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PREFACE 

W H A T  DOES THIS BOOK DO? 

This book provides a broad view of ultrasound or ultrasonics, or, in the medical 
community, sonography, commonly abbreviated as UT. It is a source book of 
facts and theory, presented in a user-friendly format: it is written, as far as 
possible, in simple language with intuitive illustrations. 

The book is intended for use as an introduction or a reference by anyone 
with a need to understand what ultrasonics can and cannot do, what are its pos- 
sibilities and perils, and how to gain a generalized insight. It is not an academic 
text. Some useful formulas are given and their derivations are given in appen- 
dices. These are not required reading, as a knowledge of differential calculus, 
vectors, and matrix algebra is assumed of the reader for these. 

The book brings together the practical and theoretical aspects of UT, which 
is a field involving art and experience, as well as scientific knowledge. A few his- 
toric yet pertinent and current references are included but no extensive literature 
review is givenmthat is done in research publications. 

Section 1 provides an overall introduction to the subject of UT. Section 2 
provides definitions. Section 3 describes wave propagation concepts which are 
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the fundamental processes of UT. Section 4 describes the interactions between 
types of waves, and between waves and surfaces. Section 5 describes the con- 
cepts of transducers and electronic hardware (without reference to specific 
proprietary information). Section 6 reviews data processing software concepts. 
Appendices 1-13 provide technical details of relevant theories. 

The illustrations are sketched as schematic, each emphasizing a specific 
concept rather than reproducing actual measurements in which several processes 
may have occurred, obscuring their significance. 

W H Y  IS TH IS  B O O K  NEEDED? 

Ultrasonics deals with propagating waves which depend on two very old prin- 
ciples: elasticity, defined in 1660; and inertia, defined in 1687. A thorough 
appreciation for these principles is sufficient to gain an understanding of UT. 
There have been many developments in the intervening years up to the present, 
though the most significant are quite old. Recent advances have come because 
of developments in electronic equipment and data processing, and in related 
fields such as medicine, seismology, acoustics, and engineering dynamics. The 
UT processes are, however, still often misunderstood. 

UT applications began in the late 19th century, but significant progress was 
not made until the development of equipment for submarine detection in the 
two world wars of the 20th century. Before the digital age, many techniques 
used hardware approaches for controlling transducer excitation and for rudi- 
mentary signal processing (such as delay lines), together with analog circuitry 
for signal processing. Test results were displayed on oscilloscopes as analog 
depictions of waveforms. Most texts of a decade and more ago concentrated 
on these approaches, which are now obsolete. In these early applications the 
reflection of a simple wave propagating in a uniform medium was evaluated 
visually. 

Modern applications of UT testing often lead to erroneous conclusions, 
because the waves exhibit complicated behaviors whose interpretation must be 
based on a proper understanding of the phenomena involved. This is the most 
significant aspect of UT at the start of the 21st century. 

The field of UT is gaining more and more applications, and questions as to 
the meaning of test results are raised by people who have not had the benefit of a 
specialized education or experience in either the generalities, depths, or subtleties 
of the subject. These peoplemand the author found himself to be one of them m 
must ask questions about UT because it is not commonly taught and simple 
clear textbooks are few. Both practical laboratory experience and theoretical 
knowledge is necessary. Answers are given to frequently asked questions (FAQs) 
in the form of questions-and-answers based on theory and experience. 

A thorough knowledge of the phenomena also provides the basis for devel- 
oping new techniques. 
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W H A T  ARE SOME USEFUL BOOKS? 

The classical textbook on UT theory is by Krautkramer and Krautkramer (1990), 
now in its 4th edition, having been released first in the 1940s. 

A complete review of UT suitable for a specialist or an advanced graduate 
student is provided by Ensminger (1998). He includes industrial and medical 
applications. However, extensive mathematical development is blended in with 
the text, rendering it hard to read for content. The book provides an interesting 
history of the subject and discusses natural ultrasonics in bats (echolocation), 
whales (communication), and dogs (which hear UT whistles), among many other 
animals and even insects. 

Kutruff (1991) also provides a useful overall text for advanced students 
and researchers, covering most UT concepts and including detailed mathemat- 
ics. He covers wave propagation in gases, liquids, and solids; the piezoelectric 
effect and transducers; radiation and beam forming; scattering and absorption; 
displays; cavitation and high-intensity effects; and descriptions but inadequate 
explanations of medical applications. 

He describes many hardware and signal analysis techniques (such as delay 
lines, analog filter circuits, and displays) which are essentially out-of-date. The 
book is a translation from the German edition of 1988 and contains some trans- 
lated terms which conflict with general English usage, such as the "impulse 
echo" technique, instead of the "pulse echo" technique. 

Of the many research-oriented books, Thurston and Pierce (1990) is one of 
a series of advanced books on UT. It provides the history of UT and deals with 
UT devices, wave propagation, measurement techniques, advanced details of the 
radiation fields of transducers, measurement of velocity and attenuation, electro- 
magnetic transducers (EMATs), optical detection, characteristics of piezoelectric 
devices, visualization of UT pulses by photoelasticity, etc. 

Elastic wave theory is presented in the classical text on elasticity by Love 
(1944, originally published in 1892) in an old-fashioned format, and in a modern 
format in the seismology text by Aki and Richards (1980). Several texts on wave 
propagation, such as Mason (1958) and Achenbach (1973), came with the growth 
of technology after World War II. Waves in anisotropic (also called aeolotropic) 
materials were first analyzed by Musgrave (1954). 

The theory of elasticity is presented in detail by Love (1944), and in the con- 
cise tensor notation by Sokolnikoff and Specht (1946), where the theory of vec- 
tors and tensors is also reviewed. A clear exposition of this field is given by Wills 
(1958). The theory of waves in rods and plates is described by Doyle (1989). 

Many specialized research papers on all aspects of UT, elastic waves, and 
digital techniques have been published in such journals as Ultrasound, the Jour- 
nal of the Acoustical Society of America, the Journal of Applied Physics, and the 
IEEE Journal, as well as various texts, conference proceedings, and dissertations, 
many available on the Internet. Some of the material in this book is from unpub- 
lished reports and conference proceedings written by the author. 
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I N T R O D U C T I O N  

W H A T  IS ULTRASONICS? 

Ultrasonics is the science and exploitation of elastic waves in solids, liquids, 
and gases, which have frequencies above 20 khz (the nominal limit of human 
hearing). Waves of lower frequencies are called acoustic. Waves with a wide 
range of frequencies are called acousto-ultrasonic. An upper limit to the fre- 
quency in many UT applications is taken at about 10 MHz, but many applica- 
tions use frequencies as high as 5 GHz. (Note that these frequencies can lead to 
propagating electromagnetic (radio) waves, and so they are referred to as radio 
frequencies, RF.) 

UT tests often produce an audible buzz. This arises from repetition of each 
test many times, electronically at frequencies around 100 to 1000 Hz, which is 
audible. 

H O W  HAS U T  T E C H N O L O G Y  PROGRESSED? 

The advent of the digital age led to a change from hardware to software for all 
aspects of UT testing, such as robotic scanning, controlled transducer excitation, 
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and signal acquisition. The increase in computing power in the 1980s and 1990s, 
and the advances in data processing developed for space photography and radar, 
have led to new signal processing and display techniques, thereby improving 
the detail which can be extracted from a UT signal. 

Ultrasonic methods have been used extensively in manufacturing since the 
1940s as a means of detecting flaws in metals for quality control (QC). Those 
techniques mostly looked at the echoes from a propagating pulse. Advances in 
electronics in the 1960s and 1970s made possible applications to the precise 
measurement of wavespeed for a variety of purposes. 

Advances made by the medical community in the 1970s and 1980s included 
the UT scanning of a fetus in a pregnant woman and the measurement of blood 
flow in arteries. UT is now used to explore pathologies in the human body, 
represented by variation in the shape, size, or motion of organs, or the presence 
of abnormal material such as tumors. Human organs have odd shapes, sliding 
interfaces, veins, fibers, and fluids. 

In the same period, the silicon industry invented the ultrasonic microscope 
for examining transistor chips. 

The extensive use in the 1980s and 1990s of plastics and thin fiber- 
reinforced composite materials in aerospace structures, and the push to improve 
products in many industries, such as lumber and plywood has spurred a variety 
of applications. These materials are usually nonhomogeneous (they vary from 
place to place) and are anisotropic, meaning that directionality has a strong 
effect. Modern metals, such as titanium, beryllium, and even stainless steel, are 
also anisotropic. The configurations of parts do not have simple shapes with flat 
surfaces, and they include thin sheets which exhibit bending. 

Also in the 1980s and 1990s extensive use has been made of UT in pro- 
cessing and evaluating food (see for example Povey, 1997a and 1997b). 

W H A T  ARE SOME C U R R E N T  I N D U S T R I A U M A N U F A C T U R I N G  
A P P L I C A T I O N S  OF UT? 

The most common use of UT in industry is to inspect fabricated parts for defects, 
such as cracks in welds and at holes, porosity in castings, and irregularities in 
composite materials. Material properties and distances can also be measured. 

UT was originally exploited as part of quality control (QC), being known as 
nondestructive testing (NDT) or nondestructive inspection (NDI). As the tech- 
nology was developed into quantitative measurements of properties, it acquired 
the names nondestructive evaluation (NDE) or quantitative NDE (QNDE). 

W h a t  Is Defect Detection? 

In industrial applications, a defect is either a discrete feature of an object, such 
as a crack, or a region of faulty material. It is often sufficient to detect and 
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indicate the presence of such defects with no quantitative measurement, but in 
some cases a quantitative assessment of the defect is provided. Several examples 
of such detection follows. 

Two types of defect and their effects on wave propagation are illustrated 
in Fig. 1. An internal crack produces an early echo (a reflection) with less 
attenuation (i.e., a stronger signal) than that from the back face of an object. 
Low-density material attenuates and slows a wave so that it arrives late and with 
reduced amplitude. 

The detection of a delamination in a composite is illustrated in Fig. 2: a 
cylinder made of an oblique layup of fabric which included a delamination 
(introduced by inserting a piece of mylar between two layers) was scanned by 
pulse echo. Typical echo waveforms are shown, with the positive phases of the 
waves darkened to improve interpretation. The variations in arrival times over a 
region of the surface were mapped by a contour plot, revealing the delamination. 
Note that a map of wave amplitudes would not reveal it. 

Several composite panels fabricated with differing skin thicknesses and 
core stiffnesses were examined by through-transmission ultrasonics (TTU). 

i : Wave paths :: i 

Crack 

----I Norma l  ech _~_ Ear ly  strong echo 
.... - . . . .  Late low echo 

§ ..... 

Echo waves 
Time 

Normal configuration Crack Low density 

F I G U R E  I The effects of two types of defect 

�9 j ~  / / 

~~i arrival time L ~  

Test cylinder Echo waveforms Map of arrival times 

FIGURE 2 Detection of a delamination by pulse echo 
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F I G U R E  3 Responses of sandwich panels 

The results of peak amplitude scans were inconsistent with panel configura- 
tion and test frequency, so individual waveforms were examined. As shown 
in Fig. 3, these consisted of long series of oscillations (tone-bursts) with short 
low-frequency transients superposed at the beginning and end. The thin-skinned 
panels showed strong signals at the excitation frequency, but the thick skins 
inhibited this somewhat. The transient oscillations were stronger in the thick 
case. Spectral analysis showed that the transients were at several low frequencies 
relative to the excitation, due to bending of the skin. 

W h a t  Is Acoustic Emission (AE)? 

When a material is stressed heavily, it emits waves from points of microscopic 
internal damage, such as initiating cracks, twinning and dislocation motion in 
metals, or breaking fibers in composites. These waves can be detected by trans- 
ducers to interpret the onset of damage. They are emitted as sharp transient 
bursts, having broad frequency spectra. This topic is related to UT inasmuch as 
elastic waves are monitored by similar techniques, but it is generally treated as 
a separate field. 

W h a t  Is a Tap Test? 

A valuable and common technique for quality testing an object (from cracks in 
a structure to the ripeness of melons) is to tap the object sharply with a coin or 
other hard object, and to evaluate, aurally, the emitted sound. This technique is 
one of experience and skill, and is very successful when done fight. Attempts 
at developing automated high-technology versions of this test have failed. 
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How Are Material Properties Measured? 

By directly measuring the time-of-flight (time of wave propagation through 
an object) the wavespeed or distance of propagation can be measured. If the 
distance (size of the object) is known, then wavespeed follows. This provides a 
direct measurement of elastic properties of a material. In addition, correlations 
can sometimes be made between the wavespeed and certain properties, such 
as strength. If the properties of the material, in particular the wavespeed in the 
object, are known, then the distance of propagation follows, enabling dimensions 
to be verified. 

W H A T  ARE THE MAJOR MEDICAL A P P L I C A T I O N S  OF UT? 

Medical applications include diagnosis, commonly called sonography, and 
therapy. 

Sonography is used for evaluating the condition of internal organs and 
tissues, most commonly for imaging neonatal fetuses and the beating heart, and 
for measuring blood flow. Therapy is provided by high intensity waves which 
heat tissues providing massage, or break stones. These techniques are reviewed 
by Wells (1969) and Ensminger (1998). 

What  Is Sonography? 

Two distinct methods are used: pulse-echo (based on reflected and backscattered 
waves for mapping organs), and Doppler shift (which measures the flow rate of 
blood or the motion of an organ). 

For organ mapping, a hand-held array of transducers or a single transducer 
is passed over the body, directing waves toward the internal organ of interest, as 
illustrated in Fig. 4. Extensive software is used to convert the received signals 
into a suitable visual presentation, based on depicting the echoes on a plan of 
the UT beam, as illustrated in Fig. 5. Essential to sonography is the display of 
images, which allows a medical practitioner to evaluate any pathology in the 
tissues. Generally, sonographers are trained to understand the physics behind 
the images, but not their medical significance. 

The arrangement for measuring blood flow uses a transducer applied to the 
skin at an angle to propagate waves into a blood vessel, such that a component of 
the waves lies in the direction of flow, as illustrated in Fig. 6. The returning echo 
is modified in frequency by the Doppler effect of the blood flow, as discussed 
in Section 4 and Appendix 9. 

What  Is Lithotripsy? 

Lithotripsy is the application of intense UT waves to breaking up kidney stones 
in human patients, avoiding surgery. Two or more high-intensity beams are 
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focused from carefully positioned sources onto the stone, to generate a very 
high local stress state. 

W H A T  ARE SOME UNIQUE APPLICATIONS OF UT? 

The following are a few of many imaginative applications of UT. It can be 
expected that many more will be developed. 

UT is used as a detector in automatic door openers, where the interruption 
of a beam signals the presence of a person, or in remote controls for TV, etc., 
where a signal is transmitted on a beam. (Note that many such devices are now 
based on infrared rays, IR.) 

The Polaroid camera (and undoubtedly other modern cameras, too) uses UT 
as a range finder for automatic focusing. The camera emits a signal aimed at 
an object, and the echo is detected. The waves propagate through air, whose 
wavespeed is known. The propagation time, or delay between emission and 
return, is then a measure of the distance of the reflecting object. (It is said that 
technicians needing simple range-finding devices often bought a camera and 
extracted the device!) 

Sonar and depth finders use sonic pulses in water to locate echoes from the 
sea bottom or from shoals of fish. Although these are of a lower frequency than 
traditional UT, the operation is essentially the same. 

Ultrasonic waves in a water tank are used for cleaning jewelry and window 
blinds. 

An advanced application determines the state of the huge foundation bolts 
(6-10 in. dia) of an oilrig through the effects of nonlinear elasticity: increasing 
load increases the modulus so that the wavespeed falls. Any change in the load 
in the bolt can be detected by continuously monitoring the wavespeed of waves 
propagated along the bolt. 

The pressure of gas in a storage tank on a rocket was determined by mea- 
suring the wavespeed through the gas, which depends on the pressure. 

What  Quantities Can Be Measured by UT? 

The propagation of some specific feature of a wave (such as its onset or the 
magnitude of its peak) can be measured with great accuracy, limited only by 
how precisely the feature can be identified. (Because the wave can be distorted 
during propagation, the feature may be hard to identify.) There are two classes 
of measurable features: 

Time 
Amplitude 

The propagation time for a wave can be used to measure wavespeed when 
the path length is known, or the path length when the wavespeed is known. 
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Wavespeed can be used to calculate density if elasticity and wave type are 
known, or elastic properties if density is known. The path length allows accurate 
measurement of distances (e.g., thickness, internal dimensions). 

The amplitude of a wave can be used to determine the damping (energy 
absorption) characteristics of the medium, thereby indicating the nature of the 
material. Energy is an important quantity that can be determined by the amplitude 
integrated over time. 

These definitions can be refined by analyzing the spectrum of the waveform, 
to obtain its frequency content. 

W h a t  Is the Difference between a Solid, a Liquid, and a Gas? 

There can be several fundamental types of wave in a given medium: a solid can 
have two or three, a liquid or a gas can have one. A solid and a liquid can have 
surface waves, but a gas cannot. 

The differences arise from the type of elastic response between force, or 
stress, and deformation, or strain, which the medium exhibits. A solid exhibits 
compressibility, shear, and Poisson directional effects, whereas a liquid or a 
gas exhibits only compressibility. Viscosity and gravity have a notable effect 
on liquids, but only to a small degree in solids and gases. Nonlinearity affects 
gases, but has less of an effect on solids and liquids. 

Some of the theory of UT waves treats them as acoustic, propagating as if 
in a fluid, where only pressure forces arise, and there are no shear or directional 
effects. This is sometimes a gross and misleading simplification, since shear 
waves arise in many conditions and shear forces and deformations exist in 
all waves. These effects must be considered when interpreting wave arrivals, 
attenuation effects, etc. In this book, Poisson and shear effects are included 
wherever possible, although the associated mathematics becomes complicated 
and the approximation of neglecting them is sometimes justified. 



2 
D E F I N I T I O N S  A N D  B A C K G R O U N D  

W H A T  IS A WAVE? 

A wave is a moving transition between two states of a medium. The state in an 
elastic wave is the stress acting on the medium and its velocity. An elastic wave 
carries changes in stress and velocity. The state can take a jump, it can oscillate 
periodically in time and position, or it can vary in some arbitrary fashion. A 
step and an oscillating wave are illustrated in Fig. 7. 

A wave of elastic deformation is created by a balance between the forces 
of inertia and of elastic deformation. A wave moves at a speed (the wavespeed) 
which is determined by the material properties, the body shape, and sometimes 
the frequency. 

Wavespeeds are relatively fast and vary from about 0.33 mm/~tsec (1100 
fps, 760 mph) in air and 1.5 mm/l.tsec (5000 fps) in water to over 6 mm/msec 
(20,000 fps) in metals. 

What Is Material (Particle) Velocity? 

The wave imparts motion to the material as it propagates. This is referred to 
as particle (or material) motion, to distinguish it from the wave motion, and is 
usually specified as a velocity (magnitude and direction). 
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In UT the material moves much more slowly than the wave, i.e., particle 
velocity is much smaller than wavespeed. The velocities induced in the material 
are usually very small, typically 10 -9 in./sec, determined by the severity of 
the excitation which produces the wave. Using fluid dynamics terminology, 
ultrasonics is subsonic! (Ultrasonic refers to frequency, subsonic to velocity.) 

How Big Are  Typical Stress Oscillations? 

Stresses are typically around 10 -6 psi. These levels, which approach the magni- 
tudes of molecular motions, are much smaller than experienced in engineering 
situations so that UT instruments are much more sensitive than those used in 
engineering. 

W h a t  Is a W a v e f o r m  ? 

The sequence in time of the motions in a wave is called the waveform. The 
simplest mathematically is the sine wave illustrated in Fig. 8. 

A typical signal includes several waveforms: the initial excitation (main 
bang), though this is frequently suppressed; a front-face echo (in a system with 
a stand-off transducer, such as in a tank or a squirter, see Section 5); and one 
or more back-face echoes, as sketched in Fig. 9. 
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F I G U R E  10 Types of waveform display 

A through-transmission system (TTU) produces a direct transmission pulse, 
without the main bang or front face echo, and possibly one or more reverbera- 
tions. 

What  Are the Video and RF Displays and the Analytic Envelope ? 

A waveform can be displayed in three ways as illustrated in Fig. 10 (and 
described in Section 6A): 

�9 The RF, or radio-frequency, waveform as measured (i.e., the electrical 
analog of the oscillation) 

�9 The video waveform after rectification (inverting the negative swings) and 
sometimes, smoothing to display essentially the amplitude envelope 

�9 The analytic envelope, constructed through a data processing algorithm 



12 ULTRASOUND AND ELASTIC WAVES 

W h a t  Is a W a v e f r o n t ,  a W a v e  Surface ? 

Propagating waves form a surface whose shape depends on the material type, 
and the excitation, i.e., the distribution and timing of the source. This shape is 
the wavefront. 

For a point source in a uniform isotropic medium, the wave propagates as 
growing or shrinking spheres with the same speed in all directions, as sketched 
in Fig. 11. 

In an anisotropic material, the wave surface is distorted, since the wave 
propagates at different speeds in different directions. This requires numerical 
analysis, as discussed in Appendix 9. 

A force distributed over a flat surface excites waves which propagate as 
planes, called plane waves, as sketched in Fig. 12. 

The shape of a wavefront generally depends on the shape of  the surface 
where excitation is applied, on the direction of the surface force, as well as on 
the wavespeed in the direction of propagation. 

The wavefront may reflect the shape of the surface if the material is uniform 
and the excitation is normal to the surface at all points, but if the properties vary 
so that the wavespeed varies, then the wavefront may take a different shape. 

Expanding spherical waves 

FIGURE I I Typical wavefronts in isotropic material 

Distributed load 

Flat surface 

F I G U R E  12 Formation of a plane wave 

Plane wave 
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W h a t  Are  the Propagation and Polarization Vectors? 

The direction of propagation of a wave is the propagation vector. The direction 
of motion of the material is the polarization vector illustrated in Fig. 13. 

W h a t  Is a Ray, a W a v e  Pattern? 

A ray is a straight or curved line which follows the normal to the wavefront 
(i.e., the propagation vector is tangent to the ray) and represents the two- or 
three-dimensional path of the wave. 

One must know the ray patterns of a wave system in order to understand any 
UT measurement based on waves arriving at a point on the surface. A typical 
ray pattern in two space dimensions as sketched in Fig. 14 would be created by 
multiple reflections in two or more layers. Evidently the echoes arrive at various 
points along the surface. 

W h a t  Is an x - t  W a v e  Diagram ? 

The propagation of a wave can be illustrated in a t ime-distance wave diagram, 
called an x - t  diagram, as shown in Fig. 15. This diagram shows a distance-t ime 

Material motion �9 . a Propagation direction 
(polarization vector) i, , /  (propagation vector) 

Quasi longitudinal ', ,'7. 
(anisotropic) , ,~ Longitudinal 

', ,7' (isotropic) 
Transverse .~ , ,J 
(isotropic) ~ 

Wavefront 

F I G U R E  13 Definition of propagation and polarization vectors 

Exciting force 
Wave arrivals 

' Surface S ~ ( " " ~  ~ x 

Rays 

Back face 

Y 

F I G U R E  14 Example wave ray pattern in a two-layer system 
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F I G U R E  16 Time and frequency domain representations of  a waveform 

graph in which a wave system is represented by one or more lines which show 
the position of the wave as time passes. 

The x - t  diagram is derived and described in detail through the concept of 
Riemann invariants in Appendix 5. 

W H A T  ARE THE Q U A N T I T A T I V E  MEASURES OF A WAVE? 

A wave is usually not a pure single-frequency oscillation, but is a combination 
of sinusoidal oscillations with different frequencies, amplitudes, and phases as 
illustrated in Fig. 16. Nevertheless, most UT systems use waves in which one 
frequency dominates. 

The sequence of amplitudes of those sine components is the spectrum of the 
waveform, also illustrated in Fig. 16. The several quantitative measures required 
to describe a wave are: 

�9 Phase, frequency, period 
�9 Wavespeed, wavelength, wave number 
�9 Amplitude of particle velocity and stress 
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FIGURI: I 7 Rotating pointer representation of steady oscillation 

What Are Phase, Frequency (Hz, kHz, MHz, GHz) and Period? 

Frequency, f ,  is the rate of oscillation, i.e., number of oscillations in unit time. 
Conversely, the time taken for one oscillation is the time period, tp, so that 

tp = 1 / f  . 

A steady sinusoidal oscillation with magnitude a ( t )  as a function of  time t, 
with an amplitude A, and circular frequency co, written as a ( t )  = A sin cot,  can 
be represented by a pointer which rotates at a constant angular rate as sketched 
in Fig. 17. Such oscillations are called simple harmonic. The angle of rotation 
at a certain time is called the phase, 4~, of the wave at the time t: 

4~ = 2 rc f t = cot 

where f is the angular frequency so that the circular frequency is co = 27rf. 
The units of frequency are multiples of hertz (abbreviation: Hz). One hertz 

is the number of oscillations (cycles) per second. 

k stands for kilo or 103 (1000) 
M is for mega or 106 (1,000,000) 
G is for giga or 109 (1,000,000,000). 

What Is Wavelength and Wave Number ? 

Wavelength, )~, is the distance occupied by one spatial cycle of the wave at 
an instant of time. Conversely, the number of  cycles in a unit distance is 1/)~, 
and the wave number is the number of radians in one cycle, x = 2zr/)~. Again 
using the rotating pointer representation, the phase shift over a unit distance is 
dp = x x  = 2 z r x / ~ ,  as illustrated in Fig. 18. Waves can propagate away from 
their source in either direction, so that the wave number x can be positive or 
negative. 

Just as a wave usually does not have a single frequency, it may not have a 
single wavelength, but it may have a dominant one. 
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W h a t  Is Wavespeed or Phase Velocity ? 

The progress of a wave is described by its wavespeed or phase velocity. No 
material moves at this speed. Wavespeed depends on the material, and, except 
for isotropic materials, it depends also on the direction of propagation. 

The total phase, temporal and spatial, of a propagating wave is 

4~ = Kx - wt = K(x - ct) 

where c = w / x  = f k  is the wavespeed. The temporal phase is generally, for 
a right-running wave, taken as negative to represent an increasing x-position 
of the wave as time increases: The opposite holds for a left-running wave. The 
wavespeed is determined by the forces of elasticity and inertia. The alternate 
name, phase velocity, is derived from the fact that it describes the rate of change 
of the phase for a fixed wave number or wavelength. 

W h a t  Is the Ampli tude of Particle Velocity and Stress? 

The amplitude of a steady sine wave is the peak magnitude reached in each 
cycle. In a waveform comprising several superimposed component waves at 
different frequencies, the amplitude can be defined as the peak, but the wave is 
better characterized through the amplitudes of the individual components. This 
collection of the amplitudes is the spectrum. 

The amplitudes of stress and velocity in a wave are related by the acoustic 
impedance: 

f f  --" Z U ,  

where z -- pc is the acoustic impedance, with p the density and c the wavespeed. 
When wavespeed depends on frequency, this relationship can only be applied 
to individual frequency components. 
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W h a t  Is Inertia ? 

According to Newton's Law, a body at rest or in steady motion resists any 
change in its motion. When a force is suddenly applied to an elastic medium, 
deformation is resisted by inertia. Inertia introduces the time factor into defor- 
mation. A force is required to induce acceleration, with mass as a proportionality 
factor. (Newton's Law of Inertia is discussed in Appendix 4.) 

W H A T  IS ELASTIC ITY? 

A material medium which deforms reversibly under load is called elastic: there 
is a unique correspondence between force and deformation through loading and 
unloading, as shown in Fig. 19. In a simple material such as most metals, the 
correspondence is a linear proportionality. Other materials such as rubber exhibit 
nonlinear elasticity. 

The relationship between deformation and the force applied to an object 
depends not only on the nature of the material but also on the shape of the object, 
the distribution of the load, and the way deformation is measured. Deformation 
is defined as the displacement of one point of a body relative to another and 
depends on the distance and direction between the points. 

Force and deformation are extrinsic quantities (determined by factors out- 
side the object) and must be described through stress and strain (intrinsic quan- 
tities determined locally in the object), defined below. These are related by the 
elastic modulus, a purely intrinsic material property. 

W h a t  Are  Stress and Strain ? 

A force which is applied to a surface can sometimes be treated as a point force, 
but if the details of its interaction with the material must be known, it must be 

Deformation 

// 
Linear elasticity 

Deformation 

Force 
, r  

J 
Non-linear elasticity 

FIGURE 19 Illustration of elasticity: reversibility in deformation and force 
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treated as being distributed over a segment of the surface, as shown in Fig. 20. 
It is then described by the local force per unit area, which is stress. 

When the direction of the force is along the normal to the surface, it pro- 
duces a normal stress, and when it is tangential to the surface it produces a 
transverse or shear stress. Stress must therefore be described by the direction 
of both the force and of the normal to the surface, so that there can be six 
independent components of stress. The three directions for each of force and 
area lead to nine components, but because of symmetry required by rotational 
equilibrium, only six are independent. Stress has the dimensions of force divided 
by area (length squared). 

Deformation of a body usually varies over a region, as illustrated in Fig. 21. 
In some cases it is sufficient to consider the overall deformation, but to describe 
the material behavior, it is necessary to consider local deformation. It is then 
described by the local deformation per unit length (strain). 

Strain also has six independent components because deformation is direc- 
tional and is defined over a small distance which is also directional. Again, strain 
is symmetric because of energy conservation. Strain is dimensionless and has 

Normal force 

Tangential force 

Point force Distributed force 

F I G U R E  20 Point and distributed forces 

F I G U R E  21 Overall and variable deformation 
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no units, being the ratio of two distances. Nevertheless, strain is often quoted 
with units such as inch per inch. 

Detailed definitions of stress, strain, and elasticity are given in Appendix 1. 

What  Are Isotropy and Anisotropy (Aeolotropy)? 

If the deformation of an elastic medium is independent of the direction of an 
applied force, it is called isotropic. A material in which the deformation depends 
on the direction in which the force is applied is anisotropic or aeolotropic. (See 
Appendices 2 and 9 for isotropic and anisotropic elasticity.) These types of 
response are illustrated in Fig. 22. A force applied in either of two directions to 
an isotropic object results in the same shape relative to the force direction, but 
the shape is different for an anisotropic object. 

Examples of anisotropic materials are crystals; metals such as titanium, 
beryllium, and stainless steel; biological materials such as wood and bone; and 
man-made composites such as plywood and fiber-reinforced plastics. 

What  Is the Elastic Modulus ? 

The ratio of stress to strain in the linear region is called the elastic modulus 
or elastic constant. The most direct way to measure elasticity is to measure 
the extension of a portion of a rod under axial tension. The ratio of applied 
stress (force/area) to axial strain (extension/length) produces the modulus called 
Young' s modulus. 

A simple alternative is to measure the UT wavespeed for one or more 
configurations and use the relationships given in Section 3. 

Generally, a different modulus is obtained for each measurement of some 
component of strain caused by some component of stress. Since there are 
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6 independent components of strain and 6 of stress, it would appear that there 
could be 36 different moduli. However,  energy conservation requires that there 
is symmetry in all interactions between components.  Thus there are 6 direct 
moduli and 15 [i.e., ( 3 6 -  6)/2] interaction moduli, so that there are up to 21 
independent moduli to describe the measurements,  depending on the symmetry 
of the material structure. 

The most common material has no directional dependence and is called 
isotropic. It has two independent elastic constants, commonly Young's  modulus 
and Poisson's ratio, from which all others can be determined (see Appendix 2). 
Other constants such as the shear and bulk moduli or Lame 's  constants are 
also used. 

A material with 1 axis of symmetry (as in the direction transverse to the 
thickness of plywood or in a hexagonal crystal) is called transversely isotropic 
and has 5 independent elastic constants. A material with 3 orthogonal axes of  
symmetry (as in beryllium or a laminated fiber reinforced polymer) is called 
orthotropic and has 9 independent elastic constants. 

The units of modulus are those of stress, since strain has no units. 

W h a t  Is Poisson's Ratio ? 

A force applied to an elastic body produces a deformation in the direction of  
the force as well as transverse deformations in other directions. In an isotropic 
material, the ratio of transverse to in-line deformation is determined by Poisson's  
ratio, as illustrated in Fig. 23. 

W h a t  Is Compressibi l i ty ? 

The volume of a fluid (i.e., a liquid or a gas) or of a solid will change under 
a pressure (which is a force uniform in all directions), as illustrated in Fig. 24. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .Y..... 

Force ~ 

:: 

~....~ Axial 
deformation 

4.....,. Transverse 
deformation 

(Axial deformation) 
x 

(Poisson's ratio) 

FIGURE 23 Illustration of the Poisson effect 
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Pressure-volume relationship for liquids and gases 

The proportionality between fractional volume change and pressure is the com- 
pressibility. It is a myth that water is incompressible! Since fractional volume 
change is a form of strain, and pressure is a form of stress, compressibility is 
an elastic behavior. 

Gases are quite nonlinear but essentially reversible under modest pressures. 

W h a t  Is Viscoelasticity? 

In fluids (e.g., water, air, molten metals, uncured polymers), the stress which 
produces motion is dependent on the rate of strain, not the strain itself as in 
elasticity. This behavior is called viscosity. Most materials which appear to be 
solids (e.g., greases, wax, high-temperature metals, cured polymers) exhibit a 
combination of elasticity and viscosity: the stress is dependent on both the strain 
and the strain rate. This is viscoelasticity. 

Viscoelasticity affects the wavespeed and the decay of a propagating wave. 

W h a t  Is Acoustic Impedance? 

The balance between elasticity and inertia develops into a linear relationship 
between stress, or, and particle velocity, v, in a wave, cr -- z v. The proportion- 
ality factor, z, is the acoustic impedance: 

z -  pc  = ( p C )  1/2 

where p is the density, c = ( C / p )  !/2 is the wavespeed, and C is the elastic 
constant appropriate to the wave type (discussed in Section 3 and Appendix 2). 

The units of impedance are those of the product of density and wavespeed, 
e.g., g/cmZ-sec, or psi-sec. 
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W h a t  Is t h e  E n e r g y  o f  a W a v e ?  

A wave has mechanical energy which is the sum of elastic (or potential) energy 
and kinetic (or inertial) energy. At the peak stress, when there is no motion, the 
energy is entirely potential, and at the peak velocity when the stress is zero, the 
energy is entirely kinetic. 

The energy is supplied by the source of the wave and is carried with it. It is 
reduced by processes which dissipate it as heat, through compression, viscosity, 
plasticity, etc. When these processes are small, the wave propagates a long way, 
but generally the wave decays in a moderate distance. 

W H A T  ARE THE UNITS OF ELASTICITY,  DENSITY,  
A N D  WAVESPEED? 

If length units are represented by [L], time units by [T], and mass units by [M], 
Newton'  s law relating force to acceleration of mass (see Appendix 4), shows that 
force has units [F] -- [M][L][T] -2. Stress and modulus have units of force/area, 
[F][L] -2, which is then [M][L] - l  [T] -2. Density is mass/volume, [M][L] -3,  so 
that wavespeed, which has units of (modulus/density) t/2, is [L][T] - l  , which are 
the units of velocity. 

When making calculations it is essential that the units of force and mass be dis- 
tinguished as in the following table, as required by Newton ' s  Law (Appendix 4). 

What  Are the Systems of Units ? 
There are three major systems of units, the English system (commonly used 
in U.S. engineering), the cgs system, and the Rational or MKS system. The 
units used for the relevant quantities in UT, and the conversions among them 
can be made using the following factors (e.g., distance in inches in the English 
system -- 2 . 5 4 . . .  • distance in cm. in the cgs system): 

System of Units 

English cgs/dyne MKS 

Distance in. cm meters, m 

English: - -  0 .39376996 39.376696 
cgs 2.5400051 100 
MKS 0.0254...0.01 

Area in. 2 cm 2 m 2 

English - -  0.1549997 
cgs 6.541626 - -  
MKS 6.542... E-4 1.0E-4 

1549.99... 
1.0E4 
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Volume in. 3 cm 3 m 3 

English - -  6.1023376E-2 6.102. . .  E4 

cgs 16.3871628 1.0E6 

MKS 1.639.. .  E-5 1.0E-6 

Velocity/speed in./sec cm/sec krn/sec 

English - -  0 .3938. . .  39.38 . . . .  

cgs 2 .540. . .  ~ 100 

MKS 0.02540. . .  0.01 

Common UT practice uses speed in/gs, cm/gs,  or km/s, giving the following factors: 

1.0E-6 1.0E-6 1.0E-3 

Acceleration in./sec 2 crn/sec 2 m sec 2 

English - -  0 .3938. . .  39.38. . .  

cgs 2.540. . .  - -  100 

MKS 0.02540. . .  1.0E4 

Gravity (g) 386.088 980.665 9.80665 

= 32.174 ft/sec 2 

Force Pound (lbF) Dyne Newton (N) 

English 

cgs/dyne 

MKS 

2.24808914 E-6 0 .2248. . .  

4.4482218 E5 1.0E5 

4.448. . .  1.0E-5 

Two types of force can be defined through Newton 's  Law. 

1. Absolute force which gives a unit acceleration to a unit mass: 

1 p o u n d a l =  llbM x 1 fps 2 1 d y n e =  1 g x  1 cm/sec 2 1 n e w t o n - -  1 k g x  1 m/sec 2 

2. Gravitational force (expressed in mass units) which balances the gravitational attraction on 
a unit mass: 

1 l b F =  1 IbM x g  1 gr F =  1 g x g  1 kg F =  1 k g x g  
= 32.174 poundals -- 981 dynes = 9.81 N 

An additional unit of mass, the slug, is defined in the English system such that 1 lbF accelerates 1 
slug by 1 fps 2. 

Stress, modulus lbF/in. 2 (psi) Dynes/cm 2 N/m 2 (pascal, Pa) 

English 1.4503807 E-5 1.450.. .  E-4 

cgs 0.68947161E5 10 

MKS 0.68947161E4 0.1 

Additional stress and modulus units are: 

1 bar = 1E6 dynes/cm 2 = 1E5 Pa 

1 GPa (GigaPascal) = 1E9 Pascal = 0.145 Msi = 0.145 E6 psi 

1 atm = 14.7 psi = 1.014 bar. 
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Mass IbM g kg 

English - -  0.002204768 2 .204. . .  

cgs 453.5924277 n 1.0E-3 

MKS 0 .4536 . . .  1000 m 

Density IbM/in. 3 g/cm 3 kg/m 3 

English - -  3.6129892E-2 
2.76779128 cgs n 

MKS 2 .768 . . .E4  1.0E3 

3 .613 . . .E -5  

10 



3 
W A V E  P R O P A G A T I O N  C O N C E P T S  

W H A T  ARE T H E  TYPES OF ELASTIC WAVES? 

There are two types of elastic waves: fundamental body waves which propagate 
inside an object, and surface waves which propagate near to, and are influenced 
by, the surfaces of an object. 

W h a t  Are  the Fundamental Body Waves? 

Waves which propagate entirely inside an object, independent of its bound- 
aries or shape, are called the fundamental waves. They are planar and, in some 
cases, spherical waves, governed only by elasticity and inertia, and are repre- 
sented by the fundamental (simplest and most general) solutions of the wave 
equations. 

In an isotropic material, the speed of a plane wave is the same in any 
direction, so a point source excites spherical waves, which can be regarded as 
the envelope of all plane waves emitted at the same time, as illustrated in Fig. 25. 
Similarly, the plane wave can be represented by an envelope of spherical waves 
emitted from points distributed over a plane, as illustrated in Fig. 26. 

25 



26 ULTRASOUND AND ELASTIC WAVES 

FIGURE 25 Spherical wavefronts in isotropic material 

FIGURE 26 A plane wave represented by superposition of spherical waves 

What  Are Longitudinal (P-) and Transverse (S-) Waves? 

Two types of fundamental waves can arise in an isotropic material: longitudinal 
(also called dilatational, primary, or P-), and transverse (or shear, secondary, or 
S-) waves as illustrated schematically in Fig. 27. 

The deformation in a P-wave is parallel to the direction of propagation. It 
may be either expansion or compression, or an oscillation between the two. The 
driving stress component acts along the normal to the wavefront. In a solid, 
there are also stress components transverse to the wave front (i.e., in the plane 
of the wave) which are not equal to the normal stress. This stress state, which 
is not a pure pressure, includes a shear component.  The deformation is uniaxial, 
i.e., only in the direction of propagation, and is a combination of compression 
and shear (see Appendix 2). In a fluid the P-wave is a pure pressure equal in all 
directions, hence the designation "P-wave," although the motions are the same 
as in a solid. 

The driving stress in an S-wave is transverse to the direction of propagation 
and lies in the plane of the wave, perpendicular to the direction of propagation. 
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F I G U R E  27 Schematic representation of the fundamental waves 
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F I G U R E  28 Transverse wave types distinguished by directions of deformation 

The  stress state is shear  a lone.  The  m o t i o n s  inc lude  bo th  shear  and  rota t ion.  
The re  can be no S -waves  in a fluid. 

W h a t  A r e  S V -  and S H - W a v e s ?  

Shear  w a v e s  wi th  shear  p lanes  p e r p e n d i c u l a r  to one  ano the r  can be  cons id -  
e red  to be  i n d e p e n d e n t  types  and  can be  c o m b i n e d  to r ep re sen t  shear  w a v e s  in 
o ther  p lanes ,  exc i t ed  by di f ferent  shear  s tresses.  These  w a v e  types  are i l lus t ra ted  
schema t i ca l ly  in Fig. 28. 

In g e o p h y s i c s / s e i s m o l o g y ,  the shear  p lanes  are de sc r ibed  in t e rms  o f  three  
ea r th - su r face  coord ina tes :  d is tance ,  hor izonta l ,  and  vert ical .  Two shear  p l anes  
of  in teres t  are then  d i s t a n c e - h o r i z o n t a l  and  d i s t ance -ve r t i ca l ,  so the w a v e s  
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are called SH- or SV-waves. There is nothing generically appropriate to this 
definition, but it has gained some popularity for laboratory descriptions. The 
shear planes should be defined for each configuration. 

W h a t  Are the Fundamental Waves in an Anisotropic Material? 

In an anisotropic material the only fundamental solution is the plane wave, and 
not the spherical wave. There are generally three fundamental plane waves, 
in which the direction of deformation, the polarization, is neither parallel nor 
perpendicular to the propagation, but is generally at an angle to the propagation 
direction, as sketched in Fig. 13. The wavespeeds of these plane waves vary 
with direction and must, generally, be analyzed numerically as discussed in 
Appendices 5 and 9. 

In general, the motion may be nearly normal or nearly perpendicular to the 
propagation direction, depending on the degree of anisotropy and the direction 
of propagation with respect to the symmetry axes of the material. The waves 
are then called quasi-longitudinal or quasi-shear waves. If a wave propagates 
along a material axis of symmetry, the waves become P- or S-waves. At some 
angles the waves are quite dissimilar to P- or S-waves. 

The directional dependence of wavespeeds for a typical fiber-reinforced 
polymer composite, a graphite-epoxy unidirectional fiber-reinforced laminate, 
are shown in Fig. 29. The properties of the material were given by Sahay and 
Kline (1991) as follows: 

C l i  ~" 161 GPa, C 2 2  - -  14.5 GPa, C 1 2  = 6.5 Gpa, 

C23 -- 7.24 Gpa, C 4 4  - 3.61 Gpa, C55 = 7.1 Gpa, 

p --- 1.61 g/cc. 

The symmetry axis for these values is the 1-axis, and the 2-3 plane is the 
symmetry plane. The propagation angle was chosen to be from the 2-axis, 
so that 0 ~ is in the symmetry plane and 90 ~ is along the 1-axis of sym- 
metry. 

The three wavespeeds in this graphite epoxy are distinct and vary consid- 
erably with direction, although the two quasi-transverse wavespeeds (modes 2 
and 3) are similar and are the same along the symmetry axis. The speed of the 
quasi-longitudinal wave, mode 1, is very high. 

It is very important to note that, in general, measurable wavespeeds do not 
propagate at these speeds, which are for simple nondispersive plane waves. In 
real situations where a UT beam diverges and contains a range of frequencies, 
waves are excited over a range of directions and speeds, and these combine to 
form group waves (discussed in Section 4). 

The variation of polarization angle with angle of propagation in the graphite 
epoxy composite is shown in Fig. 30. The quasi-longitudinal wave (mode 1) and 
the first quasi-transverse wave (mode 2) have angles which are mirror images 
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F I G U R E  29  Wavespeed in an anisotropic fiber-reinforced plastic medium 
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F I G U R E  30 Polarization direction in a fiber-reinforced plastic 

90 

of each other. The second quasi-transverse wave is always at 90 ~ , being in the 
plane of symmetry, and is therefore a true transverse wave. 

W h a t  Are the Boundary-Dependent Waves? 

Inevitably, all waves sooner or later reach the exterior boundaries of an object. 
The waves are then modified by the freedoms of the unconfined surface, resulting 
in the creation of new forms of steadily propagating waves (surface waves, plate 

waves, etc.). 
There are three common types of geometry in which a free surface relieves 

the stresses in a fundamental wave to produce various forms of boundary 

waves: 
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FIGURE 31 Schematic representation of motions in a Rayleigh surface wave 

�9 Surface waves: Rayleigh waves, head waves, and interface waves 
�9 Bar/rod waves 
�9 Thin plate Lamb waves: Extensional and bending waves 

What  Are Rayleigh Surface Waves and Head Waves? 

A Rayleigh wave propagates parallel to a free surface of an object at a unique 
speed, usually slightly slower than the shear wavespeed. The wavefront extends 
inward perpendicularly to the surface and can be planar, if excited by a line 
of force, or cylindrical, if excited by a point force. The motions combine com- 
pression and shear and follow elliptical paths, decreasing exponentially with 
distance into the object, as illustrated in Fig. 31. 

A Rayleigh wave cannot be constructed simply from fundamental planar 
or spherical waves. When a force is applied to a surface, spherical P- and 
S-waves are excited and propagate into the object and along the surface away 
from the force. Normal and shear stresses are not supported along the surface, so 
additional waves arise to decrease the surface stresses to zero, thereby imparting 
additional motion. The P-wave runs ahead, followed by the S-wave. An oblique 
wave, called a head wave, runs from the P-wave to the S-wave, as sketched in 
Fig. 32, and a fan of waves runs from the S-wave, creating the Rayleigh wave. 

The motions of the Rayleigh wave are the largest among all these waves. 
Analysis of the stresses and velocities, and of the wavespeed, in a Rayleigh 
wave is given in Appendix 10. Analysis of the system of waves excited by a 
point force on the surface of an isotropic half-space is called Lamb's problem 
(Aki and Richards, 1980). 

The Rayleigh wave cannot exist on a liquid surface where there is no shear 
stiffness or Poisson effect. Other types of surface wave arise, controlled by 
gravity, but these are not generally of interest to UT. 
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FIGURE 32 Excitation of Rayleigh wave by point force 
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FIGURE 33 Longitudinal waves in a rod 

What  Are the Leaky Lamb and Stonely interface Waves? 

A wave can propagate along an interface between two materials as a Leaky 
Lamb wave, or as a Stonely wave. It is excited by a wave which approaches 
the interface at a shallow grazing angle smaller than a critical angle which is 
determined by the wavespeeds in the two materials (see Section 4). 

The Lamb wave is similar to a Rayleigh wave on the interface, penetrating 
into the material with the higher wavespeed, and radiating waves into the slower 
material at the critical angle. 

The Stonely interface wave is a special class of wave which can arise only 
if the Poisson's ratios in the materials on the two sides of the interface are close 
in value. It is then similar to two interacting back-to-back Rayleigh waves. 

These waves are common in seismology but less so in UT. 

What  Are Rod/Bar Waves? 

When a force is applied to the end of a slender rod, a wave propagates axially 
along it, as sketched in Fig. 33. Since the free surface does not allow lateral 
stress, lateral motion develops and only axial stress can develop. The lateral 
motion introduces lateral inertia which becomes significant at high frequency. 

The P- and S-waves which are excited at the loaded end of the rod propagate 
only a short axial distance as they also propagate radially over the end. They 
are relieved by the free surface where they excite surface waves. 

The rod waves can thus be regarded as surface waves propagating along 
the free surface, extending radially into the rod and imparting motion in one 
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FIGURE 34 A rod wave as a combination of surface waves 
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FIGURE 35 Bending deformation in a bar 

direction over all the surface. If the wavelength is long compared to the cross- 

sectional dimensions of the rod, the surface waves extend completely across 
the diameter of the rod to form a plane wave of uniaxial stress propagating 

down the rod, as shown in Fig. 34. At shorter wavelengths the surface waves 

remain close to the surface, becoming independent surface waves at very short 

wavelengths. The speed of these waves depends on the wavelength as discussed 

in Appendix 11. 
A torque applied at one end of a rod or a tube excites a torsional wave of 

shear which propagates along the axis. 

What  Are Bending Waves? 

Bending of a bar creates lateral deformation, accompanied by a curvature of 

the bar, as illustrated in Fig. 35. According to the Engineering Theory of Bend- 

ing the deformation is restricted to rotation of cross-sections of the bar: plane 

sections remain plane. This induces axial strain which varies linearly across the 
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FIGURE 36 Shear deformation in a bar 

High frequency 

/ /  
Surface waves ~ i 

//// / " Bending wave 

,# / 
i 

Low frequency 

Bending 
(Opposed surface waves) 

FIGURE 37 A bending wave as a combination of surface waves 

cross-section. This state can be accompanied by shear deformation, as illustrated 
in Fig. 36. 

The stresses on the ends of the bar are described by their resultants: a 
bending moment  and a transverse shear force, as sketched in Figs. 35 and 36. 
This is discussed in Appendix 12. 

Inertia of the lateral motion balances the gradient of the bending moment  
and the shear forces, leading to a dispersive wave system in which speed depends 
on frequency. 

The bending waves can be regarded as surface waves with motions of 
opposite sense propagating along the opposite faces of the bar, as shown in 
Fig. 37. When the frequency is low, the wavelength of the surface waves is 
long, and the exponential depthwise variation of the waves is approximately 
linear. The resultant of  the waves is then linear across the bar, as in classical 
bending. The resulting bending wavespeed is strongly dependent on frequency 
(see Appendix 12), falling to zero at zero frequency (i.e., static loading). 

At high frequency, the surface waves on the two faces do not fully penetrate 
to the center of the sheet and propagate as individual surface waves at the 
wavespeed of surface waves. 
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F I G U R E  38 Illustration of lamb plate waves in bending and extension 

What  Are Lamb Plate Waves--Extensional and Bending? 

There are two types of waves which propagate along thin plates: extensional 
and bending, as illustrated in Fig. 38. These waves are essentially the same as 
the rod and bending waves described above, except that the stress states are 
biaxial instead of uniaxial. 

What  Waves Propagate in Engineering Structures? 

In traditional engineering, structural designs are complex assemblies of vari- 
ous components, including panels (which behave as plates in bending), webs 
(which behave as plates in shear), and spar flanges (which behave as rods), as 
well as large structures of concrete, wood, etc. In modem engineering, such 
as space vehicles, complex arrangements of plates (sometimes with sandwich 
construction), rods, and tubes (which behave as rods) are used. 

Waves which propagate in these elements can be idealized as one or more 
of the types discussed above. Waves propagate across, or reflect from junctions 
between members according to the conditions for continuity of motion and 
balance of forces. 

Many modern structures are made of fiber-reinforced composite (FRC) pan- 
els, sometimes as part of a sandwich construction with honeycomb, foam, or 
integrally molded web cores. FRC panels are laminated with many layers of 
plastic-impregnated woven fabric or linear fibers, usually in the plane of the 
panel, but sometimes laid up at an angle. 

Laminates generally propagate bending and extensional Lamb waves at long 
wavelengths, but longitudinal or transverse waves propagate through the layers 
at short wavelengths (high frequencies). The long wave response allows bending 
stiffness to be evaluated, and hence damage to the outer layers can be detected. 
The short waves allow delaminations or porosity to be detected. 

These materials are highly attenuative, mainly through scattering (see 
Section 4) by the nonhomogeneity of the fibers. 

Sandwich panels respond with bending in the skin panels, coupled to shear 
or compression in the core, while very long waves produce bending or extension 
of the entire sandwich. 
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FIGURE 39 Illustration of a transducer beam 

W h a t  Waves Propagate in the Human Body? 

The human body is comprised of layers (skin, fat), cavities and tubes (the pul- 
monary system, the gastrointestinal system, and the circulatory system), irreg- 
ularly shaped organs, fibrous muscles and ligaments, and bones (the skeleton). 
Generally, waves do not propagate through cavities or bones, so that these 
objects create strong reflections, concealing others beneath. 

Wavelengths are never large enough to excite long-wave response such 
as overall bending or extension, and testing is usually made with penetrating 
longitudinal waves, which are essentially pressure waves, since shear is usually 
inhibited by the fluids and the sliding interfaces between organs. 

W H A T  IS A UT  BEAM? 

A transducer (see Section 5) which has a finite size excites waves from all parts 
of its contact face. These waves can be thought of as a sequence of spherical 
waves which coalesce where their phases match, forming a beam as discussed 
in Section 4 and Appendix 8. 

This beam is conical, similar to a light beam, with a radial variation across 
it. Its strength varies with distance from the source. Outside the beam, the waves 
interfere and disappear, as illustrated in Fig. 39. 

The beam angle and the radial variation are determined by the size of the 
source in relation to the wavelength, so that the beam will differ when a trans- 
ducer is used on different materials. These aspects are discussed in Appendix 8. 

The cone half-angle of the beam is approximately 

Y0 = asin (1.2X/d) -- asin (1.2c/fd) 

where d is the transducer diameter, X = c/f  is the wavelength, f is the fre- 
quency, and c is the wavespeed. 

In the limit of a very small diameter transducer, a low frequency, or a high 
wavespeed, the beam diverges widely. Conversely, a large transducer, a high 
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frequency, or a low wavespeed produces a narrow beam. The intensity of the 
plane wave varies with radius across the cone, as shown in Fig. 40. 

These factors affecting the beam formation will influence test results 

achieved with different transducers or test set-up. 
The variation is given by a Bessel  function and has, beside the main lobe, 

several side lobes of reduced intensity, derived in Appendix 8. The half-angles 
of the beam and its first side lobe are shown in Fig. 41 as functions of the 

transducer diameter. 
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F I G U R E  42 Axial variation of wave strength from a transducer 

Note that there can be no conical beam for a transducer of diameter less 
than 1.21. . .  wavelengths, and no side lobe for less than 2 .23 . . .  wavelengths. 

W h a t  Are  the Near  Field and the Far Field? 

The amplitude or intensity of the beam varies along its axis as shown in Fig. 42. 
A factor (1 /27r) / (d /~ , )  e is omitted from the signal strength to make it easier 
to visualize the differences in axial variations between the different transducer 
sizes. This factor changes the signal by approximately 2/3, 1/6, and 1/24, respec- 
tively, for the three cases of d/~, = 2, 1, and l/e. 

At short distances from the transducer, the wave field is garbled by the 
interaction of multiple waves from all parts of the transducer surface. This is 
confined to a region called the near field, which is limited to the near-field 
distance, N,  defined by the formula (see Appendix 8) 

N = d 2/4)~ = d 2 f / 4 c .  

The far field is the region outside the near field where the transducer waves 
coalesce to produce a plane wave whose on-axis intensity decreases inversely 
with distance. For distances L > 4 N  the intensity is approximately 

S ( L )  ~_ So[1/(2Jr)](~, /L) 

where S ( L )  is the signal intensity at a distance L from the transducer and So is 
the nominal intensity at the surface. 

A large transducer produces a large near field and is thus not suitable for use 
on a thin object. A high-frequency and a low-wavespeed material have the same 
effect. Conversely, a small transducer produces a broad beam which attenuates 
rapidly. 
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What Are the Various Isotropic Elastic Wavespeeds? 

The speed of a wave propagating in an unbounded elastic medium is constant--i t  
depends only on elasticity and density, both of which are constant for the small 
range of stresses used in UT. There are two types of such waves, the longitudinal 
and the transverse. There are also two boundary configurations which produce 
unique easily measured wavespeeds with simple formulas. These are the axial 
wave in a slender rod and the Rayleigh wave on a free surface. 

The simplest wavespeeds to measure, and those having the simplest formu- 
las, are for axial and torsional (shear) propagation along a bar: 

r - -  ( E / p )  l/2 

Cs = ( G / p ) 1 / 2  

where Cb is the bar wavespeed, Cs is the shear wavespeed, E -- pc  2 is the 

Young's modulus of elasticity, G = pc  2 is the shear modulus, and p is the 
density. 

The moduli E and G, and also Poisson's ratio, v - -  2(Cb/Cs) 2 -  1, can be 
determined from these two speeds. 

For the longitudinal and Rayleigh waves the speeds are 

Cl = [(1 - v)/2(1 + v)(1 - 2 v ) ] l / Z ( E / p )  I/2 

CR ~ [(0.87 + 1.12v)/(1 + v ) ] l / 2 ( G / p ) i / 2  

where ct is the longitudinal wavespeed and CR is the Rayleigh wavespeed. An 
analysis and exact formula for cR is given in Appendix 10. The ratios between 
various wavespeeds in an isotropic material depend only on Poisson's ratio: 

Wavespeed ratio v = 0.3 

Cl/C b [(1 -- v ) / ( 1  + v)(1 -- 2v) ]  1/2 1.160 

Cs/C b [1 /2 (1  -+- v)] 1/2 0 .620  

Cs/Cl [(1 -- 2 v ) / 2 ( 1  -- v)] 1/2 0 .655 

CR/Cs (approx. )  [0.87 + 1 . 1 2 v ) / ( 1  + v)] I /2 0 .873 

These ratios show that the longitudinal wave is usually the fastest, and that the 
shear wavespeed is about half that. The Rayleigh wavespeed is a little slower 
than the shear wavespeed. 

Similar formulas can be written for some waves in an anisotropic material 
(e.g., waves propagating along an axis of symmetry) as described in Appendix 3. 
For arbitrary directions in an anisotropic material, a numerical method must be 
used to calculate the wavespeed, as described in Appendix 9. 

For nonelastic, e.g., viscoelastic or fluid media, or for high-amplitude stress 
waves or waves near a boundary, the wavespeed may depend on the frequency 
and other parameters such as dimensions. Waves whose speed depends on fre- 
quency are called dispersive (see Appendix 7). 
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FIGURE 43 Nonlinear shock-up effect in a gas or liquid 

W h a t  Is Shock-Up, the Nonlinear Effect on Wavespeed? 

All materials have some degree of nonlinearity between force and deformation. 
The pressure-volume relationship in a gas is nonlinear with compressibility 
decreasing as pressure is increased. Liquids and solids are compressible to some 
degree, with compressibility decreasing with pressure. This effect allows the 
wavespeed to increase with pressure. 

The result of this increase is that the high-pressure parts of a wave propagate 
faster than the low-pressure parts, gradually overtaking them. This results in a 
steepening of the wavefront, as illustrated in Fig. 43. Eventually, the wavefront 
becomes vertical, forming a jump. This effect is responsible for the breaking of 
ocean surface waves, but of course interior waves and waves in strong materials 
cannot break. 

The wavespeed at some pressure in an ideal gas depends on the ratio of 
the pressure to that in the quiescent (no wave) state, as shown in the following 
analysis. However, this reduces to a dependence on only the absolute temper- 
ature, so that the wavespeed is a measure of temperature, and conversely the 
temperature determines the wavespeed. 

The wavespeed in a fluid is 

c -  [ ( d p / d p ) A ]  1/2 

where p is pressure, p is density, and the subscript A denotes adiabatic change, 
so that no heat flows into or out of the wave by conduction or radiation. This 
condition is violated at very high or low pressures. An ideal gas obeys the 
equation of state P V  -- R T or p -- p R T ,  where V = 1 / p  is the specific 
volume, T is the absolute temperature, and R is the universal gas constant. An 
adiabatic process is governed by the formula p V • -- Const, or p / p o  --  ( p / p o )  • 

where y -- Cp/Cv is the ratio of specific heats, and the subscript 0 denotes the 
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state at the start of the process. Then 

c--co[(p/po)(Z-1)/z]  1/2 = [yp/p]l/2 = [yRT]I/2 

with co = (ypo/Po) 1 / 2 -  [yRTo] 1/2, the initial wavespeed. 

What Are Wavespeeds in Some Typical Materials? 

Longitudinal wavespeed in some common materials is typically as follows: 

Transducer crystal 
Aluminum 
Steel 
Beryllium 
Lead 
Glass 
Marble 
Acrylic 
Body tissue 
Wood 
Fiberglass 

Along thin sheet 
Across honeycomb 

Carbon phenolic 
carbon-carbon 
water 
water vapor 
alcohol 
air (at standard temperature and pressure) 

3.3-7.3 mm/psec (0.13--0.29 in./psec) 
6.3 mrn/psec (0.25 in./psec) 
5.6-5.9 mrn/psec (0.22--0.23 in./psec) 
12.9 mrn/psec (0.51 in./psec) 
2.2 mm/psec (0.087 in./psec) 
5.3-6.8 mrn/psec (0.21--0.28 in./psec) 
6.2 mrn/psec (0.24 in./psec) 
2.7 mrn/psec (0.11 in./psec) 
1.5 mrn/psec (0.06 in./l.tsec) 
1.4-4.8 mrn/psec (0.055-0.19 in./psec) 

1.6 mrn/psec (0.063 in./psec) 
2.7 mm/psec (0.11 in./psec) 
3.5 mrn/psec (0.14 in./psec) 
1.6-3.1 mrn/psec (0.06--0.12 in./psec) 
1.5 mm/psec (0.059 in./psec) 
0.4 mrn/psec (0.016 in./psec) 
1.0-1.4 mrn/psec (0.04-0.06 in./psec) 
0.33 mm/psec (0.013 in./psec) 

H O W  DOES A PROPAGATING W A V E  CHANGE? 

A uniform plane wave in a uniform elastic material propagates indefinitely with 
no change. However, most materials are not purely elastic, having properties 
which induce changes through a variety of processes. Furthermore, in most 
configurations propagating waves diverge and are neither uniform nor planar, 
which leads to change. 

A change in amplitude is called attenuation or gain (it may be a decrease 
or an increase). A change in the waveform results in distortion which reflects a 
change in the spectral content (discussed in Section 6). 

What Is Attenuation, Gain (Decibels, dB, Nepers)? 

A wave with reducing amplitude is illustrated in Fig. 44. 
The reduction (or increase) in the amplitude of a waveform is expressed 

as attenuation (or gain), by the logarithm of the ratio of the magnitudes of the 
original to the attenuated amplitudes, a and ao. This is commonly measured in 
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FIGURE 44 Decay of a propagating pulse 
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decibels (dB, tenths of bels, named after Alexander Graham Bell, inventor of 
the telephone): 

A(dB) -- 20 loglo(a/ao). 

The factor 20 comprises a factor of 10 for conversion from bels to decibels, and 
a factor of 2 introduced because in acoustics, a signal is usually characterized 
by its power, which is the square of its magnitude, i.e., log(a 2) = 2 log(a).  

Attenuation is a negative quantity, but if the signal is amplified, the log- 
arithm is positive and is then called gain. Since log( l /2 )  = - l o g ( 2 )  = 
- 0 . 3 0 1 0  . . . .  an attenuation ratio of 1/2 is close to - 6  dB (often referred to 
as 6 dB down), and since log(3) = 0.4771 . . . .  a ratio of 1/3 is roughly 10 dB 
down. Conversely, a gain by a factor of 2 is 6 dB up. 

Alternatively, the natural logarithm (log e or In) of the ratio between the 
original and the attenuated amplitude is sometimes used, defining the unit of 
attenuation as the neper: 

A(nepers) = log e (a/ao). 

Since loge(10 ) = 2.30 . . . .  then A(Nepers) = A(dB)/8.685.  
Because attenuation is measured in propagation over distance, it is usually 

measured as an attenuation coefficient, having units of dB/distance. 

W h a t  Are the Processes in Attenuation and Waveform Distortion? 

Two types of process influence propagating waves, affecting amplitude and/or 
waveform: those which involve material responses, and those which involve 
interactions between waves: 

Materials response processes 

�9 Beam spreading or focusing, called geometric attenuation 
�9 Energy absorption, called material (or intrinsic) attenuation 
�9 Dispersion. 
�9 Nonlinearity 

Wave interaction processes (discussed in Section 4) 
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Factors in attenuation during pulse propagation 

�9 Transmission across interfaces, called configurational attenuation 
�9 Scattering by material variations, inhomogeneities, and defects 
�9 The Doppler effect 

In many cases, attenuation is measured in relation to the level of excitation, 
since the incident wave amplitude may not be known or easily measurable. This 
does not account for any loss between the wave exciter (the transducer, discussed 
in Section 5) and the surface. This loss arises through incomplete coupling and 
should be considered when results of attenuation as measured in different test 
configurations are compared. 

Each attenuation process exhibits a unique behavior with regard to propa- 
gation distance, as illustrated in Fig. 45, and to frequency, which allows them 
to be distinguished. 

W h a t  Is Geomet r i c  Attenuat ion? 

Geometric attenuation is caused by the spreading of the wave because of its 
finite sized source, as discussed above (see Figs. 39-41).  A source typically 
produces a conical beam, whose angle of divergence is determined by the size 
of the transducer and the wavelength. The amplitude of the beam decreases in 
inverse proportion to distance, with a frequency factor for the near-field distance. 
In a focused beam, where the source is designed accordingly, the amplitude 
can grow. 

Geometric attenuation changes the energy content of a wave, but not the 
wavespeed or waveform (except for nonlinear effects). 

W h a t  Is Mater ia l  ( Intrinsic) Attenuat ion? 

Material attenuation occurs through internal friction, which converts kinetic 
energy into heat by active nonelastic responses of the material. The heat then 
conducts away from the wave region. These are molecular processes such as 
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viscosity and plasticity, as well as response of the material structure such as 
slip at boundaries and defects. These effects are dependent on the history of 
stress, mainly shear (its rate of change and previous high), in contrast to elastic 
response which depends only on the current stress. 

Intrinsic attenuation does not include scattering effects discussed later, in 
which the behavior of the waves is influenced by the material structure. Simi- 
larly, the effect of nonlinearity at high pressure, which generates heat, is included 
in a later category. 

Internal friction is characterized by a dimensionless attenuation parameter 
Q, defined as the inverse ratio of energy lost in a cycle to the energy at the 
start of the cycle, or equivalently, the ratio of change in amplitude to the initial 
amplitude in a cycle: 

O = - 1 / r r ( A A / A )  = - - 1 / 2 n ( A E / E ) .  

The factor 2 is introduced into the energy expression since energy is the square 
of the amplitude, so that the change of energy is twice that of amplitude. The 
inverse definition results in a high Q for low energy loss, so that Q has the 
properties of a quality factor (a definition originally used for electrical circuits). 

Evidently, if Q is independent of frequency this definition implies that the 
amplitude varies exponentially in distance propagated: 

A ( x )  = Ao e-~x/2Qc.  

In most cases this is an oversimplification so that real materials must be modeled 
by a frequency-dependent Q. An attenuation coefficient, ot -- co/2Qc,  gives the 
amplitude as 

A = Aoe -~ 

The attenuation in propagation over a distance, x, can then be expressed as the 
decibel loss: 

dB = -8 .686  c o x / 2 Q c  = -8 .686  c~x. 

An equivalent parameter is the logarithmic decrement, 8, which is the natural 
logarithm of the ratio of two successive peaks: 

6 = l o g e ( a n / a n - l )  ~ rc /Q.  

It has been shown for certain rocks and certain classes of composite that Q 
is correlated to the square of the wavespeed, Q ~ c 2, so that higher velocity 
materials have a higher quality factor (i.e., less attenuation). In some cases, 
however, attenuation is desirable! 

What  Is Dispersion? 

The speed of a wave propagating in a nonelastic (e.g., viscoelastic) medium or 
near the boundary of a body may depend on the frequency of the wave, as dis- 
cussed in Appendices 11 and 12. Increasing frequency may decrease wavespeed 
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F I G U R E  46 Typical cases of waveform distortion by dispersion 

(as in rod waves), or increase wavespeed (as in bending). Waves whose speed 
depends on frequency are called dispersive. 

The frequency dependence of wavespeed allows the high-frequency parts 
of a waveform (narrow peaks and sharp rises or drops) to move at a different 
speed from the shallow, smooth parts. 

When high-frequency components propagate faster, they arrive earlier than 
the low frequencies. The late phases of the waveform become progressively more 
stretched out, smoothing and spreading the waveform, as illustrated in Fig. 46. 
Conversely, when low frequencies propagate faster, the later phases become 
compacted. Dispersion thus changes the waveform, including the amplitude of 
successive peaks, but does not generally change the energy content. Dispersion 
is discussed further in Appendix 7. 

What  Are the Effects of Nonlinearity? 

Nonlinearity changes a waveform because the wavespeed can depend on the 
stress level, so that the high-stress parts at the peaks of a wave move at a 
different speed than those at low stress (some effects make the speed higher and 
some lower). This is mostly a factor in gases and fluids, as discussed earlier and 
illustrated in Fig. 43. 

The effects of nonlinearity cause continuing changes in the waveform of a 
propagating wave. This can also increase or decrease the amplitude. 



4 
W A V E  I N T E R A C T I O N S  

H O W  DO T W O  OR MORE W A V E S  INTERACT? 

A propagating wave imparts a change in state (stress and particle velocity) 
to the material it passes through. When two UT waves meet they interact by 
simply adding algebraically the changes in stress and velocity, because of elastic 
linearity. The waves continue to propagate with their respective state increments 
unchanged. Additional waves can be excited to satisfy continuity of motion 
and force. Although the physical principles are straightforward, the numerical 
method can be complicated, particularly for waves in anisotropic materials. 

W h a t  Happens to Two Intersecting Waves?  

As an example, the waves from a tensile load suddenly applied to each end of 
a rod are shown in the x - t  diagram illustrated in Fig. 47. The load introduces 
a stress c~ to each end, exciting waves which propagate into the rod which is 
initially in the stress-free and stationary state A : (c~, v) = (0, 0). The waves 
carry jumps in stress-velocity state of (~cr, 6v) = (or, +o ' / z ) .  

The fight end of the rod moves to the fight with a velocity v = o'/z,  where 
z is the impedance of the rod, and the left end moves to the left at the same 
magnitude of velocity, but in the opposite direction. The stress-velocity state 

45 
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F I G U R E  47 x - t  diagram for intersection of two waves 

produced by the waves in the end regions B and B' of the rod are (a, v) = 
(0 + 8a, 0 + By) = (a, +a/z) .  

When the right-running wave from the left end and the left-running wave 
from the right end intersect, the stresses add, becoming 2a, and the velocities 
cancel, becoming 0, i.e., the state in region C is (2a, 0). 

These waves propagate until they reach the opposite loaded end, where they 
are reflected as oppositely running waves, ensuring that the boundary force is 
correctly represented. Note that the reflected waves can be regarded as imag- 
inary, or virtual, waves emitted by virtual forces at virtual surfaces located 
outside the rod. 

W h a t  Are Constructive and Destructive W a v e  Interference 
and Stationary Phase? 

When waves of different waveforms meet, the parts which are in phase at one 
instant (i.e., positive or negative peaks all coinciding in time) add to produce 
large peaks, as illustrated in Fig. 48. This is called constructive interference, or 
the Principle of Stationary Phase. If there are as many positive as negative peaks 
at one instant (e.g., a random distribution of peaks) then they cancel, leaving no 
amplitude. This is called destructive interference. 

A transducer emits expanding spherical waves from all points of its face. 
Near the transducer, these waves interfere destructively, forming a complex 
wave pattern of peaks and nulls called the near field, but at greater distances 
they interfere constructively, forming coherent plane waves in a conical region 
called the far field, which is the UT beam. This is described in Section 3 and 
analyzed in Appendix 8. 

W h a t  Is a Group Wave? 

Waves which have differing speeds can interfere constructively to form a group 
wave. Such waves arise in a material where the wavespeed depends on the 
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Illustration of constructive and destructive interference 

frequency (called dispersion), on the amplitude (nonlinearity), or on the propa- 
gation direction (anisotropy). This results in a strong wave which propagates at 
a unique speed-- the  group velocity. 

How Does a Group W a v e  Form? 

The formation of a group wave through constructive interference of waves of  
various frequencies traveling in the same direction at different speeds is illus- 
trated in the x - t  diagram of Fig. 49. Lines of constant phase (multiples of Jr) 
in two waves traveling at different speeds are shown. The waves superpose to 
form a group wave of increased amplitude where the phases of the two waves 
are the same. 

One of the best-known examples of group waves is the bow-wave of a 
moving boat, where sequences of small waves can be seen to coalesce into a 
large wave. In an anisotropic material, waves propagating in different direc- 
tions at different speeds group together to form a wave surface as described in 
Appendix 9. 

W h a t  Is the Dispersion Curve? 

The relationship between wave speed and frequency is called the dispersion 
curve. Typical curves for a rod wave are given in Fig. 157 of Appendix 7, and 
for a bending wave in Fig. 159 of Appendix 7. 
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F:IGURI: 49 Group wave formation by constructive interference 

The dispersion curve, c = c(w), determines the group velocity through the 

condition of constant phase (discussed in Appendix 7) as 

Cg = c/[1 - (og/c)(dc/dco)].  

When the wavespeed is independent of frequency, i.e., when dc/do9 = 0, the 
group velocity is the same as the wavespeed. When the wavespeed decreases 
with frequency so that dc/dco < 0, the group velocity is less than the wavespeed, 
and conversely. Evidently the group velocity in a rod wave is less than the 
wavespeed, but in bending it is faster. 

Group velocities for a rod are given in Fig. 158 of Appendix 7, and for a 

beam in Fig. 160 of Appendix 7. 
Waves in an anisotropic material travel at different speeds in different direc- 

tions as illustrated in Fig. 165 of Appendix 9. At any time two neighboring 
wavefronts meet at a common point where they interact constructively, creating 
a group wave. Analysis of this situation is given in Appendix 9. These waves 
are very important to wavespeed measurements in anisotropic materials as they 

are in fact the observed waves. 
An example of angular group velocities is shown in Fig. 50 for the laminated 

composite material considered in the plane wave analysis shown in Fig. 29 in 

Section 3. 

H o w  Does a W a v e  I n t e r a c t  w i th  a Surface? 

The surface of an object may be a free surface with nothing behind it, or an 
interface between two different materials. The surface may be flat or curved, 
and it may be inclined relative to the incident wave. 
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FIGURE 50 Angular group velocities for fiber reinforced plastic of Figs. 29 and 30. 

F I G U R E  51 Normal reflection at a free surface 

H o w  Does a W a v e  Reflect f rom a Flat Free Surface 
at N o r m a l  Incidence? 

The simplest surface interaction occurs when a plane wave meets a flat free 
surface at normal incidence, i.e., parallel to the wavefront as shown in Fig. 51. 

The x - t  diagram for a right-running wave normally incident on a free 
surface is shown in Fig. 52. The wave induces a stress-velocity state (or, v) = 
(cri, cri/z) into the medium, where cri is the incident stress and z is the impedance 
of the material. The stress cannot be supported when the wave reaches the free 
boundary, so a new left-running wave is induced with a stress jump 8or = -cri 
to drop the stress to 0. This induces a velocity jump 8v = c q / z  (the sign of the 
impedance, z = pc ,  changes with the direction of the wave, i.e., the sign of c). 
The velocity of the material behind the reflected wave, and of the free surface, 
is v + 8v = 2cri/z.  

The reflected wave can be thought of as a virtual wave which initiates at a 
point outside the surface, but propagates as though it were in the material. 

Direct backward reflection off a plane reflector (e.g., a metal plate) is often 
used in water tank testing (see Section 5), so that rays traverse the specimen 
twice, and the received wave is delayed from the transmitted wave by the addi- 
tional water path. 

H o w  Does a W a v e  T r a n s m i t  Across and Reflect f rom an Interface 
at N o r m a l  Incidence? 

A plane wave incident normally onto a flat interface between two materials is 
shown in Fig. 53. The wave creates a reflection from, and a transmission across 
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F IGURE 52 x - t  diagram for normal reflection at a free surface 

F IGURE 53 Normal reflection and transmission at an interface 

the interface. The x - t  diagram for a right-running wave normally incident on an 
interface between two materials of differing properties is shown in Fig. 54. The 
wave in material 1 induces a state (al, a l / z l ) ,  where z l is the impedance of mate- 
rial 1. A wave is transmitted into material 2, developing the state (aT, aT~z2), 
where z2 is the impedance of material 2. The stresses and velocities on either 
side of the interface must balance, but this cannot be if there is only the incident 
wave in material 1, because the impedances differ. This creates a new wave, 
reflected back into the first material, with stress jump •a R - -  ( a T -  a i ) ,  and 
velocity jump 6VR = - -aR/Zl .  A balance of stresses on both sides of the inter- 
face requires that cq + (ai - a R )  = aT, i.e., aT = 2aI - -aR.  The continuity of 
velocity requires that the velocities on both sides of the interface must be the 

same: 

a I / Z l  - -  ( a T  - -  a I ) / Z l  = a T / Z 2  

so that 

crT = [2z2/(z2 + zl)]aI ,  

vT = [2Zl/(Z2 + z l )]v i ,  

and 

err = [(Z2 -- z l ) / ( z e  + zl)]cri, 
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F I G U R E  54 x-t diagram for normal reflection and transmission at an interface 

UR = - - [ (Z2  --  SI) / (Z2  4- Zl ) ]Vl .  

These expressions define stress coefficients of transmission and reflection, res- 
pectively, 

CaT = 2r/(r  4- 1), C~R = (r -- 1) / ( r  4- 1) 

and velocity coefficients 

CvT = 2 / ( r  4- 1), CvR = --(r  -- 1) / (r 4- 1) 

where r = zz /z i  is the impedance ratio. 
When the impedance of material 2 is much less or much greater than that 

of material 1: 

Z2 ~ Z l, t h e n  ffT/ffl =:~ O, a n d  erR/o" I =:~ - - 1 ,  

Z2 ( (  Z l,  t h e n  O'T/O" I :::ff 2, a n d  O'R/O" I ~ 1. 

Also, when Z2 = Z l, there is no reflection and the transmitted wave is of the same 
strength as the incident, as it should be since the interface is not a mechanical 
one (i.e., there is no change in impedance or wavespeed). 

The first of the foregoing results is the same as that given in the paragraph 
above, while the second shows that the wave doubles on transmitting into a very 
stiff or dense material, and the reflection off such an interface is of the same 
sign as the incident wave. 

What Is Impedance Matching? 

When a wave is propagated into a material from another of different properties, 
the transmission ratio can reduce the transmitted wave amplitude. For example, 
transducer crystals typically have much higher impedance than the materials 
they are used to test. To minimize this effect, a layer of intermediate impedance 
is imposed between the two materials as illustrated in Fig. 55. 
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F I G U R E  55 Impedance matching layer 

The stress transmission coefficient between the two layers with no inter- 
mediary layer is 

T12 = 2z2/(zl + z2) 

With the intermediary layer, the overall transmission coefficient is the product 
of the transmission coefficients for both interfaces: 

T12 = [2zi/(Zl -t- Zi)] [2Z2/(Zi -t- Z2)] 

where Zi ~- is the impedance of the intermediary layer. For optimum transmis- 
sion, the impedance of this layer is found (by differentiation) to be the geometric 
mean of the other two (see Appendix 10)" 

zi = (ZlZ2)l/2. 

This improves the transmission by a factor 

Tmax /Tnom -- 1 -k- [ (Z 1 1 -I- 

which approaches a maximum of 2 when z l >> z2, where Tnom = 2(Zl/z2) is 
the nominal transmission without the intermediary layer. 

W h a t  Is a Q u a r t e r - W a v e  and a Ha l f -Wave  Layer? 

The thickness of an intermediary layer must be considered because the reflected 
wave within the layer interferes with the incident wave. The wave number in 
the intermediary layer is ki = 27r/~.i -- 2rcf/ci, where ~.i is the wavelength in 
the layer at the frequency f ,  and ci is the wavespeed. The phase of the reflected 
wave relative to the incident at the first interface, when it returns to the first 
interface, is 6~b = 2kh as illustrated in Fig. 56, having traveled a distance of 
twice the thickness h. 

Destructive interference occurs when the reflected wave is out of phase with 
the incident, i.e., when 64~ = Jr. This occurs when the thickness is a quarter 
wavelength, h = Z/4, or the frequency is f = c/4h. This configuration is called 
the quarter-wave filter, as it blocks waves at that frequency with that wavelength. 



WAVE INTERACTIONS 5 3 

Incident wave .~ -" "- 

Internal r e f l e c t i o ~  
phase change: I i 

6qb = 2 k h  

r 

r 

Transmitted wave 

FIGURE 56 Interference between incident and internal reflections in intermediary layer 

T i m e  

/ - -  

M a t e r i a l  1 terial 2 L - " " " "  . 
/ "  

f 
Fast wave -- "~-1"-- .- '" Slow wave 

--1 . . . . . . . . .  [ Distance 

Interface 

FIGURE 57 Waveform is independent of wavespeed 

Conversely, constructive interference occurs when the phase difference is 
64~ -- 2re, so that maximum transmission occurs with a half wavelength, at the 
optimum f r e q u e n c y ' f  = c i / 2 h .  

W h a t  Happens to a W a v e f o r m  at an Interface? 

As a wave propagates across an interface between two media, it is changed in 
both amplitude and speed. The speed is determined by the properties of the 
medium and the direction and type of wave, as well as by the characteristics of 
the incident wave. 

A change of wavespeed does not change the shape of the wave, as illustrated 
for a square wave in Fig. 57, nor does it change its energy- - i t  can continue to 
propagate indefinitely. This implies that there would be no change in any other 
waveform. The amplitude is determined by the ratio between the impedances of 
the two materials, as discussed below. 

W h a t  Is Oblique Reflection and Refraction? 

A wave meeting an interface at some angle other than normal results in oblique 
reflections and transmissions. Oblique transmission is also called refraction, in 
which a transmitted wave has a different angle than the incident. This refraction 
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1:1131381:: 58  Reflection and refraction at an oblique interface 

process, illustrated in Fig. 58, bends the rays and allows a variety of applications 
such as focusing, which are discussed later. 

W h a t  Is Snell's Law? 

As in normal reflection, the stress and particle velocity states of the waves must 
balance at the interface, but in addition, continuity of motion along the interface 
must be assured. This requires that the apparent wavespeed along the interface 
created by the incident wave spreading over it, Capp = ci/sin c~i, where i denotes 
the incident wave, ci is its wavespeed, and Oti i s  its angle to the interface normal, 
must be the same for all the waves. Hence the angles of the waves are related 
by Snell 's law (see Appendix 10): 

sin O/i /Ci  - -  sin C~r/Cr = sin c~t/ct 

where r denotes the reflection, and t the transmission (or refraction). The angles 
of incidence, reflection, and transmission are measured between the normal to 
the surface and the direction of propagation. 

Thus for transverse reflection of an incident longitudinal wave: 

sin as = (cs/ct) sin c~l 

where the subscript s denotes a shear wave and l a longitudinal wave. For the 
converse, a longitudinal reflection of an incident shear wave, 

sin otl= (cl/Cs) sin as. 

The angle of reflection of a wave of a like kind is the same as that of the 
incident wave, since they are in the same material and have the same wavespeed. 
However, a P- or an S-wave reflected from its opposite, an S- or a P-wave, has 
a different angle because the wavespeeds are different. Transmitted waves are 
generally at different angles also. 

Reflection of a P-wave into an S-wave results in the reflection angle being 
closer to the normal than the incident wave, and vice-versa. 

The relationship between the angles of P- to S-wave reflection in an isotropic 
material is given in Fig. 59 and analyzed in Appendix 10. The relationship for 
S- to P-wave reflection is illustrated in Fig. 60. 
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T h e  c o n c e p t s  o f  S n e l l ' s  L a w  u s e d  in op t i c s  to d e s i g n  c u r v e d  m i r r o r s  and  

l enses  c an  be  a p p l i e d  to UT.  A c u r v e d  m i r r o r  or  l ens  c o u l d  be  d e s i g n e d  to 

c o l l i m a t e  or  f ocus  a d i v e r g e n t  b e a m ,  bu t  p r o b l e m s  ar i se  b e c a u s e  o f  the  s ize  

o f  a t yp i ca l  t r a n s d u c e r  sou rce  in r e l a t i on  to w a v e l e n g t h  e x c e p t  at v e r y  h igh  

f r e q u e n c y .  
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What  Is the Critical Angle for Reflection? 

A feature of Snell '  s law is that, since the sine of the reflection angle must  be less 
than 1, a wave incident at a large angle cannot be reflected as a faster wave, i.e., 

sin ctr < 1 only if s inai  _< (ci/cr) 

There is a limiting or critical incidence angle, cti.cr -- asin(ci/cs), for longitudinal 

reflection of a transverse wave, such that 

Ci/Cr "- CS/Cl = [(l -- 2V)/2(1 -- V)] 1/2. 

The angle of incidence beyond which transverse-to-longitudinal reflection is not 

possible is then 

O~i.crit -- asin[(1 -- 2v) /2 (1  -- v)] 1/2. 

This is plotted in Fig. 61. Evidently for a liquid, which is equivalent to a Pois- 

son's  ratio of 0.5, there is no critical reflection. 

What  Is the Refraction Angle of Transmitted Waves? 

The angle of a transmitted wave is determined by the wavespeeds in the materials 
on both sides of the interface and by the types of the incident and transmitted 

waves. From Snell 's  law given above, 

sin o~ t = sin oti (ct/ci). 

When the transmitted wavespeed is smaller than the incident, the refracted angle 
is less than the incident, i.e., the transmitted wave is closer to the normal than 

the incident, and conversely. 
These results could be used to design a UT lens which would collimate a 

divergent beam or focus a beam using a procedure similar to that in optics. 
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FIGURE 61 Critical angle for longitudinal reflection of a transverse wave 
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W h a t  Is a Grazing Incidence (Leaky) Lamb Wave? 

For a transmission to be possible, so that sin ctt < 1, the incident angle must 
be less than Oti < Cti.cr = asin(ci/ct). The transmission wavespeed is not related 
to the incident, falling in a different material. When this condition is violated 

because of a large angle of incidence, no transmission is possible. At the critical 

angle, the wave in the second material runs along the interface similar to a sur- 
face wave. The condition is called total internal reflection at grazing incidence. 
The interface wave emits waves similar to a reflection back into the first material 

at the critical angle, called leaky reflections. This wave system, called a leaky 
Lamb wave, is illustrated in Fig. 62. The leaking reflections can be monitored 
at various distances to detect the Lamb wave. Again, there can be no such wave 

in a liquid. 

W h a t  Are the Reflection Coefficients at an Oblique Free Surface? 

At a stress-free surface oriented obliquely to an approaching wave, all stresses 
with components normal to the surface must cancel. The incident and reflected 
waves each carry a normal and a tangential stress with components normal 

to the surface. A single reflection cannot satisfy this requirement, so that two 

reflections, one longitudinal and one transverse, must be created, as shown in 

Fig. 63. 

FIGURE 62 Leaky Lamb waves: critical refraction at grazing incidence 

FIGURE 63 Oblique reflection at a free surface 



5 8  ULTRASOUND AND ELASTIC WAVES 

o 
c~ 

c~ 

_o~ 
c~ 

o 

15 l 
1+ 

0.5 

-0.5 

-1 

FIGURE 64 

Poisson's ratio 

-1 -0.5 

0.2 

0.3 

10 20 / A 0 / / / 4 0  / 50 60 0.4 70 

0.45 

- - - ~ - ' ~ - - ~ " - -  0.5 

Longitudinal incidence angle 

Reflection coefficient for a longitudinal wave from a longitudinal wave 

There are then two equations, one for the normal and one for the shear stress, 
in the two unknown amplitudes of the longitudinal and transverse reflections" 

O'y  y . i -'1- O'y  y . r l -Jr- Cry y . r x - -  0 

O'x y . i -n t- O'x  y . r l --[- O 'x  y . r x - -  0 

where r refers to reflection, l to longitudinal, and x to transverse. The magnitudes 
of these reflections from a longitudinal or a transverse wave are analyzed in 

Appendix 10. 
In an anisotropic material, there can be two quasi-transverse reflections 

which do not lie in the plane of the incident wave. In that case, there are three 
equations for stress balance which generally require numerical solution. 

The results for the ratio of the longitudinal reflection stress to the incident 
stress is given as functions of the incident angle and Poisson's ratio in Fig. 64. 

W h a t  Is Mode Conversion? 

The generation of one type of wave (longitudinal or transverse) from another 
in reflection or transmission is called mode conversion. The stress ratios from 
conversion of a longitudinal wave into a transverse one is shown in Fig. 65. 
Similar results for an incident transverse wave are shown in Figs. 66 and 67. 
The coefficients shown are all strongly dependent on Poisson's ratio. 

W h a t  Is the Interact ion at an Obl ique Interface? 

Interaction of a wave at an oblique interface excites several waves to ensure 
the balance of stresses and velocities across the interface" an incident P- or S- 
wave in an isotropic material excites both P- and S-waves in reflection and in 
transmission into an isotropic material, as illustrated in Fig. 68, 
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The magnitudes of the four or six waves can be determined by requiring 
that the components of stress in the normal and one or two transverse directions, 
and of velocity normal and in one or two tangential directions to the interface, 

must balance on both sides. This leads to four (or six) equations of the type 

cri + err1 + Crrx -- crtl + O'tx 

where r refers to reflection, t refers to transmission, 1 to longitudinal, and 

x to transverse. These equations require numerical solution as discussed in 

Appendix 10. 
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FIGURE 67 Conversion coefficient for a longitudinal wave from a transverse wave 

FIGURE 68 Mode conversions in oblique incidence 

FIGURE 69 Scatter by diffraction at the edge of a plate 

W h a t  Is Diffraction? 

W h e n  a wave  is incident  on the edge of  a surface, as i l lustrated in Fig. 69, it 

excites waves  in all d i rect ions  cal led diffracted waves .  The  edge of  the plate  

serves as a source of  diffraction. 
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F I G U R E  7 0  A Rayleigh wave at a comer 

W h a t  Happens to a Rayleigh Wave  at a Corner? 

When a Rayleigh wave propagating along a surface reaches a corner, as in 
Fig. 70, it is partly reflected and partly transmitted around the corner. 

H O W  DOES A W A V E  I N T E R A C T  W I T H  A N O N U N I F O R M  
OBJECT? 

All real materials have nonuniformities (nonhomogeneities) on various scales. 
Real materials can be called perturbed media, in contrast to the idealized homo- 
geneous media of analysis, which are called unperturbed. A nonuniforniity is 
called a scatterer or a perturbation. 

A nonuniformity is a region with properties which differ from those of the 
surrounding material. Its surface may be curved, or it may have corners or edges, 
and it may be moving. A nonuniformity may be an individual inclusion (a small 
closed region of different properties, such as a bone or a hole), or it may be an 
aggregated assembly such as the fibers in a reinforced plastic. 

Metals and geologic materials have grain structure, inclusions, and poros- 
ity on a submillimeter scale and crystal imperfections on a micron scale. Fiber 
reinforced composites have fiber bundles on a submillimeter scale and lamina- 
tions on a millimeter scale. Biological materials (flesh and bone, wood, etc.) 
are porous, fibrous, and layered (e.g., growth tings) on millimeter scales. Large 
structures, both natural (trees, rocks) and man-made (concrete), have discon- 
tinuities and gradations on scales from centimeters to meters. Fluids contain 
microscopic bubbles and particulates, which are in random Brownian thermal 
motion. 

W h a t  Is Scattering? 

The interaction of a wave with a nonuniformity produces reflections and trans- 
missions in multiple directions, called scattered waves, in a pattern called the 
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(a) Single scatterer (b) Multiple scatterer (c) Random scatterer 

FIGURE 71 Varieties of scattering processes 

scattering pattern. A detailed but complicated description of scattering is given 
by Ishimaru (1978). A simplified view follows. 

A wave can experience a variety of scattering types, depending on the 
distribution of scatterers, as illustrated in Fig. 71. 

After scattering, constructive interference creates a wave which propagates 
in the same direction as the incident wave, called the forward scattered wave. The 
wave pattern propagating backward toward the source is called the backscatter. 

The response of a scatterer to an incident wave can arise through defor- 
mation producing an omnidirectional scatter, or by motion as a whole produc- 
ing a directed scatter. These effects can be regarded as created by sources of 
motion which are proportional to the differences in elastic properties and density 
between the scatterer and the unperturbed medium. 

When the wavelength is large compared to the nonuniformity, and the 
nonuniformity is distributed over a large region, the effect is a small change 
in amplitude. At shorter wavelengths the effect of scattering is to produce a 
change in the waveform by the generation of new waves, as well as a change 
in amplitude. Wavelengths short in relation to the size of the nonuniformity 
respond to the discrete interfaces. 

UT frequencies are chosen such that the size and distribution of nonunifor- 
mity represent typically no more than 0.1 to 1 wavelengths. 

Typical scatter patterns for a single sphere, excluding the incident wave, 
are illustrated in Fig. 72. When the wavelength is small compared to the sphere 
diameter, most of the incident wave is reflected as backscatter, with little refrac- 
tion in the direction of propagation. When the wavelength is large, the reflec- 
tion is diminished by interference between the waves, but the transmission is 
enhanced into a considerable forward scattered beam. 

The ratio of total scattered energy to the incident energy, called the scattering 
cross-section, is used to characterize the scatterer. It depends on the size and 
shape of the scatterer, and on its properties. 

W h a t  Is Cavitation? 

An oscillatory wave interacts with dissolved gases in a liquid, which exist as 
microscopic bubbles (normally in equilibrium between their internal vapor pres- 
sure, the external fluid pressure, and surface tension) by causing the bubbles to 
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FIGURE 72 Typical scatter patterns for a sphere 
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grow or shrink. This process, called cavitation, is dynamic because of inertia of 
the liquid. The motions are unstable when the bubble is near a solid surface so 
that the bubble collapses inward in a jet, inducing high local pressure on the 
surface and emitting waves and sometimes light. The jet impacts on the surface, 
causing damage. 

Cavitation can be a peril as it destroys the surface of propellers, pipes, etc 
but it can be beneficial when used for cleaning and as a stimulus for chemical 
processes. It can initiate dangerous conditions in medical applications. 

W h a t  Is the Doppler Effect? 

When a source of waves and a receiver move relative to each other, the wave- 
form is distorted, as illustrated in Fig. 73. When a wave originates on a moving 
object as at (a) in the figure, the apparent wave seen by a stationary receiver 
is shortened because of the difference in path length between the early and late 
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parts of the wave. The converse, shown at (b), arises for a moving receiver of 
waves from a stationary source. 

The phase of a wave is ~b = k x -  cot. When the distance is reduced because 
the source or receiver moves at a velocity v, the phase becomes 4~ = k ( x  - 

v t ) -  cot = k x -  (kv  + co)t. Then an effective frequency is cot = kv  + co, so that 
6co = kv.  Writing co = 2zrf and k = 2rr/~, = 27r f / c  leads to the result 

6 f / f  = v / c  

where f is the frequency, v is the relative velocity, and c is the wavespeed. 
The change in frequency in the oscillating components of a wave is reflected 

in a change of pulse length and increases with the speed of the relative motion 
between sender and receiver. 

The velocity of the relative motion can be measured by measuring such 
shifts in the frequency. This concept is used to measure blood flow in arteries. 



5 
HARDWARE:  EQUIPMENT 

CONCEPTS 

W h a t  Is a Typical U T  Setup? 

A UT setup comprises several pieces of hardware equipment, both electronic 
and mechanical. The core of a system is one or more transducers, which convert 
electrical signals into mechanical, and vice versa. The transducer (or transducers) 
is supplied with energy from a signal generator/pulser and a data acquisition 
system consisting of a signal detector, an analyzer, and a recorder, e.g., tape or 
disk drive. It is (they are) carried in some mechanical device, usually hand-held 
in medical and some mechanical applications, or a robotic system, typically a 
bridge or gantry which moves the transducer(s) across an object. The test object 
is often immersed in a water tank to facilitate transmission of waves into it. 
The parts of a system which contains these devices are illustrated in Fig. 74. 
Because the electrical signals are of high frequency, all connections between 
transducers and the electronic equipment must be coaxial cabling. 

How Do Transducers Work? 

A transducer is a device which converts one form of energy into another: here 
electrical current into mechanical motion, and vice versa. 

There are several types: 

65 
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FIGURE 74 Illustration of a UT setup 
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F I G U R E  75 Typical construction of a crystal transducer 

�9 Piezoelectric crystals 
�9 Polarized plastic film 
�9 Lasers 
�9 Electromagnetic acoustic transducers (EMATs) 

Piezoelectric Transducers 

The piezoelectric (pz) effect creates a mechanical stress in a pz material, usually 
a crystal, when an electric field is applied as a voltage across it, or conversely, 
it creates a voltage when a mechanical stress is applied. An oscillating voltage 
produces an oscillating stress which excites propagating oscillatory waves as 
analyzed in Appendix 5. 

The transducer contains a resonant crystal, a coupling or wear-face, and a 
case which includes a reflector, as illustrated in Fig. 75. 

Piezoelectric crystals are commonly lead zirconate (PZT), barium titanate, 
lithium niobate, etc. The crystal resonance is determined by its size and shape 
in relation to the excitation. The reflector is a disk of suitable material which 
reflects waves back into the crystal, thereby reinforcing resonance. 

Typical transducers of 0.5 to 2.0 MHz use crystals of about 0.5 to 1.0 in. in 
diameter. Low-frequency transducers are harder to make as they require large 
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crystals, over 2 in. in diameter, and require large amounts of power to excite. 
High-frequency transducers are sometimes made of small deposits of pz material. 

Shear waves can be excited by transducers with crystals which oscillate 
sideways. These require special coupling, such as adhesive bonding of the trans- 
ducer to the test object. Alternatively, shear waves can be excited by using wave 
conversion in oblique interface transmission. Oblique waves are excited by shoe 
transducers (described later). 

The crystals and their bonding to the case and faces are delicate and will 
be damaged if dropped. They use high voltage which can be hazardous. 

Polarized Plastic Film Transducers 

PVDF (polyvinylidene difluoride) is a polarizable polymer, which means that 
when it is rolled into thin sheets in a certain way, its molecules become electri- 
cally charged. Deformation, such as thinning or bending, changes the charge dis- 
tribution, and these changes can be detected as capacitance changes by electrical 
circuits connected to metallized conductors on the faces of the sheet. 

These sheets can be of any size, and they can be draped over curved surfaces. 
Many separate transducers can be built onto a sheet by appropriate design of the 
metallization, to make an array of transducers. One drawback is that they are 
sensitive to temperature changes, but compensation techniques can be developed 
using a second inactive (uncoupled) set of transducers placed alongside the active 
ones. They are cheap and can be mounted permanently. 

Lasers 

A laser when used as an exciter produces an intense but very brief pulse of 
light which heats a spot on the surface of an object under test. The sudden 
heat generates a thermal stress which excites a set of waves, as discussed in 
Appendix 5. 

A laser used as a receiver produces a steady low-intensity beam which is 
split into two to serve as an interferometer: one beam (the primary) is reflected 
off a surface of the object under test, and the other (the reference) covers a fixed 
path among mirrors. The beams are brought together and the length of the ref- 
erence path is adjusted so that the two coalescing beams oppose (interfere with) 
each other, leaving a spot of darkness. When the surface moves, the primary 
path changes length, so that the interference between the beams is destroyed 
and some light results. A photocell at the spot detects the intensity of the light, 
which is proportional to the motion of the surface. This concept is called an 
interferometer, of which there are many types; some measure displacement, and 
some measure velocity. 

Electromagnetic-Acoustic Transducers, EMATs (for Electrically 
Conductive Test Pieces) 

An EMAT uses the electromagnetic field created by a coil to excite an eddy 
current in an object of conducting material. The electric induction effect produces 
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a shear stress which excites transverse waves. The coil can be placed a short 
distance from the surface, allowing its use on heated parts, or in locations where 
accessibility is difficult, or when a fixed mounting is undesirable. 

W h a t  Is a Couplant  ? 

Because the surface of most objects is rough on a microscopic scale, the trans- 
ducer makes contact on only a small area. Consequently the transmission of 
force between the surface and the transducer is severely reduced. (This prob- 
lem in mechanical contact is unique to UT because the stresses and motions 
are so small that they do not flatten the irregularities as in engineering surface 
contacts.) To improve this, a couplant is always used. Common couplants are 
water, grease, or a soft polymer. An oil or a gel is used in medical applications. 

For lasers, the roughness scatters the incident light and reduces the amount 
absorbed. To improve the energy transfer, a light-absorbant coating such as 
carbon black is required. 

W h a t  Is an Immers ion  Tank  and a Gantry? 

For large objects of varying shape, coupling is often made through water by 
immersing the object in a tank of water. A transducer is (or two transducers are) 
mounted on a probe (or coupled probes) projecting into the water and carried on 
a gantry outside the tank as illustrated in Fig. 76. If only one transducer is used, 
a fixed reflector plate is mounted behind the test object. The gantry is operated 
robotically to move the transducer assembly over the object. 

Immersion testing provides the advantages of good and uniform coupling 
over the test object, eliminating transducer contact (good for curved surfaces), 
and imposing a delay path (the water) between the transducer and the object. 
This separates the emitted and received signals and allows identification of 
pulses through the known front-face echo which passes only through water. 

Robotic gant  A ltema iVp.a ed 

Sender transducer Receiver transducer 

Test object 

F I G U R E  7'6 Typical immersion tank setup 
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F I G U R E  77 Schematic of water squirter 

W h a t  Is a W a t e r  Squirter? 

When a surface is not easily accessible or is not flat, a water squirter is sometimes 
used. This consists of a housing which holds a transducer in a chamber through 
which water flows. The water flows out of a nozzle under pressure, forming a 
jet which transports the UT waves onto the test object, as illustrated in Fig. 77. 
It is essential that a smooth steady flow be established. 

W h a t  Is a Bubbler? 

A bubbler is a device similar to a squirter but with a smaller and slower flow; 
it is used close to the surface. 

W h a t  Is a Rol ler  or  W h e e l  Transducer?  

A rolling wheel transducer consists of a wheel several inches in diameter, which 
has a liquid-filled rubber tire to provide coupling for waves from a transducer 
mounted internally on the axle, as illustrated in Fig. 78. These transducers are 
used in an automated system to cover large areas of an object. 

How Are Transducers  Set  Up? 

The major transducer configurations are as follows: 

a. Pulse-echo (PE) 
b. Through-transmission ultrasonics (TTU) 
c. Pitch-catch 
d. Angle shoe 
e. Beam steering 
f. Focusing horn 
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F I G U R E  78 A roller, or wheel, transducer 

F I G U R E  79 Pulse-echo concept 

g. Fluid coupled lens 
h. Bending waves 

a. P u l s e - E c h o  (PE) 

In PE, a wave is emitted from a transducer on a surface of an object to be 
examined, and its echo (i.e. a reflection from another surface) is detected by the 
same transducer at a later time, after the wave has passed through the body and 
returned, as illustrated in Fig. 79. 

This operation is viable only for use on relatively thick specimens such that 
the waves operate in the far field (described in Section 3) and the echo returns 
to the transducer after the excitation pulse is complete. Controlled damping in 
the circuitry and natural damping in the transducer improves the separation in 
pulses. When adequate separation is achieved, this setup has the advantage of a 
double transit, thus sampling the specimen twice. In addition, it has the benefit 
of requiting only single-sided access. 

The transducer can be set back from the surface as in a water tank or a 
squirter setup. In a water tank a reflector plate can be placed behind the test 
object so that the wave transmitted through the object is reflected back for a 
second transit and a return to the transducer. 

A form of PE is used for Doppler measurement of blood flow in a human 
body, as illustrated in Fig. 6. A transducer placed at an angle to the skin transmits 



HARDWARE: EQUIPMENT CONCEPTS 71 

signals into a vein or an artery. A shift in frequency of the backscattered signal 

measures the speed of flow. 

b. Through-Transmission Ultrasonics (TTU) 

In TTU, a wave is emitted from a transducer on one surface of an object to be 

examined and is detected by a second transducer on another surface, at a later 

time after the wave has passed one way through the body. This is shown in 
Fig. 80. The emitter and sender transducers can be set off the surface as in a 

water tank or a squirter. 
This technique is useful when the object under test is thin or has a complex 

structure (such as a sandwich construction) which results in a complex echo. It 

requires double-sided access. 
A form of TTU can be used as a Doppler flow meter for fluid in a pipe: 

two pairs of transducers are mounted on each side of the pipe, as illustrated in 
Fig. 81. One pair examines waves propagating toward the flow, and the other 
examines those propagating against the flow. Both waves experience Doppler 

shifts which can be measured spectrally. 

Sender 
transducer 

( Transmitted wave  sto ect ? 

FIGURE 80 

Receiver 
transducer 

Through-transmission ultrasonics (TTU) concept 

F I G U R E  81 TTU Doppler flow meter 
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FIGURE 82 Pitch-catch arrangement 

Transducer 
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FIGURE 83 Angle shoe for exciting oblique or shear waves 

c. P i t c h - C a t c h  

Two transducers are placed on the same side of an object, spaced a short distance 
apart. The sender excites a wave at a small angle to the normal, so that the 
reflection returns to the second transducer, as illustrated in Fig. 82. 

This technique is a special case of a pulse-echo system. It can be useful 
when the back surface is not parallel to the front or in thin materials where it 

allows the excitation (main bang) to be isolated from the reflection signals. 

d. Angle Shoe 

Oblique waves are excited and detected by transducers placed at a large angle to 
the normal. To achieve this, a shoe is used, as illustrated in Fig. 83. A common 

transducer is attached to the shoe, whose material must be selected to address 
both Snell 's Law (the wavespeed determines the transmitted wave angle, see 
Section 4) and the impedance, to ensure adequate transmission. 

A special application of the angle shoe is to the inspection of a comer, such 
as around the periphery of a bolt hole. Double reflection assures that the wave 

reaches the transducer from any angle, as illustrated in the figure, unless a crack 
deflects the wave. 
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e. B e a m  Steering 

An array of transducers on a surface is excited at differing times, so that the 
emitted waves coalesce to form a wave inclined to the surface, as illustrated in 
Fig. 84. The orientation of the wavefront is controlled (i.e., steered) by varying 
the excitation times across the array. The technique is usually operated in the 
pulse-echo mode. It is used extensively in medical imaging. 

Alternate methods for steering a beam use an oscillating mount for a trans- 
ducer, or a mechanical drive to rotate a sequence of transducers mounted on a 
wheel, as illustrated in Fig. 85. These methods are now out-of-date. 

f. Focus ing Horn  

A horn of metal or plastic can be used in the fashion of a waveguide to focus 
waves from a large transducer onto a small area, increasing the intensity. The 
horn is conical with a suitably designed shape, commonly  exponential or linear, 
as illustrated in Fig. 86. 
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F I G U R E  86 Typical focusing horns 

FIGURE 87 Fluid-coupled lens focusing concept 

The design of a horn for maximum efficiency can be complex, but a simple 
machined shape can be effective. A transducer is bonded to the large end, and 
the smaller end is used to transmit and receive signals. 

g. Fluid-Coupled Lens Focusing 

The face of a transducer or a face plate is curved to form a lens. A spherical- 
concave shape is filled with a fluid, commonly water, so that waves emitted 
from different places on the face are bent (refracted) by differing amounts into 
the couplant where they meet at a point. The scheme is shown in Fig. 87. The 
transducer is operated in pulse-echo mode at a very high frequency with a very 
short wavelength, to view very small regions, and is mounted in a small and 
precise positioner. 

This principle is used in the acoustic microscope for examining computer 
chips. 

h. Bending Waves 

Bending waves can be excited and detected by placing a sender and a receiver 
transducer at some distance apart on a thin plate or bar, as illustrated in Fig. 88. 

In some cases the frequencies of interest are quite low so large transducers 
must be used. Alternatively, an impactor (e.g., a dropping weight) can be used for 
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FIGURE 89 Electrical excitation and mechanical response of a transducer crystal 

an exciter, and an accelerometer can be used for a detector. The transducer pair 
can be swept over the plate to map out regions of varying bending properties. 

Since bending waves are strongly dispersive (see Section 3 and Append- 
ices 10 and 12), it is desirable to take measurements with several spacings 
between the transducers to provide data on propagation speeds of various fre- 
quency components. If the transducers are of sufficiently broad-band response, 
it is also desirablethat they be used at several frequencies. Alternatively, several 
alternate transducers could be used. The impact/accelerometer configuration is 
very broad-banded and excites/receives a wide range of frequencies. 

H o w  Is a T ransducer  Excited ? 

A transducer is excited electrically by a high voltage, called the main bang, from 
a power amplifier driven by a pulse generator. The voltage can be dangerously 
high. The magnitude of this pulse is adjustable and is sometimes given as a gain 
in decibels (defined in Section 3). The excitation usually provides a repeated 
sequence of square pulses as illustrated in Fig. 89. 

The mechanical response of the crystal to each pulse is a linear increase 
of oscillation (resonance ring-up) during the pulse, followed by an exponential 
decay, whose duration depends on the damping characteristics of the transducer 
and its circuitry, as illustrated in Fig. 90. 

In a pulse-echo system, the excitation pulse (main bang) is recorded together 
with the echo signals. Generally it is so high that when the gain is set to 
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FIGURE 91 Cropping of main bang by overdriven amplifier 

adequately display the echo, the main bang overdrives the receiver amplifier. 
The main bang is then cropped and possibly delayed, as illustrated in Fig. 91. 

W h a t  Is the Repetition Rate and Averaging ? 

The excitation of the sender is repeated many times to allow many wave transits 
to be averaged. This minimizes the effects of minor spurious fluctuations, such 
as electrical noise. The rate of repetition (rep rate) is selected to ensure that all 
relevant response in one echo has died down before the next arrives. 

W h a t  Is a Trigger ? 

To ensure that the receiver system (recording device) is switched on when a sig- 
nal arrives, and not before or after, a short duration of the signal is continuously 
stored in a buffer. When a significant rise in signal is detected, a trigger is set off 
to start recording, including the current buffered segment. The trigger provides 
a precise timing of the recording, so that multiple pulses can be overlaid. 
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FIGURE 92 Typical UT standards 

W h a t  Is a Digital or an Analog Receiver System ? 

The signal generated by the receiver transducer from incident wave motions is 
a continuous (or analog) current. In an analog system the signal is displayed on 
some device such as an oscilloscope which shows a continuous trace. Processing 
of the signal is limited, so analog systems are limited to visual data interpretation. 

The signal is usually converted into a discrete series of digital values by 
sampling at a high rate, as discussed in Section 6, to allow detailed analysis by 
computer. 

W h a t  Is Standardization? 

A UT system can be standardized to ensure repeatability in measuring amplitude 
or to validate images of a specific type. This operation is done with Standard 
or Reference blocks, designed for a specific task. They essentially function as 
comparators: results obtained with different systems can be compared when they 
are adjusted to give the same results on the standards. 

This comparator concept is not totally accurate, because factors such as 
anisotropy modify the characteristics of a UT test in ways which may not be 
accommodated in the comparison. UT Standards are defined by the American 
Society for Testing Materials (ASTM). 

To standardize a UT beam, a target, which essentially probes the beam by 
creating a selective backscatter, is placed in a propagating medium at some 
distance from the surface where a transducer is applied, as illustrated in Fig. 92. 
The medium can be a solid, typically Plexiglas or aluminum, or a liquid, such as 
water. In the solid, the target is a fiat-bottomed hole drilled from the back face 
to serve as a small reflector. In the liquid, a steel ball is mounted on a pedestal. 

To validate scans of a test object, another object, sometimes called a phan- 
tom, is constructed to simulate the object being tested, and specifically incorpo- 
rating an out-of-specification configuration such as a shape or material insert or 
a defect. Scans of the phantom allow settings such as gate times and threshold 
levels (see Section 6) to be set. 
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W h a t  Is Calibration? 

Calibration is a procedure used to establish quantitative measures of the response 
characteristics of the equipment. A UT system can produce quantitative mea- 
surements of time and amplitude in a waveform, but in most applications only 
changes in such quantities are measured. These are used to produce visual 
images, which are not precise measurements, and the response of the equip- 
ment is of no concern. Accuracy is required only when the results of measure- 
ments made with different systems are to be compared. The system must then 
be calibrated, as discussed below. 

Time Measurements 

The measurement of a time event depends on the accuracy of the oscillator used 
to determine the digitization sampling rate. This is usually controlled extremely 
well, so that time measurements are, of themselves, very precise. Digitization 
poses a discrete time interval for each measurement so that the resolution of a 
time measurement is one half of the interval between samples. 

The issue of time accuracy is rather one of identifying the event, e.g., the 
onset or the peak, in a wave to be measured, particularly when the waveform 
changes during propagation as in a dispersive system (see Appendix 7). Methods 
for identifying an event are discussed under Software in Section 6. Factors of 
the test system, such as path length, identification of specific reflections, and 
material uniformity, must be considered. 

Amplitude Measurements 

The measurement of wave amplitude is usually made to evaluate attenuation, 
i.e., a change in amplitude during propagation, and not absolute amplitude. This 
is taken in terms of the electrical signal, e.g., volts, and not physical quantities 
such as stress or particle velocity and impedance. 

If attenuation as measured in two different systems is to be compared, 
then factors of  the equipment which affect the UT waves must first be deter- 
mined. These include beam formation effects, such as radial spread and axial 
decrease, and interface effects at the transducer, such as transducer properties 
and coupling. Measurements can be made on known objects to define these 
characteristics of the test system, 

W h a t  Test Equipment Factors Must Be Measured? 

The are two test-unique parameters which, once measured can be used to make 
corrections: 

�9 The effective size of the transducer (significant mainly for squirters) 
�9 The coupling impedance between the transducer and the test object 

The diameter of a contact transducer is essentially that of the wear face, though 
usually slightly smaller because of nonplanarity, roughness, etc. In a water 
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(a) Set of calibration cylinders (b) Step wedge calibration block 

F I G U R E  93 Illustration of a cylinder set and step wedge for calibration 
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F I G U R E  94 Illustration of method for calibrating effective transducer diameter 

squirter or bubbler, the diameter is only roughly known because the water jet 
spreads and the UT waves become dispersed. In a water tank, the effective 
diameter of a transducer is known through the beam angle for water, not the 
test object. 

How Is a U T  System Calibrated? 

To effect a calibration of these parameters, tests are made on calibration blocks, 
which are usually cylinders of a well-known material (e.g., Plexiglas) in several 
lengths, or a step wedge, which is a block with steps, as illustrated in Fig. 93. 
The use of the blocks and their design are discussed later. 

1. Transducer Diameter 

The size of a transducer affects mainly the beam-forming process (see Section 3 
and Appendix 8) in which the beam spreads radially and diminishes in propaga- 
tion axially. The radial beam spread can be measured to determine the effective 
transducer diameter, which can then be applied to analysis of the axial variation. 

From Appendix 8, the radial distribution of a UT beam depends on the two 
ratios R/L, which is radial off-axis distance normalized to axial distance from 
the transducer, and deff/)~, which is the effective transducer diameter normalized 
to wavelength. These quantities are illustrated in Fig. 94. 
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The theoretical beam distribution is plotted as a function of R/L for several 
values of deff/,k in Fig. 40. An approximate formula from Appendix 8 for the 
signal strength at small radial offset is 

S ( R ) / S o  = 1 - ( 1 / 8 ) ( y ( d e f f / ~ , ) 2 ( e / t )  2 -.]- . . . .  

A conical end (typically Plexiglas machined to a small rounded point) is glued 
to a transducer to create a receiver probe. A calibration block is then excited 
at the center of the face at one end by another transducer, and the face at the 
opposite end is scanned with the probe, as illustrated in Fig. 94. 

The center of the beam is identified carefully by locating its maximum, 
and the distribution about the center line is measured for several cylinders of 
differing lengths. The results are plotted as pairs of values of S / S m a x  vs (R/L) 2, 
leading to a straight line with slope (1/8)(rrdeff/~.) 2, as illustrated in Fig. 95. 
The wavelength must be known from the frequency and the wavespeed in the 
cylinder. 

2. Transducer Impedance and Coupling 

The interaction between a transducer and an object of isotropic material produces 
waves of normal transmission and reflection (except for anisotropic materials or 
the use of an angle shoe). The strengths of these waves are determined by the 
coefficients of reflection and transmission across the interface (see Section 4), 
which depend on the ratio of the impedances of the object and of the transducer. 
The impedance of the transducer is determined by the properties of the exciter 
crystal and of any intermediary material, such as a wear face or a water beam, 
which is generally not known. 

The effective impedance can be determined by measuring amplitudes of 
multiple back-face echoes in blocks of several lengths. 

The signals received by the transducer as generated by multiple reflections 
within the block are illustrated in Fig. 96. 

The first signal is the front-face echo, SFF, and succeeding signals, &3n, 
are back-face echoes after multiple passes through the block. The reflection and 
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F I G U R E  96 Transducer signals generated by multiple reflections 

transmission coefficients for waves passing from the transducer to the block and 
vice versa, used in the figure, are (from Section 4) 

R = ( r -  1)/(r  + 1), R ' =  - ( r -  1)/(r  + 1), 

T = 2r / ( r  + 1), T ' =  2 / ( r  + 1) 

where r = Zblock/Zxdcr, Zblock is the known impedance of the block, and Zxdcr is 
the unknown impedance of the transducer. The amplitude ratio from one end of 
a block to the other due to attenuation is 

A~ --  e -c~L, 

where c~ is the attenuation coefficient for the material of the block, and L is the 
length of the block. Through beam divergence, the signal strength at one end of 
the block after n passes is inversely proportional to the distance nL : Sn "~ 1 / n L ,  
and after one more pass it is Sn+l ~ 1/(n + 1)L. The amplitude ratio between 
these two passes is 

AL - - n / ( n  + 1 ) =  1/[1 + ( l /n ) ] .  

This ratio is approximately unity except for  the first few passes. The total ampli- 
tude ratio is then A --- A~AL ~ e -~L. 

Evidently, the nth echo can be written as 

SBn = ( - 1 ) n ( T T ' / R ' ) ( A 2 R ' )  n 

so that the attenuation in the nth signal is 

Oe n - -  log [SBnl = l o g ( T T ' / R ' )  + n log(A2R'). 
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F I G U R E  97 Measured back-face echoes and their interpretation 

The attenuation is plotted vs the echo sequence number, as illustrated in 
Fig. 97. A correction can be made to the data points for the first few echoes to 
account for the factor n / (n  + 1). 

The slopes dotn/dn = log(A2R t) of the line for each block are different 
because the attenuation factor A depends on the length of each block. Now, the 
common intercept is 

do = log(TT' /R')  

so that 

Then 

10 ~~ = TT ' /R '  = 4r2/(1  - r 2) and r = [10~~ + 10~~ 1/2. 

Zxdcr = Zblock/r. 

A check on the result can be made by calculating T T' /R' ,  and then A = 
e(dc~"/dn)/R t, which should be essentially the same as the known attenuation of 
the cylinder given above, i.e., A = e -c~L. 

How Can Attenuation Measurements Be Corrected? 

The amplitude of a signal can be corrected to account for the effective transducer 
diameter and impedance in three ways: 

�9 Radial spread 
�9 Axial reduction 
�9 Interface coupling 

1. Radial Spread 

A transducer which receives a signal from a propagated beam will average the 
signal over its face, so that the radial distribution of the beam must be considered. 
If the beam is broad, then variation across the transducer will be small, but a 
large, low-frequency transducer will have appreciable variation. The effective 
diameter of the transducer depends on its operation as well as on its physical 
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size. The average signal over a transducer face, as illustrated in Fig. 98, is 

S a v / S o  "~" 1 - y r ( ~ . / 2 L ) 2 ( d e f f / 2 Z )  4. 

The measured signal then departs from nominal by the increment rr(~./2L) 2 
( d e f f / 2 ~ . )  4. 

2. Axial Decrease 

The signal decreases inversely with distance, 

S ~ So4N/x ,  

where N = (deff)2/4~. is the near-field distance (see Appendix 8). 
A change of effective transducer diameter introduces a change to the near- 

field distance and hence the signal strength at a given distance. Thus a correction 
can be made to relate the signal from one diameter to another according to the 
formula 

Sdeff. l - -  Sdeff.2 (deff. l /de f f .2)  2 

3. Interface Coupling 

The amplitude of an nth echo is dependent on the effective impedance Zeff, using 
the formulas quoted earlier: 

SBn/I (A 2 , n = Reff) (A 2 Teff Tef f) 

The front-face echo is simply 

SFF/I = Reff. 

Design of Calibration Blocks 

The design of the blocks or wedges must account for reflections from the sides of 
the piece. They must be long enough to allow near-field effects to die down and 
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for significant attenuation to develop, yet not so long that reflections from the 
sides interfere. The near-field effects die down for L > 4N,  where N -- d2ff/4X 

2 is the near-field distance, so that L > deff/X. 
Outside a direct propagation path to the receiver the beam reflects toward 

the receiver off the sides. For ray angles greater than a t a n [ ( D -  deff/2)/L], 
however, the side reflection does not reach the receiver, as illustrated in Fig. 99. 
Rays outside the beam, i.e., with an angle Yo > asin[1.2X/deff], are of no 
consequence, so that [ ( D -  deff/2)/L] > tan Yo. 

The diameter/length ratio for the block must be therefore be bounded by 
the following: 

(D/deff)/(deff/X) > D / L  > deff/2L + tan Yo. 
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S O F T W A R E :  D A T A  P R O C E S S I N G  

W H A T  DOES S O F T W A R E  DO? 

Software manipulates waveform data to produce a desired display, or to provide 
a measurement of some aspect of the waveform. The manipulation is based on 
mathematical procedures (algorithms) and may be performed in the natural time 
domain or in the spectral frequency domain, as described below. 

This section is subdivided into four parts: 

A. Time Domain Analysis 
B. Spectral Domain Analysis 
C. Statistics 
D. Imaging 

W h a t  Is the T ime  Domain? 

A waveform is a sequence of wave magnitudes in a time progression, defined 
in Section 2. The representation of such a set of measurements is referred to as 
the time domain. The wave motions can depend on time in any way. 

85 
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W h a t  Is the Frequency Domain and the Spectrum? 

The amplitudes and phases of a sequence of sine waves of various frequencies 
which represent a waveform (as introduced in Section 2) comprise the spectra of 
the waveform. The frequency space in which they are defned is the frequency 
domain. 

There are two common forms of spectra: the discrete Fourier or harmonic 
series, and the continuous Fourier spectrum. These are discussed later. 

W h a t  Are the Software Types? 

The main types of software are constructed to produce the following results, 
and operate in the time or the frequency domain: 

�9 Display of waveforms 
�9 Measurement of a single parameter (e.g., time of flight, wavespeed, atten- 

uation) 
�9 Statistical representation of defects or properties 
�9 Waveform conditioning and spectral analysis 
�9 Imaging (mapping) of the distribution of defects or of variations in prop- 

erties (cracks, porosity, wavespeed, thickness, attenuation, etc.) 

A. W H A T  ARE THE TYPES OF T I M E - D O M A I N  ANALYSES? 

1. Display. Several ways of displaying the basic waveforms are the follow- 

ing: 

�9 A- and B-scans 
�9 RF and video waveforms 
�9 The analytic envelope 

2. Time-Domain Measurements. Analyses in the time domain which provide 
an end result of a measurement are: 

�9 Overamplification 
�9 Gating and thresholding 
�9 Correlation and convolution 
�9 Dispersion analysis 

3. Waveform (Signal) Conditioning, Preparation for Subsequent Analysis. 
These processes prepare waveform data for further analysis: 

�9 Waveform averaging 
�9 Detrending 
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�9 Smoothing 
�9 Zero padding 
�9 Truncation and windowing 

Smoothing can also be accomplished in the frequency domain (as described 
later). 

W h a t  Are  the T ime-Domain  A-Scan and B-Scan? 

Traditionally, there have been two types of waveform data display, the A- and 
B-scans. Many variations on these have been developed. 

The traditional A-Scan is a waveform, or the entire history of the main 
bang and one or more echoes, useful for indicating what is happening in terms 
of noise, echoes, reflections, etc., as illustrated in Fig. 9. 

The traditional B-scan (or line scan) is a sequence of A-scans taken at points 
along a line on the surface of an object, and displayed side-by-side to represent a 
cross-section of the boundaries of the object, as illustrated in Fig. 100. Because 
the reflected pulse is attenuated, the gain is sometimes increased by a preset 
fixed or time-varying amount for the echo. 

A presentation similar to the B-scan is used in seismology, referred to as a 
seismic cross-section plot, to illuminate the arrival of echoes from various layers 
in the earth's crust. The positive half of each pulse is darkened as illustrated in 
Fig. 101, by drawing lines between the baseline and the positive value at each 
time. It is then visually easy to identify the locus of an interface, as illustrated 
in the figure. 

How Are Waveforms Displayed? 

Waveforms can be displayed in several ways, illustrated in Fig. 10 in Section 2, 
i.e., the RF signal, the video waveform, and the analytic envelope. 

-~)- 

-~)-- 

Line scan 
Incident pulse Reflected pulse 

(front face) (back face) 

FIGURE 100 Illustration of a B-scan 
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. . . .  

Locus of interface 

FIGURE I 01 Illustration of seismology display 

W h a t  Is the RF Waveform? 

The signal received by the transducer is displayed directly. Since the UT fre- 
quency is typically in the kilohertz or megahertz range at which early-day radio 
waves propagated, the signal is called the radio-frequency (RF) waveform. Such 
signals must be handled with appropriate technology, such as the use of coaxial 
cabling, and high-frequency amplifiers. 

W h a t  Is the Video Waveform? 

The signal is rectified (negative values are changed to positive) and displayed 
possibly with smoothing or filtering to remove the high-frequency oscillations 
(discussed later). This waveform is referred to as video because, historically, 
it was displayed on an oscilloscope with low frequency response to produce a 
visual waveform. 

W h a t  Is the Analytic Envelope? 

A numerical procedure based on the Hilbert Transform (described next and 
in Appendix 13) is applied to the waveform in the time domain to create an 
envelope of the waveform. This is a representation of the amplitude modulation 
on the carrier wave frequency. The procedure also creates a time-domain phase 
function which has application to interpreting dispersion. 

The Hilbert transform H(t) of a function f(t) can be thought of as an 
integration operator which results in a differentiation. Thus the transform of 
sin(t) is cos(t), and conversely, that of cos(t) is - sin(t). The points of a wave- 
form are multiplied by a function (equivalent to l / t )  which is antisymmetric 
about t -- 0, and the result is integrated over a wide range. The envelope 
is then given by the square root of the sum of the squares of the waveform 
and of the transform, E(t) = [ f ( t )  2 + H(t)2] 1/2, analogous to the relationship 
(A 2 sin 2 0 + A 2 cos 2 0) 1/2 = A. 
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W h a t  Measurements  A r e  Taken f rom a T i m e - D o m a i n  W a v e f o r m ?  

Three types of numbers can be extracted from the time domain waveform: 

�9 Event t ime--typical ly the signal arrival or onset 
�9 Event amplitude--typically peak amplitude or a sequence of amplitudes 
�9 Statistical data 

Before any measurement can be made, an event must be identified: some 
aspect of the waveform must be selected and defined in relation to the waveform. 
A common example is the arrival or onset of a wave, such as the first motion 
in the signal. This can be confused with noise, particularly after a significant 
distance of travel. 

Since a waveform can change by dispersion and attenuation, identifying 
the event often requires interpretation through an understanding of the intended 
measurement and of any ways in which it may change during propagation. 

H o w  Is a T i m e  Event Measured? 

The time of a selected event is determined by detecting the first time that the 
signal exceeds a threshold set to characterize the event. The onset of a pulse is 
detected with a threshold set to a value just above the noise level, which must 
be estimated from data taken with no signal present. For other events, the nature 
of the waveform and the intended feature must be considered to allow a suitable 
threshold to be set. 

W h a t  Is Overampli f icat ion? 

Overamplification provides contrast between the noise and the signal, to help 
identify the onset of a signal. The gain of the signal receiver amplifier is set 
to a large value, so that the signal is either small or saturated, as illustrated in 
Fig. 102. This is equivalent to enhancing the contrast in a picture so that the 
image is black or white. 

/ 
. . . . . .  

As-received signal 

Sign. aAl~̂ .. ^ A ̂1 I 

--- v -,, vV] 

Overamplified signal 

FIGURE 102 Illustration of overamplification to determine signal onset 



90 ULTRASOUND AND ELASTIC WAVES 

"First arrival" 

TOA gate 

FIGURE 103 

OA threshold 

T i m e  

Gate-threshold technique for detecting wave arrival 

W h a t  Is Gating and Thresholding? 

A time interval, called a gate, or a window, is selected to ensure that only the 
event of interest in a pulse is examined, as illustrated in Fig. 103 for the arrival 
time. The signal is not examined outside the gate. Setting the gate requires a 
rough knowledge of the event time, for example, the propagation speed and 
distance, or the gate can be set by trial and error. Evidently a miscalculation 
here can lead to the wrong portion of the signal being selected. 

A threshold is a signal level which is expected to be exceeded by the 
amplitude of the portion of signal of interest, for example a multiple of the 
noise level for the arrival time. Again, if the threshold is incorrectly set, the 
wrong event may be selected. Several thresholds can be used in one gate to 
narrow the selection of the event. 

W h a t  Is the "rime of Flight? 

The time taken for a wave to travel a designated path is the time of flight 
or travel time. This is the difference between the onset time of the inserted 
wave and that of the received wave. In a TTU system, the path length is the 
dimension of an object, whereas in a PE system, the path is twice the distance 
to the echoing surface, of course. This may be an internal interface or crack, or 
the back face. The measurement of time of flight is illustrated in Fig. 104. 

The figure illustrates the problem of determining the onset of the received 
signal: the echo is preceded by some noise, and the signal rise is distorted from 
that of the input signal. Alternatively the time difference between the peaks o f  
the two wave forms can be used, but propagation affects these also. 

How Is T ime of Flight Used for Wavespeed or Path Length? 

Wavespeed can be determined when the distance propagated (path length) is 
known, or path length can be found when the wavespeed is known. In a PE 
system, the path length for a back-face echo is twice the thickness; in a TTU 
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FIGURE 104 Illustration of time of flight, transit time 
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system, however, the path for the transmitted wave is just the thickness, but 
for subsequent reverberations it is twice that. In complex configurations where 
there may be sequences of reflections from multiple interfaces, or reflections 
may develop off side faces, the path length must be examined carefully. 

If the wave path includes more than one material, or segments with mode 
conversion resulting in a different wavespeed, then the measured time includes 
the propagation time for each path segment: 

tmeas "- Z Xi/Ci 

where i is an index which identifies each segment, Xi is the length of each seg- 
ment (thickness for a single pass, or twice for an echo), and ci is the wavespeed. 
To determine wavespeed or thickness (path length) for any one segment, these 
must be known for all others. 

The propagation time for a selected segment of the path is then 

Tsel = tmeas -- Z Xi/Ci 

where i now excludes the selected segment. The wavespeed in this segment is 

r ~ Xsel/tsel. 

This wavespeed must be considered with care to identify the type of wave. If 
the material is dispersive (e.g., particulate or directional, or there are surfaces 
along the path), ~gen the wave is likely to give a group wavespeed measurement. 
The measurement should then be repeated at several different frequencies and 
in several directions to resolve the type. Of course, the appropriate speed must 
be used for the known segments. 

How Is Ampl i tude Measured? 

Commonly, the waveform event used for amplitude is the highest signal, or 
peak, lying within a preset gate, or time interval, as illustrated in Fig. 105. 
The discussion given earlier on the gate for time-of-arrival measurement is 
pertinent here. 
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FIGURE 105 Gate threshold for peak amplitude 
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F I G U R E  106 Illustration of correlation procedure 

W h a t  Is W a v e f o r m  Correlat ion and Convolution? 

Any similarity between two waveforms is examined by determining the corre- 
lation between them (discussed later under Statistics). 

In correlation, amplitudes at the points of one waveform wl (t) are multiplied 
by those of the second waveform w2(t) at each time point, as illustrated in 
Fig. 106, and the products are summed. The sum, S = Y~ wl  ( t ) w 2 ( t )  measures 
the similarity or correlation between the two waveforms. 

A series of correlations between the waves after shifting one in time relative 
to the other by increasing amounts is a convolution and is a function of the time 
shift: 

Wl ( t ) w 2 ( t  - ts) C12(ts) 

where ts is the shift time and C12 is the convolution between waveforms 1 and 
2. It is mathematically equivalent to an integration, 

C12(t) = f Wl (r)w2(t - r )d r ,  

which is usually evaluated by a spectral technique given later. Convolution 
between two waveforms allows the most accurate means of measuring the time 
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difference between them, such as the time of flight, and also provides measures 
of periodicity by examining the sequence of peaks which result. This is useful in 
analysis of dispersed waves as discussed later. (Other applications of convolution 
are described later.) 

How Is Dispersion Analyzed? 
Dispersion, the frequency dependence of wavespeed, manifests itself in a wave- 
form which stretches or shrinks in time, as discussed in Section 3 (see Fig. 46) 
and Appendix 7. It can be analyzed in the time domain through zero-crossing or 
convolution, or in the frequency domain through the phase spectrum described 
later. 

What Is Zero-Crossing Analysis? 
A dispersed time-domain waveform consists of oscillations whose period varies 
with time, as illustrated in Fig. 107. 

A typical oscillation crosses the axis at times tn and tn+j, so that half the 
period of the nth cycle is At = (tn+l - - t n ) ,  and it is centered at the time 
Itnl = (tn+i + tn)/2.  The frequency is then 

fn -- 1/2(tn+l - tn) 

and the phase, which is 0 at the zero-crossing tn, is 

ck = x ( x  - c t . )  = 0 

where k is the wave number, x is the distance propagated, and c = c ( f )  is the 
wavespeed at frequency f ,  so that 

c ( f . )  = x / t . .  

A plot of c ( f n )  vs fn is an approximation to the dispersion curve, as sketched 
in Fig. 108. This is only approximate because it assumes the wave shape to be 
constant over a half period. 

k..Jl  Itnl 
I 

r 

I 

tn At tn+l 

FIGURE 107 Illustration of zero-crossing analysis 
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FIGURE 108 Dispersion curve as measured by zero-crossing analysis 

W h a t  Is Waveform Conditioning? 

Errors which are introduced by data acquisition systems can be mitigated by 
preconditioning the waveforms in the time domain prior to spectral analysis. 
The factors which arise and the methods for conditioning are described next. 

What  Factors Affect the Time-Domain Signal? 

The time-domain signal is affected by the following factors: 

�9 Noise 
�9 Sampling 
�9 Aliasing 
�9 Drift 
�9 Leakage 
�9 Truncation 

What  Is Noise and the Signal-to-Noise Ratio, S/N? 
There is always some small signal, even without any wave activity: random 
noise, caused by spurious electrical or mechanical disturbances. Noise is usually 
of high frequency in relation to the signal of interest. Wave motions generated 
by the excitation, but which are not part of the wave of interest, such as echoes, 
resonances, and mode conversions, may also considered to be noise as illus- 
trated in Fig. 109, particularly if these motions overlap and interfere with the 
signal. 

The ratio of the amplitude of the signal of interest to that of the noise 
is called the signal-to-noise (S/N) ratio. Although a signal is usually greater 
than the noise, i.e., S/N > 1, specialized procedures are available to extract a 
nonrandom signal from random noise through analysis of coherence, but this is 
not discussed here. 

Noise is measured as a statistical variable so it is quantified by its root mean 
square (RMS) value, or better, through spectral intensities (discussed later). The 
noise spectrum is determined from data taken prior to the onset of the wave. 
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FIGURE 109 Illustration of signal and noise 
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The noise can be removed from the signal by subtracting its spectrum from that 
of the signal, or by a smoothing procedure (discussed later). 

What Is Sampling and Digitizing? 

In a digital system, the signal is sampled for very brief periods, repeated at a 
high frequency, as illustrated in Fig. 110. The amplitude of the signal in each 
sampling period is determined and is expressed as a digital number on a binary 
or equivalent scale. The waveform is then represented by a collection of numbers 
equally spaced in time, which can be manipulated by numerical processes in a 
computer. 

The sampling (or digitization) rate or frequency, which is determined by 
the sampling interval, must be sufficiently high that the signal is adequately 
resolved. As an example, a minimum of 10 samples is required to resolve a half 
wave, so that for a 1 MHz signal, the digitization rate must be higher than 20 
MHz. with a sampling interval of 0.05 ~tsec. The duration of the sample must be 
long enough for the circuitry to work, yet short in comparison to the sampling 
interval. 
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The selection of sampling rate is influenced by the factors described later, 
which include the total duration of the signal and the frequencies of interest in 
the signal. 

W h a t  Is Aliasing? 

When a pulse is sampled at time intervals At, the highest useful frequency, 
fmax, which can be attained in a spectral analysis is the Nyquist frequency: 

fmax--" f N  = 1/2At.  

All frequencies higher than the Nyquist frequency are partially sampled at lower 
frequencies and the data are included in the transform for the lower frequencies. 
This effect is called aliasing and is illustrated in Fig. 111. Aliasing leads to 
errors in the intensity estimate for low frequencies. This can be avoided by 
making the Nyquist frequency high, i.e., by raising the sampling rate through 
small At. 

The minimum frequency, fmin, which is also the frequency resolution incre- 
ment obtainable from a spectral analysis (described in Appendix 14), since the 
frequencies obtained are usually multiples of fmin, is 

fmin-" 1/Ttot - 1~NAt  = ( 2 / N ) f N  

where Ttot is the total duration of a waveform, and N is the total number of 
digitized points. Evidently the frequency resolution and the Nyquist frequency 
are coupled by the total number of points. 

W h a t  Are Offset and Drift? 

Data offset occurs when the baseline, i.e., zero line, of the waveform is incor- 
rectly set or has shifted through accident or varying conditions prior to data 

Sampling of pulse data 

/ - - ~ - - - ~ - - . . ~  / Time 

l ~ ~ ~ ~ ~ "LOw frequency alias 

High frequency pulse 

F I G U R E  I I I Alias sampling 



SOFTWARE: DATA PROCESSING 9 7 

.-~ Drifted baseline 

Offset baseline 

Nominal baseline 
Time 

F I G U R E  112 Baseline offset and drift 

collection. Drift occurs when the baseline changes gradually in time from its 
initial line during data collection. These effects, illustrated in Fig. 112, pro- 
duce unduly large low-frequency components in a spectral analysis and should 
be removed. The offset and drift can be subtracted from the waveform before 
spectral analysis is made (called preconditioning, described later). 

Note that the frequency of most electric power sources (50 or 60 Hz), a 
common source of noise, is very low in relation to the frequencies in a UT 
signal so that it appears as a baseline shift which changes from test to test. 

What Is Frequency Leakage? 

The use of discrete frequencies in sampling causes the spectral content between 
the discrete time points to be spread onto those points. This is called leakage, 
and occurs for high frequency content, particularly if there are spurious echoes 
in the signal. Leakage is minimized by data padding, described later. 

What Is Truncation and Sampling Bandwidth? 

Another source of leakage is from truncating the data before the waveform is 
ended. This produces an artificial sharp step in the waveform, as illustrated in 
Fig. 113. The step introduces spurious high-frequency content into the spectrum 
through Gibb's Phenomenon, discussed later. This can be minimized by using a 
window which modifies the waveform values at the end of the sampling period. 
Windowing is discussed later. 

Another effect of truncation arises because a signal is sampled over a finite 
time, ts. The spectrum of a sine wave, which is theoretically a sharp line at the 
frequency of the sine, becomes broadened over a frequency band Jr/ts with side 
lobes, as illustrated in Fig. 114. A short sampling time leads to a wide band, 
and therefore reduces the ability to isolate a frequency. This is the bandwidth 
associated with the signal. A narrow bandwidth is desirable in a spectral analysis, 
but in communications a broad bandwidth allows a wide range of amplitude 
modulation (superposition of low-frequency waves onto a high-frequency wave). 
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FIGURE I 14 Bandwidth effect of finite sampling 

How Are T ime Domain Waveforms Conditioned? 

Various procedures can be performed on a waveform to reduce the erroneous 
effects described above, as follows" 

�9 Averaging 
�9 Preconditioning (offset and drift correction) 
�9 Smoothing (time domain) 
�9 Windowing 
�9 Zero padding 

W h a t  Is Waveform Averaging? 

Spurious random effects in a waveform, such as electrical or environmental vari- 
ations, can be minimized by repeated acquisition of the signal from the test con- 
figuration. The assumption is made that these variations differ from waveform 
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to waveform, whereas the signal does not. It is not desirable or necessary to 
store all the waveforms. 

The excitation pulse is repeated by the exciter circuit at frequencies between 
100 and 2000 Hz (the cause of any sound heard in a UT test), in essence 
producing multiple tests of the same configuration. The readings from each 
repetition at each time increment are summed continuously for a preset number 
of repeats, typically 100 to 1000. The sum is divided by this number to provide 
an average over the repetitions. In practice, an accumulating average procedure 
is used in which only the latest average is stored, as described in Appendix 13. 

What Is Preconditioning? 
To reduce the low-frequency effects introduced by offset and drift of the signal, 
the entire waveform is subject to a linear regression (described later under Statis- 
tics and in Appendix 13), i.e., fitting a straight line (refer to Fig. 112, baseline 
offset and drift) by the least squares method: 

fo,d(t) = A + B t  

where fo,d(t) is a time function which represents the offset and drift. Values 
calculated from this function are subtracted from the data points. 

What Is Smoothing by Moving Averages? 
A moving-point average is used to eliminate noise from the signal, assuming it 
to be of high frequency in relation to the signal itself. This process takes data 
from a time interval covering some number of data points and averages them 
to produce a new point assigned to the center of the interval, as illustrated in 
Fig. 115. The time interval is moved from one end of the signal to the other, in 
steps of one or more points to create a new waveform. 

This procedure not only removes high-frequency oscillations superimposed 
on the waveform, but also reduces the peaks and troughs and flattens the slopes 

FIGURE 115 Moving average smoothing 



| 0 0  ULTRASOUND AND ELASTIC WAVES 

Delayed overshoot 

Nominal 
sharp step 

FIGURE 116 

I . . . . . . .  

ions 

Time 

Illustration of Gibb's Phenomenon 

of the waveform. Thus, while it can enhance the visual appearance, it can dis- 
tort the waveform and hence its spectrum. As a check, the smoothed signal 
can be subtracted point-by-point from the original signal to display the differ- 
ence, which should be unwanted noise showing no relationship to the smoothed 
signal. 

These effects are serious if the averaging interval is so long that it spans the 
waveform oscillations of interest. To evaluate this, the duration of the moving 
interval should be changed and the process repeated to determine the best size 
for adequate smoothing without excessive distortion. 

W h a t  Is Windowing? 

Selecting a portion of a signal for analysis is called windowing. This process can 
be represented by a sharp window which truncates the signal before and after 
preset times, as described earlier and illustrated earlier in Fig. 113. Such a sharp 
window is called a square or box-car window. A sharp onset, i.e., a square cutoff, 
can only be achieved in a system with infinite frequency response. Any real 
system produces an effect called Gibbs' Phenomenon, illustrated in Fig. 116, 
in which a step is replaced by an overshoot followed by oscillations. These 
oscillations modify the frequency characteristics of the signal. 

This effect is minimized by modifying the window to smooth out the tran- 
sitions. Such windows are represented by time functions which can be applied 
mathematically to the signal. 

Common windows which replace the square or box-car are illustrated in 
Fig. 117. These are the tapered step, and the Hamming and Hanning windows. 
They use various trigonometric or power-law functions to modify the jump. 

W h a t  Is Data Padding? 

For efficient spectral analysis and to improve the frequency resolution (dis- 
cussed later), the number of data points should be a large power of 2 (e.g., 
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29 -- 512 or 2 l~ = 1024). It is then useful to extend the waveform by adding 
data points with the value 0 as illustrated in Fig. 118. This is called zero 
padding. 

B. W H A T  ARE T H E  TYPES OF SPECTRAL ANALYSIS? 

Analysis of the spectral content of a waveform, i.e., the intensity of waves with 
all possible frequency components, provides a basis for physical interpretation 
of properties of an object under test. This is done through spectral analysis in 
the frequency domain using the Fourier transform, as discussed next and in 
Appendix 14. Major applications of the analysis include the following: 

�9 Measurement of parameters--frequencies,  spectral amplitude 
�9 Waveform conditioning 
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�9 Feature extraction 
�9 Dispersion analysis 

Many of the analysis procedures used in the time domain discussed earlier can 
be performed efficiently in the frequency domain of spectral analysis. 

W h a t  Is a Fourier  Harmonic  Series? 

A periodic waveform is one which repeats itself over a finite duration, as 
sketched in Fig. 119. The frequency corresponding to this period is called the 
fundamental. Sine waves with frequencies which are multiples of the funda- 
mental are called harmonics. The wave can be built up by combinations of the 
fundamental and harmonics with various amplitudes and phase shifts: 

oo 

w(t) = E An sin(2nJr f t + ~)n) 
n = 0  

where An is the amplitude and q~n is the phase shift of  the nth component,  as 
illustrated in Fig. 16. 

The amplitudes are called the Fourier coefficients. Their units are the same 
as those of the measurements in the waveform (volts, mm/sec, etc.). The phase 
shifts may also be positive or negative and are in units of  radians or degrees. 

W h a t  Is a Fourier  Spectrum? 

An arbitrary (nonperiodic) waveform can be expressed as an integral combina- 
tion of sines with all frequencies, in contrast to the restricted set of harmonics 
used in the Fourier series: 

S w(t) = A ( f )  sin[2yrft 4- dp(f)ldf 
o o  

Amplitude 

Time 

I I 
i i i I 
I 
I I , 

Fundamental period, T Repetition ' 

FIGURE I 19 Periodic waveform 
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FIGURE 120 Spectra of a waveform 

where A( f )  is the intensity spectrum and 4~(f) is the phase spectrum, as 
sketched in Fig. 120. The frequency range extends to negative values denoting 
negative phases. For waves, these represent waves moving in opposite directions. 

Because the integrand at a given frequency is the product of Andf  with 
the sine function, the units of the spectral intensity A n  are those of amplitude 
divided by frequency (e.g., volts/Hz or mm/sec/Hz). Those of the spectral phase 
4~n are radians or degrees. 

W h a t  Is a F o u r i e r  T r a n s f o r m ?  

The intensity and phase spectra can be represented by the complex variable 

F(o)) = Re[F(a))] + ilm[F(~o)], 

where Re represents the real part, Im the imaginary part, and i -- ( -1)! /2  is an 
imaginary unit. F is a function of the circular frequency co = 2zrf where f is 
the angular frequency. Again, the sine function can be replaced by the complex 
exponent ia l  e - i w t  = c o s o ) t -  i sincot, so that the waveform time function f ( t )  
is given by the integral 

/2 f (t) = F(co)ei~~ do). 
o o  

This integral is called the inverse Fourier transform, IFT, usually denoted by 
F -1, which creates a time function from its Fourier Transform. The complex 
intensity function F(co) can be derived through the integral 

f(o)) = (1/2n') f(t)e-i~~ 

which is called the Fourier transform of the function f ( t ) .  Note that some 
definitions of the transform pair, F(t) and F-l(co), include a factor 1/(2Jr) 1/2 
in each, so that symmetric formulas are obtained for the transform pair, allowing 
for simplified algorithms. This factor should be considered when results derived 
by different software packages are being used. 
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The complex integrand can be expanded as 

F(co)e -i~ - -  ( F R  c o s  cot - -  /7I sincot) + i (FR sinwt + Fj c o s  w t )  

so that the integral is a real function of time, f ( t ) ,  if the imaginary part is 
zero. This occurs if the intensity FR is symmetric in frequency about 0, and the 
intensity FI is antisymmetric, so that, with the sine and cosine multipliers, they 
cancel and their integrals are zero. Then 

Re[F (-co) ] = Re[F (co)] 

Im[F (-co)] = - I m [ F  (co)] 

It is thus not necessary to quote the negative frequency parts of the spectra. 

W h a t  Is a Fast Fourier Transform, FFT? 

When the time-domain waveform is digital, the Fourier transform can be approx- 
imated by evaluating the time integral as a summation at discrete times tn -- n A t  

where n is an integer and At is the time interval, and at discrete frequencies 
C O m  - ' -  m Aco where m is another integer and Aco is the frequency increment: 

N 

Fm -- ~ fne -inAtmAc~ 

n--0 

Here n takes values from 0 to N, where N is the total number of time values, 
so that tmax = N A t .  The set of N complex values (i.e., 2N numbers) is the 
discrete Fourier transform (DFT) of the time function fn .  

Because the N values of the time function produce N complex transform 
numbers (i.e., 2N numbers), all the information in a real time-domain pulse 
defined by N points is contained in two frequency-domain functions defined 
over half as many frequency points, N / 2 .  Only half of the frequency range of 
the transform is useful, the other half being identical. Hence m takes values 
from 0 to N/2.  

To simplify this summation, the lowest frequency, fmin -- ACO/2zr, is taken 
to occupy the total time interval, T = NAt ,  so that 

f m i n  = Aco/2zr = 1 / T  = 1 ~ N A t ,  or N A t A c o  = 2re 

and the argument of the exponent is 

m n  A t  Aco = m n / N .  

The range of frequencies, which is the maximum frequency, is then f m a x  = 

nAco/2zr  = i / A t .  

Evidently fine frequency resolution demands a long time signal, T -- N At. 
The sampling rate and number of points do not individually affect the frequency 
resolution, i.e., using more points, and thus a smaller time increment, in a fixed 
length of signal does not improve frequency resolution. There are other benefits 
to small time increments, however, as discussed later. 
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What Is the Nyquist Frequency? 

Because N real values of a time function produce N complex transform numbers 
with 2N real values, and because the intensity spectrum of a real time function is 
symmetric in frequency (negative frequency gives the same values as positive), 
only half the frequency range of the transform is useful. All the information in 
a real time-domain pulse defined by N points is contained in two frequency- 
domain transforms defined over half as many points, N / 2 .  

Frequencies above the center frequency of the transform, fN = 1/2At,  
called the Nyquist frequency, reflect the same spectrum as those below. 

What Is the Cooley-Tukey FFT Algorithm? 

An efficient numerical procedure called the Cooley-Tukey algorithm is com- 
monly used, based on an ingenious binary representation and manipulation of 
the arguments of the exponential, which are defined by the integers m and n: 

m n A c o A t  = 2rcmn /N .  

N is taken as a power of 2, i.e., N = 2P, where p is an integer typically between 
6 and 12. 

The transform produced this way is one estimate of the spectrum and con- 
tains errors described later. Another commonly used spectral estimate is the 
Maximum Entropy algorithm. 

What  are the Power Spectral Density (PSD) and Root Mean Square 
(RMS) Density? 

When the phase is not important, the square of the intensity, PSD = Re(F)  2 + 
Im(F)  2, called the power spectral density, is sometimes used as an indication 
of the energy spectrum. The units of the PSD are amplitude squared divided by 
frequency (e.g., voltsZ/Hz). The RMS is the square root of the PSD and so has 
the units of the amplitude divided by square root of frequency (e.g., volts/Hzl/2). 

What Is a White Spectrum (White Noise)? 

An intensity spectrum which is uniform over all frequencies, i.e., F (09) -- Const, 
is called white (from the analysis of white light, which contains light of all colors, 
i.e., frequencies, in equal amplitude and with random phases). A spectrum which 
is almost white is called pink. 

What Is the Phase Spectrum? 

The phase spectrum can be determined from the real and imaginary spectral 
functions: 

~(co) = a tan[ Im(F) /Re(F)] .  
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This definition generally results in phases which lie in the range - J r  to Jr. 
Realistically, the phase can cover any value; for example, the phase can represent 
the propagated distance such that ~b = x x  = 2rcx/~. ,  where x is the wave 
number, )~ = c / f  is the wavelength, c is the wavespeed, f is the frequency, and 
x is the distance. This relationship of phase to distance is its most useful aspect. 
It can be used to determine the wave number K, and hence the wavespeed, when 
distance is known or it allows the propagated distance x to be determined when 
the wave number (or frequency and wavespeed) is known. 

When the phase passes beyond the range - J r  to Jr, it is truncated by numer- 
ical procedures and "wraps around" the range, as indicated in Fig. 121. It is then 
necessary to unwrap the values. 

A common procedure for this unwrapping is to examine the slope of the 
wrapped phase. When the slope changes sign and the phase, extrapolated back- 
ward and forward to a common frequency point, changes by -+-2zr over two or 
three frequency steps, it can be assumed to have jumped by - q- 2rr, as illus- 
trated in Fig. 122. For all frequencies higher than each jump, the phase points 
can be adjusted by - • 2Nzr where N is the number of prior jumps. 

A common use of the spectral phase is for dispersion analysis (determining 
the frequency dependence of wavespeed) as described below. 

What Are the Common Spectral Analyses? 

An FFT of a waveform can be analyzed in several ways: 

�9 Measurement  of frequencies, spectral amplitude 
�9 Smoothing, filtering 
�9 Doppler shift 

The FPTs of two or more waveforms can be analyzed in several ways: 

�9 Cross-correlation (convolution) 
�9 Transfer function 
�9 Coherence 
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FIGURE 121 "Wrapped" and "unwrapped" phase spectra 
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FIGURE 122 Unwrapping of phase 

W h a t  Are the Common Spectral Measurements? 

The major use of a spectrum is to identify those frequencies which contribute 
most to a waveform. Such frequencies can represent vibration modes of an 
object, which are governed by size, shape, and properties, or they can indi- 
cate the transit time of multiple passes of a reverberating wave. Any shift 
in these frequencies between measurements taken on a moving object and 
on the object when stationary define its velocity through the Doppler shift 
formula 

v = c A f / f  

where c is the wavespeed. 
The frequencies and spectral intensities can be identified by the gat- 

ing/thresholding method described earlier for time-domain analysis. 
Attenuation is determined as a function of frequency by obtaining spectra 

for a waveform at several distances of propagation. This can be done either by 
using objects of different size or by analyzing individually a sequence of echoes 
in a single object. 

In the linearly elastic materials typical of UT test objects, there can be no 
transfer of energy between spectral components. Energy at one frequency can 
only be dissipated as heat, i.e., attenuation. Thus a change of intensity at a fixed 
frequency is due entirely to attenuation. 

How Is a Waveform Smoothed,  Filtered Spectrally? 

A method of smoothing a waveform, alternative to the moving-average method 
in the time domain described earlier, is to filter out undesirable spectral com- 
ponents: the FFT of the waveform is windowed (see the earlier discussion of 
windowing) to remove high-frequency components, and an inverse FFT is per- 
formed. 
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W h a t  Is a Frequency-Domain Dispersion Analysis? 

Application of  the Fourier transform to a waveform described by the space-time 
function for a propagating wave w(x ,  t) -- Ae i(Kx-~~ = AeiKXe -i~~ results 
in a transform of the type W(x ,  co) -- eixxF(co). The phase spectrum of this 
transform is then 

$ ( f )  = xx  + ~o -- 27r f x / c  + Oo 

where tan ~bo = FI/FR is the phase of the time transform. By determining the 
phase at several distances, x, the phase spectra at each frequency can be fitted 
to a straight line in distance, whose slope is c ( f )  = 2 r c f / c ( f ) .  

C. W H A T  S T A T I S T I C A L  M E A S U R E M E N T S  ARE TAKEN? 

Statistical measurements which are taken in either the time or the frequency 
domain are the following: 

�9 Elementary statistics: means, standard deviations, histograms of variance 
�9 Distributions, cumulative distributions 
�9 Linear regression (curve fitting) 
�9 Correlation (convolution) 
�9 Feature analysis 

W h a t  Are the Elementary Statistics? 

Elementary statistical evaluations are commonly made when an object is scanned 
and variations over the object are to be quantified. For example, the wavespeed is 
measured over a grid of points on an object, and the results are to be compared to 
those from another similar object (see later discussions of C-scans and imaging). 

A set of multiple measurements of a quantity with random variations (errors) 
is characterized by two statistics, defined in Appendix 13: the average, or mean, 

# = ( E m ) / N ,  

of a set of nominally identical measurements m, and the standard deviation, 

cr -- {[(]~m 2) -- N I z 2 ] / ( N -  1)} 1/2. 

Note that cr is defined with a divisor of ( N -  1) because the inclusion of the 
statistic ~t reduces the effective number of measurements,  or degrees of f reedom 
of the measurements,  by 1. 

W h a t  Is a Histogram? 

The measurements are assigned to intervals (bins) which span a small range of  
the variable, Ambin, and are centered at measurement  values robin. The number  
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of times the measurement  falls into each of  these bins is plotted against  the 
center value for the bin, as illustrated in Fig. 123. 

If the errors are random, the distribution of  the measurements  is modeled  by 
the normal  probabili ty function exp[--(mbin - - /z)2/2cr  2] (called the bell curve). 
When  the measurements  conform to the bell curve, they represent  two param- 
eters: the mean,  /z, and the standard deviation, or, of  random variations about  
the mean. The width of  the bell where  the number  of  occurrences is 0.6065 
(-- e -1/2) times the peak is twice the standard deviation. 

A convenient  way to determine bt and cr is based on the cumulat ive distri- 

bution described next. 
The extent to which the data depart  f rom the bell curve reveals any nonran- 

domness  in the deviation. For instance, if the data display a second hump to one 
side of  the main hump, the measurements  may represent  two distinct parameters .  
This is called a binary distribution, as illustrated in Fig. 124. A c o m m o n  example  
is the measurement  of  wavespeed  through an object containing a crack, where  

No. of occurrences 

Pe_ak_ _ _ _ , 

0.606 Peak . / 5  ii2cri~ Normal error distribution 
. . . . . . .  *q--*- ~ - -  ~ - ~ ~  i' \ ("bell curve") 

- ~  212~ 

I I I I I I I~ I I I t 

# 

Measurement interval (bin) 

F I G U R E  123 Statistics of typical measurements 

No. of occurrences 
Primary distribution 

ndary distribution 

'Z ', i \/, i i 

r r 
/z 1 /-z2 

Measurements interval (bin) 

F I G U R E  124 Illustration of two-parameter distribution 
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early reflections occur from the crack. These can be incorrectly interpreted as 
indicating higher wavespeed. An alternative conclusion is that there is a shorter 
path, i.e., the presence of a crack, giving a shorter travel time. The depth hcr 
of the crack can be estimated to be ( t ze / t z j )h ,  where h is the total thickness 
and # l  and #2 are the means of the "apparent wavespeeds" calculated from the 

formula Capp = h / t .  
Another common statistic which is often used to describe a random variable 

is its root mean square (RMS) value, 

R .=0  -- [(~-,m2)/Nl 1/2 -- { [ ( N -  1)/No'2-k - J.l,2) 1 / 2 .  

When the mean is zero, the RMS is almost the same as the standard deviation" 

Ru=0 = [ ( N -  1) /N]a .  

W h a t  Is a C u m u l a t i v e  Distr ibution? 

The histogram data on the number of occurrences of bin measurements can be 
summed from one bin to the next, starting with 0 at the lowest bin, signifying 
the total number which fall below the current bin. These accumulated numbers 
are divided by the total number of measurements and expressed as percentages, 
so that the highest bin has 100% of the measurements. Such a distribution is 

sketched in Fig. 125. 
The integral of the normal distribution is a model for the cumulative dis- 

tribution with random errors. The probable numbers for the mean (50%), and 
for one and two standard deviations away from the mean, are shown in the 

figure. 
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What Is Linear Regression (Curve Fitting)? 
The mean and standard deviation take no account of the sequence in which 
the measurements are taken, or any other factor which distinguishes each mea- 
surement. If, however, there is a relationship between each measurement,  called 
the dependent variable, and a factor which defines the individual measurements,  
called the independent variable, these two statistics are not sufficient to represent 
the data. In that case, a theoretical model of the dependence on the independent 
variable must be considered. 

The simplest model is a linear relationship between the measurements m 
and the independent variable, typically time t or a dimension such as thickness: 

mmodel = a + b t  

where mmodel is a hypothetical model of the measurement,  and a and b are two 
constants to be determined statistically. This is done by considering the deviation 
A between each measurement and its model, as illustrated in Fig. 126. 

(A = m - mmodel). 

The following equations are obtained by minimizing the sum of the squares 
of the deviation, to give equal weight to positive and negative deviations, in 
variations of a and b (see Appendix 13): 

a = l Z m  --b#t 

b -- [ (Emt  - N l Z m l Z t ) / ( E t  2 - N/z2)] 

w h e r e  # m  = ( E m ) / N  is the mean of all N dependent variable measurements 
and /Zt - -  ( E t ) / N  is the mean of all the independent variable values (e.g., 
times). 

The regression procedure can be extended to model a dependence on mul- 
tiple independent variables, for example, time, t, and thickness, h: 

m = a + b t  -+-ch. 

Measurement, m 

Model: m = a + b t  

Deviation, A 

. ~ . ~ J  Measurements 

6" 

Time, t 

F I G U R E  126 Illustration of deviations between data and statistical model 
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The procedure can also be used to represent nonlinear dependence by substituting 
functions of the independent variables, for example, 

m = a + b c o s t  + ch 2 

where cos t and h 2 are treated as independent variables. 

W h a t  Is Correlation? 

Correlation is a way to provide a statistical definition of any similarity between 
two sets of measurements taken under the same conditions on two different 
parameters which contain errors. 

Consider the measurement of two quantities X and Y. Several measurements 
of each are made giving the values X l, X2 . . . .  Xn, and Yl, Y2 . . . .  Yn, with means 
/Zx and #y,  as illustrated in Fig. 127. 

The mean IXI (and similarly IYI) is 

I X l - = ( 1 / n ) E X i .  
i 

The variance of the measurements of X is 

G 2 = [ 1 / ( ~  - 1)] y ~ ( x i  - IXl)  2 

where arx is the standard deviation for X. 
The correlation between X and Y as determined from the measurements is 

r 

- { _ l oxo  

Considering a waveform as a set of amplitude measurements,  any similarity 
between two such waveforms WA and WB can be identified through correlation. 
This is done by summing the products of the values of the two waveforms for 
each time: 

S = WAItUB1 ~ WA2WB2... 

as illustrated in Fig. 106. 

Mean 

I I I 1 '  I II 
Xl x2 IxI Xn 

I II 
Yl Y2 

Mean 

I I I  

Measurement X 
r 

Measurement Y 
11,. 

FIGURE 127 Illustration of multiple measurements 
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If the peaks of the two waveforms A and B do not correspond in time, 
but are otherwise similar, as illustrated in Fig. 128, then the correlation would 
be small. However, if waveform B were to be shifted until the peaks came 
into alignment, the correlation would be increased. This allows the construction 
of the correlation function, in which two waveforms are aligned successively 
at each data time point, and a correlation determined for that alignment. The 
resulting function, which has as many points as the waveforms, is the correlation 
function, as illustrated in Fig. 129. 

Evidently a waveform can be correlated this way against itself, producing 
the autocorrelation function. This process identifies periodicity in the waveform, 
since correlation would be increased when a pulse aligns with a similar later 
pulse, as illustrated in Fig. 130. 

At position A in the figure, the negative amplitudes in the shifted wave- 
form align with positive amplitudes in the original waveform, giving a negative 
correlation. At position B, the positives coincide, giving a positive correlation. 

~ m  B shifted 
i ' 

Time shift for waveform B 

FIGURE 128 Correlation between two waveforms 

a 2 ve ~ 

~ Waveform B 

/t~ /7~ W'x ~ Time 
k J i k - J  x_~ ~ -- 

Correlation 

/~  /-~ /~ ~ Shifltime 

FIGURE 129 Correlation function between two waveforms 
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Original waveform 
First pulse Second pulse 

~ /~ /-~ /~ /~ ~ ,~ Time 

:" i i Shifted Waveform at A ::! :...: 

. . . . .  - 

": . Shifted Waveform at B 

: , . .  

FIGURE 130 Illustration of waveform autocorrelation 

The peak of an autocorrelation occurs at zero time shift, and the autocorrelation 
function is similar to the original waveform. 

W h a t  Is Convolution? 

A convolution is an integral over time of the shifting product of two time 
functions f ( t )  and g(t): 

J0' c f, g(t) = f (r)g(t - r ) d r  

where t is the time shift, and r is a dummy time variable denoting the integration 
over the product of f ( t )  and the time-shifted function g ( t -  r).  This algorithm 
can be most conveniently evaluated in the frequency domain, as discussed later. 

W h a t  Is Spectral Correlation? 

The transform of the convolution between two time functions is 

F { f f ( t ) g ( t - r ) d r } = F * ( c o ) , G ( c o )  

where the complex conjugate of a spectrum F (co) = FR (co) + i FI (co) is defined 
by reversing the sign of its imaginary part: 

F* (co) = FR (o9) -- i FI (co). 

Note that either spectrum can be taken in conjugate form since F (09), G* (co) = 
F*(co ) ,  G(co). This is a point-by-point multiplication of the values of one 
spectrum with those of another which can readily be obtained. 

Convolution is also used to define the response R(t) of a system to an exci- 
tation or forcing function F(t) through the product of the fundamental system 
response or transfer function, f ( t ) :  

f0 ' R(t) = f ( O ) f ( t )  + [ ( d f  / d t ) r ] f ( t  - r )dr  
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W h a t  Is a T r a n s f e r  Function? 

The transfer function (or fundamental response) f ( t )  of a system is its response 
to a step function in time of unit magnitude. The response, r(t) ,  of the system 
to an excitation F(t )  is described by the convolution 

f0 t r(t)  = F ( r )  f (t - r )d r .  

The formation of this integral is illustrated in Fig. 131. 
These calculations can best be done in the frequency domain. The output 

waveform Wout(t) from transmission of an input waveform Win(t) through a 
transfer function described by f ( t )  is the inverse transform of the frequency 
domain convolution: 

Wout (t) = F -  1 { Win (o)) * F* (o9) } 

where F - l  denotes the inverse transform of the terms in brackets, F(~o) is the 
transform of the transfer function f ( t ) ,  and W(~o) is the transform of the input 
waveform Win(t). 

This theorem has a most useful corollary: it can be inverted. Thus if the 
output waveform and the transfer function are known, the input waveform can 
be found: 

Win(t) -- F -I  {F(og)/Wout(O9)} 

Similarly, the transfer function can be determined from measurements of the 
input and output waveforms: 

F(t )  -" F - l  {W*ut(O))/Win(O))} 

FIGURE 131 Illustration of convolution for response to an excitation 
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W h a t  Is a W a v e f o r m  Feature? 

A feature is a derived quantity whose values are related physically or correlated 
statistically to some quantitative aspect of an object under test and can be used 
to distinguish between two or more test configurations. 

Simple features include the arrival or onset of  a pulse (related to wavespeed),  
the largest peak (related to attenuation), and the dominant frequency (related 
to the size and shape of an object). A group of statistics can form a com- 
bined or a multivariable feature. Some typical features are the ratio of  two 
peaks, the number  of peaks, the number of zero crossings in a pulse, the width 
of the largest peak and the slope of its rise, the area under a peak, and its 
moment  about the time axis. Such features may be created from physical rea- 
soning, or they may have no obvious attribute. Each would be derived sta- 
tistically as described next. Features are usually influenced by the measuring 
system. 

The detection of a feature and its display is the most important facet of 
modem UT techniques and requires suitable software to analyze the waveform. 

W h a t  Is Feature Extraction Analysis and Discrimination? 

For each test configuration to be compared, typical waveforms (single or several 
averaged and processed) are acquired and analyzed to determine many param- 
eters. Such test configurations could be different test objects or different test 
setups. 

To illustrate the feature extraction process, consider two parameters, say 
time of flight tf and peak amplitude Ap, for multiple tests on each of two test 
configurations 1 and 2. The data can be plotted as shown in Fig. 132. 

For each test configuration, the means and standard deviations of the two 
parameters Ap and tf are found and the bivariate normal probability distributions 

Peak amplitude, Ap 

]JL A p I 

Id, A p 2  

Probability distribution for configuration 1 

~'--. / P l = P 2 '  d i s c r i m i n a n t  l i n e  
/ /  

" / Probability distribution for configuration 2 / / ~  
" - . , . . .  

I / / /  
' 
I 
I 
I 

' Time of flight, tf I i 
r 

/ztf 1 #tf2 

FIGURE 132 Illustration of multivariate statistical plot 
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for the two sets of data are set up: 

p,  -- exp[_(82/cr  2) - (82 / ,2 ) ]  

where 8A = ( A p -  ~tA) and 8t = ( t f -  ~t), and similarly for p2. These are the 
probabilities for a specified pair of measurements (Ap, tf) belonging to one set 
or the other. Once these distributions are determined on sequences of tests on 
known configurations, similar measurements on an unknown configuration can 
be identified as belonging to one or the other set by comparing these probabilities 

for that pair of measurements. 
The pair (Ap, tf) belongs to the set 1 or 2 according to whether pl is greater 

or less than p2. Consequently, a discrimination feature can be defined as 

F12 --- P l /P2 ,  so that FI2 > 1 implies p belongs to 1, and < 1 to 2. 

Alternatively, the distance of a point (Ap, tf) obtained in a new test from the 
two points representing the means for configurations 1 and 2 can be used as a 
feature. A line perpendicular to the line joining the means for configurations 1 

and 2 can be found on which pl = p2. This line is the boundary in the Ap-t f  
space which separates the configurations. Such a line is called a discriminant. 

When such an analysis is made on a group of measurements and a multi- 

dimensional analysis is made, a complex discriminant feature can be derived. 

D. W H A T  IS I M A G I N G ?  

Images are two-dimensional representations of the internal configuration of an 

object, i.e., a map of variations in some measurement. Direct display of wave- 
forms as described earlier (A- and B-scans) are not considered here to be images. 

What Are the Types of Image? 

Common images are: 

�9 C-scan (or area scan) 
�9 Tomography 

�9 Steered image 

W h a t  Is a C-Scan? 

A sequence of waveforms is taken, by PE or by TTU, at points on a grid overlaid 
on the surface of an object, which is usually of large size in comparison to its 

thickness, such as a sheet or panel, as sketched in Fig. 133. 
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F I G U R E  133 Illustration of test arrangement for C-scan 

�9 ??- 

Area scan over grid pattern 

FIGURE 134 Illustration of a C-scan 

W h a t  Is a Pixel? 

Single feature data, usually travel time or peak signal, are derived from the 
waveforms and are assigned to the cells of an image of the grid (each grid 
box is referred to as a picture cell, or pixel). Contours of constant values of 
the data are connected to form a contour map which represents variation in the 
properties through the thickness of the entire object, as illustrated in Fig. 134. 
Any property obtainable from a waveform can be used in a C-scan, but most 
commonly the transit time or attenuation are used. 

A C-scan can also be called a data map and can be enhanced by drawing 
contours and by using color. It can be updated continuously to show motion. 

What  Is Tomography? 

A cross-sectional view of the interior properties of an object can be constructed 
from scans taken from many positions around its periphery, as illustrated in 

Fig. 135. 
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FIGURE 135 Illustration of test arrangement for tomographic scan 

FIGURE 136 Illustration of image reconstruction 

A single quantity is extracted from the waveform for each emitter-receiver 
path. These are added in each pixel with a weighting factor determined from 
the pixel-path geometry allowing for differing extent of participation. The result 
is assigned to the pixel for plotting as a tomographic scan, as illustrated in 
Fig. 136. This process is called back-projection reconstruction. 

Tomography has been attempted in various UT applications, but its com- 
plications have precluded all but a few research efforts. It is used extensively 
in medicine as computed tomography (CT) (originally computer-aided tomog- 
raphy, CAT) with X-rays, or with microwaves in magnetic resonance imaging 
(MRI). Recordings of surface motions of the sun have been interpreted as sound 
waves and used to construct tomographic images of the solar interior. 

What  Is a Swept Image? 

In medical UT, a linear array of transducers provides a steered sweeping.beam 
which scans an object. It operates in the PE mode so that there is no separate 
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moving receiver. The beam is steered by introducing successively increasing 
time delays across the transducer array (described earlier in Section 5, Hard- 
ware). The waveforms from each transducer are analyzed to produce one mea- 
sure such as attenuation, and this is subjected to a form of tomographic recon- 
struction. 



APPENDIX 

STRESS, STRAIN, AND ELASTICITY 
(ALSO VECTORS AND TENSORS) 

A. E L A S T I C I T Y  

The following discussion is intended to provide an intuitive description, yet 
retaining all facts pertinent to UT. Many texts (e.g., Love, 1944, or Sokol- 
nikoff and Specht, 1946) deal with this subject in varying degrees of detail and 
completeness. 

A material will deform when subjected to forces. If the deformation is 
dependent directly on the force, so that it follows any change in the force and 
disappears when the force is removed (reversibility), then the material is elastic. 
This elastic deformation may be linearly proportional to the force, typical of 
low to moderate forces, or it may be nonlinear but still reversible under high 
forces (in materials which do not yield plastically) as illustrated in Fig. 19 of 
Section 2. 

Nonelastic deformations can appear under high forces, where some or all 
the deformation remains after removal of the force (plasticity, irreversibility), or 
when the deformation changes with time under constant, even zero, force (creep, 
viscosity, shrinkage). Deformation can appear to be nonlinear and irreversible 
under low or high forces when the force is not applied correctly (slippage, 
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mechanical backlash, etc.) or when the measurement of force or deformation is 
inadequate (incorrectly initialized, etc.) 

In linear elasticity, deformation 6 (i.e., change of length, l -10)  is propor- 
tional to force F: 

F = K 6  

where K is the stiffness. This stiffness depends on extrinsic factors--the global 
configuration of the material, the distribution of the forces, and the measurement 
of deformationmin addition to the intrinsic nature of the material. 

This relationship, called Hooke's Law, was discovered by Robert Hooke 
while studying clock springs. He published it in 1660 as the anagram "ceii- 

iosssttuv," which no one understood. In 1676 he published the corresponding 
Latin phrase "Ut tensio sic vis," which translates roughly into "As the stretch 
so the force" (Love, 1944). Generalizations of this law were developed over 
the following 200 years by such scientists as Navier and Cauchy. They are dis- 
cussed in Appendix 2. Note that Sokolnikoff and Specht (1946) give the date 
of Hooke's first publication as 1676, and the second as two years later! 

Commonly in engineering, tensile forces are taken to be positive while 
compressive forces are negative. Extension (stretch) is positive, and shortening 
(compression or contraction) is negative. Pressure as applied to a fluid, however, 
is usually taken as positive, contradicting the engineering definition. 

The dependence of stiffness on extrinsic factors can be accounted for, leav- 
ing only intrinsic material properties, by defining local force and deformation 
measures: stress cr (force divided by area, F / A )  and strain e (essentially defor- 
mation divided by initial length, 6/l),  as discussed later. In an elastic material. 
Hooke's Law relates these linearly: 

cr = Ee  

so that K = E A / l ,  where E is the elastic modulus, a material property, A is 
the area carrying the force, and 1 is the length. This relationship is generalized 
to account for three-dimensional aspects in Appendix 2. 

B. STRESS 

There are two types of force: surface and body forces. Surface forces are applied 
over all or part of a surface. Stress is defined as the surface force per unit area: 

o" = F / A .  

This elementary one-dimensional definition of stress is generalized into three 
dimensions later. 

Body forces are applied to an interior-volume region of the material. Body 
forces are represented by force per unit volume and are not stresses. Inertia force 
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FIGURE 137 Directionality of force 

(discussed in Appendix 4), which is proportional to density and acceleration, is 
an example of a body force: 

f = pa 

where f is a point body force, p is density, and a is acceleration. Other examples 
are gravitational and electromagnetic forces. 

Force, Area, and Stress in Three Dimensions: Vectors and Tensors 

To this point, directionality of force has not been considered. In fact, force, 
as well as area, are associated with directions: they are vectors (written here 
as bold symbols) and must be described by three components in relation to a 
designated coordinate system. For example, a force vector, F, has components 
Fx, Fy, Fz in a Cartesian coordinate system of x-, y-, z-axes, so that the indices 
x, y, z on force represent the components of force in the directions of the axes, 
as illustrated in Fig. 137. 

A convenient shorthand way to describe the components of a vector is to 
use numbers 1, 2, or 3 to represent each of the three coordinate components. 
A letter, called an index, is then used to represent these numbers as variables 
when arbitrary directions are considered, essentially an algebraic notation. For 
example, the components of a force vector F can be represented by the single 
symbol Fi, with i taking values 1, 2, or 3 according to context, such that 
F = (F1, F2, F3). Similarly, area is A = Ai, where the directionality is that of 
the normal to the surface, as illustrated in Fig. 138. 

In general, the force may not be normal to the area, so that the components 
of force and area do not lie parallel and must be described separately. The 
components are given different letters, e.g., i and j ,  since these can each take a 
value of 1, 2, or 3 independently in considering different components of force 
and area. The components of stress are then 

oij = Fi /A j .  
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F I G U R E  138 Directionality of area 

(Note that, to purist mathematicians, it is not correct to divide anything by a 
vector. For the present purpose, however, the result is sufficient and is descrip- 
tive.) 

The components of stress form a 3 x 3 matrix: 

oij  ~ o21 o22 o23 

o31 ~  o33 

Stress is a quantity which involves two vector directions and is called a tensor. 
The description of a physical quantity by a vector or a tensor is intimately 

tied to the use of a coordinate system. A different coordinate system results in 
different components of the same physical quantity. 

Change of Coordinate System 

In an alternate coordinate system, where the axes are each at some angle (possi- 
bly all different) to the original axes, each of the new axes can be described by 
a unit vector ui (i.e., one having unit length). In a Cartesian coordinate system, 
the length of a vector Vi is given by the Euclidean formula 

3 
2 _}_ 2 1/2 __ f f-~(Vi )1/2 1/2 L = (v  2 + l)y V z)  Vi --  (ViVi) 

i : 1  

The third equation introduces Einstein's shorthand summation convention in 
which the repeated index i indicates a summation over all three values, 1 to 3, 
the summation symbol being dropped. In that case, the letter used for an index 
is not unique, and any other letter can be substituted. Unless specifically stated, 
a letter can never be used more than twice in any expression. Then for a unit 
vector, 

UiUi = 1. 

This has components in the original system, as illustrated in Fig. 139. 
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F I G U R E  1 3 9  Def in i t ion  o f  n e w  coo rd ina t e  axes  

A unit vector Ux, which defines a new x-axis has the components  

U x, --- (Ux,x, Ux'y, Ux' z) --- (cOSOx,x, COSOx'y, COSOx' z) 

where Ox,x, etc., are the angles between the new x'  axis and the three original 
axes, x, y, and z. The new coordinate system is described by three such unit 
vectors each having three components ,  forming a 3 x 3 matrix. The matrix of 
direction cosines is written as the matrix li, j ,  

COS OX, x COS Ox,y COS Ox, z ) 
l i , j --  cOS O y, x COS O y, y COS O y, z . 

COS Oz, x COS Oz, y COS Oz, z 

The angles Oy,x, etc., are the angles between the new y' axis and the three 
original axes. In general, the new axes may not be orthogonal (at right angles 
to one another) so that the angles are not necessarily symmetric:  

Ox'y ~= Oy'x. 

For rotation of the axes through an angle 0 about an axis defined by the unit 
vector ai (aiai = 1), the directional cosines are 

lij - -  •ij + a i a j  (1  - cos 0) + 8ijkak sin 0 

where 8ijk, called the alternating symbol,  has the following values: 

+ 1 when i, j ,  k are in cyclic sequence of 1, 2, 3 (1, 2, 3 or 2, 3, 1 or 3, 1, 2) 

- 1  when i, j ,  k are in countercyclic sequence of 1, 2, 3 (3, 2, ~ or 2, 1, 3 or 

l, 3, 2) 

0 when any two or more of i, j ,  k are the same. 

For small angles, say 0 < 10 ~ so that cos 0 ~ 1 and sin 0 "-- 0 this expression 
is simplified to lij '~' Sij -Jr- 6ijkOk, where Ok = akO called the rotation vector, 
which is a rotation through an angle 0 about an axis ai. 
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The components of a vector, such as force, in the new coordinate system 
are then given by the contributions of each of its original components along the 
new axes: 

Fx, = Fx cos Ox,x + Fy cos Ox,y + Fz cos Ox,z, etc. 

The transformation of the components of force is then 

Fi, -- y ~  li,j Fj  ~- li,j F j 
j - -1  

This transformation formula is used as a test to ascertain whether a group of 
three quantities is a vector. For example, whereas the three components of a 
force form a vector, a group of three measurements of distance in one direction 
do not. 

Properties of Stress 
It can be shown through consideration of angular momentum that the stress is 
symmetric: 

o.ij = o.ji 

so that only six of the nine possible components are independent. They are the 
normal stresses a l l ,  a22, and a33, and the shear stresses o'12 - - "  o'21, o'23 ~- -  o'32, 
o.31 -- o.|3. In normal stress, the force component is parallel to the component 
of the surface normal. In shear stress, the force is perpendicular to the normal 
(in the direction of one of the other coordinates) and thus they are tangential to 
the surface. Shear stress is often designated by the symbol Tij. 

The average of the normal stresses, called the hydrostatic stress, is the 
negative of the pressure: 

(1/3)(o.ll + or22 "~- 0"33) = o.ii/3 --- --p(i.e., p = -3o . i i ) .  

A purely hydrostatic stress has three equal normal components and no shear 
components and can be written as 

o.ij = - - P • i j  

where ~ij i s  called the Kronecker delta or the unit tensor, having components 
equal to 1 when the two indices are the same, and zero when not: (100) 

(~ij = 0 1 0 
0 0 1 

The algebraic difference between the stress and its hydrostatic part is called the 
stress deviator (note that pressure is negative in this sign convention): 

Sij = o.ij Jr P 6ij. 



STRESS, STRAIN. AND ELASTICITY (ALSO VECTORS AND TENSORS) | 27  

The trace of a matrix is the sum of its diagonal elements: 

~ii = 3 (for three dimensions), 

o'ii - - " - 3 p .  

The trace of the deviator is zero by the definition of pressure. The deviatoric 
stress is essentially a shear stress. The stress can then be separated into two 

parts, the hydrostatic and the deviatoric: 

O'ij "- - p  6ij -+- Si j .  

Stress in Rotated Axes 

It is often necessary to convert the stress components to coordinates different 
from those under which they have been determined, such as in a rotated system. 

Both the force and area features of the components of stress must be trans- 
formed in a similar manner, so that the components of stress are 

cri, j ,  = li,klj,lCrkl. 

This transformation is the definition of a second-rank tensor. A vector is a 

first-rank tensor. 

Two-Dimensional Case: Mohr's Circle and Principal Stress 

When only two dimensions are considered, there are three of the foregoing 
transformation equations, which can be written out as 

Ox, x, = Oxx cos 2 0 + Oyy sin 2 0 + 2Crxy sin 0 cos 0 

= (1/2)(Crxx + O'yy) + ( 1 / 2 ) ( C r x x  - O'yy) COS 20 + O'xy sin 20 

Gy,y, - -  O'yy COS 2 0 -~- Gxx sin 2 0 + 2Crxy sin 0 cos 0 

= (1/2)(Oxx + O'yy) - -  (1/2)(r - O y y ) C O S 2 0  -Jr- O'xy sin20 

Crx,y, = Crxy (cos 2 0 -- sin 2 0) = Crxy cos 20 

where Ox'x = Oy'y = 0 is the angle between the x and x' or y and y' axes, 

and Ox'y = Oy'x = r r / 2 -  O. 
These relationships are conveniently represented by Molar' s circle illustrated 

in Fig. 140. A circle is drawn through the points (Crxx, Crxy) and (O'yy, --O'xy),  
on a center at (1/2)(Crxx + O'yy). 

The intercept of a diameter drawn at an angle 20 with the circle defines the 
normal stresses crx,x, and O'ytyt and the shear stress Crx,yt as shown. The circle 
shows that the normal stresses have a maximum and a minimum value at an 
angle where there is no shear stress. These are called the principal stresses, and 
the angle is the principal angle. The shear stress has a maximum when the two 
normal stresses are equal and occurs at a 45 ~ angle. 

Three such circles can be combined to represent a three-dimensional state. 
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S h e a r  s t r e s s  
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F I G U R E  1 4 0  M o h r ' s  c i r c l e  o f  s t r e s s  

C. STRAIN 

Strain is defined as the ratio of deformation to original length" 

6 -- 8/lo.x 

When the deformation is a displacement field u(x) which varies over a region 
of the material, a local strain is defined from the difference of displacement at 
two ever-closer points on an element of position dx: 

6 = d x  limbo{ u(x -k-dx) - u(x) -- oxOU 

The definition of strain can be extended to displacements with three components, 
and with variation in three directions. Because of energy considerations, this 
definition of strain, like stress, must be symmetric: 

, (o . i  
6ij -- -~ ~kOXj -'l- OXi /] 

Properties of Strain 

There are only six independent components of strain. The components where 
the variation is in the same direction as the displacement, i.e., ell = OUl/OXl, 
622 -- Ou2/Ox2, and 6 3 3  = Ou3/Ox3, are called direct or axial strains. Those 
where variation is across the direction of displacement, i.e., 623 -- 632 = 

(1/2)(Ou2/Ox3 + OU3/OX2), 631  --" 6 1 3  - -  (1/2)(Ou3/Oxl + OUl/OX3), and 
612 = 621 -- (1/2)(OUl/OX2 -k- Ou2/OXl), are called shear strains. Shear strain is 
sometimes represented by the symbol Yij instead of 6i j .  Axial strain represents 
changes in length whereas shear strain represents changes in angle. Note that 
rotation changes the orientation of lines, but not the angle between them. 

The sum (not average) of the three axial strains is the volumetric strain: 

6ii = A V /  Vo. 
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F I G U R E  141 Decomposition of deformation 

Volume strain is sometimes represented by the condensation, 0 = - - A V / V 0 ,  

which is taken as positive for compression, i.e., reducing volume. 
Any deformation can be separated into the sum of a volume change and a 

shear deviator, 

8ij = (A  V /  Vo)Sij + dij 

as illustrated in Fig. 141. 
The preceding discussion relates to small (infinitesimal) strains typical of 

ultrasonics. It can be redefined to include large (finite) strains using the methods 
of nonlinear differential geometry. 

The time derivative of the strain shows that a velocity gradient produces a 
strain rate: 

06ij /Ot -= (Ol)i /OXj -n t- OVj /OXi) /2  

where vi = Oui/Ot is the velocity. 

Rotation 

Strain considers only the symmetric part of the derivatives of deformation. The 
antisymmetric part is the rotation: 

O)ij = (1/2)(OUi/OXj + OUj/OXi). 

The deformation gradient is then the sum of the strain and rotation: 

OUi /OXj "-- 8ij -'~ r 

In general, a deformation field produces both a strain and a rotation, and a pure 
strain or a pure rotation are unusual. 

Rotation is a second-rank tensor. A pseudo-vector, or polar vector (also 
called the dual), can be defined using the alternating symbol 8ijk: 

O)i = 8ijkO)jk = 8ijkOUj /OXk. 

Strain in Rotated Axes 

When the strain is measured in different directions than used for an analysis, it 
is necessary to convert one to the other. The rotation of axes then leads to strain 
components which obey the same formulas used for stress. 
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D. A L T E R N A T I V E  I N D I C I A L  N O T A T I O N  

An al ternate  nota t ion  for stress and strain is def ined to take advan tage  of  the 

s y m m e t r y  of  the stress and strain componen t s .  It descr ibes  the s ix  i n d e p e n d e n t  

c o m p o n e n t s  of  stress or strain, which  use  a pair  of  indices  rang ing  f rom 1 to 3, 

by a s ingle index  wh ich  ranges  f rom 1 to 6. Thus  the mat r ix  of  t h r ee -d imens iona l  

c o m p o n e n t s  is r ep resen ted  by a s ix -d imens iona l  g roup  of  c o m p o n e n t s .  The  cor-  

r e spondence  be tween  these  is as fol lows:  

0.ij: ij = 11 22 33 23 31 12 

0.a: a = 1 2 3 4 5 6 

In this nota t ion,  the c o m p o n e n t s  of  stress, for example ,  are 

(0.1,0"2, o3, o-4, o5, o6) = o6 0"2 o4 = 0.12 o22 o23 . 

0"5 0"4 O"3 0.13 0"2 3 0"3 3 

This  nota t ion  does not  support  coord ina te  t r ans fo rmat ion  re la t ionships .  Thus  the 

s ix -d imens iona l  c o m p o n e n t  array is not  a s ix -d imens iona l  vec tor  with  regard  to 

t rans format ion  of  coordina tes .  A typical  t r ans fo rmat ion  of  a c o m p o n e n t  of  stress 

is as fol lows:  

t =120 .  + m 2 0 . 2 + n  2 0.1 J o'3 + 2lm0"6 + 2mn0"4 + 2nl0"5 

where  (1, m,  n) are the direct ion cos ines  of  the vec tor  t r ans fo rming  the / -ax i s ,  

(lll, 112,/13). 
The  co r r e spondence  be tween  the two index  sys tems  can be wri t ten,  for 

purposes  of  numer i ca l  calcula t ions ,  as fol lows:  

i, j ~ a: i f i  = j ,  t h e n a  = i = j 

e l s e a  = 9 -  i - j 

a--+ i, j :  I f a  < 4 t h e n i  = j = a 

e l s e i  = a - 2, u n l e s s a  = 6, t h e n i  = a - 5 

a n d j  -- a - 4, u n l e s s a  = 4, t h e n /  --  a - 1 



APPENDIX 2 
T H E  G E N E R A L I Z E D  H O O K E ' S  L A W  

A. HOOKE'S  L A W  

Hooke's Law is generalized to relate linearly all components of stress to all 
components of strain and is written as 

l 
O'ij ~ C i j k lEk l ,  or O'a "- CabEb 

where Ci jk l  in the three-dimensional tensor form, or Crab in the alternate non- 
tensor six-dimensional form in the notation of Appendix 1, is called the elastic 
stiffness. 

Examples of terms in the two forms are as follows: 

C t -- CIll l  C1122C1133 C1123 C1131 Cl112 = 
C221 | C2222 C2233 C2223 C2231 C2212 

etc. 

These equations can be inverted: 

Cll C12C13C14C15C16 
C12 C22 C23 C24 C25 C26 

etc. 

Eij - -  SijklO'kl,  or Ea = StabO'b 

where Sijkl o r  Stab is called the compliance. It is a historic absurdity that stiffness 
is denoted by C and compliance by S! 

131 
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The expressions for these inverses, in cases up to orthotropic, are as follows: 

C l l  ~-~ ( $ 2 2 S 3 3  - $23)/S 
C22 ~-~ ( $ 3 3 S l l  - $23)/S 
C33 - -  ( S ! 1 S 2 2 -  $22)/S 

C12 = (S13S23- S12S33)/S 
C13 -- (S12S32- S13S22)/S 
C23 = ($21S31 -- $23Sll)/S 

C44-- 1/$44 
C55 -- 1/$55 
C66 = 1/$66 

where S = $11 $22S33- S11S23 - $22S21- $33S22 q-2S12S23S31. (Compare also 
the relationships given below.) 

The stiffness Cijkl appears to have 3 4 -- 81 components, but because of the 
symmetries of stress and strain expressed by the six-component notation, Crab 
can have no more than 6 2 = 36 components. Furthermore, energy considerations 

t show that Cat , must itself be symmetric so that there are at most 21 independent 
components (the 6 components which have a pair of the same index, and half 
of the remaining 30, i.e., 15, which have pairs of differing indices). 

The most general form of material has 21 independent stiffness components. 
These are some crystals and some man-made materials, in which the material 
structure exhibits strong directional dependence with three nonorthogonal axes 
(axes that are not perpendicular). They are called anisotropic, aeolotropic, or 
rhombohedral materials. Symmetries of the material structure usually reduce 
the number of independent components considerably. Most common materials 
require many fewer components, and these may be described by a small number 
of independent parameters. 

The simplest solid is isotropic, in which there is no identifiable direction, 
requiring only two properties to define nine nonzero components. A fluid (liquid) 
can be described by only one property and three components. These and other 
classes of materials are described later. 

B. STIFFNESS IN R O T A T E D  AXES 

When the elastic coefficients must be used in a different set of axes than the 
natural axes relating to the material, a rotational transformation must be used. 

The general expression for rotation about an arbitrary axis at angles Ox, Oy, 
Oz to the three axes can be written with the use of the matrix of direction cosines 
lij (defined in Appendix 1) as follows: 

Ci,j,k, l, = Cpqrsli,plj,qlk,rll, s. 

In the alternative notation, the stiffness is given by the following equation: 

! ! 

Ca, b, -~- La,cLb,dCcd 



THE GENERALIZED HOOKE'S LAW 13 3 

where the 6 x 6 matrix L a ,  b has the following components in terms of three 
direc t ion  cos ines  l i ,  m i,  n i: 

L 

l m 2 n 2 2m I n I 2n ill 211 m l 

m n 2m2n2 2n2/2 2/2m2 

~3 m n 2 2m3n3 2n3/3 2/3m3 
/2/3 mzm3 nzn3 mzn3 + m3n2 n213 +n312 12m3 +12m3 

|1311 m3ml n3nl m3nl + mln3 n311 +nil3  13ml + l l m 3 |  
\1112 mlm2 nln2 mln2 + m2nl nll2 + n211 llm2 +12ml]  

! ! ! 
As an example, the coefficients C l l, C12 , and C13 are transformed by a rotation 

I I I 0 about the z- (or 3-) axis into Cl , l , ,  Ci,2,, and Cl, 3, as follows" 

~ 2C~l sin 2 0 COS 2 0 -+- t Cl ,  1, --  C l l  cos  4 0 -k- 2 C22 sin4 0 

l I I -4C16 cOS3 0 sin 0 - 4C26 sin 3 0 cos 0 + 4C66 sin 2 0 cos 2 0 

CI1,2 , = (C~12 + C~2) sin 2 0 cos 2 0 + Crlz(sin 4 0 + cos 4 0) 

+2(C~16 - C~6 ) sin0 cos 0(cos 2 0 - sin 2 0) - 4C~6 sin 2 0 cos 2 0 

l I I I 
C l , y  = C13 cos 2 0 -k- C23 sin 2 0 - 2C36 sin 0 cos  0. 

Note that some of these formulas contain fourth powers of sines and cosines in 
several combinations. This makes for difficult analysis of stiffness data taken 
from various angles to obtain the stiffnesses in material axes. Convenient rela- 
tionships between stiffnesses and single terms of sines and cosines, which can 
be used in direct linear data fitting, are as follows: 

CI! t C33) cos  2 o~] 1 -+- C13 -- [(C!3 -k- C33) -+- (CI l  - 

Cti2 - -  [C32 -+- (C!2 - C 3 2 ) c o s  2 or] 

! 
CI3 -" [CI3 -~- (CI l  -1- C33 -- C55 -- 2C12) sin 2 c~ cos  2 o~]. 

Identical relationships hold for compliances. 

C. SPECIAL CLASSES OF ELASTIC  M A T E R I A L S  

The following classes of material, described in the six-index form, are common. 

I. Fluid 

A fluid does not sustain shear stress: it can only support a stress with normal 
components equal in all directions, i.e., a pressure. Shear deformation is unre- 
stricted except by geometric constraints. There is no shear elasticity, and only 
one independent elastic constant-- the compressibility, K. 

The stiffness (and the compliance) has three components: 
! ! ! 

C ll = C22 -- C33 -- K.  
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All other components are zero. This can be regarded as a special case of an 
isotropic solid (see later discussion) with Poisson's ratio 1) -- - 1 ,  so that the 
shear modulus is G = 0. 

Only triaxial hydrostatic stress is possible: 

p = - K A V / V  = - K O u i / O x i .  

The deformation is not restricted. In uniaxial deformation (for example, flow 
along the x-axis in a pipe or a plane wave propagating along the x-axis), the 
stress-strain relationship is 

p = - K O u x / O X .  

2. Isotropic Solid 

A solid can sustain shear stress, responding with a definite shear strain. Also, 
Poisson showed that the strain transverse to an applied stress is not the same as 
that in the direction of the stress (see Section 2). A solid thus has one or more 
elastic constants related to shear response. 

In an isotropic solid there is no directionality and only two independent 
elastic constants--~ommonly taken as Young' s modulus E and Poisson' s ratio 1). 

The compliance has nine components: 

so that 

SI I  - -  $22 - -  $33 : 1/E  

Si2  = $23 "-- $31 : - 1 ) / E  

844 - -  $55 : $66 : 2(1 + 1 ) ) /E  

El --- (1/E)[crl -- 1)(o2 -q-or3)] 

(and similarly for the 2 and 3 components), 

64 = [2 (1  + 1))/E]ff4 

(and similarly for the 5 and 6 components). 
The stiffness is 

CI1 ! ! 1 = C22 = C33 = E(1 - 1))/(1 + 1))(1 - 21)) 

' ' ' = El )~(1  + 1))(1 - 21)) C12 = C23 : C31 

' ' = E / 2 ( l + v )  C~4 : C55 - -  C66 

so that 

crl = [E(1 - v)/(1 + v)(1 - 2v)]{el + [v/(1 - 1))](62 -q- E3)} 

(and similarly for the 2 and 3 components), 

or4 = [E/2(1 + 1))]e4 

(and similarly for the 5 and 6 components). 
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The stiffness E ( 1 -  v ) / (1  + v ) ( 1 - 2 v )  is referred to later as the longi tudinal  

wave stiffness Ct because of its role in longitudinal  waves,  as discussed in 

Appendices  3, 6, and 10. 

Any two of the fol lowing alternate modul i  can be used: 

Shear modulus  G = E / 2 ( 1  + v) 

Bulk modulus  K = E / 3 ( 1  - 2v) 

Lam6s constants Z = E v / (1  + v) (1 - 2v) and # = G. 

Some useful relat ionships among these modul i  are 

E = 2G(1 + v) = 3K(1  - 2v) = 9 K G / ( 3 K  + G ) [ =  3 / { ( 1 / 3 K )  + ( I / G ) } ]  

= / z ( 3 Z  + 2/z)/(~. + / z )  

G = / z  = E / 2 ( 1  + v) = 3K(1  - 2v ) /2 (1  + v) = Z(1 - 2 v ) / 2 v  

v = ~./20~ + / z )  = ( E / 2 G )  - 1 = (3K - 2 G ) / 2 ( 3 K  + G) 

~. = G ( E  - 2 G ) / ( 3 G  - E)  = K - 2 G / 3  = E v / ( 1  + v)(1 - 2v) 

K = E / 3 ( 1  - 2v) = ~. + 2/z/3 

Ct = C111 = E(1 - v ) / (1  + v)(1 - 2v) = ~. + 2/z = K + ( 4 / 3 ) G  

~. + # = E / 2 ( 1  + v)(1 - 2v) 

C I / G  = 2(1 - v) / (1  - 2v) 

The Lam6 coefficients al low the isotropic s t ress-s train relat ionship to be put 

into a simple and convenient  tensor form (Cauchy ' s  law): 

O'ij = ~,ekk6ij + 2lZeij  

so that 

Cijkl  --  ~.6ij~kl -[- t-Z(6ik6jl ' [ -6 i l6 jk ) .  

Limitations 

Energy considerat ions which require that the shear modulus  G and the com- 

pressibil i ty K be posit ive show that Po isson ' s  ratio is restricted to the range 

- 1  < v < 1/2. 

Negat ive values are thus admissible,  but  not common.  

3. Cubic Symmetry 

This is similar to the isotropic material ,  but  the shear modulus  is not  related to 

Poisson ' s  ratio. There are three independent  elastic cons t an t smYoung '  s modulus  

E,  Poisson ' s  ratio v, and shear modulus  G. 
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The compliance has nine components: 

S I I  ~-- 822 - -  $33 ~--- l IE  

S12 = 823 = 831 - "  - v / E  

844 - -  855 = 866 = 1/G 

so that 

el = (1/E)[oq - v(rr2 + or3)] 

(and similarly for the 2 and 3 components), 

64 -- f f 4 / G  

(and similarly for the 5 and 6 components). 
The stiffness is 

so that 

I / t 
C l l  = C22 = C33 = E(1 - v)/(1 + v)(1 - 2v) 

/ I l 
Cl2 -- C23 = C31 = Ev/(1 + v)(1 - 2v) 

l l l 
C44 = C55 = C66 = G 

0"1 = [E(1 - v)/(1 + v)(1 - 2v)]{el + [v/(1 - v)](~'2 -~- ~'3)} 

(and similarly for the 2 and 3 components), 

o4 = Gs4 

(and similarly for the 5 and 6 components). 

4. Transversely Isotropic Solid (Hexagonal Symmetry) 
A transversely isotropic solid has one axis of symmetry (taken here as the 3- 
axis). Examples are hexagonal crystals, unidirectionally reinforced composites, 
and materials with a layered structure, such as plywood and rolled metal sheets, 
the properties in these cases are isotropic in the plane, but differ through the 
thickness. 

There are five independent elastic constantsmtwo Young's moduli (E and 
Er), two Poisson's ratios (v and v'), and one shear modulus G'. 

The compliance has nine components: 

Stab : 

1/E - v / E  - v ' / E '  0 0 0 
- v / E  1/E - v ' / E '  0 0 0 

- v ' / E '  - v ' / E '  1/E' 0 0 0 
0 0 0 1/G' 0 0 
0 0 0 0 1/G t 0 
0 0 0 0 0 2(1 + v) /E 
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so that  

el = ( 1 / E ) [ o ' l  - vo'2 - (v 'E/E')o'3] 

62 = (1 /E) [c r2  - vcrl - (v'E/E')cr3] 

e3 = (1 /E ' ) [ c r3  - v ' ( o ' 2 -  crl)] 

~4 = (1 / Gt)o'4 

e5 = (1 /G ' ) c r5  

e6 = [2(1 + v ) / E ' ] o ' 6  

and  the s t i ffness is 

I 
Cab = 

(1 - v '2E /E ' )E /A  (v + v ' 2 E / E ' ) E / A  (1 + v)v 'E /A  
+ v '2E /E ' )E /A  (1 - v ' 2 E / E ' ) E / A  (1 + v)v 'E /A  

(v 0 0 0 

(1 + v)v 'E /A  (1 + v )v 'E /A  ( 1 -  v2)E/A 
0 0 0 
0 0 0 

w h e r e  A --  (1 + v)(1 -- v -- 2v 'ZE/E ' ) .  
N o t e :  C '66  --  E / 2 ( 1  + v) - -  ( C ' l l  - C ' 1 2 ) / 2 .  

0 0 0 

0 0 0 

0 0 0 
G'  0 0 
0 G'  0 
0 0 E / 2 ( l + v )  

Also ,  the e n g i n e e r i n g  modu l i  are  d e t e r m i n e d  by  the s t i f fnesses  as fo l lows :  

E = ( C l l  -- C l 2 ) [ 2 ( C l l  + CI2)  -- C33]/(C11 + C12) 

E '  - -  C 2 13(C11 - CI3)[2(C11 + C12) - C33]/(Cll + C12)2(C33 - CI I  - CI2)  

v = (CI I  + C12 - C33)/(C!1 + C12) 

19' --- Cl3/ (Cl  l -+" C12) 

G --  (CI I  - C12) /2 .  

T h e n  

Crl = [(1 - v ' Z E / E ' ) E / A ] [ S l  -Jr- v(1 + v ' Z E / v E ' ) / ( 1  - v 'ZE/E ' )e2  

+ v ' ( 1  + v ) / ( 1  - v'ZE/E')e3] etc. 

Limitations 

E n e r g y  cons ide ra t i ons  s h o w  that  P o i s s o n ' s  ra t io  is res t r ic ted  to the r a n g e  

- 1  < v < 2 v ' 2 E / E  '. 

N e g a t i v e  va lues  are admiss ib le ,  and  no t  u n c o m m o n .  T h e  u p p e r  b o u n d  is no  

l onge r  1/2 as for  i so t rop ic  solids.  
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5. Orthotropic Solid (Rhombohedral Symmetry) 
An orthotropic solid has three orthogonal axes of symmetry. There are nine 
independent constantsmthree Young's moduli (El ,  E2, E3), three Poisson's 

ratios (vl2, v23, v31), and three shear moduli (G4, G5, G6). 
Note that Poisson's ratio is not symmetric in the indices. Because the com- 

pliance is symmetric, it follows that 

Pij / E j  -- Pji /Ei (indices not summed). 

Caution" Some texts use a different notation with indices switched: l Z j i  = 

Pij,  SO that 
l z i j / E i  - -  I z j i / E j .  

The compliance is 

1~El --Vl2/E2 -v13/E3 0 0 0 
-v21/E1 l /E2 -v23/E3 0 0 0 

Stab = - P31/ E1 - P32 / E2 l /E3 0 0 0 
0 0 0 l /G4  0 0 
0 0 0 0 1/G5 0 
0 0 0 0 0 1/G6 

and the stiffness is 

Crab "-" 

(1-v23v32)El/A (v12+v13v32)El/A (v13+v12v23)El/A 0 0 

("3 1 +v21v32)E3/A (v32-4-v12v31)E3/A (1-- Vl2V21)E3/A 0 0 
0 0 0 G4 0 
0 0 0 0 G5 
0 0 0 0 0 

where A = (1 - vl2v21 -- v23v32 -- v31 v13 -- 2v12v23v31). 

0 

i 
G6// 

The stiffnesses can be written directly in terms of the compliances using 

the relationships given above. 

Limitations 

Energy considerations show that Poisson's ratios are restricted as follows: 

]vijl < ( E j / E i )  1/2 and A > 0. 



APPENDIX 3 
S T A T E S  OF STRESS OR S T R A I N  

IN W A V E S  

A. STATES OF U N I A X I A L  STRESS OR STRAIN 

A wave carries a state of stress and strain which is uniform across a plane, or 
more generally a surfacemthe wave surface. There is no variation of the stress, 
strain, displacement, or velocity across the wave surface. These vary only along 
the normal to that surface, as illustrated in Fig. 142. 

The displacement can be at some angle to the surface normal. When parallel 
to the normal, it gives rise to a normal strain, and when tangential, to a shear 
strain. 

In a wave which extends over a wide surface in an unbounded medium, 
there is no lateral strain because that would imply an ever-increasing lateral 
displacement. This would generate ever-increasing lateral inertia which would 
inhibit the wave formation, a concept known as inertial confinement. 

In this case, there can be only a normal strain and/or shear strains having 
one axis along the normal and the other transverse to the wavefront, i.e., 8nn, 

Entl, and F~nt2, where n and tl or t2 designate the normal and two perpendicular 
tangential directions respectively. These cases are called uniaxial strain states. 
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F I G U R E  1 4 2  U n i f o r m  s ta te  o v e r  a w a v e  s u r f a c e  

In a medium with free lateral surfaces, such as a rod, the free surface would 
not support lateral or shear stress. There can then be only a normal stress an. 
This case is called a uniaxial stress state. 

Uniaxial stress or strain are states particularly relevant to waves. In these 
cases, there is only one normal component of stress or of strain, the other two 
being zero. When stress or strain is uniaxial, the other, strain or stress, generally 
cannot be uniaxial, and is triaxial. 

A I. Uniaxial Normal  Strain: The Longitudinal Wave  

The only strain in a wave with motion only along the normal, i.e., when the 
displacement has only a normal component, un(n ) ,  where n denotes the normal 
direction and distance along the normal, is a normal strain enn = OUn/OXn. 

All other components of displacement and strain are zero. The normal stress 
is Crnn = Cnnnnenn (n, t l ,  or s are not summed indices), and there are lateral 
s t r e s s e s  ott = (Ct tnn/ fnnnn) f fnn,  and O~s = (Cssnn/Cnnnn)O'nn, where s denotes 
a second tangential direction normal to t. For isotropy, these lateral stresses are 

equal since (C t tnn /Cnnnn)  = (Cssnn /Cnnnn)  = v / ( 1  - v) .  There are no shear 
stresses or strains in the wave coordinates, but there are in other directions 
(according to Mohr 's  circle, Appendix 1) as described later. 

In an isotropic material this is the most common form of wave. It propagates 
in any direction. In an anisotropic material it only propagates along a material 

axis. 
A typical configuration for this case is a thick slab of large area, with forces 

applied normally to the faces, but not to the edges, as illustrated in Fig. 143. 
The strain is uniaxial, because in-plane motion would be inhibited by size. The 
stress is triaxial. 

The state of stress at the wavefront is triaxial with a normal component an 
acting along the propagation direction, i.e., the wavefront normal, and, because 
of the Poisson effect, transverse components ot = [v/(1 - 13)]o- n in any two 
perpendicular directions (see formulas for stiffness and stresses in an isotropic 
material under one strain, in Appendix 2). There is no shear in the n - t  plane, 
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FIGURE 143 Uniaxial normal strain motions in a longitudinal wave 

FIGURE 144 Mohr's circle for stresses in the coordinate directions derived from those at the 
wavefront 

so these  are  the  p r i n c i p a l  s t r esses .  T h e  c o m p o n e n t s  o f  s t ress  in s o m e  o t h e r  x -  

y c o o r d i n a t e  d i r ec t i ons ,  w h e r e  the  x - a x i s  is at  an  a n g l e  c~ to the  p r o p a g a t i o n  

d i r ec t ion ,  c a n  t hen  be  f o u n d  f r o m  M o h r ' s  c i rc le ,  as i l l u s t r a t ed  in F ig .  144.  

W r i t i n g  m - - c o s 0 ,  so tha t  c o s 2 0  = 2 m  2 -  1, s i n 2 0  - -  2 m ( 1  - m 2 )  1/2, the  

s t r e s ses  are  

Crxx = [Crn/2(1 --  v ) ] [1  + (1 --  2 v ) ( 2 m  2 --  1)] 

= [O'n/(1 --  v ) ] [ (1  --  2 v ) m  2 + v] 

Cryy = [O'n/2(1 --  v ) ] [1  --  (1 --  2 v ) ( 2 m  2 --  1)] 

- -  [O'n/(1 - v ) ] [ (1  --  v) --  (1 - 2 v ) m  2] 

Crxy = [crn/(1 --  v ) ] (1  --  2 v ) m ( 1  --  m2)  1/2. 

A2. Uniaxial Transverse Shear Strain 

In  a t r a n s v e r s e  s h e a r  w a v e ,  the  o n l y  d i s p l a c e m e n t  c o m p o n e n t  u t (n)  is in  

the  p l a n e  o f  the  w a v e  a n d  t r a n s v e r s e  to the  w a v e  n o r m a l .  T h e  v a r i a t i o n  o f  
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F I G U R E  145 Motions in an in-plane transverse shear wave 

Shear stress 

Min princ ~ Transverse to wave 
stress y �9 | / . M a x .  princ, stress 

(, ......... ~ /  ..... , ( 4 5 ~  
Normal stress ......... !i ..... '( 45--05. 70- ~ ' x  

(Direction ' (Direction of Normal to wave 
of minimum ~ /  maximum (normal stress) 

principal stress) i ~ ~ . ~ / !  principal stress) Relationship among directions 

O-yy 

F I G U R E  146 Mohr 's  circle for the stresses in a transverse wave 

displacement is along the normal, and hence the shear strain lies in a plane 
containing the normal and a tangent as illustrated in Fig. 145. 

Only a shear strain ent = O u t / O X n / 2  is created, where t is a direction 
parallel to the surface. There is again only one component  of strain, and this 

can be called a transverse uniaxial state. The transverse stress is ant = C n t n t E n t  

(n and t not summed), and there may be stresses in other directions, depending 
on the nature of the elasticity. Note that there is also a component  of rotation 

OOz = - •  / O X n / 2 .  

The stresses for other directions can be determined from the appropriate 
Mohr ' s  circle shown in Fig. 146. Here the direction of the maximum principal 
stress is at 45 ~ to the maximum shear stress and thus to the wave normal. Hence 
an arbitrary direction x at an angle 0 to the normal is at 45 ~ - 0  to the maximum 
principal stress, as illustrated in the figure. The stresses are 

O'xx --" O'nt sin20 = c r n t 2 p ( 1  - p 2 ) 1 / 2  

O'yy - -  - O ' n t  sin20 -- -crn t  2 p ( 1  - p2)1/2 

O'xy - -  O'nt COS 2 0  = O'nt (2p 2 - 1) 

where p -- cos 0. 
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" , , ,"  (stress) 
/ 

1, 

F I G U R E  147 Illustration of uniaxial normal stress 

A3. Uniaxial Normal Stress 

In the case of a wave with only normal stress, the displacement may have 
components in all directions. The stress and displacement will vary only along 
the normal. Depending on the type of elasticity, all components of strain can be 

present. 
An example of uniaxial normal stress is a thin rod with forces applied 

normally to the ends but not to the lateral surface, as illustrated in Fig. 147. 
The stress is uniaxial since there is no transverse stress. The strain is triaxial, 
with components along the rod and transverse to it, because of Poisson's ratio 
effects. 

A4. Uniaxial Transverse Stress 

In a wave with only transverse stress, the displacement may again have com- 
ponents in all directions. The stress and displacement will vary only along the 
normal. Depending on the elasticity, there can be all components of strain, 
because of Poisson's ratio effects. In an isotropic material, however, there will 
only be stresses in the plane of shear. 

An example of uniaxial transverse stress is a thin rod with tangential forces 
(i.e., a torque) applied to the ends but not to the lateral surface, as illustrated in 
Fig. 148. 

B. U N I A X I A L  STRESS-STRAIN  RELATIONSHIPS  

The stress-strain relationship for these classes of elasticity reduce to the simple 
one-dimensional form 

' OUax 
O'ax : C eax  : C ~  

Ox 
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/ / / 

/ / /"  / 
/ 

rain) " 

/ / / / / / " [  

Uniaf~ial torque 
. ~  (stress) 

FIGURE 148 Illustration of uniaxial transverse stress 

where the subscript ax refers to axial, C is an appropriate combination of elas- 
tic constants as presented later, and u is the displacement, whether normal or 
tangential to the wave surface. Other components of stress or strain may be 
present, but they are not of concern to the formation of waves. 

This is the first fundamental  equation for one-dimensional  elastic wave 
propagation (as discussed in Appendix 5). 

The coefficient C in this formula is given in the following tables for various 
material classes and propagation directions. For off-axis directions in materials 
other than isotropic there is no simple relationship, and displacements may lie 
in any direction. 

(a) Normal  Uniaxial Stress (Inverse of Compliance)  Co 

Material class 1-Direction 2-Direction 3-Direction 

(o" 2 : o" 3 - -  0 )  (o" 2 : 0" 3 : 0 )  (0-1 - "  o'2 : 0 )  

Isotropy E E E 

Cubic E E E 

Transverse isotropy (re 3 - a x i s )  E E E t 

O r t h o t r o p y  E l  E 2  E 3  

(b) Normal  Uniaxial Strain (Stiffness) Ce 

Material class 1-Direction 2-Direction 3-Direction 

Isotropy 
Cubic 
Transverse 
isotropy (re 3 -ax i s )  
O r t h o t r o p y  

(e 2 = e 3 = O) (e I = e 3 = O) (e I = e 2 = O) 
( 1 - v ) E / ( l + v ) ( l - 2 v )  ( l ' - v ) E / ( l + v ) ( l - 2 v )  ( 1 - v ) E / ( l + v ) ( 1 - 2 v )  
(1 -v )E / ( l  + v ) ( 1 - 2 v )  ( 1 - v ) E / ( l + v ) ( 1 - 2 v )  ( 1 - v ) E / ( l  + v ) ( 1 - 2 v )  
(1 - vtZE/Et)E/AT (1 - vt2E/Et)E/AT (1 - vZ)E/AT 

( 1 -  v23v32)El/Ao (1 -- v31Vl3)E2/Ao (1 -- Vl2V2l)E3/A 0 
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where 

A T  = (1 + v)(1 - -  v - -  2v'2E/E ') 

A 0 : (1 - -  13121321 - -  13231332 - -  1331 1313 - -  2131213231331). 

Note that for isotropy, the coefficient Ce for uniaxial strain can be written in 
several ways using the alternate elastic moduli as follows: 

Ce = E ( 1  - v ) / ( 1  + v ) (1  - 2v )  = K + 4G/3 = )~ + 2 I t =  3(1 - v)K/(1 + v). 

This is the longitudinal wave stiffness defined in Appendix 2. 

(c) Transverse Uniaxial Stress (Inverse of Compliance)  C~ 

Material class 4-Direction 5-Direction 6-Direction 

(cr5 =cr6 =0) (or6 =cr4 =0) (~r4 =or5 =0) 
Isotropy E/2(1  + v) E/2(1  + v) E /2(1  + v) 

Cubic G G G 
Transverse isotropy (re 3-axis) G t G t E /2(1  + v) 

Orthotropy G 4 G5 G6 

(d) Transverse Uniaxial Strain (Stiffness) Ce 

Material class 4-Direction 5-Direction 6-Direction 

(e 5 = e 6 = 0 )  (e 6 - -  S 4 - - 0 )  (84 = e 5  = 0 )  
Isotropy E/2(1 + v) E/2(1  + v) E/2(1  + v) 

Cubic G G G 
Transverse isotropy G I G I E/2(1  + v) 

Orthotropy G4 G5 G6 

Specific configurations of common concern in engineering are slender rods or 
beams, and thin plates. The stress-strain states for these configurations are influ- 
enced by their geometry as discussed in Appendices 11 and 12. 
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APPENDIX 4 
B A L A N C E  OF F O R C E S  

A N D  N E W T O N ' S  L A W  OF I N E R T I A  

In 1687, Sir Isaac Newton published his laws of motion, one of which stated 
that a body at rest remains at rest, and one in motion remains in that motion, 
unless acted on by a force. The corollary to this is that force produces a change 
in motion, i.e., acceleration, and this is inversely proportional to the mass: 

a =  F / M ,  o r F = M a .  

Acceleration is the change in velocity: 

a = d v / d t .  

The units of force and mass are evidently not the same. Representing force units 
by [F], mass units by [M], length units by [L], and time units by [T], Newton's  
law requires that 

[F] -- [M][L]/[T] 2. 

Absolute forces are defined as those which accelerate a unit mass by a unit 
acceleration. In common units, these forces are 

1 poundal = 1 lbM.1  fps 2 

1 dyne = 1 g .  1 cm]sec 2 

1 newton -- 1 kg .  1 rn/sec 2 

147 



1 4 8  ULTRASOUND AND ELASTIC WAVES 

It is common to express force in the units of  weight (equivalent to mass, e.g., 
pounds or grams), which are the gravitational forces exerted on unit mass, so 

that 

1 lbF = 1 IbM -g  = 32.174 poundals 

1 g F =  1 g . g = 9 8 1  dynes 

1 kg F = 1 kg . g  = 9.81 newtons 

where g -- 32.174 fps 2 = 980.665 cm/sec 2 = 9.8066 km/sec 2 is the accelera- 

tion due to gravity. 

A. O N E - D I M E N S I O N A L  SYSTEM 

Consider a cylindrical body (a rod) under  a force which varies along the length, 
as illustrated in Fig. 149. 

The net force in one direction, say along the x-axis, on a small piece of 
the rod of length dx  is the differential between the force, F ( x ) ,  at one end and 
that, F ( x  + d x ) ,  at the other: 

6 F  = F ( x  + d x ) -  F ( x )  = ( d F / d x ) S x  -- A ( d a / d x ) S x  

with a = F / A  where A is the area of cross-section. The mass of the piece is 

6 M  = p A d x ,  

where p is the density, so that the acceleration is 

d F / d M  -- 3v /Ot  -- ( 1 / p ) O a / O x .  

This is the second basic equation of one-dimensional wave propagation (as 
discussed in Appendix 5). 

B. T H R E E - D I M E N S I O N A L  SYSTEMS 

In a 3-D system, normal and shear stresses contribute to the acceleration force, 
as illustrated in Fig. 150. 

_ d  

F(x) 

,,+,, 
' -V a 
dM 

dF 
, . . ._  

r 

F(x + dx) 

dx 

I 
I 
I 

I 

FIGURE 149 Increment of force and acceleration of mass increment 
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Normal xx-component Tangential xy-component Tangential xz-component 

FIGURE 150 Illustration of force components in three dimensions 

In the x-direction, for example, the x-variation of the normal stress compo- 
nent leads to a force increment 6xOxx'~ly dz = (OOxx/Ox)dx dy dz.The variation 
of the x - y  shear component leads to 6yOxydx dy = (OCrxy/Oy)dx dy dz, and the 
x - z  component leads to 6zO'xzdx dy = (OCrxz/Oz)dx dy dz. Variations across the 
faces do not contribute as they are the same on both opposing faces. The net 
force increment is then 

6Fx = (Oaxx/OX + Otrxy/Oy -Jr- Oaxz/Oz)dx dy dz. 

For all three directions, this can be written as 

6Fi -- (Off i j /Oxj)dV 

where the indices i and j take values 1, 2, and 3, representing x, y, and z, and 
the repeated indices imply a sum over all three values. 

The inertia force is 

Fi -- paidV, 

so that the inertia equation can be generalized for triaxial stress to read 

OtYij /OXj = pdvi /d t .  





APPENDIX 5 
T H E O R Y  OF W A V E  P R O P A G A T I O N  

The interaction between the forces of elastic deformation and of inertia is respon- 
sible for waves in solids and fluids. The equations which describe this interac- 
tion in terms of stress and velocity, and their consequences, are described below. 
There are two ways to analyze these equations: 

�9 Eliminate one of the variables (stress or velocity), leaving a partial dif- 
ferential equation in the other 

�9 Combine them into equations for which constant solutions can be found, 
called the characteristic equations 

Specific solutions to the equations are described in Appendix 6. 
Detailed presentations of the theory of elastic waves are given by Love 

(1944) and by Aki and Richards (1980). A simplified presentation of some 
aspects is given by Doyle (1989). 

A. O N E - D I M E N S I O N A L  SYSTEMS 

In their simplest one-dimensional form, the elastic and inertial forces are repre- 
sented by the following pair of equations (see Appendices 3 and 4): 
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Elasticity: 

a = COu/Ox 

or, after differentiation with respect to time: 

Oa/Ot = COv/Ox,  

and inertia: 

Oa/Ox = pOv/Ot 

where C depends on the material and on the direction chosen for the x-axis, 
and where v -- Ou/Ot is the particle velocity. 

For any point in time and position, the two variables, stress and velocity, 
form a state vector (o', v) which defines the state of the material. 

This one-dimensional formulation only applies when uniaxial strain or stress 
states arise, i.e., for propagation in any direction in isotropic materials, or for 
propagation along a principal axis of an anisotropic material. The general case 
of propagation in any direction in anisotropic materials is discussed under three- 
dimensional waves in the next section. 

A I. The Differential Equation 

Differentiating the one-dimensional elasticity equation with respect to time, t, 
and the one-dimensional inertia equation with respect to position, x, leads to 
two equivalent expressions for the cross derivative of stress: 

O2tT/Ox Ot - -  C O 2 v / O x  2 = p O 2 v / O t  2 

so that 
82v /Sx  2 -- (1 / c2 )82v /S t  2 

where c = ( C / p )  1/2. 
This is a hyperbolic wave equation for velocity. [Note" A hyperbolic 

equation is one for which the solution cannot be extended from values known 
along certain curves (or surfaces) by using the second derivatives to determine 
the first derivatives.] Solutions for this differential equation are presented in 
Appendix 6. 

By differentiating in the opposite sequence, two expressions for the cross 
derivative of velocity are obtained, leading to an identical equation for stress, 
so that it, too, has the same type of solutions. 

Wavespeeds 
The wavespeed c - -  ( C / p )  1/2 depends, through the stiffness C, on the nature of 
the elasticity, the direction of propagation, and the nature (stress or strain state) 
of the wave. Formulas for C are given in Appendix 3. 
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A2. The Method of Characteristics 

By adding to the temporal derivative of stress (from the one-dimensional elas- 
ticity equation) a multiple, c~, of that for velocity (from the one-dimensional 
inertia equation), the following relationship is found: 

Ocr/Ot + c~p Ov/Ot = ~Ocr/Ox + ~ C O v / O x .  

By taking up = C / a ,  i.e., ot = 4 - ( C / p )  1/2 -- -at-c, where c is the wavespeed, 
so that up = C/ot -- + p c  -- +z ,  where z is called the impedance, the equation 
can be written as 

O(r 4- z v ) / O x  4- (1/c)O(r 4- z v ) /O t  = O. 

This shows that the quantities cr + z v ,  called the Riemann invariants, R+, satisfy 
the relationship 

OR+/Ox + (1 / c )OR+/Ot  = O. 

Now, an increment of a Riemann invariant with increments of time and posi- 
tion is 

~R+ = (OR+/Ox)6x  + (OR+/Ot)6t  

and because of the above relationships, 

6R+ = (OR+/Ox) (6x  + c6 t ) .  

Hence, 6 R+ = 6or • z6v = 0 when 6x + c6t = 0. The invariants are therefore 
constant, hence the name, as the wavefront moves along lines such that x + ct = 

Const, called the characteristics. 
The relationship also shows that any change in stress along a characteristic 

is accompanied by a change in velocity: 

6r = 4-z6v = 0 along x + ct = Const. 

These equations represent the characteristic jump equations in the state variables. 

A3. x - t  W a v e  Diagrams 

Diagrams can be constructed in an x - t  space, as shown in Fig. 151, to represent 
the propagation of one-dimensional waves, and to provide a convenient method 
for analyzing them. 

A force applied to a point, Xo, at time zero, excites waves which propagate 
in two directions with increasing t ime--one  toward decreasing x and one toward 
increasing x. These waves introduce changes in the state (stress and velocity) 
according to the characteristic jump equations. 

Such x - t  diagrams are used to analyze wave patterns in Figs. 47 and 52 of 
Section 4. 
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Time, t Left-running wave Right-running wave 

Wave um   YWave ump 
~ / /  Positlon_x 

x=O Xo 

F I G U R E  151 x-t  diagram showing wave propagation and invariants 

B. T H R E E - D I M E N S I O N A L  SYSTEMS 

The elasticity and inertia equations which govern three-dimensional waves are 

tzrij = CijklEkl, 

which can be differentiated with respect to time: 

t)tYij / ~)t = Cijkl O1)k / OXl , 

and 

pOl)i /Ot = Offij / O x j .  

Here the state variables are the stress tensor and the velocity v e c t o r  (tYij  , l ) i )  
forming a nine-parameter state vector (not rigorously a vector according to the 
coordinate transformation rule). 

B I. The Differential Equation 

By differentiating the elasticity equation with respect to position X j ,  and the 
inertia equation with respect to time t, two forms of the cross derivative of 
stress are found which can be equated: 

0 2 f f i j / O x j O t  = Ci jk lOVk/OXjOX l --  1002Vi/Ot 2. 

This is a hyperbolic wave equation for velocity. A similar equation can be 
derived for the stresses. 

B2. The Method of Characteristics 

As in the one-dimensional case above, the method seeks functions, R, of the 
state variables aij and vi, i.e., R(ai j ,  v~), which are invariant on planes 

-- const 
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where ~ - -  n i x i  -4-ct ,  and ni is the unit normal, n i n i  = 1, to the plane. Then 
for any of the variables, 

O( )/OXi = [0( ) /O~](O~/OXi)  ~-rti[O( ) / 0 ~ ]  

O( )lOt = [0() lO~](O~lOt)  = • ) /0~]  

so that 

O( ) /OXi  -~ + ( 1 / r  ) / O t .  

The governing differential equations can then be written as 

so that 

and 

Ocrij / Ot = -+-(1/c)nl Cijkl OVk / Ot 

p O v i / O t  = + ( 1 / c ) n j O c r i j / O t  

n l n j C i j k l O V k / O t  - -  p c 2 O v i / O t  

Z r l) i -if- n j ~ cr i j = 0 

where z = p c  is the acoustic impedance as in the one-dimensional case. Evi- 
dently, the invariants are 

Ri = pcv i  -+- n j ff ij . 

The first equation is 

[ n l n j C i j k l  -- p c 2 ] O V k / O t  = 0 

and for there to be a nontrivial solution (i.e., for nonzero acceleration, Ovk/Ot  

r 0), the determinant of the bracketed expression must be zero: 

[Fik -- pc26ik[ = 0 

where ['ik - -  n j n l C i j k l  is the Christoffel stiffness in the direction of the normal 
ni.  These stiffnesses are symmetric: I~ik --  I'ki. 

This is the same equation as was given previously by the differen- 
tial equation method. A numerical procedure for solving it is described in 
Appendix 9. 

C. W A V E  E X C I T A T I O N S  

UT waves can be transmitted into an object by a transducer excited by the 
piezoelectric response, or induced directly into the object by irradiation with a 
laser or electromagnetic waves, as discussed in Section 5. 
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C I. Piezoelectric Excitation 

The mechanical stress, or, created by an electric field, E, is 

cr = e E  

where e is the piezoelectric coefficient of the material. This stress is added to 
the mechanical stress a = K e ,  caused by deformation strain e -- Ou/Ox,  where 
K is an elastic constant and u is the deformation: 

cr = K e  + e E .  

In conjunction with Newton's Law of Motion, 

Off /Ox = pO2u/Ot  2, 

this leads to the nonh0mogeneous wave equation (i.e., an equation having a 
forcing function) 

K O 2 u / O x  2 - -  pO2u/Ot  2 --  e O E / O x .  

The term on the fight-hand side of this equation, the gradient of the electric 
field, is thus a source for waves. 

C2. Laser Excitation 

Incident light from a laser beam or other radiation, including microwaves and 
X-rays, is absorbed by the atoms in the surface layer of an object. The depth of 
this layer for a laser beam is a few microns, whereas it can be a centimeter or 
more for other, longer-wavelength radiation. The absorbed energy is thermal- 
ized (converted to atomic motion) in times of the order of 10 -13 sec, essen- 
tially instantaneously. This leaves a distribution of energy which decays roughly 
exponentially with depth. For the shallow absorption depth of the laser light, the 
resulting energy density can be very high. According to the theory of solid-state 
physics this creates a pressure 

p = p F e ,  

where p is the density, F is Gruneisen's coefficient (which is typically around 2 
dynes.cm/erg for metals but less for polymers), and e is the energy density. The 
energy is equivalent to a temperature rise AT = e / c v ,  where Cv is the specific 
heat at constant volume. 

Alternatively, according to the theory of thermoelasticity, the temperature 
rise would cause a volumetric strain A V / V  -- 3 ~ A T  -- 3 ~ e / c v ,  where c~ is the 
coefficient of linear thermal expansion and 3or is the coefficient of volumetric 
expansion. Since expansion is constrained by inertia and only arises through 
wave propagation, a confining pressure is created at short times: 

p = K A V / V  = ( 3 a K / c v ) e .  

The two theories are consistent provided 

I" = 3 u K / p c v .  
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The intensity of deposited energy can be high enough to produce permanent 
material damage, even vaporization, so that care must be taken in selecting the 
laser parameters. 

The induced pressure is additive to the elastic stress 

~i j  = C i j k l O U k / O X l  --  P~i j  

(using a negative sign since pressure is compressive). The differential equation 
then becomes 

C i j k l O Z U k / O X j O X l  -- p O 2 V i / O t  2 - -  p F ( O e / O t ) ~ i j ,  

so that the rate of energy deposition Oe/Ot is a source of elastic waves. Evidently 
high-power, short-pulsed lasers are required. 
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APPENDIX 6 
S O L U T I O N S  T O  T H E  

W A V E  E Q U A T I O N S  

The equations for elastic wave propagation are derived in Appendix 5. Solu- 
tions to these equations can be found as fundamental waves which propagate 
in unbounded regions independent of boundary conditions, or as boundary- 
dependent waves. Methods for evaluating these solutions are given here. 

A. F U N D A M E N T A L  S O L U T I O N  TYPES 

A I. Spherical Waves: Unbounded Three-Dimensional Space with 
Point Source 

This configuration (hard to realize in practice, but a useful concept) can be 
considered to arise from a force applied to an internal point in an isotropic 
body where the boundaries are remote. The solution is a spherical wave which 
decays with the inverse of radius, as illustrated in Fig. 152 and having the 
mathematical form 

u(r,  t) --  r - l  U ( ~ )  where ~ = (r + c t )  

where r is the radius from the origin of the wave, and U (~) is a function which 
describes the wave profile at some point and time. For example, at initial time 

159 
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Wave profiles 
at several times 

Wavefronts 
eral times 

I 
I 
I 

x l  

F IGURE 152 Fundamental spherical wave 

t -- O, U (~) -- U (r), where U (r) is the initial distribution of the wave, i.e., the 
initial condition for the solution. 

A solution with the negative sign propagates outward with decreasing ampli- 
tude, and one with the positive sign propagates inward toward the origin with 
increasing amplitude. 

This solution can be verified by direct differentiation as follows" 

Obl/OXi = - - r - 2 ( x i / r ) U  q- r -1 ( d U / d ~ ) ( x i / r )  

where r = (x ix i )  1/2, so that Or/Oxi = ( 1 / 2 ) 2 x i / r ,  and Oxi/Oxi = 3 in three 
dimensions. 

After algebraic manipulation wherein many terms cancel, 

OZu/OxiOxi -- r - l d Z u / d ~  2. 

Similarly 
02u/Ot  2 --- c 2 ( 1 / r ) d 2 U / d ~  2 

These two terms satisfy the three-dimensional wave differential equation 

02U/OXiOXi = (1 /C2)02u/Ot  2. 

Solutions for a distributed source within a body can be constructed by superpo- 
sition: The distributed source is defined as an incremental function of volume, 
S(r)dV. This may represent a displacement, a velocity, or a stress. The solution 
for the entire distribution is then given as the sum of the contributions from all 
increments of the source: 

u(r, t) -- f [S(r')/(r - r ' ) ] d V  
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where r is a distance to the solution point, and r '  is the radius to a source 

point. 
This is cal led Green ' s  integral,  and the kernel,  f ( r ,  r') = 1 / ( r -  r'), is 

called Green ' s  function. 

A2. Cylindrical Waves: Unbounded Three-Dimensional Space with 
Line Source (or Two-Dimensional Space with Point Source) 

This configuration is a line source in three dimensions  and results in cylindrical  

waves with a logari thmic decay: 

u(r' ,  t) = log (1 / r ' )U(~)  where ~ = (r' + ct), 

with r '  be ing the two-dimensional  radius, r '  = (x 2 + y2)1/2. This solution can 

be verified by direct differentiation as follows: 

Ou/Oxi = r ' - l  ( x i / r ' ) U  + l o g ( r ' - l ) ( d U / d ~ ) ( x i / r  ') 

so that 

and 

02U/OXiOXi  = l o g ( r ' - I ) d 2 U / d ~ 2  

02u/Ot 2 -- c 2 l o g ( 1 / r ' ) d 2 U / d ~  2. 

Two-dimensional  indices are used here, so that i -- 1, 2. Then as before, r '  -- 
(xixi) 1/2, and Ort/Oxi = (1 /2 )2x i / r ' ,  but Oxi/Oxi -- 2 in two dimensions.  

These two terms satisfy the differential equation. 

A3. Step Waves: One-Dimensional Waves 

A form of  solution is the Heavis ide step function, H ( t ) ,  where H -- 0 for t < 0, 

and H = 1 for t > 0, as i l lustrated in Fig. 153. 

The derivat ive of  the step function is the Dirac delta function, also shown 

in Fig. 153, which is zero for all t but infinite for t = 0. Thus 

d H ( t ) / d t  - 6(t). 

A solution with two step waves propagat ing in opposite  directions is then 

v(x,  t) -- H ( x  + ct), 

1 

~'t  ~ t  
H(t) 3(t) d3(t)/dt 

~ t  

FIGURE 153 The Heaviside step function H(t) and its first and second derivatives, the Dirac 
delta function, ~(t), and d~(t)/dt 
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A I  

A2 

S t e p  w a v e s  

Waveform 

I I IN~ 
- • L - -  •  

1 I I \ 1  
I I I 
I I I I ~  
~- b -- -k -- - - t - - ' ~  
I I I 1 T'----- 

/ 01  t o 2  T i m e  

FIGURE 154 Waveform developed by superposition of step waves 

H ( t - t  l) H ( t - t  2) 

t t 2 

FIGURE 155 Illustration of tone burst 

~ t  

so that O2v/Ox 2 -- ~ ' (x  �9 t )  and O2v/Ot 2 -- c2~t(x  -+-t). These satisfy the 
one-dimensional wave equation O Z v / O x  2 - ( 1 / c 2 ) O z v / o t  2 - -  O. 

Combinations (superpositions) of several such step waves with different 
initiating times can represent an arbitrary waveform as illustrated in Fig. 154: 

A z ( t o 2 ) H ( x  c t ) d t o 2 ,  

where A l and A2 are functions of time and are defined from boundary and 
initial conditions. 

Most waves are visualized as step waves with an additional structure, such 
as the tone burst illustrated in Fig. 155. This comprises an oscillatory, periodic 
motion which starts and stops abruptly and has the form 

u = U l [ H ( t  --  tl) -- H ( t  - t2)] sinco(t - tl). 

A4. Nonpropagating Solutions 

There are also elementary nonpropagating linear solutions 

u = A + B x  J r - C t  + D x t  

which can be used to satisfy certain boundary and initial conditions. 
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B. S E P A R A T I O N  OF V A R I A B L E S  

B I. One-Dimensional  Waves  

Consider the one-dimensional wave equation for velocity v(x ,  t): 

o Z v / O X  2 - -  ( 1 / r  2 - -  O. 

Solutions can be found by the method of separating variables. Assume that the 
dependencies of v on x and t are not coupled and can be represented by two 
independent functions: 

v(x ,  t) = X (x)  T (t). 

The differential equation then becomes 

d 2 X / d x Z T  = ( 1 / c 2 ) X d 2 T / d t  2. 

After division by XT, assuming neither is zero, the two terms are each dependent 
on only one distinct independent variable, x or t. These terms can then vary 
independently, and so each must be a constant, say k 2 (taken as positive)" 

( d 2 X / d x 2 ) / X  = ( d 2 T / d t 2 ) / c 2 T  = k 2. 

There are therefore two separate ordinary differential equations for the two 
functions: 

d 2 X / d x  2 - k 2X -- 0 

d 2 T / d t  2 - c2k2T = O. 

These have solutions 

X -- Xl s inkx + X2 coskx  

T = Tl sin cot -+- T2 cos cot, 

with o9 = kc, and Xl(k) ,  X2(k), Tl(k), and T2(k) are coefficients which can 
be functions of k or co. The full solution, the product XT, has the form of 
sine and cosine waves running in each direction and summed over all possible 
frequencies: 

v(x ,  t) -- ] [Al (o9) s ink(x - ct) + A2(og)cosk (x  - ct) 

-+-A3(w) sin k(x -+- ct) -+- A4(o9) cos k(x -+- ct )]dw 

where A I-A4 are functions of frequency which are determined by the bound- 
ary and excitation conditions, k is called the wave number, and kc = o9, the 
coefficient of time, t, is the circular frequency. 

C. P L A N E  W A V E S  IN T W O  OR T H R E E  D I M E N S I O N S  

In two or three dimensions, a plane wave propagating with constant amplitude 
can be described by the phase function: 

qb - -  k i x i  -4- cot - -  t c ( n i x i  4-  ct) 
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where ki -- toni is the propagation vector, x = (kiki) 1/2 is the wave number, 
and c = oJ/x is the wavespeed. Then the solution for a typical wave equation 
can be written as 

Ui (X j ,  t) = u i (qb), 

because 

02u/Oxi~xi --  K'202/4/0~b 2 and 02u/Ot2 = co202u/04b 2, 

which satisfy the differential equation 

02U/OXiOXi --  ( 1 / C ) 2 O 2 u / O t  2. 

The equation for three-dimensional elastic waves in an anisotropic material 
(derived in Appendix 5) is 

Cijk lOVk/OXjOXl  ~- tooZvi /Ot  2. 

Solutions can be sought in the form 

1)i --- Yi ( r  

when the differential equation becomes 

( C i j k l n j n l  -- po)26ik)O2Vk/O(~ 2 --  O. 

This requires that, for a nonzero velocity vk, 

IFik -- t9c26ik1 --  O, 

which is the result obtained by the Method of Characteristics in Appendix 5, 
where I'ik = Cijklnjnl are the Christoffel stiffnesses, and c = co/k is the 
wavespeed, with k = (ki ki)l/2. This equation generally requires numerical solu- 
tion, as described in Appendix 9. 

C I. The Velocity Potentials for Isotropy 

For isotropy, the equation reduces to' the following: 

(~ + 2 ~ t )O2vj /OxjOxi -~  - ~t 021 ) i /Ox jOx j  --  i o02v i /Ot  2. 

According to the Helmholtz vector decomposition theorem (Wills, 1958), a vec- 
tor such as the velocity vector can be represented by the derivatives of a scalar 
potential r and a vector potential Ai  with Ai,i  = O" 

1)i = Or  -+- e i j k O A j  /OXk 

w h e r e  eijk is the alternating symbol, having values of 1 if the three indices take 
a cyclic sequence of values from 1 to 3 (i.e., 1, 2, 3; 2, 3, 1; or 3, 1, 2), - 1  if 
an anticyclic sequence (i.e., 3, 2, 1; 2, 1,3; or 1, 3, 2), and 0 otherwise (i.e., if 
any two have the same value). 

Note that Ol)i/OX i (called the divergence of l)i) is 02~/OXiOXi and that 
eilmOVl/OXm (called the curl of vi) is ei jkei lmVl,m = A j , k  -- A k , j .  When applied 
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to the displacement vector, the divergence is the volume change represented by 
r and the curl is the rotation represented by Ai.  

The Helmholz decomposition leads to the equation 

O[()~ + 2 g ) O 2 ~ ) / O x j O x j  - pOZ~)/Ot2] /Oxi  

-]-F~ijkO[~t o Z A j / O X l O X l  -- p O A j / O t 2 ] / O X k  --  O. 

The parts of this equation for the two potentials can each be taken to be zero 
separately: 

oZq~/OXjOXj -- (1 /c2)O2dp/Ot  2 -- 0 

o Z a j / O X l O X l  - ( 1 / c 2 ) o Z a j / o t  2 = 0 

where 

c 2 = O~ + 2 N I p  = [(1 - v)/(1 + v)(1 - 2 v ) ] ( E / p )  

2 c s = g / p  = [1/2(1 + v ) ] ( E / p ) .  

The scalar potential equation is identified with longitudinal waves because the 
motion is parallel to the propagation direction. The vector potential is associated 
with transverse waves, because the motion is perpendicular to the propagation. 

Each of these two separate three-dimensional wave equations for the poten- 
tial functions has solutions like those discussed earlier. 

Note that the potential method is not useful when applied to the general 
anisotropy case, because the terms in the vector potential do not separate into 
simple wave equations. 

The general case of three-dimensional waves, particularly in anisotropic 
media, requires numerical solution. Methods such as the transient dynamic finite- 
element or finite-difference procedures have been developed for this. 

D. P L A N E  W A V E  S O L U T I O N S  

The method of potentials described earlier is used for the two-dimensional case. 
There are two two-dimensional cases of interest, referred to as in-plane motion 
and transverse motion. 

D I. In-Plane Motion 

Consider a plane wave propagating along a normal, n, at an angle ot to the 
x-axis in the x - y  plane. Its plane lies along the z-axis as illustrated in Fig. 156. 
All motion is taken to lie in the x - y  plane, and there is no variation in the 
z-direction. In a longitudinal wave the motion is along the normal, and in a 
transverse wave it is along the tangent. 

There can be a scalar potential r  y, t) for a longitudinal wave, and one 
component of the vector potential, A z ( x ,  y, t) for a transverse wave. Note that 
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n 

X ~ , .  "- 

ct = x c o s  ct + y s in  a 

F I G U R E  1 5 6  Coordinate system for plane waves 

components Ax and A y of the vector potential would give displacements in the 
z-direction and these are transverse motions as discussed later. The presence 
of a z-component of the potential does not imply motion or variation in the 
z-direction. 

The differential equation requires that these potentials be of the form of 
waves: 

4~ (x, y, t) -- ~b (~) with ~ = m x  + ny  - c l t  

and 

A z ( x ,  y ,  t)  = Az(r/), with r / =  p x  + q y -  Cst 

where (m, n) and (p, q) define the angles of the direction of propagation of the 
waves, with m -- cos ctt, at being the angle between the propagation direction 
and the x-axis for the longitudinal wave, and p -- cos Us, Us being the angle for 
transverse shear waves. 

To satisfy the differential equations, 

m 2 -+- n 2 = 1, so that n = (1 - m 2)1/2 

p2 + q2 __ 1, so that q -- (1 - p2)1/2. 

The properties of each wave type are shown in the following table" 

Dilatational Transverse 

Displacements 

/gx 
Uy 

Uz 

Oclblax = m ddpld~ 

OqblOy --  n ddpld~ 

0 

O A z / O y  = q d A z / d r l  

- O A z / O X  = - p  d A z / d r  I 

0 
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Dilatational Transverse 

Velocities 

Vx 02q~/OxOt = mcld2qb/d~ 2 02Az/OY Ot = qcsd2Az/d172 
Vy 02dp/OyOt = ncld2dp/d~ 2 -OZAz/OXOt = -pcsdZAz/d172 

Vz 0 0 

Strains 

Exx -- OUx/OX m2d2qb/d~ 2 
Eyy -- OUy/Oy n2d2dp/d~ 2 

6xy -- (OUx/Oy 2mnd2cib/d~ 2 
+OUy/OX)/2 

pqd2Az/d772 
- pqd2 A z /d  rl 2 
( q 2  _ p2)d2Az/dO2 

Stresses (from 
A p p e n d i x  2 )  

Crxx -- Cl{exx Cl{m 2 + [ v / ( 1  - -  v)]n2}d2c~/d~ 2 
+ [ v / ( 1  - v)]eyy} = [CI/(1 - v ) ] [ ( 1  - 2 v ) m  2 

-Fv]dZ c~ /d  ~ 2 

Cryy -- Cl{eyy Cl{n 2 + [ v / ( 1  - v)]mZ}dZqb/d~ 2 

+ [ v / ( 1  - v)]exx} = [ Q / ( 1  - v)][(1 - v) 
- - ( 1  - -  2v)mZ]d2qb/d~2 

Crxy -~ Gexy 

[ C I ( 1  - 2 v ) / 2 ( 1  - v)]2pqd2Az/d~72 

- [ C I ( 1  - 2 v ) / 2 ( 1  - v)]2pq 
xd2 Az/dri 2 

C / [ ( 1  - 2 v ) / 2 ( 1  - v)]2mnd2d~/d~ 2 [ C / ( 1  - 2 v ) / 2 ( 1  - v ) ] ( q  2 - p 2 )  

xd2Az /dr l  2 

Note that Ct = E(1 - v ) / (1  + v)(1 - 2v),  and G = E / 2 ( 1  + v) = Cl[(1 - 
2 v ) / 2 ( 1  - v)] are elastic constants appropriate to the stress-strain conditions. 

These results are the same as given for stress states in Appendix 3, pro- 

vided that 

d 2 q b / d ~  2 = Crn/C l 

d 2 a z / d r l  2 = [ 2 ( 1  - v ) / ( 1  - 2 v ) ] a n t / C l  = O'n t /G.  

Boundary conditions on excitation at the surface determine the values of  an and 
ant and hence of d2~/d~ 2 and d2Az/drl 2. 

It can be shown that 

For a longitudinal wave,  pClVx = a x x m  + Oxyn,  a n d  pClVy ~- a x y m  -Jr- Cryyn 

F o r  a transverse w a v e ,  pCsVx -~ a x x P  + a x y q ,  and pCsVy -~ a x y P  + Cryyq 

which are the characteristic or impedance equations zvi = t r i jmj  as d e v e l o p e d  

in the Method of Characteristics (Part C of  Appendix 5). 

D2. Transverse Motion 

Consider the same wave configuration as in Fig. 156, but with motions in the 
z-direction, and thus transverse to the x - y  plane. There can be two transverse 
waves described by two wave functions, Ax(x, y, t) and Ay(x, y, t), but there 
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is no dilatational wave. The wave functions satisfy the wave equation and can 
be taken in the forms 

A x ( x ,  y,  t) = Ax(O),  A y ( x ,  y, t) = A y ( r l ) ,  with ~ = p x  + qy  - Cst. 

There is one component of displacement and velocity in each wave, denoted by 
the second index, x or y: 

Uzlx = O A x / S y  = p d A x / d ~  

Uzly = - O A y / O X  -"  - q  d A x / d ~ ,  

Vzlx = 02Ax /OyOt  = p d 2 A x / d O  2 

Vzly = - a 2 A y / a x o t  = - q  d 2 A y / d r l  2 

where the symbols Ix and lY designate the relevant potential. There are two 
strains from the combined potentials: 

Exz = OUz/OX = p 2 d 2 A x / d r l  2 - p q d 2 A y / d O  2 

eyz = 8Uz/Oy = p q  d 2 A x / d r l  2 - q2 d 2 A y / d 0 2  

and two stresses: 

Crxz = G ( p  2 d 2 A x / d r l  2 - p q  d 2 A y / d r l  2) 

tYy z - -  G ( p q  d 2 A x / d r l  2 - q2 d Z A y / d r l 2 )  

Boundary conditions prescribed on surface forces will determine which of these 
waves, or what combination of them, is excited. The wave deriving from Ax 
has a stress resultant in the x - z  plane, while that from A y lies in the y - z  plane. 

tYzn --" O'xznx -1-Cryzny - -  pCrxz + q f f y z  

= G [ p d 2 A x / d r l  2 - q d 2 A y / d r l  2] = pCsVzlx 

t3rzt = tYxzny -- Cryznx = qCrxz -- Pffyz 

= G [ q d 2 A x / d O  2 - p d 2 A y / d O  2] = pCsVzly. 
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DISPERSION,  G R O U P  V E L O C I T Y  

The speed of a wave propagating in an unbounded uniform elastic medium is 
constant--it depends on elasticity and density, both of which are constant for 
the small range of stresses used in UT. In nonuniform materials, of course, 
this may not be true. Wood and some man-made materials are nonuniform, 
as discussed in Section 5. For nonelastic (e.g., viscoelastic) media, for high- 
amplitude waves, or for waves near the boundaries of a body, the wavespeed 
may depend on frequency and other parameters such as dimensions. Waves 
whose speed depend on frequency are called dispersive. Increasing frequency 
may decrease the wavespeed (as in rod waves), or increase it (as in bending) 
(see Appendices 11 and 12). 

Consider the phase of a dispersive wave, in which the wavespeed depends 
on frequency: 

~ ( o 9 )  = k x  - cot = k ( x  - c t )  

with o9 = k c ,  and c = c(og) is the phase velocity, or wavespeed. 
In a wave which has components with a range of frequencies, those compo- 

nents which have the same phase will superimpose and interfere constructively 
to form a wave of increased amplitude. At a fixed position and time, the phase 
of different components will be the same, called a stationary phase, when 

d d p / d o 9  = ( d k / d o g ) x  - t = O. 
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This represents a wave on which x - C g t  = O ,  where r  - -  do9 /dk  is called the 
group velocity. Then, from o9 = kc,  

r = d o 9 / d k  -- c + k ( d c / d o 9 ) ( d o 9 / d k )  = c + k(dc/do9)Cg 

so that 
Cg - -  c/[1 - (og/c) (dc/do9)] .  

When the wavespeed is independent of frequency, i.e., when dc /do9  = 0, the 
group velocity is the same as the wavespeed. If the wavespeed decreases with 
frequency so that dc /do9  < 0, then the group velocity is less than the wavespeed, 
and conversely. 

A. W A V E  P R O P A G A T I O N  IN V I S C O E L A S T I C  M E D I A  

This is a large subject which is introduced only briefly here. In a viscoelastic 
material, forces arise in response to both deformation, i.e., strain e, and to rate 
of deformation, i.e., strain rate, Oe/Ot. Thus the elasticity relationship for linear 
elasticity, cr -- or(e) = Ce, is replaced in the linear viscoelastic case by the 
constitutive relationship 

cr -- or(e, Oe/Ot) = Ce  + DOe /Ot  

where C is an elasticity coefficient, and D is a viscosity coefficient. In a sim- 
ple one-dimensional wave propagation configuration, there are then the two 
equations 

Constitutive relationship: a - - C O u / O x  + DOZu/OxOt  

Newton 's  Law: pOZu/Ot  2 -- Off /Ox.  

Combining these two equations to eliminate stress gives 

p O 2 u / O t  2 = C 0 2 u / O x  2 + D O 3 u / O x 2 O t .  

For a harmonic wave of the type 

U = U e  i(kixi-c~ 

this gives the complex frequency-wave number relationship 

po92 __ Cki  ki -Jr- i Dki  ki 09 

and the wavespeed is given by 

C 2 = o 9 2 / k i k  i - -  c2(1 -+- i D / C o 9 )  

where Co -- ( C / p )  1/2. 

The wavespeed has a frequency dependence which leads to group behavior. 
At very high frequency this is the same as the elastic case, c --+ Co, and is 
infinite at low frequency. 
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B. W A V E  P R O P A G A T I O N  IN A T H I C K  ROD 

The Mindl in-Herrmann Approximation (Doyle, 1989) 

The stress-strain state and the balance of elastic and inertia forces which act on 
a rod when lateral motion are considered is discussed in Appendix 11. These 
forces combine to produce propagating waves whose speed depends on the 
frequency, the diameter of the rod, and its elasticity. 

As developed in an approximate method in Appendix 11, the analysis leads 
to two types of wave. The first of the two modes is essentially the bar wave 
of simple theory, but it slows with increasing frequency. In an exact analysis, 
it can be shown that these waves are asymptotic at high frequency to Rayleigh 
waves on the free surface of the rod. The second mode is a high-frequency 
mode, nonpropagating at low frequency, whose speed decreases asymptotically 
toward the bar velocity as frequency increases. 

A graph of the dependence of 13, the nondimensional wavespeed, on y, 
the nondimensional frequency, representing the approximate nondimensional 
dispersion curves for a circular rod, is shown for a range of Poisson's ratios in 
Fig. 157. Here/3 = c/co and y = ao~/Co. This is 2rr times the ratio of the time 
for a wave to cross the radius, a, i.e., 2:rra/co, to the time period of the wave 

tp  = 2Jr/o~. 
The corresponding group velocities are shown in Fig. 158. The group veloc- 

ity of the bar mode is lower than the wavespeed, but is the same at very low 
frequency. The group velocity for the second mode starts at zero at the cutoff 
frequency when the wavespeed is infinite, and increases with frequency. 

For zero Poisson's ratio, the group velocities for both modes have a dis- 
continuity at a frequency above the cutoff frequency, and their continuations 
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switch with each other. At other Poisson's ratios, the curves exhibit a gradual 
transition. 

C. B E N D I N G  W A V E S  

Bending is dispersive at all frequencies. The simplest theory of bending, the 
Engineers' Bending Theory (EBT), applies to low frequencies, but at high fre- 
quencies, the more advanced Timoshenko theory is more satisfactory. In the 
EBT, the shear force is indeterminate because rotation of the cross-section is 
taken to be the same as the slope of the deformation. This implies that a normal 
cross-section remains normal, but in the Timoshenko theory the cross-section is 
allowed to rotate. 

The elasticity relationships and inertia forces are discussed in Appendix 12. 
The EBT leads to the dispersion equation 

E l t c  4 - -  t zo)  2 = O, 

so that the wavespeed is 

c(o9)  - -  c o / k  = ( E I / l z ) l / 4 c o  1/2 

In nondimensional form this is 

1/2 f l = y  

where 13 = C/Co is the nondimensional wavespeed, with Co = ( E / p )  1/2, and 
y -- cok/co is the nondimensional frequency. 
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This is a dispersive behavior. The Timoshenko theory leads to a compli- 
cated dispersion relationship developed in Appendix 12, giving two dispersive 
wavespeeds, which are plotted as functions of Poisson's ratio in Fig. 159. The 
corresponding group velocities are shown in Fig. 160. 
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APPENDIX 8 
T R A N S D U C E R  B E A M  F O R M I N G  

A transducer is a distributed source, which can be considered to emit spherical 
waves from all points of its face, with amplitude decreasing as the inverse of 
the radius. Near the transducer, these waves interfere destructively forming a 
complex wave pattern of peaks and nulls, called the near field, but at further 
distances they interfere constructively forming plane waves in a conical region 
called the far field, which is the UT beam. 

A. SIMPLIFIED A N A L Y S I S  OF BEAM F O R M I N G  

A simplified analysis is given next which illustrates the essential aspects of beam 
forming and provides approximate formulae for the near-field distance and the 
beam cone angle. A more complete yet still approximate analysis is given later. 

Consider the interference, at the near-field distance N, between a wave 
emitted from the center of the transducer and one emitted from the edge. When 
these two waves meet and are out of phase, they cancel forming a null which 
is the edge of the beam cone at a point P illustrated in Fig. 161. 

The distance to P from the edge of the transducer of diameter D = 2R is 
N, and from the center O it is (N 2 -+- R2) 1/2. To be out of phase at the near-field 
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FIGURE 161 Simplified representation of beam cone 

distance, N,  the difference in the phases q~ = k x  - c o t  of the two waves is 
6~b = Jr, where k = 2zr/~ is the wave number,  and ~. is the wavelength.  

Then 
S ~  = k r x  - -  k[ (N 2 + R2) 1/2 - N] = re. 

This requires that 

N = (R 2 - X2/4) /Z = ( 0  2 - ~.2)/4)~ ~ D 2 / 4 ~ .  

(since the wavelength is usually smaller  than the transducer diameter).  
The beam cone half-angle is then 

y = a t a n ( R / N )  ~_ atan(2)c/D).  

A small wavelength or a large transducer produce a narrow beam. In the limit 
of  zero diameter,  the beam covers the whole  space as in a spherical wave f rom 

a point source. 

B. A N A L Y S I S  OF RADIAL  V A R I A T I O N  OVER BEAM 

The method fol lowed below is essentially one developed in fluid mechanics  for 
the disturbance propagated in a fluid or gas f rom a piston. It is also similar to 
the analysis of  wave radiation f rom an antenna in electrical engineering.  The 
analysis does not consider the directional aspects of  stress and velocity in a 
solid: it considers pressure produced at a point by a wave as independent  of  the 
direction of  the wave, so that the pressure f rom various waves  can be added 
arithmetically. In a solid, the components  of  stress or velocity should be resolved 
in direction before addition. This approximat ion is fol lowed here to render  the 

analysis amenable  to solution. 
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Consider a wave propagating from a small area r d r d O  of a circular ring at 
a point Q at (r, 0) on the surface of the transducer, to a far field point P at a 
distance L from the face and R radially outward, as illustrated in Fig. 162. 

The incremental  wave amplitude (signal) at P due to a source on an area 
increment d A  = rdrdO is 

d S  = cro(e - ikp / k p ) r d r d O  

where fro represents the strength of the wave emitted per unit area by the trans- 
ducer, and p is the distance P Q from source to field point. The time factor e ic~ 

is omitted for clarity. 
The total signal at Q from all points P on the transducer is then the integral 

S=~roffe-ikPrdrdO/kp 
where p is the radial distance from the incremental  source point Q to the far-field 
point P. The following distances are evident from the geometry  configurations: 

O P  - Po -- ( L2 -k- R2) 1/2, O S  = r cos0 ,  and S Q  = r sin0,  4~ - a t a n ( R / L )  

so that S P is 

S P  = [ O P  2 + O S  2 - 2 0 P O S c o s ( z r / 2  + t~)] 1/2 

= [/92 -if- r 2 COS 2 0 -k- 2por cos 0 sin ~b] 1/2. 

The source-point  distance, P Q, is then 

p -- [ S P  e -k- SQe]  1/e 

= [p2 + r e + 2por  cos0  sin 4~] 1/e. 
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By neglecting the term r 2, this is 

p ~ po[1 + 2r co s 0  sinq~/po] 1/2 

and using the first two terms of  a binomial  expansion for the square root, 

P ~ Po + r cos 0 sin q~. 

Neglect ing the term r cos 0 sin 4~ in p in the denominator ,  the integral becomes  

S,~ ~roe-ikpo/kpo f f e-ikrc~ 

The integral ove r  0 is of  the form of  a standard Bessel  function integral: 

f0 7r ~- 2zr Jo(a)  e - i a  cosO dO 

so that taking a = kr sin 4) leads to the integral 

S "" 2zr~roe-ikp~ f Jo(kr sin ~)rdr. 

This integral over r is of  the form of another standard Bessel  function integral 

o cl/2 Jo(ar)r dr = (d/2a)Ji (ad/2). 

Putting a = k sin 4~ results in 

S "~ 2zrcro(e-ikP"/kpo)(d/2k sin ~)Jl [(kd/2) sin 4)] 

"~ 2 SoJl (x)/x 

where 

So = cro(zrdZ/4)/(kpo) is the nominal  total signal at the distance Po 

x = (kd/2) sin 4~ = zr(d/Jk) sin[atan(R/L)] 

and the factor e - ikp~ combines  with the suppressed factor e ic~ to represent  

the propagating wave. The distribution Jl(x)/x is illustrated in Fig. 163. The 
distribution shows that there is a sequence of  side lobes of low intensity outside 
the primary lobe, which is the beam. The cone edge of the beam is at x "~ 
3.8317 . . . .  which is the first zero of  the Bessel  function and leads to the formula  

(kd/2) sin4~ -- 3 . 8 3 1 7 . . .  

so that the cone angle for the main lobe is 

q~ = a s in (3 .8317 . . . )~ / z rd )  = a s i n ( 1 . 2 1 9 7 . . . ) ~ / d ) .  

The first side lobe falls be tween the first and second zeroes (x -- 3 . 8 3 1 7 . . .  to 
7 . 0 1 5 6 . . . )  of  the Bessel  function, for which 4~ = a s i n ( 2 . 2 3 3 1 . . . ) ~ / d ) .  

These two angles are plotted vs d/Jk, the ratio of transducer d iameter  to 
wavelength,  in Fig. 41 in Section 3. The effective transducer diameter,  deft, can 
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be determined by estimating the beam angle and reading off the diameter from 
the graph. This method does not give accurate results because the beam edge is 
not easy to identify, but it gives a useful first approximation. A refined result 
is obtained by fitting a curve to the radial distribution given by the expansion 
formula 

S(x)/So = 2Jl(x)/x - 1 - ( 1 / 8 ) x  2 %- (1/192)x 4 . . . .  

Now x can be approximated by the expression 

x ~ ( n d e f f / ~ ) ( R / L ) ,  

so that the radial distribution can be fitted to the formula 

S ( x ) / S o  ~-' 1 - ( l / 8 ) ( 7 " t ' d e f f / ) ~ ) 2 ( R / L )  2. 

The parameter x of the beam distribution depends on the two ratios R/L,  which 
is the radial off-axis distance normalized to axial distance from the transducer, 
and d/~., which is the transducer diameter normalized to wavelength. The beam 
distribution is plotted as a function of R/L for several values of d/•., in Fig. 40 
of Section 3. 

A larger transducer produces a narrower beam as does a shorter wavelength. 
Since )~ = fc ,  where f is frequency and c is wavespeed, a lower frequency 
produces a narrower beam. Furthermore, the beam profile changes with material, 
and one with a lower wavespeed produces a narrower beam. A beam changes 
when it is transmitted from one material to another. 
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C. ANALYSIS  OF A X I A L  V A R I A T I O N  OF BEAM S T R E N G T H  

The approximations made in the foregoing analysis negate the axial variation. 
An alternative analysis is made here by considering only points on the axis and 
using less restrictive approximations. 

The analysis is based on the geometry illustrated in Fig. 164, which differs 
from Fig. 162 in that the far-field point P lies on the transducer axis. Here, the 
distance from the source element at Q to P is 

p = Q P  = ( S P  2 + SQ2)  1/2 = ( O P  2 + O S  2 -k- SQ2)  1/2 

-- [L 2 -k- r 2 cos 2 0 -+- r 2 sin 2 0] 1/2 

-- [L 2 -k- r2] 1/2. 

Since there is no angular dependence, the integral over 0 leads to a factor of 
27r, and the signal is 

f 
d/2 

S = 2zrc ro  e - i k P r d r / k p .  
J 0  

Now, because p2 = L 2 -k- r 2, it follows that 

rdr  = pdp  

so that 

S = 27r(cro/k) e-ikpd,o -- 27r(Oo/k)[e -ik'~ - e - i k L ] / ( - - i k )  

where ,Oe ---- (L 2 + d 2 / 4 )  1/2 is the distance from the edge of the transducer. Then 

S = (2rCCro/k2)e-ikL[e - i k ( ' ~  1]/i .  

Noting that e - ix  ~- cos x - i  sin x, and dismissing the complex result, this gives 

S = (2Jrcro/k2)e - ikL sink(pe - L) 

= (27rcro/kZ)e -ilcL sin{(27rL/~)[(1 + dZ/4L2)  1/2 - 1]}. 

s -  ~ 1 

Peff 

P 

On-axis""-.. 
far field point "" 

F|GURF ]64 Geometry for on-axis far-field point 
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The exponential factor, e - i k L ,  combines with the suppressed time factor e i~~ to 
represent the propagating wave. The variation of signal along the axis depends 
on the transducer diameter and the wavelength. 

The magnitude of the nondimensional signal can be represented by the 
nondimensional formula 

JsI/So = 2()~/rrd)2l sin{[2Jr(L/,k)][1 + ( d / ~ . ) 2 / 4 ( L / ~ . ) 2 ]  1/2 - 1}l 

where So = (zrdZ/4)Cro is the nominal total signal. This function is plotted 
without the factor 20~/Trd) 2 for several values of d/Z in Fig. 42 of Section 3. 

The near-field limit is determined by the largest distance L = N at which 
the signal is 0, i.e., the argument of the sine function is 7r, so that the signal 
exhibits no further oscillation in strength at points further out. Then 

(N 2 + d2/4) 1/2 - N = ~/2, 

which leads to the same result as in the approximate analysis: 

N = ( d 2 / 4 -  ~2/4)/~ = (d 2 - Z2)/4~ "~ d2/4~.. 

For distances much larger than the diameter, the two distances Pe and L are 
almost the same, so that the argument of the sine is small, and the sine is 
approximated by its argument. The signal amplitude is then 

[Tr2(d/~)2]lSI/So = 27r(t/Jk)[(1 + d2/4L2) 1 /2 -  1]. 

Now, for L > d, using the approximation (1 + d2/4L2) 1/2 ~_ (1 + d2 /8L2 . . . )  
allows the signal strength to be written as 

ISIISo "" (1/2Jr)(~./L) 

showing that in the far field, the signal varies inversely with distance, L, as for 
a point source. From Fig. 42 it appears that this approximation gives results for 
ISI which are less than So provided L = Lmin > 4)~ when d/~ = 2, i.e., when 
N/Z = 1, or >)~ when d/~. = 1 and N/Z  = 1/4. Hence Lmin  > 4N. 
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APPENDIX 9 
S O L U T I O N S  FOR A N I S O T R O P Y  

Considerations of a plane wave with unit normal ni propagating in an anisotropic 
medium lead to the following equation (Appendix 5): 

( n j n l C i j k l  - -  p C 2 ~ i k ) O V k / O t  - -  O. 

This is a principal- (or eigen-) value problem for detemaining principal directions 
Pi such that there are nontrivial solutions for acceleration, Ovk/Ot ~= O, which 
can be written as 

(I"ik - -  p c 2 6 i k ) P k  = 0 

where I"ik = njnlCijkl  are the Christoffel stiffnesses in the direction of the 
normal ni. These stiffnesses are symmetric: ["ik = I"ki. 

The determinant of the bracketed expression must be zero, giving the deter- 
minantal equation 

II-'ik --  pc26 ik l  = O. 

In general there are three principal (eigen) values for pc :z, and three principal 
(eigen) vectors. 

When written out in terms of the stiffnesses for general anisotropy with 
21 constants using the six-dimensional notation (see Appendices 1 and 2) the 
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Christoffel stiffnesses are as follows: 

1-'11 -- 12Cll %- m2C66 %- n2C55 %- 2mnC56 + 2nlC15 + 21mC16 

1-'22 -- 12C66 %- m2C22 + n2C44 %- 2mnC24 %- 2n1C46 %- 21mC26 

1-'33 = 12C55 %- m2C44 %- n2C33 %- 2mnC34 %- 2n1C35 %- 21mC45 

1-'12 -- 12C16 %- m2C26 %- n2C45 %- mn(C46 %- C25) 

%-nl(C14 %- C56) %- lm(Cl2 %- C66) 

1-'13 = 12C15 %- m2C46 %- n2C35 %- mn(C45 %- C36) 

%-nl(C13 %- C55) %- Im(Cl4 %- C56) 

1-'23 : 12C56 %- m2C24 %- n2C34 %- mn(C44 %- C23) 

%-nl(C36 %- C45) %- lm(C25 %- C46) 

where (l, m, n) are the components of ni. 
For restricted classes of material of symmetry equal to or greater than 

orthotropic, and with nine distinct elastic constants, i.e, excluding rhombohedral 
symmetries (those whose axes of symmetry are not orthogonal), these expres- 
sions reduce as follows: 

1"il -- 12C11%- m2C66 %- n2C55 

1-'22 = 12 C66 %- m 2 C22 %- n 2 C44 

1"33 -- 12 C55 %- m 2 C44 %- n 2 C33 

1-'12 : lm(Cl2 %- C66) 

1-'13 = nl(C13 + C55) 

1-'23 - -  mn(C44 %- C23). 

A. W A V E S P E E D  

The determinantal equation is a cubic in (pc 2) which can be written explicitly 
as the characteristic equation 

(/96"2) 3 -- 1-'1 (/96 "2) + 1-'2(pr 2) -- 1-'3 = 0 

where the coefficients F1, 1-'2, and 1-'3 are called the invariants of the matrix I"ij: 

F1 = Fii = 1-'11 + 1-'22 %- F33 

F e  - ( F  2 - FijFij)/2 = r , , r 2 2  + r 2 2 r 3 3  + r 3 3 r l l  - r122 - r~3 - r ~ l  

F 3  = I F / j l  = r l l r 2 2 r 3 3  - r ~ l r ~ 3  - r22r321 - r3~r122 + e r 1 2 r 2 3 r 3 1 .  
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This equation has three solutions for (pc2), showing there are three possible 
wave types, called the modes, each with a principal vector corresponding to the 
direction of material motion, vi, for that mode. 

Note that in most systems of units the elastic constants are large num- 
bers, typically of the order of 10 6 in English units (psi), and 1011 in cgs units 
(dynes/cm2). The terms in the three invariants are then of the order of 10 6, 1012, 
and 1018, or l0 ll, 10 22, and 1033. These disparate magnitudes cause numerical 
difficulties which can be ameliorated by dividing all the elastic constants by a 
suitable number such as the largest of them, and then multiplying the roots, pc 2, 
resulting from solving the characteristic equation by that number. 

Solutions of the characteristic equation determine the wavespeeds and are 
called the principal values or eigenvalues of the matrix; they are generally all real 
for elastic waves. They can be found by numerical methods using an available 
mathematical program or spreadsheet, or by writing a program. 

The simplest method finds the smallest root by direct substitution of values 
of (pc 2) into the cubic function, starting from the value (F3/F2) /10 .  Note that 
(1-'3/1-'2) would approximate the solution if (pc 2) were small so that the higher 
order terms are not significant. 

Values of (pc 2) are incremented upward from this initial value until the 
cubic function changes sign, i.e., passes through zero. The value is then reduced 
by the last step, the step is reduced by half, and the process repeated. This 
procedure is continued, progressively reducing the step, until the change in the 
value of (pc 2) is of no further significance. 

The two other roots are found by algebraic solution of the quadratic 

( p C  2) 2 nt - A ( p c  2) n t- B - -  0 

which results from factorization determined by artificial division, so that 

y3 _ e l  y2 + F z y -  F3 = y(y2 + Ay + B) - - 0  

where 

and 

y = 106 "2 _ (pr  

A = 3 ( p r  1 - e 1 

B --  3 ( p c 2 )  2 - 21-'1 (pC2) l  + F2.  

The remaining two roots are then solutions of the quadratic equation 

y2 + Ay + B = 0 

and these are 

Y2,3 --  (pc2)2,3 -- ( p c 2 ) I  --  - [ A  4- (A 2 - 4 B ) 1 / 2 ] / 2 .  

Evidently A < 0 Or else at least one of the roots would be negative, and this 
would not be physically reasonable. 
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The trial-and-error method just described gives the smallest root, (pc2)l, and 
the positive sign in (pc2)2 makes this the next smallest, wi th  (pc2)3  being the 
largest root. In calculations starting from one of the axes, say 0 -- 0, the modes 
can be identified as quasi-transverse modes, 1 and 2, in this order, followed by 
the quasi-longitudinal mode, 3. However, the sequence changes when B changes 
sign at B = 0, since then y = 0, and  (pc2)2  --  (pC2)l  . Examples of calculated 
wavespeeds and polarization angles are shown in Figs. 29 and 30 in Section 3. 

B. MATERIAL (PARTICLE) M O T I O N  A N D  THE PRINCIPAL 
DIRECTIONS (VECTORS) 

Nontrivial solutions for the acceleration vector OVk/Ot which satisfy the equations 

(1,ik -- IOC2~ik)OVk/Ot  = 0 

are determined only to the extent of three orthogonal unit vectors po~i (the 
principal vectors or eigenvectors of the matrix, one for each mode, designated 
by c~ = 1, 2, or 3) which give the directions of the accelerations. The magnitude 
of the acceleration for each mode is determined by the boundary or initial 
conditions. 

The principal vectors are called the polarization vectors. Note that in gen- 
eral, material motion, i.e., polarization, is not parallel to the wave velocity, 
which for a plane wave, is along the normal to the wavefront. 

The directions of the principal vectors are determined by the set of three 
equations for each root oe of the equation: 

[1,ik --  (pC2)ot(~ik)]Potk = O. 

They can be found by defining the following parameters (according to Mus- 
grave, 1954): 

G1 --  -[-(1-'211-'13/1-'23) 1/2 

G2 = -4-(1,321-'21 / 1-'31) 1/2 

so that 

G3 = -t-(1-'131,32/1-'12) 1/2 

1-'12 --  G1 G2 

1-'23 --  G 2 G 3  

1-'31 = G3G1. 

Note that this definition cannot be made when any of the three off-diagonal 
stiffnesses is zero, as discussed in the special cases later. In those cases the 
principal vectors are found by a simpler procedure. 

The signs of the G's  must be selected so as to preserve the signs of the 
1,'s. It is not possible to have one of the 1,ij negative at a time, only none 
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or two, because the elastic constants are positive and the Christoffel stiff- 
nesses depend on the product of two components of the wave vector. If one 
or two of the components is negative, then two of the stiffnesses are negative, 
i.e., when 

1-'12 < 0 and 1-'23 < 0, then G2 < 0, and G1 and G3 > 0. 

F23 < 0 and F31 < 0, then G3 < 0, and G l and G2 > 0. 

1-'31 < 0 a n d l - ' 1 2  < 0 ,  t h e n G l  < 0 ,  a n d G 2  a n d G 3  > 0 .  

The first of the three equations which define the principal vectors p~i can now 
be written as 

[1-'11 - (pc2)ot]pc~l + G1G2pot2 + GIG3po~3 -- O, 

and by adding and subtracting the term G2p~l ,  this becomes 

[1-'11 - (pc2)~ - G2]p~l + G l ( G l p ~ l  + G2pot2 + G3pc~3) = 0 

so that 
Pal -- GI (Gi Pai) /[ (pc2)a  - -  1-'11 -'~ G2]. 

The other two components pc~2, and P~3 follow the same form, so that for each 
r o o t  (pc2)o~, the components can be written as 

pai -- G i G j p a j / [ ( p c 2 ) a  -- l"ii -~ G 2) (i not summed). 

The division in this expression for Pai is generally admissible because the 
denominator cannot be zero when the determinantal equation is satisfied. 

Because the term ( G j p a j )  is unknown, the vectors must be normalized to 
unit length by requiting the product 

Poti P~i -- 6a[~, 

where c~ and fl denote two roots. 
The acceleration vector for each mode can then be written as 

OVoti /Ot = Apai 

where A is a scalar amplitude factor determined by boundary or initial condi- 
tions. 

The material motion in each mode is then at an angle, the polarization angle, 
to the wave normal given by the formula 

-- acos(p~ini) .  

C. SPECIAL CASES 

In the following cases of special directions, the method of finding the roots is 
different, so the mode sequence must be determined from their magnitudes. 
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C I. Propagation Vector (Wave Normal)  Lies in a Plane of Two Axes 

If the wave normal  has no componen t  along one of  the axes (say the x-axis  so 
that 1 -- 0), then only one of the off-diagonal  components  of  the stiffness matr ix 

is nonzero and 1712 = 1-'13 ---0, and 1723 = mn(C44 -Jr-C23). The principal value 
equat ions are then 

(F l l  - pc2)pl  =- 0 

( F 2 2 -  pc2)p2 -k- F23P3 = 0 

F23P2 -k- (F33 - pc2)p3 - - 0  

The first of  these equat ions requires that either 

( F l l - - p c  2 ) = O o r p l  = 0  

and the other two require that either their de terminant  is zero, 

(1-'22 -- PC 2) 1"23 
1-'23 (1_,33 _ pC2) = 0 

or that P2 -- P3 - - 0 .  
For the first case of  the first equation, i.e., the mode  pc 2 -- F l l, the deter- 

minant  of  the second and third equat ions is not zero, so that P2 = p3 -- 0, and 
hence p l -- 1. For the second case, the de terminant  is 

(F22 -- pc2)(F33 - Pc 2) - F23 = 0, 

which is solved as a quadratic equat ion to give 

pc 2 "- {1722 -+- 1733) 4- [(1722 - 1733) 2 -k- 4172311/2}/2. 

The first equat ion is not satisfied by the term (1711 -- pc2), so that Pl = 0. The 
second of the defining equations (and equivalent ly  through the determinantal  
equation, the third) requires that the components  of  the principal vector  be 

related by 

(1722 - pc2)p2 -- -1723P3, 

so that 

P2 = A1723 and P3 = A(1722-  pc 2) 

where  A is a constant  de te rmined  by requiring p2 + p~ = 1" 

a -- 1/[(1-'22 - pc2) 2 + 172311/2. 

The results for the other cases when  the wave  normal  has no componen t  along the 

y-axis,  m = 0, or along the z-axis, n = 0, can be wri t ten down  by in terchanging 

the indices 2 to 3 or 1 and 3 to 1 or 2, respectively.  
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Subcase: Transverse Isotropy 

(i) The x l-axis is the symmet ry  axis, so that axes 2 and 3 are equivalent .  
Then  

p c  2 = F l l ,  or P l = 0 

and 

P c2 = 1"22 -q- 1"23, or p2 = p3 = 0. 

The  three modes  (wavespeeds  and principal vectors) are then 

PC 2 = 1"11, and Pl = (1, 0, 0) 

p c  2 --  pc~ = 1"22 + 1"23, and P2 -=- (0, 1, 0), P3 = (0, 0, 1). 

(ii) The x2 (or x3) axis is the symmet ry  axis, so that x l and x 3 are equivalent ,  

so that F33 = I ' l l  and 1,23 = 1-'13 = 0. 
Then  

PC 2 - - 1 " 1 1 ,  o r p l  = 0 ,  o r p 3  = 0  

and 

P c2 =- 1"22, or P2 = 0. 

The three modes  (wavespeeds  and principal vectors) are then 

PC 2 = 1,11, and Pl = (1 /~ /2 ,  0, 1 /~/2)  

P c2 --  1"22, and P2 -- (0, l / x / 2 ,  l / x / 2 )  

PC 2 = 1"11, and P l = ( l /x /2 ,  1/x/Z, 0). 

C2. Wave Normal Lies along One Axis 

If the wave  normal  lies along one of the axes, then two components  of  the 

normal  are zero, and all three off-diagonal  stiffnesses are zero: In these cases, 
the normal  is (1, m, n) = (1, 0, 0), (0, 1, 0), or (0, 0, 1), and the principal  value 
equations simplify to the following: 

The three roots are then 

(1"11 -- p c 2 ) p l  -= 0 

(1"22 -- p c 2 ) p 2  --  0 

(1-'33 -- p c 2 ) p 3  --  O. 

P C  2 -~- Fl l ,  1"22, or 1"33 

and p2 = p3 = 0, or p3 -- p l  = 0, or p l  -- p2 = 0, respectively,  so that the 
principal vectors are (1, 0, 0), (0, 1, 0), and (0, 0, 1). 
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C3.  T h e  I s o t r o p i r  C a s e  

In the isotropic case, the elastic coefficients are (see Appendix 2) 

C i j k l  - -  ~,~ij~kl"Sr - ~ ( ~ i k ~ j l  -k  ~i l~j 'k )  

so that the Christoffel stiffness is 

I"ik - -  (~,-1- g ) n i n k q -  g (~ik 

The invariants are 

1~1 - -  ). + 4 g, 1-" 2 =~t (2~. + 5 g), and 1-'3 - -~t  2 (). + 2 g). 

Since F l is the sum of the three roots, and 1-'3 is their product, the solution can 
readily be seen to be 

p c  2 - -  ~. -k- 2 g ,  p c  2 - - ~ ,  p c  2 =~ t  

so that 
C = [(~. + 2 ~l . ) /p]  1/2 , o r  c = (tx/p)ll2. 

These speeds are independent of direction, as they should be in an isotropic 
material, and are the longitudinal and transverse wavespeeds. 

Alternatively, because of  the form of l-'/k, the determinantal equation can 
be written as 

I n i n k  --  N S i k l  - -  0 

where N - -  ( t i c  2 - IX) / (~ .  + IX). 

On expanding the determinant, many terms cancel leaving only the 
following" 

N 2 ( N  - 1 ) - - 0 .  

The solutions are N = 0 (i.e., pC 2 =lEt), or N = 1 (i.e., pC 2 = ~. -+- 2 g), as 
before. 

The G parameters are 

G i  = ()~-+ ~ )  l / 2 n i .  

a .  L o n g i t u d i n a l  W a v e s  

For the root pc  2 --- ~. -+- 2 g, the denominator of po~i is ,k+ g, so that the 
normalized principal vectors are 

Pi  = n i .  

The acceleration vector, and therefore the velocity, is along the wave normal, 
i.e., the propagation direction, 

l) i ~-. V N n i  , 

where Vu is the normal excitation velocity for the wave. This wave is then 
called a longitudinal wave as discussed in Appendix 3. 
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b. Transverse  Waves 

When the roots p c  2 --- /x are considered, the principal vectors are undefined 
because the denominator of Pai is 0. According to matrix theory, they must be 
orthogonal to the longitudinal vector. Thus there are two perpendicular vectors 

lying in the plane of the wavefront: 

ai(with a in i  = 0), and bi - -  ~ i j k n j a k ,  so that aib i  = n ib i  = 0 

where ai lies in the x - y  plane, and bi lies in the N - z  plane and both are 
determined by the excitation. There are thus two transverse waves. 

The velocity in each of these waves is 

vi --  VTai or vTb i  

where Vr is the transverse excitation velocity. 

D. G R O U P  V E L O C I T Y  

The wavespeed of a plane wave differs with direction, so those plane waves in 

a small cone of directions which have the same phase, 4~ = Ir  - - c t )  = O, 

will combine to form a wavefront. As illustrated in Fig. 165, the plane waves 
propagating in two neighboring directions will intersect at a point which lies 
on a surface forming the wavefront. The distance to this point represents the 
distance propagated by the group of plane waves at the group velocity. The 
direction to the point represents the direction in which energy propagates. The 
following analysis is due to Musgrave (1954). 

The phases of neighboring plane waves are given by the equations 

k i x i  - c t  = O, and (ki -+- d k i ) x ~  - (c -Jr- d c ) t  = 0 

! 
where xi is a point on the first plane and x i one on the second. A group wave 
develops at time t when these two points coincide: 

! 
Xi  m Xi  

k i x  i = ct ~ _  .~~ + dki)x ' i  = (c + dc)t 
Common point Normals to :i ~ ~ _ _ _ _ _ ~  -- ---- 

neighboring ~ /  ............. ~ constructive interference 
........ / "Neighboring plane waves plane waves 

(C -t- d c ) ( k  i + dk i )  ~ ............... 
/ / / 

/ 
c k i ~ ~ / / 

I ~ " / / X  i = X ' i = c ~ t 
Common distance 

' - ' ~ to group wave 

FIGURE 165 Illustration of group velocity as formed by intersection of plane waves 
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and the phases of the two waves are the same, so that 

x i d k i  - t d c  = O. 

The propagation direction vector is a unit vector, kik i  = 1, so that 

ki dk i  = O. 

The wavespeed and wave number are related through the determinantal equation 
A (ki ,  c) = 0, so that their increments are related by the following: 

( O A / O k i ) d k i  -Jr- ( ~ g A / O c ) d c  = O. 

Combining the three equations in the increments dk i  and d c  using undetermined 
multipliers c~ and fl gives the equation 

( x i d k i  - t d c )  + o tk idk i  + f l [ ( O A / O k i ) d k i  -k- ( O A / O c ) d c ]  = O. 

Collecting terms in each increment and requiring them to satisfy the equation 
separately, leads to the conditions 

x i -k- ot k i -Jr- fl ( O A / O k i ) = 0 

- t  + t~(OA/Oc)  = O. 

Then 

~ = tl(OzXlOc) 

otki = - x i  - f l ( O A / O k i ) .  

Multiplying the second equation by ki and using the conditions kik i  -- 1 and 
x ik i  = ct  leads to a solution for c~: 

ot = - [ c  -1- ( O A / O k i ) k i / ( O A / O c ) ] t .  

Inserting these into the equation for x i gives the group velocity 

Cgi - -  x i / t  = [cki -+- { ( O A / O k j ) / ( O A / O c ) } ( S i j  - k i k j ) ] .  

This consists of two terms, one having the magnitude and direction of the plane 
wave speed, and the other perpendicular to it, with the magnitude d c / d k i  = 

( O A / O k i ) / ( O A / O c ) .  Evidently if O A / O c  = 0 the group velocity is indetermi- 
nate, but since that is the case for isotropy, the group velocity can be taken to 
be the wavespeed, so that Cgi = ck i .  T h e  same result arises if O A / O k i  --  O. 

The group velocity has the magnitude 

Cg = (CgiCgi) I/2 

and is directed at an angle s to the propagation vector ki such that 

--  acos (cg ik i  / c g )  --  a c o s ( c / c g ) .  

The determinantal equation connecting the increments d c  and d k i ,  illustrated in 
Fig. 166, is 

A ( c ,  k i )  -- (pc2) 3 - 17"1 (pc2) 2 + 1-'2(pr 2) - 1-'3 - - 0 ,  
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dc/dk ...""" ~ dc/dk = 0 

~ ~  Anisotropic case 
/ / -  --- Isotropic case 

(constant wavespeed) 

~ k  

FIGURE 166 Illustration of wavespeed gradient 

with Fi = I"i(kj) ,  so that 

( 3 A / 3 c )  = [3(pc2) 2 -- 2F1 (pc 2) -+- 1-'212pc, 

and 

(OA /Oki)  = - ( d I " l / d k i ) ( p c 2 )  2 -+- ( d F z / d k i ) ( p c  2) - d F 3 / d k i .  

The derivatives ( d I ' i / d k j )  can be evaluated from the definitions of the invari- 
ants l-'i and of the Christoffel stiffnesses I"ij. This evaluation is tedious but 
straightforward, but does not lend itself to direct algebraic manipulation. 
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A P P E N D I X  10 
O B L I Q U E  I N T E R A C T I O N S  

B E T W E E N  W A V E S  
A N D  B O U N D A R I E S  

A. O B L I Q U E  FREE-SURFACE R E F L E C T I O N  
OF A L O N G I T U D I N A L  W A V E  

Consider  a longi tudinal  wave with potential  funct ion q~l(~), where  ~ = m x  + 

n y - c l t ,  m and n are the direction cosines of  the wave  normal ,  with m 2 + n  2 -- 1, 

so that, taking 0 as the angle be tween  the wave  normal  and the x-axis ,  m -- cos 0 

and n -- sin 0. Its wavespeed  is cl. This wave  is incident  on a free surface of  

an isotropic material  at y - - 0 ,  as sketched in Fig. 167. 

The phase  created by the wavefront  of the incident  wave resolved along the 

surface y = 0 is ~ = m x  - C l t .  Any  wave  genera ted  in reflection mus t  have  

this same resolved phase along the surface, in order  for the mot ions  and stresses 

to be cont inuous.  Hence  any longi tudinal  reflection must  have the same phase,  

e s = m x + n y - c l t .  

It is cus tomary  to define the angle of  incidence of a wave onto a surface 

as the angle be tween  the wave normal  (i.e., the propagat ion  direction) and the 

surface normal :  

c~ = 7 r / 2 -  O, 

so that 

m = sin ct, n = cos ct. 

195 
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F IGURE 167 Oblique longi tudinalwave incident on a free surface at y = 0 

F IGURE 168 Definition of angles of incidence in oblique reflection of longitudinal wave 

The free surface requires that the lateral stress Cryy and the shear stress O'xy at 
the surface y = 0 not be balanced by external forces; hence, both are zero. The 
interaction of the incident wave with the surface then imposes two conditions on 
the reflection process, and these can only be met by two waves. Thus reflection 
must induce both a longitudinal and a transverse wave as shown in Fig. 168. 
Note that in an anisotropic material there can be three components of stress, 
requiring three reflected waves. 

A I. Snell's Law 

The phase-matching constraint among the waves imposes a relationship, called 
Snell's Law as reviewed in Section 4, between the angles of reflection and 
incidence: 

sin Ol i /Cl  - -  sin Otr /Cl = sin [~r /Cs 

where Ci is the wavespeed for the incident wave, and Cr is the speed for the 
reflection. 
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Thus for transverse reflection of an incident longitudinal wave, 

sin ~r = (Cs/Cl) sin O~ i 

so that ~ r  - -  asin[(cs/cl)sinoti] -- a s i n { [ ( 1 -  2 v ) / 2 ( 1 -  v)]l/2sineti}. This 
relationship is plotted in Fig. 59 in Section 4. 

The incident and reflected longitudinal waves are at the same angle relative 

to the normal, i.e., 0r i = Otr, because they have the same speed. The angle of the 
reflected transverse wave is less than that of the longitudinal wave (i.e., closer 
to the normal) because Cs < ct. 

The direction cosines n, p, q can all be expressed, for an isotropic solid, 
in terms of m: 

n = ( 1 - - m 2 )  1/2 

p = (Cs/Cl)m = [(1 -- 2v) /2 (1  -- v)]l/2m 

q = (1 - p 2 ) 1 / 2  _ [1  - { ( 1  - 2v) /2(1  - v ) } m 2 ]  1/2  

A2. The Stress Potentials and Reflection Coefficients 

The incident longitudinal wave is described by a wave potential function ~ i ,  and 
the longitudinal and transverse reflection waves are described by wave potential 
functions ~ r  and A zr, respectively, as reviewed in Appendix 6. In the reflections, 
the y-components  of the wave vectors, i.e., n and q, are negative. The normal 
and shear stresses on the surface are 

O'yy --- [CI / (1  -- V ) ] { [ ( 1  - -  v ) n  2 -q- vm2][O2q~i/O~2 -+- 02dpr/O~ 2] 

-+-(1 -- 2v)pqOZAzr/Orl 2} -- 0 

Crxy = [CI(1 - 2v) /2(1  - v)]{2mn(OZdpi/O~ 2 -- O2~)r/O~ 2) 

-k-(q 2 -- pZ)O2Azr/O~l 2} -- O. 

For the surface to be stress-free, each of these expressions must be zero, leading 
to a pair of equations for the derivatives of the reflection potential functions in 
terms of the incident: 

[(1 - v)n 2 -+- vmZ]O2qbr/O~ 2 + (1 - 2v)pqO2Azr/O~l 2 

- -  - - [ ( 1  - -  v ) n  2 -+- v m 2 ] 0 2 ~ i / O ~  2 

2mnOZ~r/O~2 _+_ ( p 2  qZ)O2Azr/O~12 _ 2mn02~i/0~2.  

Note that if there were no transverse reflection (i.e., if A zr -- 0) and only a 
longitudinal reflection, no solution would be possible, since then the equations 
reduce to 

O2~r/O~ 2 -- - - 0 2 ~ i / 0 ~  2 

02~r /O~ 2 -- 0 2 ~ i / 0 ~  2. 
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Hence  the ref lect ion of  an incident  long i tud ina l  wave  mus t  induce  both  a longi-  

tudinal  and a t ransverse  reflection. 

The  equat ions  have  the solut ions 

(02(~r/O~2)/(O2ffpi/O~2) _ .  _ { ( p 2  _ q2)[(1  _ v)n 2 

4-vm 2] 4- 2(1 -- 2v)mnpq} /A  

(OZazr/Orl2)/(O2~i/O~ 2) = 4 m n [ ( 1  - -  v)n 2 4- v m 2 ] / A  

where  A = [(1 - v)n 2 4- vmZ](p 2 - q 2 )  _ 2(1 - 2v)mnpq.  

Accord ing  to A p p e n d i x  6, the dr iv ing no rma l  stress in a longi tud ina l  wave  is 

O" n : Cl02~)/0~ 2 

and the dr iv ing shear  stress for a t ransverse  wave  is 

O'nt : GOZAz/Orl 2 

The  solut ions  can then  be wri t ten  as the long i tud ina l - to - long i tud ina l  wave  n o r m a l  

stress ref lect ion coeff icient  

Cn,ll -- O'nr /tYni -- (02(~r /O~2)/(O2qbi /O~ 2) 

and as the long i tud ina l - to - t ransverse  wave  shear  stress conver s ion  coeff icient  

Cnt,lx --- O'ntr/O'ni : [ ( 1  - -  2 v ) / 2 ( 1  - l))][(02Azr/Or]2)/(02~i/O~2)].  

These  coefficients  are p lot ted  in Figs. 64 and 65 of  Sec t ion  4. 

Note  that the ref lect ion coefficient  at 0 ~ is Cn = - 1 ,  i ndependen t  of  Pois-  

son ' s  ratio, v. For  v = 0.5 (equiva lent  to incompress ib i l i ty )  it is a lways  - 1 ,  but  

swi tches  to 4-1 as v --~ 0. For  v < 0, the behav io r  is different.  

For  no rma l  incidence,  w h e n  m = 0 (i.e., Cti = 0), n -- 1, p = 0, q -- 1, then 

Cnl = --1 and Cna -- 0, so that a longi tud ina l  wave  reflects as a long i tud ina l  

wave  of  oppos i te  sign with no t ransverse  wave ,  as d i scussed  above.  

B. OBLIQUE FREE SURFACE REFLECTION 
OF A TRANSVERSE W A V E  

Cons ide r  a t ransverse  wave  with  potent ia l  func t ion  Azi(rl), where  r/ --  px  + 
q y -  Cst and pe  + qe _ 1, inc ident  on a free surface of  an isotropic  mate r ia l  

at y = 0. This  wave  can reflect  as a t ransverse  wave  wi th  potent ia l  Azr(rl), 
where  0 = px  + q y -  Cst and a longi tud ina l  wave  wi th  potent ia l  tPr(~), w h e r e  

-- mx + ny - clt. This  sys t em of  waves  is i l lus t ra ted in Fig 169. 

A t ransverse  wave  wi th  mo t ion  t ransverse  to the p lane  of  p ropaga t ion ,  as 

d i scussed  in A p p e n d i x  6, is not  ana lyzed  here,  but  the p rocedure  is s imi lar  to 

the fo l lowing.  

As  before,  Sne l l ' s  law applies  b e t w e e n  the angles  of  inc idence  of  these  

waves  so that  

sin Ot r : (Cl/Cs) sin/~i 
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F I G U R E  1 6 9  D e f i n i t i o n  o f  a n g l e s  o f  i n c i d e n c e  in  o b l i q u e  r e f l e c t i o n  o f  t r a n s v e r s e  w a v e  

and Olr = asin[(csl/Cs)sin/3i] = asin{[(1 - 2v) /2 (1  - v)] -1/2 sin/3i}. This rela- 
tionship, which is essentially a rotation of that of Fig. 59 in Section 4, is plotted 
in Fig. 60 in Section 4. The critical angles beyond which no reflection is possible 

are shown in Fig. 61 in Section 4. 
The direction cosines can be expressed in terms of the direction cosine of 

the incident transverse wave, p" 

q = (1 - p2)1/2, 

m -- (cl/cs)p = [2(1 -- v) / (1  -- 2v)]l/Zp 

n = (1 - -  m 2 )  I / 2  = [1  - -  2(1 -- v) / (1  -- 2v)p2] 1/2. 

As before, the free surface signifies that the lateral stress Cryy and the shear 
stress Crxy at the surface y = 0 are not balanced by external forces, hence both 
are zero. 

ffyy = [Cl / ( l  -- 1 ) ) ] { - - ( 1  - -  2v)pq[O2Azi/Orl 2 -- 02Azr/OTI 2] 

+ [ ( 1  - v)n 2 + vm2]O2qbr/O~ 2} -" 0 

axy -- [CI(1 - 2v) /2(1  - -  v ) ] { ( q  2 - -  p2)[O2Azi/OO2 + OZazr/Orl 2] 

--2mnO2~r/O~ 2} -- O. 

T h e n ,  

[(1 - I ) ) n  2 -k- pm2]O2~br/O~ 2 -+- (1 - 2v)pq O2Azr/O~72 

= (1 - 2v)pq O2Azi/802 

2mn 32dpr/O~2 + (p2 _ qZ)OZazr/Orl2 = _ ( p 2  _ qZ)O2Azi/Orl2. 

Again, note that if no longitudinal reflection were present (i.e., if 4~r -- 0) but 
only a transverse reflection, no solution would be possible. Hence the reflection 
of an incident transverse wave must induce both a longitudinal and a transverse 
reflection. 
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The solutions to these equations define the reflection and convers ion coef- 

ficients 

Cn,x l  - -  t r n r / O ' n t i  = [ 2 ( 1  - -  v ) / ( 1  - -  2 v ) ] [ ( O 2 d p r / a ~ 2 ) / ( O 2 A z i / O j 7 2 ) ]  

-- 4(1 -- v ) ( p  2 -- q 2 ) p q / A  

Cnt , xx  = O'ntr /O'nt i  = ( O Z a z r / O r l Z ) / ( O Z A z i / O r / z )  

-- --{[(1 -- v)n 2 + vmZ](p 2 -- q2) + 2(1 -- 2 v ) m n p q } / A  

where A = [(1 -- v)n 2 -Jr- vmZ](p 2 -- q2) _ 2(1 -- 2v)mnpq .  

These solutions represent  reflection coefficients relat ive to the magni tude  of  

the incident wave,  as plot ted in Figs. 66 and 67 of  Section 4. 

C. REFRACTION (OBLIQUE TRANSMISSION) 
OF A LONGITUDINAL OR TRANSVERSE WAVE 

Transmission of  a wave across an interface be tween  two materials  induces two 

or three transmissions,  and two or three reflections. This arises because there 

are four or six condit ions to be met: 

�9 A balance of  the two or three stress components  acting across the interface 

�9 A match of  the two or three displacements  or veloci ty components  across 

the interface so that there is no separat ion or interpenetrat ion of  the two 

materials  

For  an interface y = O, these equations are 

tTyy i = O'yy r + O'yyt 

tTxyi - -  tTxyr "+" tTxyt 

tTxz i -~- tTxz r + O'xzt 

Vxi = l)xr -~- 1)xt 

Vyi = Vyr -Jr- Vyt 

Vzi = Vzr -Jr-Vzt. 

In an isotropic material,  when the waves  lie in the x - y  plane, the z -components  

are all zero, reducing the set of equations to four. 
The t ransmit ted waves  are general ly  at different angles than the reflected, 

being in a different material ,  and are cal led refracted waves,  as indicated in 

Fig. 68 of Sect ion 4. 
The incident  wave may be a longitudinal  wave with potential  t ~ i ( ~ l )  where 

~1 : m i x  + n l y -  Cllt, or a transverse one with potential  Azi(Ol ), where  

O1 = p l x  + q l Y - C s l t ,  and the subscript 1 denotes the propert ies of mater ial  1, 

that with the incident  wave. 
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The phases for the longitudinal reflected and transmitted waves are q~m (~m), 
where ~m = mmX +nmy--Clmt ,  and for the transverse waves they a r e  Azm(rlm ), 
where rim - ' -  pmX + q m Y -  Csmt, where m = 1 or 2 to distinguish the two 
materials. There are four or six applications of Snell 's  law to relate the direction 
cosines for the reflected and refracted waves to the incident, together with the 

2 2 = 1 and p2  + q2 = 1. four differential equation conditions m m -k-n m 
For the isotropic case, the resulting four equations can be expressed in 

terms of the potential derivatives as in the free-surface reflection case, using 
the expressions for stress and velocity (given in Appendix 6). The result can be 
written in the form of a 4 x 4 matrix equation: 

[MI(X) = (Y) 

where [M] is the 4 x 4 matrix 

--ml/Zll  - -ql /zsl  q2/Zs2 m2/z12 
--nl/Zll  --Pl/Zsl P2/Zs2 n2/zl2 
n 2-k- N l m  2 n 2 n t- N 2 m  2 2plq l  2p2q2 

2 M l m l n l  2 M 2 m 2 n 2  (q2 _ p2)  (q2 _ p2)  

with 

and 

NI = [Vl/(1 - vl)], N2 -- [v2/(1 - v2)], M1 = [(1 -- 2Vl)/2(1 -- Vl)], M2 

= [(1 - 2v2)/2(1 - v2)] 

2 ( X )  -- { [ ( 0 2 r  [(82c/92/8~2)/p2c221, [ ( O e A l / O o e ) / P l C s l ] ,  

[ ( 02 A 2 / Or12 ) / p2c22 ]}, 

which is a vector (really, a grouping) comprising the four normalized poten- 

tials, and 

(Y )  -- (Vxi, IJyi, Cryyi, ffxyi). 

This vector specifies the incident wave state, whether on a transverse or a lon- 

gitudinal wave. 
A major complication is that the direction cosines for the waves differ 

because the wave speeds in the two materials are, in general, different. An 
algebraic solution is not feasible. Numerical methods must be used with specific 
properties, particularly the two Poisson's  ratios. 

D. RAYLEIGH W A V E S  

A Rayleigh surface wave runs along a free surface with a wavefront perpen- 
dicular to the surface. The motions decrease exponentially with depth from a 
maximum at the surface, whereas the stresses are zero at the surface, growing 
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to a max imum at some depth, and then decreasing to zero exponentially. The 

motion is two-dimensional  in a vertical plane. 
The wave is a combination of longitudinal and transverse motions, both 

propagating at a wavespeed which is different from their speeds in an unbounded 
region. 

The potential functions can be taken as follows: 

~(x ,  y, t) -- e-ay f (~) 

Az(x ,  y, t) -- e-bY g(~) 

where ~ = k (x  - C r t )  is the phase of both, with a wavespeed Cr, which is the 
Rayleigh wavespeed and a and b are to be determined. Both potentials have 
the same dependence on x and t in order to have a coherent wave in which the 
stress components  from each potential interact to meet  the stress-free condition 
at the surface. The dependence on y need not be the same, as indicated by the 
indices a and b, nor are the amplitudes of the functions f and g. 

The differential equations for the potentials given in Appendix 6 require that 

kZdZ f /d~  2 -+- aZ f -- (k2c2/c 2) dZ f /d~  2 

kZdZg/d~2 _+_ bZg = (k 2 2 2 Cr /Cs )d2g /d~  2 

where Cl is the longitudinal wavespeed,  and Cs is the transverse wavespeed.  
These are two ordinary differential equations, 

dZ f /d~  2 + otZ f - 0 

d2g /d~2  _+_ fl2g _ 0 

with O~ 2 = a 2 / k 2 (1 -- y2), f12 = b 2 / k 2 (1 -- y2), and ~'l -- Cr/Cl, }/S = Cr/Cs. 

For the solutions to have the same dependence on ~, c~ -- fl, so that 

and then 

a 2 / ( 1  ~2 b 2 2 - ~ ) =  / ( 1 - •  

f = A cos ot~ + B sin c~ 

g -- C cos c~  + D sin ot~ 

The displacements are 

Ux = Of /Ox + OAz/Oy = ke -ay d f /d~  - be-by g 

Uy - -  Of /Oy -- OAz/Ox -- - a e - a y  f - ke -by d g / d ~  

and the strains are 

exx = OUx/OX -- kZe -ay dZ f /d~  2 - bke -by dg/des 

eyy = OUy/Oy - aZe-ay f + bke -by dg/des 

exy - OUx/Oy -+- OUy/OX = - 2 a k  e -ay d f / d~  + (bZ g - k 2 dZ g /d~Z)e  -by. 
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The normal  and shear stresses at the surface y = 0 are (from Appendix  3) 

O'yy = C l { a 2 ~  _Jr_ bkdg /d~  + [v/(1 - v)](k2d2 f /d~ 2 - bkdg /d~)}  - 0 

Oxy - -  C 1 [ ( 1  - -  2v) /2 (1  - v ) ] { - 2 a k  d f  /d~ + b2 g - k2d2 g /d~  2} = O. 

The f reedom from stress at the surface y - - 0  and the relat ionships be tween a, 

b, or, and k give four equations for the coefficients A to D of the functions f 
and g. The  equations separate into identical pairs in A and D, and in B a n d - C :  

{(1 - ) / /2)  _ [v/(1 - v)]}A - [(1 - 2v ) / (1  - v)](1 - ) / 2 ) 1 / 2 0  - - 0  

2(1 - )/2)1/2A + (2 - ) /2)D = 0. 

These two homogeneous  equations in the two unknowns  A and D can have 

nonzero solutions only if the determinant  of  the coefficients of  A and D is zero. 

Using the definitions p c 2 / E  -- ( 1 -  v ) / (1  + v ) ( 1 - 2 v )  and p c 2 / E  -- 1/2(1 + v ) ,  
2 2 so t h a t  y l2 / ) /?  --  Cs/C l : (1 - 2v ) /2 (1  - v), al lows t h e d e t e r m i n a n t  to be 

written as 
( 2 - ) / ? ) 2  : 4(1 - ) /?)1/2(1  - )//2)1/2. 

This can be expressed as a cubic equation for )/2: 

)/6 _ 8)/4 + 8[(2 -- v ) / (1  - v)])/2 - 8 / (1  -- v) -- 0. 

Solutions to this equation are obtained by a tr ial-and-error spreadsheet  method  

increasing )/s to determine when the function changes sign. One real root  for 

the Rayle igh speed as a fraction of the shear speed, i.e., for Vs, is found as a 

function of  Po isson ' s  ratio, as shown in Fig. 170. Also shown on this figure is 

0.95 

0.9 
~ ... 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 

Poisson's ratio 

FIGURE |10  The dependence of the Rayleigh wavespeed on Poisson's ratio 
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the solution according to the approximate formula (Doyle, 1989) 

Ys.approx = ( 0 . 8 7 -  1.12v)/(1 - v). 

Evidently, the approximation is only useful for positive values of v. For this 
range, the Rayleigh wavespeed is around 0.87 to 0.95 of the shear wavespeed. 



APPENDIX I I 
L A T E R A L  STRESS A N D  S T R A I N  
IN R O D S  U N D E R  A X I A L  L O A D S  

Slender rods are of concern in engineering design. Their behavior is influenced 
by their geometry, as discussed hereafter. A slender rod is one in which motion 
arises along the axis of the rod. Transverse deformations are called bending and 
are discussed in Appendix 12. 

A. SIMPLE A P P R O X I M A T I O N  FOR T H I N  RODS 

Simple wave propagation in a thin rod assumes that the rod can freely expand 
or contract laterally to relieve lateral stresses, but ignores inertia of this lateral 
motion. This leads to a uniaxial stress state with the simple wave equation 

r 02u/Ot 2 

where Co = (E/p) 1/2 is the rod or bar wavespeed, E is Young's modulus 
of elasticity, p is density, x is distance along the rod; and t is time. This 
approximation leads to waves which propagate at constant speed: 

u ( x ,  t )  = u ( x  - Cot).  

This is adequate for thin rods excited at low frequency, but thick rods and high 
frequencies demand a more detailed analysis. 

205 
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B. THE M I N D L I N - H E R R M A N N  A P P R O X I M A T I O N  

There is no lateral motion near the central axis of a rod, so in a thick rod, the 
Poisson effect induces transverse stress at the axis. At the surface, lateral motion 
develops to relieve transverse stresses. The stress state and lateral motion then 
vary over the cross-section. An exact analysis of these effects has been made 
for a circular cylindrical rod by Pochhammer and Chree (discussed by Love, 
1944, Article 201). Several approximations have been developed, such as the 
Mindl in-Herrmann approximation (see Doyle, 1989) which is discussed here. 

Consider a rod loaded at one end so that a wave propagates along the 
axis, inducing an axial deformation with displacement Ux(X, t),  as illustrated in 
Fig. 171. 

There is also a radial displacement Ur(X, r, t) ,  which is assumed to vary 
linearly with radius, U r (x, r, t) = r Ur (x,  t). The strains are then 

Axial: 
Radial: 
Circumferential (hoop): 
Radial-axial  shear: 

The consequent stresses are 

ex~ = OUx/OX 

6rr = O U r / O r  = g r  �9 

600 - -  u r / r  = g r  -= 6rr 

6rx = ( O U r / O X  "~ O U x / O r ) / 2  = ( 1 / 2 ) r O U r / O X .  

trxx = [E(1 - v)/(1 + v)(1 - 2v)]{OUx/OX + [2v/(1 - v)]Ur} 

ffrr = tTO0 = [E/ (1  + v)(1 - 2v)]{Ur + VaUx/OX} 

arx = E[1/2(1  + v)]rOUr/OX 

The radial stress should be zero at the free surface r -- a, although in this 
approximate theory this condition is not met. Note that if there is no lateral 
(radial) stress (i.e., O'rr ~ - 0 ) ,  then 

Ur = - V e x x ,  so that axx = Eexx ,  

which is the elementary rod theory. This is also the result if Poisson's  ratio is 
zero. 

Axial Ux(X, t)j 
displacement ~ . r  x ~ 

dispRacdie~ent ""/~'~-'"~'/,r "k~.--""'~ ~ ~ ~ ' ~ ~ ' \  ""'"'"" 

force/ 

FIGURE 171 Slender rod with axial load 
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/ 

s~ 

S r = 2S o sinA0/2 
= SoAO 

//AO/2 

A0/2/S o 

So 

Balance of hoop and radial forces 

FIGURE 172 Radial and circumferential forces in a rod 

The resultants of these stresses over the faces of a wedge, as illustrated in 

Fig. 172, are 

f  xxr dr = [ E ( 1  - v ) / ( 1  + v ) ( 1  - 2v)]{OUx/OX s~ 

+ [ 2 v / ( 1  - v)]Ur}a2AO/2 

dx f dr = [E/ (1  + v)(1 - 2v)]{Ur + VOUx/Ox}a dx So 

Qrx = klAO f Crrxrdr -- kiE[1/2(1 v)](~Ur /~x)a3 AO/3 + 

where k l is a correction factor which must be determined by experiment.  Its 
default value, assuming the theory matches experiment,  is unity: 

k l = l .  

The total axial inertia force is 

Fxi = pA dxO2ux/Ot 2 = AO dxpa 2(02Ux/Ot2)/2 

so that the balance of axial forces is 

(OFx/OX) dx = F x I ,  

which leads to the equation 

[E(1 - v ) / (1  + v)(1 - 2v)]{O2Ux/OX 2 + [2v/(1 - v)]OUr/OX} -- pO2Ux/Ot2. 

The balance of circumferential forces, illustrated in Fig. 172, is 

Sr = 2k2 So sin A 0 / 2  = k2 So AO 

where k2 is another correction factor. 
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The total radial (lateral) inertia force is 

= pdx f (O2Ur/at2)r d A  = AO 

= AOp d x ( O 2 U r / O t 2 ) a 3 / 3  

p d x ( O 2 U r / O t  2) f r 2 d r  

so that the balance of radial forces is 

( O a r x / O X )  d x  - Sr = FrI 

i.e., 

( 1 / 3 ) E k l a 2 [ 1 / 2 ( 1  + I ) )]02Ur/OX 2 - k 2 [ E / ( 1  + v)(1 - 2v)] 

{Ur -+- VOUx/OX} --- ( 1 / 3 ) p a 2 O Z U r / O t  2. 

For steady oscillations, assumed to be periodic in both time and position, 

Ux --  A e  - i (xx-c~ and bl r -~- B e  - i (xx-~176 

The axial equation then reduces to the following: 

[E(1 - v) /(1 + v)(1 - 2 v ) ] { - X 2 U x  - [2v/(1 - v ) ] i x U r }  = - p c o 2 U x  

so that 
iXUr  --  [(1 -- V ) / 2 V ] ( 1 / C  2 -- 1/C2)co2Ux 

where c~ -- [ (1-v)/(1-+-v)  ( 1 - 2 v ) ] ( E / p )  gives the wavespeed for a longitudinal 
plane wave, and x = co~c, where c(co) is the wavespeed for the rod. 

The radial equation becomes 

2 2 (a2co2/3c2)[1 - kl  (c2 /c2)]  - k2 (c  I ~Co)~(1 - v ) i lcUr 

= k z ( c 2 / c 2 ) [ v / ( 1  - v )] (coZ/cZ)ux  

where c 2 = [1/2(1 + v ) ] ( E / p )  gives the shear wavespeed. 
Note that if k l = k2 -- 0, then the radial equation reduces to Ur = 0, and 

the axial equation reduces to the simple case. 
After substituting the expression for the lateral displacement Ur from the 

axial equation into the radial equation, this becomes a relationship between the 
normalized nondimensional wavespeed, /3  = C/Co, where Co --  ( E / p )  1/2 is the 
bar wavespeed, and the nondimensional frequency parameter, y,  where 

~, = (aco/Co).  

This is 2zr times the ratio of the time for a wave to cross the radius, a, i.e., 
tr = a / c o ,  to the time period of the wave, tp = 2zr/co. 

The result is a quadratic equation in f12. 

a(fl2) 2 -k- bfl 2 -4- c = 0 
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with 

a ( y )  = {k2 - (1 -+- v ) ( 1  - 2v)y2/3}  

b ( y )  = - { k 2  - [k l  (1 - 2 v )  + 2 ( 1  - v ) ] y 2 / 6 }  

c(y) = --kl(1 -- v)y2/6(1 + v). 

There are two solutions for/3 2 , 

f12 ._ [ - b  -4- ( b  2 - 4ac)l/Z]/2a, 

so that 13 has four solutions, of which pairs are equal and opposite, representing 
waves propagating in opposite directions. Solutions can be found using specific 
values of Poisson's  ratio, or values can be computed numerically for varying 
Poisson's ratio. This requires estimates of the correction factors k l and k2, which 
can be set initially at 1, and changed to produce accord with experimental data. 

Solutions for 132 are always real because it can be shown that the term 
(b 2 -  4ac) reduces to the sum of two squares, i.e., the radical is always positive. 

Solutions for 13 are real if 132 > 0, and this is always true for the positive 
radical. For the negative radical, it is true provided a < 0, i.e., 

y2 > 3k2/(1 + v)(1 - 2v). 

There is thus a cutoff circular frequency 

ogc = 3k2co/a(1 + v)(1 - 2v) 

below which the negative radical produces an imaginary solution. 
Note that at low frequencies as o9 --~ 0, y --+ 0, so that a --+ k2, b --+ -k2 ,  

and c ~ 0, and the solutions simplify to 

/ 3 2 ~  l o r 0 ,  i . e . , c - - + c o o r 0 .  

The factors k l and k2 do not enter the low-frequency response. 
When k l = k2 -- 1, 

a = 1 - (1 + v)(1 - 2 v ) y 2 / 3  

b =  - [ 1  - (3 - 4v )y2 /6 ]  

c = - ( 1  - v )y2 /6(1  + v). 

A graph of the dependence of 13 (i.e., of C/Co) on y (i.e., on ao9/Co) for 
these assumptions, which represents the approximate nondimensional dispersion 
curves for a circular rod, is shown for a range of Poisson'  s ratios in Fig. 157 in 
Appendix 7. 

There are two modes of response, corresponding to the two solutions. The 
first of the two modes represents waves which, for low frequency, propagate at 
the bar velocity as in the simple theory. At high frequency, exact solutions (not 
discussed here) show that the wavespeed is the Rayleigh speed. The other mode 
is complex for low frequencies, representing an attenuating wave, but at high 
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frequencies above the cutoff it has real wavespeed which starts at infinity and 
drops to the bar velocity at infinite frequency. 

The group velocity (see Appendix 7) is given by the formula: 

Cg = c / [1  - ( c o / c ) ( d c / d o g ) ] .  

It follows that this can also be written as 

Cg --  c / [1  - ( co2 / c2 ) (dc2 /do92 ) ]  

and then in the nondimensional form 

fig -~ i l l [1  -- ( y 2 / f l 2 ) ( d f l 2 / d y 2 ) ] .  

Since 
a(f l2)  2 -k- bfl 2 + c = O, 

differentiation gives 

( d a / d y Z ) ( f l 2 )  2 -k- ( d b / d y Z ) f l  2 -k- ( d c / d y  2) -k- [2aft 2 -+- b ] ( d f l 2 / d y  2) - -  0 

and then 

( d f l Z / d y  2) -- - [ ( d a / d y Z ) ( f l 2 )  2 + ( d b / d y Z ) f l  2 -k- ( d c / d y Z ) ] / [ 2 a f l  2 -if- b] 

with 

d a / d y  2 --  - ( 1  + v)(1 - 2v) /3  

d b / d y  2 --  [k l (1  - 2v) + 2(1 - v)]/6 

d c / d y  2 --  - k l ( 1  - v)/6(1 -+- v). 

The group velocities are shown in Fig. 158 in Appendix 7. 



APPENDIX 12 
B E N D I N G  W A V E S  IN B E A M S  

A N D  P L A T E S  

Beams and thin plates are of concern in engineering design. Their behavior is 
influenced by their geometry, as discussed later. A beam is a slender bar in 
which motion occurs transverse to the axis, called bending. A plate is a thin 
sheet in which deformation can occur in the direction of the sheet or transverse 
to it. A beam is essentially one-dimensional. A plate is two-dimensional. Motion 
in the plane of a plate is called axial or membrane motion. 

A. B E N D I N G  OF BEAMS 

The simplest analysis of bending at low frequency is the Engineers' Bending 
Theory (EBT), also known as the Euler-Bernoulli Theory (EBT). More detailed 
analyses which are appropriate for high frequencies are the Timoshenko and 
the Mindlin-Herrmann theories (see Doyle, 1989). An exact analysis is the 
Pochhammer-Chree theory for rods (Love, 1944). 

A I. The EBT 

In the EBT, the shear force is indeterminate because rotation of the cross-section 
is taken to be the same as the slope of the deformation. This is usually stated as 

211 
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' ........................................................................... i ............. Undeformed beam 
I _ _ - - ~ -- .  . . . . . . .  1 ~  X 

~ S o ~ : _ _  
i ds ~ . ~ 7 " / - - D e f l e c t i o n ,  w 

z Deformed beam 

Axial stress distribution 

FIGURE 17'3 Illustration of strain-curvature relationship 

"plane sections remain plane and normal," as depicted in Fig. 173: a line across 
the beam normal to the center line becomes a radial line. 

The cross-section does not rotate relative to the axis in this model and there 
is no shear deformation. The lateral displacement of the beam, w ( x ,  t) ,  depends 
only on distance, x, along the beam. It is taken here as positive when in the 
direction of increasing z. An axial displacement u(x ,  z, t) arises which varies 
across the depth and depends on x. It is taken as positive when in the direction 

of increasing x. 
Referring to Fig. 173, the length of a short arc at depth z (taken positive 

downward) is ds  = R AO, and assuming that the center line does not change 
so that its undeformed length is dso -- RoAO.  The increment of axial displace- 

ment is 

d u ( x ,  z) = ds  - dso = (R  - R o ) / A O  = - - z / A O  

and the strain is 

e (x ,  z) = Ou/OSo = - z / R o  = - x z  

where x = 1 /Ro  - -  OZw/Ox 2 is the curvature along the axis, taken positive 
for downward curvature along increasing x. (This relationship can be derived 
through differential geometry.) The strain is thus linear over the cross-section 

and is negative (i.e., compressive) on the underside. 
In the absence of lateral stress in a thin beam, the stress state is uniaxial. 

The axial stress is then 

t r (x ,  z) = E e ( x ,  z) 

where E is Young' s modulus of elasticity. The resultant axial force on the cross 

section is 

Fx = f ~(x,z)dA = Ex f zaA. 

This is zero when the z -- 0 axis is taken to be along the centroidal axis of the 

cross-section. 



BENDING WAVES IN BEAMS AND PLATES 2 I 3 

The stress has a resultant bending moment  obtained by integrating the 
torques provided by the axial stress over the area of the cross-section, 

M(x)  = - f o-(x, z )zdA = E l x  = EIO2w/Ox 2. 

Positive moment  is defined to produce positive curvature, or, in the vernacular, 

hogging. 
I = f z2dA = f z2b(z)dz is the second moment  of area of the cross- 

section, where b(z) is the breadth of the cross-section at depth z. This is often 
called the moment  of inertia, but since density is not involved, it is a purely 
geometric construct, also called the second moment  of area. I can also be written 
in terms of the radius of gyration, k, so that I = Ak 2. The product E1 is called 
the elastic bending stiffness. 

In a rectangular bar the breadth b(z) is constant, and the depth spans from 
- d / 2  to d/2,  where d is the depth of the beam, so that 

f 
d/2 

I -- zZb(z)dz = bd3/12. 
d-d~2 

Then k = d/ (2~/3) .  
Consider an element of a beam with external forces (loadings) as illustrated 

in Fig. 174. These include a bending moment, M, a shear force, Q, at each end, 
and a distributed force, p, over the length, as well as the inertia force resisting 
deformation. Although there is no shear strain, a shear force is required to 
balance the bending moment in cases where there is no transverse pressure 
loading. 

A balance of the downward transverse forces normal to the beam requires 
that 

d Q + / p d x  -- pAdxOZw/Ot  2, 
J 

so that 
OQ/Ox = pAd2O2w/Ot 2 - p, 

where the limit of (fx+dx p d x ) / d x  --+ p. 

x 

I 

p Adx d2w]dt 2 

dx 

l ) M + d M  

Q+dQ 

FIGURE 174 External forces on an element of a beam 
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A balance of the bending moments about the right-hand end of the element 
requires that 

/ *  

+ Q d x  - J p x d x  d M  ~-0~ 

when rotatory inertia is neglected, so that 

aM/Ox  -I- Q = O, 

since the limit of (fx+dx p x d x ) / d x  = O(dx)  --+ O. 
In combination with the transverse equation above, this leads to an equation 

of lateral motion in which the undetermined shear force, Q, plays no role: 

0 2 M / O x  2 -Jr-/xO2w/Ot 2 - -  p, 

where/X = p A is the areal mass, or mass per unit length. Using the elasticity 
relationship for bending moment given earlier, i.e., M -- ElOZw/Ox  2, this leads 
to a fourth-order equation for displacement: 

ElO4w/Ox  4 +/xO2w/Ot 2 - -  OZp/Ox 2. 

Without lateral forces, harmonic waves of the type 

w (x, t) -- We -i  (~x-cot) 

obey the dispersion equation 

~4 __ (~x/El)co 2 __ 0, o r  o9 2 - ( /x /E1)c  4, 

where c~ = co/c, so that 

c -  (El / /x) l /4co 1/2 = (coco/k) 1/2, 

where Co = ( E / p )  1/2 is the bar wavespeed, k is the radius of gyration so that 
I -- Ak 2, and/x -- p A, where A is the cross-sectional area and p is the density. 

In nondimensional form, this can be written as 

1 / 2  / 7 = y  

where /3 -- C/Co and y - cok/co is the nondimensional frequency. Evidently 
the bending wave is always dependent on frequency and for low frequency 
approaches zero. 

A2. The Timoshenko Bending Theory 

In this model, both shear deformation and rotation of the cross-section are con- 
sidered, as illustrated in Fig. 175. The equations for simple bending are now 
modified by the addition of the relationship for transverse shear and by the 
inclusion of the inertial effects of rotation of the cross-section. 

The sides of a rectangular element dx  dz of the beam at x are deflected 
downward (positive deflection.) at the fight-hand end by a displacement w(x,  t), 
and to the fight (positive) at the bottom by u(x,  z) = - ~ z ,  where 4~(x, t) is 
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I I :,, 
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Sheared  and 

rotated e lement  

F I G U R E  17'5 Shear  deformat ion and cross-sect ion rotation in a t imoshenko beam 

the rotation of a cross-section relative to the original normal cross-section. The 
element is sheared by an angle y and rotated by an angle 0. This assumes that 
the plane cross-section remains plane but not normal to the axis as in the case 
of simple bending, but it rotates by an angle ~b. 

The axial strain is then 

ex = OulOx = -zO4~lOx.  

The axial stress is Eex = -EzOq~/Ox, so that the bending moment, positive to 
increase deflection, is 

M = - . [  or(x, z ) zdA = E (O~lOx) . [  z2dA E I Oqb/Ox. 

The upper face of the element is rotated through an angle (Ow/Ox-O)  relative to 
its original horizontal direction, and the side is rotated through an angle ( 0 -  4~) 
relative to the normal. The element is thus sheared by the angle 

~, = ( O w / O x  - o )  + ( o  - 4)) = ( o w / O x  - ~).  

The shear stress is 
r = Gexz = G(Ow/Ox -4 ) ) ,  

where G is the shear modulus. This has a resultant shear force on the right-hand 
end, positive to increase deflection, of 

= . [  r d A  = ksGA(Ow/Ox -q~),  Q 

where ks is a correction factor introduced to account for approximations and 
which is found from experimental data. The factor GA is called the shear stiff- 
ness. 

Rotation of the cross-section induces a rotatory inertia torque 

T4~ = k 4~ p l O e ~ / o t 2 

where k s is a correction factor accounting for approximations. The balance of 
moments, or the equation of rotatory motion, is then 

OM/Ox -+- Q = k~p lOZ~/o t  2. 
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Together with the equation for the balance of lateral forces, which is the same 
as in the EBT; 

OQ/Ox  = l Z O 2 w / O t  2 - p,  

there are now four equations for the variables M, Q, w, 4~. These can be com- 
bined to give two in the deformation unknowns, w and 4~" 

ElO2qb/Ox 2 n t- k s G A ( O w / O x  - ~)  = k 4 ) p l O Z ~ / o t  2 

k s G A ( O Z w / O x  2 - O~/Ox)  -- l z O z w / o t  2 - p .  

Considering a harmonic-wave-like motion in which 

W = W e  - i ( a x - w t )  - -  W e  - i ~ ( x - c t )  

~9 = ~ e - i ( ~ x - w t )  _= ~ e - i ~ ( x - c t ) ,  

with c = w/or, the equations become 

- E l o t 2 ~  + k s G A ( - i o t W  - ~ )  -- - k 4 ) p l c o 2 ~  

k s G A ( - o t 2 W  + io ta )  -- - l z o ) Z W  + p.  

When there is no distributed applied force (p = 0), the second equation gives 

i c ~  - -  (of 2 - -  l z c o Z / k s G A ) W .  

After substitution into the first equation this gives the nondimensional dispersion 
(frequency-wavespeed) relationship 

Elo t  4 - lzco 2 - [k4)pl + ( E l l z ) / ( k s G A ) ] ~ z w  2 + ( k 4 ~ p l l x ) / ( k s G A ) w  4 = O, 

which is of the form 

with 

a ( f l 2 )  2 -+- b f l  2 n t- c - -  O, 

a -  1 - 2 ( 1  + v ) ( k 4 ) / k s ) y  2 

b -- [2(1 + v ) / k s  + k~b]y 2 

C B _ 1 / 2 ,  

where/3 - C/Co is a nondimensional wavespeed, y -- ook/co is a nondimensional 
frequency, Co -- ( E / p ) 1 / 2  is the bar speed, and v is Poisson's ratio. 

There are two modes of propagation, given (when the unknown correction 
factors are taken to be unity, ks -- k s = 1) by the solutions 

f12 __ [ - b  4- (b 2 - 4 a c ) l / Z ] / 2 a ,  

with 

a =  1 - 2 ( l + v ) y  

b = (3 + 2v)y 2 

2 
c - - - - y  . 
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Since the term (b 2 -  4ac) in the radical can be combined to give terms which 
are squared, the radical is real for both roots. The solution for f12 with the 
positive radical is always positive, so that the solution for /3 is always real. 
The negative radical gives negative f12 and thus imaginary (nonpropagating) 
wavespeed, unless the second term in the radical is negative: 

y > [2(1 + I))] -1/2 i.e., o9 > cs/k 

where Cs = ( G / p )  1/2 = Co/[2(1 + !))] 1/2 is the shear speed. 
That is, the cutoff frequency represents the time taken for a shear wave to 

travel across the radius of gyration, a fraction of the thickness. For frequencies 
above this limit, this mode gives real wavespeeds, so this is a low-frequency 
cutoff. 

The wavespeed is plotted for several values of Poisson's ratio in Fig. 159 
in Appendix 7. 

The group velocity, calculated by the formulae of Appendix 11, is plotted 
in Fig. 160 of Appendix 7. 

B. T H I N  PLATES 

A thin plate can experience either in-plane deformations or transverse defor- 
mations. The former are referred to as membrane motions, and the latter as 
bending. 

Associated with these deformations are in-plane forces applied to the edges 
of the plate for membrane motions, and lateral surface forces, or shear forces 
and moments applied to the edges for bending. 

A plate is thin in the lateral or transverse direction, having significant size 
in the other two dimensions. It is essentially two-dimensional, as illustrated in 
Fig. 176. The simplest analysis of a plate is the classical plate theory (CPT). 
More complex analyses, e.g., the Mindlin-Herrmann theory (Doyle, 1989), given 
earlier in simplified form for a beam, are available for plates, but are not dis- 
cussed here. 

B I. The Classical Plate Theory (CPT)  

In a plate the displacement, w(x, y, t), depends only on in-plane position, (x, y) 
and time, t. Axial displacements, u (x, y, z, t) and v(x, y, z, t), arise which vary 
across the depth and depend on position, (x, y) and time, t. 

The equations which describe plate response have the same basis as for a 
beam, but include two-dimensional features. In addition, when plates are made 
up of anisotropic laminates, as is common in reinforced plastic design, the axial 
and bending behavior are not separable, as has been done for rods and beams. 
Thus there are in-plane axial and shear forces, N = (Nx, IVy, Nxy) and bending 
moments, M -- (Mx, My, Mxy), which are related to axial and shear strains, 
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Thickness 
depth 

. ~ y  

z 

FIGURE 176 Geometric description of a plate 

e -- (ex, ey, Yxy )  and to curvatures x = (Xx, K.y, Kxy):  

N = [A]e + [B]x 

M = [B]e + [D]x 

where [A], [B], and [D] are 3 • 3 matrices of elastic constants, involving 
integrals over the thickness, and therefore including thickness, and first and 
second moments of depth. The arrangements of the individual laminae in a 
laminate is therefore significant. Accordingly changes in any layer should be 
detectable by their influence on wavespeed. Note that in general, the in-plane 
and bending responses are coupled through the coefficients [B]. In a laminate 
with a symmetric arrangement of layers through the thickness, the coefficients 
[B] are zero, and the in-plane and bending responses are then uncoupled. 

For a laminate of n layers, 

[A] ~--- Z Q k ( Z k  --  Z k - l ) ,  [O] = Z Q k ( z 2  --  z 2 - 1 ) '  [O] --- Q k (  z3 - Z3k- l ) ,  

k=0 k=0 k=0 

and Q is the 3 x 3 matrix of plane-stress elastic stiffnesses rotated to the appro- 
priate axes for each layer. 

Transverse shear forces, as in the EBT, are not related to deformation in 
CPT. The advanced theory by Mindlin and Herrmann includes such a relation- 
ship. 

The strains are defined from the axial displacements (u, v) as 

6x --" 3 U / O X ,  ~.y - -  3v/Oy, and }"xy = (3u/Oy + 3v/Ox), 

and the curvatures are defined from the lateral displacement w: 

, = , = - - 0  2 / O x O y  K x - - - - O Z w / O x  2 try - - O Z w / O y  2 Kxy tO . 

The equations of motion for the in-plane and transverse motions are 

ONx/OX + ONxy/Oy -- lZO2u/Ot 2, 

ONy/Oy + ONxy/OX = IxO2v/Ot 2 

OQx/OX + OQy/Oy -= pO2w/Ot 2. 
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The balance of moments is described by the equations 

OMx/OX + OMxy/Oy + Qx = 0 

OMxy/OX + OMy/Oy + Qy = O, 

and these lead to the equation for lateral motion: 

02Mx/OX 2 + 202Mxy/OxOy + 02My/Oy 2 = lzO2w/Ot 2. 

For a simple plate of one material, the in-plane equations lead to a set of 
equations for the displacements, similar to rod waves: 

AijOZuk/OXiOXj + IdOZuk/Ot 2 ~--- O, 

and the bending equation becomes a two-dimensional extension of simple beam 
theory: 

DijklO4W/OXiOXjOXkOXl -Jr- lzOZw/Ot 2 = O. 

This equation requires numerical solution similar to that used for waves in 
anisotropic materials, discussed in Appendix 9. 
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APPENDIX  13 
T I M E - D O M A I N  A N A L Y S I S  

Details of mathematical concepts and algorithms for some of the data anal- 

ysis procedures used in the time-domain software described in Section 5 are 

presented below. 

A. T H E  H I L B E R T  T R A N S F O R M  A N D  T H E  A N A L Y T I C  E N V E L O P E  
A N D  PHASE 

An envelope of the waveform, which provides a visual interpretation of the 

amplitude variation in the waveform, can be created through a numerical proce- 

dure based on the Hilbert Transform. The procedure also creates a time-domain 

phase function. 

A I. The Hi lbert  Transform 

The Hilbert Transform is an integration operator which can be perceived as 

performing a differentiation. The Hilbert transform of sin(x) is cos(x), and con- 

versely, that of cos(x) is - s i n (x ) .  

221 
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FIGURE 177 Numerical kernel for Hilbert transform 

To generate the Hilbert transform, the points of a waveform are multiplied 
by a function of time which is antisymmetric about 0, and the result is integrated 
over a wide range of time. This function, called the kernel, is k(t)  = I / t ,  so 
that the transform at time t of a waveform f ( t )  is 

H(t )  = (1/zr) [ f  ( r ) / ( t  - r ) ]d r .  
oo 

The kernel k(t)  = l i t  is infinite at t = 0 so that in numerical procedures this 
point is eliminated and the kernel is approximated by a set of discrete values as 
sketched in Fig. 177. 

kn = 2A/zrn for n odd integers 
0 for n even integers 

where A is an amplitude correction factor which has been tested for typical UT 
waveforms and found to be around 1.2. 

The transform of a waveform with discrete sampling is then 

N 

Hm = E knwn-m 
n=-N 

where the summation is typically taken over 15 points (N -- 7). 

A2. The Analytic Envelope 
The analytic envelope is based on the concept that the total energy of an elastic 
system, E -- U + K, is constant where U is the potential energy of elastic 
deformation (typically, U ~ u 2, where u is the displacement) and K is the 
kinetic energy (typically, K ~ v 2, where v is the velocity, v -- du /d t ) .  The 
analytic envelope is similar to the energy at a point of the waveform and is 
given by 

Em --(11) 2 -+- H2)  1/2. 

An analytic envelope provides a clear display of the waveform, as illustrated in 
Fig. 10 in Section 2. 
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A3. The  Analytic Phase 

The analytic phase can be defined as 

~an(t) = atan(Hn/wn). 

Because the atan function only provides values from -zr  to zr, this phase wraps 
between these values if it exceeds them. An unwrapping procedure is described 
in Section 6B. 

B. T I M E - D O M A I N  S IGNAL C O N D I T I O N I N G  

Several techniques are used to condition waveforms so that they are smoother 
and better suited for further analysis, particularly spectral analysis. 

B I. Data Averaging 

Spurious random effects in a waveform, such as might be caused by electrical 
or environmental variations, can be minimized by repeated acquisition of the 
signal from the test configuration. The assumption is made that these variations 
differ from waveform to waveform, whereas the signal does not. The signal is 
then improved by averaging the waveforms. It is neither desirable or necessary 
to store all the waveforms. 

A sequence of nominally identical waveforms is shown in Fig. 178, together 
with an average waveform. The average Sav.N of the N values Sn of the wave- 
form at each time in N tests is calculated using the formula for the average: 

Sav.N = Sn / N 

i 

N-th run 

~ .  ~ N+ 1 st run 

Accumulated average waveform 

FIGURE 118 A sequence of nominally identical waveforms 
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where n denotes the nth run of the series of tests. When a new waveform is 
acquired, the average is updated for N + 1 points, so that 

Sav.N+l - -  \ ~  Sn / ( N  + 1) = Sn / ( N  + 1) + SN/(N + 1) 

= [N/(N + 1)]Sav.N + SN+I/(N + 1). 

Thus the average is updated for each new waveform by multiplying the values of 
the previous average by the factor N~ (N-4-1), and adding the latest value divided 
by (N + 1). This process requires storing only one waveform. The process is 
repeated, starting from N = 1, the first waveform, typically 100 to 1000 times, 
until the waveform settles to a stable waveform. 

B2. Time-Domain Smoothing 

A waveform with a large number of points which exhibits noise, i.e., erratic 
variation from point to point, can be smoothed by taking averages over a group of 
neighboring points (3 to 15 is common). Typically, the smoothed value S N . s m o o t h  

for the center point N of the group is replaced by the average: 

SN.smooth--/ ~ SN+n) /npts 
\n=nmin 

where n denotes the point number within a group of npts (an odd number) spread 
about N, n m i n  = N - ( n p t s  - 1)/2, n m a x  = N + ( n p t s  - -  1)/2, and SN+n is the 
original value at N -4-n, as illustrated in Fig. 179. 

Thus a "comb" which selects a group of points is swept across the waveform 
to produce a new one. Note that the points at the start and end of the waveform 
cannot be smoothed. They may be deleted if obviously noisy. 

This procedure introduces distortion because it reduces peaks and flattens 
slopes as illustrated in Fig. 115 in Section 6. 

The extent to which this occurs depends on the number of points in the 
comb in relation to the number in a wave of the signal. Too few points does not 
smooth sufficiently, and too many produces distortion. Experimentation with the 
number of points must be used. 

-~ Data points 

nmln nmax 
npts 

Averaging "comb" 

FIGURE 179 Illustration of data points used in averaging 
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B3. Detrending (Offset and Drift) 

When the baseline (zero value) of a waveform does not pass through the average 
of all values in the waveform, it is said to have an offset, as illustrated in Fig. 112 
of Section 6. This is equivalent to a zero frequency component, which is large 
and inconvenient in spectral analysis. 

When the baseline has a gradual trend upward or downward, it is said to 
have drift, which causes an inconveniently large low frequency component. Both 
these effects are likely to represent some effect outside the test being made, but 
this point must be considered carefully. 

The method of least squares is applied to all points of a waveform to 
determine the best fit to a straight line, 

Silt = a + bt ,  

where a is the axis offset and b is the rate of drift. The deviation from this line, 
6S  = S ( t )  - Silt(t), of each digital data point of the waveform is squared, to 
allow equal contributions of positive and negative deviation, and summed over 
all points of the waveform, A --- y~ 6 2. The total deviation is minimized through 
variations of the coefficients a and b: 

O A l O a  = O A l O b  = O, 

where N 
A = E ( S n  - a - btn) 2 

n=l 

and n denotes the nth point in the waveform. 
This leads to two equations for a and b with the solutions 

a = [ ( E  Sn)-b ( E  tn)]/N = # S -  b#t 

b =  ( E  Sntn - N lzs lz t ) / (Et  2 -N l  z2) 

where/zs  -- (Y~ S n ) ~ I N  a n d / z t - -  (Y~ t n ) / N  are the means of the waveform 
and time points. 

Four summations are made, ~ Sn, ~ tn, ~ Sntn, and Y~ t 2, followed by 
application of the formulas, first for b and then for a. The waveform points are 
then corrected to eliminate offset and drift by using the formula 

Sn.corr = Sn - a - btn. 

It may be desirable to precondition each waveform before averaging if the 
repetition rate is low or the electrical and environmental conditions change fast. 
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B4. Convolution 

A convolution is an integral over time of a shifting product of two time func- 
tions. The response of a system to an excitation can usually be expressed as a 
convolution of the fundamental system response, f ( t ) ,  and the excitation, F(t) :  

f0  t R(t)  = F ( O ) f  (t) + [ d F ( r ) / d t ] f  (t - r ) d r  

/o' = F( t ) f (O)  + F( t ) [d f /d t ] ( t_r )dr .  

Convolution is used when the response function of a system is known, such as 
a filter. It is then referred to as a transfer function. 

The significance of the convolution can be demonstrated by considering 
the response of a mechanical damped mass-spring system, or of an electrical 
inductance-resistance--capacitance (LRC) circuit, illustrated in Fig. 180. 

The response u(t) of such simple systems, called single degree-of-freedom 
(SDOF) systems is governed by a differential equation of the type 

Ku + l zdu /d t  + M d2u /d t  2 = F(t) ,  

which, for a unit step input, has the solution, called the indicial response: 

h(t) = {1 - e - ~ c ~  cos[(1 - ~ 2 ) 1 / 2 O 9 n t  - ~]} /K,  

where ~ = C/Cc, Cc = 2(km) 1/2 is the critical damping, COn = ( K / M )  1/2 is the 
natural frequency, and 4~ = zr/2 '--- asin(1 - ~2)1/2. 

To develop the solution for an arbitrary input forcing function F (t), consider 
the response as a series of steps, each excited by a portion of the forcing function, 
as illustrated in Fig. 131 in Section 6. 

F 

I I 

Spring Mass 
F = Ku  F = M d 2 u / d t  2 

Viscous dashpot 
F = IX du /d t  

- I I 

Capacitor Inductor 
I = C dV /d t  V = L d I /d t  

Resistor 
V = I R  

F = Ku  + ~t du /d t  + M d 2 u M t  2 d V / d t  = ( 1 / C ) I  + R d I /d t  + L d 2 I /d t  2 

Simple mechanical system Simple electrical system 

F I G U R E  180 Simple mechanical and electrical systems for illustrating response 
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The solution is given by either of the convolution integrals 

f0 t u( t )  --  F ( O ) h ( t )  + [ d F / d t ] ( r ) h ( t  - r ) d r  

/o' = F ( t ) h ( O )  + F ( t ) [ d h / d t ] ( t - r ) d r  

It is usually convenient to evaluate convolution integrals through Fourier trans- 
forms, as discussed in Section 6. 
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Attenuation parameter, Q, 43 
Autocorrelation function, 113 
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Bar wave, 31 
Bar wavespeed, 205 
Barium titanate, 66 
Baseline, 96 
Beam 

radial spread, 79 
UT, 36 

Beam--UT, 35 
Beam cone half-angle, 35, 176 
Beam forming, 175 
Beam forming-simplified analysis, 175 
Beam steering, 73 
Beam-forming, 79 
Beams-bending waves, 211 
Bell curve, 109 
Bending 

Engineer's theory (EBT), 172 
Engineers' theory, 32 
plane sections remain plane, 212 
Timoshenko theory, 172, 214 

Bending moment, 213 
Bending moments, 217 
Bending stiffness, 213 
Bending Theory, 211 
Bending waves, 32, 34, 74, 172 
Bessel function, 36, 178 
Binary distribution, 109 
Bins--histogram, 108 
Bivariate normal probability distributions, 116 
Body forces, 122 
Body waves, 25 
Bolt hole, 72 
Boundary conditions, 163, 168, 186, 187 
Boundary interaction, 195 

Boundary-dependent waves, 29, 159 
Box-car window, 100 
Bridge--transducer, 65 
Bubbler, 69, 79 
Bulk modulus, 135 

C-scan, 117 
Calibration, 79 
Calibration blocks, 79 
Calibration blocks--design, 83 
Cartesian coordinate system, 123 
Cauchy's tensor law of elasticity, 135 
Cavitation, 63 
Ceiiiosssttuv, 122 
Center frequency, 105 
Cgs units, 22 
Change of coordinate system, 124 
Characteristic equation, 167, 184 
Characteristic jump equations, 153 
Characteristics, 153 
Christoffel stiffness, 155, 164 
Christoffel stiffnesses, 183 
Circular frequency, 15, 103, 163 
Circumferential forces, 207 
Classical Plate Theory, 217 
Classical plate theory (CPT), 217 
Coefficient 

attenuation, 43 
Gruneisen' s, 156 
mode conversion, 198 
piezoelectric, 156 

Coefficients 
reflection, 197 

Coherence, 94 
Compensation for temperature, 67 
Complex variable, 103 
Compliance, 131 
Components of a vector, 123 
Composite, 3, 28 
Compressibility, 8, 20, 133 
Computed tomography (CT), 119 
Computer:aided tomography, (CAT), 119 
Condensation, 129 
Cone angle, 178 
Constitutive relationship, 170 
Constructive interference, 46, 53, 169, 175 
Continuity of motion, 54 
Continuity of velocity, 50 
Contour map, 118 
Conversion coefficient, 198 
Conversion of mode, 58 
Convolution, 92, 114, 226 
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Cooley-Tukey FFr  algorithm, 105 
Coordinate system---change, 124 
Comer inspection, 72 
Correlation, 92, 112 
Couplant, 68 
Coupling of transducer, 80 
Creep, 121 
Critical angle for reflection, 56 
Critical damping, 226 
Cubic, 144 
Cubic symmetry, 135 
Cumulative distribution, 110 
Curl, 164 
Curvature, 212, 218 
Curve fitting, 111 
Cylindrical waves, 161 

Damping--transducer, 70 
Data acquisition, 65 
Data averaging, 223 
Data padding, 100 
Data processing, 85 
DB down, 41 
Decibel, dB, 40 
DecrementDlogarithmic, 43 
Defect detection, 2 
Deformation, 18, 121 
Degrees of freedom, 108 
Delamination, 3, 34 
Delay path, 68 
DeltaDKronecker, 126 
Delta function, 161 
Dependent variable, 111 
Destructive interference, 46, 52, 175 
Detector, 65, 75 
Determinantal equation, 183 
Detrending-  offset and drift, 225 
Deviation, 111 
Deviator--shear, 129 
Deviator of stress, 126 
Diameter of contact, 78 
Differential equation of one-dimensional wave 

propagation, 152 
Differential equation of three-dimensional wave 

propagation, 154 
Diffraction, 60 
Digital system, 77 
Digitizing, 95 
Dilatational waves, 26 
Dirac delta function, 161 
Direction cosines, 125 
Direction of motion, 13 

Direction of propagation, 13 
Discrete Fourier transform (DFT), 104 
Discrete frequencies, 104 
Discrete times, 104 
Discriminant feature, 117 
Discrimination, 116 
Dispersion, 43, 47, 169 
Dispersion analysis, 93, 106, 108 
Dispersion curve, 47 
Dispersion curves---circular rod, 209 
Dispersion curves for a circular rod, 171 
Dispersive wave, 33, 91 
Display, 86 

radio frequency (RF), 11 
video, 11 

Distortion of waveform, 41 
Divergence, 164 
Doppler effect, 63 
Doppler flow measurement, 70 
Doppler flow meter, 71 
Doppler shift, 5, 107 
Double-sided access, 71 
Drift, 96, 99, 225 
Dual of a tensor, 129 
Dyne-unit of force, 23, 147 

Echo, 3 
back-face, 10 
front-face, 10, 68 
front-face, back-face, 80 
pulse echo (PE), 70 

Effective transducer diameter, 79 
Eigen value problem, 183 
Eigen values, 183 
Eigen vector, 186 
Eigen vectors, 183 
Einstein's shorthand summation 

convention, 124 
Elastic, 8 
Elastic deformation, 9 
�9 Elastic linearity, 45 
Elastic modulus, 17, 19 
Elastic stiffness, 131 
Elastic waves, 1, 25 
Elasticity, 17, 121 

isotropic wavespeed, 38 
non-linear, 17 

Electromagnetic-acoustic transducers, 67 
Elementary statistics, 108 
EMAT, 67 
Energy (attenuation), 42 
Energy conservation, 20 
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Engineering theory of bending, 32 
Engineers' Bending Theory (EBT), 172, 211 
English units, 22 
Envelope 

analytic, 11, 221 
Envelope~analytic, 88 
Equation of state for ideal gas, 39 
Equipment factors, 78 
Errorsmrandom, 108 
Euler-Bernoulli theory (EBT), 211 
Event, 78 
Excitation, 163 
Excitation (main bang), 10 
Excitation~transducer, 75 
Excitation of waves, 155 
Extensional waves, 34 
Extrinsic factors, 122 
Extrinsic quantities, 17 

Face plate, 74 
Far field, 175 
Far-field, 37 
Fast Fourier transform, (FFT), 104 
Feature, 116 
Feature extraction, 116 
Fiber-reinforced composite (FRC), 34 
Film transducers, 67 
Filter-quarter wave, 52 
Filtering spectrally, 107 
Flow meter, 71 
Fluid, 133 
Fluid-coupled lens, 74 
Focusing horn, 73 
Force 

dyne, poundal, newton, 23 
Forces, 121 
Forcing function, 114 
Forward scatter, 62 
Fourier coefficients, 102 
Fourier harmonic series, 102 
Fourier spectrum, 102 
Fourier transform, 103 
Fourier transform---discrete, 104 
Fourier transform-fast (FFT), 104 
Free boundary, 49 
Free surfacemnormal, 49 
Free surface--oblique, 57 
Free surface reflection, 198 
Free-surface reflection, 195 
Frequency, 14 

angular, 15 
circular, 15 

non-dimensional rod parameter, 208 
Nyquist, 96 

frequency, 96 
Frequency domain, 86, 101 
Frequency leakage, 97 
Frequency resolution, 96, 104 
Front face echo, 68 
Front-lace echo, 10, 80 
Fundamental body waves, 25 
Fundamental frequency, 102 
Fundamental wave, 8 
Fundamental waves, 159 

Gain, 40 
Gantrymtransducer, 65, 68 
Gas, 8 
Gate, 90, 91 
Gating/thresholding, 107 
Generalized Hooke' s law, 131 
Geometric attenuation, 42 
Gibb's phenomenon, 100 
Graphite-epoxy composite, 28 
Gravity, 8 
Grazing incidence, 57 
Green' s function, 161 
Group velocities, 171 
Group velocity, 48, 169, 191, 210 
Group wave, 46 
Group wavespeed, 91 
Gruneisen' s coefficient, 156 

Half-wave layer, 52 
Hamming and Hanning windows, 100 
Handheld transducer, 65 
Harmonic frequency, 102 
Head waves, 30 
Heaviside step function, 161 
Helmholtz vector decomposition, 164 
Hertz (Hz), 15 
Hexagonal symmetry, 136 
Hilbert transform, 88, 221 
Histogram, 108 
Homogeneous media, 61 
Hooke's law, 122 
Horn--focusing, 73 
Hydrostatic stress, 126 
Hyperbolic wave equation, 152 
Hypothetical model, 111 

Ideal gas equation of state, 39 
Im-imaginary part of complex variable, 103 



INDEX 235 

Imaging, 117 
Immersion, 65 
Immersion tank, 68 
Impactor, 74 
Impedance 

acoustic, 16, 21 
Impedance equation, 167 
Impedance matching, 52 
Impedance of transducer, 80, 81 
In-plane forces, 217 
In-plane motion, 165 
Incompressibility myth, 21 
Independent variable, 111 
Index for vector components, 123 
Indicial response, 226 
Industrial/manufacturing applications, 2 
Inertia, 9, 17 
Inertia force, 149 
Inertial confinement, 139 
Initial conditions, 186, 187 
Intensity of UT beam, 37 
Intensity spectrum, 103 
Interactions, 45 
Interface 

waveform, 53 
Interface--normal, 49 
Interface---oblique, 58 
Interface coupling, 83 
Interference, 46 

destructive, 52 
Interference----constructive, 175 
Interference--destructive, 175 
Interferometer, 67 
Intersecting waves, 45 
Intrinsic attenuation, 42 
Intrinsic factors, 122 
Intrinsic quantities, 17 
Invariants, 184 
Inverse Fourier transform, (IFT), 103 
Irreversibility, 121 
Isotropic material, 25 
Isotropic solid, 134 
Isotropy, 19, 20, 132, 144, 190 

elastic wavespeed, 38 

Jump equations, 153 
Jump in stress-velocity state, 45 

Kernel, 222 
Kernel-Green' s function, 161 
Kronecker delta, 126 

Lamb plate waves, 34 
Lamb wave (leaky), 57 
Lame's constants, 20, 135 
Laminate, 34, 218 
Laser excitation, 67, 156 
Laser receiver, 67 
Lateral inertia, 208 
Lateral motion, 205 
Lead zirconate (PZT), 66 
Leakage, 97 
Leaky Lamb wave, 57 
Leaky Lamb waves, 31 
Line source, 161 
Linear elasticity, 121 
Linear regression, 111 
Linear relationship, 111 
Linearity, 17 
Liquid, 8 
Lithium niobate, 66 
Lithotripsy, 5 
Lobe 

main, 36 
primary, 178 
side, 36, 178 

Logarithmic decrement, 43 
Longitudinal Wave, 26 
Longitudinal wave, 38, 54, 140, 165, 195 
Longitudinal wave stiffness, 135, 145 
Longitudinal waves, 190 
Low frequency transducer, 66 

Magnetic resonance imaging (MRI), 119 
Main bang, 10, 75 
Main lobe, 36 
Manufacturing applications, 2 
Map of variations, 117 
Mass (slug), 23 
Material (intrinsic) attenuation, 42 
Material velocity, 9 
Mathematical procedures, 85 
Mean of measurements, 108 
Medical applications, 5 
Membrane deformations, 217 
Method of characteristics, 164 
Method of characteristics in one 

dimension, 153 
Method of characteristics in 

three dimensions, 154 
Mindlin-Herman approximation, 171 
Mindlin-Hermann beam theory, 206 
Mindlin-Hen'man approximation, 206 
Mindlin-Herrman bending theory, 211 
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Mindlin-Herrman theory, 217 
MKS units, 22 
Mode conversion, 58 
Mode conversions, 60 
Modes, 185 
Modulus, 20 

bulk, 135 
elastic, 17 
elasticity, 19 
shear, 38, 135 
Young's, 19, 20, 38 

Mohr's circle, 127, 141, 142 
Moment of inertia, 213 
Moving averages, 99 
Moving object, 63 
Multiple independent variables, 111 

Natural frequency, 226 
Near field, 175 
Near-field, 37 
Near-field distance, 84 
Near-field effects, 84 
Negative Poisson's ratio, 135 
Neper, 40 
Newton' s law, 17 
Newton's law of inertia, 147 
Newton-unit of force, 23, 147 
Noise, 94, 99 
Non-homogeneity, 34 
Non-linear dependence, 112 
Non-linear effect, 39 
Non-linear elasticity, 17, 121 
Non-linearity - effects on waveform, 44 
Non-periodic waveform, 102 
Non-propagating solutions, 162 
Nondestructive evaluation (NDE), 2 
Nondestructive inspection (NDI), 2 
Nondestructive testing (NDT), 2 
Nonhomogeneities, 61 
Nonparallel surface, 72 
Nonuniformities, 61 
Normal incidence, 49 
Normal probability function, 109 
Normal strain, 139 
Normal stress, 18, 126, 143 
Null, 175 
Nyquist frequency, 96, 105 

Oblique interactions, 195 
Oblique interface, 58 
Oblique reflection, 53 

Oblique reflection coefficients, 57 
Oblique transmission, 53, 200 
Offset, 96, 99, 225 
One-dimensional waves, 151 
One-dimensional forces, 148 
One-dimensional wave equation, 162 
One-dimensional waves, 163 
Optimum transmission, 52 
Orthotropic solid, 138 
Orthotropy, 20, 132, 144 
Oscillating wave, 9 
Overamplification, 89 
Overdriven amplifier, 76 
Overshoot, 100 

P-waves, 26 
Particle motion, 186 
Particle velocity, 9 
Path length, 90 
PE-pulse echo, 70 
Period, 14 
Periodic waveform, 102 
Periodicity, 113 
Perturbed media, 61 
Phantom, 77 
Phase, 14, 16, 64, 93, 169 

analytic, 221 
stationary, 46 
unwrapping, 106 

Phase function, 163 
Phase shift, 102 
Phase spectrum, 103, 105 
Phase velocity, 16 
Phase wrap-around, 106 
Piezoelectric coefficient, 156 
Piezoelectric excitation, 156 
Piezoelectric transducers, 66 
Pitch-catch, 72 
Pixel, 118, 119 
Plane wave, 12, 25, 163, 175 
Plane wave solutions, 165 
Plane waves, 166 
Plasticity, 121 
Plate theory, 217 
Pochhammer -Chree theory, 206 
Pochhammer-Chree theory, 211 
Point force, 17, 123 
Point source, 12, 25, 159 
Poisson effect, 140, 206 
Poisson effects, 143 
Poisson's ratio, 8, 20, 38, 56, 58, 134, 173 

negative values, 135 
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non-symmetry, 138 
restrictions, 135, 137, 138 
Stonely wave, 31 

Poisson's ratio in Rayleigh wavespeed, 203 
Poisson's ratio in rod dispersion, 209 
Polar vector, 129 
Polarization, 28, 186 
Polarization angle, 28, 187 
Polarization vector, 13, 186 
Polarized film transducers, 67 
Porosity, 34 
Potential function, 198 
Poundal-unit of force, 23, 147 
Power amplifier, 75 
Power spectral density (PSD), 105 
Preconditioning, 99 
Pressure, 126 
Primary lobe, 178 
Primary waves, 26 
Principal angle, 127 
Principal directions, 186 
Principal stress, 127, 141 
Principal values, 183 
Principal vector, 183, 186 
Principal-value problem, 183 
Principle of stationary phase, 46 
Probe, 68 
Processes in attenuation, 41 
Propagation vector, 13 
Pseudo-vector, 129 
Pulse generator, 75 
Pulse-echo (PE), 5, 70 
Pulser, 65 
PVDF (polyvinylidene difluoride), 67 
PZT, 66 

Q, attenuation parameter, 43 
Quality control (QC), 2 
Quarter-wave filter, 52 
Quarter-wave layer, 52 
Quasi-longitudinal waves, 28 
Quasi-shear waves, 28 

Radial beam spread, 79 
Radial displacement, 206 
Radial distribution, 179 
Radial inertia, 208 
Radial spread, 82 
Radial stress, 206 
Radial variation of beam, 36 
Radial variation over beam, 176 

Radio frequency (RF) waveform, 88 
Radius of gyration, 214 
Random variations, 108 
Rate of strain, 21 
Rational units, 22 
Ray, 13 
Rayleigh surface waves, 30 
Rayleigh wave, 38, 201 
Rayleigh wave at a corner, 61 
Rayleigh waves, 171 
Re-real part of complex variable, 103 
Receiver transducer, 74 
Recorder, 65 
Reference blocks, 77 
Reflection, 54 

anisotropy, 58 
coefficients--oblique, 57 
critical angle, 56 
oblique, 53, 195 
oblique free surface, 198 

Reflection at normal incidence, 49 
Reflection coefficient for a longitudinal wave, 

58 
Reflection Coefficients, 197 
Reflection coefficients for stress, 51 
Reflection coefficients for velocity, 51 
Reflection-total internal, 57 
Reflector plate, 68 
Refraction, 53, 54, 200 

transmitted waves, 56 
Repetition, 99 
Repetition rate, Rep rate, 76 
Resolution, 95 
Resolution--frequency, 96 
Response function, 114, 226 
Reversibility, 17, 121 
RF display, 11 
RF waveform, 88 
Rhombohedral materials, 132 
Rhombohedral symmetry, 138 
Riemann invariants, 153 
RMS, 94 
Robotic system, 65 
Rod, 143 
Rod wave, 31 
Rod wavespeed, 205 
Rods under axial load, 205 
Roller transducer, 69 
Root mean square (RMS), 94, 105, 110 
Rotated axes, 132 

strain, 129 
Rotated axes--stress, 127 
Rotation, 129, 165 
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Rotation vector, 125 
Rotatory inertia, 215 

S-wave, 26 
S/N, 94 
Sampling, 95 
Sampling bandwidth, 97 
Sampling rate, 104 
Sandwich construction, 34 
Scalar potential, 165 
Scatter, 61 
Scatter by diffraction, 60 
Scatter patterns, 63 
Scatterer, 61 
Scattering, 34 
Second moment of area, 213 
Secondary waves, 26 
Seismic cross-section, 87 
Sender transducer, 74 
Separation of variables, 163 
Shear, 8 

deviator, 129 
Shear force, 213 
Shear forces, 217 
Shear modulus, 38, 135 
Shear modulus in bending, 215 
Shear stiffness in bending, 215 
Shear strain, 128, 139 
Shear stress, 18, 126 
Shear wave, 38, 54 
Shear waves, 26 
Shock-up, 39 
Shrinkage, 121 
Side lobe, 36, 178 
Signal, 10 
Signal analyzer, 65 
Signal conditioning, 86, 223 
Signal generator, 65 
Signal resolution, 95 
Signal strength, 37 
Signal-to-noise ratio, 94 
Simple harmonic, 15 
Sine wave, 10, 102 
Single degree-of-freedom systems 

(SDOF), 226 
Single-sided access, 70 
Sinusoidal oscillations, 14 
Slippage, 121 
Slug-unit of mass, 23 
Smoothing, 224 
Smoothing a waveform, 107 
Smoothing by moving averages, 99 

Snell's law, 54, 72, 196 
Software, 85 
Solid, 8 
Solutions for anisotropy, 183 
Solutions to the wave equations, 159 
Sonography, 5 
Spectral analyses, 106 
Spectral analysis, 101 
Spectral content, 101 
Spectral correlation, 114 
Spectral filtering, 107 
Spectral intensity, 103 
Spectral phase, 103 
Spectrum, 14, 86 
Spherical wave, 25, 159 
Spherical waves, 159 
Square window, 100 
Squirter, 10 
Standard blocks, 77 
Standard deviation, 108, 110 
Standardization of set-up, 77 
State--stress and particle velocity, 45 
State variable, 154 
State vector, 152 
State--stress and particle velocity, 9 
Stationary phase, 46, 169 
Statistical measurements, 108 
Statistical variable, 94 
Steered wave, 73 
Step function, 115, 161 
Step waves, 161 
Step-wedge, 79 
Stiffness, 122, 152 

bending, 213 
longitudinal, 145 

Stiffness in rotated axes, 132 
Stonely interface waves, 31 
Strain, 17, 122, 128, 139 

alternate notation, 130 
axial, 128 
normal, 139 
relationship to stress, 131 
rotated axes, 129 
shear, 128, 139 
uniaxial, 139 
uniaxial shear, 141 
volumetric, 128 

Strain rate, 129, 170 
Stress, 9, 17, 122, 139 

alternate notation, 130 
normal, 18, 126 
principal, 127, 141 
reflection coefficients, 51 
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rotated axes, 127 
shear, 126 
shear, transverse, 18 
symmetry, 126 
transverse, 143 
uniaxial, 140, 143 

Stress deviator, 126 
Stress potentials, 197 
Stress state, 26 
Stress tensor, 154 
Stress-strain relationship, 131 
Stress-strain relationships, 143 
Subsonic, 10 
Summation convention, 124 
Superimposition, 169 
Superposition, 160 
Superpositions, 162 
Surface wave, 8 
Surface waves, 25, 30 
SV and SH waves, 27 
Symmetry, 20 
Symmetry of stress, 126 
Systems of units, 22 

Tap test, 4 
Temperature compensation, 67 
Tensor, 124 
Theory of wave propagation, 151 
Thermoelasticity, 156 
Thick rod, 171,206 
Thin materials, 72 
Thin plates, 217 
Thin rod, 143, 205 
Three-dimensional waves, 154 
Three-dimensional forces, 148 
Three-dimensional wave equations, 165 
Threshold, 90 
Through-transmission (TTU), 71 
Through-transmission ultrasonics 

(TTU), 3, 11 
Time domain, 85 
Time domain analysis, 221 
Time domain signal conditioning, 223 
Time event, 89 
Time measurements, 78 
Time shift, 92 
Time-domain smoothing, 224 
Time-of-flight, 5, 90, 93 
Timoshenko bending theory, 172, 211,214 
Tomography, 118 
Tone-burst, 162 
Torsional wave, 32 

Torsional wavespeed in a rod, 38 
Total internal reflection, 57 
Total phase, 16 
Transducer, 35, 65 

array, 67, 73 
correction for effective diameter, 83 
correction for radial variation, 82 
crystals, 51 
damping, 70 
diameter, 79 
effective diameter, 83 
excitation, 75 
impedance, 81 
impedance and coupling, 80 
low frequency, 66 
receiver, 74 
rolling wheel, 69 
sender, 74 

Transducer bridge, 65 
Transducer diameter, 36 
Transducer gantry, 65 
Transducers 

electromagnetic acoustic (EMAT), 67 
piezoelectric, 66 
polarized film, 67 

Transfer function, 115 
Transform 

Hilbert, 88, 221 
Transform pair, 103 
Transmission, 54 

angles, 56 
oblique, 53 

Transmission---oblique, 200 
Transmission at normal incidence, 49 
Transverse isotropy, 144, 189 
Transverse motion, 167 
Transverse shear strain, 141 
Transverse stress, 18, 143 
Transverse wave, 26, 165, 191 
Transverse wave reflection, 198 
Transversely isotropic solid, 136 
Trigger, 76 
Truncation, 97, 100 
TTU, 71 

Ultrasonics, 1, 10 
Uniaxial normal stress, 143 
Uniaxial strain, 139 
Uniaxial stress, 140 
Uniaxial stress-strain relationships, 143 
Uniaxial transverse shear strain, 141 
Uniaxial transverse stress, 143 
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Unidirectional fiber-reinforced laminate, 28 
Unique applications, 7 
Unit tensor, 126 
Unit vector, 124 
Units 

English, cgs, rational, 22 
Units of force, 147 
Unwrapping phase, 106 
UT, 10 
UT beam, 35, 79 
UT Beam-Axial variation, 180 
UT setup, 65 
Ut tensio sic vis, 122 

Vector 
polarization, 13 
propagation, 13 
unit, 124 

Vector potential, 165 
Vector shorthand, 123 
Vectors, 123 
Velocity, 9 

reflection coefficients, 51 
Velocity potentials, 164 
Velocity vector, 154 
Vibration modes, 107 
Video display, 11 
Video waveform, 88 
Virtual wave, 49 
Viscoelastic media, 170 
Viscoelasticity, 21 
Viscosity, 8, 21, 121, 170 
Volume change, 165 
Volumetric strain, 128 

Water squirter, 69, 79 
Water tank, 49, 79 
Water tank-immersion, 65 
Wave 

Transverse, 191 
bending, 32, 34 
body, 25 
boundary, 159 
boundary dependence, 29 
change in propagation, 40 
diffracted, 60 
dilatational, 26 
dispersive, 33 
Elastic, 1 
elastic, 25 
excitation, 155 

extensional, 34 
fundamental, 8, 159 
group, 46 
head, 30 
interactions, 45 
interference, 46 
intersections, 45 
Lamb plate, 34 
Leaky Lamb, 57 
leaky Lamb, 31 
longitudinal, 26, 38, 165, 190 
moving transition, 9 
oscillating, 9 
P-, S-, 26 
plane, 12, 25, 166, 175 
primary, 26 
quasi-longitudinal, 28 
quasi-shear, 28 
Rayleigh, 38 
Rayleigh surface, 30 
scattered, 61 
secondary, 26 
shear, 26, 38 
sine, 10, 102 
spherical, 25, 159 
Stonely interface, 31 
surface, 8, 25 
SV and SH, 27 
torsional, 32 
transverse, 26, 165 
transverse reflection, 198 

Wave - rod/bar, 31 
Wave equation 

solutions, 159 
Wave equation in one dimension, 152, 162 
Wave equation in three dimensions, 154 
wave equation in three dimensions, 160 
Wave equations in three dimensions, 165 
Wave front, 12 
Wave number, 14, 15, 106, 163 
Wave pattern, 13 
Wave propagation theory, 151 
Wave surface, 12, 139 
Waveform, 10, 46 

dispersed, 93 
display, 87 
non-periodic, 102 
periodic, 102 
radio frequency (RF), 88 
smoothing, 107 
spectral content, 101 
video, 88 

Waveform at an interface, 53 
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Waveform conditioning, 86, 94 
Waveform distortion, 41 
Waveform feature, 116 
Wavelength, 14, 15 
Wavelength--scattering, 62 
Waves 

beams, 211 
plates, 211 

Waves in solids and fluids, 151 
Wavespeed, 9, 14, 16, 21, 184 

axial in a rod, 38 
isotropic elastic, 38 
measurement, 90 
rod or bar, 205 
shock-up, non-linearity, 39 
torsional in a rod, 38 

Wavespeed in typical materials, 40 
Wavespeeds, 152 
Wear-face, 66 

Wheel transducer, 69 
White spectrum (white noise), 105 
Window, 90 
Windowing, 100 

X-T diagram, 45 
X-T diagram for normal reflection, 50 
X-T diagram for normal reflection 

and transmission, 51 
X - T  Wave Diagram, 13, 153 

Young's, 38 
Young's modulus, 19, 20, 38, 

134, 205, 212 

Zero-crossing analysis, 93 
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