-solid in-
terfaces, which represent more realistically the boundary between soft tissue and
cortical bone. The interaction between ultrasound and cancellous bone is more com-
plicated. It can best be described by scattering phenomena, which will be discussed
in Sect. 2.3. In what follows, we shall assume that the incident wave is a plane wave
in the fluid for the sake of simplicity.1

1 Any kind of wave may be decomposed in a sum of planar waves.
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2.2.1.1 Fluid–Fluid Interface

If a plane wave impinges on a smooth plane interface (i.e. under the assumption
of specular reflection), a reflected and a transmitted wave will be generated (see
Fig. 2.2a). As only longitudinal waves can exist in a fluid, the refracted and reflected
waves are also longitudinal. According to Snell’s law, (i) the reflection angle θ1 is
equal to the angle of the incident wave and (ii) the transmitted wave is refracted
away from the direction of the incident wave θ1 at a refraction angle θ2 given by:

sin θ2

c2
=

sinθ1

c1
, (2.12)

where and c1 and c2 are the sound velocities of the first and second medium.
For normal incidence (θ1 = 0◦), the reflected and transmitted waves are also

normal to the interface. The ratio of the reflected to the incident acoustic pressure
amplitude is called amplitude reflection coefficient r. The ratio of the transmitted
to the incident acoustic amplitude is called amplitude transmission coefficient t.
Coefficients t and r are given by:

r =
Z1 −Z2

Z1 + Z2
t =

2Z2

Z1 + Z2
. (2.13)

Similarly intensity reflection (R) and transmission coefficients (T) are defined by the
ratio of the reflected to the incident acoustic intensity and the ratio of the transmitted
to the incident acoustic amplitude, respectively:

Fig. 2.2 Reflection and refraction at the boundary (a) between two fluid media and (b) between a
fluid and a solid medium
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Table 2.1 Typical values for sound velocity, characteristic acoustic impedance, and attenuation
(see next section) in different biological tissues for temperatures in the range between 20◦C and
37◦C. These values are only indicative of the order of magnitude, due to dramatic biological
variability

Tissue

Ultrasound
propagation
velocity c (m · s−1)

Characteristic
acoustic impedance
Z (kg · s−1 ·m−2)

Slope of the
attenuation coefficient
(dB · cm−1 ·MHz−1)

Water (20◦C) 1480 1.48×106 a

Cancellous bone 1450–1800 1.54×106 –2.2×106 10–40
Cortical bone 3000–4000 4×106 –8×106 1–10
Fat 1450 1.38×106 0.8
Muscle 1550–1630 1.65×106 –1.74×106 0.5–1.5
Skin 1600 1.7×106 2–4
a The attenuation in water exhibits a quadratic variation with frequency f. Its attenuation coeffi-
cient in dB · cm−1 is α(f) = 0.002f2

R =
(

Z1 −Z2

Z1 + Z2

)2

T =
4Z1Z2

(Z1 + Z2)
2 . (2.14)

where Z1 and Z2 are the characteristic acoustic impedances of the first and sec-
ond medium for longitudinal waves, respectively. One can verify that T + R = 1,
which corresponds to the conservation of energy equation (in the lossless case). The
amount of energy in the reflected wave depends on the impedance discontinuity of
the two media. The greater the difference, the greater is the reflected energy.

Table 2.1 shows the different values of sound velocity, of acoustic impedance,
and of the slope of the attenuation coefficient as a function of frequency for selected
tissues playing a part in bone QUS evaluation. As can be seen, for soft tissues Z
differs only slightly from that of water. In case of small impedance discontinuities
(e.g., such as between two soft tissues), the reflected beam typically carries less than
1% of the incident energy and 99% or more of the incident energy is transmitted
through the interface. Because of relatively small velocity changes in various soft
tissues, refraction is generally not a serious problem.

2.2.1.2 Fluid–Solid Interface

In the case where the second medium is a solid such as cortical bone, Eq. 2.13 rep-
resents the ideal case for normal incidence and serves as guidelines to determine the
reflected and transmitted energies. When ultrasound strikes a cortical bone interface
at normal incidence, approximately 25–50% of the incident energy is transferred to
the reflected wave and only 75–50% to the refracted longitudinal wave.

For oblique incidence the refracted longitudinal plane wave in the solid is par-
tially converted into a shear wave, and two refracted beams exist, as shown in
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Fig. 2.2b. For oblique incidence Snell’s law must be generalized to [1]:

sin(θ1)
c1

=
sin(θ2L)

c2L
=

sin(θ2T )
c2T

, (2.15)

where subscripts 2L and 2T refer respectively to the refracted longitudinal and shear
waves in the solid medium (e.g., bone). As longitudinal waves in solids propagate
most of the time with a greater sound speed than in fluids, the refraction angle θ2L is
larger than the angle of incidence θ1. When θ1 is higher than a certain value θc, total
internal reflection occurs and the longitudinal wave is no longer transmitted into the
solid. The refracted wave is termed evanescent as it travels parallel to the interface
and decays exponentially from the boundary. The corresponding incident angle θc

is termed the first critical angle and is given by:

sin(θc) =
c1

c2L
. (2.16)

The value of longitudinal wave velocity in cortical bone stands in the range
3500–4200 m · s−1 (see Chap. 13), which gives typical values of θc between 20◦
and 25◦.

If the velocity of the shear wave in the solid is also greater than the velocity of
the longitudinal wave in the fluid then analogously there is a second critical an-
gle at which the shear refracted beam propagates along the surface. Actually, the
propagation of sound waves in solids is even more complicated and several critical
angles may exist [1, 17]. The measurement of critical angles is the basis of ultra-
sound critical-angle reflectometry (UCR), which has been used to characterize bone
in vitro as well as in vivo [46–48]. In UCR, the sound velocities of the longitudinal
and the shear waves in cortical bone can directly be determined from θc according
to Snell’s law if the speed of sound of the surrounding fluid (or soft tissue) is known
precisely.

2.2.2 Attenuation

Two main mechanisms contribute to ultrasound attenuation: absorption and scat-
tering. Different mechanisms are responsible for absorption phenomena (thermal
conductance effects, chemical effects, viscous effects, non linearity . . .). So far, the
phenomena responsible for ultrasound absorption in biological tissues have not been
completely understood. In liquids (respectively homogeneous solids), the viscous
(respectively viscoelastic) forces between neighboring particles moving with differ-
ent velocities are major sources of acoustic wave absorption. For example, viscous
losses may explain sound wave absorption in water where attenuation varies with
the square of the frequency. However, this model of viscosity (quadratic dependence
of the attenuation coefficient versus frequency) does not explain experimental mea-
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surements of absorption in soft biological tissues as well as in bone in the diagnostic
frequency range.

Other models hypothesized that a significant fraction of the absorption of longi-
tudinal waves in soft tissues involves a spectrum of relaxation mechanisms at the
macromolecular scale of proteins [49] or potentially thermal transport phenomena
arising from temperature gradients in the medium [50]. In the frequency range where
characteristic relaxation times are close to the wave time period, a quasi-linear vari-
ation of the attenuation coefficient with frequency can be observed.

Attenuation differs substantially between fluid-like soft tissues and porous media
such as bone, in which (i) viscous friction effects due to the relative motion of mar-
row and solid frame, (ii) scattering of the ultrasonic wave by bone heterogeneity and
(iii) longitudinal to shear mode conversion contribute significantly. The mechanisms
of scattering will be presented in the next section. Acoustic attenuation in cancel-
lous bone is usually almost one order of magnitude higher than in cortical bone. This
is likely due to the large bone surface-to-volume ratio, which reinforces scattering,
mode conversion and viscous friction. Recent studies suggest that loss mechanisms
such as mode conversion, that is the transformation of longitudinal waves into shear
waves (and subsequent absorption of these shear waves) occurring at the surface of
the scattering particles, may be a significant contributor to the overall attenuation in
bone in the diagnostic frequency range [51, 52].

Further important factors that contribute to the total wave intensity attenuation as
it propagates through a complex medium such as a limb composed of several layers
of different media (surrounding soft tissues, bone, marrow) are diffraction, reflec-
tion and refraction. Due to diffraction phenomena, the acoustic beam emitted from a
planar (unfocused) transducer will increase its diameter as the wave propagates and
the intensity will decrease with increasing distance from the source. Reflection and
refraction losses at tissue interfaces according to Eq. 2.13 depend on the impedance
mismatch at the interfaces. In general, overall ultrasound attenuation is character-
ized by the following exponential decrease of the pressure amplitude p and of the
amplitude of the acoustic intensity I with the traveling distance z:

p = p0e−αz and I = I0e−2αz (2.17)

where p0 and I0 are the pressure and intensity at z = 0, respectively. The quantity
α (expressed in cm−1) is the pressure frequency-dependent attenuation coefficient.
The factor 2 in the exponential term of the intensity equation results from transform-
ing pressure into intensity, as intensity is proportional to the square of pressure. In
biomedical ultrasonics, the commonly used units for α and for its slope when plot-
ted versus frequency are dB · cm−1 and dB · cm−1 ·MHz−1, respectively. The unit
conversion cm−1 to dB · cm−1 writes [53]:

α[dB · cm−1] =
1
z
·10 ln

I0

I
= 8.686α[cm−1] (2.18)
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Some authors use α as the intensity frequency-dependent attenuation coefficient
(I = I0e−αz). Then, the conversion to dB results in α[dB · cm−1] = 4.343α[cm−1].

2.2.3 Tissue Penetration

It has been shown experimentally that ultrasound attenuation in biological tissues
varies approximately linearly with frequency [54]. The linear dependency has been
documented for soft tissues over a broad frequency range from 1 to 50 MHz and
also for cancellous bone in a limited frequency range of 0.2–2MHz [55–59]. Since
attenuation in tissues increases with frequency, the price paid for using shorter
wavelengths (that is for improving spatial resolution) is an increase in attenuation,
which limits the possible penetration depth due to the sensitivity of the sensor. For
most soft tissues, values of the slope of the attenuation coefficient versus frequency
are approximately comprised in the range 0.5–1.0dB·cm−1 ·MHz−1 (see Table 2.1).
In bone, the slope of the attenuation coefficient is one or two orders of magnitude
higher than in soft tissues. Hence, lower frequencies (around 0.5–1 MHz) are com-
monly used for skeletal investigations.

2.2.4 Scattering

Scattering phenomena result from the interaction between a primary ultrasonic wave
and the boundaries of particles (inhomogeneities) if their physical properties such as
density or elasticity are different from those of the surrounding medium. In this case,
the oscillatory movement of the scatterer is different from that of the surrounding
medium, which leads to the emission of a secondary wave denoted scattered wave.

The scattering regime of a single particle depends on the ratio between its di-
mension and λ . If λ is much smaller than the size of the heterogeneity, specular
reflection obeying the usual laws of reflection occurs (see Eq. 2.13). In contrast, a
scattered wave is created if the dimensions of the heterogeneities are comparable to
or lower than the wavelength. The scattering problem of light and sound by small
scatterers was first solved by Lord Rayleigh [60] and is therefore called Rayleigh
scattering. For scatterers much smaller than the wavelength, the intensity of the
scattered waves is proportional to the fourth power of the frequency of the incident
wave. It is also proportional to the sixth power of the size of the scatterers, i.e.,
to the square of its volume [61]. The case of scatterers with larger sizes or sizes
comparable to the wavelength involves more complicated calculations [61].

The scattered intensity from soft tissue is generally considerably smaller than the
specularly reflected intensity from organ boundaries. However, similar to specular
reflection, such scattering events are of primary importance for image formation
and for assessing micro-structural properties of the medium such as scatterer size of
scatterer number density. In ultrasound images of soft tissues, scattering causes the
grainy aspect or echostructure, also denoted speckle.
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In soft tissue, the density and compressibility of scatterers are close to those of
the surrounding medium. Thus the contribution of scattering to overall attenuation
is relatively small. At low MHz frequencies, attenuation by scattering in soft tissue
is typically 10–15% of the total attenuation [62]. In contrast, scattering is likely to
be an important attenuation mechanism in bone. Although scattering from bone has
received less attention than attenuation and sound velocity, its study is important
because it may explain mechanisms responsible for attenuation [51] and for veloc-
ity dispersion [63]. Ultrasonic scattering predominantly occurs in cancellous bone in
comparison to cortical bone. Cancellous bone can be considered as a highly inhomo-
geneous scattering medium: a soft tissue-like medium, i.e. bone marrow, containing
a solid matrix, i.e. mineralized collagen of interconnected trabecular elements with
a mean thickness ranging from 50 to 150μm. Trabeculae are likely candidates for
scattering sites due to the high contrast in acoustic properties between mineralized
tissue and marrow [64]. Various scattering models for trabecular bone have been
proposed and will be extensively presented in Chap. 6.
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Chapter 3
Quantitative Ultrasound Instrumentation
for Bone In Vivo Characterization

Pascal Laugier

Abstract Although it has been over 20 years since the first recorded use of
quantitative ultrasound (QUS) technology to predict bone strength, the field has
not yet reached its maturity. Among several QUS technologies available to measure
cortical or cancellous bone sites, at least some of them have demonstrated potential
to predict fracture risk in a number of clinical circumstances, with an equivalent ef-
ficiency compared to X-ray densitometry techniques, with the advantages of being
non-ionizing, inexpensive, portable, highly acceptable to patients and repeatable. In
this chapter, we review instrumental developments that have led to in vivo applica-
tions of bone QUS. While several proposals have been made for practical clinical
use, there are a number of critical issues that still need to be addressed, such as qual-
ity control and standardization. On the other side, although still at an early stage
of development, recent QUS approaches to assess bone quality factors seem very
promising. These include guided waves to assess mechanical and structural proper-
ties of long cortical bones or new QUS technologies adapted to measure the central
skeleton (hip). New data acquisition and signal processing procedures are prone to
reveal bone properties beyond bone mineral quantity and to provide a more accurate
assessment of bone strength.
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3.1 Introduction

Gold standard methods for the in vivo assessment of bone strength and of its clinical
counterpart, the risk of fracture, are based on X-ray based bone mineral density
(BMD) measurements [1]. While BMD is an important predictor of bone strength,
additional factors are required to explain strength more accurately. These include
tissue-intrinsic material properties and bone structure. Because ultrasound wave
characteristics are closely linked to the material and structural properties of the prop-
agation medium, ultrasound is appropriate to probe bone biomechanical strength.

In the past 20 years the field has produced a diversity of innovative ultrasound
technological developments targeting in vivo characterization of bone strength.

The first clinical application to bone of ultrasound waves was described in the
late 1950s for monitoring fracture healing at the tibia [2]. The introduction of
quantitative ultrasound (QUS) methods in the field of osteoporosis followed the
study published in 1984 by Langton et al. [3] demonstrating that the slope of the
frequency-dependent attenuation at the calcaneus could discriminate osteoporotic
from non-osteoporotic patients. This led to the opening of a new research and de-
velopment area known as bone QUS. Many advances have been achieved during
the last 20 years and a variety of different sophisticated technologies have been
introduced to assess in vivo the skeletal status by providing measurements of ultra-
sonic parameters of cancellous bone or cortical bone sites such as the calcaneus [3],
fingers phalanges [4], radius [5, 6], tibia [7] and proximal femur [8]. The absence
of exposure to ionizing radiation, the portability and the modest cost of the ma-
chines are appealing factors of QUS devices. The main clinical field of application
is fracture risk prediction for osteroporosis, although many other bone pathologi-
cal conditions may benefit from ultrasound measurements. For example, fracture
healing can be monitored using QUS axial transmission measurements as detailed
in Chap. 14. The clinical validation for fracture risk prediction and the acceptance
among clinicians is however not identical for all devices. Only heel QUS measures
are proven to predict hip fractures and all osteoporotic fractures with similar relative
risk as other central X-ray based bone density measurements [9–11].

This chapter is an introduction to the different devices that have been devel-
oped for in vivo assessment of skeletal status. It is common to classify the different
approaches into two classes of devices which differ by their specific transducers
arrangement. The transverse transmission techniques (Sect. 3.2), using a pair of
transducers facing each other placed on each side of a skeletal site, provide es-
timates of the speed of sound (SOS,m s−1) and frequency-dependent attenuation
also termed in the QUS field broadband ultrasonic attenuation (BUA, dB/MHz).
Modern axial transmission techniques (Sect. 3.3), directly inherited from the sem-
inal work on fracture healing, use a specific measurement configuration in which
the transducers are aligned along the bone axis to generate and measure guided
waves in the cortical layer of long bone diaphysis. Because bone is a highly atten-
uating medium, most investigations use the transmission of low frequencies from
100 kHz to 2.0 MHz which is substantially lower than the clinical frequencies used
in conventional ultrasonography of soft tissues. Other in vivo approaches based on
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ultrasound reflection [12–17] or backscatter [18–20] are still confined to research
work and will not be presented in this chapter. Some of these research aspects are
covered in different chapters (Chaps. 6 and 10). Aspects such as modeling of ultra-
sound propagation (Chap. 8), in vitro experimental measurements (Chaps. 10–13)
and clinical performances (Chap. 4) are covered by other chapters and thus are not
addressed here.

3.2 Transverse Transmission

The transverse transmission technique uses two piezoelectric transducers, a trans-
mitter and a receiver, placed on opposite sides of the skeletal site to be measured.
While the calcaneus (heel bone) is the preferred skeletal site, the method has been
applied for a while to the measurement at the finger phalanxes. More recently, de-
vices has been introduced to measure the ultradistal radius at the forearm [6, 21] or
the proximal femur at the hip [8, 22, 23].

Principles of measurements have been detailed in previous publications [24–26]
and are only briefly recalled here for the sake of completeness.

3.2.1 Principles of Transverse Transmission Measurements

Assuming that the system response and the propagation are linear, the propagation
characteristics such as attenuation and velocity are obtained using the well known
substitution technique, illustrated in Fig. 3.1a and b. The signal transmitted through
the skeletal site in response to a broadband ultrasonic excitation is compared to the
signal transmitted through a reference medium such as water of known attenuation
(αref ) and speed of sound (cref ). The frequency-dependent attenuation is obtained
from the spectral analysis of the two signals shown in Fig. 3.1c, typically using a
Fast Fourier Transform algorithm. The amplitude spectrum (Fig. 3.1d) of the re-
ceived waveform that has propagated through the reference medium is given by:

Aref ( f ) = A0( f )Uref ( f ) with

Uref ( f ) = Aref
d ( f )e

−2iπ f L
cref (3.1)

A0( f ) is the instrumentation transfer function describing the amplitude spectrum
of the electrical input signal and the transfer functions of the transmitting and
receiving transducers and of the electronics. The transfer function Uref ( f ) char-
acterizes the ultrasound pulse propagation in the reference material. Its exponential
term describes the propagation of a harmonic plane wave of wavelength λref . The
propagation depends on the frequency, the acoustic properties of the medium and
the geometrical properties of the transmitting and receiving transducers. L is the
distance between transmitter and receiver. Aref

d ( f ) is the transfer function of the
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Fig. 3.1 Principles of transverse transmission at the heel (a): placement of transducers in the medi-
olateral direction, (b) and (c): substitution principle, example of radiofrequency traces recorded in
water (solid line) and through the heel (dashed line) (d) amplitude spectra of the reference signal
(solid line) and of the signal transmitted through the heel (dashed line) (e): frequency dependent
attenuation

diffraction effect [24, 27], which cannot be described in details within the scope
of this chapter. Typically water is used as reference material. In this case the ultra-
sonic attenuation at frequencies lower than 1 MHz, which are normally used in bone
quantitative ultrasound, can be neglected.
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After the initial reference measurement, a second measurement is performed on
skeletal site to be investigated, that is the ultrasound propagates for example along
a water-bone-water path. The amplitude spectrum of the received waveform is then
given by:

A( f ) = A0( f )T ( f )U( f ) with

U( f ) = Ad( f ) e
−2iπ f

(
L−l
cref

+ l
c( f )

)

e−α( f )l (3.2)

T ( f ) is the product of the transmission coefficient for the reference material-sample
and sample-reference material interfaces. The first exponential term of the transfer
function U( f ) again describes the propagation of a harmonic plane wave. The term
e−α( f )l accounts for the attenuation of the skeletal part of a thickness l replacing an
equivalent thickness of the reference material. c( f ) is the speed of sound in bone
that may be frequency-dependent and α( f ) is the frequency-dependent attenuation
coefficient of the sample. Ad( f ) as before is the diffraction transfer function.

3.2.1.1 Frequency-Dependent Attenuation

The apparent frequency-dependent attenuation, that is the signal loss, is defined on
a logarithmic scale as follows:

α̂( f ) l = ln
|Aref ( f )|
|A( f )| , (3.3)

where α̂( f ) is the measured apparent attenuation coefficient. Using Eqs. 3.2 and 3.3,
it can be written as:

α̂( f ) l = α( f ) l + ln
|Aref

d ( f )|
|Ad( f )| − ln |T ( f )| (3.4)

where |x| is the amplitude of a complex number x. In the frequency range used
to make in vivo measurements of the human calcaneus, the ultrasonic attenuation
varies quasi-linearly with frequency [28, 29] (Fig. 3.1e). The slope of a linear re-
gression fit to α̂( f ) l in the frequency range of approximately 0.2–0.6MHz yields
the BUA value.

The extraction of an unbiased attenuation slope from the empirically deter-
mined signal loss in Eq. 3.3 assumes that (i) the effect of diffraction (ln |Aref

d ( f )|−
ln |Ad( f )|) is small and can be neglected [24,30], (ii) transmission losses (ln |T ( f )|)
are independent of frequency (the effect of interface losses on the attenuation
curve is a simple vertical offset which does not affect the slope estimate) [31]
and (iii) phase cancellation effects are negligible, which is the case if the sam-
ple thickness and speed of sound across the ultrasonic beam profile are uniform.
Overlapping of fast and slow waves may also cause phase cancellation [32–34]
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(see Chap. 12) but is usually not a concern for in vivo measurements, at least at
the heel. The measurements yield total loss through the intervening tissues in the
beam, i.e., bone and surrounding soft tissues. The effect of the latter is generally ne-
glected [25]. Not many devices actually provide an estimate of the bone thickness.
Therefore the slope of the frequency-dependent attenuation (BUA) rather than the
slope of the attenuation coefficient (i.e., normalized BUA by thickness) is measured.

3.2.1.2 Speed of Sound

Two principal approaches have been used to measure SOS. The first one assumes
that c is frequency-independent and uses simple time domain methods. c is simply
calculated from the difference of two time-of-flight (TOF) measurements one of the
signal transmitted through the reference material alone and the other from the signal
transmitted through the reference material and skeletal site:

reference material : TOFref =
L

cref

reference material and sample : TOF =
L− l
cref

+
l
c

(3.5)

difference signal : ΔTOF =
l
c
− l

cref

c =
1

1
cref

+ ΔTOF
l

(3.6)

If measurements are taken using probes in direct contact to the skin equation Eq. 3.6
reduces to:

c =
l

TOF
(3.7)

Various criteria are used to estimate TOF, for example the first arrival point,
the first zero-crossing point, or a fixed threshold on the rising front of the re-
ceived electrical signal (see Fig. 3.2). Frequency-dependent attenuation and velocity
dispersion are acknowledged sources of bias when measuring velocity in the time

Fig. 3.2 Variation of criteria
used to measure time of
flight: (1) first apparent
deviation from baseline,
(2) fixed threshold, (3) first
zero-crossing, (4) maximum

1

2

3

4

time

Signal intensity
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domain [24, 35–38]. As the signal is distorted while propagating through bone, the
envelope of the received signal may differ considerably from the reference sig-
nal [38, 39]. Ambiguities in time-domain methods for velocity measurements in
cancellous bone were reported by several investigators [36–38]. For example, ve-
locity variations from one zero crossing to the next one for a calcaneus with BUA
of 20 dB · cm−1 · MHz−1 can be of the order of 30m · s−1 [40], which is consid-
erable compared to the difference between fractured and unfractured women [41].
This effect is a function of the frequency-dependent attenuation [42].

Because there is no consensus on a standardized protocol for velocity determina-
tions in bone, the comparison or pooling of measurements obtained from different
devices is particularly difficult. Wear has suggested a numerical method to compute
corrections for previously acquired SOS, to improve standardization in bone sonom-
etry and to overcome discrepancies in SOS estimates due to transit-time marker
location, but such a method has not been implemented yet in practice [43]. As dis-
cussed for BUA, the thickness l of the skeletal site must be known and the impact
of soft tissue must be neglected.

In the second approach, a frequency-dependent c( f ) is estimated from the phase
φ( f ) of the complex ratio of the spectra given in Eqs. 3.1 and 3.2:

φ( f ) = atan

[
A( f )

Aref ( f )

]
= 2π lf

(
1

cref
− 1

c( f )

)
(3.8)

Arctangent routines only provide principal phase values between −π and π, termed
the wrapped phase. For a continuous phase spectrum values at modulo 2π are
required. These values are determined by appropriately adding or subtracting multi-
ples of 2π to the principal value until the discontinuities induced by the modulo 2π
operation are removed. The unwrapped phase φu( f ) is:

φu( f ) = φ( f )±2kπ , (3.9)

where k is an integer. Due to the limited bandwidth of the transducer the phase
is known only within an integer multiple of 2π . The constant 2kπ accounts for this
phase ambiguity. A more accurate velocity estimate can be obtained using the y-axis
intercept (zero-frequency) of φu( f ), which can be derived from the least square fit
to the data. If for example there is a 2π-error in the phase the calculated inter-
cept will be close to −2π . In this case, the correct phase is obtained by adding 2π .
Using Eq. 3.9 in which the measured phase φ( f ) is replaced by the unwrapped phase
φu( f ), the phase velocity can be calculated as follows:

c( f ) =
1

1
cref

− φu( f )
2πfl

. (3.10)

In some devices, different sets of ultrasound parameters are reported, although they
are still reflecting either attenuation or time-of-flight. These include for example
mean frequency (estimated using zero crossing analysis), envelope velocity, relative
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pulse width and the relative energy, which measures the total amount of energy
transmitted through the heel, relative to the known reference or input signal [44].

3.2.2 Heel Devices

QUS measurements at the heel use broadband transducers, either planar or focused,
with a center frequency of 0.5 MHz. Frequency dependent parameters are obtained
in the frequency bandwidth 0.2–0.6 MHz approximately.

3.2.2.1 Water-Based Devices

The first clinical devices were water-based devices. The heel is immersed between
two transducers with a fixed or adjustable distance. Depending on the device,
the water bath is either at room temperature or temperature-controlled. As tem-
perature strongly influences ultrasonic variables, temperature control is preferable
to ensure lower precision errors. When temperature control is not possible, soft-
ware procedures are sometimes implemented allowing for some compensation of
temperature-related variations of sound velocity. An additional output variable pro-
vided by several devices is an empirically defined linear combination of BUA and
SOS. Because of opposite temperature-related trends of BUA and SOS, the effect
of temperature variations tends to cancel out in linear combinations [45].

3.2.2.2 Dry Contact Devices

Water-based devices tend to be replaced by dry contact technology because of easier
portability and better hygiene. Dry QUS systems contain two broadband ultrasound
transducers positioned by springs or motors on each side of the heel to maintain
constant pressure in direct contact with the patient’s skin. Dry contact systems
incorporate soft flexible elastomer coupling pads or water-filled bladders on the ul-
trasound transducers to accommodate irregular limb surfaces and to ensure good
contact without discomfort. A water-based gel is required for obtaining ultrasonic
coupling between the transducers or the pads and the patient’s skin. Most of the
devices use proprietary algorithms to measure QUS parameters, heel thickness, or
the thickness of bone. Compared to wet-systems, in dry systems there is reduced
control over the measurement environment such as temperature stability.

3.2.2.3 Fixed Versus Moving Transducers

Most heel QUS devices use fixed flat-surface unfocused transducers. Thus, BUA
and SOS are measured in a fixed region relative to the device coordinate system.
Consequently anatomical inter-individual variability may result in different bone
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areas being measured in different individuals. This also potentially limits long-term
precision in repeated measurements on the same subjects. Several solutions have
been proposed to overcome this problem, such as movable transducers that can be
automatically positioned relative to some anatomical landmark.

In one device, a laser beam positioner selects the volume of interest relative
to the centre of the external malleolus. Another dry scanning system uses quasi
point source transducers with wide transmission angles and a hemispherical contact
surface rather than flat-surface unfocused transducers. The transducers are pushed
inwardly toward each other by springs. The hemispherical contact surfaces enable
the transducers to move smoothly across the heel surface without losing contact.
The total scanning area includes the back and bottom edges of the heel bone. At the
start of a scan, the device searches for the plantar and posterior acoustic edges.
Appropriate signal processing of the received waveform allows detecting the prox-
imity to an edge of the calcaneus. According to the manufacturer a measure of the
relative proportion of high versus low frequency energy is an indication of the prox-
imity to a bone edge. The transducers then move to a predetermined location to scan
a region of approximately 1cm2. This procedure enables the device to place the tar-
get region in an anatomically analogous location on every subject’s bone regardless
of the varying amount of soft tissue. BUA results are calculated for the selected
region of interest.

3.2.2.4 Imaging Devices

For QUS imaging the ultrasound beam is scanned either mechanically or electroni-
cally with respect to the bone. One of several analysis regions of interest (ROI) may
be defined relative to anatomical landmarks of the bone or to topological features of
the obtained image. Average values can be calculated by averaging QUS parameters
within this region of interest (ROI). Typically size, form and ROI location are opera-
tor adjustable. However, a manual ROI determination increases precision errors thus
automatic ROI positioning is preferable. For example, in the calcaneus some devices
use the region of lowest attenuation in the greater tuberosity [46] to automatically
place a circular ROI in the posterior part of the calcaneus (Fig. 3.3).

Further substantial technological progress have been achieved with waterless
contact QUS imaging. One commercially available device uses two fixed transduc-
ers with a water-based gel for acoustic coupling: one single large transducer that
transmits a plane wave through the heel and on the receiving side a 590 multi-
element 2D array. This array employs an active focusing sub-aperture in order to
form a focused received ultrasound beam in the calcaneus mid-plane. Scanning of
the active focusing sub-aperture is performed electronically over the whole matrix
surface. The transducers are encased in thermo-regulated water balloons made of
compliant silicone membranes to accommodate different heel shapes, to establish
direct contact with the patient’s skin, and to keep the foot dry. A pump allows for
membrane inflation to conform closely to the patient’s foot and to provide large-area
imaging through a temperature-controlled medium. The device instantly provides a
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Fig. 3.3 Top: Illustration of transverse transmission at the heel. Comparison for a given subject
between the BUA image and standard plain X-ray radiography of the heel. Bottom: BUA images
of the heel from three different subjects with automatically positioned circular ROI. Typical char-
acteristics of a BUA image are: Field of view: 60×60mm2, pixel size: 1mm2

real time preview of the calcaneus. This eliminates “blind” measurements and per-
mits heel positioning adjustments prior to the quantitative assessment [47]. Another
substantially different prototype device for waterless contact QUS imaging using
two 2D arrays of transducers and permitting beam focusing at both the transmit and
receive stages has also been described [48].

3.2.3 Finger Phalanges Device

One commercial device measures the amplitude-dependent speed of sound
(Ad-SOS) at the distal metaphysis of the first phalanx of fingers I–IV. Measurements
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Fig. 3.4 Top: Illustration of transverse transmission measurement at the finger phalanges. Bottom:
Schematic illustration of the signal recorded in (a) a normal postmenopausal woman and (b) in an
osteoporotic postmenopausal woman

are carried out on each of the four phalanges and results are averaged. The instrument
is equipped with two 12 mm diameter, 1.25 MHz plane transducers mounted on
an electronic caliper that measures the distance between the probes (Fig. 3.4).
The probes are positioned on the mediolateral surfaces of the distal metaphysis of
the phalanx using the phalanx condyle as reference point. Coupling is achieved
with a standard ultrasound gel. The probe positioning is slightly varied until the
optimum signal (defined in terms of number of peaks and the amplitude of the
peaks, following manufacturer recommendations) is recorded, then Ad-SOS is
measured.

With this device, which measures the finger phalanges, TOF is defined as the
time between the emitted pulse and the first part of the signal that is above a prede-
termined amplitude threshold (Fig. 3.4). Thus TOF depends on the signal amplitude
relative to the predetermined threshold: the higher the signal amplitude, the shorter
the time of flight [49]. The velocity measured with this technique is amplitude-
related and has been termed amplitude-dependent speed of sound (Ad-SOS).
In osteoporotic bone, significant attenuation is observed and the amplitude of
the first signal is too small to trigger the read out electronics. Compared to normal
bone, such attenuation results in later signal detection and longer time of flight. In
the phalanx, curved propagation occurs [50] due to circumferential guided waves. In
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this case the exact propagation path length is unknown. Using the finger thickness
rather than the exact path length l in Eq. 3.3 results in an apparent speed of sound
rather than in an accurate velocity estimate.

The interaction of a plane incident wave with the phalanx generates multiple
pathways. A phalange can be considered as a hollow tube consisting mainly of corti-
cal bone surrounding the medullary canal filled with cancellous bone to some extent
and bone marrow, which is a fluid-like medium. The incident wavefront is partly
refracted as a longitudinal wave propagating through the cortex along a curved
pathway, while another pathway originates in the longitudinal wave transmitted at
normal incidence through the medullary canal [50–52]. Because speed of sound in
cortical bone is much higher than in soft tissue the first part of the received sig-
nal corresponds to a fast curved pathway through the cortex [50], while the wave
transmitted through the medullary canal arrives later. Finally, mode conversion or
multiple wave reflections occurs on interfaces and creates multiple additional late ar-
riving waves at the receiver. Several delayed and interfering components contribute
to the signal received after crossing the phalanx. The extraction of Ad-SOS yields
information related to the fastest part of the transmitted signal, only. Time inter-
vals between signals following different pathways and relative signal amplitudes
are influenced by material properties and by the bone morphology (cortical cross-
sectional area, area of the medullary canal, cortical thickness) [50, 53].

Enhanced signal analysis has been tested for the phalanx and several parameters
derived from the ultrasonic trace were derived such as the fast wave amplitude,
number of peaks, signal dynamic, bone transmission time, growth trend of the
peaks amplitude and other signal features. Several studies have pointed out the
value of some of these parameters to reveal information on structural features of
bone [50, 54]. For example, Barkmann et al. [50] in a study performed in human
phalanges have found that cross-sectional cortical area, medullary canal area, and
relative cortical area could be estimated from speed of sound and wave amplitude.
A different parameter, the ultrasound bone profile index (UBPI), resulting from such
enhanced signal analysis has been reported in literature. It is based on a combina-
tion of selected features of the ultrasonic signal specifically related to bone structural
properties. It is processed in a statistical approach to express the probability of frac-
ture incidence to provide automatic computer assisted analysis [55].

3.2.4 Forearm Device

A device to measure the ultradistal radius at the forearm in transverse transmission
has been developed (Fig. 3.5) [21]. The approach is based on the modelization of
propagation in cancellous bone using Biot’s theory (see Chaps. 5 and 11) which
predicts two distinct longitudinal waves denoted as fast and slow waves [56,57]. The
distal radius at 4% of forearm length, a site with high volume fraction of cancellous
bone, is set between a pair of confocally aligned broadband focused transducers
(diameter of 20 mm with a concave active area and a focal point of 40 mm, 1 MHz-
center frequency) through water filled bags.
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Fig. 3.5 Illustration of
transverse transmission
measurements at the forearm
(Courtesy of Isao Mano,
OYO Electric CO., LTD.)

Both transducers are moved simultaneously during scanning. The ultrasonic
beam is scanned in a raster pattern through the measurement site using a two-axis
scanning mechanism. Two scans are necessary. During the first scan, the transmit-
ted ultrasonic signals are recorded at intervals of 2 mm in both X-Y directions over a
scanning area of 28×28mm2. The principal interest of this first scan is to determine
the second scan position for ultrasonic measurements. The overall amplitude of the
transmitted signals is analyzed to obtain a local attenuation distribution of the mea-
surement site. The measured attenuation levels are converted into a color variation
and the local attenuation distribution is displayed as a pseudo-bone density image
of the measurement site (mapping of the distal radius, the distal ulna and some parts
of the palm). The local distribution of the propagation speed of the overall transmit-
ted signals is also displayed as a SOS image. These two images, together with the
measured values of attenuation and SOS, are used to confirm the bone geometry of
the measurement site and to determine the second scanning position, where bone
density and elasticity of cancellous bone are measured.

During this second scan (area of 4× 4mm2), measurements are performed at
intervals of 1 mm both in the transmission and echo modes. The transmitted signals
include both the fast and slow waves. Transmitted signals are analyzed to measure
the amplitudes and the propagation times (time of flight) of both the fast and slow
waves. The echo signals are analyzed to obtain the soft tissue thickness and the bone
thickness in mm. Several bone properties are estimated from the combination of
transmission and reflection measurements following the model extensively reported
in [6,21,58]. These included bone mass (bone mineral density (mg/cm3)) and bone
volume fraction BV/TV (%) of cancellous bone, thickness of cortical bone (mm),
and elastic constant of cancellous bone (GPa). Ultrasound properties are estimated
based on a model and must therefore be considered as “apparent” bone properties.
The good correlation between in vivo estimated bone density and that obtained from
site matched peripheral computed tomography measurements suggest a good reli-
ability of the developed system. However, the clinical usefulness of the combined
estimation of density and stiffness has yet to be validated.
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3.2.5 Hip Device

A limitation of the previously described devices is their application to peripheral
sites of the skeleton only. Site specific density measurements have the highest pre-
dictive power, in particular for the proximal femur. Osteoporotic fractures of the
femur cause high costs and considerable mortality. Technological developments
have recently been undertaken to adapt transverse transmission techniques to per-
form measurements directly at the hip in order to obtain a higher sensitivity to hip
fracture risk prediction [8, 22, 23].

Apart the size and specific design of the prototype adapted to measure the hip, the
measurement principles are similar to those of heel devices. The FemUS prototype
device developed by Barkmann et al. [22,23] comprises two ultrasound transducers
of 600 kHz center frequency mounted opposite to each other on a C-arm in a dis-
tance of 50 cm. Both transducers are able to transmit and receive ultrasonic waves.
The C-arm can be moved in two linear directions. Additionally, it can be rotated
around two axes. All movements are driven by stepper motors and are controlled by
a PC. For better ultrasound coupling the transducers are submerged in a temperature-
controlled water bath. A recess in the water bath allows positioning the patient who
is lying on a table between the transducers. Inflatable water filled membranes are
used to establish smooth contact between the water bath that contains the transduc-
ers and the patient’s skin avoiding air along the sound path of the ultrasound beam.

The proximal femur at the hip is more irregularly shaped compared to the calca-
neus (a more or less parallelepipedic shaped bone) and surrounded by a large amount
of soft tissue. Ultrasound propagation through the hip is more complex than through
the calcaneus and the received signal may result from the combination of multiple
waves transmitted through different pathways in different parts of the bone. Differ-
ent wave components with different shape and phase may interfere, resulting in a
complex signal. In particular, circumferential waves guided by the cortical shell may
interfere with waves transmitted directly through the trabecular compartment [59].
Therefore, more sophisticated signal processing techniques are requested to extract
the ultrasonic parameters from hip QUS measurements [60, 61].

3.3 Axial Transmission

In axial transmission techniques that were initially developed in the 1950s to study
fracture healing of cortical bone, a transmitter and a receiver were used to measure
the sound speed along the cortical bone layer parallel to its long axis. The transduc-
ers are placed on the skin and measure the arrival time of the wave which propagates
along the bone axis and arrives at the receiver first. In contrast to transverse trans-
mission techniques, which require a transducer to be placed on each side of the bone,
the transducer set-up is much easier in axial transmission, which therefore may be
applied to a greater number of skeletal sites.
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3.3.1 Principles of Axial Transmission Measurements

Several axial transmission devices have been developed. Although all axial trans-
mission approaches are based on the same basic measurement principles, different
waves may contribute to the measured signal. The signals obtained at the receivers
are the combination of all waves propagating axially along the long axis of the bone
(see Chap. 7). In the early development of the technique, attention was focused in
analyzing the signals in time domain and in determining the velocity of the first ar-
riving signal, denoted FAS. The time-of-flight (TOF) of the FAS is measured and
the velocity is calculated from either the transmitter-receiver distance divided by
TOF or by dividing the distance between two receivers by the corresponding differ-
ence in TOF of the signal. The time criterion used to measure TOF is not always
clearly specified by the manufacturers, although an early time point in the FAS is
presumably used to avoid inaccuracies in time determination due to interference of
FAS with later arriving signals. In some devices, speed of sound is derived from the
slope of the curve of TOF versus dER, the transmitter-receiver distance, as the posi-
tion of the receiver is moved stepwise along the interface [62–64] (Fig. 3.6). It was
found in several clinical studies that FAS velocity discriminates healthy subjects
from osteoporotic patients [5, 65–68].
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Fig. 3.6 Illustration of axial transmission at the forearm. Top: ultrasonic probe for bidirectional
axial transmission measurements. The front layer of the probe is shown on the insert. Two emitting
zones are placed at the extremities of the probe. The receiving zone is central. Bottom (a) principle
of axial transmission and signal acquisition using a receiver array; (b) typical signal acquired on
the radius in vivo
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The FAS can be seen as a guided S0 wave in the low frequency regime (i.e.,
low cortical thickness-to-wavelength ratio) and as a lateral compression wave in the
high frequency regime (i.e., high cortical thickness-to-wavelength ratio) [69]. As
these two modes of acoustic waves are differentially sensitive to the mechanical and
structural properties of cortical bone, it has been suggested to separate these two
modes in the receive signal by making measurements at two frequencies. A dual-
frequency axial transmission prototype has been described, in which measurements
are conducted at 0.1 and 1.0 MHz [70].

The possibility of measuring wave modes other than the first arriving signal in
cortical bone has been investigated recently [71–74], suggesting that such measure-
ments could yield additional diagnostic information of the material and geometric
properties of bone [75]. An energetic slower signal component arriving after the
FAS has been observed [76] and shown in vitro to be consistent with the antisym-
metric guided wave (A0, plate model) or the fundamental flexural tube mode (F11,
tube model) [77]. This mode is especially sensitive to the cortical bone thickness.
Thus, if correctly identified and extracted by appropriate signal analysis, it may be
suitable for data inversion processes [77]. More details can be found in the refer-
ence [78] and in Chap. 7. Signal processing techniques were proposed to isolate this
signal component and to measure its phase velocity. These include the group veloc-
ity filtering technique proposed by Moilanen and coworkers [71,78] and the singular
value decomposition proposed in Sasso et al. [73, 79]. The research strategy is now
to extract and characterize multiple propagation modes from a single acquisition
dataset using arrays of transducers [80].

Details on the physical interpretation of the measured signals and their relation-
ships to several bone characteristics (e.g., cortical thickness, porosity, mineraliza-
tion) can be found in Chap. 7.

3.3.2 Axial Transmission Devices

Several devices have been designed to measure the SOS of ultrasonic waves axially
transmitted along cortical bone. A first instrument was introduced to measure the
longitudinal transmission of an acoustic 250 kHz pulse along the cortical layer of
the mid-tibia [7] defined as the mid-point between the distal apex of the medial
malleolus and the distal aspect of the patella. The probe is placed parallel to the
longitudinal axis of the bone (see Fig. 3.6). The transducers are coupled to the skin
through standard ultrasound gel. The transit time of a pulse along a defined 50 mm
distance is measured. The probe is moved back and forth across the tibial surface
and velocity readings are continuously recorded. The resultant velocity is an average
of the five highest percent readings during the scan.

Multi-site axial transmission was introduced commercially as the direct succes-
sor to tibial axial transmission. Similar to tibial axial transmission, the fundamental
physical principle behind multi-site axial transmission is the measurement of SOS
at approximately 1.25 MHz instead at 250 kHz. Basic measurement principles are
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identical in both techniques, but different waves may be involved in the fastest part
of the signal due to the significant difference in the operating frequency. The main
advantage of a multi site device is the possibility of measuring skeletal sites which
may be more relevant for fracture risk prediction than the tibia. Currently, the pre-
ferred anatomic site for multi-site axial transmission is the distal one-third radius,
although other peripheral sites have been investigated as well [5, 65, 68]. In one of
these devices that is commercially available, the transit time of a center frequency
pulse (1.25 MHz) along a defined distance between transmitter and receiver is mea-
sured. The probe contains four transducers; a transducer pair and a receiver pair.
In order to increase the amplitude of the transmitted and received signals, the trans-
ducers are mounted at an angle close to the critical angle relative to the surface of
the probe.

The four ultrasonic transducers are used for a determination of acoustic soft
tissue velocity and to compensate changes in the tissue thickness along the bone.
Both factors severely impact on the trueness of the ultrasound propagation mea-
surement through bone. Although the exact algorithm used by the manufacturer
remains undisclosed, one may reasonably assume that several ultrasonic record-
ings are performed by combining direct transmission or reflection between different
transmitters and receivers, so that several acoustic pathways involving soft tissue
path portions of the same length and variable bone path length may be analyzed.
Thus processing different signal propagation times yields the signal propagation
time in a cortical portion.

To avoid the measurement technique to be operator-dependent, specific scanning
methodologies were developed that must be followed carefully to obtain repro-
ducible results. For a distal radius measurement the arm is marked at the midpoint
between the elbow and the tip of the third finger. The probe is positioned adjacent
to the mark on the proximal side. A gel is applied to the probe to ensure proper
ultrasound coupling. A measurement is performed by placing the probe parallel to
the longitudinal axis of the bone. A scan is performed by moving the probe face
circumferentially around the bone. A minimum of 150–200 discrete velocity read-
ings are recorded. Time of flight is measured for each trace. During scanning, SOS
is determined in many different positions with a pulse repetition frequency of about
0.1 Hz to yield an SOS profile of the bone.

Every single sequence of the ultrasonic transmission and reception is validated
using proprietary procedures. The resulting velocity is an average of the 5% highest
readings. Measurement quality is ensured by requiring three consistent scan cycles
to obtain an SOS result. The three SOS values are checked for consistency and
quality. If an outlier value is detected the user is requested to perform a fourth and
sometimes even a fifth cycle in order to obtain three statistically consistent SOS
values (i.e., the coefficient of variation must not exceed a predetermined thresh-
old, typically 1% or 1.5%). Under normal conditions the entire measurement takes
between 1 and 2 min.

The device offers a family of small hand-held probes designed to measure various
skeletal sites under different soft tissue thickness conditions. The smallest probes
can be used to measure skeletal sites where the layer of covering soft tissue is the
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thinnest such as the finger phalanxes, while the larger probes are dedicated for skele-
tal sites covered by a thicker layer of soft tissue such as the distal one-third radius.
Still some patients cannot be measured due to thick soft tissue [68]. A minimum
distance must separate the source from the receiver to observe the lateral wave or
the guided modes. This has important implications for clinical measurements in
patients and probably explains why this axial transmission implementation fails in
some patients. Weiss et al. reported that in a study of 1610 women measuring the
radius failed in about 0.6% [68].

Bossy et al. have developed a bi-directional axial transmission probe (1 MHz)
(Fig. 3.6) in which an ultrasonic pulse is transmitted along the bone surface in two
opposite directions from two sources placed at both ends of a distinct group of
receivers [81]. A simple combination of the time delays derived from waves propa-
gating in opposite directions efficiently corrects automatically for soft tissue [81].

In the approaches described above, the time-of-flight of the FAS is measured
and used to calculate velocity. Other axial transmission prototypes devices have
been described based on a different approach, which is to use low frequencies and,
in some cases, special transducers or coupling conditions, in order to excite and
measure guided waves propagating in the bone at relatively low velocities. One
such device uses 200 kHz broadband transducers [63] and another uses specially-
designed 110 kHz needle transducers [82, 83]. A comprehensive review of these
approaches has been given by Moilanen [78].

3.4 Discussion and Conclusion

QUS technologies have been developed and adapted to measure mostly peripheral
skeletal sites such as the heel, forearm or hand phalanges, and recently the central
skeleton at the hip. QUS techniques have found widespread clinical use to predict
bone fragility not only in osteoporotic patients, but also in a wider context of bone
diseases in female, male and pediatric populations [9, 84–87]. Preliminary studies
suggest that this technique may be a useful method of assessing changes in bone
health in preterm infants for whom dual energy X-ray absorptiometry is unsuitable
for such settings [88]. An ultrasound wearable system for remote monitoring of the
healing process in fractured long bones has also been reported [72].

For a given class of devices, e.g., transverse transmission or axial transmission,
most implementations are based on similar physical principles despite some technol-
ogy diversity. However, the propagating characteristics may vary depending on the
skeletal site (cancellous bone versus cortical bone) and the technical implementation
(e.g., interrogating frequencies). The measured signals with various technologies are
thus differently affected by different bone material or structural properties.

A consensus has been reached stating that QUS properties (BUA, SOS) of
cancellous bone are a good surrogates measures of site-matched bone mineral den-
sity (BMD): evidences of strong positive linear relationships between BUA and SOS
with BMD were obtained both in vitro (r2 ∼ 0.70–0.95) [26,39,89–94] and in vivo
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(r2 ∼ 0.60–0.80) [95, 96]. Building on these results, some heel devices provide an
output variable termed estimated heel BMD measured in g · cm−2 [97]. The limited
impact of cancellous bone microarchitecture on ultrasound values measured uniaxi-
ally in transmission [92] prompted a search for other ultrasound parameters, such as
backscatter [98, 99] or reflection [100–102] that may reflect bone microarchitecture
or the intrinsic quality of bone tissue.

Axial transmission SOS reflects both structural and intrinsic material proper-
ties of cortical bone. Experimental studies on excised human radii demonstrated
the sensitivity of the velocity of the FAS (SOSFAS) to porosity and degree of
mineralization [103] and also to intrinsic elastic properties [104]. Up to 84% of
the variability of SOSFAS is explained with a combination of cortical thickness,
porosity and acoustic impedance reflecting intrinsic stiffness [104]. While SOSFAS

correlates weakly with cortical thickness and moderately with BMD, the velocity
of the energetic slower signal component arriving after the FAS (consistent with
the antisymmetric guided wave A0) correlates moderately with cortical thickness
but weakly with BMD [64, 105]. This result obtained in vitro on radius samples
has suggested that a multimodal approach in which several propagating modes are
characterized would be appropriate to yield a more complete view of cortical bone
status. Sophisticated axial transmission approaches are currently explored in which
multiple propagation modes are identified and their propagation velocity are char-
acterized with the ultimate goal to extract several indicators on various components
of bone strength.

Even for a class of devices, such as, for example, heel transverse transmission,
differences exist in hardware, transducer design, analysis regions, signal processing
algorithms. Systems also vary with respect to data acquisition procedures, coupling,
and output variables. So far there is no standardization among manufacturers. Due
to the lack of standardization, different technical implementations cause substantial
differences in QUS variables values between different commercial devices. Until
there is an accepted standard for ultrasound measurement, the results obtained with
one device cannot be directly compared to those from another, even though both
claim to deliver the same measurements such as BUA or SOS at the heel or SOS at
the radius. The multitude of modalities, techniques, and implementations is confus-
ing for the clinician who needs support in clinical decisions. Obviously this requires
clear definitions of measured quantities and standardization of acquisition and anal-
ysis routines. From a clinical perspective, a comparison of the diagnostic potential
across different techniques and modalities is required. From a technical perspec-
tive, the development of quality standards and cross-calibrations of QUS scanners
is necessary, so that results from different devices can be compared.

The potential of ultrasound extends far beyond the currently available tech-
niques and is largely unexploited. Most active research is carried out in QUS to
develop new measurement modes (e.g., scattering, see Chap. 6), exploit multiple
propagation modes (see Chap. 7) and assess microdamage (Chap. 15). All these new
developments should result in new QUS variables and systems able to provide in-
formation on material or structural properties other than density, and ultimately on
bone fragility and fracture risk.
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and C. C. Glüer, “In vivo measurements of ultrasound transmission through the human prox-
imal femur,” Ultrasound Med Biol 34(7), 1186–1190 (2008).
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the geometry of human finger phalanges using quantitative ultrasound in vivo,” Osteoporosis
International 11, 745–755 (2000).

51. C. M. Langton, C. M. Riggs, and G. P. Evans, “Pathway of ultrasound waves in the equine
third metacarpal bone,” J Biomed Eng 13(113–118) (1991).

52. R. McCartney and L. Jeffcott, “Combined 2.25 MHz ultrasound velocity and bone mineral
density measurements in the equine metacarpus and their in vivo applications.,” Med Biol
Eng Comput 25, 620–626 (1897).

53. S. Sakata, R. Barkmann, E. M. Lochmuller, M. Heller, and C. C. Gluer, “Assessing bone
status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of
human finger phalanges,” J Bone Miner Res 19(6), 924–930. Epub 2004 Jan 2027 (2004).

54. R. Cadossi, F. de Terlizzi, V. Cane, M. Fini, and C. Wuster, “Assessment of bone architecture
with ultrasonometry: experimental and clinical experience,” Horm Res 54(Suppl 1), 9–18
(2000).
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Chapter 4
Clinical Applications

Reinhard Barkmann and Claus-C. Glüer

Abstract Quantitative Ultrasound (QUS) methods measure aspects of bone
strength which are associated with the fragility of the bone. It has been proven
that QUS (at least for some devices measuring at the heel bone) can predict os-
teoporotic fractures in elderly women with a predictive power similar to that of
the recommended method DXA, which measures x-ray attenuation in the mineral
phase of the bone to calculate a bone mineral density. However, the use of QUS in
clinical practice is still uncertain. Unsolved quality assurance issues, the diversity
of the approaches and the unanswered question, if patients with low QUS results
will most likely profit from a therapy still limit the prospects of the method for
widespread clinical use. Nevertheless, QUS has the potential for a clinical appli-
cation. Advantages over DXA are the smaller size and lower price of the devices
and the lack of ionizing radiation. Once the mentioned problems will be solved,
QUS could become an important part in osteoporosis management, at least in rural
environments and less-developed countries with limited access to DXA.

Keywords Diagnosis · Fracture risk · Monitoring · Osteoporosis · Quality control
· Treatment

4.1 Introduction

Most guidelines for the management of osteoporosis recommend Dual X-ray
Absorptiometry (DXA) measurements for the diagnosis of osteoporosis and as part
of the diagnostic procedure for the assessment of the osteoporotic fracture risk and
treatment initiation. DXA is a method measuring x-ray attenuation in the mineral
phase of the bone to calculate a bone mineral density (BMD). Special purpose DXA
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devices are relative large and expensive, and access is limited in rural environments
and less-developed countries. Quantitative Ultrasound (QUS) methods also measure
aspects of bone strength which are associated with the fragility of the bone [1, 2].
Several prospective and cross-sectional studies have been published proving that
QUS (at least for some devices acting in transverse transmission at the heel bone)
can predict osteoporotic fractures in elderly women with a predictive power similar
to that of DXA [3, 4].

QUS has advantages over DXA. The devices are inexpensive and transportable
and the method is free of ionizing radiation [5,6]. Despite of the fact that the ability
of QUS to predict osteoporotic fracture risk is well established, its use in clinical
practice is still uncertain. Unsolved quality assurance issues, the diversity of the
approaches and the unanswered question, if patients with low QUS results will most
likely profit from a therapy still limit the prospects of the method for widespread
clinical use [7, 8].

We will describe the potential of QUS for a clinical application in osteoporosis
management, the status today and its future perspectives.

4.2 QUS for Fracture Risk Assessment

The best studies with regard to the clinical application of QUS describe the es-
timation of osteoporotic fracture risk. It has been shown in cross-sectional and
prospective studies, that the power of transverse transmission QUS of the heel is
comparable to DXA of the hip or spine with regard to the estimation of osteoporotic
fracture risk [4]. This holds true for vertebral and hip fractures as well as for the
global fracture risk. However, the differences between different QUS technologies
have to be taken into account, and even if different devices use the same method they
may perform differently because of technological implementation details. Available
data clearly demonstrate strong and consistent predictive power for fracture risk for
several different QUS devices measuring at the heel bone while the performance of
QUS devices measuring at other skeletal sites is poorer.

In a consensus statement the International Society for Clinical Densitometry
(ISCD) has summarized the performance of heel QUS devices in comparison with
DXA with regard to prospective studies for the prediction of osteoporotic fractures
in postmenopausal women [4]. Relative risks or hazard ratios for hip fractures range
between 1.9 and 2.5 for the Achilles and the Sahara devices, for vertebral fractures
between 1.6 and 2.3 for the Achilles device and between 1.3 and 1.7 for non verte-
bral clinical fractures for the Achilles and the Sahara devices. In the mean time the
Achilles was replaced by a successor model, the Achilles InSight [9]. Total hip or
femur neck BMD measurements by DXA showed a similar performance.

In a study comparing the performance of four heel QUS devices and one de-
vice measuring the phalanges in transverse transmission the heel devices (Achilles,
DTU-one, QUS-2 and UBIS 5000) were predictors of hip and vertebral fractures at
least as well as central DXA [10]. The phalanges QUS DBM Sonic failed to predict
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hip and vertebral fractures in concordance with another study [11] and showed
modest predictive power for osteoporotic fractures of any type.

From these data it is evident that validated heel QUS devices predict osteoporotic
fractures in postmenopausal women and in men over the age of 65 (shown for hip
and all non vertebral fractures) independently and as well as central DXA BMD [4].

4.3 Diagnosis of Osteoporosis

Osteoporosis is defined as a ‘disease characterized by low bone mass and mi-
croarchitectural deterioration of bone tissue leading to enhanced bone fragility and
a consequent increase in fracture risk’ [12]. In order to introduce a quantitative
measure of osteoporosis the World Health Organization (WHO) proposed BMD
measurements using DXA in postmenopausal Caucasian women. The BMD value of
an individual patient is expressed in terms of the number of standard deviations from
the mean BMD of a healthy young-adult reference population, commonly referred
to as the T-score [13]. Osteoporosis has been defined by a T-score of −2.5 or less
based on BMD measurements applied to the hip and lumbar spine (the radius is no
longer considered an adequate measurement site for diagnostic purposes). However,
it is not possible to apply the WHO criteria to other technologies and other skeletal
sites and it cannot simply be used for QUS. DXA and different QUS approaches
may show very different age-related declines [14–16]. Consequently, the number of
subjects who fall below the T-score = −2.5 threshold will vary and different per-
centages of subjects will be identified as osteoporotic. For different QUS devices
the prevalence of 60 year old women with a T-score below −2.5 varies from 4% to
50% [4]. By using device and variable specific thresholds it seems as if this problem
can be overcome, because these thresholds could be chosen appropriate so that the
same number of patients would be classified as osteoporotic. However, the correla-
tion between peripherally measured QUS variables and axial BMD is moderate and
a strong mismatching would occur, e.g. a considerable number of patients would
be classified as osteoporotic by one method but not by the other and vice versa
(Fig. 4.1). One has to conclude that peripheral QUS cannot be used to diagnose
osteoporosis as long as DXA remains the gold standard for diagnosis. However,
one should keep in mind that the diagnosis of osteoporosis is only indirect, i.e. by
means of exclusion of other causes of bone loss. Moreover, in a different definition
of osteoporosis put forward by an NIH panel [17] the key criterion for osteoporo-
sis is reduced bone strength, not reduced bone density. According to this definition,
DXA and other methods such as QUS could be used to identify subjects with the
diagnosis of osteoporosis. However one should note that there is no consensus how
this could be done in clinical practice. Moreover, different methods would identify
different patients as being osteoporotic and this would create confusion in clinical
practice. Therefore, for the time being, DXA remains the only accepted method for
diagnosis of osteoporosis.
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Fig. 4.1 Correlation between total hip BMD and calcaneus SOS. The dotted lines mark the os-
teoporosis thresholds for both variables. Only in the lower left rectangle the same patients are
classified as osteoporotic by both methods. In the lower right and upper left rectangle a consider-
able amount of patients are misclassified (Data from the OPUS study [18])

4.4 Treatment Initiation

Because QUS cannot be used to diagnose osteoporosis it is not clear whether QUS
can be used to initiate a treatment. For peripheral DXA a triaging approach has
been suggested, applying technique-specific thresholds to classify patients accord-
ing to their risk of osteoporosis [19]. In this approach a technique-specific upper
BMD threshold was defined identifying women without osteoporosis at a level
of specificity of 90% – these patients do not require treatment. Women with a
BMD below a technique-specific lower threshold are classified as osteoporotic at
a level of sensitivity of 90% and should be treated without a further central DXA
measurement. For women with a result between these thresholds the diagnosis is
unclear and a central DXA measurement should be performed additionally. This
approach could also be applied to QUS-variables. However, QUS and central DXA
results correlated only at a level of approximately R2 of 0.2–0.4 [20, 21]. In its
recent position with regard to QUS the ISCD has calculated these numbers for two
QUS devices concluding that 56% of the women have QUS results between the two
thresholds and thus would still require an additional DXA measurement but for the
remaining 44% a QUS result would be sufficient. This number could be enhanced if
QUS approaches with stronger correlation to central DXA could be developed. First
measurements with an experimental device for femur QUS measurements show a
stronger correlation of R2 = 0.7 with hip BMD [22] and the number of patients
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who would not have to be referred to a DXA measurement increases to 90%. This
device, while not yet available for clinical use shows the potential of site-specific
QUS approaches, specifically for measurements at the hip.

Despite of their moderate correlation QUS and central BMD have similar power
to predict osteoporotic fractures. Not exactly the same patients are classified as os-
teoporotic, nevertheless, low results in BMD and QUS both are associated with
a high fracture risk. But the question still remains, if patients, who are identified
by QUS as having a high fracture risk, will profit from a therapy, i.e. will bene-
fit from a significant reduction in fracture risk. For DXA osteoporosis treatment
agents reduce vertebral fracture risk by about 50–70% and appendicular fracture
risk by about 30% [23, 24]. Currently, there are no studies showing similar reduc-
tions for QUS, because usually patients for pharmaceutical treatment studies were
selected by low axial DXA results. Measured at the same site, heel QUS and BMD
are strongly correlated [8], which shows that at trabecular sites QUS and DXA pre-
dominantly measure the same aspects of bone strength. Therefore, it is unlikely that
studies in future will show performance for heel QUS inferior to that established for
axial DXA.

Recently, in national and international guidelines for osteoporosis management
the paradigm for treatment recommendation was changed. Instead of the WHO
criterion the level of fracture risk based on age, lifestyle, clinical risk factors
and a quantitative measure (usually DXA) is proposed to derive an intervention
threshold [4]. In the future, a similar approach might be applicable based on QUS
results as a quantitative measure [25, 26].

4.5 Monitoring Treatment with QUS

In general, peripheral skeletal sites are less sensitive to treatment induced changes
compared to axial sites, specifically measurements at the spine. This is disadvanta-
geous for QUS methods, which are only applicable at peripheral sites (unless their
precision would be better than the precision of axial methods like DXA, which
so far is not the case). The picture gets more complicated because different QUS
methods exist. There are only few studies dealing with the effect of pharmaceutical
treatment on QUS results, showing no clear evidence that QUS is useful for treat-
ment monitoring [27–30]. Best performance has been shown for QUS at the heel,
which shows a similar pattern as axial DXA in patients treated with antiresorptive
drugs [4]. This may be due to the fact that both the calcaneus and the vertebral bod-
ies largely consist of highly responsive trabecular bone. Up to date only few studies
have been published for QUS devices and for most of them longitudinal sensitiv-
ity, i.e. the ratio between responsiveness and precision was better for DXA of the
spine than for peripheral QUS [4]. Since responsiveness cannot be altered the goal
should be to improve the precision of QUS approaches to maximize longitudinal
sensitivity.
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4.6 Quality Control

An important issue for clinical utility is the establishment of sufficient quality
control procedures. These include monitoring of the stability of the devices as well
as guidelines for the handling of error sources.

For QUS measurement errors can emerge from wrong positioning, inadequate
consideration of the impact of soft tissue properties or inadequate coupling between
transducers and the skin of the patients. To achieve sufficient accuracy anatomically
consistent regions of the bone must be measured with QUS. The use of an imaging
system may help to overcome positioning errors by placing a ROI on the image
[31, 32]. The prevention of measurement errors due to incorrect positioning is of
great importance for the individual subject. Creation of an image also permits the
documentation of the correct positioning by the operator and the validity of the
measurement, issues that are particularly relevant for longitudinal follow-up.

QUS variables are influenced by the properties of all materials being penetrated
by the ultrasound beam. For example, the thickness and the temperature of the
skin and of subcutaneous tissue have an impact on the propagation of the wave.
Variations in the heel thickness change SOS due to the changes in the bone-to-
soft-tissue-ratio along the ultrasound pathway. Compared to gel-coupled devices,
for water-based systems a smaller effect can be anticipated because the acoustical
parameters of oedema and water are quite similar [33, 34]. The temperatures of the
fatty layers around the calcaneus affect particularly the SOS variable [33]. This is
considered to be the strongest error source. Warming up of the foot prior to the mea-
surement could be one recommendation; definition of a procedure of correcting the
QUS results using a foot temperature measurement might also or further enhance
the performance.

The achievement of a good quality transmission of the ultrasonic beam into
the body by using a coupling gel or liquid is essential. In systems using water
as coupling medium air bubbles in the water and variations in water temperature
represent potential error sources which can be avoided by adding surfactants and
using temperature control. In gel-coupled systems, errors may be caused by the
temperature-dependence and aging of coupling pads [33].

Monitoring the performance and stability of the devices by regular quality con-
trol measurements using appropriate phantoms is a precondition for the assessment
of good measurement quality. A phantom should emulate the in vivo measurement
as much as possible in terms of geometry and acoustic properties. This can best
be achieved with an anthropomorphic phantom. Factors affecting the stability like
temperature variations also have to be considered. Presently, there are no universally
accepted QUS phantoms, only “manufacturer specific” non-anthropomorphic phan-
toms. However, it is unknown to what extent changes in phantom results reflect true
changes in vivo and if such devices can be used for the calibration of the system.
Although some attempts have been made to build reliable phantoms [35–38] this
issue has not yet been solved satisfying.
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4.7 Summary

There is strong evidence that (at least some) QUS methods can be used to predict
osteoporotic fractures as well as central DXA. The most promising approach for
the clinical use of QUS seems to be the estimation of the osteoporotic fracture risk
by combing a QUS-measurement of the calcaneus (using a validated device) with
clinical risk factors. Once it has been shown that patients with low QUS results
profit from a therapy as well as patients with low DXA results this procedure might
obviate the need to obtain DXA results in all patients considered for treatment. In
the mean time, quality assurance concepts should be improved, including optimized
QUS phantoms, stringent quality control procedures and guidelines for handling of
error sources and training of the users.
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Chapter 5
Poromechanical Models

Michal Pakula, Mariusz Kaczmarek, and Frederic Padilla

Abstract This chapter reviews the Biot’s model for predicting propagation of
ultrasonic waves in cancellous bone. A presentation of the general theory, includ-
ing recent developments in the field of poroelastic modelling is proposed. These
include micro-inhomogeneity in the fluid flow, thermal conduction effects, macro-
scopic viscous stresses and micro-poromechanical models such as the multi-layer
model. Studies comparing empirical results with predictions from different versions
of the Biot’s model are reviewed, and the relevance of these models is discussed.
A parametric analysis is performed to illustrate the strong sensitivity of the theoret-
ical predictions to the input parameters.
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5.1 Introduction

Cancellous bone is a porous medium, composed of connected solid trabeculae (the
solid frame or skeleton) filled with marrow (the saturating fluid). For in vitro ex-
periments, marrow is frequently replaced by water. This is why numerous attempts
have been made to model ultrasonic wave propagation in cancellous bones using
the Biot’s theory [1–3], the most fundamental and well known model of wave prop-
agation in porous media. Since the original Biot’s theory is not yet validated for
trabecular bones more recent developments in the field of poroelastic modelling
(e.g. some micromechanical models like the multi-layer model) are also considered.

Macroscopic two-phase modelling of wave propagation in fluid saturated porous
materials, particularly bones, is based on the concept of superimposed interact-
ing continua to describe the solid phase, or skeleton (with its organic and mineral
components), and the fluid phase (marrow). The field of modelling known as
poromechanics takes into account the porous and permeable nature of cancellous
bones, assuming that the skeleton and pore fluid can carry loads and that the fluid can
be transported in the pore space as illustrated by the Fig. 5.1. Moreover, in contrast
to single phase theories, the structure of the skeleton can be described in porome-
chanics by parameters characteristics of the inertial, elastic and viscous properties
of the two phases. The poromechanical approach predicts specific features in the
types of wave modes, in the mechanisms of dispersion and attenuation, and in the
forms of interaction at bone boundaries, some of which were indeed observed in
experimental study of cancellous bones.

This chapter reviews the application of the original Biot’s theory and its more
recent developments to model the ultrasonic propagation in fluid saturated cancel-
lous bones.

In a first part, the theoretical formulation of the Biot’s model is presented. The
original Biot’s model equations are given as well as its subsequent developments
based on more general theories like the theory of mixtures [4, 5] and on modelling
techniques such as upscaling methods [6–8]. This presentation is not limited to
the models already applied to predict wave propagation in bones. It also describes

Fig. 5.1 Schematic illustration of a loaded piece of bone along with transport of fluid
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additional effects which were introduced in other domains like earth sciences,
acoustics or materials sciences [9–11], and which could potentially play a signif-
icant role during propagation in bones.

The second part of the chapter is a review of the studies comparing empirical
results obtained in cancellous bones with predictions from different versions of the
Biot’s model. This review is followed by a sensitivity analysis of the theoretical
predictions to variations in the input parameters, which illustrates the difficulty of
use of poromechanics models due to the potentially large number of unknowns and
the large inter-specimens variability in bones.

5.2 Biot Theory

5.2.1 Balance Equations

The reader may refer to Chap. 2 for the basic knowledge on wave propagation, which
is necessary to understand this chapter. Assuming that the pore fluid is homogeneous
(partial saturation or composition of immiscible fluids are not considered) and that
there is no mass exchange between the fluid and the skeleton, the general form of
the balance equations for mass and linear momentum for the phase α (with α = s
for solid skeleton or f for fluid) can be written as:

dα

dt
ρα + ρα∇ ·vα = 0

ρα dα

dt
vα −∇ ·Tα −ραgα = Rα (5.1)

where, ρα ,vα are the macroscopic mass density and velocity vector, Tα denotes
average stress tensor, gα is the density of body forces, and Rα stands for the inter-
action force or linear momentum exchange. The interaction forces and the operator
of material time derivative satisfy the following relationships:

Rs = −R f ,

dα

dt
=

∂
∂ t

+ vα ·∇.

When the stress tensors are symmetric, body forces are insignificant, and effects re-
quiring energy balance and additional degrees of freedom, e.g. related to changes
of porosity, are negligible the linearized two-phase model of wave propagation
can then be based on the two equations of linear momentum for the solid and the
fluid phases:

ρ s ∂
∂ t

vs −∇ ·Ts = Rs

ρ f ∂
∂ t

v f −∇ ·T f = R f (5.2)
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Taking into account the porosity of the material φ (defined as the ratio of the pore
volume over the total volume of the sample), the macroscopic mass densities and
stress tensors of the phases can be expressed by the following intrinsic averages:

ρ s = (1−φ)ρ̄ s, ρ f = φρ̄ f

Ts = (1−φ)Ts
, T f = φT

f

where ρ̄ s, ρ̄ f are the intrinsic mass densities of the solid and the fluid phase, and

T
s
,T

f
are the appropriate intrinsic stress tensors.

5.2.2 Boundary Conditions

Modeling the interaction of waves with boundaries (including wave’s reflection and
transmission) or the generation of surface waves requires the use of boundary con-
ditions. Usually, these conditions refer to the interfaces (contacts) between the fluid
filled porous material and another fluid, an impermeable solid or another fluid sat-
urated porous medium [12]. In general, conditions of continuity of volumetric flux
and total stresses and/or pressure are required.

The condition of continuity of volumetric flux (derived from the continuity of
mass flux) determined on both sides of the interface (denoted by + and −) is

(ṽ+− ṽ−) ·n = 0 (5.3)

where ṽ is the vector of volumetric flux and n denotes the normal unit vector to the
interface. While for single phase materials the vector of volumetric flux is equal to
the velocity, in the case of a porous medium it reads

ṽ = (1−φ)vs + φv f .

If a porous medium is in a contact with another porous medium or a solid, the
equality of the normal components of the velocities of solids is also required.

The condition of continuity of normal and tangential components of total stress
can be written as

[(T+ −T−) ·n] ·n = 0

[(T+ −T−) ·n] ·£ = 0 (5.4)

where £ is the tangential unit vector. The total stress T for single phase materials is
identical with the appropriate stress tensor for solid or fluid, but for saturated porous
materials, it is the sum of the stress tensors of the two phases:

T = Ts + T f .

If at the boundary there is a contact between fluids (an ambient fluid and the fluid in
the pores), the continuity of pressure is additionally required, i.e.
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p+− p− = 0

where p denotes the pore pressure or the pressure in the free fluid.
Modeling the interaction of waves with a boundary of porous material which

leads to generation of surface waves requires the stress free boundary conditions:

(T ·n) ·n = 0, (T ·n) ·£ = 0, p = 0 (5.5)

More general conditions including dissipation, slip effect or frequency dependence
can also be considered [12–15].

5.2.3 Constitutive Equations

The specific properties of the materials are described within constitutive models. In
the case of poromechanics, the model usually constitutes equations for stress tensors
Tα and interaction forces Rα .

5.2.3.1 Isotropic Case

Assuming an isotropic porous material fully saturated, with an elastic skeleton,
Biot [1] postulated that:

Ts = 2Nεs +(Aθ s + Qθ f )I

T f = (Qθ s + Rθ f )I (5.6)

where

θ α = trεα

are the dilatations, εα the strain tensors, and N, A, Q, R elasticity constants. It should
be noticed that the above model neglects viscous components in stress tensors (and
as a result in surface forces), and assumes spatially uniform porosity. If the material
constituting the skeleton is microscopically homogeneous, the elasticity constants
A, Q and R can be related to physically well defined and measurable parameters of
the porous medium: the porosity (φ ), the bulk modulus of the solid material and
of the fluid (Ks, Kf ), and the bulk modulus of the drained skeleton (Kb). These
constants are given by:

A =
(1−φ)

(
1−φ − Kb

Ks

)
Ks + φ Ks

Kf
Kb

1−φ − Kb
Ks

+ φ Ks
Kf

+
4
3

N

Q =
φ

(
1−φ − Kb

Ks

)
Ks

1−φ − Kb
Ks

+ φ Ks
Kf

, R =
φ2Ks

1−φ − Kb
Ks

+ φ Ks
Kf

(5.7)
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The form of the interaction force proposed by Biot [1] includes viscous and dynamic
couplings, proportional to relative velocities and relative accelerations of phases,
respectively:

Rs = −R f = b(v f −vs)+ c
∂
∂ t

(v f −vs) (5.8)

In the simplest case (low frequency range [1]) the coefficients b and c define the
intensity of viscous and dynamic interaction forces. The coefficient b is approxi-
mated assuming a quasistatic flow (Darcy’s flow), while the coefficient c is derived
assuming a flow of ideal fluid. They can be written as:

b = b0 =
η
κ

φ2, c = c0 = ρ f (α −1) (5.9)

where η is the viscosity of fluid and κ and α are parameters describing structure of
the porous material called permeability and tortuosity. The last two parameters are
a measure of the viscous and inertial interactions between phases in the case of a
linear quasistatic flow and in the case of a flow of ideal fluid, respectively.

A better approximation of the interaction forces Rs and R f can be found by tak-
ing into account the fact that transient spatial distribution of microscopic velocities
and accelerations of the two phases (particularly fluid) depend not only on the vis-
cosity and pore structure, but also on the frequency. This fact led Biot [2] to consider
the relation (Eq. 5.8) for simple shapes of pores (infinite slit and circular channels)
with axes parallel to the direction of wave propagation, and to introduce a complex,
frequency and structure dependent correction to the parameter b0. The equivalent
model can be formulated by scaling the parameters b and c appearing in Eq. 5.8 by
two real, frequency and structure dependent functions ϕ and ψ :

b = ϕb0, c = ψc0 (5.10)

In the case of circular pores, these two functions can be written as [2]

ϕ = Re

{
ΩJ1(Ω)
4J2(Ω)

}

ψ = 1− ηφ
ωρ̄ f κ(α −1)

Im

{
ΩJ1(Ω)
4J2(Ω)

}
(5.11)

where Ω =
√

i ωd2 ρ̄ f

η , d denotes the characteristic size of pores, J1, and J2 are Bessel

functions of the first kind, i =
√−1, ω = 2π f and f is frequency.

5.2.3.2 Transverse Isotropy Case

Modeling the mechanical and structural anisotropy of bones for the case of trans-
verse isotropy can be done by postulating appropriate constitutive relationships for
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stress tensors and interaction forces, and by assuming that the other properties of
the material are not affected by anisotropy. Assuming that the symmetry is around
the z axis, the components of the stress tensors for transverse isotropy are [3, 16]:

T s
xx = 2Nεs

xx + A(εs
xx + εs

yy)+ Fεs
zz + Mθ f

T s
yy = 2Nεs

yy + A(εs
xx + εs

yy)+ Fεs
zz + Mθ f

T s
zz = Cεs

zz + F(εs
xx + εs

yy)+ Qθ f

T s
xy = 2Nεs

xy,T
s

xz = Lεs
xz,T

s
yz = Lεs

yz

T f = [M(εs
xx + εs

yy)+ Qεs
zz + Rθ f ] (5.12)

where N, A, F, M, C, Q, L and R are elasticity constants. Since there are no sim-
ple relationships between the above anisotropic elasticity constants and elasticity
parameters of phases and porosity, like Eq. 5.7, the constants must be identified
throughout indirect techniques dedicated for anisotropic cases [17]. The appropriate
relations for the interaction forces are:

Rs
x = bt(v f

x − vs
x)+ ct

∂
∂ t

(v f
x − vs

x)

Rs
y = bt(v f

y − vs
y)+ ct

∂
∂ t

(v f
y − vs

y)

Rs
z = bz(v f

z − vs
z)+ cz

∂
∂ t

(v f
z − vs

z) (5.13)

where bt(= bx = by), bz, ct(= cx = cy) and cz are the components of the tensor
coefficients of viscous and dynamic interaction forces (Rs = −R f ) for the consid-
ered symmetry.

5.2.4 Wave Equations and Dispersion Relationships

If the operation of divergence is performed on the combined Eqs. 5.2, 5.6, 5.8 and
the properties of the operator ∇· are used, the following system of wave equations
for longitudinal waves can be obtained:

ρ s ∂ 2

∂ t2 θ s − (2N + A)∇2θ s −Q∇2θ f −b
∂
∂ t

(θ f −θ s)− c
∂ 2

∂ t2 (θ f −θ s) = 0

ρ f ∂ 2

∂ t2 θ f −Q∇2θ s −R∇2θ f + b
∂
∂ t

(θ f −θ s)+ c
∂ 2

∂ t2 (θ f −θ s) = 0 (5.14)
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Using curl (∇×) operator on the system of combined Eqs. 5.2, 5.6 and 5.8 leads to
the wave equations for distorsional or shear waves:

ρ s ∂ 2

∂ t2 �s −N∇2�s −b
∂
∂ t

(� f −�s)− c
∂ 2

∂ t2 (� f −�s) = 0

ρ f ∂ 2

∂ t2 � f + b
∂
∂ t

(� f −�s)+ c
∂ 2

∂ t2 (� f −�s) = 0 (5.15)

where �α = 1
2 ∇×uα are rotation vectors.

The solutions of the systems of wave Eqs. 5.14 and 5.15 for plane harmonic di-
latational and shear waves propagating in direction x can be found in the forms:

Eα = Cα exp[i(kx+ ωt)]
Ω α = Dα exp[i(lx + ωt)], α = s, f (5.16)

where Ω α are the components of �α in direction x, k and l are the wave numbers
of longitudinal and shear waves, ω denotes angular frequency and Cα and Dα are
constants. Introduction of the solutions (5.16) into wave Eqs. 5.14 and 5.15 leads
to a system of homogeneous algebraic equations for the constants Cα and Dα . The
solutions of this system of equations are not trivial if the determinants of the systems
are equal to zero. This last condition leads to the dispersion relations for longitudinal
waves:

k4A1 − k2ω2A2 + ω4A3 = 0 (5.17)

and for shear waves:
l2A4 −ω2A3 = 0 (5.18)

where

A1 = (2N + A)R−Q2,

A2 = (2N + A + R + 2Q)
(

c− i
ω

b

)
+ ρ sR + ρ f (2N + A)

A3 = ρ sρ f +(ρ s + ρ f )
(

c− i
ω

b

)

A4 = N

[
ρ f + c− i

ω
(ρ s + ρ f )b

]
(5.19)

Finding the solutions of Eqs. 5.17 and 5.18 with respect to k and l respectively, with
positive real components of the wave numbers, shows that two longitudinal waves
and a single shear wave may propagate in the material. The phase velocities of the
fast and slow longitudinal waves (denoted with indices 1 and 2) are:

v1/2 =
ω

Re(k1/2)
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while the phase velocity of the shear wave is:

vs =
ω

Re(l)
.

The corresponding attenuation coefficients are:

α1/2 = Im(k1/2)

for the longitudinal waves, and

αs = Im(l)

for the shear wave.

5.2.5 Extensions of Poromechanical Modelling

Since the introduction of Biot’s model of wave propagation in 1956 [1, 2] for fluid
saturated elastic and isotropic porous materials, many modifications (extensions)
have appeared in the literature. In 1962, Biot published a paper [3] in which he gen-
eralized the model to take into account anisotropy, viscoelasticity and dissipation in
the solid. Numbers of other papers have appeared later in which additional physical
effects were discussed. Most of these proposed extensions of the Biot’s model are
reviewed in the following sections.

5.2.5.1 Contributions of Micro-Inhomogeneity of Fluid Flow

One development of Biot’s poroelasticity is related to the incorporation of the effects
of micro-heterogeneity in the motion of the phases, particularly in the fluid velocity
field. This effect was already introduced by Biot [1] but limited to the geometry of a
single channel of constant size which axis is parallel to the direction of propagation
of the waves. More advanced models [2, 16, 18–24] take into account various direc-
tions and different sizes of channels, with flows along channels, squirt flows (flow
perpendicular to the direction of the flow in the channel), and microscopic effects
related to fluid slip at the interface between the solid skeleton and the fluid. These
three effects are illustrated in Fig. 5.2.

Corrections for the viscous and dynamic components of the interaction forces
have been proposed, to take into account the deviation from steady state flow ap-
proximation (Darcy flow) and ideal fluid flow approximations. They are based on a
representation of the pore space as a system of circular straight channels of random
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Fig. 5.2 Microscopic effects in pores considered in poromechanics

diameters and directions [20]. For the parameters ϕ and ψ (Eq. 5.11), these correc-
tions take the form:

ϕ = Re

{√
1− 4iα2κ2ωρ̄ f

ηφ2Λ2

}

ψ = Re

{
1 +

iηφ
ωρ̄ f κ(α −1)

√
1− 4iα2κ2ωρ̄ f

ηφ2Λ2

}
(5.20)

where Λ is a characteristic size of pore space, a measure of the dynamically con-
nected pores [20, 25, 26].

The same effects, without assumption of harmonic motion, can be derived by
considering the history dependence of the interaction forces, or by using a rep-
resentation of the interaction forces based on partial time derivatives of relative
velocity [27].

Transient heterogeneity of microscopic field of pressure, e.g. due to different
pore size distribution and various microscopic deformations of the skeleton, results
in flow of fluid in directions different from the directions of the channels (exchange
of fluid between different pores). To model this effect within a two-phase approach,
a complex factor which multiplies the Biot’s constitutive equation for stress in fluid
(5.6) was proposed [18, 19]:

T f = K(ω ,r)(Qθ s + Rθ f )I (5.21)

where K is a complex function, which depends on the frequency ω and on the
characteristic dimension of squirt flow r. The meaning of the squirt flow for
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modeling waves in bones has not been evaluated yet. Finding its role could be pos-
sible by following the methodology developed for rocks [18,19], i.e. by considering
appropriate microscopic structures with channels perpendicular to the wave propa-
gation direction, and by modeling the transient flow through them.

The presence of slip or jump of microscopic tangential velocity at the interface
between fluid and solid has been considered as potentially influencing the macro-
scopic interaction force. It has been proposed to incorporate this effect through
further corrections of the parameter introduced by Biot to represent the influence
of flow heterogeneity on viscous interaction forces [24]. In the present formulation
it is equivalent to a modification of the parameters ϕ and ψ , including their depen-
dence on average slip velocity.

5.2.5.2 Dissipation Due to the Thermal Conduction in the Fluid

Local temperature changes due to compression and expansion of phases and asso-
ciated heat conduction are sources of dissipation of wave energy. This phenomenon
was modeled in a macroscopic two-phase approach by Lee et al. [21, 22] by taking
into consideration its part in the fluid phase, through a complex density of fluid in
Eq. 5.2 and a compressibility parameter R in the constitutive Eq. 5.6. This model also
includes three additional parameters, which according to Lee et al. represent contri-
butions to local temperature changes from the nonrigid porous frame. Although it
has been found that experimental data can be better fitted with this modified model
when the parameters are adjusted accordingly, part of these phenomenological ad-
ditional parameters do not have clear physical meaning. This makes difficult an
assessment of the robustness of the model.

5.2.5.3 Model Including Macroscopic Viscous Stresses

Viscous properties of fluid and/or solid phase in the poromechanical models of
wave propagation can be included through constitutive functions for macroscopic
stresses and interaction forces. The basic constitutive model for macroscopic stress
tensors of poromechanics takes into account the elastic components and neglects
viscous contributions, both in fluid and solid phase. For propagation of waves in
low and medium permeability materials, this assumption seems to be justified be-
cause the main dissipation and dispersion mechanism comes then from the viscous
interaction force. In high permeability materials, like trabecular bones, the assump-
tion may not be adequate and one should consider then the two-phase constitutive
model which incorporates viscous components in the macroscopic stress tensors
[3, 23]. This model can be formulated by replacing elasticity parameters in consti-
tutive Eqs. 5.6 by frequency dependent operators or complex frequency dependent
functions.
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5.2.5.4 Micro-Poromechanical Models

Micro-poromechanical models using simplified description of the geometry of the
structure are used when the input parameters required by the Biot’s model can not
be measured. The most commonly used is the so-called Schonberg’s model [28] of
alternating fluid and solid layers. This model is a generalization of the theory pro-
posed by Rytov [29] and Brekhowskih [30], who considered plane wave propagation
in layered media at normal incidence or along the layers. Schoenberg analyzed wave
propagation at arbitrary incidence angle with respect to the orientation of the lay-
ered structure. He found exact analytical solutions, namely solutions which are valid
at all frequencies, wavenumbers and angles of incidence. For all the propagation
angles, except when the propagation direction is perpendicular to the layers, two
modes are predicted: a fast wave, for which the motions in the solid and fluid layers
are in phase, and a slow wave, for which these motions are 180◦ out of phase [28].
The reader can refer to Chap. 11 for a description of the experiments carried out
to investigate the behavior of the fast and slow wave modes. The theory has been
verified experimentally using ultrasonic technique by Plona et al. [31, 32]. Immer-
sion experiments were performed in the frequency range 0.2–2 MHz on systems
composed of water/Plexiglas and water/aluminum parallel layers. Both the single
wave propagating normal to the layers and the two waves propagating parallel to
the layers were observed.

Such micro-poromechanical models, and especially the Schonberg’s model [28],
lead to a better understanding of the Biot’s model in the long wavelength regime.
In particular, they give insights into the relative role of fluid flow inhomogeneity
during propagation in fluid saturated porous elastic media.

5.3 Review of the Application of Biot Theory to Propagation
Through Cancellous Bone

Ultrasonic wave propagation in fluid-saturated cancellous bone has been interpreted
in terms of Biot’s model [1–3] with varying degrees of success. The application of
Biot’s theory for modelling wave propagation in cancellous bone was reviewed by
Haire and Langton [33] in 1999. Following that, more or less sophisticated modifi-
cations of Biot’s model have been used, aimed to accurately describe the interaction
mechanisms arising at the fluid (marrow) – solid (bone matrix) interface, or to ac-
count for additional effects influencing wave propagation. These models have been
reviewed in the previous sections.

This section is devoted to a review of the experimental and theoretical results
available in the literature, in order to discuss the relevance of the models to predict
accurately the observed phenomena. As it will be seen, one of the major difficulties
in the use of these models lies in the large number of input parameters required,
describing properties (elastic, inertial, viscous) of both phases.
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5.3.1 Experimental Observation of Fast and Slow Waves
in Cancellous Bone

One of the most discussed features of the Biot’s theory has been the presence in the
signals transmitted through the cancellous bone of two pulses associated with two
longitudinal waves, known as fast and slow waves.

Indeed, the poroelastic nature of cancellous bone has been confirmed by a few
authors who reported the observation of two compressional wave modes. Two waves
were measured in vitro in bovine [21, 22, 34–41] and in human [41–47] cancellous
bone specimens obtained from various anatomic sites (femoral neck, femoral head,
distal epiphysis of femur, proximal ends of tibia).

The difficulty of observation of the two waves in the time domain may be at-
tributed to microstructural features of the specimens, the most important being the
anisotropy. Hosokawa and Otani [36] found that if the wave propagates along the
main orientation of the trabecular network, then two separate waves were observed.
As the relative angle between the ultrasonic beam and the orientation of trabecular
network increases (from 0◦ to 60◦) the amplitude of the slow wave decreases (from
0 to −15dB) [36]. Therefore, for high angles, the slow wave amplitude, even when
present, is too small to be detected [36]. Based on these results, Hosokawa and Otani
concluded that the slow wave in cancellous bone is effectively generated by the rel-
ative motion of the fluid and the solid, in the case where the wave propagates along
the main direction of alignment of the trabeculae.

These findings were confirmed experimentally in bovine cancellous bones [37]
and the results were examined in the light of the stratified model [37, 48]. It was
found that an idealized model of highly oriented trabecular bone structure predicted
closely the values of the speed of sound of the two waves when the propagation
direction was parallel to the main orientation of the trabeculae [37]. When the propa-
gation direction was not parallel to the main orientation of the trabeculae, a potential
time overlap of the two associated pulses, and a decrease in slow wave amplitude
were found [48].

The influence of the anisotropy on the conditions of observation of both com-
pressional waves was confirmed by Haiat et al. [49–51] using three-dimensional
finite-difference time-domain simulations in human femoral trabecular microstruc-
tures (see Chap. 7 for more details). The authors predicted that both waves would
overlap in time domain for a direction of propagation perpendicular to the main tra-
becular orientation and would be separated when these two directions are parallel,
for specimens with a high degree of anisotropy.

Density can also play a role in the condition of observation of the two waves by
influencing the relative amplitudes of the two waves. This was confirmed experi-
mentally [47].

Combined effects of anisotropy and density may explain why in many ul-
trasonic studies of cancellous bones, apparently only one longitudinal wave is
observed [52–54]. Based on a pure velocity criterion, one could assume that the
wave observed is a ‘fast’ wave according to the Biot’s model, since its velocity is
larger than the velocity in the saturating fluid. This statement has however to be
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qualified. Considering for example the case of in vivo measurement at the calca-
neus [55], where the propagation direction is orthogonal to the main orientation
direction of the trabeculae, it is likely that the observed waveform is composed of
overlapping fast and slow waves. As a result the estimated velocity may have values
higher than the velocity in the fluid filling pores, while most of the energy is con-
veyed by the wave propagating mainly in the fluid (especially for the high porosity
specimens). The effect of overlapping pulses on the estimation of velocity will be
discussed in more details in Sect. 5.3.3.1 and in Chap. 12.

Another factor potentially influential for the generation of the two modes is the
presence, in vivo, of the cortical shell surrounding the trabecular bone. It is impor-
tant to note that all the reported in vitro observations of the two modes were obtained
on pure trabecular bones specimens, after removal of the cortical endplates. In geo-
physics, free fluid transfer between the porous medium and the embedding fluid has
been shown to be important for the generation of the two waves [56–58]. But the
influence of the cortical endplates on the generation of the fast and slow waves has
not yet been studied in cancellous bones.

In vivo, the clinical ultrasonic devices currently used to characterize cancellous
bone perform measurements at the calcaneum (the heel bone). Measurements are
performed in a medio-lateral direction, and the propagation direction is perpendicu-
lar to the main direction of orientation of the trabeculae. The presence of the cortical
endplates, in addition to the effect of anisotropy, may explain why only one wave is
measured.

To date, only one study reported the observation of two waves in vivo [46, 59].
Measurements were made at the distal end of the radius, where trabecular bone can
be found. The device is composed of a pair of coaxially and confocally aligned
broadband focused ultrasonic transducers (1 MHz centre frequency, 20 mm in
diameter, focal length of 40 mm) [46, 59]. The authors of this study assumed that
the two waves observed in cancellous bone correspond to the fast and slow waves
predicted by Biot’s theory. In contrast to the in vitro cases, the wave is assumed to be
transmitted to the cancellous bone via the cortical shell, resulting in a propagation
of the incident energy mostly carried along the trabeculae. The results were then
interpreted in the framework of the Biot’s theory, however the exact nature of the
two waves has not been confirmed yet. In particular, the cortical shell may guide the
propagation of circumferential waves [60, 61], which may arrive before the wave
transmitted through the medulary canal.

5.3.2 Parameters of the Biot’s Models

One of the critical points for the use of Biot’s models is to obtain realistic values
of the parameters (a dozen input parameters in the isotropic case), describing the
physical characteristics of the propagating medium. These parameters can be mea-
sured. Nevertheless, due to the complexity of such measurements, the model has
been most of the time applied by using input parameters found in different literature
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Table 5.1 Input parameters for calculations of the Biot’s model. The exponent n is required to
estimate the Biot–Willis [74] elastic constants (P, Q, and R). In the case of Fellah et al. [43,45], data
for the sample M2 were chosen. Opt.: Value obtained using optimization; m: marrow; w: water;
b.f.: bovine femur; h.f.: human femur; h.c.: human calcaneus

Hosokawa and
Otani [35]

Fellah
et al. [43]

Wear
et al. [52]

Sebaa
et al. [45]

Pakula
et al. [62]

Parameters b.f. h.f. h.c. h.f. h.f.

Bulk modulus of fluid
(GPa)

Kf 2(m) 2.28(w) 2.2(w) 2.28(w) 2.25(w)

Young modulus of solid
phase (GPa)

Es 22 – 8.3 13 13

Poisson ratio of solid
phase

vs 0.32 – 0.3 0.3 0.3

Bulk modulus of solid
phase (GPa)

Ks 20.37(1) 20 6.9(1) 10.8(1) 10.8(1)

Porosity fv 0.79 0.77 0.79 0.79 0.79
Exponent n 1.46(Opt.) – 1.75(Opt.) – –
Young Modulus of

trabecular frame
(GPa)

Eb 2.25(2) – 0.54(2) 2.47(Opt.) –

Poisson ratio of
trabecular frame

νb 0.32 – 0.23 0.25(Opt.) 0.24

Bulk modulus of solid
frame (GPa)

Kb 2.08(3) 4 0.33(3) 1.64(3) 0.67

Shear modulus of solid
frame (GPa)

N 0.85 1.7 0.22 0.99 0.42

Tortuosity α 1.06 1.01 1.06 1.05 1.5
Permeability (10−6 cm2) κ 200 – – – 3.6
Viscous characteristic

length (μm)
Λ – 2.7 – 10.12 55.6

Fluid density (kg/m3) ρ f 930 1000 1000 1000 1000
Fluid viscosity (Pa.s) η 1.5 10−3 10−3 10−3 10−3

Solid density (kg/m3) ρs 1960 1960 1800 1990 1800
(1) Calculated using the formula Ks = Es/(3(1−2vs));
(2) Calculated using the formula Eb = Es(1− fv)n;
(3) Calculated using the formula Kb = Eb/(3(1−2vb));
(4) Calculated using the formula N = Eb/(2(1+ vb)).

sources (often from different materials), or estimated from experimental data by op-
timization procedures. Table 5.1 reports parameters values used by different authors
to compute the model predictions.

Porosity can be calculated from 3-D micro-computed tomography (μCT)
[52, 62, 63] or measured using Archimede’s principle [35, 52, 54]. Typical values of
porosity for human cancellous bones range from 55% to 95%, depending on the
anatomical site and bone status.

Permeability, which is a measure of the ability of a fluid to filter through a porous
medium, has been measured in both human and bovine cancellous bones. In human
bones, reported values span over three order of magnitude [62,64–66] ranging from
0.08×10−6 to 10.15×10−6 cm2 in human femur [62]. Permeability has been found
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to be correlated to porosity [62,64–66] and to be strongly influenced by the relative
orientation between the flow direction and the principal orientation of trabecular net-
work [66]. Animal bones were found to be more permeable than human bones [64],
mainly because of their bigger pore size.

Only a few papers have reported tortuosity values for human cancellous bones.
Tortuosity has been measured using electrical spectroscopy [54, 62], wave reflec-
tometry [42–45] or estimated from the porosity [35,36,52,53]. Values ranging from
1.01 to 1.5 were reported.

The elastic properties of bone tissue, which are requested to estimate the macro-
scopic elastic properties of the saturated porous frame, can be measured using
atomic force microscopy [67], nanoidentation [68] or acoustical microscopy [69,70]
(see Chap. 16). Then, micromechanical models, e.g. [9,71,72], are used to calculate
the values of the bulk and shear modulus of the solid frame [38, 62].

Numerous authors [35, 36, 52–54] have used a power law to relate the Young
modulus of trabecular frame (Eb) to the intrinsic Young’s modulus of the solid
phase (Es) and to the bone volume fraction (1-porosity). This power law is based on
a simplified cellular model of porous structures of bones proposed by Gibson [73].
Assuming known the Young’s modulus of the solid phase (Es), the unknown param-
eter of this power law (the exponent of the power law n) is estimated by fitting the
predictions of Biot’s model to the fast wave velocity over a range of porosity. Some
authors [52] used both Es and n as fitting parameters.

Gibson derived analytically that the exponent n has a value of 1 when the material
is loaded along the direction of trabecular alignment and a value comprised between
2 and 3 in the transverse directions [73]. For bovine cancellous bones, Williams [53]
estimated a value of n = 1.23 for bovine tibia for the direction of wave propagation
along the major trabecular alignment. Hosokawa and Otani [35] reported that the
values of the exponent n are function of the trabecular alignment for the specimens
obtained form distal epiphysis of bovine femoral bone. They estimated a value of
n = 2.14 for propagation in the perpendicular direction to the predominant trabecu-
lar orientation, and a value of n = 1.46 for the parallel direction [35]. Wear et al. [52]
found n = 1.75 for human calcaneus measured in mediolateral (or lateromedial)
direction. Wear et al. [52] explained the differences between their results and the re-
sults obtained by Williams [53] and Hosokawa and Otani [36] in terms of different
organization of trabecular network of bovine and human bones, namely that the or-
ganization of trabeculae may not be as consistent in the human calcaneus as bovine
tibia and femur. This method to estimate the Young’s modulus of the skeleton frame
is relatively simple and do not require independent measurements of bulk and shear
moduli of the cancellous structure. The drawback is that it relies on an idealized
cellular description of the micro-architecture.

Finally, the characteristics of the marrow, a fluid-like mixture of red (hematopoi-
etic) and yellow (fatty) marrow [75, 76], namely its density and viscosity, have
been so far taken from the literature. Most of the study has been performed with
water-saturated skeleton frame [21, 22, 27, 37, 39, 41–45, 47, 48, 52–54, 77–82] i.e.
assuming a very low viscosity of 10−3 Pa.s. Use of water saturated specimens is
motivated by practical reasons such as preservation, specimen manipulation, and
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ease of experimentation in water. A few studies dealt with marrow saturated speci-
mens [35, 36, 39, 82–84]. Viscosity in marrow is several orders of magnitude higher
than in water [85, 86].

Pakula et al. [62] provided systematic measurements of almost all of the input
parameters required by the Biot’s theory for a statistically representative group of
human bones (35 specimens), obtained from a single skeletal site (proximal femur).
They concluded that the values of those parameters may vary significantly from
one specimen to another, even when they came from the same anatomical location.
The results enlightened the difficulty to use Biot’s theory for modeling wave prop-
agation in cancellous bone, implying the necessity of individual evaluation of these
input parameters. This necessity arises from the important expected variations of
these parameters from one specimen to another, potentially due to variations in me-
chanical properties of the skeleton frame or in structural anisotropy. Therefore the
question arises of the sensitivity of the Biot’s model to these input parameters, to
their variability as well as to their measurement errors. This question will be treated
in Sect. 5.4.

5.3.3 Predictions of Phase Velocity and Attenuation Coefficient

In the studies in which both the fast and the slow waves have been measured, similar
general trends have been reported concerning the relationships of wave parameters
(velocity, attenuation) with frequency and density. We will first summarize these
experimental findings, and then discuss the predictions of these experimental obser-
vations by different poro-elastic models.

5.3.3.1 Experimental Findings

Relationship Between the Velocities of Fast and Slow Waves and Bone Volume
Fraction

Fast wave velocity was found to be positively correlated to bone volume frac-
tion [35,36,41,53,81,87] in bovine and sheep specimens from different anatomical
origins [35, 41, 53, 81, 87], and in human calcaneus [52].

The measured values of the phase velocity of the fast wave for bovine tibia varied
from 2500 to 3400 m/s for bone volume fraction ranging from 0.1 to 0.3 [53], while
for bovine femoral specimens it varied from 2200 to 2700 m/s for bone volume
fraction ranging from 0.05 to 0.3 [35, 36]. For the highest bone volume fractions
(0.3–0.8) in bovine tibia, fast wave velocity varies from 2400 to 3800 m/s [81].

Similar trends were obtained in human calcaneus [52] in a representative group
of 53 specimens. The range of bone volume fraction (0.02–0.14) was considerably
narrower than in bovine cancellous bone studies, and the fast wave velocity varied
insignificantly from 1475 to 1570 m/s. A slight non-linear trend in the relationship
with porosity was reported [52].
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In human femoral bone specimens, the fast wave velocity measured along the
main direction of alignment of the trabeculae was found to increase from 2100 to
2900 m/s, when the bone volume fraction increased from 0.1 to 0.4 [47].

In most of the studies the velocity of the slow wave was found to be independent
of the porosity [35, 36, 41, 47] and its value close to the propagation speed in the
in the fluid filling pores (marrow or water). However, one study reported a positive
linear correlation of the slow wave velocity (ranging from 1150 to 1450 m/s) with
porosity [41] (R2 = 0.26, p < 10−3).

Relationship Between the Attenuation (Amplitudes) of Fast and Slow Waves
and Bone Volume Fraction

The attenuation of the fast wave has been reported to be negatively correlated with
bone volume fraction [35,36,41,54,80,87,88]. Moreover, a nonlinear (parabolic) de-
pendence of the attenuation of the fast wave with respect to porosity has been found.
The maximum values were measured for porosities of 65–70% [54] and 60% [87].
The parabolic behavior of the slope of the attenuation coefficient of fast wave for
bovine and human specimens as a function porosity was also observed by Cardoso
et al. [41] for the porosity values ranging from 60% to 92%. The maximum value
(140dB(cmMHz)−1) was measured for a porosity of 75%.

In contrast, a positive linear behavior was observed for the frequency slope of
attenuation of the slow wave (range of observed values 15–40 dB (cm · MHz)−1;
R2 = 0.15, p < 10−2).

The relatives amplitudes of both waves change with bone volume fraction. At low
bone volume fraction, the amplitude of the fast wave remains much lower than that
of the slow wave. When the bone volume fraction increases the amplitudes of fast
and slow wave become equal. This result indicates that the properties of the fast
waves are strongly related to the solid part of cancellous bone, whereas the slow
wave properties depend more on the fluid part [35, 36, 41–45, 51].

Dependence of Fast and Slow Waves Amplitudes on Anisotropy

Structural anisotropy of bovine cancellous bone had been found to impact the
experimental observation of two longitudinal waves in the material.

When the angle between the propagation direction and the main orientation of
trabecular alignment decreases, the amplitude of the slow wave increases and be-
come higher than the amplitude of the fast wave [36]. Currently such behavior, that
has never been observed in classical porous material like rocks, is interpreted in
terms of boundary effect which appears at the fluid/bone surface [54]. Due to the
very high porosity of cancellous bone, the amount of energy which is presumably
transferred from the fluid as a fast wave is much smaller than the amount converted
into a slow wave. This may lead to the apparent higher attenuation of the fast wave
than the slow wave [43].
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Dependence of Fast and Slow Waves Velocities on Anisotropy

The effect of the anisotropy on waves velocities was reported in many different
studies [35–37, 41, 47, 48, 53, 89].

It was demonstrated that the wave velocity is dependent on the propagation di-
rection with respect to the main direction of alignment of the trabeculae, showing
a maximum fast wave velocity when the direction of propagation is parallel to
the main direction of orientation of the trabeculae [36, 90]. In bovine specimens,
the fast wave velocity was found to decrease with insonation angle, from around
2800–3200m/s at 0◦ to between 2000–2200 m/s at 60◦ [90], and from 2500 m/s at
0◦ to 1800 m/s at 90◦ [36]. The 0◦ denotes propagation parallel to the trabeculae
and 90◦ a propagation perpendicular to the trabeculae. By contrast, the slow wave
velocity, for those angles where it was observed, remained close to the propagation
speed in the fluid filling pores.

Interestingly, it was reported that the specimens in which the two waves could
be observed did not exhibit statistically higher apparent density than the rest of the
specimens, but did exhibit statistically higher acoustic anisotropy ratio [47].

Negative Dispersion of Wave Velocity

Although there is a general consensus on the fact that bone attenuates both longitudi-
nal waves in a manner that is approximately linear with frequency [21,35,41,91,92],
there is considerable variation in the behavior of the frequency dependence of phase
velocity (dispersion) among bone samples. In studies where two longitudinal waves
were clearly observed and were analyzed separately, a positive dispersion (increas-
ing phase velocity with increasing frequency) of both waves was reported [35].

Nevertheless, in studies in which a single transmitted waveform was observed,
positive dispersion was reported only in approximately 10–20% of the measured
sites [93, 94], and a number of studies have reported negative dispersion in vitro
[93–96] and in vivo [55]. This negative velocity dispersion has been found to be
intriguing, because the attenuation coefficient typically raised quasi-linearly with
frequency, which, together with a negative velocity dispersion, is inconsistent with
the causality-imposed Kramers–Kronig relations [97] (see Chap. 12 for in depth
discussion on the possible origins of negative velocity dispersion in cancellous
bone).

5.3.3.2 Comparison of Predictions with Experiments

Comparison of the Biot’s model predictions with experimental data was published
by many authors [21, 22, 27, 33, 35–40, 42–45, 47–49, 52–54, 62, 78, 80, 88–90, 98,
99] with varying degrees of success. In the following subsections the most relevant
results will be presented and summarized.
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It is noteworthy that in several studies, like [35,36] and [21,22,40,53,54,99,100],
some of the parameters requested by the Biot’s model (e.g. the exponent n, used to
relate the Young modulus of trabecular frame to the intrinsic mechanical properties
of the skeleton and to the bone volume fraction, see Sect. 5.3.2), were obtained by
fitting theoretical predictions to the experimental results. Therefore the agreement
obtained between theoretical predictions and experimental data does not necessarily
mean that the Biot model is valid, unless some independent estimates of the input
parameters can be provided by other techniques.

Prediction of Wave Velocities

The first comparison of the Biot’s model predictions with experimental data was
published by McKelvie [80], who reported that the measured frequency dependence
of the phase velocity was not correctly predicted by the Biot theory, particularly for
the higher bone volume fractions.

In the studies published after the paper of McKelvie [80], some of the
parameters requested by the Biot’s model were obtained by fitting theoretical
predictions to experimental results. The agreement reported between predictions
of wave velocities by the Biot’s model and the experimental data was then good
[35, 36, 53, 54, 81].

Using a similar fitting approach, it was also shown that the Biot’s model pre-
dicted reasonably well the experimental dependence of phase velocity on porosity
(Root mean square error = 15.8m/s), and even the slight non-linear trend in the
relationship [52].

An excellent agreement between predicted and measured phase velocities was
obtained [21,22,40] by using the Modified Biot-Attenborough model [101] (MBA)
in 12 cancellous bone specimens from the proximal ends of one bovine tibia. In
particular, the MBA model was able to predict the experimental slight negative dis-
persion of the phase velocity.

Compared with the Biot’s model, the MBA model introduces a set of new
phenomenological parameters describing the thermo-mechanical coupling. These
parameters do not have clear physical meaning and are therefore difficult to link to
measurable quantities. They were estimated by fitting the experimental data, namely
wave velocity, attenuation and effective impedance of the porous medium, with the
porosity. This model therefore requires an a priori knowledge of the porosity de-
pendence of the experimental data.

The general conclusion is that there is a reasonably good agreement for waves
velocity between Biot’s predictions and experimental data, as long as some of the
parameters necessary for the computations of the model are adjusted to fit the
experimental results. As discussed previously, this is not per se a demonstration
of the validity of the model, which would need independent estimates of these input
parameters.
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Prediction of Wave Attenuation and Amplitudes

The different Biot’s models have lead to various degree of success in the prediction
of attenuation. The Biot’s model was found to predict qualitatively the right order
of magnitude of the frequency dependent attenuation of the fast wave in human cal-
caneus specimens [80], although the full range of experimental values observed
in this set of specimens was not predicted. On the other hand, the same model
gave prediction of waves amplitudes much lower than the measured ones in bovine
specimens [35, 36]. In this last study [36], an argument was made that discrepancy
between the theory and the experiments for attenuation coefficients might be due to
a partial replacement of marrow by water which penetrated the pores of cancellous
bone during the saturation, leading to additional physical mechanisms of attenuation
not included in the Biot theory.

Identically, the Biot’s theory modified by Johnson-Koplik-Dashen (JKD) proved
to be unsuccessful when the concept of dynamic tortuosity [20] was used. It lead
to absolute values of attenuation considerably lower than the experimental ones,
although the predicted frequency dependence of the attenuation was found to be
similar to the experimental one [54]. This suggested again that physical mechanisms
not included in the Biot-JKD model might play an important role in attenuation.
These mechanisms lead to additional losses due to reflections at the flat surfaces
of the bone specimens, diffraction, scattering, and phase cancellation. Interest-
ingly this model predicted that the attenuation coefficient of the fast wave plotted
vs. porosity would exhibit nonlinear behavior, having its maximum for porosities
comprised between 65% and 70%, in agreement with previous experimental obser-
vations [41,54,87,102]. This is however difficult to confirm experimentally, because
the porosities of human cancellous bones range typically from 75% to 95%, and only
the decreasing portion of the curve is normally seen [54].

On the other hand, when the Biot-JKD model was used to introduce the viscous
exchange between fluid and solid structure, the model predicted very well the exper-
imental signals transmitted through three human femoral cancellous bone specimens
of highly oriented structure and high porosities [42,43]. The same Biot-JKD model
was also used to solve an inverse problem, i.e. to extract parameters of the model
(Young’s modulus and Poisson ratio of the skeletal frame, porosity, dynamic tortu-
osity and viscous characteristic length) from experimental data [44, 45]. The values
obtained by the optimization procedure on the experimental data were found to be
close to the values measured on air-saturated specimens, by independent techniques
developed for characterization of air-saturated porous materials [43, 103–105], at
the exception of the viscous characteristic lengths.

As for the prediction of the velocity, the modified Biot-Attenborough model [101]
(MBA) proved to give excellent predictions of the attenuation [21,22,40]: The MBA
model was able to predict the linear dependence of attenuation as a function of fre-
quency, as well as the nonlinear relationship of porosity with attenuation and with
the slope of a linear fit of the attenuation versus frequency (BUA).

To summarize, it seems that some of the Biot’s models (JKD with viscous ex-
change, MBA) allow quantitative predictions of attenuation [21, 22, 40, 42, 43].
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However, as in the case of the prediction of the velocity, it should be noted that
these models are used within a model-fitting approach, in which parameters are ad-
justed in order to fit the experimental observations. The relevance of the values of
the adjusted parameters is questionable, or at least might be valid only for the very
small selected set of specimens used in these studies. This is especially the case for
the MBA model, in which some of the parameters fitted do not have a clear physical
meaning.

Prediction of the Effects of Anisotropy

Most of the studies have examined the anisotropic solid structure as a factor influ-
encing the existence of the fast and slow waves in cancellous bone [36, 37, 41, 47,
48, 51, 53, 90]. One Can Distinguish Three Approaches.

The first one uses the Biot’s model for isotropic homogeneous porous mate-
rial and introduces anisotropy through an adjustable parameter (the exponent n),
which relates the Young’s modulus of trabecular framework with the intrinsic
Young’s modulus of the bone tissue and the volume fraction of bone (c.f. Table 5.1,
Sect. 5.3.2). Following Williams [53] and Hosokawa and Otani [35, 36] the values
for the exponent n are determined by fitting the prediction of the fast wave veloc-
ity as a function of porosity to its experimental values. The values for the exponent
n may vary from 2.14 [36] for bovine femoral distal epiphysis with propagation
perpendicular to the predominant trabecular orientation, to 1.23 [53] and 1.46 [36]
for propagation in the parallel direction. The value n = 1.75 found in human calca-
neus is explained by a less regular organization of the trabeculae network in human
calcaneus compared to bovine femur or tibia.

The second approach consists in introducing angle dependent parameters in the
Biot’s model. Expressions were proposed for the anisotropic tortuosity and for the
angle dependent Young’s modulus [90]. Such method improved the agreement be-
tween theory and experiment for fast wave velocity at low angles, but degraded it at
high angles [90]. In another study, a phenomenological expression for the tortuosity,
being porosity and angle dependent [98], was derived from data obtained at audio-
frequencies in air-filled bone replicas. These angle-dependent structural properties
of cancellous bone were introduced into the Biot–Allard model [106]. It was sug-
gested that such an approach might be useful to give further insight into the factors
that have the most important influence on the angle-dependency of wave speeds and
attenuation in cancellous bone [98]. The effect of the anisotropy of the bone struc-
ture was also examined within the Biot-Attenborough model [21], by introducing
an angle dependent parameter “s1” (c.f. Sects. 5.2.5.2 and 5.3.2).

Finally, the third approach analyses the effect of the anisotropic trabecular struc-
ture in the light of the stratified models. A multilayer model of porous bone was
used to compute the group velocity and relative arrival times of the two longitudi-
nals waves as a function of the propagation angle [37, 48]. It was found that when
the refraction angle increases, the energy of the slow wave is refracted from the
phase propagation direction, and that for a refraction angle greater than 40◦, the slow
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wave may not be observed due to the overlapping of the fast and slow waves sig-
nals. These analytical results concerning the existence of two compressional waves
vs. the orientation of trabecular network obtained by different authors [36, 37, 48]
were confirmed by computational simulations [51]. A stratified-Biot model was also
used in order to model the angle dependent ultrasonic properties of the bone mate-
rial [37]. This model linked the merits of two models: Biot’s model, which includes
viscous effects and the Schoenberg (stratified) model, which includes the anisotropic
properties of the material. In comparison to the results obtained when only the
Schoenberg’s model was applied [37], the newly developed model improved the
predictions of the fast wave velocity at high propagation angles. The multilayered
model [37] was also extended to simulate the attenuation due to the reflection and
transmission at the fluid/cancellous bone (modeled as a stratified medium composed
on an ideal fluid and an elastic solid) boundary for the case where the incident wave
enters normally to the layers [87], i.e. for the case where one longitudinal wave ex-
ist. The predicted influence of the apparent density of bone on the wave velocity
and attenuation was found to be correlated (R = −0.93) with experimental data ob-
tained on sheep femoral condyles [87]. However, although the predicted frequency
dependence of the attenuation coefficient was consistent with the experimental one,
the absolute values of the predicted attenuations were found to be approximately the
half of the measured ones. That may be attributed to the important role of absorp-
tion in the bone material (not considered in this study). Accordingly to the stratified
model, the bone boundary plays an important role in the wave attenuation in cancel-
lous bone, potentially as important as absorption in bone [87].

To summarize, the structural anisotropy of cancellous bone was introduced in
the Biot’s model in simplified ways. As anticipated, the theoretical predictions of the
Biot’s model including angle dependent parameters or simplified anisotropic struc-
ture reflect better the experimental observations than the Biot’s model for isotropic
material.

In order to introduce a more fundamental approach to model the mechanical
and structural anisotropy of cancellous bones, it is necessary to postulate appro-
priate constitutive relationships for stress tensors and interaction forces (like those
proposed in the Sect. 5.2.3.2 for the case of transverse isotropy). However, such ap-
proach requires more parameters to be measured by independent techniques and
thus its potential usefulness is doubtful.

Predictions of Negative Dispersion of Wave Velocity

One of the most convincing explanation to interpret the apparent anomalous nega-
tive velocity dispersion is that interfering wave modes similar to those observed in
bone could contribute to the observed negative dispersion (see Chap. 12 for more
details) [97]. Numerical simulations and experiments have shown evidence that a
mixed waveform composed of two interfering pulses can exhibit negative disper-
sion when it is analyzed conventionally under the assumption that only one wave
is present. The importance of these findings in the context of ultrasonic studies of
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cancellous bones is that such effect is observed even when little or no visual evi-
dence of interference exists in the time-domain data [97].

Another source of negative dispersion may come from scattering. In particular,
when the propagation direction is normal to the main orientation direction of the
trabeculaes, it has been suggested that scattering effect may explain the negative
dispersion [107].

Although the stratified-like models may also explain many empirical observa-
tions negative dispersion of phase velocity in cancellous bones [108], they are too
dependent upon assumed values for material and structural properties to be of much
practical value [108].

5.3.3.3 Effect of the Saturating Fluid

While in vivo, the pores of cancellous bones are filled with a fluid-like mixture of
red (hematopoietic) and yellow (fatty) marrow [75, 76], in the in vitro experiments
marrow is usually removed and replaced with water [84]. In vitro studies of water-
saturated bone specimens are motivated by practical reasons such as preservation,
specimen preparation, and ease of experimentation in water. In addition, because
marrow composition is known to vary with age, skeletal site, and health condi-
tion [75], replacing marrow with water is beneficial for reducing the variability of
the results and for accurately determining the relationships between QUS variables
and structural and material bone properties.

Comparison of sound velocity and attenuation coefficient measurements for
marrow- and water-saturated bones has been investigated, but inconsistent results
have been reported. For example, the presence of water in the pores instead of mar-
row has been reported to have a significant impact on SOS (m/s) and on the slope
of the frequency dependent attenuation, experimentally in human femur [85] and
human calcaneus specimens [84], and numerically in finite difference time domain
simulations of wave propagation [109]. In contrast, other groups reported no signif-
icant difference in the frequency slope of the attenuation coefficient as well as in
the phase velocity when marrow was replaced with water in human calcaneus spec-
imens both experimentally [79, 82, 110] and numerically [83]. Reasons for these
inconsistencies have not been investigated in detail. There may be several reasons
caused by experimental imprecision, differences in structure of investigated bone
samples (e.g. bone volume fraction and trabecular orientation), and/or in signal pro-
cessing procedures.

The effect of saturating fluid on the wave parameters was investigated in details
by Pakula et al. [82] with the goal of evaluating its contribution to velocity disper-
sion, absorption, and scattering mechanisms. They found insignificant the role of the
fluid properties (neither viscous nor elastic) on attenuation coefficient. Specifically,
the fact that no difference in attenuation could be observed between marrow-filled
and water-filled specimens contradicts Biot’s predictions in which attenuation is ex-
pected to be much larger with a highly viscous filling fluid (like marrow) compared
to a filling fluid with low viscosity (like water). These results point to the serious
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limitations of Biot modeling of cancellous bone. These experimental studies led the
authors to conjuncture that the longitudinal-to-shear scattering, together with ab-
sorption in the solid phase, are the main candidates to be the sources for attenuation.
They also reported the differences observed in phase velocities for cancellous bones
saturated with fluids of varying elastic properties. These results suggested that the
effect of inherent individual variability in marrow on the measured QUS properties
can be important, and may be particularly important during in vivo studies.

Nicholson and Bouxsein [84] investigated the relationships between QUS mea-
surements and bone mineral density (BMD) for marrow and water saturated human
cancellous bone specimens from the calcaneus. They found that QUS measurements
in marrow-saturated specimens correlated weaker with BMD than did correspond-
ing measurements in water saturated specimens. The authors justified this result
by the inter-specimen marrow heterogeneity and concluded, as later confirmed by
Pakula et al. [82], that the potential impact of marrow should be considered when
interpreting clinical QUS measurements.

5.4 Sensitivity of the Biot’s Model to Selected Parameters

To illustrate the influence of input selected parameters (i.e. tortuosity, fluid viscosity
and permeability) of Biot’s theory on the models outputs the results of parametric
studies using Biot model are presented in this section (for the input parameters taken
from own experimental studies, see Table 5.1 – last column). Then, the results of the
sensitivity analysis are discussed, and the model suitability for description of ultra-
sonic wave propagation in cancellous bone is discussed in the light of the most cited
results existing in the literature. The computations were performed using as input
parameters the (average) values measured during a systematic study of 35 human
femoral cancellous bones [62]. The parametric studies refer to parameters which
role is not evident within the Biot’s model because their values for cancellous bone
cannot be easily identified. The three mostly used versions of Biot model to predict
ultrasonic wave propagation in cancellous bones are compared. The calculations are
performed for these three mostly used versions, which where described in details in
Sect. 5.2:

• The Biot model for low frequencies [1], where the Poiseuille flow approximation
in the pores during the wave propagation is satisfied (B LF).

• The Biot model for high frequencies [2] (B HF), which takes into account
heterogeneity of the microscopic fluid flow during the wave propagation. The
correction was proposed by Biot for the structures composed of parallel tubes of
the same diameter filled with viscous fluid, and for a system of fluid and solid
layers. The model is valid up to a frequency at which the wavelengths become of
the order of the pore size.

• The Biot model modified by Johnson, Koplik and Dashen [20], which includes
the concept of dynamic tortuosity (B JKD).
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5.4.1 Influence of the Tortuosity and of the Saturating Fluid
on the Wave Parameters

In order to evaluate the role of the fluid viscosity on the wave parameters, predictions
of the models for marrow (ηm = 1Pa · s) and water (ηw = 0.001Pa · s) saturated
cancellous bone are presented in Figs. 5.3 and 5.4 for two values of tortuosity.

At high tortuosity (α = 1.5, average value measured in Pakula et al. [62]), see
Fig. 5.3, a higher viscosity of the fluid (marrow) leads to a higher dispersion and
lower values of the velocities of both longitudinal waves. When the frequency
increases, the phase velocity curves tend to reach the values obtained for water.
Similarly, the attenuation dramatically increases for marrow filled bones in compar-
ison with water filled material. For the slow wave, the level of attenuation reaches
100 dB/cm.

At low tortuosity (α = 1.05), the values of phase velocity are slightly higher
than at high tortuosity. In the case of the attenuation coefficient, particularly of the
fast wave (Fig. 5.4b), a significant increase of the absolute level and of the slope is
observed. The slow wave attenuation is slightly lower than for higher tortuosity.

a b

c d

Fig. 5.3 Comparison of the predictions for phase velocity of fast (a) and slow (c) waves and at-
tenuation coefficient of fast (b) and of slow (d) waves. Models: B LF–Biot’s for low frequency
range [1], B HF Biot’s for high frequency range [2] and B JKD–Biot’s with viscodynamic correc-
tion introduced by Johnson et al. [20] Tortuosity = 1.5
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a b
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Fig. 5.4 Comparison of the predictions of the phase velocity of fast (a) and slow (c) waves and
of the attenuation coefficient of fast (b) and of slow (d) waves. Models: B LF–Biot’s for low fre-
quency range [1], B HF Biot’s for high frequency range [2] and B JKD–Biot’s with viscodynamic
correction introduced by Johnson et al. [20] Tortuosity = 1.05

The computations show that the wave parameters (particularly the attenuation
coefficient of both waves) strongly depend on the fluid viscosity. Such expected
behavior results from the viscous-like mechanism of friction at the fluid/solid inter-
phase included in the Biot’s models. The models predictions prove also a significant
role of tortuosity, which may lead to an increase of fast wave attenuation when
tortuosity decreases.

Ambiguous ultrasonic results were reported in the literature for cancellous bones
saturated with marrow and water: some authors reported differences between mar-
row and water saturated bones [84, 85, 109] while the others reported opposite
conclusions [79, 82, 83, 110]. It is interesting to note that the reported experimental
differences in attenuation and speed of sound between marrow and water satu-
rated specimens are much smaller that those resulting from the computations of
the Biot’s models with different viscosities. It seems therefore that the current ver-
sions of the model do not describe appropriately the physical mechanisms associated
with the fluid viscosity. Especially for low tortuosity and marrow as the saturating
fluid, the three models seem to overestimate the attenuation when compared to typ-
ical values of attenuation measured. Another possibility is that the model describes
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appropriately the physical mechanisms associated with the fluid viscosity, but that
the contribution of this mechanism to total attenuation is minor compared to other
physical mechanisms not accounted for by the model. Further theoretical studies
taking into account for example the viscoelastic properties of the solid phase could
be helpful to discriminate which of the physical mechanism mostly influence the
wave attenuation.

5.4.2 Parametric Analysis of the Reflection/Transmission
Coefficients

Another factor which may lead to the attenuation of the wave energy transmitted
through bones is the conversion of the incident wave energy into reflected and trans-
mitted waves. Usually, for ultrasonic studies of cancellous bones, the incident wave
originates from a fluid, and the fast and slow waves are generated at the fluid/ satu-
rated cancellous bone boundary.

Figure 5.5 presents the stress (pressure) transmission coefficients of the fast and
the slow waves at the boundary fluid/fluid saturated bone as a function of the
frequency for normal incidence. The computations were performed for the same
models as in Sect. 5.4.1, the same tortuosities, and for cancellous bones saturated
with marrow and water.

For relatively high tortuosity (α = 1.5), the presence of marrow in pores does not
influence significantly the transmission coefficients. The changes of transmission
coefficients over the whole analyzed frequency range are smaller than 10%.

In the case of low tortuosity, a relative inversion of the values of transmission
coefficients takes place in bones saturated with water (the transmission coefficient
of the fast wave becomes smaller than for the slow wave around 1 MHz). In the case
of marrow filled bones, such an inversion is also predicted by the B LF model.

Figures 5.6 and 5.7 show the transmission coefficients of fast, slow and shear
waves as well as the reflection coefficient at the boundary fluid/ fluid saturated bone
as a function of the incident angle at 1 MHz. The calculations were performed for
the three versions of Biot models for the two different fluids (marrow and water)
and for two different tortuosities.

The coefficients change slightly when the angle of incidence varies between
0 and 40◦. For angles higher than 40◦, the variations of the transmissions coeffi-
cients become much more important. This finding demonstrates that the variations
of the transmission coefficient have to be taken into account when the incidence an-
gle deviates from the normal. This is particularly important when the effect of the
anisotropy on the attenuation coefficient is studied by rotating a slice of cancellous
bone. Variations of the transmission coefficient might then be a confounding factor
if not corrected for.

These calculations were performed assuming that the incident wave impinges
the pure cancellous bone (like in most of in vitro studies), while during in vivo
examination (e.g. at the calcaneus) cancellous bone is surrounded by a cortical shell.



5 Poromechanical Models 111

a b

c d

Fig. 5.5 Stress (pressure) transmission coefficients as a function of frequency for a high tortuos-
ity specimen (top) and low tortuosity specimen (bottom), for fast (Tfast) and slow wave (Tslow),
through the boundary fluid/fluid saturated bone at normal incidence. Models: Biot low frequency
range model (B LF) [2], Biot high frequency range model (B HF) [111] and Biot’s with viscody-
namic correction introduced by Johnson et al. [20]

The effect of the cortical shell on the anisotropy of the transmission coefficient has
now to be studied to know it is necessary to compensate for variations in incidence
angle if any, during in vivo measurement.

5.4.3 Influence of the Tortuosity, the Permeability and the
Viscosity on the Viscodynamic Correction Functions

In Sect. 5.2.5 were presented additional physical effects, which were not included
in the Biot’s paper for low frequency range [1] and which may be relevant to model
wave propagation in cancellous bones. One of the most important is related to the
heterogeneity of fluid flow during propagation.

In Fig. 5.8, the frequency dependences of the viscodynamic corrections pro-
posed by Biot for the high frequency range (B HF) [2] and by Johnson, Koplik



112 M. Pakula et al.

Fig. 5.6 Reflection (d) and transmission coefficients of the fast (a), slow (b) and shear (c) waves
as a function of the incidence angle on a fluid/ fluid saturated bone boundary for a high tortuosity
specimen (alpha = 1.5). Models: Biot low frequency range model (B LF) [1], Biot high frequency
range model (B HF) [2] and Biot’s with viscodynamic correction introduced by Johnson et al. [20]
Calculations are performed at 1 MHz

and Dashen [20] (B JKD) are depicted. The functions are plotted for two values
of tortuosity, permeability and viscous characteristic length (Λ). The most impor-
tant finding is that the functions corresponding to the B JKD model highly increase
when the values of the tortuosity and Λ decreases. This can be attributed to the fact
that the B JDK corrections have been derived for a randomly oriented system of
channel [20], while the B HF corrections were calculated based on a system of par-
allel channels [2]. The latter model of structure of pore space seems to be better
to characterize low tortuosity materials while the B JKD model leads to extremely
high values of correction functions.

Figure 5.8 shows that the role of the different viscodynamic corrections is par-
ticularly important for the attenuation of the fast wave if the bones have low
tortuosities. Therefore, both the absolute values and the slope of the attenuation
coefficient depend strongly on the type of model applied.

The different behaviors of the correction functions on input parameters are an
important point to consider. Both the Biot high frequency model B HF and the Biot



5 Poromechanical Models 113

Fig. 5.7 Reflection (d) and transmission coefficients of the fast (a), slow (b) and shear (c) waves
as a function of the incidence angle at the fluid/ fluid saturated bone boundary for a low tortu-
osity specimen (alpha = 1.05). Models: Biot low frequency range model (B LF) [1], Biot high
frequency range model (B HF) [2] and modified by Johnson et al. [20] Biot model. Calculations
was performed at 1 MHz

model with the Johnson, Koplik and Dashen corrections have been used to predict
wave attenuation in cancellous bones, respectively in Hosokawa and Otani [35, 36]
and in Fellah et al. [42–45]. In these studies the tortuosity was almost equal to 1,
and the viscous characteristic length was very small (5μm [43–45]). It has been
seen in Fig. 5.8b that the impact of the viscodynamic correction functions will be
large for such values of tortuosity and viscous characteristic length. Such low val-
ues of viscous characteristic lengths, which is linked to the radius of the narrow
pores, seems unlikely when compared to pore size distribution measured by micro-
tomography (a typical value of 230μm was reported for the minimum size of the
pores in human femoral cancellous bones specimens [51, 112]). Therefore accord-
ingly to Williams [54] and Haire [33] who assumed values of pore size parameter Λ
to be half of the mean trabecular plate separation, the expected values of Λ should
be about 100μm. Nevertheless, a direct comparison between studies is hardly pos-
sible due to the differences in specimens anatomical origins and micro-architecture
(range of porosity, degree of anisotropy etc.).
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Fig. 5.8 Dependence of the viscodynamic correction functions on frequency for B HF and B JKD
models and for two permeabilities (ko), two tortuosities (α), two viscous characteristic lengths (Λ ),
and two saturating fluids (water and marrow)

Whether these values of tortuosity and viscous characteristic length are relevant,
and therefore whether the impact of the corrections functions on the predicted at-
tenuation may be so important, remains therefore an open question.

What can be learned from the parametric study is that the measurements on large
sets of specimens (representative of parameters variability) will be necessary to be
able to conclude quantitatively on the validity of the models.

5.5 Conclusions

The Biot’s theory of poromechanics is an attractive candidate to model ultrasonic
wave propagation in cancellous bones because of the two-phase nature of the
medium. One advantage of this model is that it can take into account the intrinsic
properties of the solid skeleton and of the fluid filling pores, as well as the macro-
scopic characteristics of the structure of the bone.
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The existence of the two longitudinal waves predicted by the theory has been
confirmed experimentally in vitro for cancellous bones saturated with marrow, water
and alcohol [21, 22, 27, 37, 39, 41–45, 47, 53, 54, 77–82]. Until now, only one study
reported the measurement of two waves in vivo [59], but no direct evidence exists
that these two waves are linked to the Biot longitudinal waves.

The difficulty in the experimental observation of two waves may be caused
by small amplitude of one of them and/or their overlapping in the time domain.
Anderson et al. [97] have shown that such an overlap was highly probable in can-
cellous bones, particularly in the case, when the speeds of both waves are very
close. In addition, they reported that a consequence of the use of traditional signal
processing techniques on a signal that includes two pulses (e.g. a fast and a slow
wave) having positive dispersion, even when the amplitude of one of them is very
small, is negative dispersion of the phase velocity of transmitted waveform. Many
authors have reported such negative dispersion [107], and it is therefore likely that
overlapped pulses may commonly propagate in the material (see Chap. 12). Whether
the overlapping pulses are due to poro-elastic propagation or they are caused by the
other mechanisms such as phase cancellation [94, 97, 113] remain open question.

Despite the success in predicting the existence of two waves and potentially
explaining negative dispersion, the ability of the theory to predict ultrasound propa-
gation parameters in cancellous bone has been limited. With the proper adjustment
of some of the input parameters, the predictions of the fast wave velocity have been
found to be pretty accurate, but the Biot’s model has not yet been able to predict
accurately the measured attenuation, except in studies performed on limited groups
of specimens [21, 42–45]. Because the theoretical predictions are very sensitive to
the input parameters, which demonstrate large variability between specimens, it is
difficult yet to conclude on the relevance of the model. A more definitive conclusion
might be reached after measurements on enlarged sets of bone specimens will have
been performed.

The model predictions presented in the light of the experimental results obtained
in the literature have given insight into theoretical areas which need to be more ex-
ploited. One of the most important finding of the parametric studies performed here
was the important contribution of the bone boundaries on the loss of wave energy.
Moreover, the crucial role of tortuosity (the parameter describing alignment of the
trabecular pattern) and of the viscodynamic parameters along with the characteris-
tic size of pores was shown both on the intrinsic wave attenuation in the material
and on the division of incident wave energy on the fast and slow wave at the bone
boundaries. Future studies on the separation of the transmitted wave energy, due to
transmission at the boundaries, and inside the bone material may give insight into
the real physics associated with wave propagation in the cancellous bones.

One of the disadvantages of the Biot’s model as a source of information about the
bone status is the number of input parameters required to calculate its predictions.
Moreover, the parametric studies presented here have proven that the model predic-
tions are sensitive to number of parameters, particularly tortuosity, permeability, vis-
cous characteristic length, some of them being difficult to measure experimentally.
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Another, essential drawback of the Biot’s theory to model wave propagation in
cancellous bone is that the medium lies at the limits of the theory’s domain of va-
lidity, when the ratio of wavelengths to the size of the bone micro-heterogeneities
(trabecular thickness and trabecular spacing) is considered [78]. When this ratio is
too small, scattering effects may appear and the theory is not valid anymore. Indeed,
scattering is present in cancellous bones (see Chap. 6), and its relative contribution to
total attenuation cannot be neglected. The presence of scattering may explain some
of the observed discrepancies between experimental results and predictions of at-
tenuation from the models. When scattering is considered, one source of additional
attenuation not included in Biot model come from longitudinal-to-shear mode con-
version by the trabeculae, associated with high absorption of the shear waves in the
solid matrix [82,114]. The Biot model can be complemented to include such effects
through assumption of viscoelastic properties of the intrinsic trabecular bone mate-
rial. Nevertheless, more research is certainly needed in this area before the models
can be used for explaining in vitro or in vivo data.

Despite severe limitations in the current use of Biot’s model, due to imprecise
input parameters and incomplete description of all physical interactions occurring
between ultrasound and bone in the models, the poroelastic nature of cancellous
bone might be exploited in the future as a new way to probe bone micro-architectural
properties. A first approach has been proposed for measurement at the distal ra-
dius [46] and is expected to be successful in providing information on the structure
and elasticity of trabecular bone complementary to the bone density measured by
current X-rays absorptiometry techniques. However, Biot modeling has yet to be
established as a valid theoretical framework to interpret the data obtained with this
approach.
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Chapter 6
Scattering by Trabecular Bone

Frédéric Padilla and Keith Wear

Abstract This chapter reviews models for scattering of ultrasound by cancellous
bone, methods for measuring scattering, and empirical results. Theory and mea-
surements are presented for the dependence of backscatter on frequency and mean
trabecular thickness. Additional topics discussed include the inverse problem (that
is, estimating cancellous bone properties based on scattering measurements), the
extent of multiple scattering in cancellous bone, and the role of scattering in deter-
mining attenuation. The potential advantages and intrinsic difficulties of backscatter
as a clinical measurement are discussed. Results of clinical trials are presented.

Keywords Anisotropy · Apparent backscatter coefficient · Attenuation · Role of
scattering · Autocorrelation · Backcatter · Backscatter coefficient measurement ·
Binary mixture model · Born approximation · Broadband Ultrasound Backscatter ·
Faran cylinder model · Multiple scattering · Shear waves · Thin cylinder model ·
Trabecular thickness · Velocity dispersion · Weak scattering model

6.1 Introduction

6.1.1 General Considerations

Trabecular bone is a scattering medium, as reported by numerous scattering mea-
surements in vitro [1–28] and in vivo [27, 29–31].
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Fig. 6.1 3-D reconstruction
of trabeculae structure
of a human femur after
synchrotron
micro-tomography
experiments. The spatial
resolution is 10μm
(With courtesy of Françoise
Peyrin (ESRF – CNRS
Creatis UMR 5515))

Scattering has been reported in trabecular bone even at low frequencies
(0.5 MHz), and multiple scattering has been reported to potentially occur at higher
frequencies [2, 6].

Human trabecular micro-structure (Fig. 6.1) is composed of a heterogeneous and
anisotropic porous network (porosity between 75% and 95% [3,32]) of interconnec-
ted solid trabeculae (approximate size 50–150μm, mean interdistance 50–1500μm
[3,32]) embedded in bone marrow. The impedance mismatch between the trabeculae
(∼7.5MRayl [33]) and the saturating viscous fluid-like marrow (1.5 MRayl) is high,
and therefore the trabeculae are likely candidates to act as scatterers.

6.1.2 What to Expect from Scattering?

Backscatter is an important parameter as it conveys information about bone
microstructure, which is one of the determinants of bone fragility [34–37]. The
question is how to extract this information from the measurements?

This can be done by using regression models from experimental data, for ex-
ample by studying the relationships between micro-architectural parameters and
ultrasound backscatter. This approach is however very limited because of the dif-
ficulty of obtaining large sets of specimens and because of the co-variance of the
micro-achitectural parameters among themselves and with bone density [3,12]. The
variability of such estimators is too large to be clinically useful [12].

Direct modeling of scattering, followed by the resolution of an inverse prob-
lem, is an alternative [1, 5, 17, 38]. Modeling scattering in trabecular bone will also
provide an answer to the question of the relative roles of scattering and absorp-
tion in the attenuation measured in transmission [5, 39], and could also potentially
give some insight into some unexplained experimental observations such as negative
frequency-dispersion of velocity [40].



6 Scattering by Trabecular Bone 125

The ability to demonstrate that backscatter measurement can provide information
complementary to bone mass is an important issue with respect to the clinical useful-
ness of the technique. The success of this approach depends also on the development
of accurate scattering models.

Finally, the main advantage of a characterization technique based on scattering
measurement, and especially on backscattering measurements, is that it requires
access to only one side of the bone inspected. As with classical echography, access
to central skeletal sites would be facilitated compared to transmission measurement
techniques. However, only moderate success have been reported so far.

6.1.3 Intrinsic Difficulties of Scattering Measurements
in Cancellous Bones

Scattering measurements in cancellous bone can be quite challenging. One reason
for this is that, at diagnostic frequencies, echoes from cancellous bone are the result
of summation of scattered waves from many unresolvable trabeculae throughout a
resolution volume. Therefore, the magnitude of the echo can exhibit considerable
variability due to the extent to which the individual scattered waves interfere con-
structively or destructively [24]. The variability of scattered signals is exacerbated
by the fact that cancellous bone samples tend to be quite small and do not provide
much opportunity to perform spatial averaging. A second factor that complicates
scattering measurements from cancellous bone is the high attenuation coefficient,
which limits depth of penetration into the bone. Compensation of measurements
for the effects of attenuation is mathematically complex and requires careful at-
tention to windowing functions [41]. Furthermore, attenuation coefficient is often
measured in transmission experiments and tends to be overestimated due to phase
cancellation at the receiving transducer. The use of this overestimated attenuation
coefficient for the compensation of backscatter measurements in human calcaneus
in vitro has been shown to result in overestimation of (1) backscatter coefficient at
500 kHz by an amount on the order of 60%, and (2) average exponent of frequency
dependence (n where backscatter coefficient is assumed to be proportional to f n) by
an amount on the order of 0.3 [42].

6.2 Scattering Models for Cancellous Bones

6.2.1 Preliminary Considerations

Cancellous bone is a two-component medium. One component is the solid min-
eralized trabecular network. The other component is marrow (in vivo) or water
(in vitro). The interfaces between the solid and fluid components may scatter in-
cident ultrasound waves. Cancellous bone has extremely complicated structure, as
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Fig. 6.2 Micro computed tomographic image of human calcaneus slice. Thread-like trabeculae
may be seen. Some trabeculae appear to terminate as they move into and out of the imaging plane.
A typical beam cross section at 500 kHz (about 13 mm in diameter) is shown (Image acquired by
Andres Laib, Scanco Medical AG, Brüttisellen, Switzerland)

shown in Figs. 6.1 and 6.2. The theoretical models described below make many
simplifying assumptions in order to obtain analytic solutions. Nevertheless, some
of these models predict dependences of backscatter coefficients on frequency and
cancellous bone micro-architectural properties that are consistent with experimen-
tal measurements in vitro. The reader may refer to Chap. 10 for more information
on the linear acoustics in trabecular bone.

The Faran Cylinder Model, Thin Cylinder Model, and Weak Scattering Model
are presented in the section. A few other approaches assuming multiple scattering
have been also proposed to predict scattering by trabecular bone and will be de-
scribed in Sect. 6.4.

6.2.2 Faran Cylinder Model

The Faran Cylinder Model represents trabeculae as solid cylinders embedded in
fluid (marrow in vivo or water in vitro), as shown in Fig. 6.2. The scattered field
from a single trabecula may be predicted using Faran’s theory [43]. This model is
particularly appropriate for predicting the dependence of backscatter coefficient on
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frequency and trabecular thickness, as opposed to predicting the absolute level of
backscatter. Two different formulations of the Faran Cylinder Model were devel-
oped independently.

One formulation assumed a lattice structure of regularly-spaced parallel trabecu-
lae [14,15]. The scattered waves by such a structure were analyzed with a multilayer
grating model. Using Born approximation and Fraunhoffer diffraction formulas,
the scattered wave was expressed in terms of two parameters characteristic of the
medium: the cylinder diameter and the spatial period of the network. The authors
proposed to use the position of the grating lobes as a function of the scattering an-
gles and the frequency to estimate the two parameters. Measurements in a bandwidth
1–3MHz on one slab of human heel and one slab of bovine thigh trabecular bones
did provide correct order of magnitude for both estimated parameters. A prototype
was realized and tested on a formalinized human heel bone. Again, correct orders of
magnitude were obtained. Because only two bone samples were interrogated (one
human and one bovine) and no precise comparison was provided between estimated
parameters and actual values of mean trabecular thickness and spacing, it is difficult
to assess the robustness of the method.

The other formulation assumed that trabeculae were positioned sufficiently ran-
domly that the incoherent contribution to scattering dominates the coherent contri-
bution (i.e., the phase difference between scattered signals from pairs of cylinders
was assumed to be uniformly distributed between 0 and 2π) [22]. A more re-
cent variation assumed that trabeculae were positioned quasi-periodically [21].
The Incoherent Faran Cylinder Model predicts that if (1) the cylinder diameter is
much smaller than a wavelength and (2) multiple scattering is negligible, then the
backscatter coefficient at low frequencies (below 1 MHz) from human cancellous
calcaneus should vary approximately as frequency cubed [22, 25] and trabecular
thickness cubed [28]; both predictions are consistent with experimental measure-
ments [22, 28]. The mean trabecular thickness in human calcaneus, about 127μm
[44], is much smaller than the wavelength at the typical diagnostic frequency of
500 kHz, about 3 mm, in the surrounding fluid. The Faran Cylinder Model has
been shown to accurately predict attenuation due to scattering in cancellous-bone-
mimicking phantoms [45]. The Incoherent Faran Cylinder Model has been extended
to include cylinders with randomly varying diameters [46]. A cylinder scattering
model has also been shown to be useful for predicting phase velocity and dispersion
in cancellous bone [40]. The model accurately predicts the dependence of phase
velocity and dispersion on trabecular thickness and trabecular spacing in cancellous-
bone-mimicking phantoms [47].

6.2.3 Thin Cylinder Model

The Thin Cylinder Model predicts scattered signals by integrating the two-way
transducer directivity pattern along a cylindrical scatterer [48]. While the Faran
Cylinder Model allows for arbitrary cylinder diameter, the Thin Cylinder Model
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requires that cylinder diameter be much less than a wavelength. This is not a serious
limitation for human cancellous bone. For example, the mean trabecular thickness in
human calcaneus is about 127μm [44] whereas a typical measurement wavelength
can be on the order of 3 mm (at 500 kHz). The Thin Cylinder Model is somewhat
more flexible than the Faran Cylinder Model because it allows for arbitrary length
and orientation of cylinder scatterers. Although for typical experiments and for clin-
ical bone sonometry (in which the calcaneus is interrogated in the medio-lateral
orientation), trabeculae are typically longer than the beam width and oriented ap-
proximately perpendicular to the beam, the added flexibility of the Thin Cylinder
Model allows for slight irregularities in trabecular orientation and length. The Thin
Cylinder Model predicts the relationship between the cylinder length and the ex-
ponent of a power law fit to backscatter coefficient versus frequency, which is four
for very short (compared to a wavelength) cylinders and asymptotically approaches
three for very long cylinders. The Thin Cylinder Model offers an explanation for
why experimental measurements of this exponent vary between approximately 3.2
[22] and 3.4 [4] rather than being equal to 3 (the value predicted by the incoherent
Faran Cylinder Model). The difference may be attributed to finite effective length of
cylinders. The Thin Cylinder Model has been verified with measurements on nylon
wires in water [39].

6.2.4 Weak Scattering Model

By “Weak Scattering Model” we mean an adaptation to bone of the Weak Scat-
tering Model that was widely used to predict scattering by soft tissues [49–58]. In
this approach, trabecular bone is considered as a random medium: a collection of
random scatterers (trabeculae) in an ambient fluid. The fundamental difference with
the Faran Cylinder Model is that the scatterers are not considered discrete anymore,
but the medium is now described like a continuously varying medium. So far, the
approach has been used only to model bone as a fluid random medium, i.e. neglect-
ing the propagation of shear waves in the scatterers, and describing the trabeculae
as fluid heterogeneities, whose acoustic properties differ from those of the ambient
fluid [1, 4, 5, 16, 17, 38, 59, 60]. The first use of such a model was made neglecting
the density fluctuations in the trabeculae [16, 60], using the so-called Binary Mix-
ture Model, which has been shown to be useful in soft tissues [58]. Then density
fluctuations were taken into account [1, 4, 5, 17, 38, 59].

Several assumptions are necessary to derive this model based on the Born ap-
proximation [61]. (1) The field on a scatterer is assumed to be not affected by the
other scatterers. This condition imposes restrictions on the values of density and
compressibility fluctuations, coupled to restrictions on the scatterers dimensions
compared to the wavelength. This last one is easily fulfilled since the wavelength
in water or marrow at 0.5 MHz is about 3 mm and the typical trabecular diameter
(e.g. human calcaneus) is about 120μm [3]. Given the high density and com-
pressibility fluctuations encountered, the condition ensuring the convergence of the
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perturbation expansion used to calculate the pressure is barely satisfied at 0.5 MHz
(see Sobczyk [62] for a medium characterized by an exponential autocorrelation
function Chap. 3, Eqs. 3–32). Strictly speaking, at 1 MHz, the condition is not satis-
fied. However, we will see that the Weak Scattering Model nevertheless gives results
that are very consistent with measurements in cancellous bone. (2) In the current
derivation of the model applied to bone, absorption is neglected: this is a strong ap-
proximation which has to be taken into account in the experimental procedure by
compensating for attenuation losses during propagation. (3) The scattering volume
is far from the transducer. (4) Finally, the medium is supposed to be isotropic. The
Weak Scattering Model based on these assumptions has been shown to result in
predictions consistent with measurements in cancellous bone (see Sect. 6.3.2).

Following these assumptions, the differential scattering cross section can be ex-
pressed in terms of the three-dimensional spatial Fourier transform of the density
and compressibility fluctuations.

If the microstructure is known, which can be the case when the specimens are
imaged with high-resolution micro-tomography, the numerical 3-D volumes can be
used to compute the spatial Fourier transform of the medium. This has been done
with success to validate the model [4, 59]: Results have shown that the model can
predict both the magnitude and the frequency dependence of the backscatter coeffi-
cient with a root mean square error of 1 dB.

More generally, the microstructure is unknown and can then be described
in terms of its auto-correlation function [52, 61]. Different analytical forms of
autocorrelation functions have been used so far [1, 4, 5, 17, 38], like Gaussian, ex-
ponential, etc. . . and have given accurate prediction of the backscatter coefficient.
The advantage of this formulation is to make possible the resolution of an inverse
problem, by adjusting the correlation length used in the model to fit experimental
data. This point will be discussed in Sect. 6.3.2.

Using an analytical autocorrelation function to describe the micro-structure,
some authors tried to estimate the attenuation due to scattering by computing the
total scattering cross section. When only the mean fluctuations in velocity are taken
into account, the Binary Mixture Model predicts nonlinear dependence of BUA on
porosity as observed in cancellous bone [63] and a quasi-linear dependence of at-
tenuation due to scattering with frequency over a limited bandwidth for sufficiently
small scatterers [16]. When both velocity and density fluctuations were considered,
the model also predicted a nonlinear dependence of BUA on porosity [1]. These re-
sults should however be considered with caution, because the derivation of the total
scattering cross section assumes low level of attenuation, which seems incompatible
with the results of the computations [1, 16, 60].

6.2.5 Comparison of Models

The Incoherent Faran Cylinder Model and the Weak Scattering Model, which have
received far more experimental validation than the other models, have relative
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strengths and weaknesses. Both models ignore multiple and coherent scattering.
One relative disadvantage of the Incoherent Faran Cylinder Model is that trabec-
ulae can deviate from a true cylindrical shape because of long-range curvature.
As can be seen in Fig. 6.2, the curvature is often not dramatic on the scale of an
ultrasonic beam width (typically about 13 mm at 500 kHz). Another disadvantage
of the Incoherent Faran Cylinder Model is that cancellous bone can contain small
non-cylindrical plate-like structures. Scattering from small plates may help explain
measurements of backscatter coefficient that vary with frequency slightly more
rapidly than the cubic dependence predicted by the Incoherent Faran Cylinder
Model (since scattering from structures small compared with the wavelength is pro-
portional to frequency to the fourth power) (see Sect. 6.3.2.). The Incoherent Faran
Cylinder Model may be more appropriate for low density bone, in which rod-like
structures dominate. The Weak Scattering model, with its statistical characterization
of cancellous bone, is more flexible than the Incoherent Faran Cylinder Model in
its ability to accommodate complex microstructure and its potential to provide a
solution to the inverse problem.

One relative disadvantage of the Weak Scattering Model is that it requires that
the acoustic properties (density and sound speed) within the two-component tra-
becular bone medium deviate only slightly from their mean values (spatial mean
throughout the entire scattering volume). Density and sound speed of trabeculae
may deviate substantially from density (approximately 1g/cm3) and sound speed
(approximately 1500 m/s) of the fluid filler. In addition, the Weak Scattering Model
does not allow yet for shear wave propagation within trabeculae. Shear wave prop-
agation has been measured in cortical bone [64] (see Chap. 13) and is therefore
plausible within trabeculae. Simulations suggest, however, that shear waves within
the trabecular network may play a negligible role in backscattering properties of
cancellous bone [65]. The Incoherent Faran Cylinder Model allows for arbitrary
contrast in acoustic properties, anisotropy, and the propagation of shear waves in
the trabecular material.

Despite (1) the simplicity of these models relative to the true structure of can-
cellous bone and (2) the differences in their underlying assumptions, the Incoherent
Faran Cylinder Model and the Weak Scattering Model predict similar frequency-
dependent backscatter coefficients that agree well with measurements in human
calcaneus in vitro [4, 22] and human femur in vitro [66], as shown in Fig. 6.3.

6.3 Estimation of Cancellous Bone Properties Using Scattering

6.3.1 Experimental Methods

Quantitative measurements of backscatter coefficient are performed using substitu-
tion measurement: the backscattered signals are compared to signals measured after
reflection on a perfect reflector placed at a distance from the transducer equal to that



6 Scattering by Trabecular Bone 131

0 0.2 0.4 0.6 0.8 1 1.2

100

10−1

10−2

10−3

10−4

B
ac

ks
ca

tte
r 

C
oe

f. 
(1

/c
m

S
r)

Frequency (MHz)

334

Expt
Faran Theory
WS Theory

Fig. 6.3 Backscatter coefficient from human calcaneus sample in vitro. Incoherent Faran Cylinder
Model predictions (solid line) and Weak Scattering Model predictions (dashed line) are also shown

of the scattering volume of the specimen under study, or compared to signals mea-
sured in a calibrated phantom. In order to perform measurements that isolate small
volumes that include only cancellous bone and exclude cortical bone, these mea-
surements are usually performed using focused transducers. Signals from a region
of interest (ROI) of typically approximately 1 cm in diameter are selected, the size
of the ROI being chosen to minimize variance due to spatial heterogeneity while
allowing statistical averaging over a certain number of independent lines to reduce
speckle noise.

Typically, the backscatter coefficient is calculated by computing the ratio of the
frequency power spectrum of the time-weighted echo signal to the power spectrum
of the reference signal. The echo-signal is time-weighted to select a desired physical
location in the bone specimen. Care must be given to compensate backscatter mea-
surements for attenuation, time-gate function and frequency-dependent scattering
volume (diffraction). Details for several approaches can be found in several pa-
pers (e.g. [4, 20, 22, 67]). Provided the phase velocities of the sample and water are
reasonably well matched, a requirement comfortably met for measurements on tra-
becular bone [68,69] the effect of diffraction is small and can be neglected [70,71].
The compensation for attenuation is a particularly sensitive issue and it has been
demonstrated that compensation functions used for low attenuating soft tissues
should be modified to take into account the large attenuation values encountered
in bones [17]. With this method, the intrinsic backscatter coefficient of the scatter-
ing volume is obtained, which is independent of the characteristics of the measuring
device and of experimental conditions. When no compensation for attenuation is
made, one often refers to the “apparent” backscatter coefficient.
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6.3.2 Experimental Results

Although the expansive literature on experimental measurements on cancellous
bone is briefly summarized here, a more detailed discussion may be found in
reference [72].

The measured backscatter coefficient has been found to be an increasing function
of bone volume fraction, as measured by bone mineral density (BMD). Moderate
correlations (typical R2 of 0.7) were reported by several authors between inte-
grated backscatter coefficient (or IBC i.e. backscatter coefficient averaged over the
frequency bandwidth, also named BUB for broadband ultrasound backscatter coeffi-
cient) in vitro in human calcaneum [12,20] and femur [32] in the clinical frequency
range, but also at higher frequencies (0.5–5MHz) in human trabecular specimens of
femur and tibia [8,13,18]. The backscatter coefficient at 500 kHz has been found to
exhibit moderate correlation to BMD in vitro in human cancellous calcaneal bone
[26]. A non-linear trend was reported in bovine femurs, going to a maximum of
the backscatter coefficient at 800 kHz for an apparent density of 0.6 g/cm3 [1].
Apparent (not compensated for attenuation) integrated backscatter has been reported
to decrease gradually with BMD in bovine cancellous tibia [10, 11], illustrating the
confounding effect that attenuation (increasing with bone density) can have on the
estimation of backscatter coefficient when it is not compensated for.

Over a limited band of frequencies (e.g. the transducer bandwidth), the frequency
dependence of backscatter coefficient may be approximated by the exponent of a
power law fit to backscatter coefficient versus frequency (i.e. backscatter coefficient
is proportional to f n). The value of the exponent n has been measured in human
calcaneus to be in the range of 3.26–3.38 [4, 22]. A similar value of 3.1 has been
measured in human femur [41]. The Incoherent Faran Cylinder Model predicts a
value of n = 3 when the trabecular diameter is much smaller than a wavelength
[22], i.e. in agreement with Rayleigh scattering by cylinders in the low ka regime
where k = 2π/λ , λ = wavelength and a = trabecular radius. Typical values for ka
are about 0.1–0.2 in the frequency band 0.5–1 MHz. Multiple scattering, scatter-
ing from finite-length cylinders, and scattering from small plates and cross-struts
may partly explain why measured exponents tend to be greater than 3. The Weak
Scattering Model predicts a value near 3.48 for human calcaneus [4]. Therefore,
experimental measurements are in reasonable agreement to within experimental er-
ror with both the Incoherent Faran Cylinder Model and the Weak Scattering Model.
A two-component Weak Scattering Model has also shown good agreement with
measurements of frequency-dependent backscatter in bovine cancellous bone [5].
The frequency dependence however cannot be used on an individual basis to distin-
guish specimens (i.e. normal versus osteoporosis) because the variation in frequency
dependence of measurements of the backscatter coefficient can entirely be attributed
to random interference noise (speckle noise), arising from insufficient statistical av-
eraging [17, 24].

Backscatter coefficient from human calcaneus in vitro has been shown to be ap-
proximately proportional to trabecular thickness (Tb.Th) to the 2.8 power, which is
close to 2.9 power predicted by the Incoherent Faran Cylinder [28].
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Moderate relationships between broadband backscatter coefficient and micro
architectural parameters have been reported in human specimens [3, 13, 32, 73].
At the femur, correlation between BUB and micro-architectural parameters were
reported to be slightly lower than at the calcaneum (best correlation coefficient ob-
tained between BUB and bone surface/bone volume, with R values −0.86 at the
calcaneum [3] and −0.65 at the femur [32]). Interestingly, it has been reported that
the best linear multivariate model to predict BUB from micro-architectural parame-
ters included trabecular thickness and trabecular spacing, predicting that an increase
of trabecular number (number of scatterers) and an increase of trabecular thickness
(size of scattering particle, i.e. trabeculae) will be associated with an increase of
BUB, which is consistent with scattering theories [32]. However, it is interesting to
note that after adjustment for density, the variance of BUB attributable uniquely to
individual architectural parameters was at best 4% [3, 32, 73]. These results suggest
that even if information about micro-architecture is conveyed by the backscattered
waves, the causal relationships between e.g. BUB and micro-architecture deduced
from such empirical studies cannot be used to predict micro-architectural features.

Backscatter coefficient in human calcaneus in vitro has been measured to be 50%
higher in the mediolateral (ML) direction than in the anteroposterior (AP) direction
[23]. In the ML orientation, the ultrasound propagation direction is approximately
perpendicular to the trabecular axes. In the AP orientation, a wide range of angles
between the ultrasound propagation direction and trabecular axes is encountered.
The higher backscatter in the ML direction may be due to the fact that the trabeculae
are oriented in such a way to present the maximum cross sectional area available
to intercept (and therefore, scatter) the incident ultrasound beam [23]. Increased
backscatter in the ML direction (compared with the AP direction) has also been
reported in bovine tibia [11].

Most in vitro studies of the ultrasonic properties of cancellous bone involve de-
fatted bone specimens immersed in water tanks. In these experiments, water in vitro
substitutes for marrow in vivo as the fluid filler within the porous trabecular matrix.
Studies have shown that bone samples filled with marrow exhibit similar backscatter
to bone samples filled with water [74, 75].

Mechanical properties are important because they are related to fracture risk, the
primary clinical endpoint. BUB has been found to correlate weakly but significantly
with Young’s modulus and ultimate strength in bovine cancellous femur [9] and
human cancellous femur and tibia [8, 13]. The standard deviation of apparent inte-
grated backscatter within a region of interest (ROI) has been found to show a strong
correlation (R2 = 0.67) with bone ultimate strength in human cancellous femur and
tibia [19].

6.3.3 Estimation of Trabecular Thickness Using the Weak
Scattering Model

The Weak Scattering Model can be used to estimate the trabecular thickness
from experimental backscatter coefficient measurements [5, 17, 38]. To do so,
an analytical expression of the backscatter coefficient in terms of the spatial
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auto-correlation function of the medium is used, and the theoretical correlation
length is adjusted by least square regression so that the root mean square error
between the predicted and the experimental backscatter coefficient is minimized
over the frequency bandwidth (0.4–1.2 MHz).

In this approach, one presupposes known a certain number of variables of the
model, leaving the correlation length the only unknown. These variables are: the
density and compressibility of the saturating fluid and the trabeculae material,
as well as the bone volume fraction. Typical values characteristics in bone tis-
sues are used (ρbone = 1800kg/m3, ρfluid = 1000kg/m3, cbone = 3300m/s and
cfluid = 1500m/s in [5, 17, 38]). These values have been assumed to be constant
throughout the specimens, i.e. neglecting intra and inter specimen variability. The
bone volume fraction can be assessed from 3-D images micro architecture obtained
from micro-tomography experiments [17, 38] or using Archimedes’ principle [5]
(although Archimedes’ principle may be inaccurate for media such as cancellous
bone that can absorb water [76]).

Because scatterer size is the usual interpretation for the correlation length
[77, 78], to validate the model, the estimated correlation length was compared
to the mean trabecular thickness values derived from 3-D microarchitecture [17,38]
or estimated on 2D optical images of slices of the bone volume [5].

Different forms of autocorrelation functions have been studied. In human trabec-
ular bones, in which the expected range of variation of trabecular thickness (Tb.Th)
is small, Gaussian, exponential, densely populated medium autocorrelation func-
tions have given good predictions of Tb.Th [17,38]. Using Gaussian autocorrelation
function in human calcaneum, predicted mean Tb.Th was 130±6.5μm and esti-
mated Tb.Th was 140± 10μm [38], while in human femur predicted Tb.Th was
132±12μm and estimated Tb.Th was 134±15μm [17]. These good values obtained
on average over a group of specimens are counterbalanced by moderate prediction at
the individual level. The correlation coefficient between predicted correlation length
and measured Tb.Th was found to be R2 = 0.44 at the femur [17] and 0.51 at the
calcaneum [38]. In bovine tibiae, the correlation between predicted values obtained
using a densely populated model and measured ones was superior (R2 = 0.81) [5].
This might be due to the larger range of values of Tb.Th in the group of bovine
specimens (100–600μm) [5] compared to a much narrow range in human bones
(typically 100–150μm [17, 38]).

The moderate correlations observed at the individual level are the results of some
limitations associated with the approach. Some are related to the model itself. The
correct choice of values of the characteristics of the media used in the computation
is an issue. Variations in material properties of cancellous bone have been shown
to have a significant effect on backscatter [46, 79] as well as a minor impact on
speed of sound and BUA in transmission [80]. Therefore, further refinements of
the model might be achieved by a fine-tuning of material properties and by tak-
ing into account their inter-specimens variability. The choice of the autocorrelation
function has also to be validated: this could be achieved by estimating true 3D cor-
relation function from 3D microstructures images. Such a preliminary study on a set
of three specimens has indicated that Gaussian autocorrelation function is suitable
for human femoral trabecular bones [81], but a more extensive analytical description
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of acoustical properties fluctuations is required. Interestingly, one study [5] used a
combination of two functions to closely approximate the backscatter coefficient in
bovine bones, and to estimate the two mean Tb.Th observed in their specimens,
where supposedly rod-like and plate-like structures are found. Another study [7]
demonstrated that amplitude and frequency dependence was modified when tak-
ing into account a distribution of size for Tb.Th. Whether or not such an approach
could improve size estimation in human bone where the size distribution is much
narrower would be interesting to test. The model also assumes weak scattering and
isotropy. These assumptions have been shown to result in predictions consistent
with measurements in cancellous bone (see Sects. 6.2.4 and 6.3.2). There is to date
no evidence that multiple scattering plays a role in the clinical frequency range
(see Sect. 6.4). Finally, an additional limitation of the model is that it neglects shear
wave propagation in the scatterers. How this might influence the estimator is to date
unknown.

Other sources of errors comprise experimental uncertainties: measurement er-
rors and compensation for attenuation. This last point is critical since it has been
shown that accurate attenuation compensation is difficult to reach in highly attenu-
ating medium like trabecular bones [17]. From simulations of backscattered signals
[17], it was reported that even an imperfect attenuation compensation function did
not result in a significant bias in Tb.Th estimates. However, the exact influence of
attenuation still remains to be determined.

A major limitation arises from the limited number of independent backscatter
signals available for averaging, due to the small size and heterogeneity of the spec-
imens. This results in speckle noise, which will determine most of the variability
of the measurements of frequency dependence of the backscatter coefficient, and a
fraction of the variability of its amplitude [17,24,82]. Taking into account measure-
ment errors (reported precision of the frequency averaged backscatter coefficient
is 2.8–4% [3, 5, 17, 24, 38]), it was estimated that the total uncertainty on Tb.Th
estimates is of the order of 7μm [17].

So in the current state of the art, what is the meaningful clinical value of this
approach? A comparison between the precision of such an estimator and the bio-
logical variability of Tb.Th has shown that only extreme values of Tb.Th (i.e. very
thin or very thick) could be distinguished [17]. Moreover, after adjustment for bone
density, it was shown that the precision of the estimator was too low to be able to
catch small differences in Tb.Th values expected, meaning that no complementary
information to a measure of bone density would be provided. Therefore, potential
clinical usefulness of the approach will require a significant reduction in speckle
noise and measurement errors and/or the development of other and more precise
microstructural estimators.

6.4 Is Cancellous Bone a Multiple Scattering Medium?

Models described in the previous section rely on an assumption of single scatter-
ing. This assumption, which gave promising results for the modeling of backscatter
coefficient, has never been directly confirmed. Only a few publications addressed
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the question of multiple scattering in trabecular bone and are reviewed in this
section.

Multiple scattering, if present, is usually assumed to have a minor effect in the
low frequency regime used in clinical devices. This is supported by the observation
that the contribution of the coherent wavefront is predominant on the transmitted
signal. However, because the size of the beam at 500 kHz is large compared to the
micro-structure characteristic dimensions, a self-averaging process is taking place,
leading to a relative decrease of the incoherent part of the field.

The only published evidence that multiple scattering can occur in trabecular bone
is found in references [2,6]. In these studies, it was experimentally demonstrated that
the coherent backscattering effect could be observed in trabecular bone insonified at
3 MHz. The coherent backscattering manifests itself as an enhancement of the mean
energy reflected in the direction of backscattering. Because its origin lies in the con-
structive interference of waves propagating through reciprocal paths that have been
scattered at least twice, its manifestation is a signature of the presence of multiple
scattering.

One study [6] used an ultrasonic array of 96-elements of 0.39 mm in size to mea-
sure the angular dependence of the average backscattered intensity as a function of
time: in presence of multiple scattering, the angular distribution of the backscatter
intensity narrows with time. The time dependence of this narrowing can be used to
estimate the scattering mean-free path in bone (ls). Combined with measurements
of the coherent wave in transmission, it can also lead to an estimation of the absorp-
tion mean-free path (la). In the measured specimen the following estimates were
obtained: 2.3mm < ls < 8mm, and l.a > 3.2mm. These results suggest that at high
frequencies (in this study at 3 MHz), multiple scattering will take place in trabecular
bones as soon as the propagation distance is longer than a few millimeters.

The same group of authors addressed the question of the inverse problem in a
subsequent publication [2]. They were able to achieve local measurement of the
diffusion constant D by using Gaussian beamforming to produce virtual sources and
receivers with a beam waist of 1 mm. The diffusion constant, which characterizes
the rate of growth of the diffusive halo due to multiple scattering, was compared
to local measurement of BMD. As expected, the highest values for the diffusion
constant were obtained for the areas where the bone was less dense, hence, the
weaker scattering. The interesting result came from the fact that the contrast in D
was of a factor 10, whereas the contrast in BMD was only 3.

Another possible manifestation of multiple scattering is negative velocity fre-
quency dispersion. Negative velocity dispersion was observed experimentally in
trabecular bones (see Chap. 12). One study [40] proposed a model of multiple
scattering to estimate velocity dispersion in trabecular bones, taking into account
the coupling of multiple scattering and absorption phenomena. The trabecular
microstructure was modeled as a collection of cylinders with axes oriented perpen-
dicular to the propagation direction (trabeculae) and embedded in a visco-elastic
surrounding medium (marrow). In the frequency range 0.4–0.8 MHz, positive and
negative velocity dispersions were estimated that spanned the range of values in tra-
becular bone reported in the literature. This approach was interesting, but a direct
comparison to experimental data in cancellous bone was not performed. However,
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the model accurately predicted dispersion in cancellous-bone-mimicking phantoms
consisting of parallel nylon wires in water [47].

Another approach [83, 84] proposed also to model trabecular bone as a multiple
scattering medium. But instead of assuming that scattering had its origin in the tra-
beculae, this approach, assuming only fluid media, described trabecular bone as a
homogenized nondissipative poroelastic medium using Biot’s theory (the reader is
referred to Chap. 5 for a review of the Biot theory and its application to model ultra-
sound propagation in trabecular bones), in which large cylindrical pores filled with
marrow would act as scatterers. These cylindrical pores were assumed to be 1–2 mm
in diameter with an axis oriented perpendicular to the incident direction. This ap-
proach used two multiple scattering theories: Foldy-Twersky and Waterman-Truel
theories.

The results of the computations, when compared to typical values measured on
bones with equivalent porosity, predicted BUA levels of approximately one-fifth of
those measured and an over-estimation of SOS of approximately 140 m/s. A major
limitation of this approach, besides drastic approximation on the geometry of the
scatterers, came from the fact that mode conversions were neglected. However, even
including mode conversions, due to the very high discrepancies observed between
predicted and measured BUA and SOS, it is in the current state not possible to
determine the relevance of the model.

To conclude this section, experimental evidence of multiple scattering at frequen-
cies close to the clinical range has still to be demonstrated. Indirect demonstration,
using models to predict experimental features, did not yet prove to be efficient.
The only direct evidence was obtained at higher frequency. A potential application
of higher frequency multiple scattering effects could be to provide information on
micro-architectural features, assuming direct relationships can be derived between
micro-architectural characteristics and multiple scattering metrics like the diffusion
constant. To date, the current results available do not suggest that multiple scatter-
ing plays a dominant role in the attenuation measured in transmission in the clinical
frequency range.

6.5 Clinical Applications of Scattering

The conventional QUS measurements, BUA and SOS, are through-transmission
measurements that require two transducers. Backscatter only requires one trans-
ducer and therefore is applicable to skeletal sites such as the hip and spine where
through-transmission measurements are difficult. Unfortunately, only modest clin-
ical success has been reported so far for backscatter, however. This may be due
to high variability of backscatter measurements due to speckle noise [24] and the
distorting effects of rough cortical bone surfaces.

In a feasibility study involving ten normal human volunteers, backscatter from
calcaneus at 2.25 MHz was found to exhibit a moderate correlation (R2 = 0.76)
with BMD measured using x-ray computed tomography [29].
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While BMD is an important clinical indicator, fracture risk is the most important
clinical endpoint. The ability for backscatter from calcaneus to measure fracture
risk (either vertebral, wrist, and/or hip fracture) was investigated retrospectively
in 210 postmenopausal women (including 60 with osteoporotic fractures) and 30
healthy premenopausal controls [30]. Backscatter measured over the range from
200–600 kHz was found to be moderately predictive of fracture risk (age adjusted
odds ratio: 1.58; 95% CI: 1.14–2.19).

The effect of age on calcaneal backscatter at 1 MHz was investigated in 47
women (average age: 58 years, standard deviation: 13 years) [27]. The average
backscatter coefficient (measured in 1/cmSr) was found to decline by approximately
1 dB per decade (for ages between 30 and 90).

Since frequency-dependent attenuation in bone has the effect of a low-pass filter,
it causes a downshift in the center frequency of the backscattered spectrum. There-
fore, the centroid downshift of the backscattered spectrum is an index of attenuation,
which is known to have a high correlation with BMD. It was found in a feasibility
study involving nine women that the backscattered spectral centroid shift from ver-
tebral bodies (L3 and L4) exhibits a modest correlation (R2 = 0.37) with BMD [31].

6.6 Discussion and Conclusion

6.6.1 Evidence of Scattering in Cancellous Bones

Many measurements of the scattering by trabecular bone have been reported.
Both single and multiple scattering can take place, although in different frequency
regimes. There is to date no direct evidence that multiple scattering plays a role
at clinically relevant frequencies (below 1 MHz). Scattering is assumed to origi-
nate from the trabeculae. The frequency dependence observed is in agreement with
Rayleigh scattering by cylinders in a low range of ka.

Backscatter coefficient is sensitive to variations in bone volume fraction, al-
though the correlation between the two quantities has been found to be modest.
Backscatter coefficient can also be predicted using micro-architectural parameters,
and is anisotropic. Its correlation to mechanical properties is moderate.

6.6.2 Role of Scattering in Attenuation

Attenuation is the combined result of absorption and scattering. Incident longitu-
dinal waves may be scattered into longitudinal waves (longitudinal-longitudinal or
LL scattering) and/or shear waves (longitudinal-shear or LS scattering) [39]. Since
most direct measurements of backscattering in bone only reveal LL scattering, many
papers simply describe their measurements as “backscatter”, leaving it implicit that
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“backscatter” includes only LL backscatter [4, 22]. While attenuation in cancellous
bone is approximately proportional to frequency to the first power, LL backscat-
ter coefficient is approximately proportional to frequency to the third power (in the
diagnostic frequency range, 300–700 kHz) [22]. This suggests that total scatter, not
just backscatter, is likely to also vary nonlinearly with frequency. For example, the
Incoherent Faran Cylinder Model predicts that total scatter, not just backscatter,
should be approximately proportional to frequency to the third power [22]. The
inconsistency of frequency dependencies for attenuation and scattering led several
authors to suggest that LL scattering may be only a minor contribution to attenuation
at diagnostic frequencies [4, 22]. Further, some authors suggested that absorption
may be the primary source of attenuation [4,22,85]. However, the importance of LS
scattering was not fully appreciated at that time. Recent simulations have suggested
that LS scattering may be significant [65, 86–88] but would only exceed absorption
at high frequencies (above approximately 600 kHz) [86], which are at the high end
of the diagnostic range (300–700 kHz).

The idea that LS scattering can result in quasi-linear attenuation is supported
by (1) attenuation measurements in soft-tissue-mimicking phantoms consisting of
graphite particles suspended in gelatin [89], (2) attenuation and scattering measure-
ments in cancellous-bone mimicking phantoms consisting of nylon wire filaments
embedded in a soft-tissue mimicking fluid [39], and (3) attenuation measurements
in human cancellous bones in vitro with different filling fluids (alcohol versus
water) [90].

Because of high shear attenuation coefficients, shear waves scattered by trabecu-
lae may be transient. Shear attenuation coefficients in bovine cancellous bone have
been estimated to be approximately 17 dB/mm (at 1 MHz) [95], implying that shear
wave power is reduced by approximately 98% for each mm of propagation. More-
over, shear waves generated from graphite particles suspended in gelatin have been
described as “evanescent” [89]. The mode-converted shear wave may have transient
significance in the immediate proximity of the scatterer, but due to high attenuation
it is likely rapidly extinguished. If LS scattering is significant, then the relative roles
of absorption and scattering in cancellous bone (even at high frequencies, above
600 kHz) will depend somewhat on the relative roles of absorption and scattering
of mode-converted shear waves. If the rapid attenuation of mode-converted shear
waves is primarily due to absorption, then absorption would be the dominant loss
mechanism even at high frequencies, albeit with the caveat that the ultrasonic energy
briefly takes the form of a transient shear wave prior to absorption.

6.6.3 Perspectives

The current methods have shown so far only a limited clinical usefulness to pre-
dict fracture risk in vivo [30] as well as to predict trabecular thickness in vitro
[1, 5, 17, 38]. How to improve the technique?
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For the current strategy of trabecular thickness estimation, one major limita-
tion comes from the speckle noise. Different options can be envisaged such as
varying the angle of insonification, varying the frequencies of the incident waves,
and improving the statistical averaging. Complementary signal processing can also
be applied to extract complementary architectural features such as trabecular spac-
ing [91]. Alternative scattering models may be considered such as the first order
multiple scattering model [92] or the Bourret [93] approximation to estimate the
transmitted energy in random media, both of them being a priori compatible with
experimental data.

An alternative strategy would be to change the point of view for the description
of the micro-structure. The current methods have been focused on trying to extract a
single parameter (Tb.Th, defined from image analysis on real micro-structure) from
information that is by essence of statistical nature (i.e. the auto-correlation function).
Because of the co-variance of the micro-architectural parameters is very high, an
analytical description of the micro-structure might simply not be the most adequate,
and evaluation of parameters like Tb.Th might not be the most relevant approach
to follow. Preliminary study on the subject was proposed [81], and more work is
needed to quantify the relevance of statistical description of the micro-architecture
to predict ultrasonic as well as mechanical properties of trabecular bone.

Finally, scattering being sensitive to the anisotropy of the trabecular network,
backscattering measurement at different angles could be used to estimate an
anisotropy index. Because anisotropy of the trabecular network is a relevant ad-
junct to bone density for the estimation of bone strength [94], adding an estimation
of anisotropy to standard backscatter coefficient measurement in vivo might be a
way to improve bone fragility prediction.
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Chapter 7
Guided Waves in Cortical Bone

Maryline Talmant, Josquin Foiret, and Jean-Gabriel Minonzio

Abstract In the last decade, several experimental studies have shown that long
cortical bones act as a natural waveguide at ultrasonic frequencies despite atten-
uation in bone material and heterogeneity in elastic and geometrical properties.
Propagation in waveguides consists in a variety of dispersive waves, each one with
its own frequency-dependent field distribution across the section of the waveg-
uide. Guided waves are extensively used particularly in non destructive evaluation.
Technologically adapted devices have been developed for instance for structure
health monitoring. In the bone assessment field, guided waves analysis might an-
swer to the attempt of multiple bone property determination, as cortical thickness
and elasticity. These properties are in turn relevant indicators of biomechanical com-
petence. One of the most promising recent developments in this field is the so called
“axial transmission” technique.

Keywords Arrays · Axial transmission · Bone characterization · Bone strength
· Clinical devices · Cylindrical waveguide · Elastic anisotropy · Elastic wave-
guide · Instrumentation · Lamb waves · Long cortical bone · Material char-
acterization · Multi component signal · Partial waves · Signal processing
· Singular value decomposition

7.1 Introduction

A waveguide can be seen as a slender body, with a cross section of finite dimensions.
A system of incident-reflected wave forms a standing wave across the finite sec-
tion such that propagation and energy flow are guided along the boundaries of
the waveguide. In contrast with bulk waves in unbounded medium, guided waves
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adapt their wavelength to the finite dimensions of the waveguide at each frequency.
This results in a variety of dispersive guided waves, each one with a varying
phase velocity with frequency and its own frequency-dependent wavefield across
the section. Guided waves in homogeneous stress free plates known as Lamb waves
and guided waves in tubes are analyzed in standard textbooks [1–4].

Evidence of guided wave propagation in long cortical bones is reported in several
experimental studies [5–9] carried out in the axial transmission configuration in-
troduced in Chap. 3. Measured guided waves in bones in vitro are identified as
fundamental flexural or higher order guided waves by comparison with dispersion
curves calculated in homogeneous waveguides, such as plates and tubes. On the
clinical side, despite these promising results, measurements of higher order guided
waves are not currently performed on bone sites. Such measurements would in-
crease the number of ultrasound indicators of biomechanical bone competence and
have the potential to feed inversion schemes used to determine a combination of
bone properties, i.e. cortical thickness and elastic properties.

Guided waves are widely used in different fields such as transducers design,
geophysics and non-destructive testing. For instance, they are attractive, due to
their ability to provide means of quick, long range inspection of large structures
and/or defect localization [10, 11]. Guided waves are often presented [12] as an
advantageous alternative to the pulse-echo technique based on bulk waves which
locally test the structure below the transducer. Guided waves are also used for
non-destructive material characterization [13, 14], for instance due to the demand
of measuring elastic constant of fiber reinforced composite materials. However,
guided mode signal analysis is challenging because the signal typically contains
multiple dispersive modes implying that the pulse shape changes as it propagates
along the waveguide. In practice, it can be preferred to select a particular mode and
suppress or minimize the other undesired modes using a specific transducer design.
Alternatively, dedicated signal processing techniques, for instance Fourier or time
frequency transforms [15, 16], are used in order to provide phase velocity disper-
sion curves of all excited waves from multi component overlapping signals. On the
theoretical side, models are developed to take into account heterogeneity in elastic-
ity and/or change of the cross section which may be encountered in structures of
engineering importance [17–20].

In the more recent bone assessment field, guided wave analysis is not yet as
mature as in non destructive testing. For instance, it has been observed that sig-
nal processing techniques used in multi component signals is less efficient applied
on in vivo measured signals. Consequently, all possible observable modes are not
identified in clinical measurements. Moreover, in in vitro measurements, the whole
set of individual properties of bone samples under testing i.e. the thickness, elas-
tic coefficients and mass density is usually not completely known. Thus, a rigorous
identification of dispersion curves measured on bones and the assessment of veloc-
ity measurement accuracy are not currently accessible. Nevertheless, according to
in vitro sample experiments, a simple model of homogeneous waveguide captures
already a major part of the bone response.
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The chapter is organized as follows. In the first section, basic notions on guided
wave propagation in reference or idealized waveguides such as plates and tubes,
is reported. The next section is devoted to signal processing used for analysis of sig-
nals measured in axial transmission. The state of the art of axial transmission results
obtained on bone is then reported. In the final section, the most recent developments
in the field and the remaining challenges are discussed.

7.2 Idealized Waveguides

Many characteristic features, namely the spectrum, the fields, the excitability of
guided waves and the response to a transient load, are captured by the simple case
of an infinite isotropic plate of uniform thickness with stress free surfaces [21].
A detailed analysis of physical phenomenon in infinite layer is available in several
textbooks [1–4]. This section intends to facilitate the introduction to guided waves
in an anisotropic medium, reducing the discussion to graphical considerations and
avoiding report on mathematical derivations.

7.2.1 Infinite Isotropic Plate

In Fig. 7.1, the plate is infinite in the direction (Ox1) and (Ox2) and has a uniform
thickness e. The plate material consists of a linearly elastic isotropic non dissipative
material with constant density and elastic coefficients. Time harmonic fields in the
plate must satisfy both the linear equation of motion in the elastic material which
constitutes the plate and the stress free boundary conditions.

In unbounded isotropic medium, for any propagation direction, plane waves are
either pure shear or pure longitudinal. On the one hand, the P wave is longitudinally
polarized with respect to the propagation direction. Its wave number kL verifies
kL = ω/cL, where ω is the angular frequency and cL is the bulk wave velocity of

x
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Fig. 7.1 Geometry of the infinite free plate waveguide
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the P wave. On the other hand, the shear wave is normally polarized with respect
to the propagation direction. Similarly, its wave number kT satisfies kT = ω/cT.
Two orthogonally polarized shear waves are distinguished: for instance considering
a propagation in the (Ox1) direction, the SV, or shear vertical, wave particle dis-
placement is in the (Ox3) direction while the SH, or shear horizontal, wave induces
displacements in the (Ox2) direction.

Snell’s law at free stress boundaries indicates that an incident SH wave do not
couple to either P or SV waves. In contrast, an incident SV wave or an incident P
wave reflects into both P and SV wave. As a consequence, two uncoupled classes
of guided waves arise in an isotropic infinite layer with stress free boundaries.
One class results from the reflection of SH waves, with the particle displacement
in the plane (Ox1x2). The second class is plane strain guided waves resulting from
the coupling of P and SV waves. This second class of guided waves corresponds to
the Rayleigh-Lamb waves. Particle motions of Rayleigh-Lamb waves occur in the
plane (Ox1x3). Rayleigh-Lamb waves and SH guided waves thus propagate indepen-
dently. Attention is focused in the following to Rayleigh-Lamb waves because of the
loading conditions imposed by the usual sources under interest. Piezoelectric emit-
ting transducers acting normally to the surface as piston do not transmit SH waves.

The harmonic field of the guided waves in the plate is a superposition of incident
and reflected P and SV fields illustrated in Fig. 7.2. These elementary components
of the guided wave field are usually called partial waves.

According to Snell’s law, incident and reflected partial P and SV waves must
have the same component k in the x1 direction. The transverse and the axial wave
numbers of partial waves are related by

p2 =
(

ω
cL

)2

− k2, and q2 =
(

ω
cT

)2

− k2, (7.1)

with p and q the P and SV wave numbers in the x3 direction respectively. A variation
in k is induced by a change in the direction of propagation of the partial waves
accordingly.

Fig. 7.2 Partial wave pattern of Lamb wave propagation in an isotropic plate with free boundaries.
Continuous lines represent incident and reflected longitudinal partial waves and dashed lines repre-
sent incident and reflected vertically polarized shear waves. Very thick arrows show the polarization
(After Auld [1])
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Fig. 7.3 Displacement for symmetric S (a) and anti-symmetric A (b) Rayleigh-Lamb waves in an
isotropic plate. The symmetry is defined with respect to the (Ox1x2) plane

In addition, because of the plate symmetry with respect to the median (Ox1x2)
plane, guided waves in the elastic layer may be split up into two independent sys-
tems: one with symmetric motion, denoted S, and the other with anti-symmetric
motion, denoted A. Figure 7.3 illustrates symmetric and anti-symmetric motions,
respectively. For symmetric motion, the displacement component u1 in the longitu-
dinal x1 direction has the same sign in the upper and lower halves of the plate and
the displacement u3 has opposite signs. For anti-symmetric motion, the displace-
ment u1 has the opposite sign in the upper and lower halves of the plate while the
displacement u3 has the same sign.

From these considerations, the guided wave resulting from the combination of
partial waves with the same component k along the direction parallel to the bound-
aries can be expressed as a standing wave in the x3 direction and a propagating wave
in x1 direction. The fields can be written in a general form as

[
AL(eipx3 ±e−ipx3)+ AT(eiqx3 ±e−iqx3)

]
ei(kx1−ωt) (7.2)

The phase velocity cph of the guided wave, defined as the common trace velocity
(velocity along the x1 direction) of all partial waves, satisfies:

cph =
ω
k

(7.3)
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Non-trivial combination of partial waves (i.e. AL and AT not identically equal to
zero) satisfying stress free conditions at the boundaries of the plate of thickness e
must verify the so called dispersion relation which can be written, for symmetric
waves, as [1, 4]

(k2 + q2)2 cos(pd)sin(qd)−4k2pqsin(pd)cos(qd) = 0, (7.4)

where d = e/2 is half the plate thickness, p and q are the transverse wave numbers
of the partial waves, as defined by Eq. 7.1. For anti-symmetric, similar equation is
obtained by commuting sine and cosine functions.

Equation 7.4 relates the product frequency×thickness fe and the dimensionless
wave number ke. It defines the permissible frequencies of guided waves. For a
given ke, there are an infinite number of discrete frequencies allowed. In contrast
with propagation in unbounded medium, a variety of guided waves can propagate
in a plate.

Given the bulk wave velocities cL and cT, the pairs (fe,ke) solutions of the dis-
persion equation are calculated and the fields in the plate (particle displacements,
stresses) are known within a constant. The Lamb frequency spectrum (i.e. the whole
set of solutions of the dispersion equation) is highly structured.

In the next paragraph, few characteristics of the Lamb frequency spectrum and
related quantities are illustrated from calculations with material parameters cL =
4000m · s−1 and cT = 1800m · s−1 which are used in several numerical studies as
plausible velocities on cortical bone according to reference by E. Bossy et al. [22]
(see Chap. 13 for details). This results in a Poisson’s ratio ν = 0.37 or equivalently
a ratio κ = cL/cT equal to 2.22.

Figure 7.4a shows the Lamb frequency spectrum for real valued wave numbers
ke in the ( f e,ke) plane. The solutions of the dispersion equation are calculated point
by point and a given branch of the spectrum is constituted according to the apparent
continuity of the solutions as fe and ke increases. For a given plate thickness e, the
plane ( f e,ke) is basically the plane of temporal frequency and spatial frequency in
which each plane wave, i.e. a term defined by exp[i(kx1 −ωt)] is represented by
a point of coordinates ( f ,k) with f = ω/2π . In experimental works, raw data are
obtained in this last plane after decomposition of time-distance series into plane
waves, using spatio-temporal Fourier transforms, as illustrated in Fig. 7.13b.

In the plane ( f e,ke), the locations of constant phase velocity cph are along straight
lines passing through the origin. In Fig. 7.4a, such lines corresponding to cL and cT

are indicated by P and SV respectively. Alternatively, according to Eq. 7.3, the solu-
tions of the dispersion equation can be shown as phase velocity curves as function
of frequencies, as shown by Fig. 7.4b.

Waves associated to anti-symmetric motion in the plate are indicated by the letter
Ai, the ones associated to symmetric motion by the letter Si. They are numerated
in Fig. 7.4 following their apparition order at ke = 0. Because anti-symmetric and
symmetric motions are uncoupled, A and S branches can intersect, as for instance
S2 and A2 do.
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Fig. 7.4 Dispersion curves for the twelve first Rayleigh-Lamb waves for infinite isotropic free
plate for κ = cL/cT = 2.22. Upper plot (a) is in the ( fe, ke) plane, lower plot (b) shows phase ve-
locities curves as function of the product frequency × thickness fe. The ellipses indicate the simple
thickness-stretch frequencies in the plate. Continuous lines and dashed lines represent respectively
the symmetric Si and anti-symmetric Ai modes. Lines denoted respectively P, SV and R represent
the bulk wave and Rayleigh wave velocities respectively. The modes are numerated following their
apparition order

The lowest branches called A0 and S0 on Fig. 7.4 form a particular set of
branches. The branches Ai and Si with i > 0 are called the higher order modes.
At ke = 0, each of them starts, with infinite phase velocity, at a distinct frequency
called cut-off frequency fec which fall into two classes:

fec,SV = 0.5ncT, or fec,P = 0.5ncL with n = 1,2,3. . . . (7.5)
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Fig. 7.5 Rayleigh-Lamb wave displacements field distribution for the anti-symmetric A5 wave (a)
at cut off frequency fec,SV = 3.5cT (b) at a frequency slightly higher than fec,SV and (c) associated
Poynting vector distribution. One anti-symmetric (A5) mode is shown as an example

When k = 0, all partial waves are oriented along the Ox3 direction and in such case of
normal incidence, partial P and SV waves are uncoupled in the plate. Motion in the
plate is purely either longitudinally or transversely polarized. For instance, Fig. 7.5a
shows the displacement field in the plate for the A5 wave at its cut-off frequencies
fec,SV = 3.5cT. It can be observed that the displacement is horizontal. It is due only to
the shear partial wave and 3.5λT stands across the thickness where λT is wavelength
of the shear partial wave for the specific frequency. This is an example of simple
thickness shear waves which occurs at fec,SV while simple thickness-stretch occurs
at fec,P.

The field distribution across the plate thickness changes when fe and ke increases
along a dispersion curve accordingly to the specific wave considered. For a fre-
quency slightly higher than the cut-off frequency (Fig. 7.5b), the particle displace-
ment is now elliptically polarized as partial waves acquire a new orientation. Along
a dispersion curve the displacement is alternatively predominantly of dilatational
type and of shear type. In Fig. 7.5c, the energy flow also shows variations across
the thickness. For k values such that k/ω < 1/cL, both p and q are real and both P
and SV partial wavefield vary as sine or cosine functions with x3. For k/ω > 1/cL,
the transverse wavenumber p of the partial P wave becomes imaginary, the partial
P wave becomes inhomogeneous with an amplitude exponentially decreasing in the
x3 direction. As a consequence the P wavefield starts to become confined near the
boundaries. The limiting field pattern is then predominantly a shear motion plus a
longitudinal motion localized at the boundaries.

In contrast with upper branches, the two first modes A0 and S0 do not present
cut-off frequencies. At the low frequency limit and large wavelength, consistently
with thin plate theories, the A0 branch reaches the limit of a flexural wave with
purely normal displacement while the S0 branch evolves as the extensional plate
wave. Its phase velocity is constant and equal to [E(1− ν2)/ρ ]1/2 here E is the
Young modulus of the material, and ρ is the mass density. The S0 branch displays
less dispersion below fe = 1MHzmm.

For short wavelengths and high frequencies, A0 and S0 branches independently
evolve as the Rayleigh wave branch, the well known surface wave on a free half
space which has a velocity slightly lower than the shear wave velocity. A detailed
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discussion of the whole spectrum is beyond the scope of this paper and we refer
to Mindlin [23] and reports on his work [1, 3] for a complete and comprehensive
analysis.

In summary, Rayleigh-Lamb waves adapt their wavelength to the finite
dimensions of the plate at each frequency, which results in a variety of disper-
sive waves, each associated with specific field distribution across the section of
the waveguide. All results reported above concern free vibrations of the plate. No
source was considered. When a force is applied on the plate, waves are not equally
well excited. When a source excites the plate and a receiver captures the axially
transmitted signal, the excitability of a mode with a given transducer arrangement
is dependent on the similarity between the mode shape and the field induced by the
transducer. They are several ways of calculating the strength of the plate response
among them the modal decomposition based on the orthogonality between Lamb
modes [1, 24–28], and the integral transform [2, 3]. A comprehensive view of the
variation of the transfer function is contained in the specific impedance of each
wave. The specific impedance is defined by the ratio of the normal stress to the
normal displacement, calculated in the free regime [1].

Figure 7.6 shows a plot of the magnitude of the transfer function, as derived from
integral transform [2], for a surface traction force applied normally to the upper
surface along a line infinite in the (Ox2) direction and the normal displacement is
supposed to be measured. A plate of thickness e = 2mm is considered which is con-
sistent with a mean value of a human radius bone sample. For frequency lower than
400 kHz, the response of an A0 wave appears predominant compared to the S0 wave
response. Around cut-off frequencies, higher order modes, which appear as sim-
ple thickness stretch modes as S2 for instance, present a remarkably higher transfer
functions than branches as A1 and A2 which appear as thickness shear waves around
cut-off frequencies.

Efficiency of excitation of Lamb waves depends on both the transfer function of
each branch and the properties of the source in spatial-temporal domain. Some trans-
ducers, as for example laser interferometer, can transmit a short time signal with a
large spatial and temporal frequency bandwidth. In this case, the guided waves are

Fig. 7.6 Magnitude of the
transfer function as function
of frequency of an isotropic
plate of thickness e = 2mm
when the applied stress is a
traction normal to the upper
surface of the isotropic plate
and the normal displacement
is supposed to be measured.
The waves are numerated
following their
apparition order
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excited in a large ( f ,k) domain. In the contrary, an angled wedge transducer piezo-
electric element [11] generates mode in a more restrained ( f ,k) domain fixed by the
angle of the wedge according to Snell’s law. As a general rule, an emitting trans-
ducer must be adapted to fit the wavelength and frequency of the excited mode.
In the area of non destructive testing, selective excitation and detection are often
performed. For instance, the interdigital (comb) transducers select guided waves by
matching the spatial distribution of applied surface traction to the wavelength of the
propagating mode.

When transient sources are considered, a simple sketch of the different arrivals
can be drawn from approximate theories [3]. At a given distance of propagation, the
dominant contribution to the signal at a time t comes from frequency components
( f e,ke) such that

t =
x1

cg( f e,ke)
, and cg =

(
∂ f e
∂ke

)
, (7.6)

where cg is the group velocity of a given Lamb wave. The group velocity shown on
Fig. 7.7 is the local slope of the dispersion curves in the ( fe,ke) plane.

The low frequency components of the S0 wave arrive first and present small
amplitude (Fig. 7.6). Frequency components associated to maximum of group ve-
locities arrive later with a higher amplitude than S0. Next, the A0 wave arrives
with a high amplitude. Higher modes around cutoff frequencies yield the latest time
components.
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Fig. 7.7 Group velocity curves for infinite isotropic free plate for κ = 2.22. The ellipses indicate
the simple thickness-stretch frequencies. Continuous lines and dashed lines represent respectively
the symmetric Si and anti-symmetric Ai modes. Lines denoted respectively P, SV and R rep-
resent the bulk and Rayleigh velocities respectively. The modes are numerated following their
apparition order
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The shape of cortical bone is obviously closer to cylindrical geometry than to the
plane geometry and so we report briefly in the next paragraph on guided waves in
stress free tubes.

7.2.2 Infinite Free Isotropic Tube

On planar infinite waveguide, the effect of finite cross section is limited to one di-
mension. A cylindrical stress-free tube is an example of guidance in two dimensions.
Pioneering investigation of free harmonic waves on isotropic hollow tubes are due
to Gazis [29] but detailed report can be found in textbooks for instance by Auld [1]
and Rose [30].

Free time-harmonic guided wave are searched now as Θ(θ )R(r)ei(kz−ωt), where
r,θ and z are cylindrical coordinates illustrated on Fig. 7.8.

As for plates, guided waves are due to the interaction of shear and longitudinal
waves at the boundaries of the waveguide and the relation between the component k
and p or k and q of the partial waves still holds (Eq. 7.1), where k is the component
along z direction and p and q are the radial component of the wavevector of the
partial waves.

Condition of free stress are now expressed at the boundaries of the tube, i.e. the
inner radius a and the outer radius b. As a consequence, the characteristic equation
is f ( f b,kb;a/b) = 0, where k is now the component of the wavevector in the z axial
direction of the tube. The solution of the characteristic equation are obtained as the
pairs ( f b,kb) when the value of the ratio a/b is fixed. Similarly to the plate case,
standing waves occur in the radial direction but the wavefield is now expressed as
cylindrical functions. Standing waves occur now also in the θ direction associated
to sinusoidal functions.

As for plates, an infinite number of branches are found as solution of the charac-
teristic equation. Consistently with the axial symmetry of the waveguide, the guided
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Fig. 7.8 Free tube waveguide geometry
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waves fall into different classes according to the symmetry of the displacement, as
plate modes fall into A and S modes. The so-called longitudinal waves, denoted
L(0, i), i = 1,2 . . . are such that particle displacement has only radial and axial com-
ponents and is independent of circumferential position In contrast, flexural waves,
denoted F(n,m),n = 1,2 . . . and m = 1,2 . . . have displacement in all directions.
The third class is torsional waves which have only circumferential displacement.
They are equivalent to SH waves on plates and are not considered here.

Figure 7.9 shows dispersion curves of longitudinal and flexural waves for the
specific case of a ratio of inner to outer radius equal to 0.6 which is a plausible
value for actual bone sites such as the radius. The six first Rayleigh-Lamb waves
are shown as continuous lines. It is observed that longitudinal L(0, i) branches fall
into the Lamb branches [29, 31, 32] and some flexural branches F(n,m) m = 1,3,5
fall into the longitudinal branches. Flexural branches F(n,m) group with respect of
the second index m, which corresponds to the characteristic of the standing function
in the radial direction. In contrast, the group F(n,2), as well as the group F(n,4) fall
into torsional branches not shown on the figure [29, 32].

In the area of non destructive testing of tubes, selective excitation and detection
are often performed, for instance with a transducer array for axisymmetric gen-
eration which excites only longitudinal type of guided waves. Non axisymmetric

Fig. 7.9 Phase velocities for tube with inner to outer diameter equal to 0.6 and for plate of the
same thickness. The ratio κ is equal to 2.22. The six first Lamb waves on plate are shown as
thick dashed (antisymetric A) and continuous (symmetric S) lines, Longitudinal waves on tube
L(0, i), I = 1–5 are shown as thin continuous lines. L(0, 4) and L(0, 5) are masked by superposed
Lamb waves. Flexural waves on tube F(n,m) are shown as thin dashed lines. For n = 1,2,3, it is
observed that F(n,1) branches are grouped around the L(0, 1) branch,. F(n,3) branches around the
L(0, 2) branch and F(n,5) branches around the L(0, 3) branch
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sources can be also used when only a portion of the tube is accessible [33, 34].
In that case, flexural as well as longitudinal waves are excited. Torsional waves can
be generated by contact shear wave transducer.

In axial transmission on bones, non axisymmetric sources are used and are
supposed to generate flexural waves as well as longitudinal components. However,
in experimental reports, mainly L type of wave are observed, According to
Moilanen, the flexural component F(1, 1) can be observed. It might be assumed
that the contact area of the transducer on the sample is likely a simple line, due
to fact that the radius of curvature of the sample is small compared to the lateral
dimension of the probe.

Despite the evidence that the geometry of cortical bone is closer to cylindrical
shape than to flat plate, there is no clear evidence that tube dispersion curves
bring insight in experimentally measured dispersion curves additionally to the
plate model.

Up to that point, guided waves in isotropic medium was considered. However, the
macroscopic anisotropic elastic behaviour of cortical bone material has long been
recognized [35–38]. In the diaphyseal regions of long bones, cortical bone material
is considered as transverse isotropic or orthorhombic material, consistently with the
predominantly longitudinal orientation of the Haversian systems. Here, propagation
of guided waves is analyzed assuming an hexagonal symmetry for bone.

7.2.3 Infinite Free Transversely Isotropic Plate

In this model of transversely isotropic medium five elastic stiffnesses are needed to
satisfy the Hooke’s law which relates stress and strain:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3

σ4

σ5

σ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C13 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

2ε4

2ε5

2ε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (7.7)

where σi and εi are elements of the stress and strain tensors respectively ex-
pressed with the contracting subscript notation, i.e. 1→ 11,2→ 22,3→ 33,4→ 23,
5 → 13,6 → 12.

For numerical applications, the following values of the stiffnesses (in GPa) were
taken, following [39] C11 = 29.6, C22 =C33 = 21.5, C12 =C13 = C23 = 11.5, C44 =
(C22 −C23)/2 = 5, C55 = C66 = 6 and a mass density equal to 1.85kg ·m−3.

In an anisotropic unbounded medium, the bulk wave velocities depends on the
direction of propagation; in addition, P wave, SV waves and SH waves are not purely
longitudinally or transversely polarized, except in specific directions. They are la-
belled QP,QSV and QSH for quasi purely polarized. Snell’s law indicates that the
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Fig. 7.10 The six fold axis of symmetry in transversely isotropic medium is denoted Z. Propa-
gation of guided waves is analyzed for φ = 0◦ in a meridian plane (X, Z) which coincide with
(x1,x3)

three polarizations may couple to each other at the boundaries. Then, the propaga-
tion of guided waves might be strongly affected by the symmetry of the material, the
degree of anisotropy and the relative directions of propagation vector and principal
axis of the material [40–43].

The following short discussion is reduced to the particular case of plane strain
condition in transversely isotropic medium with the six fold axis of symmetry de-
noted X aligned parallel to the free surfaces of the plate (Fig. 7.10). In the numerical
application considered here, the QP wave propagates in the longitudinal x1 direction
with a phase velocity equal to 4000m · s−1 and in the transverse direction x3 direc-
tion with a velocity equal to 3400m · s−1. Its velocity continuously varies within
these two values as the orientation of the partial QP wave varies in the plate. The
components k and p of the wavevector of the partial P wave (Eq. 7.1) do not lie on
a circle of radius ω/cL as in the isotropic case but now on an ellipse with its major
axis in the (Ox3) direction. The anisotropy ratio C11/C33 is equal to 1.38, which is
a plausible value for cortical bone is moderate compared to what is encountered in
material such as fibrous composite material.

For propagation of guided waves in the (Ox1) direction, in the direction of the six-
fold axis, the dispersion curves are shown in Fig. 7.11. Superposed as thin lines are
the dispersion curves for the isotropic case considered in the previous paragraphs.
In the isotropic material cL = 4000m · s−1 equal to the QP wave velocity in the lon-
gitudinal (Ox1) direction. Anisotropy-related modifications of phase velocity curves
appear. For instance, simple thickness stretch frequencies (not visible on Fig. 7.11),
occur for integer number of wavelength of QP waves in the transverse direction
(Ox3) which are different from the axial direction (Ox1).

However, branches retain their identity. Indeed, branches group as anti-
symmetric and symmetric waves, higher order modes appear with cut off
frequencies at simple thickness stretch or shear modes and so on. Thus, the general
features of the Rayleigh-Lamb waves on isotropic plates still hold.

If the sagittal plane is not aligned with a meridian plane, but is oriented with
an angle φ as defined on Fig. 7.10, the matrix of elastic stiffness coefficients is
modified. Indeed, the stiffness coefficients are defined relatively to the principal
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Fig. 7.11 Comparison of Rayleigh-Lamb waves for isotropic and anisotropic medium. Phase ve-
locities vs fe for a transverse isotropic plate (bold lines). Propagation is along the (Ox1) axis
(φ = 0◦). For comparison, the isotropic case is plotted in thin lines. The modes are numerated
following their apparition order

axis of the material and their values change with angle φ . As the stiffness coeffi-
cients intrinsically govern the dispersion curve, their changes automatically induce
changes in dispersion curves.

The picture of guided waves in homogeneous plate provides a general framework
for understanding the propagation in more sophisticated waveguides.

While it is a rough model for propagation in bones, the physical insight of Lamb
guided wave are retained when considering tube or anisotropic material, as for more
sophisticated models [44]. Appreciation of the changes in phase velocity induced
by different models of gradually increasing sophistication depends then on the ac-
curacy of the technique of phase velocity measurements. In addition, measurement
uncertainties must be minimized for instance by a measurement protocol able to
provide the best alignment of the probe with the bone axis, which is also the direc-
tion of the principal axis of symmetry of the material. Such kind of measurement
protocol is already in use in clinical measurements.

7.3 Guided Wave Measurements in Axial Transmission
Configuration

Guided waves are widely used in non destructive testing. Several review papers have
been published as those proposed by Chimenti in 1997 [10] or Su et al. in 2006 [45]
for instance. In this section, we briefly review the different experimental setups and
the associated signal processing used in the axial transmission configuration. Some
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methods are based on the detection and exploitation of one dominant mode and
are usually frequency narrow band. Broadband signals containing multiple modes
are more difficult to interpret but contain more information and are easier to generate
experimentally. The techniques already employed in the bone field are mentioned.

7.3.1 Generation and Detection

Different ultrasonic transducers are used to excite and detect guided waves. A first
category corresponds to transducers in contact with the inspected object: piezoelec-
tric element [11], or interdigital (comb) transducers are widely used. The comb
transducers select guided waves by matching the spatial distribution of applied
surface traction to the wavelength of the propagating mode. The second category
corresponds to non contact transducers: air-coupled ultrasonic transducers [46],
electro-magnetic acoustic transducers [47] (EMAT, used with metallic object), or
laser interferometer. Angle-adjustable transducers can be used to preferentially
generate and collect one mode in accordance with Snell’s law. Finally, arrays of
piezoelectric elements are also used in contact with the inspected object [48] or
distant from the object immersed in water [49].

7.3.2 Axial Transmission Signal Processing

Different signal processing techniques can be applied to extract guided wave
velocities in axial transmission depending on the measurement configuration, i.e.
the number and positions of transmitters and receivers as shown in Fig. 7.12.

x2

wave guide

e thickness

x3

Δx

receiver(s)

O

transmitter(s)

…

x1

Fig. 7.12 Geometry of the axial transmission measurements: different types and configurations of
transmitter(s) and receiver(s) are used to generate and detect guided waves
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7.3.2.1 One Transmitter-One Receiver Configuration

Considering the one transmitter – one receiver configuration (Fig. 7.12), wave ve-
locity can be simply computed from the measurement of the separation distance
and the time-of-flight (TOF) between the two transducers. Heuristic criteria, such as
TOF of the first maximum are usually used. This signal processing technique is lim-
ited by the velocity dispersion character of guided modes, i.e. by gradual change of
the shape in the time domain of the wave during the propagation. On the one hand,
the dispersion effects are relatively low when small propagation distances are con-
sidered. On the other hand, the identification of different modes is more difficult for
short propagation distances when several modes are present. The TOF technique has
been successfully used for the bone characterization in vitro and in vivo to evaluate
the velocity of the first arrival signal (FAS) [50–53].

The recorded signal can be analyzed in the frequency domain using the phase
spectrum method [54]. The spectrum phase slope is linked with the phase velocity.
Nevertheless, the point of view is valid if a single mode is present in the whole
bandwidth or at least if one mode is energetically preponderant compared to other
modes. To this end, the mode can be preferentially selected at the emission using
for example angle adjustable transducers. Alternatively, when the selected mode is
predominant among other modes, long propagation distances can be considered in
order to separate in the time domain the contributions of modes that propagates at
different velocities. Such methods have been applied on in vitro bovine specimens,
with long propagation distances of about 160 mm [8]. Such distances, being much
larger than the usual in vivo accessible testing distance, such as for instance on the
forearm, and the method is therefore restricted for in vitro experimental conditions.

Short time Fourier transform (STFT) [55] has been proposed to analyze the
signal. The Fourier transform of the time-domain signal is computed while the sig-
nal is sampled by a sliding short time window resulting in a time-frequency (t, f )
representation of the signal. Then group velocities can be evaluated by searching the
maxima in the (t, f ) domain. The time-frequency resolution can be improved using
a Wigner-Ville flexible time window [16] or the wrapped frequency transform [56].
Other techniques, such as wavelet or chirplet analysis [57], have also been proposed.
The choice of the waveform database is a key point of the analysis. This signal pro-
cessing have been applied on in vitro samples [58]. However, the discrimination of
signal from noise is still challenging with this technique.

7.3.2.2 One Transmitter and Several Receivers Configuration

Signal processing techniques can be applied to the multiple-receiver configuration,
achieved by moving a single receiver or using a multi-receiver array (Fig. 7.12).
Time signals, recorded at different spatial positions x1 along the wave guide are
denoted r(x1, t). For instance, the evaluation of the first arrival signal velocity can
be improved using several receiver positions. In that case, the velocity is evalu-
ated from the TOF measurement at each receiver position [22]. Sophisticated signal
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processing approaches have been applied to this measurement configuration, such
as the singular value decomposition (SVD). SVD is a general tool which can be
applied to any data matrix, such as the matrix r containing the space-time domain
signals rij = r(xi, t j) [59]. This point of view has been proposed in particular in un-
derwater acoustics, and is adapted to the case of signals from far distance sources.
This signal processing has been applied in vitro on bone specimens to extract the
most energetic part of the received signals [80].

Moreover, the complete set of space–time signals can be analyzed without any
a priori using the two-dimensional spatio-temporal Fourier transform [15, 26] . Re-
sults are represented in the wave number-frequency (k− f ) domain. The expression
of the spatio-temporal Fourier transform R(k, f ) is, in the general case:

R(k, f ) =
∫ ∫

x1,t

r(x1,t)e−iωt e+ikx1 dx1dt (7.8)

The number and distribution of space positions is a key point for such analysis: the
resolution, i.e. the possibility to discriminate two close wavenumbers k, increases
with the inspected length. The experimental phase velocities are given by the max-
ima of the spatio-temporal Fourier transform in the (k, f ) plane. The spatio-temporal
Fourier transform approach has been completed by other techniques, such as the ma-
trix pencil method [60], the linear prediction method [61], or the complex spectrum
estimation method [62].

An example of a spatio-temporal Fourier transform is illustrated in Fig. 7.13.
The spatio-temporal signals, shown in Fig. 7.13a, have been acquired on a 2 mm-
thick copper plate with an axial transmission probe used for long bone testing.
The receiving part of the probe consists of an array of 32 transducers regularly
spaced in steps of around 1mm. The spatio-temporal Fourier transform is depicted
in Fig. 7.13b in the (k, f ) plane. The darkest zones correspond to the zone of high
energy contained in the received signals. The maxima are then extracted and com-
pared (see Fig. 7.13c) to the theoretical Rayleigh-Lamb dispersion curves, similar
to those shown in Fig. 7.4a. In the case of a material without absorption, the spatio-
temporal Fourier transform is adapted to evaluate most part of the dispersion curves.
The spatio-temporal Fourier transform has been proposed in the bone domain in or-
der to extract the low frequency A0 type mode [63]. Long inspected distances and
low absorption are known limitations of the spatio-temporal Fourier transform that
reduce precision estimates.

7.3.2.3 Several Transmitters and Several Receivers Configuration

Other measurement configurations involve multi-emitter and multi-receiver arrays.
The DORT method (decomposition of the time-reversal operator) has been applied
to the distant single array configuration in pulse-echo mode to measure circumfer-
ential wave phase velocities of a hollow cylinder surrounded by water [49]. In this
case, the singular value decomposition (SVD) is applied to the array response matrix
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Fig. 7.13 32 time signals
recorded with a axial
transmission array (a) on a
2mm-thick copper plate,
and the corresponding
spatio-temporal Fourier
transform (b). Experimental
dispersion curves, given
by the maxima of (b), are
then compared with
theoretical Rayleigh-Lamb
modes dispersion curves (c)
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containing the temporal Fourier transform Rij( f ) of the received signals rij(t), with
i and j the emitter and receiver indices. A similar point of view has recently been
adapted to the axial transmission measurement configuration between two collinear
transmitter and receiver arrays [48]. The guided mode phase velocities are obtained
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using a projection in the singular vectors basis. The singular vectors are determined
by the SVD of the response matrix between the emitter and receiver arrays in the
frequency domain. The SVD-based approach was designed to overcome the limita-
tions of the spatio-temporal Fourier transform for receiver arrays of limited spatial
extent.

The SVD of the response matrix R containing the time Fourier transforms Ri j( f )
of received signals at one frequency, writes:

R =
NE

∑
n=1

Unσn
tV∗

n, (7.9)

where the notations t and ∗ denote the transpose and conjugation operations. The
notation Vn refers to an emission singular vector, and Un to a reception singular
vector. The singular vectors Un are normalized and define an orthogonal basis of the
received signals. These two vectors are associated with the singular value σn. The
five singular values, obtained with an axial transmission probe consisting of 5 emit-
ters and 32 receivers for a 2 mm thick bone mimicking plate, are shown in Fig. 7.14a.
This plate is made of short-fiber-filled and epoxy resin (Sawbones, Pacific Research
Laboratory Inc, Vashon WA).

One of the advantages of the SVD approach lies in its ability to separate noise
and signal subspaces [64]. An intermediate order m, corresponding to the limit be-
tween the two subspaces, is defined at each frequency using a threshold t1 applied
to the singular values σn. In the following, the signal singular vectors are retained
(for σn ≥ t1) whereas the noise singular vectors (for σn < t1) are eliminated. The
threshold is illustrated in Fig. 7.14a. The retained singular vectors Un≤m form the
basis of the signal subspace. Any spatial plane wave epw(k), defined on the jth
receiver as

epw
j =

1√
NR

exp(ikxR
1j), (7.10)

can be expressed on the signal subspace basis. The norm of the spatial plane wave
writes:

‖epw‖{Un≤m} =

√
m

∑
n=1

|〈epw|Un〉|2. (7.11)

The notation <epw|Un> corresponds to the Hermitian scalar product, equal to
tepw∗.Un and the notation || designates the modulus of complex numbers. The norm
of the plane wave is represented in the (k, f ) plane. By construction, the value of the
norm at each pixel (k, f ), denoted Norm(k, f ) ranges from 0 to 1. The value of the
pixel reflects how the spatial plane wave is represented in the basis of the signal sub-
space. On the one hand, if the value is small compared to 1, the spatial plane wave is
absent of the received signals. On the other hand, if the value is close to 1, the spatial
plane wave corresponds to a guided wave, present in the received signals. The max-
ima of the norm provide the phase velocities of the guided mode present in the signal
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Fig. 7.14 Singular values
versus frequency (MHz) for
a 2 mm thick bone mimicking
plate (a) and Norm(k, f )
(b). The signal to noise
threshold t1 is shown with
a thick line with circles
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subspace as in the case of the spatio-temporal Fourier transform. An example of the
Norm function is shown on Fig. 7.14b for the bone mimicking plate.

The SVD-based technique has been compared to the spatio-temporal Fourier
transform in the case of a 2 mm thick copper plate. Figure 7.15, illustrating the
distribution of the Norm function for a fixed frequency (1.13 MHz), demonstrates
better signal-to-noise ratio of SVD compared to 2-D Fourier transform, which sug-
gests a better ability to evaluate phase velocities in case of absorbing and noisy
propagation media.

7.3.3 Determination of Thickness and/or Elastic Constants

Based on the guided wave theoretical framework, many inversion schemes have
been proposed to evaluate the waveguide elastic and geometrical properties from
the experimental phase or group velocities of guided waves. Because, these de-
velopments in other scientific fields may inspire future research directions in the
context of bone research, some examples are listed in the following for isotropic or
anisotropic medium.
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Fig. 7.15 Comparison
of the two methods:
Norm(k, f ) and 2D Fourier
transform, for f = 1.13MHz
for a 2 mm thick copper plate.
The ability to extract phase
velocity is improved using
the Norm function.
The second threshold t2
is shown with a horizontal
dashed line
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Wu and Liu [65] proposed an inverse determination of thickness and elastic
properties for an isotropic bounding layer from surface wave measurements. Gao
et al. [66] proposed the determination of the thickness and bulk velocities (cLand cT)
of a thin plate comparing the experimental phase velocities of the two first Lamb
modes A0 and S0 and the approximate expression of these modes velocities for low
frequency thickness product given by Hutchins et al. [67]. More recently, Dean et al.
[14] used their interferometer system to determine the thickness and elastic con-
stant of a small aluminum plate. They used all the measured Lamb modes in their
inversion. Clorennec et al. [68] proposed to evaluate the bulk velocities from the
measurements of two particular resonance frequencies, associated with zero group
velocity mode.

Other authors have proposed inversion methods adapted to the case of anisotropic
media. Vishnuvardhan et al. [69] proposed a blind inversion method using S0 and A0

velocities for the complete determination of elastic moduli, material symmetries, as
well as principal plane orientations of anisotropic plates. Veres et al. [70] determined
the material properties of a wooden bar, modeled as an orthotropic material with
nine independent constants. The material properties are found by parametric model
fitting. The dispersion curves were obtained in the three-dimensional case using a
semi-analytical finite element method.

Recently, in the field of bone assessment by axial transmission, such inversion
schemes have been developed aiming at the determination of bone properties [6,71].

7.4 Current Measurement Techniques on Long Cortical Bone

Most of the current axial transmission devices designed for clinical use provide
velocities of one or two temporal events: the first arriving signal (FAS), and the en-
ergetic late arrival (ELA). These signal components are easily identified in Fig. 7.16
which shows time series recorded at several receivers (14) with a probe operating at
1MHz obtained in vivo on a human forearm.
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Fig. 7.16 Time series recorded at 14 receivers measured in vivo on a forearm with a probe
operating at 1 MHz

7.4.1 First Arriving Signal (FAS)

The FAS is defined as the first component of the signal which emerges from noise.
The velocity of the FAS is measured in the time domain. FAS velocity cannot be
easily predicted by analytical or semi-analytical methods but rather conveniently by
means of numerical simulations of transient ultrasound propagation, such as finite
difference time domain (FDTD) simulations [22, 39, 72]. According to such FDTD
simulation studies based on lossless homogeneous bone models with uniform ge-
ometries, the nature of FAS, and subsequently the FAS velocity, changes with the
thickness (e) to wavelength (λL) ratio. The wavelength λL refers to the compression
bulk wave inside bone, in the direction of bone axis when the model is anisotropic.

For thickness larger than λL, FAS is the so called lateral wave which is the trace
on the surface of the compression bulk wave in the material [73]; FAS velocity does
not depend on thickness and is close to cL. For thickness around λL/2−λL, the re-
flection of compression bulk waves on the inner surface impacts the FAS velocity.
For lower thickness, FAS velocity decreases with thickness and approaches the low
frequency limit of the phase velocity of the guided wave S0 on plates. In this thick-
ness range, thickness related variations of FAS velocity qualitatively agree with
dispersion of S0 wave [74].

The FAS velocity is expected from the model to increase nonlinearly with
thickness and to reach a plateau for the thickest samples. If cortical thickness
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is much larger than the wavelength (3–4 mm at frequencies close to 1 MHz) no
impact on FAS of thickness variability can be expected [75] according to numerical
predictions [39].

In agreement with guided waves analysis, the precursor of the signal is related
to the wave component which has the highest group velocity in the probe work-
ing bandwidth. For instance, when the frequency bandwidth of the excitation signal
contains low enough frequency components, the FAS is expected to originate in the
S0 wave. In this frequency domain, the S0 wave is slightly dispersive, i.e. its wave-
form is expected to be only slightly distorted with propagation distance. However its
amplitude is small due to the fact that it induces a quasi longitudinal displacement
field across the whole thickness.

In agreement with numerical predictions, several studies on plastic samples
(acrylic, PVC, perspex) with varying thickness showed that FAS velocity varies with
thickness when it is smaller than the wavelength λL [72,76,77] or the same thickness
range, the largest variations of FAS velocity were obtained for the smallest nominal
frequency (200 kHz).

7.4.2 Energetic Late Arrival (ELA)

Dedicated studies were performed on the energetic late arrival (ELA). As ELA is
embedded in the whole time response obtained on bone samples, specific signal
processing techniques were developed. Most techniques attempted to isolate or to
extract this signal component before applying a method of velocity measurement,
either in the time or in the frequency domain.

In some studies, ELA is isolated from the FAS by using a source operating at
two different frequencies 100 and 500 kHz [78]. Alternatively, angled beam sources
can be used at two different angles [79] to isolate either FAS and ELA. In another
approach, extraction of ELA from the whole signal was performed using singular
value decomposition in time-space domain [59, 80]. ELA velocity is then measured
in time domain.

Alternatively, Moilanen et al. [63] proposed to extract ELA from the whole sig-
nal by using a method of group velocity filtering prior to spatio-temporal Fourier
transform. Variation of phase velocity of the wave associated to ELA is then pro-
vided for each sample in the whole frequency bandwidth of the source.

Based on comparison of experimental and predicted phase velocity curves this
contribution for in vitro measurements is identified as the A0 plate guided mode, or
its counterpart for the tube model, the F(1,1) mode.

Figure 7.17 shows FAS and ELA velocities measured on a collection of human
radius samples. Phase velocity of ELA (250 kHz) is in the range 1000–2000m · s−1

for radius samples. Typical values of FAS velocity on human bone samples are
around 3000–4000m · s−1 and the reproducibility is ±25m · s−1, i.e. 0.5% [81].
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Fig. 7.17 Experimentally measured velocities as a function of thickness for human radius samples
[53,80]. Experimental measurements of the FAS velocity are shown as solid squares while the ELA
velocity are shown by solid triangles. The FAS velocities predicted by numerical simulations are
shown as well as A0 Lamb wave dispersion curve

7.4.3 Ultrasound Velocities Versus Strength Related Bone
Properties

Ultrasound velocities are deterministically related to the mechanical stiffness
(elastic modulus) of the material, and to its mass density (see Chap. 2). More-
over, in the case of a finite dimension bodies compared to the wavelength such as
bone, ultrasound velocities are also deterministically related to geometric features
such thickness or diameter.

The relationship between strength and ultrasound velocities can be established in
an indirect way, by statistically relating specific aspects of strength such as porosity,
mineralization or thickness to ultrasound velocities.

Experimental studies on excised human radii showed the sensitivity of FAS
velocity (1 MHz operating frequency) to site-matched porosity and degree of min-
eralization [53] and also to intrinsic elastic properties [82]. Up to 84% of the
variability of FAS was explained with a combination of cortical thickness, porosity
and acoustic impedance reflecting intrinsic stiffness [82]. The sensitivity to corti-
cal porosity was found to be −24m · s−1 per 1% increase of porosity [53] in good
agreement with numerical predictions [39].

In summary of different studies on excised cadavers samples [80, 83], the FAS
velocity can be considered to primarily reflect volumetric bone mineral density
(vBMD) while the velocity of A0 type of wave captures primarily information on
cortical thickness and apparent vBMD, with the strongest relationship with cortical
thickness (CTh).

Independent effects of CTh and BMD on FAS velocity measured at the tibia or
the radius have also been documented from in vivo measurements using 250 kHz
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operating frequency [75, 84]. One study found that tibial FAS velocity (250 kHz)
is more strongly influenced by the BMD of the cortex near the surface than by its
interior parts [75].

The direct relation of cortical FAS velocity to structural bone mechanical
properties has also been investigated.

In situ measurements have been performed on cadavers at the tibia [85] with a
low frequency (250 kHz) axial transmission device. Site-matched measurements of
FAS and mechanical properties in tension (Young’s modulus and ultimate strength)
were highly correlated. However, the FAS and BMD also were correlated, and a
combination of FAS and BMD did not give a better prediction of the bone mechani-
cal properties than either variable alone. FAS velocity at the radius [86] with a high
frequency (1.25 MHz) device was modestly correlated to failure load of the whole
organ.

In summary, axial transmission ultrasound velocities reflect both structural and
intrinsic material properties of cortical bone. Measurements in situ (radius or tibia)
with current clinical devices correlate with mineral density. They also correlate with
the mechanical properties of cortical bone. However, current axial transmission
techniques providing a single wave velocity (either FAS or ELA) do not seem to
provide additional information to that provided by DXA-based BMD in predicting
structural strength of the distal radius or the tibia.

Several clinical studies devoted to fracture discrimination seem to lead to anal-
ogous conclusion [87–90] (see Chap. 14 for details). The FAS velocity allows to
discriminate fractured patients from healthy subjects, while the added value brought
by ultrasound axial transmission to the conventional osteoporosis screening tech-
nique (X ray absorptiometry) is not clear. To increase clinical relevance and render
more attractive ultrasound technique, axial transmission faces several challenges.

7.5 Challenges

In vitro experimental studies or in vivo fracture discrimination studies were based
on a unique value of velocity i.e. the FAS velocity, to date. Experimental results
showing a different sensitivity of different signal components (e.g., FAS or ELA)
suggest that a multi parametric approach would substantially increase the clinical
potential of axial transmission. However, according to Moilanen [63,91], adding the
velocity of the A0 type of wave on in vivo measurements of the radius is unlikely
to bring more differentiated information on bone, due to coupling with soft tissue.
Other approaches are currently explored in which multiple propagation modes are
identified and their propagation velocities are determined. The FAS velocity mea-
sured at different frequencies would warrant a collection of ultrasound parameters
with an increased sensitivity to thickness. Moreover, measuring guided modes of
higher order seems very attractive. The feasibility study of the measurement of their
velocity has been developed by several groups, essentially on animal bone samples.
Different signal processing techniques are used to extract guided mode phase or
group velocities of higher order modes.
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On a sheep tibia, guided waves were experimentally observed by Protopap-
pas et al. [58] and analyzed using time-frequency transform as Rayleigh-Lamb
guided modes. An and Sn(0 ≤ n ≤ 2). The L(0,n) longitudinal tube wave phase
velocities (1≤ n≤ 3) were also measured on a bovine tibia by Ta et al. [7,8]. Ta et al.
used angled beam transducers in order to generate preferentially one specific mode
and analyzed the received signals with the Short time Fourier transform (STFT) [7]
or the phase spectrum method [8]. The method required a minimal distance between
the emitter and receiver (of about 70 mm and a scanning length of about 80 mm) in
order to have sufficient time separation between the different guided modes.

Hapsara and Iliescu [92] generated guided waves in a bovine bone using a planar
transducer which was coupled with a cone-shaped resonant vibrator. Out-of-plane
vibrations of the surface of the bone are recorded with a scanning laser vibrometer
and analyzed using wavelet analysis.

The current challenge is to develop signal processing tools which provide highly
reproducible velocities and are consistent with the rather small testing length used in
devices designed for clinical use (around 1–2 cm). The SVD based method is one of
the most promising method and is currently under testing [48]. The in vivo measure-
ment protocol remains to be established in order to obtain accurate phase velocities.
For instance, the FAS in vivo protocol requires angular scanning to prevent from
misalignment between the probe and the bone axes.

Measuring several modes of propagation would provide several ultrasound based
indicators of bone status. These parameters could be used in a statistical determina-
tion of fracture risks assuming that each ultrasound parameter reflects differently
bone properties. In addition, several ultrasound bone parameters would help in
determining bone properties such as cortical thickness, porosity from ultrasound
measurements.

An inversion scheme has been implemented by Moilanen et al. to estimate
cortical thickness from the phase velocity of the A0 mode [6]. The scheme has
been tested on Perspex phantoms [63] and on excised human bone specimens [6].
Ultrasonically determined thickness has been found to be strongly correlated with
local cortical thickness assessed by peripheral quantitative computed tomography
(r2 = 0.81). In addition, the same inversion scheme has been tested in numerical
simulations [91, 93] using realistic 3-D bone models with homogeneous non indi-
vidualized elastic bone properties. In the simulations, the agreement between local
cortical thickness and ultrasonically determined thickness was excellent r2 = 0.91.

Another illustrative example of reconstruction of the distribution of the elas-
tic stiffness coefficients from an in vivo measurements database exploits the FAS
velocity [71]. In this study, the bone model is simply a thick anisotropic plate.
Future developments should address the issue of identification of elastic proper-
ties at the individual level and not at a population scale. This requires unavoidably
to provide more than one unique parameter (the FAS velocity) per patient.

To further develop inversion schemes, there is a clear call for models of stiff-
ness coefficients and mass density of bone evaluated at the scale of the ultrasonic
wave, i.e. at the millimeter scale, which could be tested in in vitro measurements.
Once the elasticity is described at this scale, guided modes properties can be
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calculated in different models, from the simplest homogeneous ideal waveguide to
more realistic waveguides. Each mode of propagation has its own relationship to
each material (stiffnesses, mass density) and body geometrical properties, as shown
for instance for guided waves in different publications [14,69,94] or to some extent
for FAS velocity [95].

In summary, since the early studies of axial transmission on peripheral bone, a
variety of development has been produced. In the context of osteoporosis diagnosis,
a first generation of devices has shown the ability of axially transmitted waves to
discriminate osteoporotic patients from healthy subjects. However, the added value
brought by current axial transmission techniques compared to X-ray absorption is
not clearly established yet. The first generation of axial transmission devices was
based on the analysis of a unique ultrasound parameter, which was the First Arriving
Signal. The second generation exploits other components of the ultrasound signal.
Based on comprehensive understanding of the phenomenon of propagation involved
in the whole signal, the second generation of devices has the objective to provide
several ultrasound parameters, assuming that a multiparametric approach would im-
prove the ability of predicting fracture risk. Moreover, a multiparametric approach
would feed inverse schemes to determine relevant bone properties from ultrasound
measurements. These approaches could also be extended to the study of circum-
ferential guided waves to open perspectives for fracture risk prediction at central
skeletal sites such as the hip. Some studies has already been conducted by Barkmann
et al. [96] for the phalange, Le Floch et al. [97] for the radius and the femur neck by
Grondin et al. [98].
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Chapter 8
Numerical Methods for Ultrasonic
Bone Characterization

Emmanuel Bossy and Quentin Grimal

Abstract During the last decade the possibility of investigating the details of wave
phenomena with numerical simulation has caused an evolution of the research
methodology in ultrasonic bone characterization. Use of numerical simulation as
a surrogate of an in vitro or in vivo experiment has been validated in some cases in
which the major propagation characteristics observed experimentally could be ac-
curately simulated in trabecular bone as well as in cortical bone. This chapter can
be thought of as a guide to numerical modeling for ultrasonic bone characterization,
from the definition of the model configuration (geometry, material properties, etc.)
to the computation of the solutions with popular finite difference or finite element
algorithms. A comprehensive review of the published works in which numerical
simulation served to investigate wave phenomena in bone and surrounding struc-
tures is provided.

Keywords Finite difference · Finite element · Time integration · Boundary
conditions · PML · Heterogeneous medium · Nominal model · Individualized
model

8.1 Introduction

Research studies related to the ultrasonic evaluation of bone quality had until
the 1990s mainly consisted of in vivo tests and in vitro experiments on phan-
toms and intact or machined bone samples. These led to the design of successful
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quantitative ultrasound (QUS) devices for distal (heel, radius, phalanx) and central
sites (proximal femur). The new possibility of investigating the details of wave
phenomena with numerical simulation has caused an evolution of the research
methodology in QUS during the last decade. It is now possible to start investigat-
ing a new QUS configuration by conducting a series of simulations before doing
any bench-top experiment. Indeed, numerical simulation can be used as a surrogate
of an experiment (virtual, or in-silico experiment) and the signal processing can
be performed on synthetic signals as on real-life signals. The approach has been
validated in some cases in which the major propagation characteristics observed ex-
perimentally could be accurately predicted by numerical simulations in trabecular
bone [1, 2] as well as in cortical bone [3–5]. Numerical simulation is potentially of
a great help to optimize the characteristics of an emitter–receiver system, including
signal characteristics (frequency, bandwidth, and signal shape), size and number of
emitter and receiver elements. Besides taking an extremely long time, the equiva-
lent experiments would be excessively expensive. Simulation is also a versatile tool
to investigate the physical mechanisms at work in a QUS configuration and allows
one to perform ‘experiments’ that may be extremely difficult or impossible to con-
duct in real life. For instance, by changing the simulation parameters the evolution
of the ultrasonic response to different scenario of bone evolution can be inferred:
degradation of material properties and modification of the geometry to simulate
osteoporosis, development of callus in fracture healing, etc. The sensitivity of ultra-
sound indicators (e.g. signal velocity and attenuation) to some bone or soft tissue
characteristics (shape, material properties, etc.) can also be studied conveniently
with numerical simulation: computations can be automated such that a huge num-
ber of combinations of characteristics can be tested.

The purpose of this chapter is to provide the reader with an overview of the
use of numerical methods to simulate wave propagation in bones and surrounding
structures. It is not intended to give a full account of the numerical algorithms but the
few elements required to understand their specificities. This chapter can be thought
of as a guide to QUS numerical modeling, from the definition of the configuration
(geometry, material properties, etc.) to the computation of the solutions with popular
algorithms.

The simplified representation of a real system (bone and soft tissue) that is used
as a basis for simulation is called a model and includes certain key characteristics
of the real system in order to account for its behavior, or at least certain behaviors
which are of particular interest. Wave propagation can be simulated in a given ge-
ometrical configuration for prescribed boundary and initial conditions, equations of
motion and constitutive laws (e.g. solid or fluid), and material properties (density,
elastic properties, intrinsic attenuation, etc.) in the different media (e.g. bone and
soft tissue). The basic model equations used to describe wave propagation in bone
and soft tissue are collected in Sect. 8.2.1.1. The bounded ‘domain’ (area or volume)
considered for the numerical simulation, called the simulation box, is taken around
the region of interest where the wave phenomena are observed. On the boundaries of
the box, special mathematical conditions are sometimes required such that the inter-
actions of the waves with the box limits do not alter the phenomena to be observed



8 Numerical Methods for Ultrasonic Bone Characterization 183

in the region of interest. The various boundary conditions which are relevant in
QUS numerical simulations are presented in Sect. 8.2.1.2. Some characteristics of
the modeled system are usually considered as parameters of the model. In a narrow
sense, the parameters are the coefficients appearing in the partial differential equa-
tions for which numbers must be provided to run a simulation (typically material
properties). However it is useful to broaden the notion of model parameters to
include some geometrical features (such as the thickness of bone), emitter–receiver
and signal characteristics which may be fixed for one simulation (the output of a
simulation are then obtained relative to the input parameters) but may vary from
one simulation to another, for instance to run a sensitivity analysis. The parameter
definition strategy is dependent on the type of model: for a nominal model, an aver-
age configuration must be set while for an individualized model values associated to
one specific sample should be provided. Section 8.2.2 is devoted to the geometrical
configuration and model parameters.

When simple closed-form analytical or semi-analytical solutions can be derived
for the model at hand, they may be extremely useful to guide the interpretation of
the wave phenomena and the complex ultrasonic signals. Indeed some time-domain
or frequency-domain analytical methods yield explicit relationships between a com-
ponent of the synthetic signal and model parameters which provide valuable insight
into the nature of the waves. When the model is so complicated that an analytical
solution is not readily available one needs to resort to a numerical approach. This
is in particular the case for irregular geometry and non-homogeneous media. The
advent of powerful desktop computers and the availability of softwares has encour-
aged a quick expansion of the numerical simulation of ultrasound propagation in
bone. Compared to analytical methods, numerical methods are more versatile and
are very convenient to test several configurations.

The focus of the present chapter is on time-domain numerical methods, as op-
posed to frequency-domain methods. To the author’s knowledge only the former
have been used for the simulation of bone QUS involving the propagation of ul-
trasonic pulses. Indeed time-domain methods directly compute the propagation of
the signal for consecutive time steps, mimicking the actual propagation of the emit-
ted pulses; in contrast the computation of an accurate wide-band waveform with a
frequency-domain approach is awkward since it requires to sum a very large num-
ber of frequency components. The simulation of vibrational techniques, which are in
principle simpler from a computational viewpoint, is out of the scope of this chapter.

The various available numerical methods differ in: accuracy – is the compu-
tation result close to the exact solution? – flexibility – can the method be used
for various geometrical configurations and for different constitutive laws? – effi-
ciency – does computation requires lot of CPU time and memory space – and ease
of implementation? Finite difference time domain (FDTD) methods for acoustic and
elastodynamics wave propagation have been extensively developed in the beginning
of the 1970s for seismic wave simulation. The basic FDTD space grid and time-
stepping algorithm traces back to 1966 [6]. Although quite old, FDTD methods
remain very popular for the simulation of wave phenomena. They consist in obtain-
ing discrete equations whose unknowns are generally field values at the points of a
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regular mesh. The success of FDTD schemes is largely explained by their ease of
implementation and efficiency. These are a consequence of the type of space dis-
cretization (a uniform regular grid) and the explicit recurrence relationship between
consecutive discrete time steps, which leads to a solution without the need to solve
a large linear system of equations at each time step. An introduction to the FDTD
method and its application to QUS is given in Sect. 8.2.3. The counterpart of the
nice properties of the FDTD is their lack of ‘geometrical flexibility’, which makes
the method computationally expensive in the case of complicated geometries and
heterogeneous media. Nevertheless, FDTD methods have been used successfully
for a very wide range of geometrical and material configurations corresponding to
bone QUS applications. The finite-element methods (FEM) originated from the need
for solving complex elasticity and structural analysis problems in civil and aeronau-
tical engineering. Its development can be traced back to the early 1940s when the
concept of discretization of a continuous domain into a set of discrete sub-domains,
usually called elements, emerged [7,8]. By the late 1950s, the key concepts of FEM
existed essentially in the form used today. The FEM is highly flexible and is usually
considered as a good choice for solving partial differential equations over domains
having complicated shapes. As opposed to FDTD, its implementation requires more
efforts. Its efficiency and precision depends on the choices of the numerical solvers
at different steps of the solution computation. An introduction to the time-domain
FEM and its application to QUS is given in Sect. 8.2.4. Other numerical methods
such as boundary element methods are also popular to solve wave propagation prob-
lems. However this chapter will only deal with FDTD and FEM which are, as far as
we know, the only numerical methods that have been applied to bone QUS. A case
study presented in Sect. 8.2.5 is used to illustrate the application of the time-domain
finite difference method and finite element method.

The last part of the chapter (Sect. 8.3) is dedicated to a comprehensive review
of the literature. It intends to illustrate the broad range of problems that have been
addressed with ultrasound simulation softwares, and the achievements in bone QUS
which have benefited from numerical simulation.

8.2 Methodology

This section describes the general principles involved in the numerical simulation
of ultrasound propagation in bone. After recalling the main model equations, we
first describe the general framework for modeling ultrasound propagation in bone.
This framework is independent of the numerical methods described thereafter. The
basic principles of the finite difference method in time domain (FDTD) and the finite
element method (FEM) are then described and illustrated on a case study.
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8.2.1 Physical Modeling

8.2.1.1 Model Equations

Solving wave propagation problems, whether analytically or numerically, requires
the specification of a model, mathematically described by a set of equations.
Throughout this book, ultrasound propagation is always considered within the
framework of continuum mechanics, i.e. the modeling is based on local laws of
physics applied to continuous media. The quantities for which the equations are
solved are referred to as the variables of the model. To describe the same physics,
different variables may be used depending on how the laws are mathematically for-
mulated. For instance the wave field may be described by the acoustic pressure field
in fluids, whereas the displacement field is usually better suited for solid media.
The particle velocity field may also be used instead of the displacement field. For
a given problem, the choice of the set of variables leads to one formulation of the
problem. Some formulations involve the pressure field alone, while others use both
the displacement field and the stress tensor field. It is out of the scope of this chapter
to provide a comprehensive list of the various laws and formulations used to math-
ematically describe ultrasonic wave propagation. We will rather provide the reader
with some sets of equations that have been widely used in the field of ultrasonic
propagation in bone. Although at the basis of the numerical simulation methods
described in the next sections, this section discusses physical modeling rather inde-
pendently of the method used to solve the problem. The reader may also refer to
Chap. 2 for additional details on ultrasonic wave propagation.

In this section, the vector components of vector x are noted xi where subscripts
i = {1, . . . ,d} refer to the direction of space, with d the space dimension (d = 2 or
d = 3 in practice). The most fundamental law used in modeling wave propagation
is derived from Newton’s law of motion, applied locally to a material point of a
continuous medium:

ρ(x)
∂vi

∂ t
(x,t) =

d

∑
j=1

∂σij

∂x j
(x, t), (8.1)

where ρ is the mass density, vi(x,t) is the ith vector component of the particle veloc-
ity field v(x, t) = ∂u

∂ t (x,t), u is the displacement field, and {σij} are the components
of the stress tensor σ . Let us recall that on an elementary surface dS which nor-
mal is n, σ ·ndS represents the force vector applied to dS. In non-dissipative fluids,
the stress tensor has diagonal terms only, all equal to the opposite of the pressure
field: σii = −p(x, t); σij = 0 (i �= j). Equation (8.1) is a linearized approximation of
Newton’s law describing dynamic motion, in which static terms involving gravita-
tion have been discarded. Newton’s law is independent of the nature of the material,
which has to be mathematically characterized by an additional constitutive equa-
tion, or material model, to complete the set of model equations. Note that as for
any multi-scale material, the choice of the material model for bone depends on
the length scale considered. Material models are further discussed in Sect. 8.2.2.3.
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Due to space restrictions only one example of the generalized Hooke’s law for an
anisotropic viscous elastic material undergoing small deformations is given here.
This writes [9]

σij(x,t) =
d

∑
k=1

d

∑
l=1

ci jkl(x) εkl(x,t)+ ηi jkl(x)
∂εkl

∂ t
(x, t), (8.2)

where ε is the strain tensor defined by εij = 1
2

(
∂ui
∂x j

+ ∂u j
∂xi

)
, c is the fourth-order

rigidity tensor, and η is the fourth-order viscous tensor. Equation (8.2) holds for the
large class of non-homogeneous anisotropic lossy elastic media for which properties
may be spatially dependent. In particular, it includes fluids, and non-dissipative me-
dia. In (8.2), viscosity is taken into account by adding a first-order time-derivative
term of the strain tensor. However, other models can be considered to account for
viscosity, e.g. introducing time-derivative term of the stress tensor.

An often-used equivalent formulation of Hooke’s law is obtained by taking the
time derivative of (8.2), and using symmetry properties of c and η :

∂σij

∂ t
(x,t) =

d

∑
k=1

d

∑
l=1

ci jkl(x)
∂vk

∂xl
(x,t)+ ηi jkl(x)

∂ 2vk

∂ t∂xl
(x, t). (8.3)

When the space dimension is d = 3, c and η have a maximum of 21 independent
coefficients for the most anisotropic class of media (six independent coefficients for
d = 2) [10]. However, it can be shown that c has only two independent components
for isotropic solids, and can be written as [10]

ci jkl(x) = λ (x)δijδkl + μ(x)(δikδ jl + δilδ jk), (8.4)

where δij is the Kronecker symbol, and λ and μ are Lame’s coefficients. Using
this formulation of Hooke’s law, fluid-like media (soft tissue for instance) can be
simply described by setting μ = 0. Lame’s coefficients are of fundamental impor-
tance in wave propagation in isotropic media, as the compressional (longitudinal)
wave velocity and the shear (transverse) wave velocity are given respectively by

cL =
√

λ+2μ
ρ and cT =

√
μ
ρ for lossless media.

So far, the term non-homogeneous has been used to qualify a medium which
properties may vary in space. Nevertheless, the term medium itself may carry some
ambiguity, in particular in the context of the numerical simulation of wave propa-
gation, as will be discussed further below. To avoid such ambiguity, let us precise
here that by a non-homogeneous medium, we refer in this text to a medium which
properties may continuously vary in space. By definition, spatial discontinuities may
thus only occur at the boundary between two different media. The various equations
given in this section are valid only within each medium, in the sense defined above.
Additional equations defined at the boundaries between different media must be
stated and verified by the field variables.
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For non-homogeneous fluid-like media, (8.1) and the lossless isotropic version
of (8.2) with μ = 0 yield

∂ 2 p
∂ t2 (x,t) = ρ(x)c2

L(x)∇.

(
1

ρ(x)
∇p(x, t)

)
. (8.5)

For homogeneous media (8.5) becomes

∂ 2 p
∂ t2 (x,t)− c2

L �p(x,t) = 0, (8.6)

where � is the Laplacian operator. For isotropic solids, the natural field variable
turns out to be the displacement u(x,t), and Eq. 8.1 and the lossless isotropic ver-
sion of (8.2) lead to the following wave equation, which takes into account both
compressional and shear waves

∂ 2u
∂ t2 (x,t) = (λ + μ)∇(∇.u(x,t))+ μ�u(x, t). (8.7)

The various equations above illustrate that several formulations can be used for
a given model (here Newton’s law and Hooke’s law). For instance, (8.1) and (8.3)
is one possible formulation, suitable for any type of elastic material, (8.5) is an-
other formulation restricted to fluid media, (8.7) is another formulation restricted
to homogeneous isotropic solids, or fluid if μ = 0. For a given problem, several
formulations may be used simultaneously depending on the materials involved. For
instance, finite element modeling of wave propagation often use several formula-
tions, depending on the nature of the region of space being solved: a formulation
based on (8.6) can be used for fluid media, and a formulation based on (8.7) can be
used for solid media. The coupling between the different regions is discussed further
below.

Models based on Newton’s law combined to Hooke’s law encompass most mod-
els that have been used to run numerical simulations in the field of ultrasonic bone
characterization. Describing alternative models that have been used to model propa-
gation in bone, such as the Biot’s model (see Chap. 5) or models involving non-local
definition of stress [11], is out of the scope of this chapter. However, the basic
methods and principles of numerical simulations discussed in this chapter are not
restricted to the models above and can be applied to any models described by a set
of partial differential equations.

8.2.1.2 Boundary Conditions

Numerical methods such as FDTD or FEM discretize space on a mesh. Handling the
mesh in a computer means that meshes necessarily have a finite number of points,
and therefore numerical methods based on meshes only solve the model equations
in bounded regions of space. Two situations may be considered: (1) if the problem
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involves waves that are indeed physically confined within a bounded region of space,
as would be the case for a finite-size object in vacuum (into which no mechanical
waves can propagate), the mesh can be designed over the entire region of interest.
In this case, the field variables on the mesh boundaries must simply obey conditions
that express the physics at the boundary. This has to be done whether the problem
is solved numerically on a mesh or analytically on the space continuum; (2) on the
other hand, one may want to numerically solve wave propagation phenomena in un-
bounded space, or modeled as such. This is the case for instance in the study of wave
scattering by a solid object immersed in an unbounded fluid. The modeling of such
unbounded domain requires specific boundary conditions, which role is to make the
mesh boundaries transparent to waves incoming from within the simulation region.

In situation (1), typical boundary conditions include the Dirichlet’s boundary
conditions or the Neumann’s boundary conditions. Dirichlet’s boundary conditions
correspond to forcing values of the field variable on the boundary of the domain,
while Neumann’s boundary conditions correspond to forcing values of the normal
derivative of the field variable. The type and number of boundary conditions to be
specified depend not only on the physical model, but also on the formulation used
to solve the model, as illustrated on the following examples:

• The surface of a liquid in contact with vacuum can be described by forcing the
pressure field to zero on the surface (homogeneous Dirichlet’s condition) for a
formulation based on (8.5) or (8.6).

• A liquid in contact with a rigid boundary can be described either by forcing the
normal derivative of the pressure field to zero (homogeneous Neumann’s con-
dition) when using (8.5) or (8.6), or by forcing the particle displacement field
or the particle velocity field to zero (homogeneous Dirichlet’s condition) when
using formulation based on (8.1) or (8.7).

• The boundary of a solid in vacuum can be described by forcing the stress across
the boundary to zero in a formulation based on (8.3). This type of boundary
conditions is often used in FEM as a good approximation for solid objects in air.

The examples above all correspond to perfectly reflecting boundaries, across which
no energy is transmitted. Boundary conditions combining the Dirichlet’s and Neu-
mann’s conditions (sometimes called impedance conditions) may also be used to
model partially reflective interfaces.

Solving the problem posed by situation (2) have led to the development of several
methods to simulate unbounded media. In the time-domain modeling, for a finite
simulation duration T , the crudest approach for modeling unbounded space consists
in using a bounded space of dimensions large enough so that reflections from the
boundaries cannot reach the regions of interest within the duration T . However, in
terms of computational cost, while such approach may sometimes be used for space
dimensions d = 1 or d = 2, it is often impracticable for d = 3. Two main approaches
have been developed to simulate transparent boundaries. One first approach uses
a set of specific differential equations defined on the boundary, called absorbing
boundary conditions (ABC) or transparent conditions, introduced in the late sev-
enties [12]. A second approach consists in adding absorbing or damping layers
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around the domain, in which the wave equations are solved with a damping term.
The thickness of the layer and the damping term should be able to reduce the am-
plitude of waves during the propagation in the layer so that reflections on the outer
boundaries of the layer lead to almost no reflections in the main physical domain.
While more physical than ABC, this approach has a major drawback: at the entrance
of the layer, waves feel an impedance mismatch which generates non-negligible ar-
tificial reflected waves, which amplitude grows with the angle of incidence. ABC
remained the most efficient and preferred approach until the development in the
mid-nineties of perfectly matched layers (PML). This approach is similar to that
of the damping layers, but uses equations which although not describing physical
propagation in any real material lead to no reflection for any angle of incidence.
The spatial discretization involved in numerical implementation of PML causes
some artificial reflections, but these can be made as small as desired by controlling
the parameters of the layer such as its thickness (at some computational cost). Main-
taining reasonable computational cost, PML are much more efficient than ABC for
the elastodynamics equations, and are currently the most convenient way to model
unbounded domains [13].

In addition to the need to handle the mesh frontiers, boundary conditions may
also be required between subdomains within the simulation box. As discussed
earlier in Sect. 8.2.1.1, additional equations are required at the interface between
different media, to complement partial differential equations describing the physics
within each media. This is in particular the case when the field variables are dif-
ferent in two adjacent media. These additional equations usually mathematically
state physical continuity conditions. For instance, the normal velocity (or normal
displacement) must usually be continuous across boundaries (this may not be true
for the modeling of materials with cracks, but this case is out of the scope of this
chapter). Depending on the type of media (solid or fluid in particular), tangential
velocities or stress components at the boundaries may or may not be continuous. A
type of boundary very often encountered within the context of bone is that between
a non-viscous fluid (or fluid-like) medium and a solid medium, such as soft-tissue
and cortical bone. In this case, because of the absence of tangential stress in lossless
fluid, only the normal velocity and the normal component of the stress across the
interface are required to be continuous across the boundary. Such explicit continuity
conditions are necessary to handle interfaces between different media, based on the
continuous equations given in Sect. 8.2.1.1. However, in the context of numerical
methods based on a material parameter map defined on a mesh, interfaces between
media can be handled in two different ways, depending on the numerical scheme.
One way consists in treating different media explicitly, meaning that continuity con-
ditions must be stated and computed at the coordinates of the boundaries between
each media, as would be done for an analytical method of solution. The other way,
specific to numerical methods based on a discrete material parameter map, con-
sists in considering the whole simulation domain as a single medium with material
properties varying in space, either smoothly or abruptly. Indeed, the notion of spatial
continuity is lost in the case of discrete meshes. Accordingly, the difference between
the case of space filled with a single media with strong material heterogeneity and



190 E. Bossy and Q. Grimal

the case of space filled with different media becomes rather subjective. The choice
of the formulation and the numerical method conditions how discontinuities be-
tween different media must be handled. Whatever the method, it is fundamental
that boundaries between different media be correctly treated, as numerous wave
propagation phenomena arise from such boundaries: reflection, refraction, mode
conversion, etc.

8.2.1.3 Wave Generation

The model equations above have been written for the sake of clarity with no source
terms. However, mechanical waves are physically generated within a material either
via sources of motion or sources of stress, usually applied to some localized region
of space. For modeling in the time domain, two different approaches may be used to
generate ultrasound waves in the simulation domain: one may either define sources
that are active at some points of the mesh during the simulation, or provide initial
field values at all the grid points that will evolve in time during the calculation
according to the model equations with no source terms.

Defining sources in the domain may be done either by forcing field values at
some points in space (at such points, the field is given, not calculated by model
equations), or by adding source terms at some points in the model equation (at such
points, the field is different from the source term, and is calculated using the mod-
ified equation with the source term). These two ways of including sources in the
model are very different: on the one hand, forcing field values provides an easy way
to generate a wave of known geometry and temporal waveform, but points in space
where field values are forced will act as scatterers for waves generated elsewhere.
Using this approach thus usually requires that the sources be turned off (the field
values are not forced anymore and obey the model equations) before any other wave
(such as reflected waves) reach the source region. Forced boundary conditions on
part of the mesh boundary are often used to simulate a transducer in contact with
an object. On the other hand, a source term added to a field equation allows the
linear superposition at the source point of the generated wave with other waves, i.e.
active regions are transparent to waves generated elsewhere. One drawback of us-
ing source terms, except for some simple geometry (such as generation of plane-like
wave), is that the field values are usually not related in a simple manner to the values
of the source terms. When initial value conditions are used rather than source term,
the various formulations presented in Sect. 8.2.1.1 indicate that initial conditions
must be given for two field variables. For formulations based on second order time-
derivative, such as equations (8.6) or (8.7), initial values must be given for both the
pressure field and its time-derivative. For the velocity-stress formulation based on
(8.1) and (8.3), initial values must be given for both the pressure field and the veloc-
ity field. The approach based on initial value conditions is well-suited for instance
to start a simulation just before an incoming wave propagating in a homogeneous
medium (and of analytically known geometrical shape) is about to be scattered in a
complex manner by an object. In the context of ultrasound characterization of bone,
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this situation is encountered in transverse transmission, when a focused ultrasound
wave propagating in water (or homogeneous soft-tissue) is about to hit the bone
sample and undergo various complex wave phenomena.

Although less frequent, both approaches, active sources and initial value con-
ditions, can be implemented simultaneously. To conclude this section on wave
generation, let us note that the model equations presented in Sect. 8.2.1.1 do not
model wave propagation within ultrasound transducers. Unless additional equa-
tions are provided to explicitly model wave equations in active material (such as
piezoelectric materials), transducers are not taken into account as physically active
materials in the simulation domain, but are modeled by regions of space or boundary
where field values are forced or source terms are provided.

8.2.2 QUS Model Configurations and Parameters

Simulation applied to biomedical applications distinguishes between individualized
and nominal configurations. The former is representative of one given (or specific)
biological system (subject or bone specimen) while the latter could represent almost
any system; in practice, it is an average configuration (e.g. average bone thickness,
average material properties). Nominal configurations usually serve as a basis to in-
vestigate the physical phenomena at work and the effect of coarse modifications
of the system. For instance several papers have considered a nominal configuration
to investigate the determinants of the first arriving signal in an axial transmission
experiment: the influence of bone thickness [14], anisotropy [4], 3D geometry [4],
gradients of material properties [15], and bone healing [16] have been studied based
on a configuration modeling wave interaction with a bone plate. Individualized con-
figurations can be used to investigate the variability of the ultrasound response
with different systems (individuals or bone specimen) and are necessary to vali-
date the models by comparison with site-matched measurements on the modeled
system. Numerical simulations of individualized configurations are usually much
more demanding since several important characteristics must be accounted for to
match the physical response. In other words, such simulations are intended to give
more or less quantitative results while simulations based on nominal configura-
tions often aim at qualitative or comparative results. It is important to have in mind
that a model will be constructed and used for a designed purpose. The parameters
definition strategy should follow. This section discusses the main possible charac-
teristics to include in models for the study of the interaction of ultrasound with
bones.

8.2.2.1 Two-Dimensional (2D) or Three-Dimensional (3D) Problems

In 2D, all the variables and parameters are assumed to depend only on two spatial
coordinates. The 2D configuration can use Cartesian or cylindrical coordinates.
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In the popular ‘plate’ model for the study of the axial transmission of a pulse in
a long bone [3, 14–17], the radius of curvature is considered to be infinite; for the
study of through transmission at the radius [18] or the femoral neck [19], the length
of the bone is assumed infinite and the variation of the geometry along the length
is neglected. Wave propagation in the axial direction of tubular structures like long
bones can be modeled using cylindrical coordinates (r,z) so that only one plane of
the 3D object is represented but the equations solved are those for the 3D-cylindrical
object [20]. In that case it is assumed that the variables and the geometry do not vary
along the object circumference. Note that the ultrasound source and receiver config-
uration should also be considered when choosing the dimension: if the simulation is
2D, the transducers are modeled as infinitely long in one dimension (Cartesian coor-
dinates) or circular (cylindrical coordinates). It is impossible to model a finite-size
beam in 2D in Cartesian coordinates.

The computational requirements (memory space and computation time) are
much less for 2D models than for 3D models. Furthermore, the analysis of the data
is simpler because it can be visualized in a plane. While a 2D simulation can often
be performed as a first step when addressing a new propagation problem, the results
should be confirmed with 3D simulations: only the analysis of the 3D case can make
it clear whether the phenomena of interest are actually captured with the 2D config-
uration. The confrontation of 2D and 3D simulations for the same object can reveal
that 3D effects have different magnitudes depending on the types of waves observed
(different guided waves modes, bulk waves) and the assumed material symmetry
(isotropic, anisotropic) [4, 14, 21]. Some cortical bone studies have found that a 2D
model may be satisfactory [4], but the best choice for the dimension depends on the
phenomena of interest. In contrast, it is unlikely that a 2D simulation of US propa-
gation in trabecular bone can yield realistic results due to the highly 3D trabecular
structure.

8.2.2.2 Geometry

In a model of US propagation in cortical bone, the endosteal and periosteal surfaces
have to be described with precision because the cortical shell thickness is often a
key characteristic. This can be smaller than one millimeter in some areas of interest
for QUS (for some radius specimen and at the proximal femur). For trabecular bone
the model must include a description of the trabeculae which characteristic size is a
few hundreds of microns.

The geometry of the model can be constructed explicitly upon prescribing the
coordinates of the boundaries (lines or surfaces) of the different media, for instance
using a Computer-aided design (CAD) software. This procedure may be convenient
for nominal models for which the geometry is simple. Otherwise the geometry of the
bone structures should be obtained from digitized images. In a basic model where
only two or three media are represented, it is convenient to use images in integer for-
mat where each number stands for one medium. Then each number can be used as an
index for the allocation of each medium properties. To obtain such images starting
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from the raw data obtained from the imaging system, a more or less involved image
processing is necessary. Let us consider the case of a three-media model: cortical
bone, trabecular bone and soft tissue, to be constructed from a gray level raw image.
The processing of the raw image consists in segmentation of the three media, i.e.
defining the volumes corresponding to each medium. In some cases the segmenta-
tion can be done automatically simply by setting a threshold to separate the media.
However in many cases segmentation is a problem, in particular when the image
resolution is low. For instance when the cortical thickness is small and the resolu-
tion of the order of 100 μm, it may be difficult to separate cortical and trabecular
bone at the endosteal surface due to partial volume effects and the smooth tran-
sition between cortical and trabecular bone. The segmentation of trabecular bone
images has been the subject of several investigations in the context of quasi-static
micro-finite element modeling; it was established that the processing may have a
significant effect on the simulation results [22–24]. Fortunately, the QUS commu-
nity can benefit from the advanced tools developed for the radiologists (e.g. MIAF:
Medical Image Analysis Framework, Institute of Medical Physics, University of
Erlangen, Germany [19]).

It is relatively easy to obtain a 2D description of bone geometry with high res-
olution digitized photographs or radiographies. These are however of very limited
interest in trabecular bone studies because the trabecular network is highly 3D. To
some extent 2D images may be sufficient for the cortical bone problems which can
be investigated in 2D although it would be difficult to image exactly the plane which
is wanted for the simulation. For 2D simulation studies on individualized cortical
bone samples, it is convenient to obtain the simulation plane from 3D images.

Because of the high absorption of X-rays by bone, X-ray quantitative computed
tomography (XR-QCT) is a very efficient technique to retrieve bone geometry and
is it used almost exclusively. The advent of high resolution QCT system in the 1990s
coincides with the development of numerical simulation for QUS [25]. With the in-
creasing availability of standard research XR-CT systems with a resolution down to
5 microns, it has become very convenient to obtain the 3D image of the bone struc-
ture. The gold standard for high resolution bone imaging is the synchrotron radiation
QCT (SR-QCT). The monochromatic beam of synchrotron radiation minimizes ar-
tifacts and the energy can be increased to obtain 3D images with a resolution better
than the micrometer, together with a measurement of the local mineral content.
Based on the authors’ experience, for the modeling of QUS applications, model-
ing trabecular structures with less than ten micron resolution should not affect the
results while for cortical bone applications, an image resolution in the range 50–150
μm should be sufficient to represent the cortical thickness. Note that these values are
only indicative and may be hard to achieve in practice. In fact several authors have
obtained reasonable results using lower resolution. Finally, note that the adequate
image resolution (pixel size) is largely problem-dependent and may be influenced
by the numerical scheme.
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8.2.2.3 Material Properties (Mass Density and Mechanical Properties)

It is one of the major advantages of QUS over X-ray based techniques to be sensi-
tive to the material properties of bones, in particular elastic properties. Accordingly,
bone models should include a realistic representation of material properties, which
may itself be referred to as a model of material properties. The definition of a mate-
rial property assumes a length scale over which this property is defined. To a large
extent, the numerical modeling of bone QUS does not need to consider the full com-
plexity of bone organization down to the nanometer scale. Basically, it is enough to
describe bone as a two-phase composite material: a relatively hard tissue and a soft
phase. The soft phase corresponds to marrow in trabecular bone (inter-trabecular
space) and to large pores (resorption cavities and Haversian channels) in cortical
bone. In trabecular bone the hard tissue is the constitutive material of the trabeculae;
in cortical bone it is the mineralized matrix in which pores are embedded. Never-
theless, one has to bear in mind that the properties of the cortical bone matrix and
the trabeculae depend on the lower levels of bone organization.

The propagation model can include an explicit description of the material phases.
This is the case for most cancellous bone simulation studies where the individual tra-
beculae are represented, e.g. based on a digital XR-CT image. Another option is to
use homogenized material properties, that is properties which represent the average
behavior of the phases (hard tissue and pores) of a material volume of the order of
the wavelength, that is of the order of one millimeter. Biot’s theory for poroelastic
media provides such homogenized material properties which can be implemented in
numerical models to account for the sub-wavelength interaction of the waves with
the trabecular network [26–28]. In contrast, a purely elastic (or viscoelastic) ho-
mogenized model is considered a good choice to model cortical bone properties at
a scale above one millimeter [29].

If the material model is anisotropic, the principal orientations (planes of symme-
try) of the material must be defined. For long bones this is not a major difficulty
since the cylindrical coordinates frame attached to the tubular bone shape is a good
approximation to the material axes. In contrast the later can be complicated to define
for trabecular bone or bones which cross-sectional shape significantly diverts from
circular shape. The relevance of modeling anisotropy for QUS depends on the type
of problem as illustrated in the literature review in Sect. 8.3.

Some studies have suggested that the overall quasi-static mechanical [30] prop-
erties of cancellous bone can be explained with an isotropic material model of the
trabecular material. Consequently the material properties of the trabeculae may
only have a minor impact on the (overall) ultrasonic response which may be es-
sentially determined by the amount of bone and structure of the network. If the
isotropy hypothesis is retained for the constitutive material of the trabeculae, then
only two elastic coefficients need to be provided. The homogenized properties of
cortical bone are transversely isotropic (TI), at least in the mid-diaphysis of long
bones [34,35] (properties tend to be orthotropic closer to the diaphysis [36]). Values
of typical elastic properties which can be used for a nominal model are collected in
Table 8.1.
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Table 8.1 Typical bone material properties (elasticity framework) which can be used as inputs for
nominal bone models. The values reported in the table are as found in the literature; note that the
density for the homogenized material and the tissue level properties is the same, which is somewhat
inconsistent since homogenized material density should be lower to account for the pores

Cortical bone Cortical bone Trabecular bone
(homogenized) (matrix) (trabeculae) Pores

Reference [31, 32] [31] [1] [33]
symmetry TI TI I I

mass density (g.cm−3) 1.85 1.85 1.85 1
C11 (GPa) 19.1 29.5 29.6 2.25
C22 (GPa) 19.1 29.5 29.6 2.25
C33 (GPa) 27.6 38.1 29.6 2.25
C12 (GPa) 10 11 17.6 2.25
C13 (GPa) 10.4 11.9 17.6 2.25
C23 (GPa) 10.4 11.9 17.6 2.25
C44 (GPa) 5.9 10.1 6 0
C55 (GPa) 5.9 10.1 6 0
C66 = (C11 −C12)/2 (GPa) 4.5 9.3 6 0

TI – transverse isotropic; I – isotropic

Mathematical homogenization techniques have enhanced our knowledge of the
relationships between the homogenized properties, the matrix properties and the
porous network. In cortical bone, the anisotropy at the millimeter scale is depen-
dent on the mineralized matrix anisotropy and to a lesser extent on the oriented
porosity [31, 37]. Note that due to the low porosity, the homogenized properties of
cortical bone are largely dependent on the intrinsic properties of the mineralized
matrix. The dependence of the homogenized elastic coefficients on the porosity has
been investigated in the framework of ultrasound studies in [33] (see also Chap. 13).
The authors found that all the stiffness coefficients decrease with increasing poros-
ity, and that the decrease is more pronounced in the direction perpendicular to the
pores main direction. In the latter work, the homogenized coefficients are obtained
based on the simulated propagation of a 1 MHz central frequency-pulse across a mil-
limetric volume of cortical bone with an explicit description of the porous network.
Note that this ‘dynamical’ homogenization of elastic properties obtained through
wave propagation is in global agreement with quasi-static homogenization using
the Mori–Tanaka method [38] (considering the cylindrical pores are aligned and
randomly distributed) or the asymtotic homogenization method [39] (considering
the pores are regularly distributed on a hexagonal lattice).

Individualized models for QUS should consider sample-specific material prop-
erties in addition to the specific geometry (organ shape). At present, there seems
to be no satisfactory model of homogenized trabecular bone properties for wave
propagation. Biot’s model is popular but fails to explain all observed wave phenom-
ena (see Chaps. 5 and 11). A conservative option to build an individualized model
of trabecular bone is to represent explicitly the trabecular network; this ensures
that the essential wave phenomena are accounted for in the model. As explained
above, a sample-specific choice of material properties of the trabeculae should not
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considerably improve the model. An individualized model of cortical bone for QUS
can use an homogenized model of bone properties with a sample-specific choice of
elastic coefficients. Because of anisotropy, at least five coefficients must be set. At
present there is no convenient technique to obtain these coefficients from different
locations in a bone sample (elasticity may be heterogeneous). As a consequence,
individualized bone models almost systematically assume nominal values of mate-
rial properties (and individualized geometry). One possibility to adapt a bone model
to a specific sample is to retrieve, in addition to the porosity, one or several elastic
properties of the mineralized matrix with nanoindentation or acoustic microscopy
and to coupled this data with a bone homogenization model [31] to obtained a set
of homogenized anisotropic properties.

8.2.3 Finite Difference Time Domain Method (FDTD)

The finite difference method is a numerical method that approximates a differential
equation defined over a continuous domain by a finite number of equations defined
only at the points of some mesh. It is named after the fact that it replaces deriva-
tives by finite differences. The acronym FDTD refers to the finite difference method
applied in the time domain, as opposed to the frequency domain. For wave prop-
agation solved in the time domain, it provides solutions as field values given at
discrete locations in space and discrete instants in time. Although rather old, the
FDTD method is very popular due to its combined simplicity and efficiency. It has
been widely applied to wave propagation problems for more than 30 years in vari-
ous fields, including electromagnetic, geophysics, ultrasonics. It is out of the scope
of this book to provide a full account of the FDTD method, which can be found
elsewhere (see [40] or [13] for instance), but rather to provide the reader with the
main principles at the basis of the FDTD method, illustrated on equations relevant
to ultrasound propagation in bone. As introduced in Sect. 8.1, both FDTD and FEM
methods rely on space discretization defined over some mesh. In contrast to the
finite element method, presented in the following section, spatial meshes used in
finite difference methods consist of regular grids based on field coordinates. In this
section, the FDTD method will be illustrated for a cartesian coordinate system only,
but all basic principles are valid for any coordinates such as spherical or cylindrical
coordinates. We will first define and give examples of some FDTD schemes com-
monly used to simulate ultrasound propagation.

8.2.3.1 Principles

Basically, the finite difference method is based on the Taylor expansion of differen-
tiable functions. For a single-variable function f , the Taylor expansion is given by

f (a + Δa) = f (a)+ f ′(a)Δa + · · ·+ f (n)(a)(Δa)n + O[(Δa)n+1]. (8.8)
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In (8.8), a is a generic variable that may stand for the time coordinate t or spatial
coordinates x, y, etc., and O[(Δa)n+1] is the residual error. Using the first-order ex-
pansion of (8.8), several expressions of the first-order derivative can be found [41]:

f ′(a) =
f (a + Δa)− f (a)

Δa
+ O(Δa) (8.9a)

f ′(a) =
f (a)− f (a−Δa)

Δa
+ O(Δa) (8.9b)

f ′(a) =
f (a + Δa

2 )− f (a− Δa
2 )

Δa
+ O[(Δa)2] (8.9c)

Approximations in the finite difference method arise from the use of truncated
Taylor expansions. The approximation is said to be of order k when the trunca-
tion corresponds to errors which are O[(Δa)k]. In other words, a kth-order finite
difference approximation means that for sufficiently small Δa, the approximation
error is divided by αk when Δa is divided by α . Accordingly, finite difference com-
putations based on (8.9a) and (8.9b) provide first-order approximations of first-order
derivatives, whereas finite difference computations based on (8.9c) provide second-
order approximations of first-order derivatives. For the simulation of ultrasonic
wave propagation obeying the elastodynamics equations presented in Sect. 8.2.1.1,
(8.9c) is at the base of second-order FDTD schemes. Higher-order approximations
may be found by using more than two field values. It is out of the scope of this
chapter to provide details on such higher-order methods, which can be found else-
where [13]. Our introduction to the FDTD method will be based on second-order
FDTD schemes only, which are sufficient to understand the main principles of the
method. Moreover, most applications of the FDTD method in the field of ultrasound
propagation in bone actually are restricted to second-order approximations. For
multivariate functions, such as spatio-temporal fields f (x, t) encountered in wave
propagation problems, the expression of the Taylor’s expansion involves the partial
derivatives of f [41]. Up to the first order term, the Taylor expansion for multivari-
ate functions is analog to that of single-variable functions but uses the first-order
partial derivatives. All following examples will assume the following second-order
approximation to first-order derivative:

∂ f
∂a

(a) ≈ f (a + Δa
2 )− f (a− Δa

2 )
Δa

. (8.10)

It can be shown [13, 41] that (8.10) leads to

∂ 2 f
∂a2 (a) ≈ f (a + Δa)−2 f (a)+ f (a−Δa)

Δa2 , (8.11)

which is a second-order approximation of a second-order derivative. Equations
(8.10) and (8.11) are also called centered difference approximations. The type of
equation used to solve a problem depends on how the problem is formulated:
as discussed in Sect. 8.2.1.1, the problem may be formulated by use of a single
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second-order differential equations involving only one field variable (see (8.6) or
(8.7) for instance) or a set of coupled first-order differential equations involving two
types of field variables (see the velocity-stress formulation using (8.1) and (8.3) for
instance), as illustrated in the following section.

8.2.3.2 FDTD Schemes: Two Examples

We now illustrate the principles introduced above on two examples. Let us start
with the 1D wave equation for pressure in a lossless homogeneous fluid medium.
Approximating (8.6) based on (8.11) applied to both spatial and time derivatives,
one obtains the following finite difference equation:

p(x, t + Δ t)−2p(x,t)+ p(x,t−Δ t)
Δ t2 = c2 p(x + Δx, t)−2p(x, t)+ p(x−Δx, t)

Δx2 ,

(8.12)

where Δ t and Δx are respectively the time and spatial steps, and c is the speed of
sound. Equation (8.12) yields in turn

p(x, t + Δ t) = 2p(x,t)− p(x,t−Δ t)

+
(

c
Δ t
Δx

)2

[p(x + Δx,t)−2p(x, t)+ p(x−Δx, t)] (8.13)

Equation (8.13) is an explicit evolution equation for the pressure field: it provides
the value at time t +Δ t at position x from the values at position x at two anterior time
points t and t−Δ t, and from spatially neighboring values at time t. In practice, initial
values of the pressure field have to be provided for t = 0 and t = Δ t at all positions
in space. The evolution of the pressure field can then be calculated step by step in
time over the whole spatial domain. It is apparent from (8.12) that the calculated
pressure field is defined on a regular grid in space, with consecutive points Δx apart
from each other. It is also clear that the two points at the boundary of the domain
cannot be calculated by use of (8.12) as each has only one neighboring point, in
agreement with boundary issues discussed in Sect. 8.2.1.2. The extension of this
scheme to the 2D and 3D cases is straightforward.

Let us now consider the 1D velocity-stress FDTD formulation derived from (8.1)
and (8.3) in the case of a lossless fluid. This formulation leads to the following
expressions

p(x, t + Δ t)− p(x,t)
Δ t

= −λ (x)

[
vx(x + Δx

2 ,t + Δ t
2 )− vx(x− Δx

2 ,t + Δ t
2 )

Δx

]
(8.14a)

vx(x, t + Δ t)− vx(x,t)
Δ t

= − 1
ρ(x,y)

[
p(x + Δx

2 ,t + Δ t
2 )− p(x− Δx

2 , t + Δ t
2 )

Δx

]
(8.14b)
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Fig. 8.1 Staggered grids
used for the 2D
elastodynamics leapfrog
scheme. The grids for stress
and velocity fields are
staggered in both space and
time [43]. The figure only
shows staggering in space

: s11,s22

: s12

: v1

:  v2

which as (8.12) also provides explicit expressions of p(x, t + Δ t) and v(x, t + Δ t).
However, in this case, as opposed to the previous example, centered difference re-
quires that p(x, t) and v(x,t) be defined on staggered grids, both in space and time.
Similarly, the 2D and 3D formulations also lead to staggered grids both in space and
time. For solids, the principle is exactly the same, by taking into account the equa-
tions for all the stress components. This FDTD scheme was first introduced By Yee
for electromagnetic in 1966 [6], and extended for the elastodynamics wave problem
by Madariaga [42] and Virieux [43] for geophysics applications. It is particularly
well suited to solve evolution equations given by first-order time derivatives as a
function of first-order spatial derivatives, such as the Maxwell’s equations in elec-
tromagnetism or the velocity-stress formulation in elastodynamics (see (8.1) and
(8.3) with no viscous term). It is often referred to as the Virieux scheme, or the
leapfrog method because of the structure of (8.14). Figure 8.1 illustrates for the 2D
case how the grids for the stress and particle velocity fields are staggered in space.

For homogeneous fluid media, the Virieux Scheme can be shown to be equiva-
lent to the previous scheme (see (8.12)) based on the pressure wave equation. For
homogeneous isotropic solids, it can be shown to be equivalent to FDTD schemes
based on (8.7). However, the staggered-grid Virieux scheme has several major ad-
vantages over formulations based on second-order differential equations for pressure
or displacement fields. Not only does it work properly for both fluids and solids,
but it also implicitly handles both solid/solid and fluid/solid coupling between two
different materials. Both changes of materials and heterogeneities in a given ma-
terial are handled in the same way by use of parameters maps defined for each
grid point, with no need to explicitly state boundary conditions. Moreover, its ex-
pansion to anisotropic materials is straightforward, as it directly uses the rigidity
tensor ((8.3) with no viscous term). Finally, perfectly matched layers (PML) can
readily be implemented with the Virieux scheme [44]. For all these reasons, the
Virieux scheme has remained extremely popular in particular in the geophysics
community, where it was first introduced for elastodynamics. In the field of ultra-
sound propagation in bone, several groups have developed their own code based
on the Virieux Scheme [2, 4, 26].1 Other groups have also used a commercially
available software, based on the second-order wave equation for the displacement

1 http://www.simsonic.fr

http://www.simsonic.fr
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field in isotropic media [3, 14, 17, 25, 45].2 SimSonic, a FDTD code based in the
Virieux scheme developed at the Laboratoire d’Imagerie Paramétrique (Université
Pierre et Marie Curie-UPMC and CNRS, Paris, France) and used in several publi-
cations [1, 4, 33, 46], can be freely downloaded online.3

8.2.3.3 Discretization and Related Issues

As discussed above, the FDTD method discretizes spatial and temporal domains
over regular grids, defined by a temporal-step Δ t and a space-step h. The space-step
is assumed here to be independent of the direction, i.e. Δx = Δy = ... = h. The choice
of Δ t and h is of crucial importance in FDTD methods. Qualitatively, both Δ t and
h must be chosen small enough to provide sufficiently smooth representation of the
computed field. The smallness of Δ t and h conditions the accuracy of the results,
that is the degree of approximation introduced by the numerical method. On the
other hand, Δ t and h cannot be chosen independently, and must obey a so-called
stability condition. The stability condition (commonly called CFL condition, from
the initials of Courant, Friedrichs and Levy) depends on the numerical scheme, and
insures that computed fields are stable, i.e. the computed fields do not blow up (or
equivalently computed values remain bounded). For wave propagation problems,
the CFL condition most often has the following form:

c
Δ t
h

≤ αd , (8.15)

where αd is some dimensionless constant, which depends on the space dimension
d, and c is the wave velocity. When several wave velocity values are involved, as is
the case for a heterogeneous medium or different media, the largest velocity has to
be used in the CFL condition. For the two schemes presented above as examples,
the CFL condition is given by

c
Δ t
h

≤ 1√
d
. (8.16)

In practice, one usually first chooses the step-size h, based on accuracy criteria,
and then uses the CFL to derive Δ t and ensure stability. Note that accuracy and
stability are completely independent concepts: a simulation may be stable while
providing poor accuracy for coarse meshes. On the other hand, even very fine grids
will yield instability if the CFL condition is not fulfilled.

The accuracy of a FDTD simulation depends on a number of factors, in ad-
dition to the step-size h: sources of error not only involve the approximation of
derivative by finite difference, but also cumulative errors due to the iterative na-
ture of the method. Therefore, the longer the simulation duration, the larger the
errors. Equivalently, the larger the propagation distance, the larger the errors. One
major effect generated by most FDTD schemes, including all schemes that have

2 http://www.cyberlogic.org/software.html
3 http://www.simsonic.fr

http://www.cyberlogic.org/software.html
http://www.simsonic.fr
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been used in the field of ultrasonic bone characterization, is numerical dispersion,
i.e. the dependence of phase velocity on frequency due to the numerical method.
As an important consequence, simulated ultrasound pulses are increasingly dis-
torted during propagation. Accuracy criteria in FDTD therefore include tolerance
on waveform distortion, as well as on wave amplitude. The obtained accuracy de-
pends both on propagation distances and simulation duration. Note that numerical
dispersion is not specific of finite difference schemes but is an artifact to control
with most of the numerical methods, in particular those based on a discretization of
the propagation domain.

For second-order FDTD schemes, a minimum spatial-step size of typically λ/10
(i.e. ten points per wavelength) is required. For propagation distances over several
tens of wavelengths, step size as small as λ/20 may be required, depending on the
desired accuracy. Moreover, for pulsed ultrasound, the accuracy strongly depends on
the bandwidth: for a given central frequency, short (i.e. broadband) pulses will be
more distorted than quasi-harmonic waves, as a value of h of one tenth of the central
wavelength will correspond to less points per wavelength for the higher frequency
content. For pulsed ultrasound, the number of points per wavelength should be deter-
mined based on the desired accuracy for the highest significant frequency content,
which equivalently corresponds to a waveform distortion criterion. The choice of
h is therefore highly subjective, and no general rules exist to determine h. Ten
grid points per wavelength should be considered a minimal requirement, that more-
over remains rather subjective for pulsed ultrasound. Note that for a homogeneous
medium, the CFL condition turns the number of spatial grid points per wavelength
into number of temporal grid points per period, with some dimensionless factor
close to one. For simulations involving several media with different propagation ve-
locities, one has to consider the smallest wavelength (i.e. the smallest velocity) to
choose h. On the other hand, the temporal step will be derived by use of the largest
velocity. For a large range of velocities, such as encountered for simulation in both
soft tissue and bone, a consequence is that the number of spatial grid points per
smallest wavelength is significantly different from the number of temporal points
per period, which increases numerical dispersion. To compensate for this additional
dispersion, simulation involving significantly different velocities requires grid steps
finer than that for homogeneous media.

Although h has to be small enough to fulfill accuracy requirement, it also has to
be small enough in order to correctly describe the geometry of propagation media,
as discussed in Sect. 8.2.2. For FDTD simulation in trabecular bone structures in
the MHz range, h is determined by the trabeculae dimensions: it must be small
enough (at maximum on the order of a few tens of microns) to describe the bulk of
individual trabeculae. Whereas the discussion above is rather general, applicable to
both FEM and FDTD methods, one additional consideration conditions the choice of
h in the case of FDTD methods: the use of regular grids leads to “staircases” artifacts
when originally smooth interfaces are discretized on such grids. Therefore, a plane
interface that is not parallel to the coordinates axes, for instance, will have some
artificial roughness. In turn, this artificial roughness will create scattering, which
amplitude depends on the size of the “staircases” relatively to the wavelength. As
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for accuracy considerations in homogeneous media, although for a different reason,
h has to be made small to decrease artificial scattering.

In summary, the spatial-step size h of a simulation has to be small enough to both
correctly describe the geometry of the medium and minimize numerical dispersion.
Practically, it is the computational cost that bounds the value of h to some minimal
value. For a space dimension d, memory requirements scales as hd : for fixed spatial
physical dimensions, the number of points in the spatial mesh in three dimensions
for instance is multiplied by 23 = 8 when h is divided by 2. Moreover, because of
the CFL conditions, the computational time scales as hd+1: dividing h by a factor of
2 multiplies the total number of calculations by 23+1 = 16 for 3D simulations. From
the point of view of computational efficiency, h must therefore be kept as large as
possible, while being small enough to fulfill accuracy requirements. This point is
illustrated further in the two dimensional case study presented in Sect. 8.2.5.

8.2.3.4 Concluding Remarks on the FDTD Method

As a time-domain numerical method, the results provided by a FDTD simulation in-
clude “snapshots” of field variables at chosen instants in time and temporal signals
recorded at chosen points in space. Section 8.2.5 will illustrate the implementation
of a FDTD computation on a case study. Let us conclude this introduction on the
principles of the FDTD approach by summarizing its main advantages and disad-
vantages. FDTD is undoubtedly one of the most easily accessible numerical method
to solve wave propagation problems: its fundamentals can be grasped easily by the
non specialist, and simple though efficient algorithms may be written rapidly us-
ing standard programming languages such as C or Fortran. Yet FDTD is capable of
computing numerical solutions to complex elastodynamics problems. Complex ge-
ometries may be taken into account simply by providing digitized parameters maps.
It is this combination of simplicity and power that makes FDTD such a popular
method. On the other hand, most of its main drawbacks come down to a problem of
computational cost: the use of regular grids to describe originally smooth geometry,
numerical dispersion, and cumulative errors for large duration and large propagation
distance can be overcome by setting small enough grid steps. The applicability of
the FDTD to a wave propagation problem is therefore essentially limited by practi-
cal computational limitations.

8.2.4 Finite Element Method (FEM)

This section intends to give the reader an account of the main concepts associated
with the finite element method (FEM). The presentation is limited to linear prob-
lems. Throughout the section, space coordinates are denoted x, y, and z and time is
denoted by t. Matrices and vectors will be denoted in bold face. Capital letter T in
exponent denotes transposed vectors and matrices.
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Let the exact solution of a set of partial differential equations in the local form
such as (8.1) and (8.2) be the vector u(x,t), whose components are, for instance,
the displacement in the directions x, y and z. The finite difference method uses a
discretization of the problem equations in their local form and seeks the solution
u(xi,y j,zk; tl) at prescribed points: nodes (xi,y j,zk) of a spatial mesh and discrete
time points tl . In contrast, the FEM seeks an approximate solution û(x, t) defined at
any coordinate (x,y,z) and time t. This approximate solution must be found as the
solution to a modified form of the original equations. This is why the starting point
of the FEM formulation is not the original set of partial differential equations and
boundary conditions (BC) in the local form but a weighted integral form of the latter,
of which û(x, t) appears to be a solution. The discretization in the FEM consists in
splitting the computation domain in a number of parts (e.g. triangles or rectangles in
2D problems) referred to as finite elements. The FEM approximated solution û(x, t)
in the space domain is usually taken in the form

u(x,t) ≈ û(x,t) =
n

∑
i=1

Ni(x)ũi(t), (8.17)

which is a sum over all the finite elements. Functions ũi(t) are unknowns (typi-
cally the displacement at nodes of the mesh) and the terms Ni(x) are space shape
functions (or basis functions) that are usually defined locally, on one or a few finite
elements.

For stationary problems, the time-dependence can often be assumed, e.g. a vi-
brating body oscillating at a given frequency ω (which may be unknown) has a
cos(ωt + φ) time-dependence (harmonic motion). Although linear transient prob-
lems can theoretically be envisaged as a superposition of harmonic problems
(Fourier series decomposition), this is cumbersome from the numerical point of
view. Solving the problem in time is often referred to as time integration. This can
be done with a number of techniques based on finite difference approximations in
time or methods derived by applying the FE concepts to the time dependance of the
solution behavior.

In the sequel, we start with the presentation of the derivation of the FEM
equations with a discretization in space only. In a second step we introduce the
discretization in time. The derivations below follow the derivation in [47], which is
one of the major references where the details of the FEM can be found.

8.2.4.1 Formulation of the FEM with Space Discretization

For the sake of the notation simplicity the variable t is omitted in this section. The
problem to solve is: determining a set of unknown functions collected in the vector
u such that it satisfies a certain set of differential equations

A (u) = 0 in Ω (8.18)

B(u) = 0 on Γ , (8.19)
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Fig. 8.2 An Example of 1D linear shape functions Ni(x) defined on two consecutive elements

where the domain Ω is a volume (or surface in 2D), and Γ denotes the bound-
aries of Ω . Equation (8.18) are the local form of the field equations (e.g. Newton’s
law of motion (8.1)) and (8.19) are the boundary conditions. The operator A (u) =
[A1(u) A2(u) · · · ]T represents the different lines of the system of partial differential
equations. Similarly for B(u).

The finite element process consists in seeking the solution u of (8.18) and (8.19)
in the approximate form (8.17). An example of a simple 1D shape function Ni(x) that
is linear and locally defined on two consecutive finite elements is drawn in Fig. 8.2.
Denoting by ũi the (unknown) value of the 1D displacement at node i, the shape
function is defined as Ni(x) = x−xi−1

xi−xi−1
ũi on element [xi−1,xi] and Ni(x) = xi+1−x

xi+1−xi
ũi

on element [xi,xi+1], and is zero in the rest of the domain. As a result, the solution
u(x, t) is approximated on element [xi,xi+1] as

û(x,t) = Ni(x)ũi + Ni+1(x)ũi+1, x ∈ [xi,xi+1]. (8.20)

As the differential equation (8.18) has to be zero at each point of the domain, the
following is true ∫

Ω
vT A (u)dΩ ≡ 0, (8.21)

where v is a set of arbitrary functions equal in number to the components of u.
One powerful statement follows from (8.21): if it is satisfied for all v, then the
differential equation (8.18) must be satisfied at all points in the domain. Similarly,
we can require that the boundary conditions (8.19) verify

∫

Γ
v̄T B(u)dΓ ≡ 0, (8.22)

for any function v̄. Finally, it is found that the integral statement that

∫

Ω
vT A (u)dΩ +

∫

Γ
v̄T B(u)dΓ = 0, (8.23)

is satisfied for any v and v̄ implies that (8.18) and (8.19) are satisfied. The choice of
v and v̄ is usually limited to bounded functions in order to avoid any infinite term
in the integral. The restrictions to place on u depend on the order of differentiation
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involved in the operators A and B. For several systems of differential equations, it
is possible to perform integration by part of (8.23). This leads to a more ‘permissive’
statement than the original problem since then a lower order of continuity is required
for u – this statement is referred to as the weak form of the problem equations and
is often associated with the FEM.

In the general case it is impossible to find a solution of the problem (8.18) and
(8.19) in the approximate form (8.17). Fortunately an integral statement such as
(8.23) allows an approximation to be made if, in place of any functions v and v̄, we
use their approximations by

v(x) ≈
n

∑
i=1

wi(x)δ ũi and v̄(x) ≈
n

∑
i=1

w̄i(x)δ ũi, (8.24)

where δ ũi are arbitrary parameters. Inserting the approximations (8.17), (8.24) into
(8.23) yields

δ ũT
i

[∫

Ω
wT

i (x)A

(
n

∑
i=1

Ni(x)ũi

)
dΩ +

∫

Γ
w̄i

T (x)B

(
n

∑
i=1

Ni(x)ũi

)
dΓ

]
= 0.

(8.25)

Since δ ũi are arbitrary, (8.25) is equivalent to the set of equations

∫

Ω
wT

i A

(
n

∑
i=1

Ni(x)ũi

)
dΩ +

∫

Γ
w̄i

T B

(
n

∑
i=1

Ni(x)ũi

)
dΓ = 0, for i = 1,2, . . . ,n

(8.26)

which is sufficient to determine all the unknowns ũi. This equation can be inter-
preted as follows: if we note that A (û(x)) is the “error” due to the substitution of
u(x) by û(x), then the first integral in (8.26) is the weighted integral of the error.
A similar interpretation holds for the boundary condition term. Thus the finite ele-
ment process will consist in searching the coefficients ũi which make the weighted
integral zero for a certain choice of functions wi.

Note that choosing a Dirac function for wi(x), which value is identity at the
points (xi,yi) of the mesh and zero elsewhere is a particular case which corresponds
to a finite difference approximation. The classical choice wi(x) = Ni(x), that is the
same shape functions as used for the approximation of u(x) leads to the Galerkin
method which is frequently used in practice.

For a linear system of partial differential equations where the searched function
u(x, t) appears with its first and second order time derivatives (e.g. elastodynamics
equation, wave equation), the approximated form of the equations (8.26) is after
several algebraic manipulations

M
∂ 2ũ(t)

∂ t2 + C
∂ ũ(t)

∂ t
+ Kũ(t)+ f = 0, (8.27)



206 E. Bossy and Q. Grimal

where M, C, and K are known as the mass, damping, and stiffness matrices, f is the
volume force vector, and ũ(t) is a vector that contains all the unknown functions of
time (e.g. displacements in the three directions at all nodes of the mesh in the case
of an original set of equations written for the 3D displacement). The matrices are
constructed during the assembly process which consists in collecting the contribu-
tions of each elements to the integral equations (8.26) corresponding to the different
components of u. In practice, the integrals are calculated over each element. Further-
more, since the shape functions are defined locally (on a few elements), usually the
matrices mostly contain zeros and the non-zero terms are concentrated close to the
diagonal of the matrices. This is an important aspect of the FEM: very large linear
systems must be solved but due to sparsity this can be achieved at a reasonable cost
with dedicated methods.

8.2.4.2 Discretization in Time

In the sequel we have substituted the notation u(t) to ũ to simplify the notations and
partial derivation with respect to time are denoted with dots.

Analytical solutions of (8.27) can be obtained with respect to the time domain
for a harmonic loading or if the interest is in determining the vibration modes of the
system. In the general case for transient problems discretization in time is required.
Several discrete time-integration algorithms are based on more or less sophisticated
finite difference approximations. The so-called Newark method is a very popular
one used for instance in [48]. A brief review of the numerical time-integration tech-
niques applied to the FEM can be found in [49]. In this section we have chosen
to give an account of one technique based on the FE concepts according to [47] in
order to stress the specificities of the FE methods.

In a prescribed interval [t0,tn], time is divided in time increments Δ t such that

t1 = Δ t · · · tn = nΔ t, tn+1 = (n + 1)Δ t · · · tm = mΔ t.

In order to illustrate the concept of finite element time discretization, we assume that
u(tn) = un and its time-derivatives are known and we present one typical single-step
algorithm to calculate u(tn+1) = un+1. A single-step algorithm implies a recurrence
relationship involving only two consecutive time points while a multi-step algorithm
can use several time points. Details and other types of algorithms can be found
in [47]. Like for the finite element process applied to approximate the solution in
space (see (8.23)), the starting point is the weighted integral form of (8.27)

∫ Δ t

0
w(τ)T [Mü+ Cu̇+ Ku+ f]dτ = 0, (8.28)

in which w is an arbitrary function. Now the time-dependence of u can be approxi-
mated by a certain function with unknown parameters, which will be determined by
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solving (8.28). Taking the approximate form w(τ) = W (τ)δun+1, where δun+1 are
arbitrary parameters, leads to

∫ Δ t

0
W (τ) [Mü+ Cu̇+ Ku+ f] = 0. (8.29)

If we choose for u(t) a quadratic approximation in time, we have

u(τ) = un + τu̇n +
1
2

τ2α, (8.30)

where α is a vector of unknown parameters. Upon replacing u and its time deriva-
tives in (8.29) by the form (8.30) and its derivatives with respect to τ yields after a
few elementary algebraic manipulations

Mα + C[u̇n + θ1αΔ t]+ K
[

un + θ1Δ tu̇n +
1
2

θ2Δ t2α
]
+ f̄ = 0, (8.31)

where

θ1 =
∫ Δ t

0 W (τ)τdτ
Δ t

∫ Δ t
0 W (τ)dτ

; θ2 =
∫ Δ t

0 W (τ)τ2dτ
Δ t2

∫ Δ t
0 W (τ)dτ

; f̄ =
∫ Δ t

0 W (τ)fdτ∫ Δ t
0 W (τ)dτ

. (8.32)

Equation (8.31) is (usually) a large system of linear equations which has to be solved
to determine α at each time step. Finally the approximated displacement at tn + Δ t
is given by

un+1 = un + Δ tu̇n +
1
2

Δ t2α ; u̇n+1 = u̇n + Δ tα ; ün+1 = α. (8.33)

The choice of the weighting function W (τ) leads to a variety of different algorithms.
In the frequent case where M and C are diagonal, the choice θ2 = 0 yields an explicit
scheme (α can be found without the need to solve a system of equations) and can be
made conditionally stable. Other choices of θ2 lead to an implicit scheme for which
stability properties depend on the choice of W (t).

8.2.4.3 Concluding Remarks on the FEM

The FEM solution process can be summarized as follows:

1. Starting from the problem defined in terms of partial differential equations in the
local form, the weighted integral form is constructed. These are implemented in
the core of the FE programs for most common equations.

2. The type (triangles, rectangles, etc.) and order of finite elements shape functions
to be used are prescribed. The user of FEM software must define these param-
eters. The shape functions, which are often polynomials (see (8.17)), determine
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the accuracy of the calculated variable fields on each element. In a 2D prob-
lem, linear shape functions (polynomial of order one) are typically constructed
from triangular elements with one node at each of the three apexes. Triangu-
lar elements with three additional nodes on the edges can be used to construct
second-order shape functions. Triangular elements are more popular than rect-
angular elements since they are more advantageous to approximate an arbitrary
boundary shape. In a triangular element of a given size, the spatial variations
of the wave field can be more accurately described with second-order shape
functions than with linear ones. As a consequence, the optimal size of the finite
elements normally decreases with the increasing order of the shape functions.
However, increasing the shape function order has a computational cost since it
increases the number of nodes (not necessarily the number of elements), hence
the size of the linear system to solve. The mesh of the domain Ω is constructed
with prescribed constraints such as the average size of the elements. In general
the mesh is not a regular grid like for the finite difference method. By default, a
quite homogeneous mesh is used, e.g. a mesh of triangular elements with similar
size and random orientation. But the mesh can also be heterogeneous: in some
areas where a high precision is required, a finer mesh than in the rest of the do-
main can be used. Meshing of domains with complex shape may be tricky and
the mesh should be optimized to prevent numerical problems during the solution
process. Several commercial programs are devoted to meshing.

3. From the form (8.26), the integral on each element are computed and the terms
of the mass, damping and stiffness matrix are collected.

4. For the chosen time shape functions w(τ), coefficients such as θ1 and θ2

(8.32a,b) in the scheme presented above are calculated.
5. With the scheme presented above, at each time step: (i) the forcing term f̄ (8.32c)

must be updated; (ii) α is calculated by solving the linear system (8.31), and
(iii) the solution and its time derivatives (8.33) are updated.

The numerical parameters (mesh size, parameters of numerical algorithm) must
be chosen such that the results be free of any numerical bias. As for the FDTD com-
putation, the optimal mesh size (compromise between accuracy and computational
cost) can be determined after a convergence study that consists in refining the mesh
until the results converge to a stable solution. Contrarily to the user of most FDTD
codes, the user of a FEM code will be asked to choose the order of the spatial shape
functions. When possible, the implementation should be validated by comparison
of computation outputs with available reference solutions (from validated codes or
analytical solutions).

In practice, applying the FEM involves using a pre-processor, a solver, and a post-
processor. These may be three independent softwares or a single software with three
modules. After the geometry has been defined, the pre-processor builds the system
of equations to be solved. Here the main operation which requires user interaction
is meshing. The solver applies the chosen algorithm which essentially consists in
solving the system of linear equations. Elaborated methods for linear system solving
are implemented in the finite element software packages. The user may choose the
solver best adapted to the type of system at hand (symmetric matrix or not, more or
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less sparse matrix, etc.). With a given mesh, the efficiency (memory requirement,
computation time), the convergence, the stability and the precision depends on the
algorithm for time-domain solving, the choice of the basis functions (space and
time), and the method used to solve the linear system. The post-processor is used to
visualize the results and in some cases compute complementary quantities from the
FEM solution (energy, von Mises stresses, etc.).

8.2.5 Case Study

In this section, we illustrate the implementation of a numerical model on a simple
case representing the interaction of a wave generated by a point source in a medium
representing soft tissue with a medium representing cortical bone (Fig. 8.3). Both
FDTD and FEM methods are suitable to simulate this problem. The implementation
is presented in details for the FDTD approach. Then the specificities of a FEM
implementation are pointed out.

8.2.5.1 Geometrical and Material Configuration

The geometry of the problem is shown in Fig. 8.3. It consists of two linear elastic ho-
mogeneous half-space media separated by a plane interface. The upper medium Ω1

represents soft tissue and the lower one Ω2 represents bone. Medium Ω1 has a fluid-
like behavior in which only longitudinal waves can propagate. Medium Ω2 has a
solid-like behavior in which both longitudinal and shear waves can propagate. Both
media are isotropic. At the interface ∂Ω , the normal displacement (and velocity)
and normal stresses are continuous. The position is specified through the Cartesian
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Fig. 8.3 Geometrical configuration to investigate wave reflection at the soft tissue-bone interface
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Table 8.2 Specific
parameters used for the
implementation of the case
study

Parameter Value

Mass density in Ω1 1.0g/cm3

Acoustic velocity in Ω1 1.5mm/μs
Mass density in Ω1 1.85g/cm3

Compressional velocity in Ω2 4mm/μs
Shear velocity in Ω2 1.8mm/μs
Pulse center frequency 1.5 MHz
Pulse −6 dB bandwidth 92%
Source-interface distance d 4 mm
Source-receiver distance 16 mm

coordinates (x1,x2,x3) with respect to a Cartesian reference frame R(O;x1,x2,x3)
where O is the origin of the space and (x1,x2,x3) is an orthonormal basis of this
space. The x3-axis is chosen downwards and normal to the fluid-solid interface.
Domains Ω1 and Ω2 are defined as the half-spaces x3 < 0 and x3 > 0, respectively.
The plane interface ∂Ω has the equation x3 = 0.

Time coordinate is denoted by t. The fluid and the solid are at rest for t < 0. At
t = 0, a line source parallel to (O;x2), placed in the fluid at a distance d from the
interface, generates a pulsed cylindrical wave. In the plane (O;x1,x3) of interest for
this study, the source appears as a point source S. Due to the nature of the source
and to the geometrical configuration, the transverse waves polarized in the (x1,x2)
plane are not excited. The acoustic response in Ω1 is sought in terms of pressure
amplitudes p(t) at the point receiver R(xR,−d). This source and receiver configura-
tion is typical of the device used in the ultrasonic axial transmission technique for
the evaluation of the cortical shell.

An exact analytical solution in the time-domain exists for this configuration
[50, 51]; the expression of this solution can also be found in [52, 53] where it has
been used to simulate wave reflection on a bone surface. The solution is available
in a semi-analytic form, namely a closed-form analytic Green’s function convolved
with a function describing the source history. This solution can be found on-line
as additional material. The synthetic signals obtained with the latter can serve as
a reference to which computed signals can be compared, and allow an analysis of
the convergence of the numerical solution to the exact solution. For the numerical
implementation described below, the parameters are gathered in Table 8.2.

8.2.5.2 Implementation

The first step in implementing a FDTD computation is to determine the spatial (h)
and temporal (Δ t) discretization steps. This crucial step is however rather subjective,
as it depends on the acceptable error on some arbitrary criteria. The spatial step is
usually chosen first, to corresponds to some number of points per shorter wavelength
involved in the various media, typically ranging from at least ten to several tens. As
can be seen from the results presented further below in Fig. 8.4, spatial step sizes
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Fig. 8.4 Left: Snapshot of the wave field computed with the FDTD method showing the incident,
reflected and transmitted waves (shear and longitudinal). The straight wave fronts are the lateral
waves. Letters S and R denote the positions of the emitter and the receiver, respectively. Right:
synthetic radio frequency signal corresponding to the pressure measured at R. The discontinous
line is the exact solution (analytical formula), the gray and dark lines are the pressure history
calculated with the FDTD method using h = 0.05 mm and h = 0.025 mm, respectively. The first
arriving signal corresponds to the lateral wave front propagating in the fluid medium

h = 0.05 mm and h = 0.025 mm, corresponding respectively to 20 and 40 points per
wavelength at 1.5 MHz in the fluid (that has the smallest velocity), give different re-
sults. A discussion on the different types of wave observed on Fig. 8.4 can be found
in various references [14,52–54]. A practical way to check whether the spatial step is
chosen small enough is to compared the results obtained with this step to the results
obtained with a smaller step (for instance twice smaller): the step size may be con-
sidered correct if both sets of results may be considered within the acceptable error.
Once the spatial step is chosen, the temporal one is derived from the CFL condition
(see Sect. 8.2.3). When an exact analytical solution is available, a direct compari-
son can be made to estimate the errors caused by the numerical scheme. Here, the
comparison with the analytical solution to the case study (see Fig. 8.4) indicates that
h = 0.05 mm and h = 0.025 mm are both satisfactory as far as predicting times of
flight is concerned, but indicates that a step size h = 0.05 mm yields errors on the
order of 25% for the amplitude of the direct and reflected waves, whereas those er-
rors decrease to less than 5% with h = 0.025 mm. On the other hand, h = 0.05 mm
is sufficient to predict the amplitude of the first arriving signal within a few percent.
This example illustrates that the errors are strongly dependent on the phenomena of
interest, and that care must be taken when analyzing results accuracy.

In the present case, for which we used a 2D algorithm based on the Virieux
scheme (see for instance [43]),4 (8.16) holds and indicates that a maximum time step
of about 8.8 ns (resp. 4.4 ns) with cmax = 4 mm/μs is necessary to ensure stability
for h = 0.05 mm (resp. h = 0.025 mm). This corresponds to a sampling frequency
of about 115 MHz (resp. 230 MHz), i.e. about 75 (resp. 150) temporal steps per

4 http://www.simsonic.fr

http://www.simsonic.fr
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period at 1.5 MHz. Note that a large difference between the smallest and the largest
velocity values in the simulation box leads to a large difference between the number
of temporal steps per period and the number of spatial steps per shorter wavelength.
Such a situation always occurs when both soft tissue and bone are present simultane-
ously in a simulation. The ‘imbalance’ between temporal and spatial discretization
that occurs in the case of large contrasts between velocities usually requires a finer
discretization compared to the case of a small velocity fluctuations (such as for soft
tissue alone for instance). It explains why the amplitude of the first arriving sig-
nal (propagating with the velocity cmax = 4 mm/μs) is better predicted than the
amplitude of the direct and reflected wave (propagating at c f luid = 1.5 mm/μs).
This combined with the very large signal bandwidth also explains why a spatial
discretization of 40 steps per shorter wavelength is necessary to predict wave ampli-
tudes within a few percent. Let us mention the possibility to avoid such imbalance
by locally adapting the spatial discretization to each media, but this leads to quite
complex numerical schemes [55].

Once both the spatial and temporal steps are defined, one can describe the simu-
lation box and the source, which are the key input data to be provided by a user to
perform the FDTD calculation. A 15 mm× 20 mm simulation box, was described
by a 300×400 points (resp. 600×800) map at h = 0.05 mm (resp. h = 0.025 mm)
with only two values representing the fluid and the solid media. Material properties
(elasticity constants, mass density) must be associated with each value of the map, to
be used in the computation. Note that one could also provide as many maps as there
are parameters, but this approach is not optimal in term of memory requirement
for the case of two homogeneous media. As the Virieux scheme involves staggered
grids, averaged properties values are usually computed when material properties
are needed at staggered location relatively to the map points on which the map is
defined. Such averaging is required to obtain a correct treatment of the interfaces be-
tween different media in the Virieux scheme [56]. One key advantage of the FDTD
method with the Virieux scheme is that the various media in presence are simply
accounted for by giving a bitmap image of the media, without explicitly stating
boundaries location or type of media in presence (fluid or solid). On the other hand,
complex shapes are defined on a regular grid with the resolution of the grid (‘stair-
case’ effect). The plane interface in the current case is optimum as no ‘staircase’
artifacts are produced. Perfectly matched layers were used on the four boundaries
around the simulation box [44]. The source was defined as a point source by adding
a source term to the discretized lossless version of (8.3) at one point located 4 mm
away from the interface. Such a source term is given as a function of time, sampled
with the temporal time step chosen above.

Once specified the total number of time steps to compute, the simulation may
be started. Two types of results, snapshots or signals, may be recorded during the
computation for later analysis, as discussed in Sect. 8.2.3: Fig. 8.4 shows both the
magnitude of the velocity field computed at time t = 8 μs (derived from the fields
vx and vy) and the pressure as a function of time recorded at location R. Multimedia
movies of this case study can be downloaded on-line as additional material.

While the precise computational cost depends on both the numerical scheme
and its practical implementation, the FDTD computation corresponding to our
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implementation discussed above required approximately 10 MB of RAM and took
on the order of 5 min on a laptop computer for h = 0.05 mm, and 40 MB of RAM and
took on the order of 40 min on a laptop computer for h = 0.025 mm. To further give
orders of magnitude, the equivalent 3D simulation with a 15×15×20 mm3 simula-
tion would take approximately 2 GB of RAM and about one day for h = 0.05 mm,
and 16 GB of RAM and about a couple of weeks for h = 0.025 mm.

A typical FDTD implementation can be summarized as follows:

1. Chose the appropriate spatial and temporal steps. This may be adapted depending
on initial results.

2. Provide maps of the material properties involved in the simulation box.
3. Define sources (or initial conditions).
4. Define results to be recorded: snapshots of field variables at some chosen instants

and/or signals recorded at chosen location.

A complete FDTD implementation of this case study using Simsonic, including
multimedia results and tools to prepare and analyze the input and output files, can
be freely downloaded on-line.5

A FEM implementation of a configuration similar to that sketched in Fig. 8.4
was used in [15]. As opposed to the FDTD Virieux scheme, the latter uses different
formulations of the basic equations for the fluid and solid parts: the acoustic wave
equation (8.6) must be satisfied in medium Ω1 and the elastodynamics wave equa-
tion (8.7) must be satisfied in medium Ω2. As a consequence, the field variables
are the pressure p(x,t) in Ω1 and the displacement u(x, t) in Ω2. At the interface
∂Ω , the continuity between the two media is enforced by requiring that the particle
displacement in Ω2 and the pressure in Ω1 satisfy Euler equation of motion

ρ
∂ 2u3

∂ t2 = − ∂ p
∂x3

, (8.34)

where ρ is the fluid mass density. This implementation of the case study has the ad-
vantage to use an exact representation of the interaction of the acoustic fluid and the
solid at the interface. The situation is slightly different than the FDTD implemen-
tation in which the interface in not defined explicitly: the FDTD numerical scheme
performs an averaging of the fluid and solid properties at the interface. This however
has no consequence on the validity of the computations if the grid is fine enough as
mentioned above (see comparison with exact analytical solution). With the FEM,
the average element size of the meshes in the fluid and solid parts can be differ-
ent to account for the different wavelengths. This may be an advantage to optimize
computation costs. The problem was implemented in Comsol Multiphysics and a
time-domain solver adapted to the formulation was chosen. The FEM implementa-
tion yields the same wave field and synthetic radio-frequency pressure signal at the
receiver than the FDTD implementation.

5 http://www.simsonic.fr

http://www.simsonic.fr
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Another implementation of the FEM method presented in [48] is also relevant
to solve the case study. The formulation uses the same equations as the FEM im-
plementation in [15] but takes advantage of the invariance of the configuration in
direction x1: a 1D spatial Fourier transform is performed for the direction x1 which
introduces the Fourier parameter k1. Then the weak form of the problem equa-
tions are constructed and the spatial discretization is only performed in direction x3,
which is very efficient from a computational viewpoint. A time-domain solver yields
the solution in the k1-x3-time space. Finally an inverse Fourier transform yields
the result in the space-time domain. The two FEM implantations briefly described
here are only two possibilities among several options available in commercial FEM
codes. An introduction to advanced methods to solve wave propagation in elastic
media can be found in [13, 57].

8.3 Literature Review

In this section, we illustrate how numerical approaches have been applied to the
ultrasonic characterization of bone. While the references list has been made as
exhaustive as possible, our objective here is to illustrate the power of numerical
modeling rather than providing a detailed discussion of all studies. In particular,
we focus on the rationale for numerical modeling in various situations, rather than
on results, most of which are discussed in other chapters of this book (see for
example Chaps. 6, 8, 11, and 14). Beside bone characterization, numerical simu-
lations of ultrasound propagation in bone have also been performed to study various
propagation effects such as focusing through bone. The discussion of related publi-
cations ([58, 59] for instance) is out of the scope of this chapter.

8.3.1 Numerical Methods to Interpret QUS Experiments

A first key benefit of numerical modeling based on the FDTD or FEM methods is
the better understanding of complex propagation phenomena that such methods can
involve. In many experimental situations, the very origin of the measured signals has
often remained poorly understood until numerical modeling provided new insights.

8.3.1.1 Cortical Bone

Numerical modeling was first applied to transverse transmission to elucidate prop-
agation paths through human phalanges [60], as part of an experimental study: 2D
FDTD was used to analyze ultrasound pathways through an idealized ring geometry
and identify in the measured signal two contributions from waves traveling through
the medullary canal and the cortical shell. FDTD was also applied to model the axial
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transmission technique on the diaphysis of long bones such as the radius. The first
simulation studies were limited to 2D models in which the bone was simply modeled
by an elastic isotropic plate [3,14]. It was demonstrated that the nature of the first ar-
riving signal (FAS) depends on the cortical thickness to wavelength ratio: for some
range of transmitter–receiver distances, the FAS corresponds to a lateral wave for
thickness larger than the wavelength and to a S0 Lamb wave for thickness less than
a quarter of a wavelength. Three-dimensional (3D) FDTD simulations then supple-
mented these findings by demonstrating that no significant differences exist between
plate models (2D) and tube models (3D) as far as the FAS is concerned [4]. Even
for simple 2D model geometries such as plates, analytical approaches such as Lamb
waves theory cannot always be used to predict experimentally observed phenomena:
for intermediate thicknesses, the FAS results from complex interferences between
different modal contributions, and direct predictions from Lamb wave theory do not
correspond to measured or simulated velocity and attenuation results [17].

The simulations discussed above have been performed on nominal model ge-
ometries, such as plates or tubes. However an important asset of FEM and FDTD
based simulations is the possibility to use individualized geometries, derived from
the measurement of a bone specimen with X-ray computed tomography (CT) tech-
nique or magnetic resonance imaging (MRI). Figure 8.5 shows a 3D cortical bone
volume obtained from an X-ray CT reconstruction and a snapshot taken from a
3D FDTD simulation performed with this volume as input geometry. Such simu-
lations on realistic bone structures confirmed earlier results obtained on idealized
geometries, but in addition provided direct comparisons of experimental and sim-
ulated measurements performed on a same set of samples. Such comparisons are
necessary to validate simulation approaches when the simulations are expected to
provide realistic simulated signals. Another cortical bone site of major interest for
QUS measurements is the femur neck. A 2D simulation study using individualized
femur neck cross-sections geometries and nominal material properties established
that the early arriving signal observed in experiments is associated to the propaga-
tion of a guided wave in the cortical shell [19].

Fig. 8.5 Left: digitized cortical bone geometry derived from X-ray computed tomography.
Right: 3D snapshot obtained from FDTD calculations, illustrating guided wave propagation along
the cortical shell. Reprinted with permission from [21]. Copyright 2007, Acoustical Society of
America
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Besides providing information on the nature of the measured signals in the case
of complex cortical bone geometries, numerical simulations can also be used to
understand the effects of heterogeneities such as gradients of mechanical proper-
ties on the measurements. For instance, both FDTD [4] and FEM [15] simulations
have been performed to derive an equivalent contributing depth to the lateral wave,
observed in the case of thick cortical shells investigated by axial transmission.
Numerical simulations have also been used to interpret signals measured when ultra-
sound propagates across simple model fractures in cortical bone [16, 61]. Resorting
to numerical simulation is necessary even for fractures modeled as simple gaps be-
tween intact cortical parts. More details on the guided wave theory can be found in
Chap. 7 and on propagation in cortical bone in Chap. 13.

8.3.1.2 Trabecular Bone

In trabecular bone, the complexity arises rather from the media than from the type
of wave measured. Most often, measured signals indeed correspond to the con-
tribution of quasi-plane wave either transmitted through or backscattered by the
trabecular structure. Numerical modeling is the sole approach that allows taking into
account the exact geometry of trabecular bone, untractable by analytical approaches.
Figure 8.6 illustrates the propagation of a quasi-plane wave into trabecular bone.
The first study of ultrasound propagation in bone with numerical simulation were
actually 2D FDTD calculations performed on slices of trabecular bone obtained
by X-ray computed micro-tomography [25]. Although these simulations were 2D,
and could therefore not describe the full complexity of three dimensional propaga-
tion in trabecular bone, this first work paved the way for 3D studies to come a few
years later. Using 3D maps of trabecular structures, various phenomena observed
experimentally have been reproduced by FDTD calculations [1], further confirming
the relevance of numerical approaches: in the MHz range, simulated attenuation was

Fig. 8.6 3D snapshot
obtained from FDTD
calculations, illustrating the
propagation of a quasi-plane
wave through trabecular
bone. The trabecular bone
geometry was derived from
high-resolution synchrotron
computed micro-tomography.
Reprinted with permission
from [1]. Copyright 2005,
IOP Publishing Limited
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found to vary linearly with frequency and negative velocity dispersion was observed
in some cases. The observation of two compressional waves, commonly referred to
as the fast and slow waves, was also simulated for appropriate alignments [1, 2].
Numerous FDTD simulations have then been performed to investigate and bet-
ter understand various parameters that influence the measured signals. In [1], the
importance of mode conversion from compressional to shear waves has been em-
phasized by comparing simulations results obtained in solid and fluid bone models.
Such a study cannot be undertaken experimentally, and illustrates a situation where
numerical modeling is the only possible approach. Several numerical studies have
been conducted to better understand the origin and propagation of the fast and slow
waves observed in some situations. Not only are some types of results reachable
only through simulations, such as snapshots of the two waves propagating inside
trabecular bone, but simulations also allow changing and controlling parameters
with a unique flexibility: some bone properties may be changed on a given nu-
merical sample while maintaining other constants, while in experiments with real
bone samples, several samples have to be used to vary the properties, most often
all varying simultaneously. In [62], a condition to observe two non overlapping fast
and slow waves, given by a relationship between the bone volume fraction and the
degree of anisotropy, was proposed based on a large number of simulation results
obtained by controlling the bone volume fraction through numerical erosion proce-
dures. In [63], the authors used FDTD numerical simulations in conjunction with
experimental results to show that the attenuation of the fast wave is higher in the
early state of propagation in trabecular bone. A direct comparison of simulated and
experimental measurements has also been performed in trabecular samples [64,65].
The fact that absorption was not taken into account in the numerical model was as-
sumed to be responsible for the differences in simulated and experimental values,
and used to discuss the relative contributions of absorption and scattering to the total
attenuation.

8.3.2 Parametric Studies

As discussed in the previous section, numerical modeling is a valuable tool to
better understand the nature of the waves propagating in bone. But it is also a fun-
damental tool to determine and understand the bone properties involved in QUS
measurements.

On the one hand, numerical simulations can be used to model and understand the
experimentally observed dependence of QUS measurements on bone properties. For
instance, several simulation studies in cortical bone demonstrated the dependence
of axial transmission measurements on cortical thickness [3–5, 14, 21]. In this case,
simulation approaches have the advantage over experimental approaches that both
nominal geometries and individualized geometries can be studied, and that corti-
cal thickness can be varied while keeping all other parameters constant. Several
numerical studies of the axial transmission technique have also been conducted in
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the context of fracture healing. The first study consisted of 2D FDTD simulations
of wave propagation through models of fracture [16, 61], to help understanding the
interaction of the lateral wave or guided Lamb waves with the fracture site. Based
on an idealized healing process, it was shown that the velocity of the first arriv-
ing signal increased during the various healing stages, but could not reflect changes
in callus geometry [16]. In [61], the effect of a model fracture on the peak ampli-
tude of the measured signal was studied, and results interpreted with the aids of 2D
snapshots from the simulations. Modeling the different healing stages in further 2D
simulations, it was then suggested that the change in signal amplitude with the cal-
lus geometry and elastic properties could potentially be used to monitor the healing
process [66]. With the objective to study the sensitivity of the lateral wave or guided
waves to fracture healing, more realistic models have then been conducted using 3D
FEM [20,67]. Guided waves were shown to be sensitive to material and geometrical
changes that take place during healing [20, 67], and it was suggested that differ-
ent combinations of guided waves could be used to evaluate the healing process at
different stages [20]. It was also shown that the dispersion of guided waves was sig-
nificantly influenced by the irregularity and anisotropy of the bone. This conclusion
was similar to that drawn in [21], where it was shown using 3D FDTD simulations
that modeling the natural variability in bone geometry played a major role in model-
ing physical experiments. These conclusions further illustrate the necessity to resort
to numerical simulations conducted on realistic geometries in order to model real
experiments. Figure 8.7 shows the model geometry used in [67] and gives a typical
example of a FEM mesh. FEM was also used to infer the possible changes in guided
waves behavior due to modification in human mandibles [68]: a single sample was
used, and osteoporotic bones were simulated by reducing the thickness of the corti-
cal bone and changing the density and elastic constants of the trabecular bone.

On the other hand, numerical modeling is also a powerful tool to investigate the
influence of some bone properties independently, whereas experimental approaches

Fig. 8.7 3D FEM mesh used to describe a model of cortical bone with a healing fracture. Reprinted
with permission from [69]. Copyright 2008 IEEE
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usually have to deal with interdependent bone properties. On trabecular bone,
realistic 3D bone structures obtained from X-ray computed micro-tomography have
been used in numerical simulations to elucidate bone properties that influence
QUS measurements. In contrast to experimental approaches, bone properties can
be varied independently from one another. In [1], simulated broadband ultrasonic
attenuation values were shown to correlate strongly with bone volume fraction, for
fixed bone material properties. The sensitivity of broadband attenuation and speed
of sound in response to differences in bone strength was investigated by varying
independently the bone volume fraction and the material elastic properties [70].
In [71], it was concluded based on simulation results that the amount and quality of
bone marrow significantly influence the acoustic properties of trabecular bone, and
consequently suggested that inter-individual variability in the composition of bone
marrow may increase uncertainty in clinical applications. Although these last results
are in contradiction with recent experimental results [72] for yet unexplained rea-
sons, numerical simulations remain a powerful modeling tool to help understanding
experimental results.

8.3.2.1 Sensitivity of Ultrasound to Bone Properties

In addition to help elucidating the bone properties that influence ultrasound mea-
surements, numerical modeling has also been used to quantitatively study the
sensitivity to such properties. As discussed above, numerical modeling is par-
ticularly appropriate for such studies, as several parameters may be controlled
independently from one another. Moreover, processing of the numerical bone struc-
ture can be performed to simulate physiological changes such as decrease in bone
mass. Numerical modeling in this case is not only a surrogate to experimental ap-
proaches but also a unique tool allowing virtual experiments that fundamentally
are not possible in the real world. Using a set of 3D bone structures derived from
X-ray synchrotron micro-tomography, FDTD simulations have been used to study
the sensitivity of ultrasound parameters to several bone properties [46, 73]: various
numerical scenarios of virtual osteoporosis were implemented by data process-
ing algorithms (such as erosion procedures) that modify the bone structure or/and
by changing the bone density and the bone elastic constants. It was shown that
bone alterations caused by variation in the bone volume fraction were predomi-
nant on broadband ultrasonic attenuation and speed of sound, although material and
structural properties also play a role [46]. Numerical modeling is the only way to in-
dependently assess the effects of bone properties on QUS parameters in this case, as
the bone properties in real samples are strongly intercorrelated. In addition, numer-
ical processing allows the investigation of a much larger region in the parameters
space, unaccessible with usually small sets of samples. Similar approaches were
used to study the influence of bone volume fraction and structural anisotropy on the
fast [62, 74] and slow [74] wave propagation.

In cortical bone, the sensitivity of axial transmission QUS measurements to corti-
cal thickness was quantitatively assessed by use of FDTD simulations on both model
geometries and realistic geometries obtained from X-ray computed tomography. Not
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only were the simulations used to assess the sensitivity of QUS measurements to
cortical thickness, but also to better understand cortical thickness estimates derived
from both experimental and simulated measurements [5, 21]. FDTD simulations
have also been used to validate stochastic approaches aimed at identifying the ran-
dom anisotropic elasticity tensor from measurements [75]. In the context of bone
healing, the effect of various stages of fracture healing on the amplitude of 200 KHz
ultrasonic waves propagating in a bone plate across an idealized fracture has been
modeled numerically using 2D FDTD simulations [66].

8.3.3 Models Assessment

While numerical modeling is particularly appropriate, if not the only method, to
solve wave propagation in realistic bone models, it is also a relevant tool to as-
sess propagation models themselves. Such models may assume simplified bone
geometries or new model equations for effective homogenized media. In this con-
text, numerical simulations can be used either to assess and validate alternative
models better suited to analytical description, often associated to deeper physical in-
sights, or to solve wave propagation in simplified models which remain untractable
analytically.

In cortical bone, plate or tube models were extensively studied by use of nu-
merical modeling, as discussed in Sect. 8.3.1.1, and validated as valuable models
for specific situations. The importance of taking into account soft tissue loading
in the modeling of axial transmission has also been demonstrated using numerical
simulations [76, 77]. Propagation in trabecular bone has been modeled numerically
with various bone models based on a simplified description of the propagation
medium. In [78], the trabecular structure was analyzed using 3D X-ray microcom-
puted tomography, and simplified by regularly arranging spherical pores in a solid
bone matrix. Trabecular bone structures have also been numerically generated with
Gaussian random fields having first and second order statistical properties identical
to those experimentally measured, and used to compute attenuation coefficient from
FDTD simulations of through transmission measurements [79].

Numerical modeling was also used to solve wave propagation in effective bone
media, such as described by the Biot’s theory for instance. 2D FDTD computations
based on the Biot’s equation were used to analyze the propagation of the fast and
slow waves in trabecular bone [26, 27]. Two-dimensional FEM was used to solve
wave propagation in trabecular bone described by the anisotropic Biot’s theory im-
mersed in a standard acoustic fluid [28].

8.3.4 Multi-Scale Approaches

Numerical modeling can be performed at several scales, as illustrated in the pre-
vious paragraphs. Moreover, it can also couple results obtained at different scales.
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Many effective properties can be defined at the macroscopic scale, which depend
on microscopic properties. For instance, modeling ultrasound propagation in corti-
cal bone in the MHz range over whole bone samples requires such effective elastic
constants as input parameters. Numerical simulations can actually be used both to
determine some effective constants and/or to compute solutions in models requiring
such effective parameters, by performing simulations at different scales.

FDTD has been used to derive effective anisotropic elastic constants in cortical
bone by simulating through-transmission velocity measurements based on cortical
bone samples described at the microstructural scale, using either modeled [4] or
real [33] geometry to describe the cortical microporosity. Such effective constants
can then be used as input parameters in simulations performed on samples described
macroscopically. FEM simulations performed at different time scales can both pro-
vide macroscopic effective constants and simulate ultrasonic propagation: using
FEM in the static regime with an X-ray based microscopic description of trabecular
bone structure and FEM in the MHz range, several studies compared computed ef-
fective Young’s modulus and computed quantitative ultrasound parameters [80,81].
The two sets of values computed at different scales were then analyzed as for ex-
perimental results. Such numerical studies mimic the corresponding experimental
approaches, but provide a complete control of all the numerous parameters, and
help determining the most relevant properties. In [70], the authors compared simu-
lated QUS parameters obtained using FDTD with macroscopic effective constants
derived from a cellular model.

8.4 Conclusion

Numerical models of quantitative ultrasound experiments are a fantastic source of
knowledge. The calculated model response in various configurations (geometry, ma-
terial properties, emitter–receiver configuration) shed light on the behavior of the
real system. The basic physical processes at work and the sensitivity of ultrasound
to bone properties can be analyzed in details. The introduction of numerical methods
in the field of QUS in the 1990s has increased the possibilities of modeling. Versa-
tile computer codes are available which enable to investigate several configurations
with a moderate effort. The purpose of this chapter was to review the use of numer-
ical modeling in QUS until today and provide the reader with a basic understanding
of the methodology and theory for numerical modeling.

Given the potential of numerical codes and the availability of high-resolution 3D
images of bone structure, there may be a temptation to build very detailed models
using all the available information. In fact the action of modeling does not precisely
consist in building the most faithful image of the real system; modeling rather con-
sists in intelligently choosing the relevant features of the physical experiment to
model, in order to account for and mimic a given phenomenon or set a of phenom-
ena. The first thing to decide may be the level of details to include in the model: a
nominal model must retain only little details otherwise it may not be representative
of most systems; in contrast an individualized model must account for the details
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which make the specificity of the sample at hand. If one specific question is to be
addressed by the model, the best model will probably be one specifically designed
for the aimed purpose, which only accounts for the features that should be relevant;
spurious details can considerably increase the complexity of the model response and
blur the useful information. While choosing the details to include in a model, one
may question the consistency of the modeling: is it meaningful to use a highly pre-
cise geometrical model of one specimen if its mechanical properties are not known
and must be set to nominal values? The features to include in a model should be
carefully selected by the physicist based on a priori knowledge on the problem.
Hopefully the literature review and the list of references in this chapter will help the
reader in this task.

The response of a model may be flawed due to: (i) model assumptions and
(ii) numerical errors. In order for the results to be interpreted on a physical basis, the
numerical errors should be minimized; in practice the main numerical parameters
(mesh size, time step, order of the finite element or finite difference approximations,
etc.) are chosen such that the numerical error estimated in a simple configuration is
below a reasonable threshold. If an analytical solution is available for a problem
simpler but similar to the problem of interest, this can help optimize the choice
of the numerical parameters. Most often, error estimates are not directly available.
However, they can be estimated by comparing results obtained with significantly
different discretization steps: if the difference between results is smaller than the ac-
ceptable error, one may consider the larger discretization steps to be acceptable. In
other words, it is crucial that simulation results be independent of parameters related
to the numerical method, within the acceptable error. While this may not be neces-
sary when a comparison with either analytical or experimental results is available,
it is fundamental that pure simulation results can be assessed in terms of sensitivity
to numerical parameters. So far, such assessments have usually not been performed
in the published works in bone QUS (see [71] as an exception), and should be taken
into account in future works. The QUS problems tackled with numerical techniques
have used exclusively FDTD or FEM methods. In the large majority of the paper
cited, the use of FDTD rather than FEM appears to be essentially explained by the
availability of a software in a laboratory or cultural preference of the authors. As a
matter of facts, for the precision required in QUS applications, both methods can
be used indifferently in most cases. The main issue for the choice between one or
the other method is probably the discretization of the domain: FEM discretization
is intrinsically adapted to complex domain shapes while standard FDTD requires
regular grids. This however has not appeared to be a limitation of FDTD in practical
applications to bone.

Model assumptions are intrinsic to the idealization process and can be estimated
through comparison with experiments. Note that one danger of numerical simulation
is to focus on some phenomena which are observable in the simulations but for
various reasons cannot be observed on real bones due to the intrinsic limitations of
the model. Models should be validated as early as possible in the modeling process.
Typically, one may start comparing the model response with experiments for simple
geometries (e.g. plates or tubes) and known material properties before undertaking
validation on bone.
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The essence of QUS is to obtain indicators of bone status, typically bone strength
for the diagnosis of osteoporosis, or fracture gap properties for the monitoring of
healing. About ten years after the introduction of numerical simulation in QUS, and
the publication of more than fifty papers in the field, one may wonder to which
extent numerical methods have contributed to establish existing QUS methods or
develop new ones. Obviously, there has been a forward leap in our understanding of
the physics of wave propagation in cortical as well as trabecular bone. The depen-
dence on cortical thickness of the type of wave corresponding to the first arriving
signal in the axial transmission configuration is a good example for cortical bone.
The importance of the orientation of the trabecular network on the possibility to
observe both the Biot’s slow and fast waves is a good example in trabecular bone.
One of the reasons why understanding the physics is highly important is because it
helps to formulate a clear, although often complicated, physical explanation to our
measurements. This is required for the penetration of QUS in the clinics since QUS
researchers must be able to provide such explanation. A QUS technique needs to
be sensitive to one or several indicators of bone status. Several authors have used
numerical simulations to try quantifying the sensitivity of ultrasound to some bone
properties. Simulation is especially useful toward this goal since it allows to test
various emitter–receiver configurations and signal processing, parameters on which
the sensitivity is critically dependent. Once the sensitivity to a bone property is es-
tablished based on a model, it is likely that this property may actually be measured
in vivo, provided the model is realistic enough.

QUS indicators of bone status are in most cases numbers which cannot be related
in a simpler manner to physical bone properties. For instance the time of flight and
attenuation measured in a through transmission configuration at the heel or the prox-
imal femur do not give a specific information on the properties of trabecular and
cortical bone (inter-trabecular spacing, thickness, elastic properties, material den-
sity, etc.), although strongly correlated to some of these properties. It is likely that
the in vivo measurement of some properties of trabecular and cortical bone would
yield better indicators of bone status. Because ultrasound propagation in bone is
so complex, it is usually impossible to derive a straightforward one-to-one rela-
tionship between ultrasound signals and bone properties. In a few cases models
have been used to derive such relationships with simplifying assumptions [5,21]. In
cases where several properties have a coupled effect on the signal (bone thickness
and elasticity for instance) it is unlikely that one-to-one relationships can be de-
rived. Instead a model can be incorporated in an inverse problem algorithm [75]. In
the inverse problem approach, the bone parameters to measure may be assimilated
to the model parameters. Then bone properties can be found after the optimization
of model parameters so that the model response matches the experimental response.
For the inverse problem approach, numerical simulation can be useful at two stages:
(i) to design the best ‘forward model’ to be incorporated in the inverse problem al-
gorithm, i.e. with the minimum number of parameters; (ii) if the forward model is so
complex that the synthetic response cannot be calculated with an analytical method,
a numerical method of solution will be used to solve the forward problem in the
optimization process. The sensitivity analyses already conducted by various authors
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pave the way for the design of ‘good’ forward models. With the increasing power
of desktop computers, solving inverse problems based on numerical models will be
a realistic option in a near future.
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Chapter 9
Homogenization Theories and Inverse Problems

Robert P. Gilbert, Ana Vasilic, and Sandra Ilic

Abstract Various approaches are presented for modelling the acoustic response
of cancellous bone to ultrasound interrogation. As the characteristic pore size in
cancellous bone is much smaller than a typical bone sample, there is a clear scale
separation (micro versus macro). Thus, our modelling methods are mainly based
on homogenization techniques and numerical upscaling. First, we consider the so-
called direct problems and present models for both periodically perforated domain
and a domain with random distribution of pores, as well as nonlinear model with
a shear-thinning viscoelastic material emulating the blood-marrow mixture. A nu-
merical procedure is given for the upscaling of a diphasic mixture using different
trabeculae thicknesses and various frequencies for the ultrasound excitation. Finally,
the results of a quite accurate two-dimensional inversion for the Biot parameters are
presented. Further details for these different problems are amply described in the
literature cited in the bibliography.

Keywords Homogenization · Cancellous bone · Inverse problems

9.1 Introduction

Osteoporosis is characterized by a decrease in strength of the bone matrix. Cur-
rently, bone mineral density (BMD) is the gold standard for in vivo assessment of
fracture risk of bones and is measured using X-ray absorptiometric techniques [18].
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However, only 70–80% of the variance of bone strength is accounted for by bone
density. As the brittleness of bone depends on more factors than bone density, bi-
ologists believe that quantitative ultrasound techniques (QUS) could provide an
important new diagnostic tool [28, 30, 60]. Moreover, in contrast to X-ray densit-
ometry, ultrasound does not ionize the tissue, and its implementation is relatively
inexpensive. Since the loss of bone density and the destruction of the bone mi-
crostructure are most evident in osteoporotic cancellous bone, it is natural to
consider the possibility of developing accurate ultrasound models for the insonifica-
tion of cancellous bone. It would be of enormous clinical advantage if an accurate
method could be developed using ultrasound interrogation to determine whether one
had osteoporosis. We have derived various cancellous bone models in other papers
[13–16]. In this chapter we construct the acoustic response equations by consider-
ing a random distribution of pores. In the following sections we construct various
models for the acoustic response of bone to QUS.

9.2 Diphasic Macroscopic Model for Cancellous Bone

Cancellous bone is a poroelastic matrix made up of trabeculae (the elastic matrix)
and blood-marrow (the fluid filled pores). Most of the models of acoustic proper-
ties of cancellous bone are based on different adaptations of Biot’s theory [4–6].
This theory predicts two compressional waves: a fast wave, where the fluid and
solid move in phase, and a slow wave where fluid and solid move out of phase.
In our previous work [25, 26] using homogenization methods we derived the effec-
tive equations in the monophasic time-harmonic case and computed the material
properties coefficients. Gilbert et al. [21, 34] also considered a similar problem of
interaction between an elastic matrix and an incompressible fluid or slightly com-
pressible fluid, filling the pore space. In this section we consider the case when solid
matrix and the fluid filling the pores move out of phase. Original equations of Biot
concentrate on this particular situation and his heuristic modeling assures a kind of
Darcy law for the difference between effective velocities of the solid and fluid part.
Asymptotic modeling of this case was undertaken by Auriault [3], Burridge and
Keller [17], Levy [51], Mikelić [56], Nguetseng [62], Sanchez-Palencia [67] and it
is customary to set dimensionless viscosity for the diphasic problem to be με2 and
then to study the two-scale asymptotic expansion.

We define dimensionless coordinates in terms of characteristic lengths and ref-
erence values of the physical parameters. Let � be the characteristic length of a
microscopic cell; whereas, L is the characteristic length at the macroscopic scale.
When monochromatic insonification of the bone is used, the wave frequency ω is
sufficiently low so that resonance effects are avoided, i.e. the wave length is an order
of magnitude larger that the pore size [21]. Thus, we assume that the wave length
of the acoustic signal, λ , is related to the macroscopic length L by 2πL = λ . The
relation between � and L is given by the small parameter ε , εL = �. In terms of the
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characteristic lengths � and L we introduce the dimension-less coordinates y = X/�,
and x = X/L, where X is taken to be a physical space variable. Then x = εy, and y
is referred to as the fast variable.

9.2.1 Two-Scale Convergence

Let us first introduce the notation we use for periodically perforated medium.

Ω = ]0,L[n,n = 2,3 is an L cell,
Ω ε

s = the solid part of Ω ,

Ω ε
f = the fluid part of Ω ,

Y = ]0,1[n,n = 2,3 is a unit periodicity cell,
Ys = the solid part of Y , and
Y f = Y \Ys = the fluid part of Y ,

and the fluid-solid interface is indicated by Γε := ∂Ω ε
s ∩ ∂Ω ε

f . For a detailed
description of the construction of Ωs and Ω f , please refer to [26].

We consider in the solid part

−ω2ρsuε − div(σ s,ε) = Fρs in Ω ε
s , (9.1)

where the constitutive relations can be written as

σ s,ε
i j = ai jkle(uε)kl , e(uε )i j :=

1
2

(
∂uε

i

∂x j
+

∂uε
j

∂xi

)
,

whereas, in the fluid part we consider the Stokes system

−ω2ρ f uε − div(σ f ,ε) = Fρ f in Ω ε
f , (9.2)

where

σ f ,ε := −pεI + 2iωηεr e(uε )+ iωξ εr divuε I. (9.3)

Here η and ξ are viscosity coefficients of the fluid subject to the following con-
ditions:

η > 0,
ξ
η

> −2
3
. (9.4)

The positive numbers ρs,ρ f are the densities of the mass of the solid and the fluid,
respectively, in the reference state at rest; and c is the velocity of sound. For more
information, we refer to [62].

In (9.3) εr in the viscosity term describes three different regimes: r = 0 is the
monophasic-elastic regime, r = 1 is monophasic-viscoelastic [25, 26], and r = 2
corresponds to diphasic motion of fluid and solid [3, 34]. In this section, we focus
our attention on the diphasic case (r = 2).
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At the interface between fluid and solid parts we have

[uε ] = 0 on Γε (9.5)

as the statement of continuity of displacements. The normal stresses are balanced by

σ s,ε ·ν = σ f ,ε ·ν on Γε (9.6)

At the outer boundary we suppose periodicity, i.e.

{uε , pε} are L−periodic. (9.7)

Under the assumption that the fluid is slightly compressible, the variation of
pressure from the rest state is small and is proportional to −c2ρ f divuε , thus the
expression (9.3) reads

σ f ,ε := c2ρ f divuε I + 2iωηε2 e(uε)+ iωξ ε2 divuε I. (9.8)

The weak formulation which corresponds to (9.1)–(9.7) is given by:
Find uε ∈ H1

per (Ω)n such that

−ω2
∫

Ω

ρε uε(x)φ̄ (x)+ 2iωηε2
∫

Ωε
f

e(uε ) : e(φ̄ )+ iωξ ε2
∫

Ωε
f

divuε divφ̄

+c2ρ f

∫

Ωε
f

divuε divφ̄ +
∫

Ωε
s

A(e(uε)) : e(φ̄ ) =
∫

Ω

Fρεφ̄ , ∀φ ∈ H1
per(Ω)n,

(9.9)

where ·̄ denotes the complex conjugate and

ρε = ρ f χΩε
f
+ ρsχΩε

s
. (9.10)

Here H1
per(Ω)n is taken to be the space of H1(Ω ×Y ) functions which are periodic

on Y .

Theorem 1. For some suitably small ω > 0 and any F ∈ L2(Ω)n, there is a unique
uε ∈ H1

per(Ω) that solves the variational Equation (9.9). Moreover, there exists a
constant C, independent of ε , such that

||uε ||L2(Ω)n ≤C, ||∇uε ||
L2(Ωε

s )n2 ≤C, ||∇uε ||
L2(Ωε

f )
n2 ≤ C

ε
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Note that the real and imaginary parts of (9.9) are not coercive on H1
0 (Ω).

Nevertheless, the sum of the two parts is coercive (see, e.g. [67, Chap. 8], [62]).
Therefore, existence and uniqueness of the solution uε to (9.9) for the above de-
fined ω follows as a direct consequence of the complex variant of the Lax–Milgram
theorem [24, 26].

In order to prove the main convergence results of we need the notion of two-scale
convergence which was introduced in [61] and developed further in [2].

Definition 1. A sequence {wε} ⊂ L2(Ω) is said to two-scale converge to a limit
w ∈ L2(Ω ×Y ) iff for any σ ∈ C∞(Ω ;C∞

per (Y )) (“per” denotes one-periodicity)
one has

lim
ε→0

∫

Ω
wε(x)σ

(
x,

x
ε

)
dx =

∫

Ω

∫

Y
w(x,y)σ(x,y) dy dx.

Lemma 1. From each bounded sequence in L2(Ω) one can extract a subsequence
which two-scale converges to a limit w ∈ L2(Ω ×Y ) [61].

Lemma 2. (i) Let wε and ε∇xwε be bounded sequences in L2(Ω). Then there ex-
ists a function w ∈ L2(Ω ;H1

per (Y )) and a subsequence such that both wε and
ε∇xwε two-scale converge to w and ∇yw, respectively.

(ii) Let wε and ∇xwε be bounded sequences in L2(Ω). Then there exists functions
w ∈ L2(Ω), v ∈ L2(Ω ;H1

per (Y )) and a subsequence such that both wε and
∇xwε two-scale converge to w and ∇xw(x)+ ∇yv(x,y), respectively [2, 61].

If we have two different estimates for gradients in the solid and in the fluid part,
then the classical way to proceed is by extending the deformation from Ω ε

f to Ω and
then passing to the limit ε → 0. It is sufficient to suppose the Lipschitz regularity
for the pore boundaries.

To pass to the two-scale limits, it is convenient to rewrite our equations in terms
of pressure. To this end, we need to extend the pressure field pε (originally defined
only in the fluid part) to the whole Ω ε .

p̃ε =

⎧
⎪⎪⎨
⎪⎪⎩

−c2ρ f divuε (x)+ c2ρ f
|Ω |
∫

Ωε
f

divuε (x)dx , x ∈ Ω ε
f ,

c2ρ f
|Ω |
∫

Ωε
f

divuε(x)dx , x ∈ Ω ε
s .

(9.11)

A priori estimates and sequential compactness properties of two-scale conver-
gence [2] imply that there exist subsequences (not relabeled) such that [21]

uε → u0(x)+ χY f (y)v(x,y) in the two-scale sense, (9.12)

χΩε
s
∇uε → χYs(y)[∇xu0(x)+ ∇yu1(x,y)] in the two-scale sense, (9.13)

εχΩε
f
∇uε → χY f (y)∇yv(x,y) in the two-scale sense, (9.14)

p̃ε → p̃0 in the two-scale sense. (9.15)



234 R.P. Gilbert et al.

In terms of p̃ε , the weak formulation (9.9) becomes: Find uε ∈ H1
per (Ω)n

such that

−ω2
∫

Ω

ρε uε (x)φ̄ (x)+ 2iωηε2
∫

Ωε
f

e(uε) : e(φ̄ )+ iωξ ε2
∫

Ωε
f

divuε divφ̄

+
∫

Ωε
f

p̃ε divφ̄ +
∫

Ωε
s

A(e(uε )) : e(φ̄ ) =
∫

Ω

Fρε φ̄ , ∀φ ∈ H1
per(Ω)n,

(9.16)

By passing to the limit as ε → 0, and choosing appropriate test functions, ϕ(x),
εψ
(
x, x

ε
)

or ζ
(
x, x

ε
)
, it may be shown [21,27] that the variational formulation (9.16)

yields the system:

−ω2ρ
∫

Ω

u0ϕ̄ −ω2
∫

Ω

⎛
⎝
∫

y f

ρ f v

⎞
⎠ ϕ̄ +

∫

Ω

∫

Ys

A(ex(u0)+ ey(u1)) : ex(ϕ̄)

+
∫

Ω

∫

y f

p̃ε divxϕ̄ =
∫

Ω

ρFϕ̄, (9.17)

∫

Ω

∫

Ys

A(ex(u0)+ ey(u1)) : ey(ψ̄)+
∫

Ω

∫

y f

p̃ε divyψ̄ = 0, (9.18)

−ω2
∫

Ω

∫

y f

ρ f (u0 + v)ζ̄ + 2iμω
∫

Ω

∫

y f

ey (v) : ey(ζ̄ )+
∫

Ω

∫

y f

p̃ε divxζ̄ =
∫

Ω

∫

y f

ρ f Fζ̄ ,

(9.19)

for all test functions ϕ ∈ H1
per (Ω)n,ψ ∈ L2(Ω ,H1

per (Y ))n,ζ ∈ L2(Ω ,H1
per (Y ))n,

such that ζ = 0 on Ȳs, divyζ = 0 on Y f , and

{u0,u1,v, p̃0} are L-periodic in x.

Therefore, we have the following:

Lemma 3. The limit functions u0 ∈ H1
per (Ω)n, u1 ∈ L2(Ω ;H1(Ys)/C)n, v ∈ L2

(Ω ;H1
per (Y ))n, p̃0 ∈ L2(Ω ;L2(Y )) satisfy the system (9.17)–(9.19) with v = 0

on Ȳs.

Using the strong equivalence of (9.17), after eliminating the expressions for u1

and v [21, 27], we obtain a pair of equations relating the effective pressure p0 and
displacement u0:
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−ω2ρu0 −ω2 ∑
i, j

eiAi j(ω)
[

∂ p0

∂x j
(x)−ρ f ω2u0

j(x)
]

− divx
{

AHex(u0)
}− divx

{
p0BH}+|Y f |∇x p0 = ρF−ρ f ω2 ∑

i, j
eiAi j(ω)Fj(x),

(9.20)

− |Y f |
c2 p0 = divx

{(|Y f |−ω2A (ω)
)

ρ f u0 +A (ω)
[−ρ f F(x)+ ∇p0(x)

]}

−ρ f C
H : e(u0)−ρ f p0

∫

Ys

divyw0 dy. (9.21)

where

AH
kli j :=

⎛
⎝
∫

Ys

A

(
ei ⊗ e j + e j ⊗ ei

2
+ ey(wi j)

)⎞
⎠

kl

, BH :=
∫

Ys

Aey(w0), (9.22)

Ai j(ω) :=
∫

y f

w j
i (y,ω)dy, C H

i j :=
∫

Ys

divywi j(y)dy. (9.23)

Equations (9.20) and (9.21) determine p0 and u0. Note that the coefficients AH
kli j,

BH , Ai j, and C H
i j may be exactly computed using known bone properties. In the

monophasic case we have done this and recovered a system of equations having
more coefficients than the Biot model; however, the non-Biot coefficients are 10−3

times smaller than the Biot coefficients. This leads one to believe that a Biot-type
model is reasonable; however, homogenization provides a precise way to compute
these coefficients otherwise known, at least partially, in a heuristic manner [25, 26].

9.3 Random Distribution of Pores

Stochastic Two-Scale Homogenization permits us to treat the case of random pore
size distributions. It was developed in [12] and used in modeling a randomly frac-
tured media [11]. Stochastic two-scale convergence was also used for two phase
flows in porous media [9, 10]. Here we assume the media as randomly fissured
with the fissures being statistically homogeneous. Although the underlying stochas-
tic process does not necessarily have to be ergodic we assume it is in this case.
This allows us to obtain an explicit and easier computational auxiliary problem in a
Representative Elementary Volume.

Following Jikov, Kozlov and Oleinik [49], and Bourgeat, Mikelić and Piatnitski
[11] we introduce the ε-problem as follows:
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Let (Ω ,Ξ ,μ) be a probability space, and assume that an n-dimensional, dynam-
ical system T is given on Ω , such that:

1. T (0) = Id on Ω and T (x1 + x2) = T (x1)T (x2) for all x1,x2 ∈ Rn.
2. ∀x ∈ Rn and ∀E ∈ Ξ , μ (T (x)(E)) = μ(E), i.e. μ is an invariant measure for

T .
3. ∀E ∈ Ξ the set {(x,ω) ∈ R

n ×Ω : T (x)ω ∈ E} is an element of the σ -algebra
L ×Ξ on Rn ×Ω , where L is the usual Lebesgue σ -algebra on Rn, i.e. T is a
semi flow.

We suppose that L2(Ω) := L2(Ω ,Ξ ,μ) is separable and the dynamical system
{T (x)} is ergodic. Next, in order to define the fluid part (blood-marrow) and the
solid part (trabeculae), we fix a set F ∈ Ξ such that μ(F ) > 0 and μ(Ω \F ) > 0.
We define a random pore structure F(ω) ⊂ Rn,ω ∈ Ω obtained from F by setting

F(ω) = {x ∈ R
n : T (x)ω ∈ F} (9.24)

and assuming that F(ω) is open and connected for almost all ω ∈ Ω . The random
skeleton (trabeculae) is then constructed by setting

M := Ω \F , M(ω) = R
n \F(ω) and Mε (ω) =

{
x ∈ R

n : ε−1x ∈ M(ω)
}

.
(9.25)

Now let G be a smooth bounded domain in Rn and after having chosen our random
structure in R

n, we set

Gε
1 := {x ∈ G : dist(x, ∂G) ≥ ε} ,

and introduce the random pore system by Gε
f (ω) = G\Mε(ω)∩Gε

1, and Gε
s (ω) =

G\Gε
f (ω) is then the random skeletal system in the domain G ⊂ Rn.

The equations of motion may now be written as

ρs∂ 2
t uε −div(Ae(uε )) = f ρs in Gε

s (ω)× (0,T ) (9.26)

ρ f ∂ 2
t uε −div(−pε I+ 2μεre(∂tu)) = f ρ f in Gε

f (ω)× (0,T) (9.27)

[uε ] = 0 on ∂Gε
s ∩Gε

f , σ s
(
T
(

x
ε
)

ω
) ·ν = σ f

(
T
(

x
ε
)

ω
) ·ν (9.28)

where ν is the outer normal vector, e(·) = 1/2(∇ ·+∇T ·) and [·] represents the jump
of the function across the boundary. In (9.27), εr in the viscosity term describes
three different regimes, r = 0 is the monophasic-elastic regime, r = 1 is monophasic-
viscoelastic and r = 2 corresponds to diphasic motion of fluid and solid [3, 34].

The variational formulation, for almost any realization, which corresponds to
(9.26)–(9.28) is given by:

Find uε ∈ H1(0,T ;H1(G)n) with
d2uε

dt2 ∈ L2(0,T ;L2(G)n) such that
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d2

dt2

∫

G×Ω

ρεuε (t)ϕ dxdμ +
d
dt

∫

Gε
f ×Ω

2μe(uε(t)) : e(ϕ)dxdμ

+
∫

Gε
s×Ω

Ae(uε(t)) : e(ϕ)dxdμ +
∫

Gε
f ×Ω

c2ρ f divuε divϕ dxdμ

=
∫

G×Ω

ρε F ·ϕ dxdμ , ∀ϕ ∈ H1(G×Ω)n, (a.e.) in ]0,T [, (9.29)

where

ρε = ρ f χGε
f
+ ρsχGε

s
. (9.30)

Using argumentation similar to that in [34] it is easy to show that by setting ϕ = ∂tu
in the variational formulation we get the estimates

∥∥∂tuε∥∥
L∞
(

0,T ;L2 (G)n
) ≤C

∥∥F∥∥L2(]0,T [×G)n = C(F), (9.31)

∥∥e(uε)
∥∥

L∞
(

0,T ;L2 (Gε
s )n2
) ≤C(F), (9.32)

∥∥e(∂tuε )
∥∥

L2
(

0,T ;L2 (Gε
f )

n2
) ≤C(F). (9.33)

9.3.1 Stochastic Two-Scale Convergence

In order to discuss the homogenization of the elliptic operator portion of our system,
we first must introduce some preliminary concepts. We recall that a vector field
f = < f1, f2, . . . , fn>, fi ∈ L2

loc(R
n) is called vortex free in Rn if

∫

Rn

(
fi

∂ φ
∂ x j

− f j
∂ φ
∂ xi

)
dx = 0, ∀φ ∈C∞

0 (Rn).

It is well-known that any vortex-free field may be expressed as a potential. A vector
field is said to be solenoidal in Rn if

∫

Rn

fi
∂ φ
∂ xi

dx = 0, ∀φ ∈C∞
0 (Rn).

In a random setting we shall refer to a vector field f ∈ L2(Ω) := (L2(Ω))n as poten-
tial (solenoidal) if almost all of its realizations f(T (x)ω) are potential (solenoidal)
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in R
n. It is known that the convergence in L2(Ω) implies the convergence of almost

all realizations in L2
loc(R

n) [49]. In the random setting we use the following spaces:

V 2
pot(Ω) =

{
f ∈ L2

pot(Ω),E{f} = 0
}

, (9.34)

V 2
sol(Ω) =

{
f ∈ L2

sol(Ω),E{f} = 0
}

, (9.35)

where L2
pot(Ω), respectively L2

sol(Ω), is the set of all f ∈ (L2(Ω))n such that a.a.
realizations f(T (x)ω) are potential, respectively solenoidal, in Rn. The spaces of
potential and solenoidal vector fields L2

pot(Ω) and L2
sol(Ω) respectively, form closed

sets in L2(Ω). Here E{f} means the integral of f with respect to the probability
distribution of the random variable x. Moreover, we have

Lemma 4 (Weyl’s Decomposition [49]). The following orthogonal decomposi-
tions are valid:

L2(Ω) = V 2
pot(Ω) ⊕ V 2

sol(Ω) ⊕ R

L2(Ω) = V 2
pot(Ω) ⊕ L2

sol(Ω).

We consider a random-coefficient matrix A (ω) := [ai j(ω)] defined in Ω , where
ai j ∈ l∞(Ω) and satisfy the ellipticity condition

ai j(ω)ξiξ j ≥ c1|ξ |2, c1 > 0, for a.a. ω ∈ Ω .

In this work we are concerned with homogenization of elliptic operators having the
realizations A (x) := A (T (x)ω). After [49] we define the homogenized matrix A 0

as follows: for each ξ ∈ Rn consider the problem

〈
φ ·A (ξ + v)

〉
= 0, ∀φ ∈ V 2

pot; v ∈ V 2
pot, (9.36)

which is equivalent to

v ∈ V 2
pot, A (ξ + v) ∈ L2

sol. (9.37)

It is obvious that for a typical realization (9.37) is an elliptic equation in Rn, i.e.

div (A (x)(ξ + ∇u)) = 0,

where u(x) is the potential function for the vector field v = v(T (x)ω) and A (x) =
A(T (x)ω) . It is natural then to define the homogenized matrix A as

A 0ξ :=
〈
A (ξ + v)

〉
, (9.38)

where v is a solution of (9.36). It is easy to show that if A is elliptic then A 0 is
elliptic as well. See Chap. 7 in [49] for further details.
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In order to prove the main convergence results of this paper we use the notion
of stochastic two-scale convergence in the mean which was introduced in [12] and
developed further in [11, 49]. We say that an element ψ ∈ L2(G×Ω) is admissible
if the function

ψT : (x,ω) → ψ(x,T (x)ω), (x,ω) ∈ G×Ω , (9.39)

defines an element of L2(G×Ω).

Definition 2. The sequence {wε} ⊂ L2(G×Ω) is said to converge stochastically
two-scale in the mean (s.2-s.m.) to a limit w ∈ L2(G×Ω) iff for any admissible
ψ ∈ L2(G×Ω) we have

lim
ε→0

∫

G×Ω

wε (x,ω)ψ
(

x,T
( x

ε

))
dxdμ =

∫

G×Ω

w(x,ω)ψ(x,ω) dxdμ .

The following Lemma is a variant of one found in Bourgeat–Mikelić–Wright [12]

Lemma 5. Let {uε} ∈ H1(G) be such a sequence that

{ ‖uε‖L2(G) ≤C,

‖∇uε‖L2(G(ω)) ≤C,
(9.40)

Then there exists functions u0 ∈ H1(G), u1 ∈ L2(G,H1(Ω)n), such that up to a
subsequence,

uε s.2−s.m−→ u0(x,t), (9.41)

∇uε s.2−s.m−→ ∇xu0(x,t)+ ∇ω u1(x,ω , t). (9.42)

We first notice that our estimates satisfy the conditions of the above lemma, so
we may pass to the limit as ε → 0 in the variational formulation (9.29). Now, if we
assume that ϕ ∈C∞(G)n,ψ(x,T ( x

ε )ω)∈C∞ (G×Ω), and let ρ̄ = |G f |ρ f + |Gm|ρs,
we have the following limits:

∫

G×Ω
ρε d2

dt2 uε
(

ϕ(x)+ εψ(x,T
( x

ε

)
ω)
)

dxdμ →
∫

G×Ω
ρ̄

∂ 2

∂ t2 u0(x, t)ϕ(x)dxdμ ,

2μ
∫

G×Ω
χGε

f
e(∂tuε) : e

(
ϕ(x)+ εψ(x,T

( x
ε

)
(ω)
)

dxdμ

→ 2μ
∫

G×Ω

χF (ω)
[
ex(∂tu0) + eω

(
∂tu1)] : [ex(ϕ) + eω (ψ(x,ω))]dxdμ ,
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∫

G×Ω

χGε
s
Ae(uε(t)) : e

(
ϕ(x)+ εψ

(
x,T
( x

ε

)
(ω)
))

→
∫

G×Ω

χM (ω)A
(
ex(u0)+ eω(u1)

)
: (ex(ϕ)+ eω(ψ(x,ω))) ,

c2ρ f

∫

G×Ω

χGε
f
divuε

(
div
(

ϕ(x)+ εψ
(

x,T
( x

ε

)
(ω)
)))

→ c2ρ f

∫

G×Ω

χF (ω)
(
divu0 + divu1)( divx ϕ + divω ψ) ,

∫

G×Ω

ρε F
(

ϕ + εψ
(

x,T
( x

ε

)
(ω)
))

→
∫

G

ρ̄Fϕ(x)dx.

The stochastic two-scale convergence then leads to the following problem: Find

u0 ∈ H3
(

0,T ;L2 (G × Ω)n ∩ H2(0,T ;H1(G × Ω)n) and u1 ∈ H2(0,T ;L2(G ×
Ω ;H1(G×Ω)/R)n), such that

d2

dt2

∫

G×Ω

ρ̄u0(t)ϕ dxdμ + c2ρ f |F |
∫

G

divxu0(t) divxϕ dxdμ

+c2ρ f

∫

G×Ω

χF divωu1(t) divxϕ dxdμ

+2μ
∫

G×Ω

χF

(
ex

(
∂u0

∂ t
(t)
)

+ eω

(
∂u1

∂ t
(t)
))

: ex(ϕ)dxdμ

+
∫

G×Ω

χM A
(
ex(u0(t))+ eω(u1(t))

)
: ex(ϕ)dxdμ

=
∫

G×Ω

ρ̄F(t)ϕ dxdμ , ∀ϕ ∈ H1(G)n, t > 0, (9.43)

2μ
∫

G×Ω

χF

(
ex

(
∂u0

∂ t
(t)
)

+ eω

(
∂u0

∂ t
(t)
))

: eω(ψ)dxdμ

+
∫

G×Ω

χM A
(
ex(u0(t))+ eω(u1(t))

)
: eω(ψ)dxdμ

+c2ρ f

∫

G

divxu0

⎛
⎝
∫

F

divωψ

⎞
⎠ dxdμ

+c2ρ f

∫

G×Ω

χF divω u1 divωψ dμ dx = 0, ∀ψ ∈ L2(0,T ;H1(Ω)n). (9.44)
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u0(0) = ∂tu0(0) = 0, u1(0) = 0. (9.45)

To show uniqueness it is sufficient to prove that for F = 0 we have only the trivial
solution u0 = 0,u1 = 0. This is obtained by taking ϕ = ∂tu0, and ψ = ∂tu1 as test
functions in (9.43), (9.44) and adding the two equations together [37].

To eliminate u1 from the effective equations, we construct a special form ansatz,
namely

u1(x,ω , t) = ∑
i, j

{
Ai j(ω)

(
ex(u0)

)
i j (x,t)+

∫ t

0
Bi j(ω , t − τ)

(
ex(u0)

)
i j (x,τ)dτ

}

(9.46)
Then

∂tu1 = ∑
i, j

{
Ai j(y)

(
ex(∂tu0)

)
i j (x,t)+ Bi j(ω ,0)

(
ex(u0)

)
i j (x, t)

−
∫ t

0
∂τ Bi j(ω ,t − τ)

(
ex(u0)

)
i j (x,τ)dτ

}
.

Now we substitute the above u1(x,ω ,t) and ∂tu1 into (9.44) and obtain the fol-
lowing auxiliary problems [37]:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∫

G

χF

(
ei ⊗ e j + e j ⊗ ei

2
+ eω

(
Ai j)
)

: eω(ψ) = 0, ∀ψ ∈ H1(Ω)n,

Ai j ∈ H1(F )n.

(9.47)

In M , Ai j is described by

⎧
⎪⎪⎨
⎪⎪⎩

divω

(
A

(
ei ⊗ e j + e j ⊗ ei

2
+ eω(Ai j)

))
= 0 in M ,

Ai j
∣∣
∂M \∂Ω = Ai j

∣∣
∂F\∂Ω , Ai j ∈ H1(M )n.

While the initial values for the kernel Bi j are computed from

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2μ
∫

F

eω (Bi j(0)) : eω(ψ)

+c2ρ f

∫

F

(
divωAi j + δi j

)
divωψ = 0, ∀ψ ∈ H1(Ω),

Bi j(0) ∈ H1(Ω).

(9.48)
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We rewrite (9.48) in the strong equivalent form;

⎧
⎨
⎩

−2μΔωBi j(0) = c2ρ f ∇ω divωAi j ,

(
2μeω(Bi j(0))+ c2ρ f ( divωAi j + δi j)I

) ·ν = 0 on ∂F \ ∂M .

(9.49)

We now can construct the kernel function for Bi j from

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2μ
∫

F

eω

(
∂Bi j

∂ t

)
: eω(ψ)+

∫

M

Aeω
(
Bi j) : eω(ψ)

+c2ρ f

∫

F

divω Bi j divωψ = 0, ∀ψ ∈ H1(Ω),

(9.50)

where Bi j(0) is given in F by (9.49). Now, (9.43) becomes

ρ̄
∂ 2u0

∂ t2 − divx

{
A slcoex

(
∂tu0(x,t)

)
+Bslcoex

(
u0(x, t)

)

+
t∫

0

C slco(t − τ)ex
(
u0(x,τ)

)
dτ

}
= ρ̄F(x, t) (9.51)

u0(0) = 0, ∂tu0(0) = 0. (9.52)

where the effective coefficients tensors are given by

A slco
i jkl := 2μ

∫

Ω

χF

(
ei ⊗ e j + e j ⊗ ei

2
+ eω

(
Ai j)

kl

)
dμ ,

Bslco
i jkl :=

∫

Ω

χM

(
A

(
ei ⊗ e j + e j ⊗ ei

2
+ eω

(
Ai j)
))

kl
dμ

+
∫

Ω

χF

(
2μ
(
eω(Bi j(Ω ,0))

)
kl + c2ρ

(
divωAi j + δi j

)
δkl

)
dμ ,

C slco
i jkl (t) :=

∫

F

(
2μ
(

eω

(
∂Bi j

∂ t

))

kl
+ c2ρ f divωBi jδi jδkl

)
(ω , t)dμ

+
∫

M

(
Aeω
(
Bi j))

kl
(ω ,t)dμ .

Proving uniqueness of the solution for (9.51)–(9.52) is reduced to proving that
the effective tensor composed of the Laplace transforms γA slco +Bslco + Ĉ slco is
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positive definite. Establishing the required positive definiteness is along the same
lines as in the proof of Lemma 11 in [34].

In summary, we derived an effective model for acoustic wave propagation in
solid-fluid composite with microstructure. The microstructural geometry was mod-
eled as a realization of a stationary random field with built-in scale separation.
Application of the stochastic two-scale convergence in the mean yields a two-
velocity effective system coupling the leading term in the asymptotics u0 with a
corrector u1. We introduced an ansatz for the corrector that enables its elimination
from the system and reduces the two-velocity system to a smaller system of effective
equations for the leading term alone. The effective equations model a single phase,
uniform viscoelastic medium with long time history dependence.

9.4 Blood-Marrow Mixture as a Non-Newtonian Fluid

In the Biot model the pore space is filled by a single-viscosity fluid, whereas the
fluid filling the pores in actual bone consists of a blood-marrow mixture, which is
better modeled as a complex polymer. This suggests that, for the low frequency case
(ω < 100 KHz) a shear thinning non-Newtonian fluid modeling the blood-marrow
mixture should lead to a more accurate results [65,68,71]. As the Biot model really
comes from mixture theory, it might be expected that a simple two-scale homog-
enization, including the complex nature of the blood-marrow mixture, should give
more physically accurate coefficients. For low frequency ultrasound (ω < 100 KHz)
marrow significantly decreases ultrasound velocity but increases attenuation, atten-
uation slope and backscatter when compared with defatted bone [59]. Moreover,
the impact of marrow on QUS measurements is greater at lower bone mineral den-
sity (BMD). A quantitative acoustic model must take into account that cancellous
bone is mostly blood and marrow. In this section cancellous bone is modeled as a
periodic two-phase material consisting of a porous viscoelastic matrix (trabeculae)
filled with a non-Newtonian fluid (marrow).

We assume that the solid phase (trabeculae) is a Kelvin-Voight viscoelastic ma-
terial with the constitutive equation

σ s,ε = Ae(uε)+ Be(vε), e(uε )i j :=
1
2

(
∂uε

i

∂x j
+

∂uε
j

∂xi

)
, (9.53)

where vε denotes velocity, uε =
∫ t

0 vε(·,τ)dτ is the displacement, and σ s,ε is the
stress tensor. The equations of motion in the solid part are then given by

ρs∂tvε −div(Ae(uε)+ Be(vε)) = ρsF (9.54)

in Ω ε
s ×]0,T [. Here F is the mass density of the external fore (e.g. gravity) and we

assume that F is a constant vector.
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In the fluid part, we model the blood marrow mixture as a non-Newtonian shear
thinning fluid [65,68,71]. To this end, we use Carreau law, which takes into account
that polymers show a finite nonzero constant Newtonian viscosity at very low shear
rates [1],

ηr (e(u̇)) = ηr (e(u̇)) := (η0 −η∞)
(
1 + λ |e(u̇)|2) r

2−1 + η∞ (9.55)

1 < r < 2, η0 > η∞ ≥ 0, λ > 0. (9.56)

The parameter η∞ is usually very small. Therefore, we set η∞ = 0 and use the
so-called Bird–Carreau law. It should be noted that for η∞ > 0, the term containing
η∞ yields a standard linear Navier–Stokes type constitutive equation. Because the
first term in (9.55) is sub-linear, the second term would dominate with the resulting
case being very similar to the linear theory. In particular, available a priori estimates
would be L2-based, rather than Lr-based. The case η∞ = 0 is thus more difficult and
mathematically more interesting.

By taking v = u̇ and making the standard small compressibility approximation
we remove the pressure from the system [21]. Now the equations in the fluid part
become

ρ f ∂tvε −div(σ f ,ε) = ρ f F (9.57)

in Ω ε
f ×]0,T [, where

σ f ,ε := c2ρ f divuε I + 2μηr (e(vε))e(vε). (9.58)

The transition conditions between fluid and solid parts are given by the continuity
of displacement

[uε ] = 0 on Γε×]0,T [, (9.59)

where [·] indicates the jump across the boundary, and the continuity of the contact
force

σ s,ε ·ν = σ f ,ε ·ν on Γε×]0,T [, (9.60)

where Γε denotes the boundary between fluid and solid. At the exterior boundary we
impose zero boundary conditions for uε and vε .

The initial conditions are

uε(0,x) = 0, in Ω
vε(0,x) = v0, in Ω . (9.61)

To write the weak formulation of the system (9.53)–(9.61), it is convenient to
introduce θ ε – the characteristic function of Ω ε

s . Note that θ ε(x) = θ ( x
ε ) and θ (y)

is the characteristic function of the solid part of the unit cell (periodically extended
to the whole space). Now, we can define the composite density ρε and composite
stress as

ρε = ρsθ ε + ρ f (1−θ ε) (9.62)
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σε = σ s,ε θ ε + σ f ,ε(1−θ ε) (9.63)

In the following we shall also use the notation

σε = T ε(e(vε)),

where

T ε (φ )
(

x,
x
ε
,t
)

= θ ε A

(∫ t

0
φ
)

+ θ εBφ

+(1−θ ε)c2ρ f tr

(∫ t

0
φ
)

I +(1−θ ε)2μηr(φ )φ (9.64)

Also, define

T 0 (φ )(x,y, t) = θ (y)A
(∫ t

0
φ
)

+ θ (y)Bφ

+(1−θ (y))c2ρ f tr

(∫ t

0
φ
)

I +(1−θ (y))2μηr(φ )φ (9.65)

for each smooth, symmetric matrix function φ (x,y,t). Here, tr φ denotes trace of the
matrix φ . Multiplying (9.54), (9.57) by a smooth test function φ , equal to zero on
∂Ω and equal to zero for t = T , formally integrating by parts and using bound-
ary and interface conditions we can write the weak formulation of the problem
(9.53)–(9.61):

−
∫

Ω

ρε v0 ·φ (x,0)dx−
∫ T

0

∫

Ω
ρε vε ·∂tφdxdt +

∫ T

0

∫

Ω
σε : e(φ )dxdt =

∫ T

0

∫

Ω
ρε F ·φ ,

(9.66)

for each φ ∈C∞(]0,T [,C∞
0 (Ω)n) such that φ(T,x) = 0.

We assume that for each ε > 0, the problem (9.66) has a finite energy weak
solution satisfying vε ∈ L∞(0,T ;L2(Ω)n), uε ∈ L∞(0,T ;L2(Ω)n), e(vε) ∈ Lr(0,T ;
Lr(Ω)n), e(uε) ∈ L∞(0,T ;Lr(Ω)n), where r is the constant in the power or Carreau
law. Moreover, in Ωs we have e(vε)∈ L2(0,T ;L2(Ωs)n), e(uε )∈ L∞(0,T ;L2(Ωs)n).
These assumptions are reasonable and the following theorem shows that the above
inclusions follow naturally from energy estimates. Hence, the existence of the solu-
tion can be established using an approximation procedure, the energy estimates and
monotonicity of the principal part of the operator of the problem.

Theorem 2. The finite energy weak solutions are bounded uniformly in ε , i.e.

‖ uε ‖L∞([0,T ],L2(Ω)n) ≤C, ‖ vε ‖L∞([0,T),L2(Ω)n)≤C,

‖ e(uε) ‖L∞(0,T ;Lr(Ω)n) ≤C, ‖ e(vε) ‖Lr(0,T ;Lr(Ω)n)≤C,
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‖ e(uε ) ‖L∞(0,T ;L2(Ωε
s )n) ≤C, ‖ e(vε) ‖L2(0,T ;L2(Ωs)n)≤C,

‖ divuε ‖L∞(0,T ;L2(Ω)n) ≤C, ‖ ρε ∂tvε ‖Lr(0,T ;W−1,r(Ω)n))≤C,

‖ σε ‖Lr(0,T ;Lr(Ω)n×n))≤C,

where C denotes a generic constant independent of ε (but possibly dependent on T ,
Ω , ellipticity constants for the tensors A, B, viscosity of the fluid, parameters η0,λ
in the Carreau law, and also on ρs and ρ f ). The number r is a power in Carreau law.

A priori estimates in Theorem 2 and sequential compactness properties of two-
scale convergence imply that for almost all t ∈ [0,T ] there exist subsequences
vε , σε (not relabeled), and functions v ∈ Lr([0,T ];W 1,r(Ω)n), w ∈ Lr([0,T ];
Lr(Ω ,W 1,r

per (Y )/R)n), and σ0 ∈ Lr([0,T ];Lr(Ω ×Y/R)n×n), such that

vε → v(t,x) in the two-scale sense, (9.67)

e(vε) → ex(v)(t,x)+ ey(w)(t,x,y) in the two-scale sense, (9.68)

σε → σ0 in the two-scale sense. (9.69)

Next, we pass to the limit as ε → 0 in (9.66) using a generic test function φ (x, t).
Let

ρ =
∫

Y
(ρsθ (y)+ ρ f (1−θ (y)))dy. (9.70)

Noting the well known fact that ρε → ρ weak-� in L∞(Ω) allows us to pass to the
limit in the first term in the left hand side of (9.66), and also in the right hand side.
To pass to the limit in the second term in the left hand side, we use Lemma due to
Lions [52], which yields ρε vε → ρv in the sense of distributions on (0,T )×Ω . In
the term containing σε we use the fact that two-scale convergence σε → σ0 implies
weak convergence of σε to

∫
Y σ0(x,y,t)dy [2,61,79]. Combining the above results

we obtain

−
∫

Ω

ρv0 ·φ(x,0)dx−
∫ T

0

∫

Ω
ρv ·∂tφdxdt +

∫ T

0

∫

Ω

(∫
Y

σ0(x,y, t)dy

)
: e(φ)dxdt

=
∫ T

0

∫

Ω
ρF ·φ , (9.71)

which is a weak formulation of

ρ̄∂tv− divx

∫

Y
σ0(x,y,t)dy = ρ̄F, (9.72)

together with the initial condition v(x,0) = v0.
Next we take φ ε(x,t) = εφ (x, x

ε ,t) as a test function in the (9.66). Passing to the
limit as ε → 0 yields
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0 =
∫

Y
σ0 : e(φ(y,t))dy = −

∫

Y
divyσ0 ·φ(y, t)dy, ∀φ (y, t), (9.73)

which is a weak formulation of the equation

divyσ0(x,y,t) = 0. (9.74)

To obtain a closed-form effective system from equations (9.72), (9.74) we should
specify an effective constitutive equation, that is, describe the dependence of the
limiting stress tensor σ0 on the gradients of v and w. First, we prove a lemma that
essentially provides monotonicity of the operators associated with σε .

Lemma 6. For each fixed τ ∈ (0,T ), let ξτ ∈C∞([0,T ]) be such that

(i) dtξτ ≤ 0,
(ii) ξτ(t) = 1 for t ∈ [0,τ], and ξτ(T ) = 0.

Then, for each pair of symmetric matrices φ ,ψ ∈C∞(Ω ×Y × [0,T ])n×n, we have

∫ T

0

∫

Ω
(T ε(φ )−T ε(ψ)) : (φ −ψ)ξτ dxdt ≥ 0 (9.75)

where T ε is defined by (9.64).

One of the key ingredients in proving the above lemma is the fact that the non-
linear terms in the stress can be expressed in terms of convex potential. We have

ηr(|φ |)φ = ∇φ F(|φ |),

for each smooth symmetric matrix function φ , where

F(s) =
1

rλ
(η0 −η∞)(1 + λ s2)r/2 +

1
2

η∞s2.

Then F(|φ |) is a convex function of φ [36].
Lemma 6 enables us to use classical Minty-Browder monotonicity argument to

obtain the closed form of the effective constitutive equations. Namely, we prove that

Theorem 3. The effective stress satisfies

σ0 = T 0(ex(v)+ ey(w)),

where T 0 is given by (9.65).

It should be noted that the proof of Theorem 3 is not straight-forward, due to the
presence of inertial terms in constitutive equations. For the details, please refer to
[36, 73].
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Now we can specify the effective equations. Combining Theorem 3 with (9.72),
(9.74) we obtain

ρ∂tv−div
∫

Y
T 0(ex(v)+ ey(w))dy = ρF, (9.76)

divy
(
T 0(ex(v)+ ey(w))

)
= 0, (9.77)

where T 0 is given by (9.65).
The effective constitutive equations provide an explicit dependence of the

effective stress on the sum e(v) + ey(w). The equations are of the two-velocity
type, that is the equation for the effective velocity v is coupled to the equation for
the corrector velocity w. The first equation governs the evolution of v, while the
second is the corrector equation for w (also an evolution equation, but of a different
type [36]). Elimination of the corrector term in two-scale non-linear systems is an
open problem of significant interest. This problem arises not only for acoustic equa-
tions, but also for other types of homogenization problems (e.g. in plasticity and
for non-Newtonian flows). The initial conditions for (9.76) are v(x,0) = v0 and the
natural condition u(x,0) = 0, where u =

∫ t
0 v(τ, ·)dτ is the effective displacement.

It seems that the effective equations describe a single phase non-linear viscoelastic
material, but this fact is a bit concealed by the implicit structure of these equations.

9.5 Numerical Upscaling

Multiscale FEM belongs to the group of homogenization methods applicable only
in the case of statistically uniform materials [28, 57, 58, 72, 75–77]. For this kind
of materials, it is typical that they possess a representative volume element (RVE)
whose analysis yields the effective material parameters. However, there is a limiting
condition; namely, the ratio of the characteristic lengths of RVE and the simulated
body has to tend to zero. This is from where the usual terminology macro- and
micro- scale is derived. As both scales are analyzed simultaneously, the standard
notation distinguishes between quantities related to the different scales by introduc-
ing an overbar symbol. Thus position vector, displacements vector, strain tensor,
stress tensor, and potential respectively are denoted by

x̄, ū, ē, σ̄ , ψ̄ = ψ̄ (ē, x̄) at the macrocontinuum level (9.78)

x,u,e,σ ,ψ = ψ (e,x) at the microcontinuum level (9.79)

In the recent works of Ilic, Hackl, Gilbert [45, 46] a multiscale FEM is used to
model acoustic properties of cancellous bone. While in multiscale FEM it is usual
that the RVE contains a sufficiently large number of cells in order to obtain an
effective average, in this work we use instead a single element in which we may
vary the thickness and nature of the trabeculae. It is assumed that the solid frame
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Real microstructure of the cancellous bone

Solid phase
a

d

b

2

3

1 2

3

1

Fluid phase

Complete RVE

Fig. 9.1 Real bone microstructure and corresponding RVE

of the cancellous bone consisted of shell elements, see Fig. 9.1. Moreover, to obtain
a measure of non-periodicity we arbitrarily rotate the RVE at each point, as this
destroys the periodic matching of boundary conditions.

The method is based on the principle of volume averaging, leading to the defini-
tion of the macrostress tensor in the form

σ̄ =
1
V

∫

B

σ dV (9.80)

where the integration is carried out over a suitable RVE, denoted by B, with the
volume V. The well-posedness of the problem on the microscale still requires the
equality of macrowork with the volume average of microwork

σ̄ : ē =
1
V

∫

B

σ : edV (9.81)

which is known as Hill–Mandel macrohomogeneity condition [40–42,45,54,55,70].
Expression (9.81) is satisfied by three types of boundary conditions at the
microlevel: i.e. static, kinematic and periodic boundary conditions. The microde-
formation is assumed to be dependent on the macrostrain tensor ē and on the
microfluctuations ũ such that u = ēx + ũ. This separation of scales leads to the
decomposition of the strain tensor into the mean part and the micro-fluctuation part:

e = ē + ẽ, ẽ =
1
2

(
∇ũ+ ∇T ũ

)
.
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Fig. 9.2 Connection of scales in the program code

Such a decomposition permits splitting the problem of simulation of a heteroge-
neous body into two parts, each consisting of one boundary value problem (BVP).
The first BVP relates to the simulation of the homogenized macroscopic body and
the second one to the analysis of the RVE. We used FEM to solve both BVPs. The
interaction of micro- and macro- level computation is schematically represented by
Fig. 9.2. Moreover, using the described theory and standard program FEAP, a new
multiscale FE program was written [45].

The right choice of the RVE is an important requirement for the multiscale FEM
to work well. In the case of the cancellous bone, a cube-shaped RVE consisting of
solid frame and fluid core is chosen within this work. The solid part consists of thin
walls so that the complete geometry of RVE can be described by three parameters:
side length a, wall thickness d and wall width b. Figure 9.1 shows an example of the
real microstructure of cancellous bone affected by osteoporosis, and a proposal for
the corresponding RVE. To calculate the effective material parameters, a dynamic
analysis of the proposed RVE is necessary, and periodic excitation is preferable
because of its simplicity. In such a case, the load and induced deformations are har-
monic functions in time with frequency ω . To describe the problem completely, the
constitutive laws of the fluid and solid phase still need to be stated precisely. Regard-
ing the bone material, a linear analysis is typical so that for the solid part a linear
relation between stresses and strains (9.82)2 and for the marrow the constitutive law
of barotropic fluids are assumed (9.83). The state of deformations in the solid part
can now be described by the system

−ω2ρsu−∇ ·σs = ρsb(x), σs = C : e (9.82)
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and in the fluid part by:

−ω2ρ f u−∇ ·σ f = ρ f b(x),

σ f = c2ρ f ∇ ·uI+ 2iωηe + iωξ ∇ ·uI. (9.83)

Here C is the elasticity tensor of the solid phase, c the sound velocity of the
marrow so that c =

√
K/ρ f , K is the bulk modulus, and η and ξ are the viscosity

coefficients. The indices s and f are used to distinguish the phases. Furthermore, the
coupling condition between the phases requires that there is no deformation jump
on the interface of phases. Recall that all the expressions (9.82), (9.83) are defined
in the complex domain. The material parameters of the solid phase, bulk modulus
Ks and shear modulus μs are also complex-valued and they can be written in the
form Ks = KR

s + iKI
s , μs = μR

s + iμ I
s , where the imaginary parts are related to the real

ones according to

KI
s =

δ
π

KR
s and μ I

s =
δ
π

μR
s ,

where δ denotes the logarithmic decrement [13, 15]. Due to the geometric prop-
erties, we are going to model the solid phase by using the shell elements (see for
example [47]). But as the shell elements already implemented in the program FEAP
[78] are not applicable for simulations in the complex domain, further adaption has
been necessary. In particular we focused on the extension of an element convenient
for simulation of flat and shallow shells. The formulation of this element is based
on the superposition of the linear theory for a plate loaded in its plane and a plate
loaded by bending, whose potentials are

Π e
p = Π e,int

p + Π e,ext
p =

1
2

∫

A e

uT ·LT
p ·Cp ·Lp ·udα + Π e,ext

p , (9.84)

Π e
b = Π e,int

b + Π e,ext
b =

1
2

∫

A e

θ T ·uT ·LT
b ·Cb ·Lb ·θdα + Π e,ext

b . (9.85)

Hereafter subscript p is taken to denote the plate loaded in its plane and subscript
b for the bending of plate. Lp and Lb are linear operators and Cp and Cb material
tensors whose precise definition can be found in the literature [5,19,28,30,35]. The
integration is carried out over the middle area of the element A e. As expression
(9.84) depends on the displacements up = {u,v}T and (9.85) on the rotations θ ={

θx,θy
}T

, a FE approximation

um = Nm · âme,

um =
{

u,v,θx,θy
}T

,

âm
i =
{

ûi, v̂i, θ̂zi, ŵi, θ̂xi, θ̂yi
}T

,
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leads after substitution into the first variation of (9.84) and (9.85) to the weak form
of the problem

δΠ e = (δ âme)T ·
⎛
⎝
∫

A e

(Nm)T ·LT ·C ·L ·Nm dα

⎞
⎠ · âme + δΠ e,ext ,

= (δ âme)T ·
⎛
⎝
∫

A e

(Bm)T ·C ·BM dα

⎞
⎠ · âme + δΠ e,ext . (9.86)

In the above expressions, Nm represents the matrix of the shape functions, and su-
perscript m indicates that a modified approximation is used (θ̂zi and ŵi are used in
the approximation of the vector u). The symbol âme relates to the vector of the el-
ement DOFs and âm

i to the vector of the nodal DOFs. The matrices appearing in
(9.86) are composed as follows

L =
[

Lp 0
0 Lb

]
, Bm = L ·Nm, C =

[
Cp 0
0 Cb

]
. (9.87)

The application of the element in the dynamic case also requires inclusion of the
kinetic energy Ek,

Ek =
1
2

∫

Ω

ρ u̇T · u̇dv (9.88)

and its variation

δ
t∫

0

Ek(u̇)dt = −
t∫

0

∫

Ω

ρδuT · üdvdt = ω2

t∫

0

∫

Ω

ρδuT ·udvdt. (9.89)

As this expression only depends on the acceleration and indirectly on the dis-
placements, a simplified FE approximation may be introduced. See the thesis by
Sandra Ilic [42] and also the papers [43–46] for more complete details of the above
discussion.

In order to model the fluid phase an extension to the complex domain was nec-
essary for the eight-node cubic element chosen to simulate the marrow part. As in
this case the derivation procedure is much simpler, it can be stated directly using the
complex form of the potential characteristic for this element [45]

L =
1
2

∫

Ω

ρ u̇T
c · u̇c div− 1

2

∫

Ω

εc ·Cc · εc dv − Π ext . (9.90)
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Fig. 9.3 Dependency of attenuation on frequency of excitation

In [44] some results were presented concerning the propagation of waves of different
frequencies through samples with different material parameters. These are computer
simulations to check the experimentally obtained result that increasing excitation
frequency and material density cause increasing attenuation. In Fig. 9.3 the influence
of increasing excitation frequency on the attenuation of the signal is demonstrated.
For this simulation the type of material microstructure in the simulations is fixed,
and sound excitation at different frequencies is applied. As the influence of atten-
uation is more noticeable in the case of higher frequencies, excitation is simulated
in the domain 0.9–1.7 MHz. The study of the relationship between attenuation and
density is more complicated than of the influence of excitation frequency. This can
be expected, because the RVE geometry presented earlier is determined by three pa-
rameters (wall thickness d, wall width b and side length a). Correspondingly, three
different types of tests can be carried out. In each group of tests, two of the geomet-
rical parameters have to be kept constant and the remaining one is varied. Results
are shown in Fig. 9.4.
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Fig. 9.4 Dependency of attenuation on microstructure

9.6 Inverse Problems

In our models of bone, the matrix (solid part) was considered to be linear and elastic
and the interstitial region saturated by a viscous fluid described by the compress-
ible Navier–Stokes equations. Utilizing the techniques of homogenization, we were
able to derive a set of effective visco-elastic equations for the acoustic modeling
of poro-elastic materials. The reason we use homogenized (effective) equations,
rather than direct simulation of ultrasound propagation in bone, is due to the fact
that ultrasound assessment of bone qualities is posed as an inverse problem of eval-
uating effective properties of bones and statistical data on microstructure (such as
porosity) from ultrasound measurement. Typical scale of trabecular bone spacing
is 0.5–2 mm with thickness 50–150 μm. In the low frequency range (<100 KHz),
the wavelength is longer than 15 mm; hence homogenized theory can be applied.
Biomechanicians [28, 29, 48, 53] have frequently used Biot’s equations to model
bone as a poroelastic medium, consisting of an elastic frame with interstitial pore
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fluid. In the present discussion we follow this approach. However, we have used
models that have been obtained by homogenization methods which produce a more
complicated model. These models are not in contradiction to the Biot model as the
non-Biot coefficients are orders of magnitude smaller that the others [25, 26]. To
emulate the experiments of Hosokawa and Otani [48] and Williams et al. [74], for
the case of a femur we considered a two dimensional cross-section to be a reason-
able physical approximation for the problem. In this case, we sought to consider
the inverse problem for a two-dimensional sample of cancellous bone by using
acoustic pressure data at different locations in the water tank (See also the paper
by Laugier et al. [66]). It was done by minimizing the difference with respect to an
appropriate norm between the given acoustic pressure data (considered as a data
vector) and the acoustic pressure predicted by the homogenized equations over a set
of effective parameters. This required solving the effective equations (direct prob-
lem) and a nonlinear inverse problem. We should mention that, contrary to what one
might think, no three-dimensional inversions have to date been made despite the sci-
entifically important work done in the papers [7, 19, 20, 22, 23, 63, 64, 66, 69]. They
consider either one-dimensional inversion approaches or three-dimensional direct
problems, i.e. observing wave propagation through the matrix of one of the micro
computed tomography (μCT) scans. The inverse problem we considered should not
be confused with the reconstruction of microstructure from (μCT) obtained using a
synchrotron or with the correlation analysis performed on macroscopic parameters.
Our inverse problems for cancellous bone bring significant improvements to the ex-
isting models, as they are truly two-dimensional. We intend to extend this method
to the fully three-dimensional bone sample.

In what follows, we explain what we have done in the low frequency range,
by first recalling to the reader what the Biot equations are. In the Biot model the
motion of the frame and fluid within the bone pores are tracked by the vectors
u = [u1,u2,u3] and U = [U1,U2,U3] respectively. The constitutive equations used
by Biot are those of an isotropic linear elastic material with terms added to account
for the interaction of the frame and interstitial fluid. These equations described in
Cartesian coordinates.

Solid part: σii = 2μeii + λ e + Qε, σi j = μei j for i �= j,
Fluid part: σ = Qe + Rε,

where ei j is the i j component of the stress tensor and the solid and fluid dilatations
are given by

e = ∇ ·u =
3

∑
i=1

∂ui

∂xi
, ε = ∇ ·U =

3

∑
i=1

∂Ui

∂xi
.

The complex frame shear modulus μ can be measured. The other parameters
λ , R, and Q occurring in the constitutive equations are calculated from the measured
or estimated values of the parameters given in Table 9.1 using the formulas
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Table 9.1 Parameters in the
Biot model

Symbol Description

ρ f Density of the pore fluid
ρr Density of frame material
μ Complex frame shear modulus
Kb Complex frame bulk modulus
Kf Fluid bulk modulus
Kr Frame material bulk modulus
β Porosity
η Viscosity of pore fluid
k Permeability
α Structure constant
a Pore size parameter

λ = Kb − 2
3

μ +
(Kr −Kb)

2 −2β Kr(Kr −Kb)+ β 2K2
r

D−Kb
,

R =
β 2K2

r

D−Kb
, Q =

β Kr ((1−β )Kr −Kb)
D−Kb

, D = Kr(1 + β (Kr/Kf −1)).

The bulk and shear moduli Kb and μ are often given an imaginary part to account
for frame viscoelasticity. The equations of motion are

μ∇2u+ ∇[(λ + μ)e + Qε] =
∂ 2

∂ t2 (ρ11u+ ρ12U)+ b
∂
∂ t

(u−U),

∇[Qe + Rε] =
∂ 2

∂ t2 (ρ12u+ ρ22U)−b
∂
∂ t

(u−U),

where ρ11 and ρ22 are density parameters for the solid and fluid, respectively, ρ12 is
a density coupling parameter, and b is a dissipation parameter. These are calculated
from the inputs of Table 9.1 using the formulas

ρ11 = (1−β )ρr −β (ρ f −mβ )ρ12 = β (ρ f −mβ ),

ρ22 = mβ 2 b =
F(a

√
ωρ f /η)β 2η

k ,

where m = αρ f
β and the multiplicative factor F(ζ ), which was introduced in [4] to

correct for the invalidity of the assumption of Poiseuille flow at high frequencies.
The Biot model predicts that a poroelastic medium will have two dilatational

(compressional) waves, sometimes referred to as the fast and slow waves, as well
as a shear wave. The presence of two dilatational waves is usually attributed to the
in-phase and out-of-phase motions of the frame and fluid. Our studies of determin-
ing the Biot coefficients of cancellous bone [13,14,16,39] by inverting the acoustic
pressure have been promising. See also [32,33]. The estimates of the parameter val-
ues were taken from the literature, obtained by in vitro experimental measurement,
or in the case of permeability characterized as estimates without elaboration.
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Fig. 9.5 Schematic for the in vitro (left) and in vivo (right) experiments

In Fig. 9.5 the classical experimental setup for the osteoporosis experiment is
shown. A segment of cancellous bone is submerged in a water bath. An ultrasonic
transmitter is placed on one side of the segment and a receiving hydrophone on the
other side. In [31] we considered an in vivo interrogation of bone surrounded by
muscle. The muscle was modeled as an isotropic elastic material. In this problem
we only tried to recover the bone porosity, which was done quite accurately. In [16]
and [14] Buchanan, Gilbert and Khashanah investigated the extent to which the
most important parameters of the Biot model could be recovered by acoustic inter-
rogation in a numerical experiment which simulated in two dimensions the physical
experiment of Hosokawa and Otani [48]. The finite element method was used to
simulate both the target pressure data and the trial data used in the parameter re-
covery algorithm. In more recent work we have used analytical methods to simplify
the problem of reflections from the tank walls. This has the virtue of permitting use
of higher frequencies in the low 100 KHz range, which is closer to the frequencies
used in clinical ultrasound experiments. Using frequencies in the range mentioned
above we were able to determine, for the in vitro case, the parameters β , k, a, α and
the real part of Kb and μ in the table above [13–15]. An attempt on the in vivo sim-
ulation of the bone density problem was given in [39]; see also [38]. The inversion
procedure uses a fairly precise grid to construct the pressure field in the water tank
containing the bone specimen and a less accurate method for doing the inversion.
See the papers [13, 15, 16] for further details.

In Table 9.2 we list the accuracy of the three-phase Nelder-Mead annealing pro-
cess we developed for inverting the two dimensional inversion of the Biot–Stoll
model. For purposes of comparison we computed the mean and standard deviation
of all Phase 3 answers whose objective function value was within a factor of 2 of
the lowest value and used these to find a 95% confidence interval for the mean.
Instances of underestimation, indicated by “*” were more common, however only
the underestimation of the error for the structure factor in Problem 83w was se-
vere. On the other hand the overestimations of the error are less severe than with
minimum/maximum/midpoint approach and on the whole better characterize the
actual errors.
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Table 9.2 Phase 3 percentage errors when using mean values for Problems 71–91w. Estimated
errors are calculated from 95% confidence intervals. The numbers 71, 75, 79, etc. refer to the
porosity of the cancellous bone

Problem β k a α ReKb Re μ
71w Error (%) 0.12 1.83 5.41 0.55 0.71 3.44

Estimated error (%) 0.22 8.34 9.49 1.10 11.27 3.61
75w Error (%) 0.00 21.20 22.86 0.34 9.19 6.34

Estimated error (%) 0.19 30.41 38.40 1.19 12.24 15.15
79w Error (%) 0.14 1.17 4.10 0.32 7.67 1.64

Estimated error (%) 0.12* 36.14 44.77 0.99 9.00 1.44*
83w Error (%) 0.94 23.30 25.94 2.78 0.02 0.02

Estimated error (%) 1.27 17.71* 17.87* 0.87* 0.99 0.66
87w Error (%) 0.03 2.57 4.15 0.33 6.86 7.10

Estimated error (%) 0.30 32.76 27.61 0.90 39.87 13.19
91w Error (%) 0.56 23.52 17.41 1.24 21.12 34.73

Estimated error 0.99 17.14* 16.44* 0.86* 26.49 22.22*

In the Biot model [4–6] the motion of the skeletal frame and the interstitial fluid
within are tracked by position vectors us and Us respectively. The coupling be-
tween the fluid part (marrow) and elastic matrix (trabecular bone) is described by the
Johnson–Koplik–Dashen model [50]. In this model, the dynamic tortuosity α(ω) is
expressed as a function of tortuosity α∞, pore fluid viscosity η , pore fluid density ρ f ,
permeability k, porosity β , the angular frequency ω and the viscous characteristic
length Λ

α(ω) = α∞

⎛
⎝1 +

ηβ
iωα∞ρ f k

√
1 + i

4α2
∞k2ρ f ω

ηΛ 2β 2

⎞
⎠ , i =

√−1. (9.91)

The effective elastic constants P, Q, and R are related to β , bulk modulus of the
pore fluid Kf , bulk modulus of the trabecular bone Ks, bulk modulus of the porous
skeletal frame Kb and the shear modulus of the composite as well as the skeletal
frame N:

P :=
(1−β )

(
1−β − Kb

Ks

)
+ β

Ks

Kf
Kb

1−β − Kb

Ks
+ β

Ks

Kf

+
4
3

N,

Q :=

(
1−β − Kb

Ks

)
β Ks

1−β − Kb

Ks
+ β

Ks

Kf

,
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R :=
β 2Ks

1−β − Kb

Ks
+ β

Ks

Kf

. (9.92)

It is convenient to write the Biot–Johnson–Koplik–Dashen model in matrix form

(
P Q
Q R

)
⎛
⎜⎜⎝

d2ûs

dx2

d2Ûs

dx2

⎞
⎟⎟⎠= −ω2

(
ρ̃11 ρ̃12

ρ̃12 ρ̃22

)(
ûs

Û s

)
.

This implies

⎛
⎜⎜⎝

d2ûs

dx2

d2Ûs

dx2

⎞
⎟⎟⎠=

−ω2

PR−Q2

(
Rρ̃11 −Qρ̃12 Rρ̃12 −Qρ̃22

−Qρ̃11 + Pρ̃12 −Qρ̃12 + Pρ̃22

)(
ûs

Û s

)
.

Current research has been directed towards using the Biot–Johnson–Koplik–Dashen
model to do the one dimensional model in vivo, i.e. a muscle-cortical bone-
cancellous bone system and to repeat the previous work on the two dimensional
model.

9.7 Concluding Remarks

In Sect. 9.3 we derived an effective model for acoustic wave propagation in solid-
fluid composites with microstructure. The microstructural geometry was modeled
as a realization of a stationary random field with built in scale separation. The main
technical tool used is stochastic two-scale convergence in the mean introduced by
Bourgeat, Mikelić and Wright [12]. This technique produces a two-velocity effective
system coupling the leading term in the asymptotics with a corrector. Following the
ideas of [8] it is possible to find an ansatz to eliminate the corrector and reduce the
two-velocity system to a smaller system of effective equations for the leading term
alone. These equations model a single phase, uniform viscoelastic medium with
long time history dependence.

We plan in a future paper to do some numerical experiments based on the
methodology we have developed.
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Linear Acoustics of Trabecular Bone
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Abstract During the two recent decades, quantitative ultrasound (QUS) methods
have been developed for in vivo diagnostics of trabecular bone. Mostly, trabecu-
lar bone QUS measurements are conducted in through-transmission and pulse-echo
geometry. Since the first in vivo QUS measurements at the heel, the research ef-
forts have also been focused on enabling QUS measurements at important fracture
sites, such as proximal femur or lumbar vertebra. This chapter introduces the ex-
perimental QUS methods and reviews the recent developments in in vitro and in
vivo measurement methods and results on linear acoustic properties of trabecu-
lar bone. Specifically, ultrasound parameters determined in through-transmission
and pulse-echo measurements are introduced and their frequency dependency as
well as feasibility for characterization of bone density, structure, composition and
mechanical properties is reviewed. Finally, potential of QUS for clinical diag-
nostics of osteoporosis and prediction of bone fracture risk are discussed, with
some suggestions of future lines for development of ultrasound diagnostics of bone
disorders.
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10.1 Introduction

Human bones are under a continuous renewal process. The renewal occurs at
the surface of trabecular bone tissue and is controlled by the tissue metabolism.
As osteoporosis affects the bone metabolism, the osteoporotic changes are con-
sidered to be first detected in the trabecular bone matrix with a large surface to
volume ratio. Therefore, diagnosis of osteoporosis (see Chap. 4) is made at skele-
tal sites composed mainly of trabecular bone (e.g. calcaneus, proximal femur,
vertebra). As most easily accessed, the calcaneus has been the first location for
in vivo ultrasonic measurements of bone properties using a through-transmission
(TT) technique [1]. Since then, several clinical devices have been developed for
calcaneal measurements. With these devices the broadband ultrasound attenuation
(BUA) and speed of sound (SOS) are classically determined. Currently, the calca-
neus provides the only clinically validated ultrasound measurement location with a
substantial prove of hip fracture prediction [2, 3].

The heel ultrasound has not been able to supersede the X-ray methods. Currently,
osteoporosis is diagnosed as reduced areal bone mineral density at the proximal
femur (neck or total proximal femur) and lumbar vertebra (L2–L4 or L1–L4) using
the dual-energy X-ray absorptiometry (DXA). Some criticism has been laid upon
the calcaneal measurements because the properties of the trabecular bone at heel
may reflect poorly the bone properties at the central skeleton [4]. Similarly as with
the X-ray devices, the best fracture risk prediction in specific bones may be obtained
only by making the QUS measurements at the same anatomical location. The most
severe location for osteoporotic fractures in terms of morbidity and mortality is
the hip [5].

The use of QUS techniques has also been limited due to obvious error sources
in the measurement. First, the soft tissue overlying the bone, even though thin, can
produce significant errors on the measurements [6–10]. Further, variations in the
size of the calcaneus [11–13] and the anatomical location of actual measurement in
each individual [14–17] have presented additional challenges for the clinical mea-
surements. For improved localization of the measurements, imaging QUS devices
have been introduced and indeed the precision of the measurements has improved
[14, 18–22].

The acoustic properties of trabecular bone have been widely investigated in
vitro in both through-transmission and pulse-echo (PE) geometry [23–28]. Using
PE methods, typical parameters include the integrated reflection coefficient (IRC),
broadband ultrasound backscatter (BUB) and apparent integrated backscatter (AIB).
Recently, other parameters, such as the time slope of apparent backscatter (TSAB)
and the frequency slope of apparent backscatter (FSAB), were also applied for char-
acterization of trabecular bone [29]. Previous studies indicate a significant potential
of these parameters to reflect structure, density, composition and mechanical prop-
erties of trabecular bone [26, 29–34].

During the recent decade, the research on novel techniques in QUS has been
strongly guided by certain lines of development: (1) application of in vivo TT
measurements for the proximal femur and (2) development of PE measurements
for in vivo use. In principle, PE ultrasound measurements could be conducted at



10 Linear Acoustics of Trabecular Bone 267

most skeletal locations, e.g. at the hip. Further, PE ultrasound possesses intriguing
versatility as only one transducer is needed for measurement of the ultrasonic
backscatter from the trabecular matrix or for the determination of the thickness of
cortical layer [35,36]. Thereby, PE – geometry may enable separate analyses of both
bone compartments (i.e. trabecular and cortical bone).

Measurement of the speed of sound at the diaphysis of long bones (axial trans-
mission) is also widely applied for assessment of cortical bone density, thickness
and even fracture susceptibility [37–40]. Different sound wave propagation modes
can be detected in human cortex (longitudinal, shear and guided waves), which are
related to different bone properties. These techniques are under active development
and research towards improved precision and accuracy. The axial transmission tech-
niques are covered by Chaps. 3 and 8 of the present book and will not be discussed
further in this chapter.

In this chapter, experimental in vitro and in vivo methods in through-transmission
and pulse-echo geometries for determination of trabecular bone acoustic properties
are described. Further, some results from the numerical simulations of ultrasound
propagation, attenuation and backscatter in bone are presented to substantiate the
experimental findings. Then, the most recent developments and research results are
reviewed. Finally, the future prospects and foundations for clinical applicability are
discussed.

10.2 Experimental Methods and Parameters for Quantitative
Bone Ultrasound

According to linear acoustics (see Chap. 2), the travelling ultrasound wave induces
variations in pressure, density and temperature that are small compared to their base-
line values in the medium. This is the normal assumption for ultrasound propagation
in trabecular bone. However, the non-linear acoustic properties are also under an
active present research (see the Chap. 15 on non-linear ultrasound in the present
book).

Ultrasound interacts with bone tissue via reflection, refraction, scattering and
absorption. The physical interactions and their magnitude depend on the me-
chanical properties of the tissue, which are controlled by tissue composition and
microstructure. Absorption losses, e.g. mode conversion and transformation of
acoustic energy to heat by viscous relaxation processes, are determined by material
properties (i.e. composition of the tissue). The tissue composition also contributes
to the acoustic impedance and therefore directly affects the strength of reflection
(or scattering) occurring at the individual trabeculae-marrow interfaces. The degree
of scatter is determined largely by the size, shape, distribution and elasticity of
the scatterers [41, 42]. Therefore, thickness and shape of the trabeculae are criti-
cal for physical interactions as well. When the thickness of individual trabeculae
(Tb.Th.) is greater or alternatively equal to/smaller than the ultrasound wavelength
the dominant phenomenon is reflection or scattering, respectively. As the trabecular
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Fig. 10.1 Attenuation (a) and backscatter (b) coefficients as a function of ultrasound frequency
for human trabecular bone samples with different ultimate strengths (Femur: 10.0 MPa; Tibia:
4.2 MPa) (Reprinted from Hakulinen et al. [45], IOP Publishing Ltd.)

orientation in human skeleton varies along the Wolff’s law, the acoustic properties
are anisotropic and depend on the direction of the ultrasound propagation in respect
to the primary direction of the mechanical loading of the bone.

The relative contribution of scattering to energy loss of ultrasound beam in tra-
becular bone, in comparison to that of absorption, has been an issue for model
analyses [43]. The relative involvement of both physical mechanisms has not been
clearly explained, however, at diagnostic frequencies (0.2–0.6 MHz) the absorption
may have a larger contribution to the total attenuation than the scattering [41, 44].
In general, experimental results have confirmed the theoretical predictions of the
increase in the attenuation coefficient and backscatter coefficient along frequency
[6, 45] (Fig. 10.1). Jenson et al. reported that the backscatter coefficient increases at
a lower frequency range (0.4–1.2 MHz) from approximately −35 to −20 dB [46].
These physical issues are addressed in detail in Chap. 6 of this book.

Most quantitative parameters calculated from the measured ultrasound signals
rely on the use of a substitution technique. In the substitution technique, the ul-
trasound signal obtained from the sample, determined either in time domain or in
frequency domain, is normalized by the reference signal obtained from the measure-
ment through a water bath (TT-geometry) [1] or from a perfect (or known) reflector
(e.g. polished steel plate or water-air interface) at a focal distance (end of the near
field) (PE-geometry) [47]. Thereby, the effects of the measurement setup and hard-
ware originated errors are minimized.

The first quantitative ultrasound measurements in vivo at human heel were done
by Langton et al. in 1984 in through-transmission geometry [1]. In TT geometry, two
transducers are placed on the opposing sides of the sample at a controlled distance.
One transducer emits and the second one receives the pulse transmitted through
the bone. Motorized scanning devices (Fig. 10.2) are often used for acquisition of
parametric images of the bones. Using these image maps the mean values and stan-
dard deviations of the acoustic parameters can be calculated, desirable for trabecular
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Fig. 10.2 An example of experimental setup for in vitro ultrasound measurements. Parametric
images (both PE (IRC) and TT (nBUA) parameters) of the sample can be acquired as the transduc-
ers on the opposite sides are attached to the scanning drives (Adapted from Riekkinen O, Kuopio
University Publications C. Natural and Environmental Sciences 244 (2008) and Hakulinen et al.
[45], IOP Publishing Ltd.)

bone specimens with spatially varying properties. In the pulse-echo geometry a sin-
gle transducer is used for transmitting and receiving the pulse, potentially enabling
the measurements at arbitrary skeletal locations in vivo.

10.2.1 Ultrasound Reflection and Backscatter Parameters

For calculation of different parameters from an ultrasound signal, measured from a
trabecular bone sample using the PE-technique, specific time windows are used to
gate regions of interest from the time domain signal (Fig. 10.3). The length of the
time window for reflection (e.g. used for determination of IRC) can be determined
as the width of the reference signal reflected from a perfect reflector (polished steel
plate or water-air interface). When an attenuating material is placed between the
transducer and bone, the reflected ultrasound pulse gets wider due to the low-pass
filtering by the interfering material. This should be considered especially for in vivo
applications.

The centre of the reflected pulse can be determined as the maximum of the en-
velope of the signal. In case of pure trabecular bone samples, the time window for
backscatter parameters (e.g. for determination of parameters AIB, BUB) can be lo-
cated right after the IRC window. To verify that no energy from the surface reflection
is included in the backscatter window, the backscatter window may also be delayed
leaving a gap between the two time windows. The duration of the pulse varies as
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Fig. 10.3 A typical ultrasound signal with the regions of interest (ROI) for analyses of the reflec-
tion and backscatter parameters

Table 10.1 Mathematical definitions of common ultrasound reflection and backscat-
ter parameters

Parameter Equation

IRC
1

Δ f

∫

Δ f

20log10

(
An( f )
Ar( f )

)
(10.1)

AIB
1

Δ f

∫

Δ f

20log10

(
Ab( f )
Ar( f )

)
(10.2)

BUB
1

Δ f

∫

Δ f

(
20log10

(
Ab( f )
Ar( f )

)
+β

)
(10.3)

The Δ f is the frequency band for analysis (determined as the part of the spectrum
above the −6dB). The A( f ) denotes the amplitude spectrum of a signal. The sub-
scripts n and r refer to signal gated at surface reflection of sample and perfect reflector,
respectively. The subscript b refers to backscatter window inside the bone. The β is
the attenuation compensation term (see Eqs. 10.6 and 10.7)

a function of the frequency and therefore the length of the time window should
be matched with the frequency in use. The mathematical definitions for typical PE
parameters are presented in the Table 10.1.

For calculation of BUB, different functions have been applied for compensating
the attenuation inside trabecular bone. Each of those requires prior knowledge of the
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frequency dependent attenuation coefficient α and sound speed c in the trabecular
bone. These can be determined with the through-transmission measurements. For
compensation of the attenuation in scattering medium O’Donnel and Miller [48]
proposed the following equation

βOM = e4·α ·x0

(
2 ·α · c · tw

eα ·c·tw − e−α ·c·tw

)
, (10.4)

where tw is the length of the backscatter time window. If the backscatter time win-
dow is placed directly after the reflection, the propagation distance of sound wave
within the sample x0 can be written as follows

x0 =
ctw
4

. (10.5)

Equation 10.4 is determined for the power spectra of the attenuation. For use of the
amplitude spectra, a square root is placed over the Eq. 10.4. By taking the logarithm,
multiplying by 20 (decibel transformation) and inserting Eq. 10.5 yields

βOM = 20log10

(
e

1
2 α ·c·tw

(
2 ·α · c · tw

eα ·c·tw − e−α ·c tw

) 1
2
)

. (10.6)

The O’Donnel and Miller compensation has been formulated for an average
backscatter function measured from a volume containing randomly distributed
cylindrical scatterers. Therefore, it may be suitable for compensating backscattering
from the trabecular bone samples that have been measured by averaging backscatter
signals over the sample (e.g. laterally scanned trabecular samples, if the trabeculae
are considered to be randomly distributed).

Nicholson and Bouxsein [49] applied a straightforward attenuation compensation
function simply by combining the measured attenuation, speed of sound and time
window length in use as follows

βNB =
αctw

2
. (10.7)

No perfect mathematical expression exists for compensation of the attenuation in the
tissue. However, both of the presented functions have been used in measurements
of trabecular bone. Enhancements are constantly made and comparisons between
different techniques have been presented [50,51]. Nonetheless, the attenuation com-
pensation would require prior knowledge of attenuation coefficient and speed of
sound in tissue, which makes the application of BUB clinically difficult. Instead,
the AIB requires no attenuation compensation, making it more suitable for in vivo
measurements.

Other parameters in addition to AIB, with no need for attenuation compensa-
tion, have also been introduced. The parameters, such as time slope of apparent
backscatter (TSAB) and frequency slope of apparent backscatter (FSAB) have
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Fig. 10.4 (a) Example of a
backscatter signal at 5 MHz
and (b) the associated
apparent backscatter transfer
function (ABTF). The dashed
rectangle indicates the portion
of the signal that is analyzed
to obtain the ABTF. The slope
of the dashed line shown in
the lower panel is used to
determine FSAB for this
specific signal (Reproduced
from Hoffmeister et al. [29]
c© 2008 IEEE)
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been originally developed for characterization of soft tissues by Miller et al. [52].
and Lizzi et al. [53], respectively. These parameters, and especially AIB, have
been applied also for measurements of bone properties by many research groups
[29–31, 34, 54, 55]. In measurements of TSAB from human bones, Hoffmeister et al.
[29] used six overlapping windows for determination of AIB at different time points.
The length of each window was selected as the duration of five cycles of the trans-
ducer centre frequency (five/transducer centre frequency [MHz]). Each subsequent
window was adjusted by a delay to fit all windows within 4μs. The TSAB was
finally obtained as a slope of the linear regression to six AIB values plotted against
time. For analyses of FSAB, Hoffmeister et al. selected one time window equal to
ten cycles of the transducer centre frequency (Fig. 10.4). FSAB was obtained as the
slope of the linear regression over the −6 dB bandwidth of the apparent backscatter
transfer function (ABTF = 10∗ log(Ab/Ar)).

Another approach for estimation properties of trabecular bone from the backscat-
ter measurements is the determination of the spectral centroid shift [56, 57].
In linearly attenuating medium the spectral centroid is shifted downward by amount
determined as a product of the attenuation coefficient of the medium, sound wave
propagation distance and the square of the bandwidth of the pulse. Experimentally,
the centroid shift can be determined simply by finding the frequency difference
between the maxima of the reference pulse spectrum and the spectrum of the pulse
measured from the sample.
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10.2.2 Ultrasound Through-Transmission Parameters

For calculation of through-transmission parameters, the ultrasound pulse is
transmitted through the bone and recorded at the opposite side. In in vivo mea-
surements, due to the contributions of the surrounding soft tissues, cortical bone
and trabecular matrix the transmitted pulse interacts through several phenomena,
including absorption, scattering, reflection, diffraction and mode conversion. The
pulse is attenuated and the time-of-flight is altered when compared to the reference
in the substitution technique. In TT geometry, the parameters most often determined
are the BUA and SOS at the frequency range 0.2–0.6 MHz (Table 10.2). Since their
introduction, these parameters have been applied in many clinical devices. How-
ever, among manufacturers the determination of especially SOS varies from device
to another. Several different algorithms for determination of SOS have been de-
veloped [58], (e.g. leading edge, thresholding, zero crossing, cross-correlation and
maximum envelope) and a method for standardization of the SOS (determined with
different time of flight algorithms) has been proposed [59].

The average attenuation (AA) is determined as the absolute attenuation (in dB)
over the effective frequency band (above −6 dB) rather than as a slope of the linear
part of the attenuation spectrum (BUA). As an index for bone density, (linear) math-
ematical combinations of BUA and SOS are in use in some commercial instruments
for calcaneal measurements.

The values of the most TT parameters, as well as those of PE parameters, de-
pend on the frequency in use (Table 10.3). In general, the ultrasound parameters
show significant linear correlations with the bone mineral density of trabecular bone.
However, BUA has been found both numerically and experimentally to exhibit sig-
nificant non-linearity in trabecular bone with high BMD (Fig. 10.5).

Table 10.2 Mathematical definitions of through-transmission parameters, SOS,
BUA and average attenuation (AA)

Parameter Equation

SOS
cwxb

xb − (Δtcw)
(10.8)

Attenuationa 20
xb

(
log10

(
Aw( f )
As( f )

)
+ log10(TwsTsw)

)
(10.9)

AA
20

Δ f · xb

∫

Δ f

(
log10

(
Aw( f )
As( f )

)
+ log10(TwsTsw)

)
(10.10)

cw – sound speed in water, xb – thickness of the sample, Δt – time of flight difference
through the water bath with and without the sample, Aw and As, ultrasound pressure
amplitude spectra measured through the water bath without and with the sample,
respectively
aNormalized Broadband Ultrasound Attenuation (nBUA) is determined as a slope
of the linear part of attenuation spectrum normalized with the sample thickness xb
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Table 10.3 The mean values (±SD) of human trabecular bone (distal femur/proximal tibia,
n = 25) acoustic properties as a function of the transducer centre frequency

Frequency

Parameter 0.5 MHz 1.0 MHz 2.25 MHz 3.5 MHz 5.0 MHz

SOS (m/s) 2177±701 1709±500 1690±321 1601±273 1639±385
AA (dB/cm) 17.6±4.1 25.7±8.5 29.3±11.1 36.4±10.5 42.8±13.0
nBUA (dB/cm/MHz) 15.4±25.0 16.6±12.2 13.8±6.2 12.4±6.5 9.1±2.9
IRC (dB) −22.5±3.3 −17.8±2.8 −10.1±2.8 −10.8±3.1 −10.1±3.2
BUB (dB) −26.3±4.7 −20.8±5.9 −15.5±4.3 −16.5±3.0 −16.5±3.8
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Fig. 10.5 Broadband ultrasound attenuation (BUA/nBUA) as a function of bone volume fraction
or bone mineral density (BMD). (a) 3-D finite difference model simulations (left) suggest that
nBUA depends non-linearly on the bone volume fraction (BV/TV). (b) Qualitatively similar non-
linearity for BUA versus BMD has been revealed in in vivo heel measurements (Data adapted from
A. S. Aula et al. [60] Copyright (2009), with permission from Elsevier and reprinted from Toyras
et al. [61] Copyright (2002), with permission from Elsevier)

10.3 Dual Frequency Ultrasound Technique

The soft tissue overlying the bone can produce significant errors on the ultrasound
measurements [6–8]. The dual frequency ultrasound (DFUS) technique has been in-
troduced for determination of soft tissue composition and correction of measured
ultrasound reflection parameters [62, 63]. In DFUS, the soft tissue layer is consid-
ered to be composed of lean and fat tissue. Further, known frequency dependent
values of ultrasound attenuation coefficient and speed of sound in lean and fat tissue
are required (Fig. 10.6). Finally, the reflections at the soft tissue interfaces (i.e. lean
and fat tissue interface) and at soft tissue – bone interface are considered to be inde-
pendent of the frequency. Then, the measured ultrasound reflection amplitude (An)
at two different frequencies can be written out as

An,l = Hle
−2αa,lxa · e−2αm,lxmAr,l, (10.11)
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Fig. 10.6 The average
ultrasound attenuation
(mean + SD) in trabecular
bone, lean and adipose tissues.
The values for attenuation
coefficient and sound speed
in lean and adipose tissues at
two specific frequencies (e.g.
2.25 and 5.0 MHz) are used
in DFUS analysis (Reprinted
from Riekkinen et al. [6]
Copyright (2006) with
permission from Elsevier)

and

An,h = Hhe−2αa,hxa · e−2αm,hxm Ar,h, (10.12)

where the l and h refer to low and high frequencies and the a and m to fat (adipose)
and lean (muscle) tissues, respectively. The reflection term H includes the reflections
at the surfaces of the soft tissue layers and the bone.

The time of flight (TOF) of the reflection from the bone surface can be written as
follows

TOF = 2

(
xa

ca
+

xm

cm

)
. (10.13)

Now the thickness of the lean tissue can be calculated as

xm =
(

TOF
2

− xa

ca

)
cm. (10.14)

The thickness of adipose tissue xa can be derived from (10.11) and (10.12) and
inserting Eq. 10.14 yields

xa =
ln

(
An,l
Ar,l

)
− ln

(
An,h
Ar,h

)
− (TOF · cm(αm,h −αm,l))

(2αa,h −2αa,l)− cm
ca

(2αm,h −2αm,l)
(10.15)

Finally, the IRCuncorrected determined from the bone can be corrected as

IRCcorrected = IRCuncorrected + 2xaαa + 2xmαm. (10.16)

The IRCuncorrected is the integrated reflection coefficient determined over the fre-
quency range of the spectrum above −6dB. Same correction for soft tissue effects
applies also for backscatter parameters (Fig. 10.7). In case of intact bone samples or
in vivo application, the attenuation occurring within the cortical bone must also be
taken into account to analyse pure backscatter from the trabecular bone.
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Fig. 10.7 The dual frequency ultrasound (DFUS) technique. The ultrasound echo from the bone
surface is used to analyse the composition of soft tissue overlying the bone. With this information,
the backscattering parameters of bone can be corrected to be independent of soft tissue thickness
or composition. The two frequencies used for the DFUS analyses can be selected from a single
broadband reflection spectrum

The DFUS technique has been validated in in vitro [62] and in vivo [63]
PE-measurements. In in vitro study at 2.25 and 5.0 MHz, using human trabecular
bone samples with and without overlying soft tissue, the DFUS technique decreased
the error induced by soft tissues in reflection and backscatter parameters from 127%
to 24% and from 59% to −5%, respectively [62]. In an in vivo case study conducted
on a bodybuilder at the distal femur during a 21-week training and dieting period,
the DFUS technique enabled the determination of local soft-tissue composition,
as verified by comparison with the DXA determined local soft tissue composition
(r = 0.91, n = 8, p < 0.01). Further, the technique eliminated the soft tissue-induced
error from IRC measured for the bone [63].

The DFUS solution can also be derived for the bone TT ultrasound measurement
by determining the reflection either from the bone surfaces at both sides of the sam-
ple or by conducting a measurement through the soft tissues adjacent to the bone,
similarly as in the DXA. The transmitted pulse through bone is attenuated by the fat
and muscle tissues overlying the bone, interactions in the bone and reflections at the
bone-muscle interfaces. The attenuation caused by the reflection at the interface of
different soft tissues is considered negligible. Then, the frequency spectrum of the
attenuation coefficient in the bone corrected with soft tissue induced attenuation can
be written out as

αb( f ) =
8.686

xb

[
ln

(
Aw( f )
As( f )

)
−αm( f )xm −α f ( f )x f − ln(TmbTbm)

]
, (10.17)
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where the α is the attenuation coefficient and f is the frequency. Subscripts b, m
and f refer to bone, muscle and fat tissue, respectively. The subscripts mb and bm
of the transmission coefficients T refer to the direction ultrasound propagates at the
interface of the tissues, muscle to bone and bone to muscle, respectively. The As is
the amplitude of the measured pulse through the soft tissues and the bone. In this
equation the attenuation coefficient is normalized with the thickness of the bone xb.
Now the normalized BUA (nBUA) (dBMHz−1cm−1) can be calculated as the fitted
slope to the linear part of the attenuation coefficient spectrum. To assess nBUA in-
dependently of overlying soft tissue the measured attenuation spectrum ln (Aw/As)
needs to be compensated for the attenuation in muscle and fat tissue. The tissue
specific attenuation spectra αm( f ) and α f ( f ) (Np/cm), multiplied with the DFUS
resolved thicknesses, are subtracted from the logarithmic attenuation spectrum be-
fore the acquisition of the spectral slope for determination of BUA.

In the TT geometry, the applicability of DFUS for correction of BUA with
three (1–3) soft tissue and bone mimicking elastomer phantoms (nBUA1.4–10
dBMHz−1cm−1; SOS 1553–1586 m/s) was analyzed. At frequency range 1–2 MHz
(transducer centre frequency 5 MHz) the attenuation was linear (r > 0.99) in phan-
tom materials. Two soft tissue phantoms (1 and 2) were used as interfering layers on
top of the bone mimicking phantom (thickness 10.2 mm). Three interfering layers
were constructed by varying thickness of phantoms 1 and 2, i.e. 1.19 and 3.22 mm
(composition 1), 2.00 and 1.85 mm (composition 2) and 3.01 and 0.97 mm (com-
position 3), respectively. Then, using the DFUS technique, the thicknesses of the
interfering layers (phantoms 1 and 2) were obtained by measurement of IRC from
the surface of the bone phantom 3. The transmission spectra with interfering layers
were compensated for the attenuation with the spectra measured on phantoms 1 and
2 adjusted with the DFUS resolved thicknesses (Table 10.4). By applying the DFUS
correction, the error in the IRC was reduced from 103.6% to 5.6% and the error in
nBUA was reduced from 61.6% to 10.1% on the average. At present, the DFUS has
not used in in vivo TT-measurements. The in vivo feasibility should be investigated
in future studies.

Table 10.4 Application of the DFUS technique for through-transmission measurements of bone-
soft tissue mimicking phantoms

Interfering Interfering Interfering
Parameter Composition 1 Composition 2 Composition 3

nBUA (dBMHz−1cm−1) 5.2 5.0 5.8
nBUAcorr (dBMHz−1cm−1)a 3.4 3.5 4.0
IRC (dB) −62.9 −62.9 −67.5
IRCcorr (dB)b −33.9 −30.4 −35.9

Three different compositions to simulate variable soft tissue layers were measured. After DFUS
correction improved agreement with the true parameter values (nBUA = 3.3dBMHz−1cm−1;
IRC = −31.7dB) of the bone mimicking phantom was revealed
aThe nBUA measured without interfering layers was 3.3 dBMHz−1cm−1

bThe IRC measured without interfering layers was −31.7dB
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10.4 Relationships of Ultrasound Parameters with Bone
Structure, Composition and Mechanical Properties

There is a growing body of evidence on the relationships between different ultra-
sound parameters and structure, composition and mechanical properties of trabecu-
lar bone. Mostly, these relationships have been revealed by investigating statistically
significant associations between the QUS and reference data obtained experimen-
tally from the same in vitro bone samples. Further, several studies have applied
theoretical model analyses to improve understanding on the characteristic relation-
ships between the structure, composition and acoustic properties of trabecular bone.
To gain in depth information, the reader is referred to the review articles by Wear
(2008) [43], Langton and Njeh (2008) [64] and Laugier (2008) [65].

Based on physical acoustics, ultrasound backscattering is related to the struc-
ture and composition of the bone. Thus, the backscattering parameters may provide
comprehensive information about the properties of trabecular bone. This informa-
tion may associate more closely with the bone strength than the BMD does. Further,
the acoustic parameters may be influenced by alterations in organic phase of the
bone – which is not the case in DXA derived parameters. However, a solid evidence
for demonstrating these benefits of ultrasound is still mostly lacking. Absolutely,
more theoretical research is needed to fully understand the sound wave interactions
within the complex trabecular structure.

10.4.1 Pulse-Echo Measurements

In the literature, pulse-echo parameters measured from bone have been determined
using ultrasound frequencies from 0.5 to 10 MHz. Linear correlations with variable
strength have been demonstrated between the pulse-echo parameters (IRC, BUB,
AIB) and structural parameters of trabecular bone, such as trabeculae thickness
and separation obtained from the micro CT-analyses (Table 10.5). The strength of
correlation between BUB and trabecular thickness seems to relate to ultrasound fre-
quency in use, being stronger at lower frequencies (0.5–1.0 MHz) than at higher
frequencies (2.25 MHz). However, BUB is sensitive for bone volume fraction and
structure within wide range of ultrasound frequencies (0.5–2.25 MHz, Table 10.5).
On the other hand, AIB associates with the trabeculae separation and bone volume
fraction, but not with the trabeculae thickness, at the centre frequencies of 1.0 and
5.0 MHz. Obviously, as the AIB and BUB differ only by the attenuation compen-
sation (described in Sect. 10.2), the attenuation depends on Tb.Th and produces the
significant association also between the BUB and Tb.Th. This issue is difficult to
investigate experimentally but should be addressed by numerical model analyses
which can be used to improve the understanding on the contribution of different
properties of trabecular bone to the ultrasound backscatter.



10 Linear Acoustics of Trabecular Bone 279

Table 10.5 Linear correlation coefficients (r) between the pulse-echo ultrasound parameters
(IRC, AIB and BUB) in vitro and human (except citation 24, bovine bone) trabecular bone ultimate
strength, collagen content of bone matrix (CC/BV), bone volume fraction (BV/TV), trabeculae
thickness (TrTh) and separation (TrSp). Center frequency of ultrasound transducers used is also
presented

Study
Frequency
(MHz) Parameter

Ultimate
strength CC/BV BV/TV TrTh TrSp

Karjalainen et al. [31] 1.0 IRC 0.86∗∗ −0.32 0.85∗∗ 0.48∗ −0.66∗∗

Hakulinen et al. [45] 2.25 IRC 0.85 – – – –
Hakulinen et al. [26] 3.5 IRC – – 0.77∗∗ 0.37 −0.57∗∗

Karjalainen et al. [31] 5.0 IRC 0.77∗∗ −0.55∗ 0.80∗∗ 0.35 −0.58∗∗

Karjalainen et al. [31] 1.0 AIB 0.62∗∗ −0.23 0.66∗∗ 0.28 −0.57∗∗

Hoffmeister et al. [30] 1.0 AIB – – 0.08† – –
Hoffmeister et al. [29] 1.0 AIB 0.62∗∗ – – – –
Karjalainen et al. [31] 5.0 AIB 0.28 −0.74∗∗ 0.46∗ 0.11 −0.53∗

Hoffmeister et al. [30] 5.0 AIB – – 0.90∗∗† – –
Hoffmeister et al. [29] 7.5 AIB 0.77∗∗ – – – –
Chaffai et al. [66] 0.5 BUB – – 0.91∗∗ 0.86∗∗ −0.79∗∗

Padilla et al. [32]†† 1.0 BUB – – 0.69∗∗ 0.59∗∗ −0.62∗∗

Padilla et al. [32]†† 2.25 BUB 0.74 – – – –
Hakulinen et al. [26] 2.25 BUB – – 0.87∗∗ 0.46∗ −0.69∗∗

Riekkinen et al. [33] 2.25 BUB – −0.5∗ 0.87∗∗ – –
∗p < 0.05; ∗∗p < 0.01; †Volumetric BMD; ††Spearman correlation coefficient

Hoffmeister et al. [55]. found, using an ultrasound transducer with a center
frequency of 2.25 MHz, that AIB increased significantly (13.9–14.9%) after decol-
lagenization of trabecular bone samples. Further, AIB at 5 MHz frequency asso-
ciated significantly with the collagen content of human trabecular bone matrix
(Table 10.5). In addition, when the effect of trabeculae thickness (Tb.Th), separation
(Tb.Sp) and the mineral content of trabecular bone matrix were minimized (partial
correlation) the correlation between the collagen content and AIB was significant
(r = −0.65, n = 20, p < 0.01) [31]. AIB values measured with 5.0 MHz seem to be
more sensitive for collagen content of bone matrix than for bone volume fraction
(Table 10.5).

The properties of bone marrow also contribute to interactions of sound wave
within trabecular bone. This can be expected because of the different acoustic prop-
erties of yellow (adipose) and red (hematopoietic) marrow. The effect of variations
in marrow composition on ultrasound parameters has been simulated and experi-
mentally measured by replacing the marrow with either alcohol or water [49,67,68].
Experimentally, substitution of bone marrow with water decreased the attenuation,
BUA and BUB, and increased the phase velocity [49, 68]. Similar observations for
the BUB and attenuation were reported in numerical simulations, and the SOS was
found to increase after the substitution of marrow with water [67]. However, this
is not fully consistent as previous studies have also reported that the replacement
of bone marrow with water has negligible effects on the nBUA or SOS [69, 70].
In simulations, the change in ultrasound parameters depended on bone volume
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fraction [67]. Therefore, discrepancies in previous results may relate to variations
in bone densities of trabecular samples in use and further investigations on bone
samples with highly variable mineral density or volume fraction are warranted.

All pulse-echo parameters (IRC, BUB and AIB) have been shown to correlate
significantly with the ultimate strength of human trabecular bone (Table 10.5). Con-
sistently at both low and high ultrasound frequencies, AIB served as a significant
predictor of ultimate strength (Table 10.5). Interestingly, by combining the reflec-
tion and backscattering parameters, e.g. IRC and spatial standard deviation of AIB,
the prediction value for ultimate strength of human trabecular bone was found to
increase up to r = 0.92 in an in vitro study (n = 19, p = 0.01, Fig. 10.8) [34].

In in vivo studies imaging devices help to improve localization of the mea-
surements. Imaging, realized by either phased array [27, 57] or scanning systems
[71], has been applied for measurements of backscatter parameters. The backscat-
ter parameters measured at the calcaneus have been related with the calcaneal BMD
[27] and occurrence of fractures [71] at the frequency range of 0.2–2.25 MHz. At the
higher frequency (2.25 MHz), the linear correlation between BUB and BMD, was
0.87 (n = 10) (Table 10.6). At the lower frequency (0.5 MHz), the linear correlation

Fig. 10.8 (a) The linear combination of the mean value of the IRC and standard deviation (SD) of
the AIB within the ROI served as a strong predictor (r = 0.92) of the human trabecular bone ulti-
mate strength. Both pulse-echo ultrasound and (b) BMD measured with DXA predicted trabecular
bone strength similarly (Reprinted from Riekkinen et al. [34], IOP Publishing Ltd.)

Table 10.6 Prediction of bone mineral density (BMD) in vivo by using the pulse-echo ultrasound
parameters (BUB and centroid shift). BUB is measured from the calcaneus and compared to BMD
at calcaneus and proximal femur. Centroid shift is measured at the lumbar spine (L3–L4) through
the abdomen and compared to the BMD at the same site

Study
Frequency
(MHz) Parameter Site BMDcalc BMDhip BMDspine

Roux et al. [71] 0.5 BUB Calc. 0.34∗

Wear and Garra [27] 2.25 BUB Calc. 0.87∗∗

Garra et al. [57] 2.5 Centroid shift Spine 0.61
∗p < 0.05; ∗∗p < 0.01
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between BUB and BMD of total hip was much lower (r = 0.34, n = 240), however
statistically significant [71]. Further, the BUB was able to discriminate the fracture
and non-fracture patient groups.

Only one study has reported data on ultrasound measurements at lumbar spine
in vivo [57]. The measurements were obtained through the abdomen at the centre
frequency of 2.5 MHz. The authors showed a moderate linear correlation between
the centroid shift of the ultrasound backscattered spectrum and the BMD of ver-
tebrae (r = 0.61, n = 9, p < 0.05). However, the small number of patients is a
limitation for the final conclusions of this preliminary study.

10.4.2 Through-Transmission Measurements

The through-transmission techniques have a longer history than the pulse-echo tech-
niques for determination of acoustic properties of trabecular bone. In this section,
only the newest applications and results are introduced.

The ultrasound through-transmission parameters at heel correlate more closely
with the heel BMD values than those of the central skeletal sites, e.g. hip and spine.
This is an obvious motivation, accompanied by the fact that the site specific mea-
surement is needed for the best prediction for fractures and for introduction of the
TT ultrasound measurements at the proximal femur. Both slices from the proximal
femur and intact proximal femora have been investigated in vitro [23,32,58,72–75]
and in vivo [74, 76–78]. In the former case, BUA and SOS correlated highly signif-
icantly with the BMD and the microarhitectural parameters, e.g. trabeculae spacing
(r = 0.74–0.90 and r = −0.79–0.81, respectively) [32, 72]. Interestingly, SOS was
usually a better predictor of BMD than BUA in intact samples (r = 0.78–0.96 versus
r = 0.70–0.87) [73, 74]. However, the linear combination of SOS and BUA associ-
ated even more strongly with the BMD (r = 0.95) [73].

In 2008, after more than 20 years history of ultrasound research for osteoporo-
sis diagnostics, a through-transmission technique suitable for in vivo measurement
of proximal femur was introduced [76–78]. A relatively good estimated precision
(CV = 0.5%) of SOS measurement was reported, i.e. comparable with that of cal-
caneal QUS devices [77]. First clinical results for women with or without fracture
reveal encouraging performance of the technique (Table 10.7).

The linear combination of SOS values measured through the soft tissue, through
cortical bone (edge of bone on 2D SOS image) and through trabecular region
(Fig. 10.9) correlated significantly with the total hip BMD (r = 0.85). In addition,
the hip TT ultrasound served as similar predictor of fractures as the hip DXA [76].

In vivo ultrasound measurements of lumbar spine are challenging due to the large
amount of soft tissue overlying the bone, as well as due to the complex form of the
vertebrae. The spinous processes form a large error source for through-transmission
measurements in antero-posterior direction whereas the pulse-echo measurements
may be done through the abdomen [57]. The first in vitro TT-measurements with
intact samples have been conducted in the medio-lateral direction [79]. Indeed, the
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Table 10.7 Through transmission parameters, i.e. broadband ultrasound attenuation (BUA), speed
and attenuation of sound (SOS and attenuation, respectively) associate significantly with the struc-
tural and mechanical properties of trabecular bone in vitro and in vivo at the proximal femur and
spine

Study/Site
Frequency
(MHz) Parameter BMD BV/TV TrTh TrSp

Failure
load

In vitro slices
[72] Fem. 0.5 BUA 0.85–0.90∗∗

[32] Fem. 1.0 nBUA 0.79∗∗† 0.83∗∗ 0.57∗∗ −0.79∗∗

1.0 SOS 0.74∗∗† 0.81∗∗ 0.43∗∗ −0.81∗∗

Intact
[73] Fem. 0.5 SOS 0.78–0.95∗∗

0.5 BUA 0.70–0.85∗∗

[74] Fem. 0.5 SOS 0.90–0.96∗∗

0.5 BUA 0.78–0.87∗∗

[79] Spine 1.0 SOS 0.75∗ 0.71∗

1.0 BUA 0.63* 0.80∗∗

1.0 Att. 0.79∗∗ 0.93∗∗

In vivo
[76] Fem. 0.6 SOS 0.75–0.76∗∗

0.6 BUA 0.51∗∗
∗p < 0.05; ∗∗p < 0.01; †Volumetric BMD

Fig. 10.9 Ultrasound attenuation through the human proximal femur may be compared to X-ray
attenuation (left and right images, respectively). Linear combination of speed of sound in different
region of interests (t – trabecular region, c – cortical region and s – soft tissue regions) may provide
a significant prediction value for BMD (Adapted from Barkmann et al. [76] Copyright (2009) with
kind permission from Springer Science + Business Media)

attenuation of ultrasound in the medio-lateral direction predicted more closely the
failure load of vertebrae (r = 0.93, n = 11, p < 0.01) than the BMD (r = 0.78,
n = 11, p < 0.01) [79]. For successful application of spinal measurements in vivo,
more research is needed and e.g. uncertainties related to variable soft tissues have
to be addressed.
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10.5 Clinical Suitability of Quantitative Bone Ultrasound

Osteoporosis is a rapidly growing musculoskeletal health problem and, at the
moment, it is estimated that 200 million people around the world suffer from it [80].
However, a majority of osteoporotic patients are not diagnosed until low-trauma
fractures occur. For effective management of osteoporosis, early diagnostics should
focus on screening of individuals at risk before fractures occur. This is possible
only if effective diagnostics can be realized at the primary health care level. At the
moment, primary healthcare practitioners typically make a referral to major hospi-
tals and an axial DXA measurement of areal BMD (g/cm2) is performed to diagnose
osteoporosis. In addition to BMD, several qualities (including composition and
structure) contribute to the total strength of the bone and only a moderate prediction
of fracture risk is achieved by DXA. Actually, a majority of the low trauma fractures
occurs in individuals with normal areal BMD [81]. It could be argued whether the
DXA or the quantitative computed tomography (QCT) with limited information on
bone quality can serve as optimal diagnostic techniques [82, 83]. The DXA devices
are mostly available only in major hospitals, and due to costs and the radiation dose,
these devices are not optimal for screening purposes.

The site specific areal BMD is needed for the best prediction of fractures at the
lumbar spine and proximal femur using DXA [84, 85]. This information highlights
the potential of local ultrasound measurements at the severe fracture sites. How-
ever, the QUS measurements of heel have also been shown to predict bone fractures
[86–89], including the fractures at the hip [3, 90–93] and vertebrae [94–96] in spe-
cific populations similarly as axial BMD measurement [86–88, 94–96]. Thus, the
peripheral measurements may still be suitable for screening a large number of pa-
tients. The potential of peripheral ultrasound measurements is also highlighted by
the promising results with a highly portable and low-cost heel device [97].

In summary, there is a growing need for a reliable and affordable bone di-
agnostics, applicable at the primary health care level for fracture prediction and
osteoporosis management. At the moment (2010), the through-transmission tech-
nique has successfully been applied for measuring hip, the most severe osteoporotic
fracture site. When measuring central skeletal sites, the soft tissues overlying the
bones and the complex shape of bone, e.g. the proximal femur or lumbar spine, pro-
duce challenges for successful quantitative ultrasound analysis of trabecular bone.
The axial TT-devices may be large, similar in size to DXA instruments, and portabil-
ity, important advantage of the use of ultrasound, is lost. The traditional pulse-echo
ultrasound imaging technique also shows potential for bone diagnostics. However,
the clinical feasibility PE-ultrasound has not been established although one in vivo
study on ultrasound backscatter measurements at the central skeleton has been pub-
lished [57]. When considering the in vivo feasibility, the inherent challenges of
bone QUS measurements apply to PE techniques as well and more in vivo stud-
ies are needed. However, the potential of these techniques has been evidenced by
high number of in vitro experimental and computational studies. As a main goal,
the QUS techniques should be evaluated for most effective prediction of bone frac-
tures. Considering the safety (non-ionizing), portability and the reasonable price of
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the ultrasound devices, the novel techniques may enhance the management of
osteoporosis and fracture prevention by providing the future diagnostic solution for
small practices and health care centers.
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63. J. Karjalainen, J. Töyras, T. Rikkonen, J. S. Jurvelin, and O. Riekkinen, “Dual-frequency ul-
trasound technique minimizes errors induced by soft tissue in ultrasound bone densitometry,”
Acta Radiol 49, 1038–1041 (2008).

64. C. M. Langton and C. F. Njeh, “The measurement of broadband ultrasonic attenuation in can-
cellous bone–a review of the science and technology,” IEEE Trans Ultrason Ferroelectr Freq
Control 55(7), 1546–1554 (2008).

65. P. Laugier, “Instrumentation for in vivo ultrasonic characterization of bone strength,” IEEE
Trans Ultrason Ferroelectr Freq Control 55(6), 1179–1196 (2008).

66. S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. Laugier, “Ultrasonic characteriza-
tion of human cancellous bone using transmission and backscatter measurements: relationships
to density and microstructure,” Bone 30(1), 229–237 (2002).

67. A. S. Aula, J. Toyras, M. A. Hakulinen, and J. S. Jurvelin, “Effect of bone marrow on acoustic
properties of trabecular bone – 3D finite difference modeling study,” Ultrasound Med Biol
35(2), 308–318 (2009).

68. M. Pakula, F. Padilla, and P. Laugier, “Influence of the filling fluid on frequency-dependent
velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz,” J Acoust Soc Am
126(6), 3301–3310 (2009).

69. C. M. Langton, C. F. Njeh, R. Hodgskinson, and J. D. Currey, “Prediction of mechanical
properties of the human calcaneus by broadband ultrasonic attenuation,” Bone 18(6), 495–503
(1996).

70. C. F. Njeh and C. M. Langton, “The effect of cortical endplates on ultrasound velocity through
the calcaneus: an in vitro study,” Br J Radiol 70(833), 504–510 (1997).

71. C. Roux, V. Roberjot, R. Porcher, S. Kolta, M. Dougados, and P. Laugier, “Ultrasonic backscat-
ter and transmission parameters at the os calcis in postmenopausal osteoporosis,” J Bone Miner
Res 16(7), 1353–1362 (2001).

72. F. Padilla, L. Akrout, S. Kolta, C. Latremouille, C. Roux, and P. Laugier, “In vitro ultrasound
measurement at the human femur,” Calcif Tissue Int 75(5), 421–430 (2004).

73. G. Haiat, F. Padilla, R. Barkmann, S. Dencks, U. Moser, C. C. Gluer, and P. Laugier, “Optimal
prediction of bone mineral density with ultrasonic measurements in excised human femur,”
Calcif Tissue Int 77(3), 186–192 (2005).

74. R. Barkmann, P. Laugier, U. Moser, S. Dencks, F. Padilla, G. Haiat, M. Heller, and C. C. Gluer,
“A method for the estimation of femoral bone mineral density from variables of ultrasound
transmission through the human femur,” Bone 40(1), 37–44 (2007).



288 J.P. Karjalainen et al.

75. S. Dencks, R. Barkmann, F. Padilla, G. Haiat, P. Laugier, and C. C. Gluer, “Wavelet-based
signal processing of in vitro ultrasonic measurements at the proximal femur,” Ultrasound Med
Biol 33(6), 970–980 (2007).

76. R. Barkmann, S. Dencks, P. Laugier, F. Padilla, K. Brixen, J. Ryg, A. Seekamp, L. Mahlke,
A. Bremer, M. Heller, and C. C. Gluer, “Femur ultrasound (FemUS)-first clinical results on
hip fracture discrimination and estimation of femoral BMD,” Osteoporos Int 21(6), 969–976
(2010).

77. R. Barkmann, P. Laugier, U. Moser, S. Dencks, M. Klausner, F. Padilla, G. Haiat, M. Heller, and
C. C. Gluer, “In vivo measurements of ultrasound transmission through the human proximal
femur,” Ultrasound Med Biol (2008).

78. R. Barkmann, P. Laugier, U. Moser, S. Dencks, M. Klausner, F. Padilla, G. Haiat, and
C. C. Gluer, “A device for in vivo measurements of quantitative ultrasound variables at the hu-
man proximal femur,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1197–1204 (2008).

79. P. H. Nicholson and R. Alkalay, “Quantitative ultrasound predicts bone mineral density and
failure load in human lumbar vertebrae,” Clin Biomech (Bristol, Avon) 22(6), 623–629 (2007).

80. U. Tarantino, G. Cannata, D. Lecce, M. Celi, I. Cerocchi, and R. Iundusi, “Incidence of fragility
fractures,” Aging Clin Exp Res 19(4 Suppl), 7–11 (2007).

81. A. Cranney, S. A. Jamal, J. F. Tsang, R. G. Josse, and W. D. Leslie, “Low bone mineral density
and fracture burden in postmenopausal women,” Cmaj 177(6), 575–580 (2007).

82. J. E. Adams, “Quantitative computed tomography,” Eur J Radiol 71(3), 415–424 (2009).
83. H. H. Bolotin, “DXA in vivo BMD methodology: an erroneous and misleading research and

clinical gauge of bone mineral status, bone fragility, and bone remodelling,” Bone 41(1),
138–154 (2007).

84. D. Marshall, O. Johnell, and H. Wedel, “Meta-analysis of how well measures of bone mineral
density predict occurrence of osteoporotic fractures,” BMJ 312(7041), 1254–1259 (1996).

85. M. L. Bouxsein, L. Palermo, C. Yeung, and D. M. Black, “Digital X-ray radiogrammetry pre-
dicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the
study of osteoporotic fractures,” Osteoporos Int 13(5), 358–365 (2002).
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Chapter 11
The Fast and Slow Wave Propagation
in Cancellous Bone: Experiments
and Simulations

Atsushi Hosokawa, Yoshiki Nagatani, and Mami Matsukawa

Abstract Cancellous bone consists of a complex solid trabecular network structure
filled with soft bone marrow. The use of a short and broadband ultrasound incident
pulse enables the experimental observation of a two longitudinal wave phenomenon,
consistently with Biot’s prediction for porous media. This chapter is a review of the
experimental studies and discusses theoretical interpretations, including the Biot’s
theory and modified Biot’s models. The inhomogeneous nature of cancellous bone
often results in some discrepancies between theory and experimental results. How-
ever, the two-wave phenomenon may provide detailed information on the structure
and characteristics of cancellous bone, beyond conventional quantitative ultrasound
(QUS) parameters. In order to understand this complex wave propagation in can-
cellous bone, numerical simulations offer an interesting and powerful alternative
to intractable analytical approaches. Recent progress in computer performances
enables the visualization of wave propagation using for example finite difference
numerical methods, combined with three-dimensional numerical models of actual
cancellous bone structures. In addition, the numerical investigation using virtual
trabecular structures brings insightful view into the two-wave phenomenon, which
cannot be obtained using the experiments. Finally, this chapter also refers to a new
in vivo technique based on the two-wave phenomenon.

Keywords Angle-dependent Biot’s model (stratified Biot’s model) · Anisotropy ·
Artificial model of trabecular structure · Bayesian probability theory · Biot’s the-
ory · Bone mineral density (BMD) · Bone volume fraction (BV/TV) · Cancellous
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bone · Cancellous bone phantom · Clinical application · Degree of anisotropy
(DA) · Erosion/dilation procedure · Fast and slow waves · Finite element method
(FEM) · Finite-difference time-domain (FDTD) method · Focused (concave) trans-
mitter · Frequency-dependent ultrasound attenuation (FDUA) · Image processing
technique · Inhomogeneous · In-silico approach · LD-100 · Mode conversion ·
Modified Biot-Attenborough (MBA) model · Numerical simulation · Overlapping
fast and slow waves · Poly(vinylidene fluoride) (PVDF) transducer · Scalogram ·
Scattering · Short-time Fourier transform · SimSonic · Spectrograms · Stratified
model · (Schoenberg’s model) · Synchrotron radiation microcomputed tomography
(SR-μ CT) · Trabecular length Trabecular microstructure · Trabecular orientation ·
Trabecular thickness · Two-wave phenomenon · Virtual specimen · Viscous friction ·
Wave separation technique · Wavelet transform · X-ray μ CT

11.1 Introduction

The main consequences of osteoporosis are dynamic structural changes, such as loss
of bone mass and alterations of microstructure, that manifest in cancellous bone.
Many clinically available quantitative ultrasound (QUS) technologies focus on the
measurements on cancellous bone sites, such as the heel. The difficulty with ul-
trasound measurements of cancellous bone and their interpretation comes from the
complex marrow-filled solid trabecular structure interacting with ultrasound waves.
Complex interaction phenomena between propagating ultrasound waves and bone
arise from such an inhomogeneous and anisotropic porous medium [1]. The Biot’s
theory [2, 3] (see Chap. 5 for more details) describing wave propagation in porous
media has been applied to cancellous bone, predicting two kinds of longitudinal
waves, referred to as fast and slow waves. Following the seminal work of McKelvie
and Palmer [4], several models based on the Biot’s theory have been introduced and
have enjoyed varying degrees of success.

However, as pointed out by Kaufman et al. [5] the analytic solutions to propa-
gation in cancellous bone have some limitations due to the associated irregular ge-
ometry and inhomogeneous character of bone. Actually, dramatic variations of bone
volume fraction and important fluctuations of trabecular orientation can be observed
not only between different cancellous bone specimens, but also within a single
skeletal site like for example the epiphysis of long bones [6]. This is one reason why
many research studies have been mainly based on experimental data, both in vitro
and in vivo. In the 1990s, another approach to solve this problem consisted in the
use of computer simulations of ultrasound wave propagation. Following the suc-
cessful application of numerical simulations to electromagnetic waves propagation,
simulation studies have been widely spread to understand the nature of elastic wave
propagation in bone. One novel idea was to solve the wave propagation equations
using approaches like finite-difference time-domain (FDTD) [7] or finite element
methods (FEM) in combination with the actual three-dimensional (3-D) structure
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of bone obtained by high-resolution synchrotron radiation microcomputed tomog-
raphy (SR-μCT) or X-ray μ CT.

This chapter introduces the interesting wave propagation phenomena in cancel-
lous bone, from both the experimental and simulation points of view. Especially,
focusing on the propagation of two longitudinal waves, results are discussed in
light of theoretical predictions. The two longitudinal waves convey broader in-
formation on cancellous bone characteristics than the conventional simple QUS
parameters like speed of sound (SOS) or broadband ultrasound attenuation (BUA),
because wave propagation strongly depends on the structural properties of the
cancellous bone.

11.2 Experimental Approach: Measurement of Fast
and Slow Waves

11.2.1 Observation of Fast and Slow Waves

The experimental observation of the fast and slow longitudinal waves propagating
in cancellous bone was first reported by Hosokawa and Otani [8]. In their in vitro
experiments, bovine cancellous bone with bone marrow in situ was used. The can-
cellous bone specimens with approximately 25 mm in size and 9 mm in thickness
were cut from the distal epiphysis of the femora. The specimens were immersed
in water and degassed to remove air bubbles before performing the experiments.
Ultrasound pulse waves propagating through the specimens were observed by a
water-immersion ultrasound technique, in which a pair of broadband (0.1–10 MHz)
poly(vinylidene fluoride) (PVDF) transducers with a flat surface were used. A short
pulse wave with a center frequency of 1 MHz was applied to the specimen at normal
incidence in the thickness direction. The direction of propagation corresponded to
the superoinferior (SI) direction, which is designated as the longitudinal direction in
Hosokawa and Otani [8]. In this direction, the trabecular elements were strongly
oriented. The observed waveforms are shown in Fig. 11.1, and Fig. 11.1a and b
show respectively the waveforms for the specimens with low and high bone vol-
ume fractions (BV/TV) of 0.17 and 0.25. In both figures, two distinct longitudinal
waves, referred to as the fast and slow waves, can be clearly observed. As the vol-
ume fraction of the solid bone increases and the fraction of the pore spaces filled
with bone marrow decreases, the amplitude of the fast wave becomes greater and
the amplitude of the slow wave becomes smaller. Therefore, it can be deduced that
the fast and slow waves are respectively associated with the trabecular elements and
pore spaces in cancellous bone. The fast wave speed was slower than the speed in
bovine cortical bone, which can be explained by the fact that cancellous bone is not
dense but porous. On the other hand, the slow wave speed was close to the speed in
bone marrow. In general, the fast and slow waves are respectively composed of the
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Fig. 11.1 Experimentally observed fast and slow wave modes propagating through bovine femoral
cancellous bone with bone volume fractions (BV/TV) of (a) 0.17 and (b) 0.25 in the superoinfe-
rior (SI) direction (Reprinted with permission from [8] copyright (1997), Acoustical Society of
America)
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Fig. 11.2 Typical ultrasound pulse waveforms propagating through human vertebral cancellous
bone in three orthogonal directions. The CC (craniocaudal) axis corresponds to the SI (superoinfe-
rior) axis (Reprinted from [14] copyright (1998) with permission from Elsevier)

low- and high-frequency components [9, 10], which can be clearly observed in the
upper waveform of Fig. 11.2.

Two major factors influencing the possibility of observing the fast and slow
waves must be considered. The first one corresponds to the transducers properties
used for transmitting and receiving the ultrasound pulse wave. Because the prop-
agation times of the fast and slow waves are comparable, a very short pulse wave
is required for observing the two waves separately, as shown in Fig. 11.1. The ob-
servation of both waves cannot necessarily be realized by increasing the frequency
because the attenuation of the fast wave is high at frequencies over 1 MHz (see
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cellous bone. Vf represents the bone volume fraction (BV/TV) (Reprinted with permission from
[8] copyright (1997), Acoustical Society of America)

Fig. 11.3a). Some broadband transducers made of piezoelectric ceramics, typically
lead-zirconate-titanate (PZT), used in the nondestructive testing have a bandwidth of
only a few MHz, and therefore, slight oscillations can be caused in the output signal.
On the other hand, transducers made of piezoelectric polymer films [11–13], such
as PVDF, have a much broader bandwidth over 10 MHz, that is a good temporal res-
olution, despite a limited output. When focused transducers with a concave surface
are used, the output can be enlarged and the spatial resolution becomes higher.

The second factor required for the observation of two waves is the direc-
tion of wave propagation relatively to the anatomical orientation of cancellous
bone. Nicholson et al. [14] experimentally observed pulse waveforms propagat-
ing through human vertebral cancellous bone in three orthogonal directions of the
CC (craniocaudal), AP (anteroposterior), and ML (mediolateral) axes. The observed
waveforms are shown in Fig. 11.2, where two waves can be observed in the CC di-
rection, but only a single wave is observed in the other directions. The trabecular
orientation was strong in the CC direction, which corresponds to the SI direction,
but weak in the AP and ML directions. Hosokawa and Otani [15], and Mizuno et al.
[6] also demonstrated that cancellous bone had a strong acoustic anisotropy and that
the observed waveform propagating through bone changed with the propagation di-
rection to the trabecular orientation. As described above, it can be considered that
the fast and slow waves propagate mainly in the trabeculae and in the saturating
medium (water or bone marrow), respectively. In the propagation parallel to the
major trabecular orientation, two propagation paths along the major trabecular and
saturating medium parts can be clearly separated, which results in the observation of
the two waves. In the propagation perpendicular to the major trabecular orientation,
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on the other hand, the propagation path across both major trabecular and pore parts
can be scarcely separated, strictly slight separation of two paths along the minor tra-
becular and pore parts can be generated. This results in the large overlap of the two
waves and then, it appears as if only a single wave propagates. In conclusion, the
separation of the fast and slow waves becomes clearer as the trabecular orientation
becomes stronger in the propagation direction, i.e., as the degree of anisotropy (DA)
increases. In transverse transmission techniques, which are widely used to measure
QUS parameters of speed of sound (SOS) and broadband ultrasound attenuation
(BUA), the ultrasound wave propagates through the calcaneus in the ML direction
perpendicular to the trabecular orientation and therefore, the two waves cannot be
observed.

The observation of the fast and slow waves in cancellous bone under various con-
ditions has been reported. Table 11.1 summarizes the specimens and experimental
conditions necessary to observe the waveform separated into the two waves. For in-
stance, two waves were also observed for specimens saturated with water instead of
bone marrow.

11.2.2 Application of Theoretical Models

Several theoretical models have been used to explain the propagation of both the
fast and slow waves in cancellous bone. The application of Biot’s theory [2, 3] (see
Chap. 5) to cancellous bone was proposed [4, 25] before the first observation of the
fast and slow waves. The Biot’s theory predicts that two longitudinal waves, which
were denoted as “waves of the first and second kind”, can propagate through a fluid-
saturated porous elastic solid. Therefore, it was considered that the experimentally
observed fast and slow waves in cancellous bone most probably corresponded to the
two waves predicted in the Biot’s theory, and subsequently the Biot’s theory was
applied to predict the propagation properties of both waves [8,15,16]. The compar-
ison of the theoretical propagation properties calculated by the Biot’s model with
the experimental results is shown in Figs. 11.3 [8] and 11.4 [24]. In calculating the
propagation speed of the fast wave as a function of BV/TV, the exponent param-
eter value (see details in Sect. 5.3.2), which depends on the trabecular structure,
was adjusted to fit the experimental results. Then, the other propagation properties
were calculated using the adjusted value. For both bovine and human cancellous
bone specimens, as shown in Fig. 11.4, the fast wave speed increases with BV/TV
while the slow wave speed slightly decreases. The theoretical results for the prop-
agation speeds of both the fast and slow waves are in a good agreement with the
experimental results for both bovine and human specimens. However, in Fig. 11.3,
the theoretical results for the frequency dependences of the attenuation coefficients
at three values of BV/TV (Vf ) largely deviate from the experimental results. In
particular, the experimental attenuation coefficient of the fast wave (Fig. 11.3a) is
larger than that of the slow wave (Fig. 11.3b) throughout the frequency range, which
contradicts the theoretical results. In the Biot’s theory, it is specified that the slow
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Table 11.1 Specimen and experimental conditions in clearly separating fast and slow waves in
cancellous bone

Specimen conditions Experimental conditions

Bone BV/TV Filling fluid Transducer type
Propagation
direction Reference

Bovine femur 0.17, 0.25 Bone
marrow

PVDF (0.1–10 MHz) Longitudinal
direction

[8]

Human
vertebra

Bone
marrow

Broadband (1 MHz) Craniocaudal
direction

[14]

Bovine femur 0.18 Bone
marrow

PVDF (0.1–10 MHz) Longitudinal
direction

[15]

Bovine femur 0.19–0.12 Water PVDF Longitudinal
direction

[16]

Bovine femur,
tibia

0.35 Bone
marrow

Resonance (1 MHz) Parallel
direction to
the
trabeculae

[17]

Bovine tibia Water Panametrics V306
(2.25 MHz)

Superoinferior
direction

[18]

Bovine femur,
vertebra

Bone
marrow,
Water
Alcohol

Panametrics V302SU
(1 MHz), V304SU
(2.25 MHz)

Trabecular-
oriented
direction

[9, 19]

Bovine femur Water Panametrics V323SU [10]
Human femur,

tibia
(2.25 MHz)

Human femur 0.12–0.23 Water Panametrics A306S
(2.25 MHz)

Trabecular-
aligned
direction

[20]

Human femur 0.06–0.41 Water Panametrics A303S
(1 MHz)

Trabecular-
aligned
direction

[1, 21–23]

Bovine femur Water A pair of Toray
custom-made
PVDF focus
transmitter and
self-made PVDF
receiver

Parallel to the
predominant
trabecular
orientation

[6]

Human femur 0.19, 0.30 Water A pair of Toray
custom-made
PVDF focus
transmitter and
home-made PVDF
flat receiver

Main load
direction

[24]

The longitudinal and craniocaudal directions correspond to the superoinferior direction

wave is more attenuated than the fast wave [2, 3]. In addition, it is observed in the
experimental results that the fast wave attenuation rapidly increases over 1 MHz,
which is not predicted by theoretical results.
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Fig. 11.4 Comparison
between theoretical results
calculated using the Biot’s
model and experimental
results for propagation speeds
of fast and slow waves in
bovine and human cancellous
bones (Reprinted with
permission from [24]
copyright (2009), Acoustical
Society of America)
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The discrepancy between the theoretical and experimental attenuation coeffi-
cients can be due to the fact that the Biot’s model only considers absorption loss due
to the viscous friction at interfaces between the solid and fluid, and does not account
for additional sources of energy loss. In particular, scattering effects (see Chap. 6)
are neglected by assuming that the ultrasound wavelength is sufficiently large in
comparison with the pore size in cancellous bone. However, pore size in the approx-
imate range of 0.5–1.5 mm for human femoral cancellous bone [27] is comparable
to the wavelength of 1.5 mm at 1 MHz in water. The rapid increase in the attenuation
coefficient of the fast wave observed in Fig. 11.3a could be due to the rising contri-
bution with frequency of scattering to total loss. Haire and Langton [28] indicated in
their review of the application of the Biot’s model to cancellous bone that inaccurate
prediction of the attenuation coefficients was partially due to incomplete under-
standing of the parameters in the model. Then, the modified Biot’s models have
been developed. Lee et al. [29–31] theoretically estimated the propagation prop-
erties using the modified Biot-Attenborough (MBA) model [32]. The comparisons
between the theoretical and experimental results are shown in Fig. 11.5, where a
good agreement can be observed for not only the propagation speeds (Fig. 11.5a) but
also for attenuation coefficients (Fig. 11.5b). Fellah et al. [1, 20–23] analytically re-
produced the fast and slow waveforms propagating through human cancellous bone
slabs using the Biot’s model modified by the theory of Johnson et al. [33] (Biot-
Johnson model), as shown in Fig. 11.6, and they were able to give estimates of bone
structural parameters by solving the inverse problem. Lee et al. [31] and Hughes
et al. [34] calculated the fast and slow wave speeds as a function of the angle of the
main trabecular orientation, by introducing an angle-dependent structural parameter
in the Biot’s model. Hughes et al. called this model the stratified Biot’s model.

With the Biot’s models, the stratified model, namely Schoenberg’s model [35],
has been applied to the propagation of both the fast and slow waves in cancellous
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Fig. 11.5 Comparison between theoretical results calculated using the MBA model and
experimental results for (a) propagation speeds and (b) attenuation coefficients of fast and slow
waves in bovine cancellous bone. “Mixed” represents completely overlapped fast and slow waves
(Reprinted from [30] copyright (2006) with permission from Elsevier)

Fig. 11.6 Comparison
between theoretical result
(dashed line) calculated using
the modified Biot’s model
and experimental result
(solid line) for fast and slow
waveforms in human
cancellous bone (Reprinted
with permission from [20]
copyright (2004), Acoustical
Society of America)

bone [17, 36]. The stratified model, which is composed of periodically alternat-
ing trabecular and fluid layers, is an idealized model of cancellous bone with a
strongly oriented trabecular structure. Using this model, the propagation speeds of
both waves can be easily calculated as a function of the angle of the trabecular orien-
tation, although the attenuation coefficients cannot be calculated. Results calculated
using the stratified model are compared to experimental results in Fig. 11.7. In both
theoretical and experimental results, the fast wave speed decreases when the angle
between the trabecular orientation and the propagation direction increases, which
can cause the overlap of the fast and slow waves. Thus, the acoustic anisotropy
of cancellous bone can be interpreted in the context of the stratified model. The
comparison with the angle-dependent Biot’s model (stratified Biot’s model) was
performed by Lee et al. [31] and Hughes et al. [34]. The results obtained by Hughes
et al. are shown in Fig. 11.7. In spite of a much simpler model, the dependence
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Fig. 11.7 Comparison between theoretical results calculated using the stratified and angle-
dependent Biot’s models and experimental results for propagation speeds of fast and slow waves
in bovine cancellous bone. The vertical and horizontal axes represent the propagation speed (m/s)
and the angle of the trabecular orientation (◦), respectively. The values of 0 and 90 in the hor-
izontal axis correspond to the perpendicular and parallel trabecular orientations (Reprinted with
permission from [34] copyright (2007), Acoustical Society of America)

of both the fast and slow wave speeds on the angle between the trabecular ori-
entation and the propagation direction is appropriately predicted by the stratified
model. Based on the stratified model, moreover, Pakula et al. [9, 19] developed a
microcontinual cellular model for a short ultrasound waves and compared it with
the macrocontinual Biot’s model. Hosokawa [37–39] developed cancellous bone
phantoms consisting of stratified layers with trabecular rods or pore spaces in the
direction perpendicular to layers, and investigated the effects of the perpendicular
trabeculae and pores on the fast and slow waves. The author found that both the fast
and slow wave amplitudes could be decreased owing to the scattering caused by the
perpendicular trabeculae and pores.

The Biot’s models require many parameters, including not only the material
parameters of the solid and fluid but also the structural parameters of the porous
frame. In Biot’s models (and particularly in the modified Biot’s models), various
additional structural parameters are introduced. For cancellous bone, however, most
of these structural parameters can easily be evaluated neither in vitro nor in vivo.
In addition, these parameters are not directly connected to the real bone structure
and their meanings are difficult to interpret. On the other hand, the stratified model
is simpler as fewer parameters required. The stratified model provides some in-
sight into the effect of the macroscopic structure in cancellous bone, that is the
effect of main trabecular orientation. However, modeling idealized stratified struc-
tures cannot provide a comprehensive understanding of the interaction between
ultrasound and real complex trabecular microstructures. Therefore, the actual prop-
agation phenomena of the fast and slow waves are likely not strictly the same as the
phenomena predicted by the stratified model [40]. Thus, both models have merits
and limitations. Furthermore, cancellous bone is highly inhomogeneous and the



11 The Fast and Slow Wave Propagation in Cancellous Bone 301

12 a b
10

8

6

4

2

0
0.0 0.2

Bone volume fraction Bone volume fraction

P
ro

pa
ga

ti
on

 s
pe

ed
 [
m

/s
]

A
m

pl
it
ud

e 
[m

V
]

0.4 0.6 0.8 1.0

3000

2000
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 11.8 Amplitude (a) and propagation speed (b) of fast wave in bovine cancellous bone as a
function of bone volume fraction (BV/TV). The data was obtained from various positions of a
specimen by using a focused PVDF transmitter (Reprinted with permission from [43] copyright
(2005), The Japanese Society of Applied Physics)
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Fig. 11.9 Amplitude (a) and propagation speed (b) of slow wave in bovine cancellous bone as
a function of bone volume fraction (BV/TV). The data was obtained from various positions of a
specimen by using a focused PVDF transmitter (Reprinted with permission from [43] copyright
(2005), The Japanese Society of Applied Physics)

propagation properties largely vary with the position in the bone (see Figs. 11.8 and
11.9). In previously performed theoretical analyses, only averaged properties over
the analyzed region of cancellous bone have been taken into account.

11.2.3 Effect of Structure on the Wave Propagation

The effects of both macroscopic and microscopic trabecular structures on the ultra-
sound waves must be elucidated to derive better understanding of the propagation
phenomena in cancellous bone. Depending on the macroscopic trabecular orienta-
tion, as described in Sect. 11.2.1, time separation (or overlap) of the fast and slow
waves may occur, which can affect the estimation of the propagation properties.
Nicholson et al. [14] experimentally showed that the propagation properties in the
SI (CC) direction, in which the fast and slow waves could be observed, were differ-
ent from those in the other orthogonal directions. The authors also showed evidence
that the correlations with BV/TV of the propagation properties in the CC direc-
tion, except for the attenuation coefficient at 600 kHz, were much lower than in
perpendicular directions. In addition, strong dependences on various microstructural
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parameters, such as DA, were observed in the CC direction. These can be explained
by the fact that the propagation properties, except for the wave speed measured
from the first zero-crossing time, were derived using the entire waveform includ-
ing both the fast and slow waves. Thus, the estimated parameters did not reflect the
true properties of either the fast or the slow wave, but rather of a mixture of both
waves. In fact, Cardoso et al. [10] showed that the fast and slow waves had lower and
higher frequency spectral contents respectively (see Sect. 11.4.1 for details) and pro-
posed to define a new parameter termed frequency-dependent ultrasound attenuation
(FDUA) that can be computed separately for each wave component using time-
frequency analysis. Marutyan et al. [41, 42] showed, using various theoretical and
experimental models, that a mixed waveform composed of interfering (i.e., over-
lapping in time) fast and slow waves could result in apparent anomalous negative
velocity dispersion (see Chap. 12). In conclusion, the consideration of the depen-
dence of the two-wave propagation phenomenon on the trabecular orientation is
essential for accurate estimates of the propagation properties.

Variations of experimental peak-to-peak amplitudes and propagation speeds as
a function of BV/TV are shown in Fig. 11.8 for the fast wave and in Fig. 11.9 for
the slow wave [43]. The data were obtained from various positions of a bovine
cancellous bone specimen by using a focused PVDF transmitter. Figures 11.8 and
11.9 clearly show that both wave amplitude and speed are correlated with BV/TV,
positively for the fast wave and negatively for the slow wave. The results show
evidences of a high residual variability in the propagation properties of both the
fast and slow waves around the regression line, which are thought to be an effect
of the variability in the trabecular microstructure. Hosokawa et al. [16] compared
the Biot’s model to the experimental results using bovine cancellous bone speci-
mens dissolved by sulfuric acid solution. By the dissolution, the trabecular structure
changed from orthotropy to isotropy with decreasing BV/TV and the decrease of
the fast wave speed with decreasing BV/TV could be explained using the expo-
nent parameter which depends on the trabecular structure [26] in the Biot’s model
(see Sect. 5.3.2). Cardoso et al. [44] measured the fast and slow wave speeds for
various bovine and human specimens and explained using the same parameter that
the large variability in both wave speeds was due to the trabecular microstructure.
As shown in Fig. 11.10, Mizuno et al. [6] experimentally demonstrated that the fast
wave speed was highly correlated with the averaged trabecular length in the prop-
agation direction. Figure 11.10 includes data not only for the fast wave separated
from the slow wave in the direction parallel to the trabecular orientation (highest
speed values) but also for the mixed waveform (overlapping fast and slow waves) in
the perpendicular direction (lowest speed values). In both cases, the fast wave speed
was measured from the early arriving wavefront. Accordingly, the correlation of the
fast wave speed with the averaged trabecular length cannot depend on the separation
of the two waves.

Despite these preliminary results, the effects of the trabecular microstructure
have not yet been understood in detail and more investigations are thus required.
However, the detailed investigations using only experimental approaches appear to
be difficult because of the tremendous variability of microstructure in cancellous
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Fig. 11.10 Relation between propagation speed of fast wave in bovine cancellous bone and
averaged trabecular length in the propagation direction. The circular and triangle plots respec-
tively represent the fastest wave speeds in the direction parallel and perpendicular to the trabecular
orientation. tlm and tlo are respectively trabecular lengths in the parallel and perpendicular direc-
tions (Reproduced with authorization from [6] c© IEEE 2008)

bone. Numerical approaches using FDTD computations with realistic cancellous
bone models reconstructed from 3-D μCT datasets (in which various trabecular
structures can be easily manipulated by image processing techniques) are useful
for investigating the impact of in cancellous bone microstructure on propagation
characteristics (see Chap. 8 and next section for details).

11.3 Comparative Study of Experiments and Simulations

11.3.1 Simulation of Two-Wave Phenomenon

In the previous section, the experimentally measured behavior of the fast and slow
waves was described and compared to theoretical approaches. In addition to such
experimental approaches, investigations using numerical simulations were found to
be also useful to gain deep understanding of the two-wave phenomenon. A proper
3-D visualization of the propagation offers a large amount of information including
distinction of longitudinal and shear waves, circumferential wave or wave refraction
in the specimens, scattering from trabeculae into marrow etc., which can be difficult
to deduce from experimental data. Such knowledge may play a role in developing
future in vivo diagnostic systems. In addition, modern capacities of computers al-
low rapid generations of virtual specimens by controlled numerical variations of
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microstructural or material parameters of the specimens. This in silico approach is
believed to provide deep insight into the two-wave phenomenon.

Many approaches for simulations in bone have been proposed and performed
[5]. The main simulation technique is FDTD simulation. This method, which has
been historically widely applied for simulation of electro-magnetic fields [45], was
extended to treat wave propagation in elastic materials by Virieux [46]. The reader
is referred to Chap. 8 for a comprehensive analysis of FDTD simulation. In this
section, the investigations of ultrasound propagation in cancellous bone using FDTD
simulations are mainly described. In following simulation studies, pore spaces are
assumed to be filled with liquid or marrow.

The first finite difference (strictly, not FDTD) simulation of ultrasound in cancel-
lous bone was performed by Luo et al. [47]. The authors discussed the relationship
between trabecular structure and wave propagation using a 2-D model taken from
X-ray CT datasets. However, the separation of two waves was not obtained and one
possible reason could be the imperfect modeling of the trabecular network connec-
tivity from 2-D models.

The first 3-D FDTD simulation by Bossy et al. [48] targeted wave propagation
in cortical bone. Then, in 2005, the same group presented 3-D FDTD simulations
for cancellous bone [7]. In their study, 3-D cancellous bone structures (Fig. 11.11)
were reconstructed from human femur specimens measured with high resolution
SR-μCT. Propagation was simulated with the “SimSonic” software, based on an
FDTD algorithm, which computed a numerical solution to 3-D linear elastic wave
equations. The numerical bone model was placed between two unfocused transduc-
ers. Bone tissue was assumed to be isotropic and non-absorbing. The size of the
simulation models, shown in Fig. 11.11, was 5.6× 5.6× 10.86mm3 and the res-
olution was 30 μm. Under these conditions, the separation of the incident pulse
waveform into two waves was seen only when the ultrasound propagated parallel
to the main trabecular orientation (see Fig. 11.12). Note that the transmitter and the

Fig. 11.11 Three-dimensional view of synchrotron microtomographic reconstruction of typical
dense (a) and porous (b) trabecular samples (Reproduced from [7] copyright 2005. Permission
granted from IOP Publishing limited)
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Fig. 11.12 Signal measured through an anisotropic sample. (a) The ultrasonic wave propagates
across the main orientation of the trabeculae. (b) The ultrasonic wave propagates parallel to the
main orientation of the trabeculae. Only in case (b), two waves are observed (Reproduced from [7]
copyright 2005. Permission granted from IOP Publishing limited)

receivers were placed in direct contact with the solid portion so that the ultrasound
wave was directly applied to the bone structure. The propagation characteristics of
both waves were not investigated in detail in Bossy’s study. In a subsequent study by
Haı̈at et al. [49] where a thin water layer was positioned between the source and the
trabecular network in order to avoid any direct excitation of the trabecular network,
both fast and slow wave could also be observed for a propagation direction parallel
to the trabecular alignment.

Nagatani et al. [50, 51] analyzed the wave propagation focusing on two-wave
phenomena using 3-D bovine femur models. Figure 11.13 shows snapshots of the
distribution of sound pressure in liquid and the root-mean-square value of normal
stresses in solid at the central plane of the 3-D simulation field. Figure 11.13a–c
show the results without any bone specimen (only water in accounted for) and
Fig. 11.13d–f show the results with the specimen. The separation of fast wave and
slow wave can be noticed. Ultrasound waves are reradiated from the solid into the
liquid. A clear in-phase wavefront gradually forms, which is called “fast wave.”

The effect of changes of BV/TV (resulting from the application of an ero-
sion/dilation procedure) was studied by Haı̈at et al. [49] for fixed sample and
probing direction (Fig. 11.14). Results showing the dependence of the amplitude
and speed of the fast wave were in good qualitative agreement with previous ex-
perimental results [8–10]. Additionally, combined effects of BV/TV and structural
anisotropy were investigated. The authors concluded that the higher the structural
anisotropy, the lower the BV/TV needs to be to observe non overlapping fast and
slow waves.

Fewer studies using finite element modeling (FEM) approaches [52, 53] were
performed to describe wave propagation in cancellous bone. On the other hand, nu-
merical computations of the fast and slow waveforms were also performed by solv-
ing the Biot’s wave equations, in which attenuation terms due to the scattering were
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Fig. 11.13 Snapshots of the
distribution of sound pressure
in the x-z plane of the
three-dimensional simulation
field. Figures (a) to (c) show
the results without specimen,
(d) to (f) show the results
with specimen (Reprinted
with permission from [51]
copyright (2009), Acoustical
Society of Japan)
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Fig. 11.14 Simulated signals obtained for four bone models BV/TV of 7.7%, 15.2%, 18.4%, and
21.5%, respectively. For each signal, the value of the determination coefficient of a linear fit of the
attenuation coefficient versus frequency method is indicated (Reprinted with permission from [49]
copyright (2008), Acoustical Society of America)

originally added, using FDTD computations [54, 55]. Moreover, the calculations of
the Biot’s equations using FEM computations were proposed [56].

11.3.2 Comparison Between Numerical and Experimental Results

For the practical use of simulations, the reliability of the results should be confirmed
by comparative study to experimental observations. For example, Bossy et al. [57]
used a SR-μCT model of the actual specimen to confirm the similar tendency of
BUA as a function of BV/TV between simulation and experiment.

Nagatani et al. [50, 51] compared numerical FDTD predictions using 3-D mod-
els derived from X-ray μCT images of measured bovine femur specimens. Focused
(concave) transmitters were used in order to measure the localized characteristics
by moving the transducers with about 1 mm increments both in simulation and
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experiments. Examples of propagated waveforms when the ultrasound transmitted
to the same position in experiments and simulations show good agreement between
simulated and experimental waveforms (Fig. 11.15). Figure 11.16 shows the rela-
tionship between BV/TV and (a) fast wave speed and (b) amplitude ratio of two
waves. A similar tendency between simulations and experiments can be seen.

We should mention that these simulation results are in good agreement
with experimental data despite several limitations in the simulation conditions
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such as absence of friction loss at the interface between solid and liquid, lossless
propagation media, assumption of isotropic bone tissue. These assumptions imply
that the effect of trabecular structure is dominant in wave propagation in cancel-
lous bone. Of course, absorption in real cancellous bone can contribute to the total
attenuation through several mechanisms [57]. More comprehensive investigations
including physical effects such as absorption, elasticity, and inertia should be per-
formed in future works. In addition, Bossy et al. [7] pointed the major role of mode
conversion of the incident acoustic wave to shear waves in bone to explain the
large contribution of scattering to the overall attenuation. The contribution of each
attenuation mechanism should be checked precisely in future work.

Focused transducers are often used for clinical measurements. Interestingly
Nagatani et al. [50, 51] reported that simulations of acoustic field using a focused
transducer were in good agreement with experiments. Moreover, it is significant that
the authors used numerical cancellous bone models reconstructed from commercial
X-ray μCT, which indicate that accurate simulations could be realized using X-ray
μCT with relatively low resolution.

As mentioned above, simulations provide visual dynamic images of complex
propagation phenomena. In addition, the confirmation of the reliability of simula-
tions results gives confidence on the accuracy of the numerical models to predict
wave propagation characteristics.

11.3.3 Effect of Trabecular Structure on the Two-Wave
Propagation

In addition to the visualization of wave propagation, the possibility of investigat-
ing any experimental condition (transmitter, receiver, specimen, etc.) is another
advantage of numerical simulations. In order to evaluate the attenuation of prop-
agating waves in bone, Nagatani et al. [58] virtually eliminated 1-mm-slice from
left or right side surface of a parallelepiped specimen. Then, they calculated the at-
tenuation value (dB/mm) of the fast wave within each 1-mm-slice. Figure 11.17a
shows the fast wave attenuation when the wave propagates from left-side surface
and Fig. 11.7b shows the results from the right-side surface. These data show that
the attenuation of the fast wave is always higher in the early stage of propagation
regardless of the propagating direction in the specimen. Then, the attenuation gradu-
ally decreases and becomes almost constant as the wave propagates in deeper layers
of the structure. This tendency was similar in simulation and experimental mea-
surements, although the measurement was performed only from one side. These
results indicate that the fast wave requires a certain propagation distance to form
an in-phase wavefront with steady attenuation. The experimental attenuation values
obtained from both sides cannot be performed because we can only slice the spec-
imen from one side. Therefore, the above investigation could be realized only by
simulations, which demonstrates the powerful benefits of simulations.



11 The Fast and Slow Wave Propagation in Cancellous Bone 309

Fig. 11.17 Distributions of
numerically simulated fast
wave attenuation.
(a) Attenuation when the
wave propagates from left
surface. (b) Attenuation when
the wave propagates from
right surface. The three
samples (A to C) used in
(a) and (b) are identical
(Reprinted from [58]
copyright (2008) with
permission from Elsevier)
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Fig. 11.18 Illustration of the
microarchitecture alteration
scenarios. Images represent
the 3-D trabecular structures.
(a) Original sample.
(b) Eroded structure.
(c) Dilated cartographies
(From Haiat et al. [59]
copyright (2007), American
Society for Bone and Mineral
Research), reprinted with
permission of John Wiley
& Sons, Inc.)

Luo et al. [47] virtually changed the trabecular thickness of 2-D bone models
(reconstructed from X-ray CT scans) using an image processing technique. Haı̈at
et al. [49, 59] and Hosokawa [60, 61] also processed 3-D models of real trabecu-
lar structures. Figure 11.18 shows the variations of BV/TV created virtually from a
unique model by Haı̈at. As shown in Fig. 11.19, Hosokawa showed evidence that the
relation between the eroding direction of trabecular thickness and the direction of
wave propagation affects wave propagation even when BV/TV and the geometrical
structure remain the same.
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Fig. 11.19 Simulated results of (a) wave amplitudes and (b) propagation speeds of the fast and
slow waves in the major trabecular direction of the cancellous bone models, as a function of
porosity varied by three patterns of erosion procedures (Reproduced with authorization from [60]
c© IEEE 2009)

On the other hand, Hosokawa [62, 63] and Padilla et al. [64] generated artificial
models of trabecular structures, by assuming aggregation of spherical pores and by
assuming Gaussian random field distributions in order to investigate by FDTD the
effects of BV/TV, trabecular thickness, alignment, and network structure.

11.4 Towards Clinical Application of the Two-Wave
Phenomenon

11.4.1 Wave Separation Techniques

In practical situations, wave separation is often difficult because of the overlapping
of the two waves. Successful wave separation may give access to new indicators,
including speeds, amplitudes, and spectral characteristics separately for the fast and
slow waves. Wave separation was attempted using signal processing techniques
either in the time or frequency domain. In general, fast wave has faster speed,
smaller amplitude, and lower frequency component. Most techniques for wave sep-
aration are based on these characteristics.

Cardoso et al. [10] successfully observed the two-wave separation in experimen-
tal spectrograms obtained by short-time Fourier transform (Fig. 11.20). The results
indicated a lower frequency for the fast wave compared to the slow wave. Applying
a Fourier transform to the overall recorded waveform, the authors also found that
the slope of the low frequency part of spectrum (Fast FDUA) was different from the
slope of the high frequency part (Slow FDUA) (see Fig. 11.21). Hasegawa et al. [65]
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Fig. 11.20 (a) Signal transmitted through a human femoral head tested in immersion. Two waves
components can be seen. (b) Spectrogram of the signal showing different frequency contents and
time localizations (From Cardoso et al. [10] copyright (2003), American Society for Bone and
Mineral Research), reprinted with permission of Wiley)

Fig. 11.21 Power spectrum
of the overall recorded signal
for a cancellous bone
specimen and the related
calculated FDUA for the fast
wave (slope of the low
frequency part of the signal)
and slow wave (slope of the
high frequency part) (From
Cardoso et al. [10] copyright
(2003), American Society for
Bone and Mineral Research,
reprinted with permission of
John Wiley & Sons, Inc.)

applied a wavelet transform analysis. They fitted a 2-D function to the scalogram
and were able to distinguish two wave components. As a result, the amplitudes of
the higher and lower frequency components showed good correlation with BV/TV,
respectively. They also discussed the characteristics of the two components focusing
on the temporal distributions in scalograms.

Other approaches, such as processing the signals in the time domain are worth
being mentioned [49, 66]. The most efficient method to date was proposed by
Marutyan et al. [66] who applied Bayesian probability theory [67] to separate
virtually created mixed waveforms and extract their individual propagation char-
acteristics (see Chap. 12).
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However, these various methods are still under development. Future improve-
ments are still needed before these signal processing techniques can be applied in
clinical applications.

11.4.2 In Vivo Application

The concept of two longitudinal wave propagation in cancellous bone has been
applied in a series of in vivo studies by Otani et al. [43, 68, 69]. The authors de-
veloped and introduced a new in vivo QUS device, LD-100 (OYO Electric) shown
in Fig. 11.22, which evaluates the cancellous part at the distal portion of the radius.
In this technique, the bone density and bone elasticity were derived from the mea-
sured ultrasound wave parameters of the fast and slow waves.

It has been experimentally observed that the propagation speed of the fast wave
increases with the mass density of cancellous bone (Fig. 11.8b) [43], consistently
with Biot predictions [8]. The amplitudes of both waves also change due to the
mass density, and positive and negative correlations were observed for the fast and
slow waves (Figs. 11.8a and 11.9a), respectively [43]. Otani [43] assumed a simple
model of wave propagation path in the radius and considered wave propagation
through all intervening media (soft tissues and bone). The cancellous bone density
could be derived from in vivo ultrasound data of human cancellous bone [43, 68,
69]. Subsequent estimates of cancellous bone elasticity could be obtained from the
velocity and the estimated bone density.

LD-100 measurements, making use of the several echo modes in the observed
signals, provide quantitative estimates of several parameters such as cancellous bone
density (expressed in bone mineral density or bone volume fraction) and elasticity,
cortical bone thickness, and radius of the cancellous compartment. The ultrasound

Fig. 11.22 Outside view of
LD-100. The measurement
system is connected to the
computer where the
parameters are estimated
from the fast and slow wave
characteristics (Reprinted
with permission from [68]
copyright (2006), The
Japanese Society of Applied
Physics)
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Fig. 11.23 Display of 2-D images and measured values of LD-100. The upper left figure are the
2-D maps of pseudo-attenuation and speed obtained from the first scan (Reprinted with permission
from [68] copyright (2006), The Japanese Society of Applied Physics)

beam width at the focus is approximately 1.5–2.0 mm for a single sinusoidal
pulse, which is regarded as the actual spatial resolution of the measurement.
The interesting feature of the system is the first (rough) and second (precise) two-
axis scanning of the measurement site. An example of 2-D images and measured
values of LD-100 is shown in Fig. 11.23. Upper images show the pseudo-attenuation
image and pseudo-SOS image, which were obtained from the overall transmitted
signals including both the fast and slow waves at the first scanning, and the area of
the first scanning at the left hand distal radius. Thick squares in 2-D images indicate
the area of the second scanning. Measured values obtained by the second scanning
with age-dependent reference curves are shown in the graphs below.

LD-100 provides estimates of bone mineral density (BMD, mg/cm3) from
the measured amplitude of the slow wave using the experimentally established
relationship, whereas the conventional devices indirectly assess BMD using QUS
parameters. Thus, the direct comparison of BMD at the same site between the
ultrasound and radiological methods becomes possible. BMD data from 175 vol-
unteers aged from 22 to 87 years old (average 59.0) shown in Fig. 11.24 evi-
dence strong correlation between BMD measured by LD-100 and that measured
by peripheral quantitative CT (pQCT) (Medizintechnik XCT-960).
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Fig. 11.24 Bone mineral
density deduced from slow
wave amplitude plotted
against pQCT bone mineral
density. The slow wave
amplitudes were obtained
from the measurement by
LD-100 (Reproduced from
[68] with permission)
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11.5 Conclusions

Many studies have investigated the two-wave phenomenon in cancellous bone from
both experimental and simulation points of view. Several discrepancies between
original Biot’s theory and experimental results (i.e. attenuation) have been partly
overcome using modified Biot’s models. However, as pointed out in this chapter,
these models request many parameters, which are often difficult to estimate. In ad-
dition, theories cannot include the effect of the actual inhomogeneity of cancellous
bone structure. Although these theoretical approaches still face some difficulties, the
experimental measurements of both fast and slow waves are believed to provide in-
formation on bone structure beyond mere bone density. Actually, the fast wave speed
and amplitude change dynamically, reflecting the characters of trabecular network
structure in the propagation path, such as degree of anisotropy and bone volume
fraction. Further detailed analysis of material and structural determinants of propa-
gation speeds and amplitudes of both fast and slow waves are still required before
these propagation characteristics can be implemented in an innovative tool to eval-
uate the bone structure in vivo. Such measurements have been already implemented
in a new QUS system named LD-100, which can directly estimate BMD values. The
estimated BMD by LD-100 is in good accordance with the BMD obtained by pQCT.

The two-wave phenomenon has also been studied using numerical simulations.
Finite-difference time-domain methods coupled to realistic 3-D cancellous bone
models, enabling the visualization of wave propagation in cancellous bone, were
found to be very useful to understand the nature of wave propagation. The intro-
duction of virtual cancellous bone or virtual treatment to the actual 3-D structures
provides interesting results beyond experiments and induces active discussions on
this phenomenon.
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Chapter 12
Phase Velocity of Cancellous Bone: Negative
Dispersion Arising from Fast and Slow Waves,
Interference, Diffraction, and Phase
Cancellation at Piezoelectric Receiving Elements

Christian C. Anderson, Adam Q. Bauer, Karen R. Marutyan,
Mark R. Holland, Michal Pakula, G. Larry Bretthorst, Pascal Laugier,
and James G. Miller

Abstract Frequency-dependent phase velocity measurements may prove useful in
bone quality assessment. However, the physical mechanisms of ultrasonic wave
propagation in cancellous bone that govern phase velocity are not yet fully un-
derstood, particularly the phenomena that lead to the observed anomalous negative
dispersion. This chapter provides an overview of phase velocity studies of cancel-
lous bone, especially negative dispersion, and proposals for resolving the apparent
conflict with the causality-imposed Kramers-Kronig relations.

Keywords Artifact · Bayesian · Negative dispersion · Phase cancellation · Phase
velocity

12.1 Introduction

Clinical bone sonometry devices make use of speed of sound (SOS) and broad-
band ultrasonic attenuation (BUA) data acquired in investigations of the calcaneus
(heel bone) to determine indices of bone quality. Accurate and reproducible methods
for measuring these quantities are therefore of particular relevance in the use of
quantitative ultrasound for the assessment of bone status.
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Although SOS and BUA have each been shown to be effective in evaluating bone
quality, the complicated manner in which ultrasonic waves propagate through the
porous architecture of cancellous bone can confound measurement efforts. Group
velocity is often used to compute SOS, and the time-of-flight measurements used
to compute the group velocity can be affected by frequency-dependent effects such
as attenuation and dispersion [1–3]. In some cases, the signals obtained after the
ultrasonic pulse has passed through cancellous bone are markedly different from the
transmitted signal [2–8], making the determination of appropriate timing markers
for time-of-flight measurements difficult. Moreover, information about bone quality
might be suppressed when velocities for all frequencies in the experimental band-
width are compressed to yield a single value for group velocity, the SOS for the
sample. These factors provide motivation for determining the frequency-dependent
phase velocity. If the dispersion information is preserved, some of the frequency-
dependent sources of error in SOS measurements may be mitigated, and access
to the dispersion information itself may provide additional parameters for bone
assessment.

12.2 Calculation of Phase Velocity

Phase velocity can be determined using a phase spectroscopy approach in which
the unwrapped phase of a signal propagated through bone is compared with the
unwrapped phase of a signal propagated through a non-dispersive reference medium
such as water. The phase velocity is then given by

vphase(ω) = vwater

[
1− vwater

d
Δφ(ω)

ω

]−1

(12.1)

where vwater is the velocity in water, d is the sample thickness, Δφ(ω) is the dif-
ference in unwrapped phase between the sample and reference signals, and ω is
angular frequency.

Although phase velocity can be determined in this straightforward fashion, its
use as a reliable indicator of bone quality is hampered because the physics of ul-
trasonic waves in cancellous bone that relate to dispersion remains incompletely
understood. One example is the apparent conflict between the dispersion pre-
dicted by the causality-imposed Kramers-Kronig (KK) relations and that observed
experimentally.

12.3 Anomalous Negative Dispersion in Cancellous Bone

The Kramers-Kronig relations are causality-imposed mathematical properties that
connect the real and imaginary parts of physical response functions [9]. The trans-
fer function corresponding to linear ultrasonic wave propagation can be written as a
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Fig. 12.1 Illustration of anomalous negative dispersion observed in cancellous bone. The disper-
sion curve predicted by the causality-imposed Kramers-Kronig relations is shown in gray, and the
measured dispersion exhibited by a cancellous bone specimen is shown in black. The frequency
dependences of the two curves differ substantially

causal response function, and therefore the real part of the transfer function (which
is related to the phase velocity of waves propagating in bone) can be obtained from
the imaginary part (which is related to the attenuation coefficient) [10–20]. The
consensus of many laboratories is that the experimentally determined attenuation
coefficient of cancellous bone rises approximately linearly with frequency. Indeed,
the general agreement regarding the linear behavior of the attenuation coefficient is
the reason that BUA continues to be a widely used metric in clinical assessment.
When reliable but approximate forms of the Kramers-Kronig relations are used to
determine the dispersion of a medium with a linearly increasing attenuation coeffi-
cient, the predicted result is a phase velocity curve that increases logarithmically
with frequency – that is, the dispersion is expected to be positive [17, 21, 22].
However, empirical results obtained in cancellous bone often show the opposite re-
lationship. Many laboratories report phase velocities that decrease with frequency,
a phenomenon often referred to as negative dispersion [2–4, 17, 21–26]. Thus, as
shown in Fig. 12.1, an apparent conflict exists between the causal KK predictions
and experimental results in many (but not all) interrogated sites of cancellous bone.

12.4 Proposed Explanations of Negative Dispersion in Bone

A number of suggested explanations for the anomalous behavior of the frequency
dependence of the phase velocity exist, but a consensus has yet to be reached
regarding which of these is dominant. Broadly speaking, the proposals fall into
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two distinct groups: those that propose novel understandings of acoustic wave
propagation in bone, and those that extend or reinterpret how the KK relations
should be applied to poroelastic media. One proposed approach in the latter cat-
egory is the use of a higher order approximation to the exact KK relations [17].
The Kramers-Kronig relations can be extended using the method of subtractions to
account for negative dispersion, but doing so requires introducing an additional ad-
justable parameter in the form of a “subtraction frequency.” The physical role of the
subtraction frequency, however, remains unclear.

Another interpretation is that the KK relations are by their nature unable to ac-
curately depict empirically determined dispersions accurately because the relations
involve integrals over an infinite bandwidth, whereas experimental bandwidths are
finite. In this view, the necessary truncation of the KK integrals to predict mea-
surable dispersions results in large errors, and the observed negative dispersion in
cancellous bone simply reflects the true properties of cancellous bone. However, the
KK relations have been shown to be quite reliable in predicting dispersion over a
limited bandwidth even in the presence of substantial phase aberration and phase
cancellation [27]. Although the truncated KK relations have known limitations
[19], their robustness even under challenging experimental circumstances [18, 27]
suggests that these relations are likely to remain valid in porous media.

Other proposals to explain the anomalous dispersion involve unique or improved
theoretical understandings of ultrasonic wave propagation in bone. One widely-
used model for cancellous bone is the stratified model, in which the bone structure
is modeled as alternating fluid and solid layers [28–31]. This model can predict
negative dispersion [29, 30], although the physical architecture of cancellous bone
appears different from that exhibited by a periodic layered structure. A different pro-
posal by Chakraborty involves a non-local extension of Biot theory, which can give
rise to negative dispersion under some circumstances [32], Still another explanation,
suggested by Haiat et al., is that the coupling of multiple scattering and absorption
mechanisms may contribute to negative dispersion [33].

12.5 Interfering Wave Modes

The primary focus in this chapter will be on an alternative to these explanations
based on a careful examination of the received signals and how they are processed
to obtain the dispersion. Qualitative characteristics of ultrasonic data acquired on
cancellous bone may provide clues for explaining the negative dispersion. As men-
tioned above, the ultrasonic signals that are received after they have propagated
through cancellous bone can vary considerably from the transmitted signals. A con-
tributing factor to the large qualitative differences between transmitted and received
signals is that porous materials such as cancellous bone can support the propaga-
tion of more than one compressional wave mode, as described in previous chapters
[5–7, 34]. Theoretical models for ultrasonic wave propagation in bone, including
Biot theory [35–44] and stratified media theory [28–31], each predict the existence
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of two compressional waves. These waves, commonly distinguished by their relative
velocities as “fast waves” and “slow waves,” have been observed in data acquired
by a number of laboratories [5–7,34]. Occasionally, the transit times of the fast and
slow waves are different enough that they are separated in the time-domain data.
In these cases, velocity and attenuation measurements can be performed on each
wave mode independently by applying an appropriate windowing function to the
data. Although this approach is straightforward in laboratory investigations, clinical
sonometers might not provide this option.

Under most circumstances, the times of flight for the fast and slow waves are
sufficiently similar that they arrive at the receiving transducer only a short time
apart, resulting in an overlap in the acquired data. The degree of overlap can vary
significantly from sample to sample or even at different spatial locations within
the same sample due to the considerable heterogeneity of cancellous bone. When
overlap occurs, a suitable location for a windowing function is much less clear,
and measurement of separate fast and slow wave properties becomes difficult or
impossible. If the experimental conditions are such that there is little overt evidence
of overlap between the two waves, the acquired data are likely to be processed as if
only one wave is present. Under these circumstances, a negative dispersion can be
observed [21, 22, 45]. Thus, the observed anomalous dispersion might appear to be
an intrinsic property of the bone, when in fact it is an artifact caused by processing
a multi-modal signal under the assumption that the received signal is comprised of
one wave.

Numerical simulations confirm that when two waves with ultrasonic velocity
and attenuation properties similar to those in cancellous bone interfere with one
another in the acquired data, negative dispersion can occur even though the attenua-
tion coefficient retains its linear-with-frequency behavior. The signals composed of
interfering waves can exhibit artifactual dispersions, including negative dispersion,
even though the individual fast and slow waves that comprise them each exhibit
positive, linearly increasing dispersions, in accordance with the KK relations. This
phenomenon is illustrated in Fig. 12.2, where two simulated waves with unremark-
able dispersions (top panel) interfere to produce a simulated received signal with an
anomalous negative dispersion (bottom panel).

12.6 Analysis of Interfering Waves Using Bayesian
Probability Theory

If interference between the fast and slow waves is responsible for the anomalous
negative dispersion, methods for recovering the properties of the individual fast and
slow waves from acquired data in which the waves strongly overlap are useful. In
addition to resolving a portion or a majority of dispersion artifacts in conventionally
analyzed data, such methods may enhance bone quality assessment by permitting
the component waves to be analyzed in place of or in addition to the analysis of the
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Fig. 12.2 Simulated fast and slow waves (panel a, left), each exhibiting logarithmically increasing
dispersions (panel a, right) can interfere to produce a mixed mode waveform (panel b, left) with
an anomalous negative dispersion (panel b, right)

entire received signal. One such method for recovering these properties makes use
of Bayesian probability theory, an approach suited for addressing inverse problems
[46, 47].

In the Bayesian approach, a model for the received signal is constructed by spec-
ifying velocity and attenuation parameters for each of the fast and slow waves. To
ensure agreement with the KK relations, the model requires that the dispersions for
each wave are dependent upon the frequency dependence of their respective attenu-
ation coefficients. Bayes’ theorem is then applied to obtain optimal estimates of the
model parameters in the form of marginal posterior probability distributions. In this
way, attenuation coefficient and the phase velocity values (and their corresponding
frequency dependences, as described by BUA and dispersion) for both the fast and
the slow waves for a given received signal can be estimated, even in the presence of
substantial overlap and interference between the two wave modes in acquired data.
This technique has been extensively tested using both simulated data and experi-
mental data acquired on well-controlled two-component phantoms as well as bone
[48–51].
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plastics (open circles, top) is plotted along with the model signal obtained using Bayesian proba-
bility theory (gray line, top). The individual fast and slow waves that combine to form the model
signal are shown in the bottom panel. Although the fast and slow waves are approximately 180
degrees out of phase, the model shows good agreement with the acquired data

A signal acquired on a two-component phantom constructed from acrylic and
polycarbonate thermoplastics is show in the top panel of Fig. 12.3. The phantom was
designed so that a portion of the transmitted signal passed through acrylic, and the
remainder propagated through polycarbonate. The difference in the speeds of sound
of the two media caused two waves to be present in the acquired data. The model for
this signal produced by the Bayesian calculations is superimposed on the acquired
signal (top panel in Fig. 12.3, gray line). The model signal is composed of a fast
wave and a slow wave, which are plotted in the bottom panel of Fig. 12.3. There is
good agreement between the model and the acquired data despite the approximately
180◦ phase difference between the fast and slow waves.
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Fig. 12.4 A signal acquired
on a human femur condyle
specimen is displayed in the
top set of axes, with the
model constructed using
Bayesian probability theory
superimposed. Probability
theory can determine the
individual fast and slow
waves that comprise the
model, and those waves are
shown on the bottom set
of axes
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Figure 12.4 displays data acquired on a human femur condyle in the top panel,
with the model obtained using Bayesian probability theory superimposed. The indi-
vidual fast and slow waves that comprise the model are shown in the bottom panel.

12.7 Phase Cancellation and Diffraction Effects

In addition to the effects discussed thus far, diffraction and interference effects aris-
ing from spatial variations in the local values of phase velocity can result in signals
at the receiver plane that exhibit some of the same complicating features as those
that arise from fast and slow wave propagation [52–56]. Phase cancellation across
the face of a piezoelectric receiving transducer can result from detecting such an ul-
trasonic field over a finite aperture [52,54,56–60]. Apparent negative dispersion can
arise under these circumstances [45]. The use of two-dimensional arrays of small
aperture receiving transducer elements can provide approaches for mitigating some
of the resulting artifacts. Still other (diffraction-related) artifacts can result if the
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physical dimensions of the receiving aperture are not sufficiently large [55]. In spite
of these complications, the Bayesian approach appears to be sufficiently robust as
to yield the proper values for the underlying ultrasonic properties [49].

12.8 Conclusion

Measurements of phase velocity are straightforward and increasingly standard in
many laboratory studies, and it seems reasonable to speculate that information
contained in such measurements may be clinically relevant. However, the clini-
cal potential of phase velocity has yet to be realized, perhaps due at least in part
to the lack of a complete understanding of the mechanisms that give rise to the
experimentally observed dispersion in cancellous bone. The anomalous negative
dispersion observed in cancellous bone, an apparent violation of some forms of the
Kramers-Kronig relations, is particularly confounding, and several research efforts
have focused on resolving this contradiction. One hypothesis is that negative dis-
persion is an artifact that arises when data containing two overlapping waves are
analyzed under the implicit assumption that only one wave is present. Bayesian
probability theory has been proposed as a method for analyzing such data to recover
the properties of each individual wave. However, several complicating experimen-
tal factors, including diffraction and phase cancellation at a receiving aperture, may
also play a role in the measured dispersion.

Acknowledgments Work presented in this chapter was supported by NIH grants R01HL40302
and R01AR057433 and by NSF grant CBET-0717830.

References

1. K. A. Wear, “The effects of frequency-dependent attenuation and dispersion on sound speed
measurements: applications in human trabecular bone,” IEEE Transactions on Ultrasonics, Fer-
roelectrics, and Frequency Control 47(1), 265–273 (2000).

2. R. Strelitzki and J. Evans, “On the measurement of the velocity of ultrasound in the os calcis
using short pulses,” European Journal of Ultrasound 4(3), 205–213 (1996).

3. P. H. Nicholson, G. Lowet, C. M. Langton, J. Dequeker, and G. Van der Perre, “A compari-
son of time-domain and frequency-domain approaches to ultrasonic velocity measurement in
trabecular bone,” Physics in Medicine and Biology 41(11), 2421–2435 (1996).

4. P. Droin, G. Berger, and P. Laugier, “Velocity dispersion of acoustic waves in cancellous bone,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 45(3), 581–592
(1998).

5. A. Hosokawa and T. Otani, “Ultrasonic wave propagation in bovine cancellous bone,” The
Journal of the Acoustical Society of America 101(1), 558–562 (1997).

6. A. Hosokawa and T. Otani, “Acoustic anisotropy in bovine cancellous bone,” The Journal of
the Acoustical Society of America 103(5 Pt 1), 2718–2722 (1998).

7. K. Mizuno, M. Matsukawa, T. Otani, P. Laugier, and F. Padilla, “Propagation of two longitudi-
nal waves in human cancellous bone: an in vitro study,” The Journal of the Acoustical Society
of America 125(5), 3460–3466 (2009).



328 C.C. Anderson et al.

8. R. Strelitzki, A. J. Clarke, and J. A. Evans, “The measurement of the velocity of ultrasound
in fixed trabecular bone using broadband pulses and single-frequency tone bursts,” Physics in
Medicine and Biology 41(4), 743–753 (1996).

9. J. S. Toll, “Causality and the dispersion relation: logical foundations,” Physical Review 104(6),
1760–1770 (1956).

10. M. O’Donnell, E. Jaynes, and J. Miller, “General relationships between ultrasonic attenuation
and dispersion,” The Journal of the Acoustical Society of America 63(6), 1935–1937 (1978).

11. M. O’Donnell, E. T. Jaynes, and J. G. Miller, “Kramers-Kronig relationship between ultra-
sonic attenuation and phase velocity,” The Journal of the Acoustical Society of America 69(3),
696–701 (1981).

12. K. Waters, M. Hughes, G. Brandenburger, and J. Miller, “On a time-domain representation of
the Kramers-Kronig dispersion relations,” The Journal of the Acoustical Society of America
108(5 Pt 1), 2114–2119 (2000).

13. K. Waters, M. Hughes, J. Mobley, G. Brandenburger, and J. Miller, “Kramers-Kronig dis-
persion relations for ultrasonic attenuation obeying a frequency power law,” 1999 IEEE
International Ultrasonics Symposium Proceedings 99CH37027, 537–541 (1999).

14. K. R. Waters, M. S. Hughes, J. Mobley, G. H. Brandenburger, and J. G. Miller, “On the ap-
plicability of Kramers–Krönig relations for ultrasonic attenuation obeying a frequency power
law,” The Journal of the Acoustical Society of America 108(2), 556–563 (2000).

15. K. Waters, M. Hughes, J. Mobley, and J. Miller, “Differential forms of the Kramers-Kronig
dispersion relations,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
50(1), 68–76 (2003).

16. K. Waters, J. Mobley, and J. Miller, “Causality-imposed (Kramers-Kronig) relationships be-
tween attenuation and dispersion,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control 52(5), 822–823 (2005).

17. K. R. Waters and B. K. Hoffmeister, “Kramers-Kronig analysis of attenuation and dispersion in
trabecular bone,” The Journal of the Acoustical Society of America 118(6), 3912–3920 (2005).

18. J. Mobley, K. Waters, C. Hall, J. Marsh, and M. Hughes, “Measurements and predictions of the
phase velocity and attenuation coefficient in suspensions of elastic microspheres,” The Journal
of the Acoustical Society of America 106(2), 652–659 (1999).

19. J. Mobley, K. R. Waters, and J. G. Miller, “Finite-bandwidth effects on the causal prediction
of ultrasonic attenuation of the power-law form,” The Journal of the Acoustical Society of
America 114(5), 2782–2790 (2003).

20. J. Mobley, K. R. Waters, and J. G. Miller, “Causal determination of acoustic group velocity and
frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations,” Physical
Review E 72(1 Pt 2), 016604 (2005).

21. C. C. Anderson, K. R. Marutyan, M. R. Holland, K. A. Wear, and J. G. Miller, “Interference
between wave modes may contribute to the apparent negative dispersion observed in cancellous
bone,” The Journal of the Acoustical Society of America 124(3), 1781–1789 (2008).

22. K. R. Marutyan, M. R. Holland, and J. G. Miller, “Anomalous negative dispersion in bone can
result from the interference of fast and slow waves,” The Journal of the Acoustical Society of
America 120(5 Pt 1), EL55–61 (2006).

23. K. A. Wear, “Measurements of phase velocity and group velocity in human calcaneus,” Ultra-
sound in Medicine & Biology 26(4), 641–646 (2000).

24. K. A. Wear, “Group velocity, phase velocity, and dispersion in human calcaneus in vivo,” The
Journal of the Acoustical Society of America 121(4), 2431–2437 (2007).

25. M. Pakula, F. Padilla, and P. Laugier, “Influence of the filling fluid on frequency-dependent
velocity and attenuation in cancellous bones between 0.5 and 2.5 MHz,” The Journal of the
Acoustical Society of America 126(6), 3301–3310 (2009).

26. K. A. Wear, “Frequency dependence of average phase shift from human calcaneus in vitro,”
The Journal of the Acoustical Society of America 126(6), 3291–3300 (2009).

27. A. Bauer, K. Marutyan, M. Holland, and J. Miller, “Is the Kramers-Kronig relationship between
ultrasonic attenuation and dispersion maintained in the presence of apparent losses due to phase
cancellation?” The Journal of the Acoustical Society of America 122(1), 222–228 (2007).



12 Phase Velocity of Cancellous Bone: Negative Dispersion 329

28. E. R. Hughes, T. G. Leighton, G. W. Petley, and P. R. White, “Ultrasonic propagation in
cancellous bone: a new stratified model,” Ultrasound in Medicine & Biology 25(5), 811–821
(1999).

29. T. J. Plona, K. W. Winkler, and M. Schoenberg, “Acoustic waves in alternating fluid/solid
layers,” The Journal of the Acoustical Society of America 81(5), 1227–1234 (1987).

30. K. Wear, “A stratified model to predict dispersion in trabecular bone,” IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control 48(4), 1079–1083 (2001).

31. W. Lin, Y. X. Qin, and C. Rubin, “Ultrasonic wave propagation in trabecular bone predicted by
the stratified model,” Annals of Biomedical Engineering 29(9), 781–790 (2001).

32. A. Chakraborty, “Prediction of negative dispersion by a nonlocal poroelastic theory,” The Jour-
nal of the Acoustical Society of America 123(1), 56–67 (2008).
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Chapter 13
Linear Ultrasonic Properties of Cortical Bone:
In Vitro Studies

Guillaume Haı̈at

Abstract An increasing interest is placed in the ultrasonic characterization of
cortical bone because its quality has now become accessible. The aim of this chapter
is to review the results obtained in the literature with the different experimental ap-
proaches carried out in vitro. Different quantitative ultrasonic bone parameters such
as the ultrasonic velocity and the attenuation coefficient are studied. The frequency
dependence of attenuation (which corresponds to broadband ultrasonic attenuation,
BUA) and of phase velocity (velocity dispersion) is investigated in particular. The
dependence of all ultrasonic parameters on the direction of propagation relatively to
the bone axis as well as to bone properties such as the type of microstructure, volu-
metric bone mineral density and mass density is also reviewed. The results presented
in this chapter show the potentiality of ultrasonic parameters to assess cortical bone
properties.

Keywords Anisotropic medium · Attenuation · Bone mineral density · Broadband
ultrasonic attenuation · Cortical bone · Dispersion · Dispersive medium · Haversian
structure · Heterogeneous medium · Homogenized mechanical properties ·
Kramers-Kronig relationships · Microstructure · Multiscale medium · Osteons ·
Phase velocity · Plexiform · Quantitative ultrasound imaging · Speed of sound ·
Structure · Transverse transmission · Viscoelasticity

13.1 Introduction

In this chapter, a brief literature review is realized on the works studying the linear
properties of cortical bone in vitro. All effects related to non linear wave propaga-
tion phenomena (in particular related to the presence of micro-cracks), which are
studied in Chap. 15, will not be described in what follows. This study is restricted to
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all experiments performed on non living tissues (ex vivo). Studying cortical bone in
vitro has the advantage of working in controlled experimental conditions and thus
corresponds to more fundamental works compared to in vivo studies where different
problems arise such as the influence of bone geometry (i.e. accessibility) and possi-
ble movements or temperature variation of the body, which might influence the bone
ultrasonic response. In vitro, the samples may be cut into simple shapes or intact.
The surrounding soft tissues are often removed to obtain a better understanding of
the ultrasonic response of the bone structure itself.

13.1.1 Why Assessing Cortical Bone Acoustical Properties?

Initially, most applications of quantitative ultrasonic (QUS) techniques in bone
were confined to cancellous bone characterization (see Chap. 10) because the most
commonly site measured with QUS techniques is the calcaneus, which is mostly
composed of trabecular bone. However, more and more interest is now placed in cor-
tical bone exploration [1] since it accounts for 80% of the skeleton, supports most of
the load of the body and is mainly involved in many osteoporotic fractures. Further-
more, cortical bone is affected by age-related bone resorption and osteoporosis [2].
It undergoes an increase in porosity as well as a cortical shell thinning, which has
been shown to be determinant in fracture risk [3]. In addition, mineralization of cor-
tical bone increases with age or disease [4], leading to an increased stiffness [5] and
fragility.

The development of new QUS devices now enables the in vivo evaluation of cor-
tical bone with specific devices such as the axial transmission technique. This last
technique allows the in vivo assessment of the cortical layer of the mid tibia [6],
distal radius [7] and of several sites including ulna, finger phalanxes, metacarpal or
metatarsus [8]. The transverse transmission technique may also be used for both cor-
tical and trabecular bone evaluation on sites such as wrist bones or phalanx [9, 10].
As this chapter only studies in vitro experimental work, axial transmission tech-
niques will not be reviewed herein and readers are referred to Chaps. 3 and 7 for
more information on this subject.

Currently, the two main parameters measured with QUS techniques are the wave
velocity (Speed Of Sound, SOS) and the slope of the curve of the frequency-
dependent attenuation (normalized Broadband Ultrasonic Attenuation, nBUA). The
development of QUS techniques is still limited since the information potentially
available in the ultrasonic wave propagating in bone tissue is not fully analyzed and
parameters such as bone material properties or micro-structural parameters may still
be difficult to recover. The interaction between ultrasound and bone remains poorly
understood from a physical point of view due to the complex nature of the cortical
bone structure.
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13.1.2 Cortical Bone: A Complex Medium

Cortical bone is a complex multiscale medium spanning many length scales and
described in Chap. 1. At the scale of several hundred nanometres, mineralized bone
is composed of elementary components such as hydroxyapatite, cylindrically shaped
collagen molecules and water. At the scale of 1–10μm, bone is constituted by the
ultrastructure composed of collagen fibers and extrafibrillar spaces. At the scale of
several hundred micrometers to several millimeters, the microstructure is constituted
by cylindrical units called osteons.

Besides its multiscale nature, cortical bone is highly heterogeneous at the or-
gan scale and its mechanical properties depend on the cross-sectional and axial
anatomical position [11]. Porosity in the radial direction (which is associated with
the bone cross-section) is heterogeneous at all ages and for both genders [11–13].
The mean porosity in the endosteal region (inner part of the bone) is higher than in
the periosteal region (outer part of the bone). This is especially evident in elderly
subjects, due to the predominance of age-related bone resorption in the endosteal
region [12]. The aforementioned heterogeneity of bone porosity is likely to lead to
a gradient of bone material properties, which may affect bone quality and suscepti-
bility to fracture. In addition, this gradient of material properties has been shown to
have an important effect on its ultrasonic response [14, 15].

Cortical bone is an anisotropic medium because of its highly oriented, min-
eralized collagen fibrils structure. Different assumptions regarding the type of
anisotropy of the cortical bone structure have been done in the literature. Some
authors [15–21] have assumed that cortical bone can be considered as transverse
isotropic (five independent elastic coefficients), which corresponds to the situation
where bone elastic properties are similar in the transverse directions but are dif-
ferent in the axial direction. Others have made the more general assumption of
orthotropy [16,19,22–24] (with three perpendicular planes of symmetry) where nine
elastic coefficients are needed to fully characterize the medium. Wave propagation
in anisotropic media is quiet different than in isotropic media [25] as quasi longi-
tudinal (respectively transverse) wave modes propagate instead of pure longitudinal
(respectively transverse) wave modes. Briefly, the direction of propagation of the en-
ergy in an anisotropic medium is not necessarily perpendicular to the wavefront. As
a consequence, a wave generated at a given interface will not in general propagate
in the direction normal to this interface. The direction of polarization of the wave
(which corresponds to the direction of the displacement induced by the wave) is not
necessarily parallel to the wave vector in the case of a longitudinal wave. However, it
remains difficult to quantitatively evaluate the effect of anisotropy on wave propaga-
tion in cortical bone by studying only one direction of propagation and most authors
have simply neglected the aforementioned phenomena, thus assuming longitudinal
wave propagation perpendicular to the interface.

Section 13.2 describes different multimodal experimental approaches. In
Sect. 13.3, ultrasonic velocity measurements are studied. Like every biological
media, cortical bone is an attenuating medium. The viscoelastic and heteroge-
neous nature of cortical bone constitute two reasons explaining why relatively
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important values of the attenuation coefficient have been measured in cortical bone
(see Sect. 13.4). Diffusion of the elastic wave by bone heterogeneities as well as
viscoelastic absorption within bone tissue are the two main concurring phenomena
explaining the attenuation in cortical bone. Like all attenuating media, cortical bone
is a dispersive medium and phase velocity has been shown to depend on frequency
(see Sect. 13.5).

13.2 Material and Methods

13.2.1 Cortical Bone Samples

Both cylindrical and cubic samples have been used in ultrasonic experiments, but
cubic samples have the advantage of allowing assessment of material properties in
different directions, which gives access to bone anisotropy.

The cortical bone samples are often obtained from long bones such as femurs and
cut as shown schematically in Fig. 13.1, which also shows the terminology used for
the anatomical locations and the orientation of the axis relatively to the bone axis.
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Fig. 13.1 Schematic representation of the spatial distribution of the bone samples. (a) Locations
where the intact femur is cut to obtain the cortical rings. (b) Quadrant positions of the eight
parallelepipedic samples around each cortical ring. (c) Illustration of the orientation of the three
directions (Reprinted from [26] copyright 2007 with permission from Elsevier)
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13.2.2 Microstructure Assessment

The different cortical bone samples may be classified as a function of their type
of microstructure. In this aim, each sample can be analyzed using an optical mi-
croscope. The porotic microstructure differs from the other ones by a larger pore
size comprised between 50 and 300 μm compared with pores sizes in Haversian
(20∼50 μm) and plexiform structures (8∼12 μm). Porotic microstructure is mostly
found near the part where muscles adhere [27–30]. The last microstructure is re-
ferred to as “mixed microstructure” and corresponds to samples where two different
microstructures can be found. Representations of the four kinds of cortical bovine
bone microstructure are shown in Fig. 13.2.

Fig. 13.2 Optical microscopy images of the four types of cortical bovine bone microstructure:
(a) plexiform, (b) Haversian, (c) porotic and (d) mixed microstructure (Reprinted from [31] copy-
right (2008) with permission from Elsevier)
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13.2.3 Density Measurements

In what follows, the ultrasonic parameters are compared with mass density and
volumetric bone mineral density (vBMD). For each sample, mass density can be
determined from Archimedes’ principle using an accurate balance. vBMD can be
determined by a dual X-Ray absorptiometry working in high resolution mode.

13.2.4 Ultrasonic Measurements

Most experimental devices used to measure ultrasonic parameters in cortical bone
are through transmission devices composed of two ultrasonic transducers, an emit-
ter and a receiver mounted co-axially, as shown in Fig. 13.3. The transducers may
be either focused or planar. Both transducers may be positioned in direct contact
with the bone sample using coupling ultrasonic gel or immersed in water as it is
the case in Fig. 13.3. The most commonly used method is a substitution technique
which consists in performing the ultrasonic measurement without the sample (only
water is present between the transducers) and then in inserting the sample between
the transducers. The emitter is driven by a function generator. Received signals are
amplified using a wide-band amplifier and digitized PCI card or an oscilloscope.
Each received signal is then transferred to a personal computer for off-line analysis.
Some authors [32, 33] have performed 2-D image of wave velocity by displacing
the sample using a 2-D scanning mechanical device, allowing an assessment of the
anatomical dependence of wave velocity.

In all cases, it is mandatory to have a precise knowledge of the size L of the
sample in the direction parallel to the ultrasonic propagation in order to retrieve
accurate values of the ultrasonic parameters.

Fig. 13.3 Schematic
representation of the
experimental set-up used
in [26, 30, 31]. (Reprinted
from [26] copyright (2007)
with permission from
Elsevier.) Note that some
authors [32–36] have used
a single transducer adopting
an echo-mode set up using
the reflections of the
ultrasonic pulse on both
interfaces perpendicular
to the beam axis
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Cortical bone being a solid medium, shear waves may propagate in addition to
longitudinal wave. Transverse wave velocity measurements have been carried out in
[23, 24] using the same principle of the measurement as the one used for longitu-
dinal wave modes except that shear wave transducers were employed. The authors
found transverse wave velocity around 1800 m/s.

13.2.5 Choice of the Frequency

The choice of the centre frequency of the transducer results from a compromise
between a sufficiently small wavelength so that the ultrasonic wave is sensitive to
bone heterogeneities and the requirement of an acceptable signal-to-noise ratio for
all samples and all directions. The choice of the frequency range consists in a com-
promise between a satisfactory linear variation of the apparent phase velocity and
of the attenuation coefficient versus frequency for all samples in order to derive
an accurate value of nBUA and dispersion and a sufficient amount of information
contained within the bandwidth.

13.3 Velocity Measurements

The first ultrasonic measurements performed in cortical bone were made in the late
1940s and early 1950s in Germany [37–39]. Since then, wave velocity measure-
ments in cortical bone have become a widely developed experimental approach and
only papers from the 1970s and later are considered in the present literature review.

13.3.1 Different Velocity Estimations

The ultrasonic velocity may be estimated using the group velocity, the phase
velocity or the signal velocity. The apparent phase velocity in bone Vϕ( f ) is deduced
from the difference ϕ( f ) between the phase of the reference signal transmitted in
water and the phase of the signal transmitted through the bone sample. The phase
of each signal is evaluated as the argument of the spectrum obtained using a Fast
Fourier Transform. This phase difference is unwrapped as described in [40,41]. The
apparent phase velocity is then given by:

Vϕ( f ) =
1

1
Vr
− ϕ( f )

2π f L

(13.1)

where f is the frequency and Vr is the wave velocity in water, which is assumed
to be independent of the frequency. The computation of the apparent phase veloc-
ity may lead to biased estimate of the intrinsic phase velocity, due to diffraction
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effects occurring between the two identical transducers [42]. A set of approximate
corrections can be used in insertion techniques to relate observed experimental sig-
nals to the phase velocity [43,44]. This method has been applied by Droin et al. [40]
so only the basic relations are noted here. The analysis is based on the excitation of
longitudinal waves in a liquid medium by a finite circular piston source in an infi-
nite rigid baffle radiating into a semi-infinite medium. In this method, the corrected
phase difference ϕc( f ) used to compute the corrected phase velocity in bone V c

b ( f )
is obtained from the uncorrected phase difference ϕ( f ) through [40, 43, 44]:

ϕc( f ) = ϕ( f )− arg

⎛
⎜⎜⎝

∞∫
0

J2
1 (Y )e jY 2 S

4π dY

∞∫
0

J2
1 (Y )e jY 2 Sw

4π dY

⎞
⎟⎟⎠ (13.2)

where, J1 is the first order Bessel function of order zero. The quantities Sw = HVr
a2 f

and S = (H−L)Vr +LVb(4MHz)
a2 f

are respectively the Fresnel parameter for the water and
water-sample-water paths, where a is the transducer radius (4 mm) and H is the
distance between the emitter and the receiver. The corrected phase velocity V c

b ( f ) is
obtained using Eq. 13.1, with φ c( f ) instead of φ( f ).

To compute the signal and group velocities, the time-of-flight tsample of ultra-
sound pulse waveforms transmitted through the bone sample is measured using an
appropriate time marker such as the time of the first zero crossing (for the signal
velocity) and the time of the maximum of the envelop (for the group velocity). The
comparison of the resulting time delay with the system response twater (reference
signal transmitted through water) yields the value of the speed of sound (SOS) for
the considered waveform:

SOS =
L

L
Vr

+(tsample − twater)
(13.3)

It has been shown in trabecular bone studies that the results obtained in terms of
wave velocity is highly dependent on the method used to estimate speed of sound
[45, 46] due to the frequency dependence of the attenuation coefficient and of the
velocity dispersion of trabecular bone. Cortical bone is also a dispersive medium,
but to a lesser extent compared to trabecular bone (see Sects. 13.4 and 13.5 of the
present chapter). A comparison between the different wave velocity measurements
in cortical bone has been made in [35]. However, the method used by the different
authors is often not detailed so that it is difficult to determine what has been done.
More work on the comparison between the different results of ultrasonic velocity
obtained with the various methods is required to elucidate this problem.

13.3.2 Order of Magnitude

Table 13.1 shows the ranges of variation obtained in the literature with different
centre frequencies and bone samples.
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Table 13.1 Minimum, maximum and averaged values of the ultrasonic velocity found in the liter-
ature for different center frequencies, samples and direction of propagation

Center Averaged Range of
Number of Direction of frequency velocity variation

Reference samples propagation Specimen type (MHz) (m/s) (m/s)

[47] 4 Radial Bovine 0.5 3000 2900–3100
[48] 11 Axial Bovine, wet 10 3886 3881–3920

Bovine, dry 4236 4200–4310
Tangential Bovine, wet 3471 3180–3490

Bovine, dry 3605 3460–3790
Radial Bovine, wet 3205 3160–3270

Bovine, dry 3402 3330–3480
[33] 4 Axial Human femur 5 4178 3400–4600
[30] 3 Axial Bovine femur 4 4264 SD: 120

Radial 3453 SD: 80
Tangential 3677 SD: 130

[36] 4 Axial Bovine femur 5 4290 4280–4310
10 4333 4300–4380
20 4350 4320–4380
30 4400 4370–4410
50 4470 4450–4490

100 4410 4370–4450
Radial 5 3450 3400–3480

10 3520 3510–3520
20 3540 3530–3550
30 3580 3570–3600
50 3620 3610–3640

100 3630 3630–3640
[49] – Axial Rat femur 50 4246 SD: 17

Radial 3782 SD: 20

SD: standard deviation

As shown in Table 13.1, the wave velocity is higher in dry samples than in wet
samples. All data obtained from the various investigators indicate that wave velocity
in the axial direction is the highest compared to the two other directions. However,
the comparison between the radial and tangential directions remains controversial.

13.3.3 Homogenized Mechanical Properties

Ultrasound measurements allow to derive homogenized material properties at the
scale of the tested sample if mass density is simultaneously measured. However,
the sensitivity of the considered ultrasonic wave to bone heterogeneity is limited
approximately by the wavelength λ of the pulse. According to the comparison of
the wavelength λ in cortical bone and of the typical size D of the sample, two
different wave modes are expected.
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Table 13.2 Young’s modulus found for the three perpendicular directions in different studies

Reference Type of bone Symmetry Eaxial (GPa) Etangential (GPa) Eradial (GPa)

[19] Human femur TI 27.4 18.8 18.8
[24] Bovine femur Orthotropic 21.9 14.6 11.6
[23] Human femur Orthotropic 20 13.4 12
[16] Human tibia Orthotropic 20.7 12.2 11.7

TI corresponds to transverse isotropic

When λ � D, the propagation mode is referred to as “bulk wave mode”. Since
the cross-sectional dimension of the sample is large compared to the wavelength,
the wave does not “see” the sample boundaries. The ultrasonic velocity Vbulk then
writes:

Vbulk =

√
C11

ρ
(13.4)

where ρ is the homogenised mass density of the sample and C11 = C1111 is the
elastic constant in the direction 1 of wave propagation. Using adapted formulae
obtained from linear elasticity [25], it is then possible to retrieve the value of the
Young’s modulus. Due to the value of the wavelength in cortical bone compared to
the typical size of samples, the bulk wave mode is by far the most commonly used
modality [16,19,23,24]. Table 13.2 [50] shows typical order of magnitude obtained
in the literature for the different Young’s moduli and the corresponding assumption
used for the anisotropy.

When λ � D, the propagation mode is referred to as “bar wave mode” and the
entire sample is then insonified. In this case, the ultrasonic velocity Vbar writes:

Vbar =

√
E1

ρ
(13.5)

where E1 is the apparent Young’s modulus in the direction 1. The bar wave mode has
been used by different authors [34,51,52] in cortical bone to quantify the anisotropic
properties of cortical bone. The elastic properties derived from bulk and bar wave
modes propagation are different in nature and provide complementary data [34].

13.3.4 Dependence on the Anatomical Location

There have been relatively few studies on the spatial dependence of the ultrasonic
velocity in cortical bone. Mainly, a dependence of the ultrasonic velocity on the cir-
cumferential location has been reported in [16,48]. Yamato et al. [30,53] showed for
the same samples that ultrasonic wave velocity was higher in the anterior positions
than in the posterior positions. Similar results have been obtained by Bensamoun
et al. [32, 33] in a study where a cartography of the axial ultrasonic wave velocity
was realized.
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13.3.5 Relation with Bone Mineral Density

Bone material properties at the macroscale depend on the components at the mi-
croscopic scale such as volume fractions of hydroxyapatite, collagen and water as
well as on the microstructure [54, 55]. These results have been confirmed experi-
mentally in a study showing that the ultrasonic velocity is influenced by changes of
the organic matrix [20].

The relationship between ultrasonic velocity and mass density and bone min-
eral density has recently been investigated. Yamato et al. [30, 53] have evidenced
a significant (positive) correlation (r2 = 0.5) between the axial velocity and mass
density in bovine cortical bone samples. More recently, the same team has shown a
correlation between the axial ultrasonic velocity and volumetric BMD [56, 57].

However, an important dispersion of the values obtained for wave velocity was
obtained, especially for plexiform microstructures where the values of mass density
are the highest.

13.3.6 Relation with Hydroxyapatite Crystallite Orientation

The preferred orientation of the c-axis of hydroxyapatite (HAp) crystallites is also a
factor playing a role in anisotropy and inhomogeneity of the bone elastic properties.
The effect of the orientation of HAp crystallites on the ultrasonic wave velocity was
investigated in bovine cortical bone samples [56–59]. The integrated intensity of the
(0002) peak obtained using X-ray diffraction was estimated to evaluate the amount
of preferred orientation of HAp crystallites. The ultrasonic velocity distribution pat-
tern was similar to the distribution of integrated intensity of (0002). These results
show that velocity measurement in cortical bone may also reveal information about
HAp crystallite orientation.

13.4 Attenuation Measurements

13.4.1 Frequency-Dependent Attenuation

The frequency-dependent attenuation coefficient α( f ) can be derived from the ra-
tio of the magnitude spectrum of the pulse transmitted in bone |Ab( f )| with the
magnitude spectrum of the reference wave |Ar( f )| [40]. Magnitude spectra are
obtained using a fast Fourier transform algorithm. The quantity α( f ), expressed
in decibel, is given by:

α( f ) =
1
L

(20log10(e))
(

ln
|Ar( f )|
|Ab( f )| + ln(T ( f ))

)
(13.6)
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The term T ( f ) is introduced to correct from losses due to transmission effects at
the two bone/water interfaces and corresponds to the transmission coefficient of the
pulse through the sample:

T ( f ) =
4Zr( f )Zb( f )

|Zr( f )+ Zb( f )|2 (13.7)

where Zr( f ) = ρrVr( f ) and Zb( f ) = ρbVb( f ) are respectively the acoustic
impedance of the reference medium and bone sample. ρr and Vr( f ) designate
respectively the density and the velocity in the reference medium; ρb and Vb( f )
are respectively the density and the velocity in the bone sample. The values of the
velocity Vb( f ) should be determined for each sample and each direction [30, 60].
Broadband ultrasonic attenuation (BUA) is defined as the slope of the frequency
dependent attenuation and is evaluated using a least-square linear regression within
the bandwidth of interest. The value of BUA, when normalized by sample thickness,
is referred to as normalized BUA (nBUA) and is equivalent to the frequency slope
of the attenuation coefficient.

13.4.2 Order of Magnitude

Table 13.3 shows the different values of the attenuation coefficient obtained in
different samples at various frequencies.

Table 13.3 Values of the attenuation coefficient for different frequencies, bone
samples and directions of propagation

Specimen Direction of Centre frequency Mean value
Reference type propagation (MHz) of α (dB/cm)

[36] Bovine Axial 5 40
10 60

Radial 5 55
10 90

[61] Bovine Axial 0.4 12
[35] Bovine Axial 5 10.4

10 20
Tangential 5 21.7

10 35
Radial 5 26

10 52
Human Axial 5 26

10 61
Radial 5 39

10 130
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Table 13.4 Results obtained from attenuation measurements in various cortical bone specimens
at different frequencies

Frequency nBUA
Precision Samples range (dBcm−1)

References (%) Type of bone number (MHz) Direction (MHz−1)
[35] 10–15 (CV) Human femur 4 2–7 Axial ∼3

8–16 Axial ∼9
Bovine femur 1 1–7 Axial ∼2

Radial ∼3
Tangential ∼3

8–16 Axial ∼3
Radial ∼7
Tangential ∼7

[49] 6.3 (CV) Horse Metacarpal – (in vivo) 0.2–0.6 – 6.1
[36] – Bovine femur 4 0–25 Axial ∼3

4 0–30 Radial ∼4
[47] 4.8 (CV) Bovine femur 5 0.3–0.7 Radial 5–12
[61] 4 (CV) Bovine femur 120 0.2–0.6 – 10–18
[61] 4 (CV) Bovine femur 120 0.2–0.6 – 10–18
[26, 31] 12 (CV) Bovine femur 120 3.5–4.5 Axial 3.2 ± 2

10 (CV) Radial 4.2 ± 2.4
12 (CV) Tangential 4.4±2.9

CV = coefficient of variation

As shown in Table 13.3, the attenuation coefficient has an anisotropic behaviour
for the same reasons as the one explained in Sects. 13.1 and 13.3.

The frequency dependence of the attenuation coefficient is of interest since
nBUA is used in the clinic in the context of trabecular bone studies. Table 13.4
shows the different values obtained in the literature for nBUA. Han et al. [47] and
Serpe and Rho [61] have reported nBUA values around 0.5 MHz in bovine cor-
tical bone. Langton et al. [49] have reported in vivo nBUA values in the same
frequency range on horses. Lakes et al. [35] have investigated attenuation in wet
cortical bone over a large bandwidth (1–16 MHz). Lees and Klopholz [36] have also
evaluated ultrasonic attenuation in wet cortical bone but on a larger frequency range
(5–100 MHz). Saulgozis et al. [62, 63] have shown on human tibiae in vivo that at-
tenuation can be related to fracture healing. In a systematic study [26,31] performed
with samples obtained from three bovine femoral bone specimen (see Fig. 13.1),
the frequency dependence of the attenuation coefficient was investigated in cortical
bone around 4 MHz. At these frequencies, the wave length in cortical bone is
around 1 mm, which is higher but of the same order of magnitude than the typical
size of the main structures (osteons) in bovine cortical bone. For all bone sam-
ples, the measured attenuation coefficient showed a quasi-linear variation with fre-
quency in a 1 MHz-wide frequency bandwidth comprised between 3.5 and 4.5 MHz.
nBUA could therefore be evaluated in this frequency range with an acceptable
accuracy.
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In what follows, we focus on a multimodality study including ultrasonic mea-
surements, bone mineral density measurements using DXA and optical microscopy
[26, 31], which constitutes a powerful approach in order to investigate the depen-
dence of nBUA on bone properties.

13.4.3 Effect of the Direction of Propagation

As shown in Fig. 13.4, nBUA values obtained in the axial direction are significantly
smaller than nBUA values obtained in the radial and tangential directions [26].
ANOVA revealed a significant directional effect (p < 0.002). Tuckey-Kramer multi-
ple comparisons revealed a significant difference between axial and radial direction
and between axial and tangential directions. However no significant difference was
found between radial and tangential directions.

For all anatomical positions, nBUA values obtained in the axial direction were
the smallest. Scattering effects can be a reason that might explain the dependence
of nBUA on the direction of propagation. In bovine cortical bone, lamellae and
osteons are aligned in the axial direction. Therefore, the wave crosses more pores
when it propagates perpendicular to the axial direction (i.e. in the radial or tangential
directions), and is therefore more strongly attenuated. The lamellae structure also
seems to induce scattering effects at the interfaces due to the small difference in the
acoustic impedance.

The dependence of nBUA on the direction of propagation can be compared with
that found in the study of Yamato et al. [30, 53] where SOS measurements were
performed with the same samples in the three directions of propagation. The results
obtained with SOS and nBUA can be explained qualitatively by the relative orien-
tation of the direction of propagation and of the main direction of the pores. In the

12

10

8

6

4

2

0

B
U

A
 (

dB
/c

m
/M

H
z)

cortical ring position
Pro 5 Pro 3 mid dis 3 dis 5

12

10

8

6

B
U

A
 (

dB
/c

m
/M

H
z)

4

2

0
L AL A

quadrant position

axial
radial
tangential

AM M PM P PL

Fig. 13.4 Mean nBUA values and standard deviation (solid line on the bar diagram) as a function
of (a) the quadrant position and (b) the position along the bone axis. L is lateral quadrant, AL is
antero-lateral quadrant, A is anterior quadrant, AM is antero-medial quadrant, M is medial quad-
rant, PM is postero-medial quadrant, P is posterior quadrant, and PL is postero-lateral quadrant.
Pro5 and pro3 correspond to the cortical rings in the proximal part at 5 and 3 cm from the central
part of the shaft. Mid corresponds to the cortical ring at the center part of the shaft. Dis5 and dis3
corresponds to the cortical rings in the distal part at 5 and 3 cm, respectively from the central part
of the shaft (Reprinted from [26] copyright (2007) with permission from Elsevier)



13 Linear Ultrasonic Properties of Cortical Bone: In Vitro Studies 345

axial direction, ultrasonic waves always propagate parallel to the lamellae and os-
teonal structures. They are then less affected by the pores and interfaces than in the
radial or tangential directions

13.4.4 Effect of the Anatomical Location

To assess the influence of the anatomical position on nBUA values, results were first
averaged according to the quadrant position and then to the position along the bone
axis [26]. The variation of nBUA values as a function of the position along the bone
axis (proximal, medial or distal position) is summarized in Fig. 13.4 for the three
directions of propagation. The highest nBUA values are obtained in the distal part
of the bone whereas the smallest nBUA values can be found in the centero-proximal
part of the bone. The variation of nBUA values (averaged according to the posi-
tion along the bone axis) as a function of the quadrant position are summarized in
Fig. 13.4. nBUA values are the highest in the postero-lateral position and the small-
est in the antero-medial part. ANOVA test revealed a significant anatomical position
effect (p < 0.005) for the quadrant and cortical ring position for each of the three di-
rections. The dependence of nBUA on the anatomical location presents the opposite
behavior than the one obtained for SOS [30], since nBUA increases with porosity,
due to scattering phenomena. This dependence may be explained by the distribution
of pore size for the different microstructures. Moreover, this opposite behavior of
nBUA compared to SOS might also be due to bone viscoelastic properties. In order
to explain in more details our results, the bone matrix viscoelastic behavior should
be investigated at a lower scale in the future.

13.4.5 Effect of the Microstructure

The 120 bovine cortical bone samples were manually classified into 4 different his-
tological groups [31]: 47% had a plexiform (Pl) microstructure, 19% a Haversian
(H) microstructure, 8% a porotic microstructure (Po) and 26% a mixed microstruc-
ture (M) made of samples displaying a combined microstructure.

The average and standard deviation of nBUA values are summarized in Table 13.5
together with density and volumetric Bone Mineral Density (vBMD) for each type
of microstructure. In the three directions, plexiform microstructures gave the lowest
nBUA values; Haversian nBUA values were greater than plexiform nBUA values
but smaller than porotic nBUA. Consistently, mixed microstructure exhibits nBUA
values ranging between plexiform and Haversian nBUA values and similar to the
overall average nBUA value. vBMD and density value variations are similar but
evolve in the opposite way compared to nBUA values for each histological group.

ANOVA analysis revealed a significant effect of microstructure (p < 10−5) and
of the direction of propagation (p < 0.002) on nBUA values. For the axial direc-
tion, the Tuckey-Kramer analysis revealed that nBUA values of the plexiform and
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Table 13.5 Averaged and standard deviation values of the broadband ultrasonic attenuation in the
axial, radial and tangential directions together with sample thickness, density and bone mineral
density measured with DXA for the 4 histological groups: Pl, H, Po and M corresponding respec-
tively to the plexiform, Haversian, porotic and mixed microstructures. Table reprinted from [31]
copyright (2008), with permission from Elsevier

All structures
Pl H Po M pooled

nBUA
(dB.MHz−1. cm−1)
Axial 2.1±0.8†,# 4.2±1.5∗,# 7.5±1.8∗,† 3.3±1.8∗,# 3.2±2.0
Radial 3.1±0.8†,# 5.4±2.2∗,# 9.9±2.8∗,† 3.5±0.8†,# 4.2±2.4
Tangential 3.0±1.1†,# 6.3±3.1∗,# 10.3±3.6∗,† 4.1±1.9†,# 4.5±2.9
Density (g/cm3) 2.09±0.02†,# 2.03±0.04∗,# 1.95±0.05∗,† 2.06±0.02∗,†,# 2.06±0.05
vBMD (g/cm3) 1.47±0.04†,# 1.42±0.06∗,# 1.29±0.06∗,† 1.47±0.06†,# 1.45±0.07

The last column shows each quantity averaged for all samples
∗ significantly different from Pl group
† significantly different from H group
# significantly different from Po group

porotic microstructure were significantly different from those obtained in mixed and
Haversian microstructure (p < 0.005). However no significant difference was found
between the nBUA values obtained in Haversian and mixed microstructures. Similar
results were found for density and vBMD values as a function of each histological
group. Moreover, in the radial and tangential directions, no significant difference
was found between nBUA values in plexiform and mixed microstructures.

The relation between bone microstructure and nBUA may help to understand the
dependence of nBUA on the anatomical location described in the last subsections.
Lipson and Katz [64] have related bone structure to the remodeling rate, which is
regulated by the mechanical stress locally applied to bone. They have shown that
Haversian (respectively plexiform) microstructure is predominant in regions of im-
portant (respectively low) mechanical stress. In consequence, they mentioned that
Haversian microstructure is mainly found in postero-lateral regions and plexiform
microstructure in antero-medial regions of the femur. Here, it was found that plex-
iform microstructure is predominant in the anterior, medial and lateral parts and in
posterior part of the mid-diaphysis. Haversian microstructure was mostly found at
the diaphysis extremity, in the posterior part. Eventually, porotic microstructure was
found in regions where muscles adhere, that is proximal postero-medial part and
distal postero-lateral part. nBUA being higher in Haversian than in plexiform mi-
crostructure, the anatomical repartition of bone structure may explain the variation
of nBUA along the bone axis and circumference.

13.4.6 Correlation with Bone Mineral Density

Data for the correlation between nBUA and density/vBMD in the three directions
are summarized in Table 13.6 including equation of the linear regression analysis,
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Table 13.6 Determination coefficient (R2), p-value and root mean square error
(RMSE) and equation of the linear regression analysis for the linear regression anal-
ysis between nBUA and mass density and nBUA and vBMD for the three directions

Mass density (ρ) vBMD

Axial nBUA
Equation nBUA = −34.6ρ +74.6 nBUA = −18.6vBMD+30.1
R2 0.65 0.44
p <10−5 <10−5

RMSE 1.2 1.5
Radial nBUA
Equation nBUA = −41.9ρ +90.2 nBUA = −25.2vBMD+40.6
R2 0.67 0.57
p <10−5 <10−5

RMSE 1.4 1.6
Tangential nBUA
Equation nBUA = −47.9ρ +103.2 nBUA = −26.8vBMD+43.2
R2 0.55 0.39
p <10−5 <10−5

RMSE 2.3 2.0

determination coefficient (R2), p-value and RMSE. Table 13.6 shows that nBUA
values are correlated with vBMD and mass density for all directions of propagation.

As shown in Table 13.6, nBUA decreases with increasing vBMD and density val-
ues in cortical bone whereas the opposite behavior has been observed in cancellous
bone [65–67]. Results are consistent with previous studies on nBUA measured over
a wide range of vBMD [68] and density [61]. These results show that for low den-
sity samples (cancellous bone), nBUA increases when density increases and that
for high density samples (cortical bone), nBUA decreases when density increases.
Moreover, the correlation coefficient between nBUA and density values found for
cortical bone is comparable with the values obtained for human trabecular bone
sample in vitro (R2 = 0.69− 0.98) [69] and much higher than what was found by
Evans et Tavakoli [70] (R2 = 0.11) in bovine trabecular bone. The correlation coef-
ficient between nBUA and density found in the present study (R2 = 0.65) is slightly
higher than the correlation coefficient between axial SOS and density (R2 = 0.5)
obtained with the same samples in Yamato et al. [30] which suggests that nBUA
exhibit a better correlation with density than SOS.

Interestingly, no correlation was found between nBUA and density when con-
sidering plexiform samples only. Moreover, the correlation between nBUA and
vBMD (R2 = 0.13, p < 0.05) found for plexiform samples is lower than the one
obtained for all structures pooled without plexiform samples (nBUA versus vBMD:
R2 = 0.49, p < 10−5, nBUA versus density: R2 = 0.59, p < 10−5). The absence
of correlation obtained for the plexiform microstructure may be explained by the
smaller effects of scattering due to the lower pore size. In plexiform samples, the
influence of density (or vBMD) is reduced and the contribution of bone viscoelas-
tic properties (which depend weakly on vBMD or density) to nBUA values may be
more important.



348 G. Haı̈at

13.4.7 Effect of Viscoelastic and of Scattering Phenomena

Ultrasonic attenuation in bone may result from two different but coupled phenom-
ena: scattering and viscoelasticity. Scattering may occur in cortical bone primarily
because of the presence of fluid-filled pores (strong impedance mismatch) but also
when the wave goes through interfaces between lamellaes and osteons in intersti-
tial bone tissue. Scattering effects are shown to impact significantly nBUA values
in the three directions. Scattering phenomena may also explain the effect of mi-
crostructure on attenuation. Because the mean nBUA values obtained for each type
of microstructure are similar to the repartition of pore sizes (8–12μm) for plexiform
microstructure, 20–50μm for Harversian microstructure and 50–300μm for porotic
microstructure, the data seem to reflect the scattering regime.

However, viscoelasticity may also contribute to ultrasonic attenuation in bone.
Briefly, absorption can be caused by the viscoelasticity [2] of the bone matrix,
which has been modeled in different studies [71–73]. Interstitial tissue between
osteons in Haversian microstructure and interfaces between lamellae in plexiform
microstructure are known to exhibit a viscoelastic behavior [74, 75]. Moreover,
Haversian microstructure contains more interstitial bone than plexiform microstruc-
ture. Therefore, bone viscoelastic behavior may also contribute to explain the
higher nBUA values obtained for Haversian microstructure than for plexiform
microstructure.

13.5 Dispersion Measurements

Velocity dispersion is defined as the slope of the curve of the phase velocity as
a function of frequency. Dispersion is an important parameter since it affects SOS
measurements. As recalled in Sect. 13.3, there are many different ways of measuring
SOS in the laboratory and in the clinics. Wear [76,77] has reported on differences in
methods for measuring ultrasonic velocity in bone, including phase and group veloc-
ities as well as transit-time-based SOS estimates. Time-of-flight measurements are
subject to bias due to the modification of the pulse shape during propagation through
bone by frequency-dependent attenuation [76,77] and dispersion [46,78] producing
artefacts in SOS measurements. In addition, the ultrasonic velocity obtained using
axial transmission devices may also be measured using different signal processing
techniques such as time markers (First Arriving Signal, FAS) [79], 2-D fast Fourier
transform (FFT) analysis (phase velocity) [80, 81], time frequency analysis (group
velocity) [10,82] or wave extraction techniques [26]. In axial transmission, velocity
dispersion measured is influenced by the geometry (e.g. guided wave effects, see
Chap. 7 for more details) as well as by phenomena occurring in the bulk of the
material. For all these reasons, dispersion is an important acoustical property, influ-
encing significantly any velocity measurements.
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13.5.1 Order of Magnitude

Many research groups focused on dispersion studies in trabecular bone [40, 46,
83–87], but considerably less attention has been given to cortical bone. A pio-
neering work was carried out by Yoon and Katz [88] where the authors were
able to measure the ultrasonic velocity as a function of frequency between 2 and
10 MHz in three samples of cortical bone. They found values of dispersion around
13 m · s−1 ·MHz−1. Another work was carried out by Lakes et al. [35] where the
authors measured ultrasonic velocity in cortical bone between 1–12 MHz for about
ten different frequencies. However, it is not easy to discuss these data in terms of
dispersion due to the scale of the graph. In a more recent study, the “sonic” velocity
[36] was measured using different transducers in 4 samples of bovine cortical bone,
between 5–10 MHz. Dispersion was found to be around 8±4.9 m · s−1 ·MHz−1 in
the axial direction, and 13±6.2 m · s−1 ·MHz−1 in the radial direction.

In a recent study [89], samples obtained from three bovine femoral bone speci-
mens (see Fig. 13.1) were used to investigate the dependence of velocity dispersion
on bone parameters [89] in the same frequency bandwidth as the one described in
Sect. 13.4. In spite of a non-linear variation of the apparent phase velocity over a
wide frequency range, the frequency dependence of the apparent phase velocity is
quasi-linear over the 1 MHz restricted frequency range around 4 MHz, for all sam-
ples in the three directions. The precision of dispersion measurements in the axial
(radial and tangential, respectively) direction is equal to 1.3m ·s−1 ·MHz−1 (respec-
tively 0.8 and 1.3m · s−1 ·MHz−1).

13.5.2 Effect of the Direction of Propagation

Average and standard deviation values of dispersion obtained for the three directions
of propagation are summarized in Table 13.7. In average, dispersion values obtained

Table 13.7 Average and standard deviation of the dispersion values in the axial, radial and
tangential directions together with density and apparent volumetric bone mineral density measured
by DXA for the 4 histological groups.

All structures
Plexiform Haversian Porotic Mixed pooled

Dispersion
(ms−1 MHz−1)
Axial 6.1±3.9#,∈ 10.6±8.3 14.7±6.1∗ 8.5±5.8∗ 8±6.3
Radial 5.6±4.6†,# 9.6±6.0∗ 14.3±5.5∗,∈ 5.8±2.4# 6.9±5.3#

Tangential 5.8±6.3# 5.6±8.0 20.7±13.9∗,∈ 4±9.9# 6.3±9.2#

Density (g.cm3) 2.09±0.02†,# 2.03±0.04∗,# 1.95±0.05∗,† 2.06±0.02∗,†,# 2.06±0.05
BMD (g.cm3) 1.47±0.04†,# 1.42±0.06∗,# 1.29±0.06∗,† 1.47±0.06†,# 1.45±0.07

The last column shows each quantity averaged for all samples
∗ significantly different from Pl group
† significantly different from H group
# significantly different from Po group
∈: significantly different from M group
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in the axial direction are higher than the ones obtained in the radial and tangential
directions. However, the ANOVA test does not reveal a significant directional effect
(p = 0.2, F = 1.6).

13.5.3 Effect of the Anatomical Location

To assess the influence of the anatomical position on dispersion values, results are
first averaged according to the quadrant position and then to the position along the
bone axis for the three specimens [89]. A diagram of the dispersion values as a
function of the anatomical position is shown in Fig. 13.5, which displays the results
obtained in the axial direction (this direction is of importance in the context of axial
transmission). The highest dispersion values are obtained in the distal part of the
bone whereas the smallest dispersion values can be found in the centero-proximal
part of the bone. Similar results are obtained for the two other directions of prop-
agation (data not shown). Dispersion values are the highest in the postero-lateral
position and the smallest in the anterior part. Again, similar results are obtained for
the two other directions of propagation (data not shown). The ANOVA test reveals a
significant anatomical position effect of the position around the bone circumference
(p < 2.10−6, F =25; p < 10−10, F =45; p < 3.10−4, F =13 for the axial, radial
and tangential directions, respectively) and for the position along the bone axis
(p < 2.10−2, F =2.7; p < 8.10−3, F =3.6; p < 3.10−2, F =2.6 for the axial, radial
and tangential directions, respectively).

13.5.4 Effect of the Microstructure

The influence of bone microstructure on dispersion measurements is evaluated by
averaging dispersion values for each type of microstructure [89]. The average and
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standard deviation of dispersion values for each histological group are summarized
in Table 13.7, together with density and vBMD measurements. For the axial and
radial directions of propagation, plexiform microstructures give the lowest mean
dispersion values; Haversian dispersion values are greater than plexiform disper-
sion values but smaller than porotic dispersion. However, results in the tangential
direction are slightly different as plexiform and Haversian dispersion values are
similar and mixed microstructures give the lowest values of dispersion. vBMD and
density variations are similar but evolve in the opposite way compared to disper-
sion values obtained for each histological group in the axial and radial directions.
ANOVA analysis reveals a significant effect of microstructure on dispersion values
(p < 3.10−2, F =2.9; p < 10−6, F =9.3 and p < 2.10−3, F =5.7 for the axial, radial
and tangential directions respectively). For the axial direction, the Tuckey-Kramer
analysis reveals that dispersion values are significantly different (p < 0.001) for
plexiform and porotic microstructures, and for plexiform and mixed microstruc-
tures. No significant difference is found for the other microstructures. For the radial
direction, dispersion values are significantly different (p < 10−5) for plexiform and
porotic microstructures, for plexiform and Haversian microstructures, and for mixed
and porotic microstructures. For the tangential direction, dispersion values are sig-
nificantly different (p < 0.003) for plexiform and porotic microstructures, and for
mixed and porotic microstructures.

13.5.5 Correlation with Bone Mineral Density

Dispersion values are positively correlated with vBMD and with mass density
in the radial direction [89]; the determination coefficient (R2) between disper-
sion and vBMD in the radial direction is equal to 0.4 (Root Mean Square error:
RMSE = 3.3m · s−1, p < 10−5). However, dispersion is not correlated with vBMD
in the axial and tangential directions. The determination coefficient (R2) between
dispersion and mass density is equal to 0.33 (Root Mean Square error: RMSE =
3.5m · s−1 ·MHz−1, p < 10−5) in the radial directions.

13.5.6 Negative Values of Velocity Dispersion

In this study [89], negative values of dispersion were obtained in nine samples.
Table 13.8 shows the characteristics of the samples where negative dispersion is
measured, together with the mean value and standard deviation (corresponding to
the reproducibility of the measurements) of the dispersion and the direction of prop-
agation. The reproducibility of the measurement obtained for the samples where
negative dispersion is measured is slightly higher than the average reproducibility.
However, this relatively poor precision does not affect the main conclusion ob-
tained on negative dispersion because in all cases, the standard deviation is lower
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Table 13.8 Characteristics of the samples where negative values of dispersion are measured with
our ultrasonic device. The dispersion value and standard deviation and the direction of propagation
are also indicated

Axial Quadrant Type of Direction of Dispersion value
Bovine number position position Structure propagation (m · s−1 ·MHz−1)

1 Pro5 P M Tan −13±3.5
1 Dis5 A M Tan −12.4±5.9
1 Dis5 AM M Tan −5.2±2.7
1 Dis5 AL M Tan −10.9±3.2
2 Dis5 A M Tan −7±4
2 Dis5 AM M Ax −3.3±1.1
2 Dis5 AM M Tan −5.5±1.9
3 Dis5 AM Ha Tan −21.1±4.8
3 Dis5 PM M Tan −16.2±6.1

in absolute value than the mean dispersion value. Negative values of dispersion are
measured mostly in the tangential direction of propagation (eight samples out of
nine). Moreover, about 89% of the samples for which negative values of dispersion
are measured are of mixed microstructure, which is higher than the total proportion
of mixed microstructure (26%).

A possible explanation of the negative values of dispersion has been given in
a recent study, in the context of trabecular bone [90] (see Chap. 12 of the present
book) where the authors nicely showed that negative values of dispersion may result
from the interference of two broadband ultrasonic pulses arriving on the receiver
with a time delay. A similar interpretation could be applied to the case of cortical
bone, which is a heterogeneous medium where wave splitting may occur, when
different parts of the wavefront propagate at different sound speed [30, 53]. This
effect is likely to be more pronounced for the mixed structures which are inherently
more heterogeneous. In the tangential direction, the mean apparent phase velocity is
equal to 3617±113m · s−1 ·MHz−1,3513±162m · s−1 ·MHz−1 and 3283±147m ·
s−1 ·MHz−1 in plexiform, Haversian and porotic microstructures, respectively [30].
Two ultrasonic pulses may interfere with a time delay depending on the respective
velocity in both media and on the sample length, leading to a comparable situation
as the one obtained by Marutyan et al.

The structural organization of bovine cortical bone has been shown to be
approximately axially symmetric [91]. The model of Marutyan et al., in combi-
nation with the description of the microstructural organization of cortical bone, may
explain (i) why most samples with negative dispersion are of mixed microstructure
and (ii) why all bone samples with negative dispersion are measured in the axial
or tangential direction. In addition, the relatively poor reproducibility obtained for
samples with negative dispersion may also be roughly explained by the model of
Marutyan et al., who showed that dispersion was strongly sensitive to the relative
amplitude of both interfering components. The amplitude of the two wavefronts
may be affected by a slightly different positioning of the sample relatively to the
transducer locations.
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Here, negative values of dispersion were never measured in porous microstruc-
ture, which might seem surprising because porous microstructures are known to lead
to the propagation of two longitudinal wave modes (as described by the Biot theory
[92, 93]), which may lead to negative dispersion [90]. However, the possibility of
measuring two separated longitudinal wave modes propagating in trabecular bone
depends on a complex combination of several factors, such as bone volume fraction,
direction of propagation and structural anisotropy [94] (see Chaps. 5 and 11). There
is no evidence to suggest that these conditions are fulfilled in the case of cortical
bone in the framework of our experimental setup.

Another possible physical explanation for negative values of dispersion may be
multiple scattering phenomena, which are known to be responsible for negative val-
ues of dispersion in trabecular bone [95]. However, further investigation is needed
to evidence such effect as no reports could be found in the literature on multiple
scattering in cortical bone. Note that negative values of velocity dispersion have
also been obtained in Swine cortical bone samples in a recent study [96].

13.5.7 Relationship with Broadband Ultrasonic Attenuation

13.5.7.1 Correlation nBUA/Dispersion

Broadband ultrasonic attenuation (nBUA) measurements (given by the slope of the
frequency dependent attenuation coefficient versus frequency) have been performed
on the same samples [26, 31] (see Sect. 13.3) and are compared with the dispersion
results. Figure 13.6 shows the relationship between dispersion and nBUA values for
all bone samples and in the three directions of propagation.

The dashed black and gray lines of Fig. 13.6 show the linear regression between
dispersion and nBUA values obtained respectively in the radial (R2 =0.73, p<10−5)
and axial (R2 = 0.28, p < 10−5) directions. The linear regression obtained for the
tangential direction is not indicated because no correlation was found for this
direction.

In Sect. 13.4, we have shown that nBUA is significantly correlated with vBMD
for the three directions (R2 comprised between 0.55 and 0.67). The correlation
between nBUA and vBMD, together with the correlation between dispersion and
nBUA in the radial direction may explain our results showing that the dispersion
and vBMD values are also correlated in the radial direction.

13.5.7.2 Using Kramers-Kronig Relationship?

In order to better understand the results shown in Fig. 13.6, we used the formulae
obtained in [97, 98], describing the local Kramers-Kronig (KK) relationships to de-
rive an expression between the frequency dependence of the attenuation coefficient
and that of phase velocity, assuming that (i) the attenuation coefficient is known over



354 G. Haı̈at

0 5 10 15
−20

−10

0

10

20

30

40

BUA(dB/cm/MHz)

D
is

pe
rs

io
n 

(m
/s

)

Fig. 13.6 Dependence of dispersion values as a function of nBUA values for each direction of
propagation. Crosses correspond to the axial direction of propagation and stars to the radial one.
Filled triangles correspond to samples of mixed microstructure measured in the tangential direc-
tion and open triangles correspond to samples of other microstructure measured in the tangential
direction. The solid black line shows the results obtained by using the Kramers-Kronig relation-
ships. The dashed black and gray lines show the linear regression between dispersion and nBUA
values obtained respectively in the radial (R2 = 0.73, p < 10−5) and axial (R2 = 0.28, p < 10−5)
directions (no correlation was obtained in the tangential direction)

the entire frequency bandwidth, (ii) the system is linear, (iii) causality is respected,
(iv) the attenuation and dispersion do not vary rapidly as a function of frequency
and (v) the material is homogenous. Assuming a linear variation of the attenuation
coefficient versus frequency over the entire bandwidth, the KK relationships lead to
a logarithmic variation of phase velocity as a function of frequency. The slope D of
the phase velocity at 4 MHz as a function of frequency is an estimate of dispersion
and is then given by [97, 98]:

D =
100 ·BUA ·V2

b(f)
8.68 ·π2 · f (13.8)

provided that nBUA and f are respectively given in dB.MHz−1.cm−1 and in MHz.
The solid black line in Fig. 13.6 corresponds to the representation of the relation

given by Eq. (13.8). Here, V(f)
b = V(4MHz)

b is chosen equal to 3305m · s−1, because
this value corresponds approximately to the mean phase velocity for the radial di-
rection, which exhibits the best correlation between nBUA and dispersion.

The KK relationships predict an increase of dispersion values when nBUA
increases, which is consistent with the results shown in Fig. 13.6 for the radial and
axial directions. However, the slope of the linear fit obtained between the disper-
sion and nBUA values is overestimated by the KK relationships compared to the
experimental results in the axial and radial directions.
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Several reasons may explain this discrepancy. First, KK relationships cannot be
applied when two waves overlap, resulting in phase cancellation effects. Bone is
an heterogeneous structure in which the Kramers-Kronig argument must be ap-
plied with caution. Second, the non linear variation of the attenuation coefficient
[26] as a function of frequency over the entire frequency bandwidth, which is an
assumption used to derive Eq. 13.8, may also cause this same discrepancy. More
generally, it seems that some difficulties may come from the interpretation of the
general Kramers-Kronig relationships using a linear frequency-dependence for at-
tenuation and dispersion. The linear fit of phase velocity in the considered frequency
range is actually an approximation of the real dispersion. In addition, the signal
spectra used here are inherently bandwidth limited by the transducers and therefore
it was necessary to extend the attenuation law from the measured bandwidth over all
frequencies [99].

13.6 Conclusion

In this chapter, we have reviewed the different results obtained in the literature
dealing with in vitro quantitative ultrasonic parameters applied to cortical bone
samples. Mainly, three parameters have been investigated: the ultrasonic velocity,
broadband ultrasonic attenuation and velocity dispersion. The results presented in
the present review might help understanding the interaction between an ultrasonic
wave and this complex (heterogeneous, viscoelastic) medium, which may lead to
new developments in the domain of ultrasonic devices applied to bone characteri-
zation. Interestingly, different multimodality analyses have shown that these three
parameters are related to the direction of propagation as well as to different bone
properties such as volumetric bone mineral density, mass density and the type
of microstructure. These results show the potentiality of ultrasonic techniques to
investigate cortical bone quality.
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Chapter 14
Ultrasonic Monitoring of Fracture Healing

Vasilios C. Protopappas, Maria G. Vavva, Konstantinos N. Malizos,
Demos Polyzos, and Dimitrios I. Fotiadis

Abstract Quantitative ultrasound has been used to evaluate bone fracture healing
for over five decades. Animal and clinical studies have showed that the propagation
velocity and attenuation are significantly different between fresh fractures, bone
unions, and delayed unions or non-unions. Follow-up measurements have also in-
dicated that the velocity typically increases during healing which makes feasible
to monitor the healing progress and early distinguish between normal healing and
delayed unions. Researchers have recently used computer simulations aiming to
gain insight into the underlying mechanisms of wave propagation in healing bones
and interpret real measurements. In this chapter we present the state of the art in the
field and provide an extensive review of the relevant literature.
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14.1 Introduction

Millions of fractures occur annually as a result of traumatic injuries or pathological
conditions. Bone fracture healing is a self-regulated regenerative process which in-
volves the spatial and temporal coordinated action of many different cell types and
proteins and the expression of hundreds of genes. Fundamental processes in the
healing course are the formation, progressive differentiation and ossification of the
fracture callus tissue which occur until the repairing bone regains its initial mechan-
ical properties, structural integrity and geometry.

The time to healing is an important parameter related to fracture characteris-
tics, magnitude of tissue damage, patient’s general health and mode of treatment.
Although most fractures will successfully heal within a few months, 5–10% of cases
experience complications, such as delayed union or pseudarthrosis (non-union),
which require further conventional or surgical secondary procedures. In both types
of complication, the already prolonged treatment period further extends and be-
comes responsible for substantial morbidity and interference with personal and
vocational productivity which in turn result in major direct and indirect personal,
societal and monetary costs.

In clinical practice, bone healing is evaluated by means of serial clinical and
radiographic examinations; however, both of them are largely dependent on or-
thopaedic surgeons’ expertise and clinical judgment [1]. From a biomechanical
point of view, the healing bone exhibits a gradual increase in its strength and stiff-
ness until these properties are sufficient for weight bearing which is an indication
for bone union. In this respect, significant research has been carried out for the de-
velopment of biomechanical methods for directly or indirectly assessing the rate
of increase of the mechanical properties and thus providing quantitative monitor-
ing means. Biomechanical monitoring of fracture healing can assist the treating
physicians in early detecting healing complications, determining the progress of
the healing process and defining an objective and measurable endpoint of the heal-
ing course. Among the various biomechanical methods that have been proposed for
the monitoring of fracture healing in long bones [2], the most popular ones include
the attachment of strain gauges to external fixation devices for measuring the ax-
ial or bending deformation [2–4], the use of vibrational testing [3, 5, 6] and the
acoustic emission technique [7]. All these methods are successful in determining
the extrinsic mechanical properties of the healing bone, such as the stiffness, and
have managed to provide useful indications on the healing progress. However, they
are generally influenced by gross properties, such as the type and size of bone, the
type and geometry of fracture, etc. Furthermore, most of the above methods may
only be performed in clinical settings where an expert is needed to configure the
measuring set-up and a number of them can be applied only to fracture cases treated
with external fixators several of which further require the temporary removal of the
frame of the fixation device [2–6].

Quantitative ultrasound has been used to evaluate and monitor fracture healing
for over five decades [8]. The most suitable technique for examining long bones
is the axial transmission (see Chaps. 3 and 7 for more details on this technique) in
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which the transmitter and the receiver(s) are placed on each side of the fracture site.
The velocity of the ultrasonic waves propagating along the longitudinal axis of the
bone is typically used as a parameter for monitoring bone healing. As opposed to
the above-mentioned biomechanical methods which measure the properties of the
whole bone as a system, the ultrasonic testing evaluates the changes of the cal-
lus tissue itself during the healing process from the early inflammation stage, the
endochondral and intramembranous ossification stages up to the bone remodeling
stage. The marked differences in the callus properties compared to those of the cor-
tical bone bring about a change (reduction) in the ultrasound velocity as the waves
propagate across the fracture region. As healing progresses, the callus properties are
gradually evolving which is reflected in the ultrasound propagation velocity. Results
from animal [9–15] and clinical [3, 9, 12, 16–18] studies have shown that the ultra-
sound velocity is significantly different between fresh fractures, bone unions, and
delayed unions or non-unions. Serial follow-up measurements [3, 14, 15, 18] have
demonstrated that ultrasound velocity changes (typically increases) during healing
which makes feasible to monitor the healing progress and early distinguish between
cases of normal healing and delayed unions. The propagation velocity is also suffi-
ciently correlated with the mechanical properties of the healing bone and with the
density of the callus tissue [8]. Similar observations have been made with regard to
other propagation characteristics, such as attenuation, velocity dispersion of guided
waves, etc., and will be presented in the following sections. In some research works,
ultrasonography [19] and power Doppler ultrasonography [20] have been used to
assess the appearance and neo-vascularization of the callus tissue during healing;
however, ultrasonography is not covered by this chapter.

This chapter presents the state of the art and provides an extensive review of most
of the studies in the literature dealing with bone healing monitoring by ultrasonic
means. The chapter is organized as follows: First, the ultrasonic methods that have
been proposed in the literature for examining long bones are described. Thereafter,
we present the experimental studies by classifying them into two broad categories;
(a) those that do not involve serial ultrasound measurements over the healing period
but rather involve patients measured at different healing stages or bone specimens
from animal subjects that were sacrificed at various post-operative time-points, and
(b) in vivo studies with serial follow-up measurements. A separate subsection is
devoted to studies that make use of phantoms of fractured bones for investigating
the effect of various fracture characteristics (gap width, depth, etc.) on the mea-
sured quantities. Finally, an overview of the computational studies for simulation of
ultrasound propagation in models of healing bones is presented.

14.2 Ultrasonic Configurations and Measured Quantities

Axial-transmission is the most common technique for evaluating the status of long
bones and this is also the case for fracture healing. The transducers are placed on
each side of the fracture at a fixed distance as shown in Fig. 14.1, but also configura-
tions in which the receiver is progressively shifted to scan also the region above the
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Fig. 14.1 Ultrasonic evaluation of fractured long bones using the axial transmission technique

fracture area have also been proposed [17,21]. In vivo, the transducers are typically
positioned externally on the skin but in a recent study their attachment onto the bone
surface through implantation has been tested and evaluated in vivo [14, 15]. Either
configurations, i.e. percutaneous or directly on the bone surface after removing the
overlying soft tissues, have been used ex vivo on bone specimens.

The most widely-measured ultrasonic quantity in fracture healing assessment is
the ultrasound propagation velocity. Due to the different properties between the cal-
lus and cortical bone, the measured ultrasound velocity is an “average” value over
the whole propagation path, i.e. the segments of the intact cortical bone and the heal-
ing area. In this sense, the value of the velocity is a function of the distance between
the transducers for a given fracture, as opposed to osteoporosis studies where the
velocity is practically independent of the distance. An extension to this is that the
scanning method does not provide any longer with arrival times which are linearly
related to the transducer separation but their relation depends on the position of the
receiver, i.e. over the fracture zone or above the intact segment.

Besides ultrasound velocity, the attenuation of the propagated waves has also
been used for monitoring purposes [17, 21–24]. In most studies, the attenuation is
simply derived from the amplitude of the first half cycle of the first arriving signal
(FAS). In addition, recent studies have made use of the guided wave theory to in-
vestigate whether the dispersion of the velocity and attenuation of individual guided
modes can be used for fracture healing monitoring [21, 25, 26].

14.3 Experimental Studies

14.3.1 Ultrasonic Evaluation of Fracture Healing

The propagation velocity in fractured human bones was measured in vivo for the
first time by Anast et al. in [16]. Velocity measurements were performed on dif-
ferent patients with fractured bones corresponding to various healing stages and
were also compared to the control values from the contralateral healthy bones.
It was found that upon full weight-bearing, the velocity was 80% of the control
value. In a femoral fracture model on 40 guinea pigs [9] which were sacrificed



14 Ultrasonic Monitoring of Fracture Healing 365

at the sixth month post-operatively, the velocity across both the fractured and the
control bones were measured using 100 kHz ultrasonic pulses. The bones were clin-
ically and radiographically classified as: (a) completely healed, (b) partially-healed,
and (c) non-unions. It was found that for completely healed bones, partially-healed
bones, and non-unions, the velocities were on average 94%, 81% and 67% of the
control value, respectively, which indicated that the propagation velocity was in
agreement with clinical and radiographic assessments.

In another animal study [10] on a mid-femoral graft model of 96 guinea pigs, the
authors investigated whether ultrasound velocity is related to the modulus of elastic-
ity of the healing bone. The soft tissues were removed from the excised bones and
the ultrasound velocity was measured at 100 kHz. The modulus of elasticity was
first calculated by multiplying the square of the measured velocity by the mass den-
sity of the specimen and thereafter by three-point bending. It was demonstrated that
the modulus of elasticity determined biomechanically was linearly related with that
determined by ultrasound. Another study on 36 rabbit tibiae [11] investigated the
relationships of ultrasound velocity (using 500 kHz and 1 MHz excitations) with the
load at failure, stiffness and modulus of elasticity determined by three-point bend-
ing. It was found that the correlation coefficient of the velocity with the load at
failure was R = 0.46 at 500 kHz and R = 0.57 at 1 MHz, with the stiffness R = 0.57
at 500 kHz and R = 0.51 at 1 MHz, and with the elastic modulus R = 0.35 at 500 kHz
and R = 0.63 at 1 MHz. The correlation coefficients were higher for the 1 MHz
measurements but the authors provided no justification of their findings. A possi-
ble explanation could be that at 1 MHz, the FAS wave propagated as a subsurface
wave, known also as lateral (or head) wave [27], which travels at the bulk longi-
tudinal velocity of the medium, whereas at 500 kHz the FAS wave due to a longer
wavelength corresponded to a different type of wave whose velocity is influenced by
the physical (vertical) dimensions of the healing bone. In a more recent study [28],
15 sheep with a tibial diaphyseal transverse osteotomy treated by external fixation
were divided into three groups and sacrificed at 30, 45 and 60 days. The tibiae were
removed and their diameters were measured in both the sagittal and frontal planes.
The velocity across the bones was measured in a water tank using the through-
transmission technique at the level of the former osteotomy in both the sagittal and
frontal planes. It was found that the diameters of the fractured tibiae decreased with
time in both planes as a result of bone remodeling which is typical in the secondary
type of healing.1 Ultrasound velocity increased with time from 2290 to 2399 and to
2382 m/s in the sagittal plane, and from 2376 to 2472 and to 2466 m/s in the frontal
plane. It was also found that there was a significant negative correlation between
the diameter and the velocity (R = −0.90 for the sagittal and −0.92 for the frontal
planes).

A different configuration has been proposed in [17] for the determination
of the ultrasound velocity and attenuation in fractured bones. Four 200-kHz
transducers were arranged in a row along the bone axis with the two central
transducers being the transmitters and placed on each side of the fracture line.

1 Secondary healing is the most frequent healing type when an external fixation device is used.
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The propagation velocity was simply measured by using the two remaining
transducers as receivers. For calculating the attenuation, the transmitters were
excited one after the other with pulses such that the corresponding amplitudes of
the first half cycle at a receiver to be equal and thereafter the same procedure was
followed with respect to the other receiver. From the excitations applied to the
transmitters in these four measurements, the ultrasound attenuation coefficient in
bone could be calculated without being influenced from the surrounding soft tissues
and any other coupling at the bone-transducer interface. This measuring technique
was used in vivo on 53 healthy men, on seven patients with a 1-week old tibial
fracture and on six patients with a 3-week old tibial fracture. The velocity and
attenuation in normal tibiae were (mean value ± standard error) 3614± 32m/s
and 5.5± 0.4dB · MHz−1 cm−1, respectively. The velocity in the fractured tibiae
one week after fracture was significantly decreased to 2375± 82m/s, whereas the
attenuation increased to 17.8± 3.9dB ·MHz−1 cm−1. Even three weeks after frac-
ture, the velocity (2882± 90m/s) and attenuation (10.4± 3.6dB · MHz−1 cm−1)
values were still significantly different from the control values. In situ experi-
ments on tibiae with artificially-induced fractures verified the in vivo observations.
Ex vivo measurements on bones before and after the removal of the soft tissues and
of the periosteum revealed that almost no differences existed, whereas the applica-
tion of internal fixation to the bones slightly affected the velocity, but significantly
increased the attenuation.

Two recent ex vivo studies [21,22] also investigated the attenuation of ultrasound
during healing. Two bovine femora, stripped of the soft tissues, were used before and
after the production of a transverse and an oblique fracture. The fracture gaps were
widened in three steps of 2 mm. The scanning method (200 KHz) was used in which
the arrival time and the amplitude of the first peak of the FAS wave were recorded
for each transducer separation step. It was found that the transverse fracture was ac-
companied by typical changes in the arrival time, i.e. an extra time delay compared
with the baseline measurement and the delay increased as the fracture gap widened.
A similar effect was seen with the oblique fracture experiments but a much lower
time delay was observed for the smallest gap width compared with the transverse
case. Regarding the signal amplitude measurements, the transverse case resulted in
characteristic curves involving peaks due to wave interference and a significant loss
in signal amplitude relative to the baseline data. As the gap width increased, the sig-
nal loss was also increased. Similar curves were recorded for the oblique case but
with higher signal loss for a given gap width compared to the transverse case. When
removing the marrow, they found no significant effect on the change in arrival time
and signal amplitude. The ex vivo observations were compared with computational
experiments which are presented in Sect. 14.4.

14.3.2 Ultrasonic Monitoring of Fracture Healing

In this subsection, we only present studies which involved serial follow-up
ultrasound measurements on the same subjects since such study design allows
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Fig. 14.2 Change of ultrasound velocity throughout the healing period in (a) normally healing
tibia, and (b) delayed union (Modified from [18])

the investigation of the monitoring capabilities of ultrasound and as it was proved
to reveal many interesting findings. Gerlanc et al. [18] conducted a clinical study on
21 patients with closed diaphyseal tibial fracture and 12 patients who had sustained
a tibial fracture 1–40 years ago. All subjects had been followed from the time of
fracture for a minimum of 3 months. Velocity measurements were performed on
both the fractured and the contralateral tibiae, initially within a few days from frac-
ture and afterwards every time a radiograph was taken. Ultrasound measurements
(100 kHz) were performed by placing the transducers at specific bony landmarks
(the tibial tubercle and the medial malleolus). Velocity was expressed as a percent-
age of the values in control tibia. The variation of velocity over healing time in the
case of a normal healing course is shown in Fig. 14.2a. The initial measurement
indicated a 24% reduction in velocity followed by a further 7% decrease by the
end of the first month. This further decrease was attributed by the authors to the re-
sorption of the fracture margins and the structural and metabolic bone changes that
occur during the initial healing stages. As healing progressed, the velocity started
increasing and by the time of clinical and radiographic bony union, the velocity had
reached or slightly exceeded that of the initial post-fracture value. When the patients
were able of comfortable ambulation, the velocity had returned to 80–88% of that
in the intact tibia. The authors observed that in general, the rate of velocity increase
was higher for non-comminuted, non-displaced fractures than for severe fractures.
Further measurements on patients with old fractures demonstrated that the velocity
was on average 96% of the intact value, with none of them reaching that of the
control bone. In one case of delayed union (see Fig. 14.2b), it was noticed that the
velocity remained almost constant at 70% for the first five months, next increased
rapidly to 90% by the eighth month, and then reached a plateau until the end of
the follow-up period. Therefore, serial velocity measurements are able to monitor
a dynamic healing process and are in parallel with the clinical and radiographic
patterns.

A study on rabbit ulnar fractures [13] involved serial ultrasound measurements
performed at various post-operative weeks. An “ultrasonic healing index” was de-
fined as the ratio of the amplitude of the FAS wave received from the healing limb
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to that from the contralateral. The results showed that the ultrasonic healing index
increased linearly with healing time. Additional ex vivo experiments demonstrated
that the healing index was also positively correlated with the bending strength of
bone. Although the authors concluded that the healing index, which in essence ex-
presses attenuation, could be used as a quantitative measure of fracture healing, no
comparisons were made with clinical and radiographic assessments.

Cunningham et al. [3] conducted a clinical study on 20 patients treated by cast
for closed diaphyseal tibial fracture. The propagation velocity was determined from
1 MHz ultrasound measurements carried out during the normal appointment of the
patient in the clinic. The ultrasound transducers were placed on the medial side of
the tibia at the upper and lower thirds of its length. The authors presented velocity
graphs only for two patients. For the first patient whose fracture was assessed to be
clinically united at 20 weeks, the velocity was gradually increasing increased over
the healing period approaching that of the control bone. At the time of bone union,
the velocity was lower than the control by 350 m/s (19% difference). The authors
also performed vibration measurements on healing tibia and noticed a similar in-
crease in the frequency of the bending modes during healing. For the second patient
whose fracture was clinically and radiographically evaluated as delayed union, the
velocity was decreasing for the first 17 weeks and afterwards it started to increase
with a slow rate reaching at 81% of the control bone at the 47th post-fracture week. A
similar pattern of variation was also seen for the vibration measurements. An inter-
esting finding observed in both healing cases was that the measured velocity across
the control bone was also varying (generally increasing) over the post-fracture pe-
riod. Although the authors did not provide any explanation for this unexpected
observation, one possible reason could be that the increased loading that the un-
injured bone takes during the healing period has a temporal effect on its density and
mechanical properties. The authors pointed out that measurements should be per-
formed on both bones and the velocity should be expressed as percentage values.
In addition, they concluded that their preliminary results from all the patients sug-
gested that a velocity threshold greater than 80% could be clinically used as criterion
of bony union.

In an in vivo study on a sheep tibial osteotomy model [14, 15], a system for the
ultrasonic monitoring and stimulation of bone healing was introduced that proposed
the attachment of two miniature transducers directly onto the bone’s surface through
a semi-invasive surgical technique. The transducers were placed anterolateraly on
each side of the fracture line with a 25 mm separation. Ultrasound measurements
were obtained from the intact bones before the performance of the osteotomy and
afterwards from the healing bones on a 4-day basis until the 100th post-operative
day. Three typical velocity evolution patterns were observed among all test subjects.
The first was similar to that reported in [18] (see Fig. 14.2a) and was observed for
19 animals in which secondary healing took place as assessed by radiographs. More
specifically, the velocity was initially reduced on average by 17% just after the real-
ization of the osteotomy and continued to decrease by a further 13% until the 38th

day. Such decrease was also observed in [18] and can be largely explained by the
inflammatory response and the increased osteoclastic activity that occur at the early
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stages of secondary healing which cause further broadening of the fracture gap.
From that point onwards, the velocity started to gradually increase as a result of the
formation and consolidation of the callus. The second pattern, which was observed
for three animals, was described by a steady increase in velocity after the osteotomy,
revealing thus a different type of healing. For this animal group, radiographs showed
that primary (direct) healing occurred which is characterized by direct bony union
across the fracture gap, rather than callus formation. The third pattern corresponded
to two non-union cases and was not described by any systematic change in the ve-
locity. Therefore, it was shown that the variation of the velocity not only monitors a
dynamic healing process but also reflects the pathway of healing. The results were
further analyzed to investigate whether the variation of velocity could early distin-
guish between healing and non-healing bones. For this purpose, the animals were
divided into two healing groups; the first included animals that reached radiographic
healing and the second those with non-healing. It was shown that on average the ve-
locity across bones that eventually reached bone union was higher than those with
non-healing even from the 50th post-operative day; however, statistically significant
differences were only observed from the 80th post-operative day onwards. Also, the
velocity exceeded 80% of the intact bone value on the 70th post-operative day. Bone
densitometry and three-point bending showed that the velocity on the 100th day
was highly correlated with the square root of the Young modulus (R = 0.81) and the
ultimate strength (R = 0.75) as well as with the density of the callus (R = 0.81).

14.3.3 Studies Using Phantoms of Healing Bones

In an experimental study [29], acrylic plates were used to simulate the cortex of a
long bone. The plates were immersed in a water tank and two 200 kHz transducers
were positioned perpendicularly to the water surface, 2 mm above the plate. Ultra-
sound measurements were performed initially on an intact plate using the scanning
technique. The slope of the line that describes the transducer separation as a function
of the FAS arrival time yields the bulk longitudinal velocity. With this technique the
influence of the overlying soft tissues is eliminated provided that their thickness re-
mains constant over the scanning region. In order to investigate the type of the FAS
wave, the authors made the hypothesis that the wave propagates from the transmit-
ter to the receiver along a path corresponding to the minimum propagation time.
According to this hypothesis, the FAS wave is first introduced to the plate at the
first critical angle [27], then propagates along the plate as a longitudinal wave, and
finally leaves the plate at the first critical angle to reach the receiver. The minimum
propagation time was computed analytically and found to be in excellent agreement
with the experimental measurements. This hypothesis on the propagation path is
simply based on ray theory and is practically valid when the transducers operate
at low frequencies and have small contact area. Under such conditions, the trans-
ducers transmit over a wide angular range and thus can emit and receive significant
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energy in the direction of the first critical angle. Although not discussed by the
authors, the FAS wave does not propagate along the medium as a pure bulk wave,
but rather along its subsurface as a lateral wave. Another issue to consider is that the
ray theory is no longer a valid assumption when the plate thickness is smaller than
the wavelength in bone. In such cases, a modal approach is necessary to describe
wave propagation and the FAS wave corresponds to a low-order guided wave mode
[30]. In a second series of experiments in the same study [29], the plate was trans-
versely cut throughout its thickness and the two fragments were repositioned such
that the intra-fragmentary distance was 0, 10 and 20 mm. The fracture gap was first
filled with water and next with a PVC block (bulk velocity 2995 m/s). The recorded
FAS arrival time was plotted against the distance between the transducers for each
fracture case. It was found that when the two fragments were in direct contact, the
measurement curve was identical to that obtained from the intact plate indicating
that the presence of a perfectly-reduced fracture does not affect the propagation
time. For the cases where a gap existed between the two fragments, as long as the
receiver was over the second fragment, the propagation times had a constant offset,
depending on the gap width and the difference in velocity between the material in
the gap (water or PVC) and the plate. However, the slopes of the curves that de-
scribe the FAS arrival time versus the transducers’ distance for each material (water
or PVC) were the same and equal to the bulk velocity of the plate. When the re-
ceiver moved over the fracture gap, it was shown that the slope of the curve yields
the velocity of the material in the gap; however, the authors claimed that this could
be feasible when the fracture gap is large enough, typically over 20 mm.

Similar experiments were performed in another study [31] on two sliding acrylic
blocks of 15 mm thickness which simulated a fractured long bone. A 1 mm thick
layer of natural rubber (bulk velocity 1600 m/s) was used as tissue equivalent ma-
terial and was placed on the top of the blocks. The phantom was placed in a water
tank and the width of the fracture gap was gradually set from 0.1–2.0 mm using
0.1 mm increments. For each setting, ultrasound velocity measurements were per-
formed using the commercial system SoundScan 2000 (Myriad Ultrasound Systems
Ltd, Israel) which incorporates two sets of transducers into a single probe. The first
set operates at 250 kHz and is mounted at an angle to the skin with the transducers
separated by 50 mm and was used to carry out axial transmission measurements.
The second set operates at 1 MHz with its transducers mounted perpendicular to
the skin to perform echo signal measurements for determining the thickness of the
overlying soft tissues which would correct the propagation distance for different
soft tissue thicknesses. It was demonstrated that the measured velocity was de-
creasing as the gap increased and was also in perfect agreement with that predicted
theoretically.

Experiments on immersed Sawbones plates [24] were carried out to supplement
the ex vivo studies [21, 22] regarding the attenuation of ultrasound during healing.
The fracture was simulated by a 4 mm transverse gap, while the early inflammatory
stage was simulated by water. Hard callus formation was simulated by bone cement
which was initially inserted only within the gap and later was also placed at the top
surface of the plate having a dome shape. Ultrasound measurements at 200 KHz
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showed that a large drop in FAS amplitude was observed for the inflammatory
stage and when bone cement substituted for the water in the gap, the signal loss
was reduced significantly. Adding a callus to the top surface resulted in increased
signal loss which indicated that the callus itself can give rise to strong scattering/
re-radiation.

14.4 Computational Studies

Although the literature of the use of computational models for the study of corti-
cal and cancellous bone is quite rich [32] (see Chap. 8), their use in the context of
fracture healing is relative new. The first computational study of ultrasound prop-
agation in a healing long bone was published in 2006 [26]. A 2-D model of an
elastic isotropic plate (4 mm thick, bulk longitudinal and shear velocities 4063 and
1846 m/s, respectively) was developed similar to those used in osteoporosis stud-
ies [32]. The fracture gap was modeled as a 2 mm wide transverse discontinuity at
the middle of the plate’s length, while the consolidation of callus was simulated by
a simple 7-stage process. The callus tissue was assumed to be homogeneous and
isotropic with properties evolving throughout the stages. At each stage, the material
properties of the callus were given by a linear combination of the properties of blood
and cortical bone. At the first healing stage, the callus was assigned the properties
of blood which corresponds to the haematoma that follows a fracture, whereas at
later stages the callus was modeled as a solid with properties gradually approxi-
mating those of cortical bone as a result of callus mineralization and ossification.
The callus geometrical model included two cases. In the first, the geometry was not
taken into account and the callus simply filled the fracture gap, whereas in the sec-
ond, the callus was described by two regions outside the plate borders in order to
simulate the periosteal and endosteal formation of callus. Axial transmission was
simulated by a transmitter and a receiver placed in direct contact with the plate’s
upper surface. Two broadband excitations were examined with central frequencies
of 500 kHz and 1 MHz resulting in 8 mm and 4 mm wavelengths in bone, respec-
tively. The bone plate was assumed to be in vacuum neglecting thus the presence
of soft tissues. Solution to the elastic wave propagation problem was achieved us-
ing the finite-difference method [32]. Analyzing initially the simulated signals from
the intact plate, it was proved that the FAS wave propagated as a non-dispersive
lateral wave. When the callus was incorporated into the model, the FAS remained
a lateral wave and its velocity was gradually increasing during the healing stages.
The FAS velocity at each stage was independent of the excitation frequency or the
callus geometry.

In a subsequent study by the same group [33], the model of the healing bone was
enhanced by assuming the callus tissue to be an inhomogeneous material consisting
of six different ossification regions (Fig. 14.3). The healing course was simulated by
a three-stage process in which the properties of each region evolved corresponding
to various types of soft tissues that participate in the healing process. In addition,
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Fig. 14.3 2-D model of a healing bone immersed in blood occupying the semi-infinite spaces
together with the transmitter–receiver arrangement. The Latin numbers indicate the six ossification
regions of the callus tissue [33]

three different boundary conditions were investigated. In the first, the healing bone
was assumed immersed in blood which occupied the semi-infinite spaces over the
surfaces of the plate (Fig. 14.3), the second involved a 2 mm-thick layer of blood on
the upper side and a semi-infinite space consisted of bone marrow on the lower side
of the plate, and a the third case involved three finite layers (blood, cortical bone and
bone marrow). It was found that at the first stage the FAS velocity decreased from
the intact bone value, then remained the same between the first and the second
stages, and increased at the third stage. No significant differences were observed
in the FAS velocity between the various boundary conditions cases (free or fluid-
loading) suggesting that the lateral wave is not influenced by loading conditions.
The fact that the velocity remained constant between the first and the second stage
indicates that the propagation of the FAS wave was only affected by the material
that filled the fracture gap (which was the same for those two stages) and that the
FAS is insensitive to changes that occur in the whole structure of the callus tissue.

Dodd et al. [21–23] complemented their ex vivo findings by investigating the
effect of different fracture gap sizes and geometries on the FAS amplitude and at-
tenuation using 2-D computational models. Bone was modeled as an isotropic plate
immersed in water and two different types of oblique fractures were modeled. Sim-
ulation of axial transmission at 200 kHz was performed using the finite-difference
method. Comparisons between the computational and experimental results showed
similar arrival time variations and signal amplitude patterns. Furthermore, it was
made clear that an oblique fracture causes a reduction in the extra time delay of
the propagating wave compared with the transverse case, and also an additional de-
crease in the corresponding signal amplitude. Furthermore, the angle of the fracture
line was found to affect the FAS amplitude and more specifically the greater the
angle, the higher the signal loss. However, the effect of the various healing stages
on the FAS amplitude was not investigated, but rather only the initial inflamma-
tory healing stage was examined. This limitation was addressed in a subsequent
computational study [24] in which the healing was simulated by seven stages with
the callus size being reduced during the last stages as a result of bone remodel-
ing (Fig 14.4). The results from the simulations demonstrated that, in addition to a
reduction in FAS amplitude due to the presence of fracture, the alterations in cal-
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Fig. 14.4 Modeling of six stages of secondary healing in which callus properties and geometry
gradually evolve [24]
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Fig. 14.5 2-D model of a healing bone in which the transmitter and receiver are attached at the
pins of an external fixation device [34]

lus geometry and properties caused considerable changes in the signal amplitude,
especially at the inflammatory and remodeling stages. By analyzing snapshots of the
simulations for each healing stage, the authors concluded that the callus acts both as
a waveguide aiding the transmission of the acoustic pulse beyond the fracture site
and as an additional load on the bone plate giving rise to an increased re-radiation
which appears to dominate the signal loss.

In another 2-D computational study [34], an alternative measurement set-up was
modeled in which of the transducers are placed at the extracorporeal tips of the pins
of an already applied external fixation device (Fig. 14.5). The model of healing bone
was similar to that in [33], while the pins were modeled as 5-mm thick stainless steel
rods. In order to address realistic conditions in which the orthopeadic surgeons do
not insert the pins perpendicular to the bone axis but rather at small inclinations,
different cases of pin inclination angles were also investigated. The velocity values
calculated from the simulations generally increased throughout the healing stages;
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however, the longer FAS propagation path (due to the presence of the pins) decreases
the sensitivity of the proposed method compared to the traditional ones. It was also
made clear that pin inclination had generally no significant impact on the velocity
measurements. This was an in silico validation of an innovative configuration which
can offer several advantages in vivo since the measurements are affected neither by
the overlying soft tissue, especially for examining deep bones, nor by any variations
in transducers’ re-positioning during follow-up examinations.

A current trend in ultrasonic evaluation of bone healing is the use of guided waves
as a means to supplement the traditional velocity and attenuation measurements.
This was firstly addressed in [26,33] where a time-frequency (t-f) methodology was
followed for the representation of the propagating guided modes. Mode identifica-
tion was performed by using the group velocity dispersion curves predicted by the
Lamb wave theory [27, 35]. Among the multiple modes that were detected, the S2
and the A3 Lamb modes were found to dominate (Fig. 14.6a). When applying dif-
ferent boundary conditions, the analysis was performed with the use of the modified
dispersion curves that include the loading effect of the surrounding medium [27].
As opposed to the lateral wave, the effect of the boundary conditions on the modes
was significant and thus cannot be ignored when analyzing real measurements.
T-f analysis of the signals from the simulated stages showed that both the properties
and geometry of the callus affected the dispersion of the theoretically-anticipated
Lamb modes (Fig. 14.6b–d). The modes were gradually reconstructed towards the
theoretical ones during callus consolidation.
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Fig. 14.7 Finite element model of a sheep tibia incorporating the fracture callus (sagittal section)
together with the transmitter-receiver configuration [26]

The above simulation studies were further extended to more realistic conditions
by considering the 3-D geometry and anisotropy of the bone and of the fracture
callus tissue [25]. First, a structure with idealized geometry (hollow circular cylin-
der) was examined for two cases of material symmetry: isotropy and transverse
isotropy. Next, the real geometry of the diaphysis of an intact sheep tibia was mod-
eled while the callus was inserted at the middle of the bone’s length (Fig. 14.7).
The callus consisted of six ossification regions and healing proceeded in three sim-
ulated stages as in [33]. Axial transmission measurements were performed using
a broadband 1 MHz excitation. Two sites of transmitter-receiver positioning were
examined corresponding to regions where the cortical shell has different physical
characteristics (i.e. local thickness and curvature). Bone was considered free of trac-
tions on the inner and outer surfaces. Solution to the 3-D elastic wave propagation
problem was performed using the explicit elastodynamics finite element analysis.
Concerning the intact models, it was observed that the FAS wave corresponded to a
lateral wave, as in the 2-D models [26, 33], and its velocity was not affected by the
curvature of the cortex and remained almost the same between the two different ma-
terial symmetry assumptions. On the other hand, the anatomical characteristics of
the measurement site as well as bone anisotropy had a major effect on the propaga-
tion of high-order modes. For both material symmetry cases, the high-order modes
in bone were significantly different from those observed in the cylindrical model and
from those predicted by the tube theory [36]. The effect was less pronounced on the
dispersion of the fundamental tube modes, i.e. the longitudinal L(0,1) and the flex-
ural F(1,1) modes, indicating that 2-D and 3-D simulations on idealized geometries
have limited efficiency in predicting wave-guidance phenomena in real bones. For
the fractured tibia, it was demonstrated that the FAS velocity measurements cannot
reflect the material and mechanical changes taking place in the whole structure of
callus, which is in accordance with previous findings from the 2-D studies [26, 33].
Conversely, guided waves were sensitive to both the geometry and the properties
of callus.
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Guo et al. in a subsequent study [37] performed numerical simulations using a
3-D finite element model of healing bone similar to that in [25] in order to quantify
the characteristics of longitudinal tube modes during the simulated healing pro-
cess. Excitation was performed by a broadband impulse and the displacements were
recorded at a series of discrete positions. The recorded signals were analyzed with
the mode extraction technique that gives the waveforms of the individual modes.
The energy and the effective velocity of the first energy peak of each extracted mode
were calculated for every simulated healing stage. From the analysis, the authors
proposed which tube modes are more sensitive to each healing stage.

14.5 Conclusion

Quantitative ultrasound has attracted significant interest in the monitoring of bone
fracture healing. The results from animal and clinical studies demonstrated that
the ultrasound velocity is significantly different between healed bones and delayed
unions or non-unions and is also sufficiently correlated with the breaking load, stiff-
ness, strength, Young’s modulus of the healing bone and with the density of callus.
Studies involving follow-up measurements have shown that the pattern of velocity
variation is also consistent with the biology of the secondary and the primary type
of healing. An empirical velocity threshold of 80% of the control bone value can
be used as a criterion of bony union. A smaller number of studies have additionally
shown that the attenuation of the FAS wave can characterize the status of the healing
bone and monitor the healing process. However, it is difficult to provide reference
velocity and attenuation values for each stage of healing. This is due to many rea-
sons, the most significant of which are: (a) the transducer separation in each study
was different, (b) the characteristics of the fractures (fracture gap, the type of frac-
ture, etc.) were not the same nor systematically classified into groups, and (c) a wide
range of frequencies have been employed (from 100 to 1 MHz).

Wave propagation in healing long bones has recently been studied with the use
of computer simulations in order to elucidate the influence of various parameters
(e.g. callus properties, frequency of ultrasound, transducers’ arrangement, etc.) on
the characteristics of wave propagation, analyze the various propagating wave types
and also overcome the inherent difficulties in obtaining specimens of healing bone
with known properties. A series of computational studies on 2-D and 3-D mod-
els of healing bones [25, 26, 33] showed that the FAS velocity increased during a
simulated healing process. When the FAS wave corresponds to a lateral wave, its
velocity is sensitive only to the properties of a small superficial region within the
fracture gap. By making use of a broadband excitation that gives rise to multiple
guided waves, it was made feasible to capture geometrical and material changes in
the callus tissue during healing. However, it was demonstrated that the character-
istics of the guided waves, such as the dispersion of velocity, are strongly affected
by the irregular geometry and anisotropy of the cortical bone and callus, and by the
boundary conditions induced by the soft tissues. Further computational studies on
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2-D healing bones [21–23] revealed that the amplitude of the FAS is also sensitive to
the fracture and can potentially be a good indicator for the changes in the mechan-
ical properties of the callus due to the formation of connective tissue, cartilage and
woven bone. Nevertheless, several issues need to be further addressed, such as more
realistic bone geometries, material attenuation, microstructural effects [38], differ-
ent types of fractures, accurate transducer modeling, etc. Therefore, the results from
the simulation studies should be interpreted with care preferably in conjunction with
clinical measurements from real fractures.

Quantitative ultrasound is low-cost, safe, easy to operate, and in some cases
portable or even wearable when comparing with the alternative biomechanical meth-
ods that have also been proposed for fracture healing monitoring. Ultrasound is also
preferable because it can be applied to practically all types of fractures in long bones
independently of the existence of external fixation. Although ultrasound devices are
currently available to assess osteoporosis and are gradually becoming an integrated
part of the clinical practice, no similar progress has been made in the context of
bone fracture healing monitoring. This is mainly attributed to the fact that few clini-
cal studies have been reported and these do not involve large and homogenous group
of patients. Another open issue is that the measurements have not been standardized
and compared with normative data (e.g. bone densitometry) which would enable the
validation of the diagnostic ability of ultrasound.
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Chapter 15
Nonlinear Acoustics for Non-invasive
Assessment of Bone Micro-damage

Marie Muller and Guillaume Renaud

Abstract This chapter presents the state of art in the field of nonlinear ultrasound
applied to bone micro-damage assessment. An increasing number of groups have
been conducting research in the past years on this particular topic, motivated by the
particular sensitivity shown by nonlinear ultrasound methods in industrial materials
and geomaterials. Some of the results obtained recently on bone damage assessment
in vitro using various nonlinear ultrasound techniques are presented. In particular,
results obtained with higher harmonic generation, Dynamic Acousto-Elastic Test-
ing (DAET), Nonlinear Resonant Ultrasound Spectroscopy (NRUS), and Nonlinear
Wave Modulation Spectroscopy (NWMS) techniques are detailed. All those results
show a very good potential for nonlinear ultrasound techniques for bone damage
assessment. They should benefit from a proper quantification of the relationship be-
tween micro-damage and nonlinear ultrasound parameters. This could be obtained
through a thorough statistical study which remains to be achieved. A practical im-
plementation of an in vivo setup also remains to be conducted.
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15.1 Introduction

Cracks in solids were identified as sources of acoustic nonlinearity in industrial
materials and geomaterials [1, 2]. These acoustical nonlinearities must be distin-
guished from elastic nonlinearity arising during irreversible plastic macroscopic
deformation for strain of order 1% (see Chap. 1). Nonlinear acoustical techniques
employ elastic waves with maximum strain amplitude of order 10−5. Moreover it
was suggested that microdamage initiates in bone tissue at strains of about 0.3%,
below the apparent macroscopic yield strain of order 0.7% [3]. Consequently non-
linear acoustical techniques are non-destructive.

Promising results obtained in industrial non-destructive testing and geophysics
motivated some research groups to apply these nonlinear acoustical methods to as-
sess the level of microdamage in bone. On top of that, this motivation was supported
by the growing interest in the role of microdamage in bone remodeling and bone
biomechanics [4]. Finally the development of nonlinear acoustical techniques was
also motivated by the failure of linear quantitative ultrasound to detect mechanical
damage induced in trabecular bone [5].

Contrary to linear acoustics (see Chaps. 11 and 14), in the framework of nonlinear
acoustics, the propagation velocity and the attenuation (or dissipation) of acoustic
waves are amplitude dependent. Those peculiarities give rise to various phenom-
ena called nonlinear acoustical effects. Some of those nonlinear phenomena were
measured in bone and are presented in Sect. 15.2. Section 15.3 is dedicated to an
introduction of the basic concepts employed to model the effect of cracks on the
propagation of elastic waves.

15.2 Application of Nonlinear Acoustics to Experimental
Assessment of Damage in Bone

In the context of nonlinear elasticity, the Hooke’s law relating stress σ to strain ε
is no more linear and additional terms are introduced to model nonlinear elastic
phenomena. The following equation of state (15.1) is assumed in this experimental
section to model nonlinear elasticity in bone, based on the results of both experi-
mental and theoretical studies in micro-inhomogeneous media [1, 6]:

σ = M0

(
ε −β ε2 − δε3 −α

[
(Δε) ε + sign(ε̇)

ε2 − (Δε)2

2

])
, (15.1)

where M0 is the linear elastic modulus, β and δ account for classical quadratic
and cubic nonlinear elasticity, respectively, and α refers to nonclassical hysteretic
quadratic nonlinearity. Δε is the maximum strain excursion, equal to the strain am-
plitude in the case of a constant-amplitude sinusoidal wave.
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This section is devoted to the presentation of four experimental techniques
applied to bone tissue in order to measure those three nonlinear elastic parameters.

15.2.1 Higher Harmonic Generation

The existence of elastic nonlinearity in a material induces a progressive distortion of
an acoustic temporal waveform during propagation. When elastic nonlinearity can
be modeled by a Taylor expansion of the elastic modulus, M = M0 + M1ε + M2ε2

+ · · · ,1 if the initial wave is monochromatic, the first order nonlinear interaction in
the wave propagation equation gives rise to a solution containing new terms whose
frequencies are higher multiples of the initial frequency ω/(2π) usually named
higher harmonics [7].

Hence a classical experiment consists in propagating a monochromatic acous-
tic wave in the probed material over a distance L and measure the amplitude of
second harmonic (at twice the fundamental or initial frequency) in the received
acoustic wave.2 The ratio between the amplitude of the second harmonic over the
squared amplitude at the fundamental frequency quantifies the extent of the distor-
tion of acoustic waveform, and consequently the magnitude of elastic nonlinearity
in the medium. If diffraction and absorption (viscous and thermal) effects can be
neglected over the propagation distance L and if phase velocity dispersion is suffi-
ciently weak, a simple formula is obtained to evaluate the quadratic nonlinear elastic
parameter β [7]:

β =
4U2ω

U2
ωk2L

, (15.2)

if the acoustic displacement U can be measured, where k, Uω , and U2ω are the
wavenumber, the displacement amplitudes at the fundamental frequency and at
twice the fundamental frequency, respectively,

β =
2ρ0c2

0 p2ω
p2

ωkL
, (15.3)

if the acoustic pressure p is measured, where ρ0, c0, pω , and p2ω are the linear
density, the linear propagation velocity, the pressure amplitudes at the fundamental

1 M0 is the linear elastic modulus or the second-order (in energy) elastic constant, whereas M1
M2 are the third-order and fourth-order elastic constants, respectively, which account for nonlinear
elasticity. M1 and M2 are negative for most of the materials.
2 Practically, a burst containing at least ten acoustic periods is emitted to facilitate the extraction
of the second harmonic amplitude in the frequency domain after the computation of the Fourier
transform of the received acoustic signal.
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frequency and at twice the fundamental frequency, respectively. Note that M0 =
ρ0c2

0. This parameter includes two sources of nonlinearity: the kinematic or geo-
metric nonlinearity, related to the small deviation from the linear relation between
the strain and the particle displacement gradient, and the physical nonlinearity,
associated with the small deviation from the linear Hooke’s law3 (15.1). In ordi-
nary cases, for most of homogeneous fluids and solids, both sources of mechan-
ical nonlinearity generally play a comparable role [8]. For fluids, β is usually
expressed by:

β = 1 +
B

2A
, (15.4)

where B and A are homogeneous to M1 and M0, respectively.
B/A is proportional to the first derivative of sound velocity with respect to

the pressure under isentropic conditions [9]. This ratio B/A is indeed a mea-
surement of the so-called acoustoelastic effect which is addressed in Sect. 15.2.2.
Thus the quadratic elastic nonlinearity leads to a modulation of the propagation
velocity: c = c0 + β vac, where vac is the acoustic particle velocity. B/A varies
between 2 and 15 for homogeneous liquids and solids4 and ranges from 0.2 to
0.7 for gases [7]. Nonetheless, micro-inhomogeneous media like granular rocks,
unconsolidated granular media (sand or sediment), cracked solids or liquids with
gas bubbles, exhibit anomalously high acoustic nonlinearity and B/A can reach val-
ues up to 105 [1, 7, 10]. For these peculiar materials, kinematic nonlinearity can be
neglected with respect to the nonlinearity of the equation of state.

Interestingly, the value of B/A assessed by the measurement of the second har-
monic amplitude was shown to increase with the level of damage in metals. Thermal
or mechanical damage was found to increase the value of β up to a few times
[11–16].

The only reported in vivo study on the acoustic nonlinearity exhibited by bone
tissue was precisely performed by the measurement of the second harmonic ampli-
tude [17, 18]. An ultrasonic (US) burst containing 20 periods is transmitted through
the heel bone. Because of huge ultrasonic attenuation in trabecular bone,5 the fun-
damental frequency was chosen around 200 KHz. The acoustic pressure amplitude
was of order a few hundreds of kPa. The authors conducted the experiment on five

3 In other words, the nonlinearity in the equation of state of the material, relating stress to strain.
4 In an isotropic solid, for a compressional plane wave, β =−(3/2+C111/(2C11)), where C111 and
C11 are elastic constants homogeneous to M1 and M0, respectively [7]. The value 3/2 instead of
1 in the expression of β is related to the difference between Lagrangian and Eulerian descriptions
of particle motion. Moreover the negative sign arises from the difference in the definitions of the
pressure and the stress. Besides, the reader has to pay attention to the definition of β when com-
paring values obtained by different studies. Indeed the parameter of quadratic nonlinear elasticity
is sometimes defined as β = −(3 +C111/C11), twice the value usually employed in the “fluid”
community.
5 The heel bone or calcaneus contains 95% of trabecular surrounded by a thin cortical shell.
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healthy volunteers and two osteopenic patients. For each subject, the T-score (see
definition in Chap. 1) was measured by DXA (Dual energy X-ray Absorptiometry).
Finally a substantial correlation was found out between the T-score and the ratio
between the second harmonic amplitude and the fundamental amplitude. Thus this
study suggests the ability of this nonlinear acoustical technique to distinguish be-
tween healthy and osteopenic subjects.

Nonetheless the physical origins of the increase of acoustic nonlinearity have
to be clarified. Such a variation could be firstly attributed to an increase of the
micro-crack density and/or the mean length of micro-cracks in osteopenic bone.
Indeed a positive correlation between crack density and porosity was reported in
other cortical and trabecular skeletal sites than heel but with various coefficients of
determination (R2 = 0.1− 0.7) [19, 20]. Secondly the increase in the porosity also
means the increase in the marrow volume fraction and consequently a decrease in
the solid bone volume fraction. Calcaneal pores are mainly filled with yellow mar-
row which is in fact mostly fat. The nonlinear parameter B/A of fat is close to 10,
in the same order of magnitude as the value for an homogeneous undamaged solid.
Hence, for healthy solid bone tissue, B/A may be of order 10. Nevertheless, though
this biphasic medium is made of a liquid and a solid whose B/A are similar, the non-
linear elastic effects will be more important in the fluid phase than in the solid phase.
Indeed the relative importance of this acoustic nonlinearity can be evaluated by:

c− c0

c0
= β

vac

c0
= β

p

ρ0c2
0

= β Mac, (15.5)

where Mac is the acoustic Mach number. This allows to figure out that the relative
magnitude is governed by β and Mac. As a conclusion, for a given acoustic pressure
amplitude, the nonlinear phenomena generated in healthy solid bone tissue may
be weaker than in marrow because solids are denser and stiffer than liquids. Finally
a simple increase in the marrow volume fraction (or porosity) may alternatively
increase the level of acoustic nonlinearity. However if the presence of micro-cracks
sufficiently increase the value of B/A in solid bone tissue, this could also lead to an
increase of the global acoustic nonlinearity.

Besides, a rising number of experiments shows that the amplitude of the third
harmonic (at three times the fundamental frequency) is more sensitive to the level
of damage than the second harmonic. In an homogeneous undamaged material, the
third harmonic is weaker than the second harmonic and its amplitude is propor-
tional to the cube of the fundamental amplitude. On the contrary, the existence of
inter-grain contacts or cracks in a solid enhances the third harmonic whose ampli-
tude can even exceed the second harmonic amplitude [21]. Moreover the amplitude
of the third harmonic is proportional to the square of the fundamental amplitude.
Consequently the presence of “soft inclusions” embedded in a more rigid matrix
modify the acoustic nonlinearity in qualitative and quantitative manners [2].

These effects were recently observed in vitro in trabecular human heel bone [22].
In this experiment, a 400 KHz burst is emitted by a focused transducer and re-
ceived by a needle hydrophone after 45 mm of propagation. The measurement was
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performed when propagation occurs in water only and when a 24 mm-thick slice
of defatted (and saturated with water) calcaneal trabecular bone is inserted on the
propagation path near the hydrophone (Fig. 15.1). The maximum acoustic amplitude
used in the experiment is 110 kPa.

As expected, the propagation through water produces a third harmonic weaker
than the second harmonic and whose amplitude is proportional to the cube of the
fundamental amplitude (Fig. 15.2). On the contrary, despite high attenuation in-
duced by trabecular bone at the third harmonic frequency (30 dB/cm), the third
harmonic amplitude exceeds the second harmonic amplitude and is proportional
to the square of the fundamental amplitude (Fig. 15.2) when the bone sample is
inserted on the ultrasonic path. This anomalously high third harmonic amplitude
may originate from the presence of cracks in the solid bone tissue, as reported for
damaged solids [21].

Fig. 15.1 Experimental
setup for the harmonic
distortion method

30 35 40

150

160

170

180

190

200

210

220

ac
ou

st
ic

 p
re

ss
ur

e 
le

ve
l i

n 
w

at
er

(d
B

 r
ef

 1
 μ

 P
a)

Without the bone sample (only water)

fundamental (slope 1.07)

2nd harmonic (slope 2.08)

3rd harmonic (slope 3.08)

38 40 42 44

150

160

170

180

190

200

210

Input voltage excitation at the transducer (dB ref 1 V peak−peak)

With the bone sample inserted

fundamental (slope 1.08)
2nd harmonic (slope 3.10)
3rd harmonic (slope 2.09)

Fig. 15.2 Fundamental, second and third harmonics amplitudes (in dB) as functions of the input
voltage amplitude measured after 45 mm propagation in water (left) and with a 24 mm-thick slice
of calcaneal trabecular bone inserted in the propagation path (right). The bone sample is saturated
with water
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15.2.2 Dynamic Acoustoelastic Testing (DAET)

From the end of the nineteenth century, the primary measurements of elastic non-
linearity were performed by static methods leading to the thermodynamic p-v-T
diagram, from which the pressure and temperature dependences of the bulk elas-
tic modulus were deduced for fluids and solids [23]. In the beginning of the 20th
century, dynamic resonant or interferometric techniques were developed to measure
elastic moduli or sound velocity as functions of temperature and hydrostatic pres-
sure [24–26]. Finally, with theoretical developments of the effect of a static stress
field on the propagation of elastic waves [27,28], followed by the possibility of gen-
erating an ultrasound (US) pulse [29] and thus of measuring the sound velocity by
the time-of-flight (TOF) determination, acoustoelastic testing became an alternative
way to measure elastic nonlinearity. This technique consists in measuring changes
in the US velocity induced by a hydrostatic [30,31] or uniaxial [32] stress. For met-
als and polymers, the relative variation in US velocity is of the order of 0.001 and
0.01%/MPa of the applied stress, respectively. Interestingly, in damaged or granular
media, the presence of cracks or intergrain contacts can give rise to variations in US
velocity exceeding 1%/MPa of applied stress [33], some orders of magnitude higher
than in undamaged solids. Moreover, in these peculiar media, US attenuation is also
affected by the application of a static stress as a result of the progressive closing of
cracks when the external stress is increased [34, 35]. Finally, the induced variations
in the US velocity and attenuation can be related to acoustic nonlinear elasticity and
dissipation, respectively.

15.2.2.1 Principle of Dynamic Acoustoelastic Testing

Close to the work of Ichida et al. [36] and Gremaud et al. [37], dynamic acous-
toelastic testing (DAET) was firstly developed in a remotely manner [38, 39] for
liquids, gels as well as porous and non-porous rather soft solids. In a water tank,
the probed sample is simultaneously crossed by two acoustic waves propagating in
perpendicular directions (Fig. 15.3):

• The probing wave: US pulses emitted from one side of the sample by an immer-
sion transducer and received by another US transducer at the other side of the
sample.

• The pumping wave: a low-frequency (LF) wave generated in water by a vibrating
disk and received by a hydrophone placed near the sample.

Similar to quasi-static acoustoelastic testing, the LF acoustic pressure is expected to
modulate the TOF and the attenuation of US pulses.

DAET needs the LF wave to be quasi-static over a US TOF and quasi-uniform
in the probed volume. As a result, the LF period must be at least ten times higher
than the US TOF. A quasi-uniform LF pressure amplitude in the probed volume
is obtained if the LF wavelength is much higher than the characteristic size of the
investigated volume. Moreover the diameter of the LF radiating disk is chosen so
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Fig. 15.3 Experimental configuration for DAET

Fig. 15.4 Axial and radial
LF diffraction patterns
measured by the hydrophone,
obtained for a 15 cm diameter
glass disk at 2850 Hz
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that the LF pressure amplitude is almost constant over the US propagation path.
The diameter of the LF disk being smaller than the LF wavelength the LF diffrac-
tion pattern offers a soft decreasing profile for the LF pressure amplitude along
the disk axis (Fig. 15.4). Consequently the pressure in the water surrounding the
sample is quasi-uniform and sinusoidally modulated in time, inducing successively
quasi-hydrostatic compression and expansion of the sample, when the LF acoustic
pressure takes positive and negative values, respectively. Typically, the distance be-
tween US transducers equals a few centimeters, then the US TOF is of order 10 μs,
so that the frequency of the pumping wave equals a few KHz. The LF pressure am-
plitude can not exceed 100 kPa because cavitation may occur during the expansion
phase as soon as the acoustic pressure amplitude exceeds the ambient pressure.

Note that the dimensions of the water tank must be larger than the characteristic
LF diffraction length Ld = ka2/2 ≈ 3cm, where k and a are the LF wavenumber
and the LF disk radius, respectively. Indeed the walls must be approximately 30 cm
away from the LF disk so that reflections from the wall are negligible. Plane or
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focused US immersion transducers are used to generate and receive the US pulses.
For a US frequency of order 1 MHz and 13 mm diameter plane transducers used to
obtain the following results, the US beam is collimated over a few centimeters.

Thus DAET is capable of noninvasive (acoustic transducers are not bounded on
the sample) and regional (region of interest is a cylindrical volume whose diameter
equals the lateral resolution of the US beam) measurements of elastic and dissipative
acoustic nonlinearities induced by dynamic tensile/compressive quasi-hydrostatic
loading. It is worth noticing that if the sample is porous, it has to be saturated with
water before performing DAET.

For each US pulse, the time-of-flight modulation (TOFM) and the relative en-
ergy modulation (REM), related to elastic and dissipative acoustic nonlinearities
respectively, are computed [38, 39]. TOFM is determined by the time position of
the interpolated maximum of the cross-correlation function between the current US
pulse with index i and the first pulse (i = 1) which propagates through the medium
with no LF perturbation [38]:

TOFM(i) = TOF(i)−TOF(1) (15.6)

Furthermore, the Fourier transform of each US pulse with index i is computed to
calculate its energy E(i) as the integral of the power spectrum in the frequency
bandwidth defined at −10 dB of the maximum amplitude. For the US pulse with
index i, REM is given by:

REM(i) = [E(i)−E(1)]/E(1), (15.7)

where E(1) is the energy of the first US pulse that propagates through the medium
without LF loading. Finally, each US pulse is associated with the mean value of the
LF pressure during its TOF (Fig. 15.5).

The synchronization of the LF and US signals allows to plot TOFM and REM as
functions of the LF pressure. Figure 15.6 represents the two diagrams obtained for
a distance of 57 mm between the US transducers, without any sample (only water)
and with a 52 mm thickness sample of PMMA (polymethyl methacrylate) inserted
between the US transducers.

For water without any sample and with a PMMA sample inserted in the interac-
tion area, no nonlinear dissipative effects are measured whereas the acoustoelastic
effect leads to a linear relation between TOFM and the LF pressure (Fig. 15.6).

The relation between TOFM and the LF pressure can be related to elastic
nonlinear parameters β 6 and δ , associated with quadratic and cubic nonlinearity,
respectively [38, 39]. Because the propagation velocity equals

√
M/ρ , where M is

the elastic modulus corresponding to the type of US propagation and ρ the density,
TOFM is proportional to small variations of the elastic modulus ΔMsample induced

6 In the DAET configuration, the convective effect cannot occur because the LF and US beams
propagate in perpendicular directions. In this section, we redefine β as β = B/A.
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by the LF pressure pLF
7:

TOFMsample = − Lsample

2ρsample c3
sample

ΔMsample,

7 For most of materials, small relative variations of the density can be neglected compared to small
relative variations of the elastic modulus.
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ΔMsample = β pLF − δ
p2

LF

M0
, (15.8)

where Lsample, ρsample, csample and M0 = ρsamplec2
sample are the propagation length in

the probed medium, the density, the propagation velocity and the elastic modulus
with no LF perturbation.

Using (15.8) and extracting the slope ∂TOFM
∂ pLF

by linear fitting of the relation
measured between TOFM and the LF pressure (Fig. 15.6), β equals 4.9± 0.3 and
11± 1 for water and PMMA, respectively. These values are in agreement with the
literature [7].

After illustration and validation of the method in water and with a PMMA
sample, results obtained for calcaneal human trabecular bone are now presented.

15.2.2.2 Results in Human Calcaneal Trabecular Bone

The acoustic nonlinearity exhibited by a human calcaneus whose lateral faces were
sliced to obtain parallel surfaces is presented. The same 24 mm-thick slice of trabec-
ular bone was investigated with the harmonic distortion method (Sect. 15.2.1). The
marrow was removed by immersion in hot water and in trichloroethylene. Then the
sample was saturated with water and placed in the experimental setup. Figure 15.7
illustrates the two investigated regions of interest (ROI): The upper part of the cal-
caneus (ROI 1) where the porosity is relatively low (75%± 5) and trabeculae are
plate-like shaped, the posterior part (ROI 2) where the porosity is higher (89%±2)
and trabeculae are rather rod-like shaped [40].

Figures 15.8 and 15.9 show that the acoustic nonlinearities measured in the ROI 1
are an order of magnitude higher than the ROI 2. Whereas the ROI 2 does not change
significantly the TOFM diagram measured in water without the sample, weak dis-
sipative nonlinearities are observed in the ROI 2 while only noise is measured in
the relation REM vs. LF pressure without the sample (Fig. 15.9). The corresponding
quadratic nonlinear elastic parameter β equals 10. Interestingly the ROI 1 exhibits
huge acoustic nonlinearity with tension-compression asymmetries and hysteresis
for both TOFM and REM (Fig. 15.8). Using a quadratic fit, we obtain β = 150
and δ = 4.106 for ROI 1. Consequently β is an order of magnitude higher than
for undamaged solids and the value is in agreement with a previous study [41].

Fig. 15.7 Photography of a
sample of human calcaneus.
The two probed regions of
interest are shown
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The fact that δ � β 2 is another manifestation of non-classical elastic nonlinearity,
was attributed to the presence of intergrain and/or cracks in granular rocks [42].
Tension-compression asymmetry and hysteresis were also observed by DAET in
cracked pyrex [39], cracks are thereby again pointed out as being the source of
acoustic nonlinearity investigated by DAET in trabecular bone. Note however that
the bottom/anterior region of the calcaneus, which is highly porous (95.5±1.5%)
[40], was also investigated but does not change the TOFM and REM measured in
water without the sample, certainly because of too low solid bone volume fraction.

Aware that the treatment used to defat this bone sample induces a denaturation
of the solid bone tissue, regional DAET scanning was conducted on 8 whole human
calcanei defatted using the Supercrit c© (BIOBank, France) technique8 (supercriti-
cal CO2 delipidation) ensuring minimum denaturation of bone tissue. Their lateral
faces were also sliced to obtain parallel surfaces. The age of donors ranges 70–90
years old.

8 http://www.biobank.fr/

http://www.biobank.fr/
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Two samples out of 8 exhibited high acoustic nonlinearities in ROI 1 and weaker
effects in ROI 2. The other six bone samples do not change significantly the re-
sults obtained in water without any sample. Figure 15.10 shows the DAET diagrams
obtained for the sample exhibiting the highest acoustic nonlinearity. Quadratic non-
linear elasticity is high (β =−100) and a large hysteresis is observed in the relation
between TOFM and the LF pressure. The anomalous negative sign of β requires
further investigation to understand the responsible physical phenomenon. Moreover
US energy modulation is also measured, REM reaches −3% in tension and 2% in
compression with hysteresis as well. The reason why only two out of eight calcanei
exhibited important acoustic nonlinearities may be the dispersion in the level of
microdamage reported in histological studies [43].

In order to test the hypothesis that heterogeneity of the level of microdamage is
responsible for weaker acoustic nonlinearities in ROI 2 than in ROI 1 in the “suppos-
edly most damaged” sample, a histological quantification was recently reported by
Moreschi et al. [44]. The sample exhibiting the highest acoustic nonlinearities was
firstly bulk stained with 0.02% alizarin complexone (chelating fluorochrome) which
bind to free calcium links so that cracks are labelled [45]. Secondly the sample is
embedded in a polymeric resin and cut in 300 μm thick slices using a low-speed
diamond saw. Cracks and split trabeculae were then counted under laser confocal
microscopy in regions 1 and 2 (Fig. 15.11). Interestingly the crack density equals
0.2± 0.015 crack/mm2 in ROI 19 and is half this value in ROI 2. Similarly the
split trabeculae density equals 0.26± 0.047 crack/mm2 in ROI 1 and reaches only
0.11± 0.039 in ROI 2.

9 The crack density is expressed in cracks number per square mm of bone tissue.
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Fig. 15.11 Microdamage labelled by chelating fluorochrome and observed by Laser scanning
microscopy. Left: the sample defatted by trichloroethylene shows multiple splits of the trabeculae.
Right: an isolated split of a trabeculae in the sample defatted by supercritical CO2

Consequently, this preliminary histological study supports the idea that the over-
all number of cracks is higher in ROI 1 than in ROI 2 for two reasons:

• The crack density is higher in region 1 than in region 2.
• The bone volume fraction is higher in region 1 than in region 2 (solid bone sur-

face fraction equals 41.6% and 29% in ROI 1 and 2, respectively).

These may be the causes that give rise to acoustic nonlinearities higher in ROI 1
than in ROI 2. However the results indicate that DAET may not be able to detect
microdamage if simultaneously the porosity is too high (>≈ 85%) and the crack
density is too weak (<≈ 0.1 crack/mm2).

All these experimental findings put together suggest that DAET is a sensi-
tive tool to assess the level of microdamage in trabecular bone. Moreover DAET
allows noninvasive and regional measurement of elastic and dissipative acoustic
nonlinearities, whose instantaneous effects can be plotted as a function of the LF
pressure. Consequently a possible tension-compression asymmetry and hysteresis,
which are signatures of the presence of cracks, can be observed.

Finally Moreschi et al. recently performed a study testing the correlations be-
tween acoustic nonlinearity measured by DAET, mechanical damage induced by
fatigue [46] and histological quantification of microdamage by sequential labelling
of the cracks using chelating fluorochromes of two different colors [47]. The quan-
tification of the crack density before and after damaging mechanical testing is
expected to provide quantitative relations between the level and the type of mi-
crodamage and the level and type of acoustic nonlinearity, as previously performed
for rocks [48, 49] and carbon fiber reinforced plastic [50]. This current research is
the necessary step before an in vivo application can be considered. Furthermore,
DAET could also be applied to cortical bone using axial US transmission instead of
transverse US transmission as presented here for trabecular bone.
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15.2.3 Nonlinear Resonant Ultrasound Spectroscopy (NRUS)

Nonlinear Resonant Ultrasound Spectroscopy (NRUS) is a technique that has been
developed as an extension of the Resonant Ultrasound Spectroscopy (RUS) tech-
nique [51], originally designed to assess the full linear elastic tensor of materials
from their resonant behavior. The NRUS technique also exploits the resonant be-
havior of samples, but to retrieve the nonlinear elastic behavior of the material.
As has been developed in the previous section, knowledge on the nonlinear elastic
behavior of a sample, and especially on the nonlinear hysteretic behavior, can bring
a relevant insight on its damage state. The NRUS technique has proved useful in
various materials [21, 51–54], for non-destructive evaluation, and has been applied
to bone [55, 56].

The purpose of this technique is precisely to assess the hysteretic behavior of
a material sample. Micro-crack accumulation in a material sample is responsible
for a softening of the material for increasing excitation amplitudes, leading to a
decrease of the resonance frequency when excitation amplitude increases. From the
expression of the nonlinear modulus in (15.1), it can be shown that, for a resonant
mode, the resonance frequency shift expresses as a function of strain [57]:

f0 − f
f0

=
αε
2

+
δε2

4
(15.9)

The parameter α is called the nonlinear hysteretic parameter, and conveys infor-
mation about the amount of hysteretic nonlinearity in a material. δ is the parameter
describing the classical cubic nonlinearity. In bone, and particularly in damaged
bone, the classical cubic nonlinearity is negligible compared to the hysteretic non-
linearity. Therefore, only the linear term of (15.10) remains, and the observed
frequency shift is directly proportional to the nonlinear hysteretic parameter α . The
NRUS technique is based on this approximation, and provides a very useful tool for
the measurement of the parameter α .

f0 − f
f0

∝
αε
2

(15.10)

As the classical nonlinearity is neglected compared to the hysteretic nonlinearity
in bone, a linear decrease of the resonance frequency can be observed for increasing
strain amplitudes. Therefore, measurement of the resonance frequency shift as a
function of increasing strain amplitudes gives access to the hysteretic parameter in
a straightforward manner.

The nonlinear hysteretic behavior of bone samples has been investigated using
the NRUS method in a few studies in human and bovine femur [55, 56]. Frequency
sweeps were applied to the bone samples for gradually increasing drive amplitudes,
and the modal peak frequencies were measured at each drive amplitude (Fig. 15.12).
The resonance modes were determined experimentally, and through finite elements
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Fig. 15.12 Nonlinear
Resonant Ultrasound
Spectroscopy (NRUS) setup
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modeling methods, using a CT scan 3D image of the sample as an input. The non-
linear parameter was then simply derived from the resonance frequency shift as a
function of strain, according to (15.10).

Samples were gradually damaged using compressive mechanical testing (with an
INSTRON mechanical testing machine) and the nonlinear parameter α was assessed
for each damage step using NRUS.

15.2.3.1 Influence of Damage Accumulation

Figure 15.13 shows typical resonance responses as an example from one sample at
three different damage steps. It can be observed that, as damage accumulates, the
resonance frequency shift for increasing excitation amplitude increases. For all the
samples tested (around 30 samples), the nonlinear parameter derived from NRUS
increased with the number of mechanical testing cycles and it started to increase
as for the first few mechanical testing cycles. A similar behavior could have been
expected for the hysteresis of the load/displacement curve, measured by the mechan-
ical testing device, since it is the quasistatic equivalent of the dynamic nonlinear
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Fig. 15.14 Load/displacement curves for a single sample continuously cycled to failure. Just
before failure, the hysteresis increases dramatically. Reprinted from Biomedical Applications of
Vibration and Acoustics in Imaging and Characterizations, Mostafa Fatemi and A. El Jumaily
(Editors), Copyright (2008), ASME Press

Fig. 15.15 Sensitivity of the nonlinear parameter α to fatigue cycling of bone. Comparison of the
evolution of the nonlinear parameter α , the slope and the hysteresis of the load/displacement curve
for three typical samples. Reprinted from Biomedical Applications of Vibration and Acoustics in
Imaging and Characterizations, Mostafa Fatemi and A. El Jumaily (Editors), Copyright (2008),
ASME Press

hysteretic parameter α [58, 59]. However, such behavior could not be observed in
the quasistatic regime, where significant changes of the slope and hysteresis of the
load/displacement curve were observable only just before failure, as can be seen on
Fig. 15.14.

Figure 15.15 shows the evolution of (α/α0 − 1) derived from NRUS as a func-
tion of fatigue cycles, as an example for three samples. Here, α0 is the nonlinear
parameter α in the undamaged state, before mechanical testing. On the same fig-
ure are shown the behavior of the slope of the load/displacement curve, and of
the damage parameter D, the parameter (h/h0 − 1), h being the hysteresis of the
load/displacement curve obtained during mechanical testing. The nonlinear param-
eter α increases much more with accumulating damage than any other parameter
that could be measured, which suggests a much stronger sensitivity. In addition,
the measured nonlinear parameter α shows change immediately, after the first cy-
cling in most cases, and changes significantly over the duration of cycling in most
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Fig. 15.16 Evolution of the
nonlinear parameter α as a
function age for all the tested
samples. Reprinted from [56],
Copyright (2008), with
permission from Elsevier

cases, when other parameters start to change significantly just before failure. This
suggests that the nonlinear parameter could be a potential tool for early damage
detection in bone.

15.2.3.2 Influence of Donor Age

Figure 15.16 shows the evolution of the nonlinear parameter α with the age of
donors. This curve can be approximated by an exponential, or second order rela-
tionship.

This second order behavior of the nonlinear parameter as a function of donor
age is similar to direct measurements of damage in bone described in [60]. A larger
scatter of α was observed in the region of the curve corresponding to older ages,
and values tend to be larger with age in general. This observation is consistent with
the distribution of damage accumulation across ages reported in [60]. The similarity
of the behaviors of the nonlinear parameter and micro-damage accumulation as a
function of age is an additional, qualitative indication that the nonlinear hysteretic
parameter provides an relevant insight on the damage state of bone.

15.2.4 Nonlinear Wave Modulation Spectroscopy (NWMS)

The nonlinear wave modulation spectroscopy technique is based on the interac-
tion of two waves with different frequencies f0 and f1 (typically f0 � f1) with
amplitudes A0 and A1. Due to the presence of damage in the bone sample, the
two waves interact, creating harmonic frequencies (e.g., 2 f0, 3 f0, etc. f0 being
the fundamental frequency) as well as sum and difference frequencies (sidebands),
f1± f0 and proportional in amplitude to the product of the primary wave amplitudes.
This technique has been applied broadly in industrial materials and geomaterials
[21, 54, 61, 62], and has proved to be efficient even in the presence of elastically
linear scatterers [63]. The first attempt to use this technique is human bone was re-
ported by Donskoy and Sutin (1997) [41], who retrieved the nonlinear parameter
in trabecular bone in the 100 KHz frequency range, showing that it was an order
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Fig. 15.17 Nonlinear Wave
Modulation Spectroscopy
(NWMS) setup

of magnitude stronger in bone than in nonporous media. Further NWMS measure-
ments were performed, respectively in human cortical and trabecular femoral bone,
by Ulrich et al. (2007) and Zacharias et al. (2009) [64, 65]. In the latter study, the
technique has been used in both healthy and osteoporotic human trabecular bone,
in the 50 KHz range, and the results exhibit a higher level of sidebands in the os-
teoporotic bone, potentially more micro-damaged. In the study by Ulrich et al., the
technique was applied in the 200 KHz frequency range, on human cortical bone, pro-
gressively damaged using a mechanical testing device. Low-frequency vibrational
modes of a human femur sample were simultaneously excited by a mechanical im-
pulse (induced by a light tap on the sample) and a high frequency, continuous wave
tone, in this case 223 KHz (Fig. 15.17). This frequency was selected as it was the
frequency for which highest amplitude could be applied with the source transducers
used. The vibrational modes mix (multiply) with the pure tone, producing multiple
sidebands.

In Fig. 15.18 are shown some results obtained using the Nonlinear Wave Mod-
ulation Spectroscopy technique in vitro in human femur. The bone samples were
subjected successively, to 45000 and 75000 mechanical testing cycles, inducing
micro-damage to accumulate. The sidebands ( f1 ± f0 and f1 ± 2 f0) energy was
found to increase with accumulating damage, visible on Fig. 15.18, left.

A new dynamic nonlinear parameter Γ , taking into account both the first or-
der classical nonlinear parameter β and the hysteretic nonlinear parameter α (see
(15.1)) was defined as the area below the linear frequency spectrum of the sample
response, containing the first order ( f1 ± f0) and second order ( f1 ±2 f0) sidebands,
here from 215–231 KHz, in order to include the effects of multiple sidebands simul-
taneously (Fig. 15.18, left). The evolution of this nonlinear parameter Γ is shown in
Fig. 15.18 (center), along with the evolution of a quasistatic damage parameter D,
derived from the slope of the stress-strain curves, obtained during the quasistatic
mechanical testing experiments. Figure 15.18 shows that the dynamic nonlinear pa-
rameter Γ changes by about 700%, when the change in slope from the quasistatic
experiment remains roughly the same until the last damage step, where a change
of about 10% only is observable. This confirms the observations made by Muller
et al. using the Nonlinear Resonant Spectroscopy technique [56]: the dynamic non-
linear parameters are far more sensitive than the quasistatic linear parameters, and
are sensitive to earlier damage.



400 M. Muller and G. Renaud

150

100

0
5432

Damage stepDamage stepFrequency (kHz)
105432

Amplitude (V)

10215 220 225

Increasing
damage

230
00

40.005

0.01

0

6

8

2 20

40

60

50

β/β0

β/β0

α/α0

α/α0

Γ/Γ0−1

Γ/Γ0−1
D

Fig. 15.18 Left: Power spectra of sideband frequency range for 3 damage steps (0, 30000, and
75000 cycles of mechanical testing). The increase in sideband energy as the fatigue damage in-
creases is clearly visible. Center: Comparison of the relative changes of the nonlinear parameter Γ
with the standard damage parameter D (extracted from linear elastic measurements). Right: Sepa-
rate evolutions of the nonlinear parameters α and β , for increasing damage steps. Reprinted from
Biomedical Applications of Vibration and Acoustics in Imaging and Characterizations, Mostafa
Fatemi and A. El Jumaily (Editors), Copyright (2008), ASME Press, and from [64], Copyright
(2007), with permission from the American Institute of Physics

It is also possible to isolate the two nonlinear parameters β and α by calculating
the ratio of the first or second order sideband amplitudes respectively, to the drive
amplitude. Figure 15.18 (right) shows the separate evolutions of the nonlinear pa-
rameters β and α as a function of accumulating damage (i.e. as a function of fatigue
cycles), normalized to their respective values measured in the undamaged state. This
normalization is important here, considering the fact that no absolute value could
be obtained for the nonlinear parameters, since no calibration measurements have
been performed that would link quantitatively the nonlinear parameters values to
an amount of damage. It appears that both parameters significantly increase with
increasing damage. However, the nonlinear parameter α seems to be more sensitive
than the nonlinear parameter β , since the values of β are in a range of 0–60, while
the values of α are in a range of 0–120, for the same sample.

15.3 Theoretical Modeling of Damage-induced Nonlinearity,
Limitations of the Technique

15.3.1 Physical Origins of Nonlinearity in Damaged Bone

The previous section reviews different experimental nonlinear acoustic techniques
that can be used for a noninvasive assessment of bone mechanics. Although ultra-
sound measurements give access to mechanical parameters strongly related to stress
and strain, and to fracture risk, they do not allow their direct measurement. Exper-
imental studies described in the previous section showed that the measurement of
nonlinear ultrasound parameters can provide a straightforward access to damage
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amount in bone. However, the use of appropriate models is required to fully char-
acterize the nonlinear relationship between stress and strain in damaged bone. This
full characterization could be useful for a better understanding of the nonlinearity
induced by damage in bone. Indeed, the damage-induced nonlinearity that can be
measured acoustically at the macroscopic level results from some nonlinear phe-
nomena at the crack level and below, on a microscopic scale. A large amount of
research has been conducted to establish the link between microscopic and macro-
scopic scales in terms of damage and nonlinearity. Different types of models are
studied and used in the literature: phenomenological models and theoretical models.

15.3.1.1 Phenomenological Model

Phenomenological models used to describe micro-cracked solids are based on the
observation that micro-damage induces a hysteresis in the stress-strain relation
(Fig. 15.19). This phenomenon has been observed in a large class of materials,
as well as in bone. In this paradigm, a microdamaged material is described as an
ensemble of hysteretic units called hysterons, small structures at the microscopic
level that are responsible for the hysteretic behavior of the stress-strain relationship.
The strain response of each hysteron is modeled by the combination of a classical
nonlinear term, and a nonclassical nonlinear contribution attributed to hysteretic be-
havior [1, 66]. In order to describe this phenomenon, a model has been established
by Guyer and McCall [6, 67], inspired by the work of Preisach and Mayergoyz in
magnetism [68, 69]. The nonclassical nonlinear contribution is obtained by stating
that the hysteretic units can only be found in two equilibrium states: open or closed.
Therefore, each hysteron can be fully described by two sets of parameter pairs:
(σo, σc) and (εo, εc), which respectively describe the stresses and strains necessary
for the hysterons to be in open or closed states. Particular rheological relationships
can be attributed to hysterons [70]. The hysterons can be arranged in the Preisach-
Mayergoyz space (PM space, Fig. 15.19), that allows to keep track of the state (open
or closed) of a whole distribution of hysterons. This arrangement in the PM space

Fig. 15.19 Micro-cracked
materials exhibit a very
particular stress-strain
relation, in which two
different paths are taken,
depending on the sign of the
strain rate
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constitutes the link between microscopic and mesoscopic scales. An equation of
state (the stress/strain relation) is derived from the hysterons distribution density in
the PM space. Note that it is possible to simplify this phenomenological model, in
the case of small strains, by assuming a uniform density of the hysterons in the PM
space. In this case, the nonclassical hysteretic nonlinearity can be described as hav-
ing a quadratic dependence on strain, which qualitatively agrees with experimental
results obtained with NRUS, and is shown in (15.1).

This phenomenological model can be numerically derived using various pro-
cesses. Among them, the Local Interaction Simulation Approach (LISA) considers
the hysteretic elements at the microscopic levels and models wave propagation in
such media [70]. This modeling approach provides good results but is extremely de-
manding in terms of computational resources. Another numerical approach that has
been used considers mesoscopic units, representing a statistical ensemble of hys-
terons (as opposed to the LISA method that considers each hysteron individually).
These new units have a characteristic size smaller than the wavelength, exhibit hys-
teretic strain responses at the mesoscopic scale, and are used as elementary cells for
finite differences simulations, using an elastodynamic finite integration technique
(EFIT) [71, 72].

15.3.1.2 Theoretical Models

Some drawbacks can be pointed out regarding the phenomenological model de-
scribed in the previous section. First, the numerical implementations of the model
requires an a priori assumption about the distribution of hysteretic units, used as
an input to the model. Secondly, the model does not describe an accurate picture
of the physical phenomena responsible for the very typical nonlinear behavior of
damaged solids. Some theoretical and experimental work has been conducted in
various fields such as geophysics, non destructive evaluation, and granular materials
physics, in order to depict the physical phenomena at stake. Although crack-induced
nonlinearity is probably not fully understood and modeled yet, it appears that the
observed phenomena (nonlinear modulation, hysteresis in the dynamic stress/strain
relation...) are the consequences of various causes. One of these causes has been
thoroughly studied over the years, and corresponds to the purely elastic nonlinearity,
due for instance to Hertzian contacts, at the cracks inner contacts scale [73]. For
this particular cause of crack-induced nonlinearity, the magnitude of the nonlin-
ear effects is sensitive to the presence of weak, damaged regions in the material
[74, 75]. In addition to these classical nonlinear elastic effects, more particular ef-
fects have been observed such as hysteretic nonlinearity. Some models have been
derived [10, 62], based on the description of hysteresis as amplitude dependent
dissipation. In these models, dissipation can be attributed to friction/adhesion hys-
teresis at the crack interface [76], or to locally enhanced thermoelastic coupling at
the inner crack contacts. Note that in the case of friction/adhesion, a strain thresh-
old is required to allow the phenomenon to occur. This threshold has never been
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accurately calculated for bone, but corresponds to the ratio of the interatomic dis-
tance to the crack diameter [62], which would lead in bone to strains around 10−5,
in most cases higher than the strains used in the various experimental studies (from
10−6 to 10−5). This could lead, as a first approximation, to the conclusion that the
friction adhesion mechanisms in bone are unlikely to contribute significantly to the
nonlinear hysteretic observed phenomenon, but only a thorough theoretical study
of the possible mechanisms responsible for bone nonlinear behavior, taking into
account bone peculiarities (heterogeneous, multiscale, micro-damaged with crack
filled with a viscous fluid), could provide answers to these questions.

15.3.2 Limitations of the Techniques and Perspectives

The first limitation of the nonlinear ultrasonic techniques conducted until now for
bone damage detection is that they still lack of a comparison to independent, quan-
titative evaluation of damage. A growing number of research groups are currently
working on this subject and it appears clearly now that the next step in this research
area will be to perform these validation measurements. A comparison to quasistatic
measurements obtained using mechanical testing machine would have to be con-
ducted carefully. In particular, one would have to keep in mind that time scales are a
very important issue in this problem, since it deals with dissipation mechanisms.
Therefore, a comparison between quasistatic and dynamic measurements would
necessarily have some limitations. For instance, the thermal fluctuations, very likely
to contribute to the hysteretic behavior of damaged bone subjected to a mechanical
solicitation, will certainly be different for different strain rates. At very low fre-
quency, for quasistatic solicitations, one can expect the system to have enough time
to relax to its thermodynamic equilibrium within a period, whereas the characteristic
time of the system could be longer than an excitation period at higher frequencies,
leading to an increased hysteretic behavior [66]. A good candidate for the valida-
tion of the nonlinear acoustic measurements for damage characterization would be
histological measurements. Histology is now considered as the gold standard for
damage assessment in vitro in bone [77]. A quantitative comparison between non-
linear ultrasound parameters and the histologically measured damage could provide
the quantitative relationship between damage and nonlinearity that is still needed,
as long as it is statistically valid, i.e. conducted on a significant amount of samples.
The derivation of this empirical relationship would be a huge progress in the field,
especially in the context where a model still has to be developed for the damage-
induced nonlinear behavior of bone. In terms of modeling, a lot of work has still
to be done. The first step would be a proper identification of the different physical
origins for the nonlinearity in damaged bone. Finer research has to be conducted in
order to understand some of the observed phenomena such as the linear decrease
of the resonance frequency shift as a function of amplitude in the NRUS measure-
ments, or the fact that the measured nonlinear parameter β in trabecular bone is
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significantly different in traction and in compression, when the Young’s modulus
does not change much in the two situations [78].

Another work that still remains to be conducted is the design of an in vivo setup,
able to evaluate the nonlinear parameters β and α through a layer of soft tissue, in a
clinical context. The choice of the anatomical site should correspond to an effective
clinical fracture site such as the hip or the vertebrae. Again, some modeling, and
some experimental trials would have to be conducted in order to circumvent the
potential difficulties related to the presence of soft tissue around the bone.

15.4 Conclusion

A rising number of research groups has now reported essentially in vitro observa-
tions of acoustic nonlinearity in bone tissue. Four experimental techniques were
applied to bone: harmonic distortion of a monochromatic wave, dynamic acous-
toelastic testing, nonlinear resonant ultrasound spectroscopy and nonlinear wave
modulation spectroscopy. It is worth noticing that these experimental findings attest
the existence of non-classical acoustic nonlinearity because of anomalously high
values of classical elastic nonlinear parameters β and δ and qualitative peculiari-
ties like tension/compression asymmetry, hysteresis and resonance linear frequency
shift, as was observed in damaged industrial materials and geomaterials.

The current research efforts now focus on the production of evidences that cracks
embedded in the solid bone tissue are the origin of acoustic nonlinearity. Very few
studies were conducted on a significant set of bone samples originating from dif-
ferent donors. Among these, NRUS and DAET showed a large dispersion in the
level of acoustic nonlinearity, corroborating, if cracks are assumed to be sources of
acoustic nonlinearity, the large dispersion in the level of microdamage reported in
terms of crack density by histological studies [44, 47, 56].

The very recent trend in the research field is to conduct both progressively
damaging mechanical testing and histological quantification of microdamage by
fluorescence microscopy together with the measurement of acoustic nonlinearity
[44, 47]. Controlled mechanical testings are used as a tool to increase progres-
sively the level of microdamage in bone samples and to monitor the associated
reduction of the macroscopic mechanical integrity. This in vitro objectivation of the
relation between the actual level of microdamage and the level and type of acoustic
nonlinearity is essential before the development of an in vivo nonlinear acousti-
cal technique is addressed. Depending on the in vivo sensitivity of these nonlinear
acoustical methods, the measurement of the acoustic nonlinearity exhibited by bone
tissue may be a powerful non-invasive tool to assess the level of microdamage gen-
erated in bone and to improve our comprehension of the role of cracks in bone
remodeling and bone biomechanics.
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Chapter 16
Microscopic Elastic Properties

Kay Raum

Abstract Several high frequency ultrasound techniques have been developed
during the last decade with the intention to assess elastic properties of bone at the
tissue level. In this chapter three major principles are described with exemplary
measurements in the frequency range from 50 MHz to 1.2 GHz. The methods are
compared and their application potentials and limitations are discussed with respect
to the hierarchical structure of cortical bone. While highly focused transducers with
frequencies between 50 and 200 MHz are suitable for the assessment of microscale
elastic properties, frequencies in the gigahertz range are dedicated to the inves-
tigation of the anisotropic lamellar bone structure. The relations between tissue
mineralization, acoustic properties and anisotropic elastic coefficients at the micro-
and nanoscales will be summarized.

Keywords Acoustic impedance · Acoustic lens · Analogue-to-digital (A/D) ·
Anisotropy · Aperture · Numerical aperture · N.A. · Attenuation · Bandpass · Beam
axis · Beam width · Bone matrix · Collagen · Compressional wave · Confocal ·
Cortical bone · C-scan · Degree of mineralization of bone · Depth of focus · Elastic
coefficient · Elasticity · Embedding · Fast Fourier transformation (FFT) · Femur ·
Fibril · Filter · Focal plane · Focal point · Group velocity · Haversian canal

16.1 Introduction

Mechanical properties of bone depend on a multiplicity of material and structural
properties at several hierarchical length scales (Fig. 16.1). Bone tissue ma-
trix predominantly consists of three elementary constituents: mineral (mostly
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Fig. 16.1 Hierarchical structure of cortical bone. (a) A schematic diagram illustrating the
assembly of collagen Type I molecules into fibrils with a specific tertiary structure having a 67 nm
periodicity and 40 nm gaps or holes between the ends of the molecules. Plate-like apatite crystals
of bone occur within the discrete spaces within the collagen fibrils (Reprinted from Rho et al. [2]
copyright (1998), with permission of Elsevier). (b) Model of the lamellar unit, which is composed
of six individual layers. One layer consists of a variable number of parallel oriented mineralized
fibrils. The fibrils of adjacent layers are tilted by a fixed angle (30◦). (c) The cortical structure of
mature large mammals is mainly composed of a network of secondary osteons (darker regions)
with Haversian canals and osteocyte lacunae, and of interstitial tissue (brighter regions)

hydroxyapatite), collagen and water, which are arranged in mineralized collagen
fibrils with a diameter of less than 0.2μm (see Chap. 2 for more information on
bone biomechanics). The fibrils aggregate to form structural units, e.g. woven type,
plexiform or lamellar bone [1]. The peripheral skeleton of mature mammals and
humans consists of a highly ordered system of Haversian and Volkmann canals
with typical diameters in the range between 10 and 200μm, canaliculi (diameter:
0.2–0.3μm) and other pores, e.g. osteocyte and resorption lacunae with diameters
in the order of 2–8μm, and up to about 200μm, respectively.

Another important feature of bone tissue is the capacity of regeneration,
which is most evident as an endogeneous healing after a traumatic fracture, but
also occurs permanently and throughout the entire skeleton in a process called
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remodelling. These characteristics lead to a tissue compound that is not only highly
heterogeneous and anisotropic at all hierarchy levels as a result of perfect adapta-
tion to external and intrinsic loading conditions, but also dynamic with respect to
tissue resorption, synthesis, and maturation. Mineralization of the collagen fibrils
is a process that can be divided into two phases: primary mineralization of the
nonmineralized osteoid occurs within a few days and leads to a mineralization of
about 70% of the final value; secondary mineralization is a slow process that is
associated with further intra- and interfibrillar mineral deposition, crystal growth
and maturation over a time period of several years [3].

Low frequency ultrasound has been used successfully for decades for the
assessment of macroscopic anisotropic elastic properties of cortical bone [4–7]
(see Chap. 13). The properties measured at this scale are determined by both the
elastic properties of the bone matrix and by the porous structure. However, a thor-
ough understanding of tissue maturation, ageing, adaptation to mechanical loading,
or divergence from normal bone remodelling in the course of bone pathologies,
genetic regulations, or fracture healing can only be achieved at the cellular and at
the tissue level.

Acoustic methods have received increasing attention in the last decade, because
(i) the volume of interaction of the ultrasound wave with the material can be adjusted
to the hierarchical level of organization over three orders of magnitude, i.e. from the
millimeter-range at 500 kHz to the micrometer-range at 1.5 GHz, (ii) the inherent
contrast mechanism arises from the elastic interaction of the acoustic wave with
the interrogated material, and (iii) the combination with imaging approaches allow
the assessment of structural and elastic features, which are both essential for the
macroscopic function, e.g. biomechanical stability and resistance to fracture.

16.1.1 Definition of Hierarchy Levels

Up to seven hierarchical levels of organization have been proposed for mineralized
musculoskeletal tissues [1]. According to the levels of experimental assessment and
numerical homogenization approaches described in Chap. 9, four levels of hierarchy
(Table 16.1) are used hereinafter.

16.1.2 Principle of Scanning Acoustic Microscopy

16.1.2.1 Major Hardware Components

Scanning Acoustic Microscopy (SAM) with frequencies between 50 MHz and
2 GHz is adapted to the investigation of local nano- and microscale elasticity of
the bone tissue matrix. However, in this frequency range, only single element
transducers are currently available. Therefore acoustic microscopes usually require
mechanical scanning for the translation of the transducer. The other major compo-
nents are illustrated in Fig. 16.2.
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Table 16.1 Definition of characteristic length scales

Length scale Composition Compound Nomenclature

1–200 nm Hydroxyapatite, collagen,
water, other

Mineralized collagen
fibril

Nanoscale

200nm to ∼10μm Mineralized collagen
fibrils, pores

Mineralized tissue
matrix (woven,
plexiform, or
lamellar
structures)

Microscale

10μm to ∼1mm Mineralized tissue matrix,
pores

Cortical or trabecular
tissue

Mesoscale

>1mm Various tissue types,
cavities

Organs Macroscale

Scanner

Motion controller

Z Y X

Position trigger

Transducer

Trigger

Water tank

Temperature controlled stage

Pulser/

PC

A/D card

Receiver

Fig. 16.2 Schematic diagram of a Scanning Acoustic Microscope. The major components are:
single element transducer, temperature controlled water bath with tilt control and sample mount,
three-axis scanning stage, pulser-receiver unit, analogue-to-digital (A/D) data acquisition card,
control computer

16.1.2.2 The Acoustic Lens

A high spatial resolution at the sample surface, but no subsurface information is
required in most applications. Therefore, spherically focused sound fields with a
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Table 16.2 Wavelength, lateral resolution and depth of focus for characteristic
transducer frequencies and aperture angles of 60◦ and 100◦ (in parenthesis)

Frequency Wavelength (μm)
Lateral
resolution (μm)

Depth of focus
(μm)

50 MHz 29.8 30.7 (20.0) 211.3 (90.0)
200 MHz 7.5 7.7 (5.0) 52.8 (22.5)
400 MHz 3.7 3.8 (2.5) 26.4 (11.2)
1 GHz 1.5 1.5 (1.0) 10.6 (4.5)

Water at 25◦C (ν0 = 1492m/s) was assumed as a coupling fluid

high numerical aperture (N.A.) are frequently applied. The lateral resolution Dlateral

is determined by the −6-dB transmit-receive beam width in the focal plane:

Dlateral = 1.028 ·λ · ROC
2a

(16.1)

whereas λ is the acoustic wavelength, ROC is the transducer’s radius of curvature
and a is the radius of the transducer, respectively. The semi-angle θ0 of the lens-
aperture is [8]:

sin θ0 = N ·A· = a
ROC

. (16.2)

The depth of focus Fz, defined as the distance between points along the beam axis
where the intensity is 3 dB less compared to the focal point is [8]:

Fz = 7.08 ·λ
(

ROC
2 ·a

)2

. (16.3)

The values in Table 16.2 demonstrate that for increasing frequencies the lateral
resolution is improved on the expense of depth of focus.

The majority of ultrasound based microelastic studies of bone have used
pulse-echo configurations for the measurement of

• The acoustic impedance
• Surface acoustic wave velocities
• Compressional and shear wave velocities in thin sections

The underlying principles will be described in the following sections.

16.1.2.3 Acoustic Impedance

It has been shown in Chaps. 2 and 13 that the velocities of various wave propagation
modes (compressional, shear quasi-shear, quasi-compressional waves) are directly
linked to the elastic coefficients cij. The reflected amplitude of a plane wave incident



414 K. Raum

at a boundary between a fluid and a homogeneous isotropic elastic materials is pro-
portional to the angular dependent reflectance function R(θ ) [9]:

R(θ ) =
ZP cos2 2θS + ZS sin2 2θS −Z1

ZP cos2 2θS + ZS sin2 2θS + Z1
, (16.4)

Z1 =
ρ1ν1

cosθ
, ZP =

ρ2νP

cosθP
, Zs =

ρ2νS

cosθs
, (16.5)

Z1 is the acoustic impedance value of the coupling fluid. ZP and ZS in the solid
material are related to the product of mass density ρ and compressional (νP) and
shear (νs) velocities [9]. The characteristic acoustic impedance Z of a material is
defined as the ratio of tensile stress σT to particle displacement velocity ∂→u /∂ t:

Z = − σT

∂→u /∂ t
, (16.6)

and is usually expressed in Mrayl (1rayl = 1kgm−2 s−1). Under the condition of
normal incidence, i.e. the surface of the sample is perpendicular to the sound beam
axis, the generation of shear waves is not possible and the reflectance function can
be replaced by the reflection coefficient R:

R =
Z2 −Z1

Z2 + Z1
. (16.7)

Z1 and Z2 are the acoustic impedance values of the coupling fluid and the material
under investigation, respectively.

The transmission and reflection of plane waves at plane boundaries of anisotropic
materials is described by the acoustic impedance Zn, which relates traction force Tin

to particle velocity ν j [10–12]:

−Tin = (Zn̂)ijν j,

i, j = x,y,z, (16.8)

where n̂ is the direction in which the impedance is measured. Equation 16.8 can be
written in matrix notation:

−Tin =
niKcKLkLj

ω
ν j, (16.9)

where

niK =

⎡
⎣

nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0

⎤
⎦ , (16.10)
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and

kLj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

kx 0 0
0 ky 0
0 0 kz

0 kz ky

kz 0 kx

ky kx 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (16.11)

The acoustic impedance matrix elements for the direction n̂ are:

(Zn)ij =
niKcKLkLj

ω
, (16.12)

where cKL are the components of the stiffness tensor C. For a compressional wave
propagation in the x-direction with kx = (ω/νPx), ky = kz = 0, nx = 1, ny = nz = 0,
νPx is the phase velocity of the longitudinal wave, (16.12) becomes

ω(Znx)xx = c11kx, (16.13)

which can be written in the form

(Znx)xx =
√

c11 ·ρ. (16.14)

Similarly, the impedance for a compressional wave propagating in the z-direction is

(Znz)zz =
√

c33 ·ρ. (16.15)

Equations 16.14 and 16.15 show that if the wave propagation direction and particle
displacement are normal to the interface and the propagation direction is parallel
to the direction i, the acoustic impedance normal to the surface (Zni)ii is directly
proportional to the elastic coefficient cii and the mass density ρ . The impedance for
the propagation not parallel to the elastic symmetry axes can easily be obtained by
rotation of the elastic stiffness tensor [10]. For the transverse isotropic case rotation
in the xz plane yields [13]:

c(θ ) = c33 cos4 θ + 2(c13 + 2c44)sin2 θ cos2 θ + c11 sin4 θ , (16.16)

where θ is the rotation angle. c(θ ) is the elastic coefficient c33 of the rotated tensor.
It can be seen that c(0◦) = c33 and c(90◦) = c11. Combining (16.15) with (16.16)
gives:

(Znθ )θ =
√

c(θ ) ·ρ, (16.17)
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Fig. 16.3 (a) If the waves of a spherically focused transducer are reflected in the focal plane, an
acoustic impedance map can be derived from the echo amplitudes by 2D scanning (b)

hereinafter simply referred to as Z(θ ). For spherically focused sound fields the con-
dition of plane wave propagation can be approximated in the focal point [14, 15].
At this point the incoming waves from the transducer are in phase and all shear
wave components are diminished. Therefore, if the boundary between a liquid and
an anisotropic material is placed in the focal plane normal to the sound beam axis,
the acoustic impedance in the direction normal to the boundary is determined by
(16.17) and the reflection coefficient becomes

R =
Z(θ )−Z1

Z(θ )+ Z1
. (16.18)

Thus by measuring the confocal reflection amplitude with a scanning system, Z(θ )
can be mapped in two dimensions (Fig. 16.3). The main limitation of (16.18) is the
assumption that the solid material is homogeneous within the interrogated bound-
ary area.

16.1.2.4 Surface Acoustic Waves

When the sound field is focused inside a stiff material (negative defocus) surface
acoustic waves (SAW) can be generated (Fig. 16.4a). These waves excite waves back
into the coupling fluid and can eventually be detected by the transducer. Rayleigh
wave and surface skimming compressional wave (SSCW) velocities can easily be
measured in homogeneous stiff biomaterials, e.g. dentin and tooth enamel, either
with quasi-monochromatic burst excitation using the well-established V (z) tech-
nique [16–18] or with broad-band excitation and time-resolved V (z, t) acquisition
and spectral analysis [19] (Fig. 16.5).
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Fig. 16.4 (a) Principle of the SAW measurement; (b) a typical 50-MHz spectral component of a
V(z) measurement in quartz glass (Reprinted from Raum et al. [19] copyright (2007), with permis-
sion from Elsevier)
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Fig. 16.5 50-MHz acoustic impedance image (a) with a circular bright spot indicating the region
for a V(z, t) measurement (b–e). The acoustic impedance was determined from the confocal re-
flection amplitude (z = 0 mm) measured in x and y directions. The V(z, t)-image (b) shows the
Hilbert-transformed signals for all measured defocus distances at the center of the bright spot in
(a). The vertical line corresponds to one pulse-echo measured at a defocus of 800μm. Frequency
domain representation (c) of the V(z, t) data in (b). SAW speed evaluation at 45 MHz (d). The
dashed line is from the reference signal measured in teflon. The bold sections were used for the
estimation of the SAW velocities. In the SAW speed image (e) a surface skimming compressional
wave can be identified (Reproduced with authorization from Raum [12], c© 2008 IEEE)

Only one echo with the maximum intensity is obtained, when the focal plane
coincides with the sample surface (Fig. 16.5b). By moving the transducer towards
the sample eventually one or more additional echoes from the generated SAW can
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be observed. With increasing defocus distance Δz the phase difference Δφ between
the surface reflection and leaking surface wave is successively increasing:

Δφ
Δz

= 2k(1− cosθSAW), (16.19)

whereas k = 2π/λ is the wave number, λ is the acoustic wavelength and θSAW is the
critical angle for the generation of a surface wave [20]. In a quasi-monochromatic
system the interference between SAW and reflected waves results in characteristic
oscillations of the detected reflection amplitude in a so-called V (z) measurement
(Figs. 16.4b and 16.5d).

The spatial oscillation frequency due to this interference is:

1
Δz

=
2 · f
ν0

(1− cosθSAW). (16.20)

f denotes the ultrasound frequency and ν0 is the compressional wave velocity in the
coupling fluid. The surface wave velocity νSAW is obtained by Snell’s law:

νSAW =
ν0

sinθSAW
. (16.21)

In a broadband system the time delay Δt between surface reflection and the leaky
surface wave depends on defocus distance Δz and the SAW velocity:

νSAW =

[
Δt

ν0 ·Δz
− 1

4

(
Δt
Δz

)2
]− 1

2

. (16.22)

If Δt is larger than the pulse duration of the pulses, the individual pulses are
separated (Fig. 16.5b). The precise estimation of the time delay is difficult, if more
than one surface wave is generated or if the material is highly attenuating. How-
ever, the use of broadband pulses allows to determine phase velocities as a function
of the frequency [12, 19]. Briefly, the pulse echo signals Vz(t) at each defocus po-
sition z are Fourier-transformed to obtain the power spectra S(z, f ), as shown in
Fig. 16.5c. Each vertical line corresponds to the measured magnitude of the power
spectrum Sz( f ) of a pulse-echo sequence Vz(t) at a specific defocus z. A horizontal
line S f (z) in turn is equivalent to a monochromatic V (z) measurement at a single
frequency. For example, the V (z) curve in Fig. 16.5d was obtained from the S(z, f )
image at f = 45MHz. For each S f (z) curve a spatial frequency domain analysis
[12, 19, 21] can be applied to estimate multiple SAW velocities from the oscillation
frequencies in S f (z). In the example of Fig. 16.5 the multi-frequency S f (z) curves
were analysed within a defocus range from 0 to −800μm and in the frequency range
from 25 to 60 MHz. A convenient way for a graphical illustration is to convert the
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spatial frequency data into a velocity domain via (16.20) and (16.21), to obtain a
frequency dependent SAW-speed image (Fig. 16.5e). The vertical bright line indi-
cates the occurrence of a SSCW wave.

Finally, the group velocity of broadband pulse is given by:

νSSCW(gr) =
δω
δk

(16.23)

where ω = 2π f is the angular frequency. The phase velocities were determined in
the frequency range from 30 to 50 MHz and within this frequency range the group
velocity νSSCW(gr) = 3832ms−1 was derived from the linear slope of ω(k) according
to (16.23). It should be noted that the derived velocity corresponds to the velocity
averaged over all propagation directions parallel to the interrogated surface.

However, a drawback of the necessary defocusing is that the interrogated surface
area is increased and the spatial resolution is lost. The radius of the illuminated
surface area rmax is:

rmax = −zmax tanθ0, (16.24)

whereas θ0 is the semi-aperture angle of the transducer and zmax is the maximum
defocus position used for the analysis. The surface diameter contributing to the SAW
measurement in Fig. 16.4 was approximately 670μm. It can be seen that bone tissue
is neither isotropic nor homogeneous within this area. Indeed, an important feature
of cortical bone at the peripheral skeleton of mature large mammals is its heteroge-
neous microstructure with greatly varying tissue properties. Even with a 2 GHz lens
(and a typical aperture of 100◦), for which the maximum defocus is approximately
20μm the corresponding sampled surface diameter would be about 40μm.

16.1.2.5 Measurement of Compressional and Shear Wave Velocities

Turner and co-workers have measured the compressional wave velocity with a
50-MHz pulse-echo microscope that provided a spatial resolution of approximately
60μm [22–28]. By measuring the time-of-flight difference (ΔTOF) of front and
back side reflections in 500-μm thick sections (Fig. 16.6) the compressional wave
velocity νp was calculated as twice the sample thickness d divided by average
delay time:

νP =
2d

ΔTOF
. (16.25)

The elastic coefficient C was obtained using the relation

C = ρν2
p, (16.26)

whereas ρ is the mass density. In principle, the sample thickness has to be thick
enough, that front and back side echoes can be separated (i.e., approximately twice
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Fig. 16.6 (a) Principle of the measurement of compressional and shear wave velocities in thin
tissue sections. (b) The time delay between waves reflected at the front (A) and back side (B and C)
of a thin specimen can be used to calculate the wave velocities. Mode conversions can result in the
generation of compressional (B) and shear waves (C). Because of the lower sound velocities, shear
waves have larger time delays compared to compressional waves

Fig. 16.7 50-MHz images of a thin embedded cortical bone cross section (thickness: 150μm)
with sound focused on the front side (a) or on the back side (b) of the sample (Reprinted with
authorization from Raum [12], c© 2008 IEEE)

the wavelength).On the other hand the spatial resolution degrades, if front and back
side echoes cannot be placed within the depth of focus of the transducer. Figure 16.7
shows exemplary 50-MHz measurements of a 150μm thick bone sample focused ei-
ther at the front or at the back side of the sample (λbone ∼ 80μm). The measurement
has been done with a highly focused transducer (V605, Valpey Fisher, Hopkinton,
MA, USA) that provides a confocal lateral resolution of 23μm. While the Haversian
canals are precisely separated from the tissue in the confocal front side image, they
cause a remarkable image distortion and loss of resolution, when the sound field
is focused on the back side of the sample. Although systems operating with center
frequencies up to 2 GHz are available, the high attenuation in bone tissues limits the
applicable frequency bandwidth for these measurements. Therefore this method has
only been applied with frequencies up to 50 MHz and is limited to tissue regions
sufficiently far away from structural boundaries, like Haversian canals.
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16.2 Material and Methods

16.2.1 Sample Preparation

A flat smooth surface is mandatory for high frequency acoustic inspection. Scratches
and local inclinations result in a change of the propagation direction of the inci-
dent waves, if the irregularities are comparable to or larger than the wavelength.
Therefore the surface roughness after preparation should be much less than the used
wavelength. The way of surface preparation depends on the type of sample prepa-
ration. While tissue embedding has the advantages of long term tissue fixation and
hence sample durability as well as easy sample preparation using standard metallo-
graphic techniques, the replacement of water by the embedding material may alter
the elastic properties of the tissue. On the other hand the preparation of the neces-
sary surface smoothness in native samples is not straightforward, but can provide
elastic tissue properties similar to in vivo conditions.

16.2.1.1 Native Samples

For native samples grinding and polishing is not suitable, since the abrasive particles
can be pressed inside the bone cavities (Haversian and Volkmann canals, osteocyte
lacunae) and the matrix, which may cause artefacts in the acoustic image. An alter-
native is ultramilling using a fast rotating diamond knife. Other artefacts arise from
fat bubbles escaping from the cavities during the measurement. Therefore the tissue
sections should be cleaned and defatted prior to acoustic inspection. The prepara-
tion steps we have established in our laboratory are as follows: Fresh sections are
cut using a diamond saw (Exakt – Trennschleifsystem Makro, Exakt Apparatebau,
Norderstedt, Germany). The sections are then rinsed in phosphate buffered saline
(PBS), defatted for up to 12 h in dichloromethane (CH2Cl2) solution, and fixed
with Technovit R© 3040 resin (Heraeus Kulzer, Hanau, Germany) on special thick
polypropylene sample holders. After shock freezing of sample and holder in liquid
nitrogen flat tissue surfaces are prepared using an ultra milling machine (Reichert
Jung Ultrafräse, Leica GmbH, Bensheim, Germany). Three to four freeze-milling
cycles are necessary to produce the necessary surface flatness without thawing the
sample during the milling process.

16.2.1.2 Embedded Samples

For the embedding it has to be ensured that (i) water is completely replaced by
the embedding monomer, (ii) excessive heat production during the polymerization
and gas bubble generation at or near the tissue is avoided, and (iii) the material
properties of the embedding resin are suitable for high quality grinding and polish-
ing. The bone specimens are fixed and dehydrated in a graded series of ethanol
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(70%, 96% and 100%, immersion for 24 h in each solution) and defatted in
Histoclear (National Diagnostics, Atlanta, GA) for 12 h. The embedding material is
then infiltrated by immersing the samples in pure methylmethacrylate (MMA) for
24 h at 4◦C and in a mixture of 94% MMA, 5% dibuthylphtalate (softener) and 1%
benzoylperoxide (activator) for 24 h. For the polymerization solution the activator
concentration is slightly higher (93% MMA, 4% dibutylphtalate, 3% benzoylper-
oxide). A slow polymerization without considerable temperature rise is ensured
by placing the embedding molds in a temperature-controlled water bath at 24◦C.
With this procedure the water content in the tissue can be assumed to be almost
completely replaced by the resin without considerable shrinking or other alteration
of the tissue structure.

The necessary surface smoothness depends on the desired ultrasonic evaluation
frequency. The required surface preparation steps were evaluated in embedded bone
samples by (i) visual observation of surface scratches and (ii) comparison of the
mean reflection amplitude after each preparation step. The preparation was con-
sidered to be sufficient, if no preparation scratches were visible and no significant
change of the reflection amplitude in comparison to the higher preparation step
was observed. For low frequencies (≤50MHz) grinding with successively decreas-
ing grain size (SiC paper #2400 and #4000; Struers GmbH, Willich, Germany)
yields a sufficient surface smoothness. For higher frequency evaluations the surfaces
were polished using a Logitech WG2 (Struers GmbH, Willich, Germany) polishing
system with a hard synthetic cloth, ethyleneglycol suspension and diamond par-
ticles as abrasive. For intermediate frequencies (50–200 MHz) one polishing step
was applied after grinding (cloth: Microtex 500, Struers GmbH, Willich, Germany;
abrasive: 3-μm diamond particles; time: 10 min). For frequencies above 200 MHz
a second polishing step was necessary (cloth: MD-Dur, Struers GmbH, Willich,
Germany; abrasive: 1-μm diamond particles; time: 5 min).

It should be noted that immersion of the embedded samples in water during the
acoustic inspection causes diffusion of water into resin and tissue. The resulting
swelling can be neglected even at investigations with GHz frequencies, if the sam-
ple was embedded properly, and if the duration of the exposure to water is short
(e.g. <30min for GHz measurements, <2h for 50 MHz measurements). However,
it should be noted that repetitive wet-dry cycles result in a remarkable increase of
the surface roughness.

16.2.2 Acoustic Impedance Mapping

Crucial prerequisites for the estimation of the acoustic impedance from the
confocal reflection amplitude are stable measurement conditions and a sophisticated
calibration. All influences that potentially have an effect on the measured voltage
in addition to the variations caused by the reflection coefficient have to be excluded
or compensated. A summary of the most prominent effects are summarized in
Table 16.3.
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Table 16.3 Potential influences on the measured confocal surface reflection amplitude

Influence Primary effects
Effects on amplitude
measurement Compensation

Temperature
variation in
the sound
propagation
path

Alteration of sound
velocity, density,
acoustic impedance
and attenuation in
transducer,
coupling fluid and
sample

Change of confocal
pulse echo time
and amplitude

Ensure stable temperature by
a large, slightly stirred
coupling fluid reservoir

Measure temperature at least
before and after
acquisition

Include the effects in your
calibration

Sample tilt Oblique sound
incidence

Change of confocal
pulse echo time
and reduced
amplitude

Align the sample surface
before measurement

Time-of-flight-based defocus
compensation

Measure a series with variable
sample-transducer
distance

Nonlinearities in
the receive
electronics

Saturation for higher
reflection
coefficients

Nonlinear relation
between
reflection
amplitude and
reflection
coefficient

Determine linear range prior
to system calibration

Instable
electronics

Variable amplification Change of confocal
pulse echo
amplitude

Always use the same cable
Calibrate the system for

each measurement

Surface
roughness

Partial deflection away
from the transducer

Reduction of
confocal pulse
echo time
reduced
amplitude

Improve surface preparation

Surface not in
focal plane

Reflected waves are
not in phase

Change of confocal
pulse echo time
and reduced
amplitude

Align the sample surface
before measurement

Time-of-flight-based defocus
compensation

Measure a series with variable
sample-transducer
distance

16.2.2.1 Time-Resolved Measurements

The analysis of time-resolved pulse-echo data has several advantages compared to
measurements with amplitude detected signals. The major benefit is that the entire
information is kept in the signal and can be used for analysis. However, some pre-
processing steps are necessary for reliable amplitude estimation:

• Bandpass filtering
• Amplitude detection
• Time-of-flight based defocus correction
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Bandpass filtering, e.g. phase preserving forward and backward filtering with a type
II Chebyshev filter is necessary to remove DC and high frequency components out-
side of the transducer bandwidth. The amplitude can then be detected from the
Hilbert-transformed envelope signal. However, if the sampling frequency of the dig-
itized signal is close to the Nyquist limit, this approach can be become considerably
inaccurate. In this case, the signal should be upsampled using an FFT-based interpo-
lation prior to the Hilbert transformation or the square root of the integrated spectral
intensity (ISI) from the power spectrum S( f ) should be used.

ISI =
∫ f2

f1
S( f )df , (16.27)

where f1 and f2 are the −6dB bandwidth limits. Time of flight (TOF) can either be
determined from the position of the maximum of the Hilbert transformed envelope
signal (see Fig. 16.8), or from the slope of the unwrapped phase spectrum within the
bandwidth of the transducer:

TOF = t0 + tph = t0 +
∂φ
∂ω

= t0 +
∂N
∂ f

, (16.28)

where φ is the phase, ω = 2π f is the angular frequency and tph is the time rel-
ative to the start time t0 of the digitized sequence, and N is the number of phase
rotations [29].

TOF is a measure of the two-way pulse travel time from the transducer towards
the reflecting surface. If the surface is located in the focal plane, the maximum
amplitude is obtained. For a given combination of transducer, coupling fluid and
temperature the confocal time-of flight (TOFfocus) is invariant. Therefore, the TOF
of a measured pulse echo can be used to estimate the distance of the surface from the
focal plane (defocus) and to estimate the relative decrease of the reflection amplitude
relative to the confocal reflection amplitude (Fig. 16.9).

Fig. 16.8 Time-resolved signal processing. Confocal pulse echo (a) and power spectrum (b)
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Fig. 16.9 Defocus correction function for a 50-MHz transducer. Mean and standard error of the
normalized intensity as a function of TOF. The accepted TOF range corresponds to a defocus range
from −58 to +91μm

16.2.2.2 Measurements with Time-Gated Amplitude Detection

Acoustic impedance mapping above 200 MHz has often been performed with
systems that use burst excitation and time-gated amplitude detection. With these
systems, the radio-frequency data are usually not accessible. Therefore, a careful
adjustment of all hardware settings is mandatory for a reliable assessment of the
reflection coefficient. In addition to the points summarized in Table 16.3 proper
selections of excitation frequency and time-gate position are mandatory for good
signal sensitivity and the exclusion of signal artefacts.

The confocal reflection amplitude is determined by a 2D V (z) analysis, which
requires the acquisition of a set of digital C-scan images at successively decreasing
transducer-sample distances [30]. Starting from a z-position, where the focus of the
lens is well above the sample surface (positive defocus), images are captured with
a successively decreasing lens-surface distance. The image acquisition is stopped,
when the focus is well below the surface everywhere in the scanned image (negative
defocus). The increment between two adjacent C-scans should be small enough to
fulfill the Nyquist limit, i.e. the sampling frequency in the z direction should be at
least two-times of the highest oscillation frequency in the V (z) curve. This three
dimensional data set V (x,y,z) allows a V (z) analysis in two dimensions, i.e. for
each x,y-coordinate. The confocal position at each xy-scan point corresponds to the
position of the maximum signal amplitude in the z-direction. While the value of
the maximum is proportional to the reflectivity, the position is a measure of the
distance between an arbitrary xy-scan plane and the sample surface. These values
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Fig. 16.10 Impedance
calibration. For homogeneous
reference materials the
amplitude of the confocal
reflection is correlated with
the known reflection
coefficients. The range of
values measured in bone
tissue is marked with dotted
lines

are used to compute the two-dimensional surface topography and a topographically
corrected amplitude map. For each point of the topography map the gradients in x
and y directions are determined, which allows an estimation of the local inclination
angles.

16.2.2.3 Calibration

The confocal reflection amplitudes can be converted to values of the reflection co-
efficient by calibration with homogeneous isotropic and non-dispersive materials.
Speed of sound and mass density of these materials and the coupling fluid should be
determined by a low frequency substitution method and by Archimedes’ principle,
respectively. From Eq. 16.7 the corresponding reflection coefficients can be calcu-
lated and the relation between reflection coefficient R and the measured voltage is
obtained by linear regression (Fig. 16.10).

Exemplary impedance images of human cortical bone measured with 50 MHz to
1.2 GHz are shown in Fig. 16.11.

16.3 Results

16.3.1 Relations Between Mass Density, Acoustic Impedance,
and Elastic Properties at the Microscale

Figure 16.12 shows the relation of Z and ρ with the elastic coefficient c over a broad
range of materials [12]. It can be seen that Z is generally a better predictor for the
elastic properties of a material than the mass density. However, (16.7) implies that
the relation between the amplitude of the reflected wave and the acoustic material
property is not linear. A good discrimination of varying acoustic properties is only
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Fig. 16.11 Acoustic impedance images of human cortical bone cross-sections from the femoral
mid-diaphysis. (a) 50 MHz: the Haversian canals can be distinguished from the mineralized tis-
sue. The indicated rectangular area was measured again with a 200-MHz transducer (Reprinted
with authorization from Raum [12], c© 2008 IEEE). (b) Remnants of circumferential tissue in the
upper left part of the image can be well distinguished osteonal and interstitial tissue. The large
dark spots are Haversian canals and the small spots correspond to osteocyte lacunae. The latter are
not resolved at this frequency and the size of the spots is larger than the actual size of the lacunae
(Reprinted with authorization from Raum [12], c© 2008 IEEE). (c) 900 MHz: the anisotropic lamel-
lar tissue structure of an osteon with a central Haversian canal and osteocyte lacunae are clearly
visible
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Fig. 16.12 Relationships between acoustic impedance, mass density, and elastic stiffness for dif-
ferent materials (Reprinted with authorization from Raum [12], c© 2008 IEEE)

obtained for materials with intermediate or low acoustic impedance values. As the
impedance increases, the reflection coefficient converges towards one and the con-
focal image contrast decreases. Within the typical impedance range of bone tissue
(5–12 Mrayl) the average variation of the reflection coefficient R is approximately
3.3% Mrayl−1.

Bone can be assumed to consist of three basic components: hydroxyapatite, col-
lagen and water. The total mass density of the tissue is therefore given by:

ρtissue = ν fHAρHA + ν fcolρcol + ν fH2OρH2O, (16.29)

where ν f j is the volume fraction of the component j and ρ j is the density. The sub-
script is HA for mineral, col for collagen and H2O for water. The mass densities for
the three components are ρHA = 3.0gcm−3, ρcol = 1.41gcm−3, ρH2O = 1.0gcm−3.

Quantitative microradiography (qMR), quantitative backscattered electron imag-
ing (qBEI) and synchrotron radiation micro computed tomography (SRμCT) may
be utilized to measure tissue mineralization [31]. Depending on the experimental
method tissue mineralization has been expressed either as weight percent of calcium
(e.g. 39.86 wt% Ca for pure hydroxyapatite) or as tissue degree of mineralization of
bone (DMB):

DMB = ν fHAρHA. (16.30)

The relation between weight percent of calcium and mass fraction m fHA is:

39.86wt%
wt%

=
1

mf HA
. (16.31)
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Fig. 16.13 (a) Mass fraction ratio mf col/mf H2O as a function of ν fHA as derived from data pub-
lished by Broz et al. (1995) (Reprinted from Raum et al. [29] copyright (2006), with permission
from IOP Publishing Ltd.). (b) Conversion from wt% Ca to DMB

Raum et al. [32] have shown that the ratio of collagen to water volume fractions is
determined by ν fHA. This relation can also be expressed in terms of mass fractions
and allows the conversion between wt% Ca and DMB (Fig. 16.13).

The relations of DMB and wt% Ca with mass density can be approximated with
second order polynomials:

ρtissue = 1.12gcm−3 + 0.73 ·DMB−0.033cm3 g−1 ·DMB2, (16.32)

ρtissue = 1.153gcm−3 + 0.01094 · (wt%Ca)

+8.865 ·10−4cm3 g−1 · (wt%Ca)2. (16.33)

Numerous site-matched investigations of tissue mineralization and acoustic
impedance have been conducted at the microscale, i.e. with acoustic frequen-
cies between 50 and 200 MHz. By means of Eqs. 16.32, 16.33 and 16.17 c11 and
c33 have been derived. Table 16.4 summarizes the average microscale properties
measured in various species, tissue types and anatomical sites. In addition to the
studies in mature tissues the data from Kotha et al. [33] and from Leicht et al.
[34] provide information about partially demineralized tissue and nonmineralized
cartilage, respectively.

Over the entire range of mineralization DMB shows a good correlation with the
acoustic impedance, which is consistent with the assumption that the elastic stiffness
in bone tissue is predominantly achieved by the deposition of mineral in the colla-
gen matrix (Fig. 16.14a). As a result, all parameters exhibit a reasonable correlation
with tissue elastic properties (Table 16.5). However, it can be seen that the regres-
sion curves of DMB with Z1 and Z3 are different. The divergence of the acoustic
impedance values measured in the directions perpendicular and parallel to the bone
long axis indicate a characteristic elastic anisotropy that is not depicted in the scalar
quantities representing tissue mineralization. Moreover, the prediction accuracy is
much better for the acoustic impedance than for DMB or mass density.



430 K. Raum

T
ab

le
16

.4
M

ic
ro

sc
al

e
ti

ss
ue

pr
op

er
ti

es
of

va
ri

ou
s

sp
ec

ie
s

an
d

m
ea

su
re

m
en

t
si

te
s

Z
1

Z
3

D
M

B
Po

c 1
1

c 3
3

Sp
ec

ie
s

T
is

su
e

T
is

su
e

ty
pe

(M
ra

yl
)

(M
ra

yl
)

(g
/c

m
3
)

(%
)

(G
Pa

)
(G

Pa
)

St
ud

y

H
um

an
Fe

m
ur

e
C

or
ti

ca
l

7.
5

8.
5

–
4.

1
27

.3
35

.0
R

au
m

et
al

.[
35

]
H

um
an

Fe
m

ur
e

H
av

er
si

an
co

rt
ic

al
6.

7
7.

8
1.

1
10

.8
21

.9
29

.9
R

oh
rb

ac
h

et
al

.[
36

]
B

ov
in

e
Fe

m
ur

n
Pl

ex
if

or
m

co
rt

ic
al

8.
1

1.
1

–
31

.7
–

K
ot

ha
et

al
.[

33
]

B
ov

in
e

Fe
m

ur
n

Pl
ex

if
or

m
co

rt
ic

al
(p

ar
ti

al
ly

de
m

in
er

al
iz

ed
)

7.
1

0.
93

–
24

.9
–

K
ot

ha
et

al
.[

33
]

B
ov

in
e

Fe
m

ur
n

Pl
ex

if
or

m
co

rt
ic

al
(p

ar
ti

al
ly

de
m

in
er

al
iz

ed
)

6.
3

0.
81

–
19

.4
–

K
ot

ha
et

al
.[

33
]

M
ic

e
(B

6)
Fe

m
ur

e
C

or
ti

ca
l

6.
5

–
1.

28
–

21
.7

–
R

au
m

et
al

.[
37

]
M

ic
e

(B
6)

Fe
m

ur
e

E
pi

ph
ys

is
6.

7
–

1.
22

–
22

.7
–

R
au

m
et

al
.[

37
]

M
ic

e
(B

6)
Fe

m
ur

e
T

ra
be

cu
la

r
5.

8
–

1.
13

–
17

.3
–

R
au

m
et

al
.[

37
]

M
ic

e
(C

3H
)

Fe
m

ur
e

C
or

ti
ca

l
7.

8
–

1.
33

–
30

.1
–

R
au

m
et

al
.[

37
]

M
ic

e
(C

3H
)

Fe
m

ur
e

E
pi

ph
ys

is
7.

4
–

1.
23

–
28

.1
–

R
au

m
et

al
.[

37
]

M
ic

e
(C

3H
)

Fe
m

ur
e

T
ra

be
cu

la
r

6.
9

–
1.

27
–

23
.8

–
R

au
m

et
al

.[
37

]
H

um
an

R
ad

iu
sn

H
av

er
si

an
co

rt
ic

al
(n

ea
r

pe
ri

os
t)

6.
6

8.
0

1.
14

2.
3

21
.4

31
.0

R
au

m
et

al
.[

38
],

Sa
ı̈e

d
et

al
.[

39
]

H
um

an
R

ad
iu

sn
H

av
er

si
an

co
rt

ic
al

(1
-m

m
re

gi
on

fr
om

pe
ri

os
t)

6.
7

8.
1

1.
13

3.
6

22
.0

31
.7

R
au

m
et

al
.[

38
],

Sa
ı̈e

d
et

al
.[

39
]

H
um

an
R

ad
iu

sn
H

av
er

si
an

co
rt

ic
al

(c
en

tr
al

to
en

do
st

eu
m

)
6.

7
8.

2
1.

13
6.

2
22

.0
32

.5
R

au
m

et
al

.[
38

],
Sa

ı̈e
d

et
al

.[
39

]
H

um
an

R
ad

iu
sn

H
av

er
si

an
co

rt
ic

al
(o

st
eo

na
lt

is
su

e)
–

7.
2

1.
06

–
–

25
.2

R
au

m
et

al
.[

29
]

H
um

an
R

ad
iu

sn
H

av
er

si
an

co
rt

ic
al

(i
nt

er
st

it
ia

lt
is

su
e)

–
9.

3
1.

16
–

–
41

.5
R

au
m

et
al

.[
29

]
H

um
an

T
ib

ia
pl

at
ea

un
Su

bc
ho

nd
ra

l
bo

ne
6.

3
–

–
–

19
.5

–
L

ei
ch

te
ta

l.
[3

4]
H

um
an

T
ib

ia
pl

at
ea

un
C

ar
ti

la
ge

2.
1

3.
0

L
ei

ch
te

ta
l.

[3
4]

A
ll

m
ea

su
re

m
en

ts
ha

ve
be

en
co

nd
uc

te
d

w
it

h
fr

eq
ue

nc
ie

s
be

tw
ee

n
50

an
d

20
0

M
H

z.
Po

is
th

e
ti

ss
ue

po
ro

si
ty

.T
he

su
pe

rs
cr

ip
t

le
tt

er
s

n
an

d
e

st
an

d
fo

r
na

tiv
e

an
d

em
be

dd
ed

ti
ss

ue
s,

re
sp

ec
tiv

el
y



16 Microscopic Elastic Properties 431

Fig. 16.14 (a) Relation between acoustic impedance Z and DMB over the full range of miner-
alization (Data from Table 16.4). (b) The strong dependence of Z on DMB disappears after the
primary mineralization phase. (c) cii is directly proportional to the square of Zi. (d) DMB has only
a marginal correlation with cii for DMB > 0.7g/cm (The data in (b–d) are compiled from Raum
et al. [29, 32, 37])

The situation is quite different for tissue after completion of the primary
mineralization process, i.e. for DMB > 0.7g/cm3 (Fig. 16.14b). Figure 16.14b–d
shows the results of two studies on mature human radius [32] and mice femur
[37] samples. In both studies no or only weak correlations of DMB with Zi and cii

were observed (R2 : 0.13–0.31), while the correlations between Zi and cii remained
highly significant (R2 > 0.99).

Lakhsmanan et al. [11] have measured c(θ ) in small cylindrically shaped cor-
tical bone sections from a human femur (Fig. 16.15). This method allowed direct
assessment of c33, c11, and c∗ = 2(c13 + 2c44) from c(θ ). The remaining elastic
coefficients of a transverse isotropic stiffness tensor were derived using continuum
micro-mechanical model constraints [40]. The means and standard deviations of the
derived elastic coefficients were: c33 = 29.9±5.0GPa, c11 = 21.9±2.1GPa, c12 =
9.2±1.5GPa, c13 = 9.7±1.6GPa, and c44 = 6.7±1.2GPa, and the corresponding
engineering constants, i.e. Young moduli and Poisson ratios were: E3 = 23.8±
3.7GPa, E1 = 16.8± 1.1GPa, ν12 = 0.32± 0.02, ν13 = 0.22± 0.01, and ν31 =
0.31±0.01.
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Table 16.5 Conversion rules for the estimation of the elastic coefficients c11 and c33 from acoustic
impedance, DMB and mass density for the data summarized in Table 16.4

Z1 (Mrayl) Z3 (Mrayl) c11 (GPa) c33 (GPa)

Z1 (Mrayl) – 1.29Z1 −0.55 0.91Z1.70
1 0.97Z1.87

1
R2 = 0.98 R2 = 0.99 R2 = 0.99
RMSE
= 0.29 GPa

RMSE
= 0.49 GPa

RMSE
= 0.91 GPa

Z3 (Mrayl) 0.76Z1 +0.54 – 0.97Z1.49
3 0.59Z1.90

3
R2 = 0.98 R2 = 0.95 R2 = 0.99
RMSE
= 0.22
Mrayl

RMSE
= 1.44 GPa

RMSE = 0.88 GPa

DMB(g/cm3) 3.24DMB2 +2.1 4.92DMB2 +2.1 16.89DMB1.84 26.38DMB1.73

R2 = 0.92 R2 = 0.92 R2 = 0.84 R2 = 0.89
RMSE
= 0.49
Mrayl

RMSE
= 0.50
Mrayl

RMSE
= 3.10 GPa

RMSE = 3.10 GPa

ρ(g/cm3) 1.02ρ2.83

R2 = 0.90
RMSE
= 0.52
Mrayl

1.64ρ2.51

R2 = 0.95
RMSE
= 0.39
Mrayl

0.99ρ4.74

R2 = 0.85
RMSE
= 3.07 GPa

2.75ρ3.99

R2 = 0.88
RMSE = 3.41GPa

It should be noted that these relations have been calculated over the full range of mineralization.
The RMSE values for the DMB based correlations indicate that elastic predictions using DMB or
ρ are not very accurate

Fig. 16.15 (a) Site-matched evaluation of DMB and Z(θ) in small cylindrically shaped cortical
bone tissue sections (human femur: diameter: 4.4 mm) [11, 36]. (b) The typical course of c(θ)
averaged over the entire mineralized matrix (osteonal and interstitial tissue) and separately for
osteonal tissue
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The conversion between elastic coefficients and engineering constants is straight-
forward, if all independent coefficients are known. For example, the conversion
between c33 and E3 is:

E3 =
(1 + ν12)(1−ν12 −2ν13ν31)

1−ν2
12

· c33, (16.34)

where ν12 is the Poisson’s ratio in the cross-sectional plane (x1x2 – plane) and ν13 =
ν23 and ν31 = ν32 are the Poisson ratios in the longitudinal section (i.e., x1x3– and
x1x2−) planes [32]. With the commonly used assumption of an isotropic Poisson
ratio νiso = 0.3 [41–43] (16.34) becomes

E3 = 0.7429 · c33. (16.35)

Using the Poisson ratios reported by Lakshmanan et al. [11] the scaling factor
becomes considerably higher (0.80± 0.01) than in (16.35). However, these data
measured in the femur of a 72-year old female human donor may not be represen-
tative for other bone tissues, but rather demonstrates that Eq. 16.35 should be used
with caution.

Experimentally, the impact of the Poisson ratio has been investigated by site-
matched analyses of the acoustic impedance and Young’s modulus in human
femoral cortical bones [44, 45]. Young’s modulus EIT is usually derived from
nanoindentation measurements. Interestingly, in all studies consistent, but rather
moderate correlations between Z and EIT (0.61 ≤ R2 ≤ 0.67) have been observed.
Although at least some of the unexplained variances have to be attributed to experi-
mental artefacts, e.g. caused by surface roughness, viscous and contact effects, not
perfectly matched interaction volumes, a considerable amount has been suggested
to be caused by variations of the Poisson ratios. Indeed, Rupin et al. [45] have
recently suggested that a site-matched analysis of Z and EIT may be used to assess
the Poisson ratios experimentally. They reported isotropic Poisson ratios in the
range between 0.18 and 0.46 (mean and standard deviation: 0.41±0.04). However,
a rigorous incorporation of the anisotropic theory has to be established in future
analyses.

16.3.2 Relations Between Mineralization, Acoustic Impedance,
and Elastic Properties at the Nanoscale

With frequencies in the gigahertz range a characteristic lamellar pattern with
alternating impedance values between adjacent lamellae is usually observed
(Figs. 16.11c and 16.16a–b). However, since the diameter of a single mineral-
ized fibril (∼0.1μm) is still approximately one order of magnitude smaller than the
wavelength, the individual fibrils are not resolved. Therefore, interpretation of the
data obtained in the gigahertz range requires some ultrastructural model assump-
tions. Hofmann et al. [44] have evaluated osteonal tissue by site-matched SAM at
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Fig. 16.16 (a) Typical alterations of the elastic coefficient in osteonal lamellae. 1.2 GHz image,
image plane perpendicular to the osteonal long axis, one quarter of an osteon. The Haversian
canal is in the lower right part of the image. (b) Elastic coefficient measured along the line in (a).
The mean maxima and minima correspond to c33 and c11 of the individual fibrils, respectively.
A representative lamellar unit is highlighted in the gray box. (c) Theoretical c(θ) with estimated
remaining coefficients: c12 = 5.2GPa, c13 = 8.8GPa, c44 = 3.4GPa; (d) Schematic illustration of
a six-layer lamellar unit. The different gray scales indicate fibril layers with parallel alignment and
variable thickness, but distinct orientations (0◦: parallel to the osteon long axis)

911 MHz, nanoindentation and 2D Raman spectroscopy. They found that the rela-
tive mineral concentration within individual osteons is relatively homogeneous and
concluded that the alternating impedance pattern observed with gigahertz ultrasound
arises from mineralized collagen fibrils with relatively equal transverse isotropic
elastic properties (with c33 parallel and c11 perpendicular to the fibril long axis;
c33 > c11) that are arranged in an asymmetric twisted plywood structure [46, 47].
According to this model fibril bundles are tilted progressively layer by layer with
an angle of rotation between adjacent layers of around 30◦ (Fig. 16.1b). One layer
consists of a variable number of parallel fibrils and a lamellar unit is composed
of six layers with fibril orientations from 0◦ to 180◦. For example, the thickness
of a lamellar unit in Fig. 16.16 can be considered as the space between two adja-
cent low-impedance regions. The average lamellar unit thickness can be estimated
from the oscillation period along the line drawn in Fig. 16.16, to be 6.9± 0.1μm.
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It is reasonable to argue that the fibrils oriented perpendicular to the osteon long
axis are located in the low-impedance regions (corresponding to c11), while the
fibrils oriented parallel to the osteon long axis are located in the high impedance
regions (corresponding to c33). The layers with orientations of 30◦ and 60◦ should
exhibit impedance values corresponding to the rotated elastic coefficients c(30◦)
and c(60◦) of the fibrils (Fig. 16.16c). Apparently, due to the spatial resolution limit
of approximately 1μm at 1.2 GHz the six individual sublayers of the lamellar unit
in Fig. 16.16d cannot be distinguished. Hofmann et al. [48] hypothesized that layers
with a fibril orientation close to or parallel to the osteon axis appear as single thick
and high reflective lamellae in acoustic cross-sectional images. Similarly, the layers
with fibril orientations close to or perpendicular to the osteon axis may be observed
as single thin low reflective lamellae. This asymmetric arrangement of individual
layer thicknesses within a lamellar unit causes the tissue anisotropy at the next level
of organization.

In a first attempt Hofmann et al. [48] have evaluated the average area fractions
and impedance values of low reflective (thin) and high reflective (thick) regions for
osteons cut at various angles relative to the osteon long axis. By fitting the data sep-
arately to a transverse isotropic model they found similar mean elastic properties
(E1 : 23.4–24.1GPa, E2 : 26.5–28.0GPa, G12 : 9.1–10.4GPa) but different symme-
try orientations. They concluded that the effective orientations of the long axis of
the collagen fibrils in the low and high reflective regions were 90◦ and 27◦, respec-
tively. However, a drawback of this study was that the data were obtained from
different osteons. According to the twisted plywood model all possible fibril orien-
tations can be observed in a single cross-sectional image (Fig. 16.16d). Future work
should therefore aim to fit the data measured in a single cross-sectional image to an
asymmetric twisted plywood model.

16.4 Conclusion

Ultrasound offers various possibilities for the evaluation of bone. The acoustic
wavelength can be varied over more than four orders of magnitude. Acoustic param-
eters, e.g. acoustic impedance and sound velocities are directly linked with elastic
parameters of the material interrogated by the acoustic wave. Due to the hierarchical
organization of bone the elastic properties at each level are determined by the com-
pound properties of the preceding level. The mechanical function and resistance to
fracture of cortical bone are predominantly determined by the intrinsic elastic prop-
erties of the mineralized collagen matrix and by the porous microstructure. While
the porous microstructure can be assessed with high accuracy in three dimensions
with other imaging modalities, e.g. μCT, the target of ultrasound with frequencies
between 50 MHz and 2 GHz is to assess the heterogeneous anisotropic elastic prop-
erties of the mineralized collagen matrix. Because of the small spatial dimensions of
the characteristic structural units, e.g. osteonal and interstitial tissue, lamellar units
with rapid alterations of fibril composition and orientation the requirements on the
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spatial resolution are demanding. The measurement of the sound velocity in thin
samples or the surface acoustic waves in thick samples requires defocusing of the
sound field, and consequently, to increase the interrogated sample volume. There-
fore, the applicability of these methods is limited to relatively homogeneous tissue
regions that are sufficiently away from structural boundaries.

Two-dimensional mapping of the confocal reflection amplitude has emerged
from a semi-quantitative method to the modality of choice for ultrasonic investi-
gations of bone at the tissue level. A reliable estimation of the confocal reflection
amplitude with defocus correction and surface tilt control is possible with time-
resolved or amplitude detection microscopes. By adjusting the ultrasound frequency
rapid scans can be performed either with large scan fields to map the effective elas-
tic coefficient of the tissue matrix, or with small scan fields and frequencies in the
gigahertz range to map the anisotropic tissue properties at the lamellar level. In ad-
dition to that the high resolution imaging capability allows a precise estimation of
microstructural properties.

The potential of a combined assessment of structural and tissue elastic properties
in musculoskeletal research has already been demonstrated in several studies. Raum
et al. [38] have used 50-MHz impedance maps in conjunction with synchrotron ra-
diation μCT data to predict the velocity of the first arriving signal measured with
diagnostic ultrasound (bi-axial transmission) in human radius sections. In the low
megahertz range ultrasonic propagation in cortical bone depends on anisotropic
elastic tissue properties, porosity, and on the cortical geometry, e.g. thickness. Based
on the SAM data a new model was derived that accounts for the nonlinear disper-
sion relation with the cortical thickness and predicts the velocity of the first arriving
signal by a non-linear combination of fracture determining parameters, i.e. porosity,
cortical thickness and tissue impedance (R2 = 0.69,p < 10−4,RMSE = 52m/s).
Two-dimensional impedance maps are particularly suitable for investigations of tis-
sue de- and regeneration or pathologies in animal models. For example, Hube et al.
[3] have shown that the combined assessment of structural and anisotropic elastic
tissue properties in a callus distraction model (sheep) by 50-MHz SAM allowed
the prediction of the fracture force of distracted tibiae with a very high accuracy
(R2 = 0.86, p < 0.0005). On the other hand, genetic influences on the elastic bone
phenotype have been determined using 200-MHz time-resolved scanning acoustic
microscopy [37,44]. These findings may lead to the establishment of pathology spe-
cific treatment and regeneration monitoring strategies.

High resolution acoustic impedance maps in combination with the locally derived
average elastic stiffness tensor are perfectly suited for numerical deformation or
sound propagation analyses on “real-life” models [49]. Such models are crucial for
the development and validation of new non-invasive diagnostic tools dedicated to
the prediction of an individual fracture risk. Moreover, assessment of changes of
local tissue anisotropy at the lamellar level with ultrasound in the gigahertz range
may provide new insight in studies of bone remodeling, e.g. in the course of fracture
healing, bone pathologies, ageing, or adaptation to modified loading conditions at
the bone-implant interface after endoprothetic surgeries.
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Chapter 17
Ultrasonic Computed Tomography

Philippe Lasaygues, Régine Guillermin, and Jean-Pierre Lefebvre

Abstract Ultrasonic Computed Tomography (UCT) is a full digital imaging
technique, which consists in numerically solving the inverse scattering problem
associated to the forward scattering problem describing the interaction of ultrasonic
waves with inhomogeneous media. For weakly inhomogeneous media such as soft
tissues, various approximations of the solution of the forward problem (straight ray
approximation, Born approximation, etc.), leading to easy-to-implement approx-
imations of the inverse scattering problem (back-projection or back-propagation
algorithms) can be used. In the case of highly heterogeneous media such as bone
surrounded by soft tissues, such approximations are no more valid. We present
here two non-linear inversion schemes based on high-order approximations. These
methods are conceived like the prolongation of the methods implemented in the
weakly inhomogeneous case for soft tissues. The results show the feasibility of this
UCT approach to bones and its potential to perform measurements in vivo.
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laws · Spatial Fourier transforms · Toroidal arrays · Transducers · Transmission
measurements · Variable background · Wave attenuation · Wave velocity · Wavelet
analysis

17.1 Introduction

Clinical ultrasound, which was developed for soft biological tissues, i.e., weakly
inhomogeneous media, is not suitable for studying hard tissues such as bone because
of the high acoustical properties contrast existing between the bone and the sur-
rounding soft tissues. Some promising attempts were achieved by combining the
mechanical displacement of mono-element ultrasonic probes with numerical pro-
cessing of B-mode images, known as ultrasonic echo-tomography, for example on
the brain [1] and long bones [2]. All these methods result in qualitative images
of the internal structure of the imaged media, but they fail to provide quantitative
estimates of relevant physical parameters, such as the velocity or the attenuation of
the ultrasonic wave, or the acoustical impedance of the medium. Ultrasonic Com-
puted Tomography (UCT), which combines X-ray Computed Tomography (CT)
reconstruction procedures (back-projection or back-propagation algorithms) and ul-
trasonic waves, is expected to yield parametric cross-sectional images, i.e., images
of wave velocities, wave attenuations or acoustical impedances. UCT has been de-
veloped by several authors to study soft tissues [3–6], using approaches such as the
straight rays approximation [7] or the Born approximation [8], the latter consist-
ing in assuming that the total field is equal to the incident field in every internal
point of the scatterer, and which is accurate when the scattered field is much smaller
than the incident field (typical case of soft tissues). The use of powerful comput-
ers makes it possible nowadays to introduce highly complex algorithms [9,10], and
many experimental devices have been developed based on linear, circular and/or
toroidal arrays, and on mechanical and/or electronic steering and scanning [11–15].
When UCT is applied to hard tissues like bones, the problems involved become
more complex, mainly because of the high contrast existing between bone and the
surrounding soft tissues [16]. However, several authors have developed algorithms
by simply linearizing the inverse problem [17–22] using both straight ray or Born
approximations. However, difficulties arise with respect to quantitative tomogra-
phy, i.e., for mapping the velocity or the attenuation of the ultrasonic waves, or the
acoustical impedance of the medium. Finding solutions in these cases involves either
using non-linear schemes [23] and/or performing extensive studies on the limitation
of the approximations [24, 25].

In this chapter, we describe two iterative UCT methods based on the use of Born
approximation. In both cases, the general scheme consists in estimating, at step
n, a small deviation from a previously estimated configuration of the medium at
step n–1. At each step, the field deviation, induced by the medium inhomogeneity
(also called the perturbation), is indeed related to that previous one by a linear rela-
tionship. For weakly inhomogeneous media, starting from a homogeneous reference
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(also called constant background) having properties near the mean acoustical
properties of the medium, the strategy to solve the inverse problem necessitates
only one iteration, and a first-order approximation is generally sufficient. Since
in that case the field deviation (the perturbation) from the reference field (field in
absence of the perturbation) is linearly related to the medium deviation (the medium
perturbation) by a simple spatial Fourier transform, the inversion results in a simple
inverse spatial Fourier transform which can be easily implemented by a filtered
back-projection algorithm [26] like ones commonly used in X-ray CT scanners.
For more contrasted media several iterations are necessary.

When the problem can be reduced to the study of a fluid-like cavity (like marrow)
buried in an elastic hollow cylinder (like bone) surrounded by fluid (like muscle),
we propose an iterative method, based on broken straight rays taking into account
the wave refraction at the bone-soft tissue interface [7, 25]. This approach, called
Compound Quantitative Ultrasonic Tomography (CQUT), is purely experimental
and consists in performing reflection and transmission measurements, using an it-
erative correction procedure, which compensates for refraction effect arising at the
boundary between bone and the surrounding tissues. The reflected/scattered waves
provide information about the bone’s geometrical properties, and the transmission
waves, within a refracted straight ray approach, provide the local wave velocities.
The tomographic reconstruction procedure is based on Born iterative method, and
successive inverse spatial Fourier transforms. The main limitation of the CQUT
method is the heavy experimental-costs involved (multiple iterative experiments).

The other UCT method presented in this chapter is based on an iterative algorithm
using successive high-order Born approximations. The tomographic method in this
case is known as Distorted Born Diffraction Tomography (DBDT) [27]. In compar-
ison with the previous upgrade, DBDT combines diffraction measurements with a
purely numerical non-linear inversion algorithm. This second approach is then more
general than CQUT. It is not restricted to the case of a fluid-like cavity buried in an
elastic hollow cylinder. Its main drawback is a heavy computational cost.

The performances and the limitations of these two tomographic methods applied
to quantitative bone imaging problems are presented, and the results obtained using
these methods are compared with experimental data.

17.2 Ultrasonic Computed Tomography

The aim of UCT is to reconstruct the geometry and the spatial distribution of acous-
tical parameters of an object from scattered ultrasonic measurements.

UCT measurements are carried out using variably densely spaced sets of trans-
mitter and receiver positions as illustrated in Fig. 17.1. The reconstruction of the
object (geometry and acoustical properties) requires first a accurate model to solve
the forward scattering problem, i.e. predicting the pressure field when the scatter-
ing medium and the incident field are assumed to be known, and second, solves
the inverse scattering problem, i.e. determines the parameters of the medium from
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Fig. 17.1 Operating modes in Ultrasonic Computed Tomography. (a) A single transmitter/receiver
in the reflection mode, (b) “n” transmitters/receivers in the diffraction mode, and (c) two paired
transducers, one transmitter and one receiver in the transmission mode, are translated (the number
of displacements corresponding to the points on the projections) and rotated around the tested body

measurements of the incident and scattered fields on some surface. Inverse scattering
problems are non-linear and ill posed. No single solution exists and it is necessary
to find a way of eliminating the solutions that do not correspond to reality.

Basic UCT principles have been clearly established in the case of weakly varying
media such as low-contrasted tissues.

The forward scattering problem can be then solved with the Lippmann-
Schwinger integral equation [23, 28], using the Green function [29] of the un-
perturbed problem (the homogeneous reference medium or constant background).
Various approximations like straight ray approximation, for propagation measure-
ments, or the first-order Born approximation, for scattering measurements, can be
used in order to linearize the integral representation. This leads to a linear relation
between the object function, which is related to the characteristics (dimensions,
shape or acoustical parameters) of the reconstructed object, and the scattered field.
Then, one possible way to solve this inverse problem consists in performing a far
field asymptotic development [23], and 2-D or 3-D Fourier transforms, which makes
it possible in principle to reconstruct the object function in almost real time based on
a sufficiently large set of scattering data (“classical” tomographic algorithm) [26].

However, if the contrast between the media increases, the first-order Born ap-
proximation is no longer valid and other strategies will be considered. The first
strategy adopted in this case consists in iteratively correcting the experimental data
acquisition procedure, depending on the reflection and refraction behavior of the
waves propagating through the soft/hard tissue interface. This strategy, which is
known as Compound Quantitative Ultrasonic Tomography (CQUT), makes it possi-
ble to use the first-order Born approximation, correcting at each iteration, i.e. in each
experiment, the refraction of the propagating wave due to the impedance contrast be-
tween the surrounding medium and the bone. The disadvantage of this procedure is
that as many experiments as iterative steps have to be carried out.

A second strategy involves the algebraic inversion of the scattered field, based on
the distorted Born iterative method, using iterative numerical steps and performing
only one experiment.
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17.2.1 Modeling and Linearization

Let A be the operator that describes acoustic propagation or scattering phenomena
in the heterogeneous medium that is to be imaged (including boundary and/or Som-
merfeld radiation condition at infinity [23]). Let S be the acoustic sources, which are
assumed to be known. All operators are time and space dependants. The variable ϕ,
which denotes the resulting acoustic field, satisfies the equation:

Aϕ = S (17.1)

Let us assume the medium to be composed of a known part, related to the reference
medium, resulting in an operator A0, and an unknown part, related to the perturba-
tion of the reference medium and identified by the object function, resulting in an
operator A′ such that:

A = A0 + A′ (17.2)

Assuming that ϕ0, the solution of the non-perturbed problem, is known:

A0ϕ0 = S (17.3)

Let ϕ′ be the difference between ϕ and ϕ0 (ϕ′ = ϕ−ϕ0), that is the field perturbation
induced by the perturbation of the reference medium. Therefore ϕ′ is the solution of

A0ϕ′ = −A′(ϕ0 + ϕ′) (17.4)

If the Green function G0 of the unperturbed problem is given [8], we obtain

ϕ′ = G0A′(ϕ0 + ϕ′) (17.5)

The latter equation is the well-known Lippmann-Schwinger equation [23, 28], and
the so-called inverse problem is therefore the solution of this non-linear equation.
A solution can be found by using a perturbation scheme, based on successive lin-
ear approximations. The “Born series” is one of these schemes introducing different
development orders [23, 30]. Within the first-order Born approximation, the field
perturbation ϕ′ is neglected in every internal point of the scatterer. The correspon-
dent solution ϕ ′

1 can be written:

ϕ ′
1 = G0 A′ϕ0 (17.6)

In the frequency range (>3MHz) of classical UCT of weakly heterogeneous soft
tissues, the reference medium is considered to be constant in first approxima-
tion, leading to an Inverse Born Approximation (IBA) method with a “constant
background”. The final objective is to obtain suitable images from scattered mea-
surements (ϕ ′)m, where the subscript m stands for “measurements”. Rotating the
transducers around the object and transmitting broadband pulses at each position
can be handled using the same approach as in X-ray tomography [31]: it provides
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a slice-by-slice spectral coverage of the object spectrum (2-D-spatial Fourier
transform, F2D):

A′ = (F−1
2D)(ϕ

′
)m (17.7)

where F−1
2D designates the inverse 2-D-spatial Fourier transform. A reconstruction

can therefore be performed using a classical algorithm of the summation of filtered
back-projections [31].

17.2.2 Limitations in the Case of Bone Imaging

Since the acoustic impedance of bone is highly contrasted with that of the surround-
ing medium, the ultrasound propagation is perturbed by wave refraction, attenuation
and scattering. This results in the propagation of more complex waves, such as those
occurring in elastic volumes (compressional and shear waves). The weak scattering
hypothesis is therefore not realistic.

However, by adopting some assumptions, the field of application of UCT can be
extended to bone imaging. If the object to be imaged can be modeled by a set of
concentric isotropic homogeneous noncircular “fluid-like” media representing the
homogenized surrounding tissues, bone and marrow, only compressional waves are
taken into account. In the diagnostic frequency range of bone QUS (<3MHz), the
wavelength of compressional wave (propagating at velocities ranging between 2000
and 4000 ms−1) in cortical bone is typically greater than 1 mm, which remains
much larger that the typical size of bone microstructures. Therefore bone itself in
the cortical shell can be assimilated to a weakly heterogeneous medium, and the ul-
trasonic wave propagation will be minimally disturbed. So, the Born approximation
is satisfied in this area. The IBA with a “variable background” can be used here; the
background here being the set consisting of the homogeneous solid cylinder and the
homogeneous fluid surrounding medium.

On the other hand, the wavelength in water ranges between 0.5 and 6 mm, which
remains smaller than the mean diameter (≈10±2mm) of the bone. The product ka,
where “k” is the wave number and “a” is the mean radius of the bone, ranges be-
tween 2 and 47, and the configuration is therefore non-resonant. The background can
be defined in terms of the following two parts: a solid part (bone) without any hollow
and the surrounding water (or soft tissue), and the perturbed part, i.e. the object to
be reconstructed, namely the cavity (marrow-filled medullary canal). The algorithm
of summation of the filtered back-projections can then be used with some signal
processing refinements. Despite the artifacts and biases affecting the assessment of
the shell thickness, the main result obtained will be a qualitative tomogram of the
cavity, where the gray or color level sets are not referenced to a physical parameter.

17.2.3 Compound Quantitative Ultrasonic Tomography (CQUT)

The main difficulties, however, arise when attempting to provide quantitative
tomographic images of acoustical wave parameters. Finding solutions in this case
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involves either using non-linear schemes or performing extensive studies on the
limitation of the Born series. Following the same approach than in the Sect. 17.2.1,
we can write:

ϕ ′
1 = Gb A′ϕb (17.8)

where Gb is the appropriate Green function of the “variable background”. ϕb and Ab

are respectively the corresponding field and the corresponding operator such that:

Abϕb = S and GbAb = −I (17.9)

where I is the identity operator. This strategy can be applied iteratively:

ϕ ′
n = Gn−1

b A′
nϕn−1

b (17.10)

where Gn
b is the inhomogeneous Green function of the “variable background” dis-

torted/adapted for every iteration step n. This non-linear inversion scheme is called
the distorted Born iterative (DBI) method. The reconstruction algorithm is therefore
the same as the previous classical one, and the solutions are iteratively determined
using Eq. 17.7. UCT based on the DBI method yields quantitative images.

Experimentally, the approach was designed first, to cancel out the refraction ef-
fects by using a specific set-up in order to impose straight ray propagation inside the
shell, and second, to use the Born iterative method. Based on a priori knowledge of
the geometrical properties and the acoustical properties, after calculating the inci-
dent and refracted angles using the Snell-Descartes laws, a compensation procedure
has to be performed to determine the most suitable positions and orientations of the
paired transducers (Fig. 17.2).

Reflection measurements and transmission measurements give, respectively and
successively, the boundaries of the shell and the quantitative values of the velocity of
the wave along the whole path. A quantitative image obtained after experiment n is
used as the a priori information for the following procedure n + 1. The initial guess
is the image obtained without any angular corrections, and the stop criterion of this
iterative process is when the difference between the mean velocities calculated at
two different steps is less than 5ms−1.

Fig. 17.2 Compensatory
operating procedure in CQUT
– αn is the incident angle
determined at the step n using
the Snell-Descartes laws;
Gn−1

b is the Green function
adapted to a variable
background (homogeneous
cylinder plus homogeneous
surrounding medium) at
each iteration
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Our initial attempts along these lines have been improved using signal and image
processing methods [32]. This iterative experimental method, known as Compound
Quantitative Ultrasonic Tomography (CQUT), has been described in detail in Oue-
draogo et al. [33,34]. Despite limitations due to heavy data processing requirements
and complex acoustical signals resulting from multiple physical effects involved
(various pathways into the shell, roughnesses of the water/bone interfaces etc. [35]),
CQUT gives images that are quantitatively related to the compressional wave veloc-
ities in a cross-section of a cortical shell, and the error remains within reasonable
limits (about 7%).

17.2.4 Distorted Born Diffraction Tomography (DBDT)

A second non-linear inversion method, which is also based on the DBI method,
was investigated. With this approach, the medium is modeled without any a pri-
ori knowledge by performing a simple geometrical discretization of the object. The
algorithm involves successive linearizations of the Lippmann-Schwinger represen-
tation. The initial guess in the iterative process is provided by the first-order Born
approximation. If the solution is known with the order (n–1), the n-order solution
A′

n will satisfy [36]:

[
(ϕ ′)m −ϕ ′

n−1

]
= Gn−1

b

[
A′

n −A′
n−1

]
ϕn−1

b (17.11)

At each iteration, the algorithm numerically solves a forward diffraction problem
in order to calculate the appropriate inhomogeneous Green function Gn−1

b and the
internal field ϕn−1

b . Contrary to what occurs with the CQUT, the DBDT requires
only a single series of experimental data. However, this technique is computational
time consuming because it involves inversion of huge, full and complex matrix. The
matrix inversion procedure is the key point with this method. Generally non-square
ill-conditioned matrixes have to be inverted. A mean-square solution can be calcu-
lated using a conjugated-gradient method associated with a regularization procedure
[37]. To make use of the broadband frequency content of the impulse signal used,
the idea is to begin with the low frequencies, which carry overall information, and to
gradually inject the high frequencies to simultaneously improve both the qualitative
aspects (the resolution) and the quantitative aspects (the characterization).

17.3 The UCT-Scanner

These methods were tested on data obtained with a mechanical scanner, on
bone-mimicking phantoms and real human bones. Whenever possible, UCT im-
ages of bones were compared with X-ray tomography images obtained at the same
cross-section levels. Details of the imaging conditions are systematically presented
below.
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Fig. 17.3 The UCT-scanner, (a) transmission configuration, (b) reflected (only one transducer is
used) and diffracted (two transducers are used) configurations

The general architecture of this mechanical system is that of a first generation
ultrasonic scanner (Fig. 17.3): the main symmetrical arm holds two transversal arms
with which two transducers can be translated in parallel. By rotating either the main
arm or the object holder, angular scanning can be performed. Six stepping motors
sequentially driven by a programmable translator-indexer device fitted with a power
multiplexer control all the movements. The object to be imaged is placed in the pre-
sumed geometrical center of the bench so that the distance between the transducers
and the center is limited to 150 mm. The surrounding fluid-like medium is water at
a temperature of 18.6◦ (ρo = 1000kgm−3, co = 1480ms−1). The transducers used
for data acquisition are broadband piezo-composite transducers with nominal fre-
quencies of 250 kHz to 1 MHz. The transducers are driven using a pulse/receiver,
and are positioned automatically as required around the object, and the data stored
are then used to determine the time-of-flight between the source, the object and the
receiver. The reconstruction algorithm and some signal processing algorithms were
implemented on a personal computer.

17.4 Results

17.4.1 2D and 3D Qualitative Tomography

Contrast tomographic images of bone were obtained using the linearized (first-order
Born approximation) UCT algorithm based on reflected and diffracted measure-
ments (no transmission measurements were used at this stage). Except for the
processing of the input signals, no compensatory procedures or changes in the wave
paths were made.
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17.4.1.1 Lumbar Vertebrae

The first example focuses on the analysis of a L2 lumbar human vertebra without any
articular or transversal apophysis, having a visible external spinal body diameter of
approximately 30 mm (Fig. 17.4a). A 4-mm circular metallic rod was placed inside
the specimen, perpendicular to its upper surface.

The nominal frequency of the transducer (Fig. 17.4b) was 500 kHz (λ = 3mm
in water) and the reflected sinogram consisted of 180 projections (through 360◦),
each including 1024 samples. The sampling frequency was 20 MHz. The size of the
image was 255× 255 pixels. The resolution was improved using Papoulis decon-
volution of the signal measured by the transfer function of the apparatus, with a
frequency threshold of −15dB in the (330–760)kHz frequency range [38]. Under
these signal-processing conditions, the resolution of the image was about 0.375 mm
(λ/8 in water).

The X-ray tomography device (Fig. 17.4c) was a Philips MG 450 radiation
source, with a high intensity tube receiving a 80 keV beam with an intensity of
10 mA. The focal size was 4.5 mm. The distance from source to object was 3 m.
A Thalès Flashscan 35 was used as the scintillator-imaging device. The resolution
was 127μm, and the image size was 2304×3200 pixels.

The dimensions and the shape of the bone sample could be readily distin-
guished on the UCT image. The dimensions and the location of the rod were also
visible and well reconstructed. This means that on the one hand, the ultrasonic
wave propagated into the center of the body despite the attenuation of the wave due
to the porosity and/or the anisotropy, and that on the other hand, it was then possible
to discriminate and to size a metallic implant placed inside the bone specimen. But it
was impossible to discriminate between the trabecular zone and the cortical zone. In
addition, UCT does not give the same quality of image resolution as X-ray tomog-
raphy. This is a serious limitation, as it makes it difficult to determine some charac-
teristic parameters precisely from UCT images, such as the bone volume fraction.

Fig. 17.4 L2 -Lumbar vertebra. (a) Sample picture, (b) 2-D-UCT obtained from the reflected sino-
gram, 180 projections with 1024 samples, Nominal frequency Fc = 500kHz, resolution 375μm,
image size 255× 255 pixels (c) corresponding X-ray tomography, resolution 127μm, image size
2304×3200 pixels (Reproduced from [38], 2001. Permission granted from Dynamedia, Inc)
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17.4.1.2 Diaphysis of an Adult Thighbone

In the second example, a 3-D UCT of adult human female thighbone was obtained
from diffracted sinograms. The first sample (Fig. 17.5) was obtained from a post-
menopausal 78-year old woman with osteoporosis, and the second (Fig. 17.6) from
a 81-year-old woman without any bones pathology (healthy bones).

The nominal frequency of the transducers was 1 MHz. The resolution and the size
of the image were 0.75×0.75mm and 512×512 pixels, respectively. The diffracted
sinograms included 2048 projections, each including 8256 samples, involving 32
angular transmitter positions combined with 64 angular receiver positions covering
an angle of 360◦. The sampling frequency used was 40 MHz.

A signal-processing tool [22, 39] was used to determine cortical thickness. This
tool was based on a segmentation of the final image and a size correction of the inner
boundaries, using a priori information on physical parameters (in this case, mean
compressional wave velocity in bone = 3500± 100ms−1, bone mass density =
1700kgm−3).

Figures 17.5a and 17.6 show the 3-D UCT images of the pathological and healthy
thighbones. These reconstructions were obtained by superimposing sequential 2-D
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Fig. 17.5 Diaphysis of an adult thighbone with osteoporosis. (a) Qualitative image obtained with
3-D UCT, (b) cross-sections, H1 = 8mm, H2 = 14mm and H3 = 18mm, (c) corresponding X-ray
tomographies
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Fig. 17.6 3-D-UCT
of a healthy thighbone

UCT images (80 cross-sections). The step between two cross-sections was 0.25 mm.
The interpolation scheme used for a given 3-D image was the shape-based method
(Matlab R©, MathWorksTM). In Fig. 17.5b and c, three 2-D UCT spaced 6 and 4 mm
apart (H1 = 8mm, H2 = 14mm and H3 = 18mm) are compared with the corre-
sponding X-ray tomographic images of the unhealthy bone.

The X-ray device was a clinical General Electric R© device (CE 12000). The thick-
ness of the cross-section was 1 mm. The resolution was 0.25× 0.25mm and the
image size was 512×512 pixels.

17.4.1.3 Childhood Fibula

In the third example (Fig. 17.7), the same experimental configuration was used as
previously (see Sect. 17.4.1.2). The sample was a fresh fibula from a 12-year old
child containing no marrow in the inner cavity. The mean dimensions of the bone
sample were 17± 2mm on the outside and 6± 2mm in the inner cavity. Twenty
sequential cross-sections were performed in this case with a 1-mm step.

These results obtained with human specimens show that it is possible to char-
acterize the size and shape of bones using Ultrasonic Computed Tomography.
Focusing on well-contrasted images obtained using UCT, and comparison with
X-ray, show that this method provide efficient means of assessing the cortical thick-
ness, which is known to be an important indicator of bone strength.

17.4.2 Quantitative Assessment

The aim of the second experiment was to obtain a quantitative assessment of the
ultrasonic wave velocity in bone using UCT methods.
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Fig. 17.7 3-D UCT image of a child’s fibula

17.4.2.1 Compound Quantitative Ultrasonic Tomography (CQUT)

CQUT was tested first on circular Plexiglas cylinders and results were excellent
because of the weak errors and the fast convergence of the algorithm (only two
iterations) [34]. Because long bones look like more non-cylindrical elastic hollow
tubes, the number of iterations (about five here) is higher and the convergence is
slower than with academic objects [33].

The bone sample tested here was a human femoral diaphysis with an external
diameter of about 32± 5mm and an internal diameter of 16± 2mm. The initial
velocity of the compressional wave propagating into the bone was set at 3400ms−1.

In the UCT, the backscattered sinogram consisted of 90 signals covering an angle
of 360◦. The transmitted sinogram consisted of 90 projections with 128 transverse
displacements in steps of 330μm. The time-of-flight was calculated with several
algorithms (zero-crossing, cross-correlation, etc.). The X-ray device used was that
described above in Sect. 17.4.1.1.

From the qualitative (contrast) point of view, the UCT image was similar to the
X-ray image (Fig. 17.8). X-ray tomography, which estimates the mass density, is the
main method currently used to determine the structural characteristics of bone, and
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Fig. 17.8 Human thighbone (a) CQUT (90 projections, 128 translation samples; resolution
0.75 × 0.75mm, size 256 × 256 pixels), (b) corresponding X-ray tomography (80 keV, 10 mA,
4.5 mm, resolution 127μm, size 2304×3200 pixels) (Reproduced from Lasaygues, [19] copyright
2005. Permission granted from IOP Publishing limited)

the present reconstruction was more detailed than that obtained with UCT. However,
the ultrasonic image represents a quantitative map of the velocity of the compres-
sional wave into the cortical shell. The speed of sound of the fluid contained in
the inner cavity was accurately reconstructed with a mean wave velocity close to
1500ms−1, and the diameter of the inner cavity was found to be 15–17 mm. The
external diameter was found to be in the 30–34 mm range, which is close to the ac-
tual values. Mean wave velocity in the shell was 3150±50ms−1. This value seems
to be lower than the mean wave velocity in cortical bones usually reported in litera-
ture (see Chap. 13 for more details). However, experimental studies were performed
in parallel on small cubic samples taken from the same femur, and similar values
with only a slight dispersion (<0.5ms−1) were obtained.

17.4.2.2 Distorted Born Diffraction Tomography (DBDT)

The performances obtained with DBDT were then assessed with a set of experi-
mental data. The sample used here was a geometrically-mimicking phantom of a
child’s bone. The phantom was a non-circular homogeneous isotropic tube made
of artificial resin (Neukadur ProtoCast 113TM) with maximum internal and exter-
nal diameters of 6 and 12 mm, respectively. The volumetric mass density of the
resin was ρ1 ≈ 1150kgm−3, and the mean velocity of the compressional wave
was c1 ≈ 2400± 50ms−1. The transmitter and receiver were placed 17.5 cm to
the right of the center of the bench. The diffraction sinograms were assessed with
two transducers, which were placed in 72 by 72 positions around the object with
a 5◦ step. The transducers had a nominal frequency of 250 kHz and their −6dB
frequency bandwidth was 135–375 kHz. The initial frequency was chosen so that
the fist-order Born solution, that provides the initial guess of the iterative process,
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does not include too many artifacts. Previous studies [36,40] have shown that if the
phase shift resulting from the presence of the scatterer is greater than π, the recon-
struction will present important artifacts. We therefore chose an initial frequency
such as:

f <
c0cl

2d|cl − c0| ≈ 150kHz (17.12)

where d is the largest dimension of the scatterer. Because of the small frequency
range available, the image resolution rather limited. The scattered field was ob-
tained by subtracting the incident field (measured without the scatterer) from the
total field. The frequency data were obtained by computing the Fast Fourier Trans-
form of the temporal signals and no other corrections or signal processing steps
were carried out.

Figure 17.9a shows the first-order diffraction tomography of the scatterer. Since
the wavelength of the wave in water was similar to the size of the object, the image
resolution is poor and the assessment of the shell thickness is not possible.
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Fig. 17.9 Quantitative UCT of a geometrically-mimicking phantom of a child’s bone. (a) Initial
solution of the DBDT at 150 kHz (first-order Born approximation), (b) iterations at 150 kHz,
(c) iterations at 350 kHz, (d) iterations at 1 MHz
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Figure 17.9b–d show three sequential iterations of the distorted Born diffraction
tomography. It can be seen that with DBDT, the resolution and the quality of
the contrast gradually improved. The final result of the iteration process was
satisfactory. The geometry was fairly accurate (position and dimensions recon-
structed with mean relative error of the order of 5%), whereas the velocity was
estimated with a rather large relative error of about 10%.

17.5 Conclusion

This chapter deals with 2-D and 3-D imaging of human long bones using Ultra-
sonic Computed Tomography (UCT). The scope of UCT methods was thus extended
here from low impedance and velocity contrast media such as soft tissues (the
classical domain) to higher contrast domains such as cortical bone structures, us-
ing non-linear and correction schemes with the following features: the wave field
and the associated Green function of the reference background medium were deter-
mined iteratively at the various steps. Due to the mismatch between the acoustical
impedance of bone and that of the surrounding soft tissues, the higher the frequency,
the lower the proportion of the energy transmitted through bone and the lower the
resolution of the resulting ultrasonic image. The ultrasonic propagation is greatly
perturbed by the contrast between the media, which generates large artifacts. Two
strategies were used to solve this problem.

The first strategy, named Compound Quantitative Ultrasonic Tomography
(CQUT), was based on the Born iterative method with a corrected experimental
data acquisition procedure. Bone was assumed to be equivalent to an internally
weakly contrasted object immersed in a homogeneous reference medium (water).
The results obtained with CQUT were satisfactory, and both the reconstructed ge-
ometries and wave velocities were close to the actual values. The main limitations
of the CQUT are the number of measurements required, which involve multiple
iterative experiments and heavy data processing.

The second method tested here was also a non-linear inversion method with
higher-order levels of approximation, but in this case, the iterations were performed
numerically, based on a single experimental measurement. The so-called Distorted
Born Diffraction Tomography (DBDT) strategy gave reasonably accurate results
without requiring any a priori information about the object.

The methods presented in this chapter were tested so far using bone mimick-
ing phantoms as well as real bones, including vertebrae, femurs and fibulas, with
a non-canonical homogeneous shape. In comparison with classical X-ray tomogra-
phy, UCT methods were found to be promising, and the geometrical and physical
parameters of the object were accurately reconstructed with these methods.

It is now proposed to investigate various ways of improving these methods.
Work is in progress, for instance, on the matrix inversion procedure involved in
DBDT method and particularly on the regularization process, which is an extremely
important aspect of the inversion scheme, especially with high-contrast targets.
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Signal processing and image processing studies on how to handle the heavy exper-
imental data are also in progress (wavelet analysis, blind deconvolution, segmenta-
tion etc.).

In conclusion, in situ measurements of the acoustic properties of long bones in
various parts of the skeleton must be sufficiently accurate for the results to be of
use in the diagnosis and/or treatment of bone diseases. Once the requisite degree of
accuracy has been achieved, it will be possible to start developing prototypes for in
vivo applications.
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